
Virtuoso® UltraSim Simulator User Guide

Product Version 7.2
May 2010

© 2003–2010 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D.
Kincaid, and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J.
J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990, University of Tennessee, Knoxville, TN and
Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson,
Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin
St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304-1185 USA © 1994; Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale,
CA 94085 © 1996-1997; Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the
University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994; Sun Microsystems, Inc.,
4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000; Scriptics Corporation and other parties ©
1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999; and Jean-loup
Gailly and Mark Adler © 1995-2005, RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 ©
2005.

All rights reserved. Associated third party license terms may be found at <install_dir>/doc/OpenSource/*.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Virtuoso UltraSim Simulator, described in this document, is protected by U.S.
Patents 5,610,847; 5,790,436; 5,812,431; 5,859,785; 5,949,992; 5,987,238; 6,088,523; 6,101,323;
6,151,698; 6,181,754; 6,260,176; 6,278,964; 6,349,272; 6,374,390; 6,493,849; 6,504,885; 6,618,837;
6,636,839; 6,778,025; 6,832,358; 6,851,097; 7,035,782; 7,085,700.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Virtuoso UltraSim Simulator User Guide

Contents
Preface . 21

Licensing in Virtuoso UltraSim Simulator . 22
Virtuoso UltraSim L and XL Product Levels . 22

Related Documents for Virtuoso UltraSim Simulator . 26
Typographic and Syntax Conventions . 27

1
Introduction to Virtuoso UltraSim Simulator 31

Virtuoso UltraSim Simulator Features . 31
Related Documents for Extended Analyses . 33

Virtuoso UltraSim Simulator in IC Design Flow . 33
Command Line Format . 35

Running the Virtuoso UltraSim Simulator . 35
Virtuoso UltraSim Simulator Options . 35
Virtuoso UltraSim 64-Bit Software . 39

Virtuoso UltraSim Simulator Configuration File . 40
Virtuoso UltraSim Simulator Input/Output Files . 41

Waveform Name Syntax . 44
Virtuoso UltraSim Return Codes . 45
Error and Warning Messages . 46
Creating Tutorial Directories . 46

UltraSim_Workshop . 46
usim_ade . 47
Usim_Verilog . 48
USIM_NetlistBased_EMIR_Flow . 48

2
Netlist File Formats . 51

Supported Netlist File Formats . 51
Virtuoso Spectre . 51
May 2010 5 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
HSPICE . 52
Mixed Virtuoso Spectre and HSPICE . 54
Structural Verilog . 56

Compressed Netlist File . 57
Supported Virtuoso Spectre Model Features . 58

Virtuoso Spectre . 58
Verilog-A . 60

Supported HSPICE Model Features . 61
Syntax Rules . 61
Unit Prefix Symbols . 62

Supported HSPICE Devices and Elements . 63
Bipolar Junction Transistor . 64
Capacitor . 67
Current-Controlled Current Source (F-Element) . 69
Current-Controlled Voltage Source (H-Element) . 71
Diode . 73
Independent Sources . 75
JFET and MESFET . 77
Lossless Transmission Line (T-Element) . 79
Lossy Transmission Line (W-Element) . 80
MOSFET . 83
Mutual Inductor . 86
Resistor . 87
Self Inductor . 89
Voltage-Controlled Current Sources (G-Elements) . 91
Voltage-Controlled Voltage Source (E-Elements) . 95

Supported HSPICE Sources . 98
dc . 99
exp . 100
pwl . 101
pwlz . 102
pulse . 103
sin . 104
pattern . 105

Supported SPICE Format Simulation and Control Statements 108
.alter . 109
May 2010 6 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
.connect . 110

.data . 111

.end . 112

.endl . 113

.ends or .eom . 114

.global . 115

.ic . 116

.include . 117

.lib . 118

.nodeset . 119

.op . 120

.options . 123

.param . 125

.subckt or .macro . 126

.temp . 127

.tran . 128
Supported SPICE Format Simulation Output Statements . 130

.lprobe and .lprint . 131

.malias . 134

.measure . 135

.probe, .print, .plot, and .graph . 142
Supported SPICE Format Expressions . 148

Built-In Functions . 148
Constants . 150
Operators . 152

3
Simulation Options . 155

Setting Virtuoso UltraSim Simulator Options . 155
Simulation Modes and Accuracy Settings . 157

Simulation Modes . 157
Supported Representative Models Summary . 160
Accuracy Settings . 162
Recommended Simulation Modes and Accuracy Settings . 164

High-Sensitivity Analog Option . 167
May 2010 7 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
analog . 167
Analog Autodetection . 168
Simulation Control Options . 169

Operating Point Calculation Method . 169
Operating Point Calculation Control Options . 171
DC Options . 172
Integration Method . 174
Simulation Tolerances . 175
Simulation Convergence Options . 179
Save and Restart . 181
Strobing Control Options . 183

Modeling Options . 184
MOSFET Modeling . 184
Analog Representative Model for Generic MOSFET Devices 189
Diode Modeling . 190
minr . 192
Operating Voltage Range . 192
Treatment of Analog Capacitors . 193
Inductor Shorting . 195

Waveform File Format and Resolution Options . 197
Waveform Format . 197
Updating Waveform Files . 198
Waveform File Size . 199
Waveform File Resolution . 200
Node Name Format Control . 204

Miscellaneous Options . 205
Model Library Specification . 206
Warning Settings . 207
Simulation Start Time Option . 211
Simulation Progress Report Control Options . 211
Model Building Progress Report . 212
Local Options Report . 213
Node Topology Report . 216
Resolving Floating Nodes . 216
Flattening Circuit Hierarchy Option . 217
hier . 217
May 2010 8 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Device Binning . 218
Element Compaction . 219
Threshold Voltages for Digital Signal Printing and Measurements 220
Hierarchical Delimiter in Netlist Files . 221
MOSFET Gate Leakage Modeling with Verilog-A . 223
Automatic Detection of Parasitic Bipolar Transistors . 224
Duplicate Subcircuit Handling . 225
Bus Signal Notation . 225
Bus Node Mapping for Verilog Netlist File . 226
Structural Verilog Dummy Node Connectivity . 228
skip Option . 230
probe_preserve Option . 231
Print File Options . 232
Controlling Text Wrapping of Circuit Check Reports . 233
Changing Resistor, Capacitor, or MOSFET Device Values 233
.reconnect . 234

Simulator Options: Default Values . 237

4
Post-Layout Simulation Options. 241

RC Reduction Options . 245
ccut . 246
cgnd . 247
cgndr . 248
rcr_fmax . 249
rcut . 250
rshort . 251
rvshort . 252
postl . 253

Excluding Resistors and Capacitors from RC Reduction . 255
preserve . 255

Stitching Files . 257
capfile . 257
dpf . 258
spf . 260
May 2010 9 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
spef . 261
Parsing Options for Parasitic Files . 263

cmin . 265
cmingnd . 266
cmingndratio . 267
dpfautoscale . 268
dpfscale . 269
rmax . 270
rmaxlayer . 271
rmin . 272
rminlayer . 273
rvmin . 274
speftriplet . 275
spfbusdelim . 276
spfcaponly . 278
spfcrossccap . 279
spffingerdelim . 280
spfhierdelim . 282
spfinstancesection . 283
spfkeepbackslash . 284
spfnamelookup . 285
spfrcnet . 287
spfrcreduction . 288
spfrecover . 289
spfscalec . 291
spfscaler . 292
spfserres . 293
spfserresmod . 295
spfsplitfinger . 297
spfswapterm . 298
spfxtorintop . 299
spfxtorprefix . 300

Selective RC Backannotation . 301
spfactivenet . 302
spfactivenetfile . 303
spfchlevel . 304
May 2010 10 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
spfcnet . 305
spfcnetfile . 306
spfhlevel . 307
spfnetcmin . 308
spfrcnetfile . 309
spfskipnet . 310
spfskipnetfile . 311
spfskippwnet . 312
spfskipsignet . 313

Error/Warning Message Control Options for Stitching . 314
spferrorreport . 314
spfmaxerrormsg . 315
spfmaxwarnmsg . 316

Stitching Statistical Reports . 316
Frequently Asked Questions . 319

How can I minimize memory consumption? . 319
How can I reduce the time it takes to run a DC simulation? 320

5
Voltage Regulator Simulation . 321

Overview of Voltage Regulator Simulation . 321
usim_vr . 322

6
Power Network Solver. 327

Detecting and Analyzing Power Networks . 327
usim_pn . 327
pn_level . 329
pn_max_res . 329
pn . 330

UltraSim Power Network Solver . 331
May 2010 11 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
7
Interactive Simulation Debugging. 335

Overview of Interactive Simulation Debugging . 335
General Commands . 336

alias . 337
exec . 338
exit . 339
help . 340
history . 341
runcmd . 342

Log File Commands . 343
close . 344
flush . 345
open . 346

Analysis Commands . 347
conn . 348
describe . 350
elem_i . 352
exi . 354
exitdc . 356
force . 357
forcev . 358
hier_tree . 359
index . 361
match . 362
meas . 363
name . 364
nextelem . 365
node . 366
nodecon . 367
op . 368
probe . 369
release . 370
restart . 371
run . 372
May 2010 12 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
save . 374
spfname . 375
stop . 376
time . 377
value . 378
vni . 379

8
Virtuoso UltraSim Advanced Analysis. 381

Dynamic Checks . 381
Active Node Checking . 382
Design Checking . 384
Dynamic Power Checking . 407
Node Activity Analysis . 409
Node Glitch Analysis . 414
Power Analysis . 419
Wasted and Capacitive Current Analysis . 426
Power Checking . 428
Timing Analysis . 443
Bisection Timing Optimization . 455

Static Checks . 460
Netlist File Parameter Check . 461
Print Parameters in Subcircuit . 470
Resistor and Capacitor Statistical Checks . 472
Substrate Forward-Bias Check . 477
Static MOS Voltage Check . 480
Static NMOS and PMOS Bulk Forward-Bias Checks . 485
Detect Conducting NMOSFETs and PMOSFETs . 492
Static Maximum Leakage Path Check . 503
Static High Impedance Check . 504
Static ERC Check . 506
Static DC Path Check . 509
info Analysis . 511
Partition and Node Connectivity Analysis . 514
Warning Message Limit Categories . 518
May 2010 13 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
9
Netlist-Based EM/IR Flow . 521

Simulating Data and Saving Files . 522
Block-Level Solution . 522
Advanced EMIR Flow for Big Blocks and Full Chip . 524

Displaying Results for Analysis . 528
Violation Maps and Text Reports . 531
IR Analysis . 534
EM Analysis . 537
Saving Customized Settings in EMIR GUI . 541

Command Syntax . 543
Control File . 543
EM Data File . 553

10
Static Power Grid Calculator . 563

Analyzing Parasitic Effects on Power Net Wiring . 563
ultrasim -r . 565
Filtering Routine . 566

11
Fast Envelope Simulation for RF Circuits . 569

Simulation Parameters . 569
Local Envelope Simulation . 577
Frequency Modulation Envelope Simulation . 581

Frequency Modulation Source Types . 581
Frequency Modulation Source Parameters . 583
Example . 583

Autonomous Envelope Simulation . 587

12
Virtuoso UltraSim Reliability Simulation . 591

Hot Carrier Injection Models . 593
May 2010 14 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
MOSFET Substrate and Gate Current Model . 594
Hot Carrier Lifetime and Aging Model . 594
DC Lifetime and Aging Model . 594
AC Lifetime and Aging Model . 594

Negative Bias Temperature Instability Model . 595
Aged Model . 596
AgeMOS . 596
Reliability Control Statements . 599

.age . 601

.agemethod . 602

.ageproc . 603

.deltad . 604

.hci_only . 605

.minage . 606

.nbti_only . 607

.nbtiageproc . 608
Virtuoso UltraSim Simulator Option . 609

deg_mod . 609
Reliability Shared Library . 609

uri_lib . 609
Virtuoso UltraSim Simulator Output File . 610

13
Digital Vector File Format . 613

General Definition . 615
Vector Patterns . 617

radix . 618
io . 619
vname . 620
hier . 622
tunit . 623
chk_ignore . 624
chk_window . 625
enable . 628
period . 630
May 2010 15 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Signal Characteristics . 631
Timing . 632
idelay . 633
odelay . 634
tdelay . 635
slope . 636
tfall . 637
trise . 638
Voltage Threshold . 639
vih . 640
vil . 641
voh . 642
vol . 643
avoh . 644
avol . 645
vref . 646
vth . 647
Driving Ability . 648
hlz . 649
outz . 650
triz . 651

Tabular Data . 652
Absolute Time Mode . 652
Period Time Mode . 652
Valid Values . 653

Vector Signal States . 653
Input . 653
Output . 654

Digital Vector Waveform to Analog Waveform Conversion . 654
Expected Output and Comparison Result Waveforms for Digital Vector Files 655
Example of a Digital Vector File . 656
Frequently Asked Questions . 657

Can I replace the bidirectional signal with an input and output vector? 657
How do I verify the input stimuli? . 657
How do I verify the vector check? . 658
May 2010 16 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
14
Verilog Value Change Dump Stimuli . 659

Processing the Value Change Dump File . 659
VCD Commands . 661

VCD File Format . 661
Definition Commands . 662
$date . 663
$enddefinitions . 664
$scope . 665
$timescale . 666
$upscope . 667
$var . 668
$version . 670
Data Commands . 671
data . 671
time_value . 672

Signal Information File . 673
Signal Information File Format . 674
Signal Matches . 675
.alias . 676
.scope . 678
.in . 679
.out . 680
.bi . 681
.chk_ignore . 683
.chkwindow . 684
Signal Timing . 687
.idelay . 688
.odelay . 689
.tdelay . 690
.tfall . 691
.trise . 692
Voltage Threshold . 693
.vih . 694
.vil . 695
May 2010 17 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
.voh . 696

.vol . 697
Driving Ability . 698
.outz . 698
.triz . 698
Hierarchical Signal Name Mapping . 699

Enhanced VCD Commands . 703
Signal Strength Levels . 703
Value Change Data Syntax . 703
Port Direction and Value Mapping . 705
Enhanced VCD Format Example . 708

Expected Output and Comparison Result Waveforms for Value Change Dump Files . . 709
Frequently Asked Questions . 710

Is it necessary to modify the VCD/EVCD file to match the signals? 710
How can I verify the input stimuli? . 710
How do I verify the output vector check? . 711
Why should I use hierarchical signal name mapping? . 711
What is the difference between CPU and user time? . 711

15
Flash Core Cell Models . 713

Device . 713
Models . 714

16
VST/VAVO/VAEO Interfaces. 719

VST Interface . 719
VAVO/VAEO Interface . 719
May 2010 18 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
A
Virtuoso UltraSim L/XL Product Level Comparison Table . . 721

B
Reader Survey . 729

Index. 733
May 2010 19 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
May 2010 20 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface

The Virtuoso® UltraSim Simulator User Guide is intended for integrated circuit designers
who want to use the Virtuoso UltraSim™ Fast SPICE simulator to analyze the function, timing,
power, noise, and reliability of their circuit designs.

This manual describes the following topics:

■ Chapter 1, “Introduction to Virtuoso UltraSim Simulator”

■ Chapter 2, “Netlist File Formats”

■ Chapter 3, “Simulation Options”

■ Chapter 4, “Post-Layout Simulation Options”

■ Chapter 5, “Voltage Regulator Simulation”

■ Chapter 6, “Power Network Solver”

■ Chapter 7, “Interactive Simulation Debugging”

■ Chapter 8, “Virtuoso UltraSim Advanced Analysis”

■ Chapter 9, “Netlist-Based EM/IR Flow”

■ Chapter 10, “Static Power Grid Calculator”

■ Chapter 11, “Fast Envelope Simulation for RF Circuits”

■ Chapter 12, “Virtuoso UltraSim Reliability Simulation”

■ Chapter 13, “Digital Vector File Format”

■ Chapter 14, “Verilog Value Change Dump Stimuli”

■ Chapter 15, “Flash Core Cell Models”

■ Chapter 16, “VST/VAVO/VAEO Interfaces”

■ Appendix A, “Virtuoso UltraSim L/XL Product Level Comparison Table”

■ Appendix B, “Reader Survey”
May 2010 21 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
Licensing in Virtuoso UltraSim Simulator

Virtuoso UltraSim L and XL Product Levels

This section describes the Virtuoso UltraSim simulator L and XL product levels:

Additional topics described in this section include feature details for each product level (see
Simulator Product Level Features on page 23) and tracking token licenses (see Tracking
Token Licenses on page 25).

The following documents give more information about Cadence token licenses and the
FLEXlm™ license manager.

■ Cadence Installation Guide

■ Cadence License Guide

■ Virtuoso Software Licensing and Configuration Guide

Using Different Simulator Product Levels

The Virtuoso UltraSim simulator product is available at two different levels: The most basic
level is L and the next highest level is XL. The XL level provides additional simulation features
capable of simulating more complex circuit designs.

■ L The L product level provides basic Virtuoso UltraSim simulation features

■ XL The XL product level provides standard Virtuoso UltraSim simulation features,
such as post layout simulation options, power network solver (UPS), netlist-
based EMIR flow, dx simulation mode, and advanced circuit checks

Number Product Level Feature String

33400 Virtuoso® UltraSim Simulator L ULTRASIM_L

33500 Virtuoso® UltraSim Simulator XL ULTRASIM

90001/
90002

Virtuoso® Multi Mode Simulation Virtuoso_Multi_mode_Simulation
May 2010 22 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
The Virtuoso UltraSim L product level requires the 33400 license or four tokens from the
90001/90002 license, whereas Virtuoso UltraSim XL requires the 33500 license or six tokens
from the 90001/90002 license.

The license check out priority for the Virtuoso UltraSim simulator is in decreasing order of
priority: ULTRASIM first, ULTRASIM_L next, and Virtuoso_Multi_mode_Simulation
last.

You can change the order of priority using the +lorder command line option. For example,

+lorder ULTRASIM_L

+lorder ULTRASIM

+lorder ULTRASIM_L:ULTRASIM

+lorder Virtuoso_Multi_mode_Simulation

Notes

■ You can only use +lorder to change the Virtuoso UltraSim simulator license check out
procedure.

■ For the L and XL product levels, you can check out licenses one per user, host, and
display.

■ To stop a license check out session, press CTRL Z on your keyboard.

Simulator Product Level Features

The Virtuoso UltraSim Simulator User Guide describes all of the Virtuoso UltraSim L and
XL product level features. The following table provides a high level overview of the L and XL
features.

Note: For more information about the L and XL product levels, refer to the Appendix A,
“Virtuoso UltraSim L/XL Product Level Comparison Table.”

Feature UltraSim L UltraSim XL

Netlist and model support (see “Netlist File Formats” on
page 51 for details)

X X

All circuit elements, transient sources, and simulator control
statements are supported (see “Simulation Options” on
page 155)

X X

Simulation modes and accuracy settings (see “Simulation
Modes and Accuracy Settings” on page 157)

X X
May 2010 23 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
Waveform file format and resolution options (see “Waveform
File Format and Resolution Options” on page 197)

X X

All major device models are supported (see “Virtuoso
UltraSim Simulator Features” on page 31)

X X

Timing analysis and checks (see “Timing Analysis” on
page 443)

X X

Power analysis for all elements at the subcircuit and chip
levels (see “Power Analysis” on page 419)

X X

Interactive simulator debugging capability (see “Interactive
Simulation Debugging” on page 335)

X X

Basic simulator checks (see “Virtuoso UltraSim Advanced
Analysis” on page 381)

X X

Noise analysis (see “Active Node Checking” on page 382) X X

Virtuoso UltraSim C-Macromodel Interface (UCI) – see
Virtuoso UltraSim C-Macromodel Interface Reference

X X

Virtuoso UltraSim Waveform Interface (UWI) – see Virtuoso
UltraSim Waveform Interface Reference

X X

Digital vector file format (see “Digital Vector File Format” on
page 613)

X X

UltraSim-Verilog (see Virtuoso Analog Design
Environment L User Guide)

X X

Post layout simulation options and statistical reports X

UltraSim power network solver (UPS) X

Netlist-based EM/IR flow X

Reliability age/agemos and control statements X

Fast and local envelope simulation X

Simulation mode dx X

Bisection method X

Advanced circuit checks X

Virtuoso Unified Reliability Interface (URI) X

Voltage regulator (VR) simulation X

Feature UltraSim L UltraSim XL
May 2010 24 Product Version 7.2

../UltraSim_UCI/UltraSim_UCITOC.html#firstpage
../UltraSim_UWI/UltraSim_UWITOC.html#firstpage
../UltraSim_UWI/UltraSim_UWITOC.html#firstpage

Virtuoso UltraSim Simulator User Guide
Preface
Tracking Token Licenses

You can use the lmstat UNIX shell command or the UltraSim log file to track token license
activity.

UltraSim Log File

The UltraSim log file contains the following license check out information – successful
checkout of:

■ An ULTRASIM license

■ An ULTRASIM_L license

■ Four Virtuoso_Multi_mode_Simulation tokens

■ Two Virtuoso_Multi_mode_Simulation tokens

The last log file output indicates an upgrade to the Virtuoso_Multi_mode_Simulation
license (the Virtuoso UltraSim simulator first checks out four tokens and then two extra tokens
incrementally, as needed).

lmstat Utility

The lmstat utility can be used to track token license activity. This utility reads the
license.file and displays specific information when using the following options.

Option Description

-a Display all of the information

-c license_file Use "license_file" as license file

-f [feature_name] List usage information about specified (or all) features

-i [feature_name] List information about specified (or all) features from the
increment line in the license file

-S [DAEMON] Display all users of DAEMONs licenses

-s [server_name] Display status of all license files on server node(s)

-t timeout_value Set connection timeout to "timeout_value"

-v Display FLEXlm version, revision, and patch
May 2010 25 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
Example

To use lmstat:

1. Type the following statement in a shell window.

lmstat -c license.file -f "Virtuoso_Multi_mode_Simulation"

2. Review the output.

In this example, the user (wqin) has started the
Virtuoso_Multi_mode_Simulation license and is using six tokens.

lmstat - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or Macrovision
Corporation. All Rights Reserved.

Flexible License Manager status on Thu 5/24/2007 16:40

Users of Virtuoso_Multi_mode_Simulation: (Total of 6 licenses issued; Total
of 6 licenses in use)

"Virtuoso_Multi_mode_Simulation" v6.2, vendor: cdslmd

floating license

wqin usimlx100 unix:0 (v6.100) (usimlx100/5280 104), start Thu 5/24 16:39,
4 licenses

wqin usimlx100 unix:0 (v6.100) (usimlx100/5280 203), start Thu 5/24 16:39,
2 licenses

For more information on lmstat, refer to the Cadence License Manager manual.

Related Documents for Virtuoso UltraSim Simulator

For additional information about the Virtuoso UltraSim simulator and related products, refer
to the following manuals:

■ Virtuoso Analog Design Environment L User Guide describes how to use the
Virtuoso analog design environment (ADE) to simulate analog designs. The manual also
includes important information about the Virtuoso UltraSim/ADE interface (Chapter 13)
and UltraSimVerilog (Chapter 14).

■ Virtuoso RelXpert Reliability Simulator User Guide describes the Virtuoso
RelXpert simulator and how to characterize and extract reliability parameters, generate
model files for the simulator, prepare the SPICE input netlist file for the simulator, and run
and interpret simulation results.

-old Allow communications with an old server that uses
communications version 1.2 or earlier

-help Prints specified message
May 2010 26 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
■ Virtuoso UltraSim C-Macromodel Interface Reference tells how the Virtuoso
UltraSim C-macromodel Interface (UCI) supports the use of functional elements,
described in C language, in the Virtuoso UltraSim simulator.

■ Virtuoso Unified Reliability Interface Reference shows how the Virtuoso Unified
reliability interface allows you to add your own reliability models to the Virtuoso UltraSim
simulator and how the interface supports user-defined degradation models.

■ Virtuoso UltraSim Waveform Interface Reference describes how to write Virtuoso
UltraSim probe data and read probe data into the Virtuoso UltraSim simulator.

■ Virtuoso UltraSim Simulator What’s New introduces the new features for the Virtuoso
UltraSim simulator release.

■ Virtuoso UltraSim Simulator Known Problems and Solutions describes important
Cadence change request records (CCRs) for the Virtuoso UltraSim simulator and tells
you how to solve or work around these problems.

Typographic and Syntax Conventions

The following typographic and syntax conventions are used in this manual.

Commands
command_name [argument(s)]

argument types: keyword | value | tag = keyword | tag = value
May 2010 27 Product Version 7.2

../UltraSim_UCI/UltraSim_UCITOC.html#firstpage
../UltraSim_URI/UltraSim_URITOC.html#firstpage
../UltraSim_UWI/UltraSim_UWITOC.html#firstpage
../UltraSim_WN/UltraSim_WNTOC.html#firstpage
../UltraSim_KPNS/UltraSim_KPNSTOC.html#firstpage

Virtuoso UltraSim Simulator User Guide
Preface
In the following example, the statement specifies a Cxx capacitor, and n1 and n2 nodes. The
c and m keywords have values assigned to them to specify the capacitance and multiplier
factors, respectively (keywords are optional and are defined by square brackets). The values
are displayed in italics to emphasize that the values are user-defined.

Cxx n1 n2 [c=value] [m=value]

In this Virtuoso Spectre format example, the usim_opt speed command expects a 1 or 2 as
a value argument.

usim_opt speed=1|2

Table 1-1 Virtuoso UltraSim Argument Types

Argument Type Definition

keyword Keywords are the identifiers in a card that are defined by the
Virtuoso UltraSim simulator.

value Values are user-defined. These include elements names, node
names, expected values, and value arguments to tags. They are
shown in italics to emphasize that they are user-defined, as
opposed to keywords and tags that are defined by the Virtuoso
UltraSim simulator.

tag Tags are identifiers in a card to which a value or keyword can be
assigned. An example are the tags for element instance
parameters (for example, MOSFET W, L, AS, AD). Tags can have
values or keywords as arguments, as specified by the command
syntax.

Table 1-2 Virtuoso UltraSim Symbol Types

Symbol Type Definition

bar | Represents the word OR, so you can choose between arguments.

ellipsis ... Allows you to specify multiple arguments.

brackets [] Indicates the enclosed argument is optional.

parentheses () Indicates there is a choice between the enclosed arguments (two
or more), and is only used when a command uses several groups
of arguments.
May 2010 28 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
Note: A period (.) is required when using SPICE language syntax (for example, .usim_opt
speed).

Syntax

■ Numeric values in the control statement can be specified in decimal notation (xx.xx) or
in engineering notation (x.xxe+xx).

■ Values for time are specified in units of seconds. The key scale factor can be used by
attaching a suffix y (year), h (hour), or m (minute).

Note: Do not leave a space between the number and suffix (for example, 10m, 1e-5sec).

■ Values for current are expected in units of A. The key scale factor can be used by
attaching the suffix m=1e-3, u=1e-6, or n=1e-9.

■ Values for voltage are expected in units of V. The key scale factor can be used by
attaching the suffix m=1e-3, u=1e-6, or n=1e-9.

■ Values for length/width are expected in units of meters.

■ Values for temperature are expected in units of C (Celsius).

■ The Virtuoso UltraSim simulator uses its default values if some of the control statements
are not specified.
May 2010 29 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Preface
May 2010 30 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
1
Introduction to Virtuoso UltraSim
Simulator

The Virtuoso® UltraSim™ simulator is a fast and multi-purpose single engine, hierarchical
simulator, designed to verify analog, mixed signal, memory, and digital circuits. The simulator
can be used for functional verification of billion-transistor memory circuits and for high-
precision simulation of complex analog circuits. Based on hierarchical simulation technology,
the Virtuoso UltraSim simulator is faster and uses less memory than traditional circuit
simulators, while maintaining near SPICE accuracy.

The Virtuoso UltraSim simulator supports all major netlist file formats and industry standard
device models. It includes a comprehensive post-layout simulation solution and provides
powerful deep-submicron analysis capabilities, including timing, power, noise, reliability, and
IR drop analysis.

Virtuoso UltraSim Simulator Features

The main features of the Virtuoso UltraSim simulator include:

■ Advanced transient pre- and post-layout simulation technology for analog, mixed signal,
memory, and digital circuits delivering near SPICE accuracy, with significant
performance acceleration over conventional SPICE, and virtually limitless capacity for
hierarchically structured designs.

■ 32- and 64-bit software available on Linux, Solaris, and IBM platforms (for detailed
platform information, refer to http://support.cadence.com/wps/mypoc/
cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/LifeCycle/
platform.html).

■ Support of Virtuoso Spectre® and HSPICE netlist file formats, Verilog-A language, post-
layout detailed standard parasitic format (DSPF) and standard parasitic exchange format
(SPEF) netlist files, and structural Verilog® netlist files.

■ Support of digital vector file format, and Verilog® value change dump (VCD) and
extended VCD (EVCD) digital stimuli formats.
May 2010 31 Product Version 7.2

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/LifeCycle/platform.html
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/LifeCycle/platform.html
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/LifeCycle/platform.html

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
■ SignalScan Turbo 2 (SST2), fast signal database (FSDB), parameter storage format
(PSF), and waveform data format (WDF) generation.

■ Superior RC reduction algorithms for post-layout simulation.

■ Support of all major Virtuoso Spectre and HSPICE device models, including BSIM3,
BSIM4, BSIMSOI, TFT, HVMOS, BJT, Mextram, Hicum, VBIC, and the flash memory cell
model.

■ Timing checks for setup and hold, rise and fall times, and pulse width.

■ Power analysis at the element, subcircuit, and chip level.

■ Design and device checks, including device voltage check, high impedance node
analysis, DC leakage current analysis, and excessive device current check.

■ Noise analysis, which monitors voltage overshoot (VO) and voltage undershoot (VU)
effects on nodes.

■ IR drop simulation using the Virtuoso UltraSim power network solver (UPS).

■ Fast envelope analysis for high performance transient analysis of RF circuits.

■ Reliability simulation, including hot carrier degradation (HCI), negative bias temperature
instability (NBTI), aged simulation, and compatibility with Virtuoso RelXpert reliability
simulator commands.

■ Virtuoso UltraSim C-macromodel interface (UCI) for implementing user-specific analog
or digital macromodels, such as PLL, memory block, analog to digital converter (ADC),
and digital to analog converter (DAC).

■ Virtuoso Unified reliability interface (URI) for implementing user-specific reliability
models.

■ Virtuoso UltraSim waveform interface (UWI) for customizing output of waveform formats.

■ Integration into the Cadence analog design environment (ADE).

■ Matlab toolbox to import PSF or SST2 data into MATLAB® (refer to the Virtuoso
Spectre Circuit Simulator RF Analysis User Guide for more information).

■ Standalone measurement tool to apply .meas to existing SST2 or FSDB waveform files.

Along with being the Cadence Fast SPICE transistor level simulator, the Virtuoso UltraSim
simulator engine is used with the following Cadence tools:

■ AMSUltra for Verilog/VHDL co-simulation with NCSIM.

■ UltraSimVerilog for mixed signal co-simulation with VerilogXL.
May 2010 32 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
■ Virtuoso analog VoltageStorm option (VAVO) for power grid analysis of analog and mixed
signal circuits.

■ Virtuoso analog ElectronStorm option (VAEO) for electromigration analysis of analog
and mixed signal circuits.

■ VoltageStorm for power grid analysis of digital circuits and full chip designs.

Related Documents for Extended Analyses

Refer to the following Cadence documentation for more information about these extended
analyses:

■ Virtuoso AMS Designer Simulator User Guide describes AMS UltraSim for Verilog/
VHDL co-simulation with NCSIM.

■ Virtuoso Analog Design Environment L User Guide describes UltraSimVerilog and
mixed signal co-simulation with VerilogXL.

■ Virtuoso Analog VoltageStorm and ElectronStorm User Guide describes VAVO,
VAEO, and other VoltageStorm analyses.

Virtuoso UltraSim Simulator in IC Design Flow

The Virtuoso UltraSim simulator can be used for pre- and post-layout simulation of analog,
mixed signal, memory circuits, and logic designs. Figure 1-1 on page 34 shows how the
simulator fits into the IC design flow.
May 2010 33 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
Figure 1-1 Virtuoso UltraSim Simulator in IC Design Flow

Virtuoso UltraSim pre-layout simulation is used to verify design functionality and timing
behavior, analyze the impact of submicron effects on the design, and to optimize the design
before starting on the layout. Pre-layout simulation is based on a Spectre or SPICE netlist file,
generated by schematic capture or synthesis tools, and also on device model files and input
stimuli. An alternative is to input a synthesized or structural Verilog netlist file and the SPICE
representation for all logic gates directly into the Virtuoso UltraSim simulator.

Virtuoso UltraSim post-layout simulation is used to verify circuit behavior after the layout
design is completed. The simulation considers the effect of slightly changed device sizes, wire

Transistor Netlister

Hier. Pre-Layout Netlist

Virtuoso UltraSim

Virtuoso UltraSim

Layout

Layout Verification

Schematic Capture

Function/Timing OK?

Device Extraction Interconnect Extraction

DPF DSPF / SPEF

Device Models, Input Stimuli

Function/Timing OK?

Tapeout

Logic Design Analog / Memory Design

Logic Netlist (and Simulation)

Synthesizer / Schematic Capture

Change DesignYes No

Change Design/Layout

Device Models, Input Stimuli, Est. Parasitics

Interconnect Extraction

Hier. postlayout NL

Assura HRCX

Yes No
May 2010 34 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
delays, and capacitive coupling created during the layout design, and allows the layout
designer to optimize the layout design in regard to performance, power consumption, design
margins, and robustness and reliability. The Virtuoso UltraSim simulator supports all major
post-layout simulation flows, including DSPF/SPEF stitching, DPF backannotation, and the
Cadence hierarchical extraction and simulation flow with Assura hierarchical resistor and
capacitor extraction (HRCX).

Command Line Format

Running the Virtuoso UltraSim Simulator

The Virtuoso UltraSim simulator can be run from the command line by typing the following
statement into a terminal window

ultrasim [-f]<circuit> [Options]

Note: You need to set the path to your_install_dir/tools/bin prior to running the
Virtuoso UltraSim simulator.

Virtuoso UltraSim Simulator Options

Table 1-1 on page 35 lists the Virtuoso UltraSim simulator command line options.

Table 1-1 Command Line Options

Argument Description

[-f] circuit Circuit netlist filename (the netlist file can be compressed using
gzip – see “Compressed Netlist File” on page 57 for more
information)

-h Prints the designated help message

-info Prints system information

-libpath path Loads the shared library

-log Output messages are not copied to a file

+log file Copies all messages to a file

=log file Sends all messages to a file
May 2010 35 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
+lqtimeout value Specifies a duration (in seconds) for which the software should
wait to check-out a license. When you set this option to 0, the
Virtuoso UltraSim simulator waits for a license until it is available.

Default: 900 seconds

Note: +lqt can be used as an abbreviation of +lqtimeout.

+lreport Reports the number of required tokens in the log file.

Note: +lrpt can be used as an abbreviation of +lreport.

-raw rawDir Specifies the directory in which all parameter storage format
(PSF) files are created

-outdir outDir Specifies the directory in which all of the output files are created

-outname filename Specifies the base filename which is used when files are created

-format fmt Displays waveform data in fmt format (possible values for fmt
include psf, psfxl, sst2, fsdb, or wdf; only one entry is
allowed)

-uwifmt name Specifies multiple waveform formats or user-defined output
format [use a colon (:) as a delimiter to specify multiple formats]

+rtsf Enables RTSF mode for all PSF files created and delivers
improved viewing performance in the Virtuoso Visualization &
Analysis (ViVA) tool

+lsuspend Turns on license suspend/resume capability

+lorder Checks licenses in a specific order (use : between license
feature names when defining the order)

-top subckt Creates a top level instance of the subcircuit

-V Displays the Virtuoso UltraSim simulator version

This option is case sensitive.

-W Displays the Virtuoso UltraSim simulator subversion

This option is case sensitive.

-I dir Search dir directory for .include files

-cmd cmdfile Command file for interactive simulation debugging

Table 1-1 Command Line Options, continued

Argument Description
May 2010 36 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
Notes

■ If the log file option is not specified, the Virtuoso UltraSim simulator automatically
generates an output file named circuit.ulog.

■ If [+=]log is specified, then the simulator always uses the option during simulation. This
option only affects the name of the log file. If a path is not given for [+=]log, the final
path for the log file follows the setting specified by the -outdir option. If [+=]log is not
specified, the default ulog file follows the -outdir and -outname options.

■ If -raw and -outdir are specified, -raw is overwritten by the simulator. All output files
are placed into the directory specified in -outdir, unless +log, usim_save, or
model_lib is used to specify the path for the corresponding files. A new directory is
created if one does not already exist.

■ If -outname is specified, all the output files using the netlist file name as a prefix are
changed to the name defined in -outname.

Examples

In the following example, the Virtuoso UltraSim simulator writes the information into a log file
named circuit.log.

ultrasim circuit.sp =log circuit.log

In the next example, the information is displayed on a standard output display device (same
result if -log is not specified in the command).

-cmiconfig Read file for information used to modify existing compiled-model
interface (CMI) configuration

-i Invokes interactive shell

-spectre Circuit netlist file in Virtuoso Spectre format

-vlog Verilog_file Circuit netlist file in Verilog format

-mica Circuit netlist file in Freescale® MICA format

-csfe Disables simulation front end (SFE) parser shared with Spectre®
simulator, and enables UltraSim front end (UFE) parser

-r file Enables the static power grid solver

-rout Enables the static power grid solver post-layout feature

Table 1-1 Command Line Options, continued

Argument Description
May 2010 37 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
ultrasim circuit.sp -log

In the next example, the Virtuoso UltraSim simulator writes the information into a log file
named circuit.log and also displays it on a standard output display device.

ultrasim circuit.sp +log circuit.log

Waveform Post-Processing Measurement

ultrasim -readraw waveform <options> circuit

Description

The Virtuoso UltraSim simulator supports post-processing measurements based on
waveform data from a prior simulation run. To perform measurements on an existing
waveform file, add a .measure statement to the original netlist file and rerun the simulation
using the -readraw statement (the regular simulation process is skipped). The post-
processing measurement results are reported in .pp.mt0 and .pp.meas0 files. The default
post-processing log file name is .pp.ulog.

Arguments

The -readraw statement can be used to perform measurements based on signals or
expression probes.

circuit The filename of the circuit netlist file that contains
the .measure statements.

Note: The circuit needs to be the same circuit that
generated the waveform being measured.

-readraw waveform Specifies the name and location of the waveform
file. The supported waveform formats are SST2 or
FSDB.

Note: The location of the waveform file can include
the relative or absolute path.

options The options used for a Virtuoso UltraSim simulation.
May 2010 38 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
Important

All basic signals used in the post-processing measurement need to be probed in the
existing waveform file.

Examples

In the following example, the Virtuoso UltraSim simulator saves the v(x1.out) and
i(x1.out) signals in the SST2 waveform top.trn file.

ultrasim -spectre top.sp

To perform a power calculation, the following measurement statement is added to the top.sp
file.

.measure tran power avg v(x1.out)*i(x1.out) from=0ns to=1us

Note: You can also put .measure statements in a file (for example, measure.txt) and
include it in the top.sp file.

To start the post-processing measurement, use the following statement.

ultrasim -readraw top.trn -spectre top.sp

The measurement results are reported in the top.pp.mt0 and top.pp.meas0 files.

Virtuoso UltraSim 64-Bit Software

To run Virtuoso UltraSim 64-bit software,

1. Use the -debug3264 -V command to check your system configuration:

$your_install_dir/tools/bin/ultrasim -debug3264 -V

You can use the information to verify if the 64-bit version is applicable to your platform, if
the 64-bit software is installed, and whether or not it is selected.

2. Install the Virtuoso UltraSim 64-bit software to the same location as your 32-bit software.

3. Verify that all required software patches are installed by running checkSysConf
(system configuration checking tool script). The script is located in your local installation
of Cadence software:

$your_install_dir/tools/bin/checkSysConf MMSIM7.0

The script is also available on the Cadence Online Support system.

4. Set the CDS_AUTO_64BIT environment variable {all|none|"list"|include:
"list"|exclude:"list"} to select 64-bit executables.
May 2010 39 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
❑ all invokes all applications as 64-bit.

The list of available executables is located at:

$your_install_dir/tools/bin/64bit

❑ none invokes all applications as 32-bit.

❑ "list" invokes only the executables included in the list as 64-bit.

“list” is a list of case-sensitive executable names delimited by a comma (,),
semicolon (;), or colon (:).

❑ include:”list" invokes all applications in the list as 64-bit.

❑ exclude:”list" invokes all applications as 64-bit, except the applications
contained in the list.

Note: If CDS_AUTO_64BIT is not set, the 32-bit executable is invoked by default.

Example
setenv CDS_AUTO_64BIT ultrasim
setenv CDS_AUTO_64BIT "exclude:si"

5. Launch the executables through the wrapper.

All 64-bit executables are controlled by a wrapper executable. The wrapper invokes the
32-bit or 64-bit executables depending on how the CDS_AUTO_64BIT environment
variable is set, or whether the 64-bit executable is installed. The wrapper also adjusts the
paths before invoking the 32-bit or 64-bit executables. The wrapper you use to launch the
executables is located at your_install_dir/tools/bin.

Note: Do not launch the executables directly from the your_install_dir/tools/
bin/64bit or your_install_dir/tools/bin/32bit directory.

Example
$your_install_dir/tools/bin/ultrasim

Virtuoso UltraSim Simulator Configuration File

The Virtuoso UltraSim simulator supports a common configuration file called
ultrasim.cfg, enabling you to set the default options for the simulator. This file can be
located at three levels. The Virtuoso UltraSim simulator searches for the ultrasim.cfg file
in the following locations, in this order:

1. Working directory of the netlist file.

2. Home directory ($HOME).
May 2010 40 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
3. Virtuoso UltraSim simulator installation directory ($ULTRASIM_ROOT).

This allows the Virtuoso UltraSim simulator to be configured by you, by the site, or by the
project. The Virtuoso UltraSim simulator processes only the first ultrasim.cfg it reads.
That is, the ultrasim.cfg in the netlist file directory overwrites the ultrasim.cfg in
$HOME and the Virtuoso UltraSim simulator installation directories. The ultrasim.cfg file
can contain the following types of commands:

■ All Virtuoso UltraSim options (Virtuoso Spectre or HSPICE syntax).

■ Virtuoso Spectre tran, options, and save commands.

■ HSPICE .tran, .options, and .probe commands.

Note: If Virtuoso Spectre syntax is used in the ultrasim.cfg file, simulator
lang=spectre needs to be specified at the beginning of the file.

Virtuoso UltraSim Simulator Input/Output Files

The Virtuoso UltraSim simulator recognizes Virtuoso Spectre, SPICE, Verilog-A, and
structural Verilog netlist file formats. Figure 1-2 on page 42 gives an overview of the input and
output data required for simulation with the Virtuoso UltraSim simulator. The simulator also
supports all major Spectre and SPICE device models (see Chapter 2, “Netlist File Formats,”
for more details). Digital vector file format and VCD/EVCD stimuli are described in
Chapter 13, “Digital Vector File Format” and Chapter 14, “Verilog Value Change Dump
Stimuli.” The Virtuoso UltraSim simulation options for optimizing simulation accuracy and
performance are located in Chapter 3, “Simulation Options.”
May 2010 41 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
Figure 1-2 Virtuoso UltraSim Simulator Input/Output Files Diagram

In addition to a log file, the Virtuoso UltraSim simulator creates several output files that
contain waveforms, measurements, and analysis results. Each output file has an extension
followed by a number. The output files are defined in Table 1-2 on page 42 below.

Table 1-2 Output Files

Extension Format Content

actnode ASCII Active node check from acheck (Virtuoso Spectre format)

chk_capacitor ASCII Prints capacitor statistics into a log file

chk_resistor ASCII Prints resistor statistics into a log file

dcheck ASCII Device voltage report from dcheck (Virtuoso Spectre
format)

elemcut ASCII Contains elements that were cut because their value was
less than the specified threshold

fsdb binary Fast signal database (FSDB) waveform file
(wf_format=fsdb; waveform viewer: nWave)

icmd ASCII Interactive mode command history

ilog ASCII Interactive mode log file

Vector/VCD/EVCD

Spice/Spectre NL
Models

UltraSim

Analysis

Options

vecerr/log

Log File .ta/.pcheck/.nact

.mt0/.meas fsdb/sst2/psf/wdf

Verilog/VerilogA

.pa/.dcheck/.pr

Solaris/Linux/IBM
TCL
May 2010 42 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
meas ASCII Results from .meas (SPICE format)

mt ASCII Results from .meas (SPICE format)

nact ASCII Node activity report from usim_nact (Virtuoso Spectre
format)

nodecut ASCII Cut nodes

pa ASCII Element and subcircuit power report from usim_pa
(Virtuoso Spectre format)

para_rpt ASCII Prints subcircuit parameters into a report file

part_rpt ASCII Prints partition and node connectivity analysis results into a
report file

pcheck ASCII Report for excessive current, DC path leakage current, and
high impedance node checks (Virtuoso Spectre format)

pr ASCII Partitioning and node connectivity from usim_report
(Virtuoso Spectre format)

print ASCII Table printout from .print

rpt_chkmosv ASCII MOSFET bias voltage check log file

rpt_chknmosb ASCII NMOSFET drain/source junction check log file

rpt_chknmosvgs ASCII MOSFETs with n-type channels check log file

rpt_chkpar ASCII Parameter check log file

rpt_chkpmosb ASCII PMOSFET drain/source junction check log file

rpt_chkpmosvgs ASCII MOSFETs with p-type channels check log file

rpt_chksubs ASCII Substrate check log file

rpt_maxleak ASCII Maximum DC leakage paths report

ta ASCII Setup, hold, pulse width, and timing edge violations from
usim_ta (Virtuoso Spectre format)

tran binary Parameter storage format (PSF) waveform file
(wf_format=psf; waveform viewers: Virtuoso
Visualization and Analysis, and AWD)

Table 1-2 Output Files, continued

Extension Format Content
May 2010 43 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
For mt files, the number following the file extension corresponds to the .alter number. For
example, if there are two .alter blocks in the netlist file, the mt files are called .mt0, .mt1,
and .mt2. The naming convention is HSPICE compatible.

For all other output files, the number corresponds to the number of times the transient
analysis was run. For example, if the main netlist file block specifies two different
temperatures in the .temp command card, and there is an .alter block that modifies the
original .temp command card and specifies new temperature values, then the transient
analysis for this netlist file needs to be run three times. All output files generated from the first
run would not have a number after the extension. For example, the FSDB file is named
circuit.fsdb. The output files generated from the second and third runs are named
circuit.fsdb1 and circuit.fsdb2, respectively.

Waveform Name Syntax

The Virtuoso UltraSim simulator generates the waveform output file with the hierarchical
signal name (except for PSF format). The signal names have default syntax for SPICE and
Virtuoso Spectre netlist file formats.

SPICE Netlist File Syntax

If the input netlist file contains SPICE format, then the generated waveform names use the
following syntax:

<output-type>(<node>)

trn/dsn binary SignalScan Turbo (SST2) waveform file
(wf_format=sst2; default format; waveform viewers:
SimVision and Virtuoso Visualization and Analysis)

ulog ASCII Log file (default if -/=/+log command line option not
specified)

vecerr ASCII Vector and VCD/EVCD check errors

veclog ASCII Vector and VCD/EVCD check results

wdf binary WDF waveform file (wf_format=wdf; waveform viewer:
Sandworks)

Table 1-2 Output Files, continued

Extension Format Content
May 2010 44 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
The <output-type> syntax can be either V, I, X0, or any other output type supported by the
Virtuoso UltraSim simulator, and <node> is the name of the node specified in the probe
statement.

For current probes, the output type (for example, i1 or i2) is based on the branch of the
element or node specified in the probe statement.

Virtuoso Spectre Netlist File Syntax

If the input netlist file contains Virtuoso Spectre format, then the generated waveform names
use the following syntax:

■ <node> for voltage probes

■ <elem>:<num> for current probes

■ <node>:<output-type> for all other output types, where <node> is the name of the
node specified in the probe statement and <num> is the branch of the element or node
for which the waveform is needed (default <num> is 1)

SPICE and Virtuoso Spectre Netlist File Syntax

If the input netlist file contains SPICE and Virtuoso Spectre syntax, then the default for the
waveform name is Virtuoso Spectre syntax. You can override the default behavior of the
waveform syntax by using the wf_spectre_syntax option.

For example,

.usim_opt wf_spectre_syntax=1

Setting this option to 1 in the input netlist file forces the output waveform names to follow
Virtuoso Spectre syntax, independent of whether the input netlist file is in SPICE, Virtuoso
Spectre, or both formats. If the option is set to 0, the output waveform names follow SPICE
syntax, independent of the input netlist file format.

Note: The Virtuoso UltraSim simulator waveform output generated in the analog design
environment (ADE) is always in Spectre syntax, irrespective of the input netlist file format or
the wf_spectre_syntax option.

Virtuoso UltraSim Return Codes

The Virtuoso UltraSim simulator supports two types of return codes: 0 and 1. A return of 0
indicates the simulation was successfully completed and a return of 1 indicates the simulation
failed.
May 2010 45 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
Error and Warning Messages

The Virtuoso UltraSim simulator issues error, warning, and information messages when
problems are encountered during circuit design simulation.

■ An error message reports a condition that the simulator cannot resolve (if the error is
severe, it may cause the simulator to stop completely).

■ A warning message reports an unusual condition that does not adversely affect the
simulation.

■ An info message presents information that does not fall into either of the other message
categories (info messages are generally used to give the status about a process that is
running).

Creating Tutorial Directories

The Virtuoso UltraSim simulator tutorials provide examples to help you get started using the
simulator. Running the tutorials is recommended to obtain hands-on experience using the
Virtuoso UltraSim simulator features and options. There are four categories of tutorials in the
examples directory of the Virtuoso UltraSim simulator installation:

■ UltraSim_Workshop – Virtuoso UltraSim simulator standalone and Virtuoso UltraSim
simulator in the Cadence analog design environment (ADE).

■ usim_ade – Virtuoso UltraSim simulator in ADE.

■ Usim_Verilog – Virtuoso UltraSim simulator and Verilog-XL co-simulation.

Note: All of the Virtuoso UltraSim simulator ADE and Verilog-XL examples can be run
in the IC 5.0.33 USR3 and 5.0.41 or later releases (fast envelope analysis in ADE
requires 5.0.33 USR4 or 5.1.41 USR1).

■ USIM_NetlistBased_EMIR_Flow – Virtuoso UltraSim simulator netlist-based
electromigration (EM) and IR drop analysis flow.

Note: This flow is based on OpenAccess (OA), and IC 5.1.41 USR3 or IC 6.1 and higher
is required.

UltraSim_Workshop

The UltraSim_Workshop tutorial includes 16 examples, covering the most important
features of the Virtuoso UltraSim simulator (that is, Virtuoso UltraSim standalone and
Virtuoso UltraSim/ADE examples).
May 2010 46 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
To run UltraSim_Workshop:

1. Create a directory called ultrasim_workshop.

2. Copy the pll.tar.gz, mult.tar.gz, and sp_mult_ade.tar.gz files to the
ultrasim_workshop directory from ultrasim_install_dir/tools/
ultrasim/examples/UltraSim_Workshop/ as shown below:

cd ultrasim_workshop

cp -r ultrasim_install_dir/tools/ultrasim/examples/UltraSim_Workshop/* .

3. Untar the pll.tar.gz and mult.tar.gz files.

gzip -cd pll.tar.gz | tar xvf -

gzip -cd mult.tar.gz | tar xvf -

gzip -cd sp_mult_ade.tar.gz | tar xvf -

4. Follow the instructions in the UltraSim_workshop.pdf document (located in the
./doc/ directory).

usim_ade

The usim_ade tutorial contains a complete, step-by-step example which describes how to
run key Virtuoso UltraSim simulator options in ADE.

If you are using version:

■ IC5033USR2, IC5033USR3, or IC5141, copy the files from
ultrasim_install_dir/tools/ultrasim/examples/usim_ade/
5033USR2_USR3_5141/*.

■ IC5033USR4 or IC5141USR1, copy the files from ultrasim_install_dir/
tools/ultrasim/examples/usim_ade/5033USR4_5141USR1/*.

To run usim_ade

1. Create a directory called ultrasim_ade.

2. Copy the usimADE_tut.tar.gz file to the ultrasim_ade directory from
ultrasim_install_dir/tools/ultrasim/examples/usim_ade/ as shown
below:

cd ultrasim_ade

cp -r ultrasim_install_dir/tools/ultrasim/examples/usim_ade/
5033USR2_USR3_5141/* .

Note: The updated ADE tutorials are located in the 5141USR2 directory.

3. Untar the usimADE_tut.tar.gz file.
May 2010 47 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
gzip -cd usimADE_tut.tar.gz | tar xvf -

4. Follow the instructions in the UltraADE_tut.pdf document.

Usim_Verilog

The Usim_Verilog tutorial contains a mixed signal example for Virtuoso UltraSim simulator
and Verilog-XL co-simulation.

If you are using version:

■ IC5033USR2, IC5033USR3, or IC5141, copy the files from
ultrasim_install_dir/tools/ultrasim/examples/Usim_Verilog/
5033USR2_USR3_5141/*.

■ IC5033USR4 or IC5141USR1, copy the files from ultrasim_install_dir/
tools/ultrasim/examples/Usim_Verilog/5033USR4_5141USR1/*.

To run Usim_Verilog

1. Create a directory called verimix_usim.

2. Copy the UsimVerilog_tut.tar.gz file to the verimix_usim directory from
ultrasim_install_dir/tools/ultrasim/examples/Usim_Verilog/ as
shown below:

cd verimix_usim

cp -r ultrasim_install_dir/tools/ultrasim/examples/Usim_Verilog/
5033USR2_USR3_5141/* .

Note: The updated UltraSimVerilog tutorials are located in the 5141USR2 directory.

3. Untar the UsimVerilog_tut.tar.gz file.

gzip -cd UsimVerilog_tut.tar.gz | tar xvf -

4. Follow the instructions in the UsimVerilog_tut.pdf document.

USIM_NetlistBased_EMIR_Flow

The USIM_NetlistBased_EMIR_Flow tutorial contains a netlist-based EM/IR flow
example for the Virtuoso UltraSim simulator.

To run USIM_NetlistBased_EMIR_Flow

1. Create a directory called USIM_EMIR.
May 2010 48 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
2. Copy the USIM_EMIR_FLOW_OA.tar.gz file to the USIM_EMIR directory from
ultrasim_install_dir/tools/ultrasim/examples/
USIM_NetlistBased_EMIR_Flow as shown below.

cd USIM_EMIR

cp –r ultrasim_install_dir/tools/ultrasim/examples
USIM_NetlistBased_EMIR_Flow/* .

3. Untar the USIM_EMIR_FLOW_OA.tar.gz file.

 gunzip USIM_EMIR_FLOW_OA.tar.gz | tar xvf –

4. Follow the instructions in the USIM_EMIR_FLOW_workshop.pdf document.
May 2010 49 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Introduction to Virtuoso UltraSim Simulator
May 2010 50 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
2
Netlist File Formats

The Virtuoso® UltraSim™ simulator recognizes SPICE, Virtuoso Spectre®, Verilog®-A, and
structural Verilog netlist files. This chapter describes the syntax rules, elements, and
command cards supported by the Virtuoso UltraSim simulator, and also describes the known
limitations.

Supported Netlist File Formats

You can use the Virtuoso UltraSim simulator to simulate Virtuoso Spectre and HSPICE
(registered trademark of Synopsys, Inc.) netlist files. Virtuoso Spectre and HSPICE netlist file
formats follow different case sensitivity and naming convention rules. These differences affect
interpretation of the netlist file devices, elements, parameters, topology, and simulator option
statements. When setting up a Virtuoso UltraSim simulation, it is important to understand the
differences in syntax rules, so the simulation produces the correct results.

The following netlist file formats are supported:

■ Virtuoso Spectre on page 51

■ HSPICE on page 52

■ Mixed Virtuoso Spectre and HSPICE on page 54

■ Structural Verilog on page 56

Note: Cadence recommends using either the Spectre or HSPICE languages exclusively in a
netlist file.

Virtuoso Spectre

If the netlist file is in Virtuoso Spectre format, you need to set the -spectre command line
option or add the .scs extension to your top-level netlist file. In this case, the Virtuoso
UltraSim simulator behaves the same as Virtuoso Spectre, and applies Virtuoso Spectre
naming conventions and case sensitivity to:
May 2010 51 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
■ Node and hierarchy names

■ Keywords

■ Parameters

■ Units of measurement

The Virtuoso UltraSim simulator also uses Virtuoso Spectre default values for model and
simulation setup.

All of the Virtuoso UltraSim simulator options are available in Virtuoso Spectre syntax format,
so you can define the options in a Virtuoso Spectre netlist file. The most common Virtuoso
UltraSim simulator option is usim_opt. The Virtuoso Spectre syntax is located under the
Spectre Syntax heading in each Virtuoso UltraSim option section.

Example

Spectre Syntax:

simulator lang=spectre

usim_opt sim_mode=ms speed=6 postl=2

usim_opt sim_mode=a inst=i1.i2.vco1

usim_pa chk1 subckt inst=[i1.i2] time_window=[1u 5u]

dcheck chk1 vmos model=[tt] inst=[i1.*] vgsu=1.0 vgsl=0.5 probe=1

usim_report resistor type=distr rmin=0 rmax=20

HSPICE

If you simulate a design that uses HSPICE format in the netlist file, you need to use Virtuoso
UltraSim format without the -spectre command line option or .scs extension. In this case,
the Virtuoso UltraSim simulator behaves the same as HSPICE, and applies HSPICE naming
conventions and case insensitivity to:

■ Node and hierarchy names

■ Keywords

■ Parameters

■ Units of measurement

The Virtuoso UltraSim simulator also uses HSPICE default values for model and simulation
setup.
May 2010 52 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
All of the Virtuoso UltraSim simulator options are available in SPICE syntax format, so you
can define the options in a HSPICE netlist file. The most common Virtuoso UltraSim simulator
option is .usim_opt. SPICE syntax is located under the SPICE Syntax heading of each
Virtuoso UltraSim option section.

Example

HSPICE Syntax:

.usim_opt sim_mode=ms speed=6 postl=2

.usim_opt sim_mode=a inst=x1.x2.vco1

.usim_pa chk1 subckt inst=[x1.x2] time_window=[1u 5u]

.dcheck chk1 vmos model=[tt] inst=[x1.*] vgsu=1.0 vgsl=0.5 probe=1

.usim_report resistor type=distr rmin=0 rmax=20

Table 2-1 on page 53 compares Virtuoso UltraSim simulator option syntax rules for HSPICE
and Virtuoso Spectre netlist files.

Table 2-1 HSPICE and Virtuoso Spectre Syntax Comparison Table

HSPICE Syntax Virtuoso Spectre Syntax

HSPICE Language Rules:

■ Case insensitive

■ HSPICE compatible models

■ Global parameter passing
(parhier=global)

■ temp=tnom and tnom=25

■ Built-in parameters: time, temp, hertz

■ 0, gnd, gndl, and ground are all global
ground nodes, and are reported as v(0)

Command Line:

ultrasim file
(except file.scs)

Virtuoso Spectre Language Rules:

■ Case sensitive

■ Virtuoso Spectre compatible models

■ Local parameter passing

■ temp=27 and tnom=27

■ Built-in parameters: time, temp, tnom, scale,
scalem, freq

■ First node in global statement

Command Line:

ultrasim -spectre file
or
ultrasim file.scs

All files are required to be in HSPICE format. All files with a .scs extension are assumed to be in
Virtuoso Spectre format and all other files are assumed
to be in HSPICE format.

If files contain Spectre syntax, but do not use the .scs
extension, they need to contain
simulator lang=spectre at the beginning of the file
to inform the Virtuoso UltraSim simulator that the
content is in Virtuoso Spectre format.
May 2010 53 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Mixed Virtuoso Spectre and HSPICE

In some cases, a mix of the Virtuoso Spectre and HSPICE languages is required. For
example, when a design uses Virtuoso Spectre format in the netlist file and the device models
are only available in HSPICE format. Since HSPICE does not support using mixed languages
in a netlist file, the Virtuoso UltraSim/Spectre -spectre command can be used to simulate
the mixed format file.

Note: Use the simulator lang=spectre|spice command to switch between the
Virtuoso Spectre and HSPICE languages in the netlist file.

Example

Spectre/HSPICE Mixed Syntax:

HSPICE Netlist and Models:
.model, .subckt, .ends, .end, ...

Virtuoso Spectre Netlist and Models:
model, subckt, end, simulator lang=...,
inline, ...

HSPICE Analysis and Options:
.tran, .probe, .op, .meas, .ic, .data,
.options, .temp, .alter, ...

Virtuoso Spectre Analysis and Options:
tran, options, ic, save, altergroup

Verilog-A: .hdl

Virtuoso UltraSim Structural Verilog:
.vlog_include

Verilog-A: ahdl_include

Virtuoso UltraSim Structural Verilog:
vlog_include

Virtuoso UltraSim Vector Stimuli:
.vec, .vcd, .evcd

Virtuoso UltraSim Vector Stimuli:
vec_include, vcd_include, evcd_include

Virtuoso UltraSim Options and Analyses:
.usim_opt, .usim_ta, .usim_nact, .pcheck,
.dcheck, .acheck, .usim_save,
.usim_restart, .usim_report, ...

Virtuoso UltraSim Options and Analyses:
usim_opt, usim_ta, usim_nact, pcheck, dcheck,
acheck, usim_save, usim_restart,
usim_report, ...

Important

The Virtuoso UltraSim simulator behaves
like HSPICE (cannot be mixed with
Virtuoso Spectre syntax).

Important

The Virtuoso UltraSim simulator behaves like
Virtuoso Spectre, and Virtuoso Spectre and
SPICE syntax can be mixed using
lang simulator=spice|spectre
lookup=spice|spectre. Cadence
recommends using a Virtuoso Spectre-only
format netlist file.

Table 2-1 HSPICE and Virtuoso Spectre Syntax Comparison Table, continued

HSPICE Syntax Virtuoso Spectre Syntax
May 2010 54 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
simulator lang=spectre

global 0 2

v1 (2 0) vsource dc=2.0

...

mos (4 2 0 0) nmos1

tran1 tran tstop=100n

...

simulator lang=spice lookup=spectre

.model nmos1 nmos level=49 version = 3.1 ...

...

simulator lang=spectre

In this example, the lang=spectre|spice command defines the language rules for the
section of the netlist file that follows the statement until the next lang=spectre|spice
command is issued or the end of the file is reached.

The lookup=spectre portion of the simulator=spice command specifies that all node,
device, and instance names follow the Virtuoso Spectre naming convention. This is
necessary for proper mapping between nodes, devices, and instances in the Virtuoso
Spectre and HSPICE sections of the netlist file.

Wildcard Rules

The Virtuoso UltraSim simulator allows you to use wildcards (*) in the .probe, .lprobe,
.ic, .nodeset, and save statements, as well as in all of the Virtuoso UltraSim scopes,
options, and checking features.

The following rules apply to wildcards:

■ A single asterisk (*) matches any string, including an empty string and a hierarchical
delimiter

■ A question mark (?) matches any single character, including a hierarchical delimiter

Examples

■ .probe v(*) matches all signals on all levels (for example, vdd, x1.net5, x1.x2.sa,
and x1.x2.x3.net7).

■ .probe v(*) depth=2 matches all signals in the top two levels (for example, vdd,
x1.net5, but not x1.x2.sa).

■ .probe v(*t) matches all top level signals ending with t (for example, vnet, m_t,
senst, but not x1.net).
May 2010 55 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
■ .probe v(*.*t) matches all signals on all levels ending with t (for example, vnet,
m_t, x1.net, and x1.x2.x3.at).

■ .probe v(net?8) matches all signals on all levels (for example, net08, net88, and
net.io8).

■ save * depth=2 saves all node voltages on the top level and one level below (for
example, net12, i1.net28, and x1.net9, but not x1.x2net8).

Structural Verilog

Spectre Syntax

vlog_include “file.v” supply0=gnd supply1=vdd insensitive=no|yes

SPICE Syntax

.vlog_include “file.v” supply0=gnd supply1=vdd insensitive=no|yes

Description

The Virtuoso UltraSim simulator supports structural Verilog netlist files for verification of
digital circuits. This approach is typically used for standard cell designs, where the Verilog
netlist file is generated by synthesis tools, and SPICE subcircuits are available for all standard
cells.

The most common approach is to use a top level SPICE file which contains the analysis
statement, probes, measures, and simulation control statements, and also calls one or
multiple Verilog netlist files. The Verilog netlist files contain calls of the basic cells, which are
available in the SPICE netlist file.

To activate the Verilog parser, use the Virtuoso UltraSim simulator -vlog option in the
command line (for more information, refer to “Command Line Format” on page 35). You can
also include Verilog files by using the vlog_include statement(s).

The Virtuoso UltraSim simulator reads the structural Verilog file file.v. The keywords are
supply0 and supply1. The supply0 keyword must be set to the ground node used in the
Verilog subcircuit and supply1 must be set to the power supply node. If
insensitive=yes, the Verilog netlist file is parsed case insensitive. If insensitive=no,
it is parsed case sensitive. The default value is no.

Note: If the name of a module called by SPICE contains uppercase letters (for example,
top_MODULE), then set insensitive=yes to use the vlog_include statement.
May 2010 56 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Unsupported Structural Verilog Features

The Virtuoso UltraSim simulator does not support the following structural Verilog features:

■ Multi-bit expression (for example, 3’b1)

■ Arrayed instances

■ defparam

■ trireg, triand, trior, tri0, tri1, wand, and wor nets

■ Strength and delay

■ Generated instances

■ User-defined procedures (UDPs)

■ Attributes

The Virtuoso UltraSim simulator resolves bus signals into individual signals when reading
Verilog netlist files. The bus notation can be set using the buschar option and either <> or [].

The simulator also supports bus node mapping in structural Verilog. When instantiating the
Verilog module in an analog netlist file, port mapping can only be based on the order of the
signal name definitions. The bus node in the Verilog netlist file is expanded in the analog
netlist file. When invoking an analog cell in a Verilog netlist file, port mapping can be based
on the order of the signal definitions or names. For name mapping, the bus notation in the
analog netlist file can be set using the vlog_buschar option.

Compressed Netlist File

The Virtuoso UltraSim simulator can read a compressed top-level netlist or included files
(.include, .lib, .vec, .vcd, spf, and spef). The compressed netlist or included file
needs to be compressed using gzip (.gz file extension).

Note: A compressed included file can be nested within another compressed file.

Example
ultrasim circuit.sp.gz

is a compressed circuit.sp file called circuit.sp.gz. A compressed model.gz file is
nested within the circuit.sp file:

.include model.gz
May 2010 57 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported Virtuoso Spectre Model Features

Virtuoso Spectre

The Virtuoso UltraSim simulator recognizes circuit topologies in Virtuoso Spectre circuit
simulator format for operating point and transient analysis. It does not support other analysis
types, such as DC, AC, and noise.

For a detailed list and description of the related Virtuoso Spectre constructs, refer to the
Virtuoso Spectre Circuit Simulator User Guide.

The Virtuoso UltraSim simulator shares all device model interfaces with Virtuoso Spectre and
therefore supports the same models:

■ MOSFET: bsim3v3, bsim4, sp32, b3soipd, bsimsoi (versions 2.23 and higher, including
version 4.0), bsim1, bsim2, bsim3, bta silicon-on-insulator (btasoi), enz-krummenacher-
vittoz (ekv), mos0, mos1, mos2, mos3, mos6, mos7, mos8, high-voltage mos (hvmos),
poly thin film transistor (psitft), alpha thin film transistor (atft), and ldmos.

Note: For more information about the sp32 model, refer to the “Surface Potential Based
Compact MOSFET Model (spmos)” chapter in the Virtuoso Simulator Components
and Device Models Reference.

■ BJT: bipolar junction transistor (bjt), bht, hetero-junction bipolar transistor (hbt), vertical
bipolar inter-company (vbic), mextram (bjt503 and bjt504)

■ Diode: diode

■ JFET: junction field effect transistor (jfet)

The Virtuoso UltraSim simulator also supports the same set of customer models supported
by Virtuoso Spectre, such as the Philips, ST, Infineon, and Nortel models.
May 2010 58 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Unsupported Virtuoso Spectre Features

The following Virtuoso Spectre components, analysis and controls, and features are not
supported by the Virtuoso UltraSim simulator:

Components

assert ucccs

core uccvs

node uvccs

paramtest uvcvs

quantity winding

Analysis and Controls

ac pdisto qpxf

alter pnoise set

check psp shell

dc pss sp

dcmatch pxf stb

envlp qpac sweep

montecarlo qpnoise tdr

noise qpsp xf

pac qpss

Features

checkpoint sens

export spectremdl

param_limits spectrerf
May 2010 59 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Virtuoso UltraSim device models are implemented using the Cadence compiled-model
interface (CMI). You can also implement proprietary device models with CMI. For more
information about installing and compiling device models using CMI, refer to Appendix C,
"Using Compiled-Model Interface" in the Virtuoso Spectre Circuit Simulator User Guide.

Verilog-A

Spectre Syntax

ahdl_include “file.va”

SPICE Syntax

.hdl “file.va”

Description

Verilog-A behavioral models can be applied to Virtuoso Spectre netlist files using the
ahdl_include statement, and in HSPICE netlist files using .hdl.

Verilog-A behavioral language is used to model the behavior of analog design blocks. The
Virtuoso UltraSim simulator supports Verilog-A behavioral language formats and provides a
parser which is compatible with the Virtuoso Spectre simulator parser. Refer to the Cadence
Verilog-A Language Reference for more information about supported language
constructs.

Unsupported Verilog-A Features

The Virtuoso UltraSim simulator does not support the following Verilog-A features:

■ Potential/flow attributes

■ Disciplines (except electrical)

■ Power consumption calculations

Note: The Fast SPICE technology used in the Virtuoso UltraSim simulator, such as
representative device models, partitioning, and hierarchical simulation, cannot be applied to
Verilog-A behavioral models (Verilog-A dominated designs will not show a performance
advantage with the Virtuoso UltraSim simulator when compared to conventional SPICE
tools).
May 2010 60 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported HSPICE Model Features

Syntax Rules

The Virtuoso UltraSim simulator syntax rules are similar to HSPICE syntax rules.

■ The maximum line length is 1024 characters.

■ The maximum length of a word, such as name, is 1024 characters.

■ The following characters are not allowed in any name: {}, (), “, ‘, =, ;, :

■ Any expression must be in single quotation marks ‘expression’.

■ SPICE and Virtuoso UltraSim simulator commands are prefixed by a period (.)
character.

■ Element instances begin with a particular character based on the element type. For
example, metal oxide semiconductor field-effect transistor (MOSFET) names begin with
m. See “Supported HSPICE Devices and Elements” on page 63 for more information.

■ Commands and instances can be continued across multiple lines by using the + sign in
the beginning of each continuation line. Names, parameters, and arguments cannot be
continued across multiple lines.

■ Virtuoso RelXpert reliability simulator commands start with the *relxpert: prefix.
Virtuoso RelXpert command cards can be continued across multiple lines by using the
+ continuation character (that is, *relxpert: +).

Note: You need to include a space after the colon (:) in the *relxpert: prefix.

■ Comment lines must begin with an * or $ sign. Comments can be written in a new line,
or after the end of an instance or command on the same line.

■ Comment lines and/or blank lines are allowed between continuation lines of a multi-line
command or instance.

■ Virtuoso UltraSim simulator is case insensitive and converts all names to lower case,
except for filenames.

■ Hierarchical node names are allowed for elements, but elements cannot be given
hierarchical names.

■ Virtuoso UltraSim simulator can recognize abbreviated names for SPICE commands, as
long as the abbreviated name yields a unique command. For example, .tr or .tra can
be recognized as .tran.
May 2010 61 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
The .t command does not work because .temp card also begins with .t.

Unit Prefix Symbols

The following unit prefix symbols can be applied to any numerical quantities:

■ a = A = 1.0e-18

■ F = f = 1.0e-15

■ G = g = 1.0e9

■ K = k = 1.0e3

■ M = m = 1.0e-3

■ N = n = 1.0e-9

■ P = p = 1.0e-12

■ T = t = 1.0e12

■ U = u = 1.0e-6

■ X = x = MEG = meg = 1.0e6

■ Y = y = 1.0e-24

■ Z = z = 1.0e-21
May 2010 62 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported HSPICE Devices and Elements

The Virtuoso UltraSim simulator supports the following HSPICE devices and elements:

■ Bipolar Junction Transistor on page 64

■ Capacitor on page 67

■ Current-Controlled Current Source (F-Element) on page 69

■ Current-Controlled Voltage Source (H-Element) on page 71

■ Diode on page 73

■ Independent Sources on page 75

■ JFET and MESFET on page 77

■ Lossless Transmission Line (T-Element) on page 79

■ Lossy Transmission Line (W-Element) on page 80

■ MOSFET on page 83

■ Mutual Inductor on page 86

■ Resistor on page 87

■ Self Inductor on page 89

■ Voltage-Controlled Current Sources (G-Elements) on page 91

■ Voltage-Controlled Voltage Source (E-Elements) on page 95

The following sections provide a brief description of the elements supported by the Virtuoso
UltraSim simulator.
May 2010 63 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Bipolar Junction Transistor

Qxxx nc nb ne [ns] model_name [area = area_val] [areab = areab_val]
+ [areac = areac_val] [m = mval] [dtemp = dtemp_val]

Description

The Virtuoso UltraSim simulator ignores the initial condition parameters specified for bipolar
junction transistors (BJTs). The BJTs supported by the simulator are listed below.

Arguments

BJT level 1 Gummel-Poon model

BJT level 2 BJT Quasi-Saturation model

BJT level 6 Mextram model

BJT level 8 HiCUM model

BJT level 9 VBIC99 model

nc, nb, ne Collector, base, and emitter terminal node names.

ns Substrate terminal node name; can also be set in a
BJT model with the bulk or nsub parameters.

model_name BJT model name.

area = area_val Emitter area multiplying factor (default = 1.0).

areab = areab_val Base area multiplying factor (default = area).

areac = areac_val Collector area multiplying factor (default = area).
May 2010 64 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

q001 c b a npn

defines a npn BJT q001 with its collector, base, and emitter connected to nodes c, b, and
a, respectively.

In the next example

q002 5 8 19 6 pnp area = 1.5

m = mval Multiplier to indicate how many elements are in
parallel.

■ The m multiplier is used in a netlist file instance call
(default value is m=1)

■ The m parameter is set in the .subckt or .param
statements

Note: The multiplier is different from the m parameter.

For example

.subckt R_only up down m=5

R00 up down 100 m=’m+2’

.ends

where m=5 in the .subckt statement is the m
parameter definition and ’m+2’ is an expression that is
dependent on the m parameter in the subcircuit. The m
located to the left of the equal (=) sign is a multiplier
that is evaluated at 7 (5+2) to indicate seven resistors
with a value of 100 ohms are in parallel.

Notes

■ The m parameter must be preset before use. The m
multiplier does not need to be preset because it
has a default value of 1.

■ If m=5 is not defined in the example above, the
simulation fails and produces an "undefined
parameter" error message.

dtemp = dtemp_val The difference between the element temperature and
the circuit temperature in Celsius (default = 0.0).
May 2010 65 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
defines a pnp BJT q002 with its collector, base, emitter, and substrate connected to nodes
5, 8, 19, and 6, respectively, and has an emitter factor of 1.5.
May 2010 66 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Capacitor

Cxx n1 n2 [model_name] [c = capacitance] [tc1 = val] [tc2 = val]
+ [scale = val] [m = mval] [w = val] [l = val] [dtemp = val]

or

Cxx n1 n2 poly c0 c1 ... [options shown above]

Description

If the instance parameter tags (such as c, tc1, and tc2) are not used, the arguments must
be arranged in the same order as shown in the first syntax statement (see above). Otherwise,
the instance arguments can appear in any order. In the second syntax statement,
capacitance is determined by a polynomial function to be c = c0 + c1 * v + c2 * v
*v + ..., where v is the voltage across the capacitor.

Arguments

n1, n2 Terminals of the capacitor.

model_name Model name of the capacitor.

c = capacitance Capacitance at room temperature. It can be a
numerical value (in farads) or

■ An expression with parameters and functions of
node voltages

■ Branch currents of other elements

■ Time, frequency, or temperature

The argument is optional if a model name is
specified.

m = mval Element multiplier used to simulate multiple parallel
capacitors (default = 1).

tc1 = val First-order temperature coefficient for the capacitor.

tc2 = val Second-order temperature coefficient for the
capacitor.

scale = val Scaling factor; scales capacitance by its value
(default = 1.0)
May 2010 67 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

c001 1 0 5f

defines a capacitor connected to nodes 1 and 0, with a capacitance of 5e-15 farad.

In the next example

c002 1 0 ‘1.5e-12*v(5)*time’ tc1 = 0.001 tc2 = 0

defines a capacitor connected to nodes 1 and 0, with a capacitance depending on the voltage
of node 5 and time.

In the next example

c003 1 0 poly 1 0.5 scale = 1e-12

defines a capacitor connected to node 1 and 0 with a capacitance determined by

c = [1 + 0.5 v (1,0)] * le-12

In the next example

c004 1 0 c=10p M=5

defines five capacitors in parallel, measuring 10 picofarads, and connected to nodes 1 and 0.

dtemp = val Temperature difference between the element and
the circuit in Celsius (default = 0.0)

l = val Capacitor length in meters (default = 0.0)

w = val Capacitor width in meters (default = 0.0)

c0, c1, ... Coefficients of the polynomial form for the
capacitance (if none exists, zero is used)
May 2010 68 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Current-Controlled Current Source (F-Element)

Linear

Fxx n+ n- [cccs] vn1 gain [max = val] [min = val]
+ [scale = val] [tc1 = val] [tc2 = val] [abs = 1] [ic = val] [m=val]

Piece-Wise Linear

Fxx n+ n- [cccs] pwl(1) vn1 [delta = val] [scale = val]
+ [tc1 = val] [tc2 = val] [m = val] x1,y1 x2,y2 ... [ic = val] [m=val]

Polynomial

Fxx n+ n- [cccs] poly(ndim) vn1 [... vnndim]
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [m = val] [abs = 1] p0 [p1 ...] [ic = val] [m=val]

Delay Element

Fxx n+ n- [cccs] delay vn1 td = val [m=val]
+ [tc1 = val] [tc2 = val] [scale = val] [npdelay = val]

Description

Defines four forms of current-controlled current sources (CCCSs): Linear, piece-wise linear,
polynomial, and delay element.

Arguments

n+, n- Positive and negative terminals of the controlled source

cccs Keyword for current-controlled current source (cccs is reserved for
HSPICE and cannot be used as a node name)

gain Current gain

poly Keyword for polynomial dimension function (default is a one-
dimensional polynomial)

Note: Ndim must be a positive number.

pwl Keyword for a piece-wise linear function

max = val Maximum output current (default = undefined; no maximum set)

min = val Minimum output current (default = undefined; no minimum set)
May 2010 69 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

F001 1 0 VC 5 max=+3 min=-3

defines a cccs F001, connected to nodes 1 and 0 with a current value of I(F001)=5*I(VC).
The current gain is 5, maximum current is limited to 3 amps, and minimum current is limited
to -3 amps.

In the next example

F002 1 0 poly VC 1M 1.3M

defines a polynomial cccs F002, connected to nodes 1 and 0, and with a current value of
I(F002)=1e-3+1.3e-3*I(VC).

In the next example

F003 1 0 delay VC td=7n scale=2

defines a delayed cccs F003, connected to nodes 1 and 0.

m = mval Element multiplier to simulate multiple replication elements in parallel
(default = 1)

tc1 = val First order temperature coefficient for cccs

tc2 = val Second order temperature coefficient for cccs

scale = val Scaling factor which scales capacitance by its value (default = 1.0)

ic = val Estimate of IC initial condition for the controlling currents, measured
in amps (default = 0.0).

abs = 1 Output is an absolute value, if abs = 1

vn1 Names of voltage sources through which the controlling current flows

x1,... Controlling current through the vn1 source (specify x values in
increasing order)

y1,... Corresponding output current values of x.

delay Keyword for the delay element

Note: delay is a reserved word that cannot be used as a node
name.

td = val Specifies the propagation delay for the macro model (subcircuit)
process
May 2010 70 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Current-Controlled Voltage Source (H-Element)

Linear

Hxx n+ n- [ccvs] vn1 transresistance [max = val] [min = val]
+ [scale = val] [tc1 = val] [tc2 = val] [abs = 1] [ic = val]

Piece-Wise Linear

Hxx n+ n- [ccvs] pwl(1) vn1 [delta = val] [scale = val]
+ [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]

Polynomial

Hxx n+ n- [ccvs] poly(ndim) vn1 [... vnndim]
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [abs = 1] p0 [p1 ...] [ic = vals]

Delay Element

Hxx n+ n- [ccvs] delay vn1 td = val
+ [tc1 = val] [tc2 = val] [scale = val] [npdelay = val]

Description

Defines four forms of current-controlled voltage sources (CCVSs): Linear, piece-wise linear,
polynomial, and delay element.

Arguments

n+, n- Positive and negative terminals of the controlled source

ccvs Keyword for current-controlled voltage source (ccvs is reserved for
HSPICE and cannot be used as a node name)

transresistance Current to voltage conversion factor

poly Keyword for polynomial dimension function (default is a one-
dimensional polynomial)

Note: Ndim must be a positive number.

pwl Keyword for a piece-wise linear function

max = val Maximum output voltage (default = undefined; no maximum set)

min = val Minimum output voltage (default = undefined; no minimum set)
May 2010 71 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Example

In the following example

H001 1 0 VC 10 max=+10 min=-10

defines a ccvs H001, connected to nodes 1 and 0, with a voltage value of V(H001)=10*I(VC).
The current to voltage gain is 5, maximum voltage is limited to 10 volts, and minimum voltage
is limited to -10 volts.

m = mval Element multiplier to simulate multiple replication elements in
parallel (default = 1)

tc1 = val First order temperature coefficient for ccvs

tc2 = val Second order temperature coefficient for ccvs

scale = val Scaling factor which scales capacitance by its value (default = 1.0)

ic = val Estimate of IC initial condition for the controlling currents,
measured in amps (default = 0.0).

abs = 1 Output is an absolute value, if abs = 1

vn1 Names of voltage sources through which the controlling current
flows

x1,... Controlling current through the vn1 source (specify x values in
increasing order)

y1,... Corresponding output current values of x.

delay Keyword for the delay element

Note: delay is a reserved word that cannot be used as a node
name.

td = val Specifies the propagation delay for the macro model (subcircuit)
process
May 2010 72 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Diode

Level = 1

Dxxx n+ n- model_name [area = area_val] [pj = pj_val] [wp = wp_val]
+ [lp = lp_val] [wm = wm_val] [lm = lm_val] [m = mval]
+ [dtemp = dtemp_val]

Level = 2

Dxxx n+ n- model_name [w = wval] [l = lval] [wp = wp_val] [lp = lp_val]
+ [ic = val] [m = mval]

Level = 3

Dxxx n+ n- model_name [w = wval] [l = lval] [wp = wp_val] [lp = lp_val]
+ [wm = wm_val] [lm = lm_val] [m = mval] [dtemp = dtemp_val]

Description

Defines a diode with terminal connections, model, and geometries. The [area,pj] or
[w,l] format can be used to specify the diode area. Other instance parameters have the
same meaning for both formats. Initial conditions are ignored for diode elements. Diode
model levels 1-3 are supported by the Virtuoso UltraSim simulator. The diode capacitance is
modeled as an equivalent linear capacitor between the terminals.

The diodes supported by the simulator are listed below.

Arguments

Level 1 Geometric, junction diode model

Level 2 Fowler-Nordheim model

Level 3 Non-geometric, junction diode model

Level 4 Philips juncap model

n+, n- Positive and negative terminals of a diode,
respectively.

model_name Model name for the diode.
May 2010 73 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

d001 p n diode1

defines a diode named d001 connected between nodes p and n. The diode model is
diode1.

In the next example

d002 5 10 diode2 area = 1.5

defines a diode named d002 connected between nodes 5 and 10. The diode model is
diode2 and the PN junction area is 1.5.

area = area_val Area of diode without units for level=1 and m2 for
level=3 (default = 1.0). Default value can be
overridden from diode model. If unspecified, it is
calculated from the width and length specifications:
area = l*w.

pj = pj_val Periphery of junction without units for level=1 and
in meters for level=3 (default = 0.0). Default value
can be overridden from diode model. If unspecified,
it is calculated from the width and length
specifications: pj = 2*(l+w).

w = wval Width of junction in meters (default = 0.0).

l = lval Length of junction in meters (default = 0.0).

wp = wp_val Width of polysilicon capacitor in meters (default =
0.0).

lp = lp_val Length of polysilicon capacitor in meters (default =
0.0).

wm = wm_val Width of metal capacitor in meters (default = 0.0).

lm = lm_val Length of metal capacitor in meters (default = 0.0).

dtemp = dtemp_val The difference between the element temperature
and the circuit temperature in Celsius (default = 0.0)

m = mval Element multiplier (default = 1).
May 2010 74 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Independent Sources

Voltage Source

Vxxx n+ n- [dc_func] [tran_func]

Current Source

Ixxx n+ n- [dc_func] [tran_func]

Description

Defines a voltage or current source. The direct current (DC) or one form of the transient
functions is required, and only one form of the transient functions is allowed for each source.
If a DC and a transient function coexist, the DC function is ignored even in a DC analysis. See
“Supported HSPICE Sources” on page 98 for a description of these source functions.

Arguments

Examples

In the following example

v001 5 0 4.5

defines a voltage source between nodes 5 and 0 with a constant voltage of 4.5.

In the next example

v002 in gnd pulse(0 4.5 100n 2n 2.5n 20n 25n)

defines a pulse voltage source between nodes in and gnd.

In the next example

i001 4 0 0.001

n+, n- Positive and negative terminals respectively

dc_func DC function specifying a voltage or a current

tran_func A form of transient function (see “Supported
HSPICE Sources” on page 98 for details)

m = m_val Element multiplier (default = 1)
May 2010 75 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
defines a current source between nodes 4 and 0 with a constant current 0.001A.
May 2010 76 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
JFET and MESFET

Jxxx ndrain ngate nsource [nbulk] model_name [area=area] [w=width]
+ [l=length] [off] [ic=vdsval, vgsval] [m=val] [dtemp=val]

or

Jxxx ndrain ngate nsource [nbulk] model_name [area=area] [w=width]
+ [l=length] [off] [vds=vdsval] [vgs=vgsval] [m=val] [dtemp=val]

Description

Defines a JFET or metal semiconductor field effect transistor (MESFET) with terminal
connections, models, and geometries. The required fields are the drain, gate, source nodes,
and model name.

The JFET and MESFET models supported by the simulator are listed below.

Arguments

Level 1 SPICE model

Level 2 Modified SPICE model

Level 3 SPICE compatible MESFET model

Jxxx JFET or MESFET element name.

Note: Arguments must begin with J.

ndrain Drain terminal node name.

ngate Gate terminal node name.

nsource Source terminal node name.

nbulk Bulk terminal node name (optional).

model_name Field effect transistor (FET) model name.

area Area multiplying factor in units of square meters
(default=1.0).

w FET gate width in meters.

l FET gate length in meters.
May 2010 77 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

J001 ndrain ngate nsource jfet

defines a JFET with the name J001 that has its drain, gate, and source connected to nodes
ndrain, ngate, and nsource, respectively.

In the next example

J002 nd ng ns jfet area=100u

Defines a JFET with the name J002 that has its drain, gate, and source connected to nodes
nd, ng, and ns, and the area is 100 microns.

off Sets initial condition to off for this element in DC
analysis (default=on).

ic=vdsval, vgsval Initial internal drain source voltage (vds) and gate
source voltage (vgs).

m Multiplier used to simulate multiple JFETs and
MESFETs in parallel. Setting m affects all currents,
capacitances, and resistances (default=1.0).

dtemp The difference between the element temperature
and the circuit temperature in Celsius (default=0.0)
May 2010 78 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Lossless Transmission Line (T-Element)

Txx in ref_in out ref_out z0 = z0val td = tdval [l = length]

Description

Defines the lossless transmission line.

Arguments

Example
T1 1 r1 2 r2 z0 = 100 td = 1n l = 1

Defines a lossless transmission line connected to nodes 1 and 2, and reference nodes r1
and r2. The transmission line is one meter long, with an impedance of 100 ohms and a delay
of 1 ns per meter.

in, out Input and output node names

ref_in, ref_out Ground reference node names for input and output
signals

z0 = z0val Characteristic impedance in ohms

td = tdval Transmission delay time in second/meter

l = length Transmission line length in meters (default = 1)
May 2010 79 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Lossy Transmission Line (W-Element)

Wxx in1 in2 … inN ref_in out1 out2 … outN ref_out <rlgcmodel=name | rlgcfile=name>
n=val l=val

Description

Defines the multi-conductor lossy frequency-dependent transmission line or W-element.

Arguments

Examples

In the following example

w1 1 r1 2 r2 rlgcmodel=t1_model n=1 l=0.5

.model t1_model w modeltype=rlgc n=1

+ Lo = 3e-7 Co = 1e-10 Ro = 10 Go = 0 Rs = 1e-03 Gd = 1e-13

w1 is a lossy transmission line connected to nodes 1 and 2, and reference nodes r1 and r2.
It has a length of 0.5 m and its electrical characteristic is specified by the RLGC model
t1_model.

In the next example

w2 1 2 3 r1 4 5 6 r2 rlgcmodel=t3_model n=3 l=0.2

.model t3_model w modeltype=rlgc n=3

 + Lo =

in1 … inN Node names for the near-end input signal terminals

ref_in Node name for the near-end reference terminal

out1 … outN Node names for the far-end signal terminals

ref_out Ground reference node name for the far-end output terminal

n Number of signal conductors, excluding the reference
conductor

l Length of the transmission line in meters

rlgcmodel Name of the resistance, inductance, conductance, and
capacitance (RLGC) model

rlgcfile Name of the external file with RLGC parameters
May 2010 80 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
 + 1e-6

 + 2e-7 3e-6

 + 4e-8 5e-7 6e-6

 + Co =

 + 1e-11

 + -2e-12 3e-11

 + -4e-13 -5e-12 6e-11

 + Ro =

 + 40

 + 0 40

 + 0 0 40

 + Go =

 + 1e-4

 + -2e-5 3e-4

 + -4e-6 -5e-5 6e-4

 + Rs =

 + 1e-3

 + 0 1e-3

 + 0 0 1e-3

 + Gd =

 + 1e-13

 + -2e-14 3e-13

 + -4e-15 -5e-14 6e-13

w2 is a three-conductor lossy transmission line with a length of 0.2 m. Its electrical
characteristic is specified by the RLGC matrix model t3_model.

In the next example

w3 1 2 3 r1 4 5 6 r2 rlgcfile = tline.dat n=3 l=0.1

w3 is a lossy transmission line connected to nodes 1, 2 and 3, and reference nodes r1 and
r2. It has a length of 0.1 m and its electrical characteristic is specified by the RLGC model
tline.dat file.

Format of the model file tline.dat:

* The first number specifies the number of conductors.

3

* Lo =

1e-6

2e-7 3e-6

4e-8 5e-7 6e-6

* Co =
May 2010 81 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
1e-11

-2e-12 3e-11

 -4e-13 -5e-12 6e-11

* Ro =

40

0 40

0 0 40

* Go =

1e-4

 -2e-5 3e-4

 -4e-6 -5e-5 6e-4

* Rs =

1e-3

0 1e-3

0 0 1e-3

* Gd =

1e-13

 -2e-14 3e-13

 -4e-15 -5e-14 6e-13

specifies the electrical characteristics of the w3 lossy transmission line by the external model
file tline.dat.
May 2010 82 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
MOSFET

Mxx ndrain ngate nsource [nbody] model_name [l = length] [w = width]
+ [ad = ad_val] [as = as_val] [pd = pd_val] [ps = ps_val]
+ [nrd = nrd_val] [nrs = nrs_val] [rdc = rdc_val] [rsc = rsc_val]
+ [m = mval] [dtemp = dtemp_val] [geo = geo_val]

or

Mxx ndrain ngate nsource [nbody] model_name [length] [width] [ad] [as] [pd] [ps]

Description

Defines a metal oxide semiconductor (MOS) transistor with terminal connections, model, and
geometries. Besides the element name, only the model name and the drain, gate, and source
nodes are required. Initial conditions can be specified, but are ignored by the Virtuoso
UltraSim simulator.

The second syntax is used in conjunction with .options wl, which changes the order so
that width appears before length. The second syntax requires the instance parameters to be
listed in the order given above. If more than six instance parameters are listed, an error is
issued by the Virtuoso UltraSim simulator.

The MOSFET models supported by the simulator are listed below.

Level 49 and Level 53 BSIM3v3 versions 3.0, 3.1, 3.2, 3.21, 3.22, 3.23, 3.24, and
3.30

Level 54 BSIM4 versions 4.0, 4.1, 4.2, 4.3, 4.4, and 4.5

Level 69 PSP model

Level 57 and Level 59 BSIM3SOI versions 2.2, 2.21, 2.22, 2.23, 3.0, 3.1, and 3.2
(Level 59 is a SOI FD model and the Virtuoso UltraSim
simulator only supports this model in s mode)

Level 70 BSIMSOI 4.0

Level 61 RPI a-Si TFT model

Level 62 RPI Poli-Si TFT model versions 1 and 2

HVMOS (Level 101) Cadence proprietary high-voltage MOS model

Level 50 Philips MOS9 model

Level 63 Philips MOS11 model
May 2010 83 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Arguments

Examples

In the following example

EKV (Level 55) -

ndrain, ngate,
nsource

Drain, gate, and source terminals of the MOS transistor,
respectively.

nbody Bulk terminal node name; set in a MOS model with
parameter bulk.

model_name Name of the model for the transistor.

l = length Channel length of the transistor in meters.

w = width Channel width of the transistor in meters.

ad = ad_val Drain diffusion area.

as = as_val Source diffusion area.

pd = pd_val Drain diffusion perimeter.

ps = ps_val Source diffusion perimeter.

nrd = nrd_val Number of squares for drain diffusion.

nrs = nrs_val Number of squares for source diffusion.

rdc = rdc_val Additional drain resistance, units of ohms. This value
overrides the rdc setting in the MOS model specification
(default = 0.0).

rsc = rsc_val Additional source resistance, units of ohms. This value
overrides the RSC setting in the MOS model specification
(default = 0.0).

m = mval Multiplier to simulate multiple MOSFETs in parallel
(default=1).

dtemp = dtemp_val The difference between the element temperature and the
circuit temperature in Celsius (default = 0.0).

geo = geo_val Source/drain sharing selector for MOS model parameter
value acm = 3 (default = 0.0).
May 2010 84 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
m001 1 2 3 nmos

defines a MOS transistor with name m001 and model name nmos. The drain, gate, and
source are connected to nodes 1, 2, and 3, respectively. The bulk terminal is defined in the
N-channel metal oxide semiconductor (NMOS) model, or the default value 0 is used. l and w
are chosen as default values in this case.

In the next example

m002 a b c d nmos l = 0.2u w = 1u

defines a MOS transistor with the name m002 and model name nmos. The drain, gate,
source, and bulk are connected to nodes a, b, c, and d, respectively. l is 0.2 microns and w
is 1 micron.
May 2010 85 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Mutual Inductor

Kxx Lyy Lzz [k = coupling]

Description

Defines a mutual inductor, where Lyy and Lzz are inductors. Other HSPICE mutual inductor
formats are not supported.

Arguments

Example
K1 L1 L2 0.1

Defines a mutual inductor with a coefficient of 0.1 between inductor L1 and inductor L2.

Lyy, Lzz Mutually coupled inductors.

k = coupling Coefficient of mutual coupling. k is a unitless number with a
magnitude greater than 0 and less than or equal to 1. If k is
negative, the direction of coupling is reversed.
May 2010 86 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Resistor

Rxx n1 n2 [model_name] [[r =] val] [tc1 = val] [tc2 = val]
+ [scale = val] [m = val] [dtemp = val] [l = val] [w = val]
+ [c = val]

Description

Defines a linear resistor or wire element. If a resistor model is specified, the resistance value
is optional. If the instance parameter tags (r, tc1, and tc2) are not used, the values must be
ordered as shown above.

Arguments

n1, n2 Resistor terminal nodes.

model_name Model name of the resistor.

r = val Resistance value in ohms at room temperature. It can be a
numerical value or

■ An expression with parameters and functions of node
voltages

■ Branch currents of other elements

■ Time, frequency, or temperature

m = mval Multiplier to simulate multiple resistors in parallel (default = 1).

tc1 = val First-order temperature coefficient for the resistor.

tc2 = val Second-order temperature coefficient for the resistor.

scale = val Scaling factor; scales resistance and capacitance by its value
(default = 1.0).

dtemp = val Temperature difference between the element and the circuit in
Celsius (default = 0.0).

l = val Resistor length in meters (default = 0.0).

w = val Resistor width in meters (default = 0.0).

c = val Parasitic capacitance connected from node n2 to the bulk node
(default = 0.0).
May 2010 87 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

r001 1 0 50

defines a resistor named r001 with 50 ohms resistance connected between nodes 1 and 0.

In the next example

r002 x y 150 tc1 = 0.001 tc2 = 0

defines a 150 ohm resistor r002 between nodes x and y with temperature coefficient tc1
and tc2.

In the next example

r003 1 2 ‘5*v(5, 6)^2+f(x,y)’

defines a resistor connected to nodes 1 and 2, with a resistance depending on voltage
deference between nodes 5 and 6 in the given expression.
May 2010 88 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Self Inductor

Lxx n1 n2 [l = lval] [model_name] [tcl = val] [tc2 = val]
+ [scale = val] [ic = val] [m = mval] [r = val] [dtemp = val]

Description

Defines a linear inductor, where n1 and n2 are the terminals. Other HSPICE self inductor
formats and instance parameters are not supported.

Arguments

Examples

In the following example

L001 1 0 5e-6

defines an inductor named L001 with an inductance of 5e-6 Henry connected between nodes
1 and 0.

In the next example

L002 x y 1.5e-6 tc1 = 0.001 tc2 = 0

n1, n2 Inductor terminal nodes

l = lval Inductance of the inductor (in Henries)

m = mval Multiplier to simulate parallel inductors (default = 1)

tc1 = val First-order temperature coefficient for the inductor

tc2 = val Second-order temperature coefficient for the inductor

scale = val Scaling factors; scales inductance by its value (default = 1.0)

ic = val Initial current through an inductor (this value is used as the DC
operating point current when uic is specified in the .tran
statement, and can be overwritten with an .ic statement)

dtemp = val Temperature difference between the element and the circuit in
Celsius (default = 0.0)

r = val Resistance of the inductor in ohms (default = 0.0)
May 2010 89 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
defines an inductor named L002 with an inductance of 1.5e-6 Henry between nodes x and y.
The temperature coefficients are 0.001 and 0.

In SPICE format:

l1 1 2 1n ic=1.0u

In Virtuoso Spectre format:

l1 1 2 inductor l=1n ic=1.0u

or

l1 1 2 inductor l=1n

ic l1:1=1.0u

Note: The Virtuoso UltraSim simulator provides hierarchical detection of inductor loops and
generates an error message when an illegal inductor loop is detected. If you receive an
inductor loop error message, remove the loop from the netlist file before running the circuit
simulation again.
May 2010 90 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Voltage-Controlled Current Sources (G-Elements)

Voltage-Controlled Capacitor

Gxx n+ n- vccap pwl(1) in+ in- [delta = val] [scale = val]
+ [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]

Voltage-Controlled Current Source

Behavioral

Gxx n+ n- [vccs] cur = ’equation’ [max = val] [min = val] [scale = val]

Linear

Gxx n+ n- [vccs] in+ in- transconductance [max = val] [min = val]
+ [m = val] [scale = val] [tc1 = val] [tc2 = val] [abs = 1] [ic = val]

Piece-Wise Linear

Gxx n+ n- [vccs] pwl(1) in+ in- [delta = val] [scale = val]
+ [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]

Polynomial

Gxx n+ n- [vccs] poly(ndim) in+ in- ... inndim+ inndim-
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [abs = 1] p0 [p1 ...] [ic = vals]

Delay Element

Gxx n+ n- [vccs] delay in+ in- td = val
+ [tc1 = val] [tc2 = val] [scale = val] [npdelay = val]

Voltage-Controlled Resistor

Linear

Gxx n+ n- vcr in+ in- transfactor [max = val] [min = val]
+ [m = val] [scale = val] [tc1 = val] [tc2 = val] [ic = val]

Piece-Wise Linear

Gxx n+ n- vcr pwl(1) in+ in- [delta = val] [scale = val]
+ [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]

Gxx n+ n- vcr npwl(1) in+ in- [delta = val] [scale = val]
+ [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]
May 2010 91 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Gxx n+ n- vcr ppwl(1) in+ in- [delta = val] [scale = val]
+ [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]

Polynomial

Gxx n+ n- vcr poly(ndim) in+ in- ... inndim+ inndim-
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [abs = 1] p0 [p1 ...] [ic = vals]

Description

Defines voltage-controlled current sources (VCCSs), voltage-controlled resistors (VCRs),
and voltage-controlled capacitors (VCCAPs) in behavioral, linear, piece-wise linear, poly, and
delay forms. In the behavioral function, the equation can contain terms of node voltages. In
linear form, the output value is estimated with ‘[v(in+)-v(in-)]’ multiplied by transfactor or
transconductance, followed by the scale and temperature adjustment, before confined
with the abs, min, and max parameters. In the piece-wise linear function, at least two pairs
of voltage-current (or voltage-resistance, voltage-capacitance) points are required.

Arguments

n+, n- Terminals of controlled element.

in+, in- Positive and negative controlling nodes.

vcr, vccap, vccs Keywords for the voltage-controlled resistor, capacitor, and current
source elements.

Note: vcr, vccap, and vccs are reserved words that cannot be
used as node names.

cur = ’equation’ Current of the controlled element flowing from n+ to n-. It can be

■ An expression with parameters and functions of node voltages

■ Branch currents of other elements

■ Time, frequency, or temperature

max = val Maximum value of the controlled current or resistance.

min = val Minimum value of the controlled current or resistance.

transconductance Voltage to current conversion factor.

transfactor Voltage to resistance conversion factor.

scale = val Scaling factor; scales current by its value (default = 1.0).
May 2010 92 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
The npwl and ppwl functions are used to interchange the n+ and n- nodes, but use the
same transfer function.

npwl

For the in- node connected to n+, if v(n+,n-) < 0, then the controlling voltage is v(in+,in-).
Otherwise, the controlling voltage is v(in+,n-).

For the in- node connected to n-, if v(n+,n-) > 0, then the controlling voltage is v(in+,in-).
Otherwise, the controlling voltage is v(in+,n+).

ppwl

For the in- node, connected to n+, if v(n+,n-) > 0, then the controlling voltage is v(in+,in-).
Otherwise, the controlling voltage is v(in+,n-).

For the in- node, connected to n-, if v(n+,n-) < 0, then the controlling voltage is v(in+,in-).
Otherwise, the controlling voltage is v(in+,n+).

Note: If the in- node does not connect to either n+ or n-, the Virtuoso UltraSim simulator
changes npwl and ppwl to pwl.

Examples

In the following example

G1 1 2 cur = ’3.0*sin(v(7)/2)+v(6)^2’

m = val Multiplier (default = 1).

tc1 = val First-order temperature coefficient for the element.

tc2 = val Second-order temperature coefficient for the element.

abs Output current takes its absolute value if abs = 1.

ic = val Initial value of the current source (default = 0.0).

delta = val A value used to smooth corners of the piece-wise linear function.
The default is 1/4 of the smallest distance between break points,
and is not to exceed 1/2 of this value.

x1... Voltage drops between the controlling nodes in+ and in-. They
must be in ascending order.

y1... Element output value corresponding to x1...

npdelay The number of data points used in delay simulations.
May 2010 93 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
defines a VCCS connected to nodes 1 and 2, with its current dependent on the voltage of
nodes 6 and 7 in the given form.

In the next example

G2 1 2 vccs 5 0 0.5 max = 5 min = 0 m = 2 ic = 0

defines a VCCS connected to nodes 1 and 2. Its current is initialized as 0, and is half of the
voltage at node 5. The current is also confined within 0 and 5 amps. The output current is
multiplied by 2.

In the next example

G3 1 2 vccs pwl(1) 5 0 delta = 0.2 0, 0 0.5,1 1.5,1.5 scale = 1.e-3

defines a VCCS connected to nodes 1 and 2, its current controlled by the voltage at node 5.
The current is calculated in a piece-wise linear function with a smoothing parameter of 0.2,
and is scaled by 1.e-3 upon output.

In the next example

Gres 1 2 vcr pwl(1) 5 4 m = 3 0,0 1,1k 2,1.5k 3,1.8k 4,2.0k 5,2.0k ic = 1k

defines a VCR connected to nodes 1 and 2, with its resistance dependent on the voltage
difference between nodes 5 and 4 in a piece-wise linear form. The initial resistance is 1k. The
output resistance is decreased by 2/3.

In the next example

Gcap 1 2 vccap pwl(1) 5 4 m = 3 scale = 1.e-12 0,0 1,10 2,15 3,18 4,20 5,20 ic = 10

defines a VCCAP connected to nodes 1 and 2, with its capacitance dependent on the voltage
difference between nodes 5 and 4 in a piece-wise linear form. The initial capacitance is set
to 10 p after being scaled with 1e-12. The output capacitance is increased by a factor of 3.

In the next example

Gnmos d s vcr npwl(1) g s m =3 0,5g 1,5meg 2,5k 3,1k 5,50

tells the Virtuoso UltraSim simulator to model the source-drain resistor of the n-channel
MOSFET which is used as a switch. Based on the npwl function, the resistor value (Gnmos)
does not change when changing the position of the d and s nodes.
May 2010 94 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Voltage-Controlled Voltage Source (E-Elements)

Behavioral

Exx n+ n- [vcvs] vol = ’equation’ [max = val] [min = val]

Linear

Exx n+ n- [vcvs] in+ in- gain [max = val]
+ [min = val] [scale = val]
+ [tc1 = val] [tc2 = val] [abs = 1] [ic = val]

Piece-Wise Linear

Exx n+ n- [vcvs] pwl(1) in+ in- [delta = val] [scale = val]
+ [tc1 = val] [tc2 = val] x1 y1 x2 y2 ... [ic = val]

Polynomial

Exx n+ n- [vcvs] poly(ndim) in+ in- ... inndim+ inndim-
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [abs = 1] p0 [p1 ...] [ic = vals]

Delay Element

Exx n+ n- [vcvs] delay in+ in- td = val
+ [tc1 = val] [tc2 = val] [scale = val] [npdelay = val]

Laplace

Exx n+ n- laplace in+ in- k0, k1, ..., kn/ d0, d1, ..., dm
+ [tc1 = val] [tc2 = val] [scale = val]

❑ Laplace Function

Description

Defines six forms of voltage-controlled voltage sources (VCVSs): Behavioral, linear, piece-
wise linear, polynomial, delay element, and Laplace. In behavioral form, the equation can
contain terms of node voltages. In linear form, the output value is estimated using
‘gain*[v(in+)-v(in-)]’, followed by the multiplication of scale and temperature adjustment,
before being confined by the abs, min, and max parameters. In the piece-wise linear
function, at least two pairs of voltage points are required.

H s()
k0 k1s … kns

n
+ + +

d0 d1s … dms
m

+ + +
--- 0.0 0.0s 0.0s

2 1.0s
3

+ + +

1.0 2.0s 2.0s
2 3.0s

3
+ + +

---= =
May 2010 95 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Arguments

n+, n- Terminals of the controlled element.

in+, in- Positive and negative controlling nodes.

vol = ’equation’ Voltage of the controlled element. The equation can be a
function of parameters, node voltages, and branch currents of
other elements.

max = val Maximum value of the controlled voltage.

min = val Minimum value of the controlled voltage.

gain Voltage gain.

scale = val Scaling factor; scales voltage by its value (default = 1.0).

tc1 = val First-order temperature coefficient for the element.

tc2 = val Second-order temperature coefficient for the element.

abs Output voltage takes its absolute value if abs = 1.

ic = val Initial value of the voltage source (default = 0.0).

delta = val A value used to smooth the corners in the piece-wise linear
function. It is defaulted to be 1/4 of the smallest distance
between break points, not to exceed one-half of this value.

x1... Voltage drops between the controlling nodes in+ and in-.

They must be in ascending order.

y1... Element voltages corresponding to x1...

ndim Polynomial dimension (default = 1).

p0, p1, ... Polynomial coefficients. If one coefficient is specified, it is
assumed to be p1 (p0 = 0.0), representing a linear element. If
more than one coefficient is specified, it represents a non-linear
element.

td Time delay keyword.

npdelay Sets the number of data points to be used in delay simulations.

k0, k1, ..., d0,
d1, ...

Laplace coefficients.
May 2010 96 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

E1 1 2 vol = ’3.0*sin(v(7)/2)+v(6)^2’

defines a VCVS that is connected to nodes 1 and 2, with its voltage dependent on nodes 6
and 7 in the given expression.

In the next example

E2 1 2 vcvs 5 0 0.5 max = 5 min = 0 ic = 0

defines a VCVS that is connected to nodes 1 and 2. Its voltage is initialized to be 0, and is
half of the voltage of node 5. The final voltage is confined within 0 and 5 volts.

In the next example

E3 1 2 vcvs pwl(1) 5 0 delta = 0.2 0, 0 0.5,1 1.5,1.5

defines a VCVS that is connected to nodes 1 and 2, with its voltage dependent on the voltage
of node 5. The voltage is calculated in a piece-wise linear function with a smoothing
parameter delta = 0.2.

In the next example

E4 out 0 laplace in 0 0.0,0.0,0.0,1.0 / 1.0,2.0,2.0,3.0

defines a VCVS where the voltage v(out,0) is controlled by the voltage v(in,0) using the
Laplace function.
May 2010 97 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported HSPICE Sources

Listed below are descriptions of the HSPICE DC and transient source functions that are
supported by the Virtuoso UltraSim simulator for independent current and voltage sources.

■ dc on page 99

■ exp on page 100

■ pwl on page 101

■ pwlz on page 102

■ pulse on page 103

■ sin on page 104

■ pattern on page 105
May 2010 98 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
dc

dc=dc_voltage

or

dc=dc_current

Arguments

Example
V1 1 0 [dc=] 5

Declares a voltage source named V1 with a DC voltage of 5 volts.

dc=dc_voltage The value of the DC voltage source

dc=dc_current The value of the DC current source
May 2010 99 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
exp

exp [(] v1 v2 [td1 [tau1 [td2 [tau2]]]] [)]

Arguments

Example
I1 1 0 exp(-0.05m 0.05m 5n 25n 10n 20n)

Defines a current source named i1 that connects to node 1 and ground with an exponential
waveform, which has an initial current of -0.05 mA at t=0, and a final current of 0.05 mA. At
t=5ns, the waveform rises exponentially from -0.05 mA to 0.05 mA with a time constant of 25
ns. At t=10 ns, it starts dropping to -0.05 mA again, with a time constant of 20 ns.

v1 Initial value of voltage or current in volts or amps

v2 Pulsed value of voltage or current in volts or amps

td1 Rise delay time in seconds (default = 0.0)

td2 Fall delay time in seconds (default = td1+tstep)

tau1 Rise time constant in seconds (default = tstep)

tau2 Fall time constant in seconds (default = tstep)
May 2010 100 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
pwl

pwl [(] t1 v1 [t2 v2 … tn vn] [r = repeat_time] [td = delay] [)]

or

pl [(] v1 t1 [v2 t2 … vn tn] [r = repeat_time] [td = delay] [)]

Arguments

Example
v001 1 0 pwl(0 5 9n 5 10n 0 12n 0 13n 5 15n 5 r = 9n)

Defines a voltage source named v001 that connects to node 1 and ground with a PWL
waveform from 0 n to 15 n, continually repeating from 9 n to 15 n.

t1 v1 t2 v2 ... Time and value pairs describing a piece-wise linear
waveform. The value is amps or volts, depending on the
type of source.

r = repeat_time Repeats the waveform indefinitely starting from the
repeat_time time point.

td = delay The time in seconds to delay the start of the waveform.
May 2010 101 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
pwlz

pwlz [(] t1 v1 [t2 v2 ...ti Z... tn vn] [r = repeat_time] [td = delay] [)]

Description

This function resembles the PWL function, except that some voltage values can be replaced
by a keyword z, which stands for the high-impedance state. In this state, the voltage source
is disconnected from the time point (with keyword z) to the following time point (with non-z
state).

Example
v002 1 0 pwlz (0 Z 9n 5v 10n 0 12n 0 13n Z 15n 5v)

Defines a voltage source that connects to node 1 and ground with a PWLZ waveform from 9
ns to 13 ns, and from 15 ns to the end of simulation.
May 2010 102 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
pulse

pulse [(] v1 v2 [td [tr [tf [pw [per]]]]] [)]

Arguments

Example
v001 1 0 pulse (0 5 0 1n 1n 5n 10n)

Defines a voltage source named v001 that connects nodes 1 and 0. The pulse waveform
swings between 0 and 5 volts. The waveform has no initial delay, and has the rise and fall
times as 1 ns. The total pulse width is 5 ns with a 10 ns period.

v1 The initial voltage in volts

v2 The second voltage (the waveform swings between v1 and v2)

td The time from the beginning of the transient to the first onset of the
ramp (default = 0)

tr The rise time of the pulse (default = tstep)

tf The fall time of the pulse (default =tstep)

pw The pulse width (default = tstop)

per The period of the pulse (default = tstop)
May 2010 103 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
sin

sin [(] vo va [freq [td [theta [phase]]]] [)]

Arguments

Example

In the following example

i001 1 0 sin(0.01m 0.1m 1.0e8 5n 1.e7 90)

defines a current source named i001 that connects to node 1 and ground with a sin
waveform, and has an amplitude value of 0.1 mA, an offset of 0.01 mA, a 100 MHz frequency,
a time delay of 5 ns, a damping factor of 1.e7, and a phase delay of 90 degrees.

Notes

■ Voltage source loops in circuit designs can create simulation problems. The Virtuoso
UltraSim simulator provides hierarchical detection of voltage source loops and generates
an error message when an illegal voltage loop is detected.

■ Only a DC voltage loop, with a total loop voltage of 0, does not generate an error
message. If you receive a voltage loop error message, remove the loop from the netlist
file before running the circuit simulation again.

vo Voltage or current offset in volts or amps.

va Voltage or current root mean square (RMS) amplitude in volts or
amps.

freq Source frequency in Hz (default = 1/tstop).

td Time delay before beginning the sinusoidal variation in seconds
(default = 0.0), response is 0 volts or amps until the delay value is
reached, even with a non-zero DC voltage.

theta Damping factor in units of 1/seconds (default = 0.0).

phase Phase delay in units of degrees (default = 0.0).
May 2010 104 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
pattern

pat [(] high low tdelay trise tfall tsample
+ bstring1 [rb=val] [r=val]
+ [bstring2 [rb=val] [r=val]] ... [)]

or

pat [(] high low tdelay trise tfall tsample
+ [component1 ... componentn] [rb=val] [r=val] [)]

Description

The pattern function defines a bit string (b-string) or a series of b-strings and consists of
four states, 1, 0, m, and z, which represent the high, low, middle voltage or current, and high
impedance states, respectively.

Arguments

pat Keyword for a pattern time-varying source.

high High voltage or current value of the pattern source in volts or
amps.

low Low voltage or current value of pattern source in volts or amps.

tdelay Delay time in seconds from the beginning of the transient to the
first ramp occurrence.

trise Duration of the ramp-up in seconds.

tfall Duration of the ramp-down in seconds.

tsample Time spent at each 0, 1, m, or z pattern value in seconds.

bstring1 Defines a bit string consisting of 1, 0, m, or z. The first alphabetic
character must be b.

■ 1 represents the high voltage or current value.

■ 0 is the low voltage or current value.

■ m represents the value which is equal to 0.5*(vhigh+vlow).

■ z represents the high impedance state (only for voltage
source).

Note: The b-string cannot contain parameters.
May 2010 105 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

v1 1 0 pat (5 0 0n 1n 1n 5n b01000 r=1 rb=2 bm10z)

tells the Virtuoso UltraSim simulator to define an independent pattern voltage source named
v1 with a first b-string 01000 that executes once and repeats once from the second bit 1, and
then the second b-string m10z executes once (that is, the whole bit pattern is
010001000m10z). The high voltage 1 is 5 volts, low voltage 0 is 0 volts, middle voltage m is
2.5 volts, rise and fall times are both 1 ns, and each bit sample time is 5 ns.

In the next example

component1 ...
componentn

Defines a series of b-strings. Each component is a b-string. rb and
r can be used for each b-string.

Note: Brackets [] must be used.

rb=val Keyword to specify the starting bit or component to repeat. The
number is counted from left to right.

■ The default is rb=1 (source repeats from the most left-hand bit
or component).

■ The value of rb must be an integer.

■ If the value is larger than the length of the b-string, or the total
the number of components, an error is reported by the Virtuoso
UltraSim simulator.

■ If the value is less than 1, the simulator automatically sets it to
the default value of 1.

Note: The value of rb cannot be a parameter.

r=val Keyword to specify how many times to repeat the b-string or the
components.

■ The default value is r=0 (no repeat).

■ The value of r must be an integer.

■ If r=-1, then the repeating operation runs continuously.

■ If the value is less than -1, the simulator automatically sets it
to the default value of 0.

Note: The value of r cannot be a parameter.
May 2010 106 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.param high = 1.5 low = 0 td=0 tr=10n tf=20n tsample=60n

V2 1 0 pat(high low td tr tf tsample

+ [b01000 r=1 rb=2 bm10z] RB=2 R=2)

tells the simulator to define an independent pattern voltage source named v2 with a whole bit
pattern of 01000 1000 m10z m10z m10z.
May 2010 107 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported SPICE Format Simulation and Control
Statements

Listed below are the Virtuoso UltraSim SPICE format simulation and control statements. The
following sections provide a brief description of each statement.

■ .alter on page 109

■ .connect on page 110

■ .data on page 111

■ .end on page 112

■ .endl on page 113

■ .ends or .eom on page 114

■ .global on page 115

■ .ic on page 116

■ .include on page 117

■ .lib on page 118

■ .nodeset on page 119

■ .op on page 120

■ .options on page 123

■ .param on page 125

■ .subckt or .macro on page 126

■ .temp on page 127

■ .tran on page 128
May 2010 108 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.alter

.alter

Description

This statement is designed for repeating simulations under different conditions: Altered
parameters, temperatures, models, circuit topology (different elements and subcircuit
definitions), and analysis statements. Multiple .alter statements can be used in a netlist
file, which is divided into several sections. The part before the first .alter statement is called
the main block. Subsequent .alter statements and those between .alter and .end are
referred to as alter blocks. When simulating an alter block, the information in the alter block is
added to the main block, where conditions with identical names (for example, parameters,
elements, subcircuits, and models) are replaced with those in the alter block. Analysis
statements are treated in the same way.

The output from a sequence of altered simulations is distinguished by the number appended
to the end of the filename, labeling the order in which they are generated. For example, the
files from measures are named with .mt0, .mt1, and so forth. All the others skip the 0 for
the first simulation, and appear as .fsdb, .trn, .dsn, .nact, .pa, .ta, .vecerr, and
.veclog.

Examples

In the following example

x001 n1 n2 inv

...

.alter

x001 n1 n2 inv2

the call x001 to the subcircuit inv from the main netlist file block is replaced by a call to
subcircuit inv2 in the altered simulation.

In the next example

.temp 25

.alter

.temp 50

the first simulation is run at 25 C and the second simulation is run at 50 C.
May 2010 109 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.connect

.connect node1 node2

Description

Use to connect node1 and node2.

Note: Both nodes must be at the same level of the design.

Arguments

Example
.connect vdd vdd!

Tells the simulator to connect the vdd and vdd! nodes. If probed, the nodes are retained in
the waveform file.

node1, node2 Node names
May 2010 110 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.data

.data name param1 [param2 ...]
+ val11 [val21 ...]
+ val12 [val22 ...]
.enddata

Description

This statement allows you to perform data-driven analysis in which parameter values can be
modified in different simulations. This statement is used in conjunction with an analysis
statement (for example, .tran) with a keyword data = name.

The Virtuoso UltraSim simulator only supports an inline format for the .data statement.

Arguments

Example
.param res = 1 cap = 1f

.tran 1ns 1us sweep data = allpars

.data allpars res cap

+ 1k 1p

+ 10k 10p

.enddata

Tells the Virtuoso UltraSim simulator to perform two separate simulations with the two pairs
of parameters: res and cap.

name Specifies the data name used in analysis statements

param1, param2, ... Specifies the parameter names used in the netlist file
(the names must be declared in a .param statement)

val11, val21, ... Specifies the parameter values
May 2010 111 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.end

.end

Description

This statement specifies the end of the netlist file description. All subsequent statements are
ignored.

Example
*title

...

.end
May 2010 112 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.endl

.endl

Description

This statement specifies the end of a library definition.

Example
.lib tt

...

.endl tt
May 2010 113 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.ends or .eom

.ends

or

.eom

Description

These statements specify the end of a subcircuit definition. Subcircuit references or calls can
be nested within subcircuits.

Examples
.subckt inv in out

...

.ends

or

.macro inv in out

...

.eom
May 2010 114 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.global

.global node1 [node2 ... noden]

Description

This statement defines global nodes. The Virtuoso UltraSim simulator connects all references
to a global node name, which can be used at any hierarchical level, to the same node.

Example
.global vdd gnd

Tells the Virtuoso UltraSim simulator to define nodes vdd and gnd as global nodes.
May 2010 115 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.ic

.ic v(node1) = val1 [v(node2) = val2] ... [v(noden) = valn] subckt=subckt_name
depth=depth_val

Description

This statement is used to specify an initial voltage condition for nodes. The Virtuoso UltraSim
simulator forces the node voltage to the specified voltage at time=0. A node name can be
hierarchical and can contain wildcards. The statement can be embedded in the scope of a
subcircuit. In this case, the initial condition is assigned to the nodes local to the subcircuit. If
a conflict occurs between an embedded IC and a hierarchical IC, the embedded one is
adopted.

For more information about wildcards, see “Wildcard Rules” on page 55.

Arguments

Example
.ic v(n1) = 0.5 v(n2) = 1.5 subckt=inv

Tells the Virtuoso UltraSim simulator to initialize node n1 to 0.5 V and node n2 to 1.5 V in all
instances of subcircuit inv.

v(node) Sets the initial voltage for the node. The node name can be
hierarchical and can contain wildcards (for example, x?1.*.n*). In
this case, the Virtuoso UltraSim simulator assigns the initial
condition to all the nodes that match the name.

subckt Specifies the subcircuit name (by default, applies to the top level).
If the statement is already used in a subcircuit definition, this
parameter is ignored. Setting the parameter is equivalent to
defining the statement within a subcircuit declaration.

depth Specifies the depth in the circuit hierarchy that a wildcard name
applies to. This parameter is only available when the * wildcard is
used in the output variable. If set to 1, only the nodes at the current
level are applied (default value is infinity).
May 2010 116 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.include

.include [filepath]filename

Description

This statement inserts the contents of the file into the netlist file.

Note: [filepath]filename can be enclosed by single or double quotation marks.

Example
.include options.txt

Tells the Virtuoso UltraSim simulator to insert the options.txt file into the netlist file.
May 2010 117 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.lib

.lib [libpath] library_name section_name

Description

This statement is used to read common statements, such as device models, from a library file.

Arguments

Example
.lib ‘models.lib’ tt

Tells the Virtuoso UltraSim simulator to read the tt section from the models.lib library file.

[libpath] Path to the library file

library_name Name of the library file

Note: The [libpath] library_name can be enclosed with
single or double quotation marks.

section_name Section of the library to be included
May 2010 118 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.nodeset

.nodeset v(node1) = val1 [v(node2) = val2] ... [v(noden) = valn]

or

.nodeset node value

Description

This statement specifies the node set for the node. The Virtuoso UltraSim simulator forces
the node voltage to the specified value at the first operating point iteration and then the solver
calculates the node voltage used at time=0. A node name can be hierarchical and can contain
wildcards. The statement can be embedded in the scope of a subcircuit. In this case, the initial
condition is assigned to the nodes local to the subcircuit. If a conflict occurs between an
embedded IC and a hierarchical IC, the embedded one is adopted.

For more information about wildcards, see “Wildcard Rules” on page 55.

Note: The .nodeset statement can be used to enhance convergence in DC analysis. If the
node value is set close to the actual DC operating point, convergence can be enhanced.

Arguments

Example
.nodeset v(n1) = 0.5 v(n2) = 1.5

The initial starting point for the operating point calculation is 0.5 V for n1 and 1.5 V for n2.
The final operating point for both nodes may be slightly different since .nodeset is only used
at the first iteration.

v(node) Sets the node set for the node. The node name can be hierarchical
and contain wildcards (for example, x?1.*.n*). In this case, the
Virtuoso UltraSim simulator assigns the initial condition to all the
nodes that match the name.
May 2010 119 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.op

.op [format] [time] [format] [time]

Description

The .op command is used to perform an operating point analysis. The Virtuoso UltraSim
simulator reports all node voltages in an .ic file. If multiple time points are specified, the
Virtuoso UltraSim simulator saves the node voltages in the following order: The first time point
in an .ic0 file and the second point in an .ic1 file.

In addition, the Virtuoso UltraSim simulator reports all the operating point information in a
different file (the file name is dependent on the keyword format used). If time is not specified,
the Virtuoso UltraSim simulator performs the operating point analysis at time 0. If transient
analysis is not available, the Virtuoso UltraSim simulator performs the operating point
analysis at time 0, even if a non-zero time is specified with the command.

The Virtuoso UltraSim simulator can print the operating point analysis in the following
formats: ASCII, PSF ASCII, and PSF binary (default is ASCII). To specify PSF ASCII, use
usim_opt wf_format=psfascii. To specify PSF binary, use usim_opt
wf_format=psf.
May 2010 120 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Arguments

Example
.op .5ns current 1.0ns 2.0ns

Tells the Virtuoso UltraSim simulator to calculate the operating point at 0.5 ns and prints the
.op information in voltage format. The operating points are also calculated at 1.0 ns and
2.0 ns and printed in current format.

format Specifies the report format and uses the following keywords: all,
current, or voltage.

Note: Only one argument keyword can be used at a time in a
command (you only need to use the first letter of the keyword).

■ Voltage tells the Virtuoso UltraSim simulator to print a voltage
table for each node and information for each model.

The information is saved in an ASCII voltage.op file. If PSF
format is specified, the file name is
tran_voltage_op.tran_op.

■ All tells the Virtuoso UltraSim simulator to print a voltage table
for all the nodes, information for each model, and operating
point information for each element (voltage, current,
conductance, power, and capacitance).

The information is saved in an ASCII all.op file. If PSF
format is specified, the file name is tran_all_op.tran_op.
Refer to the Virtuoso UltraSim Waveform Interface
Reference for more details on PSF files.

■ Current tells the Virtuoso UltraSim simulator to print a voltage
table, information for each model, and limited operating point
information for each element (voltage, current, and power).

The information is saved in an ASCII current.op file. If PSF
format is specified, the file name is
tran_current_op.tran_op.

time Specifies the time at which the report is printed. This argument is
placed directly after the all, current, and voltage
arguments in the .op command.
May 2010 121 Product Version 7.2

../UltraSim_UWI/UltraSim_UWITOC.html#firstpage
../UltraSim_UWI/UltraSim_UWITOC.html#firstpage

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Note: If you use .op [format] [time1] [time2], the format at time2 is the same as
time1.
May 2010 122 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.options

.options argument1 [argument2] ...

Description

This statement defines a set of SPICE options. The Virtuoso UltraSim simulator recognizes
dcap, defad, defas, defl, defnrd, defnrs, defpd, defps, defw, gmin,
parhier, scale, scalm, search, and wl as arguments to this statement.

Arguments

co = 80|132 Defines the number of variables to be displayed on
each line (default value is 80). If set to 80, generates a
narrow printout containing up to four output variables
per line. If set to 132, generates a wide printout
containing up to eight output variables per line.

dcap Equations calculate the depletion capacitance of the
diodes (level=1|3) and BJTs.

defad Default MOSFET drain diode area (ad). Default value
is 0.

defas Default MOSFET source diode area (as). Default value
is 0.

defnrd Default MOSFET drain resistor in number of squares
(nrd). Default value is 0.

defnrs Default MOSFET source resistor in number of squares
(nrs). Default value is 0.

defpd Default MOSFET drain diode perimeter (pd). Default
value is 0.

defps Default MOSFET source diode perimeter (pd). Default
value is 0.

defw Default MOSFET channel width. Default value is 1e-4.

gmin = value The minimum conductance allowed for transient
analysis. Default value is 1e-12.
May 2010 123 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
lngold = 0|1|2 Defines the numerical printout formats for the .print
statement.

■ 0 - Engineering (default): 1.234K, 123M

■ 1 - G (fixed and exponential): 1.234e+03, .123

■ 2 - E (exponential SPICE): 1.234e+03, .123e-1

Note: Engineering format cannot be combined with
exponential format.

parhier = (local|global) Rules for parameter passing; applies only to
parameters with the same name, but under different
levels of hierarchy.

■ local tells the simulator that a parameter name in
a subcircuit overrides the same parameter name in
a higher level of the hierarchy.

■ global tells the simulator that a parameter name at
a higher level of the hierarchy overrides the same
parameter name at a lower level.

scale = value Scaling factor used to scale the parameters in the
element card. Default value is 1.

scalm = value Model scaling factor used to scale the model
parameters defined in model cards. Default value is 1.

search = path Specifies the search path for libraries and included
files.

wl = (0|1) wl changes the order of specified MOS elements from
the default order length-width to width-length. Default
value is 0.
May 2010 124 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.param

.param param1=value1 [param2 = val2 ... paramn = valn]

or

.param func_name=’expression’

Description

This statement defines parameters and user-defined functions.

Examples
.param vcc=2.5

.param half_vcc='0.5*vcc'

.param g(x)='5*x+0.5'

.param f(x)='g(x)+5*x+0.5'
May 2010 125 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.subckt or .macro

.subckt subckt_name [port1 ... portn] [par1 = val1 ... parn = valn]
[m = value]

or

.macro subckt_name [port1 ... portn] [par1 = val1 ... parn = valn] [m = value]

Description

These statements specify the beginning of a subcircuit definition. The subcircuit can have
zero ports when all the nodes used in the subcircuit definition are declared global. A subcircuit
definition can contain elements, subcircuit calls, nested subcircuit definitions, as well as
simulation output statements (see “Supported SPICE Format Simulation Output Statements”
on page 130). Parameters can be declared within subcircuit definitions, on a .subckt or
.macro command, or on a subcircuit call. Multipliers are also supported on subcircuits (for
example, m = 2).

Example
.subckt inv in out w = wval l = lval

m1 out in vdd vdd pmos w = vval*3 l = lval*2

m2 out in gnd gnd nmos w = wval l = lval

.eom

x1 n1 n2 inv w = 1e-06 l = 2.5e-07

Defines a subcircuit named inv that has two ports and takes two parameters, w and l. It is
instantiated by a call named x1, which passes in values for w and l.
May 2010 126 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.temp

.temp val1 [val2 ... valn]

Description

This statement defines the values of temperature used in the simulations.

Example
.temp 0 50 100

Tells the Virtuoso UltraSim simulator to perform simulations for three temperature values: 0,
50, and 100.
May 2010 127 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.tran

.tran incr1 stop1 [incr2 stop2 ...incrn stopn] uic [start = value]
+ [sweep var type np start stop]

or

.tran incr1 stop1 [incr2 stop2 ...incrn stopn] uic [start = value]
+ [sweep var start=param_expr1 stop=param_expr2
+ step=param_expr3

or

.tran incr1 stop1 [incr2 stop2 ...incrn stopn] uic [start = value]
[sweep data = dataname]

Description

This statement defines the transient analysis. In a transient analysis, the first calculation is a
DC operating point using the DC equivalent model of a circuit. The DC operating point is then
used as an initial estimate to solve the next time point in the transient analysis.

If uic is specified, the Virtuoso UltraSim simulator sets the node voltages as defined by .ic
statements (or by the ic = parameters in various element statements) and sets unspecified
nodes to 0 volts instead of solving the quiescent operating point. The DC operating points of
unspecified nodes are set to 0 volts. In a SPICE netlist file, specifying uic has the same effect
on the simulation as setting usim_opt dc=0.

Examples

In the following example

.tran 1e-12 1e-08 start = 0 sweep vcc lin 5 2.0 3.0

tells the Virtuoso UltraSim simulator to perform a transient analysis from 0 ns to 10 ns in steps
of 1 ps. Additionally, vcc is swept linearly for five values from 2.0 to 3.0.

In the next example

.tran 1ns 1us sweep data = allpars

tells the simulator to perform a transient analysis from 0 ns to 1 us in steps of 1 ns.
Additionally, the dataset allpars is used for performing the sweep.

In the next example

.tran 1ns 200ns uic
May 2010 128 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
tells the simulator to perform a transient analysis from 0 ns to 200 ns in steps of 1 ns, without
calculating the DC operating point when uic is used.
May 2010 129 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported SPICE Format Simulation Output Statements

Listed below are the supported Virtuoso UltraSim SPICE format simulation output
statements. The following sections provide a brief description of each statement.

■ .lprobe and .lprint on page 131

■ .malias on page 134

■ .measure on page 135

❑ Average, RMS, Min, Max, Peak-to-Peak, and Integral on page 135

❑ Current and Power on page 137

❑ Find and When on page 138

❑ Parameter on page 139

❑ Rise, Fall, and Delay on page 140

❑ Target on page 140

❑ Trigger on page 140

■ .probe, .print, .plot, and .graph on page 142
May 2010 130 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.lprobe and .lprint

.lprobe tran [low = value] [high = value] [name1 =]ov1 [[name2 =]ov2] ...
[[namen =]ovn] [depth = value] [subckt = name] [exclude = pn1]
[exclude = pn2] ... [preserve=none|all|port]

.lprint tran [low = value] [high = value] [name1 =]ov1 [[name2 =]ov2] ...
[[namen =]ovn] [depth = value] [subckt = name] [exclude = pn1]
[exclude = pn2] ... [preserve=none|all|port]

Description

These statements set up logic probes on nodes for the specified output quantity. The results
are sent to a waveform output file. These statements can contain hierarchical names and
wildcards for nodes or elements, and can be embedded within the scope of a subcircuit (for
more information about wildcards, see “Wildcard Rules” on page 55).

The threshold voltages for .lprint/.lprobe can also be set using the vl and vh options.
See “Threshold Voltages for Digital Signal Printing and Measurements” on page 220 for more
information.

Note: Output variables can only be simple output variables.

Arguments

tran Defines the analysis type (transient).

ov1, ov2 Specifies the simple output variables and uses v(node_name)
format. The name can be hierarchical and contain wildcards (for
example, x?1.*.n*).

low = value Specifies the voltage threshold for the logic 0 (zero) state. The 0
(logic low) state is probed if the node voltage is less than or
equal to low. If the node voltage is between low and high, the
X state is probed. If not specified, the global parameter value vl
is assigned.

high = value Specifies the voltage threshold for the logic 1 (one) state. The 1
(logic high) state is probed if the node voltage is higher than or
equal to high. If the node voltage is between low and high, the
X state is probed. If not specified, the global parameter value vh
is assigned.
May 2010 131 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

.lprobe low = 0.5 high = 4.5 v(n1)

the voltage on node n1 is converted to logic values using the low and high thresholds, and
then output to the waveform output file.

In the next example

.lprobe low = 0.5 high = 4.5 v(*) v(BUF.n1) depth = 2 subckt = INV

the logic states are probed for all the nodes within the subcircuit named INV and one level
below in the circuit hierarchy. In this case, the reported names of BUF are appended with the
circuit call path from the top level to INV. This is equivalent to the situation where the
statement ‘.lprobe tran v(*) depth = 2’ is in the subcircuit definition of INV in the netlist file.

In the next example

.lprobe tran v(*) subckt=VCO preserve=all

RC reduction is constrained to preserve all nodes in VCO. Voltage probing is performed for all
nodes in VCO, including internal nodes that are only connected to resistors and capacitors.

depth = value Specifies the depth in the circuit hierarchy that a wildcard name
applies. If set as one, only the nodes at the current level are
applied (default value is infinity).

subckt = name Specifies the subcircuit this statement applies to. By default, it
applies to the top level. If the statement is already in a subcircuit
definition, this parameter is ignored. Setting this parameter is
equivalent to defining the statement within a subcircuit
declaration.

exclude = pn1, pn2 Specifies the output variables to be excluded from the probe.
Names can be node or element names, and can contain
wildcards.

preserve=none|all
|port

Defines the content of nodes probed with wildcard probing.

■ none probes all nodes and ports connected to active devices
(default). Nodes connected only to passive elements are not
probed.

■ all probes all nodes, including nodes connected to passive
elements, and probes all ports.

■ port only probes ports in subcircuits.
May 2010 132 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
In the next example

.lprobe tran v(*) exclude=net* exclude=bl*

probes all node voltages except the voltages for nodes matching the pattern net* and bl*.
The high and low threshold voltage is set by global parameters vh and vl, respectively.

In the next example

.lprobe low = 0.5 high = 4.5 v(*) exclude=*$*

or

.lprint low = 0.5 high = 4.5 v(*) exclude=*$*

the voltage on all nodes is converted to logic values using the low and high thresholds, and
then output to the waveform output file. Nodes containing the $ symbol are excluded.
May 2010 133 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.malias

.malias model_name=alias_name1 <alias_name2 ...>

Description

The Virtuoso UltraSim simulator supports .malias, an option used to create an alias name
for a model. To create an alias, specify the following in the netlist file:

.malias model_name=alias_name1 <alias_name2 ... >

You can use alias_name1 ... the same way as the model_name.

Note: This option is only supported at the top level of the netlist file.

Arguments

alias_name Specifies the alias name used for the model

model_name Specifies the model name
May 2010 134 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.measure

.measure tran|tran_cont meas_name trig ... targ ...

Description

This statement defines the measurement that is performed for propagation, delay, rise time,
fall time, average voltage, peak-to-peak voltage, and minimum and maximum voltage over a
specified period, and over a number of other user-defined variables. The measurement can
be used for power analysis on elements or subcircuits (see Examples).

The continuous measurement feature of the Virtuoso UltraSim simulator can be enabled by
specifying the tran_cont option in the .measure statement. This type of measure
performs the specified measurement continuously until the simulation ends. A measure
output file named cont_<meas_name>.mtx is generated and reports the continuous
measurement results.

The .measure statement can also be embedded within a subcircuit definition in the netlist
file. The measure name is appended with the call path name from the top-level to the
instances of the subcircuit. The .measure statement can also be used to perform the
measurement of all output variables, including expression probes already defined in the
.probe expr() statement.

The Virtuoso UltraSim simulator supports linked measure statements applicable for all the
measure functions listed below. Some measure statements can depend on others by having
names of other measures in expressions (instead of parameters). These expressions cannot
contain node voltages and element currents. To avoid confusion, linked measure statements
must be in the same scope (that is, either in the top level or in the same subcircuit definition).

Note: Any signal used in .meas is automatically saved in the waveform file.

The Virtuoso UltraSim simulator supports the following measure functions (descriptions
include examples):

Average, RMS, Min, Max, Peak-to-Peak, and Integral

.measure tran meas_name func ov1 [from = value] [to = value]
May 2010 135 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Arguments

Examples

The following example

.measure tran avg1 avg v(1) from = 0ns to = 1us

tells the Virtuoso UltraSim simulator to calculate the average voltage of node 1 from 0 ns to
1 us, evaluating the result with variable avg1.

In the next example

.measure tran Q2 integ I(out) from = 0ns to = 1us

tells the simulator to calculate the integral of I(out) from 0 ns to 1us, evaluating the result
with variable Q2.

tran Specifies the transient analysis for the measurement

Note: The Virtuoso Ultrasim simulator only supports measurement
of transient analysis.

name User-defined measurement name

ov1 Name of the output variable (it can be the node voltage, branch
current of the circuit, or an expression)

func ■ avg calculates the average area under ov1, divided by the
period of time

■ max reports the maximum value of ov1 over the specified
interval

■ min reports the minimum value of ov1 over the specified
interval

■ pp reports the maximum value, minus the minimum of ov1,
over the specified interval

■ rms calculates the square root of the area under the ov1
curve, divided by the period of interest

■ integ reports the integral of ov1 over the specified period

from= Start time for the measurement period

to= End time for the measurement period
May 2010 136 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
In the next example

.measure tran rms3 rms v(out) from = 0ns to = 1us

tells the simulator to calculate the RMS of the voltage on node out from 0 ns to 1 0ns,
evaluating the result with variable rms3.

In the next example

.measure tran rout pp par(’v(out)/i(out)’)

tells the simulator to calculate the peak-to-peak value of the output resistance at node out,
evaluating the result with variable rout.

Current and Power

Description

Used for current and power analysis on elements or subcircuits.

Examples

In the following example

.measure tran current max x0(xtop.x23.out) from=0ns to=1us

the maximum current of port out of instance xtop.x23 is measured from 0 ns to 1 us,
excluding all other lower hierarchical subcircuit ports.

In the next example

.measure tran power max `v(xtop.x23.out) * x0(xtop.x23.out)` from=0ns to=1us

the maximum power of port out of instance xtop.x23 is measured 0 ns to 1 us, excluding
all other lower hierarchical subcircuit ports.

In the next example

.measure tran current max x(xtop.x23.out) from=0ns to=1us

the maximum current of port out of instance xtop.x23 and all instances below is
measured.

In the next example

.measure tran power max `v(xtop.x23.out) * x(xtop.x23.out)` from=0ns to=1us

the maximum power of port out of instance xtop.x23 and all instances below is measured.
May 2010 137 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
In the next example

.measure tran power_avg avg `v(1) * i1(r1)` from=0ns to=1us

the average power on element r1, from 0 ns to 1 us, is measured in the circuit.

In the next example

.measure tran energy integ ` v(xtop.x23.out) * x(xtop.x23.out)` from=0ns to=10us

the integral power (total energy) of port out of instance xtop.x23 and all instances below
is measured.

Find and When

.measure tran meas_name find ov1 at = value

or

.measure tran|tran_cont meas_name find ov1 when ov2 = value [td = value]
[rise = r|last | fall = f|last | cross = c|last]

or

.measure tran|tran_cont meas_name when ov1 = value|ov3 [td = value] [rise = r|last]
[fall = f|last] [cross = c|last]

or

.measure tran|tran_cont meas_name when ov1 = ov2 [td = value] [rise = r|last] [fall
= f|last] [cross = c|last]

Arguments

tran Specifies the transient analysis for the measurement.

Note: The Virtuoso Ultrasim simulator only supports measurement
of transient analysis.

meas_name User-defined measurement name.

when|find Specifies the when and find functions.

ov1, ov2, ov3 Name of the output variable (it can be the node voltage, branch
current of the circuit, or an expression).

td Time at which measurement starts.
May 2010 138 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples
.measure tran find1 find v(1) at = 0ns

.measure tran find2 find v(1) when v(2) = 2.5 rise = 1

.measure tran when1 v(1) = 2.5 cross = 1

.measure tran when2 v(1) = v(2) cross = 1

.measure tran_cont cont_find3 find v(1) when v(2) = 2.5 rise = 1

.measure tran_cont cont_when3 v(1) = 2.5 cross = 1

.measure tran_cont cont_when4 v(1) = v(2) cross = 1

Parameter

.measure tran meas_name param = ’expr’

Description

This format is specified together with other measures. ‘expr’ can contain the names of
other measures, but cannot contain node voltages or element currents.

Note: Since ‘expr’ is a function of previous measurement results, it cannot be a function
of node voltage or branch current.

rise=r Number of rising edges the target signal achieves r times (the
measurement is executed).

fall=f Number of falling edges the target signal achieves f times (the
measurement is executed).

cross=c Total number of rising and falling edges the target signal achieves
c times (the measurement is executed). Crossing can be rise or
fall.

last Last cross, fall, or rise event (measurement is executed the
last time the find or when condition is true).

Note: last is a reserved keyword and cannot be used as a
parameter name in .measure statements.

from= Start time for the measurement period

to= End time for the measurement period
May 2010 139 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

.measure tran avg1 avg v(1) from = 0ns to = 1us

.measure tran avg2 avg v(1) from = 2ns to = 3us

.measure tran avg12 param = ’avg1+avg2’

the measure avg12 returns the sum of the values from avg1 and avg2.

In the next example

.measure tran avg01 avg v(in) from = 0 to = 1e-08

.measure tran time1 when v(1) = 2.5 cross = 1

.measure tran delay1 trig at = 'time1' targ v(t4) val = '0.5*(avg01+0.0112)'
rise = 1

the measure delay1 is calculated based on the results of time1 and avg.

Rise, Fall, and Delay
. measure tran meas_name trig … targ …

Target

targ targ_var val = value [td = value] [cross = value | rise = value | fall = value]

Trigger

trig trig_var val = value [td = value] [cross = value] [rise = value] [fall = value]

or

trig at = value

Arguments

tran Specifies the transient analysis for the measurement.

Note: The Virtuoso Ultrasim simulator only supports measurement
of transient analysis.

meas_name User-defined measurement name.

trig Specifies the beginning of trigger specifications.

targ Specifies the beginning of target specifications.
May 2010 140 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the first example

.measure tran delay1 trig v(1) val = 0.5 rise = 1 targ v(2) val = 0.5 fall =1

.measure tran_cont delay2 trig v(1) val = 0.5 rise =1 targ v(2) val = 0.5 fall =1

tells the Virtuoso UltraSim simulator to measure the delay from time point v(1), when its
value is 0.5 volts on the first rising edge, to time point v(2) when its values is 0.5 volts on the
first falling edge.

The second .measure statement continuously reports the delay between v(1) and v(2) until
the simulation ends. The additional output file is cont_delay2.mt0.

The next example

.measure tran delay1 trig at=1ns targ v(2) val = 0.5 fall = 1

tells the simulator to measure the delay from 1 ns to time point v(2) when its value is 0.5
volts on the first falling edge.

trig_var Name of the output variable that triggers the measurement. If the
target is reached before the trigger activates, .measure reports a
negative value.

targ_var Name of the output variable the Virtuoso UltraSim simulator uses
to determine the propagation delay with respect to trig_var.

val=value Value of trig_var or targ_var.

td=value Time the measurement starts. The simulator counts the number of
cross, rise, or fall events that occur after the td value.
Default=0.0.

rise=value

fall=value

cross=value

Number of rise, fall, or cross events the target signal
achieves f times (the measurement is executed).

at=value Special case for trigger specification of measurement start time.
The value can be a real time or a measurement result from a
previous .measure statement.
May 2010 141 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
.probe, .print, .plot, and .graph

.probe [tran] [name1 =]ov1 [[name2 =]ov2] ... [[namen =]ovn]
[depth = value] [subckt = name] [exclude = pn1] [exclude = pn2] ...
[preserve=all|port|none]

.print [tran] [name1 =]ov1 [[name2 =]ov2] ... [[namen =]ovn]
[depth = value] [subckt = name] [exclude = pn1] [exclude = pn2] ...
[preserve=all|port|none]

.plot [tran] [name1 =]ov1 [[name2 =]ov2] ... [[namen =]ovn]
[depth = value] [subckt = name] [exclude = pn1] [exclude = pn2] ...
[preserve=all|port|none]

.graph [tran] [name1 =]ov1 [[name2 =]ov2] ... [[namen =]ovn]
[depth = value] [subckt = name] [exclude = pn1] [exclude = pn2] ...
[preserve=all|port|none]

Description

These statements are used to probe nodes and ports or to print simulation results in text and
graphic formats. Using any of the specified keywords has the same effect, sending results to
a waveform output file. The statements can contain hierarchical names and wildcards for
nodes, ports, or elements, and can be embedded within the scope of a subcircuit.

For more information about wildcards, see “Wildcard Rules” on page 55.

For .print, the Virtuoso UltraSim simulator creates a circuit.print# output file for each
simulation run (# starts at 0). The file includes all data for printed variables, with an x in the
first column indicating where the .print output data starts, followed by a y indicating where
the data ends.

The statements also support the following:

■ Multiple statements in the netlist file

■ Output variables in different formats (see Arguments on page 142)

Note: Nonexistent netlist file part names are ignored (warning message with names is
printed).

Arguments

tran Defines the analysis type (transient).
May 2010 142 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
ov1, ov2 ... Name of the output variable (it can be a node voltage, branch
current, port current, verilogA instance port voltage, or verilogA
instance internal variable value).

■ v(node_name) probes the node_name voltage. The
node_name can be hierarchical, and can contain question
marks and wildcards. For example: v(x?1.*.n*).

■ i(element_name) prints the branch current output through the
element element_name. The element_name can be
hierarchical, and can contain question marks and wildcards.
For example: i(x?1.*.n*)

■ v1(element_name) probes the voltage of the first terminal for
the element element_name, v2 probes the voltage of the
second terminal, v3 probes the voltage of the third terminal,
and v4 probes the voltage of the fourth terminal (useful when
the node name of a terminal is unknown; true for stitched
devices).

■ x(instance_port_name) returns the current flowing into the
subcircuit port, including all lower hierarchical subcircuit ports.
It can be used to probe power and ground ports of an instance,
even if the ports are defined as a global node, and do not
appear in the subcircuit port list. The
instance_port_name can be hierarchical, and can
contain question marks and wildcards. For example:
x(x?1.*.n*.vdd)

■ x0(instance_port_name) returns the current flowing into the
subcircuit port, excluding all other lower hierarchical subcircuit
ports. It can be used to probe power and ground ports of an
instance, even if the ports are defined as a global node, and do
not appear in the subcircuit port list. The
instance_port_name can be hierarchical, and can
contain question marks and wildcards. For example:
x0(x?1.*.n*.vdd).

■ vol = v(node1, node2) probes the voltage difference between
node1 and node2, and assigns the result to the variable vol.
May 2010 143 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
■ expr = par(‘expression’) probes the expression of simple
output variables and assigns the result to expr. The expression
can contain variables in the above two formats, as well as all the
mathematical operators, and built-in or user-defined functions.
An expression can also contain the names of other
expressions.

■ var_name(veriloga_instance) probes the var_name
voltage for veriloga_instance. The var_name can be
either a port name or an internal variable name of a verilogA
module. The veriloga_instance is the instance name of
a verilogA module, which can be hierarchical and can contain
question marks and wildcards. For example: PD(IO.AN?.B*).

■ all(veriloga_instance) probes all the port voltages and
internal variable values for veriloga_instance. The
veriloga_instance can be hierarchical and can contain
question marks and wildcards. For example:
all(IO.AN?.B*).

depth=value Specifies the depth in the circuit hierarchy that a wildcard name
applies to. If it is set as one, only the nodes at the current level are
applied (default value is infinity).

subckt=name Specifies the subcircuit this statement applies to. By default, it
applies to the top level. If the statement is already in a subcircuit
definition, this parameter is ignored. Setting this parameter is
equivalent to defining the statement within a subcircuit declaration.
Wildcards are supported.

exclude=pn1, pn2 Specifies the output variables to be excluded from the probe.
Names can be node or element names, and can contain wildcards.

preserve=
none|all|port

Defines the content of nodes probed with wildcard probing.

■ none probes all nodes and ports connected to active devices
(default). Nodes connected only to passive elements are not
probed.

■ all probes all nodes, including nodes connected to passive
elements, and probes all ports.

■ port only probes ports in subcircuits.

Note: To apply .preserve=all globally to all .probe statements
in a netlist, set the probe_preserve option to all (see
probe_preserve Option).
May 2010 144 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Examples

In the following example

.print v(n1) i1(m1) vdiff = v(n2,n3) expr1 = par(‘v(n1)+2*v(n2)’)

tells the Virtuoso UltraSim simulator to print the voltage at node n1 and the current i1 for
element M1. The voltage difference between nodes n2 and n3 is printed and assigned to
vdiff. In addition, an expression of voltages at nodes n1 and n2 is printed and assigned
to expr1.

In the next example

.print tran v(*) i(r1) depth = 2 subckt = VCO

tells the simulator to print the voltages for all nodes in the subcircuit named VCO and one level
below in the circuit hierarchy. Also printed is the current of the resistor r1 for all the instances
of the subcircuit VCO. The reported names of r1 are appended with the circuit call path from
the top level to VCO. This is equivalent to the situation where the statement .print tran
v(*) i(r1) depth = 2 is written in the subcircuit definition of VCO in the netlist file.

In the next example

.print tran X(xtop1.block1.in) X0(xtop1.block1.in)

tells the simulator to report currents for instance block1, which is instantiated in top level
block xtop. X() and returns the current into the subcircuit port in, including all lower
hierarchical subcircuit ports. X0() only returns the current into the subcircuit port and
excludes all other lower hierarchical subcircuit contributions.

In the next example

.print tran x0(xtop.x23.xinv.out)

tells the simulator to print the current of port out of instance xtop.x23.xinv, excluding all
other lower hierarchical subcircuit ports.

Note: To print the subcircuit instance port current, use the format specified in this example.

In the next example

.print tran x(xtop.*)

tells the simulator to print the current of ports for instance xtop and all instances below.

In the next example

.probe tran v(*) subckt=VCO preserve=all

RC reduction is constrained to preserve all nodes in VCO. Voltages are probed for all nodes
in VCO, including internal nodes that are only connected to resistors and capacitors.
May 2010 145 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
In the next example

.probe tran v(*) exclude=net* exclude=bl* depth=2

probes all node voltages of the top level and one hierarchy below, except for the voltages of
nodes matching the pattern net* and bl*.

In the next example

.probe tran v1(x1.x3.mp1) v2(x3.xp.mp4)

probes the drain of x1.x3.mp1 and gate of x3.xp.mp4.

In the next example

.probe tran out(IO.ANA.VREG) ps3(IO.ANA.VREG) all(IO.ANA.C*)

probes the voltage of port out and the value of the internal variable ps3 for the verilogA
instance IO.ANA.VREG, as well as all the port voltages and internal variable values for
verilogA instances that match the name IO.ANA.C*.

.print Control Options

.options co=80|132

This option is used to control printout width. The default value is 80, with up to four variables
per line in the printout file. If the number of variables in the .print statement exceeds four,
then the first four variables are printed in the same line and the rest are printed on the next
line. If co = 132 is set, wide printout format is applied, allowing up to eight variables in a line.

.width out=80|132

Similar to the co option, .width is used to define the printout width of the output file (default
is 80). out is the keyword used for printout width.

The print time interval is determined by the .tran statement step time. If the netlist file
contains Virtuoso Spectre® .tran options, then the step and outputstart arguments in
the Spectre .tran option statement determine the print time step and the first print time
point, respectively.

.option ingold = 0|1|2

The ingold option controls the numerical format of the printout (default value is 0) and is
specified with the .option statement. The engineering notation, in contrast to exponential
format, provides two to three extra significant digits and aligns data columns to facilitate
May 2010 146 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
comparison.

.option measdgt = x

The measdgt option formats the printed numbers in the .measure output files (such as
.meas0 and .mt0). x is used to specify the number of digits displayed to the right of the
decimal point. The typical value of x is between 1 and 7 (default is 4). You can use .option
measdgt with .option ingold to control the output data format.

Examples

Virtuoso UltraSim simulator format (preferred):

.option co=132

SPICE compatible format:

.width out=132

.option numdgt=x

The numdgt option formats the printed number in the .print, .ic0, and voltage.op
output files. The x variable is used to specify the number of significant digits. The typical value
of x is between 1 and 7 (default is 5). You can use .option numdgt and .option ingold
to control the output data format. Using this option does not affect the accuracy of the
simulation.

Examples
.option numdgt=7

ingold=0 Engineering format (default) 1.234K, 123M

ingold=1 G format (fixed and exponential) 1.234e+03, .123

ingold=2 E format (exponential SPICE) 1.234e+03, .123e-1
May 2010 147 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Supported SPICE Format Expressions

The Virtuoso UltraSim simulator supports the following SPICE format expressions:

■ Built-in functions

■ Constants

■ Operators

Built-In Functions

The Virtuoso UltraSim simulator supports the following built-in functions for Virtuoso Spectre
and SPICE modes.

Table 2-2 Built-In Functions

Form Function Class Description

sin(x) sine trig Returns the sine of x in radians

cos(x) cosine trig Returns the cosine of x in radians

tan(x) tangent trig Returns the tangent of x in radians

asin(x) arc sine trig Returns the inverse sine of x in radians

acos(x) arc cosine trig Returns the inverse cosine of x radians

atan(x) arc tangent trig Returns the inverse tangent of x in radians

sinh(x) hyperbolic sine trig Returns the hyperbolic sine of x in radians

cosh(x) hyperbolic cosine trig Returns the hyperbolic cosine of x in
radians

tanh(x) hyperbolic tangent trig Returns the hyperbolic tangent of x in
radians

asinh(x) hyperbolic inverse
sine

trig Returns the hyperbolic inverse sine of x in
radians

acosh(x) hyperbolic inverse
cosine

trig Returns the hyperbolic inverse cosine of x
in radians

atanh(x) hyperbolic inverse
tangent

trig Returns the hyperbolic inverse tangent of x
in radians
May 2010 148 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
atan2(x,y)) tangent inverse trig Returns the inverse tangent of x/y in
radians

hypot(x,y) hypotenuse trig Returns the square root of (x*x + y*y)

ln(x) natural log trig Returns the natural log with base e of x

abs(x) absolute value math Returns the absolute value of x: |x|

sqrt(x) square root math Returns the square root of the absolute
value of x: sqrt(-x) = -sqrt(|x|)

pow(x,y) absolute power math Returns the value of x raised to the integer
part of y: x(integer part of y)

pwr(x,y) signed power math Returns the absolute value of x, raised to
the y power, with the sign of x: (sign of
x)|x|y

log(x) natural logarithm math Returns the natural logarithm of the
absolute value of x, with the sign of x: (sign
of x)log(|x|)

log10(x) base 10 logarithm math Returns the base 10 logarithm of the
absolute value of x, with the sign of x: (sign
of x)log10(|x|)

exp(x) exponential math Returns e, raised to the power x: ex

db(x) decibels math Returns the base 10 logarithm of the
absolute value of x, multiplied by 20, with
the sign of x:(sign of x)20log10(|x|)

int(x) integer math Returns the integer portion of x

sgn(x) return sign math Returns -1 if x is less than 0

Returns 0 if x is equal to 0

Returns 1 if x is greater than 0

sign(x,y) transfer sign math Returns the absolute value of x, with the
sign of y:(sign of y)|x|

gauss Gaussian distribution
function using
relative variation

math Returns only the nominal value

Table 2-2 Built-In Functions, continued

Form Function Class Description
May 2010 149 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Constants

The Virtuoso UltraSim simulator supports the following constants.

Note: Constants are only valid in Virtuoso Spectre mode.

agauss Gaussian distribution
function using
absolute variation

math Returns only the nominal value

unif uniform distribution
function using
relative variation

math Returns only the nominal value

aunif uniform distribution
function using
absolute variation

math Returns only the nominal value

limit limit distribution
function using
absolute variation

math Returns only the nominal value

min(x,y) smaller of two args control Returns the numeric minimum of x and y

max(x,y) larger of two args control Returns the numeric maximum of x and y

ceil(x) ceiling algebraic Returns the ceiling of x

floor(x) floor algebraic Returns the floor of x

fmod(x,y) fractional mod algebraic Returns the mod of x, y

Table 2-3 Constants

M_E : 2.7182818284590452354

M_LOG2E : 1.4426950408889634074

M_LOG10E : 0.43429448190325182765

M_LN2 : 0.69314718055994530942

M_LN10 : 2.30258509299404568402

M_PI : 3.14159265358979323846

Table 2-2 Built-In Functions, continued

Form Function Class Description
May 2010 150 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
M_TWO_PI : 6.28318530717958647652

M_PI_2 : 1.57079632679489661923

M_PI_4 : 0.78539816339744830962

M_1_PI : 0.31830988618379067154

M_2_PI : 0.63661977236758134308

M_SQRT2 : 1.41421356237309504880

M_SQRT1_2 : 0.70710678118654752440

M_DEGPERRAD : 57.2957795130823208772

P_Q : 1.6021918e-19

P_C : 2.997924562e+8

P_K : 1.3806226e-23

P_H : 6.6260755e-34

P_EPS0 : 8.85418792394420013968e-12

P_U0 : 0.000001256637061436

P_CELSIUS0 : 273.15

Table 2-3 Constants, continued
May 2010 151 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
Operators

The Virtuoso UltraSim simulator supports the following operators.

Table 2-4 Operators

Form Function Description

+ add Used for addition

- subtract Used for subtraction

/ divide Used for division

* multiply Used for multiplication

** power Used for power

% modulus Used for modulus

< less than (relational) Returns 1 if the left operand is less than
the right operand (otherwise returns 0)

> greater than
(relational)

Returns 1 if the left operand is greater than
the right operand (otherwise returns 0)

<= less than or equal
(relational)

Returns 1 if the left operand is less than or
equal to the right operand (otherwise
returns 0)

 >= greater than or equal
(relational)

Returns 1 if the left operand is greater than
or equal to the right operand (otherwise
returns 0)

!= inequality Returns 1 if the operands are not equal
(otherwise returns 0)

== equality Returns 1 if the operands are equal
(otherwise returns 0)

&& logical AND Returns 1 if neither operand is zero
(otherwise returns 0)

|| logical OR Returns 1 if either or both operands are not
zero (returns 0 only if both operands are
zero)

& bitwise AND Returns signed bitwise AND

| bitwise OR Returns signed bitwise OR
May 2010 152 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
cond?expr1:expr2 ternary If cond is true, evaluates expr1 (if false,
evaluates expr2)

Table 2-4 Operators, continued

Form Function Description
May 2010 153 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist File Formats
May 2010 154 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
3
Simulation Options

This chapter describes the simulation options that can be used to set the Virtuoso®
UltraSim™ simulator for speed, accuracy, and functionality.

See the following topics for more information.

■ Setting Virtuoso UltraSim Simulator Options on page 155

■ Simulation Modes and Accuracy Settings on page 157

■ High-Sensitivity Analog Option on page 167

■ Analog Autodetection on page 168

■ Simulation Control Options on page 169

■ Modeling Options on page 184

■ Waveform File Format and Resolution Options on page 197

■ Miscellaneous Options on page 205

■ Simulator Options: Default Values on page 237

Setting Virtuoso UltraSim Simulator Options

The Virtuoso UltraSim simulator supports Virtuoso Spectre® and HSPICE (registered
trademark of Synopsys, Inc.) netlist file formats. The Virtuoso UltraSim simulator options can
be set in a Virtuoso Spectre netlist file using the usim_opt command, whereas the simulator
options in a HSPICE netlist file require the .usim_opt command.

Spectre Syntax

usim_opt [opt1] [opt2] ... [scope1] [scope2] ...

SPICE Syntax

.usim_opt [opt1] [opt2] ... [scope1] [scope2] ...
May 2010 155 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
You can set any number of Virtuoso UltraSim simulator options on the same usim_opt
command line and also list the options in any order. These options can be set locally by using
the scope option or globally (no scope).

The following scopes are supported by the Virtuoso UltraSim simulator:

■ Subcircuit instances: inst=[inst1 inst2 ...]

■ Subcircuit primitives: subckt=[subck1 subckt2 ...]

■ Subcircuit instance inside a subcircuit: subcktinst=[subckt1.xinst1
subckt2.xinst2 ...]

■ Device model primitives: model=[model1 model2 ...]

■ Model primitives inside a subcircuit: subcktmodel=[subckt1.model1
subckt2.model2 ...]

■ Power network: scope=power

■ Stitched network: scope=stitch

Wildcards (*,?) can be used to match multiple scopes simultaneously (for more information
about wildcards, see “Wildcard Rules” on page 55).

Note: If the scope includes multiple entries, or contains wildcards, it must be enclosed by []
brackets.

Example

Spectre Syntax:

usim_opt sim_mode=ms speed=6 postl=2

usim_opt sim_mode=a inst=i1.i2.vco1

usim_opt sim_mode=df subckt=[digital1 digital2]

HSPICE Syntax:

.usim_opt sim_mode=ms speed=6 postl=2

.usim_opt sim_mode=a inst=x1.x2.vco1

.usim_opt sim_mode=df subckt=[digital1 digital2]

The options of parent subcircuits are automatically inherited by child subcircuits called by the
parent. If a local option is set for a child, it overrides the options inherited from the parent.
When combining local and global options, the following rules apply:

■ A lower level option overrides a higher level option

■ Options do not need to be listed in a specific order in the netlist file
May 2010 156 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
■ An instance-based option overwrites subcircuit settings if applied to the same block

■ The last option set overwrites a previously set option if applied to the same block

The Virtuoso UltraSim simulator also supports a common options configuration file called
ultrasim.cfg, which enables you to set the simulator default options. This configuration file
can be used to set netlist file, user, or site-specific Virtuoso UltraSim simulator options. Both
the Virtuoso Spectre and HSPICE syntax options are supported in the configuration file. If the
option defined in ultrasim.cfg is also defined in the netlist file, the netlist file overwrites
the option. See “Virtuoso UltraSim Simulator Configuration File” on page 40 for more
information about configuration files.

Simulation Modes and Accuracy Settings

You trade-off speed and accuracy by choosing between different model and simulation
abstraction levels, and by adjusting the tolerances used by the Virtuoso UltraSim simulation
algorithm. The simulation mode sim_mode determines the type of partitioning and device
models the Virtuoso UltraSim simulator applies to the circuit. The available modes are digital
extended (dx), digital fast (df), digital accurate (da), mixed signal (ms), analog (a), and
SPICE (s). Within each simulation mode, the speed option specifies the accuracy and
determines the relative tolerance used for voltage and current calculations (valid settings are
1 to 8).

Simulation Modes

Figure 3-1 on page 158 shows how simulation modes influence partitioning and device
modeling. All simulation modes use the same SPICE solver. The a and s modes do not use
partitioning, and the ms, da, df, and dx modes use more aggressive partitioning. In addition,
s mode uses SPICE models, a and ms modes use analog representative models, and df, da,
and dx modes use digital representative models.
May 2010 157 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Figure 3-1 Simulation Modes

■ Digital Extended (dx) mode targets an accuracy of within 20% compared to s mode
and is designed only for the functional verification of digital circuits. This is achieved by
using a digital nonlinear current model, a constant capacitance model, and diffusion
junctions with the metal oxide semiconductor field-effect transistor (MOSFET), as well as
a special dx solver.

Note: This mode is not applicable to memory or mixed signal design blocks, and may
cause slow simulation speed, accuracy issues, or memory problems if used to simulate
these types of design blocks.

■ Digital Fast (df) mode targets an accuracy of within 10% compared to s mode and is
designed for the functional verification of digital circuits and memories. This is achieved
by using a digital nonlinear current model for the MOSFET, and a constant capacitance
model for the MOSFET, and the MOSFET diffusion junctions. A partitioning algorithm is
used to provide high-speed simulation.

■ Digital Accurate (da) mode is used for timing verification of digital circuits and
memories, and for some PLL and mixed signal designs. da mode employs a digital
nonlinear current and charge model for the MOSFET and its diffusion junctions. da mode
uses partitioning and targets a simulation error of less that 5%.

Pa
rt

iti
on

in
g

N
o

Pa
rt

iti
on

in
g

SP
IC

E
A

na
lo

g
M

od
el

D
ig

ita
l M

od
el

Digital Fast (df)

Mixed Signal (ms; default mode)

Analog (a)

SPICE (s)

H
ig

he
r S

pe
ed

 /
C

ap
ac

ity

H
ig

he
r A

cc
ur

ac
y

1..1000x

1..3x speed up

Capacity
Boundary

3..10x

SP
IC

E
So

lv
er

Digital Accurate (da)

Digital Extended (dx)
1..10x speed up

dx
 S

ol
ve

r

May 2010 158 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
■ Mixed Signal Mode (ms) mode provides the accuracy needed for analog, mixed
signal, and PLL applications. It uses partitioning and an analog representative model for
the MOSFET current and charge and diffusion junction. ms mode targets an accuracy
within 3%.

■ Analog (a) mode is designed for high-accuracy applications like ADC, DAC, and DC/
DC circuits. It uses the same analog representative models as ms mode. It simulates the
design in one partition, but provides a speed improvement of three to ten times over
conventional SPICE simulation due to the analog representative model.

■ SPICE (s) mode uses Berkeley SPICE models and is targeted to match other SPICE
simulators (target error of 1%).

Table 3-1 on page 159 gives an overview of the Virtuoso UltraSim simulation modes, shows
how they are related to device modeling, and tolerances within the simulation tool, and
provides a basic understanding of what mode needs to be used for which application.

Table 3-1 Virtuoso UltraSim Simulation Modes Overview

Simulation Mode dx df da ms a s Option

MOSFET Digital Model Analog Model SPICE

Current/Charge
Model

df da a s mos_method

Differential
Junction

df da a - mosd_method

JUNCAP a s diode_method

Diode s

BJT s

JFET/MESFET s

Speed 1-8 speed

Default Speed
(Tolerance)

8 (0.07) 5 (0.01) speed (tol)

Integration Method be gear2 method

Partitioning Digital None

Target Error < 20% < 10% < 5% < 3% < 1% < 1%
May 2010 159 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Supported Representative Models Summary

The following is a summary of MOSFET and diode models supported by the analog and
digital representative models.

MOSFET

■ BSIM3, BSIM4, MOS9, and MOS11 are supported by the analog and digital
representative models

❑ HSPICE and Spectre syntax is supported

■ BSIMSOI (versions 2.23 and higher) and ssimsoi are supported by the analog and digital
representative models

❑ HSPICE and Spectre syntax is supported

■ HiSIM2 is supported by the analog and digital representative models

❑ HSPICE and Spectre syntax is supported

Diode

■ juncap is supported by the analog representative model

❑ HSPICE and Spectre syntax is supported

❑ The analog representative model is the default for all simulation modes, except for
s mode which uses the SPICE model

Application Function
al
verificati
on of
digital
circuits
only

Function
al
verificati
on of
digital
circuits/
memorie
s

Timing
verificati
on of
digital
circuits
and
memorie
s, some
mixed
signal
(MS)
designs

MS and
special
memory
designs

Analog
and high
sensitivit
y
designs

Table 3-1 Virtuoso UltraSim Simulation Modes Overview

Simulation Mode dx df da ms a s Option
May 2010 160 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
sim_mode

Description

Specifies the simulation mode that defines the partitioning and device model approach the
Virtuoso UltraSim simulator applies to the circuit. Refer to Figure 3-1 on page 158 for more
information.

Caution

The digital extended (dx) mode only applies to digital designs, not
memory circuits.

The ms, da, df, and dx modes use circuit partitioning, based on ideal power supplies (dc or
pwl voltage source), and apply it only to the MOSFET portion of the design. Simulation
performance may be degraded as a result of using:

■ Generator circuits instead of ideal power supplies

Solution: Use voltage regulator (VR) simulation (see Chapter 5, “Voltage Regulator
Simulation” for more information).

■ Other sources such as controlled, sinus, or current sources

Solution: Use voltage regulator (VR) simulation (see Chapter 5, “Voltage Regulator
Simulation” for more information).

■ Post-layout resistors in the power supply

Solution: Use rvshort or the power network solver (see Chapter 6, “Power Network
Solver” for more information).

Table 3-2 sim_mode Options

Option Description

sim_mode=dx Digital extended mode

sim_mode=df Digital fast mode

sim_mode=da Digital accurate mode

sim_mode=ms Mixed signal mode (default)

sim_mode=a Analog mode

sim_mode=s SPICE mode
May 2010 161 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
■ Inductors in the power supply

Solution: Use a mode to consider inductor behavior for the circuit or use lvshort to
improve performance in ms, da, and df modes.

The bipolar junction transistor (BJT) or behavioral Verilog-A dominated designs cannot take
advantage of circuit partitioning and other Fast SPICE technology. For these designs,
Cadence recommends using s mode. For BiCMOS and latchup BJT designs, ms mode can
provide a significant improvement in simulation performance.

Example

Spectre Syntax:

usim_opt sim_mode=da inst=xi1.xi5.xi3

SPICE Syntax:

.usim_opt sim_mode=da inst=xi1.xi5.xi3

tells the simulator that subcircuit xi1.xi5.xi3 and its children are simulated in da mode,
but everything else is in df mode.

Accuracy Settings

The Virtuoso UltraSim simulator uses relative and absolute error tolerances while performing
transient simulation. To simplify usage, it provides the high-level accuracy option speed,
which allows you to customize the simulation speed and accuracy within each simulation
mode. This option determines the relative convergence criterion (tol) for the current and
voltage calculation.

Figure 3-2 on page 163 shows how simulation speed can be set for each simulation mode to
trade-off speed and accuracy.
May 2010 162 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Figure 3-2 Accuracy Settings

speed

Description

Defines the simulation speed and accuracy within the chosen simulation mode, and
determines the relative tolerance for voltage and current calculations. The default value is
speed=5 for all simulation modes except dx mode (default is speed=8).

Table 3-3 speed Options

speed tol Mixed Signal
(PLL/VCO)

Analog
(ADC, SD) Memory Digital

1 0.0001 - - - -

2 0.001 Applicable Applicable - -

3 0.0025 Applicable Applicable - -

4 0.005 Applicable Applicable Applicable -

5 0.01 Applicable Applicable Applicable Applicable

6 0.02 - - Applicable Applicable

Accuracy

Perfect

HighLow

Highest M
odel Accuracy

Lowest M
odel Accuracy

Highest

Accuracy

Lowest

Accuracy

s

MS da

df

8

1

sim_mode

speed/tol

Speed

Partiti
oning/Device Models

Simulator Tolerancesa

5%
dx
May 2010 163 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: Cadence does not recommend using speed=7 /8 together with a or ms mode because
the speed settings may not provide sufficient simulation accuracy with these modes.

Example

Spectre Syntax:

usim_opt speed=1

SPICE Syntax:

.usim_opt speed=1

tells the Virtuoso UltraSim simulator to use a relative tolerance of 0.0001 to achieve high-
accuracy results.

Recommended Simulation Modes and Accuracy Settings

Table 3-4 on page 164 provides option setting recommendations for different circuit types.
Cadence suggests that you start with the options in column two of the table. Column three
suggests how to achieve better accuracy and speed if the recommended options do not fulfill
your requirements. See “Setting Virtuoso UltraSim Simulator Options” on page 155 for more
information.

7 0.04 - - - Applicable

8 0.07 - - - Applicable

Table 3-4 Recommended Virtuoso UltraSim Simulation Options

Circuit Type Option Accuracy and Speed Adjustments

Digital Circuit sim_mode=df

speed=7

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=ms, speed=5 to simulate power
consumption

Table 3-3 speed Options, continued

speed tol Mixed Signal
(PLL/VCO)

Analog
(ADC, SD) Memory Digital
May 2010 164 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Static
Random
Access
Memory
(SRAM)

sim_mode=df

speed=7

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=ms, speed=5 to simulate power
consumption

Dynamic
Random
Access
Memory
(DRAM)

sim_mode=ms

speed=5

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=df | da to improve speed

Flash Memory

and EEPROM

sim_mode=ms

speed=6

■ Adjust speed to trade off speed and accuracy

■ Apply sim_mode=df locally to large digital blocks

■ Apply sim_mode=a locally to oscillators and
charge pumps to improve speed

■ Apply mos_method=s locally to memory cells

Read-Only
Memory
(ROM)

sim_mode=df

speed=6

■ Adjust speed to trade off speed and accuracy

■ Apply sim_mode=ms locally to sensing path to
improve accuracy

Phase-Locked
Loop (PLL)
and Delay-
Locked Loop
(DLL)

sim_mode=ms

analog=2

■ Use method=trap | gear2 for speed
improvement

■ Apply analog=2 globally or sim_mode=a locally
to VCO to achieve better accuracy and stability

■ Apply sim_mode=df locally to large digital
dividers

■ Adjust speed to trade off speed and accuracy

Table 3-4 Recommended Virtuoso UltraSim Simulation Options, continued

Circuit Type Option Accuracy and Speed Adjustments
May 2010 165 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Voltage
Controlled
Oscillator
(VCO) and
Oscillator

sim_mode=ms

speed=5 | 4

■ Use method=trap | gear2only to maintain
oscillation

■ Apply sim_mode=a to achieve better accuracy
and stability

■ Adjust speed to trade off speed and accuracy

Note: May need to set maxstep_window or initial
conditions to start oscillation.

Switch
Capacitor
(SC) Filter

sim_mode=ms

analog=2 | 4

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=a to improve accuracy

Analog Front
End (AFE)

sim_mode=ms

analog=2

■ Adjust speed to trade off speed and accuracy

■ Apply sim_mode=a to highly sensitive analog
blocks, such as op amp, filter, and analog
multiplier to improve accuracy

Sigma Delta
Converter

sim_mode=ms

analog=2 | 4

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=a to improve accuracy

Operational
Amplifier

sim_mode=a ■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=s to improve accuracy

Bandgap
Reference

sim_mode=ms ■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=a | s to improve accuracy

Charge Pump
and Switching
Power Supply

sim_mode=ms

analog=2 | 4

■ Adjust speed to trade off speed and accuracy

■ Use sim_mode=a to improve speed and accuracy

Power
Management
Circuit

sim_mode=ms ■ Adjust speed to trade off speed and accuracy

■ Apply sim_mode=a locally to sensitive analog
blocks to improve accuracy

BICMOS
Design

sim_mode=ms ■ Adjust speed to trade off speed and accuracy

■ Consider using sim_mode=a for smaller designs

Table 3-4 Recommended Virtuoso UltraSim Simulation Options, continued

Circuit Type Option Accuracy and Speed Adjustments
May 2010 166 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
High-Sensitivity Analog Option

The Virtuoso UltraSim simulator uses circuit partitioning in higher simulation modes to
improve simulation performance. Setting the analog option allows you to select between
aggressive, moderate, and more conservative partitioning. The analog option applies only
to the ms, da, and df modes, since the a and s modes do not use partitioning.

analog

Description

Controls circuit partitioning, once you have identified the analog contents of your circuit
design. The higher the value of analog, the more conservative the partition algorithm.

SOI SRAM sim_mode=ms ■ Adjust speed to trade off speed and accuracy

■ Set mos_method=s globally to enhance
convergence

Circuit with
MOSFETs
operating in
weak
inversion

sim_mode=s
or
mos_method=s

■ Adjust speed to trade off speed and accuracy

ADC, DAC sim_mode=ms

analog=2 | 4

■ Adjust speed to trade off speed and accuracy

■ Apply sim_mode=a locally to sensitive analog
blocks to improve accuracy

■ Apply sim_mode=df locally to large digital blocks
to improve speed

RF Design
(LNA,
RFVCO,
Mixer, and PA)

sim_mode=ms

Local RF block
options:
sim_mod =a
speed=3 | 4

■ Adjust speed to trade off speed and accuracy

■ Set method=trap | gear2only for VCO

Table 3-4 Recommended Virtuoso UltraSim Simulation Options, continued

Circuit Type Option Accuracy and Speed Adjustments
May 2010 167 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: This does not apply to a or s mode.

Applying analog=2 or analog=3 can slow down the simulation by forcing more
conservative partitioning. To avoid slowing down the simulation, while maintaining accuracy
on highly sensitive analog blocks, the analog option can be specified locally. Setting the
option locally on sensitive analog blocks allows the simulator to keep the default analog level
on the rest of circuit.

Example

Spectre Syntax:

usim_opt analog=2 inst=x1.xpll

SPICE Syntax:

.usim_opt analog=2 inst=x1.xpll

tells the Virtuoso UltraSim simulator to use a high-accuracy approach to analog simulation for
feedback coupling in analog circuits.

Analog Autodetection

Virtuoso UltraSim simulator analog autodetection can be used to autodetect analog circuits
(simulator automatically uses appropriate simulation settings for these circuits).

Note: Analog autodetection is limited to analog-to-digital conversion (ADC) and PLL circuit
designs.

Table 3-5 analog Options

Option Description

analog=0 Digital and memory circuits

analog=1 Digital, memory, and mixed signal circuits (default)

analog=2 Mixed signal, analog, and RF circuits

analog=3 Analog and RF circuits

analog=4 Mixed signal circuits (high sensitivity)
May 2010 168 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Description

Controls autodetection and promotion of analog circuits.

Example

Spectre Syntax:

usim_opt search=analog

SPICE Syntax:

.usim_opt search=analog

tells the Virtuoso UltraSim simulator to enable autodetection of analog circuits.

Simulation Control Options

Operating Point Calculation Method

By default, the Virtuoso UltraSim simulator uses a pseudo-transient method of calculating the
operating point. This method has been proven to handle the majority of circuits. It consists of
two steps: First the power supplies are ramped and then the voltage levels are stabilized with
a transient simulation. The simulator also allows you to skip the operating point calculation
and to load an operating point from another simulation. In case the pseudo-transient method
leads to problems, there is a pseudo-transient method available which only ramps up power
supplies. The dc option is used to specify the operating point calculation method.

Table 3-6 search Options

Option Description

search=default Disables analog autodetection (default)

search=analog Enables analog autodetection for ADC and PLL designs
May 2010 169 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
dc

Description

Defines the DC simulation algorithm the Virtuoso UltraSim simulator applies to the circuit.

In a transient analysis, the first calculation is a DC operating point using the DC equivalent
model of a circuit. The DC operating point is then used as an initial estimate to solve the next
time point in the transient analysis.

If dc=0, the Virtuoso UltraSim simulator sets the nodal voltages as defined by .IC statements
(or by the IC= parameters in various element statements) instead of solving the quiescent
operating point. The DC operating points of unspecified nodes are set to 0 volts.

Note: dc=0 is a Virtuoso UltraSim simulator feature and usim_opt option, and works for all
netlist file formats supported by the simulator (see “Netlist File Formats” on page 51 for
supported formats). For simulations based on a SPICE netlist file, setting dc=0 is equivalent
to specifying uic in a .tran statement.

Table 3-7 dc Options

Option Description

dc=0 No operating point calculation. Similar to use initial conditions (UIC) in HSPICE
(registered trademark of Synopsys, Inc.). Strictly enforced initial condition. For
nodes without initial condition specified, the initial voltages are set to 0.

dc=1 Complete dynamic operating point calculation using pseudo-transient algorithm.
Strictly enforces the initial conditions (default in ms, da, and df modes).

dc=2 Fast pseudo-transient circuit state ramp-up.

dc=3 Complete static operating point calculation using source-stepping algorithm
(default in a and s modes and automatic switching to dc=1 in case of non
convergence). Initial conditions are forced on to nodes by using a voltage source
in series with a resistor whose resistance is 1 ohm; default Virtuoso Spectre®
rforce value.

Note: dc=3 is not recommended for ms, df, and da mode simulations.

dc=4 Complete pseudo-transient operating point (OP) calculation with damping.
Suitable for designs including oscillators or designs where dc=1 causes the DC
calculation to exit prematurely.
May 2010 170 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt dc=0

SPICE Syntax:

.usim_opt dc=0

tells the simulator to skip the operating point calculation and to ramp up the power supplies
during transient simulation.

Operating Point Calculation Control Options

By default, the Virtuoso UltraSim simulator uses a pseudo-transient method to calculate the
DC operating point. The simulator exits the DC calculation when one of the following
conditions occur: A stable operating point is reached, the number of DC events reach a
certain limit, or the calculation time reaches the three hour limit. This method works for most
circuits. For larger circuits, you can extend the DC calculation time by using the dc_prolong
option.

If the DC calculation does not reach any of the aforementioned conditions, the Virtuoso
UltraSim simulator issues a warning message and continues the simulation. You can also use
the dc_exit option to stop the simulation if a stable solution is not reached (useful when the
DC calculation is important for simulation accuracy).

dc_prolong

Description

Controls the exit criteria for operating point calculations.

Table 3-8 dc_prolong Options

Option Description

dc_prolong=0 The Virtuoso UltraSim simulator exits the DC calculation
when the three hour time limit is reached or when the
number of DC events reaches a certain limit (default)

dc_prolong=1 The simulator extends the DC calculation until a stable
operating point is reached
May 2010 171 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt dc_prolong=1

SPICE Syntax:

.usim_opt dc_prolong=1

tells the Virtuoso UltraSim simulator to continue the DC calculation until a stable operating
point is reached.

DC Options

Progress Report

The Virtuoso UltraSim simulator uses different DC methods to calculate the operating point.
In general, the DC calculation is fast and does not require a progress report. When a large
design is being simulated, and the DC calculation takes longer than five minutes (CPU time),
the simulator prints a progress report. The report is printed for every progress_p percentage
of the DC calculation time.

For dc=0, 2, and 3, DC calculation progress is reported in a single stage. For dc=1, the DC
progress report is comprised of two stages. In cases where a stable solution is not reached
in the second stage, the DC calculation continues and a DC steady factor is reported. This
factor should get smaller, so it fits within 0 and 1 when the DC calculation approaches
convergence.

dc_rpt_num

Description

The Virtuoso UltraSim simulator uses a pseudo-transient method to calculate the DC
operating point and generally is able to provide a stable solution. In some cases, the DC
calculation does not reach a stable state. For this situation, you can use the dc_rpt_num
option to print unstable nodes to a .dcr file.
May 2010 172 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: The unstable nodes are only reported when dc=1 or dc=2 is specified, and the DC
solution is not stable when the simulator completes the DC calculation.

Example

Spectre Syntax:

usim_opt dc_rpt_num=20

SPICE Syntax:

.usim_opt dc_rpt_num=20

tells the Virtuoso UltraSim simulator to print 20 unstable nodes in order of DC steady state
factor.

dc_exit

Description

Controls the exit criteria for DC calculations if a stable solution is not reached.

Table 3-9 dc_rpt_num Options

Option Description

dc_rpt_num=0 Unsettled nodes are not reported (default)

dc_rpt_num=value Reports values for the most unstable nodes in order of DC
steady state factor (integer, unitless)

Note: The DC steady state factor describes how close the
calculated DC value for a node is to a stable DC solution.

Table 3-10 dc_exit Options

Option Description

dc_exit=0 The Virtuoso UltraSim simulator continues the simulation after
issuing a warning message if the DC calculation does not reach a
stable solution (default)

dc_exit=1 The simulator stops the simulation after issuing an error message if
the DC calculation does not reach a stable solution
May 2010 173 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: Setting dc=0 and dc=2 does not provide a stable DC solution and produces an error
condition in the Virtuoso UltraSim simulator when dc_exit is set to 1 (instead use
dc_exit=0 to run dc=0/2, or set dc=1/3).

Example

Spectre Syntax:

usim_opt dc_exit=1

SPICE Syntax:

.usim_opt dc_exit=1

tells the simulator to exit the simulation when the DC calculation does not reach a stable
operating point.

Integration Method

The Virtuoso UltraSim simulator offers different choices for the ordinary differential equation
(ODE) solver to integrate the circuit equation. The order of the integration method determines
the rate of decay of numerical error. The first-order Backward Euler method is a good choice
for simulations with sharp waveforms, while the second-order Trapezoidal method and Gear
method are good choices for simulations with smooth waveforms. Both methods switch
automatically to Backward Euler if convergency problems occur. The Trapezoidal method has
no artificial numerical damping and might be a good choice for simulating oscillators if
oscillators cannot start oscillation with other methods. This is even more true for the strictly
Trapezoidal method, which does not switch to Euler. In general, second-order methods are
faster than first-order method when a relatively tight tolerance is desired and the waveforms
have big regions that are smooth.

method

Description

Defines the integration method the Virtuoso UltraSim simulator applies to the circuit.

Table 3-11 method Options

Option Description

method=euler First-order backward Euler method (default if sim_mode=ms/
da/df/dx)
May 2010 174 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt method=gear2

SPICE Syntax:

.usim_opt method=gear2

tells the simulator to use the second-order gear integration method to integrate the circuit
equations.

Notes

■ When convergency problems occur, the Virtuoso UltraSim simulator automatically
switches back to the Euler method.

■ Only dx mode supports method=euler.

Simulation Tolerances

Although the speed option is all that is commonly needed to control the general accuracy of
the Virtuoso UltraSim simulator, individual simulation options can be set for more fine grained
control over the speed versus accuracy trade-off. You can set parameters for the universal
relative tolerance tol, the absolute voltage tolerance abstolv, the absolute current
tolerance abstoli, the local truncation error (LTE) trtol, and the maximum step size
maxstep_window. Table 3-9 shows how these parameters depend on the speed settings.

method=trap Trapezoidal method (automatic switching)

method=gear2 Second-order gear method (automatic switching–default if
sim_mode=s or a)

method=traponly Strictly trapezoidal method (no automatic switching)

method=gear2only Strictly second-order gear method (no automatic switching)

Table 3-12 Simulation Tolerance Parameters

speed 1 2 3 4 5 6 7 8

abstoli 1pA 1pA 1pA 1pA 1pA 1pA 1pA 1pA

Table 3-11 method Options, continued

Option Description
May 2010 175 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
abstoli

Description

abstoli is the absolute tolerance for currents and defines the smallest current of interest
in the circuit. Currents smaller than abstoli are ignored in convergence checking and time
step control.

Example

Spectre Syntax:

usim_opt abstoli=1e-11

SPICE Syntax:

.usim_opt abstoli=1e-11

tells the simulator to use an absolute current tolerance of 10 pA for current calculations.

abstolv

Description

abstolv is the absolute tolerance for voltages and defines the smallest voltage of interest
in the circuit. Voltages smaller than abstolv are ignored in convergence checking and time

abstolv 1μV 1μV 1μV 1μV 1μV 1μV 1μV 1μV

tol 0.0001 0.001 0.0025 0.005 0.01 0.02 0.04 0.07

trtol 7 7 5.6 4.6 3.5 3.5 3.5 3.5

Table 3-13 abstoli Option

Option Description

abstoli=value Absolute tolerance (double, unit A, 0 < value < 1, default 1
pA)

Table 3-12 Simulation Tolerance Parameters, continued

speed 1 2 3 4 5 6 7 8
May 2010 176 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
step control. Generally, the absolute voltage tolerance is set 106 to 108 times smaller than the
largest voltage signal.

Example

Spectre Syntax:

usim_opt abstolv=1e-7

SPICE Syntax:

.usim_opt abstolv=1e-7

tells the simulator to use a absolute voltage tolerance of 0.1 uV for voltage calculations.

maxstep_window

Spectre Syntax

usim_opt maxstep_window=[time1 maxstep1 time2 maxstep2 time3 maxstep3...]

SPICE Syntax

.usim_opt maxstep_window=[time1 maxstep1 time2 maxstep2 time3 maxstep3...]

Description

maxstep_window is used to specify the maximum time step over different simulation time
windows. The simulation time window is specified in the square brackets [] as pairs of
numbers. For each pair, the first number is the start time for the simulation time window and
the second number is the maximum time step for this window ending with the next time point.
That is, the maxstep_window value for the simulation time window from time1 to time2 is
maxstep1, time2 to time3 is maxstep2, and so forth.

Table 3-14 abstolv Option

Option Description

abstolv=value Absolute tolerance (double, unit V, 0 < value < 1, default 1 uV)
May 2010 177 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: The time points can only use sequential double values (for example, time1 < time2
< time3).

Examples

In the following Spectre syntax example

usim_opt maxstep_window=[0 1n 1u 1p 10u 1e20]

tells the Virtuoso UltraSim simulator the maximum time step is 1n seconds during simulation
time window 0 to 1u, 1p seconds during simulation time window 1 to 10u, and after simulation
time 10u, the maximum time step is set to 1e20 seconds (large number indicating no
maximum time step control).

In the following SPICE syntax example

.usim_opt maxstep_window=[100u 1p 200u 1e20] x1.x2

sets the maximum time step to 1p during simulation time window 100 u~200 u and 1e20 after
200 u. This setting applies only to instance x1.x2.

tol

Description

The relative tolerance tol is used as the universal accuracy control in the Virtuoso UltraSim
simulator. Except for extremely small signals, the relative tolerance is the dominating criterion
in the transient simulation. A value between 0 and 1 can be chosen; values closer to zero
imply greater accuracy. tol determines the upper limit on errors relative to the size of the
signal. In case you need to use a relative tolerance, which cannot be set by the high-level
speed option, the tol option can be used to adjust the relative tolerance.

Table 3-15 maxstep_window Options

Option Description

maxstep1 <maxstep2...> Maximum time step (in seconds; no default)

time1 <time2...> Simulation window time point (in seconds; no default)

Table 3-16 tol Option

Option Description

tol=value Double, 0 < value < 1 (default 0.01)
May 2010 178 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt tol=0.005

SPICE Syntax:

.usim_opt tol=0.005

tells the simulator to use a relative tolerance of 0.005 for current and voltage calculation.

trtol

Description

trtol is used in the LTE criterion, where it multiplies reltol. It it set to 3.5 by default, and
should not be changed for most circuits.

Example

Spectre Syntax:

usim_opt trtol=8

SPICE Syntax:

.usim_opt trtol=8

tells the simulator to use trtol=8.

Simulation Convergence Options

For circuits that have difficulty converging during simulation, as a result of the design or model
being used, you can use the gmin_allnodes or cmin_allnodes options to assist in
convergence. The effectiveness of a particular option is dependent on the type of circuit used
in the simulation. Cadence recommends trying one or both options to solve the convergence
problem.

Table 3-17 trtol Option

Option Description

trtol=value Error criterion (double, 1 < value < 14, default
3.5)
May 2010 179 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
gmin_allnodes

Description

Adds the specified conductance to each node.

Example

Spectre Syntax:

usim_opt gmin_allnodes=1e-10

SPICE Syntax:

.usim_opt gmin_allnodes=1e-10

tells the Virtuoso UltraSim simulator to add a conductance of 1e-10 mho to each node.

cmin_allnodes

Description

Adds the specified capacitance to each node.

Example

Spectre Syntax:

usim_opt cmin_allnodes=1e-15

Table 3-18 gmin_allnodes Option

Option Description

gmin_allnodes=value Adds the specified conductance to each node (default is
zero)

Table 3-19 cmin_allnodes Option

Option Description

cmin_allnodes=value Adds the specified capacitance to each node (default is
zero)
May 2010 180 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
SPICE Syntax:

.usim_opt cmin_allnodes=1e-15

tells the simulator to add a capacitance of 1 fF to each node.

Save and Restart

Spectre Syntax

usim_save <file=”dir/filename”> <time=[time1,time2]> > <repeat=save_period>

SPICE Syntax

.usim_save <file=”dir/filename”> <time=[time1,time2]> > <repeat=save_period>

Description

The Virtuoso UltraSim simulator save (usim_save) and restart (usim_restart) features
allow you to save the simulation database at a specified time point. The simulation database
can be used to restart the simulation at that time point. Applications of save and restart
include:

■ Achieve maximum simulation speed by only simulating the portion of time that requires
a highly accurate simulation mode (for example, simulate a PLL locking process in
accurate mode and then switch to a higher speed mode once the PLL is locked)

■ Perform “what if” analyses of problematic sections of a design

■ Test circuits that are only semi-functional by using an abstract model for capabilities not
implemented

■ Support rapid simulation of circuits by using behavioral models during non-critical
accuracy phases of simulation

■ Use full-chip simulations as test bench generators for block simulations

■ Experiment with different simulation options on sections of the circuit or on the entire
circuit (for example, sim_mode, speed, or output flushing)

■ Replace portions of the circuit, set the simulator to use the existing port voltages as
integrated circuits (ICs) for the replaced circuit, initialize the new circuit, and run the
simulation
May 2010 181 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Use Model

■ You can invoke the save and restart options using netlist file commands or during an
interactive run.

■ In subsequent simulations, changes to the circuit topology can add or delete nodes. The
added nodes are initialized as if the operating points were not saved, and references to
deleted nodes are ignored. The coincidental nodes are initialized to values saved from
the previous simulation run.

■ If a parameter or temperature sweep is performed, only the first operating point is saved.

For example, if the input netlist file contains the statement

.temp -10 0 25

the operating point that corresponds to .temp -10 is saved.

Spectre Syntax

usim_restart file=”dir/load_file”

Table 3-20 .usim_save Commands

Command Description

dir/
filename

Name of the file used to save the simulation state. Multiple time points are
assigned unique names. For example, filename@time1,
filename@time2, and filename@time3. The saved files contain the
Virtuoso UltraSim version number. (Default is <design>.save@time).

time1,
time2

Time at which the operating point is saved. A valid transient analysis
statement is required to successfully save an operating point. (Default: 0).

repeat Saves the operating point at specific intervals. For example,
t=save_time1+N*save_period, N=0,1,2,... If repeat is used, subsequent
save_time inputs are discarded. The saved files are named
save_file@t. (Default: Save only once).
May 2010 182 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
SPICE Syntax

.usim_restart file=”dir/load_file”

Strobing Control Options

Description

The strobing function is used to select the time interval between the data points that the
Virtuoso UltraSim simulator saves. It is enabled by setting the strobe_period option. The
simulator forces a time step for each point it saves, so data is computed instead of
interpolated, improving the accuracy of post simulation FFT analysis.

The strobe options are documented in the following table.

Example

Spectre Syntax:

usim_opt strobe_period=10n strobe_start=1u strobe_delay=5n

SPICE Syntax:

.usim_opt strobe_period=10n strobe_start=1u strobe_delay=5n

Table 3-21 .usim_restart Commands

Command Description

dir/
load_file

Name of the file that contains the saved simulation state. (Default:
<design>.simsave).

Table 3-22 strobe Options

Option Description

strobe_period Sets the time interval between data points saved
by the simulator

strobe_start Sets the strobing start time (optional)

strobe_stop Sets the strobing stop time (optional)

strobe_delay Sets the delay time between strobe_start and
strobe_stop (optional – default is 0)
May 2010 183 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
tells the simulator to start strobing at time=1 us, to save data points at 10 ns intervals, and to
continue strobing until the end of the transient simulation. The first actual strobing occurs at
time=1.005 us.

Automatic Strobing for Spectre Fourier Elements

When using a Spectre Fourier element in a circuit design, the Virtuoso UltraSim simulator
automatically activates the strobing function to improve Fourier analysis accuracy. The strobe
period is set equal to the period of the fundamental frequency divided by 1024 or to the
number of points in the Fourier analysis (simulator uses the larger number of the two
methods).

Modeling Options

To address all types of simulation, ranging from high-speed digital simulation to high-
precision analog simulation, the Virtuoso UltraSim simulator offers a variety of MOSFET
models covering different levels of abstraction. Although the sim_mode option is what is
commonly needed for controlling device modeling in the simulator, individual model options
can be set for more fine grained control over the trade-off between speed and accuracy.

MOSFET Modeling

The Virtuoso UltraSim simulator options mos_method and mosd_method are used to
control MOSFET modeling. While the BSIM SPICE model uses one set of equations for the
MOSFET device, the representative models for dx, df, da, ms, and a mode use different
models for the core device (current and charge model), and the diffusion junctions of the
MOSFET. The mos_method option determines the core device model, and the
mosd_method option defines the diffusion model. If mos_method is set to SPICE, the
option mosd_method is ignored. Table 3-23 on page 184 gives an overview of the type of
model used by each simulation mode or each mos(d)_method option.

Table 3-23 Simulation Model Modes

Current Model
(mos_method)

Charge Model
(mos_method)

Diffusion
(mosd_method)

df/dx Nonlinear digital model Constant capacitance Constant capacitance

da Nonlinear digital model Nonlinear model Constant capacitance
(same as df)

ms|a Analog model Analog model Analog model
May 2010 184 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
mos_method

Description

Defines the MOSFET current and charge modeling.

Example

Spectre Syntax:

usim_opt mos_method=a

SPICE Syntax:

.usim_opt mos_method=a

tells the simulator to use the nonlinear analog current and charge model for all MOSFET
devices.

s BSIM SPICE BSIM SPICE -

Table 3-24 mos_method Options

Option Description

mos_method=df Nonlinear digital representative current and constant capacitance
charge models used in df and dx modes

mos_method=da Nonlinear digital representative current and charge model

mos_method=a Nonlinear analog current and charge model

mos_method=s BSIM SPICE MOSFET model

Table 3-23 Simulation Model Modes, continued

Current Model
(mos_method)

Charge Model
(mos_method)

Diffusion
(mosd_method)
May 2010 185 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
mosd_method

Description

Defines the MOSFET diffusion junction modeling. If mos_method is set to s,
mosd_method is ignored.

Example

Spectre Syntax:

usim_opt mosd_method=a

SPICE Syntax:

.usim_opt mosd_method=a

tells the simulator to use the nonlinear analog model for all MOSFET diffusion junctions.

Note: The mos_method and mosd_method options cannot be changed for design blocks
simulated in dx mode.

mos_cap

Description

Defines the MOSFET core device capacitance model in a or ms mode. A linear model can
provide significant performance improvements over a nonlinear model. Cadence

Table 3-25 mosd_method Options

Option Description

mosd_method=df Constant capacitance model for diffusion junction

mosd_method=a Nonlinear analog model for diffusion junction
May 2010 186 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
recommends using mos_cap only for designs that are not sensitive to nonlinear device
capacitances.

mod_a_isub

Description

Defines the modeling of substrate current for BSIM3v3, BSIM4, BSIMSOI, and SSIMSOI
devices. If s mode is used, the Virtuoso UltraSim simulator considers substrate current
automatically.

Note: This option is only applicable to analog representative models (not applicable to da or
df mode).

Example

Spectre Syntax:

usim_opt mod_a_isub=1

SPICE Syntax:

Table 3-26 mos_cap Options

Option Description

mos_cap=nl The Virtuoso UltraSim simulator uses nonlinear
MOSFET device capacitances (default)

mos_cap=lin The simulator uses linear MOSFET device
capacitances

Table 3-27 mod_a_isub Options

Option Description

mod_a_isub=0 No substrate current in the analog representative model (substrate
current is ignored)

mod_a_isub=1 The simulator determines the need for modeling substrate current
in the analog representative model, based on current value
(default)

mod_a_isub=2 Substrate current is included in the analog representative model,
even if the current is small
May 2010 187 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
.usim_opt mod_a_isub=1

tells the simulator to activate isub during the simulation if it determines isub is large enough
to be considered.

mod_a_igate

Description

Defines the modeling of gate current for BSIM4, BSIMSOI, and SSIMSOI devices. If s mode
is used, the Virtuoso UltraSim simulator considers gate current automatically.

Note: This option is only applicable to the analog representative model (not applicable to da
or df mode).

Example

Spectre Syntax:

usim_opt mod_a_igate=2

SPICE Syntax:

.usim_opt mod_a_igate=2

tells the simulator to activate gate current in the analog representative model for a current of
any size.

Table 3-28 mod_a_igate Options

Option Description

mod_a_igate=0 Gate leakage current is ignored in the analog representative
model (default)

mod_a_igate=1 The simulator determines the need for modeling gate current in
the analog representative model, based on current value

mod_a_igate=2 Gate current is modeled, even if the current is small
May 2010 188 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
table_mem_control

Description

Controls the memory usage of table models. Enable this option to avoid excessive use of
memory due to table models.

Examples

Spectre Syntax:

usim_opt table_mem_control=1

SPICE Syntax:

.usim_opt table_mem_control=1

tells the Virtuoso UltraSim simulator to control the memory usage of table models.

Analog Representative Model for Generic MOSFET Devices

Spectre Syntax
usim_opt generic_mosfet=device_master_name

SPICE Syntax
.usim_opt generic_mosfet=device_master_name

Note: device_master_name is a string.

Description

The Virtuoso UltraSim simulator supports building an analog representative model for generic
MOSFET devices, allowing you to treat a generic MOSFET device as a “black box.” It is useful

Table 3-29 table_mem_control Options

Option Description

table_mem_control=0 No control on memory usage of table models (default).

table_mem_control=1 The Virtuoso UltraSim simulator controls the memory usage
for table models.
May 2010 189 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
for building an analog representative model for proprietary MOSFET devices. This requires
the generic MOSFET to be implemented via the compiled-model interface (CMI).

Limitations

■ The MOSFET device cannot have more than four external terminals, and the terminals
must be placed in the following order: D, G, S, and B.

■ The MOSFET device can have two internal nodes, arranged in the following order:
Internal S and internal D (default). If the order of the internal nodes is reversed, use
usim_opt mosfet_sd=0 (default is 1).

Example

Spectre Syntax:

usim_opt generic_mosfet=VMOS

usim_opt sim_mode=ms

SPICE Syntax:

.usim_opt generic_mosfet=VMOS

.usim_opt sim_mode=ms

The Virtuoso UltraSim simulator builds an analog representative model for the MOSFET
devices with the master name VMOS.

Diode Modeling

diode_method

Description

Defines diode modeling in the Virtuoso UltraSim simulator, with an emphasis on juncap
modeling.

Table 3-30 diode_method Option

Option Description

diode_method=df Constant capacitance model for juncap only
May 2010 190 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: For juncap, the default is s for s mode and a for a/ms/da/df modes.

Example

Spectre Syntax:

usim_opt diode_method=a model=d

SPICE Syntax:

.usim_opt diode_method=a model=d

tells the simulator to use the default model if d is a juncap model (if d is a regular diode, the
diode_method option is ignored by the simulator).

dcut

Description

The dcut option deletes all or selected diodes in the netlist file. This is helpful in designs with
large amounts of diodes, where the diodes do not have an impact on the function of the
design (for example, input protection diodes).

Example

Spectre Syntax:

diode_method=a Nonlinear analog model for juncap only (default for juncap by a/
ms/da/df modes)

diode_method=s Berkeley SPICE diode model (default for diode in all simulation
modes, except for juncap)

Table 3-31 dcut Option

Option Description

dcut=0 No diodes deleted (default)

dcut=1 Diodes deleted

Table 3-30 diode_method Option

Option Description
May 2010 191 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
usim_opt dcut=1 inst=x1.x2

SPICE Syntax:

.usim_opt dcut=1 inst=x1.x2

tells the simulator to delete all the diodes in x1.x2 and all its subcircuits.

minr

optionname options minr=value

Description

This option allows you to short small resistors in models (for example, diode, bjt, and BSIM3
models).

Note: minr is only valid in Spectre format.

Example
simulator lang=spectre

option1 options minr=1.0e-4

tells the Virtuoso UltraSim simulator to short all resistors <1.0e-4 in all models.

Operating Voltage Range

The Virtuoso UltraSim simulator uses representative digital models in df and da mode.
These models are generated in the beginning of the simulation, stored in the *.lsn file, and
can be reused using the model_lib option. The .lsn file gets updated when changes in
the devices, voltage supplies, or process variations occur. The voltage range used for building
the models is automatically chosen by detecting the value of the highest power supply and is
used for all device models. The generated models are valid over at least 2 times the given
voltage range.

In designs with low and high voltage devices, where the voltages differ by an order of
magnitude (that is, 2 V/10 V), using higher voltage to build the low voltage device models can
lead to a significant modelling error. In this case, it is recommended to use the lower voltage
for the low voltage devices and the higher voltage for the high voltage devices. To specify the
voltage range, the Virtuoso UltraSim simulator provides the vdd option, which can be applied
to devices, subcircuits, and instances.
May 2010 192 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
vdd

Description

Defines the maximum voltage for the generation of digital representative models (da and df
mode only).

Example

Spectre Syntax:

usim_opt vdd=2.1 model=[nf pf]

SPICE Syntax:

.usim_opt vdd=2.1 model=[nf pf]

tells the simulator to use 2.1 volts as the maximum voltage for the model generation of device
models nf and pf.

Treatment of Analog Capacitors

The Virtuoso UltraSim simulator uses partitioning to speed up the simulation in df, da, and
ms modes. Partitions are built by putting all channel-connected devices into the same
partition, and by cutting between capacitive coupled nodes. This approach works fine for
digital circuits, memories, and most mixed signal applications.

In some analog circuits, the coupling is designed as a functional part of the circuit (that is,
charge pumps), or it strongly affects the functionality of the circuit. In this case, the two circuits
connected by the analog coupling capacitance need to be simulated in the same partition.

The canalog and canalogr options determine the thresholds for identifying analog
coupling capacitances. Any capacitor larger than canalog, and its ratio to the total
capacitance at either node is greater than canalogr, is treated as an analog capacitance.
This same threshold applies to nonlinear capacitances (for example, MOSFET Cgd). Setting
canalog and canalogr lower can lead to more stable and accurate results, but usually
increases run time. Setting it too high can cause less accurate results when heavy coupling
occurs.

Table 3-32 vdd Option

Option Description

vdd=value Maximum voltage (double, unit V, default max. vdd)
May 2010 193 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
canalog

Description

Defines the absolute threshold value for identifying analog coupling capacitances in df, da,
and ms modes (does not apply to a or s mode).

Table 3-33 canalog Option

Option Description

canalog=value Maximum capacitance value (double and unit F)

The canalog default value is dependent on the value of
the analog option:

■ If analog=0, then canalog=100f

■ If analog=1, then canalog=100f

■ If analog=2, then canalog=30f

■ If analog=3, then canalog=10f
May 2010 194 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
canalogr

Description

Defines the relative threshold value for identifying analog coupling capacitances in df, da,
and ms modes (does not apply to a or s mode).

Example

Spectre Syntax:

usim_opt canalogr=0.1

SPICE Syntax:

.usim_opt canalogr=0.1

tells the simulator to treat every capacitor larger than 0.1 pF, and canalogr=0.1 bigger than
10% of the nodes capacitance on either side, as analog capacitance.

Inductor Shorting

The Virtuoso UltraSim simulator supports the simulation of inductances. Simulations
including inductors can be more time consuming. Sometimes it is helpful to short all inductors
in a netlist file, to do a first functional verification. The options lshort and lvshort provide
the opportunity to short inductors in the signal paths or power supply lines.

Table 3-34 canalogr Option

Option Description

canalogr=value Relative threshold value (double, unit F, and 0 < value < 1)

The canalogr default value is dependent on the value of the
analog option:

■ If analog=0, then canalogr=0.49

■ If analog=1, then canalogr=0.45

■ If analog=2, then canalogr=0.35

■ If analog=3, then canalogr=0.25
May 2010 195 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
lshort

Description

Defines the threshold value for inductor shorting in signal nets. Inductors smaller than value
are shorted.

Example

Spectre Syntax:

usim_opt lshort=1μ

SPICE Syntax:

.usim_opt lshort=1μ

tells the simulator to short all inductors less than 1μH in signal nets.

lvshort

Description

Defines the threshold value for inductor shorting in power nets. Inductors smaller than value
are shorted.

Example

Spectre Syntax:

usim_opt lvshort=1μ

Table 3-35 lshort Option

Option Description

lshort=value Inductor value (double, unit H, 0 < value, default 0)

Table 3-36 lvshort Option

Option Description

lvshort=value inductor value (double, unit H, 0 < value, default 0)
May 2010 196 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
SPICE Syntax:

.usim_opt lvshort=1μ

tells the simulator to short all inductors less than 1μH in power nets.

Waveform File Format and Resolution Options

Waveform Format

wf_format

The Virtuoso UltraSim simulator supports SignalScan Turbo 2 (SST2), fast signal database
(FSDB), parameter storage format (PSF), and waveform data format (WDF). It can generate
SST2 format for viewing in SimVision and Virtuoso Visualization and Analysis (ViVA), FSDB
for nWave, PSF format for ViVA, and WDF for viewing with the Sandwork WaveView Analyzer.

Note: The recommended SimVision waveform viewer can be downloaded from the latest
Cadence IUS release (the SimVision license is included in the Virtuoso UltraSim simulator
license file).

The Virtuoso UltraSim simulator is able to write files of unlimited size in SST2 and FSDB
format, whereas PSF and WDF formats are limited to a maximum of 2 GByte files. Use the
wf_maxsize option to split waveform files.

Data compression varies between the formats: SST2 – high, FSDB and WDF – medium, and
PSF – low. It is recommended that you use SST2 format for larger circuit designs.

Table 3-37 wf_format Options

Option Description

wf_format=sst2 SST2 format (SimVision and ViVA waveform viewers; trn/
dsn; default)

wf_format=fsdb FSDB format (nWave waveform viewer; fsdb)

wf_format=psf PSF format (ViVA waveform viewer; tran)

wf_format=wdf WDF format (Sandwork WaveView Analyzer; wdf)

wf_format=psfxl PSF XL format (ViVA waveform viewer)
May 2010 197 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
PSF XL is a new Cadence waveform format supported in ViVA (available in IC 6.1.3 release)
which provides a high compression rate for large circuit designs. RTSF is a new PSF
extension and provides improved viewing performance in ViVA (available in IC 6.1.2 and later
releases). RTSF only applies to PSF and PSF XL, and it can be enabled by using +rtsf on
the command line.

The Virtuoso UltraSim simulator writes waveform files into the current directory. To enable
other Cadence tools to read Virtuoso UltraSim PSF format, create a raw directory using the
Virtuoso UltraSim simulator -raw command line option

ultrasim pll.scs -raw pll.raw

In the following Spectre syntax example,

usim_opt wf_format=psf

tells the simulator to generate a waveform file in PSF format.

In the following SPICE syntax example,

.usim_opt wf_format=[psf sst2]

tells the simulator to generate two waveform files, one in PSF format and the other in SST2
format.

Updating Waveform Files

The Virtuoso UltraSim simulator allows you to specify after what period of transient simulation
time the waveform data is printed into the output waveform file, determined by the option
dump_step. Its default value is 10% of trend. You can also enter the interactive mode with
Control-C, and use the interactive command flush any time.

dump_step

Description

Defines the time period after which the waveform data is printed into the output waveform file.

Table 3-38 dump_step Option

Option Description

dump_step=value Time period (double, unit s, 0 < value, default 10% of tend)
May 2010 198 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt dump_step=10n

SPICE Syntax:

.usim_opt dump_step=10n

tells the simulator to print waveforms every 10 ns of transient time into the output waveform
file.

Waveform File Size

wf_maxsize

Description

There are specific waveform formats (for example, psfbin or psfascii) with 2 Gigabyte file
size limitations. The wf_maxsize option is used to limit the maximum size of a waveform
output file. If this option is not set, and the output file exceeds its size limit, the simulation
stops.

Example

Spectre Syntax:

usim_opt wf_maxsize=1e9

SPICE Syntax:

.usim_opt wf_maxsize=1e9

tells the simulator to limit the output file size to 1 Gigabyte (if the file size is exceeded, it is split
into two files identified by generic names).

Table 3-39 wf_maxsize Option

Option Description

wf_maxsize=[number] Defines the maximum size of the output file. If the
maximum size is exceeded, the Virtuoso UltraSim
simulator splits the file into multiple, smaller files.
May 2010 199 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: If a circuit.sp file and PSF waveform format is used, the following output file list is
generated: circuit.tran, circuit_1.tran, circuit_2.tran, circuit_3.tran ...
circuit_n.tran.

Waveform File Resolution

The accuracy for voltage and current waveforms, and the time resolution in the output
waveform file can be set individually, depending on the application. The Virtuoso UltraSim
simulator provides the absolute criteria wf_abstoli, wf_abstolv, and wf_tres, and
the relative tolerance wf_reltol.

When plotting a waveform, the next point is determined by the relative change compared to
the individual signal, or by the absolute change in the waveform. Except for extremely small
signals, the relative criterion is dominant. The time resolution also determines the time unit of
the waveform file.

The implemented solution is usually sufficient for any application. You need to verify that the
resolution is appropriate for your design. This is especially important because all
measurement functions are based on the resulting waveforms.

wf_filter

Description

Enables customized filtering of waveform data. In default ms mode, the Virtuoso UltraSim
simulator uses moderate filtering (wf_filter=2) to minimize waveform file size without
losing accuracy for standard applications. For sensitive analog designs and small signal
amplitudes, no filtering (wf_filter=0) or conservative filtering (wf_filter=1) may be
required. Greater waveform file size reduction for large digital and memory designs can be
achieved using wf_filter=3 and wf_filter=4.

Table 3-40 wf_filter Options

Option Description

wf_filter=0 Waveform data filter disabled (default in s mode)

wf_filter=1 Conservative waveform data filter for analog circuits with small
signal amplitudes (default in a mode)

wf_filter=2 Moderate waveform data filter (default in ms, da, and df modes)
May 2010 200 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt wf_filter=0

SPICE Syntax:

.usim_opt wf_filter=0

tells the simulator not to filter the waveform data.

wf_reltol

Description

Defines the relative current and voltage criterion for the waveform plot in the output waveform
file.

Example

Spectre Syntax:

usim_opt wf_reltol=0.001

SPICE Syntax:

.usim_opt wf_reltol=0.001

wf_filter=3 Aggressive waveform filtering for timing verification of large memory
designs, digital circuits, and some mixed signal designs

wf_filter=4 Aggressive waveform filtering for functional verification of large
memory designs and digital circuits

Table 3-41 wf_reltol Option

Option Description

wf_reltol=value Relative criterion (double, unitless, 0 < value < 1)

Table 3-40 wf_filter Options, continued

Option Description
May 2010 201 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
tells the simulator to print the next point of a waveform in the output waveform file, if the
change in the waveform is 0.1% (and the absolute criterion does not apply).

wf_tres

Description

Defines the time resolution and time unit in the output waveform file.

Example

Spectre Syntax:

usim_opt wf_tres=10p

SPICE Syntax:

.usim_opt wf_tres=10p

tells the simulator to use a time resolution and unit of 10 ps in the output waveform file.

wf_abstolv

Description

Defines the absolute voltage resolution in the output waveform file.

Example

Spectre Syntax:

Table 3-42 wf_tres Option

Option Description

wf_tres=value Time resolution (double, unit s, 0 < value, default 1ps)

Table 3-43 wf_abstolv Option

Option Description

wf_abstolv=value Voltage resolution (double, unit V, 0 < value)
May 2010 202 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
usim_opt wf_abstolv=0.01m

SPICE Syntax:

.usim_opt wf_abstolv=0.01m

tells the simulator to use a voltage resolution of 0.01 mV in the output waveform file.

wf_abstoli

Description

Defines the absolute current resolution in the output waveform file.

Example

Spectre Syntax:

usim_opt wf_abstoli=1p

SPICE Syntax:

.usim_opt wf_abstoli=1p

tells the simulator to use a current resolution of 1 pA in the output waveform file.

Table 3-45 gives an overview of the default values for wf_reltol, wf_abstolv, and
wf_abstoli dependent on the wf_filter option used.

Table 3-44 wf_abstoli Option

Options Description

wf_abstoli=value Current resolution (double, unit A, 0 < value)

Table 3-45 Waveform Filtering Options (Default Values)

wf_filter wf_reltol wf_abstolv wf_abstoli

0 Not applicable
(N/A)

N/A N/A

1 1e-7 1e-6 1e-12

2 min{tol, 0.005} 1e-6 1e-12

3 min{tol, 0.005} 1e-3 1e-9
May 2010 203 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Node Name Format Control

wf_output_format

Description

Controls the appearance of a hierchical node name in the waveform database.

4 min{tol, 0.005} 1e-2 1e-6

Table 3-46 wf_output_format Options

Option Description

wf_output_format=spice Includes the following format in the waveform
database:

x1.x11.v(n1), x1.x11.i1(m1)

wf_output_format=spectre Includes the following formats in the waveform
database:

x1.x11.n1 and x1.x11.m1:1

wf_output_format=verilog Includes the following formats in the waveform
database:

x1.x11.n1 and x1.x11.m1:1_$flow

wf_output_format=spice_raw Includes the following formats in the waveform
database:

v(x1.x11.n1) and i1(x1.x11.m1)

Table 3-45 Waveform Filtering Options (Default Values), continued

wf_filter wf_reltol wf_abstolv wf_abstoli
May 2010 204 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Miscellaneous Options

■ Model Library Specification on page 206

■ Warning Settings on page 207

■ Simulation Start Time Option on page 211

■ Simulation Progress Report Control Options on page 211

■ Model Building Progress Report on page 212

■ Local Options Report on page 213

■ Node Topology Report on page 216

■ Resolving Floating Nodes on page 216

■ Flattening Circuit Hierarchy Option on page 217

■ hier on page 217

■ Device Binning on page 218

■ Threshold Voltages for Digital Signal Printing and Measurements on page 220

■ Hierarchical Delimiter in Netlist Files on page 221

■ MOSFET Gate Leakage Modeling with Verilog-A on page 223

■ Automatic Detection of Parasitic Bipolar Transistors on page 224

■ Duplicate Subcircuit Handling on page 225

■ Bus Signal Notation on page 225

■ Structural Verilog Dummy Node Connectivity on page 228

■ skip Option on page 230

■ probe_preserve Option on page 231

■ Print File Options on page 232

■ Changing Resistor, Capacitor, or MOSFET Device Values on page 233

■ .reconnect on page 234
May 2010 205 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Model Library Specification

The option model_lib specifies the name of the model library file that stores all digital
representative models (the model library is always given a .lsn extension). The default
name for the model library is the netlist filename. For example, suppose the netlist filename
is netlist.sp. Then the model library file would be called netlist.lsn. It is
recommended to keep the path of the file relative to the working directory.

This option is useful only if a large number of representative models are going to be built. The
time for building representative models is not dominant compared to simulation. Occasionally
the model build time can dominate the run time. Normally, you do not need to use this option
because the Virtuoso UltraSim simulator automatically builds a model library file which is
automatically loaded the next time you run the simulator. The first simulator run on a particular
netlist file is somewhat slower than subsequent runs in the same directory.

If you want to reuse the representative models for different netlist files, or the same netlist file
in different locations, you need to specify the library file to write to and read from. By using
the same model library name and storing it in a central location, you can reuse models from
many netlist files.

model_lib

Description

Defines the library file used for digital representative models (da and df mode only).

Examples

In the following Spectre syntax example

usim_opt model_lib=mod.lsn

tells the simulator to use the model file mod.lsn out of the netlist file directory.

In the following SPICE syntax example

.usim_opt model_lib=“/home/user/ms2/mod.lsn”

Table 3-47 model_lib Option

Option Description

model_lib=filename Filename (default netlist.lsn)
May 2010 206 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
tells the simulator to use the model file /home/user/ms2/mod.lsn.

Warning Settings

The Virtuoso UltraSim simulator allows you to customize how warning messages are handled
by the simulator. The number of messages per warning category can be limited globally for
all warnings (usim_opt warning_limit) or individually for each category (usim_report
warning_limit). When the specified category limit is reached, the simulator notifies you
that the warning messages are no longer being displayed. Dangling and floating node
warnings are controlled by the number of reported nodes.

warning_limit

Description

Limits the number of warnings issued per warning category and is applied globally to all
warning messages. This option needs to be defined at the beginning of the netlist file.

A limit can also be applied to a specific warning category using the usim_report
warning_limit command.

Example

Spectre Syntax:

usim_opt warning_limit=10

SPICE Syntax:

.usim_opt warning_limit=10

tells the simulator to print out 10 warnings per warning category.

Table 3-48 warning_limit Option

Option Description

warning_limit=value Number of warnings (integer, unitless; default is 5)
May 2010 207 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
warning_limit_dangling

Description

A dangling node, often the result of a design or netlist file problem, is only connected to one
device or element (a node in a circuit requires a minimum of two connections). The
warning_limit_dangling command is used to define the maximum number of listed
dangling nodes (default is 50).

Example

Spectre Syntax:

usim_opt warning_limit_dangling=100

SPICE Syntax:

.usim_opt warning_limit_dangling=100

tells the simulator to print out 100 dangling nodes.

warning_limit_float

Description

A floating node is an input node (that is, a MOSFET gate) which is not driven by an element
or device, and has no DC path to ground. The Virtuoso UltraSim simulator automatically
connects floating nodes through a 1e12 ohm resistor (gmin_float=1e-12) to ground. The
warning_limit_float command defines the maximum number of listed floating nodes
(default value is 50). The floating nodes are listed in two categories: 1) Nodes connected to
MOSFET or JFET gates and 2) nodes not connected to any device gates.

Example

Spectre Syntax:

usim_opt warning_limit_float=100

SPICE Syntax:

.usim_opt warning_limit_float=100

tells the simulator to print out 100 floating nodes.
May 2010 208 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
warning_limit_near_float

Description

A nearly floating node is a node with a high resistive path to a driver or ground. A common
example is the unconnected substrate of a MOSFET. The warning_limit_near_float
command defines the maximum number of listed nodes which have a weak DC path to
ground (default value is 50). These nodes are listed in two categories: 1) Nodes connected
to MOSFET or JFET gates and 2) nodes not connected to any device gates.

Example

Spectre Syntax:

usim_opt warning_limit_near_float=100

SPICE Syntax:

.usim_opt warning_limit_near_float=100

tells the simulator to print out 100 nodes with a weak DC path to ground.

warning_limit_ups

Description

Defines the maximum number of listed large resistors in a power net that are detected by the
Virtuoso UltraSim power network solver (UPS). The default value is 50.

Example

Spectre Syntax:

usim_opt warning_limit_ups=100

SPICE Syntax:

.usim_opt warning_limit_ups=100

tells the simulator to print out 100 large resistors in power net.
May 2010 209 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
warning_node_omit

Spectre Syntax

usim_opt warning_node_omit=[node1 node2 …]

SPICE Syntax

.usim_opt warning_node_omit=[node1 node2 …]

Description

Allows you to filter out specific nodes related to dangling, floating, and nearly-floating nodes
from warning messages. Wildcards can be used to define these nodes (see “Wildcard Rules”
on page 55 for more information).

Examples

In the following Spectre syntax example

usim_opt warning_node_omit=[x1.x23.uncon20]

tells the Virtuoso UltraSim simulator to exclude the x1.x2.uncon20 node from the node list
of dangling, floating, and near-floating warning messages.

In the following SPICE syntax example

.usim_opt warning_node_omit=[x3.x*]

tells the simulator to exclude all nodes under the x3.x* hierarchy from the node list.

In the next example

.usim_opt warning_node_omit=[x1.x23.uncon20 x3.x*.uncon*]

tells the simulator to exclude the x1.x23.uncon20 node and all nodes matching
x3.x*.uncon* from the node list.
May 2010 210 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Simulation Start Time Option

sim_start

Description

The Virtuoso UltraSim simulator allows you to start the simulation at a user-defined time using
the sim_start option.

Example

Spectre Syntax:

usim_opt sim_start=10n

SPICE Syntax:

.usim_opt sim_start=10n

tells the Virtuoso UltraSim simulator to start the simulation at 10 ns.

Simulation Progress Report Control Options

Description

These options are used to print out simulation progress reports to a standard output display
device (stdout) or log file during transient simulation. If the options are not specified, the
Virtuoso UltraSim simulator prints out progress reports at 10% intervals during the transient
simulation, or every two hours, whichever occurs first.

progress_t

To define the time interval (in minutes) the simulator prints out the transient simulation
progress report to a stdout or log file, use

progress_t=time

Table 3-49 sim_start Option

Option Description

sim_start Simulation starts at the specified time value
May 2010 211 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Note: Any value for time, other than a whole number, is ignored and the default is used.

progress_p

To define the interval (in transient percentage) the simulator prints out the transient simulation
progress report to a stdout or log file, use

progress_p=percentage

Note: This option can also be used to specify the DC progress report.

Examples

In the following Spectre syntax example

usim_opt progress_t=5

tells the simulator to print out a progress report every 5 minutes.

In the following SPICE syntax example

.usim_opt progress_p=2

tells the simulator to print out a progress report at the completion of every 2% of transient
simulation.

In the next example

.usim_opt progress_t=10 progress_p=5

tells the simulator to print out progress reports at the completion of every 5% of the transient
simulation, or every 10 minutes, whichever occurs first.

Model Building Progress Report

Prior to simulation, generating analog or digital table models for model building usually only
takes a few seconds to complete. If model building takes longer, the Virtuoso UltraSim
simulator prints a progress report in the log file every five minutes (default). The progress
report time interval to print can be adjusted using the model_progress_t option.
May 2010 212 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
model_progress_t

Description

The model_progress_t option defines the time period the Virtuoso UltraSim simulator
uses to print out a progress report during model building (minimum time value is one minute).

Example

Spectre Syntax:

usim_opt model_progress_t=2

SPICE Syntax:

.usim_opt model_progress_t=2

tells the Virtuoso UltraSim simulator to print out model building progress reports every two
minutes.

Local Options Report

Spectre Syntax

usim_opt block_dump=<0|1|2> [block_depth=<depth_value>]

SPICE Syntax

.usim_opt block_dump=<0|1|2> [block_depth=<depth_value>]

Description

This option allows you to print locally and globally defined simulation options, so you can
identify which simulation options are being used for specific blocks in the circuit design. The
simulation options are printed to a Virtuoso UltraSim report file (.usim_opt_rpt) and also
appear as a message in the log file (.ulog).

Table 3-50 model_progress_t Option

Option Description

model_progress_t=value Specifies time period required to print out the model
building progress report.
May 2010 213 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
The .ulog file contains the following lines which indicate the start and stop time points for
the local options:

Starting reporting local options in: <filename>

Ending reporting local options

The local simulation options are located under the .usim_opt scope heading and the global
simulation options are located under the Top Level Options heading in the report file.

Example

Spectre Syntax:

usim_opt block_dump=1

usim_opt sim_mode=ms speed=6

usim_opt sim_mode=da analog=2 speed=4 inst=[X1]

usim_opt sim_mode=s inst=[MNIV1]

SPICE Syntax:

.usim_opt block_dump=1

.usim_opt sim_mode=ms speed=6

.usim_opt sim_mode=da analog=2 speed=4 inst=[X1]

.usim_opt sim_mode=s inst=[MNIV1]

Table 3-51 block_dump and block_depth Options

Option Description

block_dump=<0|1|2> Defines the report mode.

0 - Report is not generated (default).

1 - Detailed report containing subcircuits and/or
instances is generated.

If all of the instances for the subcircuit share a common
option set, only the subcircuit name is printed. If
instances share the same option set as the hierarchy
above, the instances are omitted from the report.

2 – Complete report listing all of the instances is
generated.

block_depth=<depth_value> Defines the hierarchical depth [optional]. The default
value is the maximum hierarchical depth of the circuit
design. If block_depth=0, only the global option set
is printed.
May 2010 214 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
The Virtuoso UltraSim simulator generates the following <filename>.usim_opt_rpt file:

.TITLE 'This file is :./usim.usim_opt_rpt

Options at all the levels are printed

Top Level Options:

The options as follows,
.usim_opt
* General Options
+ sim_mode=ms
+ speed=6
+ postl=0
+ pn=1
+ preserve=0
+ analog=1
* Solver Options
+ tol=20.0000 m
+ method=be
+ trtol=3.5000
+ hier=1
+ maxstep=inf

... (continued)

**

.usim_opt scope:
#mult2x2

The options as follows,
.usim_opt
* General Options
+ sim_mode=da
+ speed=4
+ postl=0
+ pn=1
+ preserve=0
+ analog=2
* Solver Options
+ tol=5.0000 m
+ method=trap
+ trtol=4.5536
+ hier=1
+ maxstep=inf

... (continued)

**

.usim_opt scope:
MNIV1 (n3p3fets)

The options as follows,
.usim_opt
* General Options
+ sim_mode=s
+ speed=6
+ postl=0
+ pn=1
+ preserve=0
+ analog=1
May 2010 215 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
* Solver Options
+ tol=20.0000 m
+ method=gear2
+ trtol=3.5000
+ hier=1
+ maxstep=inf

Node Topology Report

Description

The Virtuoso UltraSim simulator node_topo_report option allows you to copy node
topology analysis results into the following types of ASCII report files:

■ Floating node (.floating_rpt file extension)

■ Nearly floating node (.weak_floating_rpt)

■ Dangling node (.dangling_rpt)

The default setting is node_topo_report=0, where node topology report files are not
generated by the simulator (initial node topology warnings are still copied into the log files).

Example

Spectre Syntax:

usim_opt node_topo_report=1

SPICE Syntax:

.usim_opt node_topo_report=1

tells the Virtuoso UltraSim simulator to generate node topology reports for floating, nearly
floating, and dangling nodes. If your netlist file is named netlist.sp, the simulator creates
netlist.weak_floating_rpt, netlist.floating_rpt, and
netlist.dangling_rpt files.

Resolving Floating Nodes

Description

To avoid simulation problems related to floating nodes, the Virtuoso UltraSim simulator
automatically inserts a resistor between the floating node and ground. The value of the
resistor is defined by gmin_float.
May 2010 216 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
gmin_float

Defines the resistor value used for grounding floating nodes (default gmin_float value is
1e-12).

Example

Spectre Syntax:

usim_opt gmin_float=1e-10

SPICE Syntax:

.usim_opt gmin_float=1e-10

tells the Virtuoso UltraSim simulator to add a 1e10 ohm resistor between any floating node
and ground.

Flattening Circuit Hierarchy Option

Because Virtuoso UltraSim is a Fast SPICE simulator, it is able to handle large designs due
to its true hierarchical approach. The basic idea is to consider subcircuits which are the
same and see the same stimuli as one subcircuit. This allows a significant performance
improvement compared to flat simulation. There is a certain overhead used for traversing the
hierarchy. For circuits where each subcircuit shows different behavior, it can be advantageous
to trade memory usage for speed, by flattening the circuit hierarchy.

With the exception of the SPICE and Analog modes, the Virtuoso UltraSim simulator uses an
autodetect mode to detect the circuit hierarchy by default. If you want to flatten this circuit, you
can use the hier command. Even with a flattened netlist file, the Virtuoso UltraSim simulator
uses the same simulation engine.

hier

Description

Defines the hierarchy approach the Virtuoso UltraSim simulator applies to the circuit.

Table 3-52 hier Options

Option Description

hier=0 Flattens the netlist file
May 2010 217 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt hier=0

SPICE Syntax:

.usim_opt hier=0

tells the simulator to flatten the entire circuit.

Device Binning

Devices, which are operated out of the model range they were designed for, can lead to a
significant simulation error, as well as to convergence problems. The Virtuoso UltraSim
simulator provides an error message if it find such devices. If this problem occurs, and you
want to continue the simulation, the option strict_bin can be set to use the closest model
bin for out-of-range devices.

strict_bin

Description

Defines the model binning approach in the Virtuoso UltraSim simulator.

hier=1 Autodetect hierarchy (default)

Table 3-53 strict_bin Options

Option Description

strict_bin=1 The Virtuoso UltraSim simulator gives an error message for devices
operating out of model range, and stops the simulation (default).

strict_bin=0 The simulator gives a warning message for devices operating out of
model range, uses the closest model bin available, and continues
the simulation.

Table 3-52 hier Options, continued

Option Description
May 2010 218 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Example

Spectre Syntax:

usim_opt strict_bin=0

SPICE Syntax:

.usim_opt strict_bin=0

tells the simulator to give a warning and uses the closest model bin for models out of model
range.

Element Compaction

By default, the Virtuoso UltraSim simulator compacts parallel elements and replaces them
with a newly named element. This approach yields better performance. However, in some
cases, this may result in missing current or element probes in the simulation result files. To
overcome this limitation, element compaction can be disabled.

elem_compact

Description

Allows to disable element compaction

Example

Spectre Syntax:

usim_opt elem_compact=0

SPICE Syntax:

.usim_opt elem_compact=0

tells the simulator to not perform element compaction.

Table 3-54 elem_compact Options

Option Description

elem_compact=1 Enables element compaction (default)

elem_compact=0 Disables element compaction
May 2010 219 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Threshold Voltages for Digital Signal Printing and Measurements

The Virtuoso UltraSim simulator uses logic waveforms for the following statements:
.lprint/.lprobe, usim_ta, and usim_nact. You can set the threshold voltages by using
arguments with each of the aforementioned statements or by defining the threshold voltages
using the vl and vh options. These options can be set globally for the entire circuit or locally
for an instance or subcircuit.

Note: Local settings overwrite global settings.

vh

Description

Defines the threshold value for logic 1. Any signal above this value is considered 1.

Example

Spectre Syntax:

usim_opt vh=2.3

usim_opt vh=1.2 inst=XDIGITAL

SPICE Syntax:

.usim_opt vh=2.3

.usim_opt vh=1.2 inst=XDIGITAL

tells the Virtuoso UltraSim simulator for block XDIGITAL to consider signals above 1.2 v to
be logic 1, and for all signals outside block XDIGITAL, use 2.3 v as the threshold for logic 1.

Table 3-55 vh Option

Option Description

vh=value High threshold voltage (double, unit V). If not specified,
the default value is 70% of vdd. If the vdd option is not
specified, vh is defined as 70% of the highest voltage
supply in the circuit.
May 2010 220 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
vl

Description

Defines the threshold value for logic 0. Any signal below the value is considered 0.

Example

Spectre Syntax:

usim_opt vl=0.9

SPICE Syntax:

.usim_opt vl=0.9

tells the simulator to print a logic 0 for all signal values below 0.9 v.

Hierarchical Delimiter in Netlist Files

hier_delimiter

Spectre Syntax
usim_opt hier_delimiter=”\\”

SPICE Syntax
.usim_opt hier_delimiter=”\\”

Table 3-56 vl Option

Option Description

vl=value Low threshold voltage (double, unit V). If not specified,
the default value is 30% of vdd. If the vdd option is not
specified, vl is defined as 30% of the highest voltage
supply in the circuit.
May 2010 221 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Description

The default hierarchical delimiter is a single period (.) but can be changed by setting the
hier_delimiter option.

Notes:

■ This option has to be set as the first line in the top level input netlist file.

■ To define the delimiter as “ or \, the Escape symbol is required (for example, usim_opt
hier_delimiter=”\””).

Example

Spectre Syntax:

usim_opt hier_delimiter=“%”

SPICE Syntax:

.usim_opt hier_delimiter=“%”

hiernode_lookup

Spectre Syntax

usim_opt hiernode_lookup=2

SPICE Syntax

.usim_opt hiernode_lookup=2

Description

The Virtuoso UltraSim simulator, by default, does not allow you to use node and element
names containing a period (.) because this symbol is reserved as a hierarchical delimiter.

Table 3-57 hier_delimiter Option

Option Description Type Default

hier_delimiter Specifies the hierarchical delimiter in the netlist file char .
May 2010 222 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
In special cases, a period may be used as a hierarchical delimiter and as part of node or
element names. You can use hiernode_lookup=2 to enable the Virtuoso UltraSim
simulator to consider the period as part of a node or element name.

For example, a probe or measure statement can be applied to x0.x1.x2.nd, where x0.x1
is the hierarchical instance name and x2.nd is the node name. If hiernode_lookup=2 is
used, the Virtuoso UltraSim simulator automatically identifies the hierarchical instance name
and reserves x2.nd as the node name.

MOSFET Gate Leakage Modeling with Verilog-A

Description

Using Verilog-A modules or controlled sources to model gate leakage effects in MOSFET
devices may cause conservative partitioning and slow simulation speed. The Virtuoso
UltraSim simulator search_mosg option allows you to select more aggressive partitioning
and a faster simulation speed.

Example

Spectre Syntax:

usim_opt search_mosg=1

SPICE Syntax:

Table 3-58 hiernode_lookup Options

Option Description

hiernode_lookup=0 Period (.) cannot be used as part of node or element names
(default)

hiernode_lookup=2 Period can be used as part of node or element names

Table 3-59 search_mosg Options

Option Description

search_mosg=0 Search is not performed for MOSFET gate leakage Verilog-A
models or controlled sources (default)

search_mosg=1 Automatic search is performed for MOSFET gate leakage Verilog-A
models and controlled sources
May 2010 223 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
.usim_opt search_mosg=1

enables the simulator to automatically search for MOSFET gate leakage Verilog-A models or
controlled sources using more aggressive partitioning, resulting in a faster simulation speed.

Automatic Detection of Parasitic Bipolar Transistors

Description

Circuit designers often want to simulate the effects of parasitic bipolar junction transistor
(BJT) devices formed in the triple well CMOS process. Including these transistors in the
simulation may result in conservative partitioning and slow simulation speed. The
parasitic_bjt option allows you to control the way the Virtuoso UltraSim simulator
handles the parasitic BJT devices, resulting in much faster simulation speed.

Note: The simulator can only detect parasitic vertical PNP BJTs with the emitter connected
to the body of a NMOSFET.

Examples

In the following Spectre syntax example

usim_opt parasitic_bjt=1

tells the Virtuoso UltraSim simulator to detect parasitic vertical PNP BJT devices and to
invoke aggressive partitioning.

In the following SPICE syntax example

.usim_opt parasitic_bjt=2

tells the simulator to cut away all the parasitic vertical PNP BJT devices.

Table 3-60 Parasitic BJT Options

Option Description

parasitic_bjt=0 No detection of parasitic BJT devices (default)

parasitic_bjt=1 Detect parasitic vertical PNP BJT devices and invoke
aggressive partitioning

parasitic_bjt=2 Detect and remove parasitic vertical PNP BJT devices
May 2010 224 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Duplicate Subcircuit Handling

duplicate_subckt

Description

You can define multiple definitions for a subcircuit using the duplicate_subckt option in
the netlist file.

Example

Setting duplicate_subckt to

.usim_opt duplicate_subckt=1

uses the last definition of the subcircuit and overrides all the previous subcircuit definitions. If
duplicate_subckt is set to zero (0), the Virtuoso UltraSim simulator stops the
simulation, and displays an error message if duplicate subcircuits are detected.

Bus Signal Notation

buschar

Spectre Syntax
usim_opt buschar=”<>”

SPICE Syntax

.usim_opt buschar=”<>”

Description

The Virtuoso UltraSim simulator resolves bus signals into individual signals when reading
Verilog netlist files (.vlog). The buschar option and either <> or [] is used to set the bus
notation. The exception is bus notation for vector and vcd stimuli which is set using vector and
May 2010 225 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
vcd options (see Chapter 13, “Digital Vector File Format” and Chapter 14, “Verilog Value
Change Dump Stimuli” for more information).

Example

Spectre Syntax:

usim_opt buschar=”<>”

SPICE Syntax:

.usim_opt buschar=”<>”

tells the Virtuoso UltraSim simulator to use <> as the notation for bus signals read from the
structural Verilog netlist file.

Bus Node Mapping for Verilog Netlist File

vlog_buschar

Description

The Virtuoso UltraSim simulator can support name mapping for bus nodes when instantiating
analog cells in a structural Verilog netlist file. Bus node mapping between the structural
Verilog netlist file and analog cell is based on the order of the nodes. To resolve bus signals
into individual signals in the analog netlist file, the vlog_buschar option is used to set the
bus notation.

Note: The ports of the bus node in the analog cell definition must be continuous because the
simulator ends the bus node definition once another node name is encountered.

.usim_opt vlog_buschar="front_bus_symbol*end_bus_symbol"

where asterisk (*) is a keyword and the default bus symbol is [] (square brackets). The
front_bus_symbol and end_bus_symbol arguments define the starting and ending
letters of bus notation, respectively.

Table 3-61 buschar Options

Option Description

buschar=“[]” Used as bus notation (default)

buschar=“<>” Used as bus notation
May 2010 226 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Examples

For the first example

Structural Verilog netlist file:

add4 u1 (.a ({ net1, net2, a1, a2 }), .sum ({ sum1, sum0 }), .vdd(VDD3),
.vss(VSS_DIG));

Analog netlist file:

.usim_opt vlog_buschar="_*"

.subckt add4 a_3 a_2 a_1 a_0 vdd vss sum_1 sum_0

tells the Virtuoso UltraSim simulator to map the net1, net2, a1, and a2 nodes in the Verilog
netlist file to a_3, a_2, a_1, and a_0 in the analog netlist file, as well as sum1 and sum0 to
sum_1 and sum_0.

In the next example

Structural Verilog netlist file:

reg [2:0] n;

ram i0 .a (n);

Analog netlist file:

.usim_opt vlog_buschar="<*>"

subckt ram a<2> a<1> a<0>

tells the simulator to map the n[2], n[1], and n[0] nodes in the Verilog netlist file to a<2>,
a<1>, and a<0> in the analog netlist file.

In the next example

Structural Verilog netlist file:

reg [7:0] Addr;

ram i0 (.A(Addr), vdd(VDD3));

Analog netlist file:

.usim_opt vlog_buschar="*"

subckt ram A7 A6 A5 vdd A4 A3 A2 A1 A0

tells the simulator that the A4 through A0 analog signals are not recognizable as bus nodes
because the vdd node ends the bus node definition.
May 2010 227 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Structural Verilog Dummy Node Connectivity

vlog_supply_conn

Spectre Syntax

usim_opt vlog_supply_conn=[portname1 node1 portname2 node2 ...]

SPICE Syntax

.usim_opt vlog_supply_conn=[portname1 node1 portname2 node2 ...]

When invoking an analog cell using SPICE syntax from a structural Verilog instance, the
redundant ports of the SPICE cell are connected to dummy nodes if the Verilog instance has
fewer ports than the SPICE cell. If the power nets (for example, vdd and vss) are only defined
in the SPICE subcircuit, and not the Verilog instance, they are also connected to dummy
nodes.

Note: For the Virtuoso UltraSim simulator, the local node always overwrites the global node.

For example, in the Spectre netlist file

subckt add a1 a2 sum vdd vss

SPICE netlist file:

.subckt add a1 a2 sum vdd vss

Structural Verilog netlist file:

add u1 a1 a2 sum

The vdd and vss nodes cannot be connected to the power net, even if they are declared
global nodes in the netlist file.

The vlog_supply_conn option is used to connect to

■ The structural Verilog dummy node

■ Most of the supply node

■ The global or internal node of the Verilog instance
May 2010 228 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Description

This option is used to connect a dummy node to either the global or internal node of the
Verilog instance. The port names in the analog netlist file are specified using portname1,
portname2, ... and node1, node2, ... is used to specify the internal or global node names
of the Verilog instance.

The option can be applied locally to a Verilog module or instance and is set the same as the
other Virtuoso UltraSim simulator local options (see Examples below for more information).
The Verilog module and instance can be regarded as a subcircuit and instance when setting
the local options. This option is also valid for lower hierarchical level instances.

Note: The vlog_supply_conn option has no effect when the port of a subcircuit in the
analog netlist file is not a dummy node, and the port is connected to a signal in the Verilog
netlist file.

Examples

In the following Verilog netlist file example

add u1 a1 a2 sum

In the analog netlist file

.global global_vdd global_vss

.usim_opt vlog_supply_conn=[vdd global_vdd vss global_vss]

.subckt add a1 a2 sum vdd vss

M1 mid1 a1 vss vss nmos

The global_vdd node is connected to vdd in the add subcircuit of instance u1, and the
global_vss node is connected to vss.

In the next Verilog netlist file example

add u1 a1 a2 sum vdd vss

tells the Virtuoso UltraSim simulator that the analog netlist file is the same as the one used in
the previous example. The vdd and vss nodes of the Verilog instance u1 are not dummy
nodes, so they are not connected to the global node by the simulator.

In the following Verilog netlist file local option example

xor u1 local_vss in2 out

nand4 u2 in1 in2 in3 in4 out

In the analog netlist file

.usim_opt vlog_supply_conn=[vdd global_vdd vss local_vss] xdigital.verilog.u1
May 2010 229 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
.global global_vdd global_vss

.subckt xor in1 in2 out vdd vss

....

.subckt nand4 in1 in2 in3 in4 out vdd vss

tells the simulator vdd and vss of nand4 for Verilog instance u2 are still connected to dummy
nodes because the option is local and is only applied to Verilog instance u1. Also, vdd and
vss of xor for instance u1 are connected to the global_vdd (global) and local_vss
(local) nodes in the Verilog netlist file, respectively.

skip Option

Description

Use the skip option to disable a circuit block simulation.

Examples

In the following Spectre syntax example

usim_opt skip=1 inst=x0.x1

tells the Virtuoso UltraSim simulator to disable the x0.x1 circuit block simulation.

In the following SPICE syntax example

.usim_opt skip=1 subckt=op_amp

tells the simulator to disable the simulation for all instances of the op_amp subcircuit.

Table 3-62 skip Options

Option Description

skip=0 The Virtuoso UltraSim simulator includes the circuit block in the
simulation (default).

skip=1 The simulator disables the simulation for the specified circuit blocks.
The loading effect of the disabled blocks is considered. The inputs of
the remaining circuit, connected to the disabled blocks, are
connected to the ground through high resistance (that is, treated as
floating nodes).
May 2010 230 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
probe_preserve Option

Description

Use to control the preserve setting of .probe statements. If probe_preserve is set to all,
the simulator applies preserve=all to all .probe statements.

Note: When set to all, the probe_preserve option overrides preserve=none|all
specified in .probe statements. It does not override preserve=port.

Examples

In the following Spectre syntax example

usim_opt probe_preserve=all

tells the Virtuoso UltraSim simulator to apply preserve=all to all .probe statements in the
netlist.

In the following Spectre syntax example

.usim_opt probe_preserve=all

tells the Virtuoso UltraSim simulator to apply preserve=all to all .probe statements in the
netlist.

Table 3-63 probe_preserve Options

Option Description

probe_preserve=none Does not have any impact on .probe statements (default).

probe_preserve=all Applies preserve=all to all .probe statements.
May 2010 231 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Print File Options

nodecut_file

Description

Enables the Virtuoso UltraSim simulator to print all nodes cut during post-processing into a
file (file extension is nodecut).

elemcut_file

Description

Enables the simulator to print all elements cut when thresholds are exceeded into a file (file
extension is elemcut).

Table 3-64 nodecut_file Options

Option Description

nodecut_file=0 The Virtuoso UltraSim simulator does not print cut nodes into a
file (default)

nodecut_file=1 The simulator prints all cut nodes into a .nodecut file

Table 3-65 elemcut_file Options

Option Description

elemcut_file=0 The simulator does not print cut elements into a file (default)

elemcut_file=1 The simulator prints all cut elements into a .elemcut file
May 2010 232 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Controlling Text Wrapping of Circuit Check Reports

pcheck_wrap

Description

Controls text wrapping in circuit check reports created by Virtuoso Ultrasim Simulator.

Changing Resistor, Capacitor, or MOSFET Device Values

.usim_trim

Spectre Syntax

usim_trim instance=resistor_name value=resistor_value

usim_trim instance=capacitor_name value=capacitor_value

usim_trim instance=instance_name [w=value] [l=value] [delvto=value]

SPICE Syntax

.usim_trim instance=resistor_name value=resistor_value

.usim_trim instance=capacitor_name value=capacitor_value

.usim_trim instance=instance_name [w=value] [l=value] [delvto=value]

Description

The usim_trim option can be used to change the values of resistors and capacitors, and
the length, width, and threshold voltage of a MOSFET device, without modifying the netlist
file.

Notes:

Table 3-66 pcheck_wrap Options

Option Description

pcheck_wrap=0 Disables text wrapping in circuit check reports (defualt).

pcheck_wrap=1 Enables text wrapping in circuit check reports.
May 2010 233 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
■ The instance name must contain the full hierarchical path

■ The usim_trim option does not work with stitched dspf or spef flows

■ Only MOSFET device lengths, widths, and threshold voltages can be changed (use the
delvto device model parameter to adjust threshold voltages)

Examples

In the following Spectre syntax example

usim_trim instance=x1.x2.cap5 value=3f

tells the Virtuoso UltraSim simulator to change the value of instance x1.x2.cap5 to 3f
(Fahrenheit).

In the following SPICE syntax example

.usim_trim instance=x1.x2.x3.res5 value=1k

tells the simulator to change the value of instance x1.x2.x3.res5 to 1k (ohms).

In the next example

.usim_trim instance=x1.x2.mp00 w=10e-5 l=5e-5

tells the simulator to change the width of instance x1.x2.mp00 to 10e-5 meters and length
to 5e-5 meters.

In the next example

.usim_trim instance=x1.mn1 w=1.0e-6

tells the simulator to change the width of instance x1.mn1 to 1.e-6 meters.

.reconnect

Spectre Syntax

Spectre syntax is not supported.

SPICE Syntax

.reconnect instport=instance_port_name node=node_name

.reconnect subcktport=subckt_port_name node=node_name
May 2010 234 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Changes the connection of certain instances' ports. This command is useful in the early stage
of power network development. During this stage, only the estimates of the power network
parasitics are available, and you are required to disable the original connection and establish
new connections without manually changing the original netlist.

Multiple .reconnect statements are supported. If duplicate specifications are used for the
same port of the same instances, the last specification is given priority. If neither the specified
port nor the specified node is found in the circuit, UltraSim issues a warning and ignores the
command.

Examples
.reconnect instport=x1.p node=vcc

Suppose that p is an explicit port of x1 and the hierarchical delimiter is ., this command
disconnects the original connection of port p of x1 and reconnects a top-level node vcc to
instance x1's port p.

.reconnect instport=x1/vdd node=vcc

Table 3-67 .reconnect Option

Option Description

instport Specifies the port name of the instance whose original
connection is to be disconnected. The syntax to define
a port of an instance is instancename.portname
where . is the hierarchical delimiter. For example, the
port vdd of instance X1 is defined as X1.vdd. The
port can be defined explicitly or implicitly in a global
statement.

node Specifies the node to which the new connection is to
be established. Hierarchical node name is required.
Wildcard is not supported.

subcktport Specifies the port name of the subckt whose original
connection is to be disconnected. This is applicable to
all the instances of the subckt. As in the case of
instport, the port can be defined explicitly or
implicitly. The syntax to specify the port vdd of all the
instances of subckt inv is inv/vdd where / is the
hierarchical delimiter.
May 2010 235 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Suppose that vdd is defined as a global node and / is the hierarchical delimiter, this command
reconnects a top-level node vcc to the global node vdd inside instance x1, including all the
hierarchies inside x1. The connection of vdd in other blocks remains unchanged.

.reconnect subcktport=pump.out node=vcc

Suppose that out is an explicit port of subckt pump and it has three instances: xpump1,
xpump2, and xpump3, this command tells UltraSim that all instances' port out, that is,
xpump1.out, xpump2.out, xpump3.out, have to be disconnected from their original
connections and reconnected with vcc.

.reconnect instport=x1.x2.p node=x3.x4.netA

Suppose that port p is an explicit port, this command tells UltraSim to reconnect node
x3.x4.netA with the port p of instance x1.x2 and disconnect the original connection of
x1.x2.p.
May 2010 236 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Simulator Options: Default Values

The default values for the Virtuoso UltraSim simulator options are listed below in Table 3-68
on page 237. The majority of these options are listed in the Simulation Options section of
the output log file. The default values may vary for different versions of the simulator.

Table 3-68 Simulator Options and Default Values

Option Default Value

General

sim_mode ms

speed 5

postl 0

analog 1(df/da/ms); ignored(a/s)

preserve 1

pn 0

Solver

tol 10 m

method be(df/da/ms); gear2(a/s)

trtol 3.5

hier 1(df/da/ms); 0(a/s)

maxstep_window inf

Device Model

mos_method df(df), da(da), a(ms/a), s(s)

mosd_method df(df/da), a(ms/a); ignored(s)

diode_method Juncap: a(df/da/ms/a) s(s); other diodes: s(df/da/ms/a/s)

vdd max. supply voltage

deg_mod r

Post-Layout

rshort 1u ohm

rvshort 1u ohm
May 2010 237 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
lshort 0 H

lvshort 0 H

minr 0

cgnd 10 zF

cgndr 0

canalog 100 fF

canalogr 450 m

rcr_fmax 1 GHz

DC

dc 1(df/da/ms); 3(a/s)

dc_exit 0

dc_prolong 0

Simulation

abstolv 1 uV

abstoli 1 pA

progress_t 120 min

progress_p 10%

vl supply voltage * 0.3

vh supply voltage * 0.7

sim_start 0

dump_step 0

gmin_allnodes 0

cmin_allnodes 0

Environment

ade 0

Parser

hier_delimiter . (period)

Table 3-68 Simulator Options and Default Values, continued

Option Default Value
May 2010 238 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
Notes

■ The df abbreviation stands for global df mode, da for global da mode, ms for global ms
mode, a for global a mode, and s for global s mode.

duplicate_subckt 0

warning_limit 5

warning_limit_dangli
ng

50

warning_limit_float 50

warning_limit_near_f
loat

50

warning_limit_ups 50

Model

strict_bin 1

Database

buschar 0

Output

wf_format SST2

wf_maxsize inf

wf_reltol 5 m(dt/da);
100 n(a/ms)

wf_tres 100 f

wf_abstolv 1 uV

wf_abstoli 1 p

wf_filter 2(df/da/ms); 1(a); 0(s)

pa_elemlen 20

Power Net Solver

pn_max_res 1000 ohm

Table 3-68 Simulator Options and Default Values, continued

Option Default Value
May 2010 239 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Simulation Options
■ The Virtuoso UltraSim simulator automatically promotes analog from 1 to 2 when
simulating a small design (that is, a design with less than 200 active devices). The
analog option is ignored in global a/s mode.

■ For more information about the Virtuoso UltraSim simulation option definitions, refer to
the option descriptions in this chapter or use the -help .usim_opt command.
May 2010 240 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
4
Post-Layout Simulation Options

This chapter describes the Virtuoso® UltraSim™ simulator post-layout simulation options.

Parasitic effects (for example, wire delays and coupling) are becoming increasingly important
factors in integrated circuit design. The Virtuoso UltraSim post-layout simulator considers
these effects, modeling parasitic resistors and capacitors extracted from the layout
environment.

The Virtuoso UltraSim simulator is designed to handle the demands of most of the post-layout
simulation flows (refer to Figure 4-1 on page 242 for more information) and supports the
backannotation of parasitic resistors and capacitors (RCs) from a detailed standard parasitic
format (DSPF) file, a standard parasitic exchange format (SPEF) file, parasitic capacitance
from a node capacitance file, and extracted device layout parameters from a DPF file.

The most important challenges for post-layout simulation is processing large numbers of
parasitic elements and supporting a variety of layout parasitic extraction flows. The Virtuoso
UltraSim simulator uses advanced RC reduction techniques to handle large numbers of
parasitic elements while preserving circuit timing domain behavior. There are three general
post-layout simulation methodologies:

1. Flat RC netlist file is a simple approach, allowing you to use a large number of
elements and devices in the netlist, but it tends to be more memory and time consuming.
An example of a flat RC netlist is a flat DSPF file.

2. Hierarchical RC netlist file is an approach in which the Virtuoso UltraSim simulator
preserves the hierarchical structure of the netlist file to reduce run time and memory
requirements. This simulation method is generally faster than the flat RC netlist file
approach. The main drawback is that the parasitic information is embedded inside the
netlist file, making it more difficult to extract the information.

3. Backannotation and stitching of parasitic files is an approach that has the
simulator preserve the design hierarchy to reduce run time and memory requirements,
and accepts mixed post-layout netlist file formats to support simulation of circuit designs.
For example, designs in which some blocks have successfully passed layout versus
schematic (LVS) verification and have post-layout netlist files, whereas other blocks
May 2010 241 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
remain at an early stage of development and only have estimated capacitive loading. See
Figure 4-2 on page 243 to view this full-chip simulation flow example graphically.

Figure 4-1 Post-Layout Simulation Flow

You can use the Virtuoso UltraSim simulator backannotation flow to start full chip simulation
early in the design cycle, and to gradually replace pre-layout views with post-layout netlist
files, as design blocks pass layout and extraction verification. “What if” analyses can also be
performed by overwriting the extracted capacitance on critical nets. The backannotation
method preserves schematic device and net names to facilitate cross probing and circuit
debugging. The simulator post-layout flows can be integrated into top-down or bottom-up

Pre-Layout Simulation

Layout

Layout versus Schematic

RC Extraction (RCE)

Flat
DSPF/SPEF

RC Reduction (RCR)

Hierarchical
Schematic Netlist

RC Reduction (RCR)

Circuit Simulation

Backannotate
Device

Stitch
RC

(LVS)

Parameters
May 2010 242 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
design flows in which extractions are performed at various levels of hierarchy, following a
graybox methodology.

Figure 4-2 Full-Chip Simulation Flow

The Virtuoso UltraSim simulator also provides a set of options which allow selective parasitic
backannotation based on different values, such as RC elements, hierarchy level, and net
names.

Pre-Layout

Layout

LVS

RCE

RCR

RCR

Circuit Simulation

Simulation
Pre-Layout

Place & Route

LVS

RCE

Simulation
Pre-Layout

Estimate

Simulation

Loading

RCRRCR

a.spef Top.spf b.cap

top

a b

RCE = RC Extraction

RCR = RC Reduction

LVS = Layout vs. Schematic
May 2010 243 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
This chapter describes in detail the Virtuoso UltraSim simulator RC reduction method that
allows you to significantly reduce the number of parasitic elements while maintaining
simulation accuracy. The stitching of parasitic resistor (R) and capacitor (C) elements, and
the backannotation of layout device parameters from parasitic files into hierarchical schematic
or netlist files, is also described.
May 2010 244 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
RC Reduction Options

The Virtuoso UltraSim simulator post-layout simulation options allow you to short small
resistors, ground small coupling capacitors, and perform RC reduction in order to speed up
simulation, while preserving the time domain behavior of the circuits. All the RC reduction
related options can be applied globally and locally.

The simulator also provides the high-level postl option which you can use to control the
trade-off between simulation accuracy and performance. Cadence recommends that you
read more about “postl” on page 253 before starting a post-layout simulation.

The Virtuoso UltraSim simulator supports the following RC reduction options:

■ ccut on page 246

■ cgnd on page 247

■ cgndr on page 248

■ rcr_fmax on page 249

■ rcut on page 250

■ rshort on page 251

■ rvshort on page 252

■ postl on page 253
May 2010 245 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
ccut

Spectre Syntax

usim_opt ccut=value

SPICE Syntax

.usim_opt ccut=value

Note: A period (.) is required when using SPICE language syntax (for example, .usim_opt
ccut).

Description

This option allows you to cut capacitors, depending on the value of the capacitors. Capacitors
less than ccut are cut (that is, open circuited) during parsing. The ccut option is helpful with
large post-layout netlist files containing small capacitors. To reduce memory consumption,
ccut needs to be defined at the beginning of the netlist file, so cutting is performed during
parsing. The default is 0.

Example

Spectre Syntax:

usim_opt ccut=0.1ff

SPICE Syntax:

.usim_opt ccut=0.1ff

tells the Virtuoso Ultrasim simulator to cut all capacitors with a value < 0.1 ff during parsing.
May 2010 246 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
cgnd

Spectre Syntax

usim_opt cgnd=value

SPICE Syntax

.usim_opt cgnd=value

Description

This cgnd option defines the absolute threshold value for grounding coupling capacitors. A
capacitor is considered a coupling capacitor if neither of its terminals are connected to a
ground voltage source. A ground voltage source is one that has a path to ground directly or
through other voltage sources. Coupling capacitors can lead to significantly longer run times
and may not contribute appreciably to simulation accuracy. A coupling capacitor can be split
into two grounded capacitors with the same capacitance value: One at each terminal of the
original capacitor.

With this option, a coupling capacitor is grounded if its value is less than cgnd. The grounding
of coupling capacitors is automatically enabled by setting the high-level post-layout control
parameter postl. The default value depends on the setting for postl. See Table 4-1 on
page 253 for more details.

Example

Spectre Syntax:

usim_opt cgnd=1pf

SPICE Syntax:

.usim_opt cgnd=1pf

tells the Virtuoso UltraSim simulator to ground all coupling capacitors with a value < 1 pf.
May 2010 247 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
cgndr

Spectre Syntax

usim_opt cgndr=value

SPICE Syntax

.usim_opt cgndr=value

Description

The cgndr option defines the relative threshold value for grounding coupling capacitors. A
coupling capacitor is grounded if the ratio of its value to the total node capacitance on both
sides is less than cgndr. The range of cgndr is between 0 and 1. The default value depends
on the setting for postl. See Table 4-1 on page 253 for more details.

Example

Spectre Syntax:

usim_opt cgndr=0.01

SPICE Syntax:

.usim_opt cgndr=0.01

tells the Virtuoso UltraSim simulator to ground any coupling capacitor if the ratio of its value
to the total node capacitance on both sides of the capacitor is < 0.01.
May 2010 248 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rcr_fmax

Spectre Syntax

usim_opt rcr_fmax=value

SPICE Syntax

.usim_opt rcr_fmax=value

Description

The rcr_fmax option defines the maximum frequency of interest for RC reduction (default
is 1.0 GHz.). If the chosen value for rcr_fmax is less than the maximum operating frequency
of interest, you may experience accuracy loss for frequencies higher than the specified
rcr_fmax value.

Example

Spectre Syntax:

usim_opt rcr_fmax=10G

SPICE Syntax:

.usim_opt rcr_fmax=10G

tells the Virtuoso UltraSim simulator to adjust the RCR reduction accordingly (suitable for
designs up to 10 GHz for the frequency of interest).
May 2010 249 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rcut

Spectre Syntax

usim_opt rcut=value

SPICE Syntax

.usim_opt rcut=value

Description

This option can be used to cut resistors with values larger than the specified rcut value (that
is, open-circuit resistors). The default is 1e12 ohm.

Example

Spectre Syntax:

usim_opt rcut=1e14

SPICE Syntax:

.usim_opt rcut=1e14

tells the Virtuoso UltraSim simulator to cut all resistors with a value > 1e14 ohm.
May 2010 250 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rshort

Spectre Syntax

usim_opt rshort=value

SPICE Syntax

.usim_opt rshort=value

Description

Signal net resistors with a value less than rshort are short-circuited. The default value
depends on the setting for postl. See Table 4-1 on page 253 for more details.

Example

Spectre Syntax:

usim_opt rshort=1 subckt=AMP

SPICE Syntax:

.usim_opt rshort=1 subckt=AMP

tells the Virtuoso Ultrasim simulator to short-circuit all signal net resistors < 1 ohm in all
instances of subcircuit AMP.
May 2010 251 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rvshort

Spectre Syntax

usim_opt rvshort=value

SPICE Syntax

.usim_opt rvshort=value

Description

For any resistor connected to an independent voltage source, if its value is less than
rvshort, the resistor is short-circuited. The default value depends on the setting for postl.
See Table 4-1 on page 253 for more details.

Example

Spectre Syntax:

usim_opt rvshort=1 subckt=SUPPLY

SPICE Syntax:

.usim_opt rvshort=1 subckt=SUPPLY

tells the Virtuoso UltraSim simulator to short-circuit all rail resistors with a value less than 1
ohm in all instances of subcircuit SUPPLY.
May 2010 252 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
postl

Spectre Syntax

usim_opt postl=0|1|2|3|4

SPICE Syntax

.usim_opt postl=0|1|2|3|4

Description

This is a high-level simulator option that allows you to control the trade-off between simulation
accuracy and performance.

postl=0 is designated for simulation of a pre-layout netlist file containing a few resistors and
capacitors. The Virtuoso UltraSim simulator does not perform RC filtering or reduction, except
shorting extremely small resistors, and grounding extremely small capacitors to allow stable
simulation.

postl=1, postl=2, and postl=3 are intended for post-layout simulation. As the postl level
is raised, the Virtuoso UltraSim simulator applies more aggressive RC reduction. As a result,
run time and memory usage are reduced at the cost of slightly degraded simulation accuracy.

For postl=4, most of the resistors in signal nets are eliminated and most coupling capacitors
are grounded. This produces a post-layout simulation where only grounded parasitic
capacitance is taken into account.

Table 4-1 Virtuoso UltraSim Post-Layout Options

Pre-Layout Post-Layout Post-Layout Post-Layout Post-Layout

postl 0 (default) 1 2 3 4

RC
reduction

no yes yes yes no

rcr_fmax
(GHz)

1.0 1.0 1.0 1.0 1.0

rshort (W) 1e-6 1e-3 0.01 0.1 100

rvshort (W) 1e-6 1e-3 0.01 0.1 100

cgnd (F) 1e-20 1e-16 1e-15 1e-14 1e-14
May 2010 253 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Example

Spectre Syntax:

usim_opt postl=1 rshort=1 subckt=VCO

SPICE Syntax:

.usim_opt postl=1 rshort=1 subckt=VCO

The Virtuoso UltraSim simulator applies postl=1 to all instances of subcircuit VCO. Any
resistors connected to signal nets in all instances, if the values of the resistors are less than
1 ohm, are short-circuited. Default values are used for all other options associated with
postl, such as rcr_fmax, rvshort, cgnd, and cgndr.

cgndr 0 0.01 0.1 0.1 0.3

Table 4-1 Virtuoso UltraSim Post-Layout Options, continued

Pre-Layout Post-Layout Post-Layout Post-Layout Post-Layout
May 2010 254 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Excluding Resistors and Capacitors from RC Reduction

preserve

Spectre Syntax

usim_opt preserve=1 inst=[res1 res2 cap1 cap2] model=[model1 model2..]
preserve_file=[“filename1” “filename2”...]

SPICE Syntax

.usim_opt preserve=1 inst=[res1 res2 cap1 cap2] model=[model1 model2..]
preserve_file=[“filename1” “filename2”...]

Description

The preserve=1 command is used to exclude resistors and capacitors from RC reduction.

If all of the options are used in the statement, the Virtuoso UltraSim simulator only uses the
resistors and capacitors shared between the specified options (that is, RC reduction options,
such as postl, rshort, and rvshort are applied only to the resistors and capacitors not
specified in this option).

Table 4-2 preserve=1 Options

Option Description

res1, res2 Specifies the resistors to be excluded from RC reduction (must use
full hierarchical name).

cap1, cap2 Specifies the capacitors to be excluded from RC reduction (must use
full hierarchical name).

filename1,
filename2...

The name of the files which contain the resistors and capacitors to
be excluded (full hierarchical name for resistors and capacitors
needs to be included in files).

model1, model2 Specifies the model names. The model names need to use the
resistor or capacitor model names (all instances of the model
specified are excluded from RC reduction).
May 2010 255 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Example

Spectre Syntax:

usim_opt preserve=1 inst=x1.x3.r1 preserve_file=[“inst.txt”]

SPICE Syntax:

.usim_opt preserve=1 inst=x1.x3.r1 preserve_file=[“inst.txt”]

The inst.txt file contains the following resistors:

X3.x2.res1

X2.res3

R1

tells the Virtuoso UltraSim simulator to exclude the x1.x3.r1, X3.x2.res1, X2.res3, and
R1 resistors from RC reduction.
May 2010 256 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Stitching Files

capfile

Spectre Syntax

usim_opt capfile=”<instance|subckt> file”

SPICE Syntax

.usim_opt capfile=”<instance|subckt> file”

Description

The capfile option specifies how to load a cap file into the Virtuoso UltraSim simulator.

Arguments

For more information about parsing options for cap files, refer to “Parsing Options for Parasitic
Files” on page 263.

Example

For the design shown in Figure 4-2 on page 243, the parasitic files need to be specified as
follows (Spectre syntax example):

path The full hierarchical path of the instance for which the cap file is prepared.
Wildcards are supported (for more information about wildcards, see
“Wildcard Rules” on page 55).

You can also specify the subcircuit name as the path. All instances of the
specified subcircuit are stitched. If the path is not specified, and the cap
file contains a .subckt statement, all instances with the same subcircuit
name are stitched (or the simulator assumes that the cap file is prepared
for the entire design, and the quotation marks can be omitted).

file The name of the parasitic file. The Virtuoso UltraSim simulator can read
compressed parasitic files in gz format (files need to have the .gz
extension).
May 2010 257 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
usim_opt spef="a a.spef" spf=”Top.spf.gz” capfile="b b.cap"

Note: You need to make sure the parasitic elements specified in the parasitic files do not
overlap and that Top.spf is extracted until the level for the a and b instances is reached (that
is, the file contains all elements inside top, excluding the elements in a and b).

dpf

Spectre Syntax

usim_opt dpf=”<instance|subckt> file”

SPICE Syntax

.usim_opt dpf=”<instance|subckt> file”

Description

The dpf option specifies how a parasitic DPF file is loaded into the Virtuoso UltraSim
simulator. You can also use dpf to stitch the instance section of a DSPF file, causing the
parasitic resistors and capacitors to be ignored. The simulator supports backannotation of
DPF files. Figure 4-3 on page 258 shows the process of DPF file stitching using the simulator.

Figure 4-3 Stitching a DPF Parasitic File

DSPF Instance Section

Hier. Spice Netlist
M1

M2

W=2
L=0.2
AD=3.6
AS=3.6
PD=6
PS=6

M1 out in vdd vdd pf W=4.05 L=0.4 AD=3.66
+ AS=3.68 PD=6.5 PS=6.6

M2 0 in out 0 nf W=2.02 L=0.2 AD=3.7 AS=3.7
+ PD=6.3 PS=6.3

W=4
L=0.4
AD=3.6
AS=3.6
PD=6
PS=6

Hier. Simulation with

M1

M2

W=2.02
L=0.2
AD=3.7
AS=3.7
PD=6.3
PS=6.3

W=4.05
L=0.4
AD=3.66
AS=3.66
PD=6.5
PS=6.6

Topology
Hierarchy

Device
Parameter

Schematic

Layout

Layout Parameters
May 2010 258 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
The Virtuoso UltraSim simulator preserves the hierarchy of the pre-layout netlist file when
stitching DPF files (same as SPF/DSPF files).

Arguments

For more information about parsing options for DPF files, refer to “Parsing Options for
Parasitic Files” on page 263.

Example

Spectre Syntax:

usim_opt dpf=“top.spf”

SPICE Syntax:

.usim_opt dpf=“top.spf”

or

Spectre Syntax:

usim_opt dpf=“top.spf.gz”

SPICE Syntax:

.usim_opt dpf=“top.spf.gz”

tells the Virtuoso UItraSim simulator to only stitch the instance section of the parasitic file
top.spf.

path The full hierarchical path of the instance for which the parasitic file is
prepared. Wildcards are supported (for more information about
wildcards, see “Wildcard Rules” on page 55).

You can also specify the subcircuit name as the path. All instances of
the specified subcircuit are stitched. If the path is not specified, and the
parasitic file contains a .subckt statement, all instances with the same
subcircuit name are stitched (or the simulator assumes that the parasitic
file is prepared for the entire design, and the quotation marks can be
omitted).

file The name of the parasitic file. The Virtuoso UltraSim simulator can read
compressed parasitic files in gz format (files need to have the .gz
extension).
May 2010 259 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spf

Spectre Syntax

usim_opt spf=”<instance|subckt> file”

SPICE Syntax

.usim_opt spf=”<instance|subckt> file”

Description

This option is used to specify how a parasitic DSPF file is loaded into the Virtuoso UltraSim
simulator.

Arguments

Example

Spectre Syntax:

usim_opt spf=a.dspf

SPICE Syntax:

.usim_opt spf=a.dspf

path The full hierarchical path of the instance for which the parasitic file is
prepared. Wildcards are supported (for more information about
wildcards, see “Wildcard Rules” on page 55).

You can also specify the subcircuit name as the path. All instances of
the specified subcircuit are stitched. If the path is not specified, and the
parasitic file contains a .subckt statement, all instances with the same
subcircuit name are stitched (or the simulator assumes that the parasitic
file is prepared for the entire design, and the quotation marks can be
omitted).

file_name The name of the parasitic file. The Virtuoso UltraSim simulator can read
compressed parasitic files in gz format (files need to have the .gz
extension).
May 2010 260 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Consider another example:

.subckt sub1 n1 n2

...

.ends sub1

.subckt sub2 m1 m2

...

.ends sub1

X1 node1 node2 sub1
X2 node3 node4 sub2
X3 node5 node6 sub2

If .usim_opt spf="X2 parasitic.dspf" is used, the stitching is limited to instance X2.
If .usim_opt spf="sub2 parasitic.dspf" is used, the simulator applies the stitching
to all sub2 instances, which include X2 and X3.

spef

Spectre Syntax

usim_opt spef=”<instance|subckt> file”

SPICE Syntax

.usim_opt spef=”<instance|subckt> file”

Description

This option is used to specify how a parasitic SPEF is loaded into the Virtuoso UltraSim
simulator.

Example

Spectre Syntax:

usim_opt spef=top.spef

SPICE Syntax:

.usim_opt spef=top.spef

For more information about parsing options for DSPF and SPEF files, refer to “Parsing
Options for Parasitic Files” on page 263.
May 2010 261 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Hierarchical SPEF

Description

The Virtuoso UltraSim simulator also supports stitching of hierarchical SPEF files produced
by the Cadence Assura™ physical verification tool. If you specify the SPEF file that
corresponds to the highest level of hierarchy of interest, the corresponding SPEF file for the
sub-levels is automatically loaded into the simulator via the *define statement (per the
convention adopted by Virtuoso UltraSim and Assura in which the first string of the *define
statement indicates the instance name of the sub-block and the second string indicates the
name of the SPEF file for the instance).

In general, the Assura RCX tool names the SPEF file and corresponding DPF file as follows:
blockname.spef and blockname.dpf (for example, vco.spef and vco.dpf). By
default, the Virtuoso UltraSim simulator automatically stitches the corresponding DPF file for
each stitched SPEF file, provided the DPF files exists in the path. The usim_opt
spfinstancesection=off option can be used to turn off stitching of the DPF file, useful
when you do not want to stitch the corresponding DPF file.

Example

The top level of the SPEF file is named top.spef and contains

*define X1 INV

*define X2 INV.spef

To invoke stitching, use the following statement (Spectre syntax example):

usim_opt spef=top.spef

The simulator searches for a file named INV.spef for the X1 and X2 instances. If
INV.spef is not found, the simulator issues a warning.

Note: You can specify the path in the *define statement and the .spef suffix can be
omitted.
May 2010 262 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Parsing Options for Parasitic Files

The Virtuoso UltraSim simulator provides you with the options needed to parse parasitic files.
Unless stated otherwise, parsing options are global and are only applicable to parasitic files
during stitching (not applicable to pre-layout netlist files).

The simulator supports the following parsing options:

■ cmin on page 265

■ cmingnd on page 266

■ cmingndratio on page 267

■ dpfautoscale on page 268

■ dpfscale on page 269

■ rmax on page 270

■ rmaxlayer on page 271

■ rmin on page 272

■ rminlayer on page 273

■ rvmin on page 274

■ speftriplet on page 275

■ spfbusdelim on page 276

■ spfcaponly on page 278

■ spfcrossccap on page 279

■ spffingerdelim on page 280

■ spfhierdelim on page 282

■ spfinstancesection on page 283

■ spfkeepbackslash on page 284

■ spfnamelookup on page 285

■ spfrcnet on page 287

■ spfrcreduction on page 288

■ spfrecover on page 289
May 2010 263 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
■ spfscalec on page 291

■ spfscaler on page 292

■ spfserres on page 293

■ spfserresmod on page 295

■ spfsplitfinger on page 297

■ spfswapterm on page 298

■ spfxtorintop on page 299

■ spfxtorprefix on page 300
May 2010 264 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
cmin

Spectre Syntax

usim_opt cmin=value

SPICE Syntax

.usim_opt cmin=value

Description

A parasitic capacitor less than cmin is discarded (open circuited) during RC stitching. The
default is 0.

Note: Capacitors in the pre-layout are not affected because they are not stitched.

Example

Spectre Syntax:

usim_opt cmin=1ff

SPICE Syntax:

.usim_opt cmin=1ff

tells the Virtuoso UltraSim simulator to discard any parasitic capacitors < 1 ff during stitching.
May 2010 265 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
cmingnd

Spectre Syntax

usim_opt cmingnd=value

SPICE Syntax

.usim_opt cmingnd=value

Description

A parasitic coupling capacitor less than cmingnd is grounded during RC stitching (default is
0).

Example

Spectre Syntax:

usim_opt cmingnd=1ff

SPICE Syntax:

.usim_opt cmingnd=1ff

tells the Virtuoso UltraSim simulator to ground a parasitic coupling capacitor during stitching
if the capacitor is < 1 ff.
May 2010 266 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
cmingndratio

Spectre Syntax

usim_opt cmingndratio=value

SPICE Syntax

.usim_opt cmingndratio=value

Description

A parasitic coupling capacitor is grounded during RC stitching if the ratio of its value to the
total node capacitance on both sides is less than cmingndratio (default is 0).

Note: The pre-layout capacitors are not affected.

Example

Spectre Syntax:

usim_opt cmingndratio=0.1

SPICE Syntax:

.usim_opt cmingndratio=0.1

tells the Virtuoso UltraSim simulator to ground a parasitic coupling capacitor during stitching
if the capacitor has a ratio < 0.1, when compared to the total node capacitance on both sides
of the capacitor.
May 2010 267 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
dpfautoscale

Spectre Syntax

usim_opt dpfautoscale=on|off

SPICE Syntax

.usim_opt dpfautoscale=on|off

Description

This option controls the behavior of the dpfscale option. When dpfautoscale is set to on,
dpfscale is set to the same value as the parameter scale. When dpfautoscale is set to
off, dpfscale is independent of the parameter scale. The dpfautoscale option is off by
default.

Example

Spectre Syntax:

usim_opt dpfautoscale=on

SPICE Syntax:

.usim_opt dpfautoscale=on

tells the Virtuoso UltraSim simulator to use the value of the parameter scale for dpfscale.
May 2010 268 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
dpfscale

Spectre Syntax

usim_opt dpfscale=value

SPICE Syntax

.usim_opt dpfscale=value

Description

This option specifies the scale factor for device geometry parameters (default is 1.0).

Note: The pre-layout device parameters are not affected by dpfscale.

Example

Spectre Syntax:

usim_opt dpfscale=2

SPICE Syntax:

.usim_opt dpfscale=2

tells the Virtuoso UltraSim simulator to scale all the device geometry parameters by a multiple
of two during stitching.
May 2010 269 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rmax

Spectre Syntax

usim_opt rmax=value

SPICE Syntax

.usim_opt rmax=value

Description

All parasitic resistors with resistances larger than the value specified by this option are treated
as open-circuited during stitching. This is useful to cut parasitic resistors that are
unreasonably large. This does not affect any resistors in pre-layout netlist. The default value
of the option is infinity.

This option is usually used when the resistance values appear suspicious, that is, non-
physical. In general, this indicates that the extraction is questionable. Large resistors, such as
1.0e+9, may cause simulation problems. The option rmax helps bypass any extraction
problem and continue with simulation.

Example

Spectre Syntax:

usim_opt rmax=1.0e+9

SPICE Syntax:

.usim_opt rmax=1.0e+9

tells the Virtuoso UltraSim simulator to treat all resistors with resistances greater than 1.0e+9
as open-circuited and cut such resistors.
May 2010 270 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rmaxlayer

Spectre Syntax

usim_opt rmaxlayer=value&layername

SPICE Syntax

.usim_opt rmaxlayer=value&layername

Description

This option applies the rmax value on the parasitic resistors of the specified layer. Multiple
statements can be specified. The option is used when the extracted resistance values are
unreasonably large on certain layers.

Examples

Spectre Syntax

usim_opt rmaxlayer=1000000&ptab

usim_opt rmaxlayer=1000000&ptab0

usim_opt rmaxlayer=1000000&ntap

SPICE Syntax

.usim_opt rmaxlayer=1000000&ptab

.usim_opt rmaxlayer=1000000&ptab0

.usim_opt rmaxlayer=1000000&ntap

tells the Virtuoso UltraSim simulator to treat any parasitic resistors on layers ptab, ptab0,
and ntap with value greater than 1000000 Ohm as open circuit for layers.
May 2010 271 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rmin

Spectre Syntax

usim_opt rmin=value

SPICE Syntax

.usim_opt rmin=value

Description

If rmin is specified, a parasitic resistor less than rmin is shorted during RC stitching (default
is 0).

Note: The pre-layout resistors are not affected by rmin.

Example

Spectre Syntax:

usim_opt rmin=1

SPICE Syntax:

.usim_opt rmin=1

tells the Virtuoso UltraSim simulator to short circuit parasitic resistors with a value < 1 ohm
during RC stitching.
May 2010 272 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rminlayer

Spectre Syntax

usim_opt rminlayer=value&layername

SPICE syntax

.usim_opt rminlayer=value&layername

Description

This option applies the rmin value on parasitic resistors of the specified layer. Multiple
statements can be specified. The option is used when the extracted resistance values are
unreasonably small on certain layers.

Examples

Spectre syntax:

usim_opt rminlayer=0.1001&nwell

usim_opt rminlayer=0.1001&dnwell

usim_opt rminlayer=0.1001&sub

SPICE syntax

.usim_opt rminlayer=0.1001&nwell

.usim_opt rminlayer=0.1001&dnwell

.usim_opt rminlayer=0.1001&sub

tells the Virtuoso UltraSim simulator to short any parasitic resistors on layers nwell, dnwell
and sub with value less than 0.1001 Ohm.
May 2010 273 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
rvmin

Spectre Syntax

usim_opt rvmin=value

SPICE Syntax

.usim_opt rvmin=value

Description

If rvmin is specified, a power net parasitic resistor less than rvmin is short circuited during
RC stitching (default is 0).

Note: The pre-layout rail resistors are not affected by rvmin.

Example

Spectre Syntax:

usim_opt rvmain=1

SPICE Syntax:

.usim_opt rvmain=1

tells the Virtuoso UltraSim simulator to short circuit the parasitic rail resistors with a value <
1 ohm during RC stitching.
May 2010 274 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
speftriplet

Spectre Syntax

usim_opt speftriplet=1|2|3

SPICE Syntax

.usim_opt speftriplet=1|2|3

Description

This option specifies which value should be used for stitching in the SPEF file. This is effective
only when the values in the SPEF file are represented by triplets (for instance,
0.325:0.41:0.495). The default is 2.

Example

Spectre Syntax:

usim_opt speftriplet=1

SPICE Syntax:

.usim_opt speftriplet=1

tells the Virtuoso UltraSim simulator to choose the first of the triplet values in the SPEF file
for stitching.
May 2010 275 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfbusdelim

Spectre Syntax

usim_opt spfbusdelim="\""

SPICE Syntax

.usim_opt spfbusdelim="\""

Description

This option specifies the bus delimiter in parasitic files, and is applicable to SPEF, DSPF, and
cap files. It also affiliates bus delimiter matching between the pre-layout netlist and the SPEF/
DSPF files, and is used when the bus delimiter in the pre-layout netlist file is different from
what is specified in the parasitic file.

The Virtuoso UltraSim simulator replaces the bus delimiter in the parasitic file with information
from spfbusdelim. Normally spfbusdelim is set the same as the pre-layout netlist file
(default is <>).

Notes:

■ For SPEF/DSPF files, when the bus_delimiter statement is not used in the parasitic
files, the simulator automatically converts braces {} and square brackets []into angle
brackets <>.

■ To define the delimiter as ” or \, the forward slash (\) symbol is required (for example,
usim_opt spfbusdelim=”\””).

Examples

1. The name in the pre-layout netlist file is qn<5> and the name in the SPEF file is qn[5].
If there is no bus_delimiter statement, qn[5] is automatically converted to qn<5>
since qn<5> exists in the pre-layout netlist file. The simulator finds the match and stitching
is successful.

If bus_delimiter : [] is used in the SPEF file, qn[5] does not change because the
Virtuoso UltraSim simulator uses the definition of bus_delimiter specified in the
SPEF file. However, there is a mismatch in the pre-layout netlist file because the name
is qn<5>. You can use the usim_opt spfbusdelim=<> option to resolve this problem.

2. The name in the pre-layout netlist file is qn[5] and the name in the SPEF file is qn{5}.
If the bus_delimiter : {} statement is located in the SPEF file, qn{5} remains the
May 2010 276 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
same (that is, the name is not converted to qn<5>). There is an obvious mismatch
between the pre-layout netlist file and the SPEF file. You can set usim_opt
spfbusdelim=[] to resolve this problem.
May 2010 277 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfcaponly

Spectre Syntax

usim_opt spfcaponly=no|yes

SPICE Syntax

.usim_opt spfcaponly=no|yes

Description

This option controls whether or not to treat a DSPF/SPEF file as a capfile.

Arguments

Example

Spectre Syntax:

usim_opt spfcaponly=yes

SPICE Syntax:

.usim_opt spfcaponly=yes

tells the simulator to read in and backannotate only the total node capacitance of each net.

yes The Virtuoso UltraSim simulator stitches the parasitic file as a node
capacitance file (that is, the simulator only parses and backannotates the
total node capacitance).

no The simulator performs a routine parse and backannotation of the DSPF/
SPEF file (default).
May 2010 278 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfcrossccap

Spectre Syntax

usim_opt spfcrossccap=on|off|search|onsearch

SPICE Syntax

.usim_opt spfcrossccap=on|off|search|onsearch

Description

The spfcrossccap option specifies stitching of matched and unmatched coupling
capacitors. In general, a coupling capacitor is instantiated in both nets of the capacitor and is
called a matched coupling capacitor (otherwise, it is called an unmatched coupling capacitor).

Arguments

Example

Spectre Syntax:

usim_opt spfcrossccap=onsearch

SPICE Syntax:

.usim_opt spfcrossccap=onsearch

tells the Virtuoso UltraSim simulator to find matched and unmatched coupling capacitors and
to stitch them as coupling capacitors.

on The Virtuoso UltraSim simulator stitches matched cross coupling
capacitors and ignores unmatched coupling capacitors.

Note: If there are no unmatched cross coupling capacitors, on is
equivalent to onsearch and off is equivalent to search.

off The simulator grounds cross coupling capacitors (default).

search The simulator grounds matched and unmatched coupling capacitors.

onsearch The simulator stitches matched and unmatched coupling capacitors.
May 2010 279 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spffingerdelim

Spectre Syntax

usim_opt spffingerdelim=“$”

SPICE Syntax

.usim_opt spffingerdelim=“$”

Description

The spffingerdelim option specifies the fingered delimiter symbol (default is null). The
original device can be split into several devices. For example, a large MOSFET device can be
split into several smaller MOSFETs that are connected in parallel. The names for these
devices are created by adding the finger postfix to the name of the original device. This postfix
normally consists of integers and should be separated from the original name by a special
symbol (finger delimiter). If the RC extractor uses any symbol as a finger delimiter, it needs
to be specified by spffingerdelim.

Note: To define the delimiter as ” or \, the forward slash (\) symbol is required (for example,
usim_opt spffingerdelim=”\””).

Example

Spectre Syntax:

usim_opt spffingerdelim=@

SPICE Syntax:

.usim_opt spffingerdelim=@

tells the Virtuoso UltraSim simulator that the DSPF file uses the @ symbol as the finger
delimiter.

Stitching of Parameterized Subcircuit Instances

Parameterized subcircuits with one level of hierarchy are often used in device modeling of
advanced technologies (for example, inline subcircuits in Spectre MOSFET models for 65 nm
and below). The Virtuoso UltraSim simulator can also be used to stitch this type of instance.

For example,
May 2010 280 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
In the pre-layout netlist file, xM1 is an instance of the parameterized subcircuit nmos.

xM1 drn gate src gnd nmos W=1u L=0.5u m=1

.subckt nmos drn gate src bulk W=2u L=1u m=1

.param W0=W*2 L0=L+1 Main drn g1 src bulk nfet w=W0 L=L0

R1 gate g1 2

.model nmos nfet level=49 version=3.2 ...

.ends

The instance section of the DSPF file contains the following:

*Instance Section

xM1 xM1:drn xM1:gate xM1:src xM1:bulk NMOS w=1.4u L=0.6u m=1

After stitching, the w (width) and l (length) parameters for xM1.Main are 2.8 u and 1.6 u,
respectively.
May 2010 281 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfhierdelim

Spectre Syntax

usim_opt spfhierdelim=“.”

SPICE Syntax

.usim_opt spfhierdelim=“.”

Description

This option specifies the hierarchical delimiter in the DSPF and SPEF files, and the cap file.
If spfhierdelim and the hierarchical divider statement in the DSPF file are set, the
hierarchical divider in the DSPF and SPEF file has a higher priority (the default is /).

Note: To define the delimiter as ” or \, the forward slash (\) symbol is required (for example,
usim_opt spfhierdelim=”\””).

Example

Spectre Syntax:

usim_opt spfhierdelim=.

SPICE Syntax:

.usim_opt spfhierdelim=.

tells the Virtuoso UltraSim simulator to treat the period (.) symbol in the cap file as the
hierarchical delimiter for cap file stitching.
May 2010 282 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfinstancesection

Spectre Syntax

usim_opt spfinstancesection=on|off

SPICE Syntax

.usim_opt spfinstancesection=on|off

Description

This option controls the backannotation of device parameters in the instance section of the
DSPF file. It is only applicable to the DSPF file specified by the spf option, and it does not
apply to the SPEF, DPF, or cap files. If spfinstancesection is turned off, the instance
section is ignored (that is, the device parameters are not changed during stitching). The
default is on.

Examples

In the following Spectre syntax example

usim_opt spf=a.dspf spfinstancesection=off dpf=a.dspf

tells the Virtuoso UltraSim simulator not to stitch the instance section for a.dspf because
the a.dspf file is first defined by the spf option and spfinstancesection is set to off.
The simulator then stitches the device section because a.dspf is defined next by the dpf
option.

The following SPICE syntax example has the same outcome as the previous example.

.usim_opt spf=a.dspf (with default pfinstancesection being on)
May 2010 283 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfkeepbackslash

Spectre Syntax

usim_opt spfkeepbackslash=on|off

SPICE Syntax

.usim_opt spfkeepbackslash=on|off

Description

The spfkeepbackslash option defines the back slash (\) symbol, used for net, instance,
and other design component names, as a normal character instead of an Escape character
(default is off).

Example

Spectre Syntax:

usim_opt spfkeepbackslash=on

SPICE Syntax

.usim_opt spfkeepbackslash=on

tells the Virtuoso UltraSim simulator to treat the \ symbol as a normal character.
May 2010 284 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfnamelookup

Spectre Syntax

usim_opt spfnamelookup=matchx

SPICE Syntax

.usim_opt spfnamelookup=matchx

Description

This option specifies the Virtuoso UltraSim simulator name lookup method (default is none).
If this option is set, the simulator tries to find matching elements in the following order, until a
match is found:

1. “As is” match

2. Match with an extra leading X character in every level of the name hierarchy

3. Match without a leading X character in every level of the name hierarchy

Note: spfnamelookup also takes care of case sensitivity.

A valuable application of spfnamelookup is to stitch a HSPICE DSPF file with a Spectre
netlist or Spectre-like SPEF file with a HSPICE netlist file. There is a different convention
regarding subcircuit names in HSPICE and Spectre: HSPICE requires a leading X in the
subcircuit instance name, whereas Spectre does not have this restriction. The
spfnamelookup option can also help find matches when HSPICE and Spectre netlist files
are mixed.

It is important to note that using this option slows down the stitching process. Also, the
simulator does not change the instance name in the parasitic file when running the
spfnamelookup option.

Example

Spectre Syntax:

usim_opt spfnamelookup=matchx

SPICE Syntax:

.usim_opt spfnamelookup=matchx
May 2010 285 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
tells the Virtuoso UltraSim simulator to find matching elements, in the order specified above
(if a match is found, the simulator continues to stitch the parasitics, otherwise an error
message is issued).
May 2010 286 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfrcnet

Spectre Syntax

usim_opt spfrcnet=net_name

SPICE Syntax

.usim_opt spfrcnet=net_name

Description

This option specifies the name of the net to be stitched with parasitic resistors and capacitors.
The other nets are stitched with lumped capacitances. Multiple nets can be specified on
separate lines.

Example

Spectre Syntax:

usim_opt spfrcnet=vcc

usim_opt spfrcnet=gnd

SPICE Syntax:

.usim_opt spfrcnet=vcc

.usim_opt spfrcnet=gnd

tells the Virtuoso UltraSim simulator to stitch parasitic resistors and capacitors for both vcc
and gnd nets and to stitch all other nets with lumped capacitances.
May 2010 287 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfrcreduction

Spectre Syntax

usim_opt spfrcreduction=on|off

SPICE Syntax

.usim_opt spfrcreduction=on|off

Description

The spfrcreduction option controls RC reduction during RC stitching. If
spfrcreduction is on (default), the RC reduction algorithm can be applied during stitching
(depending on how the RC reduction options are set). Using this option can improve
simulation performance and memory. If spfrcreduction is off, RC reduction is not
applied during stitching, regardless of the RC reduction option settings.

Example

Spectre Syntax:

usim_opt spfrcreduction=on

SPICE Syntax:

.usim_opt spfrcreduction=on

tells the Virtuoso UltraSim simulator to perform RC reduction during RC stitching if the RC
reduction options, such as postl (1|2|3|4), are enabled. If postl=0, the simulator does
not perform RC reduction, even it spfrcreduction=on.
May 2010 288 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfrecover

Spectre Syntax

usim_opt spfrecover=0|1|2|3|4

SPICE Syntax

.usim_opt spfrecover=0|1|2|3|4

Description

This option controls how the Virtuoso UltraSim simulator handles erroneous parasitic nets. If
the definition of a net in a parasitic file contains an error, you can use the spfrecover
option to control how this erroneous net is stitched.

Arguments

0 Erroneous nets are not stitched (default).

1 Only the total capacitance is stitched for an erroneous net.

2 The Virtuoso UltraSim simulator takes some corrective measures for erroneous
nets. For an instance:

■ Specified in the parasitic files, but not found in the pre-layout netlist file, the
simulator tries to accept nodes associated with this instance

■ Located in the pre-layout netlist file, but missing in the parasitic file, the simulator
maintains the original connectivity

After the simulator makes these corrections, if the net still has errors in its parasitic
definitions, only the total capacitance of the net is stitched.

3 The simulator tries to stitch swapped devices and devices with gate swapping, along
with the elements described in level 2.

4 To speed up the stitching process, the simulator tries to stitch what can be stitched
and discard any devices and subnodes that have errors without any repair. This is
recommended for big nets, such as for the power nets of a full chip design when the
performance of spfrecover=2|3 is not good enough.
May 2010 289 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Example

Spectre Syntax:

usim_opt spfrecover=3

SPICE Syntax:

.usim_opt spfrecover=3

tells the Virtuoso UltraSim simulator to accept nodes associated with instances not found in
the pre-layout netlist file. The simulator keeps the original connectivities of all instances that
are missing in the DSPF/SPEF file, but exist in the pre-layout netlist file, and also tries to stitch
swapped devices. If erroneous nets still exist after all of the corrective measures are taken by
the simulator, it then tries to stitch the total capacitances.
May 2010 290 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfscalec

Spectre Syntax

usim_opt spfscalec=value

SPICE Syntax

.usim_opt spfscalec=value

Description

This option specifies the scale factor for parasitic capacitors (default is 1.0).

Note: The pre-layout capacitors are not affected by spfscalec.

Example

Spectre Syntax:

usim_opt spfscalec=1.5

SPICE Syntax:

.usim_opt spfscalec=1.5

tells the Virtuoso UltraSim simulator to scale all the capacitors in the parasitic file by 1.5 times
during stitching.
May 2010 291 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfscaler

Spectre Syntax

usim_opt spfscaler=value

SPICE Syntax

.usim_opt spfscaler=value

Description

This option specifies the scale factor for parasitic resistors (default is 1.0).

Note: The pre-layout resistors are not affected by spfscaler.

Example

Spectre Syntax:

usim_opt spf spfscaler=2.0

SPICE Syntax:

.usim_opt spf spfscaler=2.0

tells the Virtuoso UltraSim simulator to scale all the resistors in the parasitic file by a multiple
of two during stitching.
May 2010 292 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfserres

Spectre Syntax

usim_opt spfserres=instance_name

SPICE Syntax

.usim_opt spfserres=instance_name

Description

This option specifies the instance name of the resistor that has serial fingers.

Use this option to stitch serial resistance fingers correctly. At times, a schematic resistor with
large resistance value is represented as serpentine resistors in the layout, as shown below:

These serpentine resistors are extracted as serial resistor fingers for the schematic resistor.

Note: You can specify multiple instance names using multiple spfserres options.

Example

Spectre Syntax:

usim_opt spfserres=X1.XRR1

In the above example, X1.XRR1 is the instance name of a schematic resistor, which is
represented by resistors that have two or more serial fingers. This setting ensures the correct
stitching of the X1.XRR1 schematic resistor.

SPICE Syntax:

Layout Schematic

------ R=100 -----------

------ R@1=100 -------

------ R=200 -------- |
May 2010 293 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
.usim_opt spfserres=X1.XRR1

In the above example, X1.XRR1 is the instance name of a schematic resistor, which is
represented by resistors that have two or more serial fingers. This setting ensures the correct
stitching of the X1.XRR1 schematic resistor.
May 2010 294 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfserresmod

Spectre Syntax

usim_opt spfserresmod=model_name|subckt_name

SPICE Syntax

.usim_opt spfserresmod=model_name|subckt_name

Description

This option specifies the model or subckt name for resistors that have serial fingers. When a
model or a subckt is used for a resistor, it typically signifies the boundary of extraction.

Use this option to stitch serial resistance fingers correctly. At times, a schematic resistor with
large resistance value is represented as serpentine resistors in the layout, as shown below:

These serpentine resistors are extracted as serial resistor fingers for the schematic resistor.

Note: You can specify multiple model names and/or subckt names using multiple
spfserresmod options.

Example

Spectre Syntax:

usim_opt spfserresmod=POLY

In the above example, POLY is the model name. This setting ensures the correct stitching of
a schematic resistor, which is represented by resistors that have two or more serial fingers,
and is an instance of the model POLY.

Layout Schematic

------ R=100 -----------

------ R@1=100 -------

------ R=200 -------- |
May 2010 295 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
SPICE Syntax:

.usim_opt spfserresmod=POLY

In the above example, POLY is the model name. This setting ensures the correct stitching of
a schematic resistor, which is represented by resistors that have two or more serial fingers,
and is an instance of the model POLY.
May 2010 296 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfsplitfinger

Spectre Syntax

usim_opt spfsplitfinger=on|off

SPICE Syntax

.usim_opt spfsplitfinger=on|off

Description

This option specifies whether all fingers are simulated as individual devices
(spfsplitfinger=on) or all fingers are merged into one device and average values, such
as width and length, are applied to the device (spfsplitfinger=off).
May 2010 297 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfswapterm

Spectre Syntax

usim_opt spfswapterm=”terminal1 terminal2 subckt”

SPICE Syntax

.usim_opt spfswapterm=”terminal1 terminal2 subckt”

Description

This option allows the swapping of terminal1 and terminal2 of subckt during
stitching. UltraSim stitching considers terminals swappable for the following primitive devices:

■ Drain and source of a primitive mosfet

■ Two terminals of a capacitor

■ Two terminals of a resistor

This sometimes causes stitching problems if the primitive device, say a mosfet, is modeled
by a parameterized subckt that is complicated. For example,

.subckt mosfet d g s b w1=1 l1=1
m1 d g s b nmos w=w1 l=l1
d1 s b didoe
d2 d b didoe
.ends

In this example, due to the existence of diodes, stitching considers d and s to be non-
swappable. However, using the option spfswapterm, you can define d and s to be
swappable for the purpose of stitching.

Example

Spectre Syntax:

usim_opt spfswapterm=”n1 n2 npres”

SPICE Syntax:

.usim_opt spfswapterm=”n1 n2 npres”

tells the Virtuoso UltraSim simulator that the terminals n1 and n2 of the subckt npres are
swappable terminals.
May 2010 298 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfxtorintop

Spectre Syntax

usim_opt spfxtorintop=yes|no

SPICE Syntax

.usim_opt spfxtorintop=yes|no

Description

This option helps stitching of primitive elements at the top-level within the extraction scope. It
is used along with spfxtorprefix. When spfxtorintop is set to yes, the substitution
specified by spfxtorprefix is applicable not only to top-level primitive elements but also
to top-level instances names.

Example

This is an example of primitive elements at the top-level within the extraction scope. Consider
that subckt s1 is extracted. This subckt is defined in the pre-layout as:

subckt s1 in out vss vdd
N1 out1 in vss vss nmos w=1 l=0.5
P1 out1 in vdd vdd pmos w=2 l=0.5
X1 out1 out vss vdd inv
ends

subckt in out inv
M1 out in vss vss nmos w=2 l=0.5
M2 out in vdd vdd pmos w=4 l=0.5
ends

In the extracted DSPF for subckt s1, the primitive element N1 is at the top-level of the
extraction scope subckt s1. If the element name in the DSPF file for element N1 is MN1, the
following option helps the stitching process find the right match:

.usim_opt spfxtorintop=yes

.usim_opt spfxtorprefix="MN N"
May 2010 299 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfxtorprefix

Spectre Syntax

usim_opt spfxtorprefix="<substring> [<replace_substring>]"

SPICE Syntax

.usim_opt spfxtorprefix="<substring> [<replace_substring>]"

Description

The spfxtorprefix option replaces substring (that is, the xtorprefix used in the RC
extractor) with replace_substring. Based on the requirement that a DSPF file must be
used as a HSPICE netlist file, all MOSFETs need to begin with the m symbol, all diodes with
the d symbol, and so on. The hierarchical names for devices must contain leading symbols
based on type, in order for HSPICE to recognize the names. Some RC extractors append a
different prefix to the hierarchical name, such as MX (this prefix is considered a xtorprefix).

To match the device names in the parasitic file with the names in the pre-layout netlist file, you
need to specify spfxtorprefix to be the same as what is used by the RC extractor. If it
becomes necessary to change the xtorprefix substring to a different substring, specify
the replace_substring option. There is no limit to the number of xtorprefices that you
can specify (default is none).

Example

Spectre Syntax:

usim_opt spfxtorprefix="MX_ X" spfxtorprefix="D" spfxtorprefix="R XI"

SPICE Syntax:

.usim_opt spfxtorprefix="MX_ X" spfxtorprefix="D" spfxtorprefix="R XI"

tells the Virtuoso UltraSim simulator to replace all instance names starting with MX_ with X,
to remove the D prefix from all instance names starting with D, and to replace prefix R in all
instance names with XI.
May 2010 300 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Selective RC Backannotation

The Virtuoso UltraSim simulator supports a set of options for selective RC backannotation.
All the options listed in this section are global.

The simulator supports the following selective RC backannotation options:

■ spfactivenet on page 302

■ spfactivenetfile on page 303

■ spfchlevel on page 304

■ spfcnet on page 305

■ spfcnetfile on page 306

■ spfhlevel on page 307

■ spfnetcmin on page 308

■ spfrcnetfile on page 309

■ spfskipnet on page 310

■ spfskipnetfile on page 311

■ spfskippwnet on page 312

■ spfskipsignet on page 313
May 2010 301 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfactivenet

Spectre Syntax

usim_opt spfactivenet=net_name

SPICE Syntax

.usim_opt spfactivenet=net_name

Description

This option specifies the nets to be stitched by name (default is none). All other nets are
ignored and will not be stitched. Wildcards are supported and you can specify as many nets
as needed.

For more information about wildcards, see “Wildcard Rules” on page 55.

Note: When multiple nets are specified, the Virtuoso UltraSim simulator requires the nets to
be on separate lines (see example below).

Example

Spectre Syntax:

usim_opt spfactivenet=nodeA

usim_opt spfactivenet=nodeB

SPICE Syntax:

.usim_opt spfactivenet=nodeA

.usim_opt spfactivenet=nodeB

tells the Virtuoso UltraSim simulator to stitch the parasitics associated only with nodeA and
nodeB (all other nets are not stitched).
May 2010 302 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfactivenetfile

Spectre Syntax

usim_opt spfactivenetfile=<file_name>

SPICE Syntax

.usim_opt spfactivenetfile=<file_name>

Description

This option allows you to specify the nets that need to be stitched as a list in a text file called
file_name (only one file can be specified).

It is important to note if spfactivenet or spfactivenetfile is defined, only the
specified nets are stitched. Also, you can use the acheck statement to generate the active
nets file.

Example

Spectre Syntax:

usim_opt spfactivenetfile=nets.tex

SPICE Syntax:

.usim_opt spfactivenetfile=nets.tex

nets.tex file format:

netA

netB

netC

tells the Virtuoso UltraSim simulator to stitch the parasitics associated with the nets specified
in the nets.tex file, and to ignore the other nets.
May 2010 303 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfchlevel

Spectre Syntax

usim_opt spfchlevel=value

SPICE Syntax

.usim_opt spfchlevel=value

Description

The spfchlevel option allows you to select the net for stitching by its hierarchy level. If the
net name has a hierarchy level less than spfchlevel, the net is stitched (otherwise, only the
total capacitance is added to the net node). The default is 1000 or the lowest level.

Example

Spectre Syntax:

usim_opt spfchlevel=10

SPICE Syntax:

.usim_opt spfchlevel=10

tells the Virtuoso UltraSim simulator to stitch nets that have a hierarchical level < 10.
May 2010 304 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfcnet

Spectre Syntax

usim_opt spfcnet=net_name

SPICE Syntax

.usim_opt spfcnet=net_name

Description

This option specifies the net that will have its total capacitance stitched and all other parasitic
components associated with this net are ignored (default is none). Wildcards are supported
and you can specify as many nets as needed.

For more information about wildcards, see “Wildcard Rules” on page 55.

Example

Spectre Syntax:

usim_opt spfcnet=netA

SPICE Syntax:

.usim_opt spfcnet=netA

tells the Virtuoso UltraSim simulator to stitch only the total capacitance of netA and to ignore
other parasitics associated with netA.
May 2010 305 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfcnetfile

Spectre Syntax

usim_opt spfcnetfile=<file_name>

SPICE Syntax

.usim_opt spfcnetfile=<file_name>

Description

This option has the same functionality as spfcnet with the exception that all the nets are
specified as a list in a file named file_name. Only one file can be specified.

Example

Spectre Syntax:

usim_opt spfcnetfile=nets.tex

SPICE Syntax:

.usim_opt spfcnetfile=nets.tex

nets.tex file format:

netA

netB

netC

tells the Virtuoso UltraSim simulator to stitch only the total node capacitance for all nets
specified in the nets.tex file, and to ignore all the other parasitics associated with these
nets.
May 2010 306 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfhlevel

Spectre Syntax

usim_opt spfhlevel=value

SPICE Syntax

.usim_opt spfhlevel=value

Description

This option allows you to select the net for stitching by its hierarchy level. If a net name has a
hierarchy level more than or equal to spfhlevel, all the parasitics associated with the net
are stitched (otherwise, only the total capacitance is added to the net node). The default is -
1 or the top level.

Example

Spectre Syntax:

usim_opt spfhlevel=10

SPICE Syntax:

.usim_opt spfhlevel=10
May 2010 307 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfnetcmin

Spectre Syntax

usim_opt spfnetcmin=value

SPICE Syntax

.usim_opt spfnetcmin=value

Description

The spfnetcmin option allows you to select the net for stitching by the value of its total node
capacitance. If the total node capacitance exceeds spfnetcmin, the net is stitched. That is,
all the parasitics associated with the net are stitched correctly (otherwise, only the total
capacitance is added to the net node). The default is 0.0.

Example

Spectre Syntax:

usim_opt spfnetcmin=1ff

SPICE Syntax:

.usim_opt spfnetcmin=1ff

tells the Virtuoso UltraSim simulator to stitch the nets, including all the parasitic components
of the nets, with a total node capacitance > 1 ff (if the total capacitance is less than or equal
to 1 ff, only the total capacitance is stitched).
May 2010 308 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfrcnetfile

Spectre Syntax

usim_opt spfrcnetfile=<file_name>

SPICE Syntax

.usim_opt spfrcnetfile=<file_name>

Description

This option allows you to specify the nets that need to be stitched as a list in the specified
file_name (only one file can be specified).

Important

If spfrcnet or spfrcnetfile is defined, only the specified nets are stitched with
RC and the remaining nets in the DSPF/SPEF files are stitched with C-only.

Example

Spectre Syntax:

usim_opt spfrcnetfile=nets.tex

SPICE Syntax:

.usim_opt spfrcnetfile=nets.tex

nets.tex file takes the following format:

netA

netB

netC

tells the Virtuoso UltraSim simulator to stitch the parasitic RC associated with the nets
specified in the nets.text file, and to stitch C only for the rest of the nets in the DSPF file.
May 2010 309 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfskipnet

Spectre Syntax

usim_opt spfskipnet=net_name

SPICE Syntax

.usim_opt spfskipnet=net_name

Description

This option specifies the net to be skipped by name and all parasitic components of the net
are not stitched (default is none). Wildcards are supported and you can specify as many nets
as needed.

For more information about wildcards, see “Wildcard Rules” on page 55.

Note: If multiple nets need to be specified, the nets must be placed in separate lines.

Example

Spectre Syntax:

usim_opt spfskipnet=nodeA

SPICE Syntax:

.usim_opt spfskipnet=nodeA

tells the Virtuoso UltraSim simulator not to stitch the parasitics associated with nodeA.
May 2010 310 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfskipnetfile

Spectre Syntax

usim_opt spfskipnetfile=file_name

SPICE Syntax

.usim_opt spfskipnetfile=file_name

Description

This option allows you to specify the nets to be skipped as a list in a text file called
file_name. Only one file can be specified.

Example

Spectre Syntax:

usim_opt spfskipnetfile=nets.tex

SPICE Syntax:

.usim_opt spfskipnetfile=nets.tex

nets.tex file format:

netA

netB

netC

tells the Virtuoso UltraSim simulator not to stitch the parasitics associated with netA, netB,
and netC.

Note: The net names in the file need to be located on separate lines.
May 2010 311 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfskippwnet

Spectre Syntax

usim_opt spfskippwnet=on|off

SPICE Syntax

.usim_opt spfskippwnet=on|off

Description

This option allows you to skip stitching for parasitics associated with the nets that are
connected to DC voltage sources. These nets usually contain a large number of parasitics,
and in most types of analyses, do not affect the simulation results and can be omitted. If the
stitching of power nets is important, set spfskippwnet to off. The default is on.

Example

Spectre Syntax:

usim_opt spfskippwnet=off

SPICE Syntax:

.usim_opt spfskippwnet=off

tells the Virtuoso UltraSim simulator to stitch the parasitics of nets connected to DC voltages.
May 2010 312 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfskipsignet

Spectre Syntax

usim_opt spfskipsignet=on|off

SPICE Syntax

.usim_opt spfskipsignet=on|off

Description

The spfskipsignet option allows you to skip stitching for parasitics associated with signal
nets (default is off).

Note: If spfskippwnet=on and spfskipsignet=on, no single nets are stitched.

Example

Spectre Syntax:

usim_opt spfskipsignet=on

SPICE Syntax:

.usim_opt spfskipsignet=on

tells the Virtuoso UltraSim simulator to ignore stitching parasitics for all the signal nets.
May 2010 313 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Error/Warning Message Control Options for Stitching

The Virtuoso UltraSim simulator error and warning messages generated during stitching are
printed in the netlistname.spfrpt file, and the cumulative (statistics) report is printed to
the screen and a log file. The default number of error and warning messages is limited to 50.
If you need to see more messages, increase the limit by using the spfmaxerrormsg or
spfmaxwarnmsg options.

Errors that cannot be corrected are issued as error messages and correctable errors are
issued as warning messages. The Virtuoso UltraSim simulator is able to print out notes that
you can use to track the stitching process. You can also control the level of reporting with the
spferrorreport option.

The Virtuoso UltraSim simulator supports the following error and warning message control
options for stitching (all options are global).

spferrorreport

Spectre Syntax

usim_opt spferrorreport=0|1|2

SPICE Syntax

.usim_opt spferrorreport=0|1|2

Description

Use this option to specify the level of error reporting.

Arguments

0 Reporting is turned off

1 Only error and warning messages are printed in the file (default)

2 All messages are printed in the file
May 2010 314 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Example

Spectre Syntax:

usim_opt spferrorreport=0

SPICE Syntax:

.usim_opt spferrorreport=0

tells the Virtuoso UltraSim simulator not to report any information (error, warning, or
information messages).

spfmaxerrormsg

Spectre Syntax

usim_opt spfmaxerrormsg=value

SPICE Syntax

.usim_opt spfmaxerrormsg=value

Description

This option specifies the maximum number of backannotation errors reported by the
simulator (default is 50).

Example

Spectre Syntax:

usim_opt spfmaxerrormsg=1000

SPICE Syntax:

.usim_opt spfmaxerrormsg=1000

tells the Virtuoso UltraSim simulator to print out up to 1,000 error messages.
May 2010 315 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
spfmaxwarnmsg

Spectre Syntax

usim_opt spfmaxwarnmsg=value

SPICE Syntax

.usim_opt spfmaxwarnmsg=value

Description

This option specifies the maximum number of warning messages reported during stitching
(default is 50).

Example

Spectre Syntax:

usim_opt spfmaxwarngmsg=1000

SPICE Syntax:

.usim_opt spfmaxwarngmsg=1000

tells the Virtuoso UltraSim simulator to print out up to 1,000 warning messages.

Stitching Statistical Reports

The Virtuoso UltraSim simulator reports stitching statistics in a log file (for example, how
many resistors or capacitors are stitched). The following is an example of a stitching report:

Reading SPF file ./ring_top.spef line 32 (2.5%)

Reading SPF file ./ring_top.spef line 160 (19.7%)

Reading SPF file ./ring_top.spef line 285 (36.6%)

Reading SPF file ./ring_top.spef line 405 (51.2%)

Reading SPF file ./ring_top.spef line 533 (68.5%)

Reading SPF file ./ring_top.spef line 658 (85.4%)

Reading SPF file ./ring_top.spef line 777 (100.0%)

SPF Parsing: user time: 0:00:00 (0.010 sec), system time: 0:00:00 (0.000 sec),
real time: 0:00:00 (0.010 sec)

SPF Parsing: memory: 0 B total: 15.2684 MB
May 2010 316 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
SPF Collect nets: user time: 0:00:00 (0.000 sec), system time: 0:00:00 (0.000 sec),
real time: 0:00:00 (0.000 sec)

SPF Collect nets: memory: 0 B total: 15.2684 MB

Back annotation: user time: 0:00:00 (0.000 sec), system time: 0:00:00 (0.000 sec),
real time: 0:00:00 (0.000 sec)

Back annotation: memory: 131.0399 KB total: 15.3994 MB

 Nets | parsed 6| expanded 6| errors 0

 Capacitors| parsed 485| expanded 141| stitch 70

 Resistors | parsed 110| expanded 98| stitch 49

 New nodes | added 90| | net coll 3

 nets stitched with C-only 0 nets stitched with RC 6

 0 errors and 13 warnings are issued (see file "my_input.spef.spfrpt")

Messages statistics

=====================

Shortened R/C excluded 6

Dangling R/C terminal 12

Subckt is detected with top path 1

Instance is duplicated or fingered 6

Stitching Maximum Memory usage 15399456

TotalFlatRBefore = 0

TotalFlatCBefore = 0

TotalFlatRAfter = 98

TotalFlatCAfter = 140

TotalHierRBefore = 0

TotalHierCBefore = 0

TotalHierRAfter = 49

TotalHierCAfter = 70

CircuitCountFlatBefore= 10

CircuitCountHierBefore= 4

BranchCountFlatBefore = 4

BranchCountHierBefore = 3

LeafCountFlatBefore = 6
May 2010 317 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
LeafCountHierBefore = 1

CircuitCountFlatAfter = 16

CircuitCountHierAfter = 9

BranchCountFlatAfter = 4

BranchCountHierAfter = 3

LeafCountFlatAfter = 12

LeafCountHierAfter = 6

StitchedNetsFlat = 6

StitchedNetsHier = 3

NetParsed = 6

NetExpandeded = 6

NetStitched = 3

NetStitchRatio = 100.00%

NetCompressRatio = 50.00%

Rparsed = 110

Rexpanded = 98

Rstitched = 49

RStitchRatio = 89.00%

RCompressRatio = 50.00%

CgParsed = 92

CgExpanded = 141

CgStitched = 70

CgStitchRatio = 153.00%

CgCompressRatio = 49.00%

CcParsed = 393

CcExpanded = 0

CcStitched = 0

CcStitchRatio = 0.00%

CcCompressRatio = 0.00%

HierNodesBefore = 7

FlatNodesBefore = 9

HierNodesAfter = 44

FlatNodesAfter = 83

AverageReduction = 100.0

Nets(RC<100) = 6

NetsH(RC<100) = 3

NetsHR(RC<100) = 3

Splitted ckts = 2

Created RC ckts = 3

Total/merged devpaths = 18/0
May 2010 318 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
Frequently Asked Questions

How can I minimize memory consumption?

When simulating a flat post-layout design, you may run out of memory. To minimize memory
consumption, use one of the following Virtuoso UltraSim simulator options.

keepparaname

Spectre Syntax

usim_opt keepparaname=0|1

SPICE Syntax

.usim_opt keepparaname=0|1

Description

The keepparaname option allows you to choose between preserving or not preserving the
names of RC elements during parsing (default is 1). The option reduces memory usage when
the names are not preserved and is only applicable to designed RCs (not parasitic RCs if the
parasitics are stitched). If you set usim_opt keepparaname=0, the names of RC elements
are not saved, in order to reduce memory usage.

Note: You cannot probe current through an element if this setting is used.

Since keepparaname is applied during netlist file parsing, it needs to be specified before
reading a netlist file. You can also switch the settings of keepparaname for different
segments of the netlist file.

Example

Spectre Syntax:

usim_opt keepparaname=0

usim_opt keepparaname=1

SPICE Syntax:

.usim_opt keepparaname=0

.usim_opt keepparaname=1
May 2010 319 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Post-Layout Simulation Options
tells the Virtuoso UltraSim simulator not to save elements after the usim_opt
keepparaname=0 statement and before the usim_opt keepparaname=1 statement
(names are saved for the elements that follow usim_opt keepparaname=1).

cgndparse

Spectre Syntax

usim_opt cgndparse=value

SPICE Syntax

.usim_opt cgndparse=value

Description

Coupling capacitors less than cgndparse are grounded (default is 1e -18). cgndparse
needs to be specified before reading a netlist file and can only be used in conjunction with
usim_opt keepparaname=0 (see keepparaname for more information).

How can I reduce the time it takes to run a DC simulation?

DC simulation can be time consuming for post-layout. To reduce the simulation time, you can
save the pre-layout DC using usim_save and simulate the post-layout by starting DC
simulation with usim_restart (Spectre syntax). This method has shown to reduce the post-
layout DC simulation time significantly. The Virtuoso UltraSim simulator saves the information
for all the external nodes in a file. For all internal nodes and states, if the nodes and states
are registered in the solver, the information is also saved (otherwise, the simulator does not
save the information in the file, and when the simulation is restarted, the unsaved internal
nodes and states need to be solved again).
May 2010 320 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
5
Voltage Regulator Simulation

This chapter describes how to perform voltage regulator (VR) simulations using the Virtuoso®
UltraSim™ simulator.

Overview of Voltage Regulator Simulation

Due to the continuous reduction of supply voltage and the adoption of multiple supply
voltages within a semiconductor chip, an increasing number of mixed signal/RF or digital
circuits use on-chip voltage regulators to generate internal supply voltages.

Fast SPICE simulators depend on efficient partitioning to achieve simulation speed-up, which
is only possible when the circuits are driven by an ideal power supply. Using conventional
partition technology, all the blocks connected to an internally regulated supply have to be
contained in a single partition, resulting in unacceptable simulation performance. VR
simulation overcomes this limitation, enabling you to simulate designs with large circuit blocks
powered by internal voltage regulators.

The conventional Virtuoso UltraSim simulator partitioning process, using ms, da, or df mode,
is based on ideal supply voltages, such as dc or pwl (see “Simulation Modes and Accuracy
Settings” on page 157 for more information about Virtuoso UltraSim simulation modes). If a
design is powered by one or multiple VRs, or the supply voltage is generated by other source
types (for example, controlled sources or sinus type), the Virtuoso UltraSim partitioning
approach may result in large partitions and decreased simulation performance. Cadence
recommends using VR simulation to resolve the performance issues produced by these
applications. VR simulation is specifically designed for large mixed-signal, digital, and
memory designs which are driven by regulators or other sources.

VR simulation is not applicable to pure power management blocks or designs with sensitive
coupling between the generator and the driven circuit. Cadence recommends using a mode
for these applications.

You need to identify the internal supply voltage nodes and driving blocks before using VR
simulation. Supply voltage nodes are characterized by a large number of channel
May 2010 321 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Voltage Regulator Simulation
connections (CC). Use the Virtuoso UltraSim simulator usim_report node option to identify
supply voltage nodes (see “Node Connectivity Report” on page 516 for more information).

usim_vr

Spectre Syntax

usim_vr inst=[inst1 inst2 ...] node=[node1 node2 ...]

usim_vr subckt=subckt1 node=[node1 node2 ...]

usim_vr subckt=subckt1 port=[port1 port2 ...]

SPICE Syntax

.usim_vr inst=[inst1 inst2 ...] node=[node1 node2 ...]

.usim_vr subckt=subckt1 node=[node1 node2 ...]

.usim_vr subckt=subckt1 port=[port1 port2 ...]

Note: A period (.) is required when using SPICE language syntax (for example, .usim_vr).

Description

Use usim_vr to run a Virtuoso UltraSim VR simulation (only applicable to circuits simulated
in df, da, or ms mode). A netlist file can contain multiple usim_vr commands. VR simulation
produces optimal results with a strong regulator driving capacitive load and weak dc loading.
Circuits with on-chip voltage regulators driving large digital blocks generally belong to this
category. Table 5-1 on page 322 contains all of the usim_vr commands and descriptions.

Note: You can also perform VR simulations in the Virtuoso Analog Design Environment
(ADE). For more information, refer to “Setting Voltage Regulator Simulation Options” in the
Virtuoso Analog Design Environment L User Guide (IC 6.1.2) or the Virtuoso Analog
Design Environment User Guide (IC 5.1.41).

Table 5-1 usim_vr Commands

Command Description

inst1, inst2, ... Specifies the instances of the voltage regulator blocks
(multiple regulators can be defined). Cadence
recommends that all circuit blocks which contribute to
the generation of the regulated supply voltages need to
be specified by multiple block arguments.
May 2010 322 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Voltage Regulator Simulation
Note: The Virtuoso UltraSim simulator supports using wildcards (*) in instance, node, and
port names.

Examples

Bandgap Reference with Supply Voltage Generator

Spectre Syntax:

usim_opt sim_mode=df

usim_opt sim_mode=ms subckt=[bg vreg]

usim_vr subckt=bg

usim_vr subckt=vreg node=[vddi]

SPICE Syntax:

.usim_opt sim_mode=df

.usim_opt sim_mode=ms subckt=[bg vreg]

.usim_vr subckt=bg

subckt1 Specifies the subcircuit of the voltage regulator.

node1, node2, ... Specifies the full hierarchical name of the internal
power supply nodes driven by the voltage regulator
(multiple regulated supply nodes can be specified).

port1, port2, ... Specifies the port name of the internal power supply
nodes driven by the voltage regulator (multiple ports
can be specified). The ports are defined in the port list
of subckt1.

Table 5-1 usim_vr Commands, continued

Command Description

vddext

X1

bg

X0

vreg
vbg

digital

X2
vddi
May 2010 323 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Voltage Regulator Simulation
.usim_vr subckt=vreg node=[vddi]

In this example, the voltage regulator consists of a bandgap reference generator (bg) and the
supply generator (vreg), with an internally regulated supply node (vddi). The Virtuoso
UltraSim simulator usim_vr command specifies the generator blocks and internal supply
nodes. Global df mode is used to simulate the circuit, and local ms mode is applied to the bg
and vreg blocks.

Multiple Generator Blocks

usim_opt sim_mode=df inst=[X2]

usim_vr inst=[X0 X1] node=[VDD18 VDD91 VDD92]

or

usim_opt sim_mode=df inst=X2]

usim_vr inst=[X0] node=[VDD18]

usim_vr inst=[X1] node=[VDD91 VDD92]

In this example, the design contains multiple generator blocks, and the internally regulated
supply nodes are VDD18, VDD91, and VDD92. The usim_vr command specifies that the X0
and X1 instances are the voltage regulator blocks, global ms mode is used to simulate the
circuit (default), and local df mode is applied to the digital block.

Voltage Supply Generated by Controlled Source

usim_opt sim_mode=df [X2]

usim_vr inst=[E10 R1 I1] node=[vdd]

vddext

X1

vreg18

X0

vreg09

digital

X2
VDD92VDD18 VDD91

v
R1

I1
v

VCVS
vddE10

digital

X2
May 2010 324 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Voltage Regulator Simulation
In this example, the voltage supply is generated by a controlled source, and the internally
regulated supply node is vdd. The usim_vr command specifies the E10, I1, and R1
elements as part of the voltage regulator, global ms mode is used to simulate the circuit
(default), and local df mode is applied to the digital block. The usim_vr arguments can be
used in any order.

Note: You have the option to specify only one of the elements in the statement (E10, I1, or
R1).

Design with Flat Netlist File

usim_vr inst=[M1] node=[vdd]

In this example, the design is a flat netlist file without subcircuit definitions. Since there are no
subcircuit blocks or instances in a flat netlist file, the block option cannot be specified. To
setup a VR simulation, you only need to specify one element that is part of the generator block
(in this case, M1 as the transistor and vdd as the generator node). The simulator uses this
information to automatically identify the block.

vdd

pll
(flat netlist)

gen
(flat netlist)

chip (flat netlist)

M1
May 2010 325 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Voltage Regulator Simulation
May 2010 326 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
6
Power Network Solver

This chapter describes how to detect and analyze power networks using the Virtuoso®
UltraSim™ power network solver (UPS).

Detecting and Analyzing Power Networks

The Virtuoso UltraSim simulator can be set to detect power networks. A power network is a
RC network that is driven by a power supply or internal generator, and it sends voltage
through channel connections into a large number of active devices (for example, a MOSFET
device). In most cases, the power network is used to model the IR drop in power supplies, yet
power networks can also appear in signal nets.

The methods of detection include:

■ Automatic – simulator automatically detects the power network according to its
connectivity. Use the pn_level and pn_max_res methods to get finer grid control for
automatic detection.

■ Manual – you can manually specify a substring for a power net name (known as string
or name mapping). Only the elements, primarily resistors and capacitors with terminal
names that contain the specified substring, are kept in the power networks. Use the
usim_pn command to specify the pattern and pn_max_res to further control
partitioning.

usim_pn

Spectre Syntax

usim_pn node=name <pattern=[pattern1, pattern2, ...]> <method=short|keep|ups>

usim_pn auto=yes|no <method=short|keep|ups>
May 2010 327 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
SPICE Syntax

.usim_pn node=name <pattern=[pattern1, pattern2, ...]> <method=short|keep|ups>

.usim_pn auto=yes|no <method=short|keep|ups>

Note: A period (.) is required when using SPICE language syntax (for example, .usim_pn).

Description

The usim_pn command is used to specify how power network nodes are detected and
handled by the Virtuoso UltraSim simulator.

Arguments

node Name of the power network node (wildcards are not supported).

pattern1, pattern2 Strings for pattern matching. Only nodes with names containing
pattern1 or pattern2 are partitioned into power networks.

method Method applied to the nodes previously specified – determines
how parser networks are handled.

■ method=short removes the power network (default for ms,
da, and df modes)

■ method=keep keeps the power network and simulates it
with the circuit

■ method=ups keeps the power network and analyzes it with
the UPS solver (rest of the circuit is simulated by the
simulator)

auto Auto-detection mode for the power network nodes.

■ auto=yes enables auto-detection (default for ms, da, and
df modes)

■ auto=no disables auto-detection (default for s and a
modes)

Note: You need to specify nodes manually.
May 2010 328 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
Example

Spectre Syntax:

usim_pn node=vdd method=keep

usim_pn node=gnd method=short

usim_pn auto=yes method=ups

SPICE Syntax:

.usim_pn node=vdd method=keep

.usim_pn node=gnd method=short

.usim_pn auto=yes method=ups

tells the Virtuoso UltraSim simulator to keep the vdd power network, simulates the network,
removes the gnd power network, and uses auto-detection to find all of the other power
networks to which the simulator applies UPS.

pn_level

usim_opt pn_level=0|1|2|3|4

Description

The Virtuoso UltraSim simulator uses a detection algorithm to automatically detect power
networks. The pn_level method is used to control the aggressiveness of the power
network detection algorithm. The higher pn_level is set (range of 0 to 4), the more
aggressive the detection algorithm, which results in more nets being classified as power nets.
The default is pn_level=0.

Note: This method only applies to automatic detection of power networks.

Example
usim_opt pn_level=4

tells the simulator to use the most aggressive simulation setting (pn_level=4) to
automatically detect power networks.

pn_max_res

usim_opt pn_max_res=value
May 2010 329 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
Description

Controls partitioning between signal and power nets via resistor values. Use pn_max_res to
specify the resistor values. Resistors with a value less than the specified value are considered
part of the power network, whereas resistors with a value equal to or larger than the specified
value are part of the signal net.

Example

usim_opt pn_max_res=1000

tells the Virtuoso UltraSim simulator to partition resistors with a value less than 1000 ohms
that are part of a specific power net.

pn

usim_opt pn=0 inst=[res1 res2 cap1 cap2...] model=[model1 model2..]
pn_file=[“filename1” “filename2”...]

Description

The pn=0 command is used to exclude resistors and capacitors from power network
detection.

Table 6-1 pn=0 Options

Option Description

res1, res2 Specifies the resistors to be excluded from power network detection
(must use full hierarchical name).

cap1, cap2 Specifies the capacitors to be excluded from power network
detection (must use full hierarchical name).

filename1,
filename2...

The name of the files which contain the resistors and capacitors to
be excluded (full hierarchical name for resistors and capacitors
needs to be included in files).

model1, model2 Specifies the model names. The model names need to use the
resistor or capacitor model names. All instances for the specified
model are excluded from power network detection.
May 2010 330 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
Example
usim_opt pn=0 inst=[x1.r1 x1.c2]

tells the simulator to exclude the x1.r1 and x1.c2 resistors from any power networks, even
if the resistors share connectivity.

UltraSim Power Network Solver

The UPS is an optimized solver designed to analyze linear power networks. The solver is
integrated into the Virtuoso UltraSim simulator, and together with the Virtuoso UltraSim
engine, lets you calculate the IR drop in power networks and analyze its effect on circuit
behavior. Figure 6-1 shows an overview of the power network simulation methodology
recommended by Cadence.

Figure 6-1 Overview of Power Network Simulation Methodology

The method=ups argument in the usim_pn command is used to enable UPS. Additional
power network solver options can be set using the usim_ups keyword (see the table of
“Arguments” on page 332 for a list of usim_ups arguments).

INV &

Power Grid / Network

Circuit

IN

VDD

OUT

VDD3VDD2VDD1

UltraSim Circuit Simulator Engine

UltraSim Power Network Solver

UltraSim Simulator
May 2010 331 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
usim_ups

Spectre Syntax

usim_ups <iteration=integer> <speed=number> <ir_avg_threshold=double>
<ir_peak_threshold=double> <ir_rms_threshold=double>
<ir_report=filename> <waveform_file=filename>
<all_waveform=true|false>|<output_node_file=filename>>

SPICE Syntax

.usim_ups <iteration=integer> <speed=number> <ir_avg_threshold=double>
<ir_peak_threshold=double> <ir_rms_threshold=double>
<ir_report=filename> <waveform_file=filename>
<all_waveform=true|false>|<output_node_file=filename>>

Arguments

iteration Number of iterations between UPS and the Virtuoso
UltraSim engine. The higher the iteration number, the
greater the accuracy (default is iteration=1). The
iteration argument only provides IR drop and does not
calculate its influence on circuit behavior. To achieve higher
accuracy for a large IR drop, Cadence recommends using
iteration=2 or greater.

speed Designates the speed and accuracy trade-off for UPS, with
speed levels ranging from 1 to 8. The speed settings are as
follows (default is speed=3):

■ speed=1 lowest speed, highest accuracy

■ speed=2 through speed=7 moderate speed and
accuracy

■ speed=8 highest speed, lowest accuracy

ir_avg_threshold Threshold average for IR drop reporting (default print out is
20 nodes with highest average IR drop).

ir_peak_threshold Threshold peak for IR drop reporting (default print out is 20
nodes with highest peak IR drop).

ir_rms_threshold Threshold RMS for IR drop reporting (default print out is 20
nodes with highest average RMS drop).
May 2010 332 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
Note: The UltraSim simulator only accepts one usim_ups statement at a time. If multiple
usim_ups statements are specified in the netlist file, the simulator uses the last statement
and ignores the rest.

Example

Spectre Syntax:

usim_pn node=VSS_D pattern=[VSS_D] method=ups

usim_pn node=VSS_A pattern=[vss_a] method=ups

usim_ups iteration=1 speed=2 waveform_file=wave all_waveform=true

usim_opt pn_res_max=50

SPICE Syntax:

.usim_pn node=VSS_D pattern=[VSS_D] method=ups

.usim_pn node=VSS_A pattern=[vss_a] method=ups

.usim_ups iteration=1 speed=2 waveform_file=wave all_waveform=true

.usim_opt pn_res_max=50

tells the Virtuoso UltraSim simulator:

■ To partition power nets according to the name mapping mechanism.

For nodes associated with power net VSS_D, the simulator only partitions elements with
terminal names containing VSS_D to be solved by UPS. For nodes associated with
VSS_A, the simulator only partitions elements with terminal names containing vss_a to
be solved by UPS. For nodes associated with VSS_D, the simulator only partitions
elements with terminal names containing VSS_D to be solved by UPS.

■ The iteration number between the simulator engine and UPS is 1 (default), and speed is
2 (moderate speed and accuracy).

ir_report Filename to which IR report is printed (default is none).

waveform_file Filename of waveform file containing voltages for selected
nodes, power networks, and tap points (default is none).

all_waveform Prints out all power network node voltages (true) or the tap
point connected to active devices (false). Default is
false.

Note: You first need to define waveform_file before
all_waveform is enabled.

output_node_file Filename that contains the nodes from the waveform file.
Allows you to choose the nodes of interest.
May 2010 333 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Power Network Solver
■ All waveform files start with wave and they contain all of the power network nodes.

■ To limit the maximum resistance in the power nets to 50 ohms.
May 2010 334 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
7
Interactive Simulation Debugging

Overview of Interactive Simulation Debugging

The Virtuoso® UltraSim™ simulator interactive circuit debugging mode allows you to obtain
design data, such as circuit elements and parameters, circuit topology, and instantaneous
signal values. It can also be used to probe dynamic circuit behavior, including voltage and
current waveforms simulated to the current time step.

The UltraSim[I]*> prompt is displayed (I is an integer) in interactive mode, indicating the
Virtuoso UltraSim simulator is ready to receive interactive mode commands. The interactive
commands shell allows you to apply any Tcl commands and constructs, and to redirect output
of interactive shell commands to a file. All system commands supported by Tcl are also
supported in the interactive mode.

To invoke the Virtuoso UltraSim simulator interactive mode:

■ Use -i in the command line

■ Use -cmd <command_file_name> in the command line

■ Type Ctrl-C at any time after DC initialization

You can generate different types of output files in interactive mode:

netlist.icmd Lists the history of all Virtuoso UltraSim simulator commands used.

netlist.ilog Contains a list of commands and simulator outputs (copy of stdout
file).

Note: The log file can be opened and closed during interactive mode, but
only one log file is active at a time.
May 2010 335 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
General Commands

The Virtuoso UltraSim simulator supports the following interactive simulation general
commands:

■ alias on page 337

■ exec on page 338

■ exit on page 339

■ help on page 340

■ history on page 341

■ runcmd on page 342
May 2010 336 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
alias

alias [alias_name [cmd_name]]

Description

This command is used to create the alias name (alias_name) for the existing interactive
command cmd_name. If the command is used without arguments, the existing list of aliases
is printed.

Note: Existing interactive mode commands cannot be used as an alias name.

Caution

Using this command can overwrite the existing alias name (no warnings
are generated).

Examples

For example

alias openlog open

tells the Virtuoso UltraSim simulator to create an openlog alias for the interactive mode
command open.

In the next example

alias

provides a list of existing aliases.

In the next example

alias openlog

prints the command aliased to openlog.
May 2010 337 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
exec

exec unix_shell_command

Description

Allows you to execute any UNIX or Linux command.

Example
exec ls

Lists all of the files in the current working directory.
May 2010 338 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
exit

exit

Description

This command is used to stop the Virtuoso UltraSim simulator and exit the simulation.

Example
UltraSim[1]*> exit

Log file "./simulation.ilog" closed

tells the simulator to end the simulation and exit (interactive log file is automatically closed).
May 2010 339 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
help

help [cmd_name|-all]

Description

Use this command to display the cmd_name syntax and description. If cmd_name is not
specified, a list of all interactive commands is printed. If the -all option is specified, the
syntax for all interactive commands is printed.

Example
help read

tells the simulator to display the read command syntax and description.
May 2010 340 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
history

history

Description

The history or h command prints out a list of the last 30 interactive commands used. You
can use !! to recall the last command in the interactive shell. To recall a previously used
interactive command with an index, use !index.

Example
UltraSim[1]*> history

1 history

UltraSim[2]*> flush

UltraSim[3]*> !!

flush

UltraSim[4]*>!1

history

1 history

2 flush

3 flush

4 history

tells the simulator that history is the first Virtuoso UltraSim command (section [1]), flush is
the second command (section [2]), and !! prints out the last command used (section [3]).

Note: Use !1 to print out the first command in the history list.
May 2010 341 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
runcmd

runcmd [-v] cmd_file

Description

The run_cmd command reads the cmd_file and executes the sequence of interactive
mode commands defined in the file. Multiple command files can be used, but run and stop
commands are only executed from the main file (main file is the command file called from the
Virtuoso UltraSim simulator command line or first read in by the runcmd file). To display the
commands, set the -v option.

Example
runcmd chip.icmd

tells the simulator to read and execute interactive commands from the chip.icmd file.
May 2010 342 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
Log File Commands

The Virtuoso UltraSim simulator supports the following interactive simulation log file
commands:

■ close on page 344

■ flush on page 345

■ open on page 346
May 2010 343 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
close

close

Description

This command is used to close the active log file.

Example
UltraSim[1]*> close

Log file "./simulation.ilog" closed

tells the simulator to close the active log file.
May 2010 344 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
flush

flush

Description

Use this command to flush all of the waveform data, as well as the log file information, into
related output files for the current time.

Example
UltraSim[1]*>flush

tells the simulator to flush or move all of the waveform and log file data for the current time
point into related output files.
May 2010 345 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
open

open [-a] logfile_name

Description

Opens the logfile_name file in the current working directory in which interactive mode
commands and results can be recorded (Tcl interface and log file outputs are the same). If
the -a option is set, the print out is appended to the existing log file (otherwise the existing
log file is overwritten).

Note: Using this command automatically closes the previous log file.

Example
open chip.log

tells the simulator to open the chip.log file and writes all interactive mode information into
the file.
May 2010 346 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
Analysis Commands

The Virtuoso UltraSim simulator supports the following interactive simulation analysis
commands:

■ conn on page 348 ■ node on page 366

■ describe on page 350 ■ nodecon on page 367

■ elem_i on page 352 ■ op on page 368

■ exi on page 354 ■ probe on page 369

■ exitdc on page 356 ■ release on page 370

■ force on page 357 ■ restart on page 371

■ forcev on page 358 ■ run on page 372

■ hier_tree on page 359 ■ save on page 374

■ index on page 361 ■ spfname on page 375

■ match on page 362 ■ stop on page 376

■ meas on page 363 ■ time on page 377

■ name on page 364 ■ value on page 378

■ nextelem on page 365 ■ vni on page 379
May 2010 347 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
conn

conn -n node_name|-ni node_index [-level 0|1] [-num value]

Description

This command is used to report connectivity information for the node specified by name or
node index. The amount of information reported is controlled by level and num is used to
dump elements (default=50). The conn command is generally used in conjunction with the
describe and node commands to trace connectivity.

The level argument consists of:

■ level 0 generates a summary of elements connected to the node, number of R/C/MOS/
DIODE devices, and a description of each device.

■ level 1 generates a summary of elements connected to the node, number of R/C/MOS/
DIODE devices, and shows all terminals.

Examples

In the following example

conn -n wl<5> -level 0

generates the following level 0 summary:

RES: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_0, ID=0, res=1.10887

* NODE0: wl<5>

RES: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_1, ID=1, res=22.7632

* NODE0: wl<5>

CAP: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_4, ID=6, cap=9.37962e-16

* NODE0: wl<5>

Summary of devices connected to node wl<5>

2 Resistors, 1 Capacitors

In the next example

conn -n wl<5> -level 1

generates the following level 1 summary:

RES: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_0, ID=0, res=1.10887

* NODE0: wl<5>

NODE1: xpost0.xi0.xi5.xinv3.$#R43.$#R43_4

RES: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_1, ID=1, res=22.7632

* NODE0: wl<5>
May 2010 348 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
NODE1: xpost0.xi0.xi5.xinv3.$#2

CAP: Name=xpost0.xi0.xi5.xinv3.$#R43.$#R43_4, ID=6, cap=9.37962e-16

* NODE0: wl<5>

NODE1: 0

Summary of devices connected to node wl<5>

2 Resistors, 1 Capacitors

3 Channel connected and 0 Non-channel connected elements
May 2010 349 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
describe

describe elem_name|-ei elem_index|-ii inst_index|-subckt subckt_name

Description

The describe command is used to print detailed information for given element or instance
names, including element type, parameters, terminals, terminal voltages, element currents,
conductances, and capacitances. If -ei elem_index is used, detailed information for the
element with the index of elem_index is printed. If -ii inst_name is used, the detailed
information for the instance with the instance_name index is printed. If -subckt
subckt_name is used, the elements included in the subckt_name block are printed.

Examples

In the first example

describe xpost0.xi0.xi5.xinv3.xp0.m0

prints the following information:

MOS: Name=xpost0.xi0.xi5.xinv3.xp0.m0, TYPE=pmos, ID=2

+ m = 1.000000e+00 ad = 1.756000e+00 as = 1.178000e+00 l = 1.300000e-01 pd =
1.084800e+01

+ ps = 6.960000e+00 w = 6.200000e+00

DRAIN:vdd voltage = 3

GATE: xpost0.xi0.xi5.xinv3.$#0 voltage = 2.99998

SOURCE: xpost0.xi0.xi5.xinv3.$#2 voltage = 7.19185e-05

BULK: vpb voltage = 3

In the next example

*> describe x1.xi134

tells the Virtuoso UltraSim simulator to output the following information:

Instance x1.xi134 (opad_1)

x1.0 0 voltage = 0

x1.vdd! vdd! voltage = 5

x1.net364 a voltage = 2.49906

x1.pa y voltage = 2.33685

In the next example

*> index -i x1.xi134

0

*> describe -ii 0
May 2010 350 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
returns the following information:

Instance x1.xi134 (opad_1)

x1.0 0 voltage = 0

x1.vdd! vdd! voltage = 5

x1.net364 a voltage = 2.49906

x1.pa y voltage = 2.33685

In the next example

*> describe -subckt inv

returns the following information:

mm11

mm12
May 2010 351 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
elem_i

elem_i elem_name|-ei elem_index [-dc] [-term num_term]

Description

The elem_i command is used to print the instantaneous current for all branches of the
specified elements at the current simulation time, or return current through the terminal if
specified. MOS transistors, resistors, capacitors, inductors, diodes, and bipolar junction
transistors are some of the supported elements.

Arguments

Examples

In the following example

elem_i *.mm11

tells the Virtuoso UltraSim simulator to print the instantaneous current for all branches of the
*.mm11 MOSFET at the current simulation time, and generates the following report:

*> elem_i *.mm11

MOS: Name=x1.mm11, MODEL=pmos, ID=0
+ w = 4.800000e-06 l = 1.440000e-07 m = 1.000000e+00
DRAIN: current = -1.49252e-06
GATE: current = 6.28497e-06
SOURCE: current = -3.02198e-06
BULK: current = -1.77047e-06

MOS: Name=x2.mm11, MODEL=pmos, ID=1
+ w = 4.800000e-06 l = 1.440000e-07 m = 1.000000e+00
DRAIN: current = 1.6687e-08
GATE: current = 2.38509e-06

elem_name The elements for which the instantaneous currents of all branches are
printed

-ei The option precedes the index of elements

elem_index The index of elements for which the instantaneous currents of all branches
are printed

-dc The option to print the static (dc) current

-term The option to print the terminal current (precedes the terminal number)

num_term The terminal number for which the current is printed
May 2010 352 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
SOURCE: current = -2.36562e-06
BULK: current = -3.61571e-08

In the next example

*> elem_i x2.mm11 -term 1
2.385089e-06
*> elem_i x2.mm11 -term 2
-2.365619e-06
*> set drncurrent [elem_i x2.mm11 -term 0]
1.668699e-08
*> puts "drain current = $drncurrent"
drain current = 1.668699e-08

tells the simulator to return the terminal current (-term option is used).

In the next example

elem_i *.mm11 -dc

tells the simulator to return only the static (dc) current, and generates the following report

*> elem_i *.mm11 -dc
MOS: Name=x1.mm11, MODEL=pmos, ID=0

+ w = 4.800000e-06 l = 1.440000e-07 m = 1.000000e+00
DRAIN: current = 5.64378e-07
GATE: current = 0
SOURCE: current = -5.64377e-07
BULK: current = -8.76415e-13

MOS: Name=x2.mm11, MODEL=pmos, ID=1
+ w = 4.800000e-06 l = 1.440000e-07 m = 1.000000e+00
DRAIN: current = 1.17393e-06
GATE: current = 0
SOURCE: current = -1.17393e-06
BULK: current = -1.29182e-15
May 2010 353 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
exi

exi [-ith threshold][-v] elem_name [elem_name]|-ei elem_index [elem_index]

Description

The exi command reports the elements for the specified element name that have a current
greater than the specified threshold current value (in amperes). The default value is 5e-5A
and wildcards (*) are supported. For more information about wildcards, see “Wildcard Rules”
on page 55.

The results are printed either as a list of element names or indices. If -v is defined, the
element indices are printed in a list called usim_index_list (if -v is not defined, the
element names are printed). These lists are helpful when performing additional analyses on
elements.

This command can also be used in a Tcl script. For example, the list can be reprinted using
the puts $usim_index_list Tcl command.

Note: You can use the name command to find the element name that corresponds to an
element index.

Examples

In the following example

exi –ith 1.0e-12 x1.m*

tells the Virtuoso UltraSim simulator to print out elements with the names that match x1.m*
with a current greater than 1.0e-12A, and generates the following output:

UltraSim[3]*> exi -ith 1.0e-12 x1.m*

MOS: Name=x1.mm1, MODEL=pmos, ID=1 ElemKey(0x18e492a8), ModelCard(0x18b407b8)

+ w = 4.000000e-06 l = 1.800000e-07 m = 1.000000e+00

DRAIN: current = 4.68577e-12

GATE: current = 0

SOURCE: current = -4.68577e-12

BULK: current = -3.10931e-21

MOS: Name=x1.mm12, MODEL=nmos, ID=2 ElemKey(0x18e49d58), ModelCard(0x18b406b8)

+ w = 2.000000e-06 l = 1.800000e-07 m = 1.000000e+00

DRAIN: current = -4.68597e-12

GATE: current = 0

SOURCE: current = 2.88485e-12

BULK: current = 1.80068e-12
May 2010 354 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
In the next example

exi –ith 1.0e-12 –v x1.*

tells the simulator to print out the usim_index_list, and generates the following output:

UltraSim[3]*> exi -ith 1.0e-12 –v x1.*

1 2
May 2010 355 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
exitdc

exitdc

Description

This command is used to end a pseudo-transient simulation and start a transient simulation.

Example
UltraSim[1]*> exitdc

t=0.000000e+00 ...

tells the simulator to exit the dc analysis (warning message is also generated).
May 2010 356 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
force

force (node_name [=] volt_value) ...|-ni (node_index [=] volt_value)...
[-rt ramp_time]

Description

This command forces the node voltage of specified nodes to a specific voltage value. Nodes
can be specified by name (net_name1 net_name2 ...) or index (-ni index1 index2
...). Voltage is applied until released or the end of the simulation is reached. If several
force statements are activated, the current one overwrites the previous commands.

Notes:

■ The equal (=) sign is optional.

■ The force operation is not performed if the net is connected to a static vsource dc=0
and one vsource port is connected to the solver ground. One solution is to replace the
static vsource dc=0 with a PWL type vsource.

■ To check if a net is connected to the static vsource dc=0, use the Virtuoso UltraSim
.usim_opt nodecut_file=1 option.

Once the simulation starts, a netlist.nodecut file is created. Open the file and check
the net in the node cut list. The net is shorted to solver node 0, so the force command
is not applied to the net.

■ To check if a specific force is applied during the simulation:

❑ Start Virtuoso UltraSim interactive mode and use force my_net1 2.

❑ Setup a short simulation time (for example, 1 ps) to run force in the solver.

❑ Run 1p -relative and check the values using value my_net1.

Examples

For example

force xi0.xi3.gate net12 2.0

tells the Virtuoso UltraSim simulator to force v(xi0.xi3.gate) and v(net12) to 2.0 V.

In the next example

force -ni 113 1.05

tells the simulator to force nodes with index 113 to 1.05 V.
May 2010 357 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
forcev

forcev vector logic_value [-rt ramp_time]

Description

This command is used to force nodes specified by the vector of node indices to a logic value.

Example
set add [index -n add<3> add<2> add<1> add<0>]

forcev $add " ’b0101"

tells the Virtuoso UltraSim simulator to create a vector (set v) and then forces ’b01X10 to
the vector (forcev).
May 2010 358 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
hier_tree

hier_tree [-level num] [-a] [-def] [-num count] [–subckt name]

Description

The hier_tree command is used to print the hierarchical tree for the specified subcircuit
instances. If no subcircuit or instance name is specified, the Virtuoso UltraSim simulator
starts from the top level of the design.

Arguments

Example
UltraSim[1]*>hier_tree -a

> xpost2(1)

> xpost2.xi0(2)

> xpost2.xi0.xi4(3)

> xpost2.xi0.xi4.xinv2(4)

> xpost2.xi0.xi4.xinv2.xn0(5)

> xpost2.xi0.xi4.xinv2.xp0(5)

…

UltraSim[2]*>hier_tree -a -def

> xpost2(decwl64b)

> xpost2.xi0(decwl8b)

> xpost2.xi0.xi4(trnoff)

> xpost2.xi0.xi4.xinv2(inv)

> xpost2.xi0.xi4.xinv2.xn0(nmos)

-level Limits the printed levels of hierarchy tree below the current level (default prints
all levels).

-a Prints the full hierarchical instance name (default prints only the local name).

-def Prints the subcircuit name of the instance.

-num Limits the number of printed instances (default is 50 instances).

-subckt Specifies the instance from which the hierarchy tree is printed (default is top
and wildcards are supported).

For more information about wildcards, see “Wildcard Rules” on page 55.
May 2010 359 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
> xpost2.xi0.xi4.xinv2.xp0(pmos)

UltraSim[3]*>hier_tree -a -def -subckt xpost2.xi0

> xpost2.xi0.xi4(trnoff)

> xpost2.xi0.xi4.xinv2(inv)

> xpost2.xi0.xi4.xinv2.xn0(nmos)

> xpost2.xi0.xi4.xinv2.xp0(pmos)

…

tells the simulator to print the full hierarchical name for the levels defined by a number (section
[1]), subcircuit name for each instance (section [2]), and the hierarchical tree for xpost2.xi0
(section [3]).
May 2010 360 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
index

index -e elem_name|-n net_name|-i instance_name

Description

This command provides an index for net, element, or instance names. If -e elem_name is
used, the elem_name index is printed. If -n net_name is used, the index of the net with
net_name is printed. If -i instance_name is used, the instance_name index is printed.

Examples

For example

index -e xpost0.xi0.xi5.xinv3.xp0.m0

tells the simulator to return an index for the xpost0.xi0.xi5.xinv3.xp0.m0 element.

In the next example

index -n xi1.xi9.xi7.net12

returns an index for the xi1.xi9.xi7.net12 net.

In the next example

*> index -i x1.xi134

0

returns an index for the x1.xi134 instance.
May 2010 361 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
match

match [-e pattern1] [-n pattern]

Description

This command is used to find all elements or nodes with names matching a specific pattern.

Arguments

Example
UltraSim[1]*> match –e xpost0*

xpost0.xi7.xi1.xinv3.xn0.m0

xpost0.xi7.xi1.xinv3.xp0.m0

xpost0.xi7.xi2.xi81.xn0.m0

xpost0.xi7.xi2.xi81.xn1.m0

xpost0.xi7.xi2.xi81.xn2.m0

…

UltraSim[2]*> match –n xpost0.*

xpost0.xi7.xi7.xinv1.xp0.inh_vpb

xpost0.xi7.xi7.xinv1.xp0.s

xpost0.xi7.xi7.xinv2.xn0.d

xpost0.xi7.xi7.xinv2.xn0.g

xpost0.xi7.xi7.xinv2.xn0.inh_vnb

…

tells the simulator to print all elements and nodes with the xpost0* pattern.

-e Prints the specified elements

-n Prints the specified nodes
May 2010 362 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
meas

meas [spice measurement statement]

Description

The meas command is used to add measurements (SPICE syntax).

Example
UltraSim[1]*> meas tran period trig v(out) val=0.8 rise=2 targ v(out) val=0.8
rise=3

Succeed to set up the measure:

.meas tran tosc trig v(out) val=0.8 rise=2 targ v(out) val=0.8 rise=3

tells the simulator to use the meas command and measurement statement to obtain the
period for the out signal.
May 2010 363 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
name

name [-ei elem_index] [-ni net_index] | -ii instance_index

Description

Use this command to find the name of nets, elements, or instances by index. If -ei
elem_index is used, the name of elements with elem_index is printed. If -ni net_index
is used, the name of nets with net_index is printed. If -ii instance_index is used, the
name of the instance with instance_index is printed.

Example
index -e xpost0.xi0.xi5.xinv3.xp0.m0

9

name -ei 9

xpost0.xi0.xi5.xinv3.xp0.m0

name -ni 5338

tells the Virtuoso UltraSim simulator to return the name of nets with net index 5338.

In the next example

*> name -ii 0

x1.xi134

tells the simulator to return the name of instance index 0.
May 2010 364 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
nextelem

nextelem

Description

Allows you to individually view all elements in the circuit. You can use nextelem 0 to view
elements starting with the first one and nextelem <index> to view the elements directly.

Example
UltraSim[1]*> nextelem

name:v0 type:vsrc node0:vdd! node1:0

UltraSim[2]*> nextelem

name:c4 type:cap node0:net12 node1:0 capacitance:1.00000e-13

UltraSim[3]*> nextelem 0

name:v0 type:vsrc node0:vdd! node1:0

UltraSim[4]*> nextelem 3

name:xil5.mn type:nmos drn:net12 gate:net40 src:0 bulk:0 W:4.0000e-06 L:2.5000e-07

tells the simulator to retrieve the next element (sections [1] and [2]), restarts the iteration
(section [3]), and displays the third element for viewing (section [4]).
May 2010 365 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
node

node net_name|-ni net_index

Description

This command is used to print voltage information for given nets, including voltage, voltage
slope (dv/dt), and node capacitance. Nets can be specified by name (net_name) or by index
(-ni net_index).

Example

In the first example

node xpost0.xi7.xi7.xinv3.xp0.s

tells the Virtuoso UltraSim simulator to print node voltage and slope information, and
generates the following output:

ode xpost0.xi7.xi7.xinv3.xp0.s : voltage = 7.16334e-05; (dV/dT) = 0
Ctot=1.037e-14

In the next example

node -ni 1

tells the simulator to perform an inquiry on the index of the specified node, and generates the
following output:

node xpost0.xi7.xi7.xinv3.xp0.s : voltage = 7.16334e-05; (dV/dT) = 0
Ctot=1.345e-15
May 2010 366 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
nodecon

nodecon [val]

Description

If val is specified, nodecon finds any nodes with connections greater than val. If val is not
specified, nodecon finds nodes with the most connections, based on the netlist file. The
report for each node contains the subcircuit name, node name, number of connections, and
a Vsrc flag indicating if it is a voltage source.

Example
nodecon 100

0(3335)

 vpb(112)

 vnb(112)

 vss(3335)

 ad<7>(3335)

…

tells the Virtuoso UltraSim simulator to report any nodes with more than 100 connections.
May 2010 367 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
op

op op_file

Description

This command is used to write the operating point (OP) at the current time to the op_file.
If a pattern is specified, only the OP of nodes matching the pattern are printed.

Example
op chip.ic

tells the simulator to print the OP for all nets into the chip.ic file.
May 2010 368 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
probe

probe -n net_name1 net_name2 ...|-ni net_index1 net_index2 ...

Description

The probe command is used to add analog waveform v(net_name1) and
v(net_name2) to the waveform data list file. The added signal starts at the time it was
added. You can also specify a node index using the -ni option.

Note: The probe command cannot be added when parameter storage format (PSF) is
specified.

Examples

For example

probe -n fosc<1> fosc<2>

tells the simulator to add fosc<1> and fosc<2> to the fast signal database (FSDB) output
file.

In the next example

probe -ni 255

adds the analog waveform for nets with index 255 to the FSDB file.
May 2010 369 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
release

release -all| net_name1 net_name2 ...|-ni net_index1 net_index2 ...

Description

This command is used to release forced voltage from specific nodes. Nodes can be specified
by name (net_name1 net_name2 ...) or by index (-ni index1 index2 ...).

Examples

For example

release xi0.xi3.gate net12

tells the Virtuoso UltraSim simulator to release v(xi0.xi3.gate) and v(net12).

In the next example

release -ni 113 105

tells the simulator to release nodes with index 113 and 105.

In the next example

release -ni $v

releases nodes specified by $v vector.
May 2010 370 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
restart

restart filename

Description

The restart command allows you to load a previously saved intermediate state (save) and
to continue the simulation starting at the saved time point. To restore the database results
from a previously saved file (in netlist or interactive mode) and continue the simulation, use
filename. When restarting the simulation from interactive mode at an earlier time, the
output file contains an .rs# suffix with # representing the number of restarts.

Example
UltraSim[1]*> restart time@1.000000e-08

tells the simulator to restart the saved time@1.000000e-08 file.

Note: The time@1.000000e-08 file can be derived from .usim_save in the netlist file or
from the save interactive command.
May 2010 371 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
run

run [time [-absolute]|dtime -relative|numb_events -absev|numb_events -relev]

Description

This command is used to continue the simulation. If arguments are not specified, the
simulation continues until the next break point or the end of the simulation is reached. The
run arguments can be used to specify the following actions:

■ -absolute specifies the next break point by time, starting from the beginning of the
simulation.

■ -relative specifies the next break point from the current time.

■ -absev and -relev specifies the next break point by the number of events (absolute or
relative, respectively).

The next break point cannot occur before the current time or number of events (this condition
is always true for relative arguments). If the break point is specified by a stop command or
by any other means, and is closer than specified in the run command, the simulation stops
at the nearest break point.

Examples

For example

run 25n

tells the Virtuoso UltraSim simulator to continue the simulation for 25 ns and then stop.

In the next example

run 5n -relative

tells the simulator to continue the simulation, starting from the current time, and stops after 5
ns.

In the next example

stop -create -time 20n -relative

run 30n -relative

continues the simulation, starting from the current time, and stops after 20 ns.

In the next example

run 10000 -relev
May 2010 372 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
continues the simulation, starting from the current time, and stops after 1000 events are
processed.
May 2010 373 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
save

save filename

Description

The save command allows you to stop during the simulation and take a snapshot of the
database. To save the simulation database at the current time to the filename@time file,
use the filename argument.

Note: If filename is not specified, a file with the name design name.save@time is
automatically generated.

Example
UltraSim[1]*> stop -create -time 10n

UltraSim[2]*> run

UltraSim[3]*> save time
Simulation state has been scheduled for the current time point.

UltraSim[4]*> run

tells the simulator to stop at transient time point 10 n (section [1]), continues the simulation
(section [2]), saves the time point time (section [3]), and then continues the simulation to
completion (section [4]). After the simulation ends, the time@1.000000e-8 file is created.

Note: You can use the restart interactive command to continue the simulation by loading the
saved file.
May 2010 374 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
spfname

spfname -se element_spf_name | -sn node_spf_name | -ie element_internal_name | -in
node_internal_nameDescription

Description

To save memory, Ultrasim uses compact names for stitched elements and nodes. The
compact names follow the format $#.$#RXXX, such as in $#.$#R0_0. The spfname
command prints the corresponding names as used in the DSPF/SPEF file and vice versa. To
enable this command, set the following option in the netlist:

.usim_opt spfenablenameutil = 1

The default value for spfenablenameutil is 0.

Example
UltraSim[4]*> spfname -sn xi3852:n1

$#R0.$#R0_2

tells the simulator to print the compact name for the subnode xi3852:n1 in the DSPF file.

-se element_spf_name The compact name for the element with the name
element_spf_name in the DSPF/SPEF file is
printed.

-sn node_spf_name The compact name for the node with the name
node_spf_name in DSPF/SPEF file is printed.

-ie element_internal_name The name of the element whose compact name is
element_internal_name is printed.

-in node_internal_name The name of the node whose compact name is
node_internal_name is printed.
May 2010 375 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
stop

stop -create ((-time time|-event ev_number) ([-absolute]|-relative))|-delete
breakpoint_index|-show [breakpoint_index]

Description

This command is used to pause the simulation if any of the following conditions are met:

■ -show prints a list of break points.

■ -delete deletes a break point.

■ -create -time (time [absolute]|dtime –relative) sets a break point at
<time|dtime>.

■ -create -event (events [-absolute]|devents -relative) sets a break point after
<events|devents> events are triggered.

If arguments are not specified, all existing break points are automatically listed.

Example
stop -create -event 1000

1

stop -show

1 –ne 1000

stop -delete 15 29

tells the simulator to delete all break points with index=15 and 29.
May 2010 376 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
time

time [-v]

Description

The time command is used to print the current and final simulation time in seconds. If the -
v option is specified, the current and end time are printed as a string. If unspecified, only the
value of current time is printed, and it can be used as the Tcl variable.

Example
time -v

tells the simulator to print the current time=4.679620e-08 and end simulation
time=1.000000e-07.
May 2010 377 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
value

value [format] node_name node_name ...|-ni node_index node_index...

Description

The value command prints the voltage or logic value of selected nodes. The format option
supports the following values:

■ %g (default) and %e – floating numbers

■ %d – integer

■ %b – binary

■ %o – octal

■ %h – hexadecimal

Formats %e, %g, and %d represent the analog node values and %b, %o, and %h the logic
values. Logic values are calculated for the base of L0 and L1, where L0 = 0.0 v and L1 = 5.0
v (default). The default L0 and L1 values can be changed using .usim_opt vh=new value
vl=new value.

Example
UltraSim[1]*> value 14
5.0198

UltraSim[2]*> value %b 14
‘b1

UltraSim[3]*> value %o 14
’o4

UltraSim[4]*> value %h 14
’h8

UltraSim[5]*> value %d 14
5

UltraSim[6]*> value %e 14
5.019798e+00

tells the simulator to find the value of node 14 for each format defined by %b, %o, %h, %d, and
%e.
May 2010 378 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
vni

vni [-threshold value]

Description

The vni command prints the voltage source node with a current greater than or equal to the
threshold value (default is 0).

Example
vni –threshold 1.0e-12

tells the Virtuoso UltraSim simulator to print the voltage source node with a current greater
than or equal to 1.0e-12 A, and generates the following output:

*> vni –threshold 1.0e-12

Vdd current=4.68577e-12
May 2010 379 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Interactive Simulation Debugging
May 2010 380 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
8
Virtuoso UltraSim Advanced Analysis

This chapter describes the following Virtuoso® UltraSim™ simulator advanced analysis
methods, which include dynamic and static checks.

Dynamic Checks

■ Active Node Checking detects nodes with voltage changes that exceed the user defined
threshold.

■ Design Checking monitors device voltages during simulation (device voltage check).

■ Dynamic Power Checking reports the power consumed by each element and subcircuit
in the design.

■ Node Activity Analysis provides information about the nodes and monitors activity such
as: voltage overshoots (VOs), voltage undershoots (VUs), maximum and minimum rise/
fall times, switching activity, and half-swing flag.

■ Power Analysis reports the average, maximum, and RMS current at the ports of specified
subcircuits, child subcircuits, and grandchild subcircuits for a specified level of hierarchy.

■ Wasted and Capacitive Current Analysis provides information about the capacitive, and
static and dynamic wasted currents in specified subcircuits.

■ Power Checking performs over current and high impedance node checks.

■ Timing Analysis performs setup, hold, pulse width, and timing edge checks on signals.

■ Bisection Timing Optimization combines multiple simulations into a single
characterization.
May 2010 381 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Active Node Checking

The active node checking analysis detects nodes with voltage changes that exceed the user-
defined threshold. With the active nodes identified, you can choose to selectively
backannotate parasitic elements during post-layout simulation.

Spectre Syntax

acheck title node=[node1 node2...] <depth=value> dv=value <exclude=[node3
node4...] time_window=[start1 stop1 start2 stop2...] <inactive=0|1|2>

SPICE Syntax

.acheck title node=[node1 node2 ...] <depth=value> dv=value <exclude=[node3
node4...] time_window=[start1 stop1 start2 stop2...] <inactive=0|1|2>

or

Spectre Syntax

acheck dv=value

SPICE Syntax

.acheck dv=value

Notes:

■ A period (.) is required when using SPICE language syntax (for example, .acheck).

■ The acheck dv=value and .acheck dv=value syntax continues to be supported by
Cadence (it has a higher capacity active node checking analysis for larger designs).

Description

This command is used to report the active nodes in a circuit design. A node is considered
active if the change in its voltage exceeds value during the checking window. If a window is
not specified, the entire simulation period is used. The active nodes are listed in .actnode
and .actnodelist files. The inactive nodes are listed in .inactnode and
.inactnodelist files. For the .acheck dv=value syntax, the nodes are reported in
.actnodelist or .inactnodelist files.
May 2010 382 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Arguments

Examples

In the following example

Spectre Syntax:

acheck dv=0.5

acheck achk1 node=[*] depth=2 dv=0.5 time_window=[10n 50n 100n 150n]

acheck achk2 node=[x1.*] dv=0.5 exclude=[x1.y1.* x1.y2.*]

acheck achk3 node=[x1.*] dv=0.5 exclude=[x1.y1.* x1.y2.*] inactive=1

SPICE Syntax:

.acheck dv=0.5

.acheck achk1 node=[*] depth=2 dv=0.5 time_window=[10n 50n 100n 150n]

.acheck achk2 node=[x1.*] dv=0.5 exclude=[x1.y1.* x1.y2.*]

.acheck achk3 node=[x1.*] dv=0.5 exclude=[x1.y1.* x1.y2.*] inactive=1

title User-defined title name for the active node check.

node1 node2 ... List of node names to be checked (wildcards are supported).

For more information about wildcards, see “Wildcard Rules” on
page 55.

depth=value Defines the depth of the circuit hierarchy that a wildcard name
applies to. If set to 1, only the nodes at the current level are
applied (default value is infinity).

dv=value Defines the voltage change threshold for the active nodes
(default is 0.1 volts).

exclude Defines the node names to be excluded from the check
(wildcards are supported).

time_window Defines time period of checking.

inactive=0|1|2 Defines which nodes are reported.

■ 0 - only active nodes are reported (default)

■ 1 - only inactive nodes are reported

■ 2 - both active and inactive nodes are reported
May 2010 383 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Design Checking

The Virtuoso UltraSim simulator allows you to perform a dynamic checking analysis on device
voltages during a simulation by using the dcheck command. The analysis generates a report
in a .dcheck file if the voltages exceed the specified voltage bounds.

To use the dcheck command, you can add it to the simulation netlist file, or place it in a
command file and include the file in the simulation netlist file. The following design checking
analyses are described in this section:

■ MOS Voltage Check on page 384

■ BJT Voltage Check on page 389

■ Resistor Voltage Check on page 393

■ Capacitor Voltage Check on page 396

■ Diode Voltage Check on page 399

■ JFET/MESFET Voltage Check on page 403

MOS Voltage Check

Spectre Syntax

dcheck title vmos topnode=0|1 <model=[model1, model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vgdl=volt> <vgdu=volt> <vdsl=volt> <vdsu=volt>
<vdbl=volt> <vdbu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vsbl=volt> <vsbu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

SPICE Syntax

.dcheck title vmos topnode=0|1 <model=[model1, model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vgdl=volt> <vgdu=volt> <vdsl=volt> <vdsu=volt>
<vdbl=volt> <vdbu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vsbl=volt> <vsbu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>
May 2010 384 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Description

This command allows you to monitor metal oxide semiconductor (MOS) voltages during a
simulation run, and generates a report if the voltages exceed the specified upper and lower
bounds, or meets the specified conditions. You can exclude a subset of the instances from
the voltage check using the xsubckt or xinst arguments. If a threshold or condition is not
specified for dcheck in the netlist file, a warning message is issued by the Virtuoso UltraSim
simulator and dcheck is ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

model MOS voltage check is applied to transistors matching the
model name (wildcards are supported).

subckt MOS voltage check is applied to transistors belonging to
all instances of the subcircuits listed (wildcards are
supported).

xsubckt MOS voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst MOS voltage check is applied to transistors belonging to
the subcircuit instances listed (wildcards are supported).

xinst MOS voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vgdl=volt Reports the condition if Vgd is less than the specified
lower bound voltage value.

vgdu=volt Reports the condition if Vgd is greater than the specified
upper bound voltage value.
May 2010 385 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
vdsl=volt Reports the condition if Vds is less than the specified
lower bound voltage value.

vdsu=volt Reports the condition if Vds is greater than the specified
upper bound voltage value.

vdbl=volt Reports the condition if Vdb is less than the specified
lower bound voltage value.

vdbu=volt Reports the condition if Vdb is greater than the specified
upper bound voltage value.

vgsl=volt Reports the condition if Vgs is less than the specified
lower bound voltage value.

vgsu=volt Reports the condition if Vgs is greater than the specified
upper bound voltage value.

vgbl=volt Reports the condition if Vgb is less than the specified
lower bound voltage value.

vgbu=volt Reports the condition if Vgb is greater than the specified
upper bound voltage value.

vsbl=volt Reports the condition if Vsb is less than the specified
lower bound voltage value.

vsbu=volt Reports the condition if Vsb is greater than the specified
upper bound voltage.

Note: The vsbu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vsbu=’-par1’).

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and
variables: vgs, vgd, vgd, vds, vdb, vsb, l, w. The
expression can be a combination of linear and non-linear
expressions.

The conditional check can be combined with the lower and
upper threshold bounds mentioned in the Description. The
conditional check (cond=expr) specifies which devices
need to be checked and the threshold bounds (such as,
vgsl and vgsu) are used to check if the devices contain
violations.
May 2010 386 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

dcheck chk1 vmos model=[tt] inst=[X1] vgsu=1.0 vgsl=0.5 probe=1

dcheck chk2 vmos model=[tt2] cond=((vgs<-3 || vds>3) && l<0.2u)

dcheck chk3 vmos model=[tt3] cond=(vgs*vgs>1 && sin((2*3.14*vds)/0.45)>0.5 ||
vsb<-1) time_window=[1u 10u]

dcheck chk4 vmos model=[tt4] cond=(vgs>0.5 || vgd>0.5) vdsu=1.5

dcheck chk5 vmos xinst=[I2*] xsubckt=[Reg*] vgsu=1.86

dcheck chk6 vmos inst=[I19] xinst=[I19.I19 I19.I116] vgsu=1.86

dcheck chk7 vmos subckt=[pll*] xsubckt=[osc buf] vgsu=1.86

dcheck chk8 vmos subckt=[pll*] xsubckt=[osc buf] vgsu=1.86 topnode=1

SPICE Syntax:

.dcheck chk1 vmos model=[tt] inst=[X1] vgsu=1.0 vgsl=0.5 probe=1

.dcheck chk2 vmos model=[tt2] cond='(vgs<-3 || vds>3) && l<0.2u'

.dcheck chk3 vmos model=[tt3] cond='vgs*vgs>1 && sin((2*3.14*vds)/0.45)>0.5 ||
vsb<-1' time_window=[1u 10u]

.dcheck chk4 vmos model=[tt4] cond='vgs>0.5 || vgd>0.5' vdsu=1.5

.dcheck chk5 vmos xinst=[I2*] xsubckt=[Reg*] vgsu=1.86

.dcheck chk6 vmos inst=[I19] xinst=[I19.I19 I19.I116] vgsu=1.86

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices
May 2010 387 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.dcheck chk7 vmos subckt=[pll*] xsubckt=[osc buf] vgsu=1.86

.dcheck chk8 vmos subckt=[pll*] xsubckt=[osc buf] vgsu=1.86 topnode=1

The command line of chk1 checks all MOSFETs using model tt in block X1. The devices
that meet vgs>1 or vgs<0.5 criteria are reported. Where probe=1, all node voltages of the
tt devices are probed.

The command line of chk2 checks all MOSFETs using model tt2, whether vgs<-3 or
vds>3, when MOSFET length is less than 0.2 um. If the condition is met, the devices are
reported.

In the command line of chk3, a conditional design analysis check is performed by the
simulator, and includes nonlinear expressions. The MOSFETs that meet the condition are
reported.

The command line of chk4 combines the conditional and upper/lower threshold bound
checks. Only the MOSFET models that meet the specified conditions are checked (that is,
MOSFET models are reported if vds>1.5).

In the command line of chk5, all MOSFETs in the netlist file are checked. The subcircuit
instances with names that match I2*, instances of subcircuits with the name Reg*, and their
sub-hierarchies are excluded. MOSFETs that meet the vgsu>1.86 criteria are reported.

In the command line of chk6, all MOSFETs belonging to instance I19 and its sub-hierarchy
are checked. Subcircuit instances I19.I19 and I19.I116 are excluded. MOSFETs that
meet the vgsu>1.86 criteria are reported.

The command line of chk7 checks all MOSFETs belonging to instances of the subcircuits
with names that match pll* and their sub-hierarchies. Instances of subcircuits osc and buf
are excluded. MOSFETs that meet the vgsu>1.86 criteria are reported.

The command line of chk8 checks the same thing as chk7 but reports the top-level node
names rather than hierarchical terminal names into dcheck report file.

Sample Output

Title Model From
(ns)

To
(ns)

v_curr
(vth)

chk_type Device Drain Gate Source Bulk

chk1 tt 5.0 5.2 1.2
(>1.0)

vgsu X1.mn1 - X1.g X1.s -

chk1 tt 7.0 7.5 0.3
(<0.5)

vgsl X1.mn2 - X1.g X1.s -
May 2010 388 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
BJT Voltage Check

Spectre Syntax

dcheck title vbjt topnode=0|1 <model=[model1 model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vbcl=volt> <vbcu=volt> <vbel=volt> <vbeu=volt>
<vbsl=volt> <vbsu=volt> <vcel=volt> <vceu=volt> <vcsl=volt> <vcsu=volt>
<vesl=volt> <vesu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

SPICE Syntax

.dcheck title vbjt topnode=0|1 <model=[model1 model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vbcl=volt> <vbcu=volt> <vbel=volt> <vbeu=volt>
<vbsl=volt> <vbsu=volt> <vcel=volt> <vceu=volt> <vcsl=volt> <vcsu=volt>
<vesl=volt> <vesu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

chk2 tt2 2.0 8.5 - cond_
dcheck

X1.mn3 - - - -

chk4 tt4 3.0 7.5 1.7
(>1.5)

cond_
vgsu

X1.mn3 - X1.g X1.s -

chk5 nmos1
.1

71 72 1.8948
(>1.86)

vgsu I19.I20.
N00

- I19.I20
.A

I19.I20
.0

-

chk5 nmos1
.1

81 82 1.8968
(>1.86)

vgsu I19.I20.
N00

- I19.I20
.A

I19.I20
.0

-

chk6 nmos1
.1

71 72 1.8948
(>1.86)

vgsu 19.I20
.N00

- I19.I20.
A

I19.I20.
0

-

chk6 nmos1
.1

81 82 1.8968
(>1.86)

vgsu 19.I20
.N00

- I19.I20.
A

I19.I20.
0

-

chk7 nmos1
.1

31 32 1.8641
(>1.86)

vgsu I19.I116
.MN0

- I19.I116
.A

I19.I116
.0

-

chk7 nmos1
.1

83 84 1.8671
(>1.86)

vgsu I19.I116
.MN0

- I19.I116
.A

I19.I116
.0

-

chk8 nmos1
.1

31 32 1.8641
(>1.86)

vgsu I19.I116
.MN0

- reset 0 -

chk8 nmos1
.1

83 84 1.8671
(>1.86)

vgsu I19.I116
.MN0

- reset 0 -
May 2010 389 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Description

This command allows you to monitor bipolar junction transistor (BJT) voltages during a
simulation run, and generates a report if the voltages exceed the specified upper and lower
bounds, or meets the specified conditions. You can exclude a subset of the instances from
the voltage check using the xsubckt or xinst arguments. If a threshold or condition is not
specified for dcheck in the netlist file, a warning message is issued by the Virtuoso UltraSim
simulator and dcheck is ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

model BJT voltage check is applied to transistors matching the
model name (wildcards are supported).

subckt BJT voltage check is applied to transistors belonging to all
instances of the subcircuits listed (wildcards are
supported).

xsubckt BJT voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst BJT voltage check is applied to transistors belonging to the
subcircuit instances listed (wildcards are supported).

xinst BJT voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vbcl=volt Reports the condition if Vbc is less than the specified
lower bound voltage value.

vbcu=volt Reports the condition if Vbc is greater than the specified
upper bound voltage value.
May 2010 390 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
vbel=volt Reports the condition if Vbe is less than the specified
lower bound voltage value.

vbeu=volt Reports the condition if Vbe is greater than the specified
upper bound voltage value.

vbsl=volt Reports the condition if Vbs is less than the specified
lower bound voltage value.

vbsu=volt Reports the condition if Vbs is greater than the specified
upper bound voltage value.

vcel=volt Reports the condition if Vce is less than the specified
lower bound voltage value.

vceu=volt Reports the condition if Vce is greater than the specified
upper bound voltage value.

vcsl=volt Reports the condition if Vcs is less than the specified lower
bound voltage value.

vcsu=volt Reports the condition if Vcs is greater than the specified
upper bound voltage value.

vesl=volt Reports the condition if Ves is less than the specified lower
bound voltage value.

vesu=volt Reports the condition if Ves is greater than the specified
upper bound voltage.

Note: The vesu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vesu=’-par1’).

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and
variables: vbc, vbe, vbs, vce, vcs, ves, l, w. The
expression can be a combination of linear and non-linear
expressions.

Note: The conditional check can be combined with the
lower and upper threshold bounds mentioned in the
Description.
May 2010 391 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example

Spectre Syntax:

dcheck chk1 vbjt model=[tt] vbeu=1.0 inst=[X1] xinst=[X1.X0] time_window=[5n 10u]
probe=1

dcheck chk2 vbjt vbeu=0.7 vbel=-0.5 inst=[i1]

dcheck chk3 vbjt vbeu=0.7 vbel=-0.5 inst=[i1] topnode=1

SPICE Syntax:

.dcheck chk1 vbjt model=[tt] vbeu=1.0 inst=[X1] xinst=[X1.X0] time_window=[5n 10u]
probe=1

.dcheck chk2 vbjt vbeu=0.7 vbel=-0.5 inst=[i1]

.dcheck chk3 vbjt vbeu=0.7 vbel=-0.5 inst=[i1] topnode=1

The command line of chk1 checks voltages of all BJTs using the tt model in instance X1
and its sub-hierarchy from transient time 5ns to 10us, excluding the X1.X0 instance. BJTs
that meet the vbeu>1 criteria are reported by the simulator. Where probe=1, all node
voltages of the tt devices are probed.

The command line of chk2 checks all BJT voltages in the instance i1 and its sub-hierarchy.
BJTs that meet the vbeu>0.7 or vbeu<-0.5 criteria are reported by the simulator.

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices
May 2010 392 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The command line of chk3 checks the same thing as chk2 but reports the top-level node
names rather than hierarchical terminal names in the dcheck report file.

Sample Output

Resistor Voltage Check

Spectre Syntax

dcheck title vres topnode=0|1 <subckt=[subckt1 subckt2...]> <xsubckt=[xsubckt1
xsubckt2...]> <inst=[inst1 inst2…]> <xinst=[xinst1 xinst2…]> <vpnl=volt>
<vpnu=volt> <cond=expression> <duration=dtime> <time_window=[start1 stop1
start2 stop2 ...]> <probe=0|1> <preserve=none|all>

SPICE Syntax

.dcheck title vres topnode=0|1 <subckt=[subckt1 subckt2...]> <xsubckt=[xsubckt1
xsubckt2...]> <inst=[inst1 inst2…]> <xinst=[xinst1 xinst2…]> <vpnl=volt>
<vpnu=volt> <cond=expression> <duration=dtime> <time_window=[start1 stop1
start2 stop2 ...]> <probe=0|1> <preserve=none|all>

Description

This command allows you to monitor resistor voltages during a simulation run, and generates
a report if the voltages exceed the specified upper and lower bounds, or meets the specified
conditions. You can exclude a subset of the instances from the voltage check using the

Title Model From

(ns)

To

(ns)

v_curr

(vth)

chk_t-
ype

Device Collec
tor

Base Emitter Subs-
trate

chk1 tt 5.0 5.2 1.2
(>1.0)

vbeu X1.q1 - X1.b X1.e -

chk2 knpn 1 1.6 5.03608(
>0.7)

vbeu il.q0 - il.net52 il.vss! -

chk2 knpn 0 40 -
0.57091(
<-0.5)

vbe1 il.q2 - il.iref il.vdd! -

chk3 knpn 1 1.6 5.03608(
>0.7)

vbeu il.q0 - il.net52 vss! -

chk3 knpn 0 40 -
0.57091(
<-0.5)

vbe1 il.q2 - net35 vdd! -
May 2010 393 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
xsubckt or xinst arguments. If a threshold or condition is not specified for dcheck in the
netlist file, a warning message is issued by the Virtuoso UltraSim simulator and dcheck is
ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

subckt The voltage check is applied to resistors belonging to all
instances of the subcircuits listed (wildcards are
supported).

xsubckt The voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst The voltage check is applied to resistors belonging to the
subcircuit instances listed (wildcards are supported).

xinst The voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vpnl=volt Reports the condition if Vpn is less than the specified
lower bound voltage value.

vpnu=volt Reports the condition if Vpn is greater than the specified
upper bound voltage value.

Note: The vpnu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vpnu=’-par1’).
May 2010 394 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example

Spectre Syntax:

dcheck chk1 vres vpnu=1.0 inst=[X1] time_window=[5n 10u] probe=1

dcheck chk2 vres inst=[I19] xinst=[I19.I19.I3] vpnu=0.05

dcheck chk3 vres inst=[I19] xinst=[I19.I19.I3] vpnu=0.05 topnode=1

SPICE Syntax:

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and the
vpn variable. The expression can be a combination of
linear and non-linear expressions.

Note: The conditional check can be combined with the
lower and upper threshold bounds mentioned in the
Description.

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices

Note: Set preserve=all if the specified resistor is
subject to RC reduction.
May 2010 395 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.dcheck chk1 vres vpnu=1.0 inst=[X1] time_window=[5n 10u] probe=1

.dcheck chk2 vres inst=[I19] xinst=[I19.I19.I3] vpnu=0.05

.dcheck chk3 vres inst=[I19] xinst=[I19.I19.I3] vpnu=0.05 topnode=1

The command line of chk1 checks all resistors belonging to the X1 instance and its sub-
hierarchy from transient simulation time 5 ns to 10 us. The resistors that meet the vpnu>1.0
criteria are reported and the node voltages of all resistors inside X1 are probed.

The command line of chk2 checks all the resistors for instance I19 and its sub-hierarchy,
from which I19.I19.I3 instance is excluded. The resistors that meet the vpnu>0.05 criteria
are reported.

The command line of chk3 checks the same thing as chk2 but reports the top-level node
names rather than hierarchical terminal names into dcheck report file.

Sample Output

Capacitor Voltage Check

Spectre Syntax

dcheck title vcap topnode=0|1 <subckt=[subckt1 subckt2...]> <xsubckt=[xsubckt1
xsubckt2...]> <inst=[inst1 inst2...]> <xinst=[xinst1 xinst2...]>
<vpnl=volt> <vpnu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

SPICE Syntax

.dcheck title vcap topnode=0|1 <subckt=[subckt1 subckt2...]> <xsubckt=[xsubckt1
xsubckt2...]> <inst=[inst1 inst2...]> <xinst=[xinst1 xinst2...]>
<vpnl=volt> <vpnu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1>
<preserve=none|all>>

Title Model From (ns) To (ns) v_curr(vth) chk_type Device 1 2

chk1 tt 5.0 5.2 1.2 (>1.0) vpnu X1.r1 X1.n1 X1.n2

chk2 R 30 31 0.061919(>0
.05)

vpnu I19.R2.r1 I19.R2
.PLUS

I19.R2
.MINUS

chk3 R 30 31 0.061919(>0
.05)

vpnu I19.R2.r1 I19.n5 I19.n6
May 2010 396 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Description

This command allows you to monitor capacitor voltages during a simulation run, and
generates a report if the voltages exceed the specified upper and lower bounds, or meet the
specified conditions. You can exclude a subset of the instances from the voltage check using
the xsubckt or xinst arguments. If a threshold or condition is not specified for dcheck in
the netlist file, a warning message is issued by the Virtuoso UltraSim simulator and dcheck
is ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

subckt The voltage check is applied to capacitors belonging to all
instances of the subcircuits listed (wildcards are
supported).

xsubckt The voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst The voltage check is applied to capacitors belonging to the
subcircuit instances listed (wildcards are supported).

xinst The voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vpnl=volt Reports the condition if Vpn is less than the specified
lower bound voltage value.

vpnu=volt Reports the condition if Vpn is greater than the specified
upper bound voltage value.

Note: The vpnu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vpnu=’-par1’).
May 2010 397 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

dcheck chk1 vcap vpnu=1.0 inst=[X1] time_window=[5n 10u]

dcheck chk2 vcap xinst=[I19.I19.I3] vpnu=1.1

dcheck chk3 vcap vpnl=-5 preserve=all

dcheck chk4 vcap vpnl=-5 preserve=all topnode=1

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and the
vpn variable. The expression can be a combination of
linear and non-linear expressions.

Note: The conditional check can be combined with the
lower and upper threshold bounds mentioned in the
Description.

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices

Note: Set preserve=all if the specified capacitor is
subject to RC reduction.
May 2010 398 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax:

.dcheck chk1 vcap vpnu=1.0 inst=[X1] time_window=[5n 10u]

.dcheck chk2 vcap xinst=[I19.I19.I3] vpnu=1.1

.dcheck chk3 vcap vpnl=-5 preserve=all

.dcheck chk4 vcap vpnl=-5 preserve=all topnode=1

The command line of chk1 checks all the capacitors belonging to instance X1 and its sub-
hierarchy from transient time 5 ns to 10 us. The capacitors that meet the vpnu>1.0 criteria are
reported.

The command line of chk2 checks all the capacitors in the netlist file, excluding the
I19.I19.I3 instance and its sub-hierarchy. The capacitors that meet the vpnu>1.1 criteria
are reported.

The command line of chk3 checks all the capacitors in the netlist file. The capacitors that
meet the vpnl<-5 criterion are reported.

The command line of chk4 checks the same thing as chk3 but reports the top-level node
names rather than the hierarchical terminal names into the dcheck report file.

Sample Output

Diode Voltage Check

Spectre Syntax

dcheck title vdio topnode=0|1 <model=[model1 model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vpnl=volt> <vpnu=volt> <cond=expression>
<duration=dtime> <time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1>
<preserve=none|all>

Title Model From
(ns)

To
(ns)

v_curr(vth) chk_type Device 1 2

chk1 tt 5.0 5.2 1.2 (>1.0) vpnu X1.c1 X1.n1 X1.n2

chk2 C 0 23.6 1.8827
(>1.1)

vpnu C7 clk_p0_1x 0

chk3 C 0 40 -6.50024(<-5) vpnl il.c0 il.net6 il._net0

chk4 C 0 40 -6.50024(<-5) vpnl il.c0 il.net6 out
May 2010 399 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax

.dcheck title vdio topnode=0|1 <model=[model1 model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vpnl=volt> <vpnu=volt> <cond=expression>
<duration=dtime> <time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1>
<preserve=none|all>

Description

This command allows you to monitor diode voltages during a simulation run, and generates
a report if the voltages exceed the specified upper and lower bounds, or meet the specified
conditions. You can exclude a subset of the instances from the voltage check using the
xsubckt or xinst arguments. If a threshold or condition is not specified for dcheck in the
netlist file, a warning message is issued by the Virtuoso UltraSim simulator and dcheck is
ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

model The diode voltage check is applied to resistors matching
the model name (wildcards are supported).

subckt The diode voltage check is applied to resistors belonging
to all instances of the subcircuits listed (wildcards are
supported).

xsubckt The diode voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst The diode voltage check is applied to resistors belonging
to the subcircuit instances listed (wildcards are
supported).
May 2010 400 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
xinst The diode voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vpnl=volt Reports the condition if Vpn is less than the specified
lower bound voltage value.

vpnu=volt Reports the condition if Vpn is greater than the specified
upper bound voltage value.

Note: The vpnu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vpnu=’-par1’).

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and the
vpn variable. The expression can be a combination of
linear and non-linear expressions.

Note: The conditional check can be combined with the
lower and upper threshold bounds mentioned in the
Description.

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.
May 2010 401 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

dcheck diochk1 vdio vpnu=2 vpnl=0

dcheck diochk2 vdio subckt=[pll] xinst=[I19.I19.I3] vpnl=0

dcheck diochk3 vdio subckt=[pll] xinst=[I19.I19.I3] vpnl=0 topnode=1

SPICE Syntax:

.dcheck diochk1 vdio vpnu=2 vpnl=0

.dcheck diochk2 vdio subckt=[pll] xinst=[I19.I19.I3] vpnl=0

.dcheck diochk3 vdio subckt=[pll] xinst=[I19.I19.I3] vpnl=0 topnode=1

The command line of diochk1 checks all the diodes in the netlist file. The diodes that meet
the vpnu>2 or vpnl<0 criteria are reported by the simulator.

The command line of diochk2 checks the diodes in the instances of subcircuit p11 and its
sub-hierarchy, excluding the I19.I19.I3 instance. The diodes that meet the vpnl<0
criterion are reported by the simulator.

The command line of diochk3 checks the same thing as diochk2 but reports the top-level
node names rather than the hierarchical terminal names into the dcheck report file.

Sample Output

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices

Title Model From
(ns)

To
(ns)

v_curr(vth) chk_type Device 1 2

diochk1 D 29 30 -0.5 (< 0) vpnl d1 n1 n2

diochk1 D 5 25 4.5 (> 2) vpnu d1 n1 n2

diochk2 D 0 85 -1.0499 (<0) vpnl I19.D2 I19.vss I19.vcom

diochk2 D 0 85 -1.26648 (<0) vpnl I19.D3 I19. vss I19.vcop

diochk3 D 0 85 -1.0499 (<0) vpnl I19.D2 0 vcom

diochk3 D 0 85 -1.26648 (<0) vpnl I19.D3 0 vcop
May 2010 402 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
JFET/MESFET Voltage Check

Spectre Syntax

dcheck title vjft topnode=0|1 <model=[model1, model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vgdl=volt> <vgdu=volt> <vdsl=volt> <vdsu=volt>
<vdbl=volt> <vdbu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vsbl=volt> <vsbu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

SPICE Syntax

.dcheck title vjft topnode=0|1 <model=[model1, model2...]> <subckt=[subckt1
subckt2...]> <xsubckt=[xsubckt1 xsubckt2...]> <inst=[inst1 inst2...]>
<xinst=[xinst1 xinst2...]> <vgdl=volt> <vgdu=volt> <vdsl=volt> <vdsu=volt>
<vdbl=volt> <vdbu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vsbl=volt> <vsbu=volt> <cond=expression> <duration=dtime>
<time_window=[start1 stop1 start2 stop2 ...]> <probe=0|1> <preserve=none|all>

Description

This command allows you to monitor junction field effect transistor (JFET) or metal
semiconductor field effect transistor (MESFET) voltages during a simulation run, and
generates a report if the voltages exceed the specified upper and lower bounds, or meets the
specified conditions. You can exclude a subset of the instances from the voltage check using
the xsubckt or xinst arguments. If a threshold or condition is not specified for dcheck in
the netlist file, a warning message is issued by the Virtuoso UltraSim simulator and dcheck
is ignored during the simulation.

Arguments

title Title of the voltage check.

topnode=0|1 Specifies whether the top-level node name or the
hierarchical terminal name is to be reported in the dcheck
report file. If set to 0, the hierarchical device terminal name
is reported (default). If set to 1, the top-level node name is
reported. If a top-level node name is not available, the
hierarchical terminal name is used.

model MOS voltage check is applied to transistors matching the
model name (wildcards are supported).
May 2010 403 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
subckt MOS voltage check is applied to transistors belonging to
all instances of the subcircuits listed (wildcards are
supported).

xsubckt MOS voltage check is excluded from instances of the
subcircuits listed (wildcards are supported).

inst MOS voltage check is applied to transistors belonging to
the subcircuit instances listed (wildcards are supported).

xinst MOS voltage check is excluded from the subcircuit
instances listed (wildcards are supported).

Note: The inst and xinst arguments can only be used
to specify subcircuit instances, but not device instances.

vgdl=volt Reports the condition if Vgd is less than the specified
lower bound voltage value.

vgdu=volt Reports the condition if Vgd is greater than the specified
upper bound voltage value.

vdsl=volt Reports the condition if Vds is less than the specified
lower bound voltage value.

vdsu=volt Reports the condition if Vds is greater than the specified
upper bound voltage value.

vdbl=volt Reports the condition if Vdb is less than the specified
lower bound voltage value.

vdbu=volt Reports the condition if Vdb is greater than the specified
upper bound voltage value.

vgsl=volt Reports the condition if Vgs is less than the specified
lower bound voltage value.

vgsu=volt Reports the condition if Vgs is greater than the specified
upper bound voltage value.

vgbl=volt Reports the condition if Vgb is less than the specified
lower bound voltage value.

vgbu=volt Reports the condition if Vgb is greater than the specified
upper bound voltage value.

vsbl=volt Reports the condition if Vsb is less than the specified
lower bound voltage value.
May 2010 404 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

vsbu=volt Reports the condition if Vsb is greater than the specified
upper bound voltage.

Note: The vsbu argument and other arguments listed in
this table can be used with constant parameters, but must
be enclosed by single quotation marks (for example,
vsbu=’-par1’).

cond=expression Defines the conditional expression as the checking
criteria. When the condition is met, the simulator
generates a report. The conditional expression supports
the following operators: <, >, <=, >=, ==, ||, &&, and
variables: vgd, vds, vdb, vgs, vgb, vsb, l, w. The
expression can be a combination of linear and non-linear
expressions.

Note: The conditional check can be combined with the
lower and upper threshold bounds mentioned in the
Description.

duration=dtime Reports the condition if device voltages are out of bounds
for a duration of time longer than dtime (dtime default
value is equal to the minimum time step of the simulation).

time_window The time period specified for checking in which the first
number is the start time point and the second number is
the stop time point. For example, start1 to stop1 is the
first time period and start2 to stop2 is the second time
period.

Note: Only ascending time points can be used (for
example, start1 < stop1 < start2 < stop2).

probe=0|1 Flag to probe node voltage for devices checked. If set to 0,
no probe is performed (default). If set to 1, all node
voltages for devices checked with dcheck are probed.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive
devices
May 2010 405 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
dcheck chk1 vjft model=[tt] inst=[X1] xsubckt=[Reg*] vgsu=1.0 vgsl=0.5 probe=1

dcheck chk2 vjft model=[tt2] cond=((vgs<-3 || vds>3) && l<0.2u)

SPICE Syntax

.dcheck chk1 vjft model=[tt] inst=[X1] xsubckt=[Reg*] vgsu=1.0 vgsl=0.5 probe=1

.dcheck chk2 vjft model=[tt2] cond='(vgs<-3 || vds>3) && l<0.2u'

The command line of chk1 in the netlist file tells the Virtuoso UltraSim simulator to check all
JFET model devices using model tt in block X1 and its sub-hierarchy. Instances of
subcircuits with names that match *Reg are excluded (if instances of the Reg* subcircuits
are not part of the X1 instance, their sub-hierarchies are also excluded). The devices that
meet the vgs>1 or vgs<0.5 criteria are reported by the simulator. Where probe=1, all node
voltages of the tt devices are probed.

The command line of chk2 tells the simulator to check all JFET model devices using model
tt2, whether vgs<-3 or vds>3, and when the JFET length is less than 0.2 um. If the
conditions are met, the devices are reported by the simulator.
May 2010 406 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Dynamic Power Checking

The section introduces the Virtuoso UltraSim simulator dynamic power analyses. These
commands allow you to perform a power analysis using probe and measure statements, and
report the power consumed by each element and subcircuit in the design.

.measure/power

Description

The power measure statement monitors the average, maximum, minimum, peak-to-peak,
RMS, and integral (total energy) of the instantaneous power consumed by the elements or
subcircuit. If the netlist filename is circuit.sp, the value files are called circuit.meas#
and circuit.mt#.

Examples

In the following example

.measure tran power_max max `v(xtop.x23.out) * x0(xtop.x23.out)` from=0ns to=1us

tells the Virtuoso UltraSim simulator to measure the maximum power of port out of instance
xtop.x23, excluding all other lower hierarchical subcircuit ports.

The next example

.measure tran power_min min `v(xtop.x23.out) * x(xtop.x23.out)` from=0ns to=1us

tells the simulator to measure the maximum power of port out of instance xtop.x23 and all
instances below it.

The next example

.measure tran power_avg avg `v(1) * i1(r1)` from=0ns to=1us

tells the simulator to measure the average power on element r1 in the circuit.

The next example

.measure tran energy integ ` v(xtop.x23.out) * x(xtop.x23.out)` from=0ns to=10us

tells the simulator to measure the integral power (total energy) of port out of instance
xtop.x23 and all instances below it.
May 2010 407 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.probe/power

Description

The power probe statement is used to set up power probes on elements or subcircuits for a
specified output quantity. Two output files are created for this probe statement. If the netlist
filename is circuit.sp, the output files are called circuit.expr.trn and
circuit.expr.dsn.

Examples

In the following example

.probe tran power=par(`v(xtop.x23.out) * x0(xtop.x23.out)`)

tells the Virtuoso UltraSim simulator to probe the power of port out of instance xtop.x23,
excluding all other lower hierarchical subcircuit ports.

The next example

.probe tran power=par(`v(xtop.x23.out) * x(xtop.x23.out)`)

tells the simulator to probe the power of port out of instance xtop.x23 and all instances
below it.

The next example

.probe tran power=par(`v(1) * i1(r1)`)

tells the simulator to probe the power on element r1 in the circuit.
May 2010 408 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Node Activity Analysis

Spectre Syntax

usim_nact title node=[node1 node2...] <limit=value> <start=time> <stop=time>
<type=max_vo|avg_vo|...> <sort=inc|dec> <param=[max_vo ...] <swingvth=value>

SPICE Syntax

.usim_nact title node=[node1 node2 ...] <limit=value> <start=time> <stop=time>
<type=max_vo|avg_vo|...> <sort=inc|dec> <param=[max_vo ...] <swingvth=value>

Description

This command sets up the node activity analysis for the specified nodes. The analysis reports
the following parameters for each node:

■ Maximum and average voltage overshoot (VO)

■ Maximum and average voltage undershoot (VU)

■ Maximum, average, and minimum rise times

■ Maximum, average, and minimum fall times

■ Signal probability of being high and low

■ Capacitance

■ Number of toggles

■ Full-swing or non-full-swing status

A time window can be specified for the analysis performed. If a wildcard (*) is used in the
node names, the number of nodes for which data is printed can be limited using the limit
keyword. For more information about wildcards, see “Wildcard Rules” on page 55.

The output data is printed to a file with the extension .nact. For example, if the name of the
input netlist file is circuit.sp, then the output file is named circuit.nact. For multiple
node activity analysis commands, all activity reports are saved in the .nact file in the same
order as the commands were issued.

The number of nodes for which data is printed in the output file can be limited. This is to
restrict the size of the output file if the circuit is large. If the limit is not specified, then data for
all the nodes is printed to the file.
May 2010 409 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The nodes can be sorted before being printed to the file. Each of the column names in the
output file can be treated as a sort variable. That is, it can be used for sorting, and only one
column can be used for sorting. The sorting order, ascending or descending, can also be
specified. By default, the nodes are sorted in increasing order of their names (that is, in
alphabetical order). If a sort variable is specified, then it is used for sorting. For example, if
type=max_vo sort=inc is specified in the command card, the nodes are sorted in
increasing order of their maximum VO value. If many nodes have the exact same maximum
VO, then they are sorted according to the default sorting criterion, by increasing order of their
names.

By default, the command reports all parameters for each node. The number of reported
parameters can be limited using the param statement.

Arguments

title Title of the node activity analysis.

[node1 node2...] Specifies the nodes that need to be checked; accepts wildcards
(*).

limit Limits the number of nodes which are output to the file to n. The n
nodes that rank highest, according to the specified criterion, are
printed to the file.

start Start time of the check window. If not specified, the default is 0.

stop Stop time of the check window. If not specified, the default is the
stop time of the simulation.

type Sets the column name to be sorted.

Note: You can use only one column name for sorting.

sort =(inc | dec) Sets the sorting order:

inc, sorts in increasing order of the column values.

dec, sorts in decreasing order of the column values.

param Defines the column names printed in the report. The column
names that are not listed are not printed. If the param keyword is
not specified, all the column names are printed.
May 2010 410 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The reported column names, specified in the .usim_nact file, are described below:

Column Name Descriptions

swingvth Defines the voltage threshold for detecting nodes that are not full-
swing. A node is not considered to be full-swing if:

■ high-level voltage cannot reach the vdd-swingvth value.

or

■ low-level voltage cannot be under the gnd+swingvth value.

max_vo Maximum voltage overshoot (VO) at the node during time window
(reference level is the high level defined by .usim_opt vdd or the
highest available DC voltage level - see log file for vdd value)

t_max_vo Time when maximum VO occurs

avg_vo Average VO at the node during time window (reference level is vdd)

max_vu Maximum voltage undershoot (VU) at the node during time window
(reference level is 0V)

t_max_vu Time when maximum VU occurs

avg_vu Average VU at the node during time window (reference level is 0V)

max_rise Maximum rise time at the node during time window, measured from vl to
vh (use .usim_opt vl/vh to define threshold)

Note: Use max_rt in netlist file.

t_max_rise Time when maximum rise time occurs

min_rise Minimum rise time at the node during time window, measured from vl to
vh (use .usim_opt vl/vh to define threshold)

Note: Use min_rt in netlist file.

t_min_rise Time when minimum rise time occurs

avg_rise Average rise time at the node during time window, measured from vl to
vh (use .usim_opt vl/vh to define threshold)

Note: Use avg_rt in netlist file.
May 2010 411 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

usim_nact example limit=10 type=max_vo sort=inc

SPICE Syntax:

.usim_nact example limit=10 type=max_vo sort=inc

tells the Virtuoso UltraSim simulator to display the top 10 nodes which have the highest VO.

VO is the difference between the node and supply voltage, when the node voltage is greater
than the supply voltage. If the node voltage is less than the supply voltage, VO is assumed to
be 0.

max_fall Maximum fall time at the node during time window, measured from vh to
vl (use .usim_opt vl/vh to define threshold)

Note: Use max_ft in netlist file.

t_max_fall Time when maximum fall time occurs

min_fall Minimum fall time at the node during time window, measured from vh to
vl (use .usim_opt vl/vh to define threshold)

Note: Use min_ft in netlist file.

t_min_fall Time when minimum fall time occurs

avg_fall Average fall time at the node during time window, measured from vh to vl
(use .usim_opt vl/vh to define threshold)

Note: Use avg_ft in netlist file.

probe_h Percentage of transient simulation time node was in logic 1 state (above
vh)

probe_l Percentage of transient simulation time node was in logic 0 state (below
vl)

cap Total average node capacitance including device capacitances

toggle Number of times node toggled from low to high or high to low (high level
defined by vh and low level defined by vl)

half_swing Indicates whether a node is full-swing. A value of 1 indicates a non-full-
swing node, and a value of 0 indicates a full-swing node.
May 2010 412 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
VU is defined as the difference between the ground and node voltage. If the node voltage is
higher than the ground level, VU is assumed to be 0. Rise time is the time it takes the node
to go from 30% to 70% of the difference between the supply voltage and ground voltage. Fall
time is the time it takes the node to go from 70% to 30% of the difference between the supply
voltage and ground voltage.

Spectre Syntax:

usim_nact example1 type=cap sort=dec param=[cap toggle max_rt]

SPICE Syntax:

.usim_nact example1 type=cap sort=dec param=[cap toggle max_rt]

tells the simulator to create a report with all nodes ordered after their node capacitance and
prints the node capacitance, maximum rise time, time at which maximum rise time appears,
and number of toggles.

Spectre Syntax:

usim_nact check_swing node=[out1 out2 in] param=[toggle half_swing] swingvth=0.1
start=10ns stop=40ns

SPICE Syntax:

.usim_nact check_swing node=[out1 out2 in] param=[toggle half_swing] swingvth=0.1
start=10ns stop=40ns

tells the simulator to check whether the three nodes out1, out2 and, in are full-swing based
on the specified swing threshold value (swingvth=0.1), and prints the half_swing flag
together with the number of toggles in the report file.
May 2010 413 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Node Glitch Analysis

Spectre Syntax

usim_nact title analysis=glitch node=[node1 node2...] <vurelth=value>
<vuabsth=value> <vurelrecth=value> <vuabsrecth=value> <vorelth=value>
<voabsth=value> <vorelrecth=value> <voabsrecth=value>
<type=max_vo|avg_vo|max_vu|avg_vu> <sort=inc|dec> <start=time> <stop=time>
<limit=value> <numlevel=value>

SPICE Syntax

.usim_nact title analysis=glitch node=[node1 node2...] <vurelth=value>
<vuabsth=value> <vurelrecth=value> <vuabsrecth=value> <vorelth=value>
<voabsth=value> <vorelrecth=value> <voabsrecth=value>
<type=max_vo|avg_vo|max_vu|avg_vu> <sort=inc|dec> <start=time> <stop=time>
<limit=value> <numlevel=value>

Description

This command sets up the node glitch analysis for the specified nodes. Node glitch analysis
is a post-processing feature, which detects glitches in reference to static voltage levels of a
signal.

Node glitch analysis is performed as follows:

1. Static voltage levels (where the voltage level is constant) of all signals defined as levels
are determined.

2. All static levels below or equal to 0.5V are considered as static low level.

3. All static levels above 0.5V are considered as static high level.

4. Glitches are detected in reference to the static voltage levels. The software detects
overshoot glitches in reference to static low level and undershoot glitches in reference to
static high level.
May 2010 414 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The report contains one line for all glitches occurring during one static level. If one signal has
multiple static levels and each static level contains glitches, one line is reported for each static
level. The following parameters are reported for the glitches of each static voltage level:

■ avg: Specifies the average glitch voltage level, that is, the average of maximum value of
all glitches within one static level.

■ max: Specifies the maximum glitch voltage level, that is, the voltage level of the maximum
glitch within the static level.

■ t_max: Specifies the time of the maximum glitch.

■ t_recovery: Specifies the time taken by the signal to recover from the glitch.

■ staticVal: Specifies the static voltage level.

■ Vpp: Specifies the high-level voltage used to calculate glitch threshold based on relative
tolerances.

■ start: Specifies the start time of the static voltage level.
May 2010 415 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
■ end: Specifies the end time of the static voltage level.

The report can be sorted based on overshoot glitches, undershoot glitches, average glitch
voltage level, and maximum glitch voltage level. In addition, the values can be arranged in
increasing or decreasing order.

Overshoot glitches can be identified in the report by the reported static low level (below/equal
to 0.5V). Undershoot glitches can be identified in the report by the reported static high level.

Arguments

title Title of the node glitch analysis.

[node1 node2...] Specifies the nodes that need to be checked; accepts wildcards
(*).

vurelth Specifies the relative tolerance for undershoot glitch detection.

Default: 0.1

vuabsth Specifies the absolute tolerance for undershoot glitch detection.

Default: 0.5V

vurelrecth Specifies the relative tolerance for undershoot glitch recovery.

Default: 0.1

vuabsrecth Specifies the absolute tolerance for undershoot glitch recovery.

Default: 0.5V

vorelth Specifies the relative tolerance for overshoot glitch detection.

Default: 0.1

voabsth Specifies the absolute tolerance for overshoot glitch detection.

Default: 0.5V

vorelrecth Specifies the relative tolerance for overshoot glitch recovery.

Default: 0.1

voabsrecth Specifies the absolute tolerance for overshoot glitch recovery.

Default: 0.5V
May 2010 416 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

type Specifies the criteria of sorting, which could be one of the following:

■ max_vo: Sorts the results based on maximum overshoot or
undershoot value.

■ avg_vo: Sorts the results based on average overshoot or
undershoot glitch value.

■ max_vu: Sorts the results based on maximum overshoot or
undershoot value.

■ avg_vu: Sorts the results based on average overshoot or
undershoot glitch value.

Note: The report does not differentiate between overshoot and
undershoot glitches. Therefore, you will see the same sorting results
when you use max_vo or max_vu. Similarly, you will see the same
sorting results when you use avg_vo or avg_vu.

sort =(inc |
dec)

Sets the order for sorting:

inc: Sorts in increasing order of the column values.

dec: Sorts in decreasing order of the column values.

start Specifies the start time of the check window.

Default: 0

stop Specifies the stop time of the check window. If not specified, the
default is the stop time of the simulation.

limit Limits the number of nodes, which are output to the file. When this
option is specified, the software prints the glitch information for only
the specified number of nodes. The nodes that rank higher based
on the specified criteria are printed first.

Default: unlimited

numlevel Limits the number of static levels per signal. When this option is
specified, the software prints the glitch information for only the
specified number of static levels per signal.

Default: 5
May 2010 417 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
usim_nact glitch analysis=glitch type=max_vo sort=inc node=[vdd1 vdd2 vss1 vss2
out1 out2] vurelth=0.1 vuabsth=0.25 vurelrecth=0.02 vuabsrecth=0.05 vorelth=0.1
voabsth=0.25 vorelrecth=0.02 voabsrecth=0.05

SPICE Syntax:

.usim_nact glitch analysis=glitch type=max_vo sort=inc node=[vdd1 vdd2 vss1 vss2
out1 out2] vurelth=0.1 vuabsth=0.25 vurelrecth=0.02 vuabsrecth=0.05 vorelth=0.1
voabsth=0.25 vorelrecth=0.02 voabsrecth=0.05

tells the Virtuoso UltraSim simulator to perform a glitch analysis on the nodes vdd1, vdd2,
vss1, vss2, out1, and out2 using the defined threshold values for glitch detection, and
recovery. The report is sorted based on the maximum overshoot glitches (in increasing
order).
May 2010 418 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Power Analysis

Spectre Syntax

usim_pa title subckt inst=[inst1 inst2 ...] port=[porta portb ...] <depth=level>
<sort=max|avg|rms> <subckt_limit=n1> <power=[on|off]> <time_window=[start1
stop1 start2 stop2 ...]> <fast_mode=0|1>

SPICE Syntax

.usim_pa title subckt inst=[inst1 inst2 ...] port=[porta portb ...] <depth=level>
<sort=max|avg|rms> <subckt_limit=n1> <power=[on|off]> <time_window=[start1
stop1 start2 stop2 ...]> <fast_mode=0|1>

Description

This command is used to set up a power analysis on specified subcircuits. It reports the
average, maximum, and RMS current at the ports of subcircuits, child subcircuits, and
grandchild subcircuits for a specified level of hierarchy (report output is a text file). Included
in the report is the time point at which the maximum value is reached. If there are more than
two time points with the same maximum value, the first occurrence is reported.

Optionally, the command can be used to report the average, maximum, and RMS power
consumed by the subcircuit and its subcircuits within the specified hierarchical level.

Note: The total (generated and consumed) power at the top level is not reported in the power
analysis.

The current and power information is also output to a text file. The file name convention is
netlistname.pa and the file contains three sections:

■ Current information for the ports (first section)

■ Power information for the ports (second section)

■ Subcircuit information (third section)

If the circuit is simulated more than once (for example, when using alter or sweep), the file
name convention changes to netlistname.runnumber.pa.

Note: The report can be imported into Microsoft® Excel for additional analyses.
May 2010 419 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Arguments

inst List of instances to be checked. If not specified, all subcircuits
at the hierarchical level are analyzed. Wild card is supported.

port Specifies the subcircuit port to be checked (port names in the
subcircuit definition, not the ports in the instances). The
Virtuoso UltraSim simulator reports the current (power
optional) information for specified ports.

If the specified ports are ports for the child subcircuit, the
simulator reports the port information at the child subcircuit
level. If the ports are also ports for the grandchild subcircuit,
the simulator reports the information at the grandchild
subcircuit level. This reporting structure continues until the
specified hierarchical level is reached.

If not specified, all ports at the specified hierarchical level are
automatically reported.

Note: When a port is specified, the Virtuoso UltraSim
simulator does not report the subcircuit power consumption
(that is, the Subckt Power Summary section is omitted from
the output file).

depth The hierarchical depth of the subcircuits to be checked
(default is 1).

sort=max|avg|rms Sorts the report by the specified value, in decreasing order.
The values include:

■ avg: The average instantaneous power for specified time
intervals

■ max: The maximum instantaneous power during the entire
simulation

■ rms: The RMS of the instantaneous power for specified
time intervals.

If there is more than one sorting criterion, the first one is used
and the second one ignored. For example:

If sort=avg in the first usim_pa subcircuit and sort=max in
the second usim_pa subcircuit, only sort=avg is used.

subckt_limit=n1 Limits the number of subcircuits to be reported (default is
infinity).
May 2010 420 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
pa_elemlen

The default length for subcircuit instance names is 20 characters. Use the pa_elemlen
option to change the name length. For example, usim_opt pa_elemlen=64 sets the
maximum name length to 64 characters.

Example 1

The report format is determined by the sorting criteria. For example, block x1 has two ports,
A and B (in/out in subcircuit definition), with blocks x1.x1 and x1.x2 (see Figure 8-1 on
page 422).

Sample netlist file:

x1 A B sub_x1

.subckt sub_x1 in out

.

.

.

x1 in1 in2 out sub_x1_x1

x2 in out sub_x1_x2

.subckt sub_x1_x1 in1 in2 out

.

.

.

power Turns specified power value on or off (default is off).

The values include:

■ power=off: Only current information is reported

■ power=on: Current and power information is reported

■ start and stop: Time window for check (must be paired)

If start and stop are not specified, start = 0 s and stop =
end of the simulation.

fast_mode Specifies whether or not to check MOS gates.

The values include:

fast_mode=0: Checks all detected ports (default)

fast_mode=1: Skips ports that are MOS gates
May 2010 421 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.ends sub_x1_x1

.subckt sub_x1_x2 in out

.

.

.

x3 in1 in2 out sub_x1_x2_x3

.subckt sub_x1_x2_x3 a b c

.

.

.

.ends sub_x1_x2_x3

.ends sub_x1_x2

.

.

.

.ends sub_x1

Figure 8-1 Power Analysis Report Format Example

The remaining blocks and ports are arranged in the following order:

■ Block x1.x1 has three ports: in1, in2, and out (in1, in2, and out in subcircuit
definition)

■ Block x1.x2 has two ports: xin and xout (in and out in subcircuit definition)

A B

in1 in2

x1

out

in

out

in1 in2

x3

out

x1

x2
May 2010 422 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
■ Block x1.x2 contains block x1.x2.x3

■ Block x1.x2.x3 has three ports: in1, in2, and out (a, b, and c in subcircuit definition)

Example 2

Spectre Syntax:

usim_pa example2 subckt inst=[x1] depth=3 sort=max power=off time_window=[10n 50n]

SPICE Syntax:

.usim_pa example2 subckt inst=[x1] depth=3 sort=max power=off time_window=[10n 50n]

The first section of the output file includes the following information:

Time: from 10n to 50n

*** Port Current Summary *******************

Example 3
usim_pa example3 subckt inst=[x1] depth=3 sort=max power=on time_window=[10n 50n]

The first section of the output file netlistname.pa is the same as in Example 2. The second
and third sections of the file include the following information:

*** Port Power Summary **********

Max(A) Avg (A) RMS(A) Max Time

x1.B 600e-3 600e-3 500e-3 15e-9

x1.x2.x3.b 550e-3 300e-3 300e-3 12e-9

x1.A 540e-3 300e-3 600e-3 15e-9

x1.x1.in1 530e-3 400e-3 500e-3 15e-9

x1.x1.out 520e-3 300e-3 100e-3 10e-9

x1.x2.in 500e-3 300e-3 300e-3 25e-9

x1.x1.in2 500e-3 200e-3 1e-3 30e-9

x1.x2.out 400e-3 400e-3 200e-3 50e-9

x1.x2.x3.c 350e-3 500e-3 200e-3 30e-9

x1.x2.x3.a 200e-3 100e-3 100e-3 20e-9

Max(w) Avg (w) RMS (w) Max time
May 2010 423 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
*** Subckt Power Summary ******

Example 4
usim_pa example4 subckt inst=[x1.x2] port=[in] depth=1 sort=max power=on
time_window=[10n 50n]

Since the port is specified, the Virtuoso UltraSim simulator does not report the power
consumption for the subcircuit (output file only has two sections: Port Current Summary
and Port Power Summary).

Time: from 10n to 50n

*** Port Current Summary *******************

x1.B 40e-3 50e-3 60e-3 25e-9

x1.A 35e-3 30e-3 20e-3 30e-9

x1.x1.in2 32e-3 40e-3 5e-3 40e-9

x1.x2.x3.b 30e-3 10e-3 7e-3 45e-9

x1.x1.in1 30e-3 20e-3 10e-3 30e-9

x1.x1.out 29e-3 4e-3 2e-3 35e-9

x1.x2.out 23e-3 20e-3 30e-3 40e-9

x1.x2.in 10e-3 20e-3 40e-3 50e-9

x1.x2.x3.a 6e-3 15e-3 8e-3 13e-9

x1.x2.x3.c 4e-3 3e-3 6e-3 16e-9

Max(w) Avg (w) RMS (w) Max time

x1 60e-3 50e-3 0e-3 10e-9

x1.x1 30e-3 30e-3 10e-3 20e-9

x1.x2 30e-3 20e-3 10e-3 30e-9

x1.x2.x3 10e-3 20e-3 10e-3 35e-9

Max(A) Avg (A) RMS(A) Max Time

 x1.x2.in 500e-3 300e-3 300e-3 25e-9
May 2010 424 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
*** Port Power Summary ******

Example 5
usim_pa example5 subckt inst=[x*] port=[in*] depth=3 sort=avg power=off
time_window=[1n 2n]

tells the Virtuoso UltraSim simulator to print out the current consumption for all ports that have
names starting with in and for all subcircuits that have names starting with x. The
hierarchical depth is limited to 3, the report is sorted by the avg value, and the time window
is from 1 ns to 2 ns.

Example 6
usim_pa example6 subckt depth=3 sort=max power=on time_window=[100p 2n]

tells the simulator to print out current and power consumption for all ports, and power
consumption for all subcircuits within a hierarchical depth of 3 for time window 100 ps to 2 ns.
The report is sorted by the max value.

Max(w) Avg (w) RMS (w) Max time

x1.x2.in 30e-3 20e-3 10e-3 30e-9
May 2010 425 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Wasted and Capacitive Current Analysis

Spectre Syntax

usim_pa title currents inst=[inst1 inst2 ...] [static=on|off] time_window=[start1
stop1 start2 stop2 ...]

SPICE Syntax

.usim_pa title currents inst=[inst1 inst2 ...] [static=on|off] time_window=[start1
stop1 start2 stop2 ...]

Description

Capacitive current is the current charging or discharging of a capacitance node. Wasted
current is the current flowing between two voltage sources that does not contribute to any
switching functions. There are two types of wasted current: Static and dynamic. Static wasted
current is the portion of wasted current flowing in circuits that are not switching. Dynamic
wasted current is the portion of wasted current flowing in circuits which are actively switching.

The usim_pa currents command is used to analyze the capacitive, and static and dynamic
wasted currents for specified circuits. The analysis results report the RMS and average
values of currents consumed by the subcircuit, and its subcircuits within the specified
hierarchical level. The current information is output to a netlistname.pa text file.

The wasted and capacitive current check applies only to digital type of designs including
SRAMs and other memories. This feature does not apply to analog designs.

Arguments

title Title for the current analysis.

inst1, inst2 List of subcircuit instances to be analyzed. If instances are not
specified, the entire circuit is analyzed.

Note: Wildcards (*) are supported.

static=on|off Static and dynamic wasted current is reported if static=on
(default is static=off and only the total wasted current is
reported).

time_window The time period for checking
May 2010 426 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre syntax example

usim_pa example1 currents inst=x1 static=on start=100n stop=1000n

In the first example, the Virtuoso UltraSim simulator reports the capacitive current, as well as
the static and dynamic wasted currents for instance x1 over the simulation window of
time=100 ns to time=1000 ns.

The following report is generated:

.TITLE 'This file is :./mult16_vec.pa'

Time: from 100n to 1000n

*** Subckt Current Summary ***

Example 2

In the following SPICE syntax example

.usim_pa example2 currents static=on

In the second example, the simulator reports the capacitive current, and static and dynamic
wasted currents of the whole circuit over the entire simulation window.

x1

Average capacitive current: 6.181e+03 uA

RMS capacitive current: 2.632e+04 uA

Average wasted current: 1.861e+02 uA

RMS wasted current: 3.077e+03 uA

Average static wasted current: 2.446e+00 uA

RMS static wasted current: 2.446e+00 uA

Average dynamic wasted current: 1.887e+02 uA
May 2010 427 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Power Checking

■ Over Current (Excessive Current) Check on page 428

■ Over Voltage (Excessive Node Voltage) Check on page 429

■ DC Path Leakage Current Check on page 431

■ High Impedance Node Check on page 433

■ Hot Spot Node Current Check on page 436

■ Floating Gate Induced Leakage Current Check on page 439

■ Excessive Rise and Fall Time Check (EXRF) on page 441

Over Current (Excessive Current) Check

Spectre Syntax

pcheck title exi elem=[elem1 <elem2>...] <ith=current_threshold>
<tth=time_duration> <time_window=[start1 stop1 start2 stop2 ...]>
<preserve=none|all>

SPICE Syntax

.pcheck title exi elem=[elem1 <elem2>...] <ith=current_threshold>
<tth=time_duration> <time_window=[start1 stop1 start2 stop2 ...]>
<preserve=none|all>

Description

Based on the specified element list (current threshold, over current duration time, and
checking windows), the Virtuoso UltraSim simulator reports in a .pcheck file which elements
over a specific time period have current over the threshold for a time period equal to or greater
than the specified duration. If no window is specified, the entire simulation period is used.

Arguments

title User defined title name for check.

exi Keyword for over current check.

elem1 <elem2…> List of element instance names to be checked.
May 2010 428 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

pcheck check1 exi elem=[XIO.M12 XIO.M32] ith=5e-3 tth=10n

pcheck check2 exi elem=[X1.X132.*] ith=1e-4 tth=10n time_window=[0 1u 3u 10u]

pcheck check3 exi elem=[*] ith=2e-3 tth=100n

SPICE Syntax:

.pcheck check1 exi elem=[XIO.M12 XIO.M32] ith=5e-3 tth=10n

.pcheck check2 exi elem=[X1.X132.*] ith=1e-4 tth=10n time_window=[0 1u 3u 10u]

.pcheck check3 exi elem=[*] ith=2e-3 tth=100n

Note: The element instance list can only contain element names or be enclosed by I(),
single quotation marks ‘ ’, or double quotation marks “ “ [if only a wildcard * is used, it
requires I() or quotation marks]. For more information about wildcards, see “Wildcard
Rules” on page 55.

Over Voltage (Excessive Node Voltage) Check

Spectre Syntax

pcheck title exv node=[node1 <node2...>] <vmin=value> <vmax=value>
<tth=time_duration> <time_window=[start1 stop1 start2 stop2 ...]>
<preserve=none|all> <option=0|1>

SPICE Syntax

.pcheck title exv node=[node1 <node2...>] <vmin=value> <vmax=value>
<tth=time_duration> <time_window=[start1 stop1 start2 stop2 ...]>
<preserve=none|all> <option=0|1>

ith Defines current threshold (default is 10 uA).

tth Defines duration time (default is 5 ns).

time_window Defines the checking window.

preserve=none|all Defines whether all devices are preserved.

■ none preserves active devices only

■ all preserves all devices or nodes, including passive devices
May 2010 429 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Description

Based on the specified node list, voltage threshold, over voltage duration time, and checking
windows, the Virtuoso UltraSim simulator reports in a .pcheck file which nodes over a
specific time period have voltage over the threshold for a time period equal to or greater than
the specified duration. If no window is specified, the entire simulation period is used.

Arguments

Examples

Spectre Syntax:

pcheck exv1 exv node=[*] vmax=0.8 tth=1n

pcheck exv2 exv node=[*] vmin=0

title User defined title name for check.

exv Keyword for over voltage check.

node1 <node2…> Names of nodes to be checked (wildcards are supported).

vmin=value Defines minimum voltage level. If not defined, vmin checking is
not performed by simulator.

vmax=value Defines maximum voltage level. If not defined, vmax checking is
not performed by simulator.

tth=time_duration Defines duration time (default is 5 ns).

time_window Defines the checking window.

preserve=none|all Defines whether all devices are preserved.

■ none preserves nodes after RC reduction

■ all preserves all nodes, including nodes removed during RC
reduction

option=0|1 Defines which voltage threshold is used to report the nodes.

■ 0 reports any of the specified nodes with voltages above
vmax or below vmin for a duration time longer than tth
(default)

■ 1 reports any of the specified nodes if its voltage falls
between vmin and vmax for a duration time longer than tth
May 2010 430 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
pcheck exv3 exv node=[*] vmin=0 vmax=0.8 option=0 tth=1n

pcheck exv4 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n

pcheck exv5 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n preserve=all

pcheck exv6 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n preserve=all
time_window=[8n 12n 18n 22n]

SPICE Syntax:

.pcheck exv1 exv node=[*] vmax=0.8 tth=1n

.pcheck exv2 exv node=[*] vmin=0

.pcheck exv3 exv node=[*] vmin=0 vmax=0.8 option=0 tth=1n

.pcheck exv4 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n

.pcheck exv5 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n preserve=all

.pcheck exv6 exv node=[*] vmin=0.35 vmax=0.75 option=1 tth=1n preserve=all
time_window=[8n 12n 18n 22n]

DC Path Leakage Current Check

Spectre Syntax

pcheck title dcpath <ith=threshold_current> <tth=time_duration> <node=[node1
node2...]> <inst=[inst1 inst2]> <xinst=[xinst1 xinst2]>
<period=period_time|delay=delay_time> <time_window=[start1 stop1 start2
stop2 ...]>

pcheck title dcpath <ith=threshold_current> <tth=time_duration> <node=[node1,
node2...]> <inst=[inst1 inst2]> <xinst=[xinst1 xinst2]> <at=[time1 time2...]>

SPICE Syntax

.pcheck title dcpath <ith=threshold_current> <tth=time_duration> <node=[node1
node2...]> <inst=[inst1 inst2]> <xinst=[xinst1 xinst2]>
<period=period_time|delay=delay_time> <time_window=[start1 stop1 start2
stop2 ...]>

.pcheck title dcpath <ith=threshold_current> <tth=time_duration> <node=[node1,
node2...]> <inst=[inst1 inst2]> <xinst=[xinst1 xinst2]> <at=[time1 time2...]>

Description

The Virtuoso UltraSim simulator reports the DC conducting paths between specified voltage
source nodes. All reported DC conducting paths are written into a file and it has an .pcheck
extension. To qualify as a conducting path, each segment in the path must, at a minimum,
carry the threshold current specified by the parameter ith.
May 2010 431 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
A voltage source node is a node which is directly connected to a voltage source (includes DC,
PWL, and PULSE voltage sources). The ground node is also a voltage source node. Nodes
connected to current sources, HDL/Verilog-A/C models, and drivers defined in VEC or VCD
files are not qualified. If nodes are not specified, the simulator checks for DC paths between
all voltage sources. If only one node is specified, the DC path between the node and ground
is reported. If a time point or frame is not specified, the entire simulation period is checked.
Currents and voltages reported in the DC path report correspond to values at the beginning
of the measured time window.

Arguments

title User defined title name for check.

dcpath Keyword for DC path check.

ith Threshold current (default value is 50 uA).

tth Duration time (default is 5 ns).

nodelist List of voltage source nodes to be checked.

inst Specifies subcircuit (instance) to be checked by simulator. If not specified,
the entire circuit is checked. Wildcard characters can be used with
subckt.

For more information about wildcards, see “Wildcard Rules” on page 55.

xinst Specifies subcircuit (instance) to be excluded from check. Wildcard
characters can be used with this argument.

period Specifies that the DC current path is checked for every period, starting
from the beginning of each time frame as defined by start and stop.

delay Specifies that the DC current path is checked at each time defined by
t+delay_time. t designates the time an input stimulus change occurs. If
both period and delay are not specified, the DC path is checked in the
time frame defined by start and stop.

Note: period and delay cannot be used simultaneously.

at Specifies that the DC current path is checked at the time defined by
at=time1.

time_window Specifies time frame for checking (default is full transient simulation).
May 2010 432 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following Spectre example

pcheck dc1 dcpath ith=1e-6 tth=10n node=[vdd gnd] delay=5n time_window=[10n 210n]

tells the Virtuoso UltraSim simulator to check the DC current path between vdd and gnd after
any input stimulus change, with a delay of 5 ns. The DC current path is checked during the
10 ns and 210 ns time frame. The DC current path is reported in the netlist.pcheck file
if the DC current path exceeds 1 uA and lasts longer than 10 ns.

In the following SPICE example

.pcheck dc2 dcpath ith=1e-6 node=[vddh vddl] period=10n time_window=[10n 210n]

tells the simulator to check the DC current path between vddh and vddl every 10 ns, starting
at 10 ns and stopping at 210 ns. The DC current path is reported if the DC current path
exceeds 1 uA.

In the following Spectre example

pcheck dc3 dcpath node=[vcc vss] at=[130n 150n]

tells the simulator to check the DC current path between vcc and vss at 130 ns and 150 ns.
The DC current path is reported if the DC current path exceeds the default value of 50 uA
when checked.

The next example

pcheck dc4 dcpath inst=[IDIGITAL] xinst=[IDIGIAL.IOSC] ith=10u tth=10n

tells the simulator to check the DC current path between any two voltage sources over the
entire simulation time. The DC current path is reported if the DC current path exceeds 10 uA
and last longer than 10 ns. Only the IDIGIAL block is checked (the IOSC block inside
IDIGIAL is excluded).

High Impedance Node Check

Spectre Syntax

pcheck title zstate node=[node1 <node2...>] <fanout=0|1|2> <xsubckt=[xsubckt1
xsubckt2 ...]> <psubckt=[psubckt1 psubckt2 ...]> <ztime=ztime>
<time_window=[start1 stop1 start2 stop2 ...]>
May 2010 433 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax

.pcheck title zstate node=[node1 <node2...>] <fanout=0|1|2> <xsubckt=[xsubckt1
xsubckt2 ...]> <psubckt=[psubckt1 psubckt2 ...]> <ztime=ztime>
<time_window=[start1 stop1 start2 stop2 ...]>

Description

Based on the specified node name list (high-z duration time and checking windows), the
Virtuoso UltraSim simulator reports in a .pcheck file which nodes over what time period
were in high-z state for a time period equal to or greater than the specified duration. If no
window is specified, the whole simulation period is used.

Along with reporting the node name, the high-z state check reports the times when the high
z-state begins and ends, as well as the time error (time error is defined as the time the high-
z state exceeds the specified time).

A node is considered to be in high-z state if there is only a high impedance or no connection
from the node to a voltage source or ground. The following conditions in the path can produce
a high-z state:

■ MOSFET is switched off (Vgs<Vth and Ids < Ith)

Note: See the Notes section for the definition of lth.

■ JFET is switched off (Vgs<Vpinchoff)

■ Resistor bigger than Rth

Note: See the Notes section for the definition of Rth.

■ BJT considered off if Vbe<=0.4 and Ic<=50 nA

■ Diode considered to be off for V<0.6 V

■ Verilog-A module with no channel connection (capacitor, diode, mutual inductor, and
current source with <1 pA)

Arguments

title User defined title name for check.

zstate Keyword for high-impedance node check.

node1 <node2…> List of node names to be checked.
May 2010 434 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

Spectre Syntax:

pcheck z_check1 zstate node=[xram.*] fanout=1 ztime=50n

pcheck z_check2 zstate node=[*] ztime=1.0e-8 time_window=[1u 9u]
xsubckt=[inv1* ?and]

SPICE Syntax:

.pcheck z_check1 zstate node=[xram.*] fanout=1 ztime=50n

.pcheck z_check2 zstate node=[*] ztime=1.0e-8 time_window=[1u 9u]
xsubckt=[inv1* ?and]

Notes

■ The node instance list can only contain node names and must be enclosed by v(),
single quotation marks ‘ ’, or double quotation marks “ “ [if only a wildcard * is used,
it requires v() or quotation marks]. For more information about wildcards, see
“Wildcard Rules” on page 55.

■ When a wildcard is used, the expanded node instance list does not include nodes located
within RC networks. You should always review the Virtuoso UltraSim simulator log file for
all reported floating nodes (use the warning_limit_float option to print floating
nodes).

■ The MOSFET threshold current Ith can be changed by using the following option:

fanout=0|1|2 Optional connection option. If fanout=0, all listed
nodes are checked (default). If fanout=1, only those nodes
connected to the metal oxide semiconductor field-effect transistor
(MOSFET) gate are checked. If fanout=2, only those nodes
connected to the bulk or body of the MOSFET are checked
(default is 0).

xsubckt Defines subcircuit cells that are excluded from the check when ‘*’
is used in the node name list (wildcard * is supported).

For more information about wildcards, see “Wildcard Rules” on
page 55.

psubckt Checks high-z state for the I/O ports of the specified subcircuit.
This is applied only when ‘*’ is specified.

ztime Defines duration time in high-z state (default is 5 ns).

time_window Defines the time period for checking.
May 2010 435 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.usim_opt pck_mos_ids = value

The default value of Ith is 10nA.

■ The resistance threshold value Rth can be changed by using the following option:

.usim_opt res_open = value

The default value of Rth is 100 Mohm.

Hot Spot Node Current Check

Spectre Syntax

pcheck title hotspot node=[node1 <node2 ...>] <ratio=ratio> <fanout=0|1|2>
<xsubckt=[xsubckt1 xsubckt2 ...]> <psubckt=[psubckt1 psubckt2 ...]>
<time_window=[start1 stop1 start2 stop2 ...]>

SPICE Syntax

.pcheck title hotspot node=[node1 <node2 ...>] <ratio=ratio> <fanout=0|1|2>
<xsubckt=[xsubckt1 xsubckt2 ...]> <psubckt=[psubckt1 psubckt2 ...]>
<time_window=[start1 stop1 start2 stop2 ...]>

Description

The Virtuoso UltraSim simulator reports the average charging and discharging current
statistics for specified nodes during a checking window (the statistics are output to a
.hotspot report). If a checking window is not specified, the entire simulation period is used.

Only the nodes, for which the sum of the charging and discharging average current is larger
than the hot spot factor (default is 0.5) multiplied by the sum of the node with the largest
current, are reported.

Arguments

title User-defined title name for check.

hotspot Keyword for hot spot check.

node1 <node2…> List of node names to be checked.

ratio Defines the hot spot factor (0 <= ratio <= 1; default is 0.5).
May 2010 436 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following Spectre example

pcheck hot_chk1 hotspot node=[xtop.x1.*]

tells the Virtuoso UltraSim simulator to report the average current statistics for all nodes in the
xtop.x1 block.

In the following SPICE example

.pcheck hot_chk2 hotspot node=[*] ratio=0.8 time_window=[1u 9u]

tells the simulator to report the average current statistics for all nodes. Since the hot spot
factor is 0.8, only the nodes with a sum of charging and discharging current larger than 80%
of maximum current are reported.

Notes

■ The node instance list can only contain node names and must be enclosed by either v(),
single quotation marks (‘’), or double quotation marks (“”). If only a wildcard (*) is
used, the node names need to use v() or quotation marks. For more information about
wildcards, see “Wildcard Rules” on page 55.

■ Nodes connected to voltage or ground sources are excluded from the hot spot node
check.

■ If multiple start and stop pairs are used in one statement, the hot spot node check is
performed for each time window. If multiple hot spot statements are included in a netlist
file, each statement must have an unique title (nodes in different statements are checked
separately).

■ Internal nodes within RC networks are currently excluded from the hot spot node check.

fanout=0|1|2 Optional connection option. If fanout=0, all listed
nodes are checked (default). If fanout=1, only those nodes
connected to the metal oxide semiconductor field-effect transistor
(MOSFET) gate are checked. If fanout=2, only those nodes
connected to the bulk or body of the MOSFET are checked
(default is 0).

xsubckt Defines subcircuit cells that are excluded from the check when ‘*’
is used in the node name list.

psubckt Checks hot spot for I/O ports of specified subcircuit. Only applied
when ‘*’ is specified.

time_window Defines the time period for checking.
May 2010 437 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Sample Output

In this sample report output:

■ Icin is the average charging current flowing into the capacitances connected to the
node

■ Icout is the average discharging current flowing out of the capacitances connected to
the node

■ The checking window duration is listed in the from(ns) and to(ns) columns

■ The hot spot factor ratio = 0.5

The node with the largest current is vpp, which has a sum of charging and discharging
average current of 3194.2 uA. Multiplied by the ratio 0.5, the sum of charging and
discharging average current is 1597.1 uA. Based on this ratio, all nodes with a current
sum larger than 1597.1 uA are included in the report.

Note: If the hot spot factor ratio is changed to 0.6, the x5.nc and x3.n1n646 are
excluded from the report.

Title node_name Icin(uA) Icout(uA) from(ns) to(ns)

hotspot_chk1 vpp 1548.47 1645.73 0 500

hotspot_chk1 x5.n2n1486 1574.65 1284.41 0 500

hotspot_chk1 x5.n2n1422 1484.39 1371.63 0 500

hotspot_chk1 x5.n2n1485 1495.16 1311.18 0 500

hotspot_chk1 x5.n2n1484 1329.68 1306.82 0 500

hotspot_chk1 x4.n1n646 1022.95 1028.15 0 500

hotspot_chk1 x5.n2n1488 1134.72 869.648 0 500

hotspot_chk1 x3.n1n646 903.956 909.934 0 500

hotspot_chk1 x5.nc 842.582 879.417 0 500

hotspot_chk1 Total Current 74885.4 74489.4 0 500
May 2010 438 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Floating Gate Induced Leakage Current Check

Spectre Syntax

pcheck title floatdcpath <ith=threshold_current> <node=[node1, node2...]>
<inst=[inst1 inst2]> <xinst=[xinst1 xinst2]> time_window=[time1 time2...]
period=time5 at=[time6 time7...]

SPICE Syntax

.pcheck title floatdcpath <ith=threshold_current> <node=[node1, node2...]>
<inst=[inst1 inst2]> <xinst=[xinst1 xinst2]> time_window=[time1 time2...]
period=time5 at=[time6 time7...]

Description

The Virtuoso UltraSim simulator detects Hi-Z nodes and forces their associated fanout
transistors to be turned on. If the operation forms any conducting paths between voltage
source nodes through the transistor with leakage current larger than the threshold value, then
these paths are reported in a .pcheck file. To qualify as a conducting path, each segment in
the path must carry the threshold current specified by the ith parameter.

Note: The definitions of Hi-Z nodes are described in the High Impedance Node Check
section.

A voltage source node is a node which is directly connected to a voltage source (includes DC,
PWL, and PULSE voltage sources). The ground node is also a voltage source node.

Note: Nodes connected to current sources, HDL/Verilog-A/C models, and drivers defined in
VEC or VCD files do not qualify.

If nodes are not specified, the simulator checks for DC paths between all voltage sources. If
only one node is specified, the DC path between the node and ground is reported.
May 2010 439 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Figure 8-2 Floating Gate Induced Leakage Current Check Overview

Arguments

title User-defined title name for check.

floatdcpath Keyword for floating gate induced leakage current check.

ith Threshold current (default value is 10 uA).

node List of voltage source nodes to be checked. Wildcards are
supported.

inst Specifies subcircuit instance to be checked by simulator. If not
specified, the entire circuit is checked. Wildcard characters can
be used with the subcircuit.

xinst Specifies subcircuit instances to be excluded from the check.
Wildcard characters can be used with this argument.

time_window Time window in which checking is performed.

period Check is performed at every time period, starting at the
beginning of time_window (default value is 10 ns or 1% of
transient time, whichever time value is longer). Minimum period
allowed is 1 ns.

at Specifies time point for checking (ignored if time_window is
specified).

3V

3V

0V

Vd=3V

Vs=0V

1. Floating node
 detected

2. Average voltage
 of Vs and Vd
 forced

1.5V forced

3. Leakage path
 checked
May 2010 440 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following example

.pcheck dc2 floatdcpath node=[vcc vss] ith=50u at=[130n 150n]

tells the Virtuoso UltraSim simulator to check the DC current path between vcc and vss at
130 ns and 150 ns. The DC current path is reported if the path exceeds 50 uA during the
check.

In the next example

.pcheck dc1 floatdcpath time_window=[200n 600n 1200n 1600n] period=[100n]

tells the simulator to check the DC current path between all source nodes at 100 ns intervals
between 200 ns and 600ns, and 1200 ns and 1600 ns.

Excessive Rise and Fall Time Check (EXRF)

Spectre Syntax

pcheck title exrf node=[node1 <node2...>] <fanout=0|1|2> <rise=rise_time>
<fall=fall_time> <utime=u_value> <vlth=logic_low_voltage>
<vhth=logic_high_voltage> <time_window=[start1 stop1 start2 stop2 ...]>
<separate_file=0|1>

SPICE Syntax

.pcheck title exrf node=[node1 <node2...>] <fanout=0|1|2> <rise=rise_time>
<fall=fall_time> <utime=u_value> <vlth=logic_low_voltage>
<vhth=logic_high_voltage> <time_window=[start1 stop1 start2 stop2 ...]>
<separate_file=0|1>

Description

The Virtuoso UltraSim simulator reports (in a .pcheck file) the nodes that have excessive
rise or fall time over a specific time period based on the specified list of nodes, logic voltage
thresholds, and time checking windows.

If no time checking window is specified, the entire simulation period is used.
May 2010 441 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Arguments

Example
.pcheck exrf node = [x1.x2.*] fanout=1 rise=6n fall=4n vlth=0.4 vhth=2.6

+ time_window = [100n 2000n]

This command checks if the signal voltage values at the nodes x1.x2.* have excessive rise
and fall times between 100 ns and 2000 ns. A violation is reported in the .pcheck file if the
signal rise time exceeds 6 ns, or the signal fall time exceeds 4 ns, or the U-state time exceeds
the default value of 5 ns.

title User-defined title name for check.

exrf Keyword for excessive rise/fall time check.

node1 <node2…> List of node names to be checked.

fanout=0|1|2 Optional connection option. If fanout=0, all listed
nodes are checked (default). If fanout=1, only those nodes
connected to the metal oxide semiconductor field-effect transistor
(MOSFET) gate are checked. If fanout=2, only those nodes
connected to the bulk or body of the MOSFET are checked
(default is 0).

rise Transition time from logic low voltage to logic high voltage. The
default value is 5 ns.

fall Transition time from logic high voltage to logic low voltage. The
default value is 5 ns.

utime Time duration of the node stays between the logic low and logic
high volltage without making a transition. The default value is 5
ns.

vith Logic low threshold voltage. The default value os 0.3Vdd.

vhth Logic low threshold voltage. The default value os 0.7Vdd.

time_window Defines the time period for checking.
May 2010 442 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Timing Analysis

The Virtuoso UltraSim simulator allows you to perform timing analysis on specific nodes
through a set of commands starting with usim_ta. These commands should be directly
embedded in the netlist file, or in a separate file that is included in the netlist file using the
include command. The timing check errors are reported in the .ta file. If the netlist file is
circuit.sp, then the .ta file is named circuit .ta.

Timing check statements can be embedded within a subcircuit definition. In this case, they
apply only to the nodes local to the host circuit, and their check titles are appended by the
circuit calls from the top level in the circuit hierarchy. Timing check statements also support
the parameters depth = value and subckt = name simulation output statements (see
“Supported SPICE Format Simulation Output Statements” on page 130 for more
information). Nodes analyzed with usim_ta are automatically saved as waveforms.

For example,

Spectre Syntax:

usim_ta example setup node=n1 edge=rise ref_node=clk ref_edge=rise setup_time=2n
subckt=INV depth=2

SPICE Syntax:

.usim_ta example setup node=n1 edge=rise ref_node=clk ref_edge=rise setup_time=2n
subckt=INV depth=2

tells the Virtuoso UltraSim simulator to report the setup timing errors for all nodes that match
n* in the subcircuit INV and one level below in the circuit hierarchy. See the following sections
for timing check statements descriptions.

The timing analysis checks supported by the Virtuoso UltraSim simulator include:

■ Hold Check on page 444

■ Pulse Width Check on page 446

■ Setup Check on page 448

■ Timing Edge Check on page 451
May 2010 443 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Hold Check

Spectre Syntax

usim_ta title hold node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both hold_time=time <window=window_size>
<vl=logic_0_threshold> <vh=logic_1_threshold>
<vrl=logic_0_threshold> <vrh=logic_1_threshold> <depth=value>
<subckt=name> <start=time1> <stop=time2>

SPICE Syntax

.usim_ta title hold node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both hold_time=time <window=window_size>
<vl=logic_0_threshold> <vh=logic_1_threshold>
<vrl=logic_0_threshold> <vrh=logic_1_threshold> <depth=value>
<subckt=name> <start=time1> <stop=time2>

Description

This command is used to report hold timing errors on the specified nodes with respect to a
reference node. A hold timing error occurs when a permissible signal transition occurs
between the times t_ref and t_ref+hold_time (if hold_time>0), or between
t_ref+hold_time and t_ref+window_size (if hold_time<0). Here, t_ref is the
time point when a permissible reference transition occurs.

A permissible transition occurs when the waveform crosses the corresponding logic
threshold. For example, when a waveform crosses the logic 1 threshold while rising, it has a
RISE transition. If the logic 0 state and logic 1 state thresholds for the signal, reference, or
both, are not specified on the command card, then the default values are used. The default
values can be set using the command usim_opt vl = value vh = value.

Arguments

title The title of the current timing analysis.

node Specifies the node on which the hold timing check is
performed. Wildcards are supported in the node name
(see Chapter 3, “Simulation Options”).
May 2010 444 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
edge=rise|fall|both The permissible transition type for the signal node.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

ref_node The name of the reference node. Only a single node is
allowed.

ref_edge=rise|fall|both The permissible transition for the reference node.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

hold_time The hold time. It can be positive or negative. If
negative, the window parameter must be specified.

window=window_size The time window after the reference transition. This
parameter must be specified when the hold time is
negative.

vl=logic_0_threshold The threshold of logic 0 state for a signal. If the signal
has a value less than vl, it is considered to be logic 0.

vh=logic_1_threshold The threshold of logic 1 state for a signal. If the signal
has a value greater than vh, it is considered to be
logic 1.

vrl=logic_0_threshold The threshold of logic 0 state for a reference. If the
reference has a value less than vrl, it is considered
to be logic 0.

vrh=logic_01threshold The threshold of logic 1 state for a reference. If the
reference has a value greater than vrh, it is
considered to be logic 1.
May 2010 445 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following Spectre example

usim_ta ta_all hold example1 node=n1 edge=rise ref_node=clk ref_edge=fall
hold_time=2n

tells the Virtuoso UltraSim simulator to report hold timing errors if the rise transitions on
node n1 occur within the 2 ns, after a fall transition on the node clk.

In the following SPICE example

.usim_ta ta_all hold example2 node=n2 edge=both ref_node=clk ref_edge=fall
hold_time=-1n window=5n

tells the simulator to report hold timing errors if the rise or fall transitions on node n2 occur
within the time interval of 1 ns before the fall transition of the node clk, and 5 ns after the
clk fall transition.

Pulse Width Check

Spectre Syntax

usim_ta title pulsew node=node1 tmin_low=min_low_time tmax_low=max_low_time
tmin_high=min_high_time tmax_high=max_high_time <vl=logic_0_threshold>
<vh=logic_1_threshold> <depth=value> <subckt=name> <start=time1>
<stop=time2>

depth=value Specifies the depth in the circuit hierarchy that a
wildcard name applies. If it is set as one, only the
nodes at the current level is applied (default value is
infinity).

subckt=name Specifies the subcircuit that this statement applies in.
By default, it applies in the top level. If the statement is
already in a subcircuit definition, this parameter is
ignored. Setting this parameter is equivalent to
defining the statement within a subcircuit declaration.

start=time1 Timing analysis start time. The Virtuoso UltraSim
simulator does not perform a timing analysis for
simulation time < time1.

stop=time2 Timing analysis end time. The simulator does not
perform a timing analysis for simulation time >
time2.
May 2010 446 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax

.usim_ta title pulsew node=node1 tmin_low=min_low_time tmax_low=max_low_time
tmin_high=min_high_time tmax_high=max_high_time <vl=logic_0_threshold>
<vh=logic_1_threshold> <depth=value> <subckt=name> <start=time1>
<stop=time2>

Description

This command is used to report pulse width errors on the waveforms of the specified nodes.
Pulse width is defined to be the time interval during which the signal in a node stays in the
low or high state. A pulse width error occurs when the pulse width of a signal falls outside the
range (min_low_time, max_low_time) for the logic 0 state, or the range
(min_high_time, max_high_time) for the logic 1 state.

If the logic 0 state and logic 1 state thresholds for the signal are not specified on the command
card, the default values are used. The default values can be set using the command
usim_opt vl = value vh = value.

Arguments

title The title of the current timing analysis.

node Specifies the name of the node on which the hold
timing check is performed. Wildcards are supported in
the node name (see Chapter 3, “Simulation Options”).

min_low_time The minimum value of the pulse width in logic 0 state.

max_low_time The maximum value of the pulse width in logic 0 state.

min_high_time The minimum value of the pulse width in logic 1 state.

max_high_time The maximum value of the pulse width in logic 1 state.

vl=logic_0_threshold The threshold of the logic 0 state for the signal. If the
signal has value less than vl, it is considered to be
logic 0.

vh=logic_1_threshold The threshold of the logic 1 state for the signal. If the
signal has value greater than vh, it is considered to be
logic 1.
May 2010 447 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example

Spectre Syntax:

usim_ta ta_all pulsew example node=n1 tmin_low=4n tmax_low=6n tmin_high=5n
tmax_high=8n

SPICE Syntax:

.usim_ta ta_all pulsew example node=n1 tmin_low=4n tmax_low=6n tmin_high=5n
tmax_high=8n

tells the Virtuoso UltraSim simulator to report pulse width errors if node n1 stays in the logic
0 state for less than 4 ns or longer than 6 ns, or if it stays in the logic 1 state for less than 5
ns or more than 8 ns.

Setup Check

Spectre Syntax

usim_ta title setup node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both setup_time=time [window=window_size]
[vl=logic_0_threshold] [vh=logic_1_threshold] [vrl=logic_0_threshold]
[vrh=logic_1_threshold] [depth=value] [subckt=name] [start=time1]
[stop=time2]

depth=value Specifies the depth in the circuit hierarchy that a
wildcard name applies. If it is set as one, only the
nodes at the current level is applied (default value is
infinity).

subckt=name Specifies the subcircuit to which this statement
applies. By default, it applies to the top level. If the
statement is already in a subcircuit definition, this
parameter is ignored. Setting this parameter is
equivalent to defining the statement within a subcircuit
declaration.

start=time1 Timing analysis start time. The Virtuoso UltraSim
simulator does not perform a timing analysis for
simulation time < time1.

stop=time2 Timing analysis end time. The simulator does not
perform a timing analysis for simulation time >
time2.
May 2010 448 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax

.usim_ta title setup node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both setup_time=time [window=window_size]
[vl=logic_0_threshold] [vh=logic_1_threshold] [vrl=logic_0_threshold]
[vrh=logic_1_threshold] [depth=value] [subckt=name] [start=time1]
[stop=time2]

Description

This command is used to report setup timing errors on the specified node(s) with respect to
a reference node. A setup timing error has occurred if a permissible signal transition occurs
between the times t_ref-setup_time and t_ref+window_size, where t_ref is
the time when a permissible reference transition occurs.

A permissible transition has occurred if the waveform crosses the corresponding logic
threshold. For example, when a waveform crosses the logic 1 threshold while rising, it has a
RISE transition. If the logic 0 state and logic 1 state thresholds for the signal, reference, or
both, are not specified on the command card, then the values must be set with the command
usim_opt vl = value vh = value.

Arguments

title The title of the current timing analysis.

node Specifies the name of the node on which the setup
timing check is performed. Wildcards are supported in
the node name (see Chapter 3, “Simulation Options”).

edge=(rise|fall|both) The permissible transition type for the signal node.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

ref_node The name of the reference node. Only a single node is
allowed.
May 2010 449 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
ref_edge=(rise|fall|both) The permissible transition for the reference node.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

setup_time The setup time. It can be positive or negative. If
negative, the window parameter must be specified.

window=window_size The time window after the reference transition. This
parameter must be specified when the setup time is
negative.

vl=logic_0_threshold The threshold of logic 0 state for a signal. If the signal
has a value less than vl, it is considered to be logic 0.

vh=logic_1_threshold The threshold of logic 1state for a signal. If the signal
has a value greater than vh, it is considered to be
logic 1.

vrl=logic_0_threshold The threshold of logic 0 state for a reference. If the
reference has a value less than vrl, it is considered
to be logic 0.

vrh=logic_1_threshold The threshold of logic 1 state for a reference. If the
reference has a value greater than vrh, it is
considered to be logic 1.

depth=value Specifies the depth in the circuit hierarchy that a
wildcard name applies. If it is set as one, only the
nodes at the current level is applied (default value is
infinity).

subckt=name Specifies the subcircuit that this statement applies in.
By default, it applies in the top level. If the statement is
already in a subcircuit definition, this parameter is
ignored. Setting this parameter is equivalent to
defining the statement within a subcircuit declaration.

start=time1 Timing analysis start time. The Virtuoso UltraSim
simulator does not perform a timing analysis for
simulation time < time1.
May 2010 450 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following Spectre example

usim_opt vl=0.3 vh=0.7

usim_ta ta_all setup example1 node=n1 edge=rise ref_node=clk ref_edge=rise
setup_time=2n

tells the Virtuoso UltraSim simulator to report setup timing errors if the rise transitions on
node n1 occur within the 2 ns before a rise transition on the node clk. Since the low and
high thresholds are not specified in the command, the values in usim_opt are used in the
analysis.

In the following SPICE example

.usim_ta ta_all setup example2 node=n2 edge=both ref_node=clk ref_edge=fall
setup_time=-1ns window=3ns

tells the simulator to report setup timing errors if the rise or the fall transitions on node n2
occur within the time interval of 1 ns after the fall transition of the node clk, and 3 ns after
the clk fall transition.

Timing Edge Check

Spectre Syntax

usim_ta title edge node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both td_min=min_time td_max=max_time
<vl=logic_0_threshold> <vh=logic_1_threshold> <vrl=logic_0_threshold>
<vrh=logic_1_threshold> <trigger=trigger_type> <depth=value> <subckt=name>
<start=time1> <stop=time2>

SPICE Syntax

.usim_ta title edge node=node1 edge=rise|fall|both ref_node=node2
ref_edge=rise|fall|both td_min=min_time td_max=max_time
<vl=logic_0_threshold> <vh=logic_1_threshold> <vrl=logic_0_threshold>
<vrh=logic_1_threshold> <trigger=trigger_type> <depth=value> <subckt=name>
<start=time1> <stop=time2>

stop=time2 Timing analysis end time. The simulator does not
perform a timing analysis for simulation time >
time2.
May 2010 451 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Description

This command is used to report timing edge errors on the specified node(s) with respect to a
reference node. A timing edge error occurs when the permissible signal transition time falls
outside the range t_ref+min_time and t_ref+max_time, where t_ref is the time
that the permissible reference transition occurs.

A permissible transition occurs when the waveform crosses the corresponding logic
threshold. For example, when a waveform crosses the logic 1 threshold while rising, it has a
RISE transition. If the logic 0 state and logic 1 state thresholds for the signal, reference, or
both, are not specified on the command card, the default values are used. The default values
can be set using the command usim_opt vl = value vh = value. The trigger option
allows you to decide whether a permissible signal transition, a permissible reference
transition, or both trigger the timing edge check.

Arguments

title The title of the current timing analysis.

node Specifies the name of the node on which the timing
edge check is performed. Wildcards are supported in
the node name (see Chapter 3, “Simulation Options”).

edge=(rise|fall|both) The permissible transition type for the signal nodes.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

ref_node The name of the reference node. Only a single node is
allowed.
May 2010 452 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
ref_edge=(rise|fall|both) The permissible transition type for the reference
nodes.

rise, a low-to-high transition is the permissible
transition.

fall, a high-to-low transition is the permissible
transition.

both, a low-to-high or a high-to-low transition is a
permissible transition.

min_time The minimum value of the delay between the
permissible transitions of the signal and the reference.

max_time The maximum value of the delay between the
permissible transitions of the signal and the reference.

vl=logic_0_threshold The threshold of logic 0 state for a signal. If the signal
has a value less than vl, it is considered to be logic 0.

vh=logic_1_threshold The threshold of logic 1 state for a signal. If the signal
has a value greater than vh, it is considered to be
logic 1.

vrl=logic_0_threshold The threshold of logic 0 state for a reference. If the
reference has a value less than vrl, it is considered
to be logic 0.

vrh=logic_1_threshold The threshold of logic 1 state for a reference. If the
reference has a value greater than vrh, it is
considered to be logic 1.

trigger=(ref|sig|both) The trigger to start a timing edge check.

ref, a permissible transition at a reference triggers
the check (this is the default value)

sig, a permissible transition at a signal triggers the
check.

both, a permissible transition if a reference or a
signal triggers the check.

depth=value Specifies the depth in the circuit hierarchy that a
wildcard name applies. If it is set as one, only the
nodes at the current level is applied (default value is
infinity).
May 2010 453 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Examples

In the following Spectre example

usim_ta ta_all edge example1 node=n1 edge=rise ref_node=clk ref_edge=rise
td_min=2n td_max=5n

tells the Virtuoso UltraSim simulator to report timing edge errors if the delay between the
rise transitions at node n1 and reference clk is less than 2 ns, or longer than 5 ns. Since
the default value of trigger is ref, only a rise transition of the reference can trigger a
timing edge check.

In the following SPICE example

.usim_ta ta_all edge example2 node=n2 edge=rise ref_node=clk ref_edge=rise
td_min=2n td_max=5n trigger=sig

tells the simulator to report timing edge errors if the delay is outside the range of 2 ns and 5
ns. In this case, only a rise transition of the signal at n2 can trigger a timing edge check.

subckt=name Specifies the subcircuit to which this statement
applies. By default, it applies to the top level. If the
statement is already in a subcircuit definition, this
parameter is ignored. Setting this parameter is
equivalent to defining the statement within a subcircuit
declaration.

start=time1 Timing analysis start time. The Virtuoso UltraSim
simulator does not perform a timing analysis for
simulation time < time1.

stop=time2 Timing analysis end time. The simulator does not
perform a timing analysis for simulation time >
time2.
May 2010 454 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Bisection Timing Optimization

Description

When analyzing circuit timing violations and optimizing timing margins, multiple simulations
and iterative analysis of the results is required. Virtuoso UltraSim simulator bisection timing
optimization combines multiple simulations into a single characterization, reducing
characterization time and simplifying the process. Typical applications include cell
characterization timing measurements, and setup and hold timing optimization.

Bisection methodology, using a binary search strategy, seeks the optimal value of a specified
input parameter associated with the goal value of an output variable. During a bisection
search, the Virtuoso UltraSim simulator performs the following steps:

1. Transient simulation with the specified parameter set at the lower and upper limits,
respectively.

The measurement results for the lower and upper limits need to meet the pre-determined
goal with one limit, and fail with the other (otherwise the simulator ends the simulation
and prints a message).

2. Simulation occurs at the mid-point of the search range and the resulting measurement is
compared with the goal value.

The search range can be split into halves by choosing a new search range. The
measurement results determine whether the first or second half is used in the search
range.

3. Multiple simulations occur until one of the following conditions are met: The relative
tolerance for the input and output variables is satisfied or the maximum number of
iterations is reached.

The bisection timing optimization feature only applies to vsource, and the sweeping
parameter must be included in the expression of delay for either the pulse function or time-
value pairs in the pwl function. If the Virtuoso UltraSim simulator is unable to find a qualified
vsource, the bisection feature is turned off.

To use the simulator for bisection timing optimization, more accurate settings than the default
simulator settings may be required. Cadence recommends first evaluating which Virtuoso
UltraSim sim_mode and speed fulfils the specific accuracy requirements of your design
before using bisection timing optimization (see Chapter 3, “Simulation Options” for more
information about sim_mode and speed).
May 2010 455 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The Virtuoso UltraSim simulator reports the search process and optimized parameters in the
.optlog file, and also generates waveforms and the measurement result (.mt0) for the final
simulation.

Arguments

The following statements can be used for model optimization (.model), parameter
optimization (.param), measurement (.measure), and transient analysis (.tran).

.model

.model optmodelname opt method=bisection <relin=value> <relout=value>
<itropt=value>

This statement defines the optimization method (bisection) and the criteria used to determine
the maximum number of iterations, relative tolerances, and to stop an iteration.

.param

.param paramname=optxxxx(<initial>, <lower>, <upper>)

This statement defines the optimization parameter (input variable) and its initial value, and the
lower and upper limit values. The bisection method allows only one parameter and ignores
the initial value of the parameter.

optmodelname Name of the optimization model

method Defines the optimization method

Note: Only bisection is supported.

relin Specifies the relative tolerance of the input parameter (default
value is 0.001)

relout Specifies the relative tolerance of the output variable (default value
is 0.001)

itropt Specifies the maximum number of iterations (default value is 20
iterations)

paramname Name of the optimization parameter
May 2010 456 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.measure

.measure tran meastitle <measfuncs> goal=goalvalue

This statement defines the measurement of the output variable and its goal value, which is
used by the Virtuoso UltraSim simulator to evaluate the validity of a parameter value (that is,
determines whether or not the parameter value is accepted in the analysis).

.tran

.tran <transtep> <tranendtime> sweep optimize=optparfun results=meastitle
model=optmodename fastsweep=on|off

This statement defines the bisection and optimization methods.

initial Specifies the initial value of the parameter

Note: The initial value is not used for bisection.

lower Specifies the lower limit of the parameter

upper Specifies the upper limit of the parameter

meastitle Name of the statement

measfuncs Specifies the measurement functions supported in a base-level
.measure statement

goal Specifies the desired value of the measurement

optparfun Name of the parameter function given in the .param statement.

meastitle Name of the .measure statement.

optmodelname Name of the optimization model given in the .model statement.

fastsweep off – netlist file is parsed and simulation database is rebuilt for
each bisection iteration (default).

on – netlist file parsing and building of simulation database is
skipped for all bisection iterations after the first iteration (simulation
database from first iteration is reused). This feature provides a
performance advantage, but is limited to bisection applications with
no change in the topology and initial circuit conditions between
iterations.
May 2010 457 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example

The following example illustrates how to measure the setup time of a delay-type flip flop (D-
FF).

Figure 8-3 D-FF Setup Time Optimization

The D-FF has two input signals (DATA and CLK) and two output signals (Q and Q_). The
assumption is that both input signals transition (0->1) at Td and Tclk, respectively. It is
expected that the data will remain stable during setup time, until CLK switches.

The transition needs to satisfy the following condition,

Tclk > Td + setup_time

In this case, a transition (0->1) at the output of the D-FF Q occurs. Otherwise, no transition is
found by the simulator and output Q remains at 0. The transition at the output can be detected
by measuring the max value at Q. If the measurement result is 1, there is a transition; if 0, no
transition occurs.

The following is a sample top-level netlist file containing bisection timing optimization settings.

**** Search setup time for D-FF by bisection method ****

.param vdd=2.5

...

// PWL stimulus for CLK & data

// td=delay characterizes the setup time and is to be adjusted by bisection

Vclk CLK 0 pwl(0n 0 1n 0 1.5n vdd 3n vdd 3.5n 0 10n 0 10.5n vdd)

Vdata data 0 pwl(0n 0 5n 0 5.5n vdd td=delay)

// instance of D Flip-Flop

x1 data CLK Q_ Q DFF_B

// set delay to be the input variable, and its searching range

.param delay=opt1(0n, 0n, 6n)

// set optimization method to be bisection

.model optmod opt method=bisection

DFF
D

CLK

Q

Q

CLK (fixed)

DATA (variable)

Q

Goal: Find tsetup

PASS

FAIL

Late DATA transition
causes Q not to switch

Early DATA transition
leads to Q transition

Last time point for DATA transition
which leads to Q transition
May 2010 458 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
// set measurement to find the transition of output and its goal value

.measure tran vout max v(Q) goal='0.9*vdd'

// set bisection transient simulation

.tran 0.1n 20n sweep optimize=opt1 results=vout model=optmod

// measure setup time

.measure tran setup_time trig v(data) value='0.5*vdd' rise=1 td=5n

+ targ v(clk) value='0.5*vdd' rise=1 td=5n

.end

The following sample output file shows the simulation results. The optimized value of delay is
5.083 ns. With this delay, the voltage at the Q output of the DFF is 2.504 v.

iter lower upper current result

1 0 6e-09 0 2.50407

2 0 6e-09 6e-09 0.013865

3 0 6e-09 3e-09 2.50407

4 3e-09 6e-09 4.5e-09 2.50398

5 4.5e-09 6e-09 5.25e-09 0.0138437

6 4.5e-09 5.25e-09 4.875e-09 2.5046

7 4.875e-09 5.25e-09 5.0625e-09 2.5043

8 5.0625e-09 5.25e-09 5.15625e-09 0.0138437

9 5.0625e-09 5.15625e-09 5.10938e-09 0.0138437

10 5.0625e-09 5.10938e-09 5.08594e-09 0.0263151

11 5.0625e-09 5.08594e-09 5.07422e-09 2.50424

12 5.07422e-09 5.08594e-09 5.08008e-09 2.50422

13 5.08008e-09 5.08594e-09 5.08301e-09 2.50396

Optimization Method bisection

Optimization Parameter delay

Optimized Value 5.08301e-09

vout 2.50396

Goal 2.25
May 2010 459 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static Checks

The Virtuoso UltraSim simulator provides static checks which can be used to analyze circuit
topology, parameter values, simulation information, and device and element characteristics.

Note: Static checks can be performed without a transient analysis by removing the transient
analysis statement from the netlist file.

■ Netlist File Parameter Check checks whether the element size and simulation
temperature are in the reasonable range or not.

■ Print Parameters in Subcircuit prints the parameters located in a subcircuit.

■ Resistor and Capacitor Statistical Checks determines whether resistor or capacitor
values are within a specified range.

■ Substrate Forward-Bias Check checks whether a MOSFET substrate becomes forward-
biased.

■ Static MOS Voltage Check monitors whether MOSFET bias voltage exceeds specified
bounds or conditions.

■ Static NMOS and PMOS Bulk Forward-Bias Checks determines whether bulk to drain/
source junctions of NMOSFETs or PMOSFETs become forward-biased.

■ Detect Conducting NMOSFETs and PMOSFETs checks if the NMOSFET minimum gate
voltage is greater than the minimum specified for drain/source voltages or the PMOSFET
maximum gate voltage is lower than the maximum specified for drain/source voltages.

■ Static Maximum Leakage Path Check detects DC leakage paths between all voltage
sources.

■ Static High Impedance Check detects high impedance nodes without running DC or
transient simulations.

■ Static ERC Check detects electrical design rule violations without running DC or
transient simulations.

■ Static DC Path Check detects a DC path between voltage sources without running DC
or transient simulation.

■ info Analysis gives access to input/output values and operating-point parameters.

■ Partition and Node Connectivity Analysis used for debugging (for example, checking the
size of partitions and node connectivity).

■ Warning Message Limit Categories customizes how warning messages are handled by
the Virtuoso UltraSim simulator.
May 2010 460 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Netlist File Parameter Check

Spectre Syntax

usim_report chk_param <ermaxcap=v> <ermaxres=v> <ermaxmosw=v> <ermaxmosl=v>
<ermaxmosas=v> <ermaxmosps=v> <ermaxmostox=v> <ermaxdiodew=v>
<ermaxdiodel=v> <ermaxdiodea=v> <ermaxtemp=v> <erminfactor=v> <ermincap=v>
<erminres=v> <erminmosw=v> <erminmosl=v> <ermaxmosad=v> <ermaxmospd=v>
<erminmostox=v> <ermindiodew=v> <ermindiodel=v> <ermindiodea=v>
<ermintemp=v> <model=m> <wamaxcap=v> <wamaxres=v> <wamaxmosw=v> <wamaxmosl=v>
<wamaxmosas=v> <wamaxmosps=v> <wamaxmostox=v> <wamaxdiodew=v>
<wamaxdiodel=v> <wamaxdiodea=v> <wamaxtemp=v> <waminfactor=v> <wamincap=v>
<waminres=v> <waminmosw=v> <waminmosl=v> <wamaxmosad=v> <wamaxmospd=v>
<waminmostox=v> <wamindiodew=v> <wamindiodel=v> <amindiodea=v> <wamintemp=v>

SPICE Syntax

.usim_report chk_param <ermaxcap=v> <ermaxres=v> <ermaxmosw=v> <ermaxmosl=v>
<ermaxmosas=v> <ermaxmosps=v> <ermaxmostox=v> <ermaxdiodew=v>
<ermaxdiodel=v> <ermaxdiodea=v> <ermaxtemp=v> <erminfactor=v> <ermincap=v>
<erminres=v> <erminmosw=v> <erminmosl=v> <ermaxmosad=v> <ermaxmospd=v>
<erminmostox=v> <ermindiodew=v> <ermindiodel=v> <ermindiodea=v>
<ermintemp=v> <model=m> <wamaxcap=v> <wamaxres=v> <wamaxmosw=v> <wamaxmosl=v>
<wamaxmosas=v> <wamaxmosps=v> <wamaxmostox=v> <wamaxdiodew=v>
<wamaxdiodel=v> <wamaxdiodea=v> <wamaxtemp=v> <waminfactor=v> <wamincap=v>
<waminres=v> <waminmosw=v> <waminmosl=v> <wamaxmosad=v> <wamaxmospd=v>
<waminmostox=v> <wamindiodew=v> <wamindiodel=v> <amindiodea=v> <wamintemp=v>

Description

The chk_param command checks whether or not the element sizes and simulation
temperatures are within a reasonable range. This command is executed after the netlist file
is parsed, and the Virtuoso UltraSim simulator generates a report file with a .rpt_chkpar
suffix.

When the checked data exceeds specified or default soft upper/lower limits, warning
messages are issued. If the data abnormality exceeds specified or default absolute limits,
error messages are generated and the simulation stops. Multiple chk_param command lines
are supported by the Virtuoso UltraSim simulator.

Note: All errors are collected and printed by chk_param, and then the simulation is stopped
(that is, chk_param is always performed on all instance parameters). If optional arguments
are specified, the related parameters are checked using the specified value and the
remaining parameters are checked using the default values.
May 2010 461 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Arguments

ermaxcap=v The Virtuoso UltraSim simulator issues an error
message and stops the simulation if any capacitance
exceeds the specified upper bound value (default
value is 1.0e-3 F)

wamaxcap=v The simulator issues a warning message and
continues the simulation if any capacitance exceeds
the specified upper bound value (default value is 1.0e-
8 F)

ermincap=v The simulator issues an error message and stops the
simulation if any capacitance is less than the specified
lower bound value (default value is -1.0e-15 F)

wamincap=v The simulator issues a warning message and
continues the simulation if any capacitance is less
than the specified lower bound value (default value is
0)

Note: The value needs to meet the following criteria:
ermincap <= wamincap <= wamaxcap <=
ermaxcap (otherwise a warning message is issued
and the default value is used instead).

ermaxres=v The simulator issues an error message and stops the
simulation if any resistance exceeds the specified
upper bound value (default value is 1.0e+15 ohms)

wamaxres=v The simulator issues a warning message and
continues the simulation if any resistance exceeds the
specified upper bound value (default value is 1.0e+12
ohms)

erminres=v The simulator issues an error message and stops the
simulation if any resistance is less than the specified
lower bound value (default value is 0)
May 2010 462 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
waminres=v The simulator issues a warning message and
continues the simulation if any resistance is less than
the specified lower bound value (default value is 0)

Note: The value needs to meet the following criteria:
erminres <= waminres <= wamaxres <=
ermaxres (otherwise a warning message is issued
and the default value is used instead).

ermaxmosw=v The simulator issues an error message and stops the
simulation if any MOSFET channel width exceeds the
specified upper bound value (default value is 1.0e-2
m)

wamaxmosw=v The simulator issues a warning message and
continues the simulation if any MOSFET channel
width exceeds the specified upper bound value
(default value is 1.0e-3 m)

erminmosw=v The simulator issues an error message and stops the
simulation if any MOSFET channel width is less than
the specified lower bound value (default value is 1.0e-
8 m)

waminmosw=v The simulator issues a warning message and
continues the simulation if any MOSFET channel
width is less than the specified lower bound value
(default value is 1.0e-7 m)

Note: The value needs to meet the following criteria:
erminmosw <= waminmosw <= wamaxmosw <=
ermaxmosw (otherwise a warning message is issued
and the default value is used instead).

ermaxmosl=v The simulator issues an error message and stops the
simulation if any MOSFET channel length exceeds the
specified upper bound value (default value is 1.0e-2
m)

wamaxmosl=v The simulator issues a warning message and
continues the simulation if any MOSFET channel
length exceeds the specified upper bound value
(default value is 1.0e-3 m)
May 2010 463 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
erminmosl=v The simulator issues an error message and stops the
simulation if any MOSFET channel length is less than
the specified lower bound value (default value is 1.0e-
8 m)

waminmosl=v The simulator issues a warning message and
continues the simulation if any MOSFET channel
length is less than the specified lower bound value
(default value is 1.0e-7 m)

Note: The value needs to meet the following criteria:
erminmosl <= waminmosl <= wamaxmosl <=
ermaxmosl (otherwise a warning message is issued
and the default value is used instead).

ermaxmosad=v The simulator issues an error message and stops the
simulation if any MOSFET drain diffusion area
exceeds the specified upper bound value (default
value is 1.0e-4 m2)

wamaxmosad=v The simulator issues a warning message and
continues the simulation if any MOSFET drain
diffusion area exceeds the specified upper bound
value (default value is 1.0e-6 m2)

Note: The value needs to meet the following criteria:
wamaxmosad <= ermaxmosad (otherwise a warning
message is issued and the default value is used
instead).

ermaxmosas=v The simulator issues an error message and stops the
simulation if any MOSFET source diffusion area
exceeds the specified upper bound value (default
value is 1.0e-4 m2)

wamaxmosas=v The simulator issues a warning and continues the
simulation if any MOSFET source diffusion area
exceeds the specified upper bound value (default
value is 1.0e-6 m2)

Note: The value needs to meet the following criteria:
wamaxmosas <= ermaxmosas (otherwise a warning
message is issued and the default value is used
instead).
May 2010 464 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
ermaxmospd=v The simulator issues an error message and stops the
simulation if any MOSFET perimeter of the drain
junction exceeds the specified upper bound value
(default value is 1.0e-2 m2)

wamaxmospd=v The simulator issues a warning message and
continues the simulation if any MOSFET perimeter of
the drain junction exceeds the specified upper bound
value (default value is 1.0e-3 m2)

Note: The value needs to meet the following criteria:
wamaxmospd <= ermaxmospd (otherwise a warning
message is issued and the default value is used
instead).

ermaxmosps=v The simulator issues an error message and stops the
simulation if any MOSFET perimeter of the source
junction exceeds the specified upper bound value
(default value is 1.0e-2 m2)

wamaxmosps=v The simulator issues a warning message and
continues the simulation if any MOSFET perimeter of
the source junction exceeds the specified upper
bound value (default value is 1.0e-3 m2)

Note: The value needs to meet the following criteria:
wamaxmosps <= ermaxmosps (otherwise a warning
message is issued and the default value is used
instead).

ermaxmostox=v The simulator issues an error message and stops the
simulation if any MOSFET gate oxide thickness
exceeds the specified upper bound value (default
value is 5.0e-8 m)

wamaxmostox=v The simulator issues a warning message and
continues the simulation if any MOSFET gate oxide
thickness exceeds the specified upper bound value
(default value is 3.0e-8 m)

erminmostox=v The simulator issues an error message and stops the
simulation if any MOSFET gate oxide thickness is less
than the specified lower bound value (default value is
5.0e-10 m)
May 2010 465 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
waminmostox=v The simulator issues a warning message and
continues the simulation if any MOSFET gate oxide
thickness is less than the specified lower bound value
(default value is 5.0e-9 m)

Note: The value needs to meet the following criteria:
erminmostox <= waminmostox <= wamaxmostox
<= ermaxmostox (otherwise a warning message is
issued and the default value is used instead).

ermaxdiodew=v The simulator issues an error message and stops the
simulation if any diode width exceeds the specified
upper bound value (default value is 1.0e-2 m)

wamaxdiodew=v The simulator issues a warning message and
continues the simulation if any diode width exceeds
the specified upper bound value (default value is 1.0e-
3 m)

ermindiodew=v The simulator issues an error message and stops the
simulation if any diode width is less than the specified
lower bound value (default value is 1.0e-8 m)

wamindiodew=v The simulator issues a warning message and
continues the simulation if any diode width is less than
the specified lower bound value (default value is 1.0e-
7 m)

Note: The value needs to meet the following criteria:
ermindiodew <= wamindiodew <= wamaxdiodew
<= ermaxdiodew (otherwise a warning message is
issued and the default value is used instead).

ermaxdiodel=v The simulator issues an error message and stops the
simulation if any diode length exceeds the specified
upper bound value (default value is 1.0e-2 m)

wamaxdiodel=v The simulator issues a warning message and
continues the simulation if any diode length exceeds
the specified upper bound value (default value is 1.0e-
3 m)

ermindiodel=v The simulator issues an error message and stops the
simulation if any diode length is less than the specified
lower bound value (default value is 1.0e-8 m)
May 2010 466 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
wamindiodel=v The simulator issues a warning message and
continues the simulation if any diode length is less
than the specified lower bound value (default value is
1.0e-7 m)

Note: The value needs to meet the following criteria:
ermindiodel <= wamindiodel <= wamaxdiodel
<= ermaxdiodel (otherwise a warning message is
issued and the default value is used instead).

ermaxdiodea=v The simulator issues an error message and stops the
simulation if any diode area exceeds the specified
upper bound value (default value is 1.0e-4 m2)

wamaxdiodea=v The simulator issues a warning message and
continues the simulation if any diode area exceeds the
specified upper bound value (default value is 1.0e-6
m2)

ermindiodea=v The simulator issues an error message and stops the
simulation if any diode area is less than the specified
lower bound value (default value is 1.0e-16 m2)

wamindiodea=v The simulator issues a warning message and
continues the simulation if any diode area is less than
the specified lower bound value (default value is 1.0e-
14 m2)

Note: The value needs to meet the following criteria:
ermindiodea <= wamindiodea <= wamaxdiodea
<= ermaxdiodea (otherwise a warning message is
issued and the default value is used instead).

ermaxtemp=v The simulator issues an error message and stops the
simulation if the circuit temperature, in degrees
Celsius, exceeds the specified upper bound value
(default value is 500)

wamaxtemp=v The simulator issues a warning message and
continues the simulation if the circuit temperature, in
degrees Celsius, exceeds the specified upper bound
value (default value is 150)

ermintemp=v The simulator issues an error message and stops the
simulation if the circuit temperature, in degrees
Celsius, is less than the specified lower bound value
(default value is -200)
May 2010 467 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_param

The Virtuoso UltraSim simulator checks all instance parameters in the netlist file to make sure
they are within the default value limits. If the values exceed the limits, the simulator issues
warning or error messages.

wamintemp=v The simulator issues a warning message and
continues the simulation if the circuit temperature, in
degrees Celsius, is less than the specified lower
bound value (default value is -100)

Note: The value needs to meet the following criteria:
ermintemp <= wamintemp <= wamaxtemp <=
ermaxtemp (otherwise a warning message is issued
and the default value is used instead).

ermaxfactor=v The simulator issues an error message and stops the
simulation if any instance multiplier is larger than the
specified upper bound value.

wamaxfactor=v The simulator issues a warning message and
continues the simulation if any instance multiplier
factor is larger than the specified upper bound value.

erminfactor=v The simulator issues an error message and stops the
simulation if any instance multiplier is less than the
specified lower bound value.

waminfactor=v The simulator issues a warning message and
continues the simulation if any instance multiplier
factor is less than the specified lower bound value.

Note: The value needs to meet the following criteria:
erminfactor <= waminfactor <= wamaxfactor
<= ermaxfactor (a warning message is issued if the
criteria is not met).

model=m Defines the model card name; if specified, all
instances of the specified model name have their
specific values checked (optional).

Note: If the model argument is not specified, the
check is applied to all instances.
May 2010 468 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 2

In the following SPICE example

.usim_report chk_param ermaxmosl=2u wamaxmosl=1u erminmosl=0.09u waminmosl=0.1u

The simulator checks all instance parameters in the netlist file to make sure they are within
the default value limits (uses specified values to check the channel length of all MOSFET
models). For example, if the channel length of any MOSFET model is greater than 2 um or
less than 0.09 um, the simulator stops the simulation and issues an error message (if the
channel length is greater than 1 um or less than 0.1 um, the simulation continues and a
warning message is issued).

Example 3

In the following Spectre example

usim_report chk_param ermaxmosl=2u wamaxmosl=1u erminmosl=0.09u waminmosl=0.1u
model=hvmos

The simulator checks all instance parameters in the netlist file to make sure they are within
the default value limits (uses specified values to check the channel length of all HVMOS
MOSFET instances).

The following is an example of a xxxx.rpt_chkpar report file.

****** Parameters Check Errors ******

Total of 2 error(s) reported.

Model Subckt Parameter Limits Instance

resistor --- r = -0.12 (< 0.0) r23

mos1 por l = 1.0e-9 (< 1.0e-8) xtop.xpor.m100

****** Parameters Check Warnings*******

Total of 2 warning(s) reported.

Model Subckt Parameter Limits Instance

diode1 bg w = 0.002 (< 0.003) x0.x1.x2.x3.d4

capacitor --- c = 1.0e-7 (> 1.0e-8) c1

****** End of Parameter Check. ******
May 2010 469 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Print Parameters in Subcircuit

Spectre Syntax

usim_report param param_name [depth=..]

SPICE Syntax
.usim_report param param_name [depth=..]

Description

This option enables you to print subcircuit parameters into a netlist.para_rpt file. The
option also supports wildcards and allows use of the depth argument to limit the levels of
hierarchy (default for depth is infinity). Matching is case insensitive.

For more information about wildcards, see “Wildcard Rules” on page 55.

Examples

In the following Spectre example

usim_report param *

tells the simulator to print out all of the parameters from the entire design hierarchy.

In the following SPICE example

.usim_report param * depth=1

tells the simulator to print out all of the top level parameters.

In the following Spectre example

usim_report param x1.a

tells the simulator to look for a parameter named a in instance x1. If no match is found, the
simulator issues a warning message.

In the next example

usim_report param x1.*

tells the simulator to print out all of the parameters in instance x1 and all the instances below
x1.

In the next example
May 2010 470 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
usim_report param x1*.* depth=2

tells the simulator to print out all of the parameters in all instances that are two hierarchies
lower and have instance names that start with x1.

Examples of instance names starting with x1 include x1.aa, x1a.b, x1.x2.bb, and
x1b.x3.bb (aa, b, and bb are the parameter names).
May 2010 471 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Resistor and Capacitor Statistical Checks

Resistor Statistical Check

Spectre Syntax
usim_report resistor type=warning rmax=value

usim_report resistor type=distr rmin=value rmax=value

usim_report resistor type=print rmin=value rmax=value nlimit=num sort=[dec|inc]

SPICE Syntax
.usim_report resistor type=warning rmax=value

.usim_report resistor type=distr rmin=value rmax=value

.usim_report resistor type=print rmin=value rmax=value nlimit=num sort=[dec|inc]

Description

The Virtuoso UltraSim simulator resistor statistical check determines if resistor values are
within a reasonable user-defined range.

■ type=warning prints a warning about small resistors and reports the number of
resistors with values below rmax.

■ type=distr prints resistor statistics into a xxxx.chk_resistor log file for resistors
with values between rmin and rmax.

■ type=print prints resistors with values between rmin and rmax into a
xxxx.chk_resistor log file.

Arguments

type=warning|
distr|print

Type of resistor statistic.

rmax=value Specifies upper bound of resistor value to be reported (default value is
0.1 ohms).

rmin=value Specifies lower bound of resistor value to be reported (default value is
0).
May 2010 472 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report resistor type=warning rmax=0.001

The Virtuoso UltraSim simulator issues a warning about small resistors if the circuit contains
resistors with values less than 0.001 ohms, and reports the number of resistors in a log file.

Example 2

In the following SPICE example

.usim_report resistor type=distr rmin=0 rmax=0.02

The simulator generates statistics for resistors with values between 0 and 0.02 ohms in a
xxxx.chk_resistor log file.

Example 3

In the following Spectre example

usim_report resistor type=print rmin=0 rmax=0.02 nlimit=30 sort=dec

The simulator prints the resistors with values between 0 and 0.02 ohms in a
xxxx.chk_resistor log file. The resistors are sorted in decreasing order of their value. A
total of 30 resistors are printed because nlimit=30.

The following is a sample xxxx.chk_resistor log file (includes resistor names and
values):

.TITLE 'This file is :./test.chk_resistor'

.Usim_report resistor type=distr rmin=0 rmax=0.02

0 - 1m 0

1m - 10m 0

10m - 0.1 3

0.1 - 1 0

.Usim_report resistor type=print rmin=0 rmax=0.02 nlimit=30 sort=dec

nlimit=num Limits number of resistors printed in report (integer; default value is 10
resistors).

sort=dec|inc Specifies sorting order printed resistors. If set to inc, resistors are
sorted in increasing order of their values (default). If set to dec,
resistors are sorted in decreasing order of their values.
May 2010 473 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
x1.r12 0.001

r05 0.01

r03 0.01

Capacitor Statistical Check

Spectre Syntax

usim_report capacitor type=warning cmax=value

usim_report capacitor type=distr cmin=value cmax=value

usim_report capacitor type=print cmin=value cmax=value nlimit=num sort=[dec|inc]

SPICE Syntax

.usim_report capacitor type=warning cmax=value

.usim_report capacitor type=distr cmin=value cmax=value

.usim_report capacitor type=print cmin=value cmax=value nlimit=num sort=[dec|inc]

Description

The Virtuoso UltraSim simulator capacitor statistical check determines if capacitor values are
within a reasonable user-defined range.

■ type=warning prints a warning about small capacitors and reports the number of
capacitors with values below cmax.

■ type=distr prints capacitor statistics into a xxxx.chk_capacitor log file for
capacitors with values between cmin and cmax.

■ type=print prints capacitors with values between cmin and cmax into a
xxxx.chk_capacitor log file.

Arguments

type=warning|
distr|print

Type of capacitor statistic.

cmax=value Specifies upper bound of capacitor value to be reported (default value
is 1e-16 F).
May 2010 474 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report capacitor type=warning cmax=1e-17

The Virtuoso UltraSim simulator issues a warning about small capacitors if the circuit
contains capacitors with values less than 0.01f F, and reports the number of capacitors in a
log file.

Example 2

In the following SPICE example

.usim_report capacitor type=distr cmin=0 cmax=1e-17

The simulator generates statistics for capacitors with values between 0 and 0.01f F in a
xxxx.chk_capacitor log file.

Example 3

In the following Spectre example

usim_report capacitor type=print cmin=0 cmax=1e-17 nlimit=30 sort=dec

The simulator prints the capacitors with values between 0 and 0.01f F in a
xxxx.chk_capacitor log file. The capacitors are sorted in decreasing order of their value.
A total of 30 capacitors are printed because nlimit=30.

The following is a sample xxxx.chk_capacitor log file (includes capacitor names and
values):

.TITLE 'This file is :./pump.chk_resistor'

.Usim_report capacitor type=print cmin=0 cmax=20p nlimit=10 sort=dec

x5.c1i1680 1e-11

x5.c1i1679 1e-11

cmin=value Specifies lower bound of capacitor value to be reported (default value is
0).

nlimit=num Limits number of capacitors printed in report (integer; default value is
10 capacitors).

sort=dec|inc Specifies sorting order for printed capacitors. If set to inc, capacitors
are sorted in increasing order of their values (default). If set to dec,
capacitors are sorted in decreasing order of their values.
May 2010 475 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
x5.c1i1678 1e-11

x5.c1i1677 1e-11

x5.c1i1676 1e-11

x5.c1i1675 1e-11

cl 1e-11
May 2010 476 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Substrate Forward-Bias Check

Spectre Syntax

usim_report chk_substrate title mode=[2|1|0] <num=n> <vt=v> <ith=iv> <tth=tv>
<start=t1> <stop=t2> <model=m>

SPICE Syntax

.usim_report chk_substrate title mode=[2|1|0] <num=n> <vt=v> <ith=iv> <tth=tv>
<start=t1> <stop=t2> <model=m>

Description

The chk_substrate command is used to check if a MOSFET substrate becomes forward-
biased. The Virtuoso UltraSim simulator generates a report file with a .rpt_chksubs suffix
(for example, if the netlist file name is circuit.sp, the report is named
circuit.rpt_chksubs).

Note: This command can only be used to check MOSFET substrates, not other PN junctions.

You can perform substrate forward-bias checking before DC initialization or during the
transient simulation. When used before DC initialization, if a PMOS field effect transistor
(FET) substrate is connected to a ground or negative voltage source, or a NMOS FET is
connected to a positive voltage source, the simulator issues a warning message. The voltage
source can be a constant, PWL, pulse, exponential, or sine type. The voltage value at time
zero is used by the simulator for substrate forward-bias checking.

When used during transient simulation, if the MOSFET substrate junction is forward-biased
more than a threshold voltage (vt) and the junction current is more than a threshold current
(ith), a warning message is generated.

Arguments

title Reports titles of warning messages. If the title is not specified, a
warning message is issued and the simulator does not perform the
check.

Note: The title argument only applies to transient simulations.
May 2010 477 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_substrate sub1 mode=0

The Virtuoso UltraSim simulator checks the substrates for all the MOSFET models to see if
any are forward-biased (checks performed before DC initialization). All warnings issued by
the simulator are named sub1 in the .rpt_chksubs file.

mode=2|1|0 Specifies checking mode. If the mode is not specified, a warning
message is issued and the simulator does not perform the check.

■ 0 – all MOSFET substrate connections are checked before DC
initialization. A warning message is printed if a PMOS FET
substrate is connected to negative voltage source or a NMOS FET
is connected to a positive voltage source.

■ 1 – all MOSFET substrate connections are checked during the
transient simulation.

■ 2 – all MOSFET substrate connections are checked before DC
initialization and during the transient simulation.

num Specifies maximum number of warning messages issued (default
number is 1000 messages).

vt Specifies threshold voltage (default value is 0.5 v).

Note: The vt argument only applies to transient simulations.

ith Specifies threshold current (default value is 0 A).

Note: The ith argument only applies to transient simulations.

tth Duration time (default value is 5 ns).

start Specifies checking start time (default value is 0).

Note: The start argument only applies to transient simulations.

stop Specifies checking stop time (default value is transient stop time).

Note: The stop argument only applies to transient simulations.

model Specifies the MOSFET model names to be checked. When the model
argument is used, the vt and ith values apply to MOSFETs for the
specified model (all MOSFET instances of remaining models are
checked using default values).
May 2010 478 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 2

In the following SPICE example

.usim_report chk_substrate sub2 mode=2 vt=0.15

The simulator checks the substrates for all the MOSFET models before DC initialization and
during the transient simulation. If any MOSFET substrate PN junctions are forward-biased by
an amount greater than 0.15 v, sub2 warnings are issued by the simulator.

Example 3

In the following Spectre example

usim_report chk_substrate subscheck3 mode=1 vt=0.6

usim_report chk_substrate subscheck4 mode=1 vt=0.5 model=lvmos

The simulator checks the substrates for all the MOSFET models during the transient
simulation. If any MOSFET substrate PN junctions are forward-biased by an amount greater
than 0.6 v, subscheck3 warnings are issued by the simulator. If the LVMOS model
MOSFETs are forward-biased more than 0.5 v, subscheck4 warnings are issued.

Here is an example of a .rpt_chksubs report file.

****** MOS Substrate Forward Biased Before DC ******

Total of 2 Warnings reported.

Model Subckt vb Source Instance

nmos1 or 3.0000e+00 vddh xtop.xor.m100

pmos2 or -2.0000e+00 vss xtop.xor.m101

****** MOS Substrate Forward Biased During Simulation *****

Total of 2 Warnings reported.

Title Model Subckt Time Vb Vs Vd Instance

sub1 n1 por 3.0e-9 1.8000e+00 1.9387e+00 1.9629e+00 xtop.xpor.m100

sub2 p1 amp 3.0e-6 1.8000e+00 1.9997e+00 1.9507e+00 xtop.xamp.m200
May 2010 479 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static MOS Voltage Check

Spectre Syntax

usim_report chk_mosv title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1
xinst2 …]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1
skipinst2 …]> <maxmos=n> <vhth=volt> <vlth=volt> <vnth=volt> <vpth=volt>
<vgdl=volt> <vgdu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vdsl=volt> <vdsu=volt> <vdbl=volt> <vdbu=volt> <vsbl=volt> <vsbu=volt>
<cond=expression> <num=n> <rpt_path=0|1> <rpt_node=0|1> <ppos_nneg=0|1>
<pwl_time=time> <vsrc=[elem1 vmin1 vmax1 elem2 vmin2 vmax2 …]>
<vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]> <xt_vsrc=0|1>

SPICE Syntax

.usim_report chk_mosv title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1
xinst2 …]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1
skipinst2 …]> <maxmos=n> <vhth=volt> <vlth=volt> <vnth=volt> <vpth=volt>
<vgdl=volt> <vgdu=volt> <vgsl=volt> <vgsu=volt> <vgbl=volt> <vgbu=volt>
<vdsl=volt> <vdsu=volt> <vdbl=volt> <vdbu=volt> <vsbl=volt> <vsbu=volt>
<cond=expression> <num=n> <rpt_path=0|1> <rpt_node=0|1> <ppos_nneg=0|1>
<pwl_time=time> <vsrc=[elem1 vmin1 vmax1 elem2 vmin2 vmax2 …]>
<vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]> <xt_vsrc=0|1>

Description

This command is used to check MOSFET bias voltage after the netlist file is parsed, and
generates a report if the voltages exceed the specified upper and lower bounds, or meet the
specified conditions. The report file format is xxxx.rpt_chkmosv.

Arguments

title Title of report.

model=model_name Specifies the model to be checked. The voltage check is
applied to transistors with model card name model_name.

subckt Specifies the subcircuits to be checked. The voltage check is
applied to transistors belonging to subcircuits. Wildcard (*)
characters can be used.
May 2010 480 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
inst Specifies the instances to be checked. The voltage check is
applied to transistors belonging to instances (wildcard
characters can be used).

xsubckt Specifies the subcircuits not to be checked (wildcard characters
can be used).

xinst Specifies the instances not to be checked (wildcard characters
can be used).

skipsubckt Specifies that elements inside designated subcircuits skip
voltage propagation (wildcard characters can be used).

skipinst Specifies that elements inside designated instances skip
voltage propagation (wildcard characters can be used).

maxmos=n Maximum number of MOSFETs in the voltage propagation path
between the voltage source and the MOSFET terminals (default
is infinity).

vhth=volt If specified, voltage propagation starts only from constant
voltage sources with values greater than or equal to vhth.

vlth=volt If specified, voltage propagation starts only from constant
voltage sources with values lower than or equal to vlth.

vnth=volt NMOSFET threshold voltage. This value is used to calculate
the voltage drop across a NMOSFET channel during voltage
propagation (default value is 0.5 v).

vpth=volt PMOSFET threshold voltage. This value is used to calculate the
voltage drop across a PMOSFET channel during voltage
propagation (default value is -0.5 v).

vgdl=volt Reports the condition if Vgd is less than the specified lower
bound voltage value.

vgdu=volt Reports the condition if Vgd is greater than the specified upper
bound voltage value.

vgsl=volt Reports the condition if Vgs is less than the specified lower
bound voltage value.

vgsu=volt Reports the condition if Vgs is greater than the specified upper
bound voltage value.

vgbl=volt Reports the condition if Vgb is less than the specified lower
bound voltage value.
May 2010 481 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
vgbu=volt Reports the condition if Vgb is greater than the specified upper
bound voltage value.

vdsl=volt Reports the condition if Vds is less than the specified lower
bound voltage value.

vdsu=volt Reports the condition if Vds is greater than the specified upper
bound voltage value.

vdbl=volt Reports the condition if Vdb is less than the specified lower
bound voltage value.

vdbu=volt Reports the condition if Vdb is greater than the specified upper
bound voltage value.

vsbl=volt Reports the condition if Vsb is less than the specified lower
bound voltage value.

vsbu=volt Reports the condition if Vsb is greater than the specified upper
bound voltage value

cond=expression Defines the conditional expression as the checking criteria.
When the condition is met, the simulator generates a report.
The conditional expression supports the following operators: <,
>, <=, >=, ==, ||, &&, and variables: vgs, vgd, vgb, vds,
vdb, vsb, l, w.

num=n Specifies the maximum number of warnings generated by a
particular check command (default value is 300 warnings).

rpt_path=0|1 Specifies whether or not to report the conducting paths. If set to
0, no paths are reported (default). If set to 1, the conducting
paths from the MOSFET terminals to the voltage sources are
reported.

rpt_node=0|1 Specifies whether or not to report the node voltages propagated
from voltage sources. If set to 0, the node voltage is not
reported (default). If set to 1, both the minimum and maximum
values of the node voltages propagated from voltage sources,
and the depth of propagation paths, are reported.

ppos_nneg=0|1 When ppos_nneg is set to 1, positive voltage sources can only
be propagated through PMOSFETs, and negative or zero
voltage sources can only be propagated through NMOSFETs
(default value is 0; no limitation on the type of MOSFETs during
voltage propagation).
May 2010 482 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_mosv chk1 model=nch inst=[*] xinst=[x1.x2 x1.x3] vgsu=1.5 vdsl=0.1
rpt_path=1

The Virtuoso UltraSim simulator checks if the voltage for all of the nch MOSFETs Vgs and
Vds are within the specified bounds. The transistors located in instances x1.x2 and x1.x3
are excluded from the voltage check. The MOSFETs with Vgs>1.5 or Vds<0.1 are reported
in the xxxx.rpt_chkmosv log file. With rpt_path=1, the conducting path from the
MOSFET terminals to voltage sources is reported.

Example 2

In the following SPICE example

.usim_report chk_mosv chk2 model=nch inst=[x1.*] skipinst=[x1.x2] vhth=0.9
vgsu=1.5

pwl_time=time When specified, the PWL voltage source is replaced by a
constant voltage source for the propagation of voltage. The
constant voltage value is equal to the PWL voltage source value
at the specified time (by default, only voltage from constant
voltage sources is propagated).

vsrc=[elem_name
vmin vmax ...]

When specified, voltage from the voltage source element
<elem_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth for
propagation to begin. If vlth is set, vmin needs to be lower
than or equal to vlth for propagation to begin (by default, only
voltage from constant voltage sources is propagated). Multiple
vsources are supported by the simulator.

vsrcnode=[node_na
me vmin vmax ...]

When specified, voltage from the voltage source node
<node_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth for
propagation to begin. If vlth is set, vmin needs to be lower
than or equal to vlth for propagation to begin (by default, only
voltage from constant voltage sources is propagated). Multiple
vsource nodes are supported by the simulator.

xt_vsrc=0|1 When xt_vsrc is set to 1, voltage propagation starts only from
highest and lowest constant voltage sources. When ext_vsrc
is set to 0, voltage propagation starts from all constant voltage
sources. In either case, the selection is subject to the rules set
by vhth and vlth (default value is 0).
May 2010 483 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
The simulator checks if the voltage of nch MOSFETs located in instance x1 for Vgs is less
than 1.5 v. The voltage propagation only starts from voltage sources with values equal to or
greater than 0.9 v. Voltage is not propagated through instance x1.x2. The MOSFETs with
Vgs>1.5 are reported.

Example 3

In the following Spectre example

usim_report chk_mosv chk3 model=nch subckt=[nor2 nand2] maxmos=2 ppos_nneg=1
vgsu=1.5

The simulator checks the voltage of nch MOSFETs belonging to subcircuit nor2 or nand2.
The MOSFET is reported if Vgs>1.5.

During voltage propagation, only the nodes that can be connected to a voltage source by
going through a maximum of two MOSFETs are considered. With ppos_nneg=1, positive
voltage sources can only be propagated through PMOSFETs, and negative or zero voltage
sources can only be propagated through NMOSFETs.

Example 4

In the following SPICE example

.usim_report chk_mosv chk4 model=pch cond=’vgs<1 || vds>1.8’

The simulator checks the voltage of all nch MOSFETs. If a nch MOSFET has Vgs<1 or
Vds>1.8, then the MOSFET is reported in the xxxx.chk_mosv log file.

The following is an example of a xxxx.chk_mosv log file.

Total of 4 Warnings reported in mosv2.

Total of 2 Warnings reported in chk2.

Title Model Subckt Vd Vg Vs Vb Instance

chk1 nmos vco_50m -- 1.1000e+00 0.0000e+00 -- x1.mn1i1051

chk1 nmos vco_50m -- 1.1000e+00 0.0000e+00 -- x1.mn1i1055

chk1 nmos nor2 -- 2.5000e+00 0.0000e+00 -- x1.x1i1023.mn1i1

chk1 nmos nor2 -- 2.5000e+00 0.0000e+00 -- x1.x1i1023.mn1i7

chk2 nmos inv 2.5000e+00 -- 0.0000e+00 -- x1.x1i1036.mn1i2

chk2 nmos inv 2.5000e+00 -- 0.0000e+00 -- x1.x1i1037.mn1
May 2010 484 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static NMOS and PMOS Bulk Forward-Bias Checks

Static NMOS Bulk Forward-Bias Check

Spectre Syntax

usim_report chk_nmosb title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vlth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

SPICE Syntax

.usim_report chk_nmosb title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vlth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

Description

This command is used to check if the bulk to drain/source junctions of NMOSFETs become
forward-biased.

Note: Check is performed after the netlist file is parsed.

A warning message is generated when the bulk bias voltage meets following condition:

min(Vb)>=min (Vd, Vs) + <vt>

where vt is the p-n junction threshold voltage of the NMOSFETs being checked. The report
file format is xxxx.rpt_chknmosb.

Arguments

title Title of report.
May 2010 485 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
model=model_name Specifies the model to be checked. The voltage check is
applied to transistors with model card name model_name.

subckt Specifies the subcircuits to be checked. The voltage check is
applied to transistors belonging to subcircuits. Wildcard (*)
characters can be used.

inst Specifies the instances to be checked. The voltage check is
applied to transistors belonging to instances (wildcard
characters can be used).

xsubckt Specifies the subcircuits not to be checked (wildcard characters
can be used).

xinst Specifies the instances not to be checked (wildcard characters
can be used).

skipsubckt Specifies that elements inside designated subcircuits skip
voltage propagation (wildcard characters can be used).

skipinst Specifies that elements inside designated instances skip
voltage propagation (wildcard characters can be used).

maxmos=n Maximum number of MOSFETs in the voltage propagation path
between the voltage source and the MOSFET terminals (default
is infinity).

vt=volt Threshold voltage for p-n junction of NMOSFETs being
checked (default value of vt for NMOSFET is 0.3 v).

vlth=volt Voltage propagation starts only from constant voltage sources
with values less than or equal to vlth (default value is 0.4 v)

vnth=volt NMOSFET threshold voltage. This value is used to calculate
the voltage drop across a NMOSFET channel during voltage
propagation (default value is 0.5 v).

vpth=volt PMOSFET threshold voltage. This value is used to calculate the
voltage drop across a PMOSFET channel during voltage
propagation (default value is -0.5 v).

num=n Specifies the maximum number of warnings generated by a
particular check command (default value is 300 warnings).

rpt_path=0|1 Specifies whether or not to report the conducting paths. If set to
0, no paths are reported (default). If set to 1, the conducting
paths from the MOSFET terminals to the voltage sources are
reported.
May 2010 486 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_nmosb chk1 model=nch inst=[*] xinst=[x1.x2 x1.x3] vt=0.5
rpt_path=1

The Virtuoso UltraSim simulator checks if all of the nch NMOSFETs bulk to drain/source
junctions become forward-biased. The threshold voltage is 0.5 v. The transistors located in
instances x1.x2 and x1.x3 are excluded from the bulk forward-bias check. The NMOSFETs
with bulk forward-bias are reported. With rpt_path=1, the conducting path from the
MOSFET terminals to voltage sources is also reported.

rpt_node=0|1 Specifies whether or not to report the node voltages propagated
from voltage sources. If set to 0, the node voltage is not
reported (default). If set to 1, both the minimum and maximum
values of the node voltages propagated from voltage sources,
and the depth of propagation paths, are reported.

pwl_time=time When specified, the PWL voltage source is replaced by a
constant voltage source for the propagation of voltage. The
constant voltage value is equal to the PWL voltage source value
at the specified time (by default, only voltage from constant
voltage sources is propagated).

vsrc=[elem_name
vmin vmax ...]

When specified, voltage from the voltage source element
<elem_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin has to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsources are
supported.

vsrcnode=[node_name
vmin vmax ...]

When specified, voltage from the voltage source node
<node_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin has to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsource
nodes are supported.

xt_vsrc=0|1 When xt_vsrc is set to 1, voltage propagation starts only from
highest and lowest constant voltage sources. When ext_vsrc
is set to 0, voltage propagation starts from all of the constant
voltage sources. In either case, the selection is subject to the
rules set by vhth and vlth (default value is 0).
May 2010 487 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 2

In the following SPICE example

.usim_report chk_nmosb chk2 model=nch inst=[x1.*] skipinst=[x1.x2] vhth=0.9
maxmos=2

The simulator checks if nch NMOSFETs located in instance x1 for bulk to drain/source
junctions become forward-biased. The voltage propagation starts only from voltage sources
with values equal to or greater than 0.9 v. Voltage is not propagated through instance x1.x2.
Only the nodes that can be connected to a voltage source by going through a maximum of
two MOSFETs are considered. After the check is complete, NMOSFETs with bulk forward-
bias are reported.

Static PMOS Bulk Forward-Bias Check

Spectre Syntax

usim_report chk_pmosb title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vhth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

Spectre Syntax

.usim_report chk_pmosb title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vhth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

Description

This command is used to check if the bulk to drain/source junctions of PMOSFETs become
forward-biased.

Note: Check is performed after the netlist file is parsed.

A warning message is generated when the bulk bias voltage meets the following condition:

max(Vb)<=max (Vd, Vs) + <vt>
May 2010 488 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
where vt is the p-n junction threshold voltage of the PMOSFETs being checked. The report
file format is xxxx.rpt_chkpmosb.

Note: The chk_pmosb command is only supported in the new Virtuoso UltraSim simulation
front end (SFE) parser. Use the +csfe command line option to enable SFE.

Arguments

title Title of report.

model=model_name Specifies the model to be checked. The bias check is applied to
transistors with model card name model_name.

subckt Specifies the subcircuits to be checked. The voltage check is
applied to transistors belonging to subcircuits. Wildcard (*)
characters can be used.

inst Specifies the instances to be checked. The voltage check is
applied to transistors belonging to instances (wildcard
characters can be used).

xsubckt Specifies the subcircuits not to be checked (wildcard characters
can be used).

xinst Specifies the instances not to be checked (wildcard characters
can be used).

skipsubckt Specifies that elements inside designated subcircuits skip
voltage propagation (wildcard characters can be used).

skipinst Specifies that elements inside designated instances skip
voltage propagation (wildcard characters can be used).

maxmos=n Maximum number of MOSFETs in the voltage propagation path
between the voltage source and the MOSFET terminals.

vt=volt Threshold voltage for p-n junction of PMOSFETs being checked
(default value of vt for PMOSFET is -0.3 v).

vhth=volt Voltage propagation starts only from constant voltage sources
with values greater than or equal to vhth (default value is 0.7
v).

vnth=volt NMOSFET threshold voltage. This value is used to calculate
the voltage drop across a NMOSFET channel during voltage
propagation (default value is 0.5 v).
May 2010 489 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
vpth=volt PMOSFET threshold voltage. This value is used to calculate the
voltage drop across a PMOSFET channel during voltage
propagation (default value is -0.5 v).

num=n Specifies the maximum number of warnings generated by a
particular check command (default value is 300 warnings).

rpt_path=0|1 Specifies whether or not to report the conducting paths. If set to
0, no paths are reported (default). If set to 1, the conducting
paths from the MOSFET terminals to the voltage sources are
reported.

rpt_node=0|1 Specifies whether or not to report the node voltages propagated
from voltage sources. If set to 0, the node voltage is not
reported (default). If set to 1, both the minimum and maximum
values of the node voltages propagated from voltage sources,
and the depth of propagation paths, are reported.

pwl_time=time When specified, the PWL voltage source is replaced by a
constant voltage source for the propagation of voltage. The
constant voltage value is equal to the PWL voltage source value
at the specified time (by default, only voltage from constant
voltage sources is propagated).

vsrc=[elem_name
vmin vmax ...]

When specified, voltage from the voltage source element
<elem_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsources are
supported.

vsrcnode=[node_name
vmin vmax ...]

When specified, voltage from the voltage source node
<node_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsource
nodes are supported.

xt_vsrc=0|1 When xt_vsrc is set to 1, voltage propagation starts only from
highest and lowest constant voltage sources. When ext_vsrc
is set to 0, voltage propagation starts from all of the constant
voltage sources. In either case, the selection is subject to the
rules set by vhth and vlth (default value is 0).
May 2010 490 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_pmosb chk1 model=pch inst=[*] xinst=[x1.x2 x1.x3] vt=-0.5
rpt_path=1

The Virtuoso UltraSim simulator checks if all of the pch PMOSFETs bulk to drain/source
junctions become forward-biased. The threshold voltage is -0.5 v. The transistors located in
instances x1.x2 and x1.x3 are excluded from the bulk forward-bias check. The PMOSFETs
with bulk forward-bias are reported. With rpt_path=1, the conducting path from the
MOSFET terminals to voltage sources is also reported.

Example 2

In the following SPICE example

.usim_report chk_pmosb chk2 model=pch inst=[x1.*] skipinst=[x1.x2] vhth=0.9
maxmos=2

The simulator checks if pch PMOSFETs located in instance x1 for bulk to drain/source
junctions become forward-biased. The voltage propagation starts only from voltage sources
with values equal to or greater than 0.9 v. Voltage is not propagated through instance x1.x2.
Only the nodes that can be connected to a voltage source by going through a maximum of
two MOSFETs are considered. After checking, PMOSFETs with bulk forward-bias are
reported.
May 2010 491 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Detect Conducting NMOSFETs and PMOSFETs

Detect Conducting NMOSFETs

Spectre Syntax

usim_report chk_nmosvgs title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vlth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

SPICE Syntax

.usim_report chk_nmosvgs title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vlth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

Description

This command allows you to check MOSFETs with n-type channels (NMOSFETs) to detect
whether the minimum gate voltage is greater than the minimum drain/source voltages.

Note: Check is performed after the netlist file is parsed.

A warning message is generated when the gate voltage meets the following condition:

min(Vg)>=min(Vd, Vs) + <vt>

where vt is the p-n junction threshold voltage of the NMOSFETs being checked. The report
format is xxxx.rpt_chknmosvgs.

Arguments

title Title of report.
May 2010 492 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
model=model_name Specifies the model to be checked. The bias check is applied to
transistors with model card name model_name.

subckt Specifies the subcircuits to be checked. The voltage check is
applied to transistors belonging to subcircuits. Wildcard (*)
characters can be used.

inst Specifies the instances to be checked. The voltage check is
applied to transistors belonging to instances (wildcard
characters can be used).

xsubckt Specifies the subcircuits not to be checked (wildcard characters
can be used).

xinst Specifies the instances not to be checked (wildcard characters
can be used).

skipsubckt Specifies that elements inside designated subcircuits skip
voltage propagation (wildcard characters can be used).

skipinst Specifies that elements inside designated instances skip
voltage propagation (wildcard characters can be used).

maxmos=n Maximum number of MOSFETs in the voltage propagation path
between the voltage source and the MOSFET terminals.

vt=volt Threshold voltage for p-n junction of NMOSFETs being
checked (default value of vt for NMOSFET is 0.3 v).

vlth=volt Voltage propagation starts only from constant voltage sources
with values less than or equal to vlth (default value is 0.4 v).

vnth=volt NMOSFET threshold voltage. This value is used to calculate
the voltage drop across a NMOSFET channel during voltage
propagation (default value is 0.5 v).

vpth=volt PMOSFET threshold voltage. This value is used to calculate the
voltage drop across a PMOSFET channel during voltage
propagation (default value is -0.5 v).

num=n Specifies the maximum number of warnings generated by a
particular check command (default value is 300 warnings).

rpt_path=0|1 Specifies whether or not to report the conducting paths. If set to
0, no paths are reported (default). If set to 1, the conducting
paths from the MOSFET terminals to the voltage sources are
reported.
May 2010 493 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_nmosvgs chk1 model=nch inst=[*] xinst=[x1.x2 x1.x3] vt=0.5
rpt_path=1

The Virtuoso UltraSim simulator checks all of the nch NMOSFETs to determine if they are
conducting. The threshold voltage is -0.5 v. The transistors located in instances x1.x2 and
x1.x3 are excluded from the check. NMOSFETs with a minimum gate voltage greater than
the minimum drain/source voltages are reported. With rpt_path=1, the conducting path
from the MOSFET terminals to voltage sources is also reported.

rpt_node=0|1 Specifies whether or not to report the node voltages propagated
from voltage sources. If set to 0, the node voltage is not
reported (default). If set to 1, both the minimum and maximum
values of the node voltages propagated from voltage sources,
and the depth of propagation paths, are reported.

pwl_time=time When specified, the PWL voltage source is replaced by a
constant voltage source for the propagation of voltage. The
constant voltage value is equal to the PWL voltage source value
at the specified time (by default, only voltage from constant
voltage sources is propagated).

vsrc=[elem_name
vmin vmax ...]

When specified, voltage from the voltage source element
<elem_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsources are
supported.

vsrcnode=[node_name
vmin vmax ...]

When specified, voltage from the voltage source node
<node_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsource
nodes are supported.

xt_vsrc=0|1 When xt_vsrc is set to 1, voltage propagation starts only from
highest and lowest constant voltage sources. When ext_vsrc
is set to 0, voltage propagation starts from all of the constant
voltage sources. In either case, the selection is subject to the
rules set by vhth and vlth (default value is 0).
May 2010 494 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 2

In the following SPICE example

.usim_report chk_nmosb chk2 model=nch inst=[x1.*] skipinst=[x1.x2] vhth=0.9
maxmos=2

The simulator checks the nch NMOSFETs located in instance x1 to determine if they are
conducting. The voltage propagation starts only from voltage sources with values equal to or
greater than 0.9 v. Voltage is not propagated through instance x1.x2. Only the nodes that
can be connected to a voltage source by going through a maximum of two MOSFETs are
considered. After checking, NMOSFETs with a minimum gate voltage greater than the
minimum drain/source voltages are reported.

Detect Conducting PMOSFETs

Spectre Syntax

usim_report chk_pmosvgs title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vhth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

SPICE Syntax

.usim_report chk_pmosvgs title <model=model_name> <subckt=[subckt1 subckt2 …]>
<inst=[inst1 inst2 …]> <xsubckt=[xsubckt1 xsubckt2 …]> <xinst=[xinst1 xinst2
…]> <skipsubckt=[skipsubckt1 skipsubckt2 …]> <skipinst=[skipinst1 skipinst2
…]> <maxmos=n> <vt=volt> <vhth=volt> <vnth=volt> <vpth=volt> <num=n>
<rpt_path=0|1> <rpt_node=0|1> <pwl_time=time> <vsrc=[elem1 vmin1 vmax1
elem2 vmin2 vmax2 …]> <vsrcnode=[node1 vmin1 vmax1 node2 vmin2 vmax2 …]>
<xt_vsrc=0|1>

Description

This command allows you to check MOSFETs with p-type channels (PMOSFETs) to detect
whether the maximum gate voltage is less than the maximum drain/source voltages without
running a transient simulation.

Note: Check is performed after the netlist file is parsed.

A warning message is generated when the gate voltage meets the following condition:
May 2010 495 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
max(Vg)<=max(Vd, Vs) + <vt>

where vt is the p-n junction threshold voltage of the PMOSFETs being checked. The report
format is xxxx.rpt_chkpmosvgs.

Arguments

title Title of report.

model=model_name Specifies the model to be checked.The bias check is applied to
transistors with model card name model_name.

subckt Specifies the subcircuits to be checked. The voltage check is
applied to transistors belonging to subcircuits. Wildcard (*)
characters can be used.

inst Specifies the instances to be checked. The voltage check is
applied to transistors belonging to instances (wildcard
characters can be used).

xsubckt Specifies the subcircuits not to be checked (wildcard characters
can be used).

xinst Specifies the instances not to be checked (wildcard characters
can be used).

skipsubckt Specifies that elements inside designated subcircuits skip
voltage propagation (wildcard characters can be used).

skipinst Specifies that elements inside designated instances skip
voltage propagation (wildcard characters can be used).

maxmos=n Maximum number of MOSFETs in the voltage propagation path
between the voltage source and the MOSFET terminals.

vt=volt Threshold voltage for p-n junction of PMOSFETs being checked
(default value of vt for PMOSFET is -0.3 v).

vhth=volt Voltage propagation starts only from constant voltage sources
with values greater than or equal to vhth (default value is 0.7 v)

vnth=volt NMOSFET threshold voltage. This value is used to calculate
the voltage drop across a NMOSFET channel during voltage
propagation (default value is 0.5 v).

vpth=volt PMOSFET threshold voltage. This value is used to calculate the
voltage drop across a PMOSFET channel during voltage
propagation (default value is -0.5 v).
May 2010 496 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

num=n Specifies the maximum number of warnings generated by a
particular check command (default value is 300 warnings).

rpt_path=0|1 Specifies whether or not to report the conducting paths. If set to
0, no paths are reported (default). If set to 1, the conducting
paths from the MOSFET terminals to the voltage sources are
reported.

rpt_node=0|1 Specifies whether or not to report the node voltages propagated
from voltage sources. If set to 0, the node voltage is not
reported (default). If set to 1, both the minimum and maximum
values of the node voltages propagated from voltage sources,
and the depth of propagation paths, are reported.

pwl_time=time When specified, the PWL voltage source is replaced by a
constant voltage source for the propagation of voltage. The
constant voltage value is equal to the PWL voltage source value
at the specified time (by default, only voltage from constant
voltage sources is propagated).

vsrc=[elem_name
vmin vmax ...]

When specified, voltage from the voltage source element
<elem_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsources are
supported.

vsrcnode=[node_name
vmin vmax ...]

When specified, voltage from the voltage source node
<node_name> is propagated with values vmin and vmax. If
vhth is set, vmax needs to be greater than or equal to vhth to
start propagation. If vlth is set, vmin needs to be less than or
equal to vlth to start propagation (by default, only voltage from
constant voltage sources is propagated). Multiple vsource
nodes are supported.

xt_vsrc=0|1 When xt_vsrc is set to 1, voltage propagation starts only from
highest and lowest constant voltage sources. When ext_vsrc
is set to 0, voltage propagation starts from all of the constant
voltage sources. In either case, the selection is subject to the
rules set by vhth and vlth (default value is 0).
May 2010 497 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
usim_report chk_pmosvgs chk1 model=pch inst=[*] xinst=[x1.x2 x1.x3] vt=0.5
rpt_path=1

The Virtuoso UltraSim simulator checks all of the pch PMOSFETs to determine if they are
conducting. The threshold voltage is 0.5 v. The transistors located in instances x1.x2 and
x1.x3 are excluded from the check. PMOSFETs with a maximum gate voltage less than the
maximum drain/source voltages are reported. With rpt_path=1, the conducting path from
the MOSFET terminals to voltage sources is also reported.

Example 2

In the following SPICE example

.usim_report chk_pmosb chk2 model=pch inst=[x1.*] skipinst=[x1.x2] vhth=0.9
maxmos=2

The simulator checks the pch PMOSFETs located in instance x1 to determine if they are
conducting. The voltage propagation starts only from voltage sources with values equal to or
greater than 0.9 v. Voltage is not propagated through instance x1.x2. Only the nodes that
can be connected to a voltage source by going through a maximum of two MOSFETs are
considered. After checking, PMOSFETs with a maximum gate voltage less than the
maximum drain/source voltages are reported.

Detect NMOSFETs Connected to VDD

Spectre Syntax

usim_report chk_nmos2vdd title <model=model_name> <subckt=subckt_name>
<inst=inst_name> <xsubckt=subckt_name> <xinst=inst_name> <vhth=volt>
<node=[all | gate | drain | source | bulk] > <num=n> <pwl_time=time>

SPICE Syntax

.usim_report chk_nmos2vdd title <model=model_name> <subckt=subckt_name>
<inst=inst_name> <xsubckt=subckt_name> <xinst=inst_name> <vhth=volt>
<node=[all | gate | drain | source | bulk] > <num=n> <pwl_time=time>

Description

This command allows you to detect NMOSFETs with terminal(s) that are directly connected
to the constant or PWL voltage sources, which have a voltage value higher than vhth
(without running transient simulation). When you run this command, the software generates
a report file named as xxxx.rpt_chknmos2vdd.
May 2010 498 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Important

When you use this command:

❑ Inductors and resistors less than 1M ohm are considered as short.

❑ Diodes are considered as open.

Arguments

title Title of report.

model=model_name Specifies the MOSFET model to be checked.

subckt=subckt_name Specifies the subcircuits to be checked. Wildcard (*) characters
can be used.

inst=inst_name Specifies the instances to be checked. Wildcard (*) characters
can be used.

xsubckt=subckt_name Specifies the subcircuits that should not be checked. Wildcard
(*) characters can be used.

xinst=inst_name Specifies the instances that should not be checked. Wildcard (*)
characters can be used.

vhth=volt Specifies the threshold value of constant voltage source to be
checked.

The default value is 0.7V.

node=[terminal_name
...]

Specifies the terminal names to be checked for connection to
voltage sources. The terminal names can be all or a
combination of drain, source, gate, and bulk. When all is
specified, all the terminals except gate will be checked.

The default value is all.

num=n Specifies the maximum number of warnings generated by the
command. The default value is 300.

pwl_time=time Replaces the PWL voltage source with a constant voltage
source for checking. The constant voltage value is equal to the
PWL voltage source value at the specified time (by default, only
the constant voltage sources are checked).
May 2010 499 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following Spectre example

usim_report chk_nmos2vdd chk1 model=n2 node = [drain source]

The Virtuoso UltraSim simulator checks if any NMOSFETs of model n2 have the drain and/
or source terminal connected to a voltage source with value higher than 0.7V.

Example 2

In the following SPICE example

.usim_report chk_nmos2vdd chk2 vhth=1

The Virtuoso UltraSim simulator checks if any NMOSFETs have the drain, source, or bulk
terminal connected to a voltage source with value higher than 1V.

Detect PMOSFETs Connected to GND

Spectre Syntax

usim_report chk_pmos2gnd title <model=model_name> <subckt=subckt_name>
<inst=inst_name> <xsubckt=subckt_name> <xinst=inst_name> <vlth=volt>
<node=[all | gate | drain | source | bulk] > <num=n> <pwl_time=time>

SPICE Syntax

.usim_report chk_pmos2gnd title <model=model_name> <subckt=subckt_name>
<inst=inst_name> <xsubckt=subckt_name> <xinst=inst_name> <vlth=volt>
<node=[all | gate | drain | source | bulk] > <num=n> <pwl_time=time>

Description

This command allows you to detect PMOSFETs with terminal(s) that are directly connected
to the constant or PWL voltage sources, which have a voltage value lower than vlth (without
running transient simulation). When you run this command, the software generates a report
file named as xxxx.rpt_chkpmos2gnd.

Important

When you use this command:

❑ Inductors and resistors less than 1M ohm are considered as short.
May 2010 500 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
❑ Diodes are considered as open.

Arguments

Example 1

In the following Spectre example

usim_report chk_pmos2gnd chk3 model=p2 node = [drain source]

The Virtuoso UltraSim simulator checks if any PMOSFETs of model p2 have the drain and/
or source terminal connected to voltage source with value lower than 0.4V.

title Title of report.

model=model_name Specifies the MOSFET model to be checked.

subckt=subckt_name Specifies the subcircuits to be checked. Wildcard (*) characters
can be used.

inst=inst_name Specifies the instances to be checked. Wildcard (*) characters
can be used.

xsubckt=subckt_name Specifies the subcircuits that should not be checked. Wildcard
(*) characters can be used.

xinst=inst_name Specifies the instances that should not be checked. Wildcard (*)
characters can be used.

vlth=volt Specifies the threshold value of constant voltage source to be
checked.

The default value is 0.4 v.

node=[terminal_name
...]

Specifies the terminal names to be checked for connection to
voltage sources. The terminal names can be all or a
combination of drain, source, gate, and bulk. When all is
specified, all the terminals except gate will be checked.

The default value is all.

num=n Specifies the maximum number of warnings generated by the
command.

The default value is 300.
May 2010 501 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 2

In the following SPICE example

.usim_report chk_pmos2vdd chk24 inst=[x1 x2]

The Virtuoso UltraSim simulator checks if any PMOSFETs of the instances x1 and x2 have
the drain, source, or bulk terminal connected to a voltage source with value lower than 0.4V.
May 2010 502 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static Maximum Leakage Path Check

.usim_report chk_maxleak title <vnth=v> <vpth=v> <num=n>

Description

The chk_maxleak command is used to detect static DC leakage paths between all voltage
sources. All reported maximum leakage paths are written into a file with the extension
rpt_maxleak.

Arguments

Example
.usim_report chk_maxleak checkleak vnth=0.5 vpth=-0.5

The Virtuoso UltraSim simulator detects all static maximum leakage paths between voltage
sources and generates the following report:

.TITLE 'This file is :./test.rpt_maxleak'

Static Leakage Path Report For checkleak

Leakage Path From vdd! (1.80V) to 0 (0.00V)

 Element Between Node And Node

 Vvdd! vdd!

 M3 vdd! net034

 M5 net034 0

End Path

title Reports titles of warning messages

vnth=volt NMOSFET threshold voltage (default value is 0 V)

vpth=volt PMOSFET threshold voltage (default value is 0 V)

num=n Number of paths reported
May 2010 503 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static High Impedance Check

Spectre Syntax

usim_report chk_hznode title <vnth=volt> <vpth=volt> <fanout=value>
<pwl_time=time> <num=n>

SPICE Syntax

.usim_report chk_hznode title <vnth=volt> <vpth=volt> <fanout=value>
<pwl_time=time> <num=n>

Description

This command allows you to detect high impedance nodes without running DC or transient
simulations, and generates a .rpt_hznode report (the entire circuit is checked). A node is
in high impedance state if there is no possible conducting path between the node and any
voltage source or ground.

The following rules apply in the connectivity evaluation:

■ MOSFET and JFET of n-type are considered on if Vg-Vs >= Vnth

■ MOSFET and JFET of p-type are considered on if Vs-Vg >= -Vpth

■ Resistor larger than Rth (See the Notes section for the definiton of Rth) is considered as
open.

■ BJT, diode, resistor, and voltage sources are always considered on

■ Capacitor and current sources are always assumed to be off

Arguments

title Title of report.

vnth=volt NMOSFET threshold voltage (default value is 0.5 V).

vpth=volt PMOSFET threshold voltage (default value is -0.5 V).
May 2010 504 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example
.usim_report chk_hznode title vnth=0.4 vpth=-0.4 fanout=4

The Virtuoso UltraSim simulator detects all high impedance nodes (that is, nodes with no
possible path to voltage sources or ground) which are connected to a MOSFET gate or BJT
base using the defined threshold voltages for NMOS and PMOS devices.

Notes

■ The resistance threshold value Rth can be changed by the following option:

.usim_opt res_open = value

The default value of Rth is 100 Mohm.

fanout=value Defines the type of nodes to be reported:

■ 0 - all Hi-Z nodes

■ 1 - only Hi-Z nodes connected to a MOSFET gate

■ 2 - only Hi-Z nodes connected to a MOSFET body

■ 3 - only Hi-Z nodes connected to a MOSFET gate or BJT base

■ 4 - only Hi-Z nodes connected to a MOSFET gate, but not to the
gate of MOSFETs with the drain and source shorted

■ 5 - only Hi-Z nodes connected to a MOSFET gate or BJT base, but
not to the gate of MOSFETs with the drain and source shorted, or
the base of BJTs with the collector and emitter shorted

pwl_time=time When specified, the PWL voltage source is replaced by a constant
voltage source for the propagation of voltage. The constant voltage
value is equal to the PWL voltage source value at the specified time
(by default, only voltage from constant voltage sources is propagated).

num=n Specifies maximum number of warnings reported.
May 2010 505 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static ERC Check

Spectre Syntax

.usim_report erc title <powergatebulk=1> <underbiasbulk=1> <hotwell=1>
<floatgate=1|2|3|4> <floatbulk=1|2> <dangle=1|2> <low2highvdd=1>
<high2lowvdd=1> <powershort=1> <vhth=volt> <vlth=volt> <rmax=res>
<pwl_time=time>

SPICE Syntax

.usim_report erc title <powergatebulk=1> <underbiasbulk=1> <hotwell=1>
<floatgate=1|2|3|4> <floatbulk=1|2> <dangle=1|2> <low2highvdd=1>
<high2lowvdd=1> <powershort=1> <vhth=volt> <vlth=volt> <rmax=res>
<pwl_time=time>

Description

The static ERC check allows you to detect the following electrical design rule violations
without running simulation:

■ MOSFET power switch whose bulk is not hard-wired to power supply.

■ MOSFET with forward biased junction.

■ MOSFET with bulk not hard-wired to power supply.

■ Unconnected MSOFET gate.

■ Unconnected MOSFET bulk.

■ Dangling node.

■ MOSFET in high VDD domain driven by MOSFETs in low VDD domain.

■ MOSFET in low VDD domain driven by MOSFETs in high VDD domain.

■ MOSFET directly shorting VDD and GND.

The static ERC check can be invoked without running DC or transient simulation, and it
generates a report file (***.rpt_erc) listing the details of the violations based on the
specified arguments.
May 2010 506 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Arguments

Examples
.usim_report erc check_pwrgate powergatebulk=1

Reports all powergates whose bulks are not connected to VDD or GND.

.usim_report erc check_pershort powershort =1 vhth=2.0

title Title of report

powergatebulk Reports PMOS powergate with bulk not connected to VDD, or NMOS
powergate with bulk not connected to GND.

underbiasbulk Reports NMOSFET with bulk biased at voltage level higher than S/D,
or PMOSFET with bulk biased at voltage level lower than S/D.

hotwell Reports MOSFET with bulk not connected to VDD or GND.

floatgate Reports unconnected MOSFET gate (1 = check all nodes, 2 = exclude
top level nodes, 3 = exclude MOSCAP gates, 4 = exclude top level
nodes and MOSCAP gates)

floatbulk Reports unconnected MOSFET bulk (1 = check all nodes, 2 = exclude
top level nodes)

dangle Reports dangling nodes (1 = check all nodes, 2 = exclude top level
nodes).

low2highvdd Reports MOSFETs in high VDD domain driven by MOSFETs in low
VDD domain.

high2lowvdd Reports MOSFETs in low VDD domain driven by MOSFETs in high
VDD domain.

powershort Reports MOSFETs with channel connected directly between VDD and
GND.

vhth=vol Any voltages above vhth are considered as VDD (default = 0.5v).

vlth=vol Any voltages below vlth are considered as GND (default = 0.5v)

rmax=res Maximum resistance values where a node is still considered
connected to voltage source node. (default = 100Mohm)

pwl_time=t If specified, pwl sources are considered same as dc source. The
voltage level at time=t is used.
May 2010 507 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Reports any MOSFET shorting VDD or GND. VDD is any source with voltage level higher
than 2V.

.usim_report erc check_floatgate floatgate=4

Reports all MOSFET floating gates but excludes top-level nodes and MOS capacitors.
May 2010 508 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Static DC Path Check

Spectre Syntax

usim_report chk_dcpath title <vnth=volt> <vpth=volt> <pwl_time=time>

SPICE Syntax

.usim_report chk_dcpath title <vnth=volt> <vpth=volt> <pwl_time=time>

Description

This command allows you to detect a DC path between voltage sources without running DC
or transient simulation, and generates a report named xxxx.rpt_dcpath. The DC path can
consist of MOSFETs, BJTs, diodes, inductors, and resistors with value less than 1G ohm. All
other elements are treated as open.

When you run this command:

■ NPN transistors are considered as conducting if VBE is greater than 0.5V.

■ PNP transistors are considered as conducting if VBE is less than 0.5V.

■ Diode is considered as conducting when it is forward biased by more than 0.5V.

Note: The entire circuit is checked.

Arguments

title Title of report.

vnth=volt Specifies the NMOSFET threshold voltage. The default value is 0.5 V.

vpth=volt Specifies the PMOSFET threshold voltage. The default value is -0.5 V.

num=n Specifies the maximum number of warnings generated by the
command.

The default value is 300.

pwl_time=time Replaces the PWL voltage source with a constant voltage source for
checking. The constant voltage value is equal to the PWL voltage
source value at the specified time (by default, only the constant voltage
sources are checked).
May 2010 509 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Example 1

In the following SPICE example

.usim_report chk_dcpath checkdcpath rpt_path=1

The Virtuoso UltraSim simulator will detect DC paths between all voltage sources and report
the list of elements in the conduction paths.

rpt_path=0|1 Specifies whether to report the conducting paths. If set to 0, no paths
are reported (default). If set to 1, the conducting paths from the
MOSFET terminals to the voltage sources are reported.
May 2010 510 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
info Analysis

infoname info what=… where=… extremes=..

Description

This statement is similar to the Virtuoso Spectre® info statement and allows you to access
input/output values and operating-point parameters. The parameter types include:

■ Input parameters

Input parameters are those you specify in the netlist file, such as the given length of a
MOSFET or the saturation current of a bipolar resistor.

■ Output parameters

Output parameters are those the simulator computes, such as temperature-dependent
parameters and the effective length of a MOSFET after scaling.

■ Operating-point parameters

Operating-point parameters are those that depend on the operating point.

Note: You need to specify the info analysis within the Spectre section of the netlist file.

You can also list the minimum and maximum values for the input, output, and operating-point
parameters, along with the names of the components that have those values.

Arguments

what=... Supports the following values: inst, input, output, all, oppoint,
models

where=... Supports the following values: screen, nowhere, file, logfile, and
rawfile

extremes=... Supports the following values: yes, no, and only
May 2010 511 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Saving Parameters

You specify parameters you want to save with the info statement what parameter. You can
assign the following settings to this parameter:

You can also generate a summary of maximum and minimum parameter values with the
extremes option.

Specifying the Output Destination

You can choose among several output destination options for the parameters you list with the
info statement. With the info statement where parameter, you can

■ Display the parameters on a screen, in a file, or a log file.

■ Send the parameters to the raw file

Note: The Virtuoso UltraSim simulator only supports psf format.

When the info analysis is called from a transient analysis or used inside of a sweep, the
name of the info analysis is appended by the parent analysis.

Examples

For example

TranAnalysis tran stop=30n infotimes=[1n 10n] infoname=opinfo

opinfo info what=oppoint where=rawfile

produces operating-point information for times 1 ns and 10 ns in the raw data file.

In the next example

Parameters Descriptions

inst Lists input parameters for instances of all components

models Lists input parameters for models of all components

input Lists input parameters for instances and models of all components

output Lists effective and temperature-dependent parameter values

all Lists input and output parameter values

oppoint Lists operating-point parameters
May 2010 512 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Inparams info what=models where=screen extremes=only

tells the simulator to send the maximum and minimum input parameters for all models to a
screen (the section for the info report is InParams).
May 2010 513 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Partition and Node Connectivity Analysis

The Virtuoso UltraSim simulator lets you perform partition and node connectivity analysis
using usim_report commands. The information is reported in a .part_rpt file. For
example, if the netlist filename is circuit.sp, then the report is named
circuit.part_rpt.

The usim_report commands are useful for debugging simulations. For example, checking
the size of partitions and their activities, as well as checking node activity to verify bus nodes.

Partition Reports

Size

Spectre Syntax

usim_report partition type=size

SPICE Syntax

.usim_report partition type=size

Description

Reports the partition information for the 10 largest partitions and includes:

■ Partition index and all of its instances

■ Node information for each of the instances, including input ports, output ports, and
internal nodes

■ Element information for each of the instances

Example

In the following Spectre syntax example

usim_report partition type=size

tells the Virtuoso UltraSim simulator to report the partition information for the 10 largest
partitions in a .part_rpt file.

Activity

Spectre Syntax
May 2010 514 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
usim_report partition type=act

SPICE Syntax

.usim_report partition type=act

Description

Reports the partition information for the 10 most active partitions (same format as the
partition size report). Also reports some of the activity information for the partitions.

Example

In the following SPICE syntax example

.usim_report partition type=act

tells the UltraSim Virtuoso simulator to report the partition information for the 10 most active
partitions in a .part_rpt file.

Node

Spectre Syntax

usim_report partition type=conn node=[node1 node2...]

SPICE Syntax

.usim_report partition type=conn node=[node1 node2...]

Description

Reports the partitions connected to the specified node (same format as the partition size
report).

Arguments

Example

In the following Spectre example

usim_report partition type=conn node=d0<15>

tells the UltraSim Virtuoso simulator to report all partitions connected to node d0<15>.

node_name The name of the node to be analyzed
May 2010 515 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Node Connectivity Report

Spectre Syntax

usim_report node elem_threshold=num full_hiername=yes|no

SPICE Syntax

.usim_report node elem_threshold=num full_hiername=yes|no

Description

Reports nodes with an element connection larger than elem_threshold (default value for
elem_threshold is 10). The report includes the following information for each node:

■ Number of active devices connected to the node

■ Number of channel connected devices for the node

Arguments

Example

Spectre Syntax:

usim_report node elem_threshold=100

SPICE Syntax:

elem_threshold Minimum number of node connections to be printed.

full_hiername=yes|no Flag used to print the full hierarchical name for the reported
nodes.

■ yes – prints the full hierarchical name.

■ no – prints the hierarchical name (default).

For some types of circuits with complex hierarchies, the
Virtuoso UltraSim simulator will print a limited hierarchy
(starting from a specified subcircuit) to avoid generating a
large report file. You can use full_hiername=yes to force
the simulator to print the full hierarchical name.
May 2010 516 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
.usim_report node elem_threshold=100

tells the Virtuoso UltraSim simulator to report all nodes connected to more than 100
elements.
May 2010 517 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
Warning Message Limit Categories

The Virtuoso UltraSim simulator allows you to customize how warning messages are handled
by the simulator. The number of messages per warning category can be limited globally for
all warnings (usim_opt warning_limit) or individually for each category (usim_report
warning_limit). When the specified category limit is reached, the simulator notifies you
that the warning messages are no longer being displayed. Dangling and floating node
warnings are controlled by the number of reported nodes.

Description

Spectre Syntax

usim_report warning_limit=value warning_id=[id1 id2]

SPICE Syntax

.usim_report warning_limit=value warning_id=[id1 id2]

Defines the maximum number of warning messages printed for category IDs id1 and id2.
This option needs to be defined at the beginning of the netlist file in order to have an effect
on all of the warning messages for the specified categories.

For more information about the key Virtuoso UltraSim simulator warning messages, refer to
Table 8-1 on page 518.

Arguments

Example

Spectre Syntax:

usim_report warning_limit = 20 warning_id=[USIM-1223 USIM-4003]

Table 8-1 Warning Limit Options

Option Description

warning_limit=value Number of warnings (integer, unitless; default is 5)

id1, id2 Warning limit applies to these warning message category
IDs.

Note: The prefix (component name) needs to be specified
for the category ID.
May 2010 518 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
SPICE Syntax:

.usim_report warning_limit=20 warning_id=[USIM-1223 USIM-4003]

tells the simulator to print out 20 warning messages for WARNING USIM-1223 and USIM-
4003.
May 2010 519 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Advanced Analysis
May 2010 520 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
9
Netlist-Based EM/IR Flow

The Virtuoso® UltraSim™ netlist-based EM/IR flow packages electromigration (EM) and IR
drop analysis capabilities into the Virtuoso UltraSim simulator. This flow is based on detailed
standard parasitic format (DSPF) or standard parasitic exchange format (SPEF), and
therefore is independent of the extraction tool.

The EM/IR flow uses the Virtuoso UltraSim hierarchical stitching technique to provide high
capacity EM and IR analysis for large circuit designs, and is integrated into the Cadence
Virtuoso/DFII environment platform. This flow also provides graphical display of EM and IR
analysis results in colored, graphical violation maps along with textual report files. The
graphical and textual outputs can be cross probed for debugging purposes, and the violation
maps can be overlaid on top of the original layout view.

The EM/IR flow includes the following key elements,

■ Simulating Data and Saving Files on page 522

■ Displaying Results for Analysis on page 528

❑ Violation Maps and Text Reports on page 531

❑ IR Analysis on page 534

❑ EM Analysis on page 537

When simulating data, the Virtuoso UltraSim simulator saves the intermediate binary
database to disk. The binary database is converted into either the CDB or OpenAccess (OA)
database for viewing as violation maps in the Virtuoso layout editor. The usimEmirUtil Tool is
used to control the database conversion.

The EM/IR flow requires the following inputs,

■ Pre-layout netlist file

■ DSPF/SPEF files with the necessary geometry information for current density
computation and violation map reconstruction (for example, coordinates of the parasitic
resistors, and length and width of the resistors)
May 2010 521 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
■ Current density limit for which the file syntax is the same as the Virtuoso Analog
ElectronStorm Option (VAEO) product syntax

■ Original layout design in DFII database to overlay the violation maps on top of the layout
view

Note: The resistors are assumed to be rectangles and the violation maps are only
approximations of the original layout design.

Simulating Data and Saving Files

Block-Level Solution

Spectre Syntax

usim_emir [type=all|selected] [nets=net1 net2….] format=[layout]
file=”control_file” [start=start_time1] [stop=stop_time1]

usim_emir [type=all|selected] [nets=net1 net2….] format=[layout]
file=”control_file” [start=start_time2] [stop=stop_time2]

SPICE Syntax

.usim_emir [type=all|selected] [nets=net1 net2….] format=[layout]
file=”control_file” [start=start_time1] [stop=stop_time1]

.usim_emir [type=all|selected] [nets=net1 net2….] format=[layout]
file=”control_file” [start=start_time2] [stop=stop_time2]

Note: A period (.) is required when using SPICE language syntax (for example,
.usim_emir).

Description

To enable the Virtuoso UltraSim simulator to save the intermediate data files, you need to
specify the usim_emir statement in the netlist file. This statement tells the simulator to save
layout physical and voltage/current information for specified nets and associated resistors.
May 2010 522 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Arguments

Intermediate binary files are saved to the database after the simulation ends. Using
design.sp as a sample netlist file, the intermediate binary file naming convention is as
follows:

■ Design.emir0_bin

■ Design_phys.data

■ Design_phys.field

■ Design_phys.layer

type The Virtuoso UltraSim simulator considers all or selected nets and
resistors (default is all). If selected is used, you must specify all of the
nets.

nets Specifies the nets for which the necessary information is saved in the
database.

Note: Nets are applicable only when type=selected.

format Specifies the layout design to be used in the netlist-based EM/IR flow. The
simulator saves the physical and voltage/current information in a binary
database for specified nets in a binary database (default is layout).

Note: The format argument can also be used in conjunction with vavo
(see Chapter 16, “VST/VAVO/VAEO Interfaces” for more information about
the vavo argument).

file Specifies the control file. Some commands (for example, geounit) in the
control file require special parsing. Specifying file ensures that these
commands take effect.

See “Control File” on page 543 for more information about control file
syntax.

start_time/
stop_time

Specifies the time window start and stop times. The start time default is
the beginning of the transient simulation and the stop time default is the
end of the transient simulation. Multiple time windows are supported and
must be specified by different .usim_emir statements.

Note: For the Virtuoso UltraSim/VAVO flow, the command used is
usim_emir format=[vavo] (see Chapter 16, “VST/VAVO/VAEO
Interfaces” for more information).
May 2010 523 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
■ Design_phys.name

Advanced EMIR Flow for Big Blocks and Full Chip

The advanced EMIR flow provides improved capability over the block-level solution described
in the previous section. The advanced flow targets big blocks and full-chip EMIR analysis. In
the advanced flow, two simulations are needed and as a result Ultrasim must be invoked
twice, manually. The first simulation generates a file with a .emirtap.sp suffix. All the
required options for performing the second simulation are set in the *.emirtap.sp file, and
you need to run UltraSim for the second simulation using this *.emirtap.sp file.

Note: Because the netlist generated from the first round of simulation is the only input
required for the second round of simulation, you need to specify the simulation option settings
for only the first simulation.

Spectre Syntax

usim_emir <iteration=value> <tstep=value> <time_window=[start1 stop1 start2
stop2…]>

usim_emir type=[power|signal] nets=[netA <netB … >] <time_window=[start1 stop1
start2 stop2…]> file=filename

SPICE Syntax

.usim_emir <iteration=value> <tstep=value> <time_window=[start1 stop1 start2
stop2…]>

.usim_emir type=[power|signal] nets=[netA <netB … >] <time_window=[start1 stop1
start2 stop2…]> file=filename

Note: Multiple.usim_emir statements are supported.

The advanced EMIR flow is enabled when the type=power or type=signal statements
are used. When none of these statements are used, UltraSim uses the block-level solution.

Arguments

usim_emir Indicates that EMIR analysis is needed for the specified nets.

type=power Keyword power indicates that power net analysis will be performed.

type=signal Keyword signal indicates that signal net analysis will be performed.
May 2010 524 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
nets Specifies the nets for EMIR analysis. The complete hierarchical path of
the nets must be specified. Wild cards are supported while specifying net
names.

Note: The stitching option spfskippwnet is not required for stitching
power nets in the advanced EMIR flow. For nets that are neither specified
in power EMIR analysis statements nor signal EMIR analysis statements,
the stitching is performed as per regular stitching options.

time_window Specifies the time window. Multiple time windows are supported. The
default timing window is from the transient start time to the transient stop
time. time_window can be specified in two ways:

■ time_window (without type= specification) serves as global EMIR
time window

■ time_window with type= specification serves as local time window.

Note: Local time window specification takes higher priority.

iteration Specifies a positive integer value for the number of iterations to be
performed. This option is available only for power net EMIR analysis. The
expected behavior of different iteration numbers is as follows:

■ 1: The signal nets are simulated first followed by power nets. Next,
EMIR post-processing is performed.

■ 2: After the last simulation in iteration=1, the final IR-drop information
is applied to the signal nets, and UltraSim simulates the signal nets
again. Next, UltraSim simulates the power nets again. Finally, EMIR
post-processing is performed.

When the iteration number is set to more than 3, the above iterations
continue until the desired iteration number is reached.

Each Simulation will need to be invoked manually. The default value for
this option is 1.

tstep Specifies the time step used to save the tap current. Default is 20ps.

file Specifies the control file that will be used for the usimEmirUtil post-
processing utility. The control file should be specified if the command
geounit, which is specified in the control file, is needed.

See the Control File section for more information on geounit.
May 2010 525 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Examples

■ Use the following settings if:

❑ You have two power nets, VDD and VSS but only VDD needs EMIR analysis.

❑ All the signal nets are stitched with C-only and VSS will not be stitched.

❑ The time window is default.

.usim_emir type=power nets=[VDD]

.usim_opt spfrcnet=VDD

■ Use the following settings if:

❑ You have two power nets VDD and VSS but only VDD needs EMIR analysis.

❑ VSS is not stitched.

❑ All the signal nets are stitched with RC and the nets are subject to RC reduction.

❑ Multiple time windows are needed.

.usim_emir type=power nets=[VDD] time_window=[0 10n 3u 4u]

.usim_opt postl=2 rshort=1 rvshort=1

■ Use the following settings if you have two power nets VDD and VSS and you want to
perform only signal EM analysis while power nets are not stitched:

.usim_emir type=signal nets=[*]

■ Consider a situation where you are migrating from the block-level EMIR solution to the
advanced EMIR solution, and you want to perform EMIR analysis on VDD power nets
only. In addition, all the signals are C-only stitching.

The option settings for block-level solution will be as follows:

.usim_opt spfrcnet=VDD

.usim_opt spfskippwnet=off

.usim_opt postl=0 rshort=0 rvshort=0

.usim_emir format=[layout]

.usim_pn node=VDD method=ups

The corresponding option settings in the advanced EMIR flow will be as follows:

.usim_emir type=power nets=[VDD]

.usim_opt spfrcnet=VDD

.usim_pn node=VDD method=ups

■ Consider a situation where you are migrating from the block-level EMIR solution to the
advanced EMIR solution, and you want to perform EMIR analysis on VDD power nets
only. In addition, all the signals are RC stitching.
May 2010 526 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
The option settings for block-level solution will be as follows:

.usim_opt spfskippwnet=off

.usim_opt postl=2 rshort=2

.usim_opt postl=0 rshort=0 rvshort=0 scope=power

.usim_emir type=selected nets=[VDD] format=[layout]

.usim_pn node=VDD method=ups

The corresponding option settings in the advanced EMIR flow will be as follows:

.usim_emir type=power nets=[VDD]

.usim_opt postl=2 rshort=2

.usim_pn node=VDD method=ups

Mixed usage of block-level flow and the advanced EMIR flow is not supported. For example,
consider that you are using the following option settings:

.usim_emir type=selected nets=[VDD VSS]

.usim_emir type=signal nets=[netA netB]

In this case, the command for the block-level solution will be disabled and the advanced EMIR
analysis solution will take effect. In addition, a warning message will appear as shown:

WARNING (USIMDB-1311): The .usim_emir statement '.usim_emir type=selected start=0
stop=2e-08' has not nets or correct net type (power or signal). The UltraSim
simulator will ignore this statement. Check the .usim_emir statement where the nets
and/or type is defined before running the simulation again.

Running UltraSim with the *.emirtap.sp file generates the intermediate binary database
for post-processing. For example, if you use design.sp as a netlist file, the naming
convention for the intermediate binary files will be as follows:

design.emirtap.emir0_bin

design.emirtap_phys.data

design.emirtap_phys.field

design.emirtap_phys.layer

design.emirtap_phys.name

Simulations are the first step in EMIR flow. The generated binary database must be post-
processed in order to generate EMIR violation maps and textual reports, which in turn will be
displayed in Virtuoso. Post-processing is described in the following sections using the
design.emir0_bin binary database generated from the block-level solution as an
example. The post-processing for the advanced solution is the same as the block- level
solution except that design.emir0_bin will need to be replaced with
design.emirtap.emir0_bin (generated by the advanced EMIR solution).
May 2010 527 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Displaying Results for Analysis

To display the results of the simulation for analysis, perform the following procedure.

1. Assign the _USIM2CDBCXTDIR environment variable to the same location where the
usimemir.ini and usimemir.cxt files reside.

setenv _USIM2CDBCXTDIR $USIM_INSTALLATION_PATH/tools.<plat>/ultrasim/lib

2. Add the following information to your .cdsinit file.

/* the following lines are needed to load usimemir cxt package */

path=getShellEnvVar("_USIM2CDBCXTDIR")

if(path then

load(strcat(path "/usimemir.ini"))

loadContext(strcat(path "/usimemir.cxt"))

else

hiGetAttention(0)

hiDisplayAppDBox(

?name '_warning

?dboxBanner "Error"

?dboxText sprintf(nil "ERROR: Should set the environment
_USIM2CDBCXTDIR before using usimemir package")

?buttonLayout 'Close

)

)

3. Set the proper environment variables for the DFII environment.

For example,

setenv CDSHOME /grid/cic/products/dfII/5.10.41_USR4/lnx86/red

setenv MMSIMHOME /USIM_INSTALL/release

setenv _USIM2CDBCXTDIR ${MMSIMHOME}/tools.<plat>/ultrasim/lib

set path = (${CDSHOME}/tools/bin ${CDSHOME}/tools/dfII/bin ${MMSIMHOME}/
tools.lnx86/bin $path)

setenv CDS_Netlisting_Mode Analog

setenv LANG en_US

setenv CDS_LOG_VERSION sequential

setenv LD_LIBRARY_PATH ${MMSIMHOME}/tools/ultrasim/lib:${CDSHOME}/tools/
lib:${LD_LIBRARY_PATH}

Notes:

❑ CDSHOME must be specified in order to display the violation map in the Virtuoso
layout editor.
May 2010 528 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
❑ In cases where OA_HOME must be defined (for example, setenv OA_HOME /
grid/cic/products/dfII/IC6.1.3/lnx86/pink/share/OA) for Cadence
IC6.X versions to function correctly in your environment, which is rare, ensure that
OA_HOME points to the same installation location as specified by CDSHOME. The
UltraSim netlist based EMIR flow requires CDSHOME for GUI display.

4. Type virtuoso & to start the Virtuoso layout editor.

The command interpreter window (CIW) appears.

5. After opening the desired layout view, choose Tools – Netlist-Based EMIR from the
main menu bar in the layout window.
May 2010 529 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
6. Select and hold the Netlist-Based EMIR menu to display the submenu items.

❑ Generate EMIR Violation Map converts the intermediate binary data files, saved
during the simulation, to CDB or OA database format (see “Violation Maps and Text
Reports” on page 531 for more information).

The commands specified in the control file dictate how the violation maps are
generated (see “Control File” on page 543 for more information).

❑ IR Analysis specifies which violation map to open and allows you to navigate
through the IR analysis results. The violation map is a color-coded map of the IR
drop analysis results.

❑ EM Analysis specifies which violation map to open and allows you to navigate
through the EM analysis results. The violation map is a color-coded map of the EM
analysis results.

❑ Netlist-Based EMIR Version displays the EM/IR tool version number.
May 2010 530 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Violation Maps and Text Reports

The Generate EMIR Violation Map form allows you to generate a violation map in DFII format
using library, cell, and view names. The Usim EMIR file text field corresponds to the full path
of the input.emir0_bin binary database and the Usim control file text field corresponds
to the full path of the control file. The Generate Violation Map button is used to generate
the violation map.

usimEmirUtil Tool

The following command generates violation maps and text reports.

usimEmirUtil -layout -format [oa|cdb|none] -db dbFilename -control
control_filename -lib libname –cell cellname -view viewname –text txtfile
-libpath library_path -log emirlog_file

The next command generates text reports without violation maps.

usimEmirUtil -db dbFilename -control control_filename –text txtfile

Note: You must specify -layout to generate violation maps, otherwise only text reports are
generated, even if layout format=[cdb|oa] is specified in the control file.

Description

The usimEmirUtil tool is used to post process the binary data file and generate EM/IR
violation maps. This tool can be invoked from the command line or in batch mode.
May 2010 531 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Note: When running the Virtuoso UltraSim netlist-based EM/IR flow in the Cadence Virtuoso
environment, usimEmirUtil is used.

Arguments

dbFileName Binary data file (.emir0_bin)

control_file
name

Control file name

libname Library name of violation map

cellname Cell name of violation map

viewname View name of violation map

txtfile Text EM/IR reports are renamed using txtfile (if -text txtfile is
not used, the default names netlist.rpt_ir/netlist.rpt_em are
used instead)

format DFII format of the violation map. One of the following formats can be
specified:

■ oa

■ cdb

■ none

In GUI mode, the usimEmirUtil command automatically detects the
DFII format regardless of the “format=” statement in the control file.

In batch mode, the format specified on the command line will have
higher priority than the “format=” statement in the control file. When
format is not specified on the command line, the software uses the
“format=” statement in the control file. If the format is neither specified
on the command line nor specified in the control file, the default is none,
which means that violation maps are not created. This order of priority
ensures reuse of the control file between GUI mode and batch mode.

libpath Path of the design library.
May 2010 532 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Note: When there is no CDB or OA database to save, the lib/cell/view arguments are not
required.

Example
usimEmirUtil -layout -db newemirraw/t3.emir0_bin -control newemirraw/control.txt
-lib myxlib -cell mycell -view emirmap -libpath /usr1/data/AMSADC

Sample Text Reports

EM Report

A sample EM text report for net i1.vdd is shown below:

In the above table, each resistor's name, layer, current density, and coordinates (X1, Y1, X2,
Y2) are displayed. The %failed column shows the violation state. Note that:

■ pathLength is the total length needed in length based rules.

log EM/IR log file. By default, the software generates the log files based on
the format specification as follows:

■ For oa format, the default name of the EM/IR log file is
usimEmirUtilOA.emirlog.

■ For cdb format, the default name of the EM/IR log file is
usimEmirUtilCDB.emirlog.

■ For none, the default name of the EM/IR log file is
usimEmirUtilOA.emirlog.
May 2010 533 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
■ needed width/#vias shows the necessary width and the necessary vias for a failed
metal resistor to pass the EM check. This information is printed for failed resistors only.

IR Report

A sample IR text report is shown below.

*

* Copyright(C) 2006, Cadence Design Systems, Inc.

* Ultrasim EMIR Post Processing Utility, Version 1.1

*

This file contains the voltage drop results.

RESULTS FILE CREATED = Thu Dec 21 17:38:06 2006

SIMULATOR = ultrasim

USER SUPPLIED VALUES:

 RESULTS TYPE = TRANSIENT PEAK

 TRANSIENT START = 0

 TRANSIENT STOP = 2e-08

 PIN NAME = gnd! gnda vdd! vdda

-------------------- "gnda" PIN -----------------------------------

VOLTAGE DROP NETNAME TIME X Y

 (V) (s) (um) (um)

50.015n F423 18.460n 10.160 8.460

42.839n F417 5.000p 10.630 8.460

IR Analysis

To open the IR Analysis Setup form,

1. Choose Netlist-Based EMIR – IR Analysis from the main menu bar in the layout
window.
May 2010 534 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
The IR Analysis Setup form appears.

2. Specify a violation map for the IR analysis using the pulldown menus.

3. Click OK.

When the map is successfully loaded, the IR Analysis form appears.
May 2010 535 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
❑ Browse allows you to navigate through different nets displayed in the IR Analysis
form (selected net is shown in the form). Multiple nets can be selected. By using the
pulldown cyclic button located below the Browse button, you can choose one of the
following options:

❍ Tap displays all the tap nodes. These are nodes that are connected to devices.
Typically, the tap nodes are denoted by the *|I statement in the DSPF file.

❍ Internal displays all the internal sub-nodes. These are nodes that are not
connected to any devices. Typically, the internal sub-nodes are denoted by the
*|S statement in the DSPF file.

❍ All displays both tap nodes and sub-nodes.

❑ Toggle Visibility of Violation Map displays the standalone violation map.

❑ Toggle Visibility of Reference View displays the violation map as an overlay on
top of the original layout view.

❑ Zoom to Node allows you to cross-probe between the text report and the violation
map. To perform this task, select a node in the form text window and click Zoom to
Node. A magnified view of all resistors connected to the node is displayed in the
layout window.

Note: You might need to zoom out appropriately in order to view all the resistors
connected to the node. Resistors (shapes) that are not directly connected to this
node are not displayed. To view all the resistors in this region, click the Toggle
Visibility of Violation Map button.

❍ Text Report is displayed in the text window for the selected pin. The text can
be sorted by IR drop value, node name, types of nodes, and time using the
pulldown cyclic buttons located at the top of the text window.

❑ Save Violation Map to View allows you to save the violation map for the specified
pins in a file.

❑ Search allows you to search in the form text window by node name.

❑ Refresh Text Window refreshes the content in the text window. This button is
useful whenever the content of the text window needs to be updated. For example,
the color bins are changed; All is selected instead of Tap, and so on.

❑ Refresh EMIR Map refreshes the content of the violation map displayed in the
layout window. This button is useful whenever the content of the displayed violation
map needs to be updated. For example, the color bins are changed, different layers
are selected, and so on.
May 2010 536 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
❑ Select Presistors In A Window allows you to select a region in the layout window.
To select presistors in a layout window, display the violation map in the layout
window, click Select Presistors In A Window, and select the desired area in the
layout window by using the left mouse button. The parasitic resistors located in the
text sub-window are highlighted in the report.

❑ Show Full Chip Violation Map allows you to see the violation map for all of the
nets in the chip, to help you more readily identify the worst violations.

Note: When the layer information for sub-nodes is available in the DSPF/SPEF files, the IR
Analysis form displays the layer information just as it appears in the EM Analysis form.

EM Analysis

To open the EM Analysis setup form, choose Netlist-Based EMIR – EM Analysis from the
main menu in the layout window.

The EM Analysis Setup form appears as shown:
May 2010 537 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Use this form to specify a violation map for the EM analysis. When the map is successfully
loaded in the layout window, the EM Analysis form appears. Click OK to open the EM
Analysis form as follows:

■ Type of results allows you to view different types of EM analysis results, such as
average, peak, and root mean square (RMS) error.
May 2010 538 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
■ Net allows you to go through the nets.

■ Number of Colors displays the number of available colors. The number of colors are
determined by the color level= command in the control file.

Note: You can limit the resistors to be displayed to certain layers by selecting the layer name.
To select or deselect a layer, use the checkbox adjacent to the layer name. For example, to
display the resistors for the Via2 layer, select the corresponding checkbox.

■ Temperature specifies the temperature used for the analysis.

■ Select Presistors In A Window allows you to select a region in the layout window. To
select presistors in a layout window, display the violation map in the layout window, click
Select Presistors in a Window, and then select the desired area in the layout window
by drawing a box in the window. The parasitic resistors located in the text subwindow are
highlighted in the report.

Note: Before selecting presistors in the layout window, ensure that the violation map is
open in the layout window.

■ Mark places a number (#) sign in front of the selected resistor in the text report.

■ Unmark removes the number (#) sign from the selected resistor in the text report.

■ View Current Density Limits allows you to view the EM data file.

■ Show Full Chip Violation Map displays the full chip EM violation map.

■ Search allows you to search in the text window by resistor name. The search is case
insensitive.

■ Toggle Visibility of Violation Map displays the standalone violation map.

■ Toggle Visibility of Reference View displays the violation map as an overlay on top
of the original layout view.

■ Zoom to Resistor allows you to cross probe between the text report and the violation
map. To perform this task, select a resistor in the form text window and click Zoom to
Resistor. A magnified view of all resistors connected to the resistor is displayed in the
layout window.

❑ Text Report is displayed in the text window for the selected pin. The text in each
column can be sorted by using the pulldown cyclic buttons located at the top of the
text window.

■ Refresh Text Window refreshes the content in the text window. This button is useful
whenever the content of the text window needs to be updated. For example, the color
bins are changed; All is selected instead of Tap, and so on.
May 2010 539 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
■ Refresh EMIR Map refreshes the content of the violation map displayed in the layout
window. This button is useful whenever the content of the displayed violation map needs
to be updated. For example, the color bins are changed, different layers are selected, and
so on.

■ Save Violation Map to View allows you to save the violation map for the specified pins
in a file.

■ Sequential Sort allows you to perform multi-sorting in the text window. For example,
you can first sort the analysis results by resistor name and then sort the results by
current.

By default, the current density is used as the criterion for color binning. However, you can
choose to specify the pass/fail percentage as the criterion for color binning.

Sample Violation Map

A sample vdd power net violation map is shown below.
May 2010 540 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Saving Customized Settings in EMIR GUI

You can save your customized settings in both IR Analysis and EM Analysis forms. To save
your customized settings in either of these forms, select File - Save Settings. The USIM
netlist-based EMIR GUI saves .usimemir.cfg.ir and .usimemir.cfg.em for IR and
EM analysis, respectively. These files are saved in the directory using which the layout editor
was invoked. The files contain the display settings that were in use at the time the files were
saved. When violation maps are loaded again, the saved display settings take effect.

The following information is saved in the .usimemir.cfg.ir file for the IR form:

■ Number of the color bins.

■ The selection of the color bins and their range, respectively.

■ The selection of layer filtering, if applicable.

■ The selection of the node types that are displayed. The node types could be "Tap",
Internal Subnodes, or "All" (includes both tap nodes and internal subnodes).

■ The selection of the analysis type, which could be AVERAGE, PEAK, RMS or CUSTOM.

The following information is saved in the .usimemir.cfg.em file for the EM form:

■ Number of colors.

■ The selection of the color bin and their range, respectively.

■ The selection of the layer filtering.

■ The selection of the quantity used in color binning, that is, the pass or fail percentage of
current density.

■ The selection of analysis type, which could be AVERAGE, PEAK, RMS or CUSTOM.

Note: It is recommended that you first find the desired display settings and save them by
selecting File - Save Settings. Next, display the violation map again for the customized
settings to take effect.

A sample of the .usimemir.cfg.ir file settings is as follows:

_usim2CDBGlobalLoadIrSetting=make_usim2CDBLoadIrSetting()

_usim2CDBGlobalLoadIrSetting->layerRange = makeTable("_usim2CDBGlobalLayerRange")

_usim2CDBGlobalLoadIrSetting->layerRange["0,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["4,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["4,layer"]="y4"

_usim2CDBGlobalLoadIrSetting->layerRange["7,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["7,layer"]="y7"
May 2010 541 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
_usim2CDBGlobalLoadIrSetting->layerRange["6,layer"]="y6"

_usim2CDBGlobalLoadIrSetting->layerRange["1,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["6,range"]=list(0.048173 0.096347)

_usim2CDBGlobalLoadIrSetting->layerRange["7,range"]=list(0.0 0.048173)

_usim2CDBGlobalLoadIrSetting->layerRange["layers"]=list("y0" "y1" "y2" "y3" "y4"
"y5" "y6" "y7")

_usim2CDBGlobalLoadIrSetting->layerRange["0,range"]=list(0.33721 0.3853875)

_usim2CDBGlobalLoadIrSetting->layerRange["1,layer"]="y1"

_usim2CDBGlobalLoadIrSetting->layerRange["5,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["0,layer"]="y0"

_usim2CDBGlobalLoadIrSetting->layerRange["3,range"]=list(0.19269 0.24087)

_usim2CDBGlobalLoadIrSetting->layerRange["3,layer"]="y3"

_usim2CDBGlobalLoadIrSetting->layerRange["5,range"]=list(0.096347 0.14452)

_usim2CDBGlobalLoadIrSetting->layerRange["5,layer"]="y5"

_usim2CDBGlobalLoadIrSetting->layerRange["4,range"]=list(0.14452 0.19269)

_usim2CDBGlobalLoadIrSetting->layerRange["2,layer"]="y2"

_usim2CDBGlobalLoadIrSetting->layerRange["1,range"]=list(0.28904 0.33721)

_usim2CDBGlobalLoadIrSetting->layerRange["2,range"]=list(0.24087 0.28904)

_usim2CDBGlobalLoadIrSetting->layerRange["3,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["2,isValid"]=t

_usim2CDBGlobalLoadIrSetting->layerRange["6,isValid"]=t

_usim2CDBGlobalLoadIrSetting->analysis = "PEAK"

_usim2CDBGlobalLoadIrSetting->numColorLevel = 8

_usim2CDBGlobalLoadIrSetting->nodeType = "Tap

Note: Modifying the .usimemir.cfg.em and .usimemir.cfg.ir files is not
recommended.
May 2010 542 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Command Syntax

Control File

Note: The plus (+) symbol is used for line continuation and the semicolon (;) symbol is used
for comments.

Table 9-1 Control File Command Syntax

Command Description

color level Syntax:

color level=value

The color level command is used to control the number of
colors displayed in the violation map. The usimEmirUtil Tool
supports a maximum of 10 color levels. The tool calculates the
levels automatically, according to the limits specified in emdata
file (for example, avgCurrentDensSpecList and
rmsCurrentDensSpecList), and generates the appropriate
violation map. The default value is 10 color levels.

For example,

color level=9

tells the Virtuoso UltraSim simulator to display the violation map
with up to nine levels of colors.

Note: Make sure that you specify the control file using the file
argument in the .usim_emir command.
May 2010 543 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
layout format Syntax:

layout format=[cdb|oa|none]

The layout format command is used to specify which type of
format is used for the violation map (default is none which specifies
that violation maps are not generated). The Virtuoso UltraSim
simulator supports CDB or OA database formats.

To generate a violation map, you need to specify usim_emir
format=[layout] in the netlist file or usim_emir type=power
or type=signal. This allows the simulator to save the geometry
information, and voltages/currents of nodes and resistors, into
databases.

For example, in the netlist file, the following statement is specified
as:

usim_emir type=all format=[layout]

In the control file, it is specified as:

layout format=[cdb]

Note: The layout format command also interacts with the
-format option of usimEmirUtil.

emdata file Syntax:

emdata file=’filename’

The emdata file command specifies the path of the EM data
file, which contains the current density limits information for each
layer. The file syntax is the same as the Virtuoso Analog
VoltageStorm ElectronStorm Option (VAEO) product syntax.

Note: The emdata file command syntax is case-sensitive.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 544 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
pwnet net Syntax:

pwnet net=net1 analysis=[vmax vavg vrms imax iavg irms
icustom] vref=value1 net=net2 analysis=[vmax vavg vrms
imax iavg irms icustom] vref=value2

The pwnet net command tells the usimEmirUtil tool that
specified nets are power nets (no default for pwnet net). The
following types of analysis can be performed: vmax, vavg, vrms,
imax, iavg, irms, and icustom. The automatically detected
reference voltage is used by the usimEmirUtil tool for vmax,
vavg, and vrms analysis. The reference voltage can be specified
by using vref as well. vref is only recommended when the net is
not connected to ideal voltage source.

For example,

pwnet net=VDD analysis=[vmax] net=VSS analysis=[vmax irms
iavg]

tells the usimEmirUtil tool that for the VDD power net, peak IR
drop analysis is required, and for the VSS power net, peak IR drop,
average, and RMS EM analyses are required.

signal net Syntax:

signal net=net1 analysis=[vmax vavg vrms imax irms iavg
icustom] vref=value1 net=net2 analysis=[vmax vavg vrms
imax irms iavg icustom] vref=value2

The signal net command tells the usimEmirUtil tool that
specified nets are signal nets (no default for signal net). The
following analysis can be performed: vmax, vavg, vrms, imax,
iavg, irms, and icustom. If nets are not specified, then all of the
auto-detected power nets are reported.

You need to specify the reference voltage for usimEmirUtil to
calculate the vmax, vavg and vrms. The reference voltage can be
specified by using vref as well. vref is only recommended when
the net is not connected to ideal voltage source.

For example:

signal net=netA analysis=[vmax] vref=3

tells the UltraSim software to calculate peak voltage drop for netA
with reference voltage of 3V.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 545 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
report text Syntax:

report text=0|1

The report text command is used to enable the
usimEmirUtil tool to compute text reports from the binary
database (report text=1). The design_name.rpt_ir and
design_name.rpt_em text reports are generated. If report
text=0 is selected, text reports are not generated from the binary
database.

Note: Use the usimEmUtil command line tool if you want to
specify the name for the EM and IR reports (see “usimEmirUtil Tool”
on page 531 for more information).

warnmsg limit Syntax:

warnmsg limit=value Warning_Type1 Warning_Type2

The warnmsg limit command is used to limit the number of
warning messages by classifying warning messages in the
usimEmirUtil tool to a different catalog (for example, EMIR-1
EMIR-2).

For example,

warnmsg_limit=50 EMIR-1 EMIR-2

tells the simulator to limit the number of EMIR-1 and EMIR-2 type
warning messages to a maximum of 50 messages.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 546 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
geounit filename Syntax:

geounit filename=”filename” unit=value

The geounit filename command allows you to designate the
units used for the geometry information for the net section in the
specified parasitic files (default for units is1 um). This does not
apply to device parameters. In addition to using geounit in the
control file, it is necessary to add the file=<control-file>
statement in the usim_emir commands during simulation for
geounit to work properly

For example,

geounit filename=”file1.dspf” unit=1m

tells the simulator to use the 1 mini-meter geometry unit for
file1.dspf.

Note: For geounit to work as expected, ensure that you add
file=control_file option in the usim_emir statement during
simulation.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 547 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
use via_res Syntax:

use via_res=0|1

Default is 1.

Often, each via or contact resistor consists of a number of
minimum vias or contacts, which are called via arrays or contact
arrays. The width and length of the minimum via and contact are
defined in the EM data file by commands viaWidthList and
viaLengthList, respectively. If the length of minimum via/
contact is not defined, the minimum length is assumed to be equal
to the minimum width. UltraSim must calculate the number of vias/
contacts in an array to check EM violation and draw this resistor in
the violation map. UltraSim supports two ways to calculate the
number of vias:

■ When via_res=1: The number of vias is calculated by
resistance relationship, that is, it is equal to the ratio of
minimum resistance and the resistor's value.

■ When via_res=0: UltraSim uses the via/contact area or the
width specified in the DSPF file. The number of vias is the ratio
of the resistor area and the minimum via area.

Notes:

If the via layer's EM rule is width-dependent, UltraSim uses the
total width to check EM violation. The total width is the sum of the
width of all the minimum vias in the array, assuming all the vias in
the via array are aligned in one line.

In EM violation maps, it is assumed that all the minimum vias in the
via array are arranged in square. For example, if the calculated
number of vias is four, they are assumed to be arranged in 2x2
fashion. If the minimum via width is set to be 1um and minimum via
length is set to be 2um, then this via resistor is drawn as rectangle
with width of 2u and length of 4u. If the shape of the via resistor
can't be determined properly, for instance, viaWidthList is not
defined, the via is not drawn.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 548 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
The shape of the via resistor in IR violation maps is consistent with
that in EM violation maps. If EM violation maps are impossible to
determine, for example, no EM rule files is specified, (this could
happen when you are only interested in IR analysis), in which case,
the via shapes are assumed to be square, its width would be equal
to the specified width in the DSPF file or to the calculated width=
sqrt(area), where area is the specified area for this via resistor in
the DSPF file. If the shape of the via can't determined properly, the
via is not drawn in the violation maps.

Example,

use via_res=0

tells the simulator to use the area specified in the DSPF file to
calculate the number of vias.

userDefinedCurre
ntCalc

file=”file_name”

proc=”procedure_
name”

Syntax:

userDefinedCurrentCalc file= “file_name”
proc="procedure_name"

This command is used to support customized current calculation.
The customized current calculation method is specified in SKILL
code.

In this command:

■ userDefinedCurrentCalc is the keyword.

■ file is the file name that contains the skill code.

■ proc is the SKILL procedure used for current calculation.

Note: To enable custom current analysis, the analysis type must be
specified as icustom. The corresponding EM rule is specified in a
section called “userDefinedCurrentDensSpecList” in the EM
data file. For more information, see Customized Current Calculation
and EM Check on page 559.

For example,

userDefinedcurrentCalc file= “myskill.il” proc= “Icalc”

tells the simulator that the myskill.il files contains the skill code
and Icalc is the procedure that will be used for current
calculation.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 549 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
ir_percent

ir_threshold

Syntax:

ir_percent=value

ir_threshold=value

These commands are used to limit the resistors and subnodes
saved in violation maps and text reports generated by
usimEmirUtil.

For example,

ir_percent=5

tells usimEmirUtil to save the subnodes whose IR drops are
among the top 5 percent IR drops in the violation maps and text
reports.

ir_threshold=0.01

tells usimEmirUtil to save the subnodes whose IR drops are
over 0.01v drop in the violation maps and text reports.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 550 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
splitvmap Syntax:

splitvmap net=netname1 byanalysis=yes | no bylayers=yes | or

+ net=netname2 byanalysis=yes | no bylayers=yes | no

This command instructs usimEmirUtil to generate separate
violation maps for the specified nets. The number of separate
violation maps can be further determined by the arguments,
bylayers and byanalysis. When byanalysis is set to yes,
the violation maps for the specified nets will be further separated
by the analysis type. When bylayers is set to yes, the violation
maps for the specified nets will be further separated by the layers.
The default setting for byanalysis and bylayers is no. There is
no default value for net and wildcards are supported for net names.
For the nets that are not specified, usimEmirUtil generates one
violation map. When the splitvmap command is not specified,
usimEmirUtil generates one violation map for all the nets. The
naming convention for the multiple violation maps is as follows:

rootname_netname_analysis_layer

The netname, analysis and layer name are appended to the root
name that you specify using the -view parameter of
usimEmirUtil.

Consider that the root view name is EMIR, you have splitvmap
net=VDD byanalysis=yes bylayers=yes net=VSS byanalysis=yes
in the control file, there are only metal1 and metal2 layers in VDD,
VDD has Iavg and Imax analysis, VSS has Iavg and Imax analysis,
and there are other nets to be analyzed. Then, the following
violation maps are generated:

EMIR --- this includes the violation map for all the nets
except VDD and VSS.

EMIR_VDD_Imax_metal1 - this includes the violation map for
layer metal1 of VDD's Imax

EMIR_VDD_Iavg_metal1

EMIR_VDD_Imax_metal2

EMIR_VDD_Iavg_metal2

EMIR_VSS_Imax - this will include violation map of VSS's Imax

EMIR_VSS_Iavg - this will include violation map of VSS's
Iavg.

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 551 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Here is a sample control file:

color level=8

layout format=[cdb]

splitreport Syntax:

net=netname1 byanalysis=yes | no bylayers=yes | or

+ net=netname2 byanalysis=yes | no bylayers=yes | no

The command instructs usimEmirUtil to generate separate
textual reports for the specified nets. The number of separate
textual reports can be further determined by the arguments,
bylayers and byanalysis. When byanalysis is set to yes,
the textual reports for the specified nets will be further separated by
the analysis type. When bylayer is set to yes, the textual reports
for the specified nets will be further separated by the layers. The
default value for byanalysis and bylayers is no. There is no
default for net and wildcards are supported for net names. For the
nets that are not specified, usimEmirUtil generates one textual
report. When the splitreport command is not specified,
usimEmirUtil generates one textual report for all the nets. The
naming convention for the textual report is as follows:

rootname_netname_analysis_layer

The netnames, analysis, and layer names are appended to the root
name. The root name can be specified by using the -txtfile
parameter of usimEmirUtil.

Consider that the root textual report name is "report", the control
file has the splitreport net=VDD byanalysis=yes
bylayers=yes net=VSS byanalysis=yes statement, there
are other nets for EM analysis only, there are only metal1 and
metal2 layers on VDD, VDD has Imax and Vmax analysis, and VSS
has Vmax analysis only. The following report is generated:

report.rpt_em

report_vdd_vmax_metal1.rpt_ir

report_vdd_vmax_metal2.rpr_ir

report_vdd_imax_metal1.rpt_em

report_vdd_imax_metal2.rpt_em

report_vss_vmax.rpt_ir

Table 9-1 Control File Command Syntax, continued

Command Description
May 2010 552 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
pwnet net=[i1.vdd] analysis=[vmax iavg]

+ net=[i1.vss] analysis=[vmax iavg]

signal net=[i1.*] analysis=[iavg]

emdata file="emDataFile.txt"

report text=1

EM Data File

An EM data input file needs to be created to specify technology information, such as current
density limits, and to map between the layers for highlighting. The file syntax is the same as
the VAEO product syntax (refer to the VoltageStorm Transistor-Level PGS User Guide
for more information).

Note: The EM data file syntax is case-sensitive. The file must start with parenthesis.

Table 9-2 EM Data File Command Syntax

Command Description

semicolon (;) Single line comments can be added by starting the line with a
semicolon (;).

For example,

; This is a comment line

currentDensityMPV The currentDensityMPV (current density milliamps per via)
command allows you to define the current density specifications
in terms of milliamps per via instead of the standard milliamps
per micron (most foundries specify via and contact current
densities in milliamps per via).

For example,

currentDensityMPV=true

Note: If currentDensityMPV is used, then all current density
specifications for vias must be stated in terms of milliamps per
via.
May 2010 553 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
junctionTemp The junctionTemp (junction temperature) command can be
specified if you want to use deltaT to define the value of
current density as a function of the delta between the simulation
temperature and the specified junction temperature. A better
way is to define deltaT directly.

For example,

junctionTemp=110

Note: When the simulation temperature is not within the
temperature values specified in the EM file, the simulator
chooses the EM limit that corresponds to the nearest
temperature. When the simulation temperature is within the
temperature value specified in the EM rule file, the simulator
performs linear interpretation to get the EM limit.

deltaT The deltaT command is directly supported in expression for
EM limits. deltaT is often used in some foundry’s rms EM rule.
deltaT must be positive.

Note: Do not use junctionTemp and deltaT together.
junctionTemp will be phased out gradually.

minI The minI (minimum current) command can be used to limit
reporting of small currents which are of little or no interest
during either power or signal EM analysis. The value of minI is
specified in amps (A). Any wire segments with current values
less than minI are not displayed in the EM results windows or
reported in the EM results file. The default value of minI is 0
and the analysis is not affected by this command.

For example,

minI=1e-9

Table 9-2 EM Data File Command Syntax, continued

Command Description
May 2010 554 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
relminJ The relminJ (relative minimum current density) command can
be used to limit reporting of small current density compared to
the density limits. Any wire segments with a current density
value less then relminJ of its density limit specified in emdata
file are not reported in the EM text report or violation map.
The default value of relminJ is 0 and the analysis is not
affected by this command.

For example,

relminJ=0.01

routingLayers The routingLayers (routing layers) command is used to
specify the names of the routing layers.
currentDensityName is used. For information about
currentDensityName, see Cross Reference Layers.

Note: Includes only poly and metal layers.

For example,

routingLayers = ("poly1" "m1" "m2" "m3" "m4" "m5" "m6"
"m7" "m8" "m9" "MD")

viaLayers The viaLayers (via layers) command is used to specify the
names of via layers. currentDensityName is used. For
information about currentDensityName, see Cross
Reference Layers.

For example,

(Metal1 Cont Poly) // the via layer is Cont.

In the next example,

viaLayers = ("cw" "v1" "v2" "v3" "v4" "v5" "v6" "v7"
"v8")

shows the viaLayers syntax.

Table 9-2 EM Data File Command Syntax, continued

Command Description
May 2010 555 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
viaWidthList The viaWidthList (via width list) command specifies the
minimum via width.

For example,

viaWidthList = (("Cont" 0.2) ("Via1" 0.2))

The name of the via layer is Cont in currentDensityName
space and the minimum width of the default via for this layer is
0.2.

This information is normally specified in the Cadence DFII
technology file and must also be included in the EM data file.

Note: The DFII technology file must include all of the vias
specified in the viaLayers section of the EM data file.

viaLengthList The viaLengthList (via length list) command specifies the
via length for use in calculating the area of vias that are not
square. This feature is only required when
currentDensityMPV is set to true. If the vias in the chip
design are square-shaped, then you can specify
viaWidthList without viaLengthList.

For example,

viaLengthList = (Via1 0.12)

CurrentDensSpecList The CurrentDensSpecList (current density specifications)
command refers to the current density specification declared by
the foundry. This syntax allows one layer to support different
current density specifications according to the width of the
material. For the Virtuoso UltraSim netlist-based EM/IR flow,
the current density specifications in emdata file include
avgCurrentDensSpecList, rmsCurrentDensSpecList,
and peakCurrentDensSpecList, and
userDefinedCurrentDensSpecList.

Note: Each specification in the EM rule file can be unique with
its own current density and temperature.

See “Current Density Specification Example” on page 557 for
an example of current density specifications.

Table 9-2 EM Data File Command Syntax, continued

Command Description
May 2010 556 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Current Density Specification Example

The following is an example of a current density specification (CurrentDensSpecList) for
a given layer.

(nil layer "poly1" minW 0.0 maxW -1 res 0.68 currentDensity ((1.2100,100)
(1.2110,110) (1.2125,125)))

■ nil is reserved and indicates the start of the line.

■ layer is followed by the specific layer name used to apply the current density line. The
layer name is the current density layer name from the layer cross-reference section of the
EM data file.

For example,

layer “poly1”

■ minW specifies the minimum line width in microns (minW <= width).

If minW is specified for vias, the calculated width is the total width of the vias assuming
they are laid in one long row.

■ maxW specifies the maximum line width in microns (width < maxW). When set to -1.0,
maxW represents infinity.

If minW and maxW values are specified for vias, the calculated width is the total width of
the vias assuming they are laid in one long row.

■ minL specifies the minimum line length in microns (minW <= length). minL is optional.

■ maxL specifies the maximum line length in microns (minW <= length). maxL is optional.

■ res specifies the resistance in ohms. For contacts and via layers, res should be set to
the total resistance of a minimum width contact.

■ via_range specifies the number of vias in a via array. In some technologies, for vias, the
current density limit may vary depending on the number of vias in a via array. For
example, the current density limit for via1 at 110 degree can be as below:

If number of vias in an array is 1, current density limit = 0.8 mA/um
If number of vias in an array is 2 or 3, current density limit = 1.0 mA/um
If number of vias in an array is 4 or 5, current density limit = 2.0 mA/um
If number of vias in an array is over 5, current density limit = 0.4 mA/um

then, the EM data file that represents the above is:
(nil layer "via1" minW 0.0 maxW -1.0 res 1.4 currentDensity ((0.4 , 110)))
(nil layer "via1" minW 0.0 maxW -1.0 res 1.4 via_range 1 currentDensity ((0.8 , 110)))

(nil layer "via1" minW 0.0 maxW -1.0 res 1.4 via_range 3 currentDensity ((1.0 , 110)))

(nil layer "via1" minW 0.0 maxW -1.0 res 1.4 via_range 5 currentDensity ((2.0 , 110)))
May 2010 557 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
via_range is optional in the EM data file.

■ currentDensity is specified in milliamps per micron at a specified simulation
temperature (temperature is specified in degrees Celsius).

For example,

currentDensity ((1.2100,100) (1.2110,110) (1.2125,125))

Most foundries specify via and contact current densities in milliamps per contact or
square micron. The foundry specification must be converted to milliamps per micron. For
example, if the foundry specification provides a current density of 0.4 mA/via and the via
is 0.2 microns multiplied by 0.2 microns, then the currentDensity value is 0.4/0.2=2
mA/um.

Tip

Use the currentDensityMPV command to specify the current densities in
milliamps per contact as provided by the foundry, so manual conversion is not
required.

You can specify currentDensity as an equation containing the variables w for width,
l for length, and deltaT for temperature difference.

For example,

currentDensity ((14*w*deltaT,100) (1.434 *3.9*w, 110) (5.3,125))

currentDensity ((14*w*deltaT/l,100) (1.434 *3.9*w*l, 110) (5.3,125))

You do not need to specify the value of w because it is located in the actual design data.
Current density equations using w are evaluated for each metal line width. For example,
a m1 layer has a different current density specification for line widths 0.16 um versus 0.25
um. When an equation is used in the currentDensityspec, unknown may be written
to the results of the analysis if the equation cannot be resolved.

To use deltaT to define current density for irms analysis, you can define deltaT
directly. For example:

deltaT=5

You can also specify currentDensity as an equation using the following operators: +,
-, *, /, sqrt(), and exp().

For example,

currentDensity ((sqrt(4.9100),100) (4.9110,110) (4.9125,125))

The square root function takes a positive floating point number as input.

If multiple (currentDensity, temperature) pairs are specified in
CurrentDensSpecList, then you must ensure that current densities are defined at the
May 2010 558 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
specified temperatures for all the layers in one construct using
avgCurrentDensSpecList, rmsCurrentDensSpecList, or
peakCurrentDensSpecList.

Important

Failing to define the current densities at specified temperatures for all layers in one
construct results in an error that stops the analysis.

The following is an example that uses the peakCurrentDensSpecList parameter.

peakCurrentDensSpecList = (

(nil layer "m1" minW 0.0 maxW 0.16 currentDensity ((1.434*3.9*w,100) (3.9,110)
(0.387*3.9,125)))

(nil layer "m1" minW 0.16 maxW -1.0 currentDensity ((14*w*deltaT,100)
(7.0-0.16,110) (5.3,125)))

The currentDensity for layer m1 is calculated using the actual line width, and is dependent
on whether it is greater than the 0.16 maxW specified as the break point between the two lines.

UltraSim also supports simulation temperature T in the expression of the EM rules. For
example, if the average current density limit for Metal1 is Idc = exp(9495/T-
25.45)*2.34e-3*(w-0.042) and 2.0*T for Poly, the corresponding EM rule is:

avgCurrentDensSpecList = (

(nil layer "Poly" minW 0.0 maxW -1.0 currentDensity ((xp(9495/T-25.45)*2.34e-
3*(w-0.042) , T)))

(nil layer "Metal1" minW 0.0 maxW -1.0 currentDensity ((2.0*T , T)))

where, T is the simulation temperature. UltraSim gets value of T from the simulation
database.

Customized Current Calculation and EM Check

To enable customized current calculation and EM check, you need to specify the icustom
analysis type in the control file. This signifies that the current calculation is customized. When
icustom is specified, usimEmirUtil searches for the procedure defined using the
userDefinedCurrentCalc command and calculates the current followed by the current
density. If icustom is not specified, userDefinedCurrentCalc does not take effect.

You can specify the location of the skill procedure in the control file as follows:

userDefinedCurrentCalc file=”file_name” proc="procedure_name"

The calculated current density is checked against the EM rule defined by the
userDefinedCurrentDensSpecList section in the EM data file.
May 2010 559 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
Cross Reference Layers

The cross reference layers contain a list of layer names that use the following format:

(("extractionName" ("currentDensityName" "DFIIName"))

■ extractionName is the layer name used in the DSPF or SPEF file.

■ currentDensityName is the layer name used in the current density specification
declared by the foundry, and it is also used as the current density specification in the EM
rule file.

■ DFIIName is the layer name used in the Cadence DFII technology file.

The extraction, current density, or DFII layer names used depends on how the rule files are
written.

For example,

xrefLayers = (

("poly1con" ("cw" "cw"))

("poly" ("poly1" "poly1")))

The DFII names are used in textual reports as well as the GUI.

Sample EM Data File
(

; this file is case sensitive

routingLayers = ("Poly" "Metal1" "Metal2" "Metal3" "Metal4" "Metal5" "Metal6")

viaLayers = ("Cont" "Nimp" "Pimp" "Via1" "Via2" "Via3" "Via4" "Via5")

viaWidthList = (("Nimp" 0.2) ("Pimp" 0.2) ("Cont" 0.2) ("Via1" 0.2)

("Via2" 0.2) ("Via3" 0.2) ("Via4" 0.2) ("Via4" 0.2))

xrefLayers = (

("POLYcont" ("Cont" "Cont"))

("NSDcont" ("Nimp" "Nimp"))

("PSDcont" ("Pimp" "Pimp"))

("poly" ("Poly" "Poly"))

("mt1" ("Metal1" "Metal1"))

("mt2" ("Metal2" "Metal2"))

("mt3" ("Metal3" "Metal3"))

("mt4" ("Metal4" "Metal4"))
May 2010 560 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
("mt5" ("Metal5" "Metal5"))

("mt6" ("Metal6" "Metal6"))

("Via2NoCapInd" ("Via2" "Via2"))

("Via2" ("Via2" "Via2"))

)

avgCurrentDensSpecList = (

(nil layer "Poly" minW 0.0 maxW -1.0 minL 0 maxL 5 currentDensity ((1.0 , 110)))

(nil layer "Metal1" minW 0.0 maxW -1.0 currentDensity ((1.1 , 110)))

(nil layer "Metal2" minW 0.0 maxW -1.0 currentDensity ((1.2 , 110)))

(nil layer "Metal3" minW 0.0 maxW -1.0 currentDensity ((1.3 , 110)))

(nil layer "Metal4" minW 0.0 maxW -1.0 currentDensity ((1.4 , 110)))

(nil layer "Metal5" minW 0.0 maxW -1.0 currentDensity ((1.5 , 110)))

(nil layer "Metal6" minW 0.0 maxW -1.0 currentDensity ((1.6 , 110)))

(nil layer "Cont" minW 0.0 maxW -1.0 res 1.0 currentDensity ((2.0 , 110)))

(nil layer "Nimp" minW 0.0 maxW -1.0 res 1.1 currentDensity ((2.1 , 110)))

(nil layer "Pimp" minW 0.0 maxW -1.0 res 1.2 currentDensity ((2.2 , 110)))

(nil layer "Via1" minW 0.0 maxW -1.0 res 1.3 currentDensity ((2.3 , 110)))

(nil layer "Via2" minW 0.0 maxW -1.0 res 1.4 currentDensity ((2.4 , 110)))

(nil layer "Via3" minW 0.0 maxW -1.0 res 1.5 currentDensity ((2.5 , 110)))

(nil layer "Via4" minW 0.0 maxW -1.0 res 1.6 currentDensity ((2.6 , 110)))

(nil layer "Via5" minW 0.0 maxW -1.0 res 1.7 currentDensity ((2.7 , 110)))

)

peakCurrentDensSpecList = (

(nil layer "Poly" minW 0.0 maxW -1.0 currentDensity ((1.1 , 110)))

(nil layer "Metal1" minW 0.0 maxW -1.0 currentDensity ((1.2 , 110)))

(nil layer "Metal2" minW 0.0 maxW -1.0 currentDensity ((1.3 , 110)))

(nil layer "Metal3" minW 0.0 maxW -1.0 currentDensity ((1.4 , 110)))

(nil layer "Metal4" minW 0.0 maxW -1.0 currentDensity ((1.5 , 110)))

(nil layer "Metal5" minW 0.0 maxW -1.0 currentDensity ((1.6 , 110)))

(nil layer "Metal6" minW 0.0 maxW -1.0 currentDensity ((1.7 , 110)))

(nil layer "Cont" minW 0.0 maxW -1.0 res 1.0 currentDensity ((2.1 , 110)))

(nil layer "Nimp" minW 0.0 maxW -1.0 res 1.1 currentDensity ((2.2 , 110)))

(nil layer "Pimp" minW 0.0 maxW -1.0 res 1.2 currentDensity ((2.3 , 110)))

(nil layer "Via1" minW 0.0 maxW -1.0 res 1.3 currentDensity ((2.4 , 110)))

(nil layer "Via2" minW 0.0 maxW -1.0 res 1.4 currentDensity ((2.5 , 110)))

(nil layer "Via3" minW 0.0 maxW -1.0 res 1.5 currentDensity ((2.6 , 110)))

(nil layer "Via4" minW 0.0 maxW -1.0 res 1.6 currentDensity ((2.7 , 110)))

(nil layer "Via5" minW 0.0 maxW -1.0 res 1.7 currentDensity ((2.8 , 110)))

)

May 2010 561 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Netlist-Based EM/IR Flow
May 2010 562 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
10
Static Power Grid Calculator

This chapter describes how to analyze the effects of parasitics on power net wiring, without
performing a full simulation, using the Virtuoso® UltraSim™ static power grid calculator.

Analyzing Parasitic Effects on Power Net Wiring

The static power grid calculator can be used to calculate all pin-to-tap or pin-to-subnode
resistances based on the net description from a DSPF or SPEF file (a pre-layout netlist file is
not required). The analysis assumes that all pins are connected, and an ordered list of
instance pins or taps and their resistances is reported.

To invoke the static power grid calculator, use the -r command line option accompanied by
a command file. The command file contains all of the calculator control and data filtering
options. See Figure 10-1 on page 564 for more information about inputs to the static power
grid calculator.
May 2010 563 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Static Power Grid Calculator
Figure 10-1 Static Power Grid Calculator Input
.

The analysis results are printed into text files (two files per net) with filename prefixes
specified in the command line option. The -rout filtering routine is used to filter existing
output data without running the calculator again. See static power grid calculator output in
Figure 10-2 on page 564.

Figure 10-2 Static Power Grid Calculator Output
.

vcc

vcc_1

xsvdc/mxP3@3:SRC

xI107/mxP1:BULK

xsvdc/mxP2:SRC

R35047R35058

Pins (considered shorted)

*|NET vcc 0PF
*|P (vcc_1 B 0 -1.441 419.479)
*|P (vcc B 0 2158.41 419.491)
*|I (xI107/mxP1:BULK xI107/mxP1 BULK B 0 2128.46 392.112)
*|I (xsvdc/mxP3@3:SRC xsvdc/mxP3@3 SRC B 0 1837.78 431.24)
*|I (xsvdc/mxP2:SRC xsvdc/mxP2 SRC B 0 1837.78 429.16)
...
R35047 vcc_1 vcc_7 0.001 $l=0.004 $w=10 $lvl=195
R35058 vcc vcc_6 0.001 $l=0.004 $w=10 $lvl=195

Tap Nodes

Subnode

Design Content (DSPF, pll.spf) Command File (spres.config)

ultrasim -r spres.config

- file pll.spf
- rmin 0.001
- net vcc
- sortby r

Calculator Command

Definitions
Power Net Power supply net represented by

RC network, defined in *|NET
Pin Node of power net connected to

power supply, defined in *|P
Tap Node Node of power net connected to

active device, defined in *|I
Subnode Internal node of power network

not connected to power supply or
active device

Count R W/L (x:y) hname name (x:y)in GDSII
 #1 1920.2579 5.00 (1440:366) xI107/mxP1:BULK mxP1 (1440:366)
 #2 1577.1482 10.00 (1440:476) xsvdc/mxP3@3 mxP3@3 (1440:476)
 #3 1353.6123 4.00 (1446:509) xsvdc/mxP2:SRC mxP2:SRC (1446:509)

Calculator Output (res-vcc.nr1000minr1.report)
May 2010 564 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Static Power Grid Calculator
ultrasim -r

Spectre Syntax

ultrasim –r <resistance_command_file> -o <output_prefix> [+log <log_file_name> |
-log]

SPICE Syntax

.ultrasim –r <resistance_command_file> -o <output_prefix> [+log <log_file_name> |
-log]

Arguments

Command File Options (resistance_command_file)

-r Enables static power grid calculator

-o Output files prefix

+log Prints log on display and into a specified log file

-log Calculated resistances are not copied to a file

file <file_name> DSPF or SPEF filename.

net <net_name> Defines power net for calculation. Net
needs to be defined in DSPF *|NET
section of file. Multiple net statements are
allowed.

addnetpin <net_name> <node_name> Converts subnode to pin in net
<net_name>.

netdeletepin <net_name>
<node_name> [<node_name>]

Converts pins to subnode.

subnode <subnode_pattern>
[<subnode_pattern>]

Converts subnodes to tap nodes.

netdeletetap <net_name>
<node_name> [<node_name>]

Convert tap nodes to subnodes.
May 2010 565 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Static Power Grid Calculator
Filtering Routine

The -rout command line option allows you to filter results from the static power grid
calculator analysis without having to rerun the calculation. The calculator reads the existing
-r output files and applies filtering to the data stored in these files.

Spectre Syntax

ultrasim –rout <prefix_of_rout_file> <report_options> [+log <log_file_name> |
-log]

SPICE Syntax

.ultrasim –rout <prefix_of_rout_file> <report_options> [+log <log_file_name> |
-log]

Arguments

ipin <pin_pattern> Specifies tap nodes for resistor calculation.
All other tap nodes are converted to
subnodes.

layer0ohm <layer_name>
[<layer_name>]

Resistors with specified layer names are
shorted.

layerfactor <layer_name>
<scale_factor>

Resistors with specified layer name are
scaled by factor. Multiple layerfactor
options are accepted.

rmin <value> Resistors with a value less than rmin are
shorted.

sortby <sortkey> Specifies sorting method where sortkey
can be r, w/l, or rw/l.

report <report_options> Inserts -rout filtering options into
command file (see <report_options>
for definition).

-rout Enables filtering routine

<prefix_of_rout_file> Defines output file prefix
May 2010 566 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Static Power Grid Calculator
Arguments for Data Filtering (report_options)

For tap nodes connected to a MOSFET gate, w/l is reported to be zero. If the source and drain
of the same MOSFET are connected to the same net, w/l for this tap node is also reported to
be zero.

Examples

In the first static power grid calculator example, the following Rescalc.config command
file is used:

file cell.spf

net gnd

netdeletepin gnd gnd_1

subnode gnd:* vcc:*

<report_options> Defines options filtering

+log Prints log on display and into a specified log file

-log Calculated resistances are not copied to a file

-pat <”pattern_with_wildcards”> Limits report to nodes matching specified
pattern

-nr <integer_value> Limits number of output nodes (no limit if not
defined)

-minr <double_value> Reports only nodes with Reff>minr

-maxr <double_value> Reports only nodes with Reff<maxr;

-xmin <value>
-xmax <value>
-ymin <value>
-ymax <value>

Reports only nodes in specified region

-gdsmag <value> Specifies geometry magnification where all
coordinates are multiplied by <value> if
<value> is positive, or divided by
<value> if <value> is negative

-gdsunits <value> Specifies geometry units within the DSPF or
SPEF file
May 2010 567 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Static Power Grid Calculator
rmin 0.01

sortby w/l

report –nr 1000 –minr 20 -pat*.SRC -pat*.DRN

net vcc

netdeletetap vcc x1/m2:drain x1/m4:source

addnetpin vcc vcca:1

The static power grid calculator is run using the following options:

ultrasim –r Rescalc.config –o res_examp

The static power grid calculator results are printed into the following files:

- res_examp-gnd.rout (non-filtered results)

- res_examp-gnd.minr20nr1000.rout (filtered results)

- res_examp-vcc.rout (non-filtered results)

- res_examp-vcc.minr20nr1000.rout (filtered results)

In the next example,

ultrasim –rout res_examp-gnd –o -nr 1000 -minr 5 -maxr 1000

a filtering routine is used on the res_examp-gnd.rout output file to filter out the first 1000
resistive paths with a resistance between 5 and 1000 Ohm. The filtered results are printed
into the res_examp-gnd.nr1000minr5maxr1000.report file.
May 2010 568 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
11
Fast Envelope Simulation for RF Circuits

This chapter describes fast envelope simulation for RF circuits, a simulation technique
developed to reduce the large number of time steps and high computational costs associated
with conventional transient analysis.

The Virtuoso® UltraSim™ simulator uses the harmonic balance technique, Fourier
collocation, and pseudo-spectral method for fast envelope simulation. Fast envelope
simulation is most efficient for RF circuits with a modulation bandwidth that is orders of
magnitude lower than the clock frequency. For example, circuits with a clock that is the only
fast varying signal, and with other input signals that have a spectrum with a frequency range
orders of magnitude lower than the clock frequency.

In general, fast envelope simulation is not intended for circuits working with multiple carriers
(fundamentals). It can be used for specific classes of circuits that operate with multiple,
proportionate fundamentals. In this case, the greatest common denominator for all
fundamental frequencies should be used as the clock frequency.

The Virtuoso UltraSim simulator supports the following types of fast envelope simulation:
Normal, frequency modulation, and autonomous. Fast envelope simulation can be performed
locally for a subcircuit or globally for an entire circuit.

Simulation Parameters

Fast envelope simulation with the Virtuoso UltraSim simulator uses the same setup as
transient (.tran) simulation. Table 11-1 on page 570 lists all of the fast envelope simulation
parameters. The parameters are defined in the usim_opt statement (refer to “Netlist File
Formats” on page 51 for more information about this statement).
May 2010 569 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Note: You can use the -h option to print a help message for the designated simulation
parameter (for example, ultrasim -h env_method displays help information for the
env_method parameter).

Table 11-1 Fast Envelope Simulation Parameters

Parameter Description

env_clockf Specifies the carrier or clock for fast envelope simulation. Once
env_clockf is specified, and its value is greater than 0, the
Virtuoso UltraSim simulator performs a fast envelope simulation
(if parameter is not specified, or the value is not greater than 0,
a transient analysis is performed).

Note: The env_clockf parameter is required for fast envelope
simulation.

env_method Specifies the fast envelope simulation method used by the
simulator.

■ hb harmonic balance technique, simulating all sample
points simultaneously while skipping as many cycles as
possible (default).

■ fc_full full solve technique, based on Fourier collocation
method and simulating all sample points simultaneously
while skipping as many cycles as possible (similar to hb
simulation method).

■ fc_env envelope solve technique, based on Fourier
collocation method and simulating one point for each cycle
without skipping a cycle. If the envelope solve simulation
fails, the Virtuoso UltraSim simulator automatically performs
a transient analysis.

■ fc_env_full envelope and full solve techniques, based on
Fourier collocation method. The simulator performs an
envelope solve simulation as often as possible without
skipping a cycle (if an envelope solve simulation fails, the
simulator performs a full solve simulation).

■ fc_adapative adaptive solve technique, based on Fourier
collocation method. A partial solve simulation is performed
between the envelope and the full solve simulations (no
cycles skipped).
May 2010 570 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
env_nsamples Specifies the number of sample (Fourier collocation) points in
one carrier or clock period for fast envelope simulation. The
default is nine sample points.

The env_nsamples value must be an odd-numbered integer
greater than or equal to 3, otherwise the simulator sets the
value of the parameter to the most suitable number. In cases
where the greatest common denominator of multiple carrier
frequencies is used as the clock frequency, env_nsamples
needs to be large enough to assure that there are a minimum of
three sample points for each carrier.

For example, if there are two carriers with f1=1GHz and
f2=3GHz, env_clockf needs to be set to 1GHz and
env_nsamples to nine sample points or greater, so a minimum
of three points are sampled in one period for the f2=3GHz
carrier.

env_maxnstep Specifies the maximum number of cycles that can be skipped
for the hb and fc_full simulation methods, and the maximum
number of steps for an envelope solve simulation with one point
for each clock period (default is 10 cycles).

The greater the value of env_maxnstep, the higher the speed
of the fast envelope simulation over the transient analysis, and
the lower the accuracy. To maintain a balance between speed
and accuracy, set the parameter to large values when the
carrier frequency is much greater than the frequency of the
base band signal.

env_tstart Specifies the start time for fast envelope simulation (default is
three clock periods). For circuits with waveforms that have
significant transient changes at the beginning of the analysis,
set env_tstart to a time point after the transient changes
have subsided.

env_tstop Specifies the stop time for fast envelope simulation (value
specified in .tran statement is default). The env_tstop
parameter is useful for fast envelope simulation of a specific
time interval and subsequent transient analysis of the remaining
simulation time.

Table 11-1 Fast Envelope Simulation Parameters, continued

Parameter Description
May 2010 571 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
env_tol Controls the accuracy of envelope solve for fast envelope
simulation (default is set using env_speed). The range of
values for env_tol is between 0 and 1. A value closer to 0
increases accuracy, but decreases speed with respect to
transient analysis.

env_trtol Multiplies env_tol for local truncation error (LTE) checking of
envelope solve in fast envelope simulation (use env_speed to
set default). A value closer to 1 decreases accuracy, but
increases speed with respect to transient analysis.

env_speed Specifies the speed setting for fast envelope simulation
(settings are 1-5 and env_speed=5 is the default value). A
value closer to 1 increases accuracy, but decreases speed with
respect to transient analysis.

The env_speed settings include:

■ env_speed = 1 (env_tol = 0.0001; env_trtol = 40)

■ env_speed = 2 (env_tol = 0.001; env_trtol = 30)

■ env_speed = 3 (env_tol = 0.01; env_trtol = 20)

■ env_speed = 4 (env_tol = 0.1; env_trtol = 10)

■ env_speed = 5 (env_tol = 1; env_trtol = 5)

The fast envelope simulation settings are more aggressive than
the ones used in transient analysis due to the assumption that
signal envelope is smooth and can be approximated by a low
order polynomial.

Table 11-1 Fast Envelope Simulation Parameters, continued

Parameter Description
May 2010 572 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
env_harms Specifies the number of harmonics for the carrier frequency
with which time varying spectra are calculated and saved. The
value of env_harms needs to be larger than or equal to 0 and
less than or equal to env_nsamples/2. The default is 0
because the fast envelope simulation is designed to speed up
transient analysis for modulated circuits.

If you are interested in the time varying spectra or the adjacent
channel power ratio (ACPR) results, env_harms needs to be
set to a positive non-zero value (env_harms=1 works for most
applications).

Note: Avoid setting env_harms to a high value because it can
significantly increase computation time and reduce the speed of
the fast envelope simulation.

env_resolve Defines the flag used to enable resolve during simulation time
synchronization. If env_resolve=0, resolve is disabled
(default).

When resolve is enabled (env_resolve=1), the fast envelope
simulation resolves the system using a transient analysis when
time synchronization has failed. Otherwise, fast envelope
simulation performs interpolation during time synchronization.
Enabling resolve decreases simulation speed, yet increases
simulation accuracy.

Table 11-1 Fast Envelope Simulation Parameters, continued

Parameter Description
May 2010 573 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
env_ignore_digital Defines the flag used to allow fast envelope simulation to ignore
the timing of digital clocks during simulation. If
env_ignore_digital=1, the digital clock timing is ignored
(default).

If the circuit consists of digital clocks with frequencies that are in
the same order as the carrier frequency (env_clockf), you do
not need to run fast envelope simulation if the clocks are not
ignored because the simulation is slower than a transient
analysis, due to the frequent resolves.

Generally, these clocks do not affect the envelopes of the output
signals in the RF portion of the circuit, and can be ignored. If
the clock frequencies are significantly larger than the carrier
frequency, and the frequencies need to be considered in the
fast envelope simulation, set env_ignore_digital=0 to
consider digital clock timing and obtain accurate results.

env_sim_mode Simulation mode for envelope simulation (default value is
normal).

■ env_sim_mode=normal specifies a normal envelope
simulation.

■ env_sim_mode=fm specifies a frequency modulation
envelope (FM) simulation.

■ env_sim_mode=osc specifies an autonomous envelope
simulation.

A FM source must be present in the circuit for FM envelope
simulation. The Virtuoso UltraSim simulator performs a FM
envelope simulation according to the source and uses FM
envelope simulation techniques. If a FM source is not in the
circuit, the FM envelope simulation is disabled by the simulator,
even if env_sim_mode is set to FM.

Note: A reference port must be specified for autonomous
envelope simulation using the env_ref_port option.

Table 11-1 Fast Envelope Simulation Parameters, continued

Parameter Description
May 2010 574 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Example

The circuit in this fast envelope simulation example is the multiplier and adder portion of a
code division multiple access (CDMA) circuit. The circuit consists of two multipliers and a
single adder (see Figure 11-1 on page 575).

Figure 11-1 CDMA Circuit with Multipliers and Adder

The I channel signal and a sinusoidal source or carrier with a 90 degree phase shift are input
into Multiplier 1. The Q channel signal and a sinusoidal source are input into

env_ref_port Specifies the reference port for autonomous envelope
simulation.

■ env_ref_port=[“N+ N-”] N+ and N- are the positive and
negative nodes of the reference port, respectively.

Note: The env_ref_port option is required for
autonomous envelope simulation.

Table 11-1 Fast Envelope Simulation Parameters, continued

Parameter Description
May 2010 575 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Multiplier 2. The two modulated signals output from Multiplier 1 and Multiplier 2
are combined in the Adder. The Adder output is sent to the CDMA circuit amplifier (not
considered in this example). The multipliers and adder are modelled by two Verilog-A
modules. The I and Q channel signals are input with two data files, and the carrier frequency
is 1 Ghz.

The netlist file for the sample CDMA circuit is shown below:

// Example for fast envelope simulation

// The multiplier and adder portion of a CDMA circuit

simulator lang=spectre

global 0

include "quantity.spectre"

parameters plo=-10 fcar=1G

Rout (MixOut 0) resistor r=50

Riin (Iin 0) resistor r=50

Rqin (Qin 0) resistor r=50

Im1 (Msi Iin M1out) multiplier

Im2 (Msq Qin M2out) multiplier

Ia (M1out M2out MixOut) adder

PORT_Iin (Iin 0) port r=50 type=pwl phase=0 pwldbm=plo fundname="Iin" \

 file="i_data.ascsig"

PORT_Qin (Qin 0) port r=50 type=pwl phase=0 pwldbm=plo fundname="Qin" \

 file="q_data.ascsig"

PORT_Msq (Msq 0) port r=50 type=sine freq=fcar ampl=1 fundname="fcar"

PORT_Msi (Msi 0) port r=50 type=sine freq=fcar ampl=1 sinephase=90 \

 fundname="fcar"

saveOptions options save=allpub

ahdl_include "adder_veriloga.va"

ahdl_include "multiplier_veriloga.va"

simulator lang=spice

.tran 0.1u 100u

.probe tran v(*)

.measure tran VMixOutmax max 'v(MixOut)' from=10u to=100u

.measure tran VMixOutmin min 'v(MixOut)' from=10u to=100u

.usim_opt sim_mode=s

.usim_opt env_clockF=1G env_maxnstep=50 env_method=hb

.end

The transient analysis for this circuit takes 88 seconds, whereas the fast envelope simulation
takes only 2.2 seconds, a 40 time increase in simulation speed.
May 2010 576 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
The waveforms for the fast envelope simulation and transient analysis are plotted in
Figure 11-2 on page 577. From V(MixOut), it is clear that many cycles are skipped during
the fast envelope simulation, resulting in a significant increase in simulation speed. The I and
Q signals are generally the same when comparing the transient analysis to the fast envelope
simulation.

Figure 11-2 Fast Envelope and Transient Analysis Waveforms

Local Envelope Simulation

All of the options listed in Table 11-1 on page 570 can be followed by a local scope, or
subcircuit primitives and instances, to enable Virtuoso UltraSim local envelope simulation.
The syntax used to define local envelope simulation at the subcircuit level is the same as
described in the “Syntax” section of “Setting Virtuoso UltraSim Simulator Options” on
page 155.

For example,

Spectre Syntax:

usim_opt env_clockf=1e6 env_method=HB env_maxnstep=50 inst=[x1.x2 x5]

SPICE Syntax:

.usim_opt env_clockf=1e6 env_method=HB env_maxnstep=50 inst=[x1.x2 x5]

V(MixOut)_env

V(lin)_tran

V(lin)_env

V(Qin)_tran

V(Qin)_env

V(MixOut)_tran
May 2010 577 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
tells the Virtuoso UltraSim simulator to run a local envelope simulation on instances x1.x2
and x5 with a clock frequency of 1e6.

In the next example,

Spectre Syntax:

usim_opt env_clockf=1e6 env_method=HB env_maxnstep=50 subckt=[Ckt1]

SPICE Syntax:

.usim_opt env_clockf=1e6 env_method=HB env_maxnstep=50 subckt=[Ckt1]

tells the Virtuoso UltraSim simulator to run a local envelope simulation on all instances calling
subcircuit Ckt1 with a clock frequency of 1e6.

For local envelope simulation, the lower level subcircuit follows the envelope simulation
options defined at the higher level, if the value of the lower level env_clockf option is not
larger than zero.

Note: A local envelope simulation is not defined for this subcircuit.

If the values of env_clockf are greater than zero at both the lower and higher levels, the
envelope simulation options are reconciled according to the following rules.

Assuming there are two options defined (Option1 and Option2), a new option (Option3)
that is consistent with the first two options is created using these rules:

Option3.env_clockf = min(Option1.env_clockf, Option2.env_clockf)

Option3.env_nsamples = max(Option1.env_nsamples, Option2.env_nsamples)

Option3.env_maxnstep = max(Option1.env_maxnstep, Option2.env_maxnstep)

Option3.env_speed = min(Option1.env_speed, Option2.env_speed)

Option3.env_tol = min(Option1.env_tol, Option2.env_tol)

Option3.env_trtol = min(Option1.env_trtol, Option2.env_trtol)

Option3.env_tstart = max(Option1.env_tstart, Option2.env_tstart)

Option3.env_tstop = min(Option1.env_tstop, Option2.env_tstop)

Option3.env_harms = max(Option1.env_harms, Option2.env_harms)

Option3.env_resolve = max(Option1.env_resolve, Option2.env_resolve)

Option3.env_method = max(Option1.env_method, Option2.env_method)

with FC_ENV < FC_ADAPTIVE < FC_ENV_FULL < FC_FULL < HB

where min and max represent the minimum and maximum functions.

The subcircuits defined for local envelope simulation flatten up to the highest level through
the hierarchy. Two hierarchically independent subcircuits defined for local envelope simulation
may also be placed into the same partition for envelope simulation using the reconciled
May 2010 578 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
options, if the subcircuits are strongly coupled, this is automatically determined by the
Virtuoso UltraSim partition algorithm.

Example

The circuit shown in this example (see Figure 11-1 on page 575) is a simple digital
modulation circuit. The digital input is represented by a pulse source. The subcircuit for the
analog section consists of a multiplier, a high frequency carrier source, and a demodulator.
The multiplier and demodulator are implemented by Verilog-A models.

Figure 11-3 Digital Modulation Circuit

The netlist file for the sample digital modulation circuit is shown below:

* Example for local envelope simulation

* A simple digital modulation and demodulation circuit

simulator lang=spectre

global 0

ahdl_include "demodulator.va"

ahdl_include "multiplier.va"

subckt Analog vin vout

I1 (Vsin vin vm) multiplier

I2 (vm vdif vout) demodulator w=6.28*1.0e9

V1 (Vsin 0) vsource type=sine freq=1.0e9 ampl=1 sinephase=0.0

ends Analog

Myopt options save=all

simulator lang=spice

High
Frequency
Carrier
Source

Demodulator
Vout

Rout

Analog Subcircuit

Vin
Rin

Multiplier

Vm
May 2010 579 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Vin vin1 0 pulse(0 1 1e-9 1e-11 1e-11 0.5e-6 1e-6)

XAnalog vin vout Analog

Rin vin1 vin 1

Rout vout 0 1

.tran 0.1e-6 3e-6

.probe tran v(*)

.usim_opt sim_mode=s env_clockf=1e9 env_maxnstep=1000 env_method=hb inst=[XAnalog]

.end

The Virtuoso UltraSim simulator performs the local envelope simulation for the XAnalog
analog subcircuit instance, as specified in the usim_opt statement. The local envelope
simulation is completed in approximately one second. The waveforms for the simulation are
plotted in Figure 11-4 on page 581.
May 2010 580 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Figure 11-4 Local Envelope Simulation Waveforms

Frequency Modulation Envelope Simulation

Frequency modulation (FM) envelope simulation can be used to simulate RF circuits with FM
signals specified in the modulation sources.

Frequency Modulation Source Types

The FM source types include:

■ Ideal

■ One Data File

■ Two Data Files

V(vin)

V(vout)

V(XAnalog.vm)
May 2010 581 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Ideal

The ideal FM source is defined as

where A is the amplitude, φ0 is the initial phase, and fi is the instantaneous frequency defined
by

where fc is the carrier frequency, k is the modulation index, and fm is the modulation
frequency.

One Data File

The FM source with one data file can be expressed by

where

and where Δω(t) is the radial frequency change defined in the data file. The instantaneous
frequency can be calculated by

Two Data Files

The FM source with two data files, one for I data and one for Q data, can be expressed by

where

The instantaneous frequency can be calculated using

V t() A 2πfit φ0+()sin=

fi fc k 2πfmt()sin+=

V t() A 2πfct θ t()φ0+()sin=

fi fc
kΔω t()

2π
------------------+=

V t() A t() 2πfct θ t() φ0+ +()sin=

A t() I t()[]2 Q t()[]2+=

θ t() k 1– Q t()
I t()
-----------⎝ ⎠

⎛ ⎞tan=
May 2010 582 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Frequency Modulation Source Parameters

The FM source parameters are listed in the following table.

Example

A direct conversion transmitter circuit is used in the FM envelope simulation example (see
Figure 11-5 on page 584).

Table 11-2 Frequency Modulation Envelope Simulation Parameters

Parameter Description

fmmodindex Specifies the frequency modulation (FM) for the k index.

fmmodfreq Specifies modulation frequency for the ideal FM sources.

fmmodfiles Specifies the filenames for the FM sources with frequency
modulation data. The format for this parameter is as follows.

One File
fmmodfiles = [data_file_name]

Two Files
fmmodfiles = [I_data_file_name Q_data_file_name]

The data file format is the same as the piece-wise linear (PWL)
file format (see Chapter 2, “Netlist File Formats” for more
information about PWL format).

fi fc
1

2π
------dθ t()

dt
-------------+=
May 2010 583 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Figure 11-5 Direct Conversion Transmitter Circuit

 The netlist file for the sample direct conversion transmitter circuit is shown below.

// Direct conversion transmitter

// Example for FM envelope simulation

simulator lang=spectre

global 0 vcc!

include "rfModels.scs"

// EF_PA_ostg

subckt EF_PA_ostg RFIN RFOUT inh_bulk_n

 Q2 (net58 RFIN net92 inh_bulk_n) npnStd area=100

 Q1 (vcc! net104 net54 inh_bulk_n) npnStd area=10

 Q0 (net104 net108 net57 inh_bulk_n) npnStd area=5

 L6 (net43 RFIN) inductor l=13n

 L1 (vcc! RFOUT) inductor l=10n

 C20 (vcc! RFOUT) capacitor c=1p

 R52 (0 net54) resistor r=1K

 R60 (vcc! RFOUT) resistor r=1K

 R62 (RFOUT net58) resistor r=2

 R34 (0 net92) resistor r=10

 R53 (net108 net54) resistor r=400

 R33 (net54 net43) resistor r=20

 R51 (0 net57) resistor r=200
May 2010 584 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
 I8 (vcc! net104) isource dc=3m type=dc

ends EF_PA_ostg

// EF_PA_istg

subckt EF_PA_istg RFIN RFOUT inh_bulk_n

 Q1 (vcc! net6 net18 inh_bulk_n) npnStd area=10

 Q2 (RFOUT RFIN net24 inh_bulk_n) npnStd area=25

 Q0 (net6 net8 net22 inh_bulk_n) npnStd area=5

 I8 (vcc! net6) isource dc=2m type=dc

 R34 (0 net24) resistor r=20

 R60 (vcc! RFOUT) resistor r=50

 R51 (0 net22) resistor r=200

 R33 (net18 net20) resistor r=200

 R53 (net8 net18) resistor r=1K

 R52 (0 net18) resistor r=1K

 L6 (net20 RFIN) inductor l=13n

ends EF_PA_istg

// Top circuit

I2 (net8 net9 0) EF_PA_ostg

I4 (net20 net1 0) EF_PA_istg

RF_OUT (RFOUT 0) port r=50 num=2 type=dc

PORT1 (net64 0) port r=50 num=1 type=sine freq=1e9 ampl=1 \

 fmmodfiles=["i_data.ascsig" "q_data.ascsig"] fmmodindex=1 fundname="carrier"

R2 (net64 net33) resistor r=50

RL1 (net24 net30) resistor r=1.5

R9 (net15 0) resistor r=50

R8 (net17 0) resistor r=50

L1 (net30 net20) inductor l=18n

VCC (vcc! 0) vsource dc=5 type=dc

C1 (net24 net33) capacitor c=100p

C0 (net8 net1) capacitor c=100p

C2 (net20 0) capacitor c=1p

C7 (RFOUT net9) capacitor c=100p

save RFOUT

tran tran stop=3e-6 start=0.0

simulator lang=spice

.usim_opt env_clockf=1e+09 env_fm_mod=1 env_method=fc_full env_maxnstep=100

.usim_opt wf_format=psf
May 2010 585 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
.end

The FM source is defined in PORT1, with the i_data.ascsig and q_data.ascsig data
files specifying the I and Q data, respectively.

A transient and fast envelope simulation was used to simulate the circuit. The transient
simulation finished in 35.68 seconds and the fast envelope simulation in 3.89 seconds (fast
envelope simulation is approximately 10 times faster than the transient simulation). The
v(RFOUT) transient and fast envelope simulation waveforms are plotted in Figure 11-6 on
page 586 and Figure 11-7 on page 587.

Figure 11-6 V(RFOUT) Transient Simulation Waveform
May 2010 586 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
Figure 11-7 V(RFOUT) Fast Envelope Simulation Waveform

Autonomous Envelope Simulation

The Virtuoso UltraSim autonomous envelope simulation can be used to:

■ Simulate RF circuits consisting of oscillation circuitries.

■ Accelerate autonomous transient simulation.

■ Simulate VCO/PLL with time varying control sources and oscillator-driven RF circuits.

To run an autonomous envelope simulation, set env_sim_mode=OSC in your netlist file. A
reference port must be specified using the env_ref_port parameter. The value of
env_clockf is used as the reference frequency for autonomous envelope simulation.

Tip

Set the env_clockf value close to the actual oscillation frequency for a faster and
more accurate simulation.

Autonomous envelope simulation can be performed globally or locally. If
env_sim_mode=OSC and en_ref_port are set for the entire circuit, global autonomous
May 2010 587 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
envelope simulation is performed. If env_sim_mode=OSC and en_ref_port are set for a
subcircuit, local autonomous envelope simulation is performed.

Example

A BJT oscillator circuit, shown in Figure 11-8 on page 588, is used in this autonomous
envelope simulation example.

Figure 11-8 BJT Oscillator Circuit

The netlist file for the sample BJT oscillator circuit is shown below.

// BJT ecp oscillator

// Example for autonomous envelope simulation

simulator lang=spectre

save 1 2 3 4

simulator lang=spice

vin 4 0 sin(0 0.1 10meg 0 5e6) ac 1

vcc 9 0 5

iee 3 0 1mA
May 2010 588 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
q1 9 1 3 qnl

q2 2 4 3 qnl

l1 9 2 1uH

c1 2 1 500pF

c2 1 0 500pF

r1 1 0 10k

.model qnl npn (bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns

+ cje=3pf cjc=2pf va=50)

.tran 5ns 20us

.usim_opt env_clockf=1e7 env_sim_mode=osc env_ref_port=[? 2 0 ?] env_tol=1e-2

.usim_opt sim_mode=s speed=1

.end

The circuit is simulated using a normal transient simulation and an autonomous envelope
simulation. The transient simulation ends in 1.75 seconds and the autonomous envelope
simulation in 0.15 seconds, a 12 time performance advantage for the autonomous envelope
simulation.

The v(1) waveforms for both simulations are plotted in Figure 11-9 on page 589.

Figure 11-9 V(1) Transient and Autonomous Envelope Simulation Waveforms

The v(1) waveforms generated in the transient simulation are displayed in the upper plot and
the autonomous envelope simulation v(1) waveforms are displayed in the lower plot.
May 2010 589 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Fast Envelope Simulation for RF Circuits
May 2010 590 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
12
Virtuoso UltraSim Reliability Simulation

As device sizes are reduced in scale, degradations caused by various mechanisms become
more of a limiting factor in circuit design. The Virtuoso® UltraSim™ simulator provides full-
chip, transistor-level reliability simulations and gives the designer real-time simulation
capabilities. The following key reliability simulation features are supported:

■ Hot carrier injection (HCI) and negative bias temperature instability (NBTI) simulations

■ User-defined degradation models through the Virtuoso Unified Reliability Interface (URI)

■ Aged model and AgeMOS reliability analysis methods

■ Full-chip view of HCI and NBTI timing effects

The HCI, NBTI, aged model, and AgeMOS methods are discussed in the following sections.
For more information about URI, refer to the Virtuoso Unified Reliability Interface
Reference.

One important concept of the degradation model is age, which is an intermediate parameter
that links the device degradation physical mechanism with the circuit reliability simulation. It
quantifies the device degradation by unifying various bias conditions. Devices that are fresh
have a zero age value while more degraded devices have larger age values.

Other important concepts are age (or degradation) model, aged (or degraded) model, and
aging (or reliability) simulation:

■ age model expresses the physical mechanism of a certain degradation, such as HCI or
NBTI

■ aged model represents the effects of all kinds of degradations at a particular age value
(that is, a degraded model card has an age model parameter called age, in addition to
the SPICE parameters)

■ aging simulation performs a whole circuit calculation, such as time analysis, with
particular aged models
May 2010 591 Product Version 7.2

../UltraSim_URI/UltraSim_URITOC.html#firstpage
../UltraSim_URI/UltraSim_URITOC.html#firstpage

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Figure 12-1 on page 592 shows the reliability simulation flow. The input is the SPICE netlist
file, in addition to reliability control statements, degradation parameters, and one of the
following reliability model options: Aged SPICE or AgeMOS model parameters.

The Virtuoso UltraSim simulator simulates the whole circuit, starting with the fresh model, and
then calculates the age of each individual device in the circuit at each stress time. The
reliability information, such as degradation and lifetime, is output into .bo0 and .ba0 files.

Note: The .bo0 file contains the total degradation of each device for all the age levels. The
degradation for separated age level of each device is included in the result file
netlist_0.level_number (where, level_number is the age level number). For
example, the degradation of age level 0 for the netlist test.sp is included in test_0.level0, and
age level 1 is included in test_0.level1.

Figure 12-1 Virtuoso UltraSim Reliability Simulation Flow

Aged model parameters are generated for degraded devices with the age value and a
reliability model option. Reliability simulations are performed using these degraded models.
Fresh and degraded waveforms are output to files during each simulation. By comparing the
waveforms, you can determine how the degradations affect circuit performance (for example,
timing).

Ultrasim URI supports two flows, namely analytical flow and table model flow. The analytical
flow is more accurate compared to the table model flow and is compatible with the RelXpert

INPUT: NETLIST
subckt inv ...
M0 12 13 vdd vdd pf ...
M1 12 13 0 0 nf ...
.ends inv
XI1 a b inv
v1 a 0 dc 2.1V
.tran 0.1n 1000n
.probe tran v(*) depth=4
...
.MODEL nf NMOS (
+ LMAX = 2.1E-05
+ LEVEL = 49
+ TOX = 'toxn'
...
*relxpert: + degr. model
(parameter)
*relxpert: .ageproc (1)
*relxpert: .nbtiageproc (1)

OR

*relxpert: .agemethod=
ageMos (2)
*relxpert: .age 5y 10y 20y
*relxpert: .age control
statements

UltraSim

.trn _age1.trn
_age1.mt0

_age2.trn
_age2.mt0

_age3.trn
_age3.mt0.mt0.bo0

.age 5y
Element Total Age Degr. Lifetime
XI1.M0 0.00411 0.0637 35.95
XI1.M1 0.00343 0.0433 56.46
...
.age 10y
Element Total Age Degr. Lifetime
XI1.M0 0.00523 0.0752 21.01
XI1.M1 0.00421 0.0580 26.89
...
.age 20y
Element Total Age Degr. Lifetime
XI1.M0 0.00788 0.0832 15.01
XI1.M1 0.00690 0.0778 17.46
...

.ba0

Waveform
Viewer

Fresh Simulation
Lifetime Calculation

(5y, 10y, 20y)

Aged
Simulation

(5y)

Aged
Simulation

(10y)

Aged
Simulation

(20y)

_age1.trn _age2.trn

_age3.trn

.trn
May 2010 592 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
simulator. The default flow of UltraSim URI is the analytical flow. Use the age_analytical
UltraSim option in the netilst or the ultrasim.cfg file in the home directory to choose the
flow of your choice:

Use the following setting to select the table model flow:

.usim_opt age_analytical=0

Note: When using the table model flow, ensure that you set the following environment
variable:

setenv RX_OLD_URI 1 (The default value of RX_OLD_URI is 0)

Use the following setting to select the analytical flow:

.usim_opt age_analytical=1

Note: It is recommended that you use the analytical flow because it is compatible with the
RelXpert simulator. In addition, use s mode (add .usim_opt sim_mode=s in the netlist) when
running UltraSim simulator because the age simulation is highly dependent on the waveform.

Hot Carrier Injection Models

HCI degradation occurs when the channel electrons are accelerated in the high electric field
region near the drain of the metal oxide semiconductor field-effect transistor (MOSFET)
device and create interface states, electrons traps, or hole traps in the gate oxide near the
drain. Drain current reduction, small signal performance deterioration, and threshold voltage
shift are the typical forms of degradation that are detrimental to normal circuit function.

With designs moving into deep-submicron (DSM) levels, shorter channel lengths cause the
electric field in the channel to become larger. Using the device-centric lightly doped drain
(LDD) structure to alleviate HCI damage lowers the device current driving capability, and
consequently degrades circuit performance. Trade-offs between HCI design rules and
performance become increasingly complex as technology moves into smaller DSM levels.
These conservative HCI design rules are a roadblock for high-performance design.

The MOSFET HCI model includes the following sub-models:

■ Model for calculating substrate current [negative (NMOS) and positive-channel metal
oxide semiconductor (PMOS)] and gate current (PMOS).

■ Lifetime model which is used to calculate the HCI lifetime under circuit operating
conditions.

■ Aging model which describes the degradation of transistor characteristics as a function
of stress.

This model is used to generate degraded model parameters for aging simulation.
May 2010 593 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
MOSFET Substrate and Gate Current Model

HCI degradation in n-channel MOSFETs is correlated to substrate current . The
correlation exists because hot carriers and substrate current are driven by a common
maximum channel electric field factor, which occurs at the drain end of the channel. In p-
channel MOSFETs, where the dominant driving force for degradation is charge trapping in
the gate oxide, the degradation is found to be correlated to gate current .

Hot Carrier Lifetime and Aging Model

This section describes the model used to predict HCI degradation from the substrate or gate
current. The equation for degradation under DC stress conditions is first discussed. The
model is then extended to AC bias conditions using quasi-static approximation. The
parameter is used to quantify the amount of stress. It serves as a basis for determining HCI
degradation under AC bias conditions from degradation under DC bias conditions.

HCI device degradation in a metal oxide semiconductor (MOS) is usually measured by the
change in transconductance , drain current , and threshold voltage shift .
Here, we generalize the degradation by using the symbol. The symbol can be
replaced by any of the above quantities or other transistor parametric shifts in the following
equations.

DC Lifetime and Aging Model

For the MOSFET under DC stress conditions, the amount of degradation is usually a function
of time:

(12-1)

In general, the proportionality constant describes the age (or degradation) rate as a
function of channel electric field and device bias condition

(12-2)

AC Lifetime and Aging Model

Under the DC condition, is calculated using

Isub

Em

Ig

Age

Δgm gm⁄ ΔId Id⁄ ΔVt
ΔD ΔD

ΔD f At()=

A

Em

Age
May 2010 594 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
(12-3)

 is used to quantify the amount of hot carrier stress.

The amount of degradation is then

(12-4)

Using a quasi-static argument, under an AC bias condition, the definition is modified as
follows

(12-5)

Using Equation 12-4 on page 595 and Equation 12-5 on page 595, you can determine the
amount of degradation under the AC bias condition after a given time or determine the AC
lifetime .

Negative Bias Temperature Instability Model

A high vertical electrical field at a high temperature for TOX (MOSFET gate oxide thickness)
50 angstroms in length causes NBTI and makes the circuit fail immediately. The major
damaging mechanism is the hole trapping and interface state generation. NBTI has become
a major concern for reliable integrated complementary metal oxide semiconductor (CMOS)
devices because of the threshold voltage (Vth) shift of p-MOSFET, Idsat reduction, and 1/f
noise. Unlike HCI, NBTI can be a significant issue even when the drain-source is zero biased.

NBTI simulation is similar to HCI simulation with different lifetime parameters and degraded
model sets for NBTI. If NBTI lifetime parameters are specified in the fresh model card, NBTI
effects are simulated. NBTI and HCI effects can be simulated together or independently.

To simulate NBTI, the following is needed:

■ NBTI lifetime model parameters specified in the fresh model card

■ For aged model method, NBTI degraded SPICE model cards

■ For AgeMOS method, AgeMOS parameters for NBTI in the fresh model card

Age t() At≡

Age

ΔD

ΔD t() f Age()=

Age

t

τ

May 2010 595 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Aged Model

The aged model is an extension of the traditional SPICE model for HCI, NBTI, or other age
models. Aged SPICE model parameters are extracted from a fresh device at a number of
stress intervals. These model parameters form a set of aged model files. Each file represents
the transistor behavior after certain degradation, such as hot carrier stress. The amount of
stress is given by the parameter calculated using Equation 12-5 on page 595. During the
fresh simulation, the Virtuoso UltraSim simulator calculates the for each individual
device. Using as a basis, the Virtuoso UltraSim simulator can construct a degraded
model for each device from the aged model files. It can do this by interpolation or regression
from these files in the linear-log or log-log domain of the calculation. The aged model method
of calculating aged SPICE model parameter is shown graphically in Figure 12-2 on page 597.
The , , and values are the degraded model parameters in SPICE model files with

, and respectively. The and values are the respective model parameters
if interpolation or regression is selected. Cadence recommends using interpolation in the log-
log domain (default method). If there is a sign change in the parameter, linear-linear
interpolation is recommended.

AgeMOS

The Cadence AgeMOS model provides a new reliability analysis method for HCI and NBTI
circuit reliability simulation, especially for deep submicron CMOS reliability modeling and
circuit simulation analysis. AgeMOS is applicable to any MOS SPICE model. The AgeMOS
model is a significant improvement over other reliability models in the areas of model
generation, accuracy, efficiency, and consistent circuit simulation.

Using this methodology, IC manufacturers can provide a universal model to all of their IC
design customers without SPICE model compatibility issues. The AgeMOS model for HCI
and NBTI enables designers to perform accurate and efficient reliability simulation analysis.
This ensures optimal trade-off between yield and performance before product tape out. HCI
and NBTI reliability analysis with the AgeMOS model prevents unnecessary reliability issues.

The Virtuoso UltraSim simulator accepts AgeMOS parameters for BSIM3V3 and BSIM4
models and supports the AgeMOS method for aged model card generation.

Age

Age

Age

P1 P2 P3
Age1 Age2 Age3 Pi Pr

P

May 2010 596 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Figure 12-2 Calculating Aged Model Parameters

The degraded model parameter is a function of its fresh model and AgeMOS parameters.
Calculate aged model parameters from aged model files using

(12-6)

where ΔP is the change for the P parameter, P0 is the fresh model parameter, age is the
degradation age value, and d1, d2, n1, n2, and s are AgeMOS parameters.

The h prefix is used to specify the AgeMOS parameters for the HCI analysis. In the NBTI
analysis, the AgeMOS parameters use the n prefix. The Virtuoso UltraSim simulator
generates aged (or degraded) model cards in the circuit simulation using these AgeMOS
parameters.

In the following HCI example,

*relxpert: +hd1_vth0 = 4.5 hd2_vth0 = 0 hn1_vth0 = 0.3 hn2_vth0 = 0.36488 hs_vth0
= 1.2777

*relxpert: +hd1_ua = 0.11812 hd2_ua = 13.12 hn1_ua = 0.2684 hn2_ua = 0.50428 hs_ua
= 3

*relxpert: +hd1_ub = 372.6 hd2_ub = 1 hn1_ub = 0.44 hn2_ub = 1 hs_ub = 1

SPICE parameters
(for example, μ and Vfb)

P2
Pi

P1

Age1 Age Age2 Age3

P3

Pr

Interpolation

Regression

Li
ne

ar
 o

r
Lo

g
S

ca
le

• • •

Fresh Age1 Age2 Agen
Age

(calculated from circuit
operating conditions)

Aged Model Files

Linear or Log Scale

ΔP f P0 age d1 d2 n1 n2 s),, ,,, ,(=
May 2010 597 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
*relxpert: +hd1_a0 = 0.40162 hd2_a0 = 0 hn1_a0 = 0.08392 hn2_a0 = 1 hs_a0 = 1

vth0, ua, ub, and a0 changes with different age values. If d1 and d2 equal 0.0, the
corresponding model parameter remains constant during the entire stressing. If d1 and d2
does not equal 0.0, the corresponding model parameter changes with stressing.

In order to specify age value for the aged model card, you need to add the age value to the
fresh model card.

For example,

*relxpert: + age = 1e-12

Advantages of the AgeMOS Model

The AgeMOS model has the following advantages over the aged model:

■ AgeMOS model is more accurate

Aged parameters at any age value can be calculated using Equation 12-6 on page 597
(no interpolation or regression is needed).

■ AgeMOS model keeps the aged parameters monotonic

■ Simulation with the AgeMOS model is easier to perform

Degraded model cards are not needed in the netlist file. Place AgeMOS parameters in
the fresh model card along with the other age model parameters. The aged model
parameters are calculated using the AgeMOS parameters.

■ Simulation with the AgeMOS model is faster

The aged model parameters are calculated directly with no interpolation or regression
needed.
May 2010 598 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Reliability Control Statements

This section describes reliability control statements which are used to request an analysis,
select a model, output control, or to pass other relevant information to the simulator.

Reliability control statements need to be included in the SPICE netlist file between the
.title and .end cards. All control statements require *relxpert: at the beginning of the
statement. The order of the statements in the netlist file is arbitrary. If the same control
statement appears more than once, the statement that appears last overwrites all previous
ones. A continuation line can be created by using *relxpert: + at the beginning of the line.

For more information about notations used to indicate how control statements are entered,
see “Syntax” on page 29.

Previously, the UltraSim software supported the following reliability statement formats:

■ *relxpert: .age =1 (*rexlpert: is the prefix)

■ ** .age=1 (** is the prefix)

Starting in the 7.1.1 release, the UltraSim parser supports only the first format for reliability
statements. This means that only those reliability statements that have the *relxpert:
prefix will be recognized, and the reliability statements with the ** prefix will not be supported
any more.

Reliability statement in Spectre format is as follows:

*relxpert: age =1 (no period before the relxpert command) in Spectre format netlist

For example:

simulator lang = spectre

*relxpert: age 2min 20min 200min 400min

*relxpert: deltad 0.1

*relxpert: idmethod ids

*relxpert: vthmethod spice

*relxpert: agemethod agemos

simulator lang = spice

Reliability statement for SPICE format is as follows:

*relxpert: .age=1 (there is a period before relxpert command) in the SPICE format
netlist.

For example:
May 2010 599 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
simulator lang = spice

*relxpert: .age 2min 20min 200min 400min

*relxpert: .deltad 0.1

*relxpert: .idmethod ids

*relxpert: .vthmethod spice

*relxpert: .agemethod agemos

simulator lang =spectre

The Virtuoso UltraSim simulator supports the following reliability control statements:

■ .age on page 601

■ .agemethod on page 602

■ .ageproc on page 603

■ .deltad on page 604

■ .hci_only on page 605

■ .minage on page 606

■ .nbti_only on page 607

■ .nbtiageproc on page 608
May 2010 600 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.age

*relxpert: .age time

Description

This statement specifies the future time (in seconds) at which the transistor degradation and
degraded SPICE model parameters are calculated. The degraded SPICE model parameters
are used in aged circuit simulation. This statement must be specified to invoke a reliability
simulation. The calculated transistor degradation can be transconductance (), linear
or saturation drain current (), degradation or threshold voltage shift (), or any
other degradation monitor, dependent on how the lifetime parameters are extracted.

The default is MOS reliability simulation is not performed by the simulator.

Examples
*relxpert: .age 10y

*relxpert: .age 1y 2y 5y 8y 10y

ΔVt
May 2010 601 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.agemethod

*relxpert: .agemethod { interp [linlog|loglog] }

*relxpert: .agemethod agemos

Description

This statement specifies the method for calculating degraded SPICE model parameters for
aging circuit simulation. The interp argument is used to select the method of interpolation
for aged model files and agemos specifies which AgeMOS method is used. The domain
(parameter versus) for performing the interpolation and regression can be linear-log or
log-log. Cadence recommends using the interpolation in the log-log domain method.

The default is

*relxpert: .agemethod interp loglog

Examples
*relxpert: .agemethod interp loglog

*relxpert: .agemethod agemos

Age
May 2010 602 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.ageproc

*relxpert: .ageproc mname FILES = fname1 fname2 [fname3…]

Description

This statement specifies aged SPICE model files for generating HCI degraded SPICE models
using the interpolation method (selected through .agemethod). The mname argument is the
transistor model name that applies to the aged SPICE models and it must be the same model
name used in the SPICE .model statement. The fname1 argument specifies the model file
containing the fresh model. All of the other model files fname2…n contain aged SPICE
models. The order of the aged SPICE model files corresponds to increasing age values (that
is, fname1 is the fresh model file and fnamen is the aged model file with the highest age
value).

Example
*relxpert: .ageproc nmos files=model/nmos0.mod

*relxpert: + model/nmos1.mod model/nmos2.mod

tells the Virtuoso UltraSim simulator any mname model without a corresponding .ageproc
statement is not aged (that is, no degraded models are generated).

Note: Each fname file can only contain one .model statement.
May 2010 603 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.deltad

*relxpert: .deltad value

Description

This statement is used to perform the lifetime calculation for each transistor under circuit
operating conditions. The criterion for lifetime is value. The degradation value can be
transconductance (), linear or saturation drain current degradation (), or
threshold voltage shift (), or any other degradation monitor, dependent on how the lifetime
parameters are extracted.

Example
*relxpert: .deltad 0.1

tells the Virtuoso UltraSim simulator to perform a lifetime calculation for a 10%
transconductance change in all devices (for all devices).

ΔVt

ΔD 0.1=
May 2010 604 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.hci_only

*relxpert: .hci_only

Description

If this statement is specified, only HCI analysis is performed, even if NBTI models are
included in the simulation.
May 2010 605 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.minage

*relxpert: .minage value

Description

If specified, this statement speeds up the aging calculation by using fresh SPICE model
parameters if the transistor is smaller than value (set the smallest value for which
degraded SPICE model parameters are calculated).

The default is

*relxpert: .minage 0.0

A degraded SPICE model is generated for transistor .

Example
*relxpert: .minage 0.01

Age Age

Age 0.0>
May 2010 606 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.nbti_only

*relxpert: .nbti_only

Description

If this statement is specified, only NBTI analysis is performed, even if HCI models are
included in the simulation.
May 2010 607 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
.nbtiageproc

*relxpert: .nbtiageproc mname files = fname1 fname2 [fname3...]

Description

This statement specifies aged SPICE model files for generating NBTI degraded SPICE
models using the interpolation method (selected through .agemethod). The mname argument
is the transistor model name that applies to the aged SPICE models and it must be the same
model name used in the SPICE .model statement. The fname1 argument specifies the
model file containing the fresh model. All of the other model files fname2… n contain aged
SPICE models. The order of the aged SPICE model files corresponds to increasing age
values (that is, fname1 is the fresh model file and fnamen is the aged model file with the
highest age value).

Example
*relxpert: .nbtiageproc nmos files = model/nmos0.mod

*relxpert: + model/nmos1.mod model/nmos2.mod

tells the Virtuoso UltraSim simulator that any mname model without a corresponding
.nbtiageproc statement is not aged (that is, no degraded models are generated).

Note: Each fname file can only contain one .model statement.
May 2010 608 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Virtuoso UltraSim Simulator Option

deg_mod

Spectre Syntax

usim_opt deg_mod={ e|r }

SPICE Syntax

.usim_opt deg_mod={ e|r }

Description

This option specifies the method used to calculate age rate (see Equation 12-2 on page 594).

The default is

.usim_opt deg_mod=r

Note: The equation-based calculation is denoted as e and the representative calculation is r.

Reliability Shared Library

uri_lib

SPICE Syntax

.usim_opt uri_lib = library_path

Or:

*relxpert: .uri_lib library_path

Description

This option loads a URI library. You can use both .usim_opt and .relxpert: syntax
formats to set the uri_lib option for UltraSim reliability.
May 2010 609 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Examples
.usim_lib uri_lib = ./libURI.so

*relxpert: .uri_lib ./libURI.so

Virtuoso UltraSim Simulator Output File

The Virtuoso UltraSim simulation results are stored in an output file ending with the suffix
.bo#, where # is the alter number used in the netlist file.

The bo# file contains a list of all significantly degraded elements, as well as each elements
name, total age, degradation, and lifetime:

■ The calculated of the transistor (see Equation 12-5 on page 595).

■ The transistor degradation after the time specified in the .age command.

The degradation can be transconductance (), linear or saturation drain current
() degradation, threshold voltage shift (), or any other degradation monitor.
The selection of this quantity depends on the type of degradation model parameters that
are extracted.

■ The lifetime of a transistor to reach the failure criterion specified in the .deltad
command.

The degradation can be transconductance (), linear or saturation drain current
() degradation, threshold voltage shift (), or any other degradation monitor.
The selection of this quantity depends on the type of degradation model parameters that
are extracted.

Example 1
*relxpert: .age 10Y

Elem name Total Age Degradation Lifetime

XI0.M00.00399142 0.0832736 15.0193

XI8.M00.00343223 0.0778054 17.4663

XI4.M00.00342567 0.0777383 17.4998

XI2.M10.00285925 0.177749 3.66879

XI5.M10.00311931 0.181816 3.36506

XI3.M10.003535 0.187481 2.97245

XI0.M10.0038534 0.191414 2.7287

Age

ΔVt

ΔVt
May 2010 610 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
Example 2

Multiple stress time values:

*relxpert: .age 3.80518e-006Y

Elem name Total Age Degradation Lifetime

M1 .27785e-0100.00384321 2.38626

.age 3.80518e-005Y

Elem name Total Age Degradation Lifetime

M1 1.27785e-0090.00674256 2.38626

.age 0.000380518Y

Elem name Total Age Degradation Lifetime

M1 1.27785e-0080.0118292 2.38626

The of all transistors is stored in a file with the suffix .ba#. The information stored in the
file contains the following:

■ The transistor name with subcircuit call name

■ The in the forward and reverse modes of transistor operation

The forward mode is defined when the degradation damage is found at the first (drain)
node of the transistor.

■ The total of the transistor without considering forward or reverse mode operation

Example 3

Multiple stress time values:

*relxpert: .age 0.000190259Y

Elem nameForward Age Reverse Age Total Age

XINV1.M12.67973e-0089.25076e-0102.77224e-008

XINV2.M12.62009e-0089.95977e-0102.71969e-008

.age 0.000570776Y

Elem name Forward Age Reverse Age Total Age

XINV1.M1 8.03919e-0082.77523e-0098.31671e-008

XINV2.M1 7.86028e-0082.98793e-0098.15907e-008

.age 0.000951294Y

Elem name Forward Age Reverse Age Total Age

XINV1.M1 1.33986e-0074.62538e-0091.38612e-007

XINV2.M1 1.31005e-0074.97989e-0091.35984e-007

Example 4

Multiple degradation models:

Age

Age

Age
May 2010 611 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim Reliability Simulation
XI3.M0 0.00287476 0 0.00287476

XI2.M0 0.00256932 0 0.00256932

XIL1.M1 2.55524e-0060 2.55524e-006

0.00214127 8.0686e-005 0.00222196

XIL2.M1 2.55524e-0060 2.55524e-006

0.00214127 8.0686e-005 0.00222196

In this example, there are two lines for the XIL1.M1 and XIL2.M1 MOSFETs. Each line
represents each degradation model for the MOSFETs. The order is the same as the order
specified by the degradation models in the fresh model card.
May 2010 612 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
13
Digital Vector File Format

This chapter describes how to perform vector checks and apply stimuli according to digital
vectors using the Virtuoso® UltraSim™ simulator. To process digital vector file formats, the
following statement needs to be specified in the netlist file:

Spectre Syntax

vec_include “vector_filename” [HLCheck=0|1] [autostop=true|false]
[insensitive=yes|no]

SPICE Syntax

.vec “vector_filename” [HLCheck=0|1] [autostop=true|false] [insensitive=yes|no]

Note: A period (.) is required when using SPICE language syntax (for example, .vec).

Description

HLCheck is a special flag that you need to set to generate the vector output check for H and
L states of input signals. Bidirectional and output signals always check H and L states and
are unaffected by the HLCheck flag. Normally, you do not need to use the HLCheck flag
unless it is necessary to check if input signals are shorted in the netlist file. The output
resistance of H and L states for input signals can be specified by the hlz statement.

Each vec card can specify only one vector file. If a netlist file needs to include multiple vector
files, multiple vec cards can be used. For example, if a netlist file needs to include three
vector files, then it needs to use three vec cards.

Spectre Syntax:

Card 1: vec_include “file1.vec”

Card 2: vec_include “file2.vec”

Card 3: vec_include “file3.vec”

SPICE Syntax:

Card 1: .vec “file1.vec”

Card 2: .vec “file2.vec”
May 2010 613 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Card 3: .vec “file3.vec”

The Virtuoso UltraSim simulator handles the vector file content as case insensitive, except
when called in Virtuoso Spectre® mode. For Spectre mode, use the -spectre option or input
file name extension *.scs.

Arguments

Example

Spectre Syntax:

vec_include “vec1.vec” autostop=true

SPICE Syntax:

.vec “vec1.vec” autostop=true

tells the Virtuoso UltraSim simulator to replace the end time with the time from the vec1.vec
file (that is, the time from the vec1.vec file is used as the transient simulation end time).

vector_filename The filename of the digital vector file

HLCheck = 0 | 1 Special flag which turns on checking for the H and L states for
input signals (default = 0)

autostop=true|false ■ false tells the Virtuoso UltraSim simulator to use the end
time from the .tran or tran statement (default).

■ true tells the simulator to use the last specified time point
in the vector file as the end time. If multiple .vec files are
specified, and autostop=true is in one or all .vec
statements, the simulator takes the longest time point
available in the .vec files and uses it as the end time.

Note: The autostop argument can also be used when
loading .vcd and .evcd files. For more information about
these files, refer to “Supported Netlist File Formats” on
page 51.

insensitive=yes|no Specifies whether vector file content is considered case
sensitive or insensitive. By default, the Virtuoso UltraSim
simulator determines case sensitivity based on the Spectre/
SPICE mode used. When running in Spectre mode (*.scs file
extension or -spectre), the vector file content is treated as
case sensitive. In SPICE mode, the content is case insensitive.
May 2010 614 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
The digital vector file is described in detail in the following sections:

■ General Definition on page 615

■ Vector Patterns on page 617

■ Signal Characteristics on page 631

■ Tabular Data on page 652

■ Vector Signal States on page 653

■ Digital Vector Waveform to Analog Waveform Conversion on page 654

■ Example of a Digital Vector File on page 656

■ Frequently Asked Questions on page 657

General Definition

Comment Line

A comment line begins with a semicolon ‘(;).

Note: A semicolon is only used in digital vector file format comment lines.

Continuous Line

A continuous line is indicated by a plus sign ‘(+).

The maximum length of a line is 1024 characters. If a card is longer than 1024 characters,
you need to use the continuous line for the card.

Tip

For a long identifier (for example, a 1280-bit vector bus) that cannot fit on a single
line, use the forward slash \ sign after the last bit. Do not use a space between the
last bit and the \ sign. Put a space in front of the continuous vector or use a + sign.
If you use a + sign, the continuous vector is treated as another vector bus.

Signal Mask

A signal mask can be used to specify the effective range of the current statement in a vector
file (statement applies to specific signals). The Virtuoso UltraSim simulator matches the
signals according to the signal definition order in the radix, vname, and io statements. For
the corresponding signal, a value of 1 indicates the statement is valid and a value of 0
May 2010 615 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
indicates the statement is ignored. Based on the size of the vector specified in the radix
statement, the signal mask value can range from 0 to 1 for 1bit, 0 to 3 for 2bit, 0 to 7 for 3bit,
and 0 to 9 or A to F for 4bit.

Example
radix 2 2 4

io i i o

vname A[1:0] B[1:0] P[3:0]

vih 2.5 3 0 0

vih 3.3 0 3 0

trise 0.5 1 2 0

chk_window -1 5 1 0 0 F

For more information about the statements used in this example, refer to “Vector Patterns” on
page 617 and “Signal Characteristics” on page 631.
May 2010 616 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Vector Patterns

In this section, vector patterns (such as signal sizes, directions, names, and check windows)
are defined. The Virtuoso UltraSim simulator supports the following digital vector pattern
statements:

■ radix on page 618

■ io on page 619

■ vname on page 620

■ hier on page 622

■ tunit on page 623

■ chk_ignore on page 624

■ chk_window on page 625

■ enable on page 628

■ period on page 630
May 2010 617 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
radix

radix vector1_size1 vector2_size2 ...vector_sizeN

Description

Specifies the size (in bits) of the vector. This statement must be located before any other
statements, and can only be specified once. Valid vector sizes include 1 (binary), 2, 3 (octal),
or 4 (hexadecimal).

Tip

If the radix of the vector is larger than 1, the name of this vector specified in vname
must be indexed as [msb:lsb] or [lsb:msb]. If the radix is 4, the vname can use
names such as name[3:0] and name[0:3].

Examples

The following example

radix 2 2 4

contains three vectors: Two 2-bit vectors and one 4-bit vector.

Note: The examples presented in the rest of this chapter follow this format.

In the next example

radix 2 11 1111

also contains three vectors, two 2-bit vectors and one 4-bit vector, but in a different format.
May 2010 618 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
io

io type1 type2 ...typeN

Description

The io statement defines the type of vector. It can be the i (input), o (output), or b
(bidirectional) type. If this statement is specified more than once, the last value is used.

Notes

■ Use the enable statement to specify the control signal for the bidirectional vector (b). If
this specified control signal is not found, the Virtuoso UltraSim simulator issues an error.

■ If the control signal of the bidirectional vector is not specified by the enable statement,
the Virtuoso UltraSim simulator treats it as an input signal.

Example
radix 2 2 4

io i i o

The first and second vectors are input vectors, and the third vector is an output vector.
May 2010 619 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vname

vname name1 name2 ... nameN

Description

The vname statement assigns a name to each vector. For a single bit vector, it can have the
following naming format: Va, Va[0:0], or Va[[0:0]]. For multiple bit vectors, the naming
formats include: Va[2:0], Va[[2:0]], Va[0:2], or Va[[0:2]]. Each naming format is
given a different resulting name. If this statement is specified more than once, the last value
is used.

Hierarchical signal names are also supported by vname. That is, you can apply vector stimuli
or perform a vector check on the internal signals of instances. When mapping hierarchical
signal names, the default delimiter is a period (.). You can change the value of the delimiter
using the hier_delimiter option in the analog netlist file. The hier statement can be used
to enable or disable this option.

Tip

If the radix of the vector is larger than 1, the name of the vector specified in vname
must be indexed as [msb:lsb] or [lsb:msb]. If radix is 4, vname can use names such
as name[3:0] and name[0:3].

Examples

In the following example

radix 2 2 4

Table 13-1 vname Vector Names

Naming Format Resulting Names

Va[2:0] Va2, Va1, Va0

Va[[2:0]] Va[2], Va[1], Va[0]

Va[0:2] Va0, Va1, Va2

Va[[0:2]] Va[0], Va[1], Va[2]

X1.Va[0:2] Internal signals Va0, Va1, and Va2 of instance X1

TOP.X1.Va[[0:2]] Internal signals Va[0], Va[1], and Va[2] of instance TOP.X1
May 2010 620 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
io i i i

vname va[1:0] vb[[1:0]] vc[[0:3]]

tells the Virtuoso UltraSim simulator that the voltage sources in the first vector are named va1
and va0. Voltage sources in the second vector are connected to vb[1] and vb[0]. The third
vector has voltage sources with the names vc[0], vc[1], vc[2], and vc[3].

In the next example

radix 2 2 4

io i i o

vname X1.va[1:0] X2.vb[[1:0]] X1.X3.vc<[0:3]>

hier 1

tells the simulator the voltage sources in the first vector are mapped to internal signals va1
and va0 of instance X1. Voltage sources in the second vector are connected to v[1] and
vb[0] of instance X2. The third vector defines the output vector check for signals vc<0>,
vc<1>, vc<2>, and vc<3> of instance X1.X3.
May 2010 621 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
hier
hier 0|1

Description

This option is used to specify whether or not the hierarchical signal name mapping feature is
enabled. If hier is set to 0, the hierarchical delimiter (for example, signal period or .) is
considered to be part of the signal name. The default value is 1 (hierarchical signal name
mapping enabled). If this statement is specified more than once, the last value is used.

Example
radix 2

io i

hier 0

vname X1.va[1:0]

tells the Virtuoso UltraSim simulator to connect the voltage sources with the X1.va1 and
X1.va0 signals located in the top level of the analog netlist file.
May 2010 622 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
tunit

tunit time_unit

Description

Sets the time unit for all time related variables. The time unit can be one of the following: fs
(femto-second), ps (pico-second), ns (nano-second), us (micro-second), and ms (milli-
second). The default time unit is 1 ns. If this statement is specified more than once, the last
value is used.

Example
tunit 1.5ns
May 2010 623 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
chk_ignore

chk_ignore start_time end_time [mask1 mask2 ... maskN]

Description

The chk_ignore statement specifies a window for ignoring output vector checks. A mask
can be provided to specify which vector and bit to apply. If the mask is not specified, the
setting applies to all output vectors. The start_time and end_time arguments must be
specified. To define multiple time windows for ignoring output vector checks, use multiple
chk_ignore statements.

Arguments

Example
tunit 1n

chk_ignore 0 100 0F30 ; 0F30 is a signal mask

chk_ignore 3e+2 500 0F30

chk_ignore 0 -1 F000 ; F000 is a signal mask

tells the Virtuoso UltraSim simulator to ignore the output vector check for signals specified by
the mask 0F30 in the time windows 0 ns to 100 ns and 300 ns to 500 ns, and to ignore the
entire transient time for the signals specified by the mask F000.

start_time Defines the start time for the window used to ignore the output vector
checks (use tunit to define the start_time units).

end_time Defines the end time for the window used to ignore the output vector
checks (use tunit to define the end_time units). You can use
end_time=-1 to ignore the entire transient time.
May 2010 624 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
chk_window

chk_window start_time end_time steady [period=const [first=const]] [mask1 mask2
... maskN]

Description

The chk_window statement specifies a window for vector checking. The Virtuoso UltraSim
simulator only checks the signal states within this window. The signal states outside the
window are ignored. You can provide a mask to specify which vector and bit to apply. If the
mask is not specified, the setting applies to all output vectors. The checks occur at every time
point specified in the vector file or as defined by the period and first arguments.

Setting the period argument activates periodic window checking. If period is not defined,
the first argument is ignored by the simulator.

Notes

■ To activate periodic window checking, you need to include the "period=" and
"first=" keywords.

■ Parameters and expressions are supported for the start_time, end_time, period,
and first arguments (see “Examples” on page 626 for more information about
parameters and expressions syntax).

Arguments

start_time Defines the window start time at which the window starts at time
vec_time-start_time. If the period argument is defined,
vec_time is the first time point defined by the first argument,
and the vector checks are repeated according to the value of
period. If the period argument is not defined, vec_time is the
time point defined in the vector file.

end_time Defines the window end time at which the window ends at time
vec_time+end_time.

steady = 0 | 1 Can be set to 0 or 1. If set to 0, then the vector check passes as
long as the signal has reached the desired state once. If set to 1,
then the signal remains in the desired state for the entire window
period to pass the vector check.

period Activates periodic window checking and defines its time period.
May 2010 625 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Examples

The following example

chk_window 5 5 0

tells the Virtuoso UltraSim simulator to set the steady state to 0, so the waveform passes the
vector check (see Figure 13-1 on page 626).

Figure 13-1 Vector Check with chk_window Steady State Set to 0

In the next example

chk_window 5 5 1

tells the simulator to set the steady state to 1, which means the signal needs to stay at state
1 for the whole window period to pass the vector check, as shown in Figure 13-2 on page 626.
If the signal is as shown in Figure 13-1 on page 626, the vector check fails.

Figure 13-2 Vector Check with chk_window Steady State Set to 1

In the next example

radix 1 1 1 1

first Defines the first check point for periodic window checking (only
valid when the period argument is also defined).

vec_timestart=vec_time-5 end=vec_time+5

expected state = 1

vec_timestart=vec_time-5 end=vec_time+5

expected state = 1
May 2010 626 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vname ph1 d q qb

io i i o o

tunit 10ns

chk_window -10 30 1 period=100 first=5 0 0 1 0

tells the simulator to activate periodic window check for signal q. The vector check points start
at 50 ns and repeat every 1 us.

In the next example

chk_window -10 30 1 first=5 0 0 1 0

tells the simulator to ignore the first argument because a valid period argument has not
been specified.

In the next example

tunit 1ns

param myfadd(x,y)=’x + y’

param mystartt=1.5 mystopt=’(myfadd(mystartt, 50.5)’

chk_window mystartt mystopt 1

tells the simulator to set the steady state to 1, the start time for chk_window to 1.5 ns, and
the end time to 52 n (this example shows the chk_window parameters and expressions
syntax).
May 2010 627 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
enable

enable ‘enable_signal_expr’ [mask1 mask2 ... maskN]

Description

The enable statement connects the enable signal, or enable signal expression, to the
bidirectional vector. The resulting value 1 (H) enables the output signal. The controlled
bidirectional signal is regarded as an input for other values.

You can provide a mask to specify to which vector and bit the enable signal expression
applies. If the mask is not specified, the setting applies to all bidirectional vectors. Also, if this
statement is specified more than once, the last value is used.

The enable signal can be used in a vector or an analog netlist file. When an enable signal is
used in an analog netlist file, it can also be defined as an output signal for a vector check or
only used as an enable signal. The avoh and avol statements can be used to define the logic
high and low voltage thresholds for the analog signal.

Note: The enable signal cannot be defined as a bidirectional signal.

Bit-wise logic operators are supported in an enable signal expression: & (AND), | (OR), ^
(XOR), and ~ (NOT). Additional operators can be created using a combination of the
supported operators. The order of processing for the logic operators is NOT > AND > OR,
XOR (OR and XOR are processed at the same time). You can use parentheses () around
the operators to change the processing order.

Note: You need to use single quotation marks ‘’ for enable signal expressions.

Examples

The following example

radix 1 1 1 1

io i i b o

vname en in bi out

enable en 0 0 1 0

tells the Virtuoso UltraSim simulator to set en as the enable signal for bi, and when en is in
1 (or H) state, bi becomes the output signal. When en is in 0 (or L, X, U) state, bi changes
to the input signal. When en is in Z state, the bi (input and output) signal also changes to Z
state.

In the next example
May 2010 628 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
radix 1 1 1

io i b o

vname en bi out

enable ~en 0 1 0

tells the simulator to set en as the enable signal for bi. Unlike the first example, this enable
signal name contains a ~ sign, which reverses the state to control the bidirectional signal.
Now when the enable signal is in 1 (or H) state, the bi becomes an input signal.

In the next example

radix 1 1 1

io b b o

vname bi_1 bi_2 out

enable ana_en1 0 1 0

enable ‘(ana_en1 | X1.ana_en2) & out’ 1 0 0

tells the Virtuoso UltraSim simulator that the ana_en1 and X1.ana_en2 enable signals
originate in the analog netlist file, and X1.ana_en2 is a hierarchical signal. Although the out
signal is used as an enable signal, the simulator still performs a vector check.
May 2010 629 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
period

period time

Description

The period statement is used to specify the time interval for tabular data, so that the
absolute time is not needed.

If period is not specified, then the absolute time must be specified in the tabular data. If it is
specified more than once, the last value is used.

Example
period 10.0

tells the Virtuoso UltraSim simulator that the signal period is 10 ns and the absolute time
points are unnecessary.
May 2010 630 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Signal Characteristics

In this section, signal characteristics containing various attributes for input or output signals
(such as delay, rise or fall time, voltage thresholds for logic low and high, and driving ability)
are defined. For most of these statements, the mask can be used to apply the specified
characteristics to the corresponding signals. The statements are organized into three groups:

■ Timing on page 632

■ Voltage Threshold on page 639

■ Driving Ability on page 648

Note: In the following examples for time-related statements, the time unit is 1 ns if the
statement is not specified with tunit.
May 2010 631 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Timing

Timing characteristics of input or output signals (such as delay, rise time, and fall time) can
be specified using the following statements. The values of these statements can be positive
or negative. For the delay timing characteristics, the negative value is used to advance the
signals by a specified time. For the rise and fall timing characteristics, the negative value is
the same as the positive one.

■ idelay on page 633

■ odelay on page 634

■ tdelay on page 635

■ slope on page 636

■ tfall on page 637

■ trise on page 638

Note: The Virtuoso UltraSim simulator checks whether the values of the trise, tfall, and
slope statements are reasonable (warning message is issued when the defined value is too
small or large).
May 2010 632 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
idelay

idelay time_value [mask1 ... maskN]

Description

The idelay statement specifies the delay time for the corresponding input signal. If a
bidirectional signal is specified, this applies only to the input stage of the bidirectional signal.
The default value is 0.0, if idelay or tdelay is not set.

Example
idelay 5.0

tells the Virtuoso UltraSim simulator to delay all input signals by 5 ns, whereas

idelay -5.0

tells the simulator to advance all input signals by 5 ns.
May 2010 633 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
odelay

odelay time_value [mask1 ... maskN]

Description

The odelay statement specifies the time delay for the corresponding output signal. If a
bidirectional signal is specified, this applies only to the output stage of the bidirectional signal.
The default value is 0.0, if odelay or tdelay is not set.

Example
odelay 5

tells the Virtuoso UltraSim simulator to delay all output signals by 5 ns, whereas

odelay -5.0

tells the simulator to advance all output signals by 5 ns.
May 2010 634 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
tdelay

tdelay time [mask1 mask2 ... maskN]

Description

The tdelay statement specifies the delay time for corresponding vectors. You can provide a
mask to specify which vector and bit to apply. If the mask is not specified, the setting applies
to all vectors (input, output, and bidirectional).

If tdelay is not specified, the default value is 0.0. If this statement is specified more than
once, the last value is used for the active mask. This statement can also overrule the value
previously set by the idelay or odelay statements.

Examples
tdelay 5.0

tells the Virtuoso UltraSim simulator to advance all signals by 5 ns.

tdelay -5.5 3 0 F

tells the simulator to advance all signals, specified with a mask, by 5.5 ns.
May 2010 635 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
slope

slope time [mask1 mask2 ... maskN]

Description

The slope statement sets the input vectors rise and fall time. You can provide a mask to
specify which vector and bit to apply. If the mask is not specified, the setting applies to all input
vectors.

If this statement is not specified, then the default value of 0.1 ns is used. If this statement is
specified more than once, the last value is used for the active mask. This statement can also
overrule the value previously set by the trise or tfall statements.

Examples
slope 0.05

or

vname va[1:0] vb[[1:0]] vc[[0:3]]

io i i o

slope .025 1 3 5

The least significant bit, va0, of the first input vector and the two bits, vb1 and vb0, of the
second input vector have a trise and tfall of 0.025 ns. The third vector is an output vector
(specified in the io statement), so it is not affected by the slope statement.
May 2010 636 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
tfall

tfall time [mask1 mask2 ...maskN]

Description

The tfall statement specifies the falling time of the input vector. You can provide a mask to
specify which vector and bit to apply. If the mask is not specified, the setting applies to all input
vectors.

The value from the slope statement is used, if tfall is not specified. If this statement is
specified more than once, the last value is used for the active mask. This statement can also
overrule the value previously set by the slope statement.

Examples

The following example

tfall 0.05

tells the Virtuoso UltraSim simulator that all input vectors have a fall time of 0.05 ns.

In the next example

vname va[1:0] vb[1:0] vc[0:3]

tfall 0.1 0 2 0

the most significant bit, vb[1], of the second input vector has a fall time of 0.1 ns. The fall
time of vb[0] and other input vectors remains the same.
May 2010 637 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
trise

trise time [mask1 mask2 ...maskN]

Description

The trise statement specifies the rise time of the input vector. You can provide a mask to
specify which vector and bit to apply. If the mask is not specified, the setting applies to all input
vectors.

If trise is not specified, the value from the slope statement is used. If this statement is
specified more than once, the last value is used for the active mask. This statement can also
overrule the value previously set by the slope statement.

Examples

The following example

trise 0.1

or

trise -0.1

tells the Virtuoso UltraSim simulator that all input vectors have a rise time of 0.1 ns.

In the next example

vname va[1:0] vb[1:0] vc[0:3]

trise 0.1 0 3 0

the two bits of the second input vector has a rise time of 0.1 ns and the trise of the other
input vector remains the same.
May 2010 638 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Voltage Threshold

When converting input vectors to stimuli or performing an output vector check, the voltage
threshold for logic low and high can be specified using the following statements:

■ vih on page 640

■ vil on page 641

■ voh on page 642

■ vol on page 643

■ avoh on page 644

■ avol on page 645

■ vref on page 646

■ vth on page 647
May 2010 639 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vih

vih voltage [mask1 mask2 ...maskN]

Description

The vih statement specifies the logic high voltage of the input vector. You can provide a mask
to specify which vector and bit to apply. If the mask is not specified, the setting applies to all
input vectors.

If vih is not specified, the default voltage is 3.3. If this statement is specified more than once,
the last value is used for the active mask.

Examples
vih 5.0

or

vih 5.5 3 1 0
May 2010 640 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vil

vil voltage [mask1 mask2 ... maskN]

Description

The vil statement specifies the logic low voltage of the input vector. You can provide a mask
to specify which vector and bit to apply. If the mask is not specified, the setting applies to all
input vectors.

If vil is not specified, the default voltage is 0.0. If this statement is specified more than once,
the last value is used for the active mask.

Examples
vil 0.25

or

vil 0.5 3 0 0
May 2010 641 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
voh

voh voltage [mask1 mask2 ... maskN]

Description

The voh statement specifies the logic high voltage of the output vector. You can provide a
mask to specify which vector and bit to apply. If the mask is not specified, the setting applies
to all output vectors.

If voh is not specified, the default voltage is 3.3. If this statement is specified more than once,
the last value is used for the active mask.

Examples
voh 5.0

or

voh 5.5 0 0 F
May 2010 642 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vol

vol voltage [mask1 mask2 ... maskN]

Description

The vol statement specifies the logic low voltage of the output vector. You can provide a
mask to specify which vector and bit to apply. If the mask is not specified, the setting applies
to all output vectors.

If vol is not specified, the default voltage is 0.0. If this statement is specified more than once,
the last value is used for the active mask.

Example
vol = 0.05

voh = 1

tells the Virtuoso UltraSim simulator to interpret all output signals with values below 0.05 V
as 0, print all signals above 1 V as 1, and all signals between 0.05 V and 1 V are U.
May 2010 643 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
avoh

avoh voltage [signal_name1 signal_name2 ... signal_nameN]

Description

The avoh statement specifies the logic high voltage of the signal from the analog netlist file,
which is not defined in the radix, vname, or io statements. You can provide signal names to
specify the valid scope for avoh (wildcards are supported). A period (.) can be used as the
hierarchical delimiter to specify the hierarchical signal. If a signal name is not used, the setting
applies to all analog signals used in the vector file.

For more information about wildcards, see “Wildcard Rules” on page 55.

Note: A mask cannot be used to specify which vector and bit to apply to the signal (different
behavior from other vector format statements).

Example
avoh = 1 ana_en* X1.Enanble

tells the Virtuoso UltraSim simulator that analog signals ana_en* and X1.Enanble have a
logic high voltage of 1.0.
May 2010 644 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
avol

avol voltage [signal_name1 signal_name2 ... signal_nameN]

Description

The avol statement specifies the logic low voltage of the signal from the analog netlist file,
which is not defined in the radix, vname or io statements. You can provide signal names to
specify the valid scope for avol (wildcards are supported). A period (.) can be used as the
hierarchical delimiter to specify the hierarchical signal. If a signal name is not used, the setting
applies to all analog signals used in the vector file.

For more information about wildcards, see “Wildcard Rules” on page 55.

Note: A mask cannot be used to specify which vector and bit to apply to the signal (different
behavior from other vector format statements).

Example
avol = 0.5 ana_en* X1.Enanble

tells the Virtuoso UltraSim simulator that analog signals ana_en* and X1.Enanble have a
logic low voltage of 0.5.
May 2010 645 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vref

vref node_name [mask1 mask2 ... maskN]

Description

The vref statement sets the reference node of the input vector. You can provide a mask to
specify which vector and bit to apply. If the mask is not specified, the setting applies to all input
vectors.

If vref is not specified, the default value is 0 (that is, the ground). If this statement is specified
more than once, the last value is used for the active mask.

Examples

The following example

vref 0

tells the Virtuoso UltraSim simulator to set the negative node of the vector source to ground.

In the next example

vref vss

tells the simulator to set the negative node of the vector source to vss.

Note: The Virtuoso UltraSim simulator only supports reference node to ground. References
to other nodes causes the simulator to issue error messages.
May 2010 646 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
vth

vth voltage [mask1 mask2 ... maskN]

Description

The vth statement sets the threshold voltage of the output vector. You can provide a mask
to specify which vector and bit to apply. If the mask is not specified, the setting applies to all
output vectors.

If vth is not specified, the default value is 1.65. If this statement is specified more than once,
the last value is used for the active mask.

Examples
vth 2.5

or

vth 2.7 0 0 8
May 2010 647 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Driving Ability

For input stimuli, the output resistance of vector sources can affect Virtuoso UltraSim
simulation results. To specify the driving ability of vector sources, use the following
statements:

■ hlz on page 649

■ outz on page 650

■ triz on page 651
May 2010 648 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
hlz

hlz resistance [mask1 mask2 ... maskN]

Description

The hlz statement specifies the output resistance for the corresponding input vector, but
unlike outz, this output resistance only applies to the H and L states of the vector. This
resistance overwrites the resistance for the H and L states set by outz.

You can provide a mask to specify which vector and bit to apply. If the mask is not specified,
the setting applies to all input vectors.

If hlz is not specified, the default value follows outz. If hlz is set to 0, the Virtuoso UltraSim
simulator uses 0.01 instead. If this statement is specified more than once, the last value is
used for the active mask.

Examples
hlz 1meg

or

hlz 4.7k 2 2 0
May 2010 649 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
outz

outz resistance [mask1 mask2 ... maskN]

Description

The outz statement specifies the output resistance for the corresponding input vector. You
can provide a mask to specify which vector and bit to apply. If the mask is not specified, the
setting applies to all input vectors.

If outz is not specified, the default value is 0.01. If outz is set to 0, the default value is used.
If this statement is specified more than once, the last value is used for the active mask.

Examples
outz 1meg

or

outz 5.5meg 2 2 0
May 2010 650 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
triz

triz resistance [mask1 mask2 ... maskN]

Description

The triz statement specifies the output impedance when the corresponding input vectors
are in tri-state. You can provide a mask to specify which vector and bit to apply. If the mask is
not specified, the setting applies to all input vectors.

If triz is not specified, the default value is 1,000 Meg. If triz is set to 0, the Virtuoso
UltraSim simulator uses 0.01 instead. Also, if this statement is specified more than once, the
last value is used for the active mask.

Examples
triz 2000meg

or

triz 550meg 2 2 0
May 2010 651 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Tabular Data

This section describes the values of signals at specified times (absolute or period time
modes). For periodic signals, it is unnecessary to specify the absolute time at each time point.
The period statement can be used to specify the signal period.

Absolute Time Mode

The period is not specified.

Time1 vector1_value1 vector2_value1 vector3_value1
Time2 vector1_value2 vector2_value2 vector3_value2

...

TimeN vector1_valueN vector2_valueN vector3_valueN

Period Time Mode

The period is specified.

vector1_value1 vector2_value1 vector3_value1
vector1_value2 vector2_value2 vector3_value2

...

vector1_valueN vector2_valueN vector3_valueN

vector_value can be 0-9, A-F, Z, X, L, H, or U, and is dependent on how radix is set.

Description

Tabular data is used to describe the waveform of voltage sources.

Examples
; format: time vector

0 000101010

10 011010101

20 000101010

or

; format: vector

00101010

11010101

00101010

Note: This example assumes the period has been set by period 10.0.
May 2010 652 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
or

; format: time vector

10 02A

20 315

30 02A

Valid Values

The valid values in tabular data depend on the radix statement setting.

The values specified in the table above are converted into 0 and 1 states by the Virtuoso
UltraSim simulator. The simulator also accepts L, H, Z, X, and U values.

Vector Signal States

Input

The Virtuoso UltraSim simulator accepts the following signal states for input vector signals.

Table 13-2 Tabular Data Valid Values

Value Specified in
radix Statement Valid Value

1 0, 1

2 0-3

3 0-7

4 0-9, A-F

Table 13-3 Input Vector Signal States

Signal State Description

0 Drive to ZERO (GND)

1 Drive to ONE (VDD)

Z, z Floating to high-impedance

X, x Drive to ZERO (GND)
May 2010 653 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
The resistance values of L and H are set by the hlz statement, and the impedance value of
Z is set by the triz statement.

Output

The Virtuoso UltraSim simulator accepts the following signal states for output vector signals.

Digital Vector Waveform to Analog Waveform Conversion

The Virtuoso UltraSim simulator converts the digital vector waveform into a PWL waveform.
The rising/falling edge occurs at the switching state point of the digital waveform, as shown
in Figure 13-3 on page 655.

L, l Resistively drive to ZERO (GND)

H, h Resistively drive to ONE (GND)

U, u Drive to ZERO (GND)

Table 13-4 Output Vector Signal States

Signal State Description

0 Expects ZERO

1 Expects ONE

Z, z Accepts any signal state

X, x Accepts any signal state

U, u Accepts any signal state

Table 13-3 Input Vector Signal States, continued

Signal State Description
May 2010 654 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Figure 13-3 Conversion of Digital Waveform to PWL Waveform

Expected Output and Comparison Result Waveforms for
Digital Vector Files

If a digital vector file contains output or bi-directional vectors, the Virtuoso UltraSim simulator
generates two waveform files: One contains all the expected output vector waveforms as
specified in the digital vector file and the other contains the waveforms from the comparison
results.

You can use the following statement in the digital vector file to enable or disable the simulator
from generating these waveforms (default is 1 or enabled).

.output_wf 0|1

The waveform format is defined by the wf_format option in the analog netlist file. A
maximum of two waveform files are generated for one or more digital vector files. The
expected waveform filename is netlist.vecexp.trn (PSF, FSDB, etc.) and the output
vector is signal_name_exp. The comparison waveform filename is
netlist.vecerr.trn (PSF, FSDB, etc.) and each comparison waveform is
signal_name_err.

The comparison result values include,

0 – matched

1 – mismatched

X – ignored (output vector = X or bi-directional vector at input stage are possible causes)

In addition to the individual comparison result waveforms, the simulator generates a single
vec_error waveform to indicate the overall comparison results. Waveform vec_error
equals 1 when any of the individual comparison result waveforms also have a value of 1 (X is
treated as 0).

Digital

PWL

trisetfall
May 2010 655 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Example of a Digital Vector File

This is a basic digital vector file that shows how each Virtuoso UltraSim simulator statement
is used.

; enable generation of expected output vectors and comparison result waveforms.

output_wf 1

; radix specifies the number of bit of the vector.

radix 2 2 4

; io defines the vector as an input or output vector.

io i i o

; vname assigns the name to the vector.

vname A[1:0] B[1:0] P[3:0]

; tunit sets the time unit.

tunit ns

; trise specifies the rise time of each input vector.

trise 1

; tfall specifies the fall time of each input vector.

tfall 1

; vih specifies the logic high voltage of each input vector.

vih 2.5

; vil specifies the logic low voltage of each input vector

vil 0.0

; voh specifies the logic high voltage of each output vector

voh 2.0

; vol specifies the logic low voltage of each output vector

vol 0.5

0 0 0 x

200 3 3 x

400 1 2 0

600 2 1 9

800 3 1 2

1000 1 3 2

1200 2 2 3

1400 3 2 3

1600 2 3 4

1800 0 0 6

2000 0 0 7
May 2010 656 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
Frequently Asked Questions

Can I replace the bidirectional signal with an input and output vector?

Bidirectional signals can be divided into two columns, one for an input vector and the other
for an output vector (the enable signal is no longer needed). The same vname and signal
name is used for the input and output vectors.

For the input stage, the value of the output vector must be X or x (output vector check is not
performed). For the output stage, the value of the input vectors must be Z or z (no stimulus
for this signal). For example:

radix 1 1 1 1

io i o i o

vname DI DO DQ DQ

tunit ns

0 0 1 0 x

100 1 0 1 x

200 0 1 0 x

300 0 0 z 1

400 1 1 z 0

500 0 0 z 1

How do I verify the input stimuli?

Use .probe tran v(*) depth=1 to probe the top-level signals and then check the
waveform outputs with the Virtuoso Visualization and Analysis or SimVision viewers.

Note: The signal names are case sensitive.

Review the log file to check if the signals defined in the digital vector file match those defined
in the analog netlist file.

■ When the signal is defined in the vector file, but not in the analog netlist file, a warning
message appears stating that the VCD or VEC file is not defined in the netlist file.

■ When the input signal is used in the analog netlist file, but does not match the one located
in the vector file, check the list of dangling nodes or no DC path to ground in the log file.
May 2010 657 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Digital Vector File Format
How do I verify the vector check?

A netlist.veclog file is generated at the location specified by the Virtuoso UltraSim
simulator option-raw statement if there are any vector checks. A netlist.vecerr file is
also generated when errors occur during the vector check. Refer to these two files for detailed
information about the vector check.

When the signal is defined in the vector file, but not in the analog netlist file, the simulator
issues a warning message in the log file that states the signal node is missing from the netlist
file.

In addition, the simulator generates two waveform files: One contains all the expected output
vector waveforms as specified in the digital vector file and the other contains the waveforms
from the comparison results.
May 2010 658 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
14
Verilog Value Change Dump Stimuli

This chapter introduces the Verilog® value change dump (VCD) and extended VCD (EVCD)
file formats, as used in the Virtuoso® UltraSim™simulator, and provides illustrations to explain
the signal information file.

The VCD file (ASCII format) contains information about value changes for selected variables
in the circuit design. The Virtuoso UltraSim simulator supports two types of VCD files:

■ Four-state – represents variable changes in 0, 1, x (unknown or “not needed”) and z
(tri-state) without providing strength information and port direction

■ Extended – represents variable changes in all states and provides strength information
and port direction

For more information about EVCD file format, refer to “Enhanced VCD Commands” on
page 703.

Processing the Value Change Dump File

To process VCD or EVCD files in the Virtuoso UltraSim simulator, the following command
cards need to be specified in the netlist file:

Spectre Syntax

vcd_include “vcd_filename” “signal_info_filename” [autostop=true|false]
[insensitive=yes|no]

SPICE Syntax

.vcd “vcd_filename” “signal_info_filename” [autostop=true|false]
[insensitive=yes|no]

or

Spectre Syntax

evcd_include “evcd_filename” “signal_info_filename” [autostop=true|false]
[insensitive=yes|no]
May 2010 659 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
SPICE Syntax

.evcd “evcd_filename” “signal_info_filename” [autostop=true|false]
[insensitive=yes|no]

Note: A period (.) is required when using SPICE language syntax (for example, .vcd or
.evcd).

The Virtuoso UltraSim simulator replaces the end time in the .tran or tran statement with
the time specified in the .vcd/.evcd file when autostop=true (default is false). If false
is selected, the simulation time specified in the .tran or tran statement remains
unchanged. For more information on autostop, refer to Chapter 13, “Digital Vector File
Format”.

Each vcd or evcd card can only specify one VCD or EVCD file. If a netlist file needs to
include multiple VCD or EVCD files, multiple vcd or evcd cards must be used. For example,
if a netlist file contains three VCD files, it needs three vcd cards (use the same netlist file
format for EVCD files).

Spectre Syntax:

Card 1: vcd_include “file1.vcd” “file1.signal”

Card 2: vcd_include “file2.vcd” “file2.signal”

Card 3: vcd_include “file3.vcd” “file3.signal”

SPICE Syntax:

Card 1: .vcd “file1.vcd” “file1.signal”

Card 2: .vcd “file2.vcd” “file2.signal”

Card 3: .vcd “file3.vcd” “file3.signal”

Note: A netlist file can include multiple VEC, VCD, and ECVD files.

VCD and EVCD formats are widely used in digital circuit design and contain different kinds of
information for transistor level simulation.You need to provide signal information, such as
timing characteristics, voltage threshold, and driving ability of input signals for each VCD or
EVCD file. Since VCD and EVCD formats are compatible, the Virtuoso UltraSim simulator can
share the same signal information file.

The Virtuoso UltraSim simulator handles the VCD and EVCD file content as case insensitive,
except when called in Virtuoso Spectre® mode. For Spectre mode, use the -spectre option
or input file name extension *.scs. Additional case sensitivity can be set using the
insensitive option.
May 2010 660 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
VCD Commands

■ VCD File Format on page 661

■ Definition Commands on page 662

■ Data Commands on page 671

VCD File Format

Continuous Line

The continuous line symbol is the forward slash (\) sign and is rarely used in the VCD file.
The beginning of a card is indicated by the $command keyword (for example, .$var), and
ends with the $end keyword. If an identifier is longer than 1024 characters, and does not fit
into a single line, the \ sign must be used to continue the line.

$comment

$comment comments $end

Description

Comments need to be enclosed within the $comment and $end commands.

Example
$comment

This is a test line.

$end
May 2010 661 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Definition Commands

In the definition section, the VCD command keywords used to indicate the start of a card
begin with a dollar ($) sign. VCD definition commands include: $comment, $date,
$enddefinitions, $scope, $timescale, $upscope, $var, and $version. The end of
a card is marked with an $end keyword. Multiple lines can be placed between the $command
and $end commands.

The Virtuoso UltraSim simulator supports the following VCD definition section commands:

■ $date on page 663

■ $enddefinitions on page 664

■ $scope on page 665

■ $timescale on page 666

■ $upscope on page 667

■ $var on page 668

■ $version on page 670
May 2010 662 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$date

$date date $end

Description

The $date command is used to specify the date of the VCD file created. The Virtuoso
UltraSim simulator accepts this command card, but does not process it.

Example
$date May 7, 2001 $end
May 2010 663 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$enddefinitions

$enddefinitions $end

Description

The $enddefinitions command indicates where the definition section of the VCD file
ends. This command card tells the Virtuoso UltraSim simulator to treat the rest of the VCD
file as the data section. If this command card is missing, the Virtuoso UltraSim simulator
parses the data section incorrectly and issues an error message.

Example
$enddefinitions $end
May 2010 664 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$scope

$scope [scope_type] [scope_name] $end

Description

The $scope command card switches from the current circuit level to a lower circuit level in
the design hierarchy.

Example
$scope module module1 $end

It is important to note:

■ The Virtuoso UltraSim simulator ignores scope_type, but the command must still be
specified to maintain consistency with standard VCD format.

■ A matching $upscope card must be specified in the VCD file definition section to switch
the scope back to the current scope.
May 2010 665 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$timescale

$timescale [number] [time_unit_prefix] $end

Description

The $timescale command is used to specify the time scale. This time scale applies to all
time values in the VCD file, and to its signal information file. The default time is 1 ns.

Arguments

Example
$timescale 1 ns $end

or

$timescale 1ns $end

produces the same result, telling the Virtuoso UltraSim simulator to set the time scale to 1 ns.

number A positive double number

time_unit_prefix The unit prefix specified in “Unit Prefix Symbols” on page 62.
May 2010 666 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$upscope

$upscope $end

Description

The $upscope command card switches from the current circuit level to an upper circuit level
in the design hierarchy.

Example
$upscope $end

Note: This card must be used after the $scope card to switch the scope back to the top scope.
May 2010 667 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$var

$var [var_type] [size] [identifier] [reference] $end

or

$var [var_type] [size] [identifier] [reference] [index_range] $end

Description

The $var command defines the bus to be dumped into the data section.

Arguments

Note: If the size is larger than 1, and the index_range is not specified, the Virtuoso
UltraSim simulator assigns an index_range of [size-1:0].

The name of the bit is a combination of the reference and the index.

Examples

In the following example

$var reg 4 % regA [0:3] $end

var_type The bus type (the Virtuoso UltraSim simulator ignores this
information)

size Number of bits in this bus specified as a decimal number

identifier The identifier used in the data section; it can be a or a combination
of printable ASCII characters

reference The name of the bus

index_range The index range of the bus in the following formats:

■ [MSI:LSI]

■ [LSI:MSI]

■ [index] if the size is 1

Note: MSI, LSI, and index must be an integer
May 2010 668 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
the names of the four bits in bus regA are regA[0], regA[1], regA[2], and regA[3].
The netlist file referencing these VCD sources must match these names.

In the next example

$var reg 1 & b [0] $end

the name of the bit is b[0]. The card defined a bit, not a bus, as a size of 1.

In the next example

$var reg 1 & c $end

the name of the bit is c.

In the next example

$var reg 4 % regA $end

the names of the four bits in bus regA are regA[3], regA[2], regA[1], and regA[0].
The netlist file referencing these VCD sources must match the names.
May 2010 669 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
$version

$version version $end

Description

The $version command is used to specify the version of the VCD file created. The Virtuoso
UltraSim simulator accepts this command card, but does not process it.

Example
$version UltraSim B2001.2.10 $end
May 2010 670 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Data Commands

In the VCD data section, a time point that starts with a number (#) sign (for example, #100)
indicates the beginning of a new card. This card continues until it reads the line before the
next card (cards can have multiple lines). It can also contain data values and a command
block. A command block begins with one of the following command keywords, $comment or
$time_value, and ends with $end.

data

Description

Data is divided into two types that each have their own format:

■ Bus data

■ Bit data

The bus data is for buses defined by $var, with a size greater than one. The bit data applies
to the bus defined by $var, with a size equal to one. The bus data format is Bvalue
bus_identifier.

Examples

In the following example

b0101 %

the bus with identifier % (defined by $var) has a binary value of 0101. The bit data format is
value bus_identifier.

In the next example

1&

the one bit bus with identifier & (defined by $var) has a binary value of 1.

The valid characters for specifying the value are: 0, 1, x, X, z, and Z. Of these characters, x
and X are treated as 0 for the input signal, and do not need a vector check for the output
signal. The z and Z characters are treated as floating to high-impedance for the input signal,
and do not need a vector check for the output signal.
May 2010 671 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
time_value

#time_value

Description

Each time value (point) is the beginning of a card in the data section.

Example

#100

Time value is equal to 100 time units (time unit is defined by $timescale).
May 2010 672 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Signal Information File

Note: The information in this section is applicable to both VCD and EVCD formats.

The signal directions are specified in the signal information file. To input signals, the Virtuoso
UltraSim simulator applies stimuli to the simulation. The values of the output signals are used
to perform a vector check against the simulation results, and vector errors are generated if
mismatches occur. The enable signals are required to control the bi-directional signal
behavior as input or output signals. All other signals in the VCD or EVCD file, not specified in
the signal information file, are ignored by the simulator (warning messages are issued for
these signals, based on the scopes specified in the signal information file).

The time scale of the time related cards in the signal information file are controlled by the
$timescale card in the VCD file. For example, if $timescale is set to 1 ns and .tdelay
to 2, a delay of (2 * 1ns) occurs.

The signal name in the signal information file can be specified by using the bus name or a
wildcard (for more information about wildcards, see “Wildcard Rules” on page 55). The signal
name specified in the VCD file is in bus/bit format. Table 14-1 on page 673 provides
examples.

The example in Table 14-2 on page 673 shows an incorrect naming format.

Note: By default, the Virtuoso UltraSim simulator creates flat mapping between the VCD and
analog netlist files (the .hier statement can be used to switch to hierarchical name mapping
to precisely match signals).

Table 14-1 Signal Name in VCD File Corresponds to Signal Information File

VCD File Signal Information File

P[0] ... P[15] P[0:15]

P[0] ... P[15] P[*]

Q[63:32] Q[31:0] Q[63:0]

Table 14-2 Incorrect Naming Format in Signal Information File

VCD File Signal Information File

A[0:15] A[0:7] A[8:15]
May 2010 673 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Signal Information File Format

Comment Line

A comment line begins with asterisk (*) or dollar ($) signs.

Continuous Line

A continuous line is indicated by a plus (+) sign.

The maximum length of a line is 1024 characters. If a card is longer than 1024 characters,
you need to use the continuous line for the card.

To process VCD and EVCD formats, the following signal characteristics need to be defined
in the signal information file:

■ Signal Matches on page 675

■ Signal Timing on page 687

■ Voltage Threshold on page 693

■ Driving Ability on page 698
May 2010 674 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Signal Matches

In this section, the following statements define the signal matches between the VCD and
analog netlist files, signal directions, and output vector check.

■ .alias on page 676

■ .scope on page 678

■ .in on page 679

■ .out on page 680

■ .bi on page 681

■ .chk_ignore on page 683

■ .chkwindow on page 684
May 2010 675 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.alias

.alias target_busname alias_name

Description

The .alias statement is used to modify the name of the signal bus in the VCD/EVCD file to
match the signal name in the netlist file.

Note: For more information about using the .alias statement in hierarchical signal name
mapping, refer to “Hierarchical Signal Name Mapping” on page 699.

Examples

The following example

.alias *[*] *<*>

tells the Virtuoso UltraSim simulator to change the square brackets to angle brackets (see
Table 14-3 on page 676).

In the next example

.alias sig_*[*] vec_*<*>

tells the simulator to change the square brackets to angle brackets (see Table 14-4 on
page 676).

In the next example

.alias sig_* vec_*

Table 14-3 .alias *[*] <*> Names

Bus Name Signal Name

a[0:3] a<0>, a<1>, a<2>, a<3>

vec[3:0] vec<3>, vec<2>, vec<1>, vec<0>

Table 14-4 .alias sig_*[*] vec_*<*> Names

Bus Name Signal Name

sig_1[0:3] vec_1<0>, vec_1<1>, vec_1<2>, vec_1<3>

sig_bus1[3:0] vec_bus1<3>, vec_bus1<2>, ve_bus1c<1>, vec_bus1<0>
May 2010 676 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
tells the simulator to change the prefix of the signal names from sig_ to vec_ (see Table 14-
5 on page 677).

Table 14-5 .alias sig_* vec_ * Names

Bus Name Signal Name

sig_1 vec_1

sig_2 vec_2
May 2010 677 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.scope

.scope scope_name1 [scope_name2 ... scope_nameN]

Description

The .scope statement specifies the target scope located in the definition section of the VCD
file. Only the signals defined in the specified scope are processed. Multiple .scope
statements in a signal information file are supported.

Arguments

Note: Each scope name causes the Virtuoso UltraSim simulator to process the signals
located in the specified scope, but not the signals located in its parent or child scopes.

Example
.scope module1 module2

tells the Virtuoso UltraSim simulator to process the signal located in scope module1 and
module2.

scope_name The name of the scope specified in the VCD file by the $scope card.
May 2010 678 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.in

.in signal_name1 signal_name2 ... signal_nameN

Description

The .in statement defines the specified bus as the input bus.

Arguments

Example

VCD file:

$var reg 4 % b [0:3] $end

$var reg 1 * a $end

$var reg 1 & c [4] $end

$var reg 4 % d [0:3] $end

Signal information file:

.in b[0:3] a c[4] d[*]

Defines b[0:3], a, c[4], and d[0:3] as the input signals.

name The name of the bus specified in the VCD file
May 2010 679 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.out

.out signal_name1 signal_name2 ... signal_nameN

Description

The .out statement defines the specified bus as the output bus.

Arguments

Example

In the VCD File:

$var reg 4 % b [0:3] $end

$var reg 1 * a $end

$var reg 1 & c [4] $end

$var reg 4 % d [0:3] $end

In the signal information file

.out b[0:3] a c[4] d[*]

Defines b[0:3], a, c[4], and d[0:3] as the output signal.

name The name of the bus specified in the VCD file
May 2010 680 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.bi

.bi ‘enable_signal_expr’ signal_name1 signal_name2 ... signal_nameN

Description

The .bi statement defines the specified bus as the bidirectional bus.

The enable signal can be from a VCD/EVCD or an analog netlist file. When an enable signal
is from an analog netlist file, it can also be defined as an output signal for a vector check or
only used as an enable signal. If a VCD signal is used as an enable signal, it must be declared
an input using the .in statement and located in the VCD file. Different from enable statements
in the vector file, the logic voltage threshold of an analog enable signal is defined by the .voh
and .vol statements.

Note: The enable signal cannot be defined as a bidirectional signal.

The .alias statement can be used to perform name mapping for the enable signal. In
hierarchical signal name mapping (.hier 1), a hierarchical structure for the analog netlist
file is supported for the enable signal. A period (.) can be used as the hierarchical delimiter
to specify the hierarchical signal, and the hierarchical delimiter can be mapped to other
delimiters by the .alias statement.

Bit-wise logic operators are supported in an enable signal expression: & (AND), | (OR), ^
(XOR), and ~ (NOT). Additional operators can be created using a combination of the
supported operators. The order of processing for the logic operators is NOT > AND > OR,
XOR (OR and XOR are processed at the same time). You can use parentheses () around
the operators to change the processing order.

Arguments

Examples

The following example

‘enable_signal_expr’ The expression for the enable signals. The bidirectional
bus switches to output mode only when its value is high.

Note: You need to use single quotation marks ‘’ for
enable signal expressions.

signal_name The name of the bus specified in the VCD/EVCD file.
May 2010 681 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
VCD file:

$var reg 4 % b [0:3] $end

$var reg 1 & en $end

Signal information file:

.bi en b[0:3]

defines b[0:3] as the bidirectional signal, which is controlled by the en signal. When en is
high, b[0:3] becomes the output signal.

In the next example

VCD file:

$var reg 4 * myBi [0:3] $end

$var reg 1 # en $end

Signal information file:

bi ~en myBi[0:3]

defines myBi[0:3] as the bidirectional signal, which is controlled by the en signal. The
enable signal is appended with a tilde (~) sign, so unlike the first example, the en is now high,
myBi[0:3] becomes the input signal, and vice versa.

In the next example

VCD file:

$var reg 4 * myBi_1 [0:3] $end

$var reg 1 # en $end

Signal information file:

.hier 1

.bi ‘en & (ana_en1 ^ X1.ana_en2)’ myBi_1[0:3]

.voh 1.5 ana_en* X1.ana_en*

.vol 0.8 ana_en* X1.ana_en*

defines myBi_1[0:3] as the bidirectional signal, which is controlled by the expression ‘en
& (ana_en1 ^ X1.ana_en2)’. When the value of the expression is high,
myBi_1[0:3] becomes the input signal, and vice versa. The .voh and .vol statements
define the logic voltage threshold of the two analog enable signals.
May 2010 682 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.chk_ignore

.chk_ignore start_time end_time [signal_name1 ... signal_nameN]

Description

The .chk_ignore statement specifies a window used to ignore output vector checks for a
VCD file. You can provide the signal names in order to apply this statement locally. In addition
to hierarchical mapping, the hierarchical structure is also given in the signal names. The
start_time and end_time arguments must be specified. To define multiple time windows
for ignoring output vector checks, use multiple chk_ignore statements.

Arguments

Example

VCD file:

$timescale 1ns $end

Signal information file:

.hier 1

.chk_ignore 0 100 X1.out1 Top.digital.pout[*]

.chk_ignore 300 500 X1.out1 Top.digital.pout[*]

.chk_ignore 0 -1 out[*]

tells the Virtuoso UltraSim simulator to ignore the output vector check for signals X1.out1
and Top.digital.pout[*] in the time windows 0 ns to 100 ns and 300 ns to 500 ns, and
to ignore the entire transient time for the signal out[*].

start_time Defines the start time for the window used to ignore the output vector
checks (use the $timescale card in the VCD file to set the time
scale).

end_time Defines the end time for the window used to ignore the output vector
checks. You can use end_time=-1 to ignore the entire transient
time (use the $timescale card in the VCD file to set the time scale).
May 2010 683 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.chkwindow

.chkwindow start_time end_time steady [period=const [first=const]] [signal_name1
... signal_nameN]

Description

The .chk_window statement specifies a window for output vector checking. The Virtuoso
UltraSim simulator only checks the signal states within this window. The signal states outside
the window are ignored. The checks occur at every time point specified in the VCD/EVCD file
or as defined by the period and first arguments.

Setting the period argument activates periodic window checking. If period is not defined,
the first argument is ignored by the simulator.

Note: To activate periodic window checking, you need to include the "period=" and
"first=" keywords.

Arguments

Examples

In the following example

start_time Defines the window start time at which the window starts at time
vec_time-start_time. If the period argument is defined,
vec_time is the first time point defined by the first argument, and
the vector checks are repeated according to the value of period. If
the period argument is not defined, vec_time is the time point
defined in the VCD/EVCD file.

end_time Defines the window end time at which the window ends at time
vec_time+end_time.

steady = 0 | 1 If set to 0, then the vector check passes as long as the signal has
reached the desired state once. If set to 1, then the signal remains in
the desired state for the entire window period to pass the vector
check.

period Activates periodic window checking and defines its time period.

first Defines the first check point for periodic window checking (only valid
when the period argument is also defined).
May 2010 684 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
VCD file:

$timescale 1ns $end

Signal information file:

.chkwindow 5 5 0

The .chkwindow statement is set to 0, so the waveform passes the vector check (see
Figure 14-1 on page 685).

Figure 14-1 Vector Check with .chkwindow Set to 0

In the next example

VCD file:

$timescale 1ns $end

Signal information file:

.chkwindow 5 5 1

The .chkwindow is statement set to 1 and the signal remains at that state for the entire
window period, in order to pass the vector check (see Figure 14-2 on page 685). If the signal
matches Figure 14-1 on page 685, the vector check fails.

Figure 14-2 Vector Check with .chkwindow Set to 1

vec_timestart=vec_time-5 end=vec_time+5

expected state = 1

vec_timestart=vec_time-5 end=vec_time+5

expected state = 1
May 2010 685 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
In the next example

VCD file:

$timescale 100ps $end

Signal information file:

.chkwindow 5 5 1 period=100 first=20 p[*] out_*

tells the simulator to activate periodic window checking for signals p[*] and out_*. The
vector check points start at 2 ns and repeats every 10 ns.

In the next example

.hier 1

.chkwindow 5 5 1 first=20 X1.Xana.p[*] X1.Xdigital.Xcore.out_*

tells the simulator to ignore the first argument because a valid period argument has not
been specified. The other arguments are used in the simulation.
May 2010 686 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Signal Timing

The signal timing characteristics (delay, rise and fall time) are defined in this section.

■ .idelay on page 688

■ .odelay on page 689

■ .tdelay on page 690

■ .tfall on page 691

■ .trise on page 692

Note: The Virtuoso UltraSim simulator checks whether the values of the .trise and
.tfall. statements are reasonable (warning message is issued when the defined value is
too small or large).
May 2010 687 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.idelay

.idelay time_value [signal_name1 ... signal_nameN]

Description

The .idelay statement specifies the delay time for the corresponding input signals. If a
bidirectional signal is specified, this only applies to the input stage of the bidirectional signal.
The default value is 0.0, if .idelay and .tdelay are not set.

Example

In the following example

VCD file:

$timescale 1ns $end

Signal information file:

.idelay 5

All input signals have a time delay of 5 ns.

In the next example

VCD file:

$timescale 100 ps $end

Signal information file:

.hier 1

.scope Xtop.XI1

.in a[0:3] b

.trise 0.1 Xtop.XI1.a* Xtop.XI1.b

The Xtop.XI1.a[0:3] and Xtop.XI1.b input signals have a rise time of 10 ps.
May 2010 688 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.odelay

.odelay time_value [signal_name1 ... signal_nameN]

Description

The .odelay statement specifies the delay time for the corresponding output signals. If a
bidirectional signal is specified, this only applies to the output stage of the bidirectional signal.
The default value is 0.0, if .odelay and .tdelay are not set.

Example

VCD file:

$timescale 1ns $end

Signal information file:

.odelay 5

All output signals have a time delay of 5 ns.
May 2010 689 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.tdelay

.tdelay time_value [signal_name1 ... signal_nameN]

Description

The .tdelay statement specifies the delay time for the corresponding input, output, and
bidirectional signals. The default value is 0.0, if .tdelay, .idelay, and .odelay are not
specified.

Example

VCD file:

$timescale 1ns $end

Signal information file:

.tdelay 5

All signals have a time delay of 5 ns.
May 2010 690 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.tfall

.tfall time_value [signal_name1 ... signal_nameN]

Description

The .tfall statement specifies the fall time of the input signal. If .tfall is not specified,
the default value is 0.1 n.

Examples

In the following example

VCD file:

$timescale 1 ns $end

Signal information file:

.tfall 0.1

all input signals have a fall time of 0.1 ns.

In the next example

VCD file:

$timescale 1 ns $end

Signal information file:

.in a[0:3] b

.tfall 0.1 a[0:3] b

input signals a[0:3] and b have a fall time of 0.1 ns.
May 2010 691 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.trise

.trise time_value [signal_name1 ... signal_nameN]

Description

The .trise statement specifies the rise time of the input signal. If .trise is not specified,
the default value is 0.1 n.

Examples

In the following example

VCD file:

$timescale 1 ns $end

Signal information file:

.trise 0.1

all input signals have a rise time of 0.1 ns.

In the next example

VCD file:

$timescale 1 ns $end

Signal information file:

.in a[0:3] b

.trise 0.1 a[0:3] b

input signals a[0:3] and b have a rise time of 0.1 ns.
May 2010 692 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Voltage Threshold

As digital vector format, the voltage threshold for logic low and high can be specified using
the following statements to convert the input vectors to stimuli or to perform an output vector
check.

■ .vih on page 694

■ .vil on page 695

■ .voh on page 696

■ .vol on page 697
May 2010 693 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.vih

.vih voltage_value [signal_name1 ... signal_nameN]

Description

The .vih statement specifies the logic high voltage of the input signal. If .vih is not
specified, the default voltage is 3.3.

Examples

In the following example

.vih 5.0

tells the Virtuoso UltraSim simulator all input signals have a logic high voltage of 5.0.

In the next example

.in a[0:3] b

.vih 5.0 a[*] b

tells the simulator input signals a[0:3] and b have a logic high voltage of 5.0.
May 2010 694 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.vil

.vil voltage_value [signal_name1 ... signal_nameN]

Description

The .vil statement specifies the logic low voltage of the input signal. If .vil is not specified,
the default voltage is 0.0.

Examples

In the following example

.vil 1.0

tells the Virtuoso UltraSim simulator all input signals have a logic low voltage of 1.0.

In the next example

.in a[0:3] b

.vil 1.0 a[0:3] b

tells the simulator input signals a[0:3] and b have a logic low voltage of 1.0.
May 2010 695 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.voh

.voh voltage_value [signal_name1 ... signal_nameN]

Description

The .voh statement specifies the logic high voltage of signals defined as outputs and signals
from the analog netlist file that are used in the signal information file. If .voh is not specified,
the default voltage is 3.3.

Examples

In the following example

.voh 5.0

tells the Virtuoso UltraSim simulator all output signals have a logic high voltage of 5.0.

In the next example

.out out[0:3] outA

.voh 5.0 out[*] outA

tells the simulator output signals out[0:3] and outA have a logic high voltage of 5.0.
May 2010 696 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.vol

.vol voltage_value [signal_name1 ... signal_nameN]

Description

The .vol statement specifies the logic low voltage of signals defined as outputs and signals
from the analog netlist file that are used in the signal information file. If .vol is not specified,
the default voltage is 0.0.

Examples

In the following example

.vol 1.0

tells the Virtuoso UltraSim simulator all output signals have a logic low voltage of 1.0.

In the next example

.out out[0:3] outA

.vol 1.0 out[0:3] outA

tells the simulator output signals out[*] and outA have a logic low voltage of 1.0.
May 2010 697 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Driving Ability

For input stimuli, the output resistance of VCD/EVCD sources can affect Virtuoso UltraSim
simulation results. To specify the driving ability of VCD/EVCD sources, use the following
statements:

.outz

.outz resistance [signal_name1 ... signal_nameN]

Description

The .outz statement specifies the output resistance for corresponding input signals. If
.outz is not specified, the default value is 0.01.

Example
.outz 1meg

All input signals have an output resistance of 1 Megaohm.

.triz

.triz resistance [signal_name1 ... signal_nameN]

Description

The .triz statement specifies the output impedance when the corresponding input signals
are in tri-state. If .triz is not specified, the default value is 1,000 Meg.

Example
.triz 500meg

All input signals have an output impedance of 500 Megaohms.
May 2010 698 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Hierarchical Signal Name Mapping

Hierarchical signal name mapping can be used to precisely match signals between the VCD
and analog netlist files, and is defined by the Virtuoso UltraSim simulator hier statement:

.hier 0 | 1

Description

The .hier statement is used to specify hierarchical names in both the VCD and analog
netlist files.

Arguments

The key differences between flat and hierarchical mapping include:

■ To match hierarchical signals in the VCD file, the complete hierarchical structure needs
to be specified in the .scope, .alias, and .chkwindow statements, as well as in the
signal characteristic statements. For flat mapping, only the signal names are needed.

■ For hierarchical signal name mapping, the statements to define the port direction of the
signal are related to the .scope statement, which includes the .in, .out, and .bi
statements. When using flat mapping, the multiple scopes defined by the .scope
statement are regarded as set. The Virtuoso UltraSim simulator searches all of the
scopes to perform a signal match and outputs an error message when the same signal
name is defined in more than one VCD scope.

■ The hierarchical structure of the analog netlist file is specified by the .alias statement
when performing hierarchical mapping.

hier If hier=0, the Virtuoso UltraSim simulator creates flat mapping
between the VCD and analog netlist files (default). To maintain
backward compatibility, the hierarchical delimiter is regarded as part
of the signal name.

If hier=1, the simulator applies the hierarchical names to the VCD
and analog netlist files. The VCD file stimuli are no longer limited to
the top level of the analog netlist file. In the VCD info file, the
complete hierarchical structure needs to be added to the .scope
statement (the hierarchical signals in the analog netlist file are
mapped according to the information provided by the .alias
statement).
May 2010 699 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Enhanced Statements

.scope and .in/.out/.bi

When using the Virtuoso UltraSim simulator to apply hierarchical names to the VCD/EVCD
and analog netlist files (.hier 1), the hierarchical structure in the VCD/EVCD file must be
clearly defined with the .scope statement. The .in, .out, and .bi statements are used to
define the signal name in the specified .scope statement and cannot contain the hierarchical
structure. For the .bi statement, the enable signal needs to contain the hierarchical path
because the signal may belong to a different scope.

The VCD/EVCD signal info file supports multiple .scope statements. The effective scope of
each .scope statement is affected by the other statements, requiring the .in, .out, and
.bi statements to be in the correct location.

Examples

In the VCD file:

$scope module top $end

$scope module digital $end

$var reg 1 ! din_1 $end

$var reg 1 " en $end

$scope module drv $end

$var reg 1 ! mid[1] $end

$var reg 1 " inout $end

$upscope $end

$upscope $end

$upscope $end

In the VCD info file:

.hier 1

.scope top.digital

* The effective scope is top.digital

.in din_1 en

* The scope top.digital is ended by the next .scope statement

.scope top.digital.drv

* The effective scope is changed to top.digital.drv

.out mid[*]

.bi top.digital.en inout
May 2010 700 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
.alias

.alias targ_signame alias_signame

The hierarchical structures that are defined in the .scope statement are used only for the
VCD/EVCD file, so the .alias statement is needed to map the signals to the lower circuit
levels of the analog netlist file.

Note: If multiple .alias statements define the mapping relationship for a signal, the last
.alias statement is used by the simulator, and the other statements are overwritten.

Arguments

Examples

In the following example

.alias TOP.module1.in1 X1.in1

.scope Top.module1

.in in1

tells the Virtuoso UltraSim simulator to map the TOP.module1.in1 defined in the .scope
and .in/.out/.bi statements to the signal in1 of instance X1 in the analog netlist file.

In the next example

.alias *[*] *<*>

.alias Top.module1.sig_*[*] X1.vec_*<*>

.scope Top.module1

.out sig_[0:15]

.scope digital_block

.in datain[*]

tells the simulator for the Top.module1.sig_[0:15] signals, the second .alias
statement overwrites the first .alias statement and maps the signals to X1.vec_<0>, ...
X1.vec_<15>. Since only the first .alias statement matches the
digital_block.datain[*] signals, they are mapped to digital_block.datain<*>
of the analog netlist file.

targ_signame Specifies the hierarchical signal names (VCD/EVCD format) that are
already defined in the .scope statement and .in/.out/.bi
statements. The hierarchical delimiter is represented by a period (.).

alias_signame Specifies the hierarchical signal names of the analog netlist file. The
hier_delimiter option defines the hierarchical delimiter.
May 2010 701 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
In the next example

■ Analog netlist file:

.usim_opt hier_limiter = %

■ VCD/EVCD info file:

.alias TOP.module1.sig_[*] X1%Xdrv%vec_<*>

.scope Top.module1

.out sig_*

Note: The hierarchical delimiter for the analog netlist file is percent (%), not period (.).

Hierarchical Signal Names

For hierarchical mapping, the signal names in the .alias and .chkwindow statements, as
well as in the signal characteristic statements, must have the hierarchical structure in the VCD
file.

Examples
.hier 1

.chkwindow -1 5 1 Top.X1.out*

.vih 1.2 X1.in[*]

.vol 0.2 X1.dout1 Xdig.X2.dout1

.tfall 0.2 Xana.X1.in* Xdig.din*

.outz 100 X1.in[*]
May 2010 702 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Enhanced VCD Commands

Since the EVCD and VCD formats are similar, only the key EVCD format differences will be
discussed in this section:

■ Signal Strength Levels on page 703

■ Value Change Data Syntax on page 703

■ Port Direction and Value Mapping on page 705

Signal Strength Levels

Verilog HDL allows scalar net signal values to have a full range of unknown values, and
different levels of strength or combinations of levels of strength. For logic operation, multiple-
level logic strength modeling resolves combinations of signals into known or unknown values,
allowing the behavior of hardware to be represented with improved accuracy.

EVCD signal strength can be defined by eight values, ranging from 0 (weakest) to 7
(strongest). The most commonly used values are 0 and 6. For example, for logic value 0

<0_strength_component> =6 , <1_strength_component> =0

and for logic value 1

<0_strength_component> =0 , <1_strength_component> =6

Note: Logic strength levels are not defined in VCD files because only four states are
supported.

The Virtuoso UltraSim simulator ignores strength information (minimal impact on most CMOS
circuit designs). If you want to preserve driver strength during simulation, specify .outz in the
signal information file for specific signals with different output resistances.

For more information about logic strength modeling, refer to IEEE Std 1364-2001.

Value Change Data Syntax

The EVCD data command is different from the one used with VCD because the EVCD
version can provide strength information and additional signal states.

data

p[port_value] [0_strength_component] [1_strength_component] [identifier_code]
May 2010 703 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Description

The value change section shows the actual value changes at each simulation time increment.
Only variables that change value during a time increment are listed. In the EVCD file, strength
information and a larger number of value states with port direction are presented in the value
change section. The arguments for the EVCD data command are listed below.

Arguments

Examples

The following example

pU 0 7 <0

tells the Virtuoso UltraSim simulator the one bit bus with identifier <0 (defined by $var) has
a binary value of U, and the strength of 0 component is 0 and the strength of 1 component is 7.

In the next example

pCCC 667 667 !

tells the simulator the bus with identifier ! (defined by $var) has a binary value of CCC, and
the strength of 0 component is 667 and the strength of 1 component is 667. There is more
than one driver on this port and the resolved value is CCC.

p Key character that indicates a port.

Note: There is no space between p and port_value.

port_value State character which contains information about driving
direction and the value of the port. The state characters
are described in “Port Direction and Value Mapping” on
page 705 (see tables).

0_strength_component One of the eight Verilog strength values indicating the
strength0 component of the value (the Virtuoso
UltraSim simulator ignores this value).

1_strength_component One of the eight Verilog strength values indicating the
strength1 component of the value (the Virtuoso
UltraSim simulator ignores this value).

identifier_code The identifier code for the port, which is defined in the $var
construct for the port.
May 2010 704 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Port Direction and Value Mapping

The port value in the EVCD file contains port direction information, which helps the Virtuoso
UltraSim simulator distinguish some of the x states, apply stimuli for input signals, or perform
a vector check for output signals.

Note: To generate the EVCD file, the port directions of the circuit simulated by the Virtuoso
UltraSim simulator need to be consistent with the port directions of the device under test
(DUT).

input Direction

Given an DUT and a test fixture, the driving direction is input if the text fixture drivers are
driving a non-tristate value and the drivers inside the DUT are tri-state. The resolved value is
mapped in Table 14-6.

When reading the mapping information in the following tables, it is important to note:

■ Declared in and declared out indicates the signal is defined as input and output in
the signal information file. The term active implies the drivers are in a non-tristate
condition.

■ Because the conflicting states of the signal value are converted to x in the VCD file, they
are regarded as “not needed” and the Virtuoso UltraSim simulator does not perform a
vector check when the signals are specified as output.

■ Combining the port direction for the signal value in the EVCD file and the specified
direction in the signal information file, the Virtuoso UltraSim simulator can distinguish the
input and output values of a signal and perform a vector check when it is specified as
output in the signal information file.

Table 14-6 input Value Mapping

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value

D 0 input No check 0 input No check Low – only one active
driver to the port

d 0 input No check 0 input No check Low – two or more
active drivers to the
port (may be conflicts,
yet resolved value is
low)
May 2010 705 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
output Direction

The driving direction is output if the driving value from drivers inside the DUT is non-tristate,
but the value driven by the drivers in the test fixture is tri-state. The resolved value is mapped
in Table 14-7.

U 1 input No check 1 input No check High – only one active
driver to the port

u 1 input No check 1 input No check High – two or more
active drivers to the
port (may be conflicts,
yet resolved value is
high)

N x input No check x input No check Unknown (not
needed)

n x input No check x input No check Unknown (not
needed)

Z z input No check z input No check Tri-state

Table 14-7 output Value Mapping

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value

L z input Check 0 z input Check 0 Low – only one active
driver to the port

l z input Check 0 z input Check 0 Low – two or more
active drivers to the
port (may be conflicts,
yet resolved value is
low)

H z input Check 1 z input Check 1 High – only one active
driver to the port

Table 14-6 input Value Mapping, continued

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value
May 2010 706 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
unknown Direction

The driving direction is unknown if both the drivers in the test fixture and DUT are driving a
non-tristate value. The resolved value is mapped in Table 14-8.

h z input Check 1 z input Check 1 High – two or more
active drivers to the
port (may be conflicts,
yet resolved value is
high)

X z input No check z input No check Unknown (not
needed)

T z input No check z input No check Tri-state

Table 14-8 unknown Value Mapping

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value

0 0 input Check 0 0 input Check 0 Low (input=0 and
output=0)

1 1 input Check 1 1 input Check1 High (input=1 and
output=1)

? x input No check x input No check x (input=x and
output=x)

A 0 input Check 1 0 input Check 1 x (input=0 and
output=1)

a 0 input No check 0 input No check x (input=0 and
output=x)

B 1 input Check 0 1 input Check 0 x (input=1 and
output=0)

b 1 input No check 1 input No check x (input=1 and
output=x)

Table 14-7 output Value Mapping, continued

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value
May 2010 707 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Enhanced VCD Format Example

The following is an example of EVCD file format.

$date

Jul 11, 2004 15:42:26

$end

$version

TOOL: ncsim 05.00-p001

$end

$timescale

1 ns

$end

$scope module board $end

$scope module counter $end

$var port [3:0] ! value $end

$var port 1 clock $end

$var port 1 # fifteen $end

$var port 1 $ altFifteen $end

$upscope $end

$upscope $end

$enddefinitions $end

#0

$dumpports

pXXXX 6666 6666 !

pN 6 6 "

pX 6 6 #

pX 6 6 $

$end

C x input Check 0 x input Check 0 x (input=x and
output=0)

c x input Check 1 x input Check 1 x (input=x and
output=1)

F, f z input No check z input No check Tri-state (input=z
and output=z)

Table 14-8 unknown Value Mapping, continued

Port Value Declared
in

Declared
out

Declared bi
Enable = 0

Declared bi
Enable = 1 Mapped VCD Value
May 2010 708 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
#5

pU 0 6 "

#10

pLLLL 6666 0000 !

pL 6 0 #

pL 6 0 $

#50

pD 6 0 "

...

Expected Output and Comparison Result Waveforms for
Value Change Dump Files

If a VCD or EVCD contains output or bi-directional vectors, the Virtuoso UltraSim simulator
generates two waveform files: One contains all the expected output vector waveforms as
specified in the VCD or EVCD file and the other contains the waveforms from the comparison
results.

You can use the following statement in the VCD or EVCD file to enable or disable the
simulator from generating these waveforms (default is 1 or enabled).

.output_wf 0|1

The waveform format is defined by the wf_format option in the analog netlist file. A
maximum of two waveform files are generated for one or more VCD or EVCD files. The
expected waveform filename is netlist.vecexp.trn (PSF, FSDB, etc.) and the output
vector is signal_name_exp. The comparison waveform filename is
netlist.vecerr.trn (PSF, FSDB, etc.) and each comparison waveform is
signal_name_err.

The comparison result values include,

0 – matched

1 – mismatched

X – ignored (output vector = X or bi-directional vector at input stage are possible causes)

In addition to the individual comparison result waveforms, the simulator generates a single
vec_error waveform to indicate the overall comparison results. Waveform vec_error
equals 1 when any of the individual comparison result waveforms also have a value of 1 (X is
treated as 0).
May 2010 709 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Frequently Asked Questions

■ Is it necessary to modify the VCD/EVCD file to match the signals? on page 710

■ How can I verify the input stimuli? on page 710

■ How do I verify the output vector check? on page 711

■ Why should I use hierarchical signal name mapping? on page 711

■ What is the difference between CPU and user time? on page 711

Is it necessary to modify the VCD/EVCD file to match the signals?

You can adjust the signal information file to match signals in the VCD/EVCD file with those in
the netlist file, and leave the VCD/EVCD file unchanged. The Virtuoso UltraSim simulator only
needs the scopes specified in the .scope statement and ignores the other scopes (the
simulator also ignores the parent or child scope of the specified scope). The .alias
statement can be used to map the signal names between the VCD/EVCD and circuit netlist
files.

How can I verify the input stimuli?

As digital vector format, first probe the signals in the top-level using .probe tran v(*)
depth=1 and check the waveform outputs with the Virtuoso Visualization and Analysis or
SimVision viewers.

Note: The signal names are case sensitive.

Review the log file to check if the signals defined in the digital vector file match those defined
in the analog netlist file.

■ If the signal is in the specified scope of VCD/EVCD, but not in the VCD info file, a warning
message appears.

■ If the signal is in the specified scope of VCD/EVCD and in the VCD info file, but not in the
analog netlist file, a warning message appears.

■ If the signal is in the analog netlist file, but does not match the one in VCD/EVCD, check
the list of dangling nodes or no DC path to the ground.
May 2010 710 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
How do I verify the output vector check?

A netlist.veclog file is generated at the location specified by the Virtuoso UltraSim
simulator option-raw statement if there are any vector checks. A netlist.vecerr file is
also generated when errors occur during the vector check. Refer to these two files for detailed
information about the vector check.

When the signal is defined in both the VCD/EVCD files and the VCD info file, but not in the
analog netlist file, the simulator issues a warning message.

In addition, the simulator generates two waveform files: One contains all the expected output
vector waveforms as specified in the VCD or EVCD file and the other contains the waveforms
from the comparison results.

Why should I use hierarchical signal name mapping?

Flat signal name mapping works for most situations, but suffers from the following limitations:

■ Only the signals in the top level can be mapped to the VCD file (analog netlist file).

■ When multiple .scope statements are used in a digital VCD file, the Virtuoso UltraSim
simulator treats them as a single set and searches for signals (as defined in the .in,
.out, and .bi statements) in all of the .scope statements. An error occurs when a
signal with the same name appears in more than one .scope statement.

Hierarchical signal name mapping is able to overcome these limitations, allowing you to map
signals to the lower levels of the analog netlist file and to use multiple .scope statements
(see “Enhanced Statements” on page 700 for more information about .scope statements).

What is the difference between CPU and user time?

Description

■ CPU time is the time the central processing unit (CPU) spends running the user
program

■ User time is the user and system times combined (that is, the total time needed to
provide system service to the user program)

When running a simulation, the Virtuoso UltraSim simulator stores the elapsed CPU and user
time information in the STDOUT (standard output) or log file. The estimated completion time
is based on linear interpolation of the user time from the start of the simulation.
May 2010 711 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Verilog Value Change Dump Stimuli
Note: The elapsed user time can be less than the elapsed CPU time.

Example
Completed transient up to: 1.020019e-06 (60%) at Tue Sep 5 11:26:39 2006 memory:
393.1200 KB total: 63.0314 MB elapsed user time: 0:00:10 (10.240 sec), elapsed
CPU time: 0:00:10 (10.280 sec) estimated completion time: 0:00:06
**** NUM_EVENTS: 144490 ****
May 2010 712 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
15
Flash Core Cell Models

This chapter describes the flash core cell macro models supported by the Virtuoso®
UltraSim™ simulator. The simulator is able to model the floating gate effect of the flash core
cell, in addition to conventional MOSFET models, such as MOS level 1 and BSIM3.

The flash core cell model is more accurate and flexible than conventional models using
analog hardware description language (HDL) or complicated subcircuits comprised of many
elements. The model also allows simultaneous simulation of the flash core cell with peripheral
circuitry. Based on physical theory and parameterized equations, the effects of the floating
gate charge are tracked by the threshold voltage (Vth) of the cell. The flash core cell can take
on different events, such as programming, erasing, and reading during the simulation. Since
each type of event is controlled by different physics, the Vth equations are also different for
each event.

Device
mcell nd ng ns npw ndnw [ndnw] model_name [l=length] [w=width] [deltvthinit=val]

[delvto=val]

Description

The flash core cell is a MOSFET device with a hidden floating gate. The Virtuoso UltraSim
simulator supports single n-well and embedded p-well processes. A single n-well process
results in a four pin device and an embedded p-well process results in a five pin device. The
device parameters are listed in Table 15-1 on page 713.

Table 15-1 Device Parameters

Parameter Description

mcell MOSFET transistor for flash core cell

nd Drain node

ng Gate node

ns Source node
May 2010 713 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Flash Core Cell Models
Models
.model model_name flashcell flashlevel=val <parameter1=val1> <parameter2=val2>

Note: The flashcell keyword is used to indicate that the model card is a flash core cell
model card and it can be set to 1, 2, or 3 according to the flash cell type being simulated
(model parameters for different flash cell types are listed in Tables 15-2, 15-3, and 15-4).

Description

The Virtuoso UltraSim simulator supports flash core cell models based on MOS level 1 and
BSIM3v3 models. The Vth of the transistor varies according to parameterized equations. The

npw P-well node for n-MOSFET device

ndnw Deep N-well node (optional)

model_name Model name

l Device length

w Device width

deltvthinit or delvto Device Vth shift at time 0 (default is 0 V)

Table 15-1 Device Parameters, continued

Parameter Description
May 2010 714 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Flash Core Cell Models
flash core cell model consists of two parts: The flash core cell model parameters used to
model Vth changes and the conventional MOSFET model.

Table 15-2 Model Parameters for flashlevel=1 (NOR Type)

Parameter Description Default Value

tpgmstep Timestep Vth is adjusted for programming event
during simulation

10 ns

tersstep Timestep Vth is adjusted for erasing event 500 ns

kpgm Change in Vth during programming event (per
tpgmstep)

2e-3 1/V

kers Change in Vth during erasing event (per tersstep) 0.15e-3 1/V

vgpgmmin Minimum of Vgate during programming event 1 V

vdpgmmin Minimum of Vdrain during programming event 1 V

vspgmmax Maximum of Vsource during programming event 1 mV

vpwpgmmax Maximum of Vpwell during programming event 0 V

vgersmax Maximum of Vg during erasing event 0 V

vpwersmin Minimum of Vpwell during erasing event 0 V

vdersmin Minimum of Vdrain during erasing event

Note: The vdersmin parameter is a required flash
core cell model card parameter.

No default

vsersmin Minimum of Vsource during erasing event 0 V

flashvcc Flash core cell voltage supply 20 V

vthigh Absolute maximum of Vth 10 V

vtlow Absolute minimum of Vth 10 V

vtpgmmaxshift Absolute maximum Vth shift in a single programming
event

10 V

vtersmaxshift Absolute maximum Vth shift in a single erasing event 10 V
May 2010 715 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Flash Core Cell Models
Table 15-3 Model Parameters for flashlevel=2 (NOR Type)

Parameter Description Default Value

kpgm Change in Vth during programming event (per
tpgmstep)

2e-3 1/V

kers Change in Vth during erasing event (per tersstep) 0.1e-3 1/V

tpgmstep Time interval for Vth update during programming
event

10 ns

tersstep Time interval for Vth update during erasing event 500 ns

vgpgmmin Minimum gate voltage to start programming event 1 V

vgpgmmax Maximum gate voltage to start programming event 10 V

vdpgmmin Minimum drain voltage to start programming event 1 V

vdpgmmax Maximum drain voltage to start programming event 10 V

vpwpgmmin Minimum pwell voltage to start programming event -4 V

vpwpgmmax Maximum pwell voltage to start programming event 0 V

vnwpgmmin Minimum nwell voltage to start programming event 0 V

vnwpgmmax Maximum nwell voltage to start programming event 20 V

vgersmin Minimum gate voltage to start erasing event -15 V

vgersmax Maximum gate voltage to start erasing event 0 V

vdersmin Minimum drain voltage to start erasing event 0 V

vsersmin Minimum source voltage to start erasing event 0 V

vsersmax Maximum source voltage to start erasing event 1 V

Vpwersmin Minimum pwell voltage to start erasing event 0 V

vnwersmin Minimum nwell voltage to start erasing event 3.5 V

vtpgmmaxshift Maximum Vth shift during programming event 10 V

vtersmaxshift Maximum Vth shift during erasing event 10 V

vthigh Maximum value of Vth after programming event 10 V

vtlow Maximum value of Vth after erasing event -10 V
May 2010 716 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Flash Core Cell Models
Examples

The flash core cell model must be included with the conventional MOSFET model in order to
function. To include a MOSFET model card in a flash core cell model, use the following
command:

.appendmodel flash=dest_mod_name model=src_mod_name

The name of the flash core cell model card is dest_mod_name and src_mod_name is the
name of the conventional MOSFET model card.

For example

.model fnmos1 flashcell flashlevel=1 vthigh=10

tells the simulator that fnmos1 is a flash core cell model and that flashlevel and vthigh
are its model parameters.

Table 15-4 Model Parameters for flashlevel=3 (NAND Type)

Parameter Description Default Value

kpgm Change in Vth during simulation programming event
(per tpgmstep)

1V/1 us

kers Change in Vth during erasing event (per tersstep) 1V/1 us

tpgmstep Time interval for Vth update during programming
event

10 ns

tersstep Time interval for Vth update during erasing event 10 ns

vgspgmmin Minimum gate to source voltage to start programming
event

10 V

vgspgmmax Maximum gate to source voltage for programming
event

30 V

vsbpgmmax Maximum source-to-body voltage to start program 0.5 V

vpwgersmin Minimum pwell to gate voltage to start erasing event 10 V

vpwgersmax Maximum pwell to gate voltage for erasing event 30 V

delvto Initial value for cell Vth 0 V

vthigh Maximum value of Vth after programming event 5 V

vtlow Maximum value of Vth after erasing event -5 V
May 2010 717 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Flash Core Cell Models
The next example

.model tn nmos level=49 vtho=0.0 k1=0.4 k2=0.3

.model nandcell flashcell flashlevel=3 vthigh=10 kpgm=2m vgspgmmin=10

.appendmodel flash=nandcell model=tn

mcell d g s pw tn l=0.9 w=1 delvto=-0.7

tells the Virtuoso UltraSim simulator that nandcell is a flash core cell model and tn is a
conventional MOSFET model on which the flash core cell model is attached.
May 2010 718 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
16
VST/VAVO/VAEO Interfaces

This chapter describes the Virtuoso® VoltageStorm Transistor (VST), Virtuoso Analog
VoltageStorm Option (VAVO), and Virtuoso Analog ElectronStorm Option (VAEO) interfaces
for the Virtuoso UltraSim™ simulator.

VST Interface

The Cadence VoltageStorm Transistor-Level PGS tool is used to analyze the power
distribution network for IR voltage drop and metal electromigration failure for a circuit design.
The Virtuoso UltraSim simulator supports the following flows:

■ Lumped capacitance in signal nets for higher performance in actual circuit simulation.

■ Distributed resistance and capacitance in signal nets for greater signal timing accuracy.

The Virtuoso UltraSim usim_ir command is designed to be used with these flows. For more
information about this tool, refer to the VoltageStorm Transistor-Level PGS User Guide.

VAVO/VAEO Interface

Spectre Syntax

usim_emir type=all format=[vavo] [start=time] [stop=time]

SPICE Syntax

.usim_emir type=all format=[vavo] [start=time] [stop=time]

Note: A period (.) is required when using SPICE language syntax (for example,
.usim_emir).
May 2010 719 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
VST/VAVO/VAEO Interfaces
Description

To improve the efficiency and capability of the Virtuoso UltraSim simulator and VAVO/VAEO
flow, the simulator calculates the information needed for electromigration (EM) and IR drop
analysis, including maximum, root mean square (RMS), and average voltage values for each
node, and average current values for each resistor. The information is saved in a binary
database that can be read into VAVO/VAEO for post-processing.

The usim_emir command can be added to the netlist file, so that the Virtuoso UltraSim
simulator saves the binary database, and VAVO/VAEO continues to run uninterrupted.

Arguments

format The Virtuoso UltraSim simulator saves the voltage and current information
in a binary database (vavo keyword is specified for Virtuoso UltraSim and
VAVO/VAEO flow).

Note: The usim_emir command can also be used with the Virtuoso
UltraSim netlist-based EM/IR flow (see Chapter 9, “Netlist-Based EM/IR
Flow” for more information).

start/stop Specifies the time window start and stop times. The start time default is
the beginning of the transient simulation and the stop time default is the
end of the transient simulation.
May 2010 720 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
A
Virtuoso UltraSim L/XL Product Level
Comparison Table

The following table lists all of the Virtuoso UltraSim L and XL product level features.

Feature UltraSim L UltraSim XL

High Level Options

sim_mode

UltraSim L: s, a, ms, da, and df modes

UltraSim XL: s, a, ms, da, df, and dx modes

X X

analog X X

speed X X

Solver Options

tol X X

method X X

trtol X X

maxstep_window X X

gmin_allnodes X X

cmin_allnodes X X

Device Model Options

mosd_method X X

diode_method X X

vdd X X

deg_mod X X
May 2010 721 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
minr X X

RC Reduction

postl X

preserve X

rcr_fmax X

rshort X X

rvshort X X

lshort X X

lvshort X X

cgnd X X

cgndr X X

DC Options

dc X X

dc_exit X X

dc_prolong X X

abstolv X X

abstoli X X

Miscellaneous

ade X X

rcut X X

canalog X X

canalogr X X

hier_delimiter X X

duplicate_subckt X X

strict_bin X X

buschar X X

progress_t X X

Feature UltraSim L UltraSim XL
May 2010 722 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
progress_p X X

vl X X

vh X X

sim_start X X

dump_step X X

hier X X

pa_elemlen X X

Warning Message Control

warning_limit X X

warning_limit_dangling X X

warning_limit_floating X X

warning_limit_near_float X X

warning_limit_ups X X

Waveform Output

wf_format X X

wf_maxsize X X

wf_reltol X X

wf_tres X X

wf_abstolv X X

wf_abstoli X X

wf_filter X X

Stitching/Backannotation

capfile X

spef X

spf X

dpf X

cmin X

Feature UltraSim L UltraSim XL
May 2010 723 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
cmingnd X

cmingndratio X

dpfscale X

spfbusdelim X

spfcaponly X

spfcrossccap X

spffingerdelim X

spfhierdelim X

spfinstancesection X

spfkeepbackslash X

spfnamelookup X

spfrcreduction X

spfrecover X

spfscalec X

spfscaler X

speftriplet X

spfxtorprefix X

rmin X

rvmin X

Voltage Regulator

.usim_vr X

Power Network Solver

.usim_pn X

.usim_ups X

Interactive Mode

-i X X

HSPICE

Feature UltraSim L UltraSim XL
May 2010 724 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
.meas X X

.probe X X

bisection X

Dynamic Checks

.acheck X

.dcheck X

.pcheck X

.usim_nact X X

.usim_pa X X

.usim_ta X X

Static Checks

.usim_report capacitor X

.usim_report chk_maxleak X

.usim_report chk_mosv X

.usim_report chk_nmosb X

.usim_report chk_nmosvgs X

.usim_report chk_param X

.usim_report chk_pmosb X

.usim_report chk_pmosvgs X

.usim_report chk_substrate X

.usim_report node X X

.usim_report param X X

.usim_report partition X X

.usim_report resistor X

Fast Envelope

env_clockf X

env_method X

Feature UltraSim L UltraSim XL
May 2010 725 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
env_nsamples X

env_maxnstep X

env_tstart X

env_tstop X

env_tol X

env_trtol X

env_speed X

env_harms X

env_resolve X

env_ignore_digital X

Reliability

.age X

.agemethod X

.ageproc X

.deltad X

.hci_only X

.minage X

.nbti_only X

.nbtiageproc X

Vector Stimuli

.vec X X

.vcd X X

Flash Model

.appendmodel X

EMIR

.usim_emir X

VST Dynamic Flow

Feature UltraSim L UltraSim XL
May 2010 726 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
.usim_ir X X

Feature UltraSim L UltraSim XL
May 2010 727 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Virtuoso UltraSim L/XL Product Level Comparison Table
May 2010 728 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
B
Reader Survey

In an effort to continuously improve the Virtuoso® UltraSim™ documentation, Cadence
Technical Publications has created a survey to collect information from readers regarding the
Virtuoso UltraSim Simulator User Guide.

Please take a few minutes to respond to the survey. All information submitted is confidential
and will only be used by Cadence Technical Publications to improve the Virtuoso UltraSim
documentation.

You can submit the completed survey using any one of the following methods:

■ Cut/paste the survey from your browser window into an email and send to:

schwirzk@cadence.com

■ Print out the survey and mail it to:

Cadence Design Systems, Inc.

c/o Martin Schwirzke

555 River Oaks Parkway

San Jose, CA 95134

USA

■ Hand the survey to a Cadence UltraSim Application Engineer (AE) or Product Engineer
(PE).
May 2010 729 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Reader Survey
1. Which version of the Virtuoso UltraSim Simulator User Guide do you
currently use? (Check one).

❏ MMSIM 6.1 ❏ MMSIM 6.2 ❏ MMSIM 7.0 ❏ Other: _____________

2. What type of information do you look for "most" in the manual?

If you need more space to write your response to a question, use the back of this survey.

3. In general, are you able to find the information? Yes ___ No ___

If you answered "No,” why not? ____________________________________

4. Is the information helpful? Yes ___ No ___

If you answered "No,” why not? ____________________________________

5. Rate the “organization” of information in the manual (circle one).

Poor Adequate Excellent

1 2 3 4 5

6. Rate the overall “quality” (completeness and accuracy) of the manual.

Poor Adequate Excellent

1 2 3 4 5

7. What do you like “best” about the manual?

8. What do you like “least” about the manual?

May 2010 730 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Reader Survey

9. What is the “one” most important thing Cadence can do to improve the
manual?

10. Write any other comments about the Virtuoso UltraSim Simulator User
Guide below.

Can we contact you regarding your comments? Yes ___ No ___

If “Yes,” please provide your contact information below:

May 2010 731 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Reader Survey
May 2010 732 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
Index
Symbols
\ forward slash 276, 615, 661
^ caret 628, 681
, comma 40
; semicolon 40, 61, 615
: colon 40, 61
. period 61, 238, 644, 645, 681, 701
... ellipsis 28
.acheck 382
.actnode 382
.age 601
.agemethod 602
.ageproc 603
.alias 676, 701
.alter 109
.bi 681, 700
.chk_ignore 683
.chkwindow 684
.connect 110
.data 111
.dcheck 384
.deltad 604
.end 112
.endl 113
.ends 114
.eom 114
.evcd 660
.global 115
.graph 142
.hci_only 605
.hdl 60
.hier 699
.hotspot 436
.ic 116, 120
.idelay 688
.in 679, 700
.inactnode 382
.include 117
.lib 118
.lprobe/.lprint 131
.macro 126
.malias 134
.measure 135
.measure/power 407
.minage 606

.nbti_only 607

.nbtiageproc 608

.nodeset 119

.odelay 689

.op 120

.option
ingold 146
measdgt 147
numdgt 147

.options 123

.options wl 83

.out 680, 700

.outz 698

.para_rpt 470

.param 125

.part_rpt 514

.pcheck 428

.plot 142

.print 142

.probe 142

.scope 678, 700

.subckt 126

.tdelay 690

.temp 127

.tfall 691

.tran 128

.trise 692

.triz 698

.usim_emir 522, 720

.usim_ir 719

.usim_nact 409, 412

.usim_opt (also see options, simulator) 52,
53, 155

.usim_opt, help 240

.usim_pa 419

.usim_pn 327

.usim_report 322, 514

.usim_restart 181

.usim_save 181

.usim_ta edge 451

.usim_ta hold 444

.usim_ta pulsew 446

.usim_ta setup 448

.usim_trim 233

.usim_ups 331

.usim_vr 322
May 2010 733 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
.vcd 660

.vih 694

.vil 695

.voh 696

.vol 697
‘ apostrophe 61
’ ’ single quotation marks 429, 435, 628,

681
" " double quotation marks 429, 435
" quotation mark 61
() parentheses 28, 61, 628, 681
[] brackets, square 28, 177, 276
{ } braces 61
* asterisk 61, 674
* wildcard 429, 435
*relxpert: 61, 599
*relxpert: + 61
/ back slash 284
& ampersand 628, 681
number sign 671
+ plus sign 61, 615, 674
+lorder, command line format 36
+lqtimeout, command line format 36
+lreport, command line format 36
+lsuspend, command line format 36
< > brackets, angle 276
= equal sign 61
=log, command line format

35
| bar 28, 628, 681
~ tilde 628, 681, 682
$ dollar sign 61, 133, 662, 674
$comment 661
$date 663
$end 662
$enddefinitions 664
$scope 665
$timescale 666
$upscope 667
$var 668
$version 670

A
A (Analog) 159
abstoli 176
abstolv 176
AC lifetime and aging model 594
accuracy

analog 167

mos_method 185
settings, UltraSim options 162
sim_mode 161
wf_reltol 200, 201

acheck 382
ACPR (Adjacent Channel Power

Ratio) 573
active node checking analysis 382
actnode file 42
ADC (Analog to Digital Converter) 32
ade 238
ADE (Analog Design Environment) 26, 32
advanced analysis, UltraSim 381
advantages of AgeMOS model 598
age 601
aged, model 596
agemethod 602
AgeMOS 597
ageproc 603
ahdl_include 60
alias 337, 676
alter 109
analog 159, 167

autodetection 168
design environment 32

analysis
active node checking 382
advanced 381
capacitive current 426
commands 347
design checking 384
dynamic power 407
EM 537
fast envelope 569
info 511
IR 534
node activity 409
parasitic effects on power net

wiring 563
partition and node connectivity 514
power 419
power checking 428
timing 443
UltraSim, advanced 381
wasted current 426

Assura HRCX 35
ATFT (Alpha Thin Film Transistor) 58
autodetection, analog 168
autonomous envelope simulation 587
average, RMS, min, max, peak-to-peak, and

integral (see .measure) 135
May 2010 734 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
avoh 644
avol 645

B
B3SOIPD 58
backannotation, RC 301
behavioral models, Verilog-A 60
bi 681
bipolar junction transistor 64

argument descriptions 53
Gummel Poon 64
HICUM 64
Mextram 64
parasitic 224
quasi-saturation 64
VBIC99 64

bisection timing optimization 455
BJT (Bipolar Junction Transistor) 58, 159,

224, 390
BJT voltage check 389
BSIM

1 58
2 58
3 32, 58
3SOI 58
3V3 58, 596
4 32, 58, 596
SPICE 184

built-in functions, Spectre and SPICE
models 148

bus
node mapping, Verilog netlist 226
signal notation 225

buschar 225

C
C (Celsius) 29
canalog 194
canalogr 195
capacitive current analysis 426
capacitor 67

statistical check 474
voltage check 396

CC (Channel Connections) 321
CCCS (Current-Controlled Current

Source) 69
CCVS (Current-Controlled Voltage

Source) 71
CDMA (Code Division Multiple

Access) 575
CDS_AUTO_64BIT 39
cgnd 247
cgndr 248
changing resistor, capacitor, or MOSFET

device values 233
check

active node 382
BJT device voltage 389
capacitor

statistical 474
voltage 396

DC path leakage current 431
diode voltage 399
floating gate induced leakage 439
high impedance node 433
hold 444
hot spot node current 436
JFET voltage 403
MESFET voltage 403
MOS device voltage 384
netlist parameter 461
over current (excessive current) 428
over voltage (excessive node

voltage) 429
pulse width 446
resistor

statistical 472
voltage 393

setup 448
static

high impedance 504
maximum leakage path 503
MOS voltage 480
NMOS bulk forward-bias 485
PMOS bulk forward-bias 488

substrate forward bias 477
timing edge 451

checkSysConf 39
chk_capacitor

file 42
chk_ignore 624, 683
chk_resistor

file 42
chk_window 625
chkwindow 684
circuit elements

E 95
F 69
May 2010 735 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
G 91
H 71
T 79
W 80

close 344
-cmd cmdfile, command line format 36
CMI (Compiled-Model Interface) 190
-cmiconfig, command line format 37
cmin_allnodes 180
CMOS (Complementary Metal Oxide

Semiconductor) 595
command

descriptions, digital vector format
avoh 644
avol 645
chk_ignore 624
chk_window 625
enable 628
hier 622
hlz 649
idelay 633
io 619
odelay 634
outz 650
period 630
radix 618
slope 636
tdelay 635
tfall 637
trise 638
triz 651
tunit 623
vih 640
vil 641
vname 620
voh 642
vol 643
vref 646
vth 647

line format, UltraSim 35
+lorder 36
+lqtimeout 36
+lreport 36
+lsuspend 36
=log 35
-cmd cmdfile 36
-cmiconfig 37
-csfe 37
-f 35
-format fmt 36
-h 35

-i 37
-I dir 36
-info 35
-libpath path 35
-log 35
-mica 37
-outdir 36
-outname 36
-r file 37
-raw rawDir 36
-rout 37
-rtsf 36
-spectre 37
-top subckt 36
-uwifmt name 36
-v 36
-vlog Verilog_file 37
-w 36

commands
analysis 347
log file 343
UltraSim 27

comment 661
comment line

command descriptions 615
signal information file 674

comparison result waveforms
digital vector file 655
value change dump file 709

configuration file, UltraSim 40
conn 348
connect 110
continuous line

command descriptions 615
signal information file 674
value change dump file 661

control
file, syntax 543
options, .print 146

conventions 27
creating tutorial directories 46
-csfe, command line format 37
current analysis

capacitive 426
wasted 426

current and power, .measure 137
current-controlled

current source 69
voltage source 71
May 2010 736 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
D
DA (Digital Accurate) 158
DAC (Digital to Analog Converter) 32
data 111, 671, 703
database options, simulator

buschar 225
date 663
DC

a mode 159
independent sources 75
lifetime and aging model 594
path leakage current check 431
progress report 172
simulation control options 170
unstable nodes report 172

dc 170
options, simulator

dc 170
dc_exit 173
dc_prolong 171

transient source functions 99
dc_exit 173
dc_rpt_num 172
dcheck 384
dcheck file 42
dcut 191, 192
debugging, interactive simulation 335
default values, simulator options 237
deg_mod 609
deltad 604
describe 350
design, checking analysis 384
detect

conducting
NMOSFETs 492
PMOSFETs 495

device
binning 218
flash core cell 713
model options, simulator

deg_mod 609
diode_method 190
mos_cap 186
mos_method 185
mosd_method 186
vdd 193

device_master_name 189
devices, HSPICE 63
DF (Digital Fast) 158

D-FF (Delay-Type Flip Flop) 458
digital

accurate 158
extended 158
fast 158
vector file 42, 613

conversion to analog waveform 654
example 656
frequently asked questions 657
general definition 615
signal

characteristics 631
states 653

tabular data 652
vector patterns 617
waveforms 655

diode 58, 73
supported models

Level 1 73
Level 2 73
Level 3 73
Level 4 73

voltage check 399
diode_method 190
displaying results for analysis, EM/IR

flow 528
DRAM (Dynamic Random Access

Memory) 165
DSM (Deep-Submicron) 593
dsn

file 44
DSPF (Detailed Standard Parasitic

Format) 31, 241
dump_step 198
duplicate_subckt 225
DUT (Device Under Test) 705
DX (Digital Extended) 158
dynamic power analysis 407

E
E-element 95
EKV (Enz-Krummenacher-Vittoz) 58
elem_compact 219
elem_i 352
elemcut_file 232
elemcut, output file 42
element, compaction 219
elements, circuit

bipolar junction transistor 64
May 2010 737 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
capacitor 67
current-controlled current source 69
current-controlled voltage source 71
diode 73
independent sources 75
lossless transmission line 79
MOSFET 83
resistor 86
self inductor 89
voltage-controlled

capacitor 91
current source 91
resistor 91
voltage source 95

elements, HSPICE 63
EM

analysis 537
data file syntax 553
reports 533

EM (Electromigration) 521
enable 628
end 112, 662
end_bus_symbol 226
enddefinitions 664
endl 113
ends 114
envelope simulation 569
environment options, simulator

ade 238
eom 114
equations

AC lifetime and aging model
age 595
degradation 595
quasi-static argument 595

AgeMOS 597
DC lifetime and aging model

degradation 594
proportionality constant 594

error messages 46, 314, 533
EVCD

command descriptions 703
data 703
port direction and value mapping 705
signal strength levels 703
value change data syntax 703

EVCD (Extended Value Change
Dump) 31, 659

example(s)
.measure 135
active node checking analysis 383

advanced analysis 458, 470, 518
AgeMOS 597
analog 168
canalogr 195
capacitive current analysis 427
circuit elements 65, 68, 74, 75, 78, 79,

80, 84, 86, 88, 89, 93, 97
conventions 28
dc 171
design checking analysis

BJT voltage check 392
capacitor voltage check 398
diode voltage check 402
MOS voltage check 387
resistor voltage check 395

digital vector file commands 618, 619,
620, 622, 623, 626, 628, 630, 633,
634, 635, 636, 637, 638, 640, 641,
642, 643, 644, 645, 646, 647, 649,
650, 651

diode modeling options 191
dynamic power analysis

.measure 407

.probe 408
elem_compact 219
enhanced value change dump 704,

708
fast envelope simulation 575
flash core cell 717
floating gate induced leakage current

check 441
hier 218
hierarchical signal name mapping 700,

701, 702
hold check 446
info analysis 512
interactive mode commands

analysis 348, 350, 354, 356, 357,
358, 359, 361, 362, 363, 364,
365, 366, 367, 368, 369, 370,
371, 372, 374, 375, 376, 377,
378, 379

general 337, 339, 340, 341, 342
log file 344, 345, 346

local envelope simulation 579, 583
log 37
lshort 196
lvshort 196
m=mval 65
method 175
model_lib 206
May 2010 738 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
MOSFET modeling options 185, 186
netlist 54
node activity analysis 412
parasitic file parsing options 265, 266,

267, 269, 270, 272, 274, 275, 276,
278, 279, 280, 282, 283, 284, 285,
287, 288, 290, 291, 292, 293, 295,
298, 299, 300

partition and node connectivity
analysis 514

power
analysis 421

report format 422
checking analysis

dc path leakage current
check 433

high impedance node check 435
hot spot node check 437
over current check 429
over voltage check 430

network 329, 330
pulse width check 448
RC reduction options 246, 247, 248,

249, 251, 252, 254
reliability control statements 601, 602,

603, 604, 606, 608
running 64-bit mode 40
selective RC backannotation 302, 303,

304, 305, 306, 307, 308, 310, 311,
312, 313

setup check 451
signal information file 676, 678, 679,

680, 681, 684, 688, 689, 690, 691,
692, 694, 695, 696, 697, 698

sim_mode 162
simulation

output statements 132, 145
tolerances 176, 177, 178, 179

simulation and control statements 109,
110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 121, 125, 126, 127,
128

speed 164
static power grid calculator 567
stitching files 257, 259, 260, 261
strict_bin 219
structural Verilog, dummy node

connectivity 229
syntax 29

Spectre 45
SPICE 45

tabular data 652
timing

analysis 443
edge check 454

transient source functions 99, 100, 101,
102, 103, 104, 106

tutorial 46
UltraSim

options 156, 157
output file 610

value change dump file 661
data commands 671, 672
definition commands 663, 664, 665,

666, 667, 668, 670
vdd 193
vh 220
vl 221
voltage regulator simulation 323
warning_limit 207
wasted current analysis 427
waveform file options 199, 201, 202,

203
wildcard 55

excluding resistors and capacitors
power network detection 255
RC reduction 255

exec 338
exi 354
exit 339
exitdc 356
exp 100
expected output waveforms

digital vector file 655
value change dump file 709

F
-f, command line format 35
fast envelope simulation 569
features, UltraSim 31
F-element 69
FET (Field Effect Transistor) 77
file(s)

.ic 120

.part_rpt 514
actnode 42
aged model 596
chk_capacitor 42
chk_resistor 42
configuration 40
May 2010 739 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
control, syntax 543
dcheck 42
digital vector 613
dsn 44
elemcut 42, 232
EM data syntax 553
fsdb 42
icmd 42
ilog 42
log

commands 343
examples 37
license 25
simulator options 35

meas 43
message, error and warning 314
mt 43
nact 43
netlist.vecerr.trn 655, 709
netlist.vecexp.trn 655, 709
nodecut 43, 232
output 42, 610
pa 43
para_rpt 43
parasitic, parsing options 263
part_rpt 43
pcheck 43
pr 43
print 43
rpt_chkmosv 43
rpt_chknmosb 43
rpt_chknmosvgs 43
rpt_chkpar 43
rpt_chkpmosb 43
rpt_chkpmosvgs 43
rpt_chksubs 43
rpt_maxleak 43
signal information 673
size, waveform 199
stitching 257
ta 43
tran 43
trn 44
ulog 44
updating waveform 198
value change dump

processing 659
vecerr 44
veclog 44
waveform resolution 200
wdf 44

filtering routine, static power grid
calculator 566

find and when, .measure 138
flash core cell

device 713
models 714

flattening circuit hierarchy option 217
floating gate induced leakage current

check 439
flush 345
FM (Frequency Modulation) 581
force 357
forcev 358
format

command line 35
digital vector file 613
netlist 51, 321
PSF 32, 197
SST2 197
waveform 197
WDF 32, 197

-format fmt, command line format 36
Fourier 184
frequency modulation envelope

simulation 581
frequently asked questions

digital vector file 657
post-layout simulation 319
value change dump file 710

front_bus_symbol 226
fsdb

file 42
FSDB (Fast Signal Database) 32, 197

G
G-element 91
general commands, interactive mode 336
general options, simulator

analog 167
postl 253
sim_mode 161
speed 163

generate EMIR violation map 531
global 115
global threshold

values
vh 220
vl 221

voltages for lprint/lprobe 220
May 2010 740 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
gmin_allnodes 180
gmin_float 217
graph 142

H
-h, command line format 35
HBT (Hetero-Junction Bipolar

Transistor) 58
HCI (Hot Carrier Injection) 591
HCI model 593

AC lifetime and aging 594
DC lifetime and aging 594
hot carrier lifetime and aging 594
MOSFET substrate and gate

current 594
hci_only 605
HDL (Hardware Description

Language) 713
H-element 71
help

.usim_opt 240
command 340

hier 217, 622
hier_delimiter 221
hier_tree 359
hierarchical

delimiter in netlists 221
signal name mapping 699

high impedance node check 433
high-sensitivity analog circuit

simulation 167
history 341
hlz 649
hold check 444
hot carrier

degradation 32
injection 591
lifetime and aging model 594

hot spot node current check 436
HRCX (Hierarchical Resistor and Capacitor

Extraction) 35
HSPICE

expressions support
built-in functions 148
operators 150

HVMOS (High-Voltage MOS) 58

I
-I dir, command line format 36
-i, command line format 37
I(), element instance list format 429
ic 116
icmd

file 42
idelay 633, 688
ilog

file 42
in 679
include 117
independent sources 75
index 361
inductor shorting 195
info

analysis 511
-info, command line format 35
infoname 511
ingold, .option 146
initial condition

.ic 116
BJT 64
dc 170
diode 73
JFET and MESFET 78
MOSFET 83

integration method 174
interactive

command, flush 198
simulation debugging 335

interactive mode commands
alias 337
close 344
conn 348
describe 350
elem_i 352
exec 338
exi 354
exit 339
exitdc 356
flush 345
force 357
forcev 358
help 340
hier_tree 359
history 341
index 361
match 362
May 2010 741 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
meas 363
name 364
nextelem 365
node 366
nodecon 367
op 368
open 346
probe 369
release 370
restart 371
run 372
runcmd 342
save 374
stop 376
time 377
value 378
vni 379

interface
c-macromodel 32
reliability 32
waveform 32

introduction, UltraSim 31
io 619
IR

analysis 534
reports 533

J
JFET

circuit elements 77
voltage check 403

JFET (Junction Field Effect Transistor) 58
JFET and MESFET 77

supported models
Level 1 77
Level 2 77
Level 3 77

L
L product level 22, 721
LDD (Lightly Doped Drain) 593
ldmos 58
level, models

1 73, 77
2 73, 77
3 73, 77
4 73

lib 118
-libpath path, command line format 35
license

log file 25
token, tracking 25

line
command 35
comment 615, 674
continuous 615, 674

lmstat 25
local

envelope simulation 577
options report 213

log file
commands 343
examples 37
license 25
simulator options 35

-log, command line format 35
lossless transmission line 79
lossy transmission line 80
lprobe/lprint 131
lshort 196
LTE (Local Truncation Error) 175, 572
lvshort 196

M
macro 126
malias 134
match 362
maxstep_window 177
meas 363

file 43
measdgt, .option 147
measure 135
measure/power 407
measurement, waveform post-

processing 38
MESFET

circuit elements 77
voltage check 403

MESFET (Metal Semiconductor Field Effect
Transistor) 77

messages
error 46, 314, 533
warning 46, 314

method 174
-mica, command line format 37
minage 606
May 2010 742 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
minr 192
miscellaneous options, UltraSim 205
mixed

signal 159
Spectre/HSPICE format 54

mod_a_igate 188
mod_a_isub 187
model

supported features, HSPICE 61
supported features, Spectre 58

model options, simulator
elem_compact 219
strict_bin 218

model_lib 206
model(s)

AC lifetime and aging 594
aged 596
behavioral, Verilog-A 60
BSIM3 32
BSIM4 32, 596
capacitor 67
DC lifetime and aging 594
flash core cell 714
HCI 593
hot carrier lifetime and aging 594
library specification 206
MOSFET substrate and gate

current 594
NBTI 595
resistor 87
support

structural Verilog 56
Virtuoso Spectre 58

TFT 83
modeling options 184
MOS

0 58
1 58
2 58
3 58
6 58
7 58
8 58
static voltage check 480
voltage check 384

MOS (Metal Oxide Semiconductor) 83,
385, 594

mos_cap 186
mos_method 185
mosd_method 186
MOSFET

circuit elements 83
modeling 184, 223
substrate and gate current models 594

MOSFET (Metal Oxide Semiconductor
Field-Effect Transistor) 61, 158,
435, 593

MS (Mixed Signal) 159
mt

file 43

N
nact file 43
name 364
NBTI (Negative Bias Temperature

Instability) 591
NBTI model 595
nbti_only 607
nbtiageproc 608
netlist

EM/IR flow 521
formats

HSPICE 52
Virtuoso Spectre 51

mixed Spectre/HSPICE format 54
parameter checking 461
vecerr.trn 655, 709
vecexp.trn 655, 709

nextelem 365
NMOS (Negative-Channel Metal Oxide

Semiconductor) 85, 593
NMOS bulk forward-bias check, static 485
NMOSFET (N-Type MOSFET) 492
NMOSFETs, detect conducting 492
node 366

activity analysis 409
connectivity report 516

nodecon 367
nodecut file 43
nodecut_file 232
nodeset 119
npwl 93
numdgt, .option 147

O
ODE (Ordinary Differential Equation) 174
odelay 634, 689
op 120, 368
May 2010 743 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
OP (Operating Point) 368
open, log file command 346
operating

point 169
point calculation method 169
voltage range 192

operators, HSPICE 150
optimizing, bisection timing 455
options 123

flattening circuit hierarchy 217
message control, stitching 314, 315,

316
miscellaneous, UltraSim 205
modeling 184
parsing, parasitic files 263
post-layout simulation 241
print file 232
simulation

control 169
convergence 179
operating point calculation time

control 171
progress report 211
start time 211

strobing 183
UltraSim

setting 155
simulation 155

waveform file format and resolution 197
wl 83

options, simulator
database

buschar 225
dc

dc 170
dc_exit 173
dc_prolong 171

default 237
device model

deg_mod 609
diode_method 190
mos_cap 186
mos_method 185
mosd_method 186
vdd 193

environment
ade 238

general
analog 167
postl 253
sim_mode 161

speed 163
model

elem_compact 219
strict_bin 218

output
pa_elemlen 421
wf_abstoli 203
wf_abstolv 202
wf_filter 200
wf_format 197
wf_maxsize 199
wf_reltol 201
wf_tres 202

parser
duplicate_subckt 225
hier_delimiter 221
warning_limit 207
warning_limit_dangling 208
warning_limit_float 208
warning_limit_near_float 209
warning_limit_ups 209
warning_node_omit 210

post-layout
canalog 194
canalogr 195
cgnd 247
cgndr 248
dcut 191, 192
lshort 196
lvshort 196
rcr_fmax 249
rshort 251
rvshort 252

power network solver
pn 330
pn_level 329
pn_max_res 329

simulation
abstoli 176
abstolv 176
cmin_allnodes 180
dump_step 198
gmin_allnodes 180
progress_p 212
progress_t 211
sim_start 211
vh 220
vl 221

solver
hier 217
maxstep_window 177
May 2010 744 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
method 174
tol 178
trtol 179

out 680
-outdir, command line format 36
-outname, command line format 36
output

file, UltraSim 610
files 42
options, simulator

pa_elemlen 421
wf_abstoli 203
wf_abstolv 202
wf_filter 200
wf_format 197
wf_maxsize 199
wf_reltol 201
wf_tres 202

vector
signal_name_err 655, 709
signal_name_exp 655, 709

outz 650, 698
over current (excessive current) check 428
over voltage (excessive node voltage)

check 429

P
pa file 43
pa_elemlen 421
para_rpt 470

file 43
param 125
parameter(s)

.measure 139
checking, netlist 461
fast envelope analysis 569

parasitic files parsing options 265, 266,
267, 269, 270, 271, 272, 273, 274,
275, 276, 278, 279, 280, 282, 283,
284, 285, 287, 288, 289, 291, 292,
293, 295, 300

parasitic, bipolar junction transistor 224
parser options, simulator

duplicate_subckt 225
hier_delimiter 221
warning_limit 207
warning_limit_dangling 208
warning_limit_float 208
warning_limit_near_float 209

warning_limit_ups 209
warning_node_omit 210

parsing options, parasitic files 263
part_rpt

file 43
part_rpt file 514
partition and node connectivity

analysis 514
partition reports

activity 514
node 515
size 514

pattern 105
pcheck 428

file 43
period 630
PLL (Phase-Locked Loop) 165
plot 142
PMOS (Positive-Channel Metal Oxide

Semiconductor) 593
PMOS bulk forward-bias check, static 488
PMOSFET (P-Type MOSFET) 495
PMOSFETs, detect conducting 495
pn 330
pn_level 329
pn_max_res 329
port direction and value mapping,

EVCD 705
postl 253
post-layout options, simulator

canalog 194
canalogr 195
cgnd 247
cgndr 248
dcut 191, 192
lshort 196
lvshort 196
rcr_fmax 249
rshort 251
rvshort 252

post-layout simulation 241
frequently asked questions 319

power
.measure 407
.probe 408
analysis 419
checking analysis 428
network solver 327
networks 327

power network detection
excluding resistors and capacitors 255
May 2010 745 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
ppwl 93
pr

file 43
preserve 255
print 142

control options 146
element name 143
file options 232
parameters in subcircuits 470

print file 43
.probe/power 408
probe 142, 369
processing the value change dump file 659
progress report 211
progress_p 212
progress_t 211
PSF (Parameter Storage Format) 32, 197
PSITFT (Poly Thin Film Transistor) 58
pulse 103

width check 446
pwl 101
pwlz 102

R
-r file, command line format 37
radix 618
-raw 198

rawDir, command line format 36
RC (Resistor and Capacitor) 241
RC backannotation, selective 301
RC reduction

excluding resistors and capacitors 255
RC reduction options

ccut 246
cgnd 247
cgndr 248
postl 253
rcr_fmax 249
rshort 251
rvshort 252

rcr_fmax 249
RCX (Resistor and Capacitor

Extraction) 262
reader survey 729
recommended simulation modes and

accuracy settings 164
reduction

algorithms 32
drain current 593

Idsat 595
release 370
reliability

control statements 599
.age 601
.agemethod 602
.ageproc 603
.deltad 604
.hci_only 605
.minage 606
.nbti_only 607
.nbtiageproc 608

RelXpert reliability simulator 61
reports

DC
progress 172
unstable nodes 172

EM 533
hotspot 436
IR 533
local options 213
model building progress 212
node connectivity 516
partition

activity 514
node 515
size 514

simulation progress 211
stitching 316

resistor 86
statistical check 472
voltage check 393

restart 371
simulation 181

return codes 45
rise, fall, and delay (see .measure) 137
RLGC (Resistance, Inductance,

Conductance, and Capacitance) 80
RMS (Root Mean Square) 104
ROM (Read-Only Memory) 165
-rout, command line format 37
rpt_chkmosv

file 43
rpt_chknmosb

file 43
rpt_chknmosvgs

file 43
rpt_chkpar

file 43
rpt_chkpmosb

file 43
May 2010 746 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
rpt_chkpmosvgs
file 43

rpt_chksubs
file 43

rpt_maxleak
file 43

rshort 251
-rtsf, command line format 36
rules

syntax 61
wildcard 55

run 372
runcmd 342
running

64-bit mode
command line 39

rvshort 252

S
S (SPICE) 159
save 374

parameters 512
restart 181
simulation state 181

SC (Switch Capacitor) 166
scope 665, 678
search_mosg 223
selective RC backannotation 302, 303,

304, 305, 306, 307, 308, 309, 310,
311, 312, 313

self inductor 89
setting

accuracy 157
path, UltraSim 35
UltraSim options 155

ultrasim.cfg 157
setup check 448
SFE (Spectre Front End) 37
signal

_name_err 655, 709
_name_exp 655, 709
mask 615
states, digital vector file 653
strength levels, EVCD 703

signal information file 673
comment line 674
continuous line 674
driving ability

.outz 698

.triz 698
format 674
signal matches

.alias 676

.bi 681

.chk_ignore 683

.chkwindow 684

.in 679

.out 680

.scope 678
signal timing

.idelay 688

.odelay 689

.tdelay 690

.tfall 691

.trise 692
voltage threshold

.vih 694

.vil 695

.voh 696

.vol 697
sim_mode 161
sim_start 211
simulation(s)

accuracy settings 157
autonomous, envelope 587
control options 169
control statements

.alter 109

.connect 110

.data 111

.end 112

.endl 113

.ends 114

.eom 114

.global 115

.ic 116

.include 117

.lib 118

.macro 126

.nodeset 119

.op 120

.options 123

.param 125

.subckt 126

.temp 127
convergence options 179
EM/IR 522
fast envelope 569
frequency modulation, envelope 581
high-sensitivity analog circuit 167
May 2010 747 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
interactive debugging 335
local envelope 577
modes 157

a 159
da 158
df 158
dx 158
ms 159
s 159

modes and accuracy settings 157
operating point calculation time control

option 171
options 155
output statements

.graph 142

.lprobe/.lprint 131

.measure 135

.plot 142

.print 142

.probe 142
post-layout 241
progress report control options 211
reliability 591
SPICE format control statements 108
SPICE format output statements 130
start time option 211
tolerances 175

abstoli 176
abstolv 176
maxstep_window 177
tol 178
trtol 179

voltage regulator 321
simulator options, default (also see options,

simulator) 237
SimVision 44, 197
sin 104
slope 636
solver options, simulator

hier 217
maxstep_window 177
method 174
tol 178
trtol 179

sources, HSPICE 98
specifying

output destination 512
UltraSim options

.usim_opt 155
Spectre 51

netlist

model support 58
syntax 45

-spectre 51
command line format 37

speed 163
spef 261
SPEF (Standard Parasitic Exchange

Format) 31, 241
spf 260
SPICE 159

netlist syntax 44
Spectre netlist syntax 45

SRAM (Static Random Access
Memory) 165

SST2 (SignalScan Turbo 2) 197
static

high impedance check 504
maximum leakage path check 503
MOS voltage check 480
NMOS bulk forward-bias check 485
PMOS bulk forward-bias check 488
power grid calculator 563

stitching
files

capfile 257
dpf 258
spef 261
spf 260

parameterized subcircuit instances 280
reports, statistical 316

stop 376
strict_bin 218
strobing control options

strobe_delay 183
strobe_period 183
strobe_start 183
strobe_stop 183

structural Verilog
dummy node connectivity 228
netlist support 56

subckt 126
substrate

forward bias checking 477
survey, reader 729
syntax

control file 543
EM data file 553
HSPICE netlist 54
rules 61
Spectre netlist 45
SPICE netlist 44
May 2010 748 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
UltraSim 29
waveform name 44

T
ta file 43
table_mem_control 189
tabular data

digital vector file 652
valid values 653

target, .measure 140
tdelay 635, 690
T-element 79
temp 127
temperature value 127
tfall 637, 691
time 377
time_value 672
timescale 666
timing analysis 443

hold check 444
pulse width check 446
setup check 448
timing edge check 451

tol 162, 178
-top subckt, command line format 36
tracking token licenses 25
tran

file 43
tran simulation(s)

control statements
.tran 128

transient source functions 98
dc 99
exp 100
pattern 105
pulse 103
pwl 101
pwlz 102
sin 104

treatment of analog capacitors 193
trigger, .measure 140
trise 638, 692
triz 651, 698
trn

file 44
trtol 179
tunit 623
tutorial

directories, creating 46

UltraSim_Workshop 46
usim_ade 47
USIM_NetlistBased_EMIR_Flow 48
Usim_Verilog 48

U
UCI (UltraSim C-Macromodel Interface) 32
UDP (User-Defined Procedures) 57
UFE (UltraSim Front End) 37
UIC (Use Initial Conditions) 170
ulog

file 44
UltraSim

advanced analysis 381
c-macromodel interface 32
command line format 35
configuration file 40
features 31
input, file 41
introduction 31
L product level 22, 721
miscellaneous options 205
options, setting 155
output, file 41

actnode 42
chk_capacitor 42
chk_resistor 42
dcheck 42
dsn 44
elemcut 42
fsdb 42
icmd 42
ilog 42
meas 43
mt 43
nact 43
nodecut 43
pa 43
para_rpt 43
part_rpt 43
pcheck 43
pr 43
print 43
reliability simulation 610
rpt_chkmosv 43
rpt_chknmosb 43
rpt_chknmosvgs 43
rpt_chkpar 43
rpt_chkpmosb 43
May 2010 749 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
rpt_chkpmosvgs 43
rpt_chksubs 43
rpt_maxleak 43
ta 43
tran 43
trn 44
ulog 44
vecerr 44
veclog 44
wdf 44

power network solver 327
reader survey 729
reliability

control statements 599
interface 32, 591
simulation 591

setting path 35
simulation options 155
syntax 29
tutorials 46
waveform interface 32
XL product level 22, 721

ultrasim.cfg 157
unit prefix symbols 62
updating waveform files 198
UPS (UltraSim Power Network Solver) 32,

209, 327
upscope 667
URI (Unified Reliability Interface) 32
use model, save and restart 182
usim_emir 522, 720
usim_ir 719
usim_nact 409, 412
usim_opt (also see options, simulator) 155
usim_opt, help 240
usim_pa 419
usim_pn 327
usim_report 322, 514
usim_restart 181
usim_save 181
usim_ta edge 451
usim_ta hold 444
usim_ta pulsew 446
usim_ta setup 448
usim_trim 233
usim_ups 331
usim_vr 322
UWI (UltraSim Waveform Interface) 32
-uwifmt name, command line format 36

V
-v, command line format 36
v(), node instance list format 435
VAEO (Virtuoso Analog ElectronStorm

Option) 33, 522, 719
value 378
value change data syntax, EVCD 703
value change dump

command descriptions 661
comment 661
continuous line 661
data commands 671

data 671
time_value 672

definition commands 662
$date 663
$enddefinitions 664
$scope 665
$timescale 666
$upscope 667
$var 668
$version 670

waveforms, output and results 709
var 668
VAVO (Virtuoso Analog VoltageStorm

Option) 33, 719
VBIC (Vertical Bipolar Inter-Company) 58
VCCAP (Voltage-Controlled

Capacitors) 92
VCCS (Voltage-Controlled Current

Source) 91
VCD (Value Change Dump) 31, 659
VCO (Voltage Controlled Oscillator) 166
VCR (Voltage-Controlled Resistors) 92
VCVS (Voltage-Controlled Voltage

Source) 95
vdd 193
vec_error waveform 655, 709
vecerr file 44
veclog file 44
vector signal states

input 653
output 654

Verilog
value change dump stimuli 659

Verilog-A
behavioral models 60
MOSFET gate leakage modeling 223

version 670
May 2010 750 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
vh 220
vih 640, 694
vil 641, 695
violation map, generate 531
Virtuoso visualization and analysis 44, 197
ViVA (Virtuoso Visualization & Analysis) 36
vl 221
-vlog Verilog_file, command line format 37
vlog_buschar 226
vlog_supply_conn 228
vname 620
vni 379
VO (Voltage Overshoot) 32, 381
voh 642, 696
vol 643, 697
voltage regulator, simulation 321
voltage-controlled

capacitor 91
current source 91
resistor 91
voltage source 95

VoltageStorm 33
VR (Voltage Regulator) 321
vref 646
VST (Virtuoso VoltageStorm

Transistor) 719
vth 647
VU (Voltage Undershoot) 32, 381

W
-w, command line format 36
warning

limit, categories 518
messages 46, 314
settings 207

warning_limit 207, 518
_dangling 208
_float 208
_near_float 209
_ups 209

warning_node_omit 210
wasted current analysis 426
waveform

comparison results
digital vector file 655
value change dump file 709

expected output
digital vector file 655
value change dump file 709

file
resolution 200
size 199

filtering options, default values 203
format 197
name syntax 44
post-processing measurement 38
vec_error 655, 709

wdf
file 44

WDF (Waveform Data Format) 32, 197
W-element 80
wf_abstoli 203
wf_abstolv 202
wf_filter 200
wf_format 197, 655, 709
wf_maxsize 197, 199
wf_reltol 201
wf_spectre_syntax 45
wf_tres 202
wildcard rules 55
wildcards 116, 156, 410, 416

X
XL product level 22, 721
May 2010 751 Product Version 7.2

Virtuoso UltraSim Simulator User Guide
May 2010 752 Product Version 7.2

	Contents
	Preface
	Licensing in Virtuoso UltraSim Simulator
	Virtuoso UltraSim L and XL Product Levels

	Related Documents for Virtuoso UltraSim Simulator
	Typographic and Syntax Conventions

	Introduction to Virtuoso UltraSim Simulator
	Virtuoso UltraSim Simulator Features
	Related Documents for Extended Analyses

	Virtuoso UltraSim Simulator in IC Design Flow
	Command Line Format
	Running the Virtuoso UltraSim Simulator
	Virtuoso UltraSim Simulator Options
	Virtuoso UltraSim 64-Bit Software

	Virtuoso UltraSim Simulator Configuration File
	Virtuoso UltraSim Simulator Input/Output Files
	Waveform Name Syntax

	Virtuoso UltraSim Return Codes
	Error and Warning Messages
	Creating Tutorial Directories
	UltraSim_Workshop
	usim_ade
	Usim_Verilog
	USIM_NetlistBased_EMIR_Flow

	Netlist File Formats
	Supported Netlist File Formats
	Virtuoso Spectre
	HSPICE
	Mixed Virtuoso Spectre and HSPICE
	Structural Verilog

	Compressed Netlist File
	Supported Virtuoso Spectre Model Features
	Virtuoso Spectre
	Verilog-A

	Supported HSPICE Model Features
	Syntax Rules
	Unit Prefix Symbols

	Supported HSPICE Devices and Elements
	Bipolar Junction Transistor
	Capacitor
	Current-Controlled Current Source (F-Element)
	Current-Controlled Voltage Source (H-Element)
	Diode
	Independent Sources
	JFET and MESFET
	Lossless Transmission Line (T-Element)
	Lossy Transmission Line (W-Element)
	MOSFET
	Mutual Inductor
	Resistor
	Self Inductor
	Voltage-Controlled Current Sources (G-Elements)
	Voltage-Controlled Voltage Source (E-Elements)

	Supported HSPICE Sources
	dc
	exp
	pwl
	pwlz
	pulse
	sin
	pattern

	Supported SPICE Format Simulation and Control Statements
	.alter
	.connect
	.data
	.end
	.endl
	.ends or .eom
	.global
	.ic
	.include
	.lib
	.nodeset
	.op
	.options
	.param
	.subckt or .macro
	.temp
	.tran

	Supported SPICE Format Simulation Output Statements
	.lprobe and .lprint
	.malias
	.measure
	.probe, .print, .plot, and .graph

	Supported SPICE Format Expressions
	Built-In Functions
	Constants
	Operators

	Simulation Options
	Setting Virtuoso UltraSim Simulator Options
	Simulation Modes and Accuracy Settings
	Simulation Modes
	Supported Representative Models Summary
	Accuracy Settings
	Recommended Simulation Modes and Accuracy Settings

	High-Sensitivity Analog Option
	analog

	Analog Autodetection
	Simulation Control Options
	Operating Point Calculation Method
	Operating Point Calculation Control Options
	DC Options
	Integration Method
	Simulation Tolerances
	Simulation Convergence Options
	Save and Restart
	Strobing Control Options

	Modeling Options
	MOSFET Modeling
	Analog Representative Model for Generic MOSFET Devices
	Diode Modeling
	minr
	Operating Voltage Range
	Treatment of Analog Capacitors
	Inductor Shorting

	Waveform File Format and Resolution Options
	Waveform Format
	Updating Waveform Files
	Waveform File Size
	Waveform File Resolution
	Node Name Format Control

	Miscellaneous Options
	Model Library Specification
	Warning Settings
	Simulation Start Time Option
	Simulation Progress Report Control Options
	Model Building Progress Report
	Local Options Report
	Node Topology Report
	Resolving Floating Nodes
	Flattening Circuit Hierarchy Option
	hier
	Device Binning
	Element Compaction
	Threshold Voltages for Digital Signal Printing and Measurements
	Hierarchical Delimiter in Netlist Files
	MOSFET Gate Leakage Modeling with Verilog-A
	Automatic Detection of Parasitic Bipolar Transistors
	Duplicate Subcircuit Handling
	Bus Signal Notation
	Bus Node Mapping for Verilog Netlist File
	Structural Verilog Dummy Node Connectivity
	skip Option
	probe_preserve Option
	Print File Options
	Controlling Text Wrapping of Circuit Check Reports
	Changing Resistor, Capacitor, or MOSFET Device Values
	.reconnect

	Simulator Options: Default Values

	Post-Layout Simulation Options
	RC Reduction Options
	ccut
	cgnd
	cgndr
	rcr_fmax
	rcut
	rshort
	rvshort
	postl

	Excluding Resistors and Capacitors from RC Reduction
	preserve

	Stitching Files
	capfile
	dpf
	spf
	spef

	Parsing Options for Parasitic Files
	cmin
	cmingnd
	cmingndratio
	dpfautoscale
	dpfscale
	rmax
	rmaxlayer
	rmin
	rminlayer
	rvmin
	speftriplet
	spfbusdelim
	spfcaponly
	spfcrossccap
	spffingerdelim
	spfhierdelim
	spfinstancesection
	spfkeepbackslash
	spfnamelookup
	spfrcnet
	spfrcreduction
	spfrecover
	spfscalec
	spfscaler
	spfserres
	spfserresmod
	spfsplitfinger
	spfswapterm
	spfxtorintop
	spfxtorprefix

	Selective RC Backannotation
	spfactivenet
	spfactivenetfile
	spfchlevel
	spfcnet
	spfcnetfile
	spfhlevel
	spfnetcmin
	spfrcnetfile
	spfskipnet
	spfskipnetfile
	spfskippwnet
	spfskipsignet

	Error/Warning Message Control Options for Stitching
	spferrorreport
	spfmaxerrormsg
	spfmaxwarnmsg

	Stitching Statistical Reports
	Frequently Asked Questions
	How can I minimize memory consumption?
	How can I reduce the time it takes to run a DC simulation?

	Voltage Regulator Simulation
	Overview of Voltage Regulator Simulation
	usim_vr

	Power Network Solver
	Detecting and Analyzing Power Networks
	usim_pn
	pn_level
	pn_max_res
	pn

	UltraSim Power Network Solver

	Interactive Simulation Debugging
	Overview of Interactive Simulation Debugging
	General Commands
	alias
	exec
	exit
	help
	history
	runcmd

	Log File Commands
	close
	flush
	open

	Analysis Commands
	conn
	describe
	elem_i
	exi
	exitdc
	force
	forcev
	hier_tree
	index
	match
	meas
	name
	nextelem
	node
	nodecon
	op
	probe
	release
	restart
	run
	save
	spfname
	stop
	time
	value
	vni

	Virtuoso UltraSim Advanced Analysis
	Dynamic Checks
	Active Node Checking
	Design Checking
	Dynamic Power Checking
	Node Activity Analysis
	Node Glitch Analysis
	Power Analysis
	Wasted and Capacitive Current Analysis
	Power Checking
	Timing Analysis
	Bisection Timing Optimization

	Static Checks
	Netlist File Parameter Check
	Print Parameters in Subcircuit
	Resistor and Capacitor Statistical Checks
	Substrate Forward-Bias Check
	Static MOS Voltage Check
	Static NMOS and PMOS Bulk Forward-Bias Checks
	Detect Conducting NMOSFETs and PMOSFETs
	Static Maximum Leakage Path Check
	Static High Impedance Check
	Static ERC Check
	Static DC Path Check
	info Analysis
	Partition and Node Connectivity Analysis
	Warning Message Limit Categories

	Netlist-Based EM/IR Flow
	Simulating Data and Saving Files
	Block-Level Solution
	Advanced EMIR Flow for Big Blocks and Full Chip

	Displaying Results for Analysis
	Violation Maps and Text Reports
	IR Analysis
	EM Analysis
	Saving Customized Settings in EMIR GUI

	Command Syntax
	Control File
	EM Data File

	Static Power Grid Calculator
	Analyzing Parasitic Effects on Power Net Wiring
	ultrasim -r
	Filtering Routine

	Fast Envelope Simulation for RF Circuits
	Simulation Parameters
	Local Envelope Simulation
	Frequency Modulation Envelope Simulation
	Frequency Modulation Source Types
	Frequency Modulation Source Parameters
	Example

	Autonomous Envelope Simulation

	Virtuoso UltraSim Reliability Simulation
	Hot Carrier Injection Models
	MOSFET Substrate and Gate Current Model
	Hot Carrier Lifetime and Aging Model
	DC Lifetime and Aging Model
	AC Lifetime and Aging Model

	Negative Bias Temperature Instability Model
	Aged Model
	AgeMOS
	Reliability Control Statements
	.age
	.agemethod
	.ageproc
	.deltad
	.hci_only
	.minage
	.nbti_only
	.nbtiageproc

	Virtuoso UltraSim Simulator Option
	deg_mod

	Reliability Shared Library
	uri_lib

	Virtuoso UltraSim Simulator Output File

	Digital Vector File Format
	General Definition
	Vector Patterns
	radix
	io
	vname
	hier
	tunit
	chk_ignore
	chk_window
	enable
	period

	Signal Characteristics
	Timing
	idelay
	odelay
	tdelay
	slope
	tfall
	trise
	Voltage Threshold
	vih
	vil
	voh
	vol
	avoh
	avol
	vref
	vth
	Driving Ability
	hlz
	outz
	triz

	Tabular Data
	Absolute Time Mode
	Period Time Mode
	Valid Values

	Vector Signal States
	Input
	Output

	Digital Vector Waveform to Analog Waveform Conversion
	Expected Output and Comparison Result Waveforms for Digital Vector Files
	Example of a Digital Vector File
	Frequently Asked Questions
	Can I replace the bidirectional signal with an input and output vector?
	How do I verify the input stimuli?
	How do I verify the vector check?

	Verilog Value Change Dump Stimuli
	Processing the Value Change Dump File
	VCD Commands
	VCD File Format
	Definition Commands
	$date
	$enddefinitions
	$scope
	$timescale
	$upscope
	$var
	$version
	Data Commands
	data
	time_value

	Signal Information File
	Signal Information File Format
	Signal Matches
	.alias
	.scope
	.in
	.out
	.bi
	.chk_ignore
	.chkwindow
	Signal Timing
	.idelay
	.odelay
	.tdelay
	.tfall
	.trise
	Voltage Threshold
	.vih
	.vil
	.voh
	.vol
	Driving Ability
	.outz
	.triz
	Hierarchical Signal Name Mapping

	Enhanced VCD Commands
	Signal Strength Levels
	Value Change Data Syntax
	Port Direction and Value Mapping
	Enhanced VCD Format Example

	Expected Output and Comparison Result Waveforms for Value Change Dump Files
	Frequently Asked Questions
	Is it necessary to modify the VCD/EVCD file to match the signals?
	How can I verify the input stimuli?
	How do I verify the output vector check?
	Why should I use hierarchical signal name mapping?
	What is the difference between CPU and user time?

	Flash Core Cell Models
	Device
	Models

	VST/VAVO/VAEO Interfaces
	VST Interface
	VAVO/VAEO Interface

	Virtuoso UltraSim L/XL Product Level Comparison Table
	Reader Survey
	Index

