
Analog/Mixed-Signal Hardware Error Modeling
for Deep Learning Inference

Angad S. Rekhi1, Brian Zimmer2, Nikola Nedovic2, Ningxi Liu3, Rangharajan Venkatesan2,
Miaorong Wang4, Brucek Khailany2, William J. Dally1,2, C. Thomas Gray2

1Stanford University, 2NVIDIA, 3University of Virginia, 4Massachusetts Institute of Technology

ABSTRACT

Analog/mixed-signal (AMS) computation can be more energy

efficient than digital approaches for deep learning inference, but in-

curs an accuracy penalty from precision loss. Prior AMS approaches

focus on small networks/datasets, which can maintain accuracy even

with 2b precision. We analyze applicability of AMS approaches to

larger networks by proposing a generic AMS error model, imple-

menting it in an existing training framework, and investigating its

effect on ImageNet classification with ResNet-50. We demonstrate

significant accuracy recovery by exposing the network to AMS error

during retraining, and we show that batch normalization layers are

responsible for this accuracy recovery. We also introduce an energy

model to predict the requirements of high-accuracy AMS hardware

running large networks and use it to show that for ADC-dominated

designs, there is a direct tradeoff between energy efficiency and

network accuracy. Our model predicts that achieving < 0.4% accu-

racy loss on ResNet-50 with AMS hardware requires a computation

energy of at least ∼300 fJ/MAC. Finally, we propose methods for

improving the energy-accuracy tradeoff.

KEYWORDS

Analog/mixed-signal circuits, multiply-accumulate, dot product,

deep learning, inference accelerator, error modeling, ResNet-50

1 INTRODUCTION

Deep learning is becoming ubiquitous in modern classification

and detection systems. However, state of the art deep neural networks

(DNNs) can be computationally intensive; this makes inference

energetically costly, which can limit the usage of DNNs in an energy-

constrained setting. Any method that reduces the energy cost of DNN

inference is therefore of interest to system designers.

Methods for improved energy efficiency can be broadly catego-

rized by whether they work at the software or at the hardware level.

The former includes all network-level methods, such as pruning [1,

2], distillation [3], and quantization [4], and all other approaches im-

plemented on existing hardware. The latter deals with changing the

fabric on which the inference computation is performed. The most

popular hardware-level approaches for improving energy efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317770

involve the design of custom digital ASICs that are optimized for

fixed-point dot product computations, with the circuitry designed so

that the reuse of weights and/or activations significantly reduces the

energy cost of memory access [5].

An alternative to all-digital ASICs is to use an analog approach.

By encoding information in amplitude or time rather than bits, ana-

log circuits have the potential to use less energy per operation than

corresponding digital implementations, at the cost of increased sus-

ceptibility to amplitude and/or timing noise, as well as to device

mismatch [6]. Interestingly, when analog approaches are used for

neural network evaluation, these drawbacks can be ameliorated by

the fact that deep networks are often resilient to small amounts of

noise [7]. This makes analog circuits natural candidates for deep

learning inference hardware.

Because data storage and movement are still most efficient in the

digital domain and network inputs and outputs are often digital in

nature, approaches in the literature tend to focus on analog/mixed-

signal (AMS) implementations, in which the core dot product com-

putation is performed in the analog domain while the inputs and

outputs to these analog blocks are digital [6, 8].

The majority of AMS approaches to date have focused on the use

of resistive arrays to perform dot product computation - weights are

stored as conductances, activations are loaded in as voltages on word-

lines, and their products are read out as currents on bitlines [9–21].

Another approach is to use switched-capacitor multipliers, which use

passive charge redistribution to convert digital inputs into an analog

output representing the scaled product of the inputs [22–24]. Both of

these approaches have been shown to degrade network accuracy [19,

20, 24]. Prior work has focused on demonstrating the functionality

of AMS circuits both as standalone computational units and as the

hardware fabric on which neural networks are implemented [25, 26].

To date, most work has been focused on relatively small problems,

such as MNIST and CIFAR classification, with some recent work

starting to explore the use of AMS hardware for more complex

problems, such as ImageNet classification [19, 20].

This work builds upon previous AMS-based approaches to infer-

ence by abstracting the AMS computational unit into an error-free

portion with additive error, and then injecting that error at the net-

work level to investigate the effect of AMS hardware on ImageNet

classification with ResNet-50. Our method can model any system

that performs digital-to-analog multiplications followed by analog-

to-digital conversions, including approaches based on resistive arrays

or switched capacitors. We describe our approach to error modeling

and injection in Section 2. In Section 3, we present accuracy results

with those error models, show that exposing the network to AMS

error during retraining can recover a substantial amount of accuracy,

and provide evidence suggesting that batch normalization layers

are responsible for accuracy recovery. In Section 4, we introduce

����

���	
����	�������������	�
�����

��	
��
��	�

��
��

��

��

��	
��
��	�

��
��

��

��

��	
��
��	�

��
��

��

��

�� ����

���	

���	

Figure 1: Block diagram of the AMS VMAC unit considered in

this work.

a basic energy model in order to tie accuracy to energy and use it

to show that, for ADC-dominated designs, energy efficiency cannot

be improved without hurting accuracy (and vice versa). Our model

predicts that achieving < 0.4% accuracy loss on ResNet-50 requires

a computation energy of at least ∼300 fJ/MAC. Finally, we discuss

methods to potentially improve upon the proposed model and results.

2 ERROR MODEL

The computational unit cell used in this work is an AMS vector

multiply-accumulate (VMAC) cell; the cell’s block diagram is shown

in Figure 1. This cell takes Nmult weight-activation pairs and outputs

a single number representing the sum of the pairwise products; alter-

natively, the cell can be viewed as computing the dot product of two

input vectors of length Nmult. In keeping with the dogma of digital

data storage and transport, all inputs to and the output of this unit

cell are digital. Input weights and activations are, respectively, BW-

and BX-bit signed numbers (sign-magnitude representation). Each

D-to-A multiplier performs a signed multiplication of its two inputs

and returns the signed result in the analog domain (differentially).

The sum (or average, as discussed below) of Nmult of these outputs

is then passed to a differential analog-to-digital converter (ADC),

which converts the analog dot product back to the digital domain

with some effective number of bits of information (ENOBVMAC).

We use ENOBVMAC as an independent variable that represents all

of the AMS error introduced in the VMAC cell (thermal noise and

nonlinearity from the multipliers; thermal noise, nonlinearity, and

quantization error from the ADC), referred to the input of the ADC.

Computing a dot product with an AMS VMAC cell entails infor-

mation loss. Figure 2 represents that loss in terms of the precision

of the ideal digital vector dot product. The ideal multiplication of

a BW-bit signed weight by a BX-bit signed activation (both using

sign-magnitude representation) results in a product with BW+BX-2

magnitude bits and one sign bit. The ideal addition of Nmult of these

numbers results in an additional log2(Nmult) bits of precision. With

no full-scale adjustment (see Section 4), the ADC picks out the most

significant ENOBVMAC of these bits.

When the VMAC cell presented here is used to compute convo-

lutions in neural networks, outputs of multiple cells (tiled across

space and/or time) will generally need to be added to arrive at a

single output activation, since, in general, Nmult will be smaller than

�������	
���

������������������	

������������� ����

Figure 2: Representation of lost precision with AMS implemen-

tation of VMAC. White section is recovered bits (MSB is sign

bit); grey portion is lost information. Note that the binary point

may or may not fall within the recovered section.

Ntot (the total number of multiplications needed to compute a single

output activation). Thus, each VMAC cell computes lossy partial

products. Because our VMAC cell has digital outputs, sums of these

outputs are computed digitally. Therefore, there is no extra loss in

precision beyond that described by Figure 2 (i.e., beyond each AMS

VMAC cell).

The loss of information in the bits of lesser significance can lead

to degradation in network accuracy when our AMS VMAC cells are

used to compute partial sums for convolutional layers. To quantita-

tively investigate this effect, we run network-level simulations with

injected AMS error. We use Distiller, an open-source PyTorch-based

package chiefly meant for neural network compression, to implement

AMS error injection [27]. Distiller provides out-of-the-box support

for several methods of quantization of weights and activations; we

use DoReFa, which compresses and quantizes convolutional layer

weights, clips and quantizes activations, and allows for quantization

in the training loop using a straight-through estimator [28]. As op-

posed to the original implementation, Distiller’s version of DoReFa

does not quantize gradients. Batch normalization weights and biases

are also not quantized; this is acceptable because, after retraining,

weights can be folded into the convolutional layer, while biases can

be added digitally at little extra energy cost.

DoReFa takes care of convolutional weight and activation quan-

tization; we build on top of DoReFa to inject AMS error. We lump

this error to the output of the digital summation of multiple VMAC

cell outputs and inject it there; this has the advantage of not break-

ing apart the convolution computation. To compute the magnitude

of the error to inject, we start with the error at the output of each

AMS VMAC cell, EVMAC. We assume that this error is additive

and data-independent. By definition of ENOBVMAC, even without

knowing the distribution of the error, we know that it has variance

LSB2/12 [29]. DoReFa’s method of quantization caps all weights

and activations at 1, allowing us to easily keep track of the binary

point in the ideal vector dot product (as shown in Figure 2), and thus

allowing calculation of the LSB in terms of two key AMS VMAC

parameters:

Var (EVMAC) =
LSB2

12

=

(
2
1+loд2(Nmult)−ENOBVMAC

)2
12

=

(
Nmult 2

−(ENOBVMAC−1)
)2

12
.

(1)

As discussed earlier, there is no extra error added after each AMS

VMAC, as partial sums are accumulated digitally. Therefore, to

compute the total error, Etot, we need to model the sum of multiple

���������	
�������
���������
�����������
�����

���
�
�
	�
���
��
���! "�����#
���

$��%���&

$���'
���(���#�����

"�����#
����$��%���)
�����*��(����+�!,!-

.

.
��'��

�������	
���� �������	
��	��

Figure 3: Block diagram of quantized convolutional layer with

injected AMS error, as implemented in Distiller.

individual errors with the variance calculated above. If Ntot multi-

plications must be performed to compute a single output activation,

then Ntot/Nmult VMACs are required. Assuming that the AMS er-

rors at the output of each VMAC are independent and identically

distributed, the total error will be roughly normally distributed, with

variance equal to the following:

Var (Etot) =
Ntot

Nmult
Var (EVMAC)

=

Ntot
(√

Nmult 2
−(ENOBVMAC−1)

)2
12

.

(2)

We inject this error during only the forward pass, leaving the

backward pass untouched. DoReFa-based quantization and AMS er-

ror injection together incur a roughly 50% overhead in forward pass

computation time compared to the out-of-the-box FP32 network; all

runs used 7 NVIDIA Tesla V100 GPUs. Figure 3 shows where AMS

error is injected relative to a convolutional layer in ResNet-501.

Before moving on to a discussion of simulation results, we high-

light several important aspects of our approach to AMS error in-

jection. First, we quantize and inject AMS error to every layer of

ResNet-50, including the first and last layers. To bound the inputs

to the first layer, we rescale them by the maximum input activation

value so that they lie in the range [-1, 1] before quantizing; this step

is unnecessary for all further layers because DoReFa replaces every

activation function with a ReLU that clips at 1, therefore bounding

the next layer’s input activations. Second, while we inject AMS

error into every layer when using the network for evaluation (to

properly model AMS hardware), we leave out AMS error injection

from the last layer while training the network (all other layers still

have injected error during training). We found that injecting AMS

error into the last layer while training led to a loss of the network’s

ability to learn, and this workaround provides a working solution.

Although the discussion thus far assumes that each VMAC im-

plements an analog summation of the outputs of multiple D-to-A

multipliers, our approach to AMS error modeling is still applicable

even if these outputs are averaged rather than added. This is because

the extra division by Nmult that averaging entails does not lead to a

loss of information; it simply moves the binary point to just right

of the sign bit in the partial sum. The only required change would

be in the interpretation of the digital output from each VMAC; if

averaging-based AMS hardware were used to implement dot product

computation, the final accumulated sum would need to be scaled

up by Nmult before being passed to the next layer. This would scale

both the signal and the noise by equal amounts, so there would be

no difference in the relative amount of injected error. We assume

addition-based AMS hardware just to avoid having to perform this

rescaling in the source code.

1Modification to Distiller source code available upon request.

3 ACCURACY RESULTS

Throughout this section, we compare top-1 accuracies on the

ImageNet validation dataset; in our runs, top-5 accuracies generally

tracked top-1 accuracies. We use “retraining” to refer to taking a

pretrained FP32 network and continuing to train it after modifying

the network to reflect the intended underlying hardware. All runs

involving retraining use a minibatch size of 1024 with a learning

rate of 0.004; all other hyperparameters are unchanged from the

default for Distiller’s ResNet-50. Learning rate scheduling is not

implemented here; if the validation set accuracy begins to decrease

after some time, the training run is stopped and the maximum vali-

dation accuracy is reported. Each reported accuracy is the sample

mean of five passes of the validation dataset through the network,

with error bars showing the sample standard deviation.

We begin by investigating the tolerance of ResNet-50 to weight

and activation quantization without AMS error injection (i.e., assum-

ing a fully digital hardware implementation) using DoReFa. These

investigations provide accuracy baselines for subsequent simulations

that include AMS error. Table 1 shows these results. Retraining with

8b weight and activation quantization provides full recovery of ac-

curacy (in fact, the mean accuracy with 8b quantization is slightly

higher than that of the original network, but the difference is only

about one sample standard deviation away from the mean). With

6b weights and activations, the mean accuracy drops by about 2%

relative to that of the FP32 network. Finally, with 6b weights and 4b

activations, the mean accuracy drops by about 17% relative to that of

the original network. We are interested in AMS configurations that

approach the accuracy of the original network; because it is unlikely

that AMS error injection can increase the accuracy beyond that of the

AMS error-free quantized version of the network, we choose only

the BW=BX=8 and BW=BX=6 configurations for further inquiry.

Figure 4 shows top-1 accuracy loss with AMS error injection

relative to an 8b quantized network (i.e., relative to the second row

in Table 1). For all values of ENOBVMAC, Nmult was set to 8, and

for the runs in which AMS error was added at evaluation time only,

the best epoch of the quantized retrained network for each value of

ENOBVMAC was used. For ENOBVMAC ≤ 11, including AMS error

during retraining allows recovery of up to half of the accuracy lost

when this error is added only at evaluation time; this effect is further

investigated below. For ENOBVMAC > 11, retraining with AMS

error leads to slightly reduced accuracy compared to just including

it at evaluation time; this may be because the AMS error is so small

that including it during retraining is akin to retraining without error,

which leads the network away from a previously found optimum.

The accuracy first reaches within a sample standard deviation of the

8b quantized network’s accuracy for ENOBVMAC = 12.5.

Figure 5 shows top-1 accuracy loss with AMS error injection

relative to a 6b quantized network (the third row in Table 1). Again,

Table 1: Top-1 accuracy for various weight and activation

bitwidths after retraining with DoReFa; no AMS error added.

Quantization Top-1 Accuracy Samp. Std. Dev.

FP32 0.778 6.96E-4

BW = 8, BX = 8 0.781 2.82E-3

BW = 6, BX = 6 0.757 9.83E-4

BW = 6, BX = 4 0.606 7.03E-4

Figure 4: Top-1 accuracy loss with AMS error injection (with

Nmult = 8) relative to an 8b quantized network.

Nmult = 8 for all runs. Based on the results shown in Figure 4, for

this precision we only investigated adding AMS error at evaluation

time. For all values of ENOBVMAC, we used the best epoch of

the quantized retrained network without AMS error (as opposed to

finding the best epoch for each value of ENOBVMAC, as done for

the data in Figure 4). We find that ENOBVMAC = 11 is the cutoff

for < 1% top-1 accuracy drop, while ENOBVMAC = 12.5 is again

the cutoff for reaching within a sample standard deviation of the 6b

quantized network’s accuracy.

To explore the mechanism behind the improvement in accu-

racy when AMS error is injected during training at relatively low

ENOBVMAC, we selectively froze different kinds of layers while

retraining and compared the accuracy results, which are shown in

Table 2. For all runs, we fixed ENOBVMAC = 10 and Nmult = 8.

Freezing the convolutional layers does not significantly affect accu-

racy, while freezing the batch norm layers and/or fully-connected

layer decreases accuracy by 4–8.5%. These results show that the

batch norm layers are primarily responsible for the network’s ability

to recover a fraction of the lost accuracy when retrained with AMS

error injection in the loop.

We further investigated how exactly the batch norm layers help to

recover accuracy by saving and visualizing activation means at the

output of every convolutional layer (the location where AMS error

is injected). Figure 6 shows these means, which are evaluated across

the entire ImageNet validation dataset, for one of the layers, and for

11.0 11.5 12.0 12.5 13.0

ENOBVMAC

0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s
 r

e
:

6
b
 Q

u
a
n
ti

z
e
d

(L
o
w

e
r

is
 B

e
tt

e
r)

AMS error in eval only

Figure 5: Top-1 accuracy loss with AMS error injection (with

Nmult = 8) relative to a 6b quantized network.

Table 2: Results of selective freezing simulations.

Frozen Layers Top-1 Accuracy Loss re: 8b Samp. Std. Dev.

None 0.0353 2.83E-3

Conv 0.0341 2.95E-3

BN 0.0886 3.24E-3

FC 0.0774 3.16E-3

BN and FC 0.120 2.96E-3

six different varieties of ResNet-50: FP32, retrained with 8b quanti-

zation, and retrained with 8b quantization along with varying levels

of AMS noise. In 43 of the 53 convolutional layers of the network

(including downsampling layers), the network appears to learn to

push the means of the activations away from zero to combat added

AMS noise; moreover, the larger the noise, the greater the push.

This seems to be the underlying mechanism for the improvement in

accuracy at relatively low ENOBVMAC.

4 DISCUSSION

In this section, we present and explore a simple energy model for

the AMS VMAC, compare the results of our models to prior work

in this space, and propose ideas for extending the work presented

here for improvement in accuracy and/or energy.

As a simple energy model, we assume that the VMAC energy is

dominated by the energy of the ADC [19], and that ENOBVMAC =

ENOBADC. Our results therefore provide a lower bound on energy

and an upper bound on accuracy. Our model for ADC energy as a

function of resolution is based on a lower bound on the state of the

art, as reported in Murmann’s ADC survey [30], and as depicted in

Figure 7. This simple model results in the following bound on ADC

energy and corresponding energy per MAC operation (EMAC):

EADC (ENOB) ≥{
0.3pJ ENOB ≤ 10.5

10
0.1(6.02·ENOB−68.25) pJ ENOB > 10.5

(3)

EMAC (ENOBVMAC ,Nmult) =

1

Nmult
EADC (ENOBVMAC)

(4)

Figure 8 uses this energy model and the accuracy results from

the previous section to relate ENOBVMAC, Nmult, accuracy, and

energy on a single plot. Accuracy results for Nmult � 8 are obtained

by mapping results from Nmult = 8 using the equation for AMS

error magnitude presented in Section 2. This plot can be used as

a lookup table by circuit designers to evaluate the network-level

impact of circuit-level design choices, or by system designers to

choose hardware based on accuracy or energy specifications.

M
ea

n
of

 a
ct

iv
at

io
n

(v
al

id
at

io
n

da
ta

se
t) ����

��	
����

����

����

����

���

��

���

���

���

Figure 6: Means of activations (circles) and AMS error std. dev.

(dashes) at the output of a representative convolutional layer.

������

������

������

������

�����	

�����

������

������

�����

� � �� �� ��

��
� �

��
�

��
��

	
���������

����������

���������

�������������

������������

���������

Figure 7: Murmann’s survey of ADCs in the literature as of July

2018; adapted from [30], with slightly shifted Schreier FOM

line and superimposed constant energy per sample line.

An important conclusion to be made from Figure 8 is that, when

ENOBVMAC and Nmult are considered to be independent variables,

the resultant accuracy loss and minimum energy per MAC (EMAC,min)

as a function of these two variables track one another (their level

curves are parallel). This occurs because our energy and error mod-

els have inverse dependencies on ENOBVMAC and Nmult. On the

error side, for each extra digitized bit, the variance of the total error

drops by a factor of four; meanwhile, the effect of higher Nmult is to

introduce quadratically greater error per VMAC but require linearly

fewer VMACs, resulting in an overall linear dependence (Eq. 2). On

the energy side, high-resolution ADCs are thermal noise-limited,

resulting in a quadrupling of energy per conversion for each extra bit

of resolution [29], while Nmult amortizes the energy cost of the ADC,

resulting in an inverse dependence (Eq. 3-4). Thus, in the thermal

noise-limited design space, increasing Nmult and ENOBVMAC to-

gether to keep accuracy loss constant also keeps EMAC,min constant.

Therefore, according to our error and energy models, accuracy

loss and EMAC,min have a one-to-one relationship in the design space

of interest; there is no (ENOBVMAC, Nmult) pair that will improve

one metric without harming the other. This relationship allows us

to directly bound the energy required to achieve a certain level of

network accuracy: for example, for < 0.4% accuracy loss, EMAC,min

= ∼313 fJ, while for < 1% accuracy loss, EMAC,min = ∼78 fJ.

Prior work in this space has shown that the nonidealities of re-

sistive crossbar-based hardware can lead to significant accuracy

degradation for complex DNNs [20]. Here, we have shown that even

if the digital-to-analog multiplier unit (whether based on resistive

arrays, switched capacitors, or any other method) is error-free, the er-

ror introduced by conversion of the analog dot product back into the

digital domain results in accuracy degradation with a direct energy-

accuracy tradeoff. Our use of Murmann’s ADC survey extends prior

work based on first-order ADC energy models [19] to reflect the

current state of the art in ADC design.

Looking beyond the simple AMS hardware model that we have

used in this work, there are a number of possible methods that

can be pursued to lower the ENOBVMAC and/or energy required

for a specified maximum top-1 accuracy loss. The most pressing

need is for a network-level method that minimizes the accuracy loss

when AMS error is introduced; this would require no hardware-level

tradeoffs in order to implement, and basically represents a “free

����

�����	
��

������	
��

������	
��

������	
��

�������	
��
Not

evaluated

Not
evaluated

��� �������������������� ������

Figure 8: Accuracy loss (relative to 8b quantized network) for

various (ENOBVMAC, Nmult) configurations; accuracy loss and

energy/MAC level curves overlaid in green and red, resp.

lunch.” For example, Figure 4 indicates that for ENOBVMAC ≤ 10b,

our retraining method recovers ∼0.5b worth of accuracy, which is

equivalent to a ∼2× reduction in EMAC,min.

There are also several hardware-level methods that can be pur-

sued. One method, based on long multiplication, is to partition each

multiply into several multiplies with smaller operands, then add the

appropriately shifted results in the digital domain. For example, split-

ting a multiplication of two 8b numbers into multiplications of 4b

numbers would require computing four partial products; in general,

splitting the weight into NW parts and the activation into NX parts

would require NWNX multiplications of BW/NW-bit and BX/NX-bit

numbers. Because the full precision of any partial product is smaller

than that of the whole product, a lower-resolution ADC could be

used than in the unpartitioned case while still incurring less injected

error overall. This method potentially also reduces the energy per

AMS MAC, as long as the energy of a lower-resolution conversion

is less than 1/(NWNX) times that of a higher-resolution conversion.

Additionally, a lower-precision conversion could be performed for

the partial product(s) of low significance, further saving energy. This

method therefore reduces error and possibly also energy at the cost

of decreased speed or increased area (depending on whether the

partial products are computed in serial or in parallel, respectively).

Another method of error reduction is to subtract the quantization

error incurred by the ADC in one cycle from the partial dot product

computed in the next cycle. This can be shown to be equivalent

to using a first-order delta-sigma modulator in place of an ADC.

This method requires some level of output stationarity, as successive

outputs of a single VMAC must be added for this to work correctly,

and also requires the last conversion to be performed at a higher

resolution than the rest. This method of error recycling reduces the

total incurred quantization error, but does not change the impact

of thermal noise. Reduction in error can be traded for reduction in

energy by working with an ADC with nominally lower ENOB.

A third method of error reduction, implemented in [24], is to

scale the ADC reference voltage with respect to the multiplier sup-

ply in order to play with the dynamic range-resolution tradeoff. By

making the ADC reference voltage smaller than the multiplier sup-

ply (ignoring parasitic effects), at least one of the most significant

magnitude bits of the partial dot product is cut off (set to 0); the

resolution of the ADC can then be increased (i.e., lower-significance

bits can be accessed) until thermal noise considerations begin to

significantly impact conversion energy. The effectiveness of this

scheme is network- and data-dependent, and therefore needs to be

confirmed with runs of ResNet-50 with ImageNet data.

Our consideration of AMS hardware focuses on its impact on

inference accuracy and energy efficiency. Though outside the scope

of this work, a full evaluation of AMS hardware must also include its

performance in terms of speed and chip area, as well as the impact

of variations in process, voltage, and temperature.

Finally, we suggest several ways to improve our error models.

One method that would be closer to a hardware implementation

would be to split up the convolution into VMAC-sized units and

inject error at the output of each VMAC separately. This avoids

assuming that these additive errors from separate VMACs are un-

correlated, but at the cost of slowing down the computation of each

convolution. Modeling the error of the multipliers and ADC sepa-

rately would allow even more fine-grained analysis of the VMAC. If

the resulting slowdown is too severe, this modeling can be performed

for evaluation only, if the ultimate goal is to design hardware for

inference. Including non-additive and data-dependent errors (due to,

for example, capacitor or resistor mismatch) would also be valuable.

The resulting error models, as well as more sophisticated energy

models, can be substituted into the presented framework (i.e., Figure

8) to arrive at an improved estimate of the energy-accuracy tradeoff.

5 CONCLUSION

We have presented an approach to modeling the error introduced

by AMS dot product hardware that abstracts the computational cell

into an error-free portion with additive error. We have used this

model to predict top-1 ImageNet classification accuracy loss when

ResNet-50 is implemented on AMS hardware, and have found that

retraining with AMS error in the loop teaches batch normalization

layers to push activation means away from zero, often resulting

in substantial accuracy recovery. Based on a simple energy model,

we have found that ADC-dominated designs exhibit a direct trade-

off between energy efficiency and network accuracy; specifically,

achieving < 0.4% accuracy loss on ResNet-50 requires a compu-

tation energy of at least ∼300 fJ/MAC. Finally, we have proposed

several methods for improvement, including modeling each computa-

tional unit separately, partitioning each multiplication, and recycling

the quantization error. Our results can be applied to evaluate the

feasibility of implementing complex DNNs on AMS hardware.

REFERENCES
[1] Y. Le Cun, J. S. Denker, and S. A. Solla. 1990. Optimal Brain Damage. In

Advances in Neural Information Processing Systems 2, 598–605.
[2] S. Han, J. Pool, J. Tran, and W. J. Dally. 2015. Learning both Weights and

Connections for Efficient Neural Networks. In Advances in Neural Information

Processing Systems 28, 1135–1143.
[3] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the Knowledge in a Neural

Network. arXiv, 1–9.
[4] S. Han, H. Mao, and W. J. Dally. 2016. Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding. In
International Conference on Learning Representations. San Juan.

[5] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer. 2017. Efficient Processing of
Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 105,
12, (Dec. 2017), 2295–2329.

[6] R. Sarpeshkar. 1998. Analog Versus Digital: Extrapolating from Electronics to
Neurobiology. Neural Computation, 10, 7, 1601–1638.

[7] B. Reagan, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland, D.
Brooks, and G.-Y. Wei. 2018. Ares: a framework for quantifying the resilience
of deep neural networks. In Proceedings of the 55th Annual Design Automation

Conference. San Francisco.
[8] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang. 2016. Mixed-

signal circuits for embedded machine-learning applications. In 49th Asilomar

Conference on Signals, Systems and Computers.
[9] B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang. 2015. Merging the interface: power,

area and accuracy co-optimization for RRAM crossbar-based mixed-signal
computing system. In Proceedings of the 52nd Annual Design Automation

Conference. San Francisco.
[10] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov. 2015. Efficient

training algorithms for neural networks based on memristive crossbar circuits.
In Proceedings of the International Joint Conference on Neural Networks.
Killarney.

[11] L. Xia, B. Li, T. Tang, P. Gu, X. Yin, W. Huangfu, P.-Y. Chen, S. Yu, Y. Cao, Y.
Wang, Y. Xie, and H. Yang. 2016. MNSIM: Simulation Platform for Memristor-
based Neuromorphic Computing System. In Proceedings of the Conference on

Design, Automation & Test in Europe. Dresden.
[12] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,

M. Hu, R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceed-

ings of the ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA). Seoul.
[13] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,

J. J. Yang, and R. S. Williams. 2016. Dot-product engine for neuromorphic com-
puting: programming 1T1M crossbar to accelerate matrix-vector multiplication.
In Proceedings of the 53rd Annual Design Automation Conference. Austin.

[14] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen. 2016. NEU-
TRAMS: Neural network transformation and co-design under neuromorphic
hardware constraints. In Proceedings of the 49th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO). Taipei.
[15] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang. 2017. Binary Convolutional

Neural Network on RRAM. In Proceedings of the 22nd Asia and South Pacific

Design Automation Conference (ASP-DAC). Chiba.
[16] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang. 2017.

Accelerator-friendly Neural-network Training: Learning Variations and Defects
in RRAM Crossbar. In Proceedings of the Conference on Design, Automation &

Test in Europe. Lausanne, 19–24.
[17] A. Ankit, A. Sengupta, P. Panda, and K. Roy. 2017. RESPARC: A Reconfig-

urable and Energy-Efficient Architecture with Memristive Crossbars for Deep
Spiking Neural Networks. In Proceedings of the 54th Annual Design Automation

Conference 2017. Austin.
[18] A. Ankit, A. Sengupta, and K. Roy. 2017. TraNNsformer: Neural network

transformation for memristive crossbar based neuromorphic system design. In
Proceedings of the 36th International Conference on Computer-Aided Design.
Irvine, 533–540.

[19] Y. Kim, H. Kim, D. Ahn, and J.-J. Kim. 2018. Input-Splitting of Large Neural
Networks for Power-Efficient Accelerator with Resistive Crossbar Memory
Array. In Proceedings of the International Symposium on Low Power Electronics

and Design. Seattle.
[20] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan. 2018. Rx-Caffe: Framework

for evaluating and training Deep Neural Networks on Resistive Crossbars. arXiv.
[21] Y. Kim, H. Kim, and J.-J. Kim. 2018. Neural Network-Hardware Co-design for

Scalable RRAM-based BNN Accelerators. arXiv.
[22] Y. P. Tsividis and D. Anastassiou. 1987. Switched-Capacitor Neural Networks.

Electronics Letters, 23, 18, 958–959.
[23] D. Bankman and B. Murmann. 2015. Passive charge redistribution digital-to-

analogue multiplier. Electronics Letters, 51, 5, 386–388.
[24] D. Bankman and B. Murmann. 2016. An 8-bit, 16 input, 3.2 pJ/op switched-

capacitor dot product circuit in 28-nm FDSOI CMOS. In 2016 IEEE Asian

Solid-State Circuits Conference, A-SSCC 2016 - Proceedings.
[25] E. H. Lee and S. S. Wong. 2017. Analysis and Design of a Passive Switched-

Capacitor Matrix Multiplier for Approximate Computing. IEEE Journal of

Solid-State Circuits, 52, 1, 261–271.
[26] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann. 2018. An

always-on 3.8μJ/86% CIFAR-10 mixed-signal binary CNN processor with
all memory on chip in 28nm CMOS. In Digest of Technical Papers - IEEE

International Solid-State Circuits Conference.
[27] N. Zmora, G. Jacob, and G. Novik. 2018. Neural Network Distiller. (2018).
[28] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. 2016. DoReFa-Net:

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth
Gradients. arXiv.

[29] M. Pelgrom. 2017. Analog-to-Digital Conversion. (3rd ed.). Springer.
[30] B. Murmann. 2018. ADC Performance Survey 1997-2018. (2018). https://web.

stanford.edu/~murmann/adcsurvey.html.

