

TECHNOLOGY ROADMAP of DRAM for Three Major manufacturers: Samsung, SK-Hynix and Micron

TechInsights

Introduction

The ITRS roadmap calls for continued scaling of DRAMS from the present 2X nm node down to sub-20 nm in next few years. Hynix, among others have brought 21 nm DRAM into production. This continued scaling requires high-k dielectrics for the DRAM cell capacitor and materials like HfO_2 , ZrO_2 and AlO_2 are being used now, with perovskite-based dielectrics (i.e. $SrTiO_3$) being considered for future applications.

Reorganizing the DRAM cell layout from $6F^2$ to a $4F^2$ layout is an option for scaling, though likely difficult to achieve. $4F^2$ scaling may possible to implement for sub-20 nm nodes by using a capacitorless 1T DRAM cell architecture.

The *memory wall* has been a topic for some time due to limited I/O bandwidth and power consumption constraints.

3D stacking of DRAM dies on a processor core and connected by TSV's can yield massive inter-die bandwidths and dramatic reductions in access latency.

3D integration is in the works as stand-alone DRAM packages with Samsung and Micron disclosing details of their hybrid memory cubes (HMC), while Hynix's is offering high bandwidth memory (HBM) modules. We think these stand-alone DRAMs may be a precursor to full integration of stacked DRAM on processor cores.

ITRS Tech. Roadmap

Source: ITRS

Major Players

DRAM Production Capacity

Figure 20. Contracting DRAM Capacity Trend

citi

26 September 2013 | 36 pages

Global Memory Sector

Supply Discipline: Paradigm Shift to Lead to Multi-Year Growth

DRAM Technology

□ As of Today: Samsung

Tech. Node	Die Floor Plan	Cell Architecture	Key Technology
3X (31 nm)		Billine	 59nm/93nm/93nm (STI/WL/BL Pitch) 2Gb/Die (DDR3) 36 mm²/Die Area 0.0086 µm²/cell (6F²) TiN Buried WL Single W BL Single SiN MESH ZAZ HK Dielectrics
2X (26 nm)		SN BC SN SN BC SN SN BC SN SN BC SN SN BC SN SN BC SN SN SN BC SN SN BC SN SN SN BC SN SN SN BC SN SN BC SN SN SN BC	 52nm/66nm/76nm (STI/WL/BL Pitch) 4Gb/Die (LPDDR3) 40 mm²/Die Area 0.005 µm²/cell (6F²) W/TiN Buried WL Double W BL Double SiN MESH ZAZ HK Dielectrics

DRAM Technology

□ As of Today: Micron/Nanya

Tech. Node	Die Floor Plan	Cell Architecture	Key Technology
3X (35 nm)		Wordine 99 m 128 m 87 m 100 m 128 m	 79nm/70nm/87nm (STI/WL/BL Pitch) 2Gb/Die (LPDDR2) 72 mm²/Die Area 0.0086 µm²/cell(6F²) W/TiN Buried WL Single W BL Single SiN MESH ZAZ HK Dielectrics
3X (31 nm)		Within the second se	 80nm/62nm/90nm (STI/WL/BL Pitch) 512Mb/Die (DDR3) 68 mm²/Die Area 0.0084 µm²/cell(6F²) W/TiN Buried WL Double W BL Double SiN MESH ZAZ HK Dielectrics

DRAM Technology

As of Today: SK-Hynix

Key DRAM Technologies

A a of Todow Kow Tooby ologica

☐ As of Today: Key Technologies

1 Fin-type 3D Channel Engineering

✓ Channel & S/D IIP, Raised Si(Ge) S/D
✓ Low damage process
✓ Bulk-Fin → PD Fin → FD Fin

2 RCAT 3D Buried WL Integration

✓ Uniform Recess Channel
 ✓ Low damage (recess surface)
 ✓ Uniform gate oxide thickness/quality
 ✓ Buried WL materials (Metal gate)

3 High-K Dielectric Cap. & MESH

✓ Quantum Engineering (Multi-layer HKD)
✓ Ultra-thin layer depo./annealing tools
✓ Cell cap. 20~30fF/cell, Stable MESH

Content for re-use only with TechInsights permission.

TECHINSIGHTS

DRAM Technology

<Fin Structure>

Further Scaling Down: 1X, 1Y or 0X nm?

<HK Dielectrics/Capacitor>

Content for re-use only with TechInsights permission.

<RCAT Structure>

DRAM Technology

Further Scaling Down: 1X, 1Y or 0X nm?

4 Any Other Candidates ?

DRAM Technology

Near Future DRAM Technology: Scalability

✓ 1T/1C DRAM with FinFET

DRAM Technology

DRAM Technology Roadmap

DRAM Technology Roadmaps (by manufacturer)

Manufacturer	2014	2015	2016
ITRS DRAM Roadmap (2013 Ver.)	26 nm	24 nm	22 nm
SAMSUNG	20 nm 4GB DDR3	1X nm	1X nm
(intel)	2X nm Sampling 2 GB HMC	1X nm	1Y nm
SK hynix	21 nm LPDDR3	1X 20 nm DDR4	1Y nm

Micron Memory Roadmap

Memory Technology Timelines

Increased focus on DRAM technology position enabled following Elpida acquisition

- Maintain strong planar NAND position with 16nm volume ramp in 2014
- Market enablement with vertical NAND in 2014, ramp in 2015
- Enable disruptive new memory technology and position for ramp in 2015
- · Core technology leadership well positioned to enable Micron's diverse product portfolio

Source: http://www.enterprisetech.com/2014/02/20/micron-pushes-memory-roadmap-several-routes/

Future DRAM Technologies

Hybrid Memory Cube High Bandwidth Memory

Micron HMC

SK Hynix HBM

Source: http://www.memcon.com/pdfs/proceedings2013/keynotes/New_Directions_in_Memory_Architecture.pdf

Source: http://www.enterprisetech.com/2014/02/20/micron-pushes-memory-roadmap-several-routes/ http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3-memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf

Micron Hybrid Memory Cube

At the high-performance end of the memory market, Micron is poised to deliver on its Hybrid Memory Cube (HMC) promise, with initial interest coming from the supercomputing and networking communities; high frequency traders are also probably interested, but generally don't talk about their plans.

The company has 2 GB and 4 GB options currently shipping as engineering samples and multiple partner demo platforms are up and running.

Source: http://www.enterprisetech.com/2014/02/20/micron-pushes-memory-roadmap-several-routes/ http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3-memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf

SK-Hynix High Bandwidth Memory (HBM)

SK-Hynix said today that it has developed a next generation HBM, or high bandwidth memory DRAM chips using a 3D TSV, or through silicon via chip packaging technology.

Source: http://itersnews.com/?p=62940 https://www.skhynix.com/gl/products/graphics/graphics_info.jsp

SK-Hynix High Bandwidth Memory (HBM)

Increased demand for high bandwidth DRAM is driving the development of TSV technology.

Hynix's HBM comprises 4-hi core DRAM and a base logic die at the bottom.

TSV
DRAM
DRAM
DRAM
DRAM
Base Die

PKG Substrate
0000000

ITEM	TARGET
Burst Length	2,4
Stack Density	1GByte per stack (2Gbit per slice)
Channel / Slice	2
Banks / Channel	8
IO / Channel	128
Prefetch / Channel	32B (128x2bit)
Channels / Stack	8
Total TSV Data IO Width	1024
Clock Speed	500MHz
Peak Read BW / Stack	128 GB/s
Page Size	2KB
Data Parity	1 bit / 32 bit
DRAM Core Voltage	1.2V
Logic Buffer IO Voltage	1.2V

Source: http://www.i-micronews.com/news/SK-Hynix-readying-3D-stacked-memory-commercialization-closer,10000.html

"A 1.2V 8GB 8-channel 128GB/s High Bandwidth Memory (HBM) Stacked DRAM with Effective Microbump I/O Test Methods Using 29nm Process and TSV" Dong Uk Lee et al. ISSC 2014 pp 432-434

LPDDR4 and WIO2 Overview

	LPDDR3 & LPDDR3E	LPDDR4	Wide IO2
Die Organization	1ch X 8 banks X 32 IO Bank Bank 1 Bank 3 Bank Bank Bank 6 Bank 4 5 Bank Bank 7 2560 32 IO (ChO) 6 4 GByter's BW 1600MEps IO	2ch X 8banks X16 IO Bank Bank 0 1 Bank Bank Choise Bank Bank Bank	4ch X 8banks X 64 IO Hank Bank Bank
Channel #	1	2	4 & 8
Bank #	8	8 per channel (16 per die)	32 per die
Density	4Gb – 32Gb	4Gb – 32Gb	8Gb - 32Gb
Page Size	4KByte	2KByte	4KByte (4ch die), 2KB (8ch die)
Max BW per die	6.4GB/s, 8.5GB/s (overclocking)	12.8GB/s, 17GB/s (overclocking)	25.6GB/s & 51.2GB/s 34GB/s & 68GB/s(overclocking)
Max IO Speed	2133Mbps	4266Mbps	1066Mbps
Signal Pin #	62 per die	66 per die	~430 per die (4ch die), ~850 per die(8ch die)
Package	POP, MCP	POP, MCP	KGD,

Global Standards for the Microelectronics Industry

Source: "Memory Technology Roadmap" Hung Vuong Qualcomm Technologies (2013) H_Vuong_Mobile_Forum_May_2013 Mobile

Summary

DRAM

- ✓ 1T/1C DRAM until y2018 (12 nm, Fin & UTB-SOI)
- ✓ 1T DRAM or vertical DRAM until y2022 with sub-0.8V

Contact TechInsights for more information: http://www.techinsights.com/company/contact-us/ 1-613-599-6500