第四章 时域分析

完称设计后,可以验证设计在时域内的响应。Saber 用瞬态分析来验证设计在时域内的响应,过程如下:

- 1、 指定首个瞬态数据点
- 2、 如果驱动源(Driving Source)是振荡器,要使用初始点文件(Initial Point File)
- 3、 执行瞬态分析
- 4、 查看瞬态分析结果
- 5、 测量分析结果
- 6、 制定下一步

▶ 指定首个瞬态数据点

由于瞬态分析在分析运行时,使用初始点作为首个数据点,所以在瞬态分析之前,必须找到系统的工作点,可以用下列方法:

- 在瞬态分析面板内,指定 Run DC Analysis First 处为 yes,该选择让 Saber 执行 DC 分 析来找到工作点,然后用计算的工作点作为首个数据点来进行瞬态分析。
- 选择 Analysis>Operating Point>Operating Point 下拉菜单项,单独运行 DC 分析。大多数情况下,Saber 用 DC Operating Point 框中默认值就能找到合适的工作点。

▶ 如果驱动源是振荡器

由于振荡器依赖噪声放大来启动的,而噪声又不是模拟器内在的,所以在瞬态分析运 行开始时,必须改变初始点文件中的一些节点值以启动振荡器,详细情况看本章后边叙述。

执行瞬态分析

- 1、 显示瞬态分析对话框(Analysis>Time-domain>Transient)。
- 2、 指定瞬态分析所要求的信息 瞬态分析设置面板如图 4-1 所示,要执行瞬态分析,必须指定下列信息:
- End Time(Basic 标签): 定义瞬态分析结束点。例如:如果驱动源是周期为 10μS 的 正弦函数,要查看前五个周期的瞬态响应,可以在该处键入 50μ。
- Start Time(Basic 标签): 定义瞬态分析开始点。默认情况下,该时间取决于初始点, 如果初始点被 DC 分析创建,该时间为 0。
- Time Step(Basic 标签): 作为瞬态分析中相邻计算点间重复的标尺,可以按下面的 情况设置其数值:
 - ▲ 设计中有关时间常数的 1/10
 - ▲ 驱动源方波最小的上升沿或下降沿
 - ▲ 正弦驱动源输入周期的 1/100
- 3、 指定要分析其波形的信号 Time-domain Transient Analyses 面板提供下列两处来指定波形数据怎样被保存,用来 画图和分析:
- Plot File(Input/Output 标签): 指定画图文件的名称,该文件包含了 Signal List 处定 义的信号的模拟结果。默认情况下,Saber 为每个瞬态分析创建名为 tr 的画图文件, 如果不想让 Saber 创建画图文件,在该处填入"_"
- Signal List (Input/Output 标签): 指定要保存模拟结果的信号,用于 Saber 画图。默认 情况下,信号列表只包含层次中顶级电路中的信号,如果要查看内层电路信号,必 须将信号名称加入 Signal List 处。下列表格列出 Signal List 处语法的例子,在同一个 Signal List 处填加多个信号,用空格隔开。

Signal List 例子	含义
./	包含目前例子中所有的信号
//	包含所有信号
//pll.*	包含有pll成分的所有例子中的所有信号
/	包含当前例子下面的例子中的所有信号
Pll.u12/	包含 pll.u12 例子中所有的信号
Sig1 sig2	包含每个列出的信号

如果不清楚该指定哪个信号,用默认设置(该设计中的所有信号),如果以后需要更 多的信号,可以按下面方法:

- ▲ 对模拟时间较短的,用信号列表中另外定义的信号,重新运行瞬态分析
- ▲ 对模拟时间较长的,用 Extract>Add Signals to Plot File 菜单项,从中选取另外的 信号。
- 4、 设置自动画出波形

在 Plot After Analysis (Basic 标签)处,可以使分析运行完后,自动画出波形,其选 项如下:

- No: 表示不自动画图
- Open Only: 表示分析运行完后, 打开画图文件
- Append: 表示分析运行完后,保留当前的波形,再重新放置更新的波形
- Replace: 表示分析运行完后, 用更新的波形替换当前的波形

5、 是否保存初步模拟结果

Data Files 包含了模拟中每个数据点的模拟结果,数据文件可能会变得很大,除下述目的要用数据文件外,最好不要创建数据文件:

- ▲ 为画图文件选取其它的信号
- ▲ 选取工作点
- ▲ 将瞬态数据传到频域用于傅立叶分析
- ▲ 运行应力分析(Stress Analysis)

由于从数据文件选取画图信息要比重新运行分析快得多(特别是对模拟时间较长的分 析),所以要认真考虑是否创建数据文件。在

Input/Output 标签中的 DataFile 处指定数据文件的名称,默认情况下,Saber 对每个瞬态分析都以"tr"命名数据文件。如果不想创建数据文件,在此处键入"_"。

6、 验证首个数据点数值

Saber 用 Input/Output 标签中 Initial Point File 处定义的初始点作为瞬态分析的首个数据点, 在运行瞬态分析前,应先验证 Saber 是否使用 正确的初始点文件,也应该指定 Calibration 标签中的 Sample Point Density 的值,使它大 于或等于用于初始点文件生成过程中的数值, 该值越大,模拟的精度越高,但是需要的时 间越长。

7、 执行瞬态分析

点击 Apply 按钮执行分析, Saber 用初始点文件来验证设计的瞬态响应, 从而验证初始电路状况, 然后计算一段时间内, 电路的响应。

Uutput Control Selecti End Time	lasic Input	alibration	Integra	ion Al	gorithn
End Time Time Step Start Time Default Monitor Progress 0 Run DC Analysis First Yes No Den DC Analysis Form. Plot After Analysis No	Uutput		Contr	ol Se	ectio
End Time Time Step Start Time Default Monitor Progress 0 Run DC Analysis First Yes No Dpen DC Analysis Form. Plot After Analysis No					
End Time Time Step Start Time Default Monitor Progress O Run DC Analysis First Yes No Dpen DC Analysis Form. Plot After Analysis No	Ť.				-
Time Step	End Time	, F			1
Start Time Default	Time Step				ī
Monitor Progress 0 Run DC Analysis First Yes No Open DC Analysis Form. Plot After Analysis No	Charle Time	Dafault			1
Monitor Progress 0 Run DC Analysis First Yes No Open DC Analysis Form. Plot After Analysis No	Statt 1 line	Deraut		4	1
Run DC Analysis First Yes No Open DC Analysis Form. Plot After Analysis No	Monitor Progres	0			1
Open DC Analysis Form.	Bun DC Analysis Firs	t Ye	. Г	No	1
Dpen DC Analysis Form.					
Plot After Analysis No 🥠		10 pm	en DC Ana	lysis Form	
	Plot After Analusi	No		la.	1
	T IOCARGE AND/SE	. [110		<u>_</u>	1

- 2 -

▶ 查看瞬态分析结果

用 SaberScope 中的信号管理器(Signal Manager)来管理和显示来源于分析过程中所 创建的不同画图文件的信号, SaberScope 界面如图 4-2 所示, 查看瞬态分析的波形过程 大致如下:

● 添加画图文件到信号管理器的列表中

● 打开画图文件

● 选择要进行画图的信号

● 对所选的信号画图

在分析完成后,可以如上所述一样,一步步进行来查看波形,也可以设置 SaberGuide 来自动执行全部过程。

		_ 🗆 ×			
16.0 14.0 12.0	Graph1	(V) : t(s) out1			
10.0 8.0			(1) diffonj File Signal	, tr	
6.0			Filter(delim="/	")[-
i gnal Manager <u>F</u> ile <u>P</u> lotile <u>S</u> ignals				i9 out1 out2	
Signal Filter	4	Open Plotfiles	 ⊕ ,	out3 / dc.svm12	
Plotfiles		Close Plotfiles	⊕-∩ ,	_dc.v3	
(1) diffamp.tr	<u></u>	Display Plotfiles	, ,	_pulse.v2	-
		Setup	4]	<u>></u>
			Plot De	select [lose

图 4-2 SaberScope 界面

1、 添加画图文件到信号管理器并打开它

如果分析前在瞬态分析面板中的 Plot After Analysis 处指定下列其中一个, SaberGuide 会自动做这些事情:

▲ Yes-Open Only

▲ Yes-Append Plots

▲ Yes-Replace Plots

在上述情况下, SaberGuide运行 SaberScope, 打开信号管理器和相应的画图文件。然而 如果在 Plot After Analysis 处指定为 No, SaberGuide 将不打开信号管理器,可以选择 Results>View Plot Files in Scope 下拉菜单项打开最后创建的画图文件,激活 View Plotfiles 对话框,点击 Plot File 处的箭头,选择其中一个:

- ▲ Last: 选择分析产生的最近的画图文件, 这是默认的
- ▲ Plot File Names: 允许在 Plot File 处指定一系列的画图文件(用空格隔开),可以点击 Browse 按钮来浏览并选择画图文件

在 Plot Action 处,选择下列操作的其中一个:

- ▲ Open Only: 打开画图文件
- ▲ Append: 保留当前的波形, 再重新放置更新的波形
- ▲ Replace: 用更新的波形替换当前的波形

当重复运行分析来查看改变设计参数所带来的影响时, Append 和 Replace 对优化设计 是非常方便的。在进行了上述的设置后,点击 OK 按钮或 Apply 按钮来打开信号管理器 2、选择信号

如果在上步没有选择 Append 或 Replace 画图操作,那么现在需要选择要画图的信号。 在 Plot File 窗口中,用鼠标左键点击即可选中,如果要对所选的信号不选的话,点击 Deselect 按钮。

3、 对所选的信号画图

要对选取的信号画图,点击 Plot 按钮或者将光标移到 Graph 窗口中点击鼠标中键(也可以在 Plot File 窗口中双击所选的信号),在画图文件中选择的信号的波形将在 Graph 窗口中出现。在对信号画图完成后,可以用不同的方法来分析结果,并制定设计过程的下一步。

▶ 测量分析结果

SaberScope 提供多种预定义的自动测量方法,要在 SaberScope 中测量波形,可以按下面的步骤:

- 1、 显示测量工具(Tools>Measurement)
- 2、 选择相应的测量

显示测量工具后,要选择执行何种测量。在 Measurement 处,点击箭头,从不同的测量种类中选择测量类型。下表列出在时域内易测量的种类:

含义
显示从波形上边到下边的下降时间
显示从波形下边到上边的上升时间
显示上升沿或下降沿的回转比率
显示波形的周期
显示波形的频率
显示脉冲保持时间与间歇时间之比
显示脉冲宽度
显示两信号波形边沿的延时
显示相对于顶端的波形过冲
显示相对于底端的波形陷落
显示波形的建立时间

3、 选择要测量的信号

在 Signal 处指定要测量的信号,方法如下:

- ▲ 点击箭头按钮从结果列表中选择信号
- ▲ 从当前的图形中选择信号
- 4、 设置测量的数据范围

在测量面板中的 Apply Measurement to 处,可以控制测量的数据范围,必须指定下列数据范围之一:

- ▲ Entire Waveform: 对整个波形测量
- ▲ Visible X and Y range only:测量当前图形中可见的 X 和 Y 的范围
- 5、 执行测量

点击 Apply 按钮开始测量,该操作执行对指定信号的测量并在图形中添加相关信息。

6、 使用测量信息

在用 SaberScope 进行数据分析过程中,或许要查看某个测量,用 Measure Results 面 板(Graph>Measure Result 或者在图形中双击测量结果)可以完成。用下列按钮使用测 量信号:

- ▲ Delete Measurement: 删除从 Graph 中选择的测量
- ▲ Delete All: 删除 Graph 中所有的测量
- ▲ Show All Values:显示所有的先前的测量
- ▲ Hide All Values: 隐藏所有的先前的测量
- ▲ 可以通过绿色或黑色的按钮让测量是否可见

▶ 制定下一步

用 SaberScope 的查看和测量功能,可以验证设计是否满足要求。

如果满足要求,可以进行下列操作:

- 选择 Analyses>Continue>Transient 下拉菜单项, 用最后的数据点继续进行瞬态分析
- 用 AC 分析验证小信号频率响应
- 用傅立叶变换或 FFT 来检查时域内波形的频率幅度
- 用统计、参数、应力分析来调整设计参数

如果不满足要求,可以用下列方法进行矫正操作:

- 改变设计或元件参数
 - 如果改变设计不要求改变设计的连接性,可以用 Edit>List/Alter 菜单项修改设计参数。
- 编辑电路图,重新网表化 如果改变设计要求改变设计的连接性,必须在电路图中修改,重新网表化 (Design>Netlist design_name),然后在 Saber 中重新调入设计(Design>Simulate design_name)

▶ 检查时域信号的频率幅度

在完成瞬态分析后,用傅立叶分析(傅立叶或 FFT)来检查系统的频谱成分,根据 时间信号是否是周期性的来选择用傅立叶分析或 FFT 分析,检查时域波形的频率幅度。

- 傅立叶分析:将周期性波形转换成频谱,由于所有的周期性波形都可以用正弦函数 来描述,该分析产生一个线谱,显示直流、基波和各次谐波分量。
- FFT 分析:将非周期性波形转换成连续性输出,在 FFT 中显示每个点。

由于傅立叶分析、FFT 分析、失真分析都提供频谱信息,下表将作一比较:

			• • •
	Fourier	FFT	Distortion
特性	大信号	大信号	小信号
概念	将时域信号转换成频谱	将时域信号转换成频谱	小信号频域分析
类型	时域数据的传递器	时域数据的传递器	单独分析
算法	周期信号的离散性傅立叶	连续性傅立叶变换的近似	基于泰勒级数近似
	变换		的 Volterra 级数
结果	直流、基波、各次谐波分量	连续频率分布,显示 FFT	变换每个指定信号
		中每个点	的结果
应用	强的非线性周期性信号或	非周期性的大信号或强的	基于小信号模型的
	大信号	非线性非周期性信号	谐波变换

▶ 执行傅立叶分析

傅立叶分析是一个传递过程命令、它读取信号的一个周期(用时域分析计算的)、并

用连续性傅立叶变换描述直流、基波和各次谐波分量。傅立叶分析用傅立叶级数表示的周期 性连续函数 f(t)作为无穷级数。对周期性函数,频率成分是基波的倍积分,如下式所示,其 中 Ci 表示幅度, φi 表示基波倍数处的相位,基波 ω:

 $f(t)=C_0+C_1Cos(\omega t-\varphi_1)+C_2Cos(2\omega t-\varphi_2)+\ldots+C_iCos(i\omega t-\varphi_i)$

基于指定波形的基波,通过将离散性傅立叶变换(Discrete Fourier Transform—DFT) 应用于瞬态分析所产生的周期性波形,傅立叶分析计算信号的频谱,要执行傅立叶分析,步骤如下:

Basic	Input Output	Control	
Number of Harmonics	10		ĺ
Period Specification Pe P	Location riod Begin begin eriod End end		4
Plot After Analysis Y	'es - Open Only		\downarrow
n fin	1	n n	

图 4-3 傅立叶分析面板

- 1、 打开傅立叶分析面板(Analyses>Fourier>Fourier...)如图 4-3 所示
- 2、 指定要转换的信号

要执行傅立叶分析,必须指定下列信息:

▲ 指定要转换的信号名称

在 Signal List 处(Input/Output 标签)定义要转换的信号,可以在该处键入信号名称或用 Select 按钮选择。虽然该处的语法与 AC 和瞬态分析中的信号列表使用的语法一致,但是该处只能加入系统变量,如通过电压源的电流和节点电压等。

▲ 从瞬态分析中指定数据文件名 Saber 用先前瞬态分析产生的数据文件作为傅立叶分析的源文件,可以在 Input Data File 处验证 Saber 是否使用正确的数据文件。

3、 设置自动画图

在 Plot After Analysis 处(Basic 标签)指定是否自动画图。

4、 指定基波和转换的时间周期

- 6 -

在 Basic 标签中用于指定傅立叶分析的时间周期和基波,在面板中指定的基波与要转换的信号的基波要一致,这点很重要。如果他们不同,结果将会错误,可以检查输入源来 设定基本频率。

- ▲ 如果信号频率在输入端提供,用输入源的频率作为基本频率
- ▲ 如果多个频率在输入端提供,用输入频率的最小公约数。如:如果有 900Hz 和 1kHz 的频率源,那么应该用 100Hz 作为基本频率

可以用下面的方法在 Basic 标签中指定基本频率和时间周期:

- ▲ Frequency&Location: 允许指定基本频率和用周期的起始点或结束点作为一个时间 数据点来转换
- ▲ Location: 指定开始和结束时间, 基本频率作为开始时间和结束时间的差数的反函

数来计算

- 5、 验证下列数值
 - 虽然是任选项,但还是应该验证下列内容:
 - ▲ 指定要进行计算的谐波数

在 Number of Harmonics 处(Basic 标签)指定要计算的谐波数(包括基波在内), 例如:如果用默认值 10, Saber 将显示基波和相关的九个谐波。

- ▲ 指定是否计算 THD 如果咱 Control 标签中的 Calculate THD 指定为 yes, Saber 将计算整个谐波的失真 (Total Harmonics Distortion---THD),该值是多余的谱成分的能量作为整个信号 能量除数得来得,该值独立于要计算得谐波数,该值分析完后,显示于 Saber 的 Transcript 窗口。
- ▲ 验证视窗函数

在转换前可以应用不同的视窗函数来过滤输入数据,Saber 中的傅立叶分析包含了 预定义的 Rectangular、Barlett、Hann、Hamming、Blackman 和 Flattop 视窗函数。可以用 Control 标签中的 Windowing Function 箭头按钮来选择合适的视窗函数,也可以自 己定义。

6、 执行分析

默认情况下,Saber 用先前瞬态分析的一部分或全部的数据文件的傅立叶变换来计算频 率响应。每个系统变量的结果是以一定线性化比例存于名为 fou 的数据文件和画图文件 中,画图文件中包含了显示直流、基波和各次谐波分量。

7、 画出傅立叶分析结果的图形

在傅立叶分析完成后,可以用 SaberScope 查看结果,下列步骤列出了在 SaberScope 中 查看和使用波形数据的过程:

- 注意:如果分析前,在 Plot After Analysis 处指定为 Open Only,可以略过第一步, 如果指定为 Append 或 Replace,可以略过二、三步。
- a、添加画图文件到 SaberScope 的信号管理器中(Results>View Plotfiles in Scope)
- b、 在上一步所创建的画图文件窗口中选择要查看的信号
- c、点击 Plot 按钮或在 Graph 窗口中点击中键,可以显示所选信号的图形
- d、 用 SaberScope 的波形操作和测量功能来分析数据
- 8、 分析傅立叶分析结果

在 SaberScope 中可以查看指定信号的频谱,分析结果包括:

- ▲ 频谱的大小和相位
- ▲ 频谱的实部和虚部
- ▲ 谐波失真的总量(如果让 Saber 计算 THD,将在 Transcript 中显示)

在分析了傅立叶分析的结果后,可以继续设计过程的其它步骤:

- ▲ 如果分析的结果满足期望值,可以进行小信号频率描述(AC)分析或进行调节 参数分析
- ▲ 如果分析的结果不满足所期望的值,改变设计,重新运行瞬态分析,用傅立叶分析重新生成频谱

▶ 执行 FFT 分析

快速傅立叶转换是计算一部分时间的频率成分的传递命令,由于该分析需要时域数据,所以在执行该分析前必须运行瞬态分析。FFT用于非周期性函数,如果函数是周期性的,用傅立叶变换进行傅立叶分析。由于非周期性函数不能用傅立叶级数表示,Saber用傅立叶积分表示。

要执行 FFT 分析,步骤如下:

- 7 -

- 1、 显示 FFT 面板 (Analyses>Fourier>FFT),如图 4-4 所示
- 2、 指定要转换的信号
 - 要执行 FFT 分析,必须指定下列信息:
 - ▲ 指定要转换的信号名 在 Signal to Transform 处指定信号名称,如果不指定信号名,瞬态分析的画图文件 中适合的信号都将被转换。
 - ▲ 验证瞬态分析画图文件名 Saber 用先前瞬态分析的画图文件作为 FFT 分析的源文件,要在 Transient Plot File 处验证该值,确定 Saber 使用正确的画图文件。

Basic	Input Output	Control
Number of	Points 1024	1
Time Data	a Start begin	1
Time Data	a Stop end	1
Plot After Ar	nalysis Yes-Ope	n Only 🗸

图 4-4 FFT 分析面板

3、 设置自动画图

在 Plot After Analysis 处可以设置自动画图

- 4、 验证 Data Manipulation 标签
 - ▲ 验证 FFT 中的点数

Number of Points 处指定用于转换的数据点数, 该值必须是2的乘幂, 如 256、512、1024等。

▲ 验证要转换的时间段

Time Data Start 和 Time Data Stop 处定义用于转换的时域段,可以在该处指定下列 值之一:

begin: 在瞬态画图文件中定义首个数据点

end: 在瞬态画图文件中定义最后的数据点

time: 在瞬态画图文件中定义一个指定的时间

在 FFT 转换过程中, Saber 在定义的时间段上, 划分相等间隔的线性区间(用 Number of Points 处定义的), 从而选取数据点。

▲ 验证视窗函数

在转换前可以用不同的视窗函数来过滤输入的数据, Saber 中的傅立叶分析包含预 定义的 Rectangular 、 Barlett 、 Hann 、 Hamming 、 Blackman 和 Flattop 视窗, 按 Windowing Function 箭头按钮选择合适的视窗函数,也可以自己定义。

5、 执行分析

- 8 -

默认情况下,Saber 用从先前瞬态分析所产生的画图文件的一部分或全部的 FFT 分析 来计算频率响应,每个系统变量的结果都以一定线性比例存于名为 fft 的画图文件中。

6、 在 SaberScope 中对结果画图 傅立叶分析运行完成后,可用 SaberScope 来查看结果,下列过程列出了用 SaberScope 查看和操作数据的过程:

- 注意:如果分析前在 Plot After Analysis 处指定为 Open Only,可以略过第一步, 如果指定为 Append 或 Replace,可以略过二、三步。
- a、添加画图文件到 SaberScope 的信号管理器中(Results>View Plotfiles in Scope)
- b、 在上一步所创建的画图文件窗口中选择要查看的信号
- c、点击 Plot 按钮或在 Graph 窗口中点击中键,可以显示所选信号的图形
- d、 用 SaberScope 的波形操作和测量功能来分析数据
- 分析完结果后,可以做下面的事情:
- ▲ 如果分析结果如所期望的,可以进行小信号频率扫描(AC)分析或调节设计参数
- ▲ 如果分析结果不是所期望的,改变设计,重新运行瞬态分析,用 FFT 分析重新生成频谱

▶ 瞬态分析中的特殊情况

一些电路在进行瞬态分析时,需要对其进行特殊考虑:

- ▲ 启动瞬态分析中的振荡器
- ▲ 削减瞬态分析中的尖峰信号

● 启动瞬态分析中的振荡器

物理振荡器通常依赖噪声的增幅来开始振荡的,因为在模拟器中不存在噪声,所 以必须想办法来启动它们。这些方法一旦启动电路中的振荡器,没有启动源的影响, 振荡器照样可以工作,Saber提供了以下几种方法:

▲ 修改 DC 初始点:

该方法改变或创建一个初始点,但该点不是真正的 DC 工作点(不满足基尔霍夫 定律),但可以提供足够的能量来启动振荡器。修改 DC 工作点不需要改变电路的 拓扑结构,通常,编辑初始点仅为启动振荡电路进行瞬态分析,当电路开始振荡 后,改变初始点的影响将不再存在,下面介绍怎样编辑初始点:

	Node Val	ue List 🔽		
18	Source Initia	l Point 「		
	Result Initia	l Point		
ок	Apply	Close	Defaults	Help

图 4-5 编辑初始点面板

- 1、 显示编辑初始点面板(Analyses>Operating Point>Edit Initial Point),如图 4 5 所示。
- 2、 定义要编辑的节点

在框显示后,可以填入节点名和该节点新的 DC 值,用空格隔开,可以添加 多个。例如:如果要将 input 节点的 DC 值改为 1.25V,将 input_diff 节点值改 为 8.75V,在 Node Value List 处如下填入:

input 1.25 input_diff 8.75

3、 指定要编辑的初始点文件

Saber 读取 Source Initial Point 处指定的文件的 DC 值, 用 Node Value List 处的 值编辑文件,将结果存于 Result Initial Point 处指定的文件。如果 Source Initial

Point 处空着, Saber 将 Node Value List 的编辑应用到 Result Initial Point 处定义的文件。

4、 执行该面板

点击 Apply 按钮, 在编辑初始点面板中定义的值上执行 sigset 命令。用 Results>Operating Point Report 下拉菜单项,可以显示已编辑的初始点文件的 结果。

- 5、 用新编辑的初始点文件运行分析 在 Input/Output 标签中, 验证 Initial Point File 处的文件名。
- 6、 检查振荡器幅度在一定时间内是否稳定 不同的启动会产生不同的影响,或者是增长的响应,或者是衰减的响应。振荡
- 器的Q值越高,要达到稳态所需的时间越长。
- ▲ 用电流源或电压源启动振荡器

图 4-6 列出电压源或电流源可能放置的位置,这些添加的源仅在脉冲期间影响 电路,因此电流源是连到地(0 值电流源视为开路),电压源放到连线中(0 值 电压源视为短路)。本例中电流源更有效,因为存贮能量的元件是电容器。

图 4-6 振荡器例图

▲ 保持振荡

模拟器把所有的信号看作好像最终收敛于一个 DC 值,这样在模拟一个振荡器时 就会出现问题,要保持振荡,瞬态分析的精确度不得不提高。试着用下面的步骤, 看它是怎样影响设计的性能的:

- 1、 以 10 的因数来减小 Maximum Truncation Error (瞬态分析面板中的 Calibration 标签中)
- 2、 如果第一步只是部分成功,将 Time Step (瞬态分析面板中的 Basic 标签中)设置成比先前模拟所用的更小些(用 100 到 1000 的因数)
- 3、 最后,如果这些方法都不能阻止振荡器振荡,用另一个 10 的因数减小 Maximum Truncation Error

● 削减瞬态分析中的尖峰信号

开关电路的瞬态模拟有时会在输出数据产生尖峰信号,但是现实的系统是没有 的。削减这些错误的尖峰信号过程如下:

- 1、 验证尖峰信号是否是真实的
 - 一些带有如栅关断(GTO)元件的系统在它们的测量响应中是有大的尖峰信号的,

所以要仔细检查原电路的测试数据,与瞬态分析结果或其它分析结果比较。

- 2、 检查模型和电路图
 - ▲ 确定电路中的模型合适应用 由于尖峰信号通常是在大电路中产生的,所以要精确找到哪个模型有问题是很困 难的。一种方法是检查尖峰信号处直接邻近的节点或分支,也可以考虑下,哪个 模型是被开关事件激发。
 - ▲ 确认电路布线正确
 ▲ 检查电路中可能存在的不稳定电路
 一些带有尖峰信号的模拟结果可以提供足够的信息来显示,电路是否是不稳定的 或者有完全平衡的负载。
- 3、 Saber 模拟选项
 - 1、 二步一定要仔细, 否则可能遗漏有问题的部分, 有时可以用下面的方法:
 - a、用 -d flat 选项启动 Saber: saber –d flat designname 该命令强迫 Saber 用一层,相对于层次、矩阵,该命令将使模拟速度较慢。
 - b、 用瞬态选项 terrt all,这是计算切断错误的最精确的方法,该命令也会 使模拟速度较慢。
 - c、在有较宽的时间常数的系统中,试试用 terrn 3 选项。
 - d、 使用 ord 1,这会限制综合算法使用第一个,这使模拟精度降低,但是, 它会使开关边沿的短的尖峰信号消失。
 - 通常,切断错误和例点密度是决定瞬态分析尖峰精度的临界参数。
- 4、 其它值得考虑的技术

如果在前三步完后,结果仍不令人满意,试试下面的调试技术:

- ▲ 仅模拟电路中产生尖峰的部分
- ▲ 对电路中低压部分和高压部分单独进行模拟
- ▲ 用 Monitor Progress(Basic 标签)生成详细的分析脚本
- ▲ 试试不同的开关模型
- ▲ 添加些非理想的元件,来增加电路的精确度,如没有被说明的电容器、电阻器、电 感等