

如何在 ADS 里创建元件库?

教程的目的是在 ADS 里编辑和创建自己元件库(可能有自己理解不到位的地方,望 不吝赐

教),并加载在元件库面板中(即 palette 中)。为叙述方便,现将整个创建和使用过程归 纳如下:

步骤 1: 创建新的工作空间(即旧版的 project),并命名为 myNewComponent1,同时把 lirary

view 选项卡下的库名改为 myNewlib, 如图

步骤 2:为后面新建的元件库,须先在工程中建 2 个元件,创建方法类似创建原理图。 点击新建原

理图(方法多种,不赘述),随便命名为 amplifer,关闭窗口保存。接着再创建一个视图(即 symbol)

,然后添加两个 pin,如图:

点击当前窗口 file 菜单下的 design parameters, 在弹出窗口的第一个选项卡中, 可修改元件描述, 元件

实例名, 仿真模块类型选默认的第一个子网络(属于 symbol 的内部电路), 在第二个选项 卡用来创

建元件参数,示例如图:

General Cell Definition Cell Par	ameters View-Specific Configuration
Description	
Component Instance Name	- Simulation
MYAMP	Subnetwork
Allow only one instance Include in BOM Layout Object Simulate from Layout (SimLa	Copy Component's Pa

资深专家团队,十年经验积累 专注于微波、射频、硬件工程师的培养

Cell: amplifier	
General Cell Definition Cell Parameters	View-Specific Configuration
Select Parameter S21 S12 S11 S22	Edit Parameter Parameter Name S21 Value Type Complex Default Value (e.g., 1.23e-12 + j * 2) dbpolar (0,0) Optional Parameter Type Unitless
Add Cut Paste	Parameter Description forward gain Display parameter on schematic Optimizable
Add Multiplicity Factor (_M) Copy Parameters From	Allow statistical distribution Not edited Not netlisted

有参数名字,参数值类型,默认值(可编写表达式)以及单位和描述,编辑完一个参数之后 点击添

加,参数的多少视具体应用情况而定,以上建了射频放大器的4个S参数,退出保存。

步骤 3: 建立 symbol 内部的原理图。打开先前建立的空原理图,为简单起见,我随 便加入了一

个电容,同样加上两个 pin (与 symbol 对应),完了自后退出保存。

쀎 amplifier [myNewlib:amplifier:schematic] (Schematic):2											
<u>F</u> ile	<u>E</u> dit	<u>S</u> elect	<u>V</u> iew	<u>I</u> nsert	<u>O</u> ptions	<u>T</u> ools	Layout	Si <u>m</u> ulate	<u>W</u> indow	DynamicLir	uk D
	6	-	3	 + -		96	2	+∎+ 🧕	P	e 🌮	-
Demok	(it_Non	_Linear		*		~	⊶ ±	0110 VAR	R=17	NAME	+ 🍓
*	ĬĬ	000 00 0	×.	V 😽	. 🔀 I	P 🗗	} →į	📄 🚥	🐼 😽	<mark>5</mark> ?	
Palett	e	5	I								
TECH	CAP						→⊢				
DEMO	DEMO			P1		C				P2	
IND	RES		· ·	Num	=1	· · · C	1 - 1			Num=2	
						C	=1.0.p	F			

步骤 4: 将元件加入到面板组(palette)。利用电脑自带的写字板工具,编辑一下文档:

/*MYAMP*/

create_text_form("nameform","para_for_amp",0,"%v","%v"); create_compound_form("valueform","my default value",0,"%v","%v"); create_form_set("name_formset","nameform"); create_form_set("value_formset","valueform"); create_item(

"amplifier", //name "make self component", //label "y", //prefix 0, //attribute "NULL", //priority "NYselfComponent", //icon name standard dialog, //dialogname "*", //dialogData ComponentNetlistFmt, //netlistFormat "MYselfComponent", //netlistData ComponentAnnotFmt, //displayFormat "AMP", //symbolname //artworkType macro_artwork, //artworkData "MY_amp", ITEM_PRIMITIVE_EX, //extraAttrib

create_parm("Gain","amplifier_

maximum_gain",0,"name_formset",UNITLESS_UNIT,prm("nameform","Gain")), create_parm("10","default

```
value",0,"value_formset",DB_GAIN_UNIT,prm("valueform","10"))
```

);

set_design_type(analogRFnet);

library_group("myNewlib","specify_group_for_newComponent",1,"amplifier"); de_define_palette_group(SCHEM_WIN,"analogRF_net","MY-palette","self_pal",-1,"amplif ier","MYAMP","MYpic","mybalun","MYbalun","Balunpic");

注意格式不要书写错了(否则编译会出问题),关闭文档并保存为 ael 文件(需要理 解 AEL 语言

哦,亲),其中参数 MYpic(对应创建的 amplifier)和 Balunpic(另一个元件,例子中未 给,创建方

法一样)为元件对应的位图名,位图文件放在安装目录下的 circuit/bitmaps 里面,此即面板 上显示的

图标,将 ael 文件放在安装目录下的 circuit/ael/palette 里面(以便启动 ads 时会自动加载文件生成编译

文件 atf)。参数 MYpalette 为面板组中显示的库名。

步骤 5:新建原理图,并命名为 MyComponent。至此,含有两个元件的库已建立, 重新启动

ADS 时自动加载生效。重启后打开 MyComponent 的原理图,在面板中就会出现所建立的 元件库名

MY-palette,如图:

💹 LyComponent 🛛 [my	/Newl	lib:I	уСов	iponen	t:sche	matic]	* (S	chen	atic):	3			
<u>F</u> ile <u>E</u> dit <u>S</u> elect	<u>V</u> iew	Inser	rt 🖸)ptions	<u>T</u> ools	Layout	Simul	ate	<u>W</u> indow	Dynam	icLink	Des	i gnGu
🗋 🗖 🔚 🚔	3	∥→ 	(+)(X	99	2	+∰+ [i	9 &) 🥹	d- 🟅	<u>k</u> 1	
MY-palette		💙 myt	alun		~	아 늘	0110 VAR	۱İ.	R=17			٩	٩Ų
🔆 🕺 🛄 👯	No.	3	0,0	X	P 🗗	<mark>}≁</mark>	1		🖗 🖗	5 ?			
Palette 🗗													
				Ň			· ·		· ·		•		•
											٠. 🔶		
			*		>	• •		. 4	Ð				
			•			· ·	· ·		mv	balun	× .		•
	·			amp MYA	lifier MP1				my	Balun	2 ·		•
	·	• •		S21:	=dbpol	ar(0.0)	•	t=0	• •	•		•
		• •		S12:	dbpol	ar(0.0) · ·	·	· ·	• •	•		·
				S11=	=dbpol	ar(0,0)	, .						
				S22:	-dbpol	ar(0,0)						

且出现刚才建立的两个元件(巴伦图标为本人图片)。哦,有一点要注意,图标文件要符合:

1: 必须是 16 色的位图

2: 图片大小必须为 32*32

以下是用自制巴伦做的一个简单仿真及内部电路:

资深专家团队,十年经验积累 专注于微波、射频、硬件工程师的培养

结果如下:

微波EDA www.mweda.com

资深专家团队,十年经验积累 专注于微波、射频、硬件工程师的培养

由于是用两个理想变压器组成的巴伦,故结果非常理想,相位相差 180 度,差分端口衰减 3dB。

微波 EDA 网视频培训教程推荐

微波 EDA 网(www.mweda.com)成立于 2004 年底,专注于微波、射频和硬件工程师的培养,现已发展成为国内最大的微波射频和无线通信人才培养基地。先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,成功推出了多套微波射频经典培训课程和 ADS、HFSS 等软件的使用培训课程,广受工程技术学员的好评,帮助数万名工程师提升了专业技术能力。 客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

Agilent ADS 学习培训课程套装

国内最全面和权威的 ADS 培训教程,详细讲解了 ADS 在微波 射频电路、通信系统和电磁仿真设计方面的应用。套装中的视 频培训课程是由具有多年 ADS 使用经验的资深专家讲解,视频 边讲解边操作演示、直观易学;课程结合工程实例、工程实践 强。详情浏览: http://www.mweda.com/eda/agilent.html

➢ 两周学会 ADS2011、ADS2012 ── 中文视频教程

最新版 ADS 的视频培训教程,李明洋主讲,视频同步操作演示,直观易学。课程从基础 讲起,通过两周的课程学习,可以帮助您快速入门、自学掌握 ADS 在射频电路设计方面的应 用,真正学会把 ADS 应用到实际工作中去…

详情浏览: http://www.mweda.com/eda/agilent/eda_591.html

HFSS 中文视频培训课程套装

迄今最全面、最专业的 HFSS 培训教程套装,包含 5 套视频教程和 2 本教材,李明洋老师讲解;结合最新工程 案例,视频操作演示,让 HFSS 学习不再难。购买套装更 可超值赠送 3 个月免费学习答疑,让您花最少的成本,以 最快的速度自学掌握 HFSS…

详情浏览: http://www.mweda.com/eda/hfss.html