The Linux Frame Buffer Device Subsystem

Geert Uytterhoeven
geert@linux-m68k.org
http://ww. cs. kul euven. ac. be/ “geert/

ABSTRACT

The frame buffer device in recent kernels
provides an abstraction for frame buffer based
graphics hardware.

In this paper we will discuss two important
aspects of frame buffer devices. Graphical con-
soles are implemented in the kernel on top of
the frame buffer device. A second topic is the
access of the graphics hardware by user appli-
cations. The most important application here is
the (accelerated) X server.

1 Introduction

Many machines (m68k, SPARC, PowerMac)
use graphical consoles because either the hard-
ware does not support (VGA) text mode, or be-
cause the firmware programsthe hardwareinto a
graphical mode. Thusthe Linux kernel needsto
be aware of this and support graphical consoles
on these architectures.

Graphical consoleswill also gain moreimpor-
tance on the Intel (PC) platform, as VGA com-
patibility will be phased out by many graphics
chipset manufacturers in the near future. An
early example of thisisthe Cyrix MediaGX [1],
which provides VGA compatibility through its
BIOS only.

The frame buffer device provides an abstrac-
tion for the graphics hardware. 1t represents the
frame buffer of some video hardware and allows
application software to access the graphics hard-
ware through a well-defined interface, so the

software does not need to know about the low
level (hardware register) stuff (except for hard-
ware acceleration).

Since years there has been minor support for
graphical consolesinthe Linux kernel, but it dif-
fered alot among the different platforms. Start-
ing with kernel 2.1.107, the frame buffer de-
vice abstraction became completely integrated
in the standard kernel sources and will become
the standard way to access graphics hardware.
But it is definitely not new: it originated from
Linux/m68k at the end of 1994 and has proven
to fulfill itstask during the previous years.

There are two important aspects of frame
buffer devices that will be discussed here:

Graphical consoles Emulation of a text con-
sole on a graphical display. Thisis kernel
business.

User applications How to access the graphics
hardware from user space?

2 Advantages of Frame

Buffer Devices

The frame buffer device abstraction has the fol-
lowing advantages.

e It provides a unified method to access
graphics hardware across different plat-
forms.

e Drivers can be shared among different ar-
chitectures, which reduces code duplica-
tion. There were aready three differ-
ent drivers for the ATI Mach64 before.
In the ideal case, a frame buffer device
driver contains a chipset driver core, with
machine and bus dependent probe code
(Zorro/PCI/1SA/Open Firmware/. . .).

e It provides ssimple multi-head: currently
up to 8 frame buffer devices (displays) are
supported. Unfortunately the input part
of the console subsystem is not ready for
multi-head yet.

e On boot up, you get one or more penguin
logos (with or without beer :-) The more
CPUs you have, the more penguins you
will see.

3 The Frame Buffer Device
Console

3.1 TheAbstract Console Driver

The origina Linux console driver was very inti-
mately tied to VGA hardware and a VGA com-
patible text mode. To become more generic and
powerful, and support all kinds of consoles, it
had to be changed substantially. Herefore we
designed the “abstract console driver”. Thisis
a small layer that provides an abstraction to a
generic console.

A console needs to provide the following ba-
sic high level operations:

putc Draw one character,

putcs Draw astring of characters,

LActually some more operations are needed, but they
arenot that important. Read <l i nux/ consol e. h>for
acompletelist. [6]

scroll Scroll (apart of) the screen,
clear Clear ablock of characters,
bmove Moveablock of characters.

This scheme is much more flexible than the old
scr {read, wite}() interface, which pro-
cessed single characters. It can be mapped onto
different kinds of consoles:

e Text consoles, e.g. VGA and MDA (vgacon
and mdacon),

e Graphica consoles through the frame
buffer device (fbcon),

e Graphics boards with a specialized graphi-
cal processor (e.g. TMS34010), where the
host CPU does not have direct accessto the
frame buffer on the graphics board, only
through a small window to the graphical
processor (gspcon).

For graphical consoles, the high level console
layer uses a shadow screen to remember which
characters are shown where. On VGA text hard-
ware, the overhead of a shadow screen is re-
moved to keep the consolefast (infact it isfaster
than the old console driver in 2.0.x).

3.2 Design of the Frame Buffer De-
vice Console

In the frame buffer device console driver, there
isinteraction between three parts (see Figure 1):

1. fbdev Theframe buffer devicethat controls
the hardware,

2. fbcon The generic frame buffer device con-
sole driver,

console.c

N

Abstract Console Driver

vgacon.c fbcon.c
L ow fbcon-afb.c
L evel

- fbcon-cfb8.c
Drivers

fbcon-mfb.c

gspcon.c
amifb.c
Frame
adbc | Buffer
Devices
atyfb.c

Figure 1: Interaction between the different parts of the console driver.

3. fbcon-+ Low level drawing routines for
various screen organizations (chunky, pla-
nar, ...)>%.

The first and third components can be load-
able modules, the second cannot (yet).

3.3 Performance of the Frame
Buffer Device Console

Graphical consoles are inherently slower than
hardware text consoles. However, they provide
some features that cannot be provided by the
classical VGA text console:

e Graphical consoles are moreflexible. They
can support arbitrary resolutions, color
depths, refresh rates and font sizes. If
the hardware supports the video mode you
want, you can get it.

e Theoretically, there are no limits for the
number of charactersin afont.

2See struct display_sw tch in

<vi deo/ f bcon. h>. [6]

e Graphical consoles can have fancy features
like anti-aliased fonts.

To achieve the highest possible performance
(especidly for scrolling, which is slow when
done using mentpy()) on various kinds of
hardware, it is very important to use special fea-
tures of the graphics hardware. Currently the
frame buffer device console can make use of the
following features, when available:

ywrap Scrolling can be sped up if the graphics
hardware supports vertical wrap around of
the screen (split screen). Thisis used on
e.g. Amiga.

ypan If ywrap is not available, panning a large
vertical virtual screen is another option.
Only when the bottom (or top) of the vir-
tual screen is reached, the screen contents
have to be copied.

bitblt If the hardware supports accelerated rect-
copy and rectfill operations, the graph-
ics acceleration engine can be used for
scrolling and clearing. Thisis done by re-
placing some low level drawing routinesin

struct display_sw tch by acceler-
ated routines.

smart redraw If reading from the frame buffer
memory is slow, compared to writing, it
makes sense to scroll the display by re-
drawing the characters that have changed
only. Of course the scrolling speed then de-
pends on the screen contents. Thiscan even
outperform the acceleration engine (which
is used synchronuously) on machines with
reasonable fast buses (e.g. PCI). For slow
buses (e.g. ISA and Zorro 1), the accelera
tion engine performs better.

real text mode If the graphics hardware has a
hardware text mode, it may use it to speed
up text consoles.

Benchmark results for ATI Mach64 GT (3D
RAGE 11+) are shown in Table 1. Benchmark
datafor smart redraw are not included, since the
scrolling speed for smart redraw depends on the
screen contents.

4 Using Frame Buffer De
vices

4.1 Accessing Frame Buffer Devices

From user space, a frame buffer device can
be accessed through a specia device node
(/dev/fb[0-7]), just like most other de-
vices. These nodes provide the following op-
erations:

normal 1/0O Reading and writing / dev/ f b*
gives access to the raw frame buffer con-
tents.

mmap Using mmap() one can map the frame
buffer into the memory space of the user

program. After this the frame buffer be-
comes a piece of accessible memory.

Optionally one can map the MMIO (Mem-
ory Mapped 1/0) registers from userspace.
Note that you cannot nmap() theseregis-
ters unless you have disabled hardware ac-
celeration for the text console first, to pro-
tect against accel eration engine access con-
flicts.

ioctl Using i oct| () you can get or set the
video mode, update the colormap, query
the graphics chipset type, screen organiza-
tion and visual type, Each frame buffer
device can define additional i oct | s for
device specific operations, if necessary.

There is no generic hardware acceleration
code in the kernel. All generic hardware ac-
celeration operations have to be done from user
space, using the mapped MMIO registers.

4.2 Applications using the Frame
Buffer Device

XF68_FBDev and XF86_FBDev, [5]

ppmtofb: asimple picture viewer,

the LibGGlI f bdev target, [2]

OFBis (part of OSIS[4]),

fbset, atool to manage video modes.

4.3 The (accelerated) X Server

The X server is the most important applica-
tion for the frame buffer device. There ex-
ists an unaccelerated X server that uses the
frame buffer device abstraction: X F68_FBDev3.

3The “68” indicates the origin on Linux/m68k. Start-
ing with XFree86 3.3.3, XF68_FBDev is used on big en-
dian, and XF86_FBDev on little endian platforms

| bpp | memcpy | bitblt | memcpy+ypan | bitblt+ypan |

8 20.34s | 1.66s
16 | 41.52s | 3.75s
32 | 90.67s | 10.99s

0.41s 0.19s
N/A N/A
N/A N/A

Table 1: Benchmark resultsfor scrolling on aframe buffer console onthe ATI 3D RAGE |1+ (PCI,
4 MB SGRAM) in a CHRP/PPC box (604e at 200 MHZz). The video mode was set to 1024x768,
75 Hz, using a8x16 font. For ypan, the virtual screen size was 1024x4000.

It has been part of XFree86[5] since its in-
tegration in XFree86 release 3.2. The X
server supports most popular screen organiza-
tions (monochrome, chunky 8/16/24/32 bits per
pixel*, and interleaved and non-interleaved bit-
planes).

Work is in progress to add hardware accel-
eration to the X server. An experimenta ver-
sionfor the NCR77C32BLT (used on the Amiga
Retina Z3 graphics board), the ATl Mach64, the
IMS TwinTurbo, the Matrox Millennium and
the 3DLabs Permedia 2 is available.

For many chipsets, hardware acceleration can
be based on the standard XFree86 acceleration
code that aready supports a zillion chipsets,
and usually requires only minor modifications
to the XFree86 code base. E.g. the acceler-
ated X server for the Matrox Millennium dif-
fers from the normal XF86_SVGA server in the
probe code only.

The main difference between an accelerated
frame buffer device based X server and a“clas-
sical” X server isthat video mode programming
and colormap updates are now handled by the
kernel. The X server still has to take care of ac-
celeration engine setup and accelerated opera-
tions. Performance-wise there is no difference
between the two approaches, if one considers
the same hardware.

The upcoming XFree86 4.0 will have only

“Due to endianness problems with the X11 cfb24
code, 24 bpp is available on little endian platforms only.

one X server with loadable modules for differ-
ent chipsets. Support for both systems with
and without frame buffer devices is planned by
having initiaization code that usesthei oct | s
from the frame buffer APl on systems that sup-
port them, and * hardware-banging” elsewhere.

5 Portability Problems

5.1 Endianness. the Egg vs. the Egg

Endianness defines how objects that are larger
than one byte are stored in memory. Tradition-
aly there are two types of endianness. big en-
dian (BE) and little endian (LE)°. E.g. the 32
bit number 0x12345678, which needs 4 bytes,
isstored like:

1 2

0x34 | Ox56 |

0 3
Bigendian: | Ox12 | Ox78 |

1 2 3

Ox56 | 0x34 | 0x12 |

0
Littleendian: | Ox78 |

The different components in a computer re-
lated to graphics processing (CPU, graphicsdis-
play and acceleration engines, and system bus)
can be either BE or LE. Graphics engines are
usually configurable for both BE and LE sys-
tems. PCI, currently the most popular system
bus, is LE by definition.

5To make things even more complicated, the PDP-11
is situated in between. But as long as there is no port of
Linux to the PDP-11, we will not care about that.

If the endianness of the graphics chip and the
CPU differ, this causes serioustroubles, depend-
ing on the color depth:

8 bpp Each byte corresponds to one pixel, but
the ordering of 4 consecutive pixelsin a32-
bit word depends on the endianness.

> 8 bpp One pixel spans multiple bytes.

< 8 bpp Within each byte, there are multiple
pixels, in an endianness-dependent order.

An example of what problems can show up is
the CyberVision64 graphics boards on Amiga.
While the m68k CPU in the Amiga is BE, the
S3 Trio64 graphics chip on the CyberVision64
supports LE only. For 8 bpp, the problem was
circumvented by physically swapping the data
lines on the graphics board. However, there re-
mainsaproblemfor 16 bpp (e.g. 5 bitsfor R(ed),
6 for G(reen) and 5 for B(blue)):

0 1
mé8k [RRRRRGGG | GGGBBBEE |

0 1
S3 Trio64 [GGGBBBBB | RRRRRGGG |

Thus the data has to be swapped when be-
ing transferred between CPU and frame buffer.
Needless to say, 24 bpp becomes even more of a
nightmareif the endianness does not match. The
frame buffer console code can handlethis, but X
isadifferent beast.

52 MMIO Region Accesses

On some architectures, MM10O must be accessed
differently from norma memory accesses. This
becomes even more complex if you have multi-
ple memory spaces on e.g. multiple PCI buses.

5.3 Advicefor GraphicsChipset De-
signers

To avoid problems with support for your new
state-of-the-art graphics chipset, | would like to
ask to fulfill the following requirements:

e Please support both big and little endian
machines. Intel is not the only player in
the computer business.

e Please provide for a clean design with sep-
arate MMIO regions (at least on different
pages, from the MMU point of view) for
video mode programming (in the kernel)
and acceleration (in user space) [7].

e Please support Open Source[3] software,
and release programming information
without nasty NDAs (Non-Disclosure
Agreements).

..and your Linux customerswill be happy :-)

6 FutureWork

e More and better drivers. Currently more
than 30 frame buffer devices have been
written, but most of them are targeted at
non-Intel platforms.

e Full acceleration for various chipsets us-
ing XFree86 code, and integration into the
XFree86 branch that will result in X Free86
release 4.0.

e Real multi-head. Thiswill require asignifi-
cant rewrite of the console layer, to support
multiple heads with multiple input devices.

e A better separation between frame buffer
devices (fbdev) and the frame buffer de-
vice console driver (fbcon). On e.g. some
embedded systems you may want to have

graphics support without the need for atext
console.

Acknowledgments

e Martin Schaller designed the frame buffer
device abstraction in 1994 and 1995. Un-
fortunately he disappeared from the scene
completely.

e Martin Mares did a mgor rewrite of the
high level console code after the abstract
console code was integrated in kernel
2.1.107, and he made | ots of optimizations.

e Jakub Jelinek made a lot of optimizations
to the frame buffer console code.

And of course | would like to thank the nu-
merous people who wrote and contributed code
to frame buffer device drivers, and who gave
suggestions and feedback.

Glossary

Frame buffer A block of memory that contains
a representation of the screen image of a

graphical display.

ISA Industry Standard Architecture. The
legacy system bus that originated on the
IBM PC XT (8 bit) and AT (16 bit), and
runsat 8 MHz.

Open Firmware A FORTH-based firmware
(“BIOS”) used on some systems based on
the SPARC and PPC CPUs.

MMIO Memory Mapped 1/0. An I/O device
can be accessed smply by reading from or
writing to some addresses in memory, in-
stead of using special 1/O instructions. On

some CPUs (e.g. m68k and PPC), al I/Ois
memory mapped.

PCIl Peripheral Component Interconnect. A
system bus which existsin both 32 and 64
bit versions, and runs at 33 or 66 MHz.

VGA Video Graphics Array. A graphics hard-
ware standard designed by IBM. It provides
both hardware text modes and graphical
modes. Most current video boards contain
aVGA compatible core, but provide many
extra features (higher resolutions and color
depths).

Zorro The expansion bus used on Amiga. The
Zorro bus comes in two flavors: Zorro Il
(16 bit, 8 MHz) and Zorro 111 (32 hit, 25
MH2z).

References

[1] Cyrix MediaGX[tm] Processors.

http://www.cyrix.com/html/products/mediagx/index.htm.

[2] General Graphics Interface.

http://www.ggi-project.org/.

[3] Open Source.

http://www.opensource.org/.

[4] OSIS: Atari TOS, Mint, AES, and VDI em-
ulation for Linux/m68k.

http://www.nocrew.org/osis/ «

[5] The XFree86 Project, Inc.

http://www.xfree86.org/ .

[6] L. Torvalds. TheLinux Kernel Sources.

ftp://ftp.kernel.org/publ/linux/v2.2/.

[7] L. Vepstas. High Performance Graphics
Hardware Design Requirements.

http://www.linas.org/linux/graphics.html.

