
The Linux Frame Buffer Device Subsystem

Geert Uytterhoeven
geert@linux-m68k.org

http://www.cs.kuleuven.ac.be/˜geert/

ABSTRACT

The frame buffer device in recent kernels
provides an abstraction for frame buffer based
graphics hardware.

In this paper we will discuss two important
aspects of frame buffer devices. Graphical con-
soles are implemented in the kernel on top of
the frame buffer device. A second topic is the
access of the graphics hardware by user appli-
cations. The most important application here is
the (accelerated) X server.

1 Introduction

Many machines (m68k, SPARC, PowerMac)
use graphical consoles because either the hard-
ware does not support (VGA) text mode, or be-
cause the firmware programs the hardware into a
graphical mode. Thus the Linux kernel needs to
be aware of this and support graphical consoles
on these architectures.

Graphical consoles will also gain more impor-
tance on the Intel (PC) platform, as VGA com-
patibility will be phased out by many graphics
chipset manufacturers in the near future. An
early example of this is the Cyrix MediaGX [1],
which provides VGA compatibility through its
BIOS only.

The frame buffer device provides an abstrac-
tion for the graphics hardware. It represents the
frame buffer of some video hardware and allows
application software to access the graphics hard-
ware through a well-defined interface, so the

software does not need to know about the low
level (hardware register) stuff (except for hard-
ware acceleration).

Since years there has been minor support for
graphical consoles in the Linux kernel, but it dif-
fered a lot among the different platforms. Start-
ing with kernel 2.1.107, the frame buffer de-
vice abstraction became completely integrated
in the standard kernel sources and will become
the standard way to access graphics hardware.
But it is definitely not new: it originated from
Linux/m68k at the end of 1994 and has proven
to fulfill its task during the previous years.

There are two important aspects of frame
buffer devices that will be discussed here:

Graphical consoles Emulation of a text con-
sole on a graphical display. This is kernel
business.

User applications How to access the graphics
hardware from user space?

2 Advantages of Frame
Buffer Devices

The frame buffer device abstraction has the fol-
lowing advantages:

� It provides a unified method to access
graphics hardware across different plat-
forms.

� Drivers can be shared among different ar-
chitectures, which reduces code duplica-
tion. There were already three differ-
ent drivers for the ATI Mach64 before.
In the ideal case, a frame buffer device
driver contains a chipset driver core, with
machine and bus dependent probe code
(Zorro/PCI/ISA/Open Firmware/. . .).

� It provides simple multi-head: currently
up to 8 frame buffer devices (displays) are
supported. Unfortunately the input part
of the console subsystem is not ready for
multi-head yet.

� On boot up, you get one or more penguin
logos (with or without beer :-) The more
CPUs you have, the more penguins you
will see.

3 The Frame Buffer Device
Console

3.1 The Abstract Console Driver

The original Linux console driver was very inti-
mately tied to VGA hardware and a VGA com-
patible text mode. To become more generic and
powerful, and support all kinds of consoles, it
had to be changed substantially. Herefore we
designed the “abstract console driver”. This is
a small layer that provides an abstraction to a
generic console.

A console needs to provide the following ba-
sic high level operations1:

putc Draw one character,

putcs Draw a string of characters,

1Actually some more operations are needed, but they
are not that important. Read <linux/console.h> for
a complete list. [6]

scroll Scroll (a part of) the screen,

clear Clear a block of characters,

bmove Move a block of characters.

This scheme is much more flexible than the old
scr fread,writeg() interface, which pro-
cessed single characters. It can be mapped onto
different kinds of consoles:

� Text consoles, e.g. VGA and MDA (vgacon
and mdacon),

� Graphical consoles through the frame
buffer device (fbcon),

� Graphics boards with a specialized graphi-
cal processor (e.g. TMS34010), where the
host CPU does not have direct access to the
frame buffer on the graphics board, only
through a small window to the graphical
processor (gspcon).

For graphical consoles, the high level console
layer uses a shadow screen to remember which
characters are shown where. On VGA text hard-
ware, the overhead of a shadow screen is re-
moved to keep the console fast (in fact it is faster
than the old console driver in 2.0.x).

3.2 Design of the Frame Buffer De-
vice Console

In the frame buffer device console driver, there
is interaction between three parts (see Figure 1):

1. fbdev The frame buffer device that controls
the hardware,

2. fbcon The generic frame buffer device con-
sole driver,

fbcon-afb.c

fbcon-cfb8.c

fbcon-mfb.c
...

amifb.c

atafb.c

atyfb.c

Frame
Buffer
Devices

Low
Level

Drivers

gspcon.cvgacon.c fbcon.c

console.c Abstract Console Driver

...

Figure 1: Interaction between the different parts of the console driver.

3. fbcon-� Low level drawing routines for
various screen organizations (chunky, pla-
nar, . . .)2.

The first and third components can be load-
able modules, the second cannot (yet).

3.3 Performance of the Frame
Buffer Device Console

Graphical consoles are inherently slower than
hardware text consoles. However, they provide
some features that cannot be provided by the
classical VGA text console:

� Graphical consoles are more flexible. They
can support arbitrary resolutions, color
depths, refresh rates and font sizes. If
the hardware supports the video mode you
want, you can get it.

� Theoretically, there are no limits for the
number of characters in a font.

2See struct display switch in
<video/fbcon.h>. [6]

� Graphical consoles can have fancy features
like anti-aliased fonts.

To achieve the highest possible performance
(especially for scrolling, which is slow when
done using memcpy()) on various kinds of
hardware, it is very important to use special fea-
tures of the graphics hardware. Currently the
frame buffer device console can make use of the
following features, when available:

ywrap Scrolling can be sped up if the graphics
hardware supports vertical wrap around of
the screen (split screen). This is used on
e.g. Amiga.

ypan If ywrap is not available, panning a large
vertical virtual screen is another option.
Only when the bottom (or top) of the vir-
tual screen is reached, the screen contents
have to be copied.

bitblt If the hardware supports accelerated rect-
copy and rectfill operations, the graph-
ics acceleration engine can be used for
scrolling and clearing. This is done by re-
placing some low level drawing routines in

struct display switch by acceler-
ated routines.

smart redraw If reading from the frame buffer
memory is slow, compared to writing, it
makes sense to scroll the display by re-
drawing the characters that have changed
only. Of course the scrolling speed then de-
pends on the screen contents. This can even
outperform the acceleration engine (which
is used synchronuously) on machines with
reasonable fast buses (e.g. PCI). For slow
buses (e.g. ISA and Zorro II), the accelera-
tion engine performs better.

real text mode If the graphics hardware has a
hardware text mode, it may use it to speed
up text consoles.

Benchmark results for ATI Mach64 GT (3D
RAGE II+) are shown in Table 1. Benchmark
data for smart redraw are not included, since the
scrolling speed for smart redraw depends on the
screen contents.

4 Using Frame Buffer De-
vices

4.1 Accessing Frame Buffer Devices

From user space, a frame buffer device can
be accessed through a special device node
(/dev/fb[0-7]), just like most other de-
vices. These nodes provide the following op-
erations:

normal I/O Reading and writing /dev/fb*
gives access to the raw frame buffer con-
tents.

mmap Using mmap() one can map the frame
buffer into the memory space of the user

program. After this the frame buffer be-
comes a piece of accessible memory.

Optionally one can map the MMIO (Mem-
ory Mapped I/O) registers from userspace.
Note that you cannot mmap() these regis-
ters unless you have disabled hardware ac-
celeration for the text console first, to pro-
tect against acceleration engine access con-
flicts.

ioctl Using ioctl() you can get or set the
video mode, update the colormap, query
the graphics chipset type, screen organiza-
tion and visual type, Each frame buffer
device can define additional ioctls for
device specific operations, if necessary.

There is no generic hardware acceleration
code in the kernel. All generic hardware ac-
celeration operations have to be done from user
space, using the mapped MMIO registers.

4.2 Applications using the Frame
Buffer Device

� XF68 FBDev and XF86 FBDev, [5]

� ppmtofb: a simple picture viewer,

� the LibGGI fbdev target, [2]

� oFBis (part of OSIS [4]),

� fbset, a tool to manage video modes.

4.3 The (accelerated) X Server

The X server is the most important applica-
tion for the frame buffer device. There ex-
ists an unaccelerated X server that uses the
frame buffer device abstraction: XF68 FBDev3.

3The “68” indicates the origin on Linux/m68k. Start-
ing with XFree86 3.3.3, XF68 FBDev is used on big en-
dian, and XF86 FBDev on little endian platforms

bpp memcpy bitblt memcpy+ypan bitblt+ypan

8 20.34s 1.66s 0.41s 0.19s
16 41.52s 3.75s N/A N/A
32 90.67s 10.99s N/A N/A

Table 1: Benchmark results for scrolling on a frame buffer console on the ATI 3D RAGE II+ (PCI,
4 MB SGRAM) in a CHRP/PPC box (604e at 200 MHz). The video mode was set to 1024x768,
75 Hz, using a 8x16 font. For ypan, the virtual screen size was 1024x4000.

It has been part of XFree86[5] since its in-
tegration in XFree86 release 3.2. The X
server supports most popular screen organiza-
tions (monochrome, chunky 8/16/24/32 bits per
pixel4, and interleaved and non-interleaved bit-
planes).

Work is in progress to add hardware accel-
eration to the X server. An experimental ver-
sion for the NCR77C32BLT (used on the Amiga
Retina Z3 graphics board), the ATI Mach64, the
IMS TwinTurbo, the Matrox Millennium and
the 3DLabs Permedia 2 is available.

For many chipsets, hardware acceleration can
be based on the standard XFree86 acceleration
code that already supports a zillion chipsets,
and usually requires only minor modifications
to the XFree86 code base. E.g. the acceler-
ated X server for the Matrox Millennium dif-
fers from the normal XF86 SVGA server in the
probe code only.

The main difference between an accelerated
frame buffer device based X server and a “clas-
sical” X server is that video mode programming
and colormap updates are now handled by the
kernel. The X server still has to take care of ac-
celeration engine setup and accelerated opera-
tions. Performance-wise there is no difference
between the two approaches, if one considers
the same hardware.

The upcoming XFree86 4.0 will have only

4Due to endianness problems with the X11 cfb24
code, 24 bpp is available on little endian platforms only.

one X server with loadable modules for differ-
ent chipsets. Support for both systems with
and without frame buffer devices is planned by
having initialization code that uses the ioctls
from the frame buffer API on systems that sup-
port them, and “hardware-banging” elsewhere.

5 Portability Problems

5.1 Endianness: the Egg vs. the Egg

Endianness defines how objects that are larger
than one byte are stored in memory. Tradition-
ally there are two types of endianness: big en-
dian (BE) and little endian (LE)5. E.g. the 32
bit number 0x12345678, which needs 4 bytes,
is stored like:

0 1 2 3

Big endian: 0x12 0x34 0x56 0x78
0 1 2 3

Little endian: 0x78 0x56 0x34 0x12

The different components in a computer re-
lated to graphics processing (CPU, graphics dis-
play and acceleration engines, and system bus)
can be either BE or LE. Graphics engines are
usually configurable for both BE and LE sys-
tems. PCI, currently the most popular system
bus, is LE by definition.

5To make things even more complicated, the PDP-11
is situated in between. But as long as there is no port of
Linux to the PDP-11, we will not care about that.

If the endianness of the graphics chip and the
CPU differ, this causes serious troubles, depend-
ing on the color depth:

8 bpp Each byte corresponds to one pixel, but
the ordering of 4 consecutive pixels in a 32-
bit word depends on the endianness.

> 8 bpp One pixel spans multiple bytes.

< 8 bpp Within each byte, there are multiple
pixels, in an endianness-dependent order.

An example of what problems can show up is
the CyberVision64 graphics boards on Amiga.
While the m68k CPU in the Amiga is BE, the
S3 Trio64 graphics chip on the CyberVision64
supports LE only. For 8 bpp, the problem was
circumvented by physically swapping the data
lines on the graphics board. However, there re-
mains a problem for 16 bpp (e.g. 5 bits for R(ed),
6 for G(reen) and 5 for B(blue)):

0 1

m68k RRRRRGGG GGGBBBBB
0 1

S3 Trio64 GGGBBBBB RRRRRGGG

Thus the data has to be swapped when be-
ing transferred between CPU and frame buffer.
Needless to say, 24 bpp becomes even more of a
nightmare if the endianness does not match. The
frame buffer console code can handle this, but X
is a different beast.

5.2 MMIO Region Accesses

On some architectures, MMIO must be accessed
differently from normal memory accesses. This
becomes even more complex if you have multi-
ple memory spaces on e.g. multiple PCI buses.

5.3 Advice for Graphics Chipset De-
signers

To avoid problems with support for your new
state-of-the-art graphics chipset, I would like to
ask to fulfill the following requirements:

� Please support both big and little endian
machines. Intel is not the only player in
the computer business.

� Please provide for a clean design with sep-
arate MMIO regions (at least on different
pages, from the MMU point of view) for
video mode programming (in the kernel)
and acceleration (in user space) [7].

� Please support Open Source[3] software,
and release programming information
without nasty NDAs (Non-Disclosure
Agreements).

. . . and your Linux customers will be happy :-)

6 Future Work

� More and better drivers. Currently more
than 30 frame buffer devices have been
written, but most of them are targeted at
non-Intel platforms.

� Full acceleration for various chipsets us-
ing XFree86 code, and integration into the
XFree86 branch that will result in XFree86
release 4.0.

� Real multi-head. This will require a signifi-
cant rewrite of the console layer, to support
multiple heads with multiple input devices.

� A better separation between frame buffer
devices (fbdev) and the frame buffer de-
vice console driver (fbcon). On e.g. some
embedded systems you may want to have

graphics support without the need for a text
console.

Acknowledgments

� Martin Schaller designed the frame buffer
device abstraction in 1994 and 1995. Un-
fortunately he disappeared from the scene
completely.

� Martin Mares did a major rewrite of the
high level console code after the abstract
console code was integrated in kernel
2.1.107, and he made lots of optimizations.

� Jakub Jelinek made a lot of optimizations
to the frame buffer console code.

And of course I would like to thank the nu-
merous people who wrote and contributed code
to frame buffer device drivers, and who gave
suggestions and feedback.

Glossary

Frame buffer A block of memory that contains
a representation of the screen image of a
graphical display.

ISA Industry Standard Architecture. The
legacy system bus that originated on the
IBM PC XT (8 bit) and AT (16 bit), and
runs at 8 MHz.

Open Firmware A FORTH-based firmware
(“BIOS”) used on some systems based on
the SPARC and PPC CPUs.

MMIO Memory Mapped I/O. An I/O device
can be accessed simply by reading from or
writing to some addresses in memory, in-
stead of using special I/O instructions. On

some CPUs (e.g. m68k and PPC), all I/O is
memory mapped.

PCI Peripheral Component Interconnect. A
system bus which exists in both 32 and 64
bit versions, and runs at 33 or 66 MHz.

VGA Video Graphics Array. A graphics hard-
ware standard designed by IBM. It provides
both hardware text modes and graphical
modes. Most current video boards contain
a VGA compatible core, but provide many
extra features (higher resolutions and color
depths).

Zorro The expansion bus used on Amiga. The
Zorro bus comes in two flavors: Zorro II
(16 bit, 8 MHz) and Zorro III (32 bit, 25
MHz).

References

[1] Cyrix MediaGX[tm] Processors.
http://www.cyrix.com/html/products/mediagx/index.htm.

[2] General Graphics Interface.
http://www.ggi-project.org/.

[3] Open Source.
http://www.opensource.org/.

[4] OSIS: Atari TOS, Mint, AES, and VDI em-
ulation for Linux/m68k.
http://www.nocrew.org/osis/.

[5] The XFree86 Project, Inc.
http://www.xfree86.org/.

[6] L. Torvalds. The Linux Kernel Sources.
ftp://ftp.kernel.org/pub/linux/v2.2/.

[7] L. Vepstas. High Performance Graphics
Hardware Design Requirements.
http://www.linas.org/linux/graphics.html.

