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Preface
The simplest method of transferring data through the inputs or outputs of a 

silicon chip is to directly connect each bit of the datapath from one chip to the 
next chip. Once upon a time this was an acceptable approach. However, one 
aspect (and perhaps the only aspect) of chip design which has not changed 
during the career of the authors is Moore’s Law, which has dictated substantial 
increases in the number of circuits that can be manufactured on a chip. The pin 
densities of chip packaging technologies have not increased at the same pace 
as has silicon density, and this has led to a prevalence of High Speed Serdes 
(HSS) devices as an inherent part of almost any chip design.

HSS devices are the dominant form of input/output for many (if not most) 
high-integration chips, moving serial data between chips at speeds up to 10 
Gbps and beyond. Chip designers with a background in digital logic design 
tend to view HSS devices as simply complex digital input/output cells. This 
view ignores the complexity associated with serially moving billions of bits of 
data per second. At these data rates, the assumptions associated with digital 
signals break down and analog factors demand consideration. The chip 
designer who oversimplifies the problem does so at his or her own peril.

Despite this, many chip designers who undertake using HSS cores in their 
design do not have a sufficient background to make informed decisions on the 
use of HSS features in their application, and to appreciate the potential pitfalls 
that result from ignoring the analog nature of the application. Databooks 
describe the detailed features of specific HSS devices, but usually assume that 
the reader already understands the fundamentals. This is the equivalent of 
providing detailed descriptions of the trees, but leaving the reader struggling to 
get an overview of the forest. 

This text is intended to bridge this gap, and provide the reader with a broad 
understanding of HSS device usage. Topics typically taught in a variety of 
courses using multiple texts are consolidated in this text to provide sufficient 
background for the chip designer that is using HSS devices on his or her chip. 
This text may be viewed as consisting of four sections as outlined below.

The first three chapters relate to the features, functions, and design of HSS 
devices. Chapter 1 introduces the reader to the basic concepts and the resulting 
features and functions typical of HSS devices. Chapter 2 builds upon these 
concepts by describing an example of an HSS core, thereby giving the reader 
a concrete implementation to use as a framework for topics throughout the 
remainder of the text. Although loosely based on the HSS designs offered in 
IBM ASIC products, this HSS EX10 is a simplified tutorial example and shares 
many features/functions with product offerings from other vendors. Finally, 
Chap. 3 introduces interested readers to the architecture and design of HSS 
cores using the HSS EX10 as an example.

The next two chapters describe the features and functions of protocol logic 
used to implement various network protocol interface standards. Chapter 4 

v
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introduces concepts related to interface standards, as well as design 
architectures for various protocol logic functions. Chapter 5 provides an 
overview of various protocol standards in which HSS cores are used.

The next four chapters cover specialized topics related to HSS cores. 
Chapter 6 describes clock architectures for the reference clock network which 
supplies clocks to the HSS core, as well as floorplanning and signal integrity 
analysis of these networks. Chapter 7 covers various topics related to testing 
HSS cores and diagnostics using HSS cores. Chapter 8 covers basic concepts 
regarding signal integrity, and signal integrity analysis methods. Chapter 9 
covers power dissipation concepts and how these relate to HSS cores.

Finally, any HSS core is not complete without a set of design kit models to 
facilitate integration within the chip design. Chapter 10 discusses various 
topics regarding the design kit models that require special consideration when 
applied to HSS cores.
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Chapter 1
Serdes Concepts
Table 1-1
Eqn 1-1

This chapter describes basic methods of transferring data from one chip to 
another chip, either on the same circuit board or across a cable or backplane to 
another circuit board. After reading this chapter, the reader should have a basic 
understanding of the rationale for using high-speed serializer/deserializer 
(Serdes) devices, and the inherent problems introduced by the high-speed 
operation of such devices.

1.1  The Parallel Data Bus
The simplest method of transferring data through the inputs or outputs of a 

silicon chip is to directly connect the datapath from one chip to the next chip (see 
Fig. 1.1). Since data often consists of more than one bit of information, the datapath 
is more than one-bit wide. In the figure, an n-bit datapath inside Chip #1 is driven 
through chip outputs, across an n bit interconnect, through inputs of Chip #2, to an 
n-bit datapath inside the receiving chip. Synchronous data is transferred between 
the two chips since both chips are clocked by the same clock source.

There are two inherent problems of the parallel data bus shown in Fig. 1.1. The 
first problem is that n input/output (I/O) pins are required on each chip to transfer 
the data. At one point in history this was acceptable. However, Moore’s Law has 
driven substantial increases in the number of circuits that can be manufactured on 
a chip compared to a few decades ago. The pin densities of chip packaging 
technologies have not increased at the same pace as silicon density. Therefore, I/O 
pins are substantially more expensive than silicon circuits, and dedicating n I/O 
pins for the above data bus is not acceptable for most chip applications.

The second inherent problem involves meeting timing requirements. The 
data is launched synchronously by Chip #1 and is captured synchronously in 
Chip #2 using the same clock. The data at the inputs of Chip #2 must meet 
setup and hold times relative to the clock input of the chip. These setup and 
hold times must be calculated with sufficient margin to allow for differences 
in delay of the clock distribution path to the two chips, and through the chips 
to the launch and capture flip-flops. Delays may vary based on chip process, 
voltage, and temperature (PVT) conditions, and margin must be added to 
account for worst case variations. For higher clock frequencies, it may be 
necessary to use phase-locked loops (PLLs) in the chips to adjust the clock 
phase in order to compensate for the clock distribution delay within the chip 
and adapt to changing process, voltage, and temperature conditions. If the 
clock frequency is high enough, it will not be possible to build a system that 
will reliably transfer the data across this data bus.

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 1
© Springer 2008
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1.2  Source Synchronous Interfaces
The two problems with the parallel data bus in Sect.1.1 can be eliminated 

with the modifications to the system which are discussed in this section. These 
approaches are extensions of the parallel data bus. The parallel data bus and all 
of the extensions described in this section are considered to be source 
synchronous interface architectures. Such architectures include any interface 
where a clock input exists that can be used to capture the received data. This 
may be either a reference clock used by both the transmitting and receiving 
chip or the transmitting chip drives a clock to the receiving chip. In either case, 
clock recovery circuits are not required for source synchronous interfaces.

1.2.1 Reducing the Number of I/O Pins
The first issue to be addressed is reducing the number of I/O pins required 

to transfer the data between the chips. This is accomplished by multiplexing 
the n bits of data at the output of Chip #1 onto k bits of interconnect ( k < n ), 
and then demultiplexing the k bits of interconnect at the input of Chip #2 onto 
an n bit internal datapath. This is shown in Fig. 1.2. The resulting system only 
requires k I/O pins on each chip rather than the n pins previously required. 

Chip
#1

Chip
#2

Clock
Source

nn n

Chip
#1

Chip
#2

Clock
Source

kn n

Fig. 1.1 Parallel data bus between two chips

Fig. 1.2 Serializing the data to reduce pin counts
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Of course, while the pin count requirements have been reduced by the ratio 
of k : n , the required frequency of the reference clock has increased by the 
inverse of this ratio. System designers generally do not like to distribute high- 
speed reference clocks within the system due to noise, electromagnetic 
interference (EMI), and power dissipation concerns. Often, a lower frequency 
clock is distributed, and PLLs in the chips are used to multiply this reference 
clock to a usable frequency. Variability of the phase of the resulting clock, 
along with the higher frequency of data transfer, tends to exacerbate the timing 
issues of the parallel data bus approach. 

1.2.2 Clock Forwarding
In Fig. 1.3, a high-speed clock has been added to the datapath between the 

two chips. This clock source is assumed to supply a clock frequency somewhat 
lower than the frequency required to clock the data flip-flops on the chip 
interconnect. PLLs are used in each chip to generate clocks at a multiple of this 
frequency. The resulting clocks are used to launch and capture data in the 
respective chips. The output clock of the PLL in Chip #1, which is used to 
launch the data from this chip, is also an output of this chip. This clock is used 
by Chip #2 to capture the data. This approach is called clock forwarding.

The advantage of this approach is that the high-speed clock used to launch 
the data at Chip #1 is available to Chip #2 as a reference to capture the data. 
Any variations in delays through clock distribution network driving the two 
chips does not need to be taken into account in timing analysis. Only delay 
variations between the clock path and the data bits are relevant. Variations 
between these paths due to process, voltage, and temperature track each other 
to some extent. The result is that timing analysis of the interface requires less 
margin and setup and hold times are therefore easier to meet.

So far we have not made any distinction or recommendations regarding the 
frequency of the high-speed clock relative to the bit rate of the interface. In 
general, the high-speed clock shown in the figure could be single data rate 
(SDR) or double data rate (DDR) (Fig. 1.4). The receiving chip captures data on 
every rising (or every falling) edge of an SDR clock; while the receiving chip 
captures data on every edge (both rising and falling edges) of a DDR clock. 

Chip
#1

Chip
#2

Clock
Source

kn n

high speed clock

Fig. 1.3 High-speed clock forwarded with the data
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The advantage of DDR clocks over SDR clocks lies in the bandwidth 
requirements for the corresponding I/O drivers and receivers. An I/O cell being 
used at a bit rate of b Mbits per second requires a bandwidth sufficient to 
transmit a 101010... data pattern. This corresponds to a frequency spectrum 
with an upper fundamental frequency limit of b/2 MHz. The corresponding 
frequency of an SDR clock is b MHz, twice the spectral limit of the data. 
However, the frequency of a DDR clock for the same interface is only b/2 
MHz, consistent with the frequency spectrum of the data. Therefore, the same 
I/O drivers and receivers can be used to drive and receive both the data and the 
DDR clock.

Regardless of whether the high-speed clock is a SDR or a DDR clock, the 
receiving chip uses this clock to directly capture the data. This chip also uses 
the reference clock to generate an internal system clock at the same frequency. 
These clocks are mesochronous. While the frequency is the same (given that 
they share a common frequency reference), the phase relationship between the 
clocks is unknown and may vary due to PVT variations. Therefore, the 
receiving chip usually retimes the received data from the interface clock 
domain to the clock domain of the internal chip clock. FIFOs are used to 
perform this retiming function. It is desirable to minimize the number of flip-
flops being clocked by the interface clock in order to minimize delay in the 
clock distribution network; otherwise timing issues will be exacerbated.

1.2.3 Higher Speed Source Synchronous Interfaces
The window of time during which data bits can be assumed to be valid is 

called the eye. This name originates from the shape of the waveform when the 
data signal is monitored on an oscilloscope that is continuously triggered. An 
example of a serial data eye is shown in Fig. 1.5a. Eye closure results from 
process, voltage, and temperature effects, as well as differences between signal 
rise and fall times, slew rates, etc. The more the eye is closed, the more difficult 
it is to find a point at which the signal can be reliability sampled to receive the 
data. The serial data eye shown in Fig. 1.5b is completely closed. 

The largest possible eye opening is desirable. The width and height of an 
open eye can be measured as shown in Fig. 1.5c. The expected bit error rate 
(BER) of the link directly correlates to the amount of eye opening (both width 
and height). This section briefly describes some approaches to minimize eye 
closure of the data signal. Eye waveforms are discussed further in later chapters. 

DDR Clock

 
SDR Clock

Data

Fig. 1.4 Single data rate and double data rate clocks



Serdes Concepts  5

1.2.3.1 Differential Signals
Unequal signal rise and fall times of nondifferential signals contribute to 

eye closure. Signals switching on the chip also create current variations on the 
power distribution grid of the chip, which in turn cause variations in voltage 
drop (noise) that can cause variation in delays of surrounding circuits. One 
method of reducing the effects of these phenomenon on the eye width is to 
drive differential signals between chips.

Differential signals represent the data bit using two electrical signals (true 
and complement signals). A logic “0” is represented by the true signal driven 
to its lower voltage limit, and the complement signal driven to its upper voltage 
limit; a logic “1” is represented by the true signal driven to its upper voltage 
limit, and the complement signal driven to its lower voltage limit. A differential 
receiver device interprets the logic bit value based on the difference between 
the two signals, and not based on the level of either signal individually.

 

(a) Open Data Eye (b) Closed Eye

(c) Measuring the Eye Opening

Fig. 1.5 Example of a serial data eye
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Differential driver circuits tend to have linear current draw and generate 
less noise on the power supply than equivalent single-ended drivers. Most 
noise sources induce voltage variation equally on both the true and comple-
ment signals; such common mode noise is ignored by the receiver. Also, since 
one leg of the differential signal is rising while the other is falling, or vice 
versa, unequal rise and fall time effects cancel. 

The drawback of differential signals is that two chip pins are required for 
each data bit. However, this is offset by the higher speeds possible with 
differential signals that are not possible with single-ended signals.
1.2.3.2 Multiple Interface Clocks

The interface clock in Fig. 1.3 is the same clock as is used to launch the data, 
and in general is driven from a point in the clock distribution network as close to 
the actual flip-flops that launch the data as possible. Phase variation is introduced 
by any circuits which are not common to both the data path and clock path. 
Silicon process variables do vary from circuit to circuit on the same chip, the 
power distribution network may have unequal voltage drops to different circuits 
which may vary based on switching currents, and the temperature may vary from 
point to point on the chip. Tolerances and limits for all of these parameters must 
be taken into account when calculating delays, setup times, and hold times 
necessary for correct capture of the received data. At higher bit/baud rates, these 
parameters may significantly reduce the eye opening, and become the dominant 
mechanism for limiting the speed of the interface.

To maximize the eye width, the path through the clock tree to each of the 
data flip-flops and to the clock output should share as many circuits as possible, 
and the output driver for the clock should be similar to the output drivers for 
the data. Ideally, the same clock buffer should drive the clock to the output 
driver and should drive the clock input to all of the data flip-flops. The larger 
the number of bits in the data bus, the more difficult this becomes to 
implement. I/O drivers must be physically distributed based on the groundrules 
for connections to package pins. The greater the distance between circuits, the 
more process, voltage, and temperature variation, and the more circuits in the 
clock distribution network which cannot be shared due to lack of proximity. 

Chip
#1

Chip
#2

Clock
Source

k/2n/2 n/2
high speed clock

k/2n/2 n/2
high speed clock

Fig. 1.6 Multiple sets of data with separate high-speed clocks
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One technique used to improve eye width is to limit the number of data bits 
associated with a given interface clock line. Wider data busses are built by 
using multiple interface clocks, each clock associated with a subset of the data 
bits. An example of this is shown in Fig. 1.6, where the k bit interconnect has 
been subdivided into two groups, each with its own high-speed interface clock. 
Note that the receiving chip must capture each group of data bits in separate 
clock domains, and needs to retime this data to the common clock domain 
internal to the chip.
1.2.3.3 Sample Edge Adaptation

Another technique used to permit higher speed operation of source 
synchronous interfaces is to process the data signal at the receiver and adapt 
the sampling phase of the clock on a per-bit basis. This is done by connecting 
the received interface clock signal to the input of a multitap delay line, and 
capturing the data signal in multiple flip-flops clocked by different clock 
phases. Logic can then be used to determine the clock phases between which 
data transitions are occurring, and select the optimal clock phase to be used to 
capture the data. This scheme is shown in Fig. 1.7.

Schemes, such as shown in Fig. 1.7, may require a training pattern either 
upon initialization of the interface or at regular intervals. If a training pattern 
is used, phase selections remain static between training periods. More complex 
implementations adjust dynamically based on the received data or based on 
training patterns embedded in the data stream. Alternative architectures which 
apply the data to the delay line are also possible. Note, however, that an 
inherent characteristic of most of these schemes is that the phase adjustment is 
less than plus/minus one bit time, and there must be a sufficient eye opening 
such that an optimal sampling phase exists.

Given the advanced schemes discussed above, data rates for source 
synchronous interfaces can be extended to several Gigabits per second (Gbps) 
per interconnect bit. However, PVT variations make further increases in 
interface speeds prohibitively complex. Beyond these speeds, High-Speed 
Serdes devices that extract the clock from edge transitions in the data stream 
become the preferred solution.

D

D

D

D

edge
select
logic

data

clock

data out

Fig. 1.7 Adapting the sampling clock phase in the receiver
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1.3  High-Speed Serdes
High-Speed Serializer/Deserializer (HSS) devices are the dominant 

implementation of I/O interfaces at speeds of 2.5Gbps and higher. Such 
devices are differentiated from source−synchronous interfaces in that the 
receiver device contains a clock and data recovery (CDR) circuit which 
dynamically determines the optimal sampling point of the data signal based 
upon the transition edges of the signal. In other words, clock information is 
extracted directly from the data rather than relying on a separate clock. 

Figure 1.8 illustrates the basic block diagram of the transmit and receive 
channels of an HSS device. The transmitter serializes parallel data, equalizes it 
for reasons that will be explained shortly, and then drives the serial data onto a 
differential signal pair of interconnect wires. Feed forward equalizers (FFE) 
are commonly used in High-Speed Serdes devices, as discussed in Sect. 1.3.2. 
The receiver consists of a differential receiver, a CDR circuit which may also 
integrate an equalizer, and deserializes the data based upon the sample point 
established by the CDR. Peaking amplifiers and/or decision feedback 
equalizers (DFE) are commonly used for equalization in High-Speed Serdes 
receiver devices. 

Note that Serdes cores are often designed to group multiple transmit and/or 
receive channels into a single device. The individual channels generally 
operate independently. Grouping channels allow some circuits to be shared 
across channels (for example the PLL noted below), and therefore the resulting 
block is more efficient in terms of chip area, cost, and power.

Serdes cores which contain only transmit or only receive channels are 
called simplex cores; Serdes cores which contain both transmit and receive 
channels are called full duplex cores. Note that the terminology “full duplex” 
does not imply that the electrical interface is bidirectional. Any given electrical 
interconnect channel has a fixed direction of data transmission. If a protocol 
application requires “full duplex” communication, then independent transmit 
and receive channels with independent interconnections are used to implement 
the interface. Rationale for using simplex vs. full duplex cores may include 
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Fig. 1.8 Basic block diagram of typical high-speed serdes 
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(1) chip floorplan to minimize wiring crossings in the package design or circuit 
board design; (2) signal integrity concerns due to near-end crosstalk from 
transmit signals onto receive signals; (3) or applications where the number of 
transmit and receive channels is not equal.

The remainder of this section generically describes various circuits 
mentioned above in more detail, as well as providing generic descriptions of 
other circuits and functions commonly found in High-Speed Serdes cores.

1.3.1 Serializer/Deserializer Blocks
Conceptually, the input to the serializer transmit stage is an n-bit datapath 

which is serialized to a one-bit serial data signal for application to the FFE and 
Driver stages. Generally the value of n is a multiple of 8 or 10, and may be 
programmable on some implementations. Values of n which are multiples of 8 
are useful for sending unencoded and/or scrambled data bytes; values of n 
which are multiples of 10 are useful for protocols which use 8B/10B coding, 
as discussed further in Sect. 4.2.2.1. (The 8B/10B encoder is generally 
implemented by logic outside the Serdes core.) 

For simplicity, the block diagram in Fig. 1.8 illustrates the serializer 
feeding one-bit data into the transmit equalization block. Actual 
implementations may vary, and this datapath may be one or more bits wide. A 
wider datapath through the equalizer block results in a more complex design, 
but requires a lower operating frequency. Some implementations may initially 
multiplex the n-bit input to an m-bit datapath ( m < n ) prior to the equalizer, 
and perform the remainder of the serialization at the driver stage.

The serializer stage latches data on the n-bit input at the frequency of 
baud rate/n. The high-speed clock in the Serdes is divided down to generate a 
sample clock for the parallel data. Because the phase of this clock is 
determined by the internal state of the serializer, the Serdes channel generally 
provides this clock as an output for use by logic driving data to the transmit 
channel.

Conceptually, the deserializer receive block performs the inverse function 
of the serializer block. Serial data is deserialized onto an n-bit databus of 
similar width to the serializer. A sample clock is generated by dividing down 
the internal high-speed clock, and this clock is supplied as an output for use by 
logic latching the parallel data. In a similar manner to the serializer, actual 
implementations may perform partial deserialization in a prior stage. 

Many Serdes receivers also include a feature to assist with data alignment 
of the output. Most applications organize data into bytes or words (groups of 
bytes). For 8B/10B encoded applications, data is organized into 10-bit encoded 
symbols. The initialization of the clock divider in the deserializer is arbitrary, 
and the data received on the parallel data bus will have an arbitrary alignment 
that is unlikely to match the byte or symbol boundaries of the protocol. This 
can be corrected by downstream logic to steer data onto the appropriate byte, 
symbol, or word boundary. Alternatively, many Serdes receivers provide an 
input which forces the deserializer to “slip” one bit. Downstream logic detects 
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that data is not aligned to the appropriate boundary, and repeatedly 
pulses the deserializer control until the data “slips” to the desired 
alignment. 

1.3.2 Equalizers
The interconnect between the transmitter and receiver device (known as the 

channel ) acts as a filter at typical baud rates, and distorts the serial data signal 
to varying extents. Figure 1.9 illustrates this distortion: The input waveform is 
a clean digital signal, but the output waveform is significantly distorted. The 
illustrated frequency response function for the channel is characteristic of a 
low-pass filter. Signal distortion occurs because the signal baud rate is above 
the cut-off frequency for this filter.

Signal integrity concerns frequently dictate that the data signal be equalized 
at the transmitter and/or receiver in order to counter the effects of the channel 
and decode the signal properly. Many variations on filter architectures are 
possible, all of which accomplish this. Fig. 1.10 illustrates the addition of an 
equalizer at the transmitter with a transfer function that is roughly the inverse 
of the channel’s frequency response. This equalizer distorts the signal at the 
transmitter output such that the resulting signal at the receiver input is a clean 
waveform. 

Most Serdes transmitter implementations include a FFE. The block 
diagram for a three-tap FFE is shown in Fig. 1.11. The serial data signal is 
delayed by several flip-flops which implement the taps for the filter. Each tap 
is multiplied by a tap weight value (also called a filter coefficient), and the 
results are summed and driven to the serial data output. FFE operation is 
described further in Sect. 3.2.1.

The number of FFE taps on the filter, the spacing of these taps relative to 
the baud rate, and the granularity of these tap weight values vary based on 
implementation. The terminology preemphasis or deemphasis refer to the FFE 
architecture, and indicate whether the data signal amplitude is increased or 
decreased as compared to the nonemphasized value by the FFE tap. The 
terminology precursor taps and postcursor taps refer to whether the FFE filter 
taps operate on an advanced or delayed signal (respectively) relative to the 
t = 0 tap. Baud-spaced taps are defined as taps where the delay from one filter 
tap to the adjacent tap is one-bit time interval; fractional spacing of the taps is 
also possible.

The FFE tap weights are selected to generate a filter with the inverse 
transfer function of the channel transfer function. Various algorithms 
exist for determining optimal FFE coefficient values; some select filter 
coefficients to maximize signal amplitude at the receiver, while others 
optimize eye width (i.e., minimizing jitter). More complex algorithms may 
search for an optimal trade-off between amplitude and jitter in order to 
optimize a more complex parameter (such as projected BER). FFE tap weights 
are determined for many applications by design and coded as fixed values 
within system software, however, there are some applications where FFE tap 
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weights are adjusted dynamically by the protocol based on signal 
characteristics at the receiver. 
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Fig. 1.11 Three-tap feed forward equalizer operation
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Fig. 1.12 Typical channel application with equalization at the receiver

Fig. 1.13 Receiver frequency response for peaking amplifier settings

Fig. 1.14 Decision feedback equalizer architecture
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Equalization may also be performed at the receiver as illustrated in 
Fig. 1.12. Despite the signal distortion at the input of the receiver, this 
equalizer corrects for the distortion and produces a clean waveform. For lower 
speed or lower loss links, the most prevalent approach is to use some variant 
of a peaking amplifier. Peaking amplifier circuits amplify the higher frequency 
signal components more than the lower frequency components. If the peaking 
amount is matched to the high frequency loss (difference between high 
frequency and low frequency), then the channel is equalized and the eye is 
opened up. Some Serdes devices allow programmable peaking levels; the 
frequency response of such a peaking amplifier for various provisioned 
settings is shown in Fig. 1.13.

For higher baud rates, the transfer function of the channel can cause 
jitter exceeding the bit width of the data and significant loss of signal 
amplitude at higher frequencies. A DFE stage is often included in receivers 
for these baud rates in order to recover data despite the otherwise 
“closed” eye. 

A conceptual block diagram of a DFE circuit is shown in Fig. 1.14. The 
serial data signal is applied to a slicer circuit which makes decisions as to 
whether the incoming signal is a “0” or a “1”. The received serial data is then 
delayed by a number of flip-flops which implement the filter taps. Each tap is 
multiplied by a corresponding tap weight value, and the results are summed. 
This sum is then used to correct the amplitude of the incoming signal, affecting 
the decisions made by the slicer circuit. Slicer decisions are thus affected by 
feedback based on prior data received. Although not shown in Fig. 1.14, some 
DFE architectures use feedback to affect both the amplitude and the sample 

Fig. 1.15 Virtual eye after equalization
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time of the slicer circuit. Such architectures adjust the CDR sample time from 
bit to bit based on feedback regarding the last several bits received.

As was the case for FFE circuits, the number of DFE taps on the filter, the 
spacing of these taps relative to the baud rate, and the granularity of these tap 
weight values vary. DFE implementations usually also contain logic which 
trains the DFE and sets DFE tap weights to optimal values dynamically. 

Using a DFE, the closed eye shown in Fig. 1.5b is cleaned up to produce 
the virtual eye shown in Fig. 1.15. Note that the eye in this illustration is 
produced by a DFE architecture which corrects the CDR sample time from bit 
to bit. The DFE correction is valid for only one instance in time (based on the 
history of the previous bits). As such, once the DFE makes a decision as to 
whether the bit is “0” or “1”, the DFE then proceeds to make adjustments for 
the next bit time which are different for the various signal traces of the 
composite waveform. For this reason, the signal eye shown in the figure is 
open for the bit of interest, but does not appear open for adjacent bits.

Many variations on equalizer architectures exist. As the baud rate increases, 
equalizer architectures become increasing complex. In some cases, protocol 
standards specify a base level of required equalizer functionality.

1.3.3 Clock and Data Recovery (CDR)
Conceptually, CDR circuits monitor transitions of the data signal and select 

an optimal sampling phase for the data at the mid-point between edges. Since 
the timing of data transitions includes a jitter component, the CDR must 
perform some averaging to provide stability of this sampling point from one bit 
to the next. Intersymbol interference (ISI) and other components of 
deterministic jitter (DJ) are dependent on the spectral content of the data signal, 
and this frequency spectrum does change based on the data content. Shifts in 
this frequency spectrum sustained for hundreds of bits or more cause the CDR 
to adjust the optimal sampling phase dynamically.

CDR architecture is discussed further in Sect. 3.3.1. Features of the CDR 
may be of some significance to the Serdes user are discussed below.
1.3.3.1 Maximum Run Length

A significant parameter for the Serdes which is primarily the result of the 
CDR design is the maximum number of consecutive “0” or “1” bits which can 
be received before the sampling point of the CDR risks incorrectly sampling 
the bits. An excessively long run of consecutive bits of the same value means 
that the CDR is not detecting any data transitions, and therefore cannot recover 
any clock information to ensure the data continues to be sampled in the center 
of the eye. A small drift in the sampling point relative to the baud rate of the 
data may cause the CDR to sample more “0” or more “1” bits than were 
actually transmitted. Also, the sampling point may require recentering when 
data transitions resume, and additional bits may be sampled incorrectly as this 
adjustment occurs. Some CDR implementations drive the receive data to a 
PLL and use the output of the PLL as the sample clock; clock outputs of the 
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receiver may change frequency or stop when such CDRs do not receive data 
transitions for a sustained length of time.

The maximum run length of consecutive “0” or “1” bits which must be 
tolerated depends on the protocol application and the data encoding defined for 
a given protocol. For example, protocols which use 8B/10B encoding are 
guaranteed to have no more than 5 bit times between data transitions. Protocols 
using another common encoding, 64B/66B, are guaranteed to see run lengths 
no longer than 66 bit times. Scrambled protocols may encounter much longer 
run lengths, and must determine requirements using statistical analysis. For 
example, Sonet/SDH is a scrambled protocol which specifies systems must 
meet a BER of 1 x 10−12. It is generally accepted that run lengths of scrambled 
Sonet/SDH data longer than 80 bits statistically occur less frequently than the 
specified BER. Therefore, a Serdes used to receive Sonet/SDH data must 
tolerate a run length of 80 bits.

The run length which can be tolerated by a CDR design is related to the 
frequency tolerance between the two clock sources. In a system using 
plesiosynchronous clocks, the reference clock used by the receiver (and the 
CDR circuit) may be running at a slightly different frequency from the 
reference clock used by the transmitter, as is described further in Sect. 4.1.3.1. 
The frequency tolerance between the two clock sources is generally specified 
in parts per million (ppm). In a plesiosynchronous system, the CDR must 
continually correct the phase of the sample clock to remain in the center of the 
data eye. During periods where no data transitions are being received, the error 
in phase position builds up. Therefore, as the frequency tolerance of the system 
is increased (corresponding to larger allowed frequency difference between the 
clock sources), the run length which can be tolerated by the CDR design is 
reduced for a given performance (BER) target.
1.3.3.2 Clock Operation During System Initialization

In the above discussion, it was noted that some CDR architectures derive the 
sample clock from the received data using a PLL. During system initialization or 
during system operation when cables are unplugged, etc., no data transitions are 
received for a substantial period of time. For some Serdes, this results in clock 
outputs of the receiver changing frequency or stopping. Any downstream logic 
clocked by these clock outputs must be designed to be tolerant of this frequency 
change or to assume logic is not clocked during these periods.

1.3.4 Differential Driver
The differential driver stage is an analog circuit which drives the true and 

complement legs of the differential signal. Output data must be driven such that 
jitter is minimized. In some architectures, data is latched in a flip-flop clocked 
at the baud rate, and the output of this flop is driven onto the differential output. 
Such implementations require an internal high-speed clock running at the baud 
rate. This is illustrated in Fig. 1.16.
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Fig. 1.16 Driver stage architectures

Fig. 1.17 Single-ended complementary signals

Fig. 1.18 Differential peak-to-peak signal

D Q

Baud-Rate 

Low Jitter Path

D Q

Half-Rate 

D Q

0

1

MUX

Low Jitter Path

Clock

Clock

-2-4-6 0 642

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.7

0.8

0.9

A

B

-2-4-6 0 642

-0.6

-0.4

-0.2

0.2

0.4

0.6

2*(A-B)



Serdes Concepts  17

An alternative architecture, also shown in Fig. 1.16, uses an internal high- 
speed clock running at a frequency equal to half of the baud rate. Data is 
latched in two flip-flops on alternate edges of the high-speed clock. The high- 
speed clock also controls a multiplexor which alternately selects which of the 
flops drives the differential driver. Depending on the characteristics of the 
silicon technology, this architecture may result in lower jitter than the full-rate 
architecture.

Figure 1.17 illustrates typical voltage swings for the two legs of the 
differential signal, assuming a termination voltage of approximately 1.8V. The 
average voltage on the signal is the common mode voltage (Vcm ). For this 
example:

Vcm = (1.5V + 0.9V) / 2 = 1.2V.
The differential voltage (Vdiff ) is calculated by taking the voltage of the 

true leg and subtracting the voltage of the complement leg. Figure 1.18 
illustrates the differential waveform corresponding to the single-ended signals 
from Fig. 1.17. 

This differential voltage swings between the following limits:
Vdiff = 1.5V −  0.9V = +0.6V
Vdiff = 0.9V −  1.5V = 0.6V

This waveform has a total peak-to-peak differential voltage of 1.2Vppd. 
Note that the peak-to-peak voltage of the differential signal is twice the peak-
to-peak voltage of either single-ended signal considered individually.

1.3.5 Differential Receiver
The differential receiver stage is an analog comparator circuit which 

compares the true and complement legs of the differential signal and outputs a 
“0” or “1” logic level based on the relative signal voltages. Differential receiver 
stages used with DFEs are linear amplifiers; the comparator circuit is incorpo-
rated into the DFE.

1.3.6 Diagnostic Functions
Additional logic is often incorporated into the transmitter and receiver 

designs to provide diagnostic capabilities for chip manufacturing test, circuit 
board manufacturing test, and system diagnostic tests. Typical functions 
include:
1. Pseudo random Bit Sequence (PRBS) Checker. PRBS sequences can be 
checked by comparing received data to the output of a local linear feedback 
shift register implementing the corresponding characteristic polynomial. 
Receiver devices often include a PRBS checker capable of checking one or 
more PRBS test patterns. 
2. Loopback or Wrap Paths. Full duplex Serdes devices often provide the 
capability to wrap transmitter outputs to receiver inputs in order to self-check 
the functionality of the Serdes. Simplex cores do not have this capability, 
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although some simplex transmitters include a test receiver, and some simplex 
receivers include a test transmitter to perform self-test. 
3. JTAG 1149.1 and JTAG 1149.6. These JTAG standards are used for 
manufacturing test of circuit boards, and require insertion of boundary scan 
cells on all chip I/O to support this testing. Since such logic cannot be inserted 
on high-speed I/O without impacting signal integrity, the Serdes core must 
provide appropriate hooks to drive differential outputs from boundary scan 
cells at the transmitter device, and sample inputs in boundary scan cells at the 
receiver device. JTAG 1149.6 expands the capabilities of JTAG 1149.1 to 
permit testing through decoupling capacitors and support independent testing 
of the true and complement legs of differential signals. JTAG 1149.1 and 
1149.6 are covered in detail in Sect. 7.1.

Fig. 1.19 Clock distribution example using an ASIC IF PLL
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1.3.7 Phase-Locked Loop
The Serdes core requires an internal clock running at either the baud or half-

baud rate depending on the architecture of the driver and receiver stages. 
Rather than distribute a high-speed clock throughout the chip, a lower 
frequency reference clock is distributed within the chip, and a PLL is used in 
the Serdes to multiply this clock to the appropriate frequency. A given Serdes 
implementation may contain multiple instances of transmitter and/or receiver 
channels. In such cases, it is common for a single PLL in the core to generate 
clocks for all channels within the core.

The off-chip clock source often operates at an even lower frequency than 
the on-chip reference clock. An additional PLL may be used in the chip to 
multiply the frequency of the off-chip reference clock to meet the desired on-
chip reference clock frequency. Because the frequency of the on-chip reference 
clock is usually higher than the off-chip reference clock (but less than the 
internal clock in the Serdes core) the PLL which produces this clock is 
sometimes called an intermediate frequency (IF) PLL.

An example of clock distribution using such an IF PLL is shown in 
Fig. 1.19. An IF PLL is used to multiply the 200-MHz clock from an off-chip 
oscillator by four. The resulting 800-MHz reference clock is distributed on-
chip to various Serdes cores. These Serdes cores each contain a PLL which 
additionally steps up the frequency of the 800-MHz reference clock to the 
desired baud rate.

1.4  Signal Integrity
This section provides an overview of the importance of signal integrity 

analysis to the design of successful systems using High-Speed Serdes.

1.4.1 The Channel
The channel is defined as the electrical path between the transmitter and the 

receiver, including printed circuit board traces, vias, cables, connectors, 
decoupling capacitors, etc. The channel may traverse the printed circuit board 
between two chips on the same card, or may traverse a system backplane 
connecting two printed circuit boards.

At frequencies of interest, the printed circuit board is not a perfect 
connection. Major channel impairments include insertion loss, reflections, and 
crosstalk. Channel frequency response, including these impairments, is 
typically measured using a vector network analyzer (VNA), and captured in a 
Scattering Parameter matrix format (commonly called S-Parameters) as is 
described in “Channel Response” under Sect. 8.4.1.2 in Chap. 8. Each of these 
impairments impacts the BER of the link. Interface standards typically require 
link BER performance in the range of 10− 12 to 10−15.

The equalization scheme used by Serdes devices must compensate for the 
channel loss and other impairments in order to achieve the desired BER. A 
common figure of merit is based on the evaluation of the insertion loss of the 
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channel at the Nyquist rate (two times the highest fundamental frequency of 
the signal). From this metric, a qualitative assessment as to the difficulty of 
signal propagation (and the necessary complexity of the equalization scheme) 
can be made.

Figure 1.20 illustrates the measured insertion loss curve for a number of 
examples of channels intended to support baud rates of 5Gbps and higher. The 
frequency range of 5-Gbps data has a Nyquist rate of 5GHz, and the loss of 
these channels at 5GHz is substantially higher than at lower frequencies. 
Higher frequency components are therefore attenuated more than lower 
frequencies, resulting in varied signal amplitudes at the receiver. (In addition, 
the signal contains harmonic frequencies above 5GHz, but these are typically 
filtered and are not critical to receiver operation.)

The channel transfer function is not strictly resistive, but also contains 
capacitive and inductive components. This results in frequency-dependent 
phase shift of the propagated signal. Such phase shift in effect causes the 
propagation delay of the signal to vary based on frequency, appearing as data- 
pattern-dependent jitter (discussed later in this section).

Although the above effects already contribute to significant signal 
degradation, the insertion loss and phase shift associated with the channel is 
usually not a straightforward linear function. The channel is an electrical 
transmission line which is terminated at the receiver, and has impedance 
discontinuities at each circuit board via, connector pin and abrupt bend in the 
circuit board trace. Each impedance discontinuity results in reflections of the 
electrical energy. As with any transmission line, reflected energy adds to or 
subtracts from the signal amplitude at various points along the transmission 
line, and results in resonances in the transfer function. This signal degradation 
is generally worse for shorter channel lengths; loss characteristics of longer 
channels tend to dampen reflections whereas signals may reflect between the 
transmitter and receiver multiple times on a short channel.

Fig. 1.20 Insertion loss for various channel examples
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Crosstalk is energy coupled from an aggressor signal as noise on a victim 
signal, and is another significant characteristic of the channel which causes 
significant degradation of high-speed serial signals. While it would be nice to 
isolate each differential signal pair such that crosstalk was not significant, this 
is not practical in many real systems. The economics of most systems demand 
signal densities through package pins, connectors, and backplanes which result 
in neighboring signals causing crosstalk on the differential pair. Common-
mode noise is ignored, but any differences in the noise on the two legs of the 
differential pair results in signal degradation. 

1.4.2 Package Models
In addition to the channel as described above, the differential signal must 

also propagate through the chip package for the transmitting chip and the chip 
package for the receiving chip. While it would be convenient from an analysis 
viewpoint to consider chip packages as part of the channel interconnect, it is 
not practical to access the connections inside the package in order to measure 
channel response in the lab. For this reason, channel measurements are 
performed from package pads as described previously, and the transfer 
function of the package is considered separately. Package models are supplied 
by the chip manufacturer which model the transfer function of the package. 
Analysis of the overall interconnect is performed by cascading the transmitter 
package model, the channel transfer function, and the receiver package model. 

Since trace lengths in the package substrate tend to be very short, insertion 
loss and phase shift are usually not the dominant source of signal degradation 
due to the package. Impedance mismatches and discontinuities tend to be a far 
greater concern. A measurement of the returned energy from a signal launched 
into the package ball at either the transmitter or the receiver is called return 
loss. Better impedance matching of connections to the silicon device within the 
package results in better return loss and less degradation of the signal. 

1.4.3 Jitter
In an ideal world data bits would always transition at a fixed point relative 

to the clock which launches each bit. In the real world there are variations in 
the clock cycle time, data propagation delays, and signal slew times, 
etc.Variation in the timing of the bit transition relative to an ideal clock is 
called jitter. Jitter reduces the width of the data eye. 

Any transmitter device has some amount of jitter in the launched data bit. 
Jitter generation is a measure of the timing variation in the transmitted data 
stream. Applications may include specifications for the maximum allowable 
jitter generation by a transmitter device, as measured under specified test 
conditions. Test conditions may include specification of test patterns to be 
used, and the load to which the transmitter device is connected. 

The jitter generated by the transmitter device is amplified by the channel. 
The channel distorts the signal and introduces frequency-dependent phase 
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shift. As the data pattern of 1’s and 0’s shifts, the spectral content of the data 
changes. This results in varying delay which becomes additional jitter at the 
receiver. Crosstalk and reflections due to impedance discontinuities and return 
loss also contribute to shift the transition points of signal edges at the receiver. 

The receiver must be able to tolerate the amount of jitter that occurs on its 
input. Jitter tolerance is a specification for the receiver device which defines 
the “worst case” signal that the receiver is expected to receive correctly with 
errors no greater than allowed by the specified BER. Applications may include 
specifications for how to test jitter tolerance compliance, including test 
patterns to be used and methods for generating a datastream with specified 
amounts of jitter. 

Jitter and jitter tolerance may be specified in picoseconds, but are more 
often specified in terms of unit intervals (UI). Parameters are usually specified 
as either peak-to-peak or root-mean-square, depending on the type of jitter. 
One Unit Interval is the cycle time for the transmission of one bit on the 
interface at the speed at which the link is running. A jitter specification of 0.30 
UIpp indicates that the total peak-to-peak jitter cannot exceed 30% of the bit 
time, leaving an eye opening of 70% of the bit time. A jitter tolerance 
specification of 0.70 UIpp indicates that the receiver cannot expect more than 
an eye opening of 30% of the bit time at its input.

Jitter transfer is the amount of the input jitter on the receiver input which 
is passed through to the output (also called jitter gain). This parameter is 
significant in applications which must retransmit data with the same timing as 
the receive data. Since each stage of retransmission contributes additional jitter 
to the overall system, a jitter transfer specification is required in such 
applications to allocate how much jitter can be added within any one stage.

Many standards subdivide jitter into various types, and may use varying 
terminology for the types of jitter. The following discussion describes a 
commonly used terminology, and is sufficient for the purposes of general 
understanding. More comprehensive definitions are found in Sect. 8.2.1:
1. Total Jitter (TJ). This is the total jitter of the signal as seen at the point of 
measurement. TJ can be measured directly on hardware and is the ideal bit time 
minus the actual eye width, specified as either a peak or peak-to-peak value.
2. Deterministic Jitter (DJ). This is the amount of the total jitter for which the 
jitter distribution is non-Gaussian. Several components of DJ are dependent on 
the data pattern being sent. The pattern of 1’s and 0’s which precedes the bit 
transition affects when the transition occurs. Jitter caused by variations in rise, 
fall, and slew times are also mostly deterministic. DJ is specified as either a 
peak or peak-to-peak value.
3. Random Jitter (RJ). This is the amount of the total jitter for which the jitter 
distribution is Gaussian. RJ does not correlate with the data pattern being sent. 
Some amount of jitter has nothing to do with the data pattern, and is simply the 
result of random processes. Because RJ is statistical in nature, it may be 
specified either as a peak, peak-to-peak , or as a root-mean-square value. 
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Generally interface standards specify two or three of the above jitter types. If 
two of the above types are specified (typically TJ and DJ, or TJ and RJ), then 
requirements for other type is implied. This approach allows trade-offs to be made 
by system and component designers, while still complying with the standard.

The rationale for specifying different types of jitter is that some of the jitter 
can be corrected. For instance, the FFE in the transmitter device alters the 
transitions of the data edges based on the pattern of 1’s and 0’s being sent. In 
effect, the FFE is used to inject DJ on the transmitter output. If the equalizer 
coefficients are set properly, this injected DJ is the opposite of the DJ that is 
created by the channel’s transfer function. The result is that the two DJ 
contributors cancel and there is less jitter at the receiver.

The DFE in the receiver also operates to cancel the effects of DJ and 
thereby improve the jitter tolerance of the receiver. The DFE has the advantage 
of adapting to changing conditions of the channel, which may alter the 
characteristics of the DJ over time. On the other hand, RJ is not predictable, 
and therefore cannot be corrected by equalization. It is important to limit the 
amount of RJ on the serial link.

1.4.4 Channel Analysis Tools
At serial link speeds up to 4Gbps it is generally possible to follow 

reasonable design practices for the channel design. Spice TM or other 
equivalent circuit simulators are used to perform simulations at these baud 
rates. (In this text the term Spice is used generically as a designation for any of 
these simulators.) (Note: Spice is a trademark of Synopsys, Inc.) Spice 
simulations are used to verify signal integrity, and demonstrate that transmitter 
and receiver devices will interoperate across the channel. This approach is 
generally not sufficient at serial link speeds of 5Gbps and higher.

At higher serial links speeds, some care is required to design a channel 
which does not unduly degrade the signal. There are cases where small design 
changes can have substantial unexpected effects. Spice simulation can be used 
to simulate the channel design. However, remember that signal degradation is 
dependent on the data pattern and the crosstalk. Also, the more sophisticated 
DFE-based cores use complex algorithms to determine tap coefficients, etc., 
real time. This behavior must be accurately simulated to account for 
algorithmic errors and compensation techniques performed in logic. Spice 
simulation cannot capture this behavior and is therefore not generally used for 
the higher speed links. In addition, it is not sufficient to simulate a few 
thousand bits; simulations must be long enough and contain enough randomly 
generated data patterns on both the primary channel and the crosstalk channel 
to ensure the system operates within the specified BER limits. This may 
require a substantial amount of simulation.

Because of these simulation run-time requirements, statistical analysis of 
channel designs has become prevalent at higher speeds. First, the channel 
design is prototyped and lab measurements are made to determine the transfer 
function characteristics of the channel. Transfer functions are measured for 
both the channel of interest, and for noise coupling between the primary 
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channel and crosstalk channels. The resulting transfer functions are coded in a 
form called S-Parameters. Alternatively, S-Parameters for subcomponents of 
the channel (i.e., printed circuit boards, connectors, backplane, etc.) can be 
measured individually and cascaded.

Next, statistical simulation of the channel is performed using a transmitter 
model, the channel S-Parameters, package models for both transmitter and 
receiver chips, and a receiver model. The transmitter and receiver models may 
be models for specific vendor Serdes devices, or they may be ideal reference 
models specified by an interface standard. The resulting “eye” on the output of 
the receiver model is characterized by an eye width and height and is a function 
of BER. If the “eye” is sufficiently “open” for the desired BER, then the system 
will operate with no more than the specified number of bit errors.

The terminology “eye” is used loosely in the above paragraph, hence the 
quotation marks. The receiver device often contains a DFE. By convention, the 
“eye” is the signal at the sampling latch of a classical DFE design. However 
for some DFE designs this may not be a single node, or may be beyond the 
point where analog-to-digital conversion of the signal has been performed. The 
notion of an analog “eye” at this point is a virtual mathematical concept; this 
eye is not a measurable analog signal.

Note that signal integrity engineers often prefer to view analysis results in 
the form of a bathtub curve which graphs eye opening as a function of Q of the 
system (which relates to BER), as is described further in Sect. 8.2.4. The 
geometry of this curve results from the dual-Dirac probability density 
function, which models pattern-dependent jitter sources. 

There are a number of implementations of tools that can be used to perform 
statistical signal integrity analysis. A number of EDA vendors supply software 
tools. Various silicon vendors have proprietary software to perform this 
analysis (i.e., IBM’s HSSCDR software) which have built-in transmitter and 
receiver models for the vendor’s Serdes. “StatEye” is an open source software 
tool which performs this analysis (see http://www.stateye.org). HSSCDR 
software is discussed in Sect. 8.4. Note that many of these software tools use 
MatLabTM as the underlying calculation engine.

1.5  Signaling Methods
This chapter has thus far assumed differential signals which use two signal 

levels that convey whether the bit being transmitted is a “0” or a “1”. This is 
called non-return-to-zero (NRZ) signaling. (This name originally 
differentiated NRZ signaling from signals which always returned to their zero 
level between each transmitted bit.) The signal eye of an NRZ signal, shown in 
Fig. 1.5a, can be sliced at the midpoint of the waveform (0mVppd) to 
determine whether each bit is a “0” or a “1”. The baud rate of an NRZ signal 
is equivalent to the data bit rate (after any encoding), and the maximum 
fundamental frequency of the signal is half of this baud rate.

Multilevel signaling schemes are also possible. Figure 1.21 shows the signal 
eyes for duobinary and four-level phase amplitude modulation (PAM-4). 
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Duobinary uses three signal levels, requiring two slicer circuits to 
determine the signal level. A “1” is indicated by any change in signal level, 
while a “0” is indicated by no change in signal level. The baud rate of a 
duobinary signal is the same as that of an equivalent NRZ signal. However, 
because the signal cannot transition from one extreme of the dynamic range to 
the other extreme in the same unit interval, the maximum fundamental 
frequency of the signal is one-quarter of this baud rate.

PAM-4 uses four signal levels, requiring three slicer circuits to determine 
the signal level. Each signal level represents the transmission of two bits, either 
“00,” “01,” “10,” or “11.” The baud rate of a PAM-4 signal is half that of an 

Fig. 1.21 Multilevel signaling eyes

Duobinary

PAM-4
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equivalent NRZ signal, and the maximum fundamental frequency of this signal 
is 50% of this baud rate (25% of the baud rate of an equivalent NRZ signal).

Because the signal spectrum of a duobinary and PAM-4 signal is reduced 
from that of an NRZ signal, the insertion loss of the channel affects the signal 
less. This is offset by the fact that splitting the dynamic range of the signal into 
multiple levels results in a reduction of the eye height at the transmitter. If the 
slope of the insertion loss curve is sufficiently steep, then classical analysis 
indicates an advantage for the multilevel signal over that of the NRZ signal. 
The eye height of a PAM-4 signal, for example, is reduced by approximately 
9dB at the transmitter from that of an equivalent NRZ signal. If the difference 
between the channel insertion loss at the NRZ baud rate vs. the PAM-4 baud 
rate is greater than 9dB, then PAM-4 would result in more eye opening at the 
receiver.

Note, however, that the classical analysis described above assumes no 
equalization is used in the HSS device. If equalizers are used, then the effects 
of these equalizers on channel response must be taken into account. Decision 
feedback equalization in the receiver has the effect of flattening the overall 
insertion loss of the system as shown in Fig. 1.22. While multilevel signaling 
may have an advantage for a given channel when equalization is not used, this 
advantage may not exist when NRZ is employed with a DFE in the receiver.

Most HSS devices integrated in ASIC chips use NRZ signaling, and all of 
the interface standards discussed in this text are based on NRZ signaling. 
Standards development efforts up to and including the 10–11 Gbps range have 
found NRZ with DFE to produce better results than multilevel signaling 
approaches. However, as HSS devices continue to target higher and higher data 
rates, this may or may not be true in the future.

Fig. 1.22 Frequency response of a channel and considering DFE
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1.6  Exercises
1. Assume the logic on the chip processes data using a 125-MHz clock. Data 

is to be transferred from one chip to another chip across a parallel data bus 
using the on-chip clock frequency. What parallel data bus width is 
required to achieve the following bandwidths on the interface?
(a) 1Gbps?  (b) 10Gbps?  (c) 40Gbps?

2. Assume the logic on the chip processes data using a 125-MHz clock. Data 
is to be transferred from one chip to another chip across a parallel data 
bus. A maximum of 20 pins is to be used to transfer the data. If necessary 
to meet this restriction, assume internal chip data is multiplexed as 
described in Fig. 1.2 using the minimum possible multiplexor ratio. What 
is the multiplexor ratio, number of pins required, and I/O data rate for 
each of the following interface bandwidths? You should also comment on 
whether the solution is practical given your knowledge of current ASIC 
technologies.
(a) 1Gbps?  (b) 10Gbps?  (c) 40Gbps?

3. Assume a parallel data bus is constructed as shown in Fig. 1.2. The 
propagation delay from the clock source to the clock inputs of the flip-
flops in chip #1 which launch the data is 5ns. The propagation delay from 
the clock source to the clock inputs of the flip-flops in chip #2 which 
capture the data is 2ns. The propagation delay of the data in chip #1 (from 
the clock input of the flip-flops to the I/O pin) is 2ns. The setup time of 
the inputs to chip #2 (for the I/O pin relative to the clock input of the flip-
flops capturing the data) is 1ns. The propagation delay of the channel is 
negligible.
(a) What is the maximum data rate per pin at which this interface can 

operate?
(b) The propagation delays and setup times in this problem may vary by 

10% as voltage and temperature vary. Assuming these chips 
must operate under all environmental conditions, what is the 
maximum data rate per pin under the worst case combination of 
conditions?

(c) Now assume the parallel data bus is constructed as shown in Fig. 1.3. 
The propagation delay of the interface clock generated by chip #1 is 
similar to that of the data. The propagation delay from the interface 
clock input pin to the clock inputs of the flip-flops capturing the data 
in chip #2 is 2ns. All other timing parameters remain the same. What 
is the maximum data rate per pin at which this interface can operate?
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(d) The I/O cells used to implement the above interface have a maximum 
operating frequency of 200MHz. Given this restriction, should the 
interface in (c) use a SDR clock or a DDR clock? What would the 
frequency of each of these clocks need to be?

4. Figure 1.4 illustrates data being transmitted by a DDR clock. Logic to 
transmit this data can be constructed using a combination of positive-edge 
and negative-edge clocked flip-flops, and multiplexors. Draw a schematic 
diagram for logic to implement this function. (Note: This logic cannot use 
an SDR clock.)

5. A parallel data bus between chip #1 and chip #2 is 16-bits wide. How 
many pins does each of the following architectures require?
(a) Single-ended signals with no forwarded interface clock.
(b) Single-ended signals with one forwarded interface clock for each 

eight bits of data.
(c) Differential signals with one forwarded interface clock.
(d) Differential signals with one forwarded interface clock for each eight 

bits of data.
6. Define a truth table for the edge select logic function in Fig. 1.7. For 

purposes of this exercise, you can assume signal transitions are noise free.
7. Explain the difference between a simplex and a full duplex Serdes core.
8. Assume that the input to a serializer stage in the transmitter has a 16-bit 

input and a 4-bit output. The datapath through the FFE logic is 4-bits, and 
the driver stage serializes these 4-bits down to one serial bit. The baud 
rate for this transmitter is 5Gbps. What is the frequency of the SDR clock 
used by the driver stage? What is the frequency of the clock used by the 
FFE logic? What is the frequency of the sample clock for the parallel 
data?

9. Figure 1.11 illustrates a three-tap FFE with baud-spaced taps. Draw a 
similar figure for a six-tap FFE with taps spaced at half-baud intervals.

10. A CDR circuit is sampling a signal which is operating at a baud rate of 
3.125Gbps. The eye width of this signal is 0.35UI at the receiver, and the 
CDR is sampling the signal in the exact center of the eye when a long 
string of “0” bits begins. Plesiosynchronous clocks are employed, and the 
frequency difference between the transmitter and the receiver clock rates 
is 300ppm. What is the maximum run length of 0’s under these conditions 
before the CDR sample point drifts past the edge of the eye.
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11. The high and low voltages of a differential signal are provided below for 
various systems. For each pair of voltages, calculate the corresponding 
Vcm and Vdiff values.
(a) 1.1V, 0.3V
(b) 1,050mV, 700mV
(c) 650mV, 150mV
(d) 900mV, 800mV

12. Assuming the worst case insertion loss curve in Fig. 1.20, what is the 
approximate insertion loss at the maximum fundamental frequency of a 
12-Gbps signal? Contrast this to the approximate insertion loss at the 
maximum fundamental frequency of a 3-Gbps signal.

13. Explain the difference between jitter and jitter tolerance. 
14. Qualitatively explain why equalization can correct for various pattern-

dependent forms of deterministic jitter.
15. Would you assume that the sum of deterministic jitter and random jitter is 

equal to total jitter? Explain your answer. (You may want to peek at 
Chap. 8.)
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Chapter 2
HSS Features and Functions

In Chap. 1, a number of basic features and functions of High-Speed Serdes 
(HSS) cores were discussed. In this chapter, the HSS EX10 10-Gbps core is 
described. This core is a fictitious example which implements specific features 
using specific input/output pins and programmable registers. The HSS EX10 
is presented for tutorial purposes, with composite feature descriptions drawn 
from a number of real HSS core examples. 

The operation of various features of the EX10 is described in sufficient 
detail for the reader to gain an appreciation of nuances associated with using 
such a core. Since this is primarily a tutorial example, features are not 
described in as much detail as would be found in the databook for a real HSS 
core, and in some cases the operation and programming of certain functions 
has been simplified where additional complexity would not serve an educa-
tional purpose. From this chapter, the reader should gain an appreciation for 
the types of features that may or may not be found on a particular core, the 
applications they are intended to support, and the details associated with using 
these features which should be understood by the chip designer.

2.1  HSS Core Example: HSS EX10 10-Gbps Core
Similar to many real HSS core implementations, the EX10 is comprised of 

subfunction blocks known as slices. A typical core consists of one and sometimes 
more phase-locked loop (PLL) slices, some number of Transmitter (TX) Slices, and/or 
some number of Receiver (RX) Slices. Simplex cores contain either transmitters or 
receivers; full duplex cores contain both. Note the physical definition of a “slice” as 
described for a specific core may vary slightly from this logical definition.

The naming convention used for EX10 pins is of the form:
<slice><signal_name>

where the “slice” prefix is either “HSS,” “TXx,” or “RXx.” The nomenclature 
“HSS” is associated with signals on the PLL slice which are common to all 
lanes of the EX10. Transmitter and receiver slice signals are prefixed with 
“TXx” and “RXx,” where the “x” indicates the channel identifier for the 
associated slice. This text uses the convention that an EX10 core containing 
more than one TX and/or RX slice assigns channel identifiers starting with “A” 
and incrementing upward. For example, the TXxDCLK signal name refers 
generically to a signal on the TX slice, and a core with four TX slices would 
name these signals TXADCLK for channel A, TXBDCLK for channel B, etc.

The EX10 configuration described in this chapter includes one PLL slice, four 
TX slices, and four RX slices. Each slice has associated control and status signals. For 
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this example, many control and status signals are mapped into internal registers of the 
core, while other signals are directly accessible as I/O pins of the core. (Some 
functions are accessible both through I/O pins and through internal registers.) A 
simple register read/write interface is provided to access internal registers of the core. 
The reader should note that the allocation of functions between I/O pins and internal 
registers is arbitrary; actual implementations may or may not allocate functions in the 
same way, and many HSS cores do not have internal registers at all. 

In the first section of this chapter, the EX10 I/O pins and register functions 
are defined for each slice. Subsequent sections of this chapter describe 
functional features of the EX10 in more detail. These descriptions can be used 
as reference material when reading the subsequent chapters.

2.1.1 HSS EX10 Input/Output Pin Descriptions
Pins for the EX10 PLL slice are shown in Fig. 2.1 , and described in Table 2.1 . 

Pins for the EX10 Transmitter slice are shown in Fig. 2.2 , and described in Table 2.2. 
Pins for the EX10 Receiver slice are shown in Fig. 2.3 , and described in Table 2.3. 
Transmitter and Receiver slice pin descriptions use the prefix “TXx” or “RXx” 
(respectively) to indicate the generic signal name, where the “x” is replaced by “A,” 
“B,” “C,” or “D” to indicate the particular instance of the slice within the core.

Fig. 2.1 HSS EX10 core PLL slice I/Os
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Table 2.1  HSS EX10 PLL slice core pin definitions

Pin name Type Description

PLL signals

HSSREFCLK[T,C] In Differential reference clock input to the PLL. 
HSSREFCLKT is the true leg of the differential signal 
pair; HSSREFCLKC is the complement leg

HSSREFDIV In Control signal to the PLL reference clock divider. See 
HSSDIVSEL[1:0]below for application.
0=normal operation, 
1=divide reference clock by 2

HSSDIVSEL[1:0] In PLL VCO C1 clock vs. HSSREFCLK ratio selector
HSSREFDIV = 0 HSSREFDIV = 1
00 = 16x           00 = 8x
01 = 20x          01 = 10x
10 = 32x          10 = 16x
11 = 40x          11 = 20x

HSSPDWNPLL In HSS PLL Power Down
0=normal operation, 
1=power down the HSS PLL Slice

HSSRECCAL In HSS PLL Calibration Request
0=normal operation,
1=pulse high for minimum of eight HSSREFCLK cycles 
to force PLL recalibration.

HSSRESET In Asynchronous reset input signal. This signal must be 
asserted for a minimum of eight HSSREFCLK periods 
any time after initial power on. 
1=reset,
0=normal operation

HSSRESYNCCLKIN In This input is pulsed to cause a resync to occur. Pulse 
must be synchronous to HSSRESYNCCLKOUT pin.
0=normal,
1=resync.
Multiple core resynchronization requires 
HSSREFDIV = 0

HSSPLLLOCK Out PLL locked indicator.
0=unlocked,
1=locked

HSSRESETOUT Out This signal is asserted high during the VCO coarse 
calibration and during the beginning of the reset 
sequence.
0=normal,
1=reset in progress
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HSSRESYNCCLKOUT Out This clock output is used to synchronize the 
HSSRESYNCCLKIN signal

Register access bus signals

HSSPRTWRITE In Parallel Port Write.
0=read addressed register,
1=write addressed register

HSSPRTAEN In Parallel Port Address Enable. This is the result of 
external address decode to select a given core instance 
for access.
0=inactive, no read/write cycle,
1=active, access addressed register

HSSPRTADDR[7:0] In Parallel Port Address

HSSPRTDATAIN[15:0] In Parallel Port Input Data Bus

HSSPRTREADY Out Register port ready to access transmitter and receiver 
registers. (PLL registers can be accessed at any time the 
PLL is running.)
0=not ready,
1=ready (after reset sequence completed)

HSSPRTDATAOUT[15:0] Out Parallel Port Output Data Bus

JTAG signals

HSSJTAGCE In JTAG Test configuration enable.
0=normal operation,
1=JTAG test mode. This configures all necessary 
internal logic to support JTAG test, eliminating the need 
to configure multiple individual controls

HSSACJPC In JTAG mode clock signal

HSSACJAC In JTAG ACmode control signal.
0=dc coupled mode,
1=AC coupled mode

Power control

HSSRXACMODE In Sets the Receiver termination voltage.
0=dc coupling mode (VTR),
1=ac coupling mode (0.8*VTR)

HSSTXACMODE In Sets the Transmitter internal bias.
0=dc coupling mode,
1=ac coupling mode

Table 2.1  HSS EX10 PLL slice core pin definitions

Pin name Type Description



HSS Features and Functions  35

HSSSTATEL2 In Power down signal which powers off part of the PLL 
slice in compliance with implementation of a PCI 
Express L2 link state. Also forces power down of 
transmitter and receiver slices.
0=normal operation,
1=core is in L2 link state

Signal Integrity

HSSEYEQUALITY Out HSS RX interrupt status signal.
0=inactive. No new status information available for any 
RX links in the core.
1=active. New status information is available for at least 
one RX in the core. When active, register 0x0F for each 
RX link can be read to determine updated status

Fig. 2.2 HSS EX10 core transmitter slice I/Os

Table 2.1  HSS EX10 PLL slice core pin definitions

Pin name Type Description
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Table 2.2  Transmitter slice specific core pin definitions

Pin name Type Description

Port data signals

TXxD[19:0] In Parallel input data. TxD(0) is the LSB, and is transmitted 
first on the serial output. 
Unused inputs should be tied to an inactive level

TXxO[P,N] Out Output differential pair – connects to chip I/O

TXxDCLK Out Word clock used to capture parallel input data 
TxD(19:0).
Data captured on rising edge of this clock. The 
frequency of this clock is determined by the C1 clock 
frequency, the selected bus width (8, 10, 16, or 20 bits), 
and the selected data rate (full, half, quarter, or eighth- 
rate)

TXxOBS In “Out of Band Signalling”: Drives transmitter outputs to 
the DC common Mode voltage as required by certain 
applications.
0=normal,
1=OBS mode enabled

TXxTS In Disables the transmitter output drivers.
1=normal operation,
0=disable (transmitter outputs are pulled up to AVTT 
through internal 50-Ω termination resistors)

PRBS generator

TXxPRBSEN In TX Logic BIST enable signal. 
0=normal,
1=enables internal loopback test

TXxPRBSRST In TX Logic BIST reset signal. 
0=normal,
1=resets and restarts the BIST process

JTAG signals

TXxBSIN In Serializer Bypass Data. When TXxBYPASS is set to 1, 
this data from the JTAG Boundary Scan Register cell is 
transmitted on serial output.

TXxBSOUT Out Connected to the input of the JTAG Boundary Scan 
Register cell.

TXxJTAGTS In Driver Tristate control.
This pin is only active if HSSJTAGCE = 1. The state of 
this pin overrides the state of the TXxTS pin.
0=disable serial output driver when in JTAG test mode,
1=normal operation when in JTAG test mode
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TXxJTAGAMPL[1:0] In When in JTAG Mode, these bits give the chip designer 
the ability to select 1 of 4 output driver amplitude levels 
overriding the Transmit Power Register.
00 = 30%, 01=44%, 10=72%, 11=100%

TXxBYPASS In Serializer Bypass Enable. 
0=normal,
1=the data present on TXxBSIN is transmitted on serial 
output

PCI express support

TXxBEACONEN In Transmit Beacon:
When enabled, drives a beacon signal on the transmit 
serial data lines.
0 = normal operation,
1 = transmit beacon signal

TXxRCVRDETEN In Transmit Receiver Detect Enable:
Drives a transition on the serial data and measures the 
charge time of the line in order to determine whether a 
receiver is connected. 
0 = normal operation,
1 = initiate a Receiver Detect sequence

TXxRCVRDETTRUE Out Transmit Receiver Detect True Status:
Asserted while TXxRCVRDETEN is high if the result 
of the Transmit Receiver Detect operation is that a 
receiver is detected.
0 = operation not in progress, not yet complete, or no 
receiver is detected;
1 = operation is complete and a receiver is detected

TXxRCVRDETFALSE Out Transmit Receiver Detect False Status:
Asserted while TXxRCVRDETEN is high if the result 
of the Transmit Receiver Detect operation is that a 
receiver is not detected.
0 = operation not in progress, not yet complete, or 
receiver is detected;
1 = operation is complete and a receiver is not detected

Power control

TXxPWRDWN In Transmit Power State:
Power down signal which powers off the Transmitter 
slice.
0 = normal operation,
1 = power down

Table 2.2  Transmitter slice specific core pin definitions

Pin name Type Description
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TXxSTATEL1 In Transmit Power State:
Power down signal which powers off the Transmitter 
slice in compliance with implementation of a PCI 
Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state

TXxELECIDLE In Transmit Electrical Idle:
Forces transmit serial data to an electrical idle signal 
level in compliance with implementation of a PCI 
Express L0s link state.
0 = normal operation,
1 = electrical idle state

Fig. 2.3 HSS EX10 core receiver slice I/Os

Table 2.2  Transmitter slice specific core pin definitions

Pin name Type Description
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Table 2.3  Receiver slice specific core pin definitions

Pin name Type Description

Port data signals

RXxI[P,N] In Input differential pair – Connects to chip I/O

RXxD[19:0] Out Parallel output data. RxD(0) is the LSB, and is received 
first from the serial input

RXxDATASYNC In Data synchronization control pin. Each rising edge of 
this signal causes 1 bit to be discarded from recovered 
data, resulting in a 1-bit clock alignment adjustment.
0=normal,
1=discard 1 bit

RXxDCLK Out Word clock used to clock parallel output data 
RXxD(19:0).
Data valid on rising edge of this clock. The frequency of 
this clock is determined by the C1 clock frequency, the 
selected bus width (8, 10, 16, or 20 bits), and the selected 
data rate (full, half, quarter, or eighth-rate)

RXxSIGDET Out Signal Detect indicator.
0=no signal,
1=active signal

RXxRCVC16[T,C] Out SONET Reference Clock Output.
This differential output signal provides a divided down 
version of the recovered RX data clock to support 
SONET applications, which must synchronize TX and 
RX channels. This clock can be configured via RX 
register 0x02. This is a differential signal output: 
RXxRCVC16T is the true leg of the differential signal 
pair; RXxRCVC16C is the complement leg

JTAG signals

RXxACJPDP In JTAG scan input path for positive side of differential 
input

RXxACJPDN In JTAG scan input path for negative side of differential 
input

RXxACJZTP Out JTAG scan output path for positive side of differential 
input

RXxACJZTN Out JTAG scan output path for negative side of differential 
input
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RXxBSOUT Out JTAG Receive Boundary Scan Out. When 
HSSJTAGCE=1, these outputs assume the logic state 
seen on the corresponding receiver input. When 
HSSJTAGCE=0, these outputs assume logic state “0.” 
Toggle rate for these signals is limited to 100MHz or 
less

PRBS checker

RXxPRBSEN In RX Logic BIST enable signal. 
0=normal (PRBS controlled via registers);
1=enables internal loopback test

RXxPRBSRST In RX Logic BIST reset signal. 
0=normal;
1=resets RXxPRBSSYNC and RXxPRBSERR latches, 
and restarts the BIST process

RXxPRBSFRCERR In RX Logic BIST force error signal. This enables 
verification of the PRBS error detector.
0=normal;
1=forces errors in internal loopback path by changing 
the loopback mux selector to the loop back selection

RXxPRBSERR Out RX Logic BIST error flag. 
Once RXxPRBSSYNC is achieved, subsequent errors 
cause this signal to be latched at 1. Passing condition is 
for RXxPRBSSYNC=1 and RXxPBSERROR=0.
0=no error;
1=errors detected (latched, requires RXxPRBSRST to 
clear)

RXxPRBSSYNC Out RX Logic BIST sync flag. 
0=BIST pattern checker not in sync;
1=BIST pattern checker has achieved sync since last 
RXxPRBSRST

Power control

RXxPWRDWN In Receive Power State:
Power down signal which powers off the Receiver slice.
0 = normal operation,
1 = power down

RXxSTATEL1 In Receive Power State:
Power down signal which powers off the Receiver slice 
in compliance with implementation of a PCI Express L1 
link state.
0=normal operation,
1=transmitter is in L1 link state

Table 2.3  Receiver slice specific core pin definitions

Pin name Type Description
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2.1.2 HSS EX10 Register Descriptions
The HSSPRTADDR[7:0] inputs of the HSS EX10 core select the internal 

register to be written or read. The HSSPRTADDR[7:4] address bits select 
which slice is being addressed, and the HSSPRTADDR[3:0] bits select the 
particular register within the slice. All registers are 16 bits wide, although in 
many cases not all bits of the register have a defined function. 

Table 2.4 describes how HSSPRTADDR[7:4] map to register space of the 
HSS EX10 slices. Note that values 0xC and 0xD are broadcast addresses which 
allow all TXx or RXx slice registers (respectively) to be written in parallel with 
one write cycle. Not all values of HSSPRTADDR[7:4] are used.

Table 2.5 describes the registers and bit definitions for registers in the PLL 
slice. Table 2.6 describes the registers and bit definitions for registers in the 
transmitter slice. Table 2.7 describes the registers and bit definitions for 
registers in the receiver slice.

RXxSIGDETEN In Signal Detect Enable
0=Signal Detect power control using Signal Detect 
Power Down bit in SIGDET Control Register,
1=Signal Detect circuit powered on

Table 2.4  HSS EX10 address map

Addr
(7:3) Maps to slice

0x0 TXA Slice Registers

0x1 TXB Slice Registers

0x2 RXA Slice Registers

0x3 RXB Slice Registers

0x4 TXC Slice Registers

0x5 TXD Slice Registers

0x6 RXC Slice Registers

0x7 RXD Slice Registers

0x8 PLL Slice Registers

0xC Write all TXx Slice Registers in parallel.

0xD Write all RXx Slice Registers in parallel.

Table 2.3  Receiver slice specific core pin definitions

Pin name Type Description
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Table 2.5  HSS EX10 PLL slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description

0x0 16 R 0x0000 VCO Coarse Calibration Status Register

0 R 0 CCALCOMP, calibration complete signal where:
0=calibration not complete,
1=calibration complete

1 R 0 CCALERROR, calibration error occurred.
0=no errors,
1=calibration error occurred

2 R 0 LOCK_DETECTED signal:
0=not locked,
1=locked

15:3 R Unused

0x1 16 R/W 0x0000 VCO Coarse Calibration Control Register

0 R/W 0 Recalibrate signal, pulse high for minimum of eight 
reference clocks then return low to initiate an 
autocalibration sequence.
0 = normal (default),
1 = force PLL recalibration

15:1 R Unused

0x2 16 R/W 0x00FF Link Enable Register

0 R/W 1 Link enables to TXA. 0=disabled, 1=enabled

1 R/W 1 Link enables to TXB. 0=disabled, 1=enabled

2 R/W 1 Link enables to RXA. 0=disabled, 1=enabled

3 R/W 1 Link enables to RXB. 0=disabled, 1=enabled

4 R/W 1 Link enables to TXC. 0=disabled, 1=enabled

5 R/W 1 Link enables to TXD. 0=disabled, 1=enabled

6 R/W 1 Link enables to RXC. 0=disabled, 1=enabled

7 R/W 1 Link enables to RXD. 0=disabled, 1=enabled

15:8 R Unused
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0x3 16 R/W 0x0000 Link Reset Register

0 R/W 0 Link reset to TXA. 0=normal, 1=reset

1 R/W 0 Link reset to TXB. 0=normal, 1=reset

2 R/W 0 Link reset to RXA. 0=normal, 1=reset

3 R/W 0 Link reset to RXB. 0=normal, 1=reset

4 R/W 0 Link reset to TXC. 0=normal, 1=reset

5 R/W 0 Link reset to TXD. 0=normal, 1=reset

6 R/W 0 Link reset to RXC. 0=normal, 1=reset

7 R/W 0 Link reset to RXD. 0=normal, 1=reset

15:8 R Unused

Table 2.6  HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description

0x0 16 R/W 0x0008 Transmit Configuration Mode Register

1:0 R/W 00 Rate Select
00=Full rate (default)
01=Half rate
10=Quarter rate
11=Eighth rate 

3:2 R/W 10 Parallel Data Bus Width 
00=8 bit 
01=10 bit
10=16 bit (default)
11=20 bit 

15:4 R Unused

Table 2.5  HSS EX10 PLL slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description
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0x1 16 R/W 0x0000 Transmit Test Control Register 
Note: TXxPRBSEN pin = “1” overrides this register and 
forces PRBS7+ to be transmitted

2:0 R/W 000 Test Pattern Selector
000 = PRBS7+ (noninverted) (default)
001 = PRBS7− (inverted) 
010 = PRBS23+ (noninverted) 
011 = PRBS23– (inverted)
100 = PRBS31+ (noninverted) 
101 = PRBS31– (inverted)
110 = 1010101....
111 = repeating pattern of 64 “1”s followed by 
64 “0”s

3 R/W 0 Test Pattern Generator Enable
0=disable generator and select Customer Parallel Data 
(default),
1=enable generator and select Test Pattern Data

4 R/W 0 PRBS Reset.
0=normal (default),
1=reset applied to Test Pattern generator

15:5 R Unused 

0x2 16 R/W 0x0000 Transmit Coefficient Control Register 

0 R/W 0 Apply Load
This bit applies the register-loaded values of coefficients, 
power, polarity and FFE mode to the coefficient 
recalculation logic, and presents this new value to the 
analog circuits

1 R/W 0 Reset Coefficient Logic
0=normal (default),
1=reset

15:2 R Unused

Table 2.6  HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description
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0x3 16 R/W 0x0020 Transmit Driver Mode Control Register

1:0 R/W 00 FFE mode Select
00=FFE2 (default)
01=FFE3
10=reserved
11=Force Hi-Z

4:2 R/W 000 Slow Slew Control
Used to limit the minimum Transmitter output rise and 
fall time. 
000 = 24ps min. (default)
001= 36ps min.
101= 50ps min.
011= 60ps min.
111=100ps min.

15:5 R Unused

0x4 16 R/W 0x0000 Transmit Tap0 Coefficient Register 

3:0 R/W 0000 FFE Tap 0 Coefficient
This register’s value is applied to the analog logic after 
“Apply Load” (Transmit Coefficient Control Register 
0x02 bit 0) is pulsed. The value read from this register is 
the actual value being driven to the analog logic. Value is 
unsigned magnitude. See the Transmit Polarity Register 
0x08 for sign values

15:4 R Unused

0x5 16 R/W 0x003F Transmit Tap1 Coefficient Register 

5:0 R/W 111111 FFE Tap 1 Coefficient 
See the description for the Transmit Tap0 Coefficient 
Register (0x04)

15:6 R Unused

0x6 16 R/W 0x0000 Transmit Tap2 Coefficient Register

4:0 R/W 00000 FFE Tap 2 Coefficient 
See the description for the Transmit Tap0 Coefficient 
Register (0x04)

15:5 R Unused

Table 2.6  HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description
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]

0x7 16 R/W 0x007F Transmit Power Register

6:0 R/W 0x7F Transmit amplitude value (unsigned positive magnitude).
Valid values are 0x20 minimum to 0x7F maximum.

15:7 R Unused

0x8 16 R/W 0x0007 Transmit Polarity Register 

0 R/W 1 Polarity (sign) value for FFE Tap 0 Coefficient. 
(0 = negative, 1 = positive)
This register’s value is applied to the analog logic after 
“Apply Load” (Transmit Coefficient Control Register 
0x02 bit 0) is pulsed. The value read from this register is 
the actual value being driven to the analog logic

1 R/W 1 Polarity (sign) value for FFE Tap 1 Coefficient. 
(0 = negative, 1 = positive)
See this register’s bit 0 description

2 R/W 1 Polarity (sign) value for FFE Tap 2 Coefficient. 
(0 = negative, 1 = positive)
See this register’s bit 0 description

15:3 R Unused 

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description

0x0 16 R/W 0x0038 Receive Configuration Mode Register 
1:0 R/W 00 Rate Select

00=Full rate (default)
01=Half rate
10=Quarter rate
11=Eighth rate 

3:2 R/W 10 Parallel Data Bus Width 
00=8 bit 
01=10 bit
10=16 bit (default)
11=20 bit 

5:4 R/W 11 DFE/non-DFE Mode Selector:
00=DFE5,
01=DFE3,
10 or 11 =non-DFE

15:6 R Unused

Table 2.6  HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset 

value Description
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0x1 16 R/W 0x0000 Receive Test Control Register 
Note: RXxPRBSEN pin = “1” overrides this register and 
enables checking of a PRBS7+ pattern

2:0 R/W 000 Test Pattern Selector
000 = PRBS7+ (noninverted) (default)
001 = PRBS7− (inverted) 
010 = PRBS23+ (noninverted) 
011 = PRBS23− (inverted)
100 = PRBS31+ (noninverted) 
101 = PRBS31− (inverted)
110 or 111 =Unused

3 R/W 0 PRBS Check Enable
0=disabled (default),
1=enabled

4 R/W 0 PRBS Reset.
0=normal (default),
1=reset applied to PRBS Checker

5 R/W 0 Full Duplex wrap enable.
0=normal. Selects primary input to the RX, and disables 
the internal TX to RX wrap buffer (default),
1=wrap. Enables the wrap back driver in the TX to drive 
the internal wrap path to this RX

6 R 0 State of RXxPRBSSYNC pin – PRBS checker status
0=PRBS checker not synchronized to incoming data,
1=PRBS checker synchronized and locked to incoming 
PRBS data

7 R 0 State of RXxPRBSERR pin − PRBS checker status
0=PRBS pattern match or PRBS checker status = 0,
1=PRBS error detected after PRBS synchronized to 
incoming data

8 R 0 State of RXxPRBSFRCERR pin – PRBS force error input 
signal status
0=PRBS normal operation,
1=PRBS error forced by opening wrap path 

15:10 R 0x00 Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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0x2 16 R/W 0x0000 Sonet Clock Control Register
Enable and frequency selection for RXxRCVC16[T/C] 
clock output

1:0 R/W 0x0 Sonet Clock rate selector
00=C4 (default), 01=C8, 10=C16, 11=C4

2 R/W 0 Sonet Clock output enable
0=disabled,
1=enabled

15:3 R Unused
0x3 16 R/W 0x0000 Phase Rotator Control Register

0 R/W 0 Spread Spectrum Clocking Enable:
0=Spread Spectrum Clocking support disabled,
1=Spread Spectrum Clocking support enabled. Should not 
be enabled unless SSC data is applied. RX Jitter tolerance 
is improved in non-SSC mode

1 R/W 0 Reset Flywheel: 
0=normal (default, the flywheel is enabled),
1=assert reset to the phase rotator flywheel (disable the 
flywheel)

2 R/W 0 Freeze Flywheel: 
0=normal (default),
1=freeze the phase rotator flywheel at its current update 
rate. This can be used to prevent periods of inactivity from 
altering the state of the flywheel

15:3 R Unused
0x4 16 R 0xXXXX Phase Rotator Position Register

These registers are continuously updated by the DFE 
algorithms. To accurately read the values in these 
registers, the DFE logic should be stopped by setting 
“DFE Stand By” (bit 2 of register 0x06) to “1.”

5:0 R 0xXX Rotator Data channel Position:
Snapshot sample of DATA channel phase rotator position. 
This is a six-bit vector indicating which of the 64 possible 
positions the phase rotator is in

7:6 R Unused
13:8 R 0xXX Rotator AMP channel Position:

Snapshot sample of AMP channel phase rotator position. 
This is a six-bit vector indicating which of the 64 possible 
positions the phase rotator is in

15:14 R Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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0x5 16 R/W 0x0000 Signal Detect Control Register 
4:0 R/W 00000 Signal Detect Level:

Unsigned value of comparator threshold used in SIGDET 
circuit.

5 R/W 0 Signal Detect Power Down
0=enable (default – required for DFE mode),
1=power down the Signal Detect circuit

15:6 R Unused
0x6 16 R/W 0x000X DFE Control Register 

0 R/W 0 DFE Control Logic Reset:
0=normal,
1=triggers a reset of the DFE logic

1 R X Not Random Data Status:
Proper training of the DFE engine requires sufficiently 
random data flow. In order to prevent the DFE engine from 
responding to periods of non-random data, a “random data 
detector” function is built into the logic. This bit is read to 
indicate current detection value of this logic.
0=Data is “random,” 
1=Data is not “random” 

2 R/W 0 DFE Stand By:
0=normal operation (default),
1=standby mode. All internal DFE operations are halted at 
the next internal break point. Clocks continue to run, but 
state machines are held idle

3 R/W 0 Sample DFE request. 
0=inactive (default),
1=a rising edge causes the pipeline sampling logic to 
capture a new snapshot, and makes the results available in 
registers 0x07 and 0x08.

4 R 0 Sample DFE request completed. 
0=inactive, or not ready yet (normal),
1=requested sample snapshot is now valid and available in 
registers 0x07 and 0x08

15:5 R Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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0x7 16 R 0xXXXX DFE Data and Edge Sample Register 
7:0 R 0xXX DFE Data Samples 

These are the latest samples captured from the pipeline 
registers in response to Sample DFE Request (reg 0x06 
bit 4)

15:8 R 0xXX DFE Edge Samples 
These are the latest samples captured from the pipeline 
registers in response to Sample DFE Request (reg 0x06 
bit 4)

0x8 16 R 0x00XX DFE Amplitude Sample Register 
2:0 R XXX DFE Amplitude Samples 

These are the latest samples captured from the pipeline 
registers in response to Sample DFE Request (reg 0x06 
bit 4)

5:3 R XXX DFE Amplitude Sample Qualifiers 
These are the latest samples captured from the pipeline 
registers in response to Sample DFE Request (reg 0x06 
bit 4)

15:6 R Unused
0x9 16 R/W 0x0000 Digital Eye Control Register 

4:0 R/W 0x00 Minimum eye height interrupt threshold
This is an unsigned vector value (positive) defining the 
minimum acceptable eye amplitude, as measured by the 
DFE logic, before “Eye Amplitude Error Flag” bit is set in 
the Internal Status Register (reg 0x0F, bit 6) and interrupt 
is triggered.
0x0: 0 threshold (default, no interrupt set)
0x1 – 0xE: 1/16 of range per step
0xF: threshold set at 15/16 of full range

9:5 R/W 0x00 Minimum eye width interrupt threshold
This is an unsigned vector value (positive) defining the 
minimum acceptable eye width, as measured by the 
Dynamic Data Centering logic algorithm, before “Eye 
Width Error Flag” bit is set in the Internal Status Register 
(reg 0x0F, bit 5) and interrupt is triggered.
0x0: 0 threshold (default, no interrupt set)
0x1 – 0xF: eye width threshold in rotator steps, 
approximately 0.03UI per step

14:10 R 0x00 EYE WIDTH:
Latest available eye width measurement, in units of rotator 
steps

15 R Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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0xA 16 R 0x00C0 DFE Tap 1 Register 
This register is read to obtain the status of the DFE Tap 1 
coefficient

5:0 R 0x00 Dac Tap 1: magnitude of DFE Tap 1 coefficient
7:6 R 11 Sign Tap 1: This sign represents the asserted sign of DFE 

Tap 1 as it is applied to the summer, and changes under 
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:8 R Unused
0xB 16 R 0x0060 DFE Tap 2 Register 

This register is read to obtain the status of the DFE Tap 2 
coefficient

4:0 R 0x00 Dac Tap 2: magnitude of DFE Tap 2 coefficient
6:5 R 11 Sign Tap 2: This sign represents the asserted sign of DFE 

Tap 2 as it is applied to the summer, and changes under 
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:7 R Unused
0xC 16 R 0x0030 DFE Tap 3 Register 

This register is read to obtain the status of the DFE Tap 3 
coefficient

3:0 R 0x00 Dac Tap 3: magnitude of DFE Tap 3 coefficient
5:4 R 11 Sign Tap 3: This sign represents the asserted sign of DFE 

Tap 3 as it is applied to the summer, and changes under 
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:6 R Unused
0xD 16 R 0x0030 DFE Tap 4 Register 

This register is read to obtain the status of the DFE Tap 4 
coefficient

3:0 R 0x00 Dac Tap 4: magnitude of DFE Tap 4 coefficient
5:4 R 11 Sign Tap 4: This sign represents the asserted sign of DFE 

Tap 4 as it is applied to the summer, and changes under 
normal operation in DFE mode
10 = negative, 01 = positive, 11 = zero

15:6 R Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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0xE 16 R 0x0030 DFE Tap 5 Register 
This register is read to obtain the status of the DFE Tap 5 
coefficient

3:0 R 0x00 Dac Tap 5: magnitude of DFE Tap 5 coefficient
5:4 R 11 Sign Tap 5: This sign represents the asserted sign of DFE 

Tap 5 as it is applied to the summer, and changes under 
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:6 R Unused
0xF 16 R 0x0000 Internal Status Register

This register is used to report the status of certain internal 
operations. When status bits in this register change, 
HSSEYEQUALITY is asserted. A write to this register 
resets the HSSEYEQUALITY output.

0 R 0 Phase Rotator Calibration Complete.
0=calibration not completed,
1=phase rotator offset calibration process is completed

1 R 0 VGA locked First
This register is set when the VGA achieves lock, and is 
cleared only by reset. It indicates lock was achieved at 
least once

3:2 R 00 Unused
4 R 0 DFE training complete

This register is set when the DFE logic determines that its 
H coefficients have converged since reset.
0=initial DFE convergence not yet achieved,
1=initial DFE convergence achieved

5 R 0 Eye Width Error Flag: 
0=normal: Measured Data Eye Width at or above interrupt 
threshold set in the Digital Eye Control Register 
(reg 0x09);
1=error: Measured Data Eye Width below interrupt 
threshold set in the Digital Eye Control Register 
(reg 0x09)

6 R 0 Eye Amplitude Error Flag: 
0=normal: Measured Data Eye Height at or above 
interrupt threshold set in the Digital Eye Control Register 
(reg 0x09);
1=error: Measured Data Eye Height below interrupt 
threshold set in the Digital Eye Control Register 
(reg 0x09)

15:7 R 0x000 Unused

Table 2.7  HSS EX10 receiver slice register definitions 

Addr
(3:0) Bits R/W Reset 

value Description
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2.2  HSS EX10 Transmitter Slice Functions
In this section, the functions of the transmitter slice of the HSS EX10 

10-Gbps core are described. This core supports transmit bit rates as low as 
8.5 Gbps and as high as 11.1 Gbps. Frequent references are made to the pin 
descriptions and register definitions found in Sect. 5.5.42.1. Although the HSS 
EX10 is only a tutorial example, the reader should compare the functions of the 
EX10 to real HSS cores with which the reader is familiar. Although implemen-
tations may vary, many similar functions will be found. In reading this chapter, 
the reader should acquire an understanding of the types of functions that may 
exist and some of the key features related to these functions.

A conceptual block diagram of the HSS EX10 transmitter is shown in 
Fig. 2.4. The parallel data input of the transmitter (TXxD[19:0]) has a 20-bit 
data width which may be programmed to capture 8, 10, 16, or 20 bits of user 
data (based on the setting of the Parallel Data Bus Width control bits in the 
Transmit Configuration Mode Register) on the rising edge of the word transmit 
clock (TXxDCLK). Other cores may support different data widths.

Fig. 2.4 Transmitter concept diagram
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The data in Fig. 2.4 is sampled and latched into a shift register synchronous 
with the high-speed transmit clock. The low order byte is synchronously 
loaded into a data out register that is clocked at one-eighth the bit rate, while 
the higher ordered bytes are synchronously shifted to lower byte positions. The 
8 bits in the data out register are transferred to the driver where they are further 
serialized and transmitted at up to 11.1 Gbps. The transferred eight-bit data 
byte is processed starting with the least significant bit (LSB) first, followed by 
the next higher significant bit, and so forth. The driver/equalizer multiplexes the 
8-bit stream and creates a current-mode differential signal that is frequency 
equalized for the assumed media channel. The equalization is completely pro-
grammable but typically implements a finite impulse response (FIR) preem-
phasis filter using reduced current levels for longer run lengths. The core 
expects valid user data to be available on the parallel interface on each cycle.

In addition to the datapath, Fig. 2.4 also includes the PLL (actually located 
in the PLL slice), the PRBS generator (discussed later), and an interface for 
reading and writing control registers. Note that not all cores use control 
registers to implement slice control. Control signals can also be implemented 
as individual pins on the core and controlled by chip logic or by protocol cores. 
Which approach is used varies from one core family to the next, and is 
somewhat based upon the required number of control and status signals. Using 
internal registers in the core is a more efficient solution when an excessive 
number of control and status signals are needed.

2.2.1 Transmitter Parallel Data
The TXxD[19:0] bus shown in Fig. 2.4 is a 20-bit datapath input to the 

Transmitter Slice. Other cores may use a different names for this bus and may 
have different bus widths. Consistent with the naming convention described 
previously, the “x” in this naming convention represents the “channel id.” The 
HSS EX10 has four TX channels with channel identifiers “A” through ‘D.” 
Each TXxD bus also has an associated TXxDCLK clock output.

The HSS EX10 core allows the user to select one of several options for the 
width of the TXxD bus to be used in a given application. For this example, the 
20-bit TXxD bus can be programmed to use 8, 10, 16, or 20 bits of this bus. 
Multiples of 10 bits are useful for applications which use 8B/10B data coding, 
and multiples of 8 bits are useful for other applications. For the various 
programmed bus widths, Table 2.8 describes which TXxD bits are used and 
the corresponding TXxDCLK frequency as a function of baud rate. 

The TXxDCLK clock latches the data on the TXxD data bus. Figure 2.5 
illustrates the clock/data relationship for this interface. The variable ftx 
represents the frequency of transmission or transmit data baud rate. The 
TXxDCLK frequency is a fraction of this as determined by the Parallel Data 
Bus Width in Table 2.8. (This is also affected by the Rate Select bits in the 
Transmit Configuration Mode Register.) 
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Although all the transmitter slices in the core are frequency locked, each 
transmitter slice operates independently, and it is generally not possible to 
assume that the phase of each TXxDCLK is the same. The maximum phase 
difference between any two TXxDCLK outputs at the core boundary is 
specified in the core databook, and results from differences in signal buffering 
and wiring parasitics within the core. These phase difference limits assume the 
channels were resynchronized as part of the initialization of the interface; 
otherwise no particular phase relationship can be assumed. (This feature of 
HSS EX10 core is described later in this chapter.) 

The TXxDCLK phases between two channels which are not contained 
within the same core must also consider chip-level reference clock skew dif-
ferences generated by clock tree distribution and static phase error differences 
of the different PLL Slices. Core-to-core phase difference limits are specified 
in the core databook; these values again assume cores have been resynchro-
nized as part of the initialization sequence. 

The HSS EX10 core allows the databus width to be changed at any time. If 
the application requires the databus width to change dynamically, core docu-
mentation must be consulted to determine how the core behaves during this 
transition. In particular, the latency before the change takes effect, and the 
behavior of TXxDCLK during the transition must be considered. If the phase 
difference between TXxDCLK outputs is of concern to the application, resyn-
chronization may be required.

Another consideration of Transmitter Slice usage is the bit order in which 
bits of the parallel data bus are serially transmitted. The HSS EX10 core always 
transmits bit 0 first. The user must be cautious that this is consistent with the 
interface standard being implemented. If necessary the datapath connections to 
TXxD inputs must be rearranged to obtain the desired bit order for 
transmission. 

Table 2.8  Data bus width function for transmitter section

Bus width bits of 
“TX configuration 

mode register’

TXxD19...
TXxD16

TXxD15...
TXxD10

TXxD9...
TXxD8

TXxD7...
TXxD0

TXxDCLK 
frequency

00 Xa Xa Xa D7...D0 ftx/8

01 Xa Xa D9...D8 D7...D0 ftx/10

10 Xa D15...D10 D9...D8 D7...D0 ftx/16

11 D19...D16 D15...D10 D9...D8 D7...D0 ftx/20

a“X” represents do not care
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2.2.2 Transmitter Signal Characteristics
Signal level and slew rate requirements vary for the various serial data 

standards. Also, power dissipation can reduced by using smaller differential 
signal levels, and crosstalk can be reduced by restricting slew rates. These 
parameters are programmable for the HSS EX10 core, allowing the user to 
adapt the core to the application.
2.2.2.1 Programmable Normalized Driver Power (NDP) Setting

The driver output power of the HSS EX10 transmitter is programmed using 
the Transmit Power Register. When driving an ideal 100-Ω terminated 
network, these output power settings set the differential voltage swing at the 
driver output. The register field in the Transmit Power Register contains 7 bits 
which allow the selection of 64 discrete power settings (some settings are not 
supported). Each transmitter slice in the EX10 may be separately programmed. 
Table 2.9 shows some typical register values for sample signal power levels.

Many applications require that signal power levels be adjusted based on the 
frequency characteristics of the channel being driven by the transmitter slice. 
Imperfect terminations, for instance, may cause the differential voltage swing 
to be different from the ideal value shown in Table 2.9. Sometimes the 
transmitter drives a backplane, and channel characteristics may vary based on 
the card slot into which the card containing the transmitter is plugged. Also, the 
core vendor may update the register values corresponding to specific values of 
differential voltage swing in Table 2.9 as the result of core qualification. For 
these reasons, most applications require that the signal power levels be 
programmable. The HSS EX10 core includes registers inside the core; in cases 
where power levels are controlled from input pins, it is the chip designer’s 
responsibility to ensure programmability of these control pins.

The power supply voltage, termination voltage, and the desired driver 
power level interact. The power supply and termination voltages must 
somewhat greater than the maximum voltage driven by the transmitter. This 
limits the supply voltage ranges that can be used for larger driver power 
settings. For the HSS EX10, these limitations are specified in Table 2.10. 

Fig. 2.5 Input data interface timing

TXxDCLK

TXxD[19:0]

ThTs

(1/ftx)*m

(1/ftx)*p
where:
m = 8, 10, 16, or 20
p = 4, 4, 8, or 10
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2.2.2.2 Output Slew Rate Control
In order to support legacy protocols and reduce crosstalk, the minimum 

slew rate of the HSS EX10 driver stage is programmable. Table 2.11 shows 
examples of slew rate settings, and also shows typical applications 
corresponding to these settings. 

Table 2.9  Settings for typical output amplitudes

Minimum inner eye amplitude
(mVppd)

Transmit power register 
setting for 8.5 Gbps

Transmit power register 
setting for 11.1 Gbps

400 45 55

600 70 80

800 95 110

900 110 127

980 127 (N/A)

Test conditions: VDD = 1.1 V, AVTT = 1.4 V, worst case temperature and process, K28.5 
data pattern, main tap only

Table 2.10  Desired output amplitude vs. required circuit supply voltages

Minimum achievable 
output amplitudea 

(mVppd)

Min. VDD 
(V)

Max. VDD 
(V)

Min. VTTb 
(V)

Max. VTT 
(V)

1,000 1.10 1.30 1.65 1.95

600 1.10 1.95

aVTT must always be equal to or greater than VDD
b‘1010...’ data pattern, 11.10 Gbps, FCPBGA package, power setting of 127

Table 2.11  Output slew rate control settings

Slow slew control bits of “Transmit 
Driver Mode Control Register” 

for Port x
Typical application

Approximate 
minimum slew 

Ratea (PS)

“000” Full rate 24 

“001” Infiniband SDR and DDR 36 

“011” XAUI at 3.125 Gbps 60 

“101” Fibre channel at 4.25 Gbps 50 

“111” Fibre channel at 1.06 Gbps 100 

a20– 80% transition
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2.2.3 Transmitter FFE Programming
The HSS EX10 transmitter includes a feed forward equalization (FFE) to 

reduce intersymbol interference (ISI) at the receiver. This preemphasis 
technique uses a FIR filter to compensate for the high frequency roll-off of the 
transmission channel. Control inputs are provided to allow adjustment of the 
driver FFE filter coefficients on a per-port basis. The following equation 
describes the relationships of the FFE Coefficients.

H(Z) = K (C0 z +1 + C1 z 0+ C2 z –1) (2.1)
This Z-transform equation describes an FFE with three taps, including one pre-

and one post tap. Other cores may have FFEs with fewer or more taps.
The driver amplitude (K) is adjustable in the range of 0 – 1,320 (nominal) 

mV peak-to-peak differential using the Transmit Power Register described 
previously in this chapter. The relative weights and polarities of C0 to C2 are 
configured using the three Transmit TapX Coefficient Registers (X = 0, 1, 2), 
and the Transmit Polarity Register. The actual range of relative coefficient 
weights is defined in Table 2.12. 

The resolution of the levels is also indicated in Table 2.12, with each tap 
having equal bit weighting. The driver circuit design enforces a constant driver 
output power for any combination of coefficients and polarities, provided the 
sum of coefficients C0 – C2 is 63 or higher (power decreases proportionally 
below this sum). As coefficients are initialized or updated, the logic calculates 
the appropriate internal amplitude (K) to maintain the overall output power at 
the level defined in the Transmit Power register.

Table 2.12  Transmitter FFE summary

Tap coefficient # 0 1 2

Max current
(mA)

7.5 30 15

Relative max (%) 25 100 50

DAC resolution (bits) 6 8 7

Tap allocation Precursor Main tap Postcursor

Table 2.13  Transmit driver modes

Mode FFE mode select bits of “Transmit Driver 
Mode Control Register” for Port x FFE taps activated

FFE2 “00” 0, 1

FFE3 “01” 0, 1, 2

(Reserved) “10” (Indeterminate)

Hi-Z “11” None (see Sect. 2.2.4.1)
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To save power in certain applications, the FFE can be configured into 
several configurations using the Transmit Driver Mode Control Register (see 
Table 2.13). By using fewer taps, power is reduced.
2.2.3.1 Loading Transmit Coefficients

Many of the TX slice parameter control registers are not effective immedi-
ately after being written. Application of register values to the analog circuits is 
controlled by writing the Apply Load bit in the Transmit Coefficient Control 
Register. This allows the FFE and power level configuration to be completely 
loaded in the individual registers and then simultaneously applied to the analog 
circuits. For the HSS EX10, the values loaded into the Transmit TapX Coeffi-
cient Registers, the Transmit Power Register, the Transmit Polarity Register, 
and the FFE Mode Select field of the Transmit Driver Mode Control Register 
are not applied to the analog circuits until the Apply Load bit is pulsed. The 
read-back value of these registers reflects the value being applied to the analog 
circuits. If these registers are written and then read before the Apply Load bit 
is pulsed, the old values are read. (The value of the Slow Slew Control field of 
the Transmit Driver Mode Control Register is applied to the analog circuits 
immediately, and is not gated by the Apply Load bit.)

For cores which do not contain internal registers, filter coefficients may be 
set using input control pins. Sequencing updated values onto these pins is the 
responsibility of the chip designer. 

FFE coefficient values are not intended to be changed dynamically while 
data is being transmitted (except as part of a speed negotiation or link optimi-
zation process). Significant changes to the TX slice configuration can cause 
loss of data at the receiver until such time as the receiver adapts to the new 
waveform characteristics. 
2.2.3.2 FFE Coefficient Negotiation Support

Higher speed protocol standards sometimes support negotiation of trans-
mitter FFE settings based on characteristics of the signal at the receiver. IEEE 
802.3ap Backplane Ethernet is an example of such an application. Implemen-
tations of such applications must update FFE coefficients in response to a full-
duplex training protocol by reading and writing the corresponding registers. 

The training protocol used for Backplane Ethernet is introduced in Sect. 
5.3.5.1. Some cores provide register control signals to more easily implement 
the actions defined by this protocol, which include incrementing/decrementing 
coefficient values. Such features are not defined for the HSS EX10 core.

2.2.4 Transmitter Power Control
Power management is becoming an increasingly important part of chip 

designs. Various features are incorporated into HSS EX10 core to facilitate 
turning off all or part of Transmitter Slice when the corresponding interfaces 
are not in use. 
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2.2.4.1 Transmit Driver Disable Mode
The TXxTS pin forces transmit core drivers to an “off” state in which the 

driver generates zero differential voltage and does not actively sink current on 
its outputs (TXxOP and TXxON). This state can also be forced by the FFE 
Mode Select bits of the Transmit Driver Mode Control Register. 

While the transmit driver is disabled, the transmitter outputs are still 
terminated and the outputs are pulled to the VTT voltage rail through that 
termination. This mode only disables the driver outputs, the rest of the 
transmitter circuitry is still functioning.
2.2.4.2 Selective Power Down

The HSS EX10 core has the capability to selectively power down indepen-
dent ports using the Link Enable Register in the PLL slice. This function may 
also be performed using the TXxPWRDWN pin.

This power down mode is different from the Transmit Driver Disable Mode 
discussed previously in that the entire transmitter slice is shut down. Each 
transmitter slice within the core shares a common PLL, and generally the 
per-link transmitter power budget quoted in core documentation includes a 
prorated portion of the power for the PLL. Powering down the transmitter slice 
therefore reduces the power dissipation of the link by approximately 70–85% 
of the per-link power budget. The remaining 15–30% is consumed by the 
associated PLL and clock buffering circuitry, which is not powered down. If 
the entire core is to be powered down, each of the transmitter and receiver ports 
must be “disabled,” and then the PLL Slice must be disabled using the 
HSSPDWNPLL control signal.

The TXxDCLK output freezes at either a “0” or “1” value while the trans-
mitter port is disabled. A “glitch” or “sliver” can occur on TXxDCLK during 
the transition into the power down state. Any chip logic outside of the core 
which uses this clock must be designed to take this into account.

On initial power on reset, all ports are enabled, thus allowing all ports to go 
to their reset state. Subsequent re-enabling of individual ports should be 
followed by a corresponding port reset to ensure proper operation. If synchro-
nization is required between the re-enabled port and other ports, then a resyn-
chronization sequence is also required. (HSS EX10 resynchronization is 
described later in this chapter.) 

2.2.5 Half-Rate/Quarter-Rate/Eighth-Rate Operation
In full rate mode, the transmitter serializes and transmits data at a rate 

determined by the cycle time of the high-speed clock generated by the PLL 
slice. The baud rates over which the transmitter can operate in full rate mode 
are limited by the Voltage-Controlled Oscillator (VCO) frequency range 
supported by the design of the PLL slice. Wider VCO frequency ranges require 
more complex circuit designs, and therefore this range is generally somewhat 
limited. However, there are applications where operation is required at slower 
baud rates, or where the interface must support switching between a full-rate 
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baud rate and legacy baud rates in order to support connections to legacy 
equipment.

The HSS EX10 includes modes of operation which allow the core to 
operate at a fraction of the full baud rate. Half-rate, quarter-rate, and eighth-
rate link operation is supported. These modes cause the TXxD parallel data to 
be undersampled and shifted/multiplexed onto the serial data output at half, 
quarter, or one-eighth the rate of full-rate operation. Selection of the rate mode 
is performed using the Rate Select bits in the Transmit Configuration Mode 
Register, and may be performed on a link-by-link basis. If lower speeds of 
operation (with larger VCO frequency divisors) are required, external logic 
may be used to further divide the sample rate of the parallel data.

Users of fractional rate modes should pay careful attention to the following 
areas of core behavior when using these modes: TXxDCLK behavior, and FFE 
filter behavior.
2.2.5.1 TXxDCLK Behavior for Half/Quarter/Eighth Rate

Activation of half-rate mode causes the transmit core to double the time 
period of the TXxDCLK output as well as double the timing of the serializer 
logic on a per-port basis. This has the effect of reducing the throughput by a 
factor of two. Activation of quarter-rate mode causes the time period of 
TXxDCLK to quadruple and reduces throughput by a factor of four; eighth-
rate mode causes the time period of TXxDCLK to octuple and reduces 
throughput by a factor of eight.

When using external logic to implement additional fractional rate modes, 
care should be taken to determine what mode of the HSS core is used to 
implement the fractional rate mode. For example, the external logic may force 
the HSS core into full-rate mode when implementing a 16th-rate mode through 
external logic. The HSS rate mode being used affects the TXxDCLK 
frequency and therefore correct understanding is necessary in order to properly 
analyze timing of the interface. 

If the application requires changing the rate mode, the chip designer also 
needs to understand how TXxDCLK behaves during the transition, and 
whether glitches are possible on this clock. For the HSS EX10 core, the 
TXxDCLK completes its current cycle, then remains at a steady “0” while the 
requested change is enabled, and then resumes normal operation at the new 
rate. Logic connected to this clock experiences a temporary disruption in the 
clock, but there is no glitching or slivering of the TXxDCLK during the 
rate/bus width transition. Data transmitted during this mode change is invalid. 
If synchronization is required between the links following a rate change, then 
a resynchronization sequence is also required. (HSS EX10 core 
resynchronization is described later in this chapter.) 

Other core implementations may allow TXxDCLK to glitch or sliver during 
the transition. In such cases, the chip designer may wish to gate the clock 
outside the core during this transition. Alternatively, logic connected to this 
clock may be reset after the transition completes to ensure proper operation.
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Internal PLL circuits are unaffected by the rate mode selection. The 
reference clock frequency should not be changed for fractional rate 
operation. Power dissipation, although reduced, does not scale linearly with 
data rate.
2.2.5.2 FFE Behavior for Half/Quarter/Eighth Rate

For the HSS EX10 core, the FFE is always a “T-spaced” filter with respect 
to the signal rate (T = period of signal rate). In other words, the FFE tap spacing 
is adjusted based on the rate select mode such that it always runs at the baud 
rate. These circuits continue to work correctly if the port is set to half-rate, 
quarter-rate, or eighth-rate speed modes.

For other cores, the user should carefully consult core documentation to 
determine behavior of the FFE for fractional rate modes. If the FFE clocking 
is not switched, a “T-spaced” filter would become a “T/2-spaced” filter when 
used in half-rate mode. This would affect the calculation of filter coefficients. 

2.2.6 JTAG 1149.1 and Bypass Mode Operation
The HSS EX10 core transmitter supports a bypass mode of operation in 

which the parallel data capture and serialization logic is bypassed, and the 
serial data output is forced to the logic value defined by bypass data input pins 
on the core. This bypass function is sometimes used to support lower speed 
source–synchronous interfaces for legacy applications. This bypass function is 
also required for compliance with JTAG 1149.1 [1] and JTAG 1149.6 [2].
2.2.6.1 Transmit Bypass Path

The TXxBSIN data input and the TXxBYPASS transmit bypass control bit 
are provided on the HSS EX10 core to support the transmitter bypass feature 
and are limited to toggle rates of 100 MHz or less. When TXxBYPASS is 
active, data provided to the TXxBSIN inputs forces the state of the TXxOP and 
TXxON outputs. A truth table for this function is shown in Table 2.14. 

2.2.6.2 JTAG Mode
JTAG 1149.1 requires that all chip outputs be controllable from a JTAG 

Boundary Scan Register (BSR) under the control of a JTAG TAP Controller. 
JTAG 1149.1 is used to perform stuck-at fault testing during the manufacture 
of printed circuit boards. The transmitter bypass feature is of particular use to 
provide JTAG compliance on interfaces that are driven by HSS transmitters. 

Table 2.14  Transmit bypass path selection

TXxBSIN TXxBYPASSx TXxOP-TXxON

X 0 Normal operation

0 1 −

1 1 +
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A block diagram of the JTAG function for the HSS EX10 core is shown in 
Fig. 2.6. The HSSJTAGCE pin forces the HSS core into JTAG 1149.1 mode 
in which all transmitters are forced into bypass mode. In this mode, TXxBSIN 
determines the data being driven, TXxJTAGTS determines whether the trans-
mitter is enabled or in Hi-Z mode, and TXxJTAGAMPL[1:0] determines the 
amplitude of the signal. For JTAG compliance, TXxBSIN and TXxJTAGTS 
inputs must be driven from JTAG BSR cells, and TXxJTAGAMPL pins are 
generally tied to VDD or GND. If the TXxJTAGAMPL pins are to be driven 
from another source, the logic function driving these pins must drive a known 
value during JTAG test mode. During JTAG test, chips on the circuit board are 
entirely controlled through their JTAG interfaces and do not go through any 
operational reset sequences. JTAG signals cannot be driven by flip-flops in the 
chip (which do not get reset during JTAG test) unless these flip-flops are 
forced to a known value by a JTAG Compliance Enable signal.

The HSSJTAGCE pin also forces the FFE into a suitable mode for JTAG 
operation. The FFE is set to FFE2 mode, Tap 2 coefficients are set to values 
determined by the TXxJTAGAMPL pins, other tap coefficients are set to 0, 
and the output polarity is set to positive. This has the effect of driving the serial 
data output to match the TXxBSIN data with no distortion due to filtering.

Fig. 2.6 Data path during boundary scan, DC coupled configuration
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The pins used for implementation of the JTAG transmitter bypass function 
may vary from core to core, and may or may not be shared with the pins used 
for functional operation. The HSS EX10 includes the TXxJTAGAMPL and 
TXxJTAGTS pins for use during JTAG. These pins, serve the same function 
as the Transmit Power Register and TXxTS pins, respectively. The JTAG pins, 
and their equivalent functional pins, are multiplexed in the core by the 
HSSJTAGCE signal. Other cores may not provide separate pins, and may 
require multiplexors outside the core to perform similar selection.

2.2.7 PRBS/Loopback Diagnostic Features
Diagnostic features are an essential part of any Serdes design. Such features 

support system fault isolation requirements, and facilitate chip testing and 
characterization. Essential diagnostic features for any Serdes include:
• Pseudorandom Bit Sequence (PRBS) Pattern generation/checking
• Support for loopback of data at key points within the system datapath
2.2.7.1 Transmit Test Patterns

The HSS EX10 supports the eight test patterns described in Table 2.15, as 
selected by bits in the Transmit Test Control Register. These patterns are 
available at all supported data rates. The repeating test patterns (1010... and the 
64 1’s followed by 64 0’s patterns) generate data transition run length 
extremes, with the first pattern generating data transitions at the fastest 
possible rate and the other pattern generating data transitions at a very slow 
rate. While these patterns are useful, the frequency spectrum of these patterns 
is monotonic and does not stress the receiver as much as a pattern with a more 
diverse spectral content. PRBS patterns provide more varied spectral content, 
and therefore are more representative of real data. \

Table 2.15  Internal test pattern generator

Transmit test control reg [2:0] Pattern generated

000 PRBS7+

001 PRBS7– (inverted)

010 PRBS23+

011 PRBS23–

100 PRBS31+

101 PRBS31–

110 1010101....

111 (Repeating pattern of 64 ‘1’s then 64 ‘0’s)
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PRBS patterns are produced using a linear feedback shift register. The 
nomenclature PRBS-n is used as a short-hand reference to indicate a PRBS 
pattern produced by a standard polynomial, where n is the order of the polyno-
mial. PRBS-31, PRBS-23, and PRBS-7 patterns are commonly used in many 
systems. An order n polynomial implementation requires an n-bit shift register 
along with a few XOR gates. The longest run length of 0’s or 1’s that can occur 
in an n-order PRBS pattern is also n. Having different PRBS patterns available 
allows the user to select the pattern that is most appropriate given the data 
encoding used by the application. Using a PRBS-7 pattern to test a SONET 
system which transmits scrambled data would be overly optimistic; using a 
PRBS-31 pattern to test a Fibre Channel system which carries 8B/10B data and 
therefore guarantees short run lengths would be overly pessimistic. 
2.2.7.2 Loopback Paths and PRBS Checkers

The HSS EX10 core is a full-duplex configuration containing both trans-
mitters and receivers, and therefore includes the capability to loop the outputs 
of the transmitter slices to the inputs of the receiver slices. This permits testing 
through the entire datapath of the chip including the analog circuits. If the 
transmitter is generating a PRBS or other diagnostic pattern, this pattern can be 
validated using the PRBS Checker in the receiver.

Other cores implementing simplex core configurations containing only 
transmitters may include simple receivers and PRBS checker circuits for the 
sole purpose of providing a check of the PRBS pattern being sent. 

2.2.8 Out of Band Signalling Mode (OBS)
The Serial Attached SCSI (SAS) and Serial ATA standards specify an out 

of band signaling (OBS) mode that forces the driver output to a specific DC 
state in order to signal certain conditions to the receiver. The TXxOBS pin 
forces this state on the HSS EX10 core. When this pin is asserted, both the 
serial output signal legs are driven to the same DC voltage that is nominally the 
value of the common mode voltage during normal operation. The transmitter 
data inputs are ignored in this mode. When TXxOBS returns to the low state, 
the transmitter resumes normal operation.

2.2.9 Features to Support PCI Express
The HSS EX10 core includes support for features which are either required 

or optional for implementations of the PCI Express standard. These PCI 
Express related features in the HSS transmitter are described below.
2.2.9.1 Electrical Idle

When in an electrical idle state, transmitter outputs are driven to the 
common mode voltage, as described further in Sect. 5.5.3.2. The 
TXxELECIDLE pin controls entry and exit into this state on the HSS EX10 
core. The common mode voltage in the electrical idle state is only at the correct 
level if the link is AC Coupled (as required by the PCI Express standard). Note 
that assertion of TXxELECIDLE stops the TXxDCLK for the link.
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2.2.9.2 Receiver Detection
The transmitter is required to support detection of whether a receiver is 

connected at the other end of the link. As described in Sect. 5.5.3.2, this is 
performed by driving an abrupt change in the DC Common Mode voltage of 
the link, and monitoring the amount of time it takes for the voltage on the wire 
to settle to the new value. 

The TXxRCVRDETEN input initiates the receiver detection operation on 
the HSS EX10 core. One or the other of the TXxRCVRDETTRUE and 
TXxRCVRDETFALSE output pins transitions high to indicate completion of 
the receiver detect process; the former indicating a receiver is present, and the 
latter indicating no receiver is connected to the link.
2.2.9.3 Beacon Signaling

Beacon signaling is optional in the PCI Express specification as described 
in Sect. 5.5.3.2. The transmitter sends a low-frequency high/low waveform 
called a beacon signal on the link to indicate a desire to exit the L2 power state 
and return to a full-on state. The beacon signal has a pulse width of at least 2ns 
and no more than 16 s. HSS EX10 core supports this feature and sends a 
compliant beacon signal when the TXxBEACONEN pin is asserted.
2.2.9.4 PCI Express Power States

PCI Express defines a number of link power states which are described in 
Sect. 5.5.4. The HSS EX10 core provides a TXxSTATEL1 pin which removes 
power from most of the transmitter. Link logic may assert this pin when in the 
L1 power state in order to reduce power dissipation. (Other pins exist on the 
receiver and PLL slices to support PCI Express power states and are described 
elsewhere in this chapter.)

2.3  HSS EX10 Receiver Slice Functions
A conceptual block diagram of a receiver slice for the HSS EX10 core is 

shown in Fig. 2.7. This receiver is representative of the functionality of the 
receiver slice designs for higher baud rates. 

The receiver slice performs clock and data recovery (CDR) on the 
incoming serial data stream. The quality of this operation is a dominant factor 
for the bit error rate (BER) performance of the system. For enhanced perfor-
mance, several features are combined in this receiver architecture. 

The differential data is received by an automatic gain control amplifier to 
compensate for lossy media. Data is oversampled by a digital circuit that 
detects the edge positions in the data stream. This digital circuit selects the 
optimum data sample, and generates early and late signals to indicate the status 
of the recovered clock alignment which are used to control the output phase 
positions in a feedback loop. This feedback loop includes a filter to reduce 
high-frequency jitter phenomenon, and a flywheel to improve jitter tolerance 
and handling of long run length patterns. The effect of this feedback loop is to 
maintain a static edge position in the oversampled data array by continuous 
adjustment of the sampling phase locations.
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Fig. 2.7 Receiver concept diagram
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The HSS EX10 core incorporates a Decision Feedback Equalizer (DFE). 
The DFE used for this core is a 5-tap DFE; filter coefficients update dynami-
cally based on signal characteristics of the serial data. Cores operating at lower 
baud rates may or may not include DFE circuits.

The parallel data output of the receiver (RXxD[19:0]) has a 20-bit data 
width which may be programmed to output 8, 10, 16, or 20-bits of user data 
(based on the setting of the Parallel Data Bus Width bits of the Receive 
Configuration Mode Register) on each clock cycle. Serial data running at up to 
11.1 GHz is processed and deserialized to the appropriate data width, and then 
clocked out on the RXxD bus synchronous with RXxDCLK. The first serial bit 
received is steered to the LSB of this bus, the next bit is steered to the next 
higher significant bit, and so forth. 

In addition to the datapath, Fig. 2.7 also includes the PLL located in the 
PLL slice), the PRBS checker, JTAG 1149.6 receivers, Signal Detect logic, 
and an interface for reading and writing control registers. 

2.3.1 Receiver Data Interface
The RXxD[19:0] bus shown in Fig. 2.7 is a 20-bit datapath output of the 

RX Slice. Other cores may use a different names for this bus and may have 
different bus widths. Consistent with the naming convention described previ-
ously, the “x” in this naming convention represents the “channel id.” The HSS 
EX10 has four receiver channels with channel identifiers “A” through “D.” 
Each RXxD bus also has an associated RXxDCLK clock output. 

The HSS EX10 core allows the user to select one of several options for the 
width of the RXxD bus to be used in a given application. The 20-bit RXxD bus 
can be programmed to use 8, 10, 16, or 20 bits. For the various programmed 
bus widths, Table 2.16 describes which RXxD bits are used and the corre-
sponding RXxDCLK frequency as a function of baud rate.

The RXxDCLK clock launches the data on the RXxD data bus. Figure 2.8 
illustrates the clock/data relationship for this interface. The variable frx 
represents the frequency of reception or receive data baud rate. The 
RXxDCLK frequency is a fraction of this as determined by the Parallel Data 
Bus Width in Table 2.16. (This is also affected by the Rate Select bits in the 
Receive Configuration Mode Register.) 

The RX slices in the core independently derive frequencies of operation 
from the incoming serial data stream. The RXxDCLKs for these channels may 
or may not be frequency locked to each other depending on the application. If 
serial data for a set of channels is launched by a common frequency reference, 
then the RXxDCLKs are frequency locked. However, the CDR circuits of the 
individual channels continue to make independent decisions as to when to 
update sampling phase, and therefore it is generally not possible to assume that 
the phase of each RXxDCLK is the same. The maximum phase difference 
between any two RXxDCLK outputs at the core boundary therefore cannot be 
predicted, even if the RXxDCLK outputs were in phase after reset. Use of 
RXxDATASYNC also affects the phase of RXxDCLK.
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The HSS EX10 core allows the data width to be changed at any time. If the 
application requires the data width to change dynamically, core documentation 
must be consulted to determine how the core behaves during this transition. In 
particular, the latency before the change takes effect, and the behavior of 
RXxDCLK during the transition must be considered. 

Table 2.16  Data bus width function for receiver section

 Bus Width Bits of ‘RX 
Configuration Mode 

Register’

RXxD19...
RXxD16

RXxD15...
RXxD10

RXxD9...
RXxD8

RXxD7...
RXxD0

RXxDCLK 
Frequency

00 0000 000000 00 D7...D0 frx/8

01 0000 000000 D9...D8 D7...D0 frx/10

10 0000 D15...D10 D9...D8 D7...D0 frx/16

11 D19...D16 D15...D10 D9...D8 D7...D0 frx/20

Fig. 2.8 Output data interface timing

Fig. 2.9 RXxDATASYNC timing diagram
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m = 8, 10, 

valid

RXxDCLK

RXxD19:RXxD0

PERIOD = (1/frx)*(m) ! tJITps
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th

thigh

tsu

16, or 20

‘1’

‘0’

‘1’

‘0’

RXxDATASYNC

Operation

Tskip

Skip
complete

1 RXxDCLK 
cycle min

1 RXxDCLK cycle min

Mode 
Full
Half
Quarter
Eighth

Tskip
32 UI
32 UI
16 UI

8 UI

Rate

>0 min

RXxDATASYNC must not 
re-occur until after Tskip
from the previous 
RXxDATASYNC.
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Another consideration of Receiver Slice usage is the bit order in which bits 
of the parallel data bus are serially received. For the HSS EX10 core, the first 
bit received is always steered to bit 0 of the RXxD bus. The user must be 
cautious that this is consistent with the interface standard being implemented. 
If necessary the datapath connections to the RXxD inputs must be rearranged 
to obtain the desired bit order. 

Receive data alignment may be adjusted through the use of the 
RXxDATASYNC control input, and may be independently adjusted on each 
receiver slice. When the RXxDATASYNC signal transitions from a “0” to a 
“1,” the deserializer within the receive logic ignores the most recent serial 
input and holds the contents of the deserializer for one-bit clock cycle. The 
RXxDATASYNC operation has the effect of changing the deserializer 
alignment by one-bit position.

The RXxDATASYNC operation also has the effect of stretching the 
corresponding RXxDCLK cycle. This behavior is dependent on the rate mode 
selected. In full-and half-rate modes, the RXxDCLK is stretched 2 UI after 
every RXxDATASYNC operation. In quarter-and eight-rate modes, the 
RXxDCLK is stretched 1 UI after every RXxDATASYNC operation. Because 
the cycle is always stretched, the minimum pulse width of the RXxDCLK 
signal is never reduced. Figure 2.9 illustrates the timing requirements for the 
RXxDATASYNC input.

2.3.2 DFE and Non-DFE Receiver Modes
In full-rate and half-rate modes the HSS EX10 receiver operates in one of 

three equalization modes; non-DFE, DFE3, or DFE5. In quarter-rate and 
eighth-rate modes only non-DFE mode is supported. In non-DFE mode, the 
received input signal is processed through the variable gain amplifier (VGA) 
then captured in the front end logic and deserialized. In DFE3 and DFE5 
modes, the deserialized samples are processed using DFE algorithms that 
automatically adjust the receiver threshold to better compensate for severe 
pattern-dependent distortions in the channel. These modes are selected using 
by the DFE/non-DFE Mode Select bits in the Receive Configuration Mode 
Register as shown in Table 2.17.

Table 2.17  DFE/non-DFE mode select

Receiver mode DFE/non-DFE mode selector bits of “Receive 
Configuration Mode Register” for Port x

DFE5 0 0

DFE3 0 1

non-DFE 1 0

non-DFE (default) 1 1
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DFE5 and DFE3 modes use 5 and 3 filter taps, respectively for feedback. A 
DFE-n mode makes decisions regarding whether a bit is “1” or “0” based on 
the history of the last n bits received. DFE5 provides maximum performance 
in terms of BER, while DFE3 may be used in cases where signal degradation 
is not as severe. The non-DFE mode uses a fixed threshold receiver for cases 
where signal degradation is small enough not to require further equalization. 
The VGA amplifier is used in all modes of operation.

2.3.3 Serial Data Termination and AC/DC Coupling
The RX slice includes a termination resistance between the two legs of the 

differential input as well as biasing to the termination supply voltage. The 
common mode voltage that is seen on the differential signal tracks the termi-
nation supply voltage, and for this reason the termination supply may be 
applied through separate power pins on the HSS core. On some cores, addi-
tional inputs may be provided to select the voltage range for this supply.

The HSS EX10 uses the nomenclature AVTT to designate the termination 
supply at the transmitter and AVTR to designate the termination supply at the 
receiver. These supply voltages are usually set to the same voltage to prevent 
circulating DC currents and to insure proper operation and reliability of the 
receiver. Note that there may be power supply sequencing requirements 
between the AVTT/AVTR supplies and the main power supply.

Some applications and system designs use AC coupling on serial links to 
eliminate some of these restrictions. An AC coupled system includes decou-
pling capacitors inserted inline with the serial data signals such that there is no 
DC path between the transmitter and the receiver device. The decoupling 
capacitor must have sufficient capacitance to pass the lowest spectral 
frequency expected in the data. When AC coupling is employed, the common 
mode bias point of the transmitter and the receiver do not need to be the same.

In a DC coupled link, the current path through the transmitter, the channel, 
and the termination network in the receiver determines the resulting common 
mode voltage. The HSS EX10 receiver is designed using the assumption that 
the transmitter provides a termination which contributes to the voltage bias at 
the receiver. The current path through the transmitter does not exist when 
AC coupling is employed, and therefore the transmitter termination no longer 
contributes to the DC voltage bias for the circuit. The HSS EX10 core has an 
HSSRXACMODE control input on the PLL slice which enables biasing the 
receiver’s termination network when the core is used in AC coupled applica-
tions. This pin enables an additional current path which biases the receiver 
inputs to a common mode voltage equal to around 80% of the AVTR voltage, 
which is optimal for operation of this receiver.

2.3.4 Signal Detect
Each individual receiver circuit includes signal detection circuitry. The 

function of signal detection is to continuously monitor the attached media 
channel and to provide feedback concerning link status. A “1” on the 
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RXxSIGDET output indicates that signal transitions are occurring on the link, 
and the amplitude of the differential signal being received exceeds the 
detection threshold; otherwise the RXxSIGDET output is “0”.

The signal detect output is determined by looking at the average value of 
the received AC signal. Transitions in the state of the RXxSIGDET status have 
some inherent latency, which can be attributed to the low-pass filtering 
techniques used to distinguish signal from noise.

Many standards define the minimum signal level above which the signal 
must be detected, however, different standards use different values for this 
threshold. For the HSS EX10 core, the signal detect circuit threshold can be 
adjusted to be compliant with various industry standards by programming the 
Signal Detect Level bits in the Signal Detect Control Register. Examples of 
signal detect threshold settings for this core are shown in Table 2.18.

Chip designers sometimes use RXxSIGDET to gate data or to disable 
processing of data by downstream logic. However, signal detect thresholds are 
sensitive to common mode voltage levels on the receiver inputs, and the 
RXxSIGDET function often requires circuit level tuning based on hardware 
characterization. For these reasons, erratic operation may be observed for early 
users of a core, and it is generally good practice to provide a programmable 
“chicken switch” to disable any such gating. 

2.3.5 Receiver Power Control
Power management is becoming an increasingly important part of chip 

designs. The HSS EX10 includes various features to facilitate turning off all or 
part of Receiver Slices when the corresponding interfaces are not in use. 
2.3.5.1 Selective Power Down

The HSS EX10 core has the capability to selectively power down indepen-
dent ports using the Link Enable Register in the PLL slice. This function may 
also be performed using the RXxPWRDWN pin. Each receiver slice within the 
core shares a common PLL, and generally the per-link receiver power budget 
quoted in core documentation includes a prorated portion of the power for the 
PLL. Powering down the receiver slice therefore reduces the power dissipation 
of the link by approximately 70–85% of the per-link power budget. The 
remaining 15–30% is consumed by the associated PLL and clock buffering cir-
cuitry, which is not powered down. If the entire core is to be powered down, 

Table 2.18  Signal detect register settings

Industry standard
compatibility

Signal detect threshold,
AC coupled

SDLVLxD bits of “SIGDET 
Control Register” for Port x

“Bad” signal “Good” signal Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Infiniband (2.5Gbps) <85mVppd >175mVppd 0 0 1 1 0
SAS (1.5 and 3.0Gbps) <120mVppd >240mVppd 0 1 1 0 0
Fibre channel (1.0625, 

2.125, 4.25Gbps)
<90mVppd >250mVppd 0 1 0 0 1
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each of the transmitter and receiver ports must be “disabled,” and then the PLL 
Slice must be disabled using the HSSPDWNPLL control signal.

The RXxDCLK output freezes at either a “0” or “1” value while the 
receiver port is disabled. A “glitch” or “sliver” can occur on RXxDCLK during 
the transition into the power down state. Any chip logic outside of the core 
which uses these clocks must be designed to take this into account.

On initial power on reset, all ports are enabled, thus allowing all ports to go 
to their reset state. Subsequent re-enabling of individual ports should be 
followed by a corresponding port reset to ensure proper operation. 
2.3.5.2 Powering off Signal Detect

If the Signal Detect function in the HSS EX10 core is not needed in non-
DFE mode, it may be turned off using the Signal Detect Power Down bit of the 
Signal Detect Control Register. 

DFE filters sometimes use the signal detect function, and in such cases the 
DFE will not operate correctly if the signal detect circuit is turned off, espe-
cially in high crosstalk environments. Note, however, that there are exceptions 
where turning off signal detect may produce improved performance: high loss, 
high-frequency channels operating in a low crosstalk environment being one 
such example.

The RXxSIGDETEN input pin overrides the Signal Detect Power Down 
control register bit and performs the same function. If this pin is asserted, 
signal detect circuitry is forced to a power on state. This is useful in applica-
tions such as PCI Express where RXxSIGDET is used to detect a beacon signal 
while the remainder of the link is powered down. The control register bit 
cannot be written or read while the link is powered down.

2.3.6 JTAG 1149.1/1149.6 and Bypass Mode Operation
The HSS EX10 core receiver supports a bypass mode of operation in which 

the data deserialization logic is bypassed, and the serial data input value is 
driven to a bypass data output of the core. This bypass function is sometimes 
used to support lower speed source–synchronous interfaces for legacy applica-
tions. This bypass function is also required for compliance with JTAG 1149.1 
and JTAG 1149.6 [1, 2].
2.3.6.1 Receive Bypass Path

The RXxBSOUT bypass data output supports the receiver bypass feature 
and is limited to toggle rates of 100MHz or less. The logic value of the differ-
ential data on the serial data input is driven to the RXxBSOUT pin.
2.3.6.2 JTAG 1149.1 Mode

JTAG 1149.1 requires that all chip inputs must be observable in a JTAG 
BSR under the control of a JTAG TAP Controller. JTAG 1149.1 is used to 
perform stuck-at fault testing during the manufacture of printed circuit boards. 
The receiver bypass feature is of particular use to provide JTAG compliance 
on interfaces that are connected to HSS receivers. 
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A block diagram of the JTAG function for the HSS EX10 core is shown in 
Fig. 2.6. The HSSJTAGCE pin forces the HSS core into a mode which support 
JTAG 1149.1 (or 1149.6), including forcing all receivers into bypass mode. In 
this mode, the RXxBSOUT outputs reflect the value being received by the 
differential receiver. For JTAG compliance, RXxBSOUT outputs must be 
captured in JTAG BSR cells. 
2.3.6.3 JTAG 1149.6 Mode

The JTAG 1149.1 DC stuck fault testing cannot be used to test links which 
include decoupling capacitors in the channel. JTAG 1149.6 transmits pulse 
waveforms which propagate through the decoupling capacitor and are received 
by a JTAG 1149.6 receiver circuit. JTAG 1149.6 is also be used to perform 
independent testing of the true/complement legs of the serial signal. 

The JTAG1149.6 receiver circuit is shown in Fig. 2.6, along with the 
associated RXxACJZTP and RXxACJZTN outputs of the core. These outputs 
are latched in the JTAG 1149.6 BSR, and fed back to the RXxACJPDP and 
RXxACJPDN inputs of the core.

Figure 2.10 illustrates the propagation of JTAG 1149.6 pulse signals 
through the decoupling capacitors of the link.

Fig. 2.10 JTAG test receiver waveforms
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The signals in Fig. 2.10 are defined as follows:
Before Capacitor = HSS TX output before the AC coupling capacitor
Vinp = RXxIP or RXxIN (differential HSS RX input)
Vinn = Delayed internal Vinp signal at Test Receiver (TR) comparator
Vinp–Vinn = Signal detected by the TR’s edge detection circuit
PreData = RXxACJPDP or RXxACJPDN pin
PreClock = HSSACJPC pin
Z = RXxACJZTP or RXxACJZTN pin (output of TR)

The horizontal points in Fig. 2.10 are:
1. Z transitions high in response to the rising edge of the input signal
2. Z transitions low in response to the falling edge of the input signal
3. Z transitions high due to the hysteretic memory being loaded via 

PreData/PreClock
4. Nothing happens at this rising edge because output is already high
5. Z transitions low in response to falling edge of the input signal
6. Nothing happens at in response to PreData/PreClock since output is 

already at desired value
7. Z transitions high in response to the rising edge of the input signal
8. Z transitions low in response to falling edge of the input signal

The JTAG 1149.6 receiver has hysteresis built in as shown in Fig. 2.11. 
RXxACJZTP/N outputs are generated per the truth table in Table 2.19. 

Fig. 2.11 Hysteresis diagram of the ACJTAG test receiver
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2.3.7 Half-Rate/Quarter-Rate/Eight-Rate Operation
Similar to the discussion related to the transmitter, the HSS EX10 includes 

modes of operation which allow the core to operate at a fraction of the baud 
rate for full-rate mode. Half-rate, quarter-rate, and eighth-rate link operation is 
supported. These modes cause the RXxD serial data to be undersampled as it 
is shifted into internal shift registers used for deserialization. The net effect is 
that serial data is sampled at half, quarter, or one-eighth the rate of full-rate 
operation. Selection of the rate mode is performed using the Rate Select bits in 
the Receive Configuration Mode Register, and may be performed indepen-
dently for each link. If lower speeds of operation are required, external logic 
may be used to further divide the sample rate of the parallel data.
2.3.7.1 RXxDCLK Behavior for Half/Quarter/Eighth Rate

Activation of half-rate mode causes the receive core to double the time 
period of the RXxDCLK output as well as double the timing of the deserializer 
logic on a per-port basis. This has the effect of reducing the throughput by a 
factor of two. Activation of quarter-rate mode corresponding causes the time 
period of RXxDCLK to quadruple and reduces throughput by a factor of four; 
eighth-rate mode causes the time period of RXxDCLK to octuple and reduces 
throughput by a factor of eight.

When using external logic to implement additional fractional rate modes, 
care should be taken to determine what mode of the HSS core is used to 
implement the fractional rate mode. For example, the external logic may force 
the HSS core into full-rate mode when implementing a 16th-rate mode through 
external logic. The HSS rate mode being used affects the RXxDCLK 
frequency and therefore correct understanding is necessary in order to properly 
analyze timing of the interface. 

Table 2.19  Truth table for AC JTAG test receiver when HSSJTAGCE=1 

RXxIP/N HSSACJPC RXxACJPDP/
RXxACJPDN

RXxACJZTP/
RXxACJZTN

Transition from 0 to 1 
(HSSACJAC=1) or

Steady State 1 (HSSACJAC=0)

0 X 1

Transition from 1 to 0 
(HSSACJAC=1) or

Steady State 0 (HSSACJAC=0)

0 X 0    

No Transitionaa 1 0 0

No Transitiona 1 1 1

aHSSACJP=1 and RXxIP/N transition at the same time should not have occurred because 
they must be a mutually exclusive event in ac JTAG test
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If the application changes the rate mode, the chip designer needs to under-
stand how RXxDCLK behaves during the transition, and whether glitches are 
possible on this clock. For the HSS EX10 core, the RXxDCLK completes its 
current cycle, then remains at a steady “0” while the requested change is 
enabled, and then resumes normal operation at the new rate. Logic connected 
to this clock experiences a temporary disruption in the clock, but there is no 
glitching or slivering of the RXxDCLK during the rate/bus width transition. 
Data received during the mode change is invalid. 

Other core implementations may allow RXxDCLK to glitch or sliver 
during the transition. In such cases, the chip designer may wish to gate the 
clock outside the core during this transition. Alternatively, logic connected to 
this clock may be reset after the transition completes to ensure proper 
operation.

Internal PLL circuits are unaffected by the rate mode selection. The 
reference clock frequency should not be changed for fractional rate 
operation. Power dissipation, although reduced, does not scale linearly with 
data rate.

2.3.8 PRBS/Loopback Diagnostic Features
Diagnostic features are an essential part of any Serdes design. Such features 

support system fault isolation requirements, and facilitate chip testing and 
characterization. Essential diagnostic features for any Serdes include:
• Pseudorandom Bit Sequence (PRBS) Pattern generation/checking
• Support for loopback of data at key points within the system datapath
2.3.8.1 Test Patterns

The receiver contains a flexible test pattern data checker. The data checker 
is used to self-check the receiver port using an internal loopback test utilizing 
data generated by its companion transmitter port. The test pattern checker may 
also be used to self-check an entire TX-RX link with an external wrap back test 
using an external channel between a compatible transmitter and receiver. For 
the HSS EX10 core, the receiver controls to implement these tests are in the 
Receive Test Control Register. Six test patterns can be checked as was 
described for the transmitter in Table 2.15: PRBS7 normal and inverted, 
PRBS23 normal and inverted, and PRBS31 normal and inverted.
2.3.8.2 Loopback Paths and PRBS Checkers

The HSS EX10 core is a full-duplex configuration containing both trans-
mitters and receivers, and therefore includes the capability to loop the outputs 
of the transmitter slices to the inputs of the receiver slices. This permits testing 
through the entire datapath of the chip including the analog circuits. If the 
transmitter is generating a PRBS or other diagnostic pattern, this pattern can be 
validated using the PRBS Checker in the receiver. Table 2.20 illustrates pro-
gramming for the various loopback modes of the HSS EX10 core.
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Other cores implementing simplex core configurations containing only 
receivers may include simple transmitters and PRBS generator circuits for the 
sole purpose of providing a check of the PRBS pattern being sent. 

2.3.9 Phase Rotator Control/Observation
The phase rotator is a critical element embedded within the receiver archi-

tecture and by design serves a critical role in the clock recovery function. 
Although it is intended to operate automatically and without external interven-
tion, there are cases when some external control is desirable. 

The rotator contains a flywheel mechanism which, when enabled, provides 
a means of stepping the rotator in the absence of incoming data based on prior 
history of the timing characteristics of the data being received. This is intended 
to improve jitter tolerance and allow for extended run length data patterns. This 
flywheel can be disabled or reset by the Freeze Flywheel and Reset Flywheel 
bits of the Phase Rotator Control Register. A snapshot of the current phase 
rotator position may be read from the Phase Rotator Position Register. 

2.3.10 Support for Spread Spectrum Clocking
The receiver includes support for spread spectrum clocking (SSC). In a 

system using SSC, the reference clock frequency of the transmitter is 
frequency modulated at a low frequency around the nominal transmission rate. 
The receiver’s CDR circuit must have enough range to track this frequency 
shift and sample serial data correctly. SSC is typically used in systems to 
reduce electromagnetic interference (EMI) by spreading the radiated energy of 
the reference clocks and the transmitted data over a range of frequencies. SSC 
is required by some standards (including SATA and SAS). 

By default, the SSC support is turned off to maximize the jitter tolerance 
margin and ensure that the CDR recovers from a loss of lock without a reset. 

Table 2.20  Register settings for BIST tests 

Test mode

TX test control register RX test control register

Test 
pattern
[2:0]

PRBS 
Gen 

enable
[3]

PRBS 
reset
[4]

Test pattern
[2:0]

PRBS 
check 
enable

[3]

PRBS 
reset
[4]

FD
wrap 
Sel
[5]

Receiver internal 
loopback BIST

“000” 
through 
“101”

“1” 0->1->0 (must match 
TX pattern)

“1” 0->1->0 “1”

External loopback “000” 
through 
“101”

“1” 0->1->0 (must match 
TX pattern)

“1” 0->1->0 “0”

Normal operation ‘XXX’ “0” “0” ‘XXX’ “0” “0” “0”
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For the HSS EX10 core, SSC is supported up to !6,000ppm around the local 
reference clock modulated with a triangular waveform of no more than 33kHz. 
This is sufficient to support common SSC tolerance ranges such as !3,000ppm 
or 350/− 5,650ppm. When SSC is being used, the Spread Spectrum Clocking 
Enable bit in the Phase Rotator Control Register must be set. 

2.3.11 Eye Quality
Channel simulation methods were discussed in Chap.1, as well as the 

concept of an “eye” at the output of the receiver. This “eye” does not actually 
exist as an analog signal within the design, but rather was a virtual mathe-
matical “eye” in the digital logic domain at the output of the DFE. As such, 
there is no method for measuring the signal characteristics of this eye with 
test equipment in real hardware.

The channel simulations previously discussed are intended to characterize 
a system and allow the system designer to meet signal integrity goals. An 
inherent part of this process is to choose FFE coefficients which are optimal 
for a given channel design. Note, however, that this optimization is based on 
the characterized channels being representative of all systems. If significant 
variations exist due to manufacturing tolerances, the chosen coefficients may 
not always be optimal. Either excess margin must be built into the system or 
yield fallout must be tolerated in order to overcome this. Either of these 
impacts system manufacturing cost.

A better approach would be to optimize FFE coefficients dynamically 
based on signal measurements within the system. This would require an ability 
to “measure” the virtual “eye” at the output of the receiver’s DFE. Such 
measurement requires logic features built into the receiver. 

The HSS EX10 core does provide eye quality measurement features. The 
DFE Data and Edge Sample Register, DFE Amplitude Sample Register, and 
the Eye Width field of the Digital Eye Control Register provide parametric 
information regarding the eye opening of the received signal. Values are 
captured in these registers when directed by the Sample DFE Request bit in the 
DFE Control Register. Software pulses this bit, and then polls until the Sample 
DFE Request Complete bit is set in this register. After this bit is set, valid 
values may be read from the other registers.

In addition, the HSS EX10 provides an alarm mechanism to flag when the 
eye opening is less than programmed amplitude or eye width limits. Limit 
values are programmed in the Digital Eye Control Register. When parametric 
measurements of the received signal violate the Minimum Eye Width Interrupt 
Threshold value, the Eye Width Error Flag bit is set in the Internal Status 
Register. Likewise, violations of the Minimum Eye Amplitude Interrupt 
Threshold value cause the Eye Amplitude Error Flag to be set. Any change to 
status bit values in the Internal Status Register for any receive slice in the core 
causes the HSSEYEQUALITY output to be asserted.



80 High Speed Serdes Devices and Applications

2.3.12 SONET Clock Output
Some applications require that data be transmitted using a frequency 

reference derived from the recovered clock frequency of the received data 
(called loop timing). Although the RXxDCLK output reflects the recovered 
clock frequency, this output of the HSS core is not differential and therefore is 
not readily usable as a reference clock for the transmitter.

The RXxRCVC16T/C pins of the HSS EX10 core provide a differential 
clock output which is a suitable reference clock running at the recovered clock 
frequency. The Sonet Clock Control Register enables and selects the frequency 
of this clock. If not used, the clock should be disabled to reduce power.

Applications using this clock connect the RXxRCVRC16[T,C] pins of one 
of the receiver slices to a PLL (for jitter clean-up), and connect the output of 
the PLL to the HSSREFCLK[T,C] inputs of another HSS EX10 core driving 
the transmit data. (This clock output should never drive the 
HSSREFCLK[T,C] inputs of the same core!) 

2.3.13 Features to Support PCI Express
The HSS EX10 core includes support for features which are either required 

or optional for implementations of the PCI Express standard. These PCI 
Express related features in the HSS receiver are described below.
2.3.13.1 Beacon Signaling

Beacon signaling is optional in the PCI Express specification as described 
in Sect. 5.5.3.2. When the link is in a PCI Express L2 power state, the trans-
mitter can request exit from this power state by sending a beacon signal. 

While the receiver would typically be powered down while the link is in an 
L2 power state, power down of the signal detect circuit of the receiver is sep-
arately controlled. The HSS EX10 core includes an RXxSIGDETEN input 
which controls power to the signal detect circuit. Link logic continues to enable 
the signal detect circuit while in power down states, and can therefore detect 
beacon signaling on the link using the RXxSIGDET status output of the core.
2.3.13.2 PCI Express Power States

PCI Express defines a number of link power states which are described in 
Sect. 5.5.4. The HSS EX10 core provides a RXxSTATEL1 pin which removes 
power from most of the receiver. Link logic may assert this pin when in the L1 
power state in order to reduce power dissipation. (Other pins exist on the 
transmitter and PLL slices to support PCI Express power states and are 
described elsewhere in this chapter.)

2.4  Phase-Locked Loop (PLL) Slice
The PLL slice is usually common to all transmitter and receiver links in the 

core. The block diagram of the PLL slice used in the HSS EX10 core is shown 
in Fig. 2.12. The primary purpose of the PLL slice is to provide high-speed 
clocks to the transmitter and receiver slices that are frequency locked to a 
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reference clock input. However, this slice is also the natural place to put other 
miscellaneous logic which is common to all transmitter and receiver links. In 
the HSS EX10, reset sequencers and miscellaneous registers for link reset and 
enable are included in the PLL slice.

2.4.1 Reference Clock
The HSSREFCLK[T,C] pins are the reference clock input to the PLL slice 

of the HSS EX10 core. The HSSREFCLKT pin is the true leg of the differential 
signal pair; the HSSREFCLKC pin is the complement leg. This clock must be 
driven by a low-jitter differential clock source for best jitter performance.

Fig. 2.12 Phase locked loop block diagram
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2.4.2 Clock Dividers
There are several clock dividers in the PLL slice. On the HSS EX10 core, 

the HSSREFDIV and HSSDIVSEL[1:0] pins are control signals for clock 
dividers which can be provisioned to support a range of frequency options for 
HSSREFCLK[T,C]. 

HSSDIVSEL[1:0] controls the frequency multiplication factor between the 
VCO C1 clock output and the feedback clock (FBCLK). For the HSS EX10 
core, 16, 20, 32, or 40 multiplier values are supported.

In addition, the HSSREFDIV input selects whether or not HSSREFCLK is 
divided by two prior to the VCO input. If HSSREFDIV is “0” then the 
frequency of HSSREFCLK is equivalent to FBCLK; otherwise HSSREFCLK 
is twice the frequency of FBCLK. The latter case generally results in better 
system jitter performance, however, the drawback is that a higher frequency 
HSSREFCLK must be distributed on the chip.

The HSS EX10 PLL Slice also contains additional dividers which divide 
the VCO C1 clock output for distribution to the TX/RX slices.

2.4.3 Power On Reset
Power-on-reset is initiated by asserting the HSSRESET pin for a minimum 

number of reference clock cycles as shown in Fig. 2.13. The HSSRESETOUT 
output of the HSS EX10 is driven active once the core enters a reset state, and 
remains active until after the VCO calibration completes and clock outputs of 
the core are at stable frequencies. This output may be used as a reset by logic 
surrounding the HSS core. 

Fig. 2.13 Power on reset (POR) sequence
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HSSPLLLOCK is asserted once the internal VCO clocks are determined to 
be frequency locked to the HSSREFCLK input. 

The HSSPRTREADY output pin is deasserted while the core is in a reset 
state; and is reasserted when the reset sequence of the PLL slice has completed 
and the registers of the transmitter and receiver slices are ready to be written 
and/or read. Note that additional initialization of the logic in the transmitter and 
receiver slices occurs after this, as is described in Sect. 2.5. 

2.4.4 VCO Coarse Calibration
VCO within the PLL requires calibration after a power-on-reset. As is the 

case with most VCO designs that must operate over a wide range of frequen-
cies, there are a number of tuning bit inputs to the VCO which must be set to 
optimal values to select frequency band and reference voltage level. Setting 
these bits can be left as an exercise to the user for some cores; the HSS EX10 
core contains state machine logic which determines the optimal tuning settings 
without user intervention. Calibration results are reported in the VCO Coarse 
Calibration Status Register.

Different VCO calibration algorithms may be employed by HSS cores, and 
it is beyond the scope of this text to describe any given algorithm. Some cores 
provide registers to allow the user to override values of various tune bits and/or 
read tune bit settings and VCO status. Details of such functions are specific to 
the PLL slice design. 

VCO calibration occurs as part of a reset sequence of the HSS EX10 core. 
After the reset completes, the application may force recalibration using either 
the HSSRECCAL input pin or the Recalibrate bit of the VCO Coarse Calibra-
tion Control Register. 

2.4.5 PLL Lock Detection
The HSSPLLLOCK output is asserted to indicate the PLL is frequency 

locked to the selected reference clock. The HSS EX10 core determines the lock 
condition by comparing the frequency of the PLL feedback clock (FBCLK) in 
Fig. 3.7 to that of the reference clock (REFCLK). 

The PLL Lock Detect circuit for the HSS EX10 core is described in detail 

one counter clocked by REFCLK. Each of these counters is allowed to run for 
some specified period of time. If the number of times one of these counter is 
clocked is more or less than the other counter (with some tolerance), then the 
clock frequencies are not the same, indicating the PLL is not locked. If the two 
counters have counted roughly the same number of clock cycles, then the PLL 
is locked, and HSSPLLLOCK is asserted.

The length of time over which the clock frequencies are compared deter-
mines the accuracy of the lock condition being reported. If there is a frequency 
delta between the two clocks, but the delta is sufficiently small, then HSS-
PLLLOCK may be reported despite a minor frequency difference.

in Sect. 3.1.4.2. This circuit contains one counter clocked by FBCLK, and 
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2.4.6 Reset Sequencer
A series of reset signals is distributed in the core to synchronize various 

circuit functions in various clock domains. There are various clock dividers 
located in both the PLL slice and in the individual transmitter and receiver 
slices. The HSS EX10 PLL slice generates reset signals which are sequentially 
asserted in order to ensure the circuit exits reset in an orderly manner. Various 
divided clock outputs of the PLL slice are gated off during portions of the reset 
sequence. This sequence is initiated by assertion of the HSSRESET pin, the 
HSSRESYNCCLKIN pin, the HSSRECCAL pin, or the Recalibrate bit of the 
VCO Coarse Calibration Control Register. 

The reset sequencer is initiated after the VCO calibration completes. 
Following completion of the reset sequence, the HSSPRTREADY output is 
asserted. Prior to assertion of this signal, the user should not attempt to access 
core registers or expect serial data transmission or reception.

Note that the EX10 core has additional initialization actions which must 
occur in the individual transmitter and receiver slices after the PLL slice 
completes the reset sequence. Other status conditions may need to be checked 
to determine whether individual transmitter and receiver slices have completed 
their initialization sequence and are ready to use.

2.4.7 HSS Resynchronization
2.4.7.1 Transmitter Resynchronization

The requirement to synchronize the clock dividers of the HSS transmitter 
to minimize lane-to-lane skew was discussed previously in this chapter, and is 
noted again in subsequent chapters as the application requirements of various 
protocols are discussed. The HSS EX10 core exits the reset sequence with the 
transmitter clock dividers aligned. (This may not be true for other cores.) 
However, subsequent changes to the TX configuration (such as updating the 
data width or rate mode selection) affect the operation of the clock divider in 
the transmit logic. After updates to the transmitter configuration, the 
TXxDCLK outputs of the various HSS TX slices do not have any guaranteed 
phase relationship. Any TXxDCLK phase difference introduces skew onto the 
transmitter outputs which may exceed the specifications for the application. 

To meet such skew specifications the transmit slice logic of the HSS cores 
must be resynchronized after being configured in order to realign the phases of 
the TXxDCLK. The difficulty of implementing such a resynchronization 
function, especially when the alignment must be performed across multiple 
HSS cores, should be noted. The clock divider logic divides the internal high-
speed C2 clock down to the frequency at which the parallel data bus is clocked. 
The high-speed clock in the HSS EX10 core runs at baud rate divided by 2, 
which may be as high as 5.55GHz for this core. In order to successfully 
resynchronize the clock dividers in all of the HSS transmit channels, all of the 
clock dividers must be reset in the same cycle of this 5.55-GHz clock.
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The complexity of this problem increases when multiple HSS cores are 
involved. Each core has its own PLL, and while all of the PLLs are assumed to 
be locked to the same reference clock, there is some inherent phase variation 
between the high-speed clocks produced by each PLL. This reduces the 
window in which the reset must occur in order to reset multiple cores in the 
same clock cycle.

The typical solution for this problem at lower speeds is to synchronize the 
reset to a 5.55-GHz clock, and drive this reset synchronously to all clock 
dividers. However, this cannot be implemented in a typical ASIC because the 
clock is simply too high a frequency. The propagation delay of the reset signal 
from a synchronizer flip-flop to the various HSS cores would exceed the cycle 
time of the 5.55-GHz clock. 

The HSS EX10 core solves the problem by using a reset which is synchro-
nized to a lower frequency clock, and then distributing this reset and gating it 
within the HSS core to ensure all clock dividers in the HSS core are reset in the 
same cycle of the high-speed clock. 

Two signals on the HSS EX10 core are associated with the resynchroniza-
tion feature:
HSSRESYNCCLKOUT: This output of the HSS EX10 core is the clock used 
to synchronize the resync reset signal. Although this clock is of low frequency 
than the internal high-speed clock, the frequency is higher than that of the 
parallel data clocks. For the HSS EX10 core, the frequency of this clock is 
equivalent to the HSSREFCLK input. (This does not mean the HSSREFCLK 
can be used instead of using this output. The HSSRESYNCCLKOUT clock 
and HSSREFCLK are mesochronous.)
HSSRESYNCCLKIN: This input of the HSS EX10 core is a reset signal 
which is asserted to perform the resynchronization function. The signal must 
be synchronized to HSSRESYNCCLKOUT. 

In order to resynchronize the transmitters of a single HSS core, the chip 
designer must implement logic as shown in Fig. 2.14. The Resync Input control 
to the circuit is first synchronized to the falling edge of 

Fig. 2.14 Resynchronization logic for a single core configuration
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HSSRESYNCCLKOUT, and then is retimed to the rising edge before driving 
HSSRESYNCCLKIN. The flip-flop which drives HSSRESYNCCLKIN 
should be physically located near the HSS core pin on the chip.

This logic is extended in Fig. 2.15 to resynchronize multiple HSS cores. 
The Resync Input control is first synchronized to the falling edge of the 
HSSRESYNCCLKOUT from one of the cores, and then retimed to the rising 
edge of each individual HSSRESYNCCLKOUT. Flops are added between this 
retiming stage and the HSS core so that the retiming stage can be physically 
located near the centralized synchronizer, and the last flop can be physically 
located near the HSS core pin. Based on the physical distance between the HSS 
cores, additional flops may need to be added.

The configuration of this logic (first synchronizing the Resync Input input 
to the falling clock edge, and then retiming to rising edges) is key to 
performing the synchronization across multiple cores. While the various 
HSSRESYNCCLKOUT clocks are not in phase with each other, the specified 
variation is less than half of the clock cycle. Therefore, synchronizing to the 
falling edge of one of the clocks ensures that all of the retiming flops see the 
signal in the same cycle in their respective clock domains. 

Fig. 2.15 Resynchronization logic for a multiple core configuration
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2.4.7.2 Receiver Resynchronization
The resynchronization feature of the HSS EX10 core also synchronizes 

clock dividers in the receiver logic. However, RXxDCLK phases diverge on 
the receiver during normal operation because the phase rotator logic in each 
receiver slice makes independent update decisions as it tracks the recovered 
frequency of the receive data. Therefore receiver resynchronization has no 
practical purpose in most applications.

2.4.8 PCI Express Power States
PCI Express defines a number of link power states which are described in 

Sect. 5.5.4. The HSS EX10 core includes an HSSSTATEL2 pin which 
removes power from most of the core including the PLL. Link logic may assert 
this pin when in the L2 power state in order to reduce power dissipation. (This 
pin overrides the L1 power state controls on the TX/RX slices.)

2.5  Reset and Reconfiguration Sequences
Once the HSS links have been initialized, calibrated, and trained, then data 

is transmitted and received through the serial link. However, it is also instruc-
tive to understand the sequences of operations necessary to initialize and 
reconfigure the links, including:
• The procedure for initializing, calibrating, and training the link
• Procedures for changing operating parameters of the link (i.e., data rate, 

FFE coefficients, etc.)
• Procedures for entering and exiting power down modes.

This section describes these operational sequences. Although the 
programming details are described for the fictional HSS EX10 core, the 
concepts apply broadly to HSS cores from many vendors. 

2.5.1 Reset and Configuration
Power-on initialization of the HSS core requires a complex series of events 

to occur within the core. The power-on reset signal (HSSRESET on the HSS 
EX10 core) resets registers within the core and initiates this series of events. 
First, the PLL is calibrated and locked to the reference clock while the transmit 
and receive logic is held in a reset state. Then, the clock dividers in the transmit 
and receive logic are initialized and the logic is enabled for transmitting and 
receiving data. Once this happens, the CDR circuit in the receive logic must 
train on the data eye before data can be received correctly. If the receiver 
contains a DFE, this circuit is also trained and filter coefficients are set.

The reset values of the HSS registers may or may not reflect the desired rate 
mode, bus data width, transmit amplitude, signal detect threshold, FFE 
coefficient values, etc., for the desired application. External intervention (by 
hardware state machines or by software programming) may therefore be 
required during the initialization process to set appropriate operating modes. 
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Such programming cannot occur until after the completion of prerequisite parts 
of the initialization process. For example, FFE coefficient values and other 
transmitter operating mode parameters cannot be programmed before the PLL 
is locked because the transmitter is held in a reset state. 

A flowchart of the reset process for the HSS EX10 is shown in Fig. 2.16. 
Some steps may not apply to a given HSS core, and signal names or status 
indications may vary. However, in a general sense these steps (or a subset of 
them) apply in most cases. Detailed descriptions of these steps follow:
Apply power. Turn on the power supplies to the core, paying attention to any 
power sequencing requirements. If absolute maximum voltages are specified, 
voltages should never exceed these values, even for transient periods when the 
power is first applied. 
Allow time for core input conditions to stabilize. Core inputs, including the 
following, must stabilize before continuing:
• Power supply voltages must be stable within recommended operating 

ranges.
• The HSSREFCLK input must be stable and operating within specified 

frequency limits. Any PLL generating this clock should be locked.
• Core input pins must be stable and at valid logic levels. Some pins may 

require specific values to permit the core to initialize properly.
Note that some core outputs may not be defined at this point in the sequence. 
For example, the RXxDCLK and TXxDCLK outputs may not be running or 
may be running at frequencies other than their normal specifications.
Reset the HSS core. Once the inputs and power supplies are stable, as previ-
ously described, the HSSRESET pin should be asserted and deasserted as 

sequence shown in Fig. 2.16, which includes coarse calibration of the VCO. 
All input pins on the core which affect PLL operation must be stable through-
out the reset sequence. 

While the above description is specific to the HSS EX10 core, any HSS 
core with a PLL must execute some form of calibration procedure. This 
procedure is initiated by a core reset or other control signal, and a status 
indication is asserted upon completion.
Wait for PLL reset completion. This status indication may take different forms 
on different cores. On the HSS EX10 core, the rising transition of the 
HSSPRTREADY pin indicates completion of the PLL reset sequence.

Depending on the PLL slice architecture and the VCO calibration 
algorithm, it is possible for VCO calibration to fail. If VCO calibration fails, 
the PLL never locks to the reference clock, and HSSPRTREADY is never 
reasserted. Chip logic and/or software should implement a timeout in order to 
initiate diagnostic and recovery actions should this circumstance occur.

described in Sect. 2.4.3. The PLL slice of the core then begins the reset 
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Fig. 2.16 Reset sequence flow
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Registers should not be accessed while VCO calibration is in progress. Internal 
clocks are not stable, and registers may be held reset during this process. The 
notable exception to this rule applies to registers in the PLL slice which may 
be accessed for diagnostic and recovery purposes in the event of VCO calibra-
tion failure.
Update the transmitter configuration (if necessary). After HSSPRTREADY 
is asserted to indicate completion of the PLL slice reset, the transmitter begins 
to serialize and transmit data on the TXxD inputs based on operational 
parameters set by input pin values and/or default values in internal registers for 
the transmitter logic. At this point, values of these parameters may be 
reprogrammed as needed for the application. This procedure will be covered in 
more detail shortly.
Supply parallel data to the transmitter data inputs. Once transmitter 
parameters are set for the desired operating conditions, protocol logic drives 
transmit data on the TXxD parallel data inputs of the transmitter. 
Wait for the receiver to finish calibration. While the transmitter can 
commence operation immediately after the reset sequence completes, the 
receiver must train on the incoming serial data before valid data can be 
received. Both CDR and DFE circuits require a training period before valid 
data is received. The time required for the CDR to train is usually relatively 
short, however, receivers with DFEs generally required a longer training 
period since the training sequence must execute a convergence algorithm to 
determine DFE coefficients. For the HSS EX10 core, DFE training may take 
up to 410µ s as measured from the assertion of HSSPRTREADY, and 
assuming there is serial data to receive on the link when the core exits reset. 
The HSS EX10 core provides a status indicator (bit 4 in the Internal Status 
Register) indicating completion of DFE training.
Update the receiver configuration (if necessary). After the receiver completes 
training, the receiver deserializes and drives data onto the RXxD outputs based 
on operational parameters set by input pin values and/or default values in 
internal registers. Values of these parameters may be reprogrammed as needed 
for the application at this time. This procedure will be covered in more detail 
shortly. 
Link operational. The receiver now starts to receive valid data. The application 
protocol may begin its initialization, performing functions as described in 
Chap.4.

2.5.2 Changing the Transmitter Configuration
The reset procedure described above included a step where the configura-

tion of the transmitter is changed. For HSS cores that do not have internal reg-
isters, input pins would presumably be tied to their operational values as 
determined by the application, and no updates would be required. However, 
HSS cores which have internal registers initially use a default configuration 
(determined by register reset values) following the reset sequence. If the 
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application requires a configuration other than this default, then reprogram-
ming these registers is necessary.

Some applications may also require the transmitter configuration to be 
reprogrammed at times other than immediately after a reset. For example, 
some protocols negotiate link speed and therefore require reprogramming the 
Rate Select controls in the Transmit Configuration Mode Register and the 
Receive Configuration Mode Register. Some IEEE 802.3 Backplane Ethernet 
variants negotiate FFE coefficients, as is described in Sect. 5.3.5.1. 

The following is a general description of the procedure used to change the 
transmitter configuration for the HSS EX10 core. This flow is described in 
Fig. 2.16 as an expansion of the Update Tx Configuration step. Depending on 
the application and the transmitter parameters being updated, some or all of 
these steps may be required:
Disable unused links. Some of the transmitter and/or receiver channels may be 
unused for some chip designs and applications. HSS cores provide a means of 
disabling unused links so that they do not consume power or generate noise. 
For the HSS EX10 core, this is performed using a Link Enable Register which 
is part of the PLL slice register map. After reset, all links are enabled, and must 
be reprogrammed to turn them off if they are not used.
Shut off the transmitter output. The TXxTS can be deasserted to shut off 
transmitter outputs while the transmitter is being reconfigured.
Set data rate and bus width. Registers are written and/or core inputs are 
changed to select the data rate and the TXxD parallel data bus width. These 
settings affect the function of the transmitter clock dividers, and change the 
TXxDCLK frequency. As discussed in Sect. 2.2.5.1, this clock may “glitch” or 
“sliver” during this transition depending on the core design. If such glitches 
can occur, this behavior must be taken into account when designing protocol 
logic to connect to the HSS transmitter.
Resynchronize the links. TXxDCLK outputs will not remain in phase with 
each other when the data rate and bus width are reprogrammed. Multilane 
applications with skew requirements between transmitter lanes require the 

of the HSS EX10 core.
Update transmitter electrical and filter parameters. The HSS EX10 core is 
representative of the types of electrical and filter parameters which may be 
provisionable on a typical transmitter. This core provides register control of the 
following transmitter parameters, which can be provisioned at this step in the 
process:
• Slew rate (Transmit Driver Mode Control Register – Slow Slew Control)
• Differential voltage amplitude (Transmit Power Register)
• FFE Mode (Transmit Driver Mode Control Register – FFE Mode Select)
• FFE Coefficient Values (Transmit TapX Coefficient Registers)

transmitters to be resynchronized. Sect. 2.4.7 describes resynchronization 
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Load transmitter electrical and filter parameters. For the HSS EX10 core, the 
Apply Load bit in the Transmitter Coefficient Control Register must be written 
for most of the above parameters to be applied to the analog circuits. 
Note that provisioning of transmitter filter parameters must generally occur 
after any updates to the data rate and bus width. FFE designs often scale 
operation based on baud rate, and are dependent on the data rate being set 
properly prior to updating the mode. 
Turn on the transmitter output. If TXxTS was deasserted previously, then it is 
reasserted at this time. .

The above procedure can be adapted with steps omitted as necessary based 
on which parameters are to be updated. For instance, changing the data rate can 
be achieved by reducing the above sequence to only the set data rate and bus 
width step. (For multilane applications, the resynchronize the links step is also 
required.)

2.5.3 Changing the Receiver Configuration
As was the case for the transmitter, the receiver initially uses a default con-

figuration (determined by register reset values) following the reset sequence. 
If the application requires a configuration other than this default, then repro-
gramming these registers is necessary. Additionally, some applications may 
also require the receiver configuration to be reprogrammed at times other than 
immediately after a reset. 

The following is a general description of the procedure that is used to 
change the receiver configuration for the HSS EX10 core. This flow is 
described in Fig. 2.16 as an expansion of the Update Rx Configuration step. 
Depending on the application and the receiver parameters being updated, some 
or all of these steps may be required.
Disable unused links. As was the case for the transmitter, some transmitter 
and/or receiver channels may be unused for some chip designs or applications. 
Unused receiver channels should be disabled. On the HSS EX10 core, the Link 
Enable Register is used to disable unused links.
Note that the Link Enable Register on the HSS EX10 core does not disable the 
signal detection circuitry. The RXxSIGDETEN pin turns off this circuitry, if 
desired.
Set data rate, bus width, and operating mode. Registers are written and/or 
core inputs are changed to select the data rate, the RXxD parallel data bus 
width, and the operating mode (non-DFE, DFE3, or DFE5 on the HSS EX10 
core). 
The data rate and bus width settings affect the function of receiver clock 
dividers and change the RXxDCLK frequency. As discussed in Sect. 2.3.7.1, 
this clock may “glitch” or “sliver” during this transition depending on the core 
design. If such glitches can occur, this behavior must be taken into account 
when designing protocol logic to connect to the HSS receiver.
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Reset the DFE. Changes to the data rate and DFE operating mode generally 
cause corruption of data and require reinitialization of the DFE circuit. The 
DFE Reset bit in the DFE Control Register of the HSS EX10 forces the DFE 
to reinitialize and retrain.
Set spread spectrum clocking mode. If SSC is employed by the application, 
this mode is enabled and any parameters are provisioned in this step.
Set signal detect threshold. Different applications specify different threshold 
levels to delineate between signal detected and loss of signal conditions. HSS 
cores often allow provisioning of the detection threshold for the signal 
detection circuit. This threshold should be provisioned, if applicable, in this 
step.
Wait for completion of CDR/DFE training. After changing the data rate, DFE 
mode, or resetting the DFE, the CDR and (if applicable) the DFE circuits must 
retrain. This requires some delay before the receive data is valid. The HSS 
EX10 core provides a status indicator (bit 4 in the Internal Status Register) 
indicating completion of DFE training. 

As was the case for the transmitter, the above procedure can be adapted 
with steps omitted as necessary based on which parameters are to be 
updated. 

2.6  References and Additional Reading
A comprehensive list of interface standards documents for various network 

protocols can be found in Sect. 5.6. Refer to that list for more information on 
standards mentioned in this chapter.

In addition, the following standards documents are referenced in this 
chapter:
1. “IEEE Std 1149.1-2001 IEEE Standard Test Access Port and Boundary-

Scan Architecture”, Institute for Electrical and Electronic Engineers, 
2001.

2. “IEEE Std 1149.6-2003 IEEE Standard for Boundary-Scan Testing of 
Advanced Digital Networks”, Institute for Electrical and Electronic 
Engineers, 2003.

Interested IBM employees and IBM ASIC customers may also wish to 
consult the following IBM HSS databooks. The HSS EX10 core described in 
this chapter was loosely based on these cores.
3. “High Speed Serdes (HSS) – 8.5 to 11.1 Gbps for Cu-08 Core Databook”, 

SA15-5852-04, IBM.
4. “High Speed Serdes (HSS) – PCI Express Gen 2 for Cu-08 Core 

Databook”, SA15-5846-02, IBM.
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2.7  Exercises
1. An HSS EX10 transmitter slice is operating at 8.5Gbps. What is the 

frequency of the TXxDCLK output corresponding to the following 
configuration values for the Transmit Configuration Mode Register? 
What pins of the TXxD bus are used for each of these configurations?
(a) 0x00  (b) 0x04  (c) 0x01. (d) 0x0E
(e) 0x0D  (f) 0x03  (g) 0x0F. (h) 0x05

2. An HSS EX10 receiver slice is operating at 10.3125Gbps. What is the 
frequency of the RXxDCLK output corresponding to the following 
configuration values for the Receive Configuration Mode Register? What 
pins of the RXxD bus are used for each of these configurations?
(a) 0x00  (b)0x04  (c)0x01  (d)0x0E  (e)0x0D  (f)0x03  (g)0x0F  (h)0x05

3. Specify a series of register write cycles (specifying register address and 
data) that resets the FFE coefficient logic and then programs the registers 
of the HSS EX10 to set and apply the following parameters:
• FFE Coefficients (decimal): C0 = − 3, C1 = +18, C2 = +14
• Transmit Amplitude: 0x70
• Slew 50ps min.

4. The Link Enable Register and the Link Reset Register are both 
implemented in the HSS EX10 PLL slice even though these registers 
control the transmitter and receiver slices. Why?

5. What value should be written to the Link Enable Register to disable the 
following combinations of channels?
(a) Disable TXA, TXB, and RXA
(b) Disable TXD and RXD
(c) Disable all channels except TXA and RXD

6. Specify a series of register write cycles (specifying register address and 
data) that switches all transmitter channels from Full-Rate mode to 
Quarter-Rate mode.

7. Specify the reference clock frequencies, PLL slice HSSDIVSEL and 
HSSREFDIV pin values, and Transmit Configuration Mode Register 
setting necessary to achieve the following baud rates. Note that there may 
be multiple correct answers:
(a) 8.500Gbps  (b) 2.125Gbps  (c) 1.250Gbps
(d) 3.125Gbps  (e) 10.3125Gbps
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8. Assume HSS EX10 PLL slice pins are tied as follows: HSSDIVSEL = 00, 
HSSREFDIV = 1. Specify the reference clock frequencies and Receive 
Configuration Mode Register setting necessary to achieve the following 
baud rates.
(a) 8.500Gbps  (b) 2.125Gbps  (c) 1.250Gbps
(d) 3.125Gbps  (e) 10.3125Gbps

9. Two HSS EX10 cores are used in a SONET application requiring a baud 
rate of 2.488Gbps. The transmitter must transmit data at exactly the same 
baud rate as the received data:
(a) Draw the clock connections between the two HSS EX10 cores that 

are necessary to implement this system. 
(b) For the HSS EX10 being used to receive the SONET data, specify the 

reference clock frequency, PLL slice HSSDIVSEL and HSSREFDIV 
pin values, the Receive Configuration Mode Register setting, and the 
SONET Clock Mode Register setting.

(c) For the HSS EX10 being used to transmit the SONET data, specify 
the PLL slice HSSDIVSEL and HSSREFDIV pin values, and the 
Transmit Configuration Mode Register setting.

10. Why is it not possible to connect JTAG Boundary Scan Cells directly onto 
the serial data?

11. Name all of the HSS EX10 transmitter slice pins associated JTAG 1149.1 
or 1149.6 implementation, describe the function of these pins, and 
describe how these pins are connected.

12. Name all of the HSS EX10 receiver slice pins associated JTAG 1149.1 or 
1149.6 implementation, describe the function of these pins, and describe 
how these pins are connected.

13. What additional test coverage is provided by JTAG 1149.6 over that of 
JTAG 1149.1? Which pins of the HSS EX10 are specifically associated 
with JTAG 1149.6 and are not used for JTAG 1149.1?

14. Assume the HSS EX10 receiver is programmed such that data is received 
on RXxD[19:0]. This receiver is used in an application where the bit 
sequence “11000000110011111100” is used as a training pattern. Design 
a state machine which has an input training_active, and an output which 
controls the RXxDATASYNC pin on the HSS EX10 receiver slice. When 
training_active is asserted, the state machine pulses RXxDATASYNC as 
needed until the training pattern is aligned on the correct bit boundary.
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15. Table 2.18 specifies two thresholds for the RXxSIGDET signal detect 
function on the HSS EX10 receiver slice:
(a) Explain the difference between the “good” signal and “bad” signal 

thresholds.
(b) What can you say about the state of RXxSIGDET when the amplitude 

of the received signal is between the “good” signal and “bad” signal 
thresholds.

16. The HSS EX10 TXA and RXA slices are to be placed in a wrap mode and 
tested using a PRBS23+ sequence. Specify a series of register write 
cycles (specifying register address and data) that executes this sequence.

17. An HSS EX10 transmitter and receiver are to be externally connected in a 
wrap configuration and tested using a PRBS31-sequence. Specify a series 
of register write cycles (specifying register address and data) that 
executes this sequence.

18. The HSS EX10 TXA and RXA slices are to be tested using pins on the 
core to control the PRBS test. Draw a timing diagram illustrating the 
sequence of events on the relevant pins.

19. Specify a series of register read and write cycles (specifying register 
address and data) that captures and reads the phase rotator position for the 
HSS EX10 receiver slice.

20. Specify a series of register read and write cycles (specifying register 
address and data) that captures and reads the DFE data, edge, and sample 
values for the HSS EX10 receiver slice.

21. Specify a series of register read and write cycles (specifying register 
address and data) that sets alarm thresholds for the digital eye amplitude 
and width. The eye amplitude alarm should be triggered if the eye 
amplitude is less than 25% of the full signal range, and the eye width 
alarm should be triggered if the eye width is less than 0.33 UI.

22. Specify a series of register read and write cycles (specifying register 
address and data) that sets alarm thresholds for the digital eye amplitude 
and width. The eye amplitude alarm should be triggered if the eye 
amplitude is less than 50% of the full signal range, and the eye width 
alarm should be triggered if the eye width is less than 0.39 UI.
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23. The relationship between HSSREFCLK, FBCLK, and various C1, C4, 
etc. clocks is illustrated in Fig. 2.12. For each reference clock frequency 
and divider setting below, determine the frequencies of the FBCLK, C1, 
C2, C4, C8, and C16 clocks:
(a) f (HSSREFCLK) = 500MHz, HSSDIVSEL = 11, HSSREFDIV = 0
(b) f (HSSREFCLK) = 900MHz, HSSDIVSEL = 11, HSSREFDIV = 1
(c) f (HSSREFCLK) = 550MHz, HSSDIVSEL = 10, HSSREFDIV = 0
(d) f (HSSREFCLK) = 1GHz, HSSDIVSEL = 00, HSSREFDIV = 0
(e) f (HSSREFCLK) = 1GHz, HSSDIVSEL = 01, HSSREFDIV = 0

24. Assume the VCO in the HSS EX10 PLL slice requires an operating range 
of 8.0–11.0 GHz for the C1 clock. How would you configure the HSS 
EX10 to achieve a baud rate of 5Gbps?

25. Draw a logic diagram for the resynchronization logic necessary to 
resynchronize four HSS EX10 cores which are subdivided into two 
groups of two cores each. Each group is to be resynchronized 
independently.

26. Draw a logic diagram for the resynchronization logic necessary to 
resynchronize four HSS EX10 cores which are subdivided into two 
groups of two cores each. A resync_mode control input is used to select 
which of two resynchronization configurations is to be used. If 
resync_mode = 0, then each group of two cores is resynchronized 
independently. If resync_mode = 1, then all four cores are resynchronized 
together. 

27. Specify a series of register read and write cycles (specifying register 
address and data) that sets the following configuration for all of the HSS 
EX10 transmitter slices:
• Half rate mode
• 16-bit data bus width
• FFE coefficients (decimal): C0 = –3, C1 = +33, C2 = +14
• Transmit amplitude: 0x68
• Slew 50ps min.

28. Specify a series of register read and write cycles (specifying register 
address and data) that sets the configuration listed in Exercise 27 for the 
TXA and TXB slices of an HSS EX10 core, and sets the following 
configuration for the remaining transmitter slices:
• Quarter-rate mode
• 10-bit data bus width
• FFE coefficients (decimal): C0 = +7, C1 = +35, C2 = −9
• Transmit amplitude: 0x5C
• Slew 50ps min.
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29. Specify a series of register read and write cycles (specifying register 
address and data) that uses the FFE Mode in the Transmit Driver Mode 
Control Register of the HSS EX10 to disable all transmitter outputs, and 
then update the configuration of all transmitter slices as described in 
Exercise 27. Transmitter outputs should not be enabled until all 
configuration updates have been made.

30. Explain why the PLL reset sequence must complete before the transmitter 
and receiver configurations can be updated.

31. Specify a series of register read and write cycles (specifying register 
address and data) that sets the following configuration for all of the HSS 
EX10 receiver slices. Your sequence should include a DFE reset.
• Full-rate mode
• 20-bit data bus width
• DFE3 mode
• Spread spectrum clocking enabled
• Signal detect enabled and set for threshold value 0x12

32. Specify a series of register read and write cycles (specifying register 
address and data) that sets the configuration listed in Exercise 31 for the 
RXA and RXB slices of an HSS EX10 core, and sets the following 
configuration for the remaining receiver slices. Your sequence should 
include a DFE reset:
• Full-rate mode
• 16-bit data bus width
• DFE5 mode
• Spread spectrum clocking disabled
• Signal detect disabled

33. Specify a series of register read and write cycles (specifying register 
address and data) that disables all transmitter outputs (using appropriate 
registers), switches the data rate of all transmitter and receiver slices of an 
HSS EX10 core to quarter rate mode, and enables the transmitter outputs 
again. This sequence should not change any other configuration 
parameters, and should reset the DFE if needed.

34. Provide a state diagram for a state machine which executes the sequence 
shown in Fig. 2.16, ending after PLL Reset Completion block. State 
transitions should be determined by appropriate HSS EX10 core status 
signals, where applicable, and signals from timer circuits otherwise.



Chapter 3  
HSS Architecture and Design

The tutorial example of the HSS EX10 core was introduced in Chap.2, and 
was described from a user’s point of view. The description of this core is 
continued in this chapter to cover architecture, major subsections, circuit 
basics, and core construction. This description serves as an example of an 
approach to Serdes architecture and design since a comprehensive treatment of 
the subject would require an entire textbook. 

As depicted in Fig. 3.1, the Serdes core contains three major sections (or 
slices using the nomenclature introduced in Chap. 2). The HSS EX10 is 
configured in a full duplex arrangement with both transmitter and receiver 
functions present. Simplex cores contain either transmit or receive functions.

The phase-locked loop (PLL) slice provides the low jitter clocks for both 
transmit and receive functions. 

Fig. 3.1 Serdes core overview
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The Transmitter (Tx) Slice performs the parallel to serial conversion as 
well as supporting various feed forward equalizer (FFE) functions. Serialized 
data is driven from the transmitter to the receiver for built-in self-test (BIST).

The final slice is the Receiver (Rx) slice where receive side equalization (either 
a continuous-time equalizer or a decision feedback equalizer (DFE)) improves the 
bit error rate (BER). Once the receive signal is equalized, the serial stream is then 
driven through the serial to parallel converter (also called deserialization).   

Each of these slices is covered in detail in the subsequent sections.

3.1  Phase-Locked Loop (PLL) Slice
The PLL slice contains a number of critical “centralized” functions that are 

shared by the various transmit and receive slices. The PLL slice of the HSS 
EX10 core services four pairs of transmitter and receiver slices. In practice, a 
PLL slice may typically service up to eight pairs of Tx/Rx slices for full duplex 
configurations, or up to 16 simplex transmitter or receiver slices. By sharing 
the PLL slice across numerous channels, the area and power dissipation can be 
amortized over the various Tx/Rx pairs, leading to substantially improved effi-
ciency. Of course, the down side to sharing the PLL is that the frequency of 
operation for all channels is restricted to a single baud rate and binary subrates. 
The PLL slice of the HSS EX10 drives a single frequency C1 clock to each 
Tx/Rx slice, and each slice is provisioned to operate at either full rate, half rate, 
quarter rate, or eighth rate as described in Sects. 2.2.5 and 2.3.7. In most appli-
cations this restriction causes no impacts. In applications where per-channel 
baud rate programmability is desired, the chip designer ends up trading off the 
area/power of additional PLL slices for this programmability.

A high-level block diagram of the PLL slice is shown in Fig. 3.2. There are 
six major functions that reside in the PLL slice, including the PLL Macro,

Fig. 3.2 PLL slice block diagram
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Clock Generation and Distribution, Reference Circuits, Voltage Regulator, 
PLL Control Logic, and Digital Control Signal Level Translators. A detailed 
description of each block is covered in the following sections.

3.1.1 PLL Macro
The PLL Macro performs frequency synthesis and is the most important 

macro in the PLL slice. At a high level, the input to the PLL is an on-chip 
reference clock (at 1/16th to 1/40th of the baud rate) from which the PLL 
synthesizes the full rate C1 differential clock. The nomenclature used 
extensively in this chapter is to encode the subrate frequency in the clock name. 
For instance, a SerDes running at 10Gbps would have a C1 clock at 10GHz. 
Subrate clock examples are:

C2 = 10GHz / 2 = 5GHz,
C4 = 10GHz / 4 = 2.5GHz,

and so forth. Using the C1 clock, the clock distribution macro provides the 
various subrate clocks using a cascade of differential divide-by-2 circuits 
(ripple divide approach).

The architecture of the PLL Macro shown in Fig. 3.3 utilizes a classic Charge 
Pump PLL approach described in numerous textbooks [1–5]. One of the most 
critical design parameters of this PLL is that it must deliver a high quality clock 
with minimal random jitter (RJ). At speeds above approximately 4GHz, meeting 
stringent RJ specifications is only feasible using an LC-tank- based VCO. Many 
monolithic integrated PLL designs use a ring of voltage- controlled delay 
elements to form the oscillator. These ring-based VCOs are compact and can be 
low power, however, their phase noise performance is not sufficient for I/O class 
links due to the resulting RJ. The VCO in the HSS EX10 PLL slice is controlled 
via a combination of coarse and fine control values. The fine control is driven 
into the VCO as an analog control voltage. In addition, to lower the gain of the 
VCO, a band selection scheme is implemented using a 4-bit binary weighted 
input vector which controls the coarse tuning of the VCO by selecting one of 
sixteen possible varactor combinations, resulting in 16 bands.

The remainder of the PLL follows a classic Charge Pump PLL 
construction. Per Fig. 3.3, the REFCLK signal enters into the PLL through the 
differential to single ended converter. The loop is then formed with the phase-
frequency detector (PFD), the Charge Pump (QP), a passive second-order loop 
filter, the LC VCO, and an appropriate feedback divider. To maintain a 
constant PLL bandwidth, the charge pump current is varied such that the 
product of the charge pump current and the feedback divider value is a 
constant. The various output frequency ranges, charge pump currents, and 
feedback divide ratios are optimized to minimize the RJ.
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Fig. 3.3 PLL macro block diagram
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Fig. 3.4 Symmetric I/Q clock generation
Using similar divide-by-2 structures, the C4_0 and C4_90 clocks shown in 

Fig. 3.2 are created. The remaining C8 and C16 clock outputs are created using 
this topology; however, in the case of the HSS EX10 core, only one phase is 
required for these clocks.

The outputs of the clock divider circuits are buffered to drive the clock 
transmission lines to the transmitter and receiver slices. Since the transmitter 
slice uses these clocks as a timebase, the duty cycle of these clocks is impor-
tant. Any DCD will produce jitter on the serial data output of the transmitter 
slice. Additional circuitry may be added in some cases to actively control the 
clock duty cycle. In addition, depending on the core configuration and number 
of ports being serviced by the given PLL slice, multiple buffers are commonly 
used to drive the associated load.

Depending on the operating mode provisioned for the Tx/Rx slices, some 
of the clock dividers in Fig. 3.2 may be powered down to save power. For 
example, if the Tx/Rx slices are operating in full-rate mode (using the C2 clock 
variants), the C4, C8, and C16 dividers can be powered down.  Note that power 
control logic needs to consider the operating modes of all channels on a given 
core in order to determine which clocks may be powered down.

3.1.3 Reference Circuits
The PLL Slice reference circuits generate various current and voltage 

references required for proper operation. Fig. 3.5 depicts a simplified version 
of this reference circuitry, the heart of which is a bandgap voltage reference 
circuit. This circuit provides an ultra-stable output voltage based on the silicon 
bandgap, providing a constant voltage independent of power supply, 
temperature, and process. This voltage is ~1.22V for the HSS EX10.

The bandgap voltage provides the reference input to the PLL Voltage 
regulator, the output of which is the primary power supply for the PLL. (A 
1.2V VRR12 supply is used in the HSS EX10 PLL.) The voltage regulator 
circuit uses a linear regulator scheme consisting of an op-amp, an NFET pass 
element, and a passive feedback divider. For the HSS EX10, the total current 
demand for the PLL circuit is in the range of 25–40mA. To provide adequate 
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performance, the NFET device is chosen to be an low-Vt (LVT) variant and 
typically is extremely large with device widths typically measured in 
millimeters. The feedback divider reduces the common mode voltage of the 
op-amp input, which improves gain and overall op-amp performance. 

A key performance metric for a voltage regulator is the power supply 
rejection ratio (PSRR), which is a measure of noise rejection on the power 
supply input. The voltage regulator in the HSS EX10 provides a minimum of 
15 dB PSRR over the AVdd power supply input, which helps minimize supply 
induced noise on the sensitive PLL control inputs. As is the case for all linear 
voltage regulators, the design must maintain significant gain and phase margin 
in the negative feedback paths, and therefore various compensation capacitors 
are needed which are not shown in Fig. 3.5.

The final section in Fig. 3.5 is the Current Reference generator. The output 
of this circuit consists of one or more current sink outputs, typically in the 
50–100 µ A range. As shown in the figure, current is pulled into the NFETs. In 
each of the various Tx/Rx slices, a PFET current mirror is used to create local 
replicas of the main IREF signal. This topology is typically chosen to minimize 
the number of IREF mirrors (one PFET mirror feeds each NFET mirror) from 
the bandgap reference to the point of use inside the Tx/Rx slices. 

Fig. 3.5 Simplified reference circuitry
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3.1.4 PLL Logic Overview
The PLL logic macro is a synthesized logic macro that accomplishes a 

number of critical PLL logic functions. It also provides the necessary controls 
to various analog circuits in the PLL as well as transfer of configuration and 
status data. Functions include power-on-reset, reset synchronization, VCO 
coarse calibration, and PLL lock detection. The VCO coarse calibration and 
PLL lock detection functions are key, and are described in more detail below.
3.1.4.1 VCO Coarse Calibration

As described previously, an LC-based VCO is required to meet stringent RJ 
specifications. A coarse/fine control scheme is used to minimize VCO gain. 
Calibration of the VCO coarse control is a critical function implemented in the 
PLL logic. The LC-based VCO has a four-bit (16 band) digital control vector 
which must select the appropriate band upon power-up. This selection is 
performed in two steps, starting by checking each band for a valid PLL Lock 
(as described in Sect. 3.1.4.2). The algorithm then chooses the best band for 
which PLL Lock can be achieved. In order to determine the best band, the 
center frequencies of the bands must be measured and the difference between 
the band center and the operating reference clock frequency is calculated. The 
smallest delta frequency difference for the reference clock frequency is 
considered to be the best band selection.

As an example, the graph in Fig. 3.6 shows various bands as a function of 
frequency. The x-axis represents the VCO band control voltage range.  The far 
left indicates the minimum control voltage and hence minimum VCO 
frequency for each band.  Likewise, on the far right is the maximum control 
voltage and maximum frequency. The y-axis depicts the VCO frequency. The 
delta frequency is measured by first forcing the VCO control voltage to its 
maximum value, and the corresponding maximum frequency of the band is 
measured. Next, the VCO control voltage is forced to its minimum value, and 
the minimum frequency of the band is measured. These two frequencies are 
averaged and the result represents the center frequency of the band. The delta 
between the center frequency of the band and the reference frequency is 
calculated.  The coarse calibration algorithm simply picks the band that has the 
smallest difference between the desired frequency and band center. 

The dotted line for Fdesired in Fig. 3.6 indicates an example of a desired 
PLL operating frequency. This frequency can be serviced by three different 
bands, indicated by the squares at the intersections of the dotted line and the 
lines for bands 3, 4, and 5. For this example, the coarse calibration algorithm 
would begin at band 0. Since dotted line for Fdesired does not intersect the line 
for band 0, the PLL cannot lock for this band. Similarly, bands 1 and 2 cannot 
achieve lock. When the algorithm reaches band 3, PLL lock is achieved with a 
relatively large positive control voltage. The algorithm computes the 
difference between the locked frequency and center of the band (the solid 
vertical line), and then continues examining bands 4 and 5. After exhausting 
all possibilities, the algorithm selects band 4 given that the intersection of the 
Fdesired line and the band line is closest to the center frequency.
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Fig. 3.6 VCO coarse calibration example

Fig. 3.7 Block diagram of PLL lock detect
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3.1.4.2 PLL Lock Detection
Figure 3.7 depicts the PLL Lock Detection circuitry implemented in the 

PLL Logic of the HSS EX10 core. As shown in the figure this lock condition 
is determined using the 2-bit counters, one for the reference clock and one for 
the feedback clock within the PLL. The two counters are initialized at different 
values with a separation count of two. If these counters do not equal each other 
within a specified timeout period, then the PLL lock signal is asserted high to 
indicate lock. If the clocks are not frequency locked, then at some point the 
compare function will detect equal values in the counters and the lock 
detection is deasserted.

The reference clock and feedback clock also clock the respective timer 
circuits shown in the figure. These timers generate a periodic timeout signal. If 
the comparator does not detect equal counter values within the timeout period, 
the corresponding PLL lock indicator is set. If both PLL lock indicators are set, 
then the LOCKDET output is asserted. This lock indication is generated using 
timers in both clock domains to ensure both clocks are oscillating. The 
LOCKDET output shown in Fig. 3.7 drives the HSSPLLLOCK output of the 
HSS EX10 core.

The length of the timeout period determines the accuracy of the lock 
condition being reported. If there is a frequency delta between the two clocks, 
but the delta is sufficiently small, then LOCKDET may be reported despite a 
minor frequency difference. For this to happen, the frequency delta would need 
to be small enough so that it does not accumulate two clock cycles of difference 
within the timeout period. The HSS EX10 core uses 10-bit timer counters, so 
this delta would need to be less than 2 divided by 1024, or approximately 
1,953ppm. 

3.2  Transmitter Slice
Figure 3.8 illustrates a simplified block diagram of the HSS EX10 

transmitter slice. The transmitter is implemented using a mixed signal 
approach, combining custom high-speed CML and static CMOS circuitry with 
a synthesized standard cell digital logic macro. To achieve the high rates of 
speed involved (at 10Gbps a C2 clock frequency of 5GHz is required), most 
circuits are implemented using a CML topology.

The PC2, PC4, PC8, and PC16 clock inputs in the lower right corner of 
Fig. 3.8 are driven by the C2, C4, C8, and C16 clock outputs of the PLL slice 
clock distribution macro. The MUX selects the appropriate clocks as 
determined by the Rate Select bits of the Transmit Configuration Mode 
Register described in Table 2.6. The selected clock enters the clock divider 
block. This clock is driven onto the C2 clock output of the clock divider and 
clocks the three stage shift register which forms the basis of the FFE. This 
clock is also divided to provide C4, C8, and LC8 clocks to other transmitter 
circuits.
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Fig. 3.8 High-level transmitter block diagram
The driver stage shown in Fig. 3.8 uses a C2 half-rate clock as was 

described by the second driver architecture in Fig. 1.16. The FFE shift register 
consists of three stages and is 2-bits wide, and the multiplexors shown in 
Fig. 3.8 between shift register stages implement the last stage of serialization. 
The half-rate clock is used to clock these multiplexors, providing the timing 
reference for the outbound bits. On the primary FFE tap, DEVEN is selected 
when the clock is high and DODD is selected when the clock is low.

There are three taps in the FFE shown in Fig. 3.8: The cursor tap is 
highlighted in gray and there is one precursor tap and one postcursor tap. Each 
tap is serviced by a segment consisting of an XOR gate (which provides 
individual polarity control), a predriver stage, and a driver output stage.  The 
three segments are summed together at the output node driving the TXxOP/N 
pins. The magnitude of the tap weights is controlled by a combination of the 
Power IDAC (controlled by the Transmit Power Register) and individual 
Coefficient DACs (controlled by the Transmit Tap0–2 Coefficient Registers). 
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An FFE coefficient update macro (residing in the standard cell logic section) 
adjusts coefficient values at the circuit to enforce a constant driver output 
power for any combination of coefficients and polarities as was described in 
Sect. 2.2.3. As coefficients are initialized or updated, this logic calculates the 
appropriate internal amplitude (K) to maintain the overall output power (and 
differential output peak-to-peak swing) at the constant level defined in the 
Transmit Power Register.

Driver termination is nominally set at 50Ω  and achieved by using on-chip 
uncalibrated precision resistors. This corresponds to a 100-Ω differential 
termination. The termination is biased by the AVtt power supply.

3.2.1 Feed Forward Equalizer (FFE) Operation
The tap ranges and resolutions for the HSS EX10 FFE circuit were 

described in Table 2.12, and this table is repeated in Table 3.1. In a non-
equalized case, the main tap provides 100% of the driver output amplitude. As 
shown in the table, this limit corresponds to the maximum current that this tap 
can provide. Limits for other taps were chosen after empirical studies of 
equalization solutions for a variety of channel design examples. 

Figure 3.9 illustrates a simplified generic FFE example. A simplified half-
rate FFE architecture is shown in Fig. 3.9a, and is representative of the circuit 
in Fig. 3.8. This example explores a two-tap FFE case (i.e., FFE Mode Select 
set to “FFE2” in the Transmit Driver Mode Control Register as described in 
Table 2.6). The cursor and postcursor taps are set at +0.8 and − 0.2, 
respectively. Figure 3.9b illustrates the various signal waveforms and the 
resulting FFE output. The Serial Data or x(t) signal in Fig. 3.9b is the serial 
data input to the FFE circuit.   The x(t–T) and –x(t–T) signals are noninverted 
and inverted polarities of the original signal delayed by one-bit time.  Finally, 
the Tx OUT or y(t) signal is the Tx Output waveform, and can be expressed by 
the following mathematical summation: 

Tx Out = y( t ) = 0.8 x( t ) – 0.2 x( t – T ), (3.1)
where the signals y(t), x(t), and x(t–T) were defined above, and T is one-bit 
time (or 1 UI). 

Table 3.1  Transmitter FFE summary

Tap coefficient # 0 1 2

Max current (mA) 7.5 30 15

Relative max (%) 25 100 50

DAC resolution (bits) 6 8 7

Tap allocation Precursor Main tap Postcursor
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Fig. 3.9 Example of feed forward equalizer operation
This example clearly illustrates how postcursor equalization affects the 

output waveform. Each time the input waveform transitions up or down, the 
instantaneous output increases in amplitude to a peak value of unity (the sum 
of 0.8 + 0.2), producing a larger amplitude for one-bit time. The resulting 
waveform has increased high frequency content, which compensates for the 
high frequency loss of the channel.

To illustrate the performance advantage of using FFE in a system, before 
and after measurements were made on a 20-in. FR4 lossy backplane with 
approximately 10dB of loss at 3.2GHz (6.4Gbps example). Figure 3.10 
depicts two eye diagrams from real hardware measurements. Eye diagrams 
were introduced in Sect. 1.2.3, and are a common method of illustrating 
transmit and receive signals in serial links. 

In Fig. 3.10a, there is a substantial amount of eye closure due to high 
frequency loss of the channel. The eye is barely open, and as a result the 
channel is operating with very little margin.
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Fig. 3.10 Feed forward equalizer measured results
Figure 3.10b shows the behavior of the system when the FFE is optimally 

configured. The operating margin of this link is substantially improved as seen 
by the eye diagram. Note that the outer edge of the eye amplitude has been 
reduced in response to the subtractive nature of the FFE. In fact, while 
extensive FFE equalization can be applied to very lossy channels, eventually 
the receiver sensitivity limits system performance as the FFE optimized eye 
shrinks vertically.  Therefore, there exists a finite amount of FFE equalization 
that can be employed. This limit is related to the receiver sensitivity and 
maximum transmitter launch voltage. 
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3.2.2 Serializer Operation
Serialization of the even and odd data streams from Fig. 3.8 is illustrated in 

Fig. 3.11. A simplified schematic of the 2:1 Serializer is shown in Fig. 3.11a. 
This simple tree structure has been successfully used at speeds over 40Gbps in 
CMOS technologies and over 132Gbps in SiGe technologies. The key design 
constraint that enables using this architecture for high baud rates is as follows: 
the Tsq propagation delay of the multiplexor (from the select input to the 
multiplexor output) must be less than the Tcq propagation delay of the latch 
(from the clock input to the latch output). 

This is illustrated in Fig. 3.11b. The two bits of parallel data, DEVEN and 
DODD, are assumed to be time-aligned into the serializer and are synchronized 
to the half-rate C2 clock. The first two latches capture the parallel DEVEN and 
DODD signals, creating De and Do outputs on the rising edge of the C2clk 
signal. The Do′ signal is generated by resampling the Do signal on the falling 
edge of the C2 clock. These two signals are skewed by 1 UI and provide the 
inputs to the 2:1 MUX. The C2 clock controls the select input of this MUX 
such that when the De input is selected when the clock is low, and Do′ is 
selected when the clock is high. If Tsq < Tcq, then the multiplexor always 
selects a stable input signal, resulting in clean, glitch-free operation. This ping-
pong action is illustrated in Fig. 3.11b.

Fig. 3.11 Detailed 2:1 serializer stage operation
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Fig. 3.12 Detailed 8:2 serializer and clock divider stage operation
Working backward from the output serialization stage, the input to the 8:2 

serializer stage consists of eight time-aligned parallel bits, and the output 
consists of the DEVEN and DODD half-rate serial streams feeding the FFE shift 
register. The 8:2 serializer is implemented using a cascade of four 2:1 
serializers feeding two 2:1 stages. This circuit is illustrated in Fig. 3.12, along 
with associated C4 and C8 clock dividers. The circuit topology and timing 
constraints for the multiplexor stages in this circuit are similar to that of the 2:1 
serializer in Fig. 3.11a. (Not shown in the figure are various clock buffers 
required to drive the heavy clock loading on the C8 and C4 clocks.)

The LC8 clock in Fig. 3.12 is a buffered (single-ended CMOS) signal that 
is used by the synthesized logic macro to clock the transmit data (D0–D7). The 
timing specification across this interface is critical. For the HSS EX10 core 
running at 10.0Gbps, the C8 clock operates at 1.25GHz, and the design of this 
interface must assure proper setup and hold timing is met.
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Continuing to move backward in Fig. 3.8, the Serializer Logic macro 
provides the initial stages of serialization. The HSS EX10 core supports 
various transmit data bus widths as selected by the Parallel Data Bus Width 
bits of the Transmit Configuration Mode Register described in Table 2.6. The 
Serializer logic performs the appropriate multiplexing to output 8-bit parallel 
data regardless of the selected data width. There are many logic configurations 
which achieve this function; the most commonly used circuit is a shift register 
which loads parallel data of arbitrary width, and shifts data by 8 bits at a time 
as data is clocked to the 8:2 multiplexor stage.

In addition to serialization, the Serializer logic macro also provides the 
support for Pseudorandom Bit Sequence (PRBS) pattern generation. 
Capabilities of this circuit were described in detail in Sect. 2.2.7.

3.3  Receiver Slice
Fig. 3.13 illustrates a simplified version of the HSS EX10 receiver slice. 

Note that the DFE feedback paths are not shown to simplify the diagram. As 
with the transmitter slice, the receiver slice is implemented using a mixed 
signal approach, combining custom high-speed CML and static CMOS 
circuitry with a synthesized standard cell digital logic macro. Starting on the 
left side of the figure, serial data is received on the RxIP/N inputs. Both AC 
and DC coupled termination options are supported; the CMVbias circuit 
provides bias options corresponding to each coupling option. The split termi-
nation network provides a half amplitude signal to the input of the variable 
gain amplifier (VGA), while the Input Offset Compensation block adjusts this 
network to cancel input referred common offset voltage at the receiver input.

In a DFE system, the information about how to optimally set the DFE taps 
is contained in the amplitude information of the signal. As such, the entire front 
end of the receiver must operate in its linear range and not clip the signal. When 
channel losses in the path from the transmitter to the receiver are small, the 
input signal amplitude at the receiver may be large, resulting in clipping unless 
there is a reduction in signal swing. The VGA block performs this function and 
the split termination provides a 1/2 amplitude (− 6dB) attenuation to help 
maintain linearity.

The VGA is used to control the amplitude of the input and drives a 
programmable shunt peaking amplifier. This Peaking Amp in turn drives three 
sets of summer circuits in the DFE and CDR loops. The top two summer 
circuits drive the DFE data and amplitude paths, while the lower summer 
drives the DFE edge macro which provides the input into the CDR macro. 

The DFE macro can be logically broken into two distinct functions. The 
first of these functions (the DFE block in Fig. 3.13) moves the decision 
threshold of the sampling latch around at the baud rate. The history of the 
previously sampled bits is used to control this decision threshold and there are 
2n possible levels, where n is the number of DFE taps. For example a five-tap 
DFE dynamically modifies the decision threshold in one of 32 possible 
combinations based on the history of previous bits sampled. 
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Fig. 3.13 High-level receiver block diagram

Fig. 3.14 Half-rate bang–bang phase detector operation
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The second DFE function is to determine the H1 to H5 tap coefficient 
values,  which is accomplished via an algorithm in the DFE Engine (the DFE 
Engine block in Fig. 3.13).

Once the data has been equalized and captured, the data/edge/amplitude 
samples are aligned and deserialized in the Data Alignment/2:8 Deserializer 
block. This data is further processed in digital form by the three subfunctions 
in the synthesized logic macro: the CDR Macro, the Data Deserializer, and the 
DFE Engine functions. The data/edge/amplitude sample latches are clocked by 
three independent phase rotators. These phase rotators use a set of I/Q (0/90°) 
clocks and provide a digitally controlled phase interpolation function, 
producing 64-step granularity across a 2 UI range. This corresponds to a net 
time resolution of the phase rotator of 32 steps per UI. 

Other blocks shown in Fig. 3.13 include the SigDet block which 
implements the signal detection features (see Sect. 2.3.4) and the AC JTAG 
block which provides low-speed board level testing (see Sect. 2.3.6).

3.3.1 Clock and Data Recovery (CDR) Operation
The CDR macro uses a twofold oversampling scheme, capturing four 

samples across two bits (two edge and two data samples). In Fig. 3.13, the data 
samples are captured in the DFE block and the edge samples are captured in 
the DFE Edge block. Note that the DFE block and the DFE Edge block use 
identical summers to maintain timing alignment between the two functions; 
this is critical for proper data centering. As illustrated in Fig. 3.14, a simplified 
bang–bang phase detector approach can be visualized. In practice, the HSS 
EX10 core uses a 16-way bang–bang phase detector, with 16 data and 16 edge 
samples implemented in the CDR logic macro. Digital filtering in the CDR 
logic results in a loop bandwidth of approximately 1/1,000th of the baud rate 
(depending upon incoming transition density).

There are four sets of latches in the bang–bang phase detector: the D0 and 
D1 data latches (also used extensively in the DFE block) and the E0 and E1 
edge latches (specifically in the DFE Edge block). Samples are latched in these 
latches using clocks which are sequenced as follows: E0 is clocked first, 
followed by D0, E1, and finally D1. This sequencing is shown in Fig. 3.14. As 
shown in the figure, XOR gates are used to detect differences in phase. When 
a difference exists between adjacent values, the XOR output is asserted. 

The simplified bang–bang phase detector scheme is examined for three 
cases of potential phase alignment in Fig. 3.14. In Fig. 3.14a, both the (E0, D0), 
and the (E1, D1) latches are sampling the same portion of the waveform. Since 
the digital values are the same, the DEC0 and DEC1 signals are not asserted. 
Likewise the (D0, E1), and the (D1, E0) latches are sampling differing logic 
levels, and therefore the INC0 and INC1 signals are asserted. The INC signal 
causes the phase of all four clocks to shift to the left. The net effect of this is to 
move the E0 and E1 clocks closer to the data transitions.

Figure 3.14b shows the opposite situation where the data edges are between 
the E0/D0 and the E1/D1 samples. In this case, the DEC0 and DEC1 signals 
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are asserted, and the clock phases shift to the right. The effect again is that the 
E0 and E1 clocks are moved toward the data transitions.

Finally, Fig. 3.14c shows the case where the signal is in lock. In the absence 
of noise, the lock condition for the phase detector is characterized by thrashing 
back and forth one step around the ideal sample phase. 

The digital INC/DEC signals are then used to control the sampling phase of 
the clocks driving the Data/Edge latches. There are several popular schemes to 
digitally control the sampling phase, including phase rotators, PLLs, delay 
locked loops, and digital oversampling schemes. The HSS EX10 core utilizes 
a phase rotator- based CDR. 

A phase rotator is essentially a digital mixer circuit which accepts two 
differential clocks with 90° separation, often referred to as In-phase and 
Quadrature-phase (I & Q).  Shown in Fig. 3.15, the half-rate (C2) input clocks 
CK_I  and CK_Q are mixed in various proportion to control the output phase 
of the rotator. The linearity (phase out vs. digital phase control in) or step size 
of a phase rotator is a strong function of the shape of the input clock 
waveforms. Optimal performance is achieved when the input signals are very 
close to sinusoidal waveforms. To that end, the SLEWBUF section controls the 
slew rate of the input signals and produces a sine wave on the SCK_I and 
SCK_Q outputs. Two 15-value IDACs (typically thermometer encoded) 
control the amount of I vs. Q contribution to the output, and the POL signals 
select the quadrant in which the output operates. The net result is that the 
digital control word INT + POL can produce any one of 64 phases at the 
ZP/ZN outputs.

Fig. 3.15 Phase rotator conceptual diagram
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Fig. 3.16 Four quadrant phase rotator diagram
Fig. 3.16 illustrates a phase rotator quadrant diagram, showing the 64 

possible combinations of phase. In order to track a frequency offset (in ppm) 
between the incoming signal stream and the local C2 clocks, the digital control 
word is  periodically adjusted in a given direction. The greater the difference 
between the signal baud rate and the local C2 clock frequency, the more often 
the phase must be adjusted. 

3.3.2 Decision Feedback Equalizer (DFE) Architectures
The heart of the DFE-based core is the high-speed analog function that 

varies the sample latch thresholds at the baud rate. Figure 3.17 illustrates how 
this DFE threshold movement improves the BER. 

Fig. 3.17 Decision feedback equalizer threshold adjustment

+I,+Q−I,+Q

−I,−Q +I,−Q

14.5I+1.5Q

15.5I+0.5Q

15.5I− 0.5Q

14.5I− 1.5Q

0.5I+15.5Q
1.5I+14.5Q

− 0.5I+15.5Q
−1.5I+14.5Q

I

Q

+H1
−H1

0 1 1 1 1 1 0 1 0

Correct Bit

b)a)

0/1

0 1 1 1 1 1 1 1 0

Bit Error



HSS Architecture and Design  119

Fig. 3.17a shows a differential signal which has a significant amount of 
intersymbol interference (ISI). The binary sequence transmitted is 
“01111010.” Assuming a conventional latch with a 1/0 decision threshold at 
zero, the received sequence for this signal with ISI would be “01111110.” 
Since the input signal never crosses the 1/0 threshold, the sample latch 
mistakenly captures a “1” instead of the runt “0” transition.

Now consider a single tap (H1) DFE. Per convention, the H1 tap operates 
on the last bit received, H2 on the bit received before this, and so forth. The 
latch sample threshold is adjusted as shown in Fig. 3.17b based on the value of 
the previous received bit. If the previous bit is a “1,” the threshold is moved up 
by the value of H1; conversely if the previous bit is “0” then the threshold is 
adjusted down by the value of H1. If H1 is carefully chosen, the receiver can 
properly discern the single “0” transition. The key is determining the correct 
value for H1.

A “direct” feedback architecture implementation of this one-tap DFE is 
depicted in Fig. 3.18. This architecture uses a full-rate clock. The direct 
feedback approach is conceptually simple: Based on the digital value of the 
sampled data, the sampled digital value is multiplied by the H1 coefficient and 
fed back to the input of the sample latch. If the sampled data is “1,” then the 
threshold of the latch for the next bit is increased by H1; if the sampled data is 
“0,” then the threshold for the next bit is decreased by H1. 

Timing requirements for the direct implementation are challenging. The 
loop indicated by the arrow in Fig. 3.18 must meet the following equation:

Tcq + Tsum + Tsu < 1 UI, (3.2)
where Tcq is the latch propagation delay (clock input to the output), Tsum is 
the propagation delay of the summer circuit, and Tsu is setup time of the latch. 
At 11.1Gbps the bit time is only ~90ps. Given an analog value is being added 
to the input waveform, the H1 feedback must settle to within 2–5% of the final 
analog value within this time constraint. This constraint is difficult to meet at 
higher baud rates. Although the direct feedback architecture is commonly used 
for slower baud rates, other architectures are used at higher baud rates.

The “Speculative” (or “Unrolled”) feedback architecture implementation 
of a one-tap DFE is depicted in Fig. 3.19. This technique is a little more costly

Fig. 3.18 Full-rate “direct” decision feedback equalizer
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Fig. 3.19 Full-rate “speculative” decision feedback equalizer

in terms of hardware area and power, but the difficult timing of the direct 
approach is avoided. The speculative architecture duplicates the summers and 
latches. In the direct approach, the digital value of the previous received bit is 
fed back into the first summer. The speculative approach instantiates two 
latches and two summers. One summer uses a static value of +H1, while the 
other uses a static value of –H1. A digital multiplexor selects the output of one 
or the other sample latch based on whether the previous received bit was a “0” 
or a “1.” As a result, the analog settling time and the propagation delay of the 
summer circuit is removed from the critical timing path.

The HSS EX10 core uses a hybrid approach combining both speculative 
and direct DFE tap feedback. Figure 3.20 illustrates the high level concept of 
the hybrid approach. As was the case in Fig. 3.13, the feedback tap paths from the

Fig. 3.20 Half-rate hybrid “speculative-direct” DFE
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even/odd data shift register are not shown to simplify the diagram. In this 
figure, the H1 DFE tap is calculated speculatively, removing the baud spaced 
timing constraint. The H2–H5 taps use direct feedback. Since the H2 tap 
feedback is permitted to take up to two bit times, a half-rate clock is used. This 
substantially reduces the power dissipation and simplifies the design at the cost 
of doubling the number of sampling latches. Note this figure is simplified and 
does not show all of the crossconnections and feedback connections. The 
primary outputs of this DFE are two data bits: Deven and Dodd, and two 
amplitude Aeven and Aodd signals. These signals are driven to the Data 
Alignment/2:8 Deserializer macro shown in Fig. 3.13.

Figure 3.20 also shows the Aeven and Aodd latch paths in parallel to the H1 
speculation latches. The Aeven and Aodd latches are used to determine the 
magnitude of the H coefficients. The DFE tap weights (H1–H5) are computed 
through amplitude and data sample correlation using a sign-error driven 
algorithm. Tap weights are optimized to cancel postcursors of the signal as 
described generally in Sect. 8.4.1.3. More detailed descriptions of equalization 
circuits may be found in [6–10].

3.3.3 Data Alignment and Deserialization
Once the data has been captured in the DFE sample latches, the amplitude 

latches, and the edge latches, the signals must be aligned and deserialized. 
Figure 3.21 illustrates the 1:2 DEMUX macro that is the fundamental building 
block of the deserialization process. As with the 2:1 MUX previously 
described, this 1:2 DEMUX can be cascaded to realize larger deserialization 
functions.   The conceptual circuit topology is shown in Fig. 3.21a. Serial data 
is applied to two latches, each triggering on opposite edges of the clock. In 
order to time-align both serial streams, a third latch is added to recapture the 
data on a common clock edge. Figure 3.21b shows the timing diagram of the 
function. The net result of the deserialization is that two time-aligned half-rate 
data streams are created from the single full-rate data stream. The Data 
Alignment/2:8 Deserializer macro shown in Fig. 3.13 produces eight data bits, 
eight edge bits, four amplitude bits, and a C8 clock synchronous with the 
inbound serial stream.

A subsequent stage of the Data Alignment/2:8 Deserializer macro performs 
additional deserialization. As was the case for the transmitter, the HSS EX10 
core supports various receive data bus widths as selected by the Parallel Data 
Bus Width bits of the Receive Configuration Mode Register described in 
Table 2.7. Deserialization expands the 8-bit data bus to the appropriate data 
width.

In addition to deserialization, the Data Alignment/2:8 Deserializer macro 
also provides the support for Pseudorandom Bit Sequence (PRBS) pattern 
checker. Capabilities of this circuit were described in detail in Sect. 2.3.8.
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Fig. 3.21 Detailed 1:2 deserializer operation

3.4  References and Additional Reading
The following reading is recommended for more in depth information 

regarding PLL circuit architectures and design:
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regarding equalizer and CDR design:
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Backplane Transceiver Cell”, J.L. Zerbe, et. al., IEEE J. Solid-State 
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8. “A 6.25Gb/s Binary Adaptive, DFE with First Post Cursor Tap 
Cancellation for Serial Backplane Communications”, R. Payne, et. al., 
ISSCC Digest of Technical Papers, Feb. 2005.
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Meghelli, et. al., ISSCC Digest of Technical Papers, Feb. 2006.

3.5  Exercises
1. If the C1 clock in Fig. 3.2 is operating at 11GHz, what are the frequencies 

of the C2_0, C2_90, C4_0, C4_90, C8, and C16 clocks?
2. For the various combinations of transmitter and receiver configurations 

described below, indicate which of output clocks in Fig. 3.2 can be 
powered down to save power:
(a) All transmitter and receiver slices operating in full-rate mode
(b) All transmitter and receiver slices operating in half-rate mode
(c) Some transmitter and receiver slices operating in half-rate mode, and 

some in quarter-rate mode
3. Draw a timing diagram illustrating the C1 clock input and the four output 

phases of the C2 clock for the circuit shown in Fig. 3.4. 
4. Cascade two of the circuits in Fig. 3.4 to produce C2 and C4 clocks.
5. Refer to the graph in Fig. 3.6:

(a) Draw an alternative line for Fdesired which is half way between the 
line shown and the bottom of the graph. Which bands can lock to this 
frequency? Which band should be chosen by the Coarse Calibration 
Algorithm?

(b) Draw an alternative line for Fdesired which is half way between the 
line shown and the top of the graph. Which bands can lock to this 
frequency? Which band should be chosen by the Coarse Calibration 
Algorithm?

6. In Fig. 3.6, assume a value for Fdesired which is just below the top of the 
graph. Can the PLL lock to this frequency? If so, what band is used?

7. The PLL lock detect circuit for the HSS EX10 is shown in Fig. 3.7. If the 
timeout period were determined using 16-bit counters, this would change 
the frequency tolerance at which the lock condition would be detected. 
Calculate this frequency tolerance in parts per million (ppm).
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8. Repeat Exercise 7 assuming the timeout period is determined by 5-bit 
counters.

9. Referring to Fig. 3.9a, the multiplexor in each FFE tap segment selects 
between either the DEVEN or DODD bit stream. However, note this must 
be done in such a manner that the x(t+T) data bit is the next bit following 
the x(t) bit, and the x(t–T) data bit is the bit prior to the x(t) bit. Indicate 
the correct C2 clock polarities into the flip-flops and mux select input to 
achieve this.

10. Draw a timing diagram illustrating the operation of Fig. 3.12.
11. Assume that the circuit in Fig. 3.9a is provisioned with the FFE 

coefficients: x(t+T) = 0, x(t) = 0.7, and x(t–T) = +0.3. Draw a timing 
diagram for this case similar to that in Fig. 3.9b.

12. Repeat Exercise 11 assuming the circuit in Fig. 3.9 is provisioned with 
the FFE coefficients: x(t+T) = –0.2, x(t) = 0.8, and x(t–T) = 0.

13. Refer to Fig. 3.14. As noted in the description in the text for this figure, 
steady-state operation of a half–rate bang-bang phase detector circuit is 
characterized by thrashing between timing case (a) and (b) in the figure. 
Draw the sample points for eight consecutive data bits illustrating this 
thrashing. Also show the corresponding values of the DEC0, INC0, 
DEC1, and INC1 control outputs.

14. In Fig. 3.17a, the bit stream “01111010” is incorrectly sampled as 
“01111110”. Explain why the incorrectly sampled “0” bit does not 
transition below the 0/1 sample threshold in this figure. (You may wish to 
peek at Chap. 8 to answer this question.)

15. In Fig. 3.17b the bit stream is sampled correctly for the value of H1 
shown:
(a) If H1 is half of the amplitude shown in the figure, what are the 

sampled values of the bits? 
(b) If H1 is twice the amplitude shown in the figure, what are the sampled 

values of the bits?
16. For the bit stream shown in Fig. 3.17, and the circuit shown in Fig. 3.19, 

draw a timing diagram showing the sampled bits on the inputs and output 
of the multiplexor as well as the sampled data output of the circuit.
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Chapter 4  
Protocol Logic and Specifications

HSS devices are frequently used as part of the implementation of a stan-
dardized interface for a network protocol. The specification for the network 
protocol generally includes several layers of functionality. As described in this 
chapter, the HSS device implements only a portion of the physical layer of the 
network protocol. Additional logic is required to implement the remainder of 
the physical layer, as well as portions of the data link layer. For purposes of 
this text, this logic is referred to as protocol logic; the function of this logic 
depends on the applicable network protocol standard. 

This chapter covers a broad range of topics generally related to protocol speci-
fications and the implementation of protocol logic. Specific network protocol 
standards are discussed in Chap.5. This chapter begins by describing construction 
of network protocol standards, including protocol layers, methods of specifying 
serial signals, and basic concepts regarding clocking methods and data organiza-
tion. Next, typical functions implemented in protocol logic are discussed, including 
determining the bit/byte order of transmission; encoding and/or scrambling data for 
transmission (and decoding/descrambling at the receiver); error detection and/or 
correction; elastic FIFOs to retime data to local clock domains; and bit alignment 
and deskew functions in the receiver. These topics are covered at a level which is 
sufficient for the reader to understand basic approaches for logic design of these 
functions; exercises at the end of the chapter enhance this understanding.

4.1  Protocol Specifications
This section covers a number of topics related to network protocol 

standards, including protocol layers, methods of specifying serial data signals, 
and basic concepts regarding clocking methods and data organization.

4.1.1 Protocol Layers
The TCP/IP model, or Internet Reference Model, was developed by the 

Internet Engineering Task Force (IETF). This model partitions software and 
hardware functions necessary to communicate on a network into several layers, 
as shown in Fig. 4.1. Most serial link protocols loosely follow this model. 

The application layer processes data in an application-specific format and 
encapsulates this into the common format used by the transport layer. The 
transport layer is responsible for end-to-end message transfer independent of 
the underlying network, including error control, fragmentation, and flow 
control. The network layer is responsible for packet routing; intermediate 
nodes in the network perform network layer processing as needed to route the 
packet from its source to its target. While higher layers are agnostic as to the 
underlying protocol, the data link layer is responsible for formatting the data 
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into a specific format for transmission, and decoding the format of the received 
data. Finally, the physical layer transmits/receives data to/from the media. 

Fig. 4.1 TCP/IP reference model
Figure 4.1 also illustrates the common implementation of the various 

protocol layers. The physical layer is implemented, or in some cases is partially 
implemented, by the HSS device. Additional protocol logic in the chip imple-
ments the remainder of the physical layer and some or all of the data link layer, 
and is the subject of this chapter. Portions of the data link and network layers 
may be implemented by Network Processing Elements (NPEs), firmware, and 
Content Addressable Memories (CAMs) in network router or enterprise 
systems, or by software in low-end systems. Higher layers of the protocol are 
almost always implemented in software.

4.1.2 Serial Data Specifications
Serial data interface standards specify that the serial data must meet certain 

eye amplitude and eye width requirements at normative compliance points of 
the interface in order to claim compliance. Details of the above statement are 
elaborated upon by the subsections below.
4.1.2.1 Compliance Points

Serial data specifications are imposed at points in the system which are 
defined by the interface standard as compliance points. Various standards 
choose different points in the system to define as compliance points. In 
general, the choice of compliance points tends to align with the needs of the 
industry serviced by the standard. 
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When evaluating a standard (or characterizing Serdes hardware compliance 
with a standard), it is important to note the compliance points defined by the 
standard. Compliance points may be at the chip pins or may be at intermediate 
points within the channel such as circuit board connectors. The reference 
channel may include an optical segment, in which case additional compliance 
points would be defined for the optical signal. 

The choice of compliance points affects how interface specifications 
translate to HSS specifications. For example, if the Serdes transmitter 
generates 10ps of jitter, and the specification requires no more than 10ps of 
jitter measured at a compliance point defined as a connector pin, then it is 
unlikely that the specification can be met. The circuit board traces, vias, and 
connectors add additional jitter, resulting in measured jitter at the connector 
exceeding 10ps. In such cases a budget amount of jitter must be assigned to 
each component (the transmitter device and the circuit board) such that the 
total is no greater than 10ps at the compliance point. 

It is also necessary to consider the measurement conditions specified in the 
standard. Often, measurements are specified for ideal (or nearly ideal) 
conditions. The Serdes hardware must produce signals within the specified 
range under the conditions specified. Signals may vary from these ranges in 
real systems where conditions such as termination impedances and impedance 
discontinuities are less than ideal. 
4.1.2.2 Normative and Informative Specifications

When reading serial data interface standards, it is important to note 
normative elements of the standard vs. informative elements of the standard. 
The serial link can be viewed as a collection of the following three elements: 
the Serdes Transmitter device (including the package), the channel, and the 
Serdes Receiver device (including the package). Any interface standard must 
impose normative requirements on at least two of the three elements of the 
serial link in order to ensure interoperability between components. (It is 
possible to provide normative requirements for all three elements, but 
this requires substantially more analysis to ensure the requirements are self-
consistent.) 

There is a normative specification for the element when requirements are 
imposed which must be met in order to claim compliance. For example, the 
standard may provide a normative specification of signal characteristics at the 
Serdes Transmitter, and a normative specification of signal characteristics that 
must be tolerated by the Serdes Receiver. Defining the channel is then left as 
an exercise to the system designer. In this case, the channel specification is an 
informative specification. The interface standard may provide informative 
specifications of channel characteristics as guidance, or may leave it as an 
exercise to the user to derive requirements from the transmitter and receiver 
specifications. (The channel must be capable of propagating the worst case 
signal produced by the Serdes transmitter to the Serdes receiver without dis-
torting the signal beyond the worst case signal allowed at the receiver.) 
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Informative specifications do not need to be verified in order to claim compli-
ance with the standard.

Note that an increasingly popular alternative at higher baud rates is to 
define normative specifications for the Serdes transmitter and the channel, and 
provide informative specifications for the signal at the Serdes receiver. 
4.1.2.3 Serial Data Amplitude and Eye Width

One method of defining serial data characteristics at the compliance point 
is through the use of an eye diagram, an example of which is shown in Fig. 4.2. 
The example has parameterized the key geometric features of this diagram. 
The data signal is measured over a period of time and the signal trace is 
mapped onto the eye diagram. If the data signal strays into the gray zones, the 
data signal is not in compliance.

The eye amplitude in this diagram is limited by the maximum signal ampli-
tude defined by the Y2 parameter, and the minimum signal amplitude defined 
by the Y1 parameter. The Y2 parameter should never be violated. The Y1 
parameter applies to a portion of the bit time as defined by parameters on the 
X-axis of the graph; the signal is less than Y1 while it is switching. The eye 
width in this diagram is limited by the maximum jitter defined by the X1 
parameter. The X2 parameter has the affect of placing a maximum limit on the 
rise and fall time of the signal. In some cases the X2 parameter may be 0.5 UI, 
at which point the shape of central gray zone degenerates to a diamond shape.

Fig. 4.2 Example of a transmitter eye mask
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The drawback of using eye diagrams to specify signal characteristics is that 
many standards dictate use of an FFE to provide preemphasis or deemphasis of the 
signal. The FFE induces a deliberate distortion of the signal at the transmitter in 
order to partially cancel the distortion effects of the channel and provide a better 
signal at the receiver. The distorted signal is likely to violate the eye diagram on 
both the X- and Y-axis. The standard may handle this by specifying the eye mask 
with the FFE disabled, or by adjusting the eye mask based on filter settings.

Eye diagrams (or equivalent specifications of signal amplitude and jitter) 
may be used to specify the signal at the transmitter output (or some other 
compliance point near the transmitter). They may also be used to specify the 
signal at the receiver input (or some other compliance point near the receiver). In 
such cases, they may be used either as a normative compliance specification for 
a channel or for a Serdes receiver. In one case, the eye diagram at the receiver 
represents the worst case signal output of a compliant channel when driven by a 
compliant Serdes transmitter. In the other case, the eye diagram represents the 
worst case signal input that a compliant Serdes receiver must tolerate. 

Higher speed interface standards may expect the eye at the receiver input to 
be closed, in which case an eye diagram cannot be specified at this point. Such 
standards define a reference receiver which often includes a DFE. The DFE 
circuit is a negative contributor to the jitter budget, in effect resulting in a more 
open eye at the output of the DFE circuit than at the input. Of course, the output 
of the DFE circuit is beyond the point where analog-to-digital conversion of 
the signal has been performed. The notion of an analog “eye” at this point is 
really a virtual concept; this eye is not a measurable analog signal. Compliance 
is determined through mathematical calculation of the signal eye at this point, 
and comparison to the eye mask specified by the standard.
4.1.2.4 Receiver Signal Detect Function

It is sometimes desirable for the receiver to detect the condition where the 
transmitter is not sending a signal (either because it is disabled, powered down, 
or unplugged). Under these conditions the loss of signal condition may be used 
to avoid trying to receive and process any noise on the serial data input to the 
Serdes receiver. Serdes receivers therefore generally provide a signal detect 
feature which detects when the amplitude of the received signal falls below a 
threshold level for a sustained period of time.

Depending on the interface standard, one or more of the following 
parameters may be specified using various terminology:
Minimum signal amplitude. Signal amplitude above which the received signal 
must be detected and correctly received.
Maximum loss of signal amplitude. Signal amplitude below which the receiver 
must detect a “Loss of Signal” condition.
Loss of signal response time. Length of time allowed to flag “Loss of Signal” 
or “Signal Detected” conditions.

These parameters place specifications on the design of the Serdes signal 
detection circuit. The first two of these parameters determine a range for the 
signal detection threshold. The threshold of the signal detection circuit cannot 
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be higher than the specification for minimum signal amplitude, and cannot be 
lower than the specification for the maximum loss of signal amplitude. The 
response time specification determines the length of time over which the signal 
detection circuit monitors the signal before changing state to indicate that the 
signal has been lost or has returned. 

Various interface standards specify differing thresholds and response 
times. For this reason, it is common for the Serdes receiver to implement a 
programmable signal detection threshold and response time. 
4.1.2.5 Jitter, Wander, and Skew

Jitter is the deviation from the ideal timing of an event at the mean 
amplitude of the signal population. Low frequency deviations are tracked by 
the clock recovery circuit, and do not directly affect the timing allocations 
within a bit interval. Jitter that is not tracked by the clock recovery circuit 
directly affects the timing allocations in a bit interval. 

Common usage of the term “jitter” refers only to the portion of the jitter that 
is not tracked by the clock recovery circuit. However, as illustrated in Fig.4.3, 
the jitter frequency spectrum can be visualized as extending from DC to well 
above the baud rate of the clock recovery circuit. In this example, the clock 
recovery circuit cannot track jitter at a sinusoidal frequency above the baud 
rate divided by 1667. Jitter in this range can be viewed as phase variations in a 
signal (clock or data) after filtering the phase with a single-pole high-pass filter 
with the –3dB point at the jitter corner frequency.

Some standards have used the terminology skew and wander to refer to 
jitter at frequencies below the jitter corner frequency [1]. These parameters do 
not have any affect on data reception on a given serial data link. However, 
when multiple serial data links are used to implement an n-bit wide port, 
differences in the skew and wander among the various links affect the design 
of downstream protocol logic. 

Skew is the constant portion of the difference in the arrival time between the 
data of any two signals. This can be visualized as jitter on one signal relative 
to the reference signal at DC (0 Hz). Skew results from differences in routing 
trace lengths of clocks to the Serdes cores, differences in routing trace lengths 
for clock distribution within the Serdes cores, and differences in routing of data 
in the package and circuit boards. At higher baud rates, skew of several UI is 
possible. If the protocol requires the outputs of multiple Serdes receivers to be 
aligned, then the deskew function in the protocol logic must have sufficient 
range to adjust the signal. Fig. 4.4 illustrates skew using a timing diagram. The 
constant portion of the difference in arrival times of Lane Y relative to Lane X 
corresponds to the skew.

Wander is the peak to peak variation in the phase of a signal (clock or data) 
after filtering the phase with a single-pole low-pass filter with the –3db point 
at the wander corner frequency in Fig. 4.3. Wander does not include skew. 
Wander results from manufacturing process variation, voltage, and tempera-
ture differences between the circuitry for the two links being compared. 
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Temperature variations can result in phase drift over time which contributes to 
wander. Voltage variations can result in phase drift at frequencies correspond-
ing to the switching frequencies of the power supply. If the protocol requires 
the outputs of multiple Serdes receivers to be aligned, then the deskew function 
in the protocol logic must have sufficient range to adjust the signal to compen-
sate for both the skew and maximum amplitude of the wander. Furthermore, 
FIFOs used to cross clock domains must have sufficient depth to handle the 
maximum amplitude of the wander without overflow or underflow conditions 
resulting. Wander is illustrated in the timing diagram in Fig. 4.4. The variable 
portion of the difference in arrival times of Lane Y relative to Lane X corre-
sponds to the wander.

Fig. 4.3 Typical jitter spectrum

Fig. 4.4 Skew and relative wander timing diagram
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4.1.3 Basic Concepts
It is relevant to define a few basic concepts of network protocols regarding 

clocking methods and data organization before discussing the details of 
implementing protocol logic functions.
4.1.3.1 Synchronous vs. Plesiosynchronous Clocks

Telecom SONET/SDH networks generally use synchronous clocking. 
Reference clocks are distributed across the entire network so that the transmit-
ter and receiver device on the link are clocked by the same reference clock and 
are operating at exactly the same frequency as shown in Fig. 4.5. This is true

even when the transmitter and receiver are not in the same city (or state, or con-
tinent). Reference clock distribution does sometimes fail, and locally generated 
reference clocks are used as backup clock sources. As would be the case for any 
two clock signals generated by independent oscillators, the locally generated 
reference clock cannot have exactly the same clock frequency. This frequency 
tolerance between the two clock sources is generally specified in parts per 
million (ppm). For telecom systems locally generated reference clocks for key 
network elements must use high-quality (and expensive) oscillators that have 
low ppm frequency tolerances. Protocol mechanisms allow bytes to occasionally 
be dropped or added in order to adjust for any differences in clock frequencies.

Telecom networks also have a significant number of intermediate nodes 
within a line segment. It would be expensive to distribute the reference clock 
to each and every repeater node, and therefore these nodes often use the clock 
recovered from the receive data as a clock source for transmission (called 
loop timing). Such systems use the RXxDCLK output of the HSS receiver to 
perform any processing of the data so that it is not necessary to add or drop 
bytes. The system then retransmits data to the next node on the optical ring 
using a reference clock that is frequency locked to this RXxDCLK frequency. 
Any node on the SONET/SDH ring may use this method of clocking, although 
there must be at least one node in the ring that retimes the data to a reference 
clock. (If there are no nodes using a reference clock then the ring would 
become a feedback loop and would be inoperable.)

HSS Tx HSS Rxserial link

Common clock source

Synchronous Clock Source

HSS Tx HSS Rxserial link

Plesiosynchronous Clock Source

Local
Oscillator

Local
Oscillator

Fig. 4.5 Clocking architectures
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In addition to use in telecom networks, synchronous clocking is also often 
used for serial links where the transmitter and receiver are in close proximity 
to each other. If both the transmitter and receiver chip are on the same circuit 
board, both HSS devices may very well share a common oscillator. Since the 
clock distribution network for this oscillator is localized and does not require 
backup sources (unlike telecom applications), these applications may use 
inexpensive oscillators with larger frequency tolerances than would be used in 
telecom networks.

Ethernet, Fibre Channel, and other datacom protocols always operate using 
locally generated reference clocks. These reference clocks are generated using 
relatively inexpensive oscillators. In such networks, the reference clock for the 
receiver device on the serial link is always operating at a slightly different 
frequency than the transmitter device. This is called plesiosynchronous 
clocking, and is also illustrated in Fig. 4.5. Protocols using plesiosynchronous 
clocking must allow frequent adding and dropping of bytes in order to adjust 
for differences in clock frequencies. The extent to which bytes may need to be 
added or dropped depends on the specified frequency tolerance allowed for the 
clock sources.
4.1.3.2 Packet vs. Continuous Transmission

HSS cores transmit and receive data continuously; it is up to higher layer 
protocols to determine whether the data is useful or is simply filler which can 
be discarded. Telecom protocols such as Synchronous Optical NETwork 
(SONET) and Synchronous Digital Hierarchy (SDH) require continuous 
transmission of a repetitive data frame containing control bytes and data bytes 
in defined positions within the frame. Telecom protocols are designed in this 
manner in order to facilitate time domain multiplexing of data into and out of 
the frame, and thereby supply a guaranteed bandwidth to each client 
connection on the link. SONET and SDH transmit 8,192 frames per second; 
the higher the data baud rate, the more the data in the frame, and the more 
client connections being multiplexed. The 8-kHz frame rate permits a voice 
connection to achieve a 4kHz frequency response using one byte multiplexed 
into each SONET/SDH frame. The SONET/SDH frame format is explained in 
more detail in Sect.5.1.2. 

Ethernet, Fibre Channel, and other datacom protocols collect data into 
packets for transmission rather than relying on continuous transmission of the 
data. Each packet of data generally includes the following components:
Packet header. May include start of packet delimiter, packet type and routing 
information, sequence information, and other fields as defined by the protocol. 
Data. Hopefully self-explanatory.
Packet trailer.: May include an end of packet delimiter and code words for 
checking and/or correcting for errors in the packet. Cyclic Redundancy Check 
(CRC) error checking is commonly used in many protocols. 

The packet format for Ethernet is described in Sect. 5.3.2.1, and the packet 
format for Fibre Channel is described in Sect. 5.4.3.1. 
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Packet-based protocols send idle symbols between packets. These symbols 
do nothing except fill time, and the receiver may add or drop idle symbols as 
needed to adjust for the difference in frequency between the received data and 
the local reference clock. The protocol generally specifies a maximum packet 
length, a minimum number of idles between packets, and a required frequency 
tolerance for the local reference clock. These specifications determine the 
amount of buffering required to ensure a packet can be received without 
inducing errors due to the frequency mismatch, and ensure that sufficient 
adjustment can be made between packets to compensate. 

An extension of the packet-based approach is to transmit skip symbols at 
regular intervals within the packet which the receiver may additionally add or 
drop as needed. This allows the frequency tolerance of the local reference 
clock to be further relaxed (and thereby permitting the use of less expensive 
oscillators) without having to restrict packet length. 

Packet protocols such as Ethernet are network protocols where each packet 
of data has a source which originated the data and a destination to which the 
data is to be routed. Although the network may consist of Full Duplex links 
where each node can send and receive data from its neighbor, there is no 
concept of the packet transmission requiring any particular response that 
should be tracked at the lower layers of the protocol. (It is possible that the 
application using the network, such as a web browser, might be expecting a 
response. However, the network interface is not cognizant of this.) Telecom 
protocols also fit this description of a network protocol, with routing deter-
mined by network management software outside of the protocol, and each 
payload byte within the frame potentially having different add/drop points in 
the network.

Other protocols, such as PCI Express, are transaction protocols. Some 
nodes are master devices which may originate transactions, and other nodes 
are slave devices which respond to transactions. When a master originates a 
transaction, it expects a response from the target slave device, and tracks this 
as part of the protocol implementation.

4.2  Protocol Logic Functions
Topics in this section describe functions typically implemented by protocol 

logic, including: determining the bit/byte order of transmission; encoding 
and/or scrambling of data; error detection and/or correction; elastic FIFOs to 
retime data to local clock domains; and bit alignment and deskew functions.

4.2.1 Bit/Byte Order and Striping/Interleaving
All application protocol standards include an explicit definition of the order 

in which bits and bytes are transmitted on the serial link. The order in which 
bits within a byte (or encoded symbol) are transmitted is the bit order for the 
interface. The order in which bytes (or encoded symbols) within a multibyte 
(or multisymbol) word are transmitted is the byte order or symbol order. 
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Some protocols use a single serial data link to transmit data. Protocols 
requiring higher bandwidth use multiple serial data links to transmit data in a 
coordinated fashion. Such protocols must allow for relative skew (differences 
in the arrival times of data) between serial data arriving at the receiver inputs. 
Such protocols require that serial data links be deskewed by the receiver to 
compensate for this relative skew. 

Protocols using multiple serial links must allocate the data to be transmitted 
to specific serial data links. The order and manner in which the data is allocated 
to the various links is called striping or interleaving. One method of 
interleaving is to send one byte on one serial data link, the next byte at the same 
time on a second serial data link, the third byte at the same time on a third serial 
data link, and so forth such that n bytes are sent simultaneously on n serial data 
links. This scheme is called byte striping. (If the protocol uses encoded 
symbols, then each symbol is sent on a separate serial data link. This is still 
commonly called byte-striping even though the symbols are not bytes.) 

An example of byte striping is shown in Fig. 4.6. Each byte of a 32-bit data 
word is allocated to a separate HSS transmitter. Assuming that bits 31 through 
24 are connected in order to TXxD[7:0] of an HSS EX10 core, and that other 
channels are connected similarly, the least significant bit of each byte is 
transmitted first. This means that bits 24, 16, 8, and 0 of the 32-bit data word 
are transmitted simultaneously by the various HSS links, followed by bits 25, 
17, 9, and 1, and so forth, with bits 31, 23, 15, and 7 transmitted last. 

An alternative is to transmit each n-bits of the data across n serial data links, 
followed by the next n-bits of the data, and so forth. This scheme is called bit 
interleaving. Bit interleaving has the advantage of requiring less buffering (and 
less latency) at the receiver to perform deskew. However, some protocols use 
data encoding to constrain the spectral characteristics of the serial data, and 
these characteristics cannot be guaranteed when the resulting data is bit 
interleaved across different serial data links. 

An example of bit interleaving is also shown in Fig. 4.6. This example 
transmits the least significant 4-bit nibble on the four serial data links (bits 3 
through 0), followed by the next 4-bit nibble (bits 7 through 4), and so forth 
until the last 4-bit nibble (bits 31 through 28) has been transmitted. This is 
shown pictorially by mapping each 4-bit nibble into a 4-bit wide queue for 
transmission, each column of which is then mapped to the corresponding HSS 
transmitter. (This queue is not implemented in hardware; it just helps visualize 
the bit mapping.) For the HSS EX10 core, implementation of this scheme 
requires that bits 31, 27, 23, 19, 15, 11, 7, and 3 of the 32-bit data word are 
connected to bits TXxD[7:0] of the HSS #1 transmitter, bits 30, 26, 22, 18, 15, 
10, 6, and 2 of the data word are connected to bits TXxD[7:0] of the HSS #2 
transmitter, and so forth. Note that bits 3, 2, 1, and 0 are mapped to the 
TXxD[0] inputs of their respective transmitters in order to be transmitted first.

Any transmission order and interleaving scheme may be implemented 
simply by mapping the data bits to the appropriate HSS transmitter inputs (and 
doing the reverse of this mapping at the receiver).
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Fig. 4.6 Examples of byte striping and bit interleaving

4.2.2 Data Encoding and Scrambling
The raw data being sent on any interface is arbitrary and for most 

applications is not random. For example, a text file contains mostly printable 
ASCII characters. Byte codes which do not correspond to legal ASCII values 
do not occur. The byte codes for spaces and for “e” occur with higher 
frequency, while the byte code for “q” and “x” occur only occasionally. Large 

32-bit Word Bit-Interleaved Across 4 Links

24 25 26 27HSS 1 ....

16 17 18 19HSS 2 ....

8 9 10 11HSS 3 ....

0 1 2 3HSS 4 ....

32-bit Word Byte-Striped Across 4 Links

32-bit Data Word
27:24 23:20 19:16 15:12 11:8 7:4 3:031:28

HSS #1 HSS #2 HSS #3 HSS #4

HSS #1 HSS #2 HSS #3 HSS #4

32-bit Data Word
31:24 23:16 15:8 7:0

3 7 11 15HSS 1 ....

2 6 10 14HSS 2 ....

1 5 9 13HSS 3 ....

0 4 8 12HSS 4 ....
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blocks of spaces may occur with substantially higher probability than would be 
predicted by the rules of a Gaussian probability distribution. 

Transmission of raw data generally cannot be performed by Serdes which 
use clock recovery circuits to extract clock information from the serial data 
transitions. Any long string of 0 or 1 bits would lack any data transitions, and 
the data sample point for the clock recovery circuit would drift from the center 
of the eye, causing bit errors. At higher baud rates sudden shifts in spectral 
characteristics of the data can cause data to be sampled incorrectly, even when 
the data does contain transitions. 
4.2.2.1 Block Codes

Block codes are one method of encoding data such that the maximum run 
length of 0 or 1 bits on the serial data link is guaranteed regardless of the data 
being transmitted. One of the most common block codes used by many 
protocol standards is the 8B/10B code, originally patented by IBM. Every 8 
bits of data is mapped into a corresponding 10-bit code word. There are two 
possible 10-bit code words that correspond to each 8-bit data word; one of 
these 10-bit code words is the positive disparity value, the other is the negative 
disparity value. The code scheme has rules for alternating between the positive 
disparity code word and the negative disparity code word. Following these 
rules guarantees that the number of 0 bits and the number of 1 bits in the 
encoded transmission is equal over time such that no DC bias builds up in the 
line voltage. The 8B/10B code also provides for a number of control symbols 
which may be used by the protocol. These control symbols cannot be confused 
with data since their 10-bit code words are unique. 

Figure 4.7 illustrates the mapping of data bytes and control symbols into 
8B/10B code. The input to the encoder is a byte value and a flag indicating

Fig. 4.7 Construction of 8B/10B code
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Sub-blocks are flipped.
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is: Kxx.y for control symbols
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and bits H-F are mapped to a value 
for bits f g h j.
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whether the byte is a data byte or a control code. The bits of this byte are 
grouped with the most significant three bits forming one group and the least 
significant five bits forming another group. A nomenclature for code symbols 
is created by using the notation “Dxx.y” for data bytes, or “Kxx.y” for control 
codes, where “xx” is the decimal equivalent of bits E down to A, and “yy” is 
the decimal equivalent of bits H down to F. These bit groupings (with the D/K 
flag) are then mapped into groups of bits to form the 10-bit symbol, as shown 
in Table 4.1. Bits “EDCBA” are mapped into 10-bit symbol bits “abcdei”; 
while bits “HGF” are mapped into bits “fghj.” Note that there are two 
encodings shown for each mapping: a negative disparity mapping (RD−) 
which has at least as many 0’s as 1’s, and a positive disparity mapping (RD+) 
which has at least as many 1’s as 0’s. 

Table 4.1  8B/10B Data symbol mapping

Name EDCBA abcdei
(RD–)

abcdei
(RD+) Name EDCBA abcdei

(RD–)
abcdei
(RD+)

D00 00000 100111 011000 D16 10000 011011 100100
D01 00001 011101 100010 D17 10001 100011 100011
D02 00010 101101 010010 D18 10010 010011 010011
D03 00011 110101 001010 D19 10011 110010 110010
D04 00100 110101 001010 D20 10100 001011 001011
D05 00101 101001 101001 D21 10101 101010 101010
D06 00110 011001 011001 D22 10110 011010 011010
D07 00111 111000 000111 D23 10111 111010 000101
D08 01000 111001 000110 D24 11000 110011 001100
D09 01001 100101 100101 D25 11001 100110 100110
D10 01010 010101 010101 D26 11010 010110 010110
D11 01011 110100 110100 D27 11011 110110 001001
D12 01100 001101 00101 D28 11100 001110 001110
D13 01101 101100 101100 D29 11101 101110 010001
D14 01110 011100 011100 D30 11110 011110 100001
D15 01111 010111 101000 D31 11111 101011 010100

Name HGF fghj
(RD–)

fghj
(RD+) Name HGF fghj

(RD–)
fghj

(RD+)

Dxx.0 000 1011 0100 Dxx.4 100 1101 0010
Dxx.1 001 1001 1001 Dxx.5 101 1010 1010
Dxx.2 010 0101 0101 Dxx.6 110 0110 0110
Dxx.3 011 1100 0011 Dxx.7 111 1110 or 

0111
0001 or 

1000
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Table 4.2 provides mapping for valid control symbols. Not all values of the 
“xx” bits are valid. Use of these control symbols varies somewhat depending 
on the protocol application.

Note that any valid mapping of the “abcdei” bits contains no more than four 
1’s or 0’s, and any valid mapping of the “fghj” bits contains no more than three 
1’s or 0’s. The characteristics of the code are such that the maximum run length 
that can ever be encountered is 5 bits. 

A useful attribute of 8B/10B coding occurs because most (but not all) code 
words in the 8B/10B code have a Hamming distance of two from all other valid 
code words, and therefore most one-bit errors are detectable as a code word 
violation at the receiver. Additional one-bit errors may be detected as a 
violation of the disparity coding rules; receiving an RD– coding where an RD+ 
coding should have occurred, or vice versa, is likely the result of a bit error.

One drawback of 8B/10B codes is that the baud rate must be 25% higher 
than the data rate. This overhead factor becomes expensive at higher baud 
rates. For this reason, 64B/66B block codes have become more popular at 
higher baud rates. The 64B/66B block code adds two overhead bits to every 64 
bits of data. These overhead bits are generated to ensure a data transition occurs 
and to equalize the number of 0 and 1 bits being transmitted. While the 8B/10B 
block code guaranteed a run length of 0’s or 1’s no greater than five, the 
64B/66B only guarantees a transition every 66 bits, and does not have the error 
checking properties of the 8B/10B code. However, this is generally a 
reasonable trade-off given that the overhead of this code is only 3.125%.

IEEE 802.3 Clause 49 [6] defines 64B/66B coding for Ethernet network 
applications; this code is described in more detail in Sect. 5.3.4.2. The code is 
constructed by adding a two bit block tag to each 64-bit data block. The block 
tag is either “01” to indicate the 64-bit block contains data or “10” to indicate 
the 64-bit block is a control block. Control blocks may include control fields 
only, or a mixture of control fields and data. In either case, the block tag 
ensures that a data transition exists. Block tags of “00” and “11” are not valid. 

Table 4.2  8B/10B Control symbol mapping

Name EDCBA abcdei
(RD–)

abcdei
(RD+) Name HGF fghj

(RD–)
fghj

(RD+)

K23 10111 111010 000101 Kxx.0 000 1011 0100
K27 11011 110110 001001 Kxx.1 001 0110 1001
K28 11100 001111 110000 Kxx.2 010 1010 0101
K29 11101 101110 010001 Kxx.3 011 1100 0011
K30 11110 011110 100001 Dxx.4 100 1101 0010

Kxx.5 101 0101 1010
Kxx.6 110 1001 0110
Kxx.7 111 0111 1000
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4.2.2.2 Scrambling
Scrambling involves XOR’ing the output of a Linear Feedback Shift 

Register (LFSR) which generates a Pseudorandom Bit Sequence (PRBS) with 
the data being transmitted. The data is descrambled at the receiver using the 
inverse of the scrambling function. The purpose is to generate a more random-
ized content of 0’s and 1’s in the transmitted bit sequence, reducing the prob-
ability of a long run length of 0’s or 1’s occurring, and generating a frequency 
spectrum which more closely approximates a Gaussian distribution. Scram-
bling has no overhead, unlike block codes which always add overhead bits to 
the data. 

Note that scrambling does not guarantee that a long run length of 0’s or 1’s 
does not occur. Given any scrambler starting at a given LFSR state, there is 
always a reverse scramble pattern which results in an all 0’s or all 1’s output. 
However, the probability of such a pattern occurring (provided it was not 
generated on purpose) is astronomically low, and can be discounted if the 
probability is well below the specified BER of the system. SONET and SDH, 
for example, are protocols which rely on scrambling to ensure data transitions 
occur. It is generally accepted that tolerating a maximum run length of 80 bits 
of all 0’s or 1’s is sufficient to ensure the system operates within the specified 
BER of the system (BER = 10–12). 

The scrambler algorithm is described using a shorthand polynomial 
notation. The polynomial for the scrambling used with 10Gb Ethernet, 8Gb 
Fibre Channel, etc., is:

G(x) = x58 + x39 + 1. (4.1)
The serial implementation of the LFSR for this polynomial requires a 58-bit 

shift register (corresponding to the degree of the polynomial). The outputs of 
the 39th and 58th bit are XOR’d together to produce the feedback into the first 
bit of the shift register. The feedback term is also XOR’d with the data bit being 
transmitted (to scramble) or the data bit being received (to descramble). The 
LFSR is shifted by one bit for each bit transmitted or received. 

The LFSR described above is part of the scrambler and descrambler imple-
mentations illustrated in Fig. 4.8. This figure illustrates both sidestream and 
self-synchronizing configurations. The sidestream scrambler and descrambler 
are implemented with identical logic. The feedback term loaded into the LFSR 
differs for the self-synchronizing scrambler and descrambler.

The LFSR contents of a sidestream scrambler and descrambler are not 
affected by the data being transmitted or received. In order to properly 
descramble the data, the state of the LFSR at the descrambler must match the 
state of the scrambler. In order to achieve this, the protocol must specify events 
upon which the LFSR at the scrambler and at the descrambler are reset to a 
seed value. One simple approach is to reset the scrambler and descrambler on 
the Start of Packet delimiter at the start of every packet, or on the framing 
pattern at the start of every SONET/SDH frame.
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Fig. 4.8 Serial scrambler and descrambling architectures
The requirement for synchronizing the scrambler and descrambler can be 

eliminated by using a self-synchronizing scrambler. Fig. 4.8 illustrates these 
functions for the polynomial defined previously. The self-synchronizing 
scrambler differs from the sidestream scrambler in that the scrambled data bit 
is shifted into the LFSR rather using the feedback term alone. Likewise, the 
scrambled receive data is loaded into the LFSR at the descrambler. (The self-
synchronizing scrambler and descrambler are not exactly the same design. 
They differ in terms of whether the data output or the data input are loaded into 
the LFSR.) For this architecture, the state of the scrambler and descrambler is 
entirely determined by the scrambled data. Regardless of the initial state of the 
descrambler, the descrambler state is synchronized after the first 58 bits are 
received, and correctly descrambles data thereafter.

Error propagation is one significant disadvantage of self-synchronizing 
descramblers. If the descrambler shown in Fig. 4.8 receives a bit which is in 
error, the incorrectly decoded bit alters the descrambler state. This error 
generates additional errors based on the feedback terms of the polynomial. Any 
error detection scheme must be robust enough to detect errors propagated by 
the characteristics of the scrambler scheme. 
4.2.2.3 Parallel Scramblers

Although scrambler circuits are generally described in terms of their serial 
implementation, scrambling is generally not performed directly on the serial 
bit stream. Practical scramblers at baud rates used by HSS devices are imple-
mented as part of the protocol logic and operate on the parallel data path. 
The logic equations necessary to implement the parallel implementation 
of a scrambler (or descrambler) are constructed through simple boolean 

+

 
S1 S2 S3 S38 S39 S57 S58... ...

+

S1 S2 S3 S38 S39 S57 S58... ...

++
 Serial Self-Synchronizing Descrambler 

Serial Sidestream Scrambler / Descrambler

S1 S2 S3 S38 S39 S57 S58... ...
++

 Serial Self-Synchronizing Scrambler 
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manipulation of the scrambler polynomial. For example, assume a Sonet/SDH 
scrambler which uses the polynomial:

G(x) = x7 + x6 + 1. (4.2)
Assume the scrambler (or descrambler) for (4.2)  is implemented using 

seven flip-flops with the following initial states, where the number in the 
parenthesis indicates the advance of n = 0 bits of the sequence:

x7(0) = x7 x3(0) = x3

x6(0) = x6 x2(0) = x2

x5(0) = x5 x1(0) = x1

x4(0) = x4

After the sequence is advanced by one bit, the content of the serial scrambler 
state is shifted by one bit, and the feedback term is loaded into the first bit:

x7(1) = x6 x3(1) = x2

x6(1) = x5 x2(1) = x1

x5(1) = x4 x1(1) = x7+ x6

x4(1) = x3

As the sequence continues to advance, after 8 bits of the sequence the 
scrambler state is:

x7(8) = x7+ x6 x3(8) = x3+ x2

x6(8) = x6+ x5 x2(8) = x2+ x1

x5(8) = x5+ x4 x1(8) = x7+ x6+ x1

x4(8) = x4+ x3

The above equations may be used to implement an 8-bit parallel sidestream 
scrambler for the polynomial in (4.2). Given a 7-bit scrambler state, these 
equations determine the next state for a parallel scrambler implementation. 
Keeping in mind that the bit order for transmission of SONET/SDH is most 
significant bit to least significant bit, the 8-bit data is scrambled using the 
following equations:

d7scrambled = x7 + d7 d2scrambled = x2 + d2
d6scrambled = x6 + d6 d1scrambled = x1 + d1
d5scrambled = x5 + d5 d0scrambled = x7+ x6 + d0
d4scrambled = x4 + d4
d3scrambled = x3 + d3

where d7 is the most significant bit and d0 is the least significant bit. Likewise, 
at the receiver data is descrambled with these same equations.

Another useful example is a self-synchronizing scrambler using the 
polynomial defined in (4.1). This scrambler contains 58 flip-flops with the 
following initial states at n = 0:

x58(0) = x58

...
x1(0) = x1
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Note that the “ ” is used to avoid writing out all 58 equations, however the 
equations for the intermediate bits should be obvious. The first bit transmitted 
is scrambled by the feedback term:

dscrambled = x58 + x39 + d
and the scrambler state is advanced by one bit as follows:

x58(1) = x57

...
x2(1) = x1

x1(1) = x58 + x39 + d
Assuming a 32-bit data bus where d31 is the first bit transmitted, and d0 is the 
last bit transmitted, the data is scrambled using the following equations:

d31scrambled = x58 + x39 + d31
d30scrambled = x57 + x38 + d30
...
d1scrambled = x28 + x9 + d1
d0scrambled = x27 + x8 + d0

and the scrambler state is advanced by 32 bits using the following equations:
x58(32) = x26

...
x33(32) = x1

x32(32) = x58 + x39 + d31
...
x1(32) = x27 + x8 + d0

It is left as an exercise to the reader to adapt the above equations for the self-
synchronizing descrambler.

4.2.3 Error Detection and Correction
Any serial data link is prone to occasional bit errors, hopefully at a rate 

below the specified BER for the system. Most protocol applications include 
some means of detecting bit errors so that higher layers of the protocol may 
take appropriate corrective or reporting actions. This section describes the 
basics of error detection and correction schemes.
4.2.3.1 Parity Bits

Parity generation and checking is a simple form of error detection. Parity 
is calculated by XOR’ing all of the bits of the transmission using one of the 
following equations:

Peven = d0 + d1 + d2 + d3 + ... + dn (4.3)
Podd = d0 + d1 + d2 + d3 + ... + dn + 1. (4.4)

The parity bit generated by the selected equation is appended to the 
transmission. Parity is again calculated at the receiver, this time with the 
transmitted parity bit included in the calculation. Assuming no errors, the 
check result for even parity is always “0,” and the check result for odd parity 

...
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is always “1.” A bit error causes the parity check to be incorrect, thereby 
detecting the error.

Parity is guaranteed to detect any one-bit error in the transmission, but it 
does not detect the error if two bits are corrupted. Bit errors in many transmis-
sion media tend to occur in bursts, and parity does not guarantee error detection 
in such systems. As a result, parity is not commonly used to detect errors in 
serial link applications. 
4.2.3.2 Bit Interleaved Parity

Bit interleaved parity (BIP) is an extension of a parity calculation where the 
data is broken into n-bit symbols, and the symbols are XOR’d together to form 
an n-bit parity symbol. The notation BIP-n indicates a BIP calculation 
performed on n-bit symbols. 

SONET/SDH protocols use BIP-n for error detection. All bytes in the frame 
are XOR’d together, and the resulting parity byte is transmitted in the BIP-8 
SOH field of the next frame. At the receiver, the BIP-8 byte is recalculated and 
compared with the BIP-8 field, and an error is flagged if a mismatch occurs. 

Any parity error detection scheme is prone to multiple bit errors cancelling 
such that the error is not detected. A BIP-n calculation is such that a burst of 
bit errors up to n bits in length is detected by the BIP-n scheme. However, 2- 
bit errors separated by n bit positions cancel. The BIP-n scheme is far from 
robust, but larger values of n significantly reduce the probability of error can-
cellation. BIP-n schemes have proven sufficient for the SONET/SDH environ-
ment, where the only intent is to flag links which have degraded to an 
unacceptable BER level so that corrective maintenance actions can be taken. 
This application is not intended to ensure quality of the data being delivered. 
4.2.3.3 Cyclic Redundancy Check (CRC)

Packet protocols often calculate a Cycle Redundancy Check (CRC) word 
during transmission and reception of the packet. The remainder of the CRC 
calculation is transmitted at the end of the packet. When the CRC is calculated 
at the receiver, and this remainder is included, the result should always be a 
fixed value. The calculation of the CRC word can be viewed mathematically 
as the division of polynomials:

L(x) / G(x) = C(x), (4.5)
where L(x) is a polynomial containing all n terms of an n-bit wide calculation:

L(x) = xn + xn–1 + .... + x2 + x1 + 1 (4.6)
and G(x) is the standard generator polynomial. Several protocols including 
Fibre Channel use the following n = 32 generator polynomial:
G(x) = x32 + x26 + x23 + x22 + x16 + x12 + 

x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1. (4.7)
The resulting C(x) polynomial remainder is therefore:
C(x) = x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 + 

x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x + 1. (4.8)
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A serial implementation of this CRC generator (or checker) consists of a 
32-bit LFSR implementing the C(X) polynomial. The LFSR is reset to a seed 
value at the start of the packet, and the serial data is XOR’d with the feedback 
terms and shifted into the LFSR as each bit is transmitted. The remainder is 
appended to the packet. At the receiver, the same LFSR implementation is 
used, however, the CRC word at the end of the packet is included in the CRC 
calculation at the receiver. The remainder in the LFSR after including this CRC 
word should always be a fixed value. 

Although multiple bit errors can cancel such that a CRC check does not flag 
the error, this is extremely unlikely. CRC checks are very robust at flagging bit 
errors, including multiple bit errors, bursts of errors, etc. However, CRC 
checks have no ability to correct bit errors when they occur. Higher layer 
protocols must take responsibility for recovering from any error events. 
4.2.3.4 Error Correction

Protocol standards sometimes incorporate error correction schemes at high 
baud rates. Use of these schemes is generally optional, and hardware 
implementations are not widely deployed. This may change as baud rates for 
serial link protocols continue to increase.

Error correction is used to improve the BER performance of an interface. 
However, any error correction implementation inherently requires some 
amount of buffering. Such buffering adds latency to the system which is 
considered undesirable in many applications. For this reason, other methods of 
improving system performance are generally pursued in the system design 
before any error correction schemes are considered.

Forward Error Correction schemes used in protocol standards of interest to 
serial links are generally based on some form of a cyclic code. At the transmit-
ter, data is broken into fixed length blocks. The error correction code words for 
each block are calculated as data is being transmitted, and then are appended 
to the block. At the receiver, the error correction code words are recalculated 
and compared to the received values in much the same manner as error 
detection code words are processed. If values do not match, then an error has 
occurred.

Error correction schemes differ from error detection in that it is possible to 
deduce which bits are in error from the recalculated error correction code 
words. (Methods of doing this are beyond the scope of this text.) Given that the 
bits which are in error can be identified, the values of these bits can be 
corrected (by inverting the bits) and downstream logic processes the corrected 
data. Note that it is not possible to identify which bits are in error until the 
entire data block has been received, and the data bits which must be corrected 
may be anywhere in the block. Therefore, the protocol logic must buffer the 
data block until it is possible to determine whether corrections are needed. The 
data block is then forwarded to downstream logic with any corrections.

The size of the data block and the number of bits in the error correction code 
words therefore becomes a trade-off. Larger block sizes require larger buffers 
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and introduce more latency. Smaller block sizes introduce higher overhead for 
error correction code words. The block size and complexity of the error correc-
tion code words also impact the strength of the code. Error correction strength 
is an indication of how many bit errors may occur in the data block before the 
error correction scheme cannot correctly identify which bits are incorrect. Bit 
errors often occur in bursts, and the ability to correct such bursts is also an 
important characteristic of the error correction code.

Cyclic error correction codes are partially described by the notation (n,m) 
where n is the total number of symbols in the data block, and m is the number 
of those symbols which are payload symbols. The difference n – m indicates 
the number of symbols in the error correction code word. Often each symbol 
is one bit, but the notation can be applied to any symbol size.

The IEEE 802.3ap Backplane Ethernet standard [7] defines a Forward 
Error Correction scheme in clause 74 which is summarized in Sect. 5.3.5.3. 
This scheme is optionally used as part of the 10GBASE-R physical coding 
sublayer. This is a (2112,2080) code which is constructed by shortening the 
cycle code (42987,42955). Data and transcode bits are mapped as shown in 
Fig. 5.21 and the 32-bit error correction code word, calculated using (5.5), is 
appended to the block. This code is capable of correcting a burst of up to 
11-bit errors in the data block.

The Optical Internetworking Forum has defined a set of electrical link 
standards for 5–6Gb and 8–11Gb baud rate ranges. The Common Electrical 
I/O (CEI) Implementation Agreements are inherently designed for a 
10–15 BER. The Common Electrical I/O Protocol (CEI-P) Implementation 
Agreement [5], described in Sect. 5.2.4, defines a physical layer protocol for 
use with CEI electrical links. This protocol optionally includes an error 
correction scheme based on 1,584 bit data blocks as illustrated in Fig. 5.11. The 
data block includes 1,560 payload bits, 4 status bits, and a 20-bit error 
correction control word calculated using the Fire Code polynomial specified in 
(5.2). Using this error correction scheme, the expected BER of the link is 
extended beyond 10–18. 

The ITU-T G709 protocol [7] implements an overhead shell around a 
SONET or SDH protocol. The additional overhead bytes transmitted for G709 
requires a 7% higher baud rate than for the native SONET/SDH protocol. This 
overhead shell includes various control functions, and includes Reed-Solomon 
error correction code words. Although a higher baud rate is employed, the error 
correction improves the Signal-to-Noise of the system such that optical links 
can run for longer distances between repeater units. This is a significant cost 
reduction for long-lines telecom carriers. 

This error correction scheme uses Reed-Solomon (255,239) code (where 
symbols of this code are bytes rather than bits). The transmission is broken into 
data blocks of 255 bytes, where every 4,080 bytes are byte interleaved among 
16 independent Reed-Solomon codecs. A 16-byte error correction code word 
is produced for each block. This scheme is capable of correcting errors in up to 
8 bytes of each 255 byte data block.
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4.2.4 Parallel Data Interface
Serdes transmitter and receiver channels derive the parallel data clocks 

from the baud rate clocks generated by the PLL slice in the Serdes core. The 
clocks for each parallel interface are produced independently for each trans-
mitter and receiver channel, and are used to clock parallel data to the transmit-
ter, and to capture parallel data from the receiver. Although the system clock 
on the chip may be derived from the same reference as is supplied to the HSS 
cores, the phase relationship between the system clock and the parallel data 
clocks on the Serdes cannot be guaranteed. This section describes techniques 
used in protocol logic to interface to the parallel data interface of the HSS core.
4.2.4.1 Transmitter Parallel Data Interface

Figure 4.9 illustrates the parallel data interface to two or more HSS trans-
mitter channels. Transmit data originates on the chip synchronous to a system 
clock, and is supplied in parallel to the logic associated with multiple HSS 
transmitter channels. Each HSS transmitter has an associated parallel data 
input and parallel data clock output. The system clock is assumed to be 
frequency locked to the reference clock for the HSS cores, however, the phase 
relationship between the system clock and the parallel data clocks cannot be 
known or guaranteed. In this example, it is also assumed that the phase 
relationship between parallel data clocks of different transmitters is also 
indeterminate. 

In Fig. 4.9, elastic FIFOs are used to synchronize the data in the system 
clock domain to the parallel data interface for each individual transmitter 
channel. The n-deep elastic FIFO consists of n registers, each with a bit width 
corresponding to the width of the parallel data interface. Data is written into 
one of these registers on each system clock as determined by the current value 
of the write address counter. Data is read from one of these registers on each 
parallel data clock as determined by the current value of the read address 
counter. The write address counter and the read address counter are reset to 
address values with a difference of n / 2. Assuming the system clock and 
parallel data clock remain frequency locked, and assuming an appropriate 
value for FIFO depth n, the FIFO operates indefinitely after reset without the 
possibility of an overflow or underflow. 

Note that only a small number of flops are clocked by the parallel data 
clock. This allows this clock domain to be implemented with minimal clock 
latency on the chip, aiding in timing closure on this timing critical interface.

The depth of the FIFO is selected to take into account any wander that may 
occur between the system clock and the parallel data clock. Wander results 
from differing delays of the system clock distribution path relative to the clock 
path through the HSS core. The delay of these paths varies over time due to 
process, voltage, and temperature variation in different regions of the chip. As 
the two clocks drift relative to each other, the FIFO must have sufficient depth 
to absorb this variation without an overflow or underflow occurring.
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Fig. 4.9 Serdes transmitter elastic buffers
If the application is a multibit interface, and the various transmitter 

channels must meet a skew specification at the output of the chip, then 
additional considerations apply. Any phase difference between parallel data 
clocks, or any difference in when FIFO counters begin to increment after a 
reset, results in additional skew which may exceed the specification. 
Therefore, implementations of multibit interfaces must ensure the following:
• The parallel data clocks must be initialized such that they are in phase. 

The HSS EX10 core provides a resynchronization feature which resets 
clock dividers, resulting in TXxDCLKs being approximately in phase.

• The elastic FIFOs must be initialized such that they exit reset approxi-
mately in phase. Figure 4.10 illustrates a timing example where the elastic 
FIFOs have not been properly reset, and skew is induced as a result.

Assuming the above conditions are met, skew contributors are limited to 
propagation delay differences in the routing of the reference clock distribution 
network to the HSS cores, time of flight differences for serial data signals 
through the package, and the channel-to-channel skew specifications for the 
HSS cores as defined in the core databook. 

An alternative approach is shown in Fig. 4.11. This scheme assumes that 
the various transmitter channels have been resynchronized, and therefore 
parallel data clocks are approximately in phase. This implementation uses one 
of these parallel data clocks to read data from all FIFOs; other parallel data 
clocks are not used.
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Fig. 4.10 Skew induced by out-of-sync elastic FIFO read pointers

Fig. 4.11 Serdes transmitter elastic buffers (alternative approach)
This approach solves the problem of ensuring all FIFOs exit reset in phase 

with each other. However, this approach does introduce additional difficulty in 
closing timing on the parallel data interface:
• Setup and hold times of parallel data inputs must be adjusted to take into 

account channel-to-channel, and in some cases core-to-core, specifica-
tions for skew and wander. This has the effect of increasing both the setup 
and hold times.

• The FIFO read address is distributed to more logic, which may increase 
propagation delay. These signals are in the critical timing path.
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FIFO Reset

Byte 0
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FIFO 2 Reset is held for an extra cycle.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7HSS 2 Serial Data

Result is 8 bits of skew between HSS 1 and HSS2 serial data.
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4.2.4.2 Receiver Parallel Data Interface
Figure 4.12 illustrates the parallel data interface to two or more HSS 

receiver channels. Serial data is received by each HSS receiver channel, is 
deserialized, and then is driven onto the parallel data outputs of the core. Each 
receiver channel has a parallel data clock which should be used to sample the 
data output. The frequency of this clock is recovered from the bit transitions on 
the incoming data, and in applications using plesiosynchronous clocks this 
clock frequency is not the same as the local reference clock.

In this example, elastic FIFOs are used to synchronize the data in the local 
RXxDCLK domains to the system clock domain. The n-deep elastic FIFO 
consists of n registers, with a bit width corresponding to the parallel data width. 
Data is written into one of these registers on each RXxDCLK as determined by 
the current value of the write address counter. Data is read from one of these 
registers on each system clock as determined by the current value of the read 
address counter. The write address counter and the read address counter are 
reset to address values that have a difference of n / 2. In plesiosynchronous 
applications, the FIFO read and write pointers eventually catch up with each 
and a FIFO overflow or underflow may occur. The protocol must provide a 
mechanism to add or drop bytes (or symbols) to correct for differences in the 
clock rate. The depth required for the FIFO depends on the exact mechanism 
used and the frequency tolerance specification for the reference clock. 

An example of calculating the minimum required FIFO depth follows: 
Assume a packet protocol application where data is transmitted as packets of 
up to 32,768 bytes in length. Between packets there are idle symbols which are 
ignored by the protocol. These symbols may be duplicated or dropped if 
needed to recenter the FIFO pointers. Assume the protocol specifies that a 
200 ppm frequency difference is allowed between the reference clocks for the 
transmitter and the receiver of the link. Therefore:
• Frequency difference = 200 / 1,000,000 = 0.0002
• 1 UI slip occurs every 1 / 0.0002 = 5,000 bits
• Packet length of 32,768 bytes = 262,144 bits
• The total slip that occurs during a maximum length packet is up to:

262,144 / 5,000 = 53 bits (rounding up) = 7 bytes (rounding up)
The elastic FIFO must therefore tolerate the write and read pointers drifting 

by up to +7 FIFO locations relative to each other during the reception of a 
frame. The minimum depth of this FIFO is therefore 15 bytes (a range of 
+7 locations from the current location). In addition, the designer may want to 
increase the FIFO depth in order to avoid having to handle boundary condi-
tions when FIFO pointers are at their extreme limits.

The elastic FIFO must be designed with some mechanism to recenter the 
read and/or write pointers while idles are being received between frames. 
Many possible design approaches are possible for this problem. The selected 
solution is often dictated by the needs of the application, and specific 
approaches are beyond the scope of this text.
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Fig. 4.12 Serdes receiver elastic buffers
The parallel data clocks from each of the receiver channels have no 

guaranteed phase relationship to either the system clock (even if frequency 
lock can be assumed) or to each other. If the various receiver channels 
represent multiple serial data bits on a multibit interface where all the bits are 
being driven by the same far-end chip, then the channels can be assumed to be 
frequency locked to each other. It may be possible, depending on the HSS core 
design, to assume the parallel data clocks of the various receiver channels are 
in phase immediately after a reset or resynchronization of the channels. 
However, as soon as reset completes the clock recovery function in each 
channel makes independent decisions as to when to update the data sampling 
point. Therefore, the phase relationships between the parallel data clocks 
quickly drift relative to each other, and no assumptions as to phase relationship 
should ever be assumed. Routing of clocks within the core contributes an 
additional skew factor, and variations in voltage and temperature contribute to 
wander, causing further phase differences.

Figure 4.12 assumes a system where each HSS channel is receiving an 
independent serial bit data bit stream. If the various receiver channels represent 
multiple serial data bits on a multibit interface, then there may be skew 
between the various bits of the data as it arrives at the various receiver 
serial data inputs. Deskew logic is the subject of a separate discussion in 
Sect. 4.2.6.

It is important to note that because a phase relationship between the parallel 
data clocks cannot be assumed, this potential phase difference contributes 
additional skew and wander which impacts the required deskew range. 
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4.2.5 Bit Alignment
The protocol logic inherently drives an integral number of bytes (or 10 bit 

symbols) of data into the parallel data inputs of the HSS transmitter. This data 
is serialized by the HSS transmitter, driven across the channel, and deserialized 
by the HSS receiver. The byte (or symbol) boundaries of the bit stream are not 
inherently known to the HSS receiver, and therefore the parallel data output of 
the receiver channel may be misaligned. For example, an 8-bit output may 
contain the latter portion of one byte and the first portion of the byte after that. 

An example of this is shown in Fig. 4.13 where parallel data is transmitted 
least significant bit first, and then is deserialized starting at a bit position that 
is three bits out of sync with the transmitter. The resulting parallel data at the 
receiver appears significantly different from that which was transmitted. (It is 
not actually different −  the bits are all there but just out of alignment.)

Fig. 4.13 Arbitrary bit alignment of received data

Fig. 4.14 Bit alignment using datasync

Tx Parallel 1101 1110 1010 1101 1101 1110 1010 1101
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Fig. 4.15 Generic deskew logic
Most Serdes cores provide a mechanism to adjust the bit alignment until it 

falls on the desired byte (or symbol) boundary. The RXxDATASYNC feature 
on the HSS EX10 core was described in Chap. 2. Use of this feature requires 
that the protocol have a method of determining the proper byte (or symbol) 
alignment. One common method uses a symbol that occurs in the data stream, 
such as the idle symbols occurring between packets, to align the receiver. 
Figure 4.14 provides a block diagram of the logic that would perform bit 
alignment. The data output of the receiver is monitored by a comparator circuit 
to determine whether or not the data is bit aligned. (The data can be monitored 
either before or after the elastic FIFO, although monitoring prior to the FIFO 
might be necessary for some FIFO designs.) If the data is not aligned, then a 
state machine pulses the RXxDATASYNC input. This causes the data to “slip” 
by one bit. If the data remains unaligned, the state machine repeats this process 
until the data is aligned on the desired boundary. Once the data is aligned, it 
should remain aligned unless the interface is reinitialized. 

The bit alignment feature is used by both serial interfaces and multibit 
interfaces. This feature is also related to deskew, as discussed in Sect. 4.2.6. It 
is not necessary to use the RXxDATASYNC feature to perform bit alignment; 
this function can also be performed by downstream logic in the datapath 
without interaction with the HSS core. 

4.2.6 Deskewing Multiple Serial Data Links
Any interface implemented using multiple serial data links requires that the 

output of the various links be deskewed to correct for any skew introduced by 
the transmitter chip, the channel, and the HSS receiver. In many applications 
several UI of skew may exist, and the deskew logic must have a sufficient 
range to correct for this.

A generic example of the deskew logic for a single serial data link is shown 
in Fig. 4.15. This example assumes the parallel data output of the HSS receiver 
is n-bits wide. The n-bit parallel data is retimed to the system clock domain, 
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and then is connected to the input of this deskew logic. The deskew logic 
shown includes three registers which contain the last 3n bits of data. The barrel 
shifter stage is a 3n : n multiplexor which can select any n consecutive bits out 
of the 3n bit input, thus providing a total deskew range of 3n bits. 

The select input for the barrel shifter is controlled by unspecified control 
logic in this example. This control logic determines the correct setting for the 
barrel shifter associated with each serial data link. The goal is for the outputs 
of all of the barrel shifters to be aligned such the combined output is a single 
k by n bit parallel data bus (where k is the number of serial data links). Many 
schemes exist in protocol standards for providing a reference for control logic 
to use to perform deskew. Some of these are discussed below.
4.2.6.1 Deskew Schemes

This section describes several deskew approaches used by various protocol 
standards to provide a reference for aligning multiple serial data lanes of an 
interface. More detailed descriptions of these deskew methods are provided, 
where applicable, in Chap. 5.
Link Synchronization Patterns. Some protocol standards specify a link syn-
chronization or training pattern which is transmitted regularly. The deskew 
function of the XGMII Extended Sublayer (XGXS) Physical Coding Sublayer 
(PCS) associated with IEEE 802.3 10Gb Ethernet [6] is an example of an 
interface which uses a specified pattern for deskew. The XGXS PCS is a four-
lane packet-based protocol which uses 8B/10B block encoding. As described 
in Sect. 5.3.3.2, various control symbols are transmitted on the link between 
packets; these include align symbols (K28.3) which are transmitted at intervals 
of 16–31 symbol times. Align symbols are transmitted on all links simulta-
neously, and are used by the receiver to deskew the links. Given the interval at 
which these symbols are transmitted, deskew of up to +15 symbol times (150 
UI) is possible (although achieving this might require reception of several align 
symbols with various spacings).

The K28.3 symbol is chosen for performing deskew because its bit 
sequence is unique. This minimizes the possibility of falsely detecting the 
symbol in a data stream, and incorrectly deskewing the interface as a result. 
Such false detection, called aliasing, can occur for some training patterns used 
for alignment if the there is not a robust mix of “1” and “0” values on each link, 
and if the data immediately preceding or following the training pattern coinci-
dentally has the right value.

PCI Express, another packet-based protocol which uses 8B/10B block 
code, does not explicitly specify how the receiver is to perform deskew. 
However, the skip ordered set which is transmitted between packets is 
typically used by the receiver to perform this function in a similar manner to 
the XGXS PCS application. The skip ordered set consists of a COM symbol 
(K28.5) followed by three SKP symbols (K28.0), and is transmitted on all lanes 
simultaneously. (Note that intermediary nodes may add or detract SKP 
symbols, so the receiver may see a COM followed by up to six SKP symbols.) 
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Framing References.   The Scalable System packet Interface (SPI-S) [4] 
defined by the Optical Internetworking Forum (OIF) uses a variation on the 
alignment pattern scheme. As described in Sect.5.2.3.3, deskew is performed 
across multiple lanes by leveraging the framing position of the individual links. 
The tag bits of the 66-bit code words of IEEE 64B/66B code as defined by 
IEEE 802.3 Clause 49 [6] are always “01” or “10.” Framing is performed on 
individual links by examining bits for several consecutive code words, and 
searching for a framing reference where the tag bits are always valid (i.e., never 
“00” or “11”). Once a frame reference is established for each link, deskew may 
be performed across links by comparing the relative frame reference positions. 
Using this method, deskew of up to +32 UI is possible. 

In general, any method used to establish a framing reference for a link may 
be leveraged to deskew multiple links. As an alternative to 64B/66B bit code 
words, SPI-S may also carry data coded and scrambled as described by the OIF 
Common Electrical I/O Protocol (CEI-P) Implementation Agreement [5]. 
CEI-P payload is mapped into frames as shown in Fig. 5.11, and the receiver 
searches for a frame reference where the FEC parity bits are consistently valid. 
Once a frame reference is established for each link, deskew is performed across 
links in a similar manner to the previous case.
Deskew Channel. The OIF Serdes-Framer Interface Generation 5 (SFI-5) 
protocol [2] uses a deskew channel to transmit a reference for alignment of the 
data channels. The deskew channel transmits a framing pattern, followed by 64 
bits from each data channel in a round robin fashion. Deskew logic in the 
receiver uses the framing pattern as a reference point and aligns each data 
channel to corresponding data on the deskew channel.

The OIF SFI-5.2 Implementation Agreement [3] also uses a deskew 
channel, but with the contents described in Sect. 5.2.2.2. The deskew channel 
transmits a 10-bit frame consisting of bits from each of the four data channels 
and even/odd parity bits corresponding to the data channels. Deskew logic uses 
parity calculations to determine reference points for the 10-bit deskew frame, 
and then aligns data channels to the bits on the deskew channel.
4.2.6.2 Optimizing the Deskew Implementation

The reader may note that the generic deskew circuit in Fig. 4.15 was essen-
tially an n-bit wide shift register and a barrel shifter used to insert a selectable 
delay into the data pipeline. There are two opportunities in the receiver logic 
prior to reaching this circuit where similar delays can be inserted to perform a 
similar function. This presents an opportunity to distribute the deskew 
function so that the shift register in Fig. 4.15 is reduced in size or even 
eliminated.

The first opportunity for optimization utilizes the RXxDATASYNC 
function. Previously, this function was described in the context of correcting 
byte (or symbol) alignment on a byte-striped serial data link. Given that each 
serial data link is byte (or symbol) aligned, any remaining skew present 
between data links at the deskew stage is in units of bytes or symbols. Other 
arbitrary bit alignments are not possible. This reduces the complexity of any 
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alignment comparisons for the control logic, as well as reducing the 
complexity of the barrel shifter. 

Also, for bit-interleaved applications, the RXxDATASYNC function is 
available to perform some of the deskew. For an n-bit wide parallel data path 
output of the HSS receiver, the RXxDATASYNC can be used to perform 
deskew within an n-bit range. The circuit in Fig. 4.15 can be used to perform 
additional deskew if this range is not sufficient. 

The next opportunity for optimization utilizes the elastic FIFO function. 
The FIFO already implements the equivalent of the shift register in Fig. 4.15, 
and the read pointer and output multiplexor implement a limited barrel shifter 
function. Assuming a byte-striped application where RXxDATASYNC has 
been used to achieve bit alignment at the input to the FIFO, deskew can be 
implemented by adjusting the read pointer address. This potentially eliminates 
any requirement for additional downstream logic. Note, however, that the 
FIFO depth must be sufficient to permit deskew adjustments without resulting 
in FIFO overruns or underruns. 
4.2.6.3 Skew Budget

The required range of the deskew logic is determined by the specification 
for skew and relative wander at the receiver input pins, plus any additional 
skew introduced by the receiver circuits. 

Table 4.3 provides selected specifications for skew and relative wander for 
the Optical Internetworking Forum SFI-5.2 interface as described in [3]. As 
shown in this table, the transmitter must meet skew and relative wander 
requirements as measured on the serial data output pins. Skew may result due 
to several factors in the transmitter chip, including: differences in signal 
routing of the reference clock to the individual HSS cores, differences in signal 
routing internal to the HSS cores, and time of flight differences in the routing 
of the serial data signals through the chip package. The total contribution of all 
these factors must not exceed 5.50 UI peak-to-peak as measured at the output 
pins of the chip package. 

In addition to skew, if the transmitter uses multiple HSS cores to implement 
the interface then phase differences may exist between the individual PLL 
slices in these cores. These phase differences may vary over time as tempera-
ture and voltage conditions change. This results in relative wander as specified 
in Table 4.3. Because relative wander is below the cutoff frequency of the 
CDR, the elastic FIFO and deskew logic must compensate for this variation.

Table 4.3 also specifies skew and relative wander at the receiver input. The 
difference between the skew specifications for the transmitter and the receiver 
reflects the skew that is allowed to be introduced by routing differences in the 
channel. Pattern-dependent distortions introduced by the channel may also 
result in slightly more relative wander as seen at the receiver. The total skew 
plus relative wander as seen at the receiver is of significance to the design of 
the deskew logic.
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When determining the range for the deskew logic, the designer starts with 
the specification for skew and wander at the receiver input, and then adds the 
additional skew contributors within the receiver. An example is shown in 
Table 4.4, although note any calculation is implementation dependent. 

The first contributor that is considered in this table results from signal 
routing differences within the receiver chip, including: differences in signal 
routing of the reference clock to the individual HSS cores, differences in signal 
routing internal to the HSS cores, and time of flight differences in the routing 
of the serial data signals through the chip package. The magnitude of these 
contributors is implementation dependent, but it is reasonable to assume that 
the values are similar to the corresponding values for the transmitter. Table 4.4 
assumes these contributors result in an addition 5.50 UIpp of skew.

The other contributor to skew in the receiver results from the phase 
differences between the RXxDCLK outputs of the various receiver slices. 
Unlike the transmitter, where synchronizing the phases of the TXxDCLK 
clocks is critical to meet the interface skew specifications, there is usually no 
attempt to synchronize RXxDCLKs. Even if these clocks were to be 
resynchronized, the CDR circuits in the individual receiver slices operate 
independently and the RXxDCLK phases would diverge over time. If the 
receiver slices are part of different HSS cores, then phase differences between 
the individual PLLs in each of these cores also contribute to changes to the 
RXxDCLK phase. If the interface uses RXxDATASYNC to perform a symbol 
alignment function, this changes the RXxDCLK phase by design. The only 
safe assumption for the deskew logic designer is that the phase relationships of 
the RXxDCLK clocks is arbitrary and any relationship is possible. Assuming 
an n-bit parallel data path, the cumulative effect of these factors can result in 
up to n UI of skew. This is reflected in Table 4.4 assuming n = 8.

As can be seen from the above example, a substantial deskew range may be 
required. The total skew budget for all contributors in Table 4.4 is 26UIpp. 
Often one of the receive channels is chosen as a reference, and other channels 
are deskewed to align data with the reference channel. In most applications it 
is possible for the reference channel to be at the extreme limit of the skew 
specification, and therefore the deskew logic on the other channels in this 
example requires a total range of + 26UIpp. 

Table 4.3  Selected specifications for OIF SFI-5.2 skew and relative wander

Parameter
System points

Units
Tx Output Rx Input

Skew 5.50 11.00 UI peak-to-peak

Relative wander 1.30 1.50 UI peak-to-peak

Total Skew + Wander at Receiver 12.50 UI peak-to-peak
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4.3  References and Additional Reading
A comprehensive list of interface standards documents for various network 

protocols can be found in Sect. 5.6. Refer to that list for more information on 
standards mentioned in this chapter.

In addition, the following interface standards documents are referenced in 
this chapter:
1. “Common Electrical I/O (CEI) – Electrical and Jitter Interoperability 

agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical 
Internetworking Forum, Feb. 28 2005.

2. “Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for 
40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-01.0, Optical 
Internetworking Forum, Jan. 29 2002.

3. “Serdes Framer Interface Level 5 Phase 2 (SFI-5.2): Implementation 
Agreement for 40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-
02.0, Optical Internetworking Forum, Oct. 2 2006.

4. “Scalable System Packet Interface (SPI-S) Implementation Agreement: 
System Packet Interface Capable of Operating as an Adaption Layer for 
Serial Data Links”, OIF-SPI-S-01.0, Optical Internetworking Forum, 
Nov. 17 2006.

Table 4.4  Skew budget for sample SFI-5.2 implementation

Parameter Rx Input Notes

Total skew + wander 
at receiver

12.50UIpp Per interface specification

Skew introduced in 
receiver due to signal 
routing differences

5.50UIpp Sum of following:
• Time-of-flight differences in routing of 

serial data signals through receiver 
package.

• Differences in signal routing internal to 
the HSS Rx cores.

• Differences in signal routing of the 
reference clock to individual HSS cores 
in the receiver chip.

Skew introduced in 
receiver due to 
RXxDCLK phase 
differences.

8.00UIpp Assumes parallel data bus width = 8 bits

Total skew budget 
for deskew logic

26.00 UIpp UI peak-to-peak
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5. “Common Electrical I/O – Protocol (CEI-P) – Implementation 
Agreement”, OIF-CEI-P-01.0, Optical Internetworking Forum, March 
2005.

6. “IEEE Standard for Information Technology – Telecommunications and 
Information Exchange Between Systems – Local and Metropolitan Area 
Networks – Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD) Access Method and Physical Layer Specifications”, IEEE 
802.3-2005, Institute of Electrical and Electronic Engineers, Dec. 12 
2005.

7. “Amendment: Ethernet Operation over Electrical Backplanes”, IEEE 
P802.3ap, Draft 3.3, Institute of Electrical and Electronic Engineers, Jan. 
26 2007.

8. “ITU-T G.709 – Series G: Transmission Systems and Media, Digital 
Systems and Networks, Digital Terminal Equipment – General, Interface 
for the Optical Transport Network (OTN)”, International 
Telecommunications Union, 2001.

4.4  Exercises
1. Draw an eye mask similar to that shown in Fig. 4.2 for each set of 

parameters below. Label all indices and indicate the minimum eye width 
and eye height:
(a) T_X1 = 0.1 UI, T_X2 = 0.3 UI, T_Y1 = 400mV, T_Y2 = 600mV
(b) T_X1 = 0.25 UI, T_X2 = 0.50UI, T_Y1 = 200mV, T_Y2 = 400mV
(c) T_X1 = 1ps, T_X2 = 2ps, T_Y1 = 400mV, 

T_Y2 = 600mV, 4ps = 1 UI
2. Some sample signal detect threshold settings for the HSS EX10 receiver 

were described in Table 2.18. Assume the amplitude of a serial data signal 
is initially 50mVppd, and slowly ramps up to 400mVppd, and then back 
down to 50mVppd. Show the corresponding RXxSIGDET waveform for 
each of the threshold settings in Table 2.18, and show the signal 
amplitudes at which RXxSIGDET is “0,” “1,” or “X” (indeterminate). 
Assume the loss of signal response time is zero.
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3. Deskew logic for a particular application is expected to be set based on a 
training pattern when the interface is initialized, and then is expected to 
receive data continuously thereafter:
(a) One proposal for this interface specifies a relatively large value for 

the skew between data lanes. Other than affecting the elastic buffer 
sizes and training pattern selection, are there any issues created by the 
large skew value? Why?

(b) Another proposal for this interface specifies a relatively large value 
for the wander between data lanes. Other than affecting the elastic 
buffer sizes and training pattern selection, are there any issues created 
by the large wander value? Why?

4. Protocol logic which uses a 128-bit datapath (with bits labelled DX127 to 
DX0) is to be connected in a bit-interleaved fashion to eight serial data 
links for transmission. Two HSS EX10 cores are used to implement this 
interface; the Tx slices of these cores are labelled D7 to D0. (Bits DX0 
and D0 are the least significant bits for these interfaces.) The most 
significant byte of the 128-bit datapath is transmitted first on the D7 to D0 
serial data channels, followed by the next most significant byte, etc., until 
all 16 bytes have been transmitted. Specify the connections of the 
DX[127:0] to TXxD[15:0] pins on the transmitter slices that implement 
this bit transmission order.

5. Two HSS EX10 cores (with eight receiver slices labelled D7 to D0) are to 
be connected to protocol logic using a 128-bit datapath with bits labelled 
DX127 to DX0. (Bits DX0 and D0 are the least significant bits for these 
interfaces.) The data is byte-striped across the interface from least 
significant byte (transmitted on D0) to most significant byte (transmitted 
on D7) when it is transmitted, and the least significant bit of each byte is 
transmitted first. Specify the connections of the RXxD[15:0] pins on the 
receiver slices to the DX[127:0] bits corresponding to this bit 
transmission order.

6. The following data bytes are to be coded using 8B/10B block code. 
Determine the corresponding Dxx.y nomenclature for each of these data 
bytes:
(a) “13”h  (b) “22”h  (c) “5B”h. (d) “E6”h
(e) “F1”h  (f) “30”h  (g) “77”h. (h) “8A”h

7. For each of the data bytes in Exercise 6 specify the corresponding 10-bit 
codeword (bits a to j) for both positive and negative disparity.
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8. The following 10-bit codewords are coded using 8B/10B block code. 
Determine the corresponding Dxx.y or Kxx.y nomenclature for these 
codewords, and whether the codeword uses positive or negative disparity.
(a) “346”h  (b) “0FC”h  (c) “241”h. (d) “225”h
(e) “218”h  (f) “3AA”h  (g) “0BE”h. (h) “184”h

9. For each of the codewords in Exercise 8 specify the corresponding D/K 
bit and data byte value.

10. What is the longest run length of 0’s or 1’s that can be formed by 
concatenating one 8B/10B codeword with another codeword of the 
opposite disparity? Give an example of two codewords which result in 
this maximum run length.

11. Provide eight examples of Dxx.y symbols which result in the same 
codeword for both positive and negative disparity.

12. Design logic (Verilog or VHDL) for a self-synchronizing serial scrambler 
and descrambler which uses the following scrambler polynomial: 
G(x) = x58 + x39 + 1.

13. Design logic (Verilog or VHDL) for a self-synchronizing 8-bit parallel 
scrambler and descrambler which uses the scrambler polynomial 
specified in Exercise 12.

14. Design logic (Verilog or VHDL) for a sidestream serial scrambler (or 
descrambler) which uses the following scrambler polynomial: 
G(x) = x7 + x6 + 1.

15. Design logic (Verilog or VHDL) for a sidestream 16-bit parallel 
scrambler (or descrambler) which uses the scrambler polynomial 
specified in Exercise 14.

16. Modify the logic for the scrambler in Exercise 13 as follows: Add a D/K 
bit to the data path. When the D/K bit = 0, the data is scrambled and the 
scrambler state is advanced. When the D/K bit = 1, the data is not 
scrambled and the scrambler state remains unchanged.

17. Modify the logic for the scrambler in Exercise 15 as follows: The 
scrambler searches the unscrambled data input for the value ‘F628’h. 
When this data value occurs, the data is not scrambled and the scrambler 
state is reset to all 1’s for the next cycle clock cycle.

18. Design logic (Verilog or VHDL) for a BIP-8 generator. This logic has a 
16-bit input which is passed through to the output. When the 16-bit input 
data is “F628”h, the BIP-8 accumulator is reset to the value determined 
by XOR’ing the “F6”h and “28”h bytes. This 16-bit data value marks the 
beginning of the frame and occurs every 405 clock cycles. Each byte for 
the next 404 clock cycles is XOR’d with the accumulator state. At the end 
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of each frame, the accumulated BIP-8 value is saved in a register, and a 
new BIP-8 calculation begins.

19. Modify the logic for the BIP-8 generator in Exercise 18 as follows: Add a 
16-bit data output for the circuit driven by multiplexors which normally 
redrive the 16-bit data input onto the data output. The multiplexors 
alternatively allow the most significant 8-bits of the data output to be 
driven from the BIP-8 value that was saved in a register. Add state 
machine logic such that the BIP-8 value from the previous frame (which 
is saved in the register at the end of each frame) is inserted into the 90th 
byte position of the frame (the most significant byte of the 45th clock 
cycle after the beginning of the frame). 

20. Design logic (Verilog or VHDL) for a serial implementation of the 32-bit 
CRC generator described by (4.8). Assume the CRC seed value is all 1’s. 
The logic should have a packet_gate input and a crc_reset input. The 
crc_reset input is asserted (to “1”) for one clock cycle while packet_gate 
= “0” to reset the LFSR to the seed value. The LFSR state is updated 
based on the data input for every clock cycle that 
packet_gate = “1.”

21. One method of implementing a CRC checker is to calculate the CRC for 
the received frame, including the CRC field. The remainder of this 
calculation (if there are no bit errors) is always the same value. For the 
CRC implementation in Exercise 20, what would this value be?

22. Design logic (Verilog or VHDL) for an 8-bit parallel implementation of 
the 32-bit CRC generator described by (4.8). The CRC seed value and 
control inputs should be the same as specified in Exercise 20.

23. Modify the logic for the CRC generator in Exercise 22 as follows: Add an 
8-bit data output for the circuit driven by multiplexors which normally 
redrive the 8-bit data input onto the data output. The multiplexors 
alternatively allow each byte of the CRC remainder to be driven onto the 
data output. Add state machine logic such that each byte of the CRC 
remainder is driven to the output on the four consecutive clock cycles 
after packet_gate transitions from “1” to “0.” (This implementation 
assumes that packet_gate = “1” continuously for transmission of each 
data packet, and returns to “0” between packets.)

24. Design logic (Verilog or VHDL) for a single instance of an elastic buffer 
in Fig. 4.9. Assume the elastic buffer is 10-bits wide and 4-symbols deep. 
Include a reset input to initialize the read and write addresses.

25. Design logic (Verilog or VHDL) which instantiates four of the elastic 
buffers designed in Exercise 24, and connects these in the configuration 
shown in Fig. 4.11.
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26. If the HSS transmitters shown in Fig. 4.11 are not resynchronized, explain 
how the resulting behavior of the interface can add skew between data 
lanes. Illustrate this with appropriate timing diagrams.

27. A novice engineer proposes that all of the logic on the chip associated 
with the transmit interface shown in Fig. 4.11 can be clocked by the 
TXxDCLK output of one of the HSS cores, and that this eliminates the 
need for the elastic FIFOs. There are several thousand flip-flops in the 
logic block that are associated with this transmit interface. Why is this not 
a good idea?

28. Design logic (Verilog or VHDL) which instantiates four of the elastic 
buffers designed in Exercise 24, and connects these in the configuration 
shown in Fig. 4.9. For purposes of this exercise, synchronization issues 
associated with resetting the FIFO read pointers can be ignored.

29. Design logic to drive the reset inputs to the elastic buffers in Exercise 28 
such that the FIFO read pointers will exit reset in phase. (Hint: An 
approach similar to the HSSRESYNC logic described in Sect. 2.4.7 is 
needed.)

30. Modify the logic for the elastic buffer designed in Exercise 24 as follows: 
• Add control logic in the write clock domain which compares the read 

and write address. If a K28.0 8B/10B symbol is being written to the 
buffer, and the read address is lagging the write address by 3 FIFO 
words (i.e., write address + 1 = read address), then the symbol is not 
written into the FIFO and the write address is not updated. 

• Add control logic in the read clock domain which compares the read 
and write address. If a K28.0 8B/10B symbol is being read from the 
buffer, and the read address is lagging the write address by 1 FIFO 
word (i.e., read address + 1 = write address), then the read address is 
not updated in this cycle. This causes the K28.0 symbol to be read 
twice.

31. Given that comparing the read and write addresses of the elastic buffer in 
Exercise 30 required the comparison of values from two different 
asynchronous clock domains, how was this handled in your design? If 
your design did not handle the asynchronous domain crossing such that 
the resulting design will operate without bugs, then suggest possible 
approaches for fixing this problem.

32. The elastic buffer in Exercise 30 uses K28.0 symbols to adjust the FIFO 
read and write addresses and thus avoid overflow and underflow events. 
This elastic buffer is used in the receiver of a plesiosynchronous system 
for which a frequency tolerance of 400ppm has been specified. However, 
if the K28.0 symbols do not occur with sufficient frequency, overflows or 
underflows may still occur. What is the maximum spacing of the K28.0 
symbols that can be allowed in the system?
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33. Repeat Exercise 32 assuming the frequency tolerance is 50 ppm.
34. Design logic (Verilog or VHDL) for a bit alignment circuit as described 

by Fig. 4.13. The circuit should have a 10-bit data input, and should 
include comparators which can detect reception of a K28.5 8B/10B 
symbol regardless of the bit alignment of this symbol. If a K28.5 symbol 
is received but it is not aligned on the 10-bit input, then the logic should 
create an RXxDATASYNC pulse.

35. Assume the K28.5 symbols received by the circuit described in Exercise 
34 are initially misaligned by two bits. Draw a timing diagram illustrating 
operation of the circuit in Exercise 34 until such time as the K28.5 
symbols are properly aligned.

36. Design logic (Verilog or VHDL) for a barrel shifter circuit as described by 
Fig. 4.15. The circuit should have a 10-bit data input and a 10-bit data 
output, and should be able to realign data to any 10-bit boundary. For 
purposes of this exercise, assume the multiplexor select is an input to the 
circuit.

37. Modify the logic for the elastic buffer designed in Exercise 36 as follows: 
Add comparators which can detect reception of a K28.5 8B/10B symbol 
regardless of the bit alignment of this symbol. Add control logic which 
sets the multiplexor selection based on the alignment of the received 
K28.5 symbol such that the K28.5 is aligned on the 10-bit boundary of the 
data output.

38. Design logic (Verilog or VHDL) which instantiates two elastic buffers as 
described in Exercise 30, and two bit alignment circuits as described in 
Exercise 34. In addition, the logic is needed to implement the following 
functionality: 
• The 10-bit output of one of the elastic buffers (the reference lane) is 

always delayed by one clock cycle. 
• The 10-bit output of the other elastic buffer is connected to a barrel 

shifter circuit which has the capability for delaying the data by 0–3 
clock cycles. 

• A control circuit monitors the reference lane output, and adjusts the 
barrel shifter such that a K28.5 symbol appears on the output of this 
circuit in the same clock cycle as a K28.5 symbol on the reference 
lane. (The protocol always sends K28.5 symbols simultaneously on 
all lanes.)

39. Is the logic implemented in Exercise 38 sufficient for the skew budget in 
Table 4.4? Why or why not?
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Chapter 5
Overview of Protocol Standards

Older protocol standards defined electrical interfaces which used source 
synchronous bus approaches that were described in Chap. 1. As interface stan-
dards evolved to higher and higher data rates, most standards turned to specifi-
cation of high-speed signals implemented with HSS cores. This chapter is by no 
means a complete summary of all of the protocol standards for which HSS cores 
are used, nor does this chapter contain sufficient information to design the logic 
associated with any given protocol standard. The goal is simply to provide the 
reader with a basic knowledge of some of the more popular standards. 

Some of the protocol standards that are popular and relevant as of the time 
of this writing are listed below:
1. Telecom Standards

(a) International Standards:
• SONET / SDH: Telcordia GR-253-Core

SONET (Synchronous Optical NETwork) is a serial protocol for optical 
telecom networks used within North America; SDH (Synchronous 
Digital Hierarchy) is the equivalent protocol used on other continents. 
The protocol is based on continuously sending frames containing 
multiple connection clients at the rate of 8,192 frames per second. 
Relevant baud rates are: 2.48832Gbps (OC-48), 9.95328Gbps 
(OC-192), and 39.81312Gbps (OC-768). 

(b) Optical Internetworking Forum (OIF): 

OIF is an industry forum which develops Implementation 
Agreements that define interfaces internal to a system that are 
not within the scope of other standards bodies. 
• OIF-SxI-5-01.0: System Interface Level 5 (SxI-5): Common Electrical 

Characteristics for 2.488–3.125Gbps Parallel Interfaces

SxI-5 is an electrical layer standard incorporated by reference in the 
SFI-5 and SPI-5 protocols. Relevant baud rates are from 2.488Gbps up 
to 3.125Gbps. 

• OIF-SFI5-01.0: Serdes Framer Interface Level 5 (SFI-5): 40Gbps 
Interface for Physical Layer Devices

SFI-5 is a protocol layer standard defining the chip-to-chip or chip-to-
module interface between a SONET/SDH Framer chip and an OC-768 
40-Gbps Serdes chip. It is also used to interface between a Framer or 
Serdes chip and a Forward Error Correction (FEC) chip. Protocol uses 
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16 SxI-5 electrical links at 2.48832Gbps per link to achieve 39.81312 
Gbps, plus an additional link used as a deskew reference. Baud rates are 
higher on links between a FEC chip and a Serdes chip; baud rate in this 
application depends on the FEC implementation.

• OIF-SPI5-01.1: System Packet Interface Level 5 (SPI-5): OC-768 
System Interface for Physical and Link Layer Devices

SPI-5 is a protocol layer standard defining chip-to-chip or backplane 
interfaces between SONET/SDH Framer chips and other Network 
Processing Elements (NPE) of an OC-768 system. The protocol uses 16 
SxI-5 electrical links to implement an interface with a total bandwidth of 
39.81312–50.000Gbps. Additional links in the opposite direction are 
used to communicate queue status.

• OIF-CEI-02.0: Common Electrical I/O (CEI): Electrical and Jitter 
Interoperability agreements for 6G+ bps and 11G+ bps I/O 

CEI is an electrical layer standard for interfaces with baud rates in the 
range of 4.976–6.375Gbps, and in the range of 9.95–11.10Gbps. Multiple 
variants are defined to target various reach objectives (short reach chip-to-
chip, and long reach backplane). This electrical layer specification is 
incorporated by reference in the CEI-P and SFI-5.2 protocols.

• OIF-CEI-P-01.0: Common Electrical I/O: Protocol (CEI-P): 
Implementation Agreement

CEI-P is a protocol standard for a Physical coding sublayer for CEI 
electrical interfaces, specifying overhead bits using a variation on 
64B/66B block encoding with data scrambling for encoding data on CEI 
electrical links. The specification includes FEC codes used for error 
checking, and optionally for error correction. This lower layer protocol 
is incorporated by reference in the SPI-S protocol.

• OIF-SFI5-02.0: Serdes Framer Interface Level 5 Phase 2 (SFI-5.2): 
Implementation Agreement for 40Gbps Interface for Physical Layer 
Devices

SFI-5.2 is a protocol layer standard defining the chip-to-chip or chip-to-
module interface with similar application to SFI-5. The protocol uses 
four CEI-11G-SR electrical links at 9.95328 Gbps per link to achieve 
39.81312Gbps, plus an additional link used as a deskew reference.

• OIF-SPI-S-01.0: Scalable System Packet Interface Implementation 
Agreement: System Packet Interface Capable of Operating as an 
Adaption Layer for Serial Data Links

The SPI-S protocol layer standard defines chip-to-chip or backplane 
interfaces between SONET/SDH Framer chips and other Network 
Processing Elements (NPE) of an OC-768 system. The protocol extends 
SPI-5 and other prior protocols defined by OIF, specifying a scalable 
interface (both in terms of baud rate and in terms of bit width) capable of 
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achieving any bandwidth. SPI-S builds on top of the CEI-P sublayer, 
although it may also be used with other 64B/66B encoded protocols.

2. Data Networking Standards
(a) IEEE Std-802.3 Ethernet: Ethernet is a packet protocol for data networks. 

The standard is written as a clause-based document which has expanded 
over time to include a multitude of interface variants. A sampling of relevant 
variants are listed below.
• IEEE Std 802.3, 2000 Edition, Clause 38: 1000Base-SX, LX

This clause defines a Physical Medium Dependent (PMD) layer for 
1,000Mbps Ethernet. This protocol uses 8B/10B encoding, so the actual 
baud rate is 1.25Gbps.

• IEEE Std 802.3ae, 2002 Edition, Clause 47: XGMII Extended Sublayer 
(XGXS) and 10-Gb Attachment Unit Interface (XAUI) Specification

This clause defines a Physical Medium Dependent (PMD) layer for a 10- 
Gbps Ethernet interface between two chips, and is sometimes used 
across a backplane. The XAUI interface is specified as four links using 
8B/10B encoding and running at a baud rate of 3.125Gbps.

• IEEE Std 802.3ak, 2004 Edition, Clause 54: 10GBASE-CX4 
Specification

This clause defines a physical medium dependent (PMD) layer for a 
10-Gbps Ethernet interface over an IBT cable. The protocol is similar to 
the XAUI specification in clause 47.

• IEEE Std 802.3ap, Clauses 70, 71, and 72: Backplane Ethernet

These clauses define a physical medium dependent (PMD) layers for 
using the Ethernet protocol across a backplane. Clause 70 specifies a 
1,000Mbps PMD layer similar to clause 38. Clause 71 specifies a four 
link at 3.125Gbps PMD layer similar to clause 47. Clause 72 specifies a 
serial 10.3Gbps PMD layer. 

3. Storage Networking Standards
(a) INCITS T11 Fibre Channel: Fibre Channel is a packet protocol for storage 

networks. Fibre Channel is used both for communication between systems in 
storage area networks and between host and disk drive devices. Fibre 
Channel is specified by a collection of documents which specify the physical 
layer, protocol, and other aspects of systems. Key documents are listed 
below. 
• FC-PI-4: Fibre-Channel: Physical Interfaces: 4

This standard specifies electrical and optical physical layer Fibre 
Channel variants defined by the T11.2 Task Group. The more popular 
serial variants utilize a single link at a baud rate of 1.0625, 2.125, 4.250, 
or 8.500Gbps. There is also a 10Gbps variant specified in a separate 
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document which utilizes an interface similar to XAUI (see prior Ethernet 
descriptions).

• FC-FS-2: Fibre-Channel: Framing and Signaling: 2

This standard specifies the Fibre Channel protocol for use over any of the 
physical layer variants specified in FC-PI-x and is defined by the T11.3 
Task Group. The protocol utilizes 8B/10B block encoding. Serial 
variants with baud rates of 8.500Gbps also scramble data prior to the 
block encoding stage. 

(b) INCITS T10 Serial Attached SCSI: 2 (SAS-2) T10/1760: SAS is a packet 
protocol for storage networks. SAS is used for communication between 
host and disk drive devices. Current supported baud rates are 1.5 and 
3.0Gbps; a 6.0-Gbps baud rate is expected in the future. The protocol 
utilizes 8B/10B block encoding with data scrambled prior to the block 
encoding stage. 

(c) Serial ATA International Organization: Serial ATA Revision 2.5 (SATA): 
SATA is a packet protocol for storage networks. SATA is used for 
communication between host and disk drive devices. Current supported baud 
rates are 1.5 and 3.0Gbps; a 6.0-Gbps baud rate is expected in the future. 
The protocol utilizes 8B/10B block encoding. 

4. Transaction Protocols
(a) Peripheral Component Interconnect Special Interest Group (PCI-SIG): PCI 

Express Baseline Specification, Version 2.0: PCI Express is a transaction 
protocol for interconnecting peripheral devices in computing and 
communication platforms. Current supported baud rates are 2.5 and 5.0 Gbps. 
Ports use 1, 2, 4, 8, 12, 16, or 32 links in parallel to scale bandwidth as 
needed. The protocol utilizes 8B/10B block encoding with data scrambled 
prior to the block encoding stage.

(b) InfiniBand Trade Association (IBTA) Infiniband Architecture Specification 
Volume 2, Release 1.2: Infiniband is a transaction protocol for 
interconnecting host and peripheral devices, generally through a switch 
fabric. Current supported baud rates are 2.5, 5.0, and 10.0Gbps. Ports use 1, 
4, or 12 links in parallel to scale bandwidth as needed. The protocol utilizes 
8B/10B block encoding.

A selection of the above standards are described in more detail in the re-
mainder of this chapter. Detailed references for these standards documents are 
provided in Sect. 5.6.

5.1  SONET/SDH Networks
The original work on the Synchronous Optical NETwork (SONET) 

standard was performed by Bell Communications Research (Bellcore), now 
Telcordia, which was founded as the result of the breakup of American 
Telephone and Telegraph (AT&T) in 1984. Prior to SONET, higher bandwidth 
telecommunications equipment tended to use proprietary specifications and 
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interoperability of equipment made by different vendors was not generally 
possible. Bellcore proposed SONET to the American National Standards 
Institute (ANSI) in 1985 as a network solution for fiber standardization.

The International Telecommunications Union (ITU-T) began working on 
the Synchronous Digital Hierarchy (SDH) standard in 1986. This was in 
response to progress in the United States on SONET, which was not compati-
ble with existing needs of Europe. The United States officially proposed 
SONET to ITU-T for consideration in the SDH standard in 1986. (The ITU-T 
is sponsored by the United Nations and the official representative to this body 
is the United States Department of State.) For political reasons the direction of 
the SDH standard diverged from the original proposals. Intense work in the 
ANSI T1X1.4 committee resulted in publication of a revised proposal in 
February, 1988 that adopted for the most part the bit rates and formats in the 
emerging SDH standard. ITU-T published the SDH specifications, known as 
G.707, G.708, and G.709, in June 1988. SONET and SDH differs in terminol-
ogy, and in the definition and use of certain overhead fields and alarm 
conditions, however, they are otherwise fully compatible. 

Currently, SONET is the dominant standard used for telecommunications 
in North America, and SDH is the dominant standard on other continents. Most 
telecommunications equipment can be configured to comply with either 
standard.

This section describes the system reference model and frame formats used 
by SONET/SDH. Overhead bytes in the frame format are described to the 
extent that they are relevant to the HSS core carrying SONET/SDH traffic. 
Clock requirements are also discussed, since these are especially relevant to 
SONET/SDH networks.

5.1.1 System Reference Model
The SONET system reference model is shown in Fig. 5.1. There are four 

protocol layers defined by SONET: the photonic layer, the section layer, the 
line layer, and the path layer. These layers are defined below:
Photonic layer. This layer consists of the transmission path consisting of an 
electrical to optical conversion, optical interconnection, and optical to electri-
cal conversion. There are a variety of photonic layers that have been employed 
for SONET and SDH networks.
Section layer. This layer manages transport of SONET frames across the 
physical path using the photonic layer. Section Overhead (SOH) bytes of the 
SONET frame are generated and monitored by the section layer regenerators. 
These overhead bytes are used for framing, scrambling, and error monitoring. 
Regenerators receive and retransmit the SONET frames, and do not modify the 
payload contents of the frame or overhead bytes for other layers. Regenerators 
must use the timing of the received signal as a reference for transmission since 
there is no provision in the section layer to add or drop bits of the frame.
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Fig. 5.1 SONET architecture

Line layer. The line layer manages the transport of the SONET payload across the 
physical medium. Functions of this layer include multiplexing and synchronization 
functions. LTE units can multiplex multiple lower speed SONET lines onto a 
higher speed SONET line, and vice versa. LTE units also perform pointer manage-
ment to allow bytes to be added or dropped to adjust the frequency of the received 
data to the local clock reference. Line Overhead (LOH) bytes of the SONET frame 
are generated and monitored by the LTE unit to perform these functions.
Path layer. This layer maps network service components into a format that the 
line layer requires, and manages the end-to-end transport of these services. 
Path Overhead (POH) bytes of the SONET frame are generated and monitored 
by the PTE unit to perform these functions.

It may also be interesting to the reader to understand the scale of the above 
layers. The physical length of a section can vary from hundreds of meters to 
many kilometers depending on the type of photonic layer being used. LTE 
units break the network into maintenance spans, and the line span may be 
anywhere from several kilometers to hundreds of kilometers in length. The 
path termination can be in different cities or on different continents. 

5.1.2 STS-1 Frame Format
The basic frame format of SONET is the Synchronous Transport Signal 

Level 1 (STS-1) frame shown in Fig. 5.2. This frame is viewed as a two- 
dimensional array of bytes, consisting of columns 1–90, and rows 1–9. Row 1 
is transmitted from left to right, followed by row 2, etc. In order to achieve 
transmission of one frame every 125 µ s, the frame must be sent at a line rate of 
51.840 Mbps. 

Columns 4–90 inclusive contain payload data, including any path 
management overhead. Columns 1, 2, and 3 contain SOH and LOH overhead 
bytes as shown in the figure. These are defined further below.

PTE LTE LTE PTERegen Regen
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Path

PTE = Path Terminating Equipment
LTE = Line Terminating Equipment

Section Section SectionSection

Line LineLine
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Fig. 5.2 STS-1 Frame
5.1.2.1 SONET Scrambler

Except for the bytes in row 1, columns 1–3, the SONET frame is scrambled 
with a sidestream scrambler. The row 1 overhead bytes are not scrambled so 
that they can be reliably used as a framing pattern. The scrambler resets after 
the J0 byte of each frame and uses the polynomial:

G(x) = x7 + x6 + 1. (5.1)
SONET does not use any block coding. Scrambling provides a high proba-

bility that bit transitions will occur in the serial data. However, it is possible for 
payload data to contain a pattern which, when scrambled, produces a long run 
length of “1” or “0” bits. It is generally accepted that designing hardware to 
handle a run length of 80 is sufficient; the probability of longer run lengths is 
less than the specified 10–12 BER. 
5.1.2.2 Section Overhead (SOH) Bytes

The nine bytes located in rows 1, 2, and 3, and columns 1, 2, and 3, are used 
by section regenerator equipment to perform section functions. The following 
bytes are of particular relevance to the topics in this text:
Framing Bytes (A1, A2):The A1/A2 bytes are a hardcoded 16-bit hexadecimal 
value of “F628”h, and are not scrambled. The receive logic in the section 
regenerator looks for the “F628”h data pattern in order to determine where the 
frame begins, and aligns row/column states based on this. Note that this data 
pattern may also occur in other overhead bytes or in payload data (called 
aliasing). The receive logic looks for this pattern to repeat at the proper interval 
for several frames before declaring that frames are being received correctly.
B1:The B1 byte is a BIP-8 even parity calculation generated by XOR’ing all 
the scrambled bytes in the frame together, and then inserting the result in the 
B1 byte position in the following frame.The B1 byte is inserted in the frame 

A1 A2 J0

B1 E1 F1

D1 D2 D3

B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

S1 M0 E2

H1 H2 H3

1 2 3 4 5 6 7 8 9 85 87 88 89 9086

LOH

SOH

Payload
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before scrambling. This is the primary method of error checking used by the 
SONET section layer.

Other SOH bytes provide management functions which, while important, 
are beyond the scope of this text.
5.1.2.3 Line Overhead (LOH) Bytes

The 18 bytes located in rows 4–9, and columns 1, 2, and 3, are used by LTE 
units to perform line functions. The following bytes are of particular relevance 
to the topics in this text:
Pointer Bytes (H1, H2, H3): The payload frame, called the synchronous 
payload envelope (SPE), may begin at any position within the payload portion 
of the STS-1 frame. The H1/H2 bytes provide a row/column position for the 
first byte of the SPE as shown in Fig. 5.3. The SPE frames continue from this 
position for the next 783 payload bytes, stretching into the next frame and the 
start of the next SPE.

From time to time the LTE unit may adjust the start of the SPE in order to 
compensate for clock frequency differences. Figure 5.3 illustrates an example 
of positive stuffing to compensate for the SPE source running slower than the 
line transmitter in the LTE. When this occurs, an extra byte of nondata is 
stuffed in the payload position following the H3 byte, and the payload pointer 
is incremented so that the next SPE starts one byte later in the STS-1 frame.

A pointer adjustment can also be made to adjust for the SPE source running 
faster than the line transmitter in the LTE. This is called negative stuffing. 
When this occurs, an extra byte of payload data is transmitted as the H3 byte, 
and the payload pointer is decremented so that the next SPE starts one byte 
earlier in the STS-1 frame. The H3 byte does not contain useful information 
except when used for negative stuffing.

The format of the H1/H2 bytes and the protocol for the LTE generation and 
response for these bytes is beyond the scope of this text. However, note that the 
maximum rate at which pointers may be adjusted is once every four STS-1 
frames, and pointers can only be adjusted by one byte at a time. This places 
stringent limits on the accuracy of clock sources for telecom equipment.
B2: The B2 byte is a BIP-8 even parity calculation generated by XOR’ing all 
the bytes in the frame together prior to scrambling, except for the SOH bytes. 
The result is inserted as the B2 byte before scrambling the following frame. 
This is the primary method of error checking used by the SONET line layer.

Note that B2 differs from B1 in that (1) B2 is calculated prior to scrambling 
while B1 is calculated using scrambled data and (2) B2 excludes the SOH bytes 
from the calculation. This is consistent with the SONET layer definitions, since 
the SOH contents and the scrambled version of the data are not accessible to 
the line layer.

Other LOH bytes provide management and status functions which, while 
important, are beyond the scope of this text.
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Fig. 5.3 LOH pointers to SPE

5.1.2.4 Synchronous Payload Envelope (SPE) and Path Overhead (POH)
The SPE format in Fig. 5.4 consists of 9 rows by 87 columns. Of these, the 

first column contains the path overhead (POH) bytes, columns 30 and 59 
contain fixed stuff which is not useful information, and the remaining columns 
contain the payload. Note that the column numbers in the SPE are relative to 
the start of the SPE in the STS-1 frame as determined by the H1/H2 bytes. 

POH bytes provide management and status functions which, while impor-
tant, are beyond the scope of this text. However, the following byte is signifi-
cant to this discussion:

H1 H2 H3

1 2 3 4 5 6 7 8 9 85 87 88 89 9086

H1 H2 H3

H1 H2 H3

H1/H2 Point to 
start of SPE within
the STS-1 frame.

Positive Stuffing
pointer adjustment
causes byte after H3
to be “stuffed” and
pointer reference
to increment.
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Fig. 5.4 Synchronous payload envelope (SPE) format

B3: The B3 byte is a BIP-8 even parity calculation generated by XOR’ing all 
the bytes in the SPE together prior to scrambling. The result is inserted as the 
B3 byte before scrambling the following SPE. This is the primary method of 
error checking used by the SONET path layer.

5.1.3 STS-N Frame Format
SONET evolved from the proprietary methods of the telecommunications 

industry for multiplexing lower speed lines onto higher speed lines. As a result, a 
key feature of SONET is that some number n of STS-1 frames may be multiplexed 
together to form an STS-n frame. When STS-1 frames are stacked in this manner, 
the transmission order becomes: send the row 1 column 1 byte of each STS-1 
frame in turn, followed by the row 1 column 2 byte of each STS-1 frame in turn, 
and so forth. When lower speed STS-1 frames are multiplexed into higher speed 
STS-n frames, the bit rate increases by n. Regardless of the multiplexing factor, 
there are always 8,000 STS-n frames sent per second, or one frame per 125 µs.

Note that this multiplexing is performed at the SONET line layer. Multiple 
SPE sources are mapped into STS-1 frames, and these STS-1 frames are mul-
tiplexed together to form an STS-n frame. Each STS-1 frame has its own LOH 
and its own SPE (including POH). The H1/H2 bytes for each STS-1 frame do 
not have to be the same, and SPEs for each STS-1 frame may start at arbitrary 
different positions.

J1

B3

C2

F2

H4

F3

K3

N1

G1

1 2 3 4 5 6 7 8 9 82 84 85 86 8783

PayloadColumn 1: Path Overhead
Columns 30 and 59: Fixed Stuff
Remaining Columns: Payload Data
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SOH bytes are added in the SONET section layer after line layer multiplex-
ing has already occurred. For this reason, only the SOH bytes associated with 
the first STS-1 frame are defined, and the SOH byte positions in the other 
STS-1 frames are not used by the protocol. The exception to this is:
Framing Bytes (A1, A2): These bytes are fixed values for all STS-1 frames in 
the STS-n frame. Receiving equipment uses the transition between the A1 and 
A2 bytes to determine the frame alignment.
J0/Z0: The J0 byte is associated with the first STS-1 frame in the STS-n frame. 
The corresponding bytes in the remaining frames are designated as Z0 bytes, 
and are reserved for future definition.

The above description of multiplexing independent STS-1 frames into an 
STS-n frame is the classical definition of SONET multiplexing. Other concat-
enated formats are also defined, which permit an STS-n frame (n > 1) to have 
a single LOH and a concatenated payload. Details of these definitions are 
beyond the scope of this text. When such formats are used, a “c” is appended 
to the notation. For example, an STS-3c frame is a concatenated STS-3 frame.

Although in theory any STS-n level is allowed, only certain values of n are 
commonly used. The common levels and their corresponding line rates are 
shown in Table 5.1. Note that although n = 1 is the base value for frame defi-
nition, it is not a commonly used line rate. The lowest SONET line rate in 
common use corresponds to multiplexing together three STS-1 frames to form 
an STS-3 frame. This corresponds to the SDH definition of an STM-1 frame. 
Commonly used line rates increase by factors of four thereafter.

Another point that should be made is that the row 1 SOH bytes are not 
scrambled for line rates up to STS-192/OC-192. For STS-192, there are 576 
consecutive unscrambled bytes in the frame, which begins to affect the spectral 
characteristics and DC balance of the signal. Depending on the J0/Z0 byte 
values, excessive run lengths are also possible. Scrambling is therefore 
redefined for OC-768 such that only the last 64 A1 bytes and first 64 A2 bytes 
are unscrambled. This was deemed acceptable since framing functions only 
look for the transition between the A1 and A2 bytes.

Table 5.1 Commonly used SONET/SDH speeds

Optical level 
terminology

Electrical level 
terminology Line rate SDH equivalent 

terminology

OC-3 STS-3 155.520Mbps STM-1

OC-12 STS-12 601.344Mbps STM-4

OC-48 STS-48 2.48832Gbps STM-16

OC-192 STS-192 9.95328Gbps STM-64

OC-768 STS-768 39.81312Gbps STM-256
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5.1.4 Clock Distribution and Stratum Clocks
A traditional packet switching network is only concerned with switching 

the source and destination of data on a per packet basis. Packets are not subdi-
vided with various bytes fed to different destinations. Therefore, the need for 
network synchronization may not be obvious to readers experienced with 
IP networks and the Internet.

In SONET and SDH the payload envelope (SPE) is subdivided. When the 
SONET path is used for classic telephone voice connections, each payload 
byte of the SPE is associated with a different telephone call and has its own 
independent source and destination. Each telephone conversation is allocated 
one byte in each STS-1 frame, providing a total bandwidth of 8,000 bytes per 
second, and generating a voice bandwidth of 4kHz. Switching systems must be 
able to separate out individual bytes in the SPE to add telephone connections 
originating locally, or drop telephone connections terminating locally. 

In order for all of this to work, the SONET/SDH network must operate 
synchronously. Furthermore, to facilitate intercommunication between 
networks owned by different carriers, all of the networks in the world must be 
synchronized. Clock distribution therefore becomes a major concern. 

The primary reference clock (PRC) used for SONET systems is the atomic 
master clock maintained by the United States government in Boulder, 
Colorado. This clock reference is distributed using the Global Positioning 
System (GPS). Prior to GPS, the Long-Range Navigation System (LORAN) 
was used. This clock is distributed to major sites containing SONET network 
equipment as the Stratum 1 primary clock reference. Stratum 2 clocks are 
connected to this stratum 1 clock; Stratum 3 clocks connect to stratum 2 
clocks, etc. When clock distribution fails, then a local oscillator must provide 
the clock reference within a defined frequency tolerance.

Table 5.2 describes the four stratum levels for clocks. The stratum 1 clock 
requires either a Cesium or Rubidium clock reference to back up the clock 
distribution from the GPS source. This is then distributed to toll switches, 
which have a backup clock source requiring stratum 2 accuracy. The stratum 2 
clock is sufficiently accurate so that the toll switch should continue to operate 
with fewer than 255 errors in 86 days after loosing the connection to the 
stratum 1 clock reference.

Stratum 2 clocks are distributed across stratum 3 distribution to Local 
Switches in local telephone exchanges and Digital Cross-Connect Systems 
(DCS). These devices must have local clock backups with stratum 3 accuracy 
that are sufficient so that the unit can continue to operate with fewer than 
255 errors in 24 hours after loosing the connection to the stratum 2 clock 
reference.

Rather than using expensive clock connections in the SONET network, 
many lower-level devices use loop timing to receive and retransmit data. 
Stratum 4 user equipment, section regenerators, etc. will often provide the 
capability to use the clock derived from the receive data to generate the 
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reference clock for transmission. In order to support loop timing, HSS 
receivers must provide a suitable clock output for the received data clock 
which can be used by a PLL to supply a reference clock for the HSS 
transmitter. This clock must not be gated, and must minimize jitter as much as 
possible.

5.2  OIF Protocols
The Optical Internetworking Forum (OIF) is an industry forum in which 

member companies develop Implementation Agreements (IAs) which 
standardize interfaces within telecom systems that are not within the scope of 
internationally recognized standards bodies. OIF develops implementation 
agreements for both optical and electrical interfaces; the electrical interface 
applications are of interest to this text. 

This section describes the system reference model used by OIF, and 
describes the relationship of this model to a number of OIF implementation 
agreements and to SONET/SDH. HSS devices are used in the implementation 
of electrical interfaces with baud rates of 2.488 Gbps and above. A selection of 
recently published protocol layer implementation agreements, and the under-
lying electrical layer implementation agreements, are described in some detail. 
Note that descriptions of these interfaces primarily focuses on details relevant 
to Serdes cores, as well as details related to the approach of the interface to the 
issues described in Chap. 4. The reader is referred to the references at the end 
of this chapter for a more complete description of these interfaces. 

5.2.1 System Reference Model
The system reference model used by OIF is shown in Fig. 5.5. This model 

describes a line card as consisting of a Serdes device connected to a PHY 
device by a Serdes-Framer Interface (SFI), with the PHY device then 
connected to Link Layer devices by a System Packet Interface (SPI). The 
dataflow from the Link device through to the Serdes device is the transmit 
interface from the perspective of the line card; the dataflow from the Serdes 
device through to the Link device is the receive interface. Note that each 
electrical interface in this path has HSS transmitters and receivers associated 

Table 5.2 Commonly used SONET/SDH speeds

Stratum level Accuracy Connected equipment

Stratum 1 0.00001ppm
(1 s / 300,000yr)

Primary clock reference

Stratum 2 0.016ppm Toll switches

Stratum 3 4.6ppm Local switches, 
Digital cross-connect systems

Stratum 4 No requirement PBX systems, T1 muxes
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with it; therefore the context of these terms is important. Sometimes these 
paths are referred to as the egress and ingress path (respectively) to avoid 
confusion.

The Serdes device in this figure is generally one or more chips implement-
ing a SONET/SDH OC-192 (10 Gbps) or OC-768 (40 Gbps) interface, 
although other possibilities also exist. Very often the Serdes is implemented in 
a Silicon–Germanium (SiGe) or Indium Phosphide (InP) technology, where 
interface complexity is a significant cost and power driver. SFI protocols 
therefore strive to minimize the complexity of this interface.

The other end of the SFI connects to a PHY chip. For SONET/SDH appli-
cations, this is generally a SONET/SDH Framer chip or a Forward Error 
Correction (FEC) chip. SFI is used to connect Serdes devices to FEC or Framer 
devices; it is also used to connect the FEC device to the Framer device. The 
receive side of the Framer chip processes the various overhead layers of the 
SONET/SDH protocol, and extracts data for the link layer. This data is 
formatted into packets and sent to the receive link layer device using an SPI 
protocol. The transmit side of the Framer chip receives packets from the 
transmit link layer device and formats this into SONET/SDH frames for trans-
mission by the Serdes device.

Figure 5.6 extends this system reference model into the context of a broader 
system. The link layer devices in Fig. 5.5 are represented generically as 
network processing elements (NPEs) in Fig. 5.6. SPI connects the 
SONET/SDH Framer to the link layer NPEs, and is also used to connect NPEs 
to other NPEs and to the switch fabric. This packet processing environment is 
independent of the protocol implemented by the line card, and SPI has also 
been used in Ethernet systems. Note that Fig. 5.6 distinguishes the SPI packet 
traffic from the transaction-based look-aside interfaces in the system, which 
require different protocols.

Fig. 5.5 OIF System reference model
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Fig. 5.6 OIF system reference model (extended)

Table 5.3 OIF implementation agreements

SONET 
rate

Interface 
type Protocol layer IA Electrical layer IA General notes

OC-48 SPI OIF-SPI3-01.0 (SPI-3) 104Mbps x 8 lanes + status

OC-192 SPI OIF-SPI4-01.0 (SPI-4.1) 311+ Mbps x 32 lanes + status. 
Limited industry use

OIF-SPI4-02.01 (SPI-4.2) 622+ Mbps x 16 lanes + status. 
Widely used in industry

SFI OIF-SFI4-01.0 (SFI-4) 622+ Mbps x 16 lanes. 
Widely used in industry

OIF-SFI4-02.0 
(SFI-4.2)

OIF-SxI5-01.0 
(SxI-5)

2.5 Gbps x 4 lanes

OC-768 SPI OIF-SPI5-01.1 
(SPI-5)

OIF-SxI5-01.0 
(SxI-5)

2.500−3.125 Gbps x 16 lanes + 
status

SFI OIF-SFI5-01.0 
(SFI-5)

OIF-SxI5-01.0 
(SxI-5)

2.500−3.125 Gbps x 16 lanes + 
deskew

OIF-SFI5-02.0
(SFI-5.2)

OIF-CEI-02.0 
Clause 8

9.952+ Gbps x 4 lanes + 
deskew

OC-xxx SPI OIF-SPI-S-01.0
(SPI-S)

OIF-CEI-P-01.0 
(CEI-P)

OIF-CEI-02.0 Scalable to any width and link 
speed

XCVR
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Table 5.3 relates various OIF implementation agreements to the system 
reference model and to generations of SONET/SDH. OIF protocols associated 
with OC-48 are designated as level 3 and contain a “-3” in the common name; 
OC-192 protocols are indicated by a “-4,” and OC-768 protocols with a “-5.” 
OIF protocols are additionally correlated to the reference model as either SFI 
or SPI protocols. (There are also OIF protocols associated with Time Domain 
Multiplexor (TDM) systems which are not discussed in this text.) From time to 
time, as newer HSS technologies come into existence, OIF has published an 
implementation agreement which is intended to replace a previous implemen-
tation agreement with an interface definition that uses fewer signals. For 
instance, SFI-5.2 implements a 4 x 10 Gbps datapath to replace the SFI-5 which 
used a 16 x 2.5 Gbps interface. 

Earlier OIF implementation agreements defined the electrical layer and the 
protocol layer of the interface in the same document. Starting with protocols 
based on 2.5-Gbps HSS technologies, OIF began defining the electrical layer 
in a separate document, and using this layer in multiple protocols. Starting with 
SPI-S, OIF has also moved to scalable protocols rather than redefining the 
protocol for every SONET/SDH generation. 

To provide a representative and hopefully relevant sampling of the various 
protocols in Table 5.3, this text focuses on descriptions of SFI-5.2 and SPI-S. 
These protocols are the most recent generations of the SFI and SPI protocols, 
respectively. This text also describes the corresponding implementation 
agreements which provide lower level protocol and electrical layer building 
blocks for these protocols. 

5.2.2 SFI-5.2 Implementation Agreement
The SFI-5.2 Implementation Agreement targets OC-768 SONET/SDH 

applications using a 4 lane by 9.952 Gbps datapath. SFI-5.2 incorporates the 
electrical layer defined by CEI Clause 8 by reference, which supports baud 
rates in the range of 9.95–11.1 Gbps to allow for telecom applications using 
FEC protocols. The SFI-5.2 protocol does not require data to be encoded in any 
specific way (as long as data meets criteria defined by CEI), but does contain 
specific features to facilitate transmission of bit-interleaved SONET/SDH 
frames. 
5.2.2.1 Reference Model Description

The SFI-5.2 reference model is shown in Fig. 5.7. As shown in this figure, 
the SFI-5.2 interface is used between Serdes and FEC devices, and between 
FEC and Framer devices. For systems which do not include a FEC device, 
SFI-5.2 is used to connect the Serdes device directly to the Framer device. 
Each interface consists of a 4 lane wide datapath plus an additional lane used 
for deskew. The deskew channel uses pattern matching to align each data lane 
with the deskew channel (and thereby align data lanes with each other). This is 
described more later. 
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Fig. 5.7 Serdes–Framer interface reference model
Compliance points in the system are identified at the various device pins 

using the designations TI, RI, TE, RE, and RES. These designations differentiate 
the various compliance points for the electrical transmitters (T) and 
receivers (R) on the egress (E) and ingress (I) datapaths. Note that the Serdes 
input RES is differentiated from other egress receivers. Jitter budgets are 
described for each of these combinations of compliance points in more detail 
later. 

SFI-5.2 signals are described in Table 5.4. 
5.2.2.2 Deskew Description

The contents of the deskew channel are generated as described in Fig. 5.8. 
A 10-bit frame is generated as follows:
1. One bit from each of the data lanes is transmitted in a round-robin fashion 

on the deskew channel.
2. The odd parity calculation for the bits in step 1 is transmitted on the 

deskew channel.
3. Step 1 is repeated.
4. The even parity calculation for the bits in step 3 is transmitted on the 

deskew channel.
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Fig. 5.8 Deskew channel generation

Table 5.4 SFI-5.2 pin descriptions

Pin name Direction Description

Receive signals

RXDATA[3:0] Optics to 
system

Receive Data. Data is bit-interleaved with RXDATA[3] 
being first data bit received from serial optics. Baud rate is in 
range 9.95–11.1Gbps

RXDSC Optics to 
system

Receive Deskew Channel. Continuously transmits 10-bit 
reference frames as described below

RXREFCK Optics to 
system

Receive Reference Clock. The frequency of RXREFCK is 
1/16th the baud rate of RXDATA/RXDSC. This clock is 
recovered by the optics from the serial data. Signal must be 
driven; use at the receiver is optional

RXS Optics to 
system

Receive Status. LVCMOS active high alarm indicating data 
is invalid. Signal must be driven; downstream use is 
optional

Transmit signals

TXDATA[3:0] System to 
optics

Transmit Data. Data is bit-interleaved with TXDATA[3] 
being first data bit transmitted by serial optics. Baud rate is 
in range 9.95–11.1 Gbps

TXDSC System to 
optics

Transmit Deskew Channel. Continuously transmits 10-bit 
reference frames as described below

TXREFCK System to 
optics

Transmit Reference Clock. The frequency of TXREFCK is 
1/16th the baud rate of TXDATA/TXDSC. At least one 
device in the transmit chain must use this clock

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.
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The receiver uses the deskew channel to align the data lanes as follows:
1. The parity bits are used to determine the frame alignment of the deskew 

channel. The deskew logic at the receiver calculates parity for each 4 bits 
and compares the results of this calculation to the received parity bit. If 
mismatches occur, then the frame alignment is not correct, and the deskew 
logic steps its reference point (possibly using RXxDATASYNC on the 
HSS core). When parity calculations consistently predict the parity bits on 
the deskew channel, then the deskew frame alignment is correct.

2. Once step 1 is complete, the deskew logic compares each data bit to the 
corresponding data bits on the deskew channel. If the bits do not match, 
the data lane is misaligned, and the deskew logic steps its reference point 
on the data lane (possibly using RXxDATASYNC on the HSS core, and 
additional downstream logic if more range is required). When data bits 
consistently match, the data lane is aligned.

3. When all data lanes are aligned, then the interface is aligned and ready to 
receive data correctly.

The deskew frame definition is considerably less complex than that used in the 
SFI-5 Implementation Agreement. This simplification was justified to 
optimize the cost and power of the Serdes devices, which are often 
implemented using non-CMOS technologies.
5.2.2.3 Nibble Inversion

SFI-5.2 is protocol agnostic and allows transmission of data encoded in any 
manner that is compliant with the CEI electrical layer. However, SFI-5.2 
objectives specifically require the interface to be capable of carrying bit-
interleaved SONET/SDH data. The framing pattern of SONET/SDH is not 
scrambled, and can lead to excessive run lengths and DC unbalance. 

To eliminate these issues, SFI-5.2 requires data on the data lanes to be 
inverted for five nibbles out of every ten nibbles. This inversion is mandatory 
when the interface is carrying SONET/SDH data, and is optional otherwise. 
The five nibbles during which the data is to be inverted are correlated with the 
deskew channel frame, and correspond to the five data nibbles (five bits on 
each lane) leading up to and coinciding with transmission of the odd parity bit 
on the deskew channel.
5.2.2.4 Clock Architectures

SFI-5.2 defines reference clocks for the egress and ingress paths, but the 
connection of these clocks is left as an exercise for the system designer. In most 
SONET/SDH systems, reference clocks are produced by high-quality oscilla-
tors and driven directly to the Serdes device in order to optimize jitter perfor-
mance. The Serdes device divides this reference clock and distributes it to 
other chips in the system. 
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5.2.2.5 Skew Budget
Table 5.5 describes the Skew and Wander budget, and the Jitter budget for 

various compliance points in Fig. 5.7. The terms skew, wander, and jitter were 
defined in Sect. 4.1.2.5. The deskew logic in the receiver must have sufficient 
range to accommodate the sum of the skew and wander seen at the receiver 
input (plus any additional skew/wander introduced by the receiver). Note that 
the skew requirement at RES is significantly more stringent than for RE; this is 
to minimize complexity of the Serdes device.

5.2.3 SPI-S Implementation Agreement
The Scalable System Packet Interface (SPI-S) defines an interface for 

transmitting packet traffic between Network Processor Elements (NPEs). 
Fig. 5.9 illustrates various system configurations. Each interface consists of 
some number of data lanes, and an optional status channel transmitting in the 
opposite direction. Unidirectional and bidirectional configurations are 
allowed; asymmetric unidirectional configurations include status channels in 
both directions. 

The SPI-S protocol can be mapped onto an IEEE 64B/66B coding and 
scrambling layer, or onto a CEI-P coding and scrambling layer. Both of these 
layers are based on a data rate to baud rate ratio of 64:66. The protocol is 
independent of the electrical layer definition, however, is generally assumed to 
use one of the options defined in the CEI Implementation Agreement.

Table 5.5 SFI-5.2 jitter / wander / skew budget

Parameter Signal 
type

System points
Units

Ti/Te Ri/Re Res

Skew Data 5.50 11.00 6.10 UI Peak

Correlated wander All 5.00 7.00 7.00 UI peak to peak

Uncorrelated wander All 0.65 0.75 0.75 UI peak to peak

Total wander All 5.65 5.75 5.75 UI peak to peak

Relative wander All 1.30 1.50 1.50 UI peak to peak

Skew + (rel. wander) / 2 All 6.15 11.75 6.85 UI peak to peak

Deterministic jitter Data 0.15 UI peak to peak

Total jitter Data 0.30 0.65 0.65 UI peak to peak

 ©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.
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Fig. 5.9 SPI-S configurations
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5.2.3.1 Data Path Operation
Data is transmitted over SPI-S in bursts with idles transmitted between 

bursts. The bursts may be complete packets, where the packet includes control 
words to indicate the start of the packet, end of packet, etc., and the packet 
length may be any integer number of bytes. Alternatively, the packet may be 
subdivided into segments, where the length of a segment is a provisionable 
constant, and where one or more segments may be transmitted in a burst. 

Data within the packet is organized into 64-bit blocks as shown in Fig. 5.10. 
Each block consists either of a control word and four data bytes, or of eight 
data bytes. A tag field indicates which block format applies. When SPI-S is 
mapped in IEEE 64B/66B, the tag field selects whether the word sync is “01” 
or “10”; for CEI-P the tag is mapped to a dedicated bit in the CEI-P word. The 
control word consists of flags which indicate the control word type, an address 
specifying the destination of the packet, and a CRC field used for error detec-
tion. Detailed definitions for the control word are beyond the scope of this text.

Note that SPI-S does not define a baud rate or a data width. The protocol is 
scalable to any baud rate or data width.
5.2.3.2 Status Channel

SPI-S includes a status channel used to transmit queue status from the 
receiver backward to the transmitter source. The status channel is defined as 
two bits which indicate whether the queue is satisfied, hungry, or starving. This 
status channel must be transmitted by the receiver device at the same baud rate 
as the received data. If the HSS cores from both chips are provided with a 
reference clock from a common clock source, then this requires no special 
attention. If a common clock source is not guaranteed, then the HSS core trans-
mitting the status channel must use loop timing and connect the HSSREFCLK 
input through a PLL to the recovered clock output of one of the receiver lanes 
on the HSS core receiving the SPI-S data. 

Fig. 5.10 CEI-P 64B/66B block formats
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SPI-S defines the link state machines at the receiver and transmitter that 
generate and respond to the status channel as well as control word fields. SPI-S 
also defines provisionable parameters relevant to these link states. Link state 
and parameter definitions are beyond the scope of this text.
5.2.3.3 Framing Modes

As mentioned previously, SPI-S may be mapped onto an IEEE 64B/66B 
coding and scrambling layer, or onto a CEI-P coding and scrambling layer.
IEEE 64B/66B Coding:   

IEEE 64B/66B coding and scrambling is defined in IEEE 802.3ae-2002 
Clause 49. The SPI-S block tag is mapped into the IEEE 64B/66B framing 
field with a value of either a “01” or “10,” and the remainder of the SPI-S block 
is mapped into the 64-bit payload field. 

Framing is performed by receiver deskew logic by searching for the bit 
positions within the 66-bit symbol which are consistently either “01” or “10,” 
and never “00” or “11.” This provides a framing reference to distinguish tag 
fields from payload data. When the data width of the interface is 2 or more 
lanes, deskew is performed across lanes by aligning the tag field references. 
CEI-P Coding:   

The OIF CEI-P Implementation Agreement defines a coding and 
scrambling layer which provides an alternative to the IEEE 64B/66B code. The 
tag bit and 64-bit payload words of each block are mapped into CEI-P frames 
as shown in Fig. 5.11. Other fields in this frame, as well as framing procedures, 
will be described shortly for CEI-P.

Fig. 5.11 CEI-P mapping
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5.2.4 CEI-P Implementation Agreement
The CEI-P Implementation Agreement defines three sublayers of the 

protocol stack:
Adaption layer. This layer provides client signal alignment, performance 
monitoring, and mapping functions to convert from client protocol formats to 
CEI-P formats. This layer is application specific and is not specified in CEI-P.
Aggregation layer. This is an optional layer which multiplexes and 
de-multiplexes clients onto the CEI-P lane. This permits n lanes of a given 
baud rate to share one lane running at n times the baud rate. The purpose is to 
allow scalability of legacy protocols onto higher speed electrical lanes. For 
example, two OC-48 clients may share a CEI-6G lane using CEI-P. The 
detailed definition of this layer is beyond the scope of this text.
Framing layer. This layer defines the CEI-P framing, coding, scrambling, 
error detection and correction, etc. Key aspects of this are discussed in this 
section.
5.2.4.1 CEI-P Frame Format

The format of the 1584-bit CEI-P frame is defined in Fig. 5.11: 
• Each 64-bit word of client data is mapped into the CEI-P payload words. 
• The “T” bits are available for use by the client application; for SPI-S the 

T bits indicate the format of the payload word. 
• The S[3:0] bits are available for use by an application-specific 

supervisory layer. Use of these bits is not defined in CEI-P.
• The FEC parity bits are generated by XOR’ing a 20-bit forward error 

correction (FEC) code with a 3-bit state code.
The FEC code used in CEI-P is a Fire Code with the following generator 

polynomial:
G(x) = (x13 + 1)(x7 + x + 1). (5.2)

Frames are scrambled using a free running scrambler with characteristic 
polynomial:

G(x) = x17 + x14 + 1. (5.3)
All bits of the frame are scrambled. The receiver logic can determine the 

correct scrambler state by subtracting the calculated value of the FEC bits from 
received value of this field, and setting the descrambler state to be equal to the 
most significant 17 bits of this subtraction. 

The state value is recovered at the receiver by XOR’ing the calculated value 
of the FEC bits with the received value of this field, and using the least signif-
icant 3 bits of this result as the state value. Note that any bit errors in the 
received data potentially cause the state value to be incorrectly decoded, and 
therefore the receiver logic must ignore transitory state transitions, and should 
only respond if the state value is consistent for several consecutive frames.
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Fig. 5.12 CEI-P sample framing algorithm
5.2.4.2 CEI-P Link States

CEI-P links implement state machines which provide for the transmission 
of a specified training pattern. This training pattern may be used by the receiver 
to train the CDR and DFE circuits. Bidirectional interfaces pair each CEI-P 
link with a corresponding link in the reverse direction, and allow either chip to 
request that the other chip send the training pattern. CEI-P links on unidirec-
tional interfaces only send training patterns when directed to do so by a super-
visory function.

The state value in the CEI-P frame indicates the current link state of the 
transmitter. The receiver interprets the data on the link as either a training 
pattern or CEI-P frames based on this state. The receiver can request transmis-
sion of the training pattern by having the transmitter with which it is paired 
send the corresponding state request. 

Detailed definitions of state values and state machine transitions are beyond 
the scope of this text.
5.2.4.3 CEI-P Framing

Logic in the receiver is required to determine the CEI-P frame reference. 
This is performed through a complex trial-and-error search utilizing the FEC 
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parity calculation. Although other algorithms are possible, CEI-P provides the 
sample algorithm shown in Fig. 5.12. Parameters in this algorithm include:

Count: Frame match counter
M1: Constant number of mismatches required before the frame state 
transitions from in-frame to out-of-frame.
M2: Constant number of matches required before the frame state 
transitions from out-of-frame to in-frame. 

The algorithm proceeds to find a frame reference in out-of-frame state as 
follows:
1. Assume an arbitrary frame reference.
2. Calculate the FEC code for the next frame and use this to initialize the 

descrambler state.
3. Calculate the FEC code for the next frame and compare to the received 

value. If the values do not match, try a new frame reference and go back 
to step 2. If the values match, then repeat this step for M2 frames. 

4. If the calculated and received FEC codes match for M2 consecutive 
frames, the frame state transitions to in-frame. 

5.2.5 Electrical Layer Implementation Agreements
OIF has published two electrical layer implementation agreements:

• OIF-SxI-5-01.0: System Interface Level 5 (SxI-5): Common Electrical 
Characteristics for 2.488–3.125 Gbps Parallel Interfaces: This implemen-
tation agreement defines an electrical layer for 2.488–3.125 Gbps link 
baud rates.

• OIF-CEI-02.0: Common Electrical I/O (CEI): Electrical and Jitter 
Interoperability agreements for 6G+ bps and 11G+ bps I/O: This imple-
mentation agreement is a clause-based document containing electrical 
layer definitions for 4.96–6.375 Gbps link baud rates, and for 
9.95–11.10 Gbps link baud rates.

SxI-5 consists of normative transmitter and receiver specifications. CEI 
specifies a normative transmitter and a normative channel, and is described in 
further detail in this section.
5.2.5.1 CEI Variants

The OIF CEI Implementation Agreement is a clause-based document 
which specifies the variants shown in Table 5.6. For reference, SxI-5 is also 
compared in this table.
5.2.5.2 Transmitter Electrical Parameters

Basic electrical characteristics of the transmitter specification for various 
CEI variants are compared in Table 5.7.
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The “Transmitter Reference Model” indicated in this table specifies the 
assumptions regarding the feed forward equalizer (FFE) in the transmitter 
device. There is no direct requirement specified for the transmitter in the 
implementation agreement; rather this requirement is implicitly derived from 
the channel compliance requirements. In some cases the description of the 
reference model may not be physically implementable; “infinite precision” for 
example is impossible to achieve in a digital design. This implies that the FFE 
designer must over-design in order to achieve an FFE that is at least as capable 
at compensating for the channel effects as the reference model specified.

The “Common Mode Voltage” specification in this table only applies if the 
transmitter supports DC Coupling. CEI is generally AC coupled, with DC 
coupling supported as an option.

Table 5.6 Common electrical I/O variants

Short name
Implementation 

agreement 
reference

Baud rate Reach objective

SxI-5 OIF-SxI-5-01.0 2.488–3.125Gbps Capable of driving
at least 8in. of FR4

with 1 or 2 connectors

CEI-6G-SR OIF-CEI-02.0 
Clause 6

4.976–6.375Gbps Capable of driving 
0–200mm of PCB

and up to 1 connector

CEI-6G-LR OIF-CEI-02.0 
Clause 7

4.976–6.375Gbps Capable of driving 
0–1,000mm of PCB

and up to 2 connectors

CEI-11G-SR OIF-CEI-02.0 
Clause 8

9.95–11.1Gbps Capable of driving 
0–200mm of PCB

and up to 1 connector

CEI-11G-MR OIF-CEI-02.0 
Clause 9

9.95–11.1Gbps Capable of driving 
0–600 mm of PCB

and up to 2 connectors 
for low power 
applications

CEI-11G-LR OIF-CEI-02.0 
Clause 9

9.95–11.1Gbps Capable of driving 
0–1,000 mm of PCB

and up to 2 connectors
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Table 5.7 CEI transmitter electrical parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR
CEI-11G-MR

Transmitter 
reference model

2-tap FFEa 2-tap FFEb No emphasis 3-tap FFEc

Output differential 
voltage

400–750 
mVppd

800–1,200 
mVppd

360–770 
mVppd

800–1,200 
mVppd

Common mode 
voltage

(AC coupled load)

0–1.8 V 100–1,700 
mV

0–3.55 V 100–1,700 
mV

Common mode 
voltage

(DC coupled load)

Range 
depends on 
Vtt at the 
receiver

630–1,100mV Range 
depends on 
Vtt at the 
receiver

630–1,100 
mV

Rise/fall time 30ps min. 30ps min. 24ps min. 24ps min.

Uncorrelated 
bounded high 

probability jitter 
(T_UBHPJ)

0.15 UIpp 0.15 UIpp

Uncorrelated 
unbounded 

Gaussian jitter 
(T_UUGJ)

0.15 UIpp 0.15 UIpp

Uncorrelated high 
probability jitter 

(T_UHPJ)

0.15 UIpp 0.15 UIpp

Duty cycle 
distortion 
(T_DCD)

0.05 UIpp 0.05 UIpp 0.05 UIpp

Total jitter (T_TJ) 0.30 UIpp 0.30 UIpp 0.30 UIpp 0.30 UIpp

aSingle post tap transmitter, with <3dB of emphasis and infinite precision accuracy
bEither a single pretap or posttap transmitter, with <6dB of emphasis, with infinite 
precision accuracy
cEqualizing filter with 2 tap baud spaced emphasis no greater than a total of 6dB with finite 
resolution no better than 1.5dB
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The jitter terminology in Table 5.7 is unique to the CEI Implementation 
Agreement. The detailed jitter budgets for each of the CEI clauses subdivided 
the deterministic and random jitter components in order to differentiate 
between contributors for which the FFE/DFE filters would or would not 
compensate. Those parameters of the jitter budget which are normative are 
shown in Table 5.7. The reader may generally assume as a first order 
approximation:
• T_UBHPJ = Unequalizable Deterministic Jitter (DJ).
• T_UHPJ = T_UBHPJ + T_DCD + other high probability jitter 

components.
• T_UUGJ = Unequalizable Random Jitter (RJ).
5.2.5.3 Receiver Electrical Parameters

Basic electrical characteristics of the receiver specification for various CEI 
variants are compared in Table 5.8. The “Receiver Reference Model” indicated 
in this table specifies the assumptions regarding the equalization in the receiver 
device. Where two possible reference models have been specified for a given 
CEI variant, the receiver designer may assume either one. 

There is no direct requirement specified for the receiver equalization in the 
implementation agreement; rather this requirement is implicitly derived from 
the channel compliance requirements. DFE filters are assumed to have tap 
weights with infinite precision; this is not physically implementable, and 
implies the DFE designer must over-design in order to achieve equivalent 
performance.

The “Common Mode Voltage” specification in this table only applies if the 
transmitter supports DC Coupling. CEI is generally AC coupled, with DC 
coupling supported as an option.

Fig. 5.13 Eye mask at output of receive equalizer for channel compliance
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Table 5.8 CEI receiver electrical parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR
CEI-11G-MR CEI-11G-LR

Receiver reference 
model

No 
equalization

5 tap DFE 
with 

constraints on 
tap weights

See Note (1) 4 tap DFE 
with 

constraints on 
tap weights

Input differential 
voltage

125–750 
mVppd

1,200mVppd 
max.

110–1,050 
mVppd

1,200mVppd 
max.

Common mode 
voltage (AC 

coupled load)

0–1.8V 100–1,800mV 0–3.60V 100–1,800mV

Common mode 
voltage (DC 

coupled load)

Range 
depends on 
Vtt at the 
receiver

595–(Vtt – 60) 
mV

Range 
depends on 
Vtt at the 
receiver

595–
(Vtt – 60) mV

Note (1)Two reference receivers are defined:
• Reference Receiver A (CEI-11G-SR/MR): No equalization
• Reference Receiver B (CEI-11G-SR only): Single-zero single-pole filter

Table 5.9 Channel compliance parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR

Transmitter reference model

Baud rate 6.375Gbps 
(See Note (1)) 

6.375Gbps 
(See Note (1))

11.1Gbps 
(See Note(1))

11.1Gbps 
(See Note (1))

 Equalization See Note (2) See Note (2) None See Note (2)

 Amplitude 400 mVppd 800 mVppd Both 360 and 
770 mVppd
(See Note 3)

800 mVppd

 Jitter (T_UBHPJ) 0.15 UIpp 0.15 UIpp 0.15 UIpp 0.15 UIpp

Jitter (T_UUGJ) 0.15 UIpp 0.15 UIpp 0.15 UIpp 0.15 UIpp

Jitter (T_DCD) 0.05 UIpp
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Tx edge rate filter As specified in 
Note (4)

As specified in 
Note (4)

As specified in 
Note (4)

As specified in 
Note (5)

Return loss RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

Receiver reference model

Equalization None See Note (7) See Note (7) See Note (7)

Return loss RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

RC Network 
model (Note 

(6))

Bit error rate 
(BER)

10–15 10–15 10–15 10–15

Sampling point (See Note (8)) Not specified (See Note (8)) Not specified

Eye mask parameters

R_X1 0.30 UI 0.30 UI 0.35 UI / 
0.25 UI

(See Note (9))

0.2625 UI

R_Y1 62.5mV 50mV 55mV 50mV

R_Y2 375mV Not specified 525mV Not specified

Note (1)  Lower of maximum baud rate of channel or baud rate specified in table
Note (2) See Table 5.7, “Transmitter Reference Model” entry, column for corresponding 

variant for specified transmitter equalization
Note (3) Channel compliance must be tested and pass for all specified amplitudes
Note (4) Transmitter edge filter is modeled as a simple 20dB/dec low-pass filter at 75% of 

baud rate
Note (5) Transmitter edge filter is modeled as a simple 40dB/dec low-pass filter at 75% of 

baud rate
Note (6) Return loss is modeled as an RC filter where R is the defined maximum allowed 

DC resistance of the interface and C is increased until the defined maximum 
return loss at the defined frequency is reached

Note (7) See Table 5.8, “Receiver Reference Model” entry, column for corresponding 
variant for specified receiver equalization

Note (8) Sampling point is defined as midpoint between average zero crossings of the 
differential signal

Note (9) First number is requirement when analyzing Reference Receiver A; second 
number is requirement when analyzing Reference Receiver B

Table 5.9 Channel compliance parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR
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Parameters regarding “Input Differential Voltage” are informative specifi-
cations. The receiver must receive any signal generated by a compliant trans-
mitter driven through a compliant channel. For CEI variants with receiver 
reference models using DFEs, the signal amplitude at the receiver may 
approach zero for higher spectral components of the data.

Jitter parameters are also informative specifications with respect to the 
receiver. The individual CEI clauses provide informative values for jitter at the 
receiver which may be used as a guideline. The requirement is that the receiver 
must receive any signal generated by a compliant transmitter and driven 
through a compliant channel.
5.2.5.4 CEI Channel Compliance

All CEI variants include normative specifications for channel compliance. 
Channel compliance is determined by frequency domain analysis of the 
channel using the mathematical methods specified in the implementation 
agreement. This is analysis is performed as follows:
• A reference transmitter is assumed which incorporates certain assump-

tions regarding launch amplitude, jitter, equalizer capabilities, etc.
• The channel response is measured and 4-port S-parameters are generated 

for the channel.
• A reference receiver is assumed which incorporates certain assumptions 

regarding return loss, equalizer capabilities, etc. In some cases, more than 
one reference receiver is specified; the channel must work with all speci-
fied reference receivers.

• Statistical signal integrity analysis is performed with the above compo-
nents to determine the width and height of the virtual eye at the output of 
the receiver equalizer. If there exists a set of filter coefficients for the 
transmitter and the receiver which are legal, and which produce a virtual 
eye that is of sufficient width and height for the target bit error rate 
(BER), then the channel is compliant.

Table 5.9 specifies the reference transmitter and receiver assumptions for 
channel compliance analysis of the various CEI variants. The table also 
specifies the eye mask parameters for the output of the receive equalizer which 
constitute the pass/fail condition; the eye mask is provided in Fig. 5.13. Note 
that:

1 If more than one Receiver Reference Model is specified, then the channel 
must pass using each reference model.

2. If more than one transmit amplitude is specified, then the channel must 
pass using each specified amplitude.

3. CEI-11G-MR channel compliance uses:
– The transmitter reference model for CEI-11G-LR
– The receiver reference model A for CEI-11G-SR
– The eye mask parameters for CEI-11G-SR.
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OIF has collaborated with the developers of an open source software tool 
called StatEye to provide an implementation of the mathematics specified in 
the CEI Implementation Agreement [12]. Certain releases of this tool include 
templates for the various CEI variants. StatEye performs the necessary 
statistical signal integrity analysis using these templates.

5.3 Ethernet Protocols
The Institute of Electrical and Electronics Engineers (IEEE) commissioned 

a committee to develop open network standards. Since this committee started 
work on this effort in February, 1980, the documents produced by this project 
were designated using the nomenclature IEEE 802.x. Several different network 
architectures were ultimately standardized, resulting in various “.x” exten-
sions. The “Ethernet” system originally developed by Xerox was standardized 
and published as “IEEE 802.3 Carrier Sense Multiple Access with Collision 
Detection (CSMA/CD) Access Method and Physical Layer Specifications” in 
1985. Although the IEEE document does not use the term, the “Ethernet” name 
continues to be commonly associated with this standard. While Ethernet was 
once one of several network standards with significant deployment (for 
example: the 802.5 Token Ring), over time it has emerged as the dominant 
network standard. The IEEE 802.3 document has gone through several revi-
sions, adding additional clauses to support additional speeds, physical layers, 
etc., since its original publication.

The historical network topology for an Ethernet system consisted of 
multiple workstations connected to a common Ethernet bus using coaxial 
cable. Whenever one of the workstations wanted to send data, the network 
device would first listen to the bus to determine whether another workstation 
was using it. If the bus was in use, the device would wait. If the bus was not in 
use, the network device would transmit a data packet, while continuing to 
monitor the bus for any collisions resulting from two devices starting transmis-
sion at the same time. If a collision occurred, the device would abort the trans-
mission and wait some amount of time before trying again. The CSMA/CD 
portion of the title for the IEEE 802.3 document results from this historical 
network access method.

Beginning in the early 1990s, “star-connected” network topologies became 
the network configuration of choice. In a “star-connected” topology, each 
workstation connects to a central network unit (either a network switch or a 
network hub), and each connection is a point-to-point link implemented using 
twisted-pair wire or optical fiber. Such topologies allowed full-duplex connec-
tions such that a network device can be both transmitting and receiving at the 
same time. Since each link had only one transmitter, collisions were no longer 
possible. Nevertheless, the CSMA/CD access methods were retained in the 
IEEE 802.3 standard through the 10 Mbps, 100 Mbps, and 1 Gbps generations. 
Clauses pertaining to 10 Gbps recognize that practical implementations are 
point-to-point links, and no longer support CSMA/CD access methods.
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5.3.1 Physical Layer Reference Model
Figure 5.14 illustrates the Media Access Control (MAC) layer and the 

various components (with the associated Ethernet terminology) of the Physical 
Layer associated with 10-Gbps Ethernet. The Reconciliation Layer remaps 
signals between the 32-bit MAC/PLS service interface definition (clause 36) 
and the 10-Gbps Ethernet Media-Independent Interface (XGMII) definition. 
The MAC layer (via the Reconciliation Layer) and the Physical Layer are 
interconnected using the XGMII. The Physical Layer consists of the Physical 
Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer, and 
the Physical Medium Dependent (PMD) sublayer. There are multiple clauses 
of the IEEE 802.3 document which apply to these sublayers, depending on the 
type of medium being used. HSS cores are used in the high-speed electrical 
implementation of these layers. 

Table 5.10 describes the relationship between 10-Gbps Ethernet variants 
and normative clauses of the IEEE 802.3 document for the physical sublayers. 
The published clauses relevant to 10-Gb Ethernet are summarized below:
Clause 44. Introduction to the 10Gbps Baseband Network: This clause is a 
normative summary of applicable requirements for the 10-Gbps LAN/WAN 
variants described in Table 5.10. This clause references other 10Gbps clauses.
Clause 46. Reconciliation Sublayer (RS) and 10 Gigabit Media Independent 
Interface (XGMII): This clause defines both the Reconciliation Sublayer (RS) 
and the XGMII. 
Clause 47. XGMII Extender Sublayer (XGXS) and 10 Gigabit Attachment Unit 
Interface (XAUI): This clause defines a method of extending the physical 
distance between the MAC layer device and the PCS/PMA layer device. An 
XGXS layer device is located near the MAC layer device (DTE XGXS), and a 
similar XGXS layer device is located near the PCS/PMA layer device (PHY 
XGXS). XAUI is the interface definition which interconnects the two XGXS 
layer devices.
Clause 48. Physical Coding Sublayer (PCS) and Physical Medium Attachment 
(PMA) sublayer, type 10GBASE-X: This clause defines the PCS and PMA 
layers for connecting an XGMII to a PMD using a 4 lanes by 3.125Gbps 
electrical interface. Block encoding/decoding (8B/10B), alignment, deskew, 
and clock rate compensation are components of this clause.
Clause 49. Physical Coding Sublayer (PCS) for 64b/66b, type 
10GBASE-R: This clause defines the PCS layer for connecting an XGMII to a 
10-Gbps serial PMA layer. Block encoding/decoding (64B/66B), alignment, 
and clock rate compensation are components of this clause.
Clause 50. WAN Interface Sublayer (WIS), type 10GBASE-W: This clause 
defines a sublayer which exists between the PCS and the PMA layer for Wide 
Area Network (WAN) variants. This sublayer maps Ethernet packets into the 
Synchronous Payload Envelope (SPE) of an STS-192c SONET frame.
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Fig. 5.14 LAN PHY/WAN PHY sublayers
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10GBASE-LX4 LAN 4 x 1,310-nm CWDM 
optics

48 48 53
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10GBASE-SW WAN 850-nm serial optics 49 51 52 X
10GBASE-LW WAN 1,310-nm serial optics 49 51 52 X
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10GBASE-KR Backplane 10 x Gbps serial electrical 49 51 72 X O
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Clause 51 Physical Medium Attachment (PMA) sublayer, serial: This clause 
defines a PMA sublayer for interfacing the PCS sublayer defined in clause 49 
(or the WIS sublayer defined in clause 50) to a PMD using a serial 10.3125-
Gbps electrical interface. 
Clause 52 Physical Medium Dependent (PMD) sublayer and baseband 
medium, type 10GBASE-S (Short Wavelength Serial) and 10GBASE-L (Long 
Wavelength Serial) and 10GBASE-E (Extra Long Wavelength Serial): This 
clause defines the electrical-to-optical and optical-to-electrical PMD layer for 
10-Gbps serial optical devices.
Clause 53 Physical Medium Dependent (PMD) sublayer and baseband 
medium, type 10GBASE-LX4: This clause defines the electrical-to-optical and 
optical-to-electrical PMD layer for a 10-Gbps optical device which employs 
Course Wave Division Multiplexing (CWDM) to transmit four 3.125Gbps 
data streams on the fiber.
Clause 54 Physical Medium Dependent (PMD) sublayer and baseband 
medium, type 10GBASE-CX4: This clause defines the electrical PMD layer for 
a 10-Gbps electrical device which uses four 3.125-Gbps electrical differential 
signals to transmit data across a cable. 

The Ethernet variants also exist for communication across backplanes 
within host systems. The clauses relevant to 10-Gb Backplane Ethernet are 
summarized below:
Clause 69. Introduction to Ethernet operation over electrical 
backplanes: This clause is a normative summary of applicable requirements 
for the 1 Gbps and 10 Gbps backplane variants described in Table 5.10. This 
clause references other clauses applicable to these variants.
Clause 71. Physical Medium Dependent Sublayer and Baseband Medium, 
Type 10GBASE-KX4: This clause defines the electrical PMD layer for a 10-
Gbps electrical device which uses four 3.125-Gbps electrical differential 
signals to transmit data across a backplane.
Clause 72. Physical Medium Dependent Sublayer and Baseband Medium, 
Type 10GBASE-KR: This clause defines the electrical PMD layer for a 10-
Gbps serial electrical device which uses a 10.3125-Gbps electrical differential 
signal to transmit data across a backplane. This clause additionally defines a 
training frame structure and training state machine. This training protocol 
monitors the signal metrics at the receiver during link initialization and updates 
FFE coefficients in the transmitter in order to optimize performance of the link.
Clause 73. Auto-Negotiation for Backplane Ethernet: This clause defines 
autonegotiation protocols which are mandatory for PCS/PMA layer implemen-
tations for Backplane Ethernet. This protocol allows devices to negotiate 
which Backplane Ethernet variant is to be used, whether FEC is to be used, and 
other parameters.
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Clause 74. Forward Error Correction (FEC) sublayer for 
10GBASE-R: This clause defines an optional FEC sublayer for enhancing the 
BER performance of 10GBASE-KR.

5.3.2 Media Access Control (MAC) Layer
In this section the basic format of an Ethernet frame is discussed, as well as 

the XGMII interface definition. Other details of MAC layer function are 
beyond the scope of this text.
5.3.2.1 Ethernet Packet Format

Ethernet is a packet delivery system. The basic format of an Ethernet packet 
is shown in Fig. 5.15. Each packet consists of a preamble and start frame 
delimiter (SFD) to indicate the beginning of a packet, destination and source 
addresses to identify the recipient and the sender, a packet length field indicat-
ing the number of data bytes in the packet, a variable length data field, and a 
frame check sequence (FCS) field to facilitate error detection.

Each Ethernet network interface card (NIC) is assigned a unique MAC 
address by its manufacturer. The first 24 bits of the 48-bit MAC address 
identify the manufacturer and are assigned by the IEEE Registration Authority. 
The remaining bits are assigned by the manufacturer and are generally pro-
grammed into the hardware such that they cannot be changed. This MAC 
address uniquely identifies the NIC, even if the hardware moves to another 
location.

The data portion of the MAC frame generally carries data for a higher layer 
protocol, which also requires some control information to be transmitted. The 
data portion of the frame in Fig. 5.15 often consists of a logical link control 
(LLC) layer header followed by payload data. If there are fewer than 46 bytes 
of payload data, then the payload data is padded to achieve this minimum 
length.

Fig. 5.15 IEEE 802.3 ethernet frame

Preamble
(7 bytes)

SFD
(1)

Destination
Address
(6 bytes)

Source
Address
(6 bytes)

Length
(2)

Data
(Up to 1500 bytes)

FCS
(4 bytes)

Preamble: Idles which set timing.
Start Frame Delimiter (SFD): ‘AB’h indicating start of frame.
Destination Address: Six byte unique MAC address of recipient device.
Source Address: Six byte unique MAC address of sending device.
Length: Two bytes indicating length of data field.
Data: Layer 2 Payload Data field. Generally contains a Logical Link 

Data is padded if shorter than 46 bytes.
Frame Check Sequence (FCS): Cyclic Redundancy Check (CRC) 

Control (LLC) header and between 46 and 1500 bytes of payload data.

remainder for error detection.
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5.3.2.2 10-Gb Media Independent Interface (XGMII)
The XGMII interface consists of the following signals:

TXD[31:0]: This 32-bit bus is the transmit data bus driven by the MAC to the 
Physical Layer. Bit 31 is the most significant bit of this bus, and bit 0 is the 
least significant bit. Ethernet data is transmitted least significant bit first (i.e., 
TXD[0] first, then TXD[1], and so forth through TXD[31]).
TXC[3:0]: These control bits indicate whether the corresponding bytes of the 
TXD bus are data values or control values. The TXD[31:0] and TXC[3:0] 
signals are organized into “lanes” as is explained shortly.
TX_CLK: This signal is a 156.25-MHz transmit DDR clock and is synchro-
nous to the TXD and TXC signals.
RXD[31:0]: This 32-bit bus is the receive data bus driven by the Physical 
Layer to the MAC. Bit 31 is the most significant bit of this bus, and bit 0 is the 
least significant bit. Ethernet data have received least significant bit first.
RXC[3:0]: These control bits indicate whether the corresponding bytes of the 
RXD bus are data values or control values. The RXD[31:0] and RXC[3:0] 
signals are organized into “lanes” as is explained shortly.
RX_CLK: This signal is a 156.25-MHz receive DDR clock and is synchronous 
to the RXD and RXC signals.

Fig. 5.16 MAC serial bit order and XGMII data lanes

D31 D24 D23 D16 D15 D8 D7 D0................

D31 D24 D23 D16 D15 D8 D7 D0................

TXD[31:24] TXD[23:16] TXD[15:8] TXD[7:0]

Transmission Bit Order

RXD[31:24] RXD[23:16] RXD[15:8] RXD[7:0]

Received Bit Order

Lane 3 Lane 2 Lane 1 Lane 0XGMII
Lanes

(D0 transmitted first.)

(D0 received first.)
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The TXD[31:0] and TXC[3:0] signals are organized into lanes as follows:
Lane 0 consists of TXD[7:0] and TXC[0].
Lane 1 consists of TXD[15:8] and TXC[1].
Lane 2 consists of TXD[23:16] and TXC[2].
Lane 3 consists of TXD[31:24] and TXC[3].

The RXD[31:0] and RXC[3:0] signals are organized into lanes in a similar 
manner. The order in which MAC bits are mapped onto the XGMII signals is 
illustrated in Fig. 5.16.

Table 5.11 XGMII frame example

Contents

XGMII Lane 3 XGMII Lane 2 XGMII Lane 1 XGMII Lane 0

TXC3
or 

RXC3

TXD/
RXD

[31:24]

TXC2
or 

RXC2

TXD/
RXD

[23:16]

TXC1
or 

RXC1

TXD/
RXD
[15:8]

TXC0
or 

RXC0

TXD/
RXD
[7:0]

Preamble /
start

0 “AA”h 0 “AA”h 0 “AA”h 1 “FB”h

SFD / 
preamble

0 “AB”h 0 “AA”h 0 “AA”h 0 “AA”h

Frame data 0 Byte 4 0 Byte 3 0 Byte 2 0 Byte 1

.
:

.
:

.
:

.
:

.
:

.
:

.
:

.
:

End/frame 
data

1 “FD”h 0 Byte N 0 Byte N–1 0 Byte N–2

Table 5.12 XGMII control characters

TXC/RXC TXD/RXD 8B/10B Code

MAC data 0 “00”h to 
“FF”h

Dx.y

Idle 1 “07”h

Sequence (only valid in lane 
0)

1 “9C”h K28.4

Start (only valid in lane 0) 1 “FB”h K27.7

Terminate 1 “FD”h K29.7

Transmit error propagation or 
receive error

1 “FE”h K30.7



204 High Speed Serdes Devices and Applications

Table 5.11 illustrates the format of a packet on the XGMII bus. The first 
preamble character generated by the MAC layer is replaced by the XGMII 
“Start” control symbol (see control character definitions in Table 5.12), which 
must be aligned in Lane 0 of the XGMII. The Start character is followed by six 
additional preamble bytes, and the MAC Start Frame Delimiter. From the 
perspective of the XGMII, all characters after the Start control character are 
data bytes.

The next N data bytes correspond to the MAC frame header, data, and 
Frame Check Sequence as defined previously. After the last FCS byte, a 
“Terminate” control character is sent on the XGMII. Note that the length of the 
MAC frame does not need to be divisible by four, and therefore the frame may 
end (and the “Terminate” character may occur) on any lane of the XGMII. The 
MAC layer may also abort the frame using an End character (‘FE’h). This 
character is interpreted at the receiver as either MAC propagation of an error 
on the transmitter or as a receive error detected by the Physical Layer.

In between frames, the Idle characters or Sequence characters are sent.

5.3.3 XGMII Extender Sublayer (XGXS)
The XGMII Extended Sublayer (XGXS) extends the reach the XGMII 

interface across a 10-Gigabit Attachment Unit Interface (XAUI). This exten-
sion across XAUI, with an XGXS at either end, is shown in Fig. 5.17. 

The XGXS encodes and serializes the XGMII transmit data (TXD/TXC 
signals) for transmission on XAUI. Each XGMII lane is 8B/10B encoded, seri-
alized, and transmitted at a baud rate of 3.125Gbps. XAUI serial data signals 
received by the XGXS are deserialized, 8B/10B decoded, and then driven to 
the MAC or PHY on the XGMII receive data (RXD/RXC signals). XAUI is a 
full duplex interface consisting of four transmit and four receive serial data 
signals, corresponding to the four transmit and four receive lanes of XGMII. 

It should be noted that the functions for the PCS/PMA sublayers defined in 
clause 48 of the 802.3 specification are identical to the function of the XGXS 
as specified in clause 47. The logic implementation is therefore similar. These 
clauses differ in that clause 47 defines the electrical parameters for the serial 
data signals that are applicable to XAUI. When used as the PCS/PMA layer for 
10GBASE-X variants, the electrical characteristics of the signals between the 
PMA and PMD sublayers are implementation dependent. 

The XGXS function is also similar for backplane applications designed to 
clause 71. Electrical parameters which apply for backplane applications are 
contained in clause 71.
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Fig. 5.17 XAUI/XGXS relationship to Ethernet layers
5.3.3.1 XGXS Function Overview

The PMA sublayer of an XGXS is implemented with HSS cores. The PCS 
sublayer requires additional logic to implement the following functions:
• Transmitter pseudorandom idle generation between packets.
• Clock compensation between the HSS core clock domains for each lane 

and the XGMII clock domain (through insertion or deletion of Idles 
between packets).

• 8B/10B encoding of XGMII transmit data to the PMA; 8B/10B decoding 
of PMA receive data to the XGMII.

• Receiver detection of synchronization idles.
• Generation of bit alignment pulses to the HSS core to perform symbol 

alignment of 8B/10B symbols received by the HSS core.
• Receiver detection of align idles and deskew of all lanes.
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The HSS core implements the following XGXS PMA sublayer functions:
• Generation of XGXS transmit clocks (for data between the PCS and PMA 

sublayers) based on the local reference clock.
• Serialization of PMA transmit data and transmission over XAUI.
• Reception of XAUI data, clock data recovery, and generation of XGXS 

receive clocks (for data between the PMA and PCS sublayers). 
• Deserialization of PMA receive data for the PMA interface to the PCS 

sublayer.
• Implementation of a bit alignment feature (as implemented on the HSS 

EX10 core by the RXxDATASYNC input) to facilitate bit-shifting and 
alignment of receive data on the interface between the PMA and PCS 
sublayer.

• Continuous status indication of valid clocks and data to the PCS sublayer.
The signals which interface between the PCS and PMA sublayers are im-

plementation dependent. The following signal descriptions are based on IBM 
cores, but are typical of what would be generically required:
PMA_DATA_OUT_LANEx[9:0] (x = 0,1,2,3): These busses are the transmit 
data for each PMA lane. There are four sets of signals corresponding to each 
of the four lanes. Data for each lane is 10-bits wide corresponding to the 10-bit 
symbol produced by 8B/10B encoding.
PMA_TXR_CLK_IN[3:0]: These are the 312.5MHz transmit symbol clock 
outputs of the HSS core and used by the XGXS PCS layer logic. There is one 
clock per lane. The resynchronization function of the HSS core must be used 
to minimize skew between transmit clocks.
PMA_DATA_IN_LANEx[9:0] (x = 0,1,2,3): These busses are the receive data 
for each PMA lane. There are four sets of signals corresponding to each of the 
four lanes. Data for each lane is 10-bits wide corresponding to the 10-bit 
symbol produced by 8B/10B encoding.
PMA_RCVR_CLK_IN[3:0]: These are the 312.5-MHz receive symbol clock 
outputs of the HSS core and used by the XGXS PCS layer logic. There is one 
clock per lane. 
PMA_DATA_SYNC_LANE[3:0]: These outputs of the PCS sublayer are 
connected to the RXxDATASYNC inputs of the HSS core for each of the 
respective lanes.
PMA_CLKS_READY: Status input from the HSS core to the PCS sublayer 
indicating that the PLL is locked, clocks are stable, and the HSS core is ready 
to receive and transmit data. The proper function of this signal depends on the 
defined initialization sequence for the HSS core being used.

One of the functions of the XGXS PCS receive logic is to compensate for 
frequency differences between PMA_RCVR_CLK_IN (as determined by the 
far-end transmitter’s clock reference) and the XGMII clocks (derived from 
the local clock reference). There is a 100 ppm tolerance between these clocks. 
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The XGXS PCS has sufficient buffer capability such that this frequency 
difference is tolerated, and Idles are added or dropped between packets to 
compensate. When PMA_CLKS_READY is not asserted, it indicates that 
clocks may be beyond this specification, and therefore no attempt is made to 
receive data or compensate for differences in clock frequencies.
5.3.3.2 Ordered Sets and Special Code Groups

The XGXS PCS sublayer performs 8B/10B encoding and decoding of 
MAC frames. Each byte of data maps to a corresponding 10-bit symbol. In 
addition, the XGMII control characters in Table 5.12, with the exception of the 
Idle character, directly map to corresponding 10-bit symbols. This mapping is 
shown in Table 5.12 using the symbol nomenclature for 8B/10B codes. (The 
8B/10B block code was described in Sect. 4.2.2.1.)

XGMII Idles are randomly converted to one of the following 10-bit codes: 
Sync (K28.5), Skip (K28.0), or Align (K28.3). A LFSR is used to randomly 
either generate Sync or Skip symbols. Align symbols are inserted at randomized 
intervals in the range of 16–31 symbols, with this interval also determined by 
a LFSR. The same symbol is transmitted on all lanes.

Align symbols are used by the receive PCS logic to perform deskew across 
all lanes of the interface such that the XGMII RXD[31:0] output is aligned to 
a common clock domain. The Align symbol is unique and does not otherwise 
occur in the protocol. Since it is transmitted on all lanes simultaneously, and is 
only transmitted every 16–31 symbols, the lanes can be deskewed by aligning 
the occurrence of this symbol. 

Skip symbols are used by the receive PCS logic to adjust for frequency 
differences between the recovered receive clock and the local XGMII clock. 
Skip symbols are inserted or dropped as needed.

The Sequence symbol (K28.4) is used on lane 0, in conjunction with Dxx.y 
symbols on the other lanes, to convey management information. Such informa-
tion is inserted by the MAC layer between frames in place of Idles, and is 
conveyed through the XGXS accordingly.

The Sync symbol does not have any special use.

5.3.4 10-Gb Serial Electrical Interface
The 10-Gb Serial Electrical Interface (XFI) was developed as part of the 

10-Gigabit Small Form Factor Pluggable (XFP) Multi Source Agreement 
(MSA). This MSA was developed by a consortium of optics module vendors 
who agreed to source optics modules meeting the XFP requirements. The XFI 
is a 10-Gbps serial electrical interface for communications between the XFP 
module and a SONET framer chip, or an Ethernet PCS/PMA layer. The PCS 
and PMA sublayers defined in clauses 49 and 51, respectively, define the 
necessary functions to interface between XGMII and XFI, and are used with 
all 10-Gb Ethernet serial variants (including backplane applications using the 
PMD defined in clause 72). Although the XFI acronym does not appear 
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anywhere in the IEEE 802.3 standard, for historical reasons implementations 
of clause 49 and 51 are commonly called XFI.

The XFI PCS encodes and serializes the XGMII transmit data (TXD/TXC 
signals) for transmission on XFI. Each XGMII lane is 64B/66B encoded, 
scrambled, serialized, and transmitted at a baud rate of 10.3125 Gbps. XFI 
serial data signals received by the XFI PCS are deserialized, descrambled, 
64B/66B decoded, and then driven to the MAC or PHY on the XGMII receive 
data (RXD/RXC signals). XFI is a full duplex interface consisting of one 
transmit and one receive serial data signals.

An optional 16-bit bus is defined to interface between the PCS sublayer and 
the PMA sublayer. While this is the reference interface between the XFI PCS 
and the HSS core implementing the PMA sublayer as defined by clause 49, it 
does require data to be transferred on the parallel bus of the HSS core at 
644.53 Mtransfers per second. Implementations may choose HSS core options 
which utilize more bits of parallel data at a slower transfer rate. (Available IBM 
cores use a 32-bit interface.) The definition of this interface has significance 
for two reasons:
• The 66-bit code word blocks produced by 64B/66B encoding of the 

XGMII data are not an integer multiple of the width of the parallel data 
bus on most HSS cores. Data must be steered from cycle to cycle by 
“gearbox” logic in order to map the 66-bit blocks onto the 16-bit (or 
32-bit) parallel data bus of the HSS core.

• 10GBASE-W Wide Area Network (WAN) variants are intended to inter-
operate with other network nodes on a SONET/SDH network. These 
variants define a WAN Interface Sublayer (WIS) in clause 50 which maps 
the Ethernet packets into a SONET SPE, and then wraps this data with 
SONET/SDH overhead bytes with the level of support defined in 
clause 50. WIS is sandwiched between the PCS and PMA sublayers for 
10GBASE-W variants.

5.3.4.1 XFI Function Overview
The PMA sublayer of an XFI is implemented with HSS cores. The PCS 

sublayer requires additional logic to implement the following functions:
• Mapping XGMII data into block payloads.
• Clock compensation between the HSS core clock domain and the XGMII 

clock domain (through insertion or deletion of Idles between packets).
• 64B/66B encoding and scrambling of XGMII transmit data to the PMA; 

64B/66B decoding and descrambling of PMA receive data to the XGMII.
• Gearbox data steering to map 66-bit code words onto the HSS core 

parallel data bus for transmission, and similarly unmap received data.
• Receiver detection of sync headers in received data stream.
• Block alignment using sync headers to form 66-bit blocks from incoming 

data.
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The HSS core implements the following XFI PMA sublayer functions:
• Generation of XFI transmit clock (for data between the PCS and PMA 

sublayers) based on the local reference clock.
• Serialization of PMA transmit data and transmission over XFI.
• Reception of XFI data, clock data recovery, and generation of XFI receive 

clock (for data between the PMA and PCS sublayers). 
• Deserialization of PMA receive data for the PMA interface to the PCS 

sublayer.
• Continuous status indication of valid clocks and data to the PCS sublayer.

The signals which interface between the PCS and PMA sublayers are 
implementation dependent. A 16-bit PMA Service Interface (XSBI) is defined 
for reference in clause 51, but is not required. Some variation from the XSBI 
definition exists in most XFI implementations. The following signal descrip-
tions are based on IBM cores, but are typical of what would be generically 
required:
TX_DATA_OUT[31:0]: This is the transmit data parallel data bus connection 
from the XFI PCS to the HSS core.
PMA_TX_CLK: This is the 322.265-MHz transmit clock output of the HSS 
core and is used by the XFI PCS sublayer logic. 
RX_DATA_IN[31:0]: This is the receive data parallel data bus connection 
from the HSS core to the XFI PCS.
PMA_RX_CLK:  This is the 322.265-MHz receive clock output of the HSS 
core and is used by the XFI PCS sublayer logic. 
PMA_TX_READY: Status input from the HSS core to the XFI PCS sublayer 
indicating that the PLL is locked, clocks are stable, and the HSS core is ready 
to transmit data. The proper function of this signal depends on the defined 
initialization sequence for the HSS core being used.
PMA_RX_READY: Status input from the HSS core to the XFI PCS sublayer 
indicating that the PLL is locked, clocks are stable, and the HSS core is ready 
to receive data. The proper function of this signal depends on the defined 
initialization sequence for the HSS core being used.

One of the functions of the XFI PCS receive logic is to compensate for 
frequency differences between PMA_RCVR_CLK_IN (as determined by the 
far-end transmitter’s clock reference) and the XGMII clocks (derived from the 
local clock reference). There is a 100 ppm tolerance between these clocks. The 
XFI PCS has sufficient buffer capability such that this frequency difference is 
tolerated, and Idles are added or dropped between packets to compensate. 
When PMA_TX_READY or PMA_RX_READY is not asserted, it indicates 
that clocks may be beyond this specification, and therefore no attempt is made 
to receive data or compensate for differences in clock frequencies.
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Fig. 5.18 MAC XGMII data mapping into 64B/66B code word

Fig. 5.19 64B/66B data blocks and control blocks
5.3.4.2 64B/66B Encoding and Scrambling

The XFI PCS maps MAC data on the XGMII into 66-bit code words for 
transmission in the manner shown in Fig. 5.18. The reverse of this mapping is 
performed at the receiver. Two data transfers on the XGMII bus are mapped 
into a single 64-bit block. This block is scrambled with a self-synchronizing 
scrambler implementing the polynomial:

G(x) = x58 + x39 + 1. (5.4)
A two-bit Sync Header (either “10” or “01”) is then added to the block to 

form a 66-bit code word. The code word is transmitted with the Sync Header 
bits transmitted first, followed by data starting with the least significant bit and 
proceeding to the most significant bit. 

The Sync Header is not scrambled and is always “10” or “01,” limiting the 
data run length such that at least one transition occurs every 66 bits. The XFI 
PCS logic at the receiver determines the alignment of the 66-bit block by 
looking for an alignment where the sync header is consistently “10” or “01.” 
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Figure 5.18 illustrates the code words with the most significant bit toward 
the left and the least significant bit toward the right. It is more convenient when 
discussing block encoding to picture the code with the first bit to be transmitted 
on the left and the last bit to be transmitted on the right, as in Fig. 5.19. 

There are two code word formats shown in Fig. 5.19. The first is a data 
block formed from two consecutive transfers of XGMII data. The sync header 
field is “01” for this block format when viewed with the first bit transmitted on 
the left. A sync header field of “10” indicates a control block. A control block 
contains either all control information, or a mix of control information and 
data. The first byte of the control block is the block type field and determines 
the format of the remainder of the block.

Table 5.13 Control block formats

XGMII 
contents Block type Remaining bytes

Idle “1E”h Control characters

Sequence “4B”h Ordered Set mapped from first XGMII transfer followed by 
control bytes

“2D”h Control characters followed by Ordered Set mapped from 
second XGMII transfer

“55”h Two Ordered Sets mapped from consecutive XGMII transfers

Start “78”h First seven bytes of packet data

“33”h Four control characters followed by
first three bytes of packet data

Combined 
sequence / 

start

“66”h Ordered set mapped from first XGMII transfer and first three 
bytes of packet data mapped from second XGMII transfer

Terminate “87”h Control bytes

“99”h Last 1 bytes of packet data followed by control characters

“AA”h Last 2 bytes of packet data followed by control characters

“B4”h Last 3 bytes of packet data followed by control characters

“CC”h Last 4 bytes of packet data followed by control characters

“D2”h Last 5 bytes of packet data followed by control characters

“E1”h Last 6 bytes of packet data followed by control characters

“FF”h Last 7 bytes of packet data



212 High Speed Serdes Devices and Applications

Block types are defined in Table 5.13. Block types are used to denote the 
start and end of packets, and the transmission of ordered sets. Control charac-
ters are 7-bit fields; eight control characters plus the 8-bit block type field can 
be transmitted in a single control block. Ordered sets include a 4-bit O code 
and three data bytes; two ordered sets plus an 8-bit block type field can be 
transmitted in a single control block. The precise bit mapping for control char-
acters, ordered sets, and data into the block formats in Table 5.13 is beyond the 
scope of this text. It should be noted that some of these formats have unused 
bits as the result of how field sizes combine.

The following control bytes are defined for use in control blocks:
• Idle is encoded as the seven bit control character: “0000000.”
• Error is encoded as the seven bit control character: “0011110.”

Various other control character codes are either reserved or illegal. 
5.3.4.3 WAN Interface Sublayer (WIS)

10GBASE-W Wide Area Network (WAN) variants interoperate with other 
network nodes on a SONET/SDH network. The WAN Interface Sublayer 
(WIS) defined in clause 50 maps the Ethernet packets into a SONET SPE, and 
then wraps this data with SONET/SDH overhead bytes. WIS is sandwiched 
between the PCS and PMA sublayers for 10GBASE-W variants. 

The frequency of operation of the PMA sublayer when used with a 
10GBASE-W PMD must match the STS-192 bit rate. Therefore, the following 
bit rates and clock rates apply when WIS is used:
• The PMA sublayer operates at 9.95328 Gbaud for 10GBASE-W variants.
• The clocks for a 16-bit XSBI interface to this PMA sublayer operate at 

622.08 MHz. The clocks for a 32-bit equivalent interface (as used by IBM 
cores) operate at 311.04 MHz.

• The maximum transfer rate on a 16-bit XSBI interface from the PCS sublayer 
into the WIS is 599.04 Mtransfers per second to allow for SONET/SDH 
overhead added by the WIS. The maximum transfer rate on an equivalent 
32-bit interface (as used by IBM cores) is 299.52 Mtransfers per second. 

To properly limit the transfer rate through the PCS layer to the WIS, the 
MAC layer must be provisioned to insert extra idles between frames. WIS 
drops Idle characters to make room for the SONET/SDH overhead bytes.

Figure 5.20 illustrates the SONET/SDH overhead bytes which are 
implemented by WIS.
Section overhead (SOH). Framing pattern A1/A2 bytes and the B1 byte are 
supported. A fixed path trace value is generated and checked for the J0 byte.
Line overhead (LOH). The B2 and M1 (STS-N extension of M0) bytes are 
supported. H1/H2 pointer bytes are set to a constant value corresponding to a 
fixed position of the SPE in the STS-192 frame. K1/K2 are set to fixed values.
Path overhead (POH). The B3 and G1 bytes are supported. J1 and C2 are set 
to fixed values.
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Fig. 5.20 WIS support for SONET/SDH overhead
Overhead bytes not listed above are not supported. They are set to fixed 

values and are not checked.
One last note on the WIS sublayer is in regard to the orientation of most 

significant bit and least significant bits on the interface between this layer and 
other sublayers. Ethernet bits are transmitted least significant bit first, while 
SONET/SDH octets are transmitted most significant bit first. For this reason, 
bit/octet ordering is interposed between the PCS and the PMA sublayers by the 
WIS sublayer. 

5.3.5 Backplane Ethernet
There are three significant features associated with Backplane Ethernet 

which are not used in other Ethernet variants. These features are:
• Training protocol (defined in Clause 72 for 10GBASE-KR) 
• Autonegotiation (defined in Clause 73 for all Backplane Ethernet 

variants)
• Forward error correction (FEC) (defined in Clause 74 for optional use 

with 10GBASE-KR)
5.3.5.1 Training Protocol

The training protocol is included in the IEEE 802.3 clause 72 specification 
for the 10GBASE-KR variant and must be executed upon start-up to initialize 
the PMD for this variant. This protocol continuously exchanges fixed-length 
training frames between the PMD and the link partner. The training frames 
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contain both a pseudorandom training pattern and an FFE coefficient control 
field. During the training process, each PMD monitors the quality of the 
received training pattern and generates FFE coefficient control commands to 
the PMD at the other end of the link. At the same time the PMD monitors 
received FFE coefficient control commands and updates the HSS configura-
tion accordingly. It is important to note that Ethernet assumes full-duplex com-
munication between PMDs, making it possible to perform two-way 
communication to negotiate link parameters.
Training Frames:   

The training frame is a fixed length frame containing the following fields:
• Frame Marker. A four byte unique marker pattern denoting the start of 

the training frame. The marker pattern is “FFFF0000” hexadecimal. This 
marker is transmitted at 10.3125 Gbps.

• Coefficient Update. A 16-bit coefficient update field which allows the 
PMD to request changes to the FFE coefficients being used by the PMD 
at the other end of the link. This 16-bit coefficient field is transmitted 
using Manchester coding at a baud rate which is one-eighth of the normal 
10.3125 Gbps baud rate. Transmission of this 16-bit field is the equivalent 
of transmitting 16 bytes at 10.3125 Gbps. 

• Status Report. A 16-bit status field which indicates whether the PMD has 
finished its training process, as well as the status of any requested FFE 
coefficient updates. This 16-bit coefficient field is transmitted using 
Manchester coding at a baud rate which is one-eighth of the normal 
10.3125 Gbps baud rate. Transmission of this 16-bit field is the equivalent 
of transmitting 16 bytes at 10.3125 Gbps.

• Training Pattern. Pseudorandom data generated with the polynomial:
G(x) = 1 + x9 + x11

This field is 512 bytes in length (4,094 bits PRBS bits followed by two 
zero bits), transmitted at 10.3125 Gbps.

The purpose of using low-speed Manchester encoding for the Coefficient 
Update and Status Report fields is to ensure reliable information is communi-
cated even when the link performance is not optimized. These fields can be 
implemented by transmitting the parallel data byte “00000000” or “11111111” 
to represent a Manchester encoded “0” bit, and transmitting the parallel data 
byte “00001111” or “11110000” to represent a Manchester encoded “1” bit. 
(The byte pattern used to denote a Manchester encoded “0” or “1” is selected 
to ensure that a transition always occurs between bits.) 

The Coefficient Update field contains the following subfields:
• Preset. Forces all FFE coefficients to be set to a state where equalization 

is turned off (i.e., coefficients for the main FFE tap is set to its maximum 
value, and coefficients for precursor and postcursor taps are set to zero). 

• Initialize. Forces FFE to be turned on and coefficients to be set to 
predefined initialization values. 
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• Coefficient (+1) Update. Directs that the postcursor FFE coefficient shall 
be incremented, decremented, or held at current value. .

• Coefficient (0) Update. Directs that the main FFE coefficient shall be 
incremented, decremented, or held at current value.

• Coefficient (-1) Update. Directs that the precursor FFE coefficient shall 
be incremented, decremented, or held at current value. 

Update requests to increment or decrement coefficients should only be sent if 
the received Status Report field corresponding to the coefficient indicates the 
coefficient is in not updated state.

The Status Report field contains the following subfields:
• Receiver Ready. Indicates that reporting node has finished training its 

receiver and is ready to receive data. 
• Coefficient (+1) Status. Reports that the postcursor FFE coefficient is not 

updated, is updated, is at maximum value, or is at minimum value. The 
PMD initially reports all coefficient status as not updated. After receiving 
a Coefficient Update request to update the coefficient, the PMD updates 
the coefficient and then reports either updated, maximum, or minimum 
status. After receiving a Coefficient Update request to hold the previous 
value, the PMD returns status to not updated. 

• Coefficient (0) Status. Reports that the main FFE coefficient is not 
updated, is updated, is at maximum value, or is at minimum value. Status 
transitions are similar to the description for the postcursor FFE 
coefficient.

• Coefficient (–1) Status. Reports that the precursor FFE coefficient is not 
updated, is updated, is at maximum value, or is at minimum value. Status 
transitions are similar to the description for the postcursor FFE 
coefficient.

The coefficient status and coefficient update fields associated with each 
FFE coefficient operate according to a simple two-way handshake as described 
above. Each PMD assesses the quality of the received signal (through analysis 
of the training pattern), and then instructs its partner node to update FFE 
coefficients in an attempt to improve the quality of the signal. 
Training State Machine:   

The training state machine is also defined by clause 72. When a node 
detects a signal on the link, it starts sending training frames and waits for 
reception of valid training frames from its link partner. Once training frames 
are being received, the node allows the receiver equalization to train, and 
determines whether updates are required to the transmitter equalization. FFE 
coefficient updates are requested via command bits in the transmitted training 
frame; the link partner’s acknowledgement of these requests are 
communicated via the status bits in the received training frame. 
Simultaneously, the node monitors command bits in the received training 
frame to determine whether local FFE coefficient updates are being requested 
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by the link partner, and if applicable executes these requests and returns an 
acknowledgement via the transmitted training frame.

It should be noted that clause 72 does not specify the algorithms which 
should be employed to determine optimal equalizer settings. These algorithms 
are left as an exercise to the designer, and some implementations may even 
choose to use preset FFE coefficient values. (Although such implementations 
may not work well in some system configurations.) 

The methods of determining signal quality and criteria for exiting training 
are also not specified by clause 72. These methods and criteria may be based 
on the PRBS pattern in the training frame, or may use other proprietary features 
of the HSS core. 
HSS Features:   

Some HSS cores may implement features which aid in signal quality 
assessment and allow faster updates to FFE coefficient values. Features such as the 
following are helpful to the implementation of the clause 72 Training Protocol:
• FFE coefficient negotiation requires assessment of the eye quality of the 

signal being received by the receive PMD layer. This signal quality is not 
directly observable by measurements at higher sublayers. The HSS EX10 
digital eye feature assesses eye quality and provides training state 
machines with quick access to these measurements. This is useful for 
implementing the training protocol. 

• FFE coefficient updates by a partner link during the training process 
should be made in a timely manner. HSS core features to quickly reset, 
load, increment, or decrement FFE coefficients speed up training. 

5.3.5.2 Autonegotiation
The autonegotiation protocol is defined in IEEE 802.3 clause 73. 

Backplane Ethernet PHYs are required to implement the autonegotiation 
protocol, however, use of the protocol is under the control of the management 
interface and is optional. The protocol allows a device to advertise the modes 
of operation it supports to another device at the remote end of a backplane 
Ethernet link, and to detect the corresponding operational modes being adver-
tised by the other device. The objective is to allow the devices to agree to a 
configuration that maximizes the performance of the link. The protocol addi-
tionally ensures that the PHY device is attached to its link partner at the remote 
end of the link, and is not responding to a crosstalk signal.

Autonegotiation is performed using low-speed Manchester encoding of the 
information to be exchanged. Clause 73 describes a number of Differential 
Manchester Encoding (DME) pages which are exchanged by the protocol. 
Autonegotiation supports the following partial list of functions:
• Advertise which backplane Ethernet variants are supported and negotiate 

which variant should be selected.
• Advertise whether the interface supports FEC and negotiate whether to 

enable FEC.
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• Communicate additional message information.
Clause 73 defines the DME page formats, management interface variables, 

and autonegotiation state machines that must be implemented by all Backplane 
Ethernet nodes.
5.3.5.3 Forward Error Correction (FEC)

The FEC sublayer is defined as being inserted between the PCS and PMA 
sublayers. However, it should be noted that some efficiency is gained by 
combining the PCS sublayer and FEC sublayer implementations. The FEC 
sublayer at the transmitter performs the following functions:
• The 66-bit code words generated by the PCS layer are unscrambled.
• Every 32 consecutive 66-bit code words are mapped into a FEC frame 

with the format shown in Fig. 5.21. Each 66-bit code word is mapped into 
a 65-bit word position in the FEC frame. This is performed by converting 
the two-bit Sync Header into a one-bit Transcoding bit.

• Parity bits are generated and appended to the FEC Frame.
• The resulting 2112 bit FEC Frame is scrambled and output to the PMA 

sublayer.
The FEC sublayer at the receiver performs the following functions:
• The 2112 bit FEC Frame is received from the PMA sublayer and 

unscrambled.
• The parity bits are generated and compared to the received parity bits. If a 

mismatch occurs, bit errors are corrected if possible.
• The 65-bit word positions in the FEC frame are encoded into 66-bit code 

words, scrambled, and output to the PCS sublayer.
Obviously, the cascaded scrambling/unscrambling logic in the PCS 

sublayer and FEC sublayer can be eliminated if the sublayers are combined. 
Some additional efficiency may also be gained in the conversion between Sync 
Header bits and Transcoding bits.

The FEC used to calculate parity bits is based on a (2112,2080) code which 
is constructed by shortening the cycle code (42987,42955). This code is calcu-
lated using the generator polynomial:

g(x) = x32 + x23 + x21 + x11 + x2 + 1. (5.5)
Given a polynomial representation of the information bits m(x), the code 

word c(x) is calculated as follows:
p(x) = x32 m(x) mod g(x), (5.6)

c(x) = p(x) + x32 m(x). (5.7)
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Fig. 5.21 Clause 74 FEC frame

5.3.6 PMD Sublayers for Electrical Variants
The IEEE 802.3 documents defines several PMD sublayer variants for 

10-Gb Ethernet. Of these, many are optical interfaces which are not relevant to 
this text. This section summarizes the electrical variants which include 
10GBASE-CX4, and Backplane Ethernet variants 10GBASE-KX4 and 
10GBASE-KR. Also included in this section is the electrical definition of 
XAUI in clause 47.

The 10GBASE-CX4 specifies a normative cable assembly as the channel 
for this variant. Normative electrical parameters have been defined for both the 
transmitter and the receiver, however, jitter tolerance of the receiver is 
implicitly specified based on the transmitter jitter and normative channel 
(cable) characteristics. 

Other electrical variants covered in this section provide normative 
specifications for the transmitter and receiver. An informative specification for 
Backplane Ethernet channels is provided in Annex 69B. 

Transmitter electrical parameters are defined in Table 5.14. XAUI uses a 
traditional eye mask for describing limits for signal amplitude and total jitter. 
PMD clauses for other variants specify a time domain waveform template; the 
transmitter output waveform must fit within this template. The waveform 
template for 10GBASE-KR is parameterized based on FFE coefficient 
settings, which affect the shape of the transmit waveform.

Receiver electrical parameters are defined in Table 5.15. XAUI specifies 
that the receiver must tolerate 0.65 UIpp of jitter at its input, although no spec-
ification is provided for the type of jitter. 10GBASE-CX4 jitter tolerance is 
implied as discussed previously. The Backplane Ethernet variants use the 
Interference Tolerance Test defined in Annex 69.A to verify receiver jitter 
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tolerance. The description of this test is beyond the scope of this text. Some of 
the jitter parameters used to perform this test are listed in Table 5.15 for the 
applicable variants.

Minimum signal amplitude at the receiver is not specified for any of the 
variants. A maximum amplitude is specified, although the actual amplitude 
may exceed this in a real system with an imperfect termination impedance. The 
minimum amplitude is implied by the BER specification; the signal amplitude 
must be sufficient for the receiver to receive the data and meet the specified 
BER.

Table 5.14 Ethernet PMD transmitter electrical parameters

10GBASE-CX4 
(Clause 54)

XAUI 
(Clause 47)

10GBASE-KX4
(Clause 71)

10GBASE-KR
(Clause 72)

Number of 
lanes and baud 

rate

4 lanes x 
3.125 Gbps
± 100 ppm

4 lanes x 
3.125 Gbps 
± 100 ppm

4 lanes x 
3.125 Gbps 
± 100 ppm

1 lane x 10.3125 
Gbps ± 100 ppm

Transmitter 
waveform

Time domain 
waveform

Eye Mask Time domain 
waveform

Time domain 
waveform as a 

function of FFE

Output 
differential 

voltage

800–1,200 
mVppd

800–1,600 
mVppd

800–1,200 
mVppd

1,200 mVppd 
max

Common mode 
voltage

(AC coupled)

–0.4 to 1.9 V –0.4 to 2.3 V –0.4 to 1.9 V 0–1.9 V

Rise/fall time 60–130 ps 60–130 ps 24–47 ps

Random jitter 
(RJ)

0.27 UIpp 0.27 UIpp 0.15 UIpp

Deterministic 
jitter (DJ)

0.17 UIpp Near end: 
± 0.085 UI

Far end: 
± 0.185 UI

0.17 UIpp 0.15 UIpp

Duty cycle 
distortion 

(DCD)

0.035 UIpp

Total jitter (TJ) 0.35 UIpp Near end: 
± 0.175 UI

Far end: 
± 0.275 UI

0.35 UIpp 0.28 UIpp
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5.4 Fibre Channel (FC) Storage Area Networks
The Technical Committee T11 (formerly X3T9.3) of the International 

Committee for Information Technology Standards (INCITS) began work on 
the Fibre Channel standard for Storage Area Networks (SANs) in 1988. 
INCITS coordinates with the American National Standards Institute (ANSI), 
and the initial versions of the Fibre Channel standard were approved by ANSI 
in 1994.

Hardware was deployed on a wide scale in 1998 for the 1.0625-Gbps serial 
baud rate in the initial Fibre Channel standard. Since then, additional serial 
variants have been added for 2.125 and 4.25 Gbps, and T11 is developing an 
8.50-Gbps serial variant as of this writing. Variants have also been defined for 
10.5-Gbps serial and an equivalent throughput variant implemented with four 
lanes by 3.1875-Gbps, however, these variants are less popular.

5.4.1 Storage Area Networks 
Storage Area Networks (SANs) connect servers on the Internet Protocol 

(IP) network to storage devices. The SAN network can be configured in any 
number of ways. Fibre Channel supports two devices communicating directly 
across a point-to-point link. Some simple examples of more interesting config-
urations are shown in Fig. 5.22, including a simple fabric topology where 
various servers on the IP Network connect to a Fibre Channel Switch. Any 
number of Tape, Disk, or Redundant Arrays of Independent Disk (RAID) 

Table 5.15 Ethernet PMD receiver electrical parameters

10GBASE-CX4 
(Clause 54)

XAUI 
(Clause 47)

10GBASE-KX4
(Clause 71)

10GBASE-KR
(Clause 72)

Number of 
lanes and baud 

rate

4 lanes x 
3.125 Gbps
± 100 ppm

4 lanes x 
3.125 Gbps 
± 100 ppm

4 lanes x 
3.125 Gbps 
± 100 ppm

1 lane x 10.3125 
Gbps ± 100 ppm

Receiver jitter 
tolerance

(all units UIpp)

Implied 0.65 UIpp Interference 
tolerance test 

with:
SJ = 0.17
RJ = 0.18

Interference 
tolerance test 

with:
SJ = 0.115
RJ = 0.130

DCD = 0.035

Input 
differential 

voltage

1,200 mVppd 
max

1,600 mVppd 
max

1,600 mVppd 
max

1,200 mVppd 
max

Bit error rate 10–12 10–12 10–12 10–12

Receiver 
coupling

AC AC AC AC
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systems are connected to the Fibre Channel switch, allowing the server to 
access storage without impacting traffic on the IP Network. 

The SAN application virtualizes the storage connected to the fabric, in 
effect converting storage into one big disk. Files can be directed to any physical 
storage device based on available capacity, and mirroring of data can be em-
ployed for redundancy. Disk to Tape backup can be performed across the SAN 
without impacting traffic on the IP Network. 

The SAN fabric configuration in Fig. 5.22 is limited by the number of ports 
available on the Fibre Channel Switch. A more complex SAN fabric may 
include multiple switches, thereby providing scalability to support any number 
of attached servers and devices. Also, Fibre Channel supports physical variants 
that can operate over optical links up to 100 km long. Therefore, the Fibre 
Channel switches can be physically distributed. This provides support for 
applications requiring remote mirroring of data at multiple sites, and backup to 
remote facilities (providing better disaster recovery). 

Figure 5.22 also illustrates an arbitrated loop topology. Fibre Channel 
allows up to 127 devices to be connected in a loop without requiring a Fibre 
Channel switch. Devices arbitrate and gain control of the loop, and then com-
municate as if the link were point-to-point. This is not a token passing network; 
only one pair of devices can engage in the active exchange of frames at any 
given time. The bandwidth of the loop is shared among all devices on the loop. 
The arbitration methods for arbitrated loops are not addressed in this text; the 
reader is referred to the appropriate references for more information. 

Fig. 5.22 Storage area network (SAN) configurations
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5.4.2 Fibre Channel Protocol Layers
Fibre Channel defines the following levels of the Fibre Channel architec-

ture and standards, and specifies these levels in various documents:
FC-0 Level. 

This level defines the transmission media, transmitters, and receivers and 
their interfaces. Various “Fibre Channel – Physical Interfaces” documents, 
designated FC-PI-x, specify this level.
FC-1 Level. 

This level defines serial encoding, decoding, and error control functions of 
the transmission protocol. The “Fibre Channel – Framing and Signaling–2” 
document, designated FC-FS-2, specify this level.
FC-2 Level. 

This level defines the rules and mechanisms needed to transfer blocks of 
data between two devices. FC-FS-2 also defines this level.
FC-3 Level. 

This level defines a set of services that are common across multiple ports 
of a node. FC-FS-2 partially defines this level. The “Fibre Channel – Link 
Services” document, designated FC-LS, specifies extended link services.
FC-4 Level. 

This level defines mapping between lower levels of the Fibre Channel 
standards and Upper Level Protocols. Fibre Channel does not specify this level. 

5.4.3 Framing and Signaling
The Fibre Channel framing and signaling layer are specified in “Fibre Channel 

–Framing and Signaling – 2” document, commonly referred to as “FC-FS-2.” This 
document supersedes prior specifications of the FC-FS layer, and extends frame 
formats to add new features while maintaining backward compatibility. (Future 
FC-FS-x versions may supersede this document.) This section summarizes the 
framing and signaling features which are of some relevance to HSS.
5.4.3.1 Frame Format

Fibre Channel traffic is organized into 32-bit words of control and data 
information, which is subsequently 8B/10B encoded and transmitted across the 
physical interface. Although individual fields and payload data may be defined 
in terms of bytes, the organization into 32-bit words is applied throughout the 
FC-FS-2 document, and streamlines the implementation by consistently using 
a 32-bit parallel datapath. 

Payload data is organized into frames as shown in Fig. 5.23, delineated by a 
Start of Frame (SOF) and End of Frame (EOF) delimiter. The SOF and EOF 
delimiters, as well as the Idles and other control information between frames, are 
examples of Ordered Sets. An ordered set is a 32-bit control word consisting of one 
8B/10B control symbol, followed by three 8B/10B data symbols. There are 
multiple ordered sets defined for coding of SOF and EOF delimiters. Different 
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SOF codings are used to request and initiate a connection between two devices for 
a given service class, and to transmit payload data for the resulting connection. 
Different EOF codings are used by the sending device to indicate whether the 
frame payload data as sent is valid, corrupted, or truncated. The definition of the 
coding of the SOF and EOF ordered sets is beyond the scope of this text.

Fig. 5.23 Fibre channel frame

Fig. 5.24 Fibre channel header
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D_ID: Destination Address Identifier
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CS_CTL: Class Specific Control / Priority
TYPE: Data Structure Type
F_CTL: Frame Control
DF_CTL: Data Field Control
SEQ_ID: Sequence Identifier
SEQ_CNT: Sequence Count
OX_ID: Originator Exchange Identifier
RX_ID: Recipient Exchange Identifier
Parameter: Definition depends on TYPE.
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IDLE ordered sets, and ordered sets denoting other control information, are 
sent between frames. The receiver can use these ordered sets in conjunction 
with the RXxDATASYNC feature on the HSS receiver to align the received 
data to a 32-bit word boundary in order to simplify downstream processing. 
Note that with the exception of the four lane variant of 10GFC (which will be 
discussed separately), Fibre Channel variants are serial data streams and links 
do not need to be deskewed relative to other links.

The frame content between the SOF and EOF delimiters includes the 
following fields:
Extended header. 

FC-2 frames contain an optional header extension of variable length. 
Definition of the content of this field is beyond the scope of this text.
Frame header. 

This is a field consisting of six words (24 bytes) which uniquely identify 
the frame sequence and routing. This field is discussed further below.
Data field. 

Payload data consisting of 0–2112 bytes. The number of data bytes must be 
divisible by four (i.e. an integral number of 32-bit words). 
Cyclic redundancy check (CRC). 

Frame check remainder of a CRC calculation performed using the 
polynomial described in Sect. 4.2.3.3. 

The Frame Header field consists of six words as shown in Fig. 5.24. General 
descriptions of fields in this header which are relevant to this text follow:
Destination Address Identifier (D_ID). 

This field identifies the node(s) on the fabric which are the intended 
recipients of the frame. Each device on the fabric has a unique 24-bit address, 
and may also be assigned one or more alias IDs. This address is not fixed (as 
in the case of Ethernet MAC addresses); it is assigned dynamically by the 
fabric when the node initially connects (or “logs in”) to the fabric.
Source Address Identifier (S_ID). 

This field identifies the node on the fabric which originated the frame.
Sequence ID (SEQ_ID). 

When a sequence is initiated for transmission between a pair of nodes on 
the fabric (identified by D_ID and S_ID), a sequence ID is assigned to this 
connection. All frames associated with this sequence are identified the 
sequence ID transmitted in the SEQ_ID field.
Sequence Count (SEQ_CNT). 

For a given open sequence associated with a specific sequence ID, each 
frame transmitted for this sequence is assigned a two-byte sequence count 
value. This value is incremented for each frame transmitted. This allows the 
recipient to verify that all frames have been received, and the order of these 
frames.
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Other fields serve various control functions. The Routing Control (R_CTL) 
identifies the type of routing service (basic or extended link services, device 
data, link control, video, etc.), and information type (solicited/unsolicited 
control/data). The CS_CTL field either specifies additional class specific 
control information, or a priority level, depending on the F_CTL field. The 
Data Structure Type (TYPE) field provides additional information specific to 
the routing service defined by R_CTL. The Frame Control (F_CTL) field 
provides various sequence control and status flags. The Data Field Control 
(DF_CTL) flags the presence of additional optional headers in the payload 
data. The Originator Exchange ID (OX_ID) and Recipient Exchange ID 
(RX_ID) identify exchange IDs assigned for exchanges of sequences. The 
definition of the PARAMETER field depends on the frame type. Detailed 
definitions of these fields are beyond the scope of this text. The reader is 
referred to the FC-FS-2 document for further information on these fields.
5.4.3.2 8B/10B Encoding and Scrambling

Figure 5.25 and 5.26 illustrate block diagrams of the datapath of the transmitter 
and receiver, respectively. These block diagrams show the relationship between 
the 8B/10B encoder/decoder, CRC generation/checking, and scrambling/descram-
bling functions. Scrambling is only relevant to 8GFC serial variants; lower baud 
rate serial variants are not scrambled. (The 10GFC variant is discussed later.)

Data words in the transmit datapath of the link layer shown in Fig. 5.25 are 
applied to the CRC generator, and the remainder is multiplexed onto the datapath 
at the end of the frame. Data is scrambled (for 8GFC only), and then multiplexed 
with Ordered Set primitives that are transmitted between frames or as SOF/EOF 
delimiters. Note that primitives are not scrambled and are not part of the CRC 
calculation. The physical layer 8B/10B encodes the data, and then uses an HSS 
core to transmit the data serially. Ordered Sets are aligned on word boundaries and 
defined such that only the first byte can be a Kxx.y control symbol (denoted prior 
to encoding in the figure by the Z bit) in the 8B/10B code. 

Bytes (or the corresponding 8B/10B symbols) of each word are transmitted 
in the order of left to right. Symbols of the 8B/10B code are specified as 10-bit 
encoded values with bits labeled a through j. Bits within each symbol are 
transmitted serially in order starting with bit a and ending with bit j. 

The physical layer of the receive datapath shown in Fig. 5.26 deserializes 
the data and decodes the 8B/10B symbols. Primitives are processed directly in 
the link layer. Data is descrambled (for 8GFC only) and propagated to down-
stream logic. CRC is calculated for the unscrambled data and the result is 
compared to the transmitted value. 

The CRC Generator polynomial used by Fibre Channel is the same as was 
defined in Sect. 4.2.3.3. The CRC calculation is performed in a manner that is 
equivalent to a serial CRC calculation using the following byte/bit order: The 
byte order is the same as the order in which bytes (or corresponding symbols) 
are transmitted. The bit order within each byte is least significant bit through 
most significant bit. The CRC remainder is calculated across all words of the 
frame between the Start Of Frame (SOF) delimiter and the CRC field.
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Fig. 5.25 Transmitter datapath block diagram

Fig. 5.26 Receiver datapath block diagram
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The motivation for scrambling 8GFC serial variants is to avoid CDR 
biasing issues impacting the link jitter budget, as was discussed in Chap. 1. The 
8GFC serial variants use a self-synchronizing scrambler with the following 
polynomial: 

G(x) = x58 + x39 + 1. (5.8)
The scrambler (and descrambler) are reset at the start of every frame to 

avoid any error propagation from one frame to the next. (Otherwise a received 
bit error at the end of one frame could corrupt the next frame as well.) By using 
a self-synchronizing scrambler, any variation in the content of the frame causes 
subsequent bytes to be scrambled differently. The SEQ_CNT field of the 
header is always guaranteed to change from frame to frame, even for a frame 
retransmission, and therefore the retransmitted frame is scrambled differently 
each time.

Note that the bit order for scrambling is not the same as the bit order defined 
for CRC calculation. Scrambling is performed equivalent to serially scram-
bling a bit stream consisting of each 32-bit word in the bit order of most sig-
nificant bit to least significant bit. This convention simplifies implementation 
assuming a 32-bit datapath.
5.4.3.3 Speed Negotiation 

One of the most common parameters that is negotiated by many protocols 
is the baud rate of the interface. The Fibre Channel standard, as an example, 
specifies a speed negotiation algorithm in the FC-FS-2 document which is 
designed to allow hardware to interoperate with legacy hardware supporting 
lower Fibre Channel speeds. It is important to note that Fibre Channel assumes 
full-duplex communication between PMDs, making it possible to perform 
two-way communication to negotiate link parameters. The following steps 
summarize operation of the Fibre Channel speed negotiation algorithm:
1. The port initially cycles through supported transmit speeds and 

transmits a specified data pattern until a response is received. Once 
a response (any response) is received, the port transitions to the 
next step.

2. The port starts negotiation by setting both the Serdes transmitter and 
receiver to the maximum speed supported by the port.

3. In this step the port performs a “master” role in the negotiation, poten-
tially trying different transmit baud rates. This step exits when either it 
becomes obvious that the other port has assumed a “follow” role in the 
negotiation (indicating the other port is happy with the current transmit 
baud rate on this port), or the other port is performing a “master” roll at 
the same baud rate as this port (in which case this port relinquishes the 
“master” roll to the other port). This step proceeds as follows:
(a) The port transmits a specified data pattern at the current transmit baud 

rate, and compares received data to the specified data pattern at the 
current receive baud rate. If no errors are detected, then the port 
proceeds to step 4. 



228 High Speed Serdes Devices and Applications

(b) If errors are detected then the port tries other receive baud rates look-
ing for one where the data pattern is received correctly. If there is a 
baud rate when the data pattern is received correctly, then the port 
proceeds to step 4. 

(c) If no receive baud rates result in a correct data pattern, the port tries a 
lower baud rate for the transmitter and repeats the process.

4. In this step the port performs a “follow” role in the negotiation, and con-
tinues this role until negotiation completes. This proceeds as follows:
(a) The port sets the transmit baud rate to match the receive baud rate.
(b) The port continues to transmit the specified data pattern, comparing 

received data to the expected data. If the other port is still assuming a 
“master” role and changes its transmit speed, then the received data 
miscompares. In this case the port tries another baud rate for the 
receiver, sets the transmitter baud rate to match, and repeats this step.

(c) If the port successfully compares the received data to the specified 
data pattern, the negotiation is complete.

The above negotiation also uses a watchdog timer and, optionally, monitors 
the RXxSIGDET signal for a Loss of Signal condition. In the event the 
watchdog timer expires, the negotiation process restarts at step 1. Loss of 
Signal causes the process to return to step 3.

The Fibre Channel speed negotiation sequence is generally implemented by 
a hardware state machine. The time spent monitoring the received data, and 
transitioning between steps, is constrained with minimum and maximum wait 
time specifications intended to ensure the follower port can try up to four 
receive baud rates before the master attempts to change the transmit baud rate. 

To support this sequence, the HSS core must support changes of the baud 
rate between the speeds supported by Fibre Channel without requiring 
complete reinitialization of the core, or generating substantially periods where 
the receiver will detect a Loss of Signal. The HSS core must also support the 
transmitter and receiver baud rates being set independently. The transition 
between baud rates should not cause the HSS core to generate glitches on the 
TXxDCLK or RXxDCLK outputs. Such glitches could result in erroneous 
operation of logic being clocked by these clocks. 

Currently defined Fibre Channel serial variant baud rates are 8.5 Gbps, 
4.25 Gbps, 2.125 Gbps, and 1.0625 Gbps. Fibre Channel hardware is generally 
designed to support the latest baud rate and at least the next lower baud rate. 
The HSS EX10 core supports Fibre Channel baud rates by configuring the core 
to support the 8.5-Gbps baud rate, and using the rate select feature to select 
“Half-,” “Quarter-,” or “Eighth” rate modes to support legacy baud rates. 
Switching the selected rate does not require substantial reinitialization of the 
core, and if the proper sequence is executed this change of selection does not 
causes glitches on the parallel data clocks. Specific sequences to support this 
are described in Sect. 2.5.
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Fig. 5.27 Fibre channel interoperability points example

5.4.4 Physical Interfaces
The Fibre Channel physical interfaces layer variants are specified in “Fibre 

Channel – Physical Interfaces – 2” document, commonly referred to as “FC-
PI-2.” At the time of this writing, drafts exist for FC-PI-3 and FC-PI-4, which 
will eventually specify additional physical interfaces for 10GFC and 8GFC.

This section describes the compliance points for Fibre Channel physical inter-
faces. Fibre Channel uses the terminology “Interoperability Points” to refer to com-
pliance points. This section also summarizes electrical specifications at the 
Interoperability Points for Fibre Channel physical variants. Optical interface spec-
ifications are important to Fibre Channel, but are beyond the scope of this text. 
5.4.4.1 Interoperability Points

Fibre Channel defines electrical interoperability points at input/output pins 
of the chip, card connector, and internal PMD connector. Also, and possibily 
most important, the interoperability points defined at the input and output of 
the enclosure. Note, however, that these latter points may be electrical but are 
more often optical. The interoperability points defined by the FC-PI-x 
documents are as follows:
Alpha T ( T ) and Alpha R ( R ). 

Interoperability points at the chip output pins of the transmitter and the chip 
input pins of the receiver for a Fibre Channel device or retiming element. This 
is an electrical interoperability point.
Beta T ( T ) and Beta R ( R ). 

Interoperability points at the internal connector nearest to the alpha point. 
This may be a card backplane connector in systems where Fibre Channel 
traffic is carried across the backplane. In the event that the internal connector 
nearest to the alpha point meets the definition of a delta or gamma point, then 

FC
Link

FC
Link

T R

T R

T R

T R

FC
Link

FC
Link

T R

T R

T R

T R

PMD

T R

T R T R

EL
EC

TR
IC

A
L

C
O

M
PO

N
EN

TS

ENCLOSURE

ELECTRICAL
COMPONENTS



230 High Speed Serdes Devices and Applications

the connector is a delta or gamma point and there is no beta point on the link. 
This is an electrical interoperability point.
Delta T ( T ) and Delta R ( R ). 

Interoperability points at the internal connector of a removable Physical 
Medium Device (PMD). This is an electrical interoperability point.
Gamma T ( T ) and Gamma R ( R ). 

Interoperability points at the external enclosure connector. This is usually 
an optical interoperability point. This is an electrical interoperability point for 
variants which transport Fibre Channel across an electrical cable. 
Epsilon T( T ) and Epsilon R ( R ). 

Equivalent of T and R interoperability points for physical interface 
variants that assume an equalizer in the receiver.

Some examples of Fibre Channel connections and the associated interoper-
ability points are shown in Fig. 5.27. This figure contains two cards plugged 
into a backplane which each have two Fibre Channel Tx/Rx links on them. The 
chip input/output pins are defined as T and R interoperability points and the 
connector pins nearest to these points are defined as the T and R interopera-
bility points. The example illustrates cases where the T and R interoperability 
points are connected together across the backplane. This allows FC devices on 
separate cards within the same enclosure to communicate without requiring an 
intervening optical or electrical PMD. 

The example in the figure also illustrates a removable PMD element with 
T and R interoperability points at the internal connector within the enclosure, 

and T and R interoperability points at the external connector. The specifica-
tion allows for the possibility that unspecified active components may be 
required to convert between the electrical signals associated with the T and R 
points, and the electrical signals associated with T and R points.

The example also illustrates the case of T and R interoperability points 
interfacing directly to unspecified active components which provide T and R 
interoperability points at the external connector. This case, for example, may 
be represented by a PMD element which is not removable. In such cases, the 
FC-PI-x documents do not specify the function of the active components or the 
internal interface to those components. 
5.4.4.2 Nomenclature and Types of Physical Interface Variants

Fibre Channel uses the following nomenclature to denote physical interface 
variants:

NNN-AA-BB-C, 
Where the NNN field designates the speed of the interface. Serial variants 

of Fibre Channel support 100, 200, 400 MBytes per second as defined in 
FC-PI-2, and FC-PI-4 additionally defines an 800 MBytes per second variant. 
These speeds correspond to baud rates of 1.0625, 2.125, 4.25, and 8.50 Gbps, 
respectively.
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Table 5.16 Optical physical interface variants

Variant Specification Baud rate
(Gbps)

Laser
(nm) Receiver Max. 

Range Fiber type

100-SM-LL-V FC-PI-2 1.0625 1,550 Limiting 50km Single mode

100-SM-LC-L FC-PI-2 1.0625 1,300 Limiting 10km Single mode

100-M5-SN-I FC-PI-2 1.0625 850 Limiting 500m 50 µm OM2 MM

100-M5E-SN-I FC-PI-4 1.0625 780/850 Limiting 860m 50 µm OM3 MM

100-M6-SN-I FC-PI-2 1.0625 780/850 Limiting 300m 62.5 µm OM1 MM

200-SM-LL-V FC-PI-2 2.125 1,550 Limiting 50km Single mode

200-SM-LC-L FC-PI-2 2.125 1,300 Limiting 10km Single mode

200-M5-SN-I FC-PI-2 2.125 850 Limiting 300m 50 µm OM2 MM

200-M5E-SN-I FC-PI-4 2.125 850 Limiting 500m 50 µm OM3 MM

200-M6-SN-I FC-PI-2 2.125 850 Limiting 150m 62.5 µm OM1 MM

400-SM-LC-L FC-PI-2 4.25 1,300 Limiting 10km Single mode

400-SM-LC-M FC-PI-2 4.25 1,300 Limiting 4km Single mode

400-M5-SN-I FC-PI-2 4.25 850 Limiting 150m 50 µm OM2 MM

400-M5E-SN-I FC-PI-4 4.25 850 Limiting 380m 50 µm OM3 MM

400-M6-SN-I FC-PI-2 4.25 850 Limiting 70m 62.5 µm OM1 MM

800-SM-LC-L FC-PI-4 8.50 1,300 Limiting 10km Single mode

800-SM-LC-I FC-PI-4 8.50 1,300 Limiting 1.4km Single mode

800-M5-SA-I FC-PI-4 8.50 850 Linear 100m 50 µm OM2 MM

800-M5-SN-S FC-PI-4 8.50 850 Limiting 50m 50 µm OM2 MM

800-M5E-SA-I FC-PI-4 8.50 850 Linear 300m 50 µm OM3 MM

800-M5E-SN-I FC-PI-4 8.50 850 Limiting 150m 50 µm OM3 MM

800-M6-SA-S FC-PI-4 8.50 850 Linear 40m 62.5 µm ΟΜ1 ΜΜ

800-M6-SN-S FC-PI-4 8.50 850 Limiting 21m 62.5 µm OM1 MM
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The AA field designates the type of media. Options include single mode 
optical fiber, various multimode optical fiber types, unbalanced (single-ended) 
electrical links, or balanced (differential) electrical links. Optical fiber media 
connect between T and R interoperability points; electrical links may 
interconnect between any interoperability points.

The BB field designates the type of transmitter and receiver device used on 
the link. The following transmitter devices are supported: 1,300 nm/1,550 nm 
long-wave laser devices, 1,300-nm long wave cost reduced laser devices, and 
850-nm short wave laser devices. At baud rates of up to 4.25 Gbps, a limiter 
stage has typically been included in the optical receiver device. FC-PI-4 
includes 8.50-Gbps variants for receivers containing a limiter stage, and also 
includes variants which use a linear optical receiver. An additional variant is 
defined in FC-PI-4 for an equalized electrical receiver.

The C field designates the distance range of the link. Maximum distances 
of 70 m, 2 km, 4 km, 10 km, and 50 km are defined.

Not all combinations of these designators are valid. Physical layer optical 
variants which have been defined (excluding 10GFC variants) are listed in 
Table 5.16. Although these are of interest to Fibre Channel users and develop-
ers, optical variants are not relevant to electrical HSS cores and these specifi-
cations are not summarized in this text.

Electrical physical interface variants defined in FC-PI-2, as well as variants 
which are defined in FC-PI-4, are listed in Table 5.17. All of these variants are 
defined as AC Coupled. 

For 1GFC and 2GFC, electrical variants are defined which support both 
single-ended and differential interfaces, either within the enclosure or across 
an electrical cable between enclosures. Specifications are defined for these 
variants at T, R, T, R, T, and R interoperability points. Specifications for 

T and R interoperability points are application dependent.

Table 5.17 Electrical physical interface variants

Variant Specification Baud rate Receiver Signal type

100-SE-EL-S FC-PI-2 1.0625Gbps No equalization Single-ended

100-DF-EL-S FC-PI-2 1.0625Gbps No equalization Differential

200-SE-EL-S FC-PI-2 2.125Gbps No equalization Single-ended

200-DF-EL-S FC-PI-2 2.125Gbps No equalization Differential

400-DF-EL-S FC-PI-2 4.25Gbps No equalization Differential

800-DF-EL-S FC-PI-4 8.50Gbps No equalization Differential

800-DF-EA-S FC-PI-4 8.50Gbps DFE Differential
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At baud rates of 4.25 Gbps and above, electrical signaling using single-
ended signals is not practical, nor is it practical to transmit electrical signals at 
these frequencies between enclosures. Therefore, only differential variants are 
defined for 4GFC and 8GFC, and only intraenclosure interoperability points 
are specified. Specifications are defined for these variants at T and R 
interoperability points only. 

For 8GFC, variants are specified for receivers that have no equalization and 
for receivers that include a DFE. The 800-DF-EL-S (which assumes no 
equalization in the receiver) is used for relatively short electrical links within 
the enclosure, including links between FC devices and PMD devices, which 
implement optical variants that include a limiter in the optical receiver. The T, 

R, T, and R interoperability points apply to such interfaces.
The 800-DF-EA-S variant (which assumes a DFE circuit in the receiver) is 

used for longer electrical links within the enclosure, and for any ingress link 
from a PMD device which implements an optical variant that does not include 
a limiter in the optical receiver. This variant additionally defines T and R 
interoperability points. Note that it is assumed that T is equivalent to T, 
however, there are differences in the specification for R and R.
5.4.4.3 Specifications for Electrical Parameters

Transmitter electrical parameters for electrical variants defined in FC-PI-4 
are summarized in Table 5.18. Jitter specifications for T, T, and T points are 
compliance measurements at the transmitter output with the transmitter con-
nected directly to a termination. Jitter specifications for R, R, and R points 
are also compliance measurements for the transmitter output. These specifica-
tions are tested by connecting the transmitter to a reference channel as speci-
fied in FC-PI-4, and measuring the signal characteristics at the far end of the 
channel. 

Electrical receiver devices for electrical variants defined in FC-PI-4 must 
receive a signal with a BER of 10− 12 or better when the signal has the ampli-
tude and jitter characteristics which are summarized in Table 5.19. The jitter 
waveform is generated by combining a Deterministic Jitter (DJ) component 
with a Sinusoidal Jitter (SJ) component. The amount of DJ is equivalent to the 
maximum DJ allowed at the transmitter output. The resulting signal should be 
constrained within the specified eye mask; these horizontal limits are specified 
by the Total Jitter (TJ) component. 
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Table 5.18 Fiber channel transmitter electrical parameters (FC-PI-4)

100-DF-EL-S 200-DF-EL-S 400-DF-EL-S 800-DF-EL-S 800-DF-EA-S

Baud rate 1.0625 Gbps ± 
100 ppm

2.125 Gbps ± 
100 ppm

4.25 Gbps 
± 100 ppm

8.50 Gbps 
± 100 ppm

8.50 Gbps 
± 100 ppm

Type Differential Differential Differential Differential Differential

Transmitter 
waveform

Eye mask Eye mask Eye mask Eye mask Statistical 
Analysis

Output signal 
voltage measured 

at transmittera

T: 600−2,000
T: 650−2,000

T: 1,100−
2,000

T: 600−2,000
T: 650−2,000

T: 1,100−
2,000

T: 310−1,600
T: 310−1,600
T: 650−1,600

T: 180−700 T:665−1,200
T: 535−1,200

T: 180−700

Output signal 
voltage 

measured 
through a 

reference load
(mVppd)

Not applicable Not applicable T: 276−1,600
T: 276−1,600
T: 600−1,600

Not applicable Not applicable

Rise/fall time 100−385 75−192 ps Not specified Not specified Not specified

Deterministic 
jitter (DJ)

(Interenclosure, 
Units: UIpp)

T: 0.12
T: 0.13
R: 0.35
R: 0.36

T: 0.14
T: 0.16
R: 0.37
R: 0.39

T: 0.14
T: 0.37
R: 0.37
R: 0.39

T: 0.17
R: 0.42

T: 0.17

Deterministic 
jitter (DJ)

(Intraenclosure, 
Units: UIpp)

T: 0.11
R: 0.37

T: 0.20
R: 0.33

T: 0.33
R: 0.33

Not applicable See note (b)

Total jitter (TJ)
(Interenclosure, 

Units: UIpp)

T: 0.25
T: 0.27
R: 0.54
R: 0.56

T: 0.26
T: 0.30
R: 0.57
R: 0.59

T: 0.26
T: 0.57
R: 0.57
R: 0.59

T: 0.31
R: 0.71

T: 0.31

Total jitter (TJ)
(Intraenclosure, 

Units: UIpp)

T: 0.23
R: 0.58

T: 0.33
R: 0.52

T: 0.52
R: 0.52

Not applicable See note (b)

 (a)Units: mVpp for single-ended variants, mVppd for differential variants.
(b)Values of DDJ, BUJ, and RJ are specified for the βT, εT, εR, and βR points and are used in 
statistical signal integrity analysis to determine compliance.
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Table 5.19 Fibre channel receiver electrical parameters (FC-PI-4)

100-DF-EL-S 200-DF-EL-S 400-DF-EL-S 800-DF-EL-S 800-DF-EA-S

Baud rate 1.0625 Gbps
± 100 ppm

2.125 Gbps
± 100 ppm

4.25 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

Type Differential Differential Differential Differential Differential

Receiver 
waveform

Eye mask Eye mask Eye mask Eye mask Statistical
Analysis

Input signal 
voltagea

R: 400–2,000
R: 370–2,000
R: 400–2,000

R: 400–2,000
R: 370–2,000
R: 400–2,000

R: 276–1,600
R: 370–1,600
R: 276–1,600

R: 340–850 Not specified

Sinusoidal 
jitter (SJ)

(Interenclosure,
Units: UIpp)

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

Not applicable

Sinusoidal 
jitter (SJ)

(Intraenclosure,
Units: UIpp)

T, R: 0.10 T, R: 0.10 T, R: 0.10 T, R: 0.10 See note (b)

Deterministic 
jitter (DJ)

(Interenclosure,
Units: UIpp)

T: 0.12
T: 0.13
R: 0.35
R: 0.36

T: 0.14
T: 0.16
R: 0.37
R: 0.39

T: 0.14
T: 0.39
R: 0.37
R: 0.39

R: 0.47 Not applicable

Deterministic 
jitter (DJ)

(Intraenclosure,
Units: UIpp)

T: 0.11
R: 0.37

T: 0.20
R: 0.33

T: 0.33
R: 0.33

Not applicable See note (b)

Total jitter (TJ)
(Interenclosure,

Units: UIpp)

T: 0.35
T: 0.37
R: 0.64
R: 0.66

T: 0.36
T: 0.40
R: 0.67
R: 0.69

T: 0.36
T: 0.69
R: 0.67
R: 0.69

R: 0.71 Not applicable

Total jitter (TJ)
(Intraenclosure,

Units: UIpp)

T: 0.33
R: 0.68

T: 0.43
R: 0.62

T: 0.62
R: 0.62

Not applicable See note (b)

 (a)Units: mVpp for single-ended variants, mVppd for differential variants.
(b)Values of DDJ, BUJ, and RJ are specified for the T, εT, εR, and βR points and are used in 
statistical signal integrity analysis to determine compliance.
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5.4.5 10-Gbps Fiber Channel
The Fibre Channel framing and signaling and physical interface layers for 

10GFC are specified in the “Fibre Channel – 10 Gigabit” document, 
commonly referred to as “10GFC.” This section summarizes the features 
which are of some relevance to HSS.

As was discussed previously, Fibre Channel uses a nomenclature of the 
following form to denote physical interface variants:

NNN-AA-BB-C,
Where the NNN field designates the speed of the interface. The speed for 

10GFC is 1,200 MBytes per second. 
The AA field designates the type of media. Options for 10GFC include: 

single-mode optical fiber and various multimode optical fiber types similar to 
those used with serial variants.

The BB field designates the type of transmitter and receiver device used on 
the link. Serial 10GFC variants use either 850-nm or 1,300-nm laser devices. 
Parallel 10GFC variants use either four lasers operating in parallel (850 nm), 
or a four-lane CWDM (850 nm or 1,300 nm) optical transmitter.

The C field designates the distance range of the link. Variants exist for both 
long and intermediate distances.

Valid physical interface variants for 10GFC are listed in Table 5.20. The 
base bit rate of 10GFC is 10.2 Gbps. Physical interface variants fall into two 
categories:
• Serial variants which assume 64B/66B encoding of the data and therefore 

have a serial baud rate of 10.51875 Gbaud/s
• Four-lane parallel variants (either transmitting on four separate fibers or 

transmitting four wavelengths using a CWDM PMD) which assume byte 
striping of data across four lanes and 8B/10B encoding of each lane, and 
operate at 3.1875 Gbaud/s on each lane.

Note that Table 5.20 additionally provides a column for reference to an 
Ethernet variant. Several of the 10GFC physical interface variants are essen-
tially the same device as can be used for the referenced Ethernet PMD layer. 
In addition, 10GFC specifies a few additional physical interface variants which 
do not have an equivalent optics specification in Ethernet. The framing and 
signaling specification for 4-lane 10GFC FC-0 (PMD) layer devices is similar 
to the PCS/PMA layer defined by Clause 48 of the IEEE 802.3 Ethernet 
standard. In addition, 10GFC defines the equivalent XGMII function to 
transport data across XAUI interfaces within the enclosure. The framing and 
signaling specification for serial 10GFC FC-0 (PMD) layer devices is similar 
to the PCS/PMA layer defined by Clauses 49 and 51 of the IEEE 802.3 
Ethernet standard.
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5.5 PCI Express
PCI Express is a high-performance I/O bus architecture for interconnecting 

peripheral devices in computing and communication platforms. It is the third 
generation that evolved from PCI and PCI-X and is specifically designed to 
overcome the performance limitations of those busses. In addition to the per-
formance advantage, PCI Express also reduces system cost because it requires 
fewer package pins on the device and a smaller number of system board wires. 
Furthermore, PCI Express systems are backward compatible with software for 
PCI/PCI-X so that existing operating systems may be ported to PCI Express 
with no changes to drivers or application programs. 

PCI Express is developed by the membership of the Peripheral Component 
Interconnect Special Interest Group (PCI-SIG). The initial PCI Express Base 
Specification was published in April 2003, with various errata being corrected 
in the Revision 1.1 document published in March 2005. This document speci-
fies what has come to be known as PCI Express Generation 1, which utilizes 
2.5-Gbps Serdes technology. Revision 2.0 of this document, commonly called 
PCI Express Generation 2, was published in December, 2006, and adds support 
for a 5.0-Gbps baud rate. 

The “PCI Express Card Electromechanical 2.0 Specification” is an addi-
tional companion specification which defines the electromechanical form 
factors of PCI Express devices. These include:
Card electromechanical. 

This form factor is for standard PC add-in cards similar to PCI cards, and supports 
link widths from x1 to x16. Form factor is predominantly used by graphics cards, 
although there are other cards available such as USB and network adaptors.

Table 5.20 10GFC physical interface variants

Variant Specification Baud rate Laser type Ethernet reference

1200-Mx-SN4P-I
(x = 5,5E,6)

10GFC 4 lane by 
3.1875 Gbps

4 lane parallel Not applicable

1200-Mx-SN-I
(x = 5,5E,6)

10GFC 10.51875 Gbps Serial 10GBASE-SR

1200-Mx-SN4-I
(x = 5,5E,6)

10GFC 4 lane by 
3.1875 Gbps

4 lane CWDM Not applicable

1200-SM-LL-L 10GFC 10.51875 Gbps serial 10GBASE-LR

1200-Mx-LC4-L
(x = 5,6)

10GFC 4 lane by 
3.1875 Gbps

4 lane CWDM 10GBASE-LX4

1200-SM-LC4-L 10GFC 4 lane by 
3.1875 Gbps

4 lane CWDM 10GBASE-LX4
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Mini-card electromechanical. 
This form factor is similar to PCMCIA cards for laptops and other 

applications which require small size and power. Only x1 link width is 
supported; a reduced signal amplitude is used.
Express module. 

This form factor is for hot-pluggable cards in rack-mount servers. Form 
factor supports link widths x1 to x8 in a single-wide module, and x1 to x16 in 
a double-wide module. 

HSS core feature settings for implementations which comply with the 
above electromechanical specifications can be characterized and may be 
specified by applications documentation available from the vendor. However, 
chip-to-chip links and custom implementations still require the same signal 
integrity analysis to determine feature settings as is required for other applica-
tions. PCI Express cards which may be used in multiple systems should 
consider providing provisionability of HSS features to facilitate use in 
nonstandard electromechanical environments.

5.5.1 PCI Express Architecture
The topology of a PCI Express bus and the device protocol layers associ-

ated with PCI Express is described in this section.
5.5.1.1 Physical Topology

Computers have an ever increasing demand for data bandwidth. In the past, 
PCI and PCI-X systems delivered adequate performance using multidrop 
parallel busses in which several devices shared each bus. Performance boosts 
were achieved by increasing the effective bus clock frequency from 33 MHz, 
66 MHz, 133 MHz, and beyond. However, these architectures required limita-
tions on the number of devices per bus to control electrical loading as the 
frequency was increased. 

The PCI Express hierarchy has a significantly different physical structure 
from that of PCI. Instead of a parallel bus routed to several components, the 
physical layer of PCI Express is a point-to-point connection similar to other 
standards which utilize Serdes technology. The hierarchy routes traffic to 
components through a switch. Each switch port is a virtual PCI to PCI bridge; 
this allows existing PCI software to enumerate the hierarchy of components.

Figure 5.28 illustrates the main components in a typical PCI Express system, 
including the CPU, memory, Root Complex, endpoint devices, switches, and 
bridges to legacy PCI/PCI-X busses. The Root Complex connects the CPU and 
memory subsystem to the PCI Express fabric. It generates PCI Express transaction 
requests for the CPU and transmits them across one of its ports to the destination 
device (either an endpoint or a switch). When a request arrives at an endpoint 
device, the device completes the transaction by reading the requested data or writ-
ing data to the target location. In addition, the endpoint can initiate its own transac-
tions across the link to the Root Complex, another endpoint, or switch. A USB 
device and Ethernet NIC are two examples of endpoint devices. 
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Fig. 5.28 PCI express bus physical topology

Fig. 5.29 PCI express device layers
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Fig. 5.30 PCI express frame format

A switch attaches multiple PCI Express devices together. Each port of the 
switch behaves logically as a PCI-to-PCI bridge since its sole purpose is to for-
ward packets from the incoming port (Ingress Port) to the destination (Egress 
Port). Each switch contains arbitration logic to determine the priority of the 
packets being sent.
Device Layers

Figure 5.29 illustrates the layered architecture of a PCI Express device. The 
top layer, Device Core, initiates transactions onto the PCI Express fabric and 
executes transactions that it receives from other devices. This layer communi-
cates to/from the fabric through the PCI Express Core Logic Interface. PCI 
Express does not specify the Device Core and PCI Express Core Logic Inter-
face; these layers are application specific logic and the design of these layers 
varies from one implementation to the next. Root Complex core logic and an 
endpoint Ethernet controller are two examples of Device Cores. 

Every device must support the functionality of the bottom three layers of 
the stack: the Transaction Layer, the Data Link Layer, and the Physical Layer. 
These layers are composed of a transmit section that processes outbound traffic 
through the transmit (Tx) side of the link, and a receive section that handles 

Table 5.21 PCI express bandwidths

x1 x2 x4 x8 x12 x16 x32

Gen 1, 2.5 GTps 0.5 GBps 1.0 GBps 2.0 GBps 4.0 GBps 6.0 GBps 8.0 GBps 16 GBps

Gen 2, 5.0 GTps 1.0 GBps 2.0 GBps 4.0 GBps 8.0 GBps 12 GBps 16 GBps 32 GBps

From Device Core /
Software Layer

Start* Sequence
Number

Header Data ECRC LCRC End**

Created by Transaction Layer

Appended by Data Link Layer

Appended by Physical Layer

*  STP symbol
** END symbol
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incoming traffic from the receive (Rx) side. Each of these layers contributes to 
the generation and processing of fields in the PCI Express packet shown in 
Fig. 5.30.

The Transaction Layer assembles information from the Device Core into a 
Transaction Layer Packet (TLP) for transmission. This packet includes a 
header, up to 1024 32-bit words of data (4 kbytes), plus an optional End-to-End 
CRC (ECRC) field used for error detection. The TLP is forwarded to the Data 
Link Layer, which concatenates a sequence number and link CRC (LCRC), 
and stores the resulting TLP in a local Retry Buffer. The purpose of the LCRC 
is to detect errors in the transmission. Next, the TLP arrives at the Physical 
Layer which appends a one byte Start delimiter symbol and a one byte End 
delimiter symbol. Bytes of the packet are 8B/10B encoded by the Physical 
Layer for transmission.

On the other side of the link, the receiving device follows the reverse 
procedure to process fields in the packet and forward the TLP to the Transac-
tion Layer. First, the Physical Layer deserializes the incoming bitstream, 
decodes the 8B/10B symbols, and removes the Start/End delimiter symbols. 
The Data Link Layer then processes the sequence number and LCRC fields to 
check for errors, and removes these fields. If there are no errors, the Data Link 
Layer sends an acknowledge (ACK) Data Link Layer Packet (DLLP) to the 
transmitting device to confirm successful delivery of the packet, allowing the 
transmitting device to remove the packet from its Retry Buffer. (In the event 
the Data Link Layer detects an LCRC error or other errors in the packet, a 
Negative Acknowledge (NAK) DLLP is sent to the transmitting device and the 
packet is resent.) Then the Data Link Layer forwards the TLP to the Transac-
tion Layer which uses the ECRC field to check for errors in the end-to-end 
path, and forwards the TLP to the Device Core.

5.5.2 Physical Layer Logic
The PCI Express physical layer includes both physical layer logic and 

physical layer electrical specifications. The physical layer electrical specifica-
tions are generally implemented with HSS cores, and the logical specifications 
are implemented with companion logic. 

A block diagram of the physical layer logic is shown in Fig. 5.31. An 
n-wide port consists of n transmit and n receive HSS lanes and associated logic 
to perform the physical layer function of the transmit and receive paths. State 
machine logic to perform training is also a required element of the port.
5.5.2.1 Physical Layer Transmit Logic

Functions of the transmit data path in Fig. 5.31 are described below.
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Fig. 5.31 Physical layer logic block diagram
Physical Packet Generation. The physical layer receives the TLP or DLLP 
from the Data Link Layer, and forms a physical packet by adding control 
symbols. The following control symbols are defined for PCI Express and 
correspond to 10-bit control symbols in the 8B/10B block code. These symbols 
are added in the transmission path as needed.
STP / SDP – Start Symbols (K27.7, K28.2). The physical layer adds a Start 
symbol to delimit the beginning of the packet. Two Start symbols are defined: 
Start TL Packet (STP) indicates the start of a TLP, and Start DLL Packet (SDP) 
indicates the start of a DLLP. 
END / EDB – End Symbols (K29.7, K30.7). The physical layer also adds an 
End symbol to delimit the end of a packet. Two End symbols are defined: End 
Good (END) indicates the normal end of a packet, and End Bad (EDB) indi-
cates the end of a packet which is to be ignored (possibly because it contains 
an error).
COM – Comma Symbol (K28.5). The COM symbol is the first symbol of an 
Ordered Set. Ordered Sets are described below.
SKP – Skip Symbol (K28.0). The SKP symbol is transmitted as part of a Skip 
Ordered Set. Ordered Sets are described below.
FTS – Fast Training Sequence Symbol (K28.1). The FTS symbol is transmit-
ted as part of a Fast Training Sequence Ordered Set. Ordered Sets are described 
below.
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EIE – Electrical Idle Exit (K28.7). The EIE symbol is transmitted as part of an 
Electrical Idle Exit Ordered Set used in systems operating at speeds greater 
than 2.5 GT/s. Ordered Sets are described below.
PAD – Pad Symbol (K23.7). PAD symbols are transmitted at the end of a 
packet, if needed, on unused lanes.
IDL – Idle Symbol (K28.3). IDL symbols are transmitted as part of an 
Electrical Idle Ordered Set. Ordered Sets are described below.
TS1 / TS2 – Training Sequence Symbols (D10.2, D5.2). The TS1 and TS2 
symbols are data symbols transmitted within training sequence ordered sets to 
identify the type of ordered set. 

The following Ordered Sets are defined for PCI Express:
Training sequences. Training sequence ordered sets TS1 and TS2 are transmit-
ted during link training in order to negotiate port parameters. This is described 
in more detail later in this section.
Skip ordered set. The SKIP ordered set is scheduled to be transmitted at 
periodic intervals. The periodic interval must be at least once every 1,538 
symbol times, and no more than once every 1,180 symbol times. This ordered 
set consists of the symbol sequence (COM,SKP,SKP,SKP). Receiver logic 
may add/drop these symbols in the Elastic Buffer stage in order to compensate 
for frequency differences between the recovered receive clock and the local 
clock reference.

Note that transmission of a packet cannot be interrupted by a SKIP ordered 
set. Therefore, if the SKIP is scheduled for transmission while a packet trans-
mission is in process, the SKIP is not transmitted until after the packet trans-
mission is complete. This might result in more than 1,538 symbol times 
between the occurrence of SKIPs on the interface.
Electrical idle ordered set. This ordered set is transmitted by the transmit port 
to inform the receive port that the transmitter wants to transition the link into 
the Electrical Idle power management state. The ordered set consists of the 
symbol sequence (COM,IDL,IDL,IDL).
Fast training sequence ordered set. This ordered set is transmitted by the 
transmit port to quickly train the receiver and allow the receiver to achieve 
symbol lock after exiting the Electrical Idle power management state. The 
ordered set consists of the symbol sequence (COM,FTS,FTS,FTS).
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Electrical idle exit ordered set. When operating at speeds greater than 2.5 
GT/s, this ordered set is transmitted by the transmit port after exiting the 
Electrical Idle power management state, and before transmitting the TS1/TS2 
Ordered Sets. It is also transmitted periodically between TS1/TS2 Ordered 
Sets. This ordered set has sufficient low frequency components to ensure 
electrical idle detection circuits at the receiver recognize the exit condition. 
(Some circuit implementations would have difficulty detecting the exit 
condition on a higher loss channel without low frequency content.) The 
ordered set consists of the symbol sequence (COM, 14 EIE symbols, TS1).

The Physical Packet Generation stage either transmits TLP or DLLP data 
contents, control symbols, or ordered sets. If none of the above needs to be 
transmitted, then Logical Idle symbols are transmitted (“00”h bytes). 
Byte-Striping:   

PCI Express specifies ports which consist of a link width of 1, 2, 4, 8, 12, 
16, or 32 electrical links in each direction. Of these permitted widths, only link 
widths of 1, 4, 8, and 16 are commonly used in the industry. Link widths, and 
corresponding data bandwidth, are summarized in Table 5.21. The link width 
for a given port is determined dynamically during training. For an n-link port, 
bytes are striped to the lanes such that the first byte is transmitted on lane 0, the 
second byte on lane 1, and so forth.

When the link width of the port is greater than 1, the following rules apply 
for alignment of packets and ordered sets across the links of the port:
• The Start Packet delimiter is always transmitted on lane 0 unless the 

packet is immediately following the end of another packet. In such cases, 
the Start packet delimiter must be transmitted on a lane with a lane num-
ber divisible by 4 (i.e., lanes 0, 4, 8, etc.)

• The End Packet delimiter is always transmitted on a lane with a lane number divis-
ible by 4 –1 (i.e., lanes 3, 7, 11, etc.). If another packet does not start following the 
end of the packet, then the remainder of the line is filled with PAD symbols.

• Ordered Sets and Logical Idle sequences must be transmitted on all lanes 
simultaneously. Ordered Sets are not byte-striped across lanes, but rather 
are transmitted in parallel on all lanes.

Scrambler:   
Scrambling is performed using a sidestream scrambler which implements 

the following polynomial:
G(x) = x16 + x5 + x4 + x3 + 1. (5.9)

The state value of the scrambler for each link of a multilink port must be 
synchronized such that all links have the same scrambler state value at all 
times. Data symbols and Logical Idle Sequences are scrambled; ordered sets 
and other control symbols are not scrambled. 

The scrambler state is updated by 8 bits for each byte transmitted regardless 
of whether the byte is scrambled or not. The exception to this is SKP symbols. 
The scrambler state does not advance when SKP symbols are transmitted since 
receiver logic may add/drop SKP symbols prior to the descrambler stage. 
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The scrambler is reset to an all 1’s state whenever a COM symbol is 
transmitted.
8B/10B Encoder

This stage encodes each byte into the corresponding 8B/10B encoded 
symbol, and drives the parallel data input of the HSS transmitter. Block 
8B/10B coding was described in Sect. 4.2.2.1.
5.5.2.2 Physical Layer Receiver Logic

Functions of the receive data path in Fig. 5.31 are described below.
Elastic Buffer  

This stage consists of an elastic FIFO to compensate for clock frequency 
differences between the receive clock from the HSS core and the local 
reference clock. This compensation is performed by dropping SKP symbols as 
needed if the receive clock is faster than the local clock, or adding additional 
SKP symbols after SKP symbols in the incoming data if the receive clock is 
slower than the local clock.

Implementations of this stage generally include a function to perform 
symbol alignment on the input of the buffer. This is performed by searching for 
COM symbols in the incoming data, and pulsing RXxDATASYNC (or alter-
natively by stepping the position of a barrel shifter), if needed, to adjust the 
alignment. PCI Express refers to this process as achieving symbol lock. 
8B/10B Decoder

This stage decodes each 8B/10B symbol into the corresponding data or 
control byte. Block 8B/10B coding was described in Sect. 4.2.2.1.
Descrambler

This stage descrambles data in a similar manner to the scrambling 
performed on the transmit data path. 
Byte Un-Striping

This stage performs the inverse of the byte-striping process used at the 
transmitter. A key function of this stage in a multi-lane port implementation is 
lane-to-lane deskew of data. Although PCI Express does not specify precisely 
how to do this, the common method is to add delay as needed such that COM 
symbols for ordered sets are aligned with each other on all lanes. 
Physical Packet Processing

This stage removes the Start and End of packet framing symbols from the 
packet and forwards the TLP or DLLP to the Data Link Layer.
5.5.2.3 Link Training

The physical layer also implements state machines associated with link 
training as implied by Fig. 5.31. Detailed descriptions of the training sequence 
and state machine implementations are beyond the scope of this text, however, 
the process is summarized below.

The following port parameters are negotiated as part of the link training 
sequence:
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Link width. The transmit and receive ports on a given link may have different 
link widths. The training sequence determines the width of each port on the 
link and picks a width that is supported by both ports.
Polarity inversion. PCI Express allows that a physical implementation may 
intentionally or unintentionally reverse the true/complement signals of the 
electrical differential signal. This results in the polarity of received data being 
inverted. The training sequence detects that the polarity has been inverted, and 
inverts the received data, if needed, to correct this.
Link data rate. PCI Express Gen 1 ports use a baud rate of 2.5 Gbaud/sec on 
each link, while PCI Express Gen 2 ports may additionally support a baud rate 
of 5.0 Gbaud/s. Future generations of the specification will define higher baud 
rates. During training each node advertises supported speeds, and the link is 
initialized to pick a speed that is supported by both ports.
Lane reversal. PCI Express allows a physical implementation to reverse the 
physical wiring of lanes relative to the logical lane assignment. This might be 
desirable to reduce the circuit board cost, as an example. Optionally, a port may 
support detection that the assignment of lane numbers is reversed, and support 
reordering of bytes accordingly in the Byte Un-Striping stage. If the port does 
not support lane reversal, then the negotiation may instead result in a lower link 
width in order to establish the communications path. 

The transmit port sends TS1 or TS2 ordered sets on each link during the 
training sequence. These ordered sets are 16 symbols long, and advertise 
various port characteristics in order to negotiate the above port parameters. 
Each port determines the characteristics of its partner based on the advertised 
characteristics in the received training sequence, and then adapts accordingly.

The receiver link also trains its CDR circuit, achieves symbol lock, and performs 
lane-to-lane deskew during the training sequence. The receiver must be fully 
functional and ready to receive data before the training sequence can complete.

5.5.3 Electrical Physical Layer 
This section describes the electrical parameters and features applicable to 

implementation of the PCI Express Physical Layer.
5.5.3.1 Differential Signal Parameters

The PCI Express specification tests transmitter and receiver compliance 
using eye masks for the transmitter output and for the jitter tolerance signal at 
the receiver input. Electrical parameters for the transmitter are listed in Table 
5.22. Electrical parameters for the receiver are listed in Table 5.23. Note that 
some receiver parameters vary depending on the baud rate. Also note that 
different specifications apply at 5.0 Gbps dependent on whether or not the 
transmitter and receiver use the same or different reference clock sources.
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The baud rate for all variants of PCI Express is specified with the tolerance 
of +300 ppm. This tolerance is intended not only to allow for variation in 
frequency between clock references at each end of the link, but also to allow 
for Spread Spectrum Clocking (SSC). SSC varies the reference clock 
frequency within a range in order to reduce EMI emissions, as was discussed 
in Sect. 2.3.10, for the HSS EX10 core.

The transmitter specifications allow for deemphasis on the output signal. 
An FFE in the transmitter can correct for intersymbol interference induced by 
the channel. PCI Express assumes there is no equalization in the receiver.
5.5.3.2 Special Electrical Signaling Support

HSS cores which support PCI Express are required to implement a number 
of unique features. Additional support is desirable for optional features of the 

Table 5.22 PCI express transmitter electrical parameters

PCI Express Gen 1 PCI Express Gen 2

Baud rate 2.50 Gbps
± 300 ppm

5.00 Gbps
± 300 ppm

Transmitter waveform Eye mask is specified Eye mask is specified

Output signal voltage  800–1,200 mVppd  800–1,200 mVppd 1

DC common mode voltage 0 – 3.6 V 0 – 3.6 V

Rise/fall time 0.125 UI 0.125 UI

Total jitter (TJ) 0.30 UI 0.30 UI

1 Some electromechanical form factors specify a lower differential amplitude for the transmitter

Table 5.23 PCI express receiver electrical parameters

PCI Express Gen 1
PCI Express Gen 2

(common clock 
architecture)

PCI Express Gen 2
(data clocked 
architecture)

Baud rate (± 300 ppm) 2.50 Gbps 5.00 Gbps 5.00 Gbps

Jitter tolerance 
waveform

Eye mask Eye mask Eye mask

Input signal voltage  175–1,200 mVppd  120–1,200 mVppd  100–1,200 mVppd

Deterministic jitter (DJ) Not specified 0.30 UI 0.24 UI

Total jitter (TJ) 0.60 UI 0.40 UI 0.34 UI

AC coupling capacitor 75–200 nF 75–200 nF 75–200 nF
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PCI Express specification. These features are summarized in this section. Note 
that several of these features are related to power management states which are 
discussed in Sect. 5.5.4.
Electrical Idle

When in an electrical idle state, the transmitter outputs are driven to the 
common mode voltage. Before transitioning into this state, the transmitter 
must transmit one or more Electrical Idle Ordered Sets. To return to an 
operating state, the transmitter must transmit FTS (for exit from the L0s Power 
State) or TS1/TS2 ordered sets (for exit from the L1 Power State). 

The receiver enters an electrical idle state upon receiving the Electrical Idle 
Ordered Set. The receiver exits this state upon seeing a differential voltage on 
the input in excess of the value allowed during an Electrical Idle state.

An HSS transmitter which supports PCI Express must provide the capabil-
ity to drive an electrical idle state on the link. The HSS receiver may continue 
to operate and receive data while the transmitter is sending an electrical idle, 
or may be partially powered down. Either way, the RXxSIGDET output 
indicates there is no signal amplitude. When the HSS transmitter resumes 
sending serial data, the receiver must be powered back on (if applicable), 
retrain the CDR circuit, and reacquire symbol lock. If the receiver is powered 
down, the signal detect circuit must remain powered on so that a wake-up event 
can be detected. Obviously, retraining the CDR and reacquiring symbol lock 
requires more time if the receiver was powered down.
Receiver Detection

The transmitter checks the link after a reset to determine whether a receiver 
is connected at the other end. This is done by driving an abrupt change in the 
DC Common Mode voltage of the link (either from ground rail to VDD power 
rail or vice versa), and monitoring the amount of time it takes for the common 
mode voltage on the wire to settle to the new value. If a receiver is present, 
charging the AC coupling capacitance of the receiver causes this settling time 
to be relatively slow. If no receiver is present, the settling time is relatively fast. 
An HSS transmitter which supports PCI Express must provide the capability to 
drive a receiver detection event and the detection circuitry to determine the 
results. 
Beacon Signaling

Beacon signaling is optional in the PCI Express specification, and may be 
used in the implementation of L2 power states. The transmitter sends a low-
frequency high/low waveform called a beacon signal on the link to indicate a 
desire to exit the L2 power state and return to a full-on state. The beacon signal 
has a pulse width of at least 2 ns and no more than 16 s. The receiver is 
powered down in the L2 power state, but must have some circuitry active 
which can detect the beacon signal and notify the power management function 
of the port. An HSS receiver which supports PCI Express must provide the 
capability to detect the beacon signal. 
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5.5.4 Power States
PCI Express defines the L0, L0s, L1, L2, and L3 power management states, 

each of which is intended to use progressively less power. 
L0 Power State. The link transmitter and receiver are fully operational in this 
power state. 
L0s Power State. If the physical layer transmit logic has no TLP or DLLP 
traffic to transmit for some length of time, the transmitter can initiate entry into 
the L0s power state. The protocol for entry/exit to/from an electrical idle state 
was described in “Electrical Idle” under Sect. 5.5.3.2. When the transmitter 
once again has useful traffic to transmit, it exits the electrical idle state and 
retrains the receiver.
Note that detailed rules exist in the PCI Express standard for when a link 
should enter and exit the L0s power state. These rules vary based on the type 
of device in the PCI Express architecture. There are also physical layer speci-
fications for maximum response times to enter and exit the L0s power state, as 
well as specifications for the minimum time the transmitter must stay in this 
power state once it has been initiated. These specifications are beyond the 
scope of this text.
L1 Power State. The physical layer may enter the L1 power state upon 
direction by the Data Link Layer. Both the transmit and the receive ports must 
negotiate and agree to enter the L1 power state. This negotiation is performed 
through DLLP traffic between the Data Link Layers of each node, the 
description of which is beyond the scope of this text.
The transmitter enters the L1 power state in a similar manner to entry into the 
L0s state as described in “Electrical Idle” under Sect. 5.5.3.2. The transmitter 
exits the L1 power state by sending TS1/TS2 ordered sets. The receiver may 
be powered down while in the L1 power state. To exit the L1 power state, the 
signal detect circuit at the receiver (which is not powered down in this state), 
detects the signal and the port logic restores power to the receiver. Recovery 
time to retrain the receiver is expected to be longer when exiting L1 power state 
than in the case of L0s power state.
As was the case for the L0s power state, the PCI Express specifies require-
ments for physical layer state transitions which apply to entry/exit to/from L1 
power state. These specifications are beyond the scope of this text.
L2 Power State. The physical layer enters and exits the L2 power state upon 
request. In this power state, a substantial portion of the HSS core can be 
powered off, including portions of the PLL logic. A port which is in the L2 
power state may request exit from this state by transmitting a beacon signal to 
its link partner. Portions of the receiver which are still powered on can detect 
this beacon signal and propagate this request for action by the system power 
management software.
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5.5.5 PCI Express Implementation Example
Figure 5.32 shows an IBM implementation of the PCI Express protocol 

stack. This implementation is used to illustrate one example of how PCI 
Express layers can be partitioned into functional blocks. The layers of the PCI 
Express protocol are partitioned into the cores in Fig. 5.32 as follows:

Fig. 5.32 IBM set of cores for the PCI express protocol (Gen 1)

GBIF to PLB Core (GPL). GPL implements the PCI Express Core Logic 
Interface layer, connecting the Transaction Layer logic to a vendor-specific 
processor interface. This layer is application dependent and is not specified by 
the PCI Express standard.
Upper Transaction Layer Core (UTL). UTL implements part of the 
Transaction Layer logic, including transaction generation and ordering, end-
to-end CRC generation and checking, and virtual channel arbitration.
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Configuration Space Core (CFG). CFG implements the configuration control 
registers specified by the PCI Express standard. This core supports interfaces 
to user support logic and to an XBUS interface.
Transaction, Data Link, and Logical Physical Core (TLDLP). TLDLP 
implements the remaining Transaction Layer functionality, the Data Link 
Layer, and part of the Physical Layer logic, including Physical Layer Packet 
Generation and Processing, Byte Striping and Unstriping, scrambling and 
descrambling, and Training Sequence generation and control.
Physical Interface Logic (PHYIF). PHYIF implements the remaining Physical 
Layer logic function, including 8B/10B encoding and decoding and elastic 
buffers for clock compensation.

The PHY Interface for PCI Express Architecture (PIPE) connects the 
TLDLP core of the Gen 2 Protocol Wrapper to the PHYIF core. The specifica-
tion for this interface is an industry standard developed by several companies 
and published by Intel. This standard is intended to facilitate interoperability 
of the lower levels of the Physical Layer with higher levels of the protocol 
stack supplied by different vendors. This specification also dictates the alloca-
tion of physical layer functionality between the TLDLP and PHYIF cores. The 
reader is referred to the standards document for more information.

The HSS EX10 core described in Chap. 2 included features specifically 
intended to support the PCI Express protocol. These features were described in 
Sect. 2.2.9 for the transmitter slice and in Sect. 2.3.13 for the receiver slice. 
Additional power management features to support PCI Express were described 
in Sect. 2.4.8.

5.6 References and Additional Reading
The following standards documents are relevant to “SONET/SDH 

Networks” as described in Sect. 5.1:
1.  “ANSI T1.105-2001 Synchronous Optical Network (SONET) – Basic 

Description including Multiplex Structure, Rates, and Formats”, 
American National Standards Institute, Inc., 2001.

2. “ITU-T G.707 – Series G: Transmission Systems and Media, Digital 
Systems and Networks, Digital Terminal Equipment – General, Network 
Node Interfaces for the Synchronous Digital Hierarchy (SDH)”, 
International Telecommunications Union, 1996.

3. “ITU-T G.709 – Series G: Transmission Systems and Media, Digital 
Systems and Networks, Digital Terminal Equipment – General, Interface 
for the Optical Transport Network (OTN)”, International 
Telecommunications Union, 2001.

4. “ITU-T G.783 – Series G: Transmission Systems and Media, Digital 
Systems and Networks, Digital Terminal Equipment – Characteristics of 
SDH Equipment Functional Blocks”, International Telecommunications 
Union, 2006.
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The following reading is recommended for more information regarding 
“SONET/SDH Networks”:
5. “SONET”, Second Edition, Walter J. Goralski, McGraw-Hill, New York, 

2000.
The following standards documents are relevant to “OIF Protocols” as 

described in Sect. 5.2:
6. “System Interface Level 5 (SxI-5): Common Electrical Characteristics for 

2.488–3.125 Gbps Parallel Interfaces”, OIF-SxI-5-01.0, Optical 
Internetworking Forum (http://www.oiforum.com), Oct. 2002.

7. “Common Electrical I/O (CEI) – Electrical and Jitter Interoperability 
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical 
Internetworking Forum (http://www.oiforum.com), Feb. 28 2005.

8. “Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for 
40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-01.0, Optical 
Internetworking Forum (http://www.oiforum.com), Jan. 29 2002.

9. “Serdes Framer Interface Level 5 Phase 2 (SFI-5.2): Implementation 
Agreement for 40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-02.0, 
Optical Internetworking Forum (http://www.oiforum.com), Oct. 2 2006.

10. “Scalable System Packet Interface (SPI-S) Implementation Agreement: 
System Packet Interface Capable of Operating as an Adaption Layer for 
Serial Data Links”, OIF-SPI-S-01.0, Optical Internetworking Forum 
(http://www.oiforum.com), Nov. 17 2006.

11. “Common Electrical I/O – Protocol (CEI-P) – Implementation 
Agreement”, OIF-CEI-P-01.0, Optical Internetworking Forum 
(http://www.oiforum.com), Mar. 2005.

The following additional references are also relevant to “OIF Protocols”:
12. Information on StatEye software: http://www.stateye.org.

The following standards documents are relevant to “5.3 Ethernet 
Protocols” as described in Sect. 5.3:
13. “IEEE Standard for Information Technology – Telecommunications and 

Information Exchange Between Systems – Local and Metropolitan Area 
Networks – Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD) Access Method and Physical Layer Specifications”, IEEE 
802.3-2005, Institute of Electrical and Electronic Engineers, Dec. 12 
2005.

14. “Amendment: Ethernet Operation over Electrical Backplanes”, IEEE 
P802.3ap, Draft 3.3, Institute of Electrical and Electronic Engineers, Jan. 
26 2007.

15. “INF-8077 10Gb Small Form Factor Pluggable Module”, Revision 4.5, 
10 Gigabit Small Form Factor Pluggable (XFP) Multi Source Agreement 
(MSA) Group (http://www.xfpmsa.org), Aug. 2005.
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The following standards documents are relevant to “5.4 Fibre Channel (FC) 
Storage Area Networks” as described in Sect. 5.4:
16. “ANSI INCITS 404-2006 For Information Technology – Fibre Channel – 

Physical Interfaces-2 (FC-PI-2)”, American National Standards Institute, 
Inc., International Committee for Information Technology Standards, 
Aug. 11 2006.

17. “ANSI INCITS 424-2007 For Information Technology – Fibre Channel – 
Framing and Signaling-2 (FC-FS-2)”, American National Standards 
Institute, Inc., International Committee for Information Technology 
Standards, Aug. 9 2007.

18. “ANSI INCITS 424-2007 AM1 For Information Technology – Fibre 
Channel – Framing and Signaling-2 – Amendment 1 (FC-FS-2/AM1)”, 
American National Standards Institute, Inc., International Committee for 
Information Technology Standards, Aug. 9 2007.

19. “INCITS Project 1647-D – Fibre Channel – Physical Interfaces-4 (FC-PI-
4), Rev 8.00”, INCITS Working Draft Proposed American National 
Standard for Information Technology, May 21, 2008.

20. “ANSI INCITS 364-2003 For Information Technology – Fibre Channel – 
10 Gigabit (10GFC)”, American National Standards Institute, Inc., 
International Committee for Information Technology Standards, Nov. 6 
2003.

The following standards documents are relevant to “5.5 PCI Express” as 
described in Sect. 5.5:
21. “PCI Express Base Specification, Revision 2.0”, Peripheral Component 

Interconnect Special Interest Group (PCI-SIG) (http://www.pcisig.com), 
Dec. 20 2006.

22. “PHY Interface for the PCI Express Architecture”, Draft Version 1.90, 
Intel Corporation, 2007.

23. “PCI Express Card Electromechanical Specification, Revision 2.0”, 
Peripheral Component Interconnect Special Interest Group (PCI-SIG) 
(http://www.pcisig.com), 2007.

The following reading is recommended for more information regarding 
“5.5 PCI Express”:
24. “PCI Express System Architecture”, Ravi Budruk, Don Anderson, and 

Tom Shanley, Mindshare, Inc., 2004.
Interested IBM employees and IBM ASIC customers may also wish to 

consult the following IBM HSS databooks and application notes for more 
information regarding IBM ASIC core offerings.
25. “High Speed Serdes (HSS) – PCI Express Gen 2 for Cu-08 Core 

Databook”, SA15-5846-02, IBM.
26. “Implementing a PCI Express Device with IBM Cores”, SA15-5976-00, 

IBM.
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The following standards documents were additionally mentioned in this 
chapter, although not covered in detail:
27. “ANSI INCITS 376 For Information Technology – Serial Attached SCSI 

(SAS)”, American National Standards Institute, Inc., International 
Committee for Information Technology Standards, Jan. 1 2003.

28. “Infiniband Architecture Specification Volume 2, Release 1.2”, 
Infiniband Trade Association, October 2004.

29. “Serial ATA Revision 2.5”, Serial ATA International Organization 
(http://www.sata-io.org), Oct. 27 2005.

5.7 Exercises
1. Answer each of the following questions to classify the SONET/SDH 

protocol characteristics.
(a) Does the protocol use Synchronous or Plesiosynchronous clocking?
(b) Does the protocol use Packet-based or Continuous Transmission?
(c) Which block code and/or scrambling does the protocol use (if any)?
(d) What type of error detection is used by the protocol (if any)? Does the 

protocol support error correction?
2. Answer each of the following questions to classify the SONET/SDH 

protocol characteristics.
(a) Does this protocol use a serial bit stream or parallel lanes? Specify the 

number of lanes, if applicable.
(b) Specify the baud rate(s) associated with each lane.
(c) If the protocol uses parallel lanes, briefly describe how deskew is 

performed at the receiver.
3. Answer the questions in Exercises 1 and 2 for the OIF SFI-5.2 protocol.
4. Answer the questions in Exercises 1 and 2 for the OIF SPI-S protocol 

assuming the protocol carries CEI-P lane traffic.
5. Answer the questions in Exercises 1 and 2 for the IEEE 802.3 

10GBASE-KX4 variant of the Ethernet protocol.
6. Answer the questions in Exercises 1 and 2 for the IEEE 802.3 

10GBASE-KR variant of the Ethernet protocol.
7. Answer the questions in Exercises 1 and 2 for the serial variants of the 

INCITS T11 Fibre Channel protocol. Note that some answers may be 
different for 8.5 Gbps from that of lower baud rates.

8. Answer the questions in Exercises 1 and 2 for the 10GFC variant of the 
INCITS T11 Fibre Channel protocol.
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9. Answer the questions in Exercises 1 and 2 for the Gen 1 variant of the 
PCI Express protocol.

10. Answer the questions in Exercises 1 and 2 for the Gen 2 variant of the 
PCI Express protocol.

11. Design logic (Verilog or VHDL) for a scrambler (or descrambler) for the 
SONET/SDH which has 16-bit parallel data inputs and outputs. 
Requirements for this scrambler are described in Sect. 5.1.2.1. Design 
your scrambler to assume STS-1 frames. Note that your answer for 
Chap. 4 Exercise 17 may be useful to get you started.

12. Modify the logic for the scrambler from Exercise 12 to scramble STS-3 
frames.

13. Design logic (Verilog or VHDL) for a barrel shifter with 16-bit parallel 
data inputs and outputs. The implementation should include control logic 
to search for an “F628”h framing pattern. This framing pattern may occur 
on the input with any arbitrary bit alignment. The control logic should set 
the barrel shifter such that this pattern is aligned on the proper 16-bit 
boundary on the data output.

14. The SONET/SDH protocol does not scramble the framing pattern and 
therefore the logic in Exercise 13 can be used to detect and align on this 
framing pattern. However, the data stream may also contain scrambled 
data which matches this framing pattern. It is possible for aliasing to 
occur such that the barrel shifter incorrectly aligns based on this data. In 
order to avoid such aliasing, the control logic in Exercise 13 needs to be 
modified to build hysteresis into the state machine decisions. Assuming 
an STS-3 frame, modify the Verilog or VHDL logic from Exercise 13 
such that the control logic implements the state transitions below:

Out of 
Frame In Frame

Mismatch

Match
Framing Pattern Found
(Realign Data) Framing Pattern Repeats

at Correct Interval

Framing Pattern does
not repeat at correct interval

Framing Pattern
continues to repeat
at correct interval

Framing Pattern does
not repeat at correct interval

Subsequent Framing Pattern
is at correct interval

Search for
Framing 
Pattern

Subsequent Framing
Pattern also does not 
repeat at correct interval
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15. SONET/SDH Line Overhead H1/H2 pointer operation for the case of 
positive stuffing was illustrated in Fig. 5.3. Draw a similar illustration of 
the case of negative stuffing. 

16. SONET/SDH Line Overhead pointer operation allows pointer 
justification (either positive or negative stuffing) to occur at most once 
every four SONET frames. Assuming an STS-3 frame, what frequency 
tolerance (in ppm) is required for the clock sources in order to avoid 
needing to make adjustments more often? What is the frequency tolerance 
assuming STS-12 frames?

17. Design logic (Verilog or VHDL) for a serial SFI-5.2 deskew channel 
generator which has four one-bit inputs and generates the one-bit output 
corresponding to Fig. 5.8. 

18. Design logic (Verilog or VHDL) for a parallel SFI-5.2 deskew channel 
generator which has four 10-bit inputs and generates the 10-bit parallel 
output corresponding to Fig. 5.8. The 10-bit output will be serialized by 
the HSS transmitter. Your design must take this into account and ensure 
that the deskew channel is transmitted with the correct timing relationship 
and bit order.

19. Design logic (Verilog or VHDL) for a parallel SFI-5.2 deskew channel 
framing function. This logic should include a barrel shifter with a 10-bit 
input and a 10-bit output. The control function for the barrel shifter 
should align the data such that the bits of the sequence shown in Fig. 5.8 
are aligned on the 10-bit boundary.

20. Design additional logic for the logic from Exercise 19 that aligns the 
DATA[0] channel to the deskew channel. This logic should include a 
barrel shifter with a 10-bit input and a 10-bit output. The control function 
for the barrel shifter should compare the applicable data bits to the data 
bits on the deskew channel and update alignment accordingly.

21. The skew and wander specification for the SFI-5.2 protocol is described 
in Table 5.5, and an example of a skew budget for a receiver at the Ri or 
Re compliance points was described in Table 4.4. Develop an equivalent 
skew budget for a receiver at the Res assuming:
• Signal routing differences in the receiver are reduced to 1.5 UI.
• The deskew logic in the receiver chip performs the deskew at the full 

baud rate of the interface with no deserialization.
22. Given the block formats defined in Fig. 5.10 for CEI-P, show the 66-bit 

codewords for transmitting the following data packet:
• Address = “13FC”h
• Flags = “04”h
• CRC = “457”h (this is not the actual calculated value for this packet)
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h, 



Overview of Protocol Standards  257

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h, 
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h, 
“1B”h, “1C”h, “1D”h, “1E”h, “1F”h.

23. Translate the 66-bit codewords of the packet described in Exercise 22 to 
the equivalent T bits and payload within a CEI-P coding frame as 
described in Fig. 5.11. 

24. The IEEE 802.3 Ethernet standard uses the following acronyms in 
relation to the interfaces defined in clauses 47 and 48: XGMII, XAUI, and 
XGXS. Specify what these acronyms stand for and define them. How are 
these three acronyms related?

25. The IEEE 802.3 Ethernet standard defines the PCS and PMA layers for 
10GBASE-X variants in clause 48. Is the functionality described by this 
clause sufficient to implement the XGXS function defined by clause 47? 
Is the functionality described by this clause sufficient to implement the 
10GBASE-KX4 Backplane Ethernet variant? Is additional functionality 
required in either of these cases?

26. Given the following data packet, show the corresponding bus cycles on 
the XGMII:
• Destination Address = “112233”h
• Source Address = “445566”h
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h, 

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h, 
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h, 
“1B”h, “1C”h, “1D”h.

• FCS = “778899”h (this is not the actual calculated value for this 
packet)

27. Given the XGMII packet in Exercise 26, show the corresponding bus 
cycles on the four lanes of the XGXS interface to the HSS EX10 core. 
These bus cycles will be using the equivalent 8B/10B code words.

28. Show 33 consecutive bus cycles on the four lanes of the XGXS interface to 
the HSS EX10 core during an idle period between two packets. At some 
point during this period a sequence ordered set is inserted with the 8B/10B 
codewords corresponding to the data bytes “21”h, “22”h, and “23”h.
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29. The XGXS function defined in Sect. 5.3.3 deskews data across the lanes 
using the Align ordered set. This ordered set is transmitted at intervals 
which range from every 16 symbols to every 31 symbols. Assume that 
two lanes of the interface are skewed by 13 symbols (130 UI). Explain 
why the deskew logic may not correctly align the interface on the first 
attempt. Draw a timing diagram showing an example of a sequence of 
Align ordered sets received on two lanes of the interface. Construct this 
example to show the circumstances under which the interface is 
misaligned on the first attempt, but is correctly aligned upon receiving a 
subsequent Align ordered set.

30. The IEEE 802.3 Ethernet standard defines the PCS layer for 10GBASE-R 
variants in clause 49. This PCS layer is commonly called “XFI.” This 
clause includes a definition of the 64B/66B block code which is 
summarized in Fig. 5.19 and Table 5.13. Given the XGMII packet in 
Exercise 26, show the corresponding 64B/66B codewords as transmitted 
by the HSS EX10 core. (Assume all control bits/bytes are idles.)

31. Your answer to Exercise 30 started the sequence with a control block 
using one of the “Start” block types. Repeat this exercise using the other 
“Start” block type.

32. Assume that an HSS EX10 receiver is connected to “gearbox” logic 
which buffers the 32-bit output of the HSS core into 66-bit blocks. When 
properly aligned, one 64B/66B code word is transferred on each cycle of 
this 66-bit bus. Design logic (Verilog or VHDL) which implements a state 
machine that monitors the output of the gearbox logic, and pulses 
RXxDATASYNC if the codeword is not properly aligned.

33. Design logic (Verilog or VHDL) to implement the “gearbox” logic 
described in Exercise 32. Hint: The logic design is simplified if you 
assume that the input and the output of the logic operate at the same clock 
rate, and that a control signal indicates cycles when new data is available 
on the output. 

34. The autonegotiation protocol defined in Clause 73 for the IEEE 802.3 
Ethernet standard was described briefly in the text. One function of this 
protocol is to advertise which Backplane Ethernet variants are supported 
by a node, and to negotiate which of these variants to use. Suggest a truth 
table which determines which variant to use based on the variants 
supported by this node and the variants supported by the link partner. 
Note that the variant to be used should adhere to the following priority 
order: 10GBASE-KR (highest priority), 10GBASE-KX4, 1000BASE-KX 
(lowest priority).
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35. The training algorithm for the 10GBASE-KR variant of the IEEE 802.3 
Ethernet standard was described briefly in the text. As noted, the standard 
does not define the algorithms which should be employed to determine 
optimal equalizer settings. Create a flow chart suggesting a possible 
algorithm for optimizing the FFE coefficients. (The algorithm can use a 
brute force approach.)

36. Draw a complete end-to-end block diagram of an INCITS T11 Fibre 
Channel link, including: a host chip connected across a backplane to an 
optical PMD, one PMD connected across an optical cable to another 
PMD in a second enclosure, and the PMD in the second enclosure 
connected across a backplane to another host chip. Label the 
interoperability points on this diagram.

37. Assume that the optical PMDs in Exercise 36 use linear optical receivers. 
How does this affect your labeling of the interoperability points?

38. Equations for a 32-bit parallel self-synchronizing scrambler using the 
following polynomial were described in Sect. 4.2.2.3: 
G(x) = x58 + x39 + 1.
Design the logic (Verilog or VHDL) for this scrambler. Add a K_bit 
control signal. When K_bit = “1,” data is not scrambled and the 
scrambler state is reset to “029438798327338”h. When K_bit = “0”, 
data is scrambled and the scrambler state is advanced.

39. Design the logic (Verilog or VHDL) for the descrambler corresponding to 
the scrambler in Exercise 38.

40. The data flow for a Fibre Channel 8GFC transmitter and receiver are 
shown in Figs. 5.25 and 5.26, respectively. The data paths shown are 32-
bits wide throughout. Fibre Channel transmits and receives all Ordered 
Sets on this 32-bit boundary, and requires that data packet length be an 
integral number of 32-bit words. Discuss the merits of this approach in 
relation to the logic complexity of the design.

41. The data flow for a Fibre Channel 8GFC transmitter and receiver are 
shown in Figs. 5.25 and 5.26, respectively. Scrambling in this data flow 
occurs prior to the 8B/10B encoder. Discuss the merits of this hierarchy 
(as opposed to performing 8B/10B encoding and then scrambling the 
encoded symbols) in relation to the spectral characteristics of data 
through the optical devices. 

42. The 10Gbps variants of Fibre Channel are listed in Table 5.20. Which of 
these variants uses the XGXS logic defined in Sect. 5.3.3, and which of 
these variants uses the XFI logic defined in Sect. 5.3.4?

43. Contrast the baud rates for the 10-Gbps Fibre Channel variants listed in 
Table 5.20 with their Ethernet counterparts.
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44. The PCI and PCI-X protocols which were the predecessors for PCI 
Express needed to limit the number of devices on the bus to control 
electrical loading as the frequency was increased. Given the discussion of 
source synchronous busses in Chap. 1, explain why.

45. The PCI Express uses plesiosynchronous clocking and the protocol uses 
Skip Ordered Sets to perform clock justification. When a node receives a 
Skip Ordered Set, it may drop or add one SKP symbol in order to 
compensate for clock frequency differences. Assuming the topology 
diagram in Fig. 5.28, what is the maximum and minimum number of SKP 
symbols in a Skip Ordered Set received by any PCI Express endpoint 
from any other PCI Express endpoint?

46. Given the following packet contents, show the corresponding 
transmission of the TLP (including start and end delimiters) as byte-
striped across 4, 8, or 16 PCI Express lanes.
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h, 

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h, 
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h, 
“1B”h, “1C”h, “1D”h, “1E”h.

47. As noted in the text, PCI Express endpoints must schedule a Skip Ordered 
Set for transmission at least once every 1,538 symbol times. However, if 
this transmission is scheduled immediately after the endpoint has started 
transmitting a packet, then the Skip Ordered Set cannot be transmitted 
until the packet finishes. What is the maximum number of symbol times 
that can occur between Skip Ordered Sets as a result of this behavior? 
What link width does this assume? 

48. Assuming the maximum time between Skip Ordered Sets determined in 
Exercise 47, calculate the minimum size required for the elastic buffers in 
the receiver logic of the PCI Express endpoint.

49. Illustrate the symbol transmission across four PCI Express lanes for each 
of the following Ordered Sets:
• Electrical Idle Ordered Set 
• Skip Ordered Set
• Fast Training Ordered Set
• Electrical Idle Exit Ordered Set

50. Assume that the board designer for a PCI Express node determines that 
reversing the physical wiring of both the transmit and receive lanes will 
reduce the number of board layers and thereby reduce costs. The PCI 
Express protocol logic driving the interface supports the lane reversal 
option. Is it permissible for the board designer to implement this lane 
reversal? Are there any potential impacts to system performance?
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51. A PCI Express lane uses HSS EX10 cores at both the transmitter and 
receiver end of the link:
(a) Describe the sequence of events which causes a PCI Express link to 

transition from an L0 to an L0s power state. 
(b) Describe the sequence of events which causes a PCI Express link to 

transition from an L0s to an L0 power state.
52. Describe which pins on the HSS EX10 transmitter and receiver are 

asserted while the corresponding PCI Express lane are in an L1 or L2 
power state.

53. Compare the transmitter differential amplitude specifications for the 
following:
(a) OIF CEI-11G-LR and Ethernet 10GBASE-KR
(b) OIF SxI-5, Ethernet electrical variants which use the XGXS logic 

defined in Sect. 5.3.3, electrical variants of Fibre Channel 4GFC, and 
PCI Express Gen 1

(c) OIF CEI-11G-SR, OIF CEI-11G-MR, and OIF CEI-11G-LR
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Chapter 6
Reference Clocks 

A significant consideration contributing to the performance of any high- 
speed serial data link is the availability of a stable, low jitter reference clock. 
In this chapter, on-chip clock distribution architectures are discussed, as well 
as the electrical analysis of the clock distribution network. 

6.1  Clock Distribution Network 
When designing a circuit network for distributing the reference clock to 

HSS devices, the following considerations warrant discussion.
• Type of signals (single-ended vs. differential)
• Direct distribution vs. use of an Intermediate Frequency PLL; and
• Any special requirements:

– Skew requirements for transmitter serial data outputs
– Loop timing (as discussed in Sect. 5.1.4)
– Manufacturing test considerations

6.1.1 Single-Ended vs. Differential Reference Clocks
Power distribution is a significant concern on high-density chips using 

submicron fabrication processes. Voltage at any given circuit on the chip 
depends on the current being drawn by the circuit and neighboring circuits, and 
the resistance of the power distribution path. Additionally, as circuits in the 
same vicinity switch states, localized transient noise occurs on the power 
supply network. Power supply decoupling capacitance is often added in the 
chip layout to reduce power supply noise; however, such capacitance is only 
effective at reducing transient noise in the immediate vicinity of the capacitor. 
Steady-state voltage drop and lower-frequency noise components are not 
generally improved by on-chip power supply decoupling.

Critical noise-sensitive analog circuits in HSS cores are often powered from a 
separate analog power supply to reduce the impacts of transient noise. Generally, 
the analog power distribution is localized. The analog power supply input for an 
HSS core is near the circuits which are connected to this power supply, and the core 
input pin is generally connected directly to a chip pin. Unlike these critical analog 
circuits, elements of a clock distribution network are not localized and are scattered 
throughout the chip. Clock distribution circuits are generally powered by the same 
noisy power supply used to supply power to the bulk of the digital logic on the chip. 

The effects of power supply compression on a single-ended signal are 
illustrated in Fig. 6.1, which shows two signals. One signal is illustrated by the 
solid line which swings across the approximate full range of the power supply. 
The other signal is illustrated by the dotted line where the power rail has been 

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 263
© Springer 2008



264 High Speed Serdes Devices and Applications

compressed due to voltage drop in the power distribution network and/or 
transient noise, and the signal amplitude has been reduced accordingly. 
Keeping in mind that the sink device on this signal does not necessarily 
experience the same power supply compression, a fixed switching threshold is 
assumed at approximately half of the uncompressed power supply voltage. 
This switching threshold is illustrated by the horizontal line at 0.6 V. 

When power supply voltage to the circuit is reduced, the circuit switches more 
slowly. Additionally, the midpoint of the signal transition shifts in relation to the 
switching threshold of the sink circuit. As shown in Fig. 6.1, the point at which 
signal transitions intersect the switching threshold is affected, thereby creating 
jitter. This jitter on the reference clock input of an HSS core degrades the jitter 
performance of the transmitter, and degrades jitter tolerance of the receiver. 

Fig. 6.1 Single-ended signals in presence of transient power supply noise

Fig. 6.2  Differential signals in presence of transient power supply noise
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The corresponding effects of power supply compression on a differential 
signal are illustrated in Fig. 6.2. The solid lines in this figure illustrate the true 
and complement legs of a differential signal which is swinging across the 
approximate full single-ended range of each signal leg. The dotted lines illus-
trate the true and complement legs of a differential signal which is experienc-
ing power supply compression and therefore has reduced amplitude. 

Unlike single-ended signals, the downstream differential receiver circuit 
does not have a fixed signal switching threshold. Rather, the sink circuit 
switches based on the crossover point of the true and complement legs of the 
differential signal. As shown in Fig. 6.2, the amplitude reduction of the 
differential signal affects both the true and complement legs of the signal in a 
roughly equal fashion. This shifts the common mode voltage, but the crossover 
point of the signal legs is not affected. 

The power supply noise described above is one form of common mode 
noise. Common mode noise sources affect the true and complement legs of the 
signal equally. Other signals in the chip routed in parallel to the differential 
clock can also cause coupled noise, a significant portion of which is common 
mode noise. Differential buffers have superior noise rejection qualities for 
common mode noise, and therefore coupled noise is less of a concern when 
differential clocks are used.

As the reader may assume from the above analysis, differential clock 
networks are preferred for distributing reference clocks across chips to HSS 
cores. All of the following reasons contribute to this preference:
1. As illustrated by the prior analysis, differential buffers have superior 

noise rejection qualities. Noise rejection is as much as 20 times better in 
the lower frequency ranges than equivalent single-ended circuits.

2. Random noise levels generated by differential buffers are very minimal. 
Common mode noise does not affect switching of the sink device, and 
differential noise is very low.

3. Differential buffers are linear circuits with a relatively constant current 
draw independent of switching state. Therefore, differential buffers do not 
contribute significantly to chip-level noise. (This is unlike single-ended 
clock buffers, where the combination of a high switching factor, the need 
for crisp rise/fall transitions, and high loading of the output pin combine 
to make these buffers significant noise aggressors on the chip.)

6.1.2 Reference Clock Sources
The input to the clock distribution network which drives the HSS core 

reference clocks may either be driven directly from chip I/O pins, or may come 
from an intermediate frequency (IF) phase locked loop (PLL). These two 
options are shown in Fig. 6.3, and are discussed below.
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6.1.2.1 Differential Receivers
The reference clock to the HSS core may be supplied directly from an off-

chip clock source. In such cases, a differential receiver is used to receive the 
external differential signal as shown in Fig. 6.3, and to drive the on-chip clock 
distribution network. In some cases, the differential receiver and clock 
distribution network may be entirely contained in the HSS core with the clock 
inputs of the core connecting directly to chip I/O pads. If there is more than one 
HSS core on the chip which requires connection to the reference clock, then it 
is generally preferable to provide one differential input to the chip, and to 
distribute the clock to the various HSS cores on the chip. The on-chip clock 
distribution network generally includes one or more differential clock buffers 
to redrive the clock as needed to maintain signal integrity.

The disadvantage of directly using the external reference clock is that the 
on-chip reference clock frequency must be the same as the frequency of the ref-
erence clock on the circuit board. The HSS EX10 core described in Chap.2 is 
fairly typical of HSS cores designed for 10Gbps baud rates. The HSSREFDIV 
and HSSDIVSEL[1:0] input pins on this core (see Table 2.1) control the divide 
ratios for clock dividers in the PLL slice. The reference clock must therefore 
be at one of the selectable ratios in the range of one-eighth to one-fortieth of 
the baud rate. (The range for HSS cores designed for lower baud rates is typi-
cally one-fourth to one-twentieth of the baud rate.) Higher reference clock fre-
quencies which use lower PLL divider ratios result in better jitter performance 
for the HSS transmitter, and better jitter tolerance performance for the HSS 
receiver.

Although higher frequency reference clocks may be desirable from the 
viewpoint of HSS jitter performance, distributing these higher frequencies on 
the circuit board is not desirable from the standpoint of electromagnetic 
Interface (EMI). Most systems are required to meet government standards for 
EMI generation. (In the United States, these standards are set by the Federal 
Communications Commission.) The EMI contribution for a signal is related to 

Fig. 6.3  Reference clock network options
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its frequency and the length over which the signal is driven. Higher-frequency 
clock signals distributed across the circuit board make a significant contribu-
tion to the EMI of the system, and therefore it is desirable to use lower frequen-
cies on the circuit board. 
6.1.2.2 Intermediate Frequency (IF) PLL

An alternative configuration uses an on-chip, low-jitter PLL to step up the 
frequency of the external reference clock source. As shown in Fig. 6.3, the chip 
I/O pads connect directly to the IF PLL, and the output of this PLL drives the 
on-chip clock distribution network. This allows the system to distribute a 
lower-frequency reference clock on the circuit board, while still providing a 
higher-frequency reference clock to the HSS cores. The overall jitter perfor-
mance of the clock distribution is improved using this topology, and overall 
EMI is reduced.
6.1.2.3 Multiple Baud Rates

The same reference clock frequency and clock distribution network may 
feed HSS cores that are operating at different baud rates. Figure 6.4 shows an 
example where the same reference clock drives two HSS EX10 cores operating 
at different baud rates. An external 106.25MHz reference clock is stepped up 
to 531.25MHz by an IF PLL and then is distributed to two HSS EX10 cores.

The HSSDIVSEL inputs of the HSS EX10 cores are set differently. For the 
first core:

HSSDIVSEL[1:0] = 01, and 
HSSREFDIV=0. 

This clock divider selection causes the HSS PLL slice to step up the 
531.25MHz clock by a factor of 20, resulting in a 10.62Gbps baud rate. 

Fig. 6.4  Example of single reference clock for multiple baud rates
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For the second core: 
HSSDIVSEL[1:0] = 00, and 
HSSREFDIV=0. 

This selection causes the HSS PLL slice to step up the clock by a factor of 
16, resulting in an 8.5Gbps baud rate.

Additional flexibility exists if multiple IF PLLs are used. The clock divid-
ers of the IF PLLs provide additional multiplier options, including fractional 
multiplier ratios. A single external reference clock can feed one or more 
IF PLLs configured for different multiplier ratios, and thereby be used to gen-
erate a wide variety of baud rates. 

6.1.3 Special Timing Requirements
Some applications have requirements which drive the need for special con-

siderations when designing the reference clock distribution network. These 
considerations are discussed below.
6.1.3.1 Transmit Data Skew

Skew was defined in Sect. 4.1.2.5 as the constant portion of the difference 
in the arrival time between the data of any two in-band signals. This can be 
visualized as jitter on one signal relative to the other signal (used as a reference 
signal for this measurement) at DC (0 Hz). Skew results from differences in the 
propagation delay of the reference clock to various HSS cores on the clock 
distribution network, differences in clock routing to various transmitter or 
receiver slices within the HSS core, and signal time-of-flight differences due 
to routing of the signals through the package and circuit board.

Skew becomes significant to the reference clock distribution network in 
cases where a multibit interface is implemented by more than one HSS core, 
and a maximum skew is specified between various signals of the interface. In 
such cases, the clock distribution network must be balanced to minimize clock 
skew such that the clock arrives at all of the HSS cores at the same time. 
Reference clock skew is one component contributing to skew between bits of 
the transmit data; the chip designer must determine the skew budget allocation 
for the various skew contributors such that the overall maximum skew specifi-
cation is met for the transmitted signals.

For applications where there is no skew specification, or where all bits of 
the applicable interfaces are driven by the same HSS core using a common 
PLL slice, there is no need to balance the reference clock distribution network.
6.1.3.2 Loop Timing

Loop timing was discussed generally in Sect. 4.1.3.1, and in Sect. 5.1.4 as 
it relates to the SONET standard. Devices using loop timing are required to 
retransmit data at the same frequency as received data. OIF SPI-S interfaces, 
as described in Sect. 5.2.3, also have a requirement to transmit status channels 
at the same frequency as received data.
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To support these requirements, the HSS core must provide a differential 
clock output which is recovered from the receive data and has acceptable jitter 
characteristics to support its use as an input to a PLL. The RXxRCVC16[T,C] 
outputs of the HSS EX10 core, as defined in Table 2.3, meet these requirements 
and support the implementation of loop timing. An example of the resulting 
HSS core interconnections is shown in Fig. 6.5. The reference clock for the 
HSS core used to recover the receive clock is driven by an external clock 
source through an IF PLL. The differential RXxRCVC16 clock output of this 
core is connected to an additional IF PLL, and the output of this PLL drives the 
HSSREFCLK input of the HSS cores used to transmit loop-timed data.

It is important to ensure that the HSS core’s RXxRCVC16 clock output is 
not connected to the same core’s HSSREFCLK input. Such a feedback path 
would not result in stable system operation.

Some applications may require a loop timing mode to be programmable. In 
such cases, a differential multiplexor is added to drive the HSSREFCLK of the 
transmitting HSS core, and selected between the recovered RXxRCVC16 
clock output and the IF PLL clock source. This multiplexor may be 
implemented either as separate logic outside of the HSS core (as would be the 
case for the HSS EX10), or may be incorporated into the HSS core design.
6.1.3.3 Spread Spectrum Clocks

Another technique for EMI reduction makes use of spread spectrum clock 
sources. Such clock sources produce a reference clock where the frequency is 
deliberately swept over a frequency range of up to a few thousand parts-per-
million around the nominal frequency value. This reduces the amplitude of the 
EMI energy peaks at the nominal frequency, and makes it easier for system 
vendors to pass the corresponding EMI tests. 

If spread spectrum clocking is being used, any PLLs driven by this clock 
must support the use of a spread spectrum clock. PLLs which do not support 
such clocks will loose lock as the frequency of the reference clock input 

Fig. 6.5  Example of reference clock connections for loop timing
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changes. The IF PLL and the PLL in the HSS core must both support the spread 
spectrum range being generated by the external clock source.

Some protocol standards, such as Serial ATA (SATA), require use of 
spread spectrum clocks [2].

6.1.4 Special Test Requirements
As a final consideration for reference clock distribution network topolo-

gies, note that the manufacturing test requirements for the HSS core may 
depend on a PLL to provide reference clocks at the necessary frequencies to 
conduct at-speed testing. The clock frequencies required to test the HSS core 
may be too high to be supplied directly by inexpensive manufacturing test 
equipment. Even if the application does not require an IF PLL, it may be 
necessary to add a multiplexor to allow selection of a clock from a PLL for 
executing the manufacturing test sequence. 

An example of this is shown in Fig. 6.6. As shown, a test mode selection 
signal allows the reference clock to be driven by a PLL for manufacturing test 
purposes. For normal operation, the reference clock is driven by an off-chip 
source through a differential receiver.

6.2  Clock Jitter
Jitter is discussed more generally as it relates to serial link operation in 

Chap.8. This section discusses jitter specifically in the context of clock 
signals.

Clock jitter is an important signal integrity concern which impacts the 
performance of the serial link. The amount of jitter present on a serial link is 
related to the achievable bit error rate (BER). If the jitter on a serial link is 
excessive, data errors result and overall link performance is degraded, possibly 
to unacceptable levels. Jitter generation is therefore a concern for PLLs in the 
system, including both IF PLLs and high-frequency PLLs embedded in the 
HSS core.

Fig. 6.6  Example of additional PLL for manufacturing test
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6.2.1 Jitter Definitions
The topic of jitter was first introduced in Sect. 1.4.3 of this text, and is 

defined more formally in Sect. 8.2 as the deviation in the arrival time of a 
signal from its ideal or expected arrival time. Figure 6.7 illustrates timing 
variation of the edges of a clock signal when compared to an ideal clock with 
no jitter. The difference between a clock edge tn and the corresponding edge of 
an ideal clock is the jitter associated with the clock edge. This jitter can be 
quantified in terms of phase jitter, period jitter, or cycle-to-cycle jitter.
6.2.1.1 Phase Jitter

An ideal clock signal as shown in Fig. 6.7 has no jitter, and therefore every 
clock cycle has the same clock period. Using the notation T to designate this 
period, and assuming that edge T0 occurred at time 0, then Tn = n T, and the 
difference between any two consecutive edges Tn − Tn-1 is Tcyc. The variation 
of the actual clock edge from the ideal clock edge is the phase jitter of the clock 
edge and is expressed mathematically as:

Jphase (n) = tn −  nTcyc (6.1)

where n designates a specific clock edge, and Jphase(n) is the absolute jitter in 
units of time for clock edge n. 

Note that the value of phase jitter is absolute and accumulates over time. 
This accumulation does not occur without bound. Assume the range of phase 
jitter values for Jphase(n) is defined as + Jphase. Phase jitter is defined relative 
to the ideal clock which has no jitter and therefore does not accumulate any 
deviation. Therefore, on any clock edge n, the maximum deviation from the 
ideal clock edge is still within the range + Jphase. Jitter on prior clock edges 
have a combination of positive and negative jitter values which accumulate 
such that the maximum deviation remains within this range.

This can be further visualized by examining Fig. 6.7. The clock edge at tn 
deviates from the ideal clock by +jitter, resulting in a clock cycle period of:

tn −  tn-1 = Tcyc + jitter

Fig. 6.7  Jitter on a clock signal
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Assume that the value of jitter associated with this deviation is +Jphase. 
Given the deviation associated with this clock cycle, the next clock cycle 
cannot have the same period because this would cause the next edge to deviate 
by more than +Jphase. Given that:

tn - tn-1 = Tcyc + Jphase 
the next clock cycle is limited such that:

Tcyc - 2 Jphase < tn+1 - tn < Tcyc
Prior cycle times continue to accumulate such that phase jitter remains 

within the proscribed bounds. It should be clear that restricting the accumula-
tion of phase jitter is necessary if the clock is to have the specified frequency 
(and clock period). If phase jitter were allowed to accumulate without bound, 
then the average cycle time of the clock would differ from Tcyc without bound. 
If this occurs, then by definition the clock frequency is not 1 / Tcyc .
6.2.1.2 Period Jitter

Period jitter is the deviation of the period of a given clock cycle from that 
of an ideal clock cycle. A clock cycle is defined by two consecutive clock 
edges: tn and tn-1 . The period of the corresponding clock cycle is therefore: 
tn - tn-1 , and the period jitter is defined mathematically as:

Jperiod(n) = (tn − tn-1) −  Tcyc (6.2)
While phase jitter is an absolute value that accumulated mathematically 

over time, period jitter is a relative value determined by the jitter of two con-
secutive clock edges. Period jitter may also be calculated by the equation:

Jperiod(n) = Jphase(n) −  Jphase(n − 1) (6.3)
Assume the range of phase jitter values for Jphase(n) is defined as + Jphase, 

where Jphase is the maximum phase jitter for a given clock. The maximum 
period jitter Jperiod is bounded as follows:

Jperiod = 2 x Jphase (6.4)
where the range of jitter values for Jperiod(n) is defined as + Jperiod. This 
maximum period jitter results when the phase jitter of one clock edge is +Jphase 
followed by the next clock edge having a phase jitter of − Jphase  (or vice versa). 
This corresponds to a frequency of jitter variation (fjitter ) such that:

fjitter = 0.5 fclock = 0.5 / Tcyc
This is improbable in a real system. More realistically, phase jitter varies 

based on a periodic jitter function with frequency components significantly 
less than the clock frequency. 

Assume a clock signal for which the phase jitter variation is represented by 
a sinusoidal function such that:

Jphase(n) = A sin (2π f jitter tn) (6.5)
where A is the amplitude of the phase jitter. 
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Figure 6.8 compares the phase jitter to the period jitter for the case of:
fjitter = 0.1 fclock = 0.1 / Tcyc

As is shown, the amplitude of the period jitter is less than that of the phase 
jitter, and can be shown to have a peak amplitude of:

For the case of fjitter = 0.5 fclock, (6.6) reduces to (6.4.)
6.2.1.3 Cycle-to-Cycle Jitter

Cycle-to-cycle jitter is the deviation of the period of a given clock cycle 
from that of the prior clock cycle as defined by:

Jcycle(n) = Jperiod(n) −  Jperiod(n − 1) (6.7)
Clock cycles are defined by consecutive clock edges: tn and tn-1 , and tn-1 

and tn-2. The period deviation of these two consecutive clock cycles is
(tn −  tn−1 ) −  (t n −1 −  tn−2 ) 

and the cycle-to-cycle jitter may also be calculated using the equation:
Jcycle(n) = (tn −  2tn − 1 + tn − 2) (6.8)

Assuming the range of period jitter values for phase jitter and period jitter 
are designated using the notation in (6.4), the maximum cycle-to-cycle jitter 
Jcycle is therefore bounded as follows:

Jcycle = 2 x Jperiod = 4 x Jphase (6.9)
where the range of jitter values for Jcycle(n) is defined as + Jcycle. Maximum 
period jitter results when the phase jitter of one clock edge is +Jphase, followed 
by the next clock edge having a phase jitter of − Jphase , followed by the next 

Fig. 6.8  Comparison of clock phase, period, and cycle-to-cycle jitter
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clock edge having a phase jitter of +Jphase (or vice versa). As was the case for 
(6.4), this requires an improbable frequency of jitter variation. Assuming 
sinusoidal variation of phase jitter as was defined in (6.5), the corresponding 
cycle-to-cycle jitter can be shown to have a peak amplitude of:

Figure 6.8 compares cycle-to-cycle jitter to the phase and period jitter of 
this clock. For this example, the amplitude of the cycle-to-cycle jitter is further 
reduced from that of the period jitter. Equation (6.10) reduces to (6.9) for:

fjitter = 0.5 fclock

6.2.1.4 Phase Noise
The phase jitter described by (6.1) in the time domain is the equivalent of phase 
noise in the frequency domain. Consider the time domain equation for a 
sinusoidal signal:

v(t) = Vmaxsin(ω t + θ) (6.11)
where v(t) is the instantaneous time domain voltage of the signal, Vmax is the 
amplitude of the signal, * is the frequency (in rad s-1), and � is the initial phase 
at time zero. For a nonideal clock source, the � value includes a noise 
component which varies according to a probability distribution. This noise on 
the phase component tends to shift the sinusoidal waveform either left or right. 
The waveform in Fig. 6.9 illustrates this variation, comparing a sinusoidal 
signal with phase noise to an ideal signal. It should be obvious from the figure 
that the phase noise causes phase jitter in the time domain.

Fig. 6.9  Phase noise on a sinusoidal signal
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In the frequency domain, phase noise appears as modulation of the carrier 
frequency. A typical power spectrum for a sinusoidal oscillator is illustrated in 
Fig. 6.10. While an ideal oscillator would have a single spectral line at the 
carrier frequency f0, real devices have phase noise which distributes this power 
to adjacent frequencies and results in sidebands. 

Figure 6.10 illustrates one sideband at frequency f0 + fm . The phase noise at a 
given sideband offset is defined as the ratio of the power in a 1-Hz bandwidth 
centered at f0 + fm to the total power of the carrier. The phase noise is generally 
specified in units of dBcHz-1, where dBc is the ratio in dB relative to the carrier.

The noise power in the sidebands can be converted to random jitter in the 
time domain. The phase jitter Jphase(n) in (6.1) was defined as the difference 
between the time of the zero crossing of the actual signal to an ideal reference 
signal with period Tcyc . Jphase(n) for signal edge n can be expressed in terms 
of the phase noise as:

where �n is the phase noise, in radians, for the signal at edge n. The RMS value 
of the phase jitter may therefore be derived from the phase noise �(n) by 
summing over the phase noise over N edges and allowing N to approach ∞ :

Fig. 6.10  Phase noise in the frequency domain
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The summation in (6.13) may be approximated by [5]:

where the limit represents the average power of �n . Parceval’s theorem may 
be used to equate this integral to the area under the curve for the power 
spectrum in Fig. 6.10:

where Sn( f ) denotes the noise power in the sideband centered at f . 
The above description of phase noise for sinusoidal signals is sufficient to 

illustrate the relationship between phase noise and phase jitter. Digital clock 
signals are square waves, not sinusoidal waveforms, and may contain both RJ 
and DJ phase components. A more generalized and in-depth treatment of this 
subject is found in [4] and [5]. 

6.2.2 Jitter Effects
Clock jitter on the high-speed clocks within the HSS core degrades 

performance of the serial link, and additionally affects timing analysis of logic 
connected to the HSS core.
6.2.2.1 Serial Link Performance

Any jitter on the high-speed clock used to clock flip-flops in the transmitter 
driver circuit results in jitter on the transmitter serial data output. It is necessary 
to minimize clock jitter to minimize jitter on the serial data.

Jitter on the high-speed clock used for the clock and data recovery (CDR) 
circuit in the receiver degrades link performance. The function of the CDR 
circuit is to choose a sample point for the received serial data signal which is 
approximately in the center of the data eye. Jitter on the high-speed clock 
reference creates uncertainty in the sample point which reduces the jitter 
tolerance of the receiver, and therefore increases the bit error rate of the link. 
Obviously, it is desirable to minimize clock jitter to improve jitter tolerance 
and reduce bit errors.
6.2.2.2 Digital Logic Timing

The high-speed clocks used by the transmitter and receiver slices 
(TXxDCLK and RXxDCLK on the HSS EX10 core) are divided to produce 
parallel data clock outputs used by logic driving or latching data to/from the 
HSS core.

Jitter on the high-speed clocks accumulate and result in jitter on the parallel 
data clocks. Although the parallel data clocks accumulate jitter over multiple 
cycles of the high-speed clock, this jitter must still accumulate per the 
description in Sect. 6.2.1.1. Jitter on the parallel data clocks is therefore 
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consistent with the Jphase, Jperiod, and Jcycle jitter ranges of the corresponding 
high-speed clocks.

Jitter on parallel data clocks must be taken into account when analyzing 
timing of digital logic which uses these clocks. The minimum clock period is

Tmin = Tcyc − Jperiod (6.16)
Any given cycle of the parallel data clock may have a period of Tmin, and 

propagation delays associated with the digital logic must allow proper 
operation given this cycle time. Accounting for clock jitter in timing analysis 
is described further in Sect. 10.3.1.

6.2.3 PLL Jitter
As noted earlier in this chapter, IF PLLs are widely used to generate 

reference clock inputs to HSS cores. In addition, most HSS devices contain 
PLL slices used to step up the reference clock frequency to a baud rate (or half 
baud rate) clock.

A block diagram of a PLL is shown in Fig. 6.11(a). The PLL consists of a 
phase detector, a low-pass filter (LPF), a voltage controlled oscillator (VCO), 
and a divider (or multiplier) circuit used to generate the feedback clock. The 
divider ratio determines the ratio between the frequency of the clock output 
and the frequency of the reference clock input.

Phase jitter is a key parameter for evaluating the performance of the PLL 
circuit. Phase jitter may result from the VCO operation. Additionally, phase 
jitter may occur on the clock output as the result of jitter on the reference clock 
input which is within the tracking bandwidth of the PLL.

Fig. 6.11  PLL block diagram and frequency domain model

Reference
Clock Input Phase 

Detector
Low-Pass 

Filter

Voltage
Controlled
Oscillator

Clock
Output

1/N
Divider

(a) PLL Block Diagram

(b) Frequency Domain Model

�i �o�e
+Reference

Clock Input Kd
Clock
OutputF(s) K0/s

+
_



278 High Speed Serdes Devices and Applications

6.2.3.1 Jitter Transfer Function
A PLL frequency domain model is shown in Fig. 6.11(b) and corresponds 

to the block diagram in Fig. 6.8(a). This model is specified in the s-domain 
using the Laplace transforms of the equivalent time domain functions. The 
low- pass filter has been represented by an unspecified function F(s) in this 
model. The corresponding PLL system transfer function is

The derivation of the above transfer function may be found in [4], along 
with analysis of the magnitude and phase characteristics for various F(s) 
functions. 

The discussion in this text is limited to some key metrics used to 
evaluate the PLL which are based on the plot of the magnitude of (6.17). 
The general form of this plot is shown in Fig. 6.12, and is primarily 

characteristics of this curve are of significance: the amplitude of the jitter 
peaking, and the frequency at which the curve crosses the -3-dB 
magnitude, called the jitter transfer bandwidth ( fbw ). These characteristics 
are discussed further in the next few sections.
6.2.3.2 Jitter Tolerance Mask

HSS cores frequently use a PLL circuit as part of the CDR circuit in the 
receiver. (The HSS EX10 core uses a phase rotator circuit instead of a PLL.) 
In this application, the PLL locks to the frequency of the serial data and 
generates the sampling clock for the receiver. 

Fig. 6.12  PLL jitter transfer function
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determined by the low-pass filter (LPF) transfer function F(s). Two 
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Fig. 6.13  Jitter tolerance mask example
An example of a jitter tolerance mask is shown in Fig. 6.13. Jitter tolerance 

testing using this mask is discussed in Sect. 7.5.2.1, and the significance of 
sinusoidal jitter to jitter tolerance testing is generally discussed in Sect. 8.2.6. 
The current discussion concentrates on the correspondence between characteris-
tics of the curve in Fig. 6.13 and the LPF function in Fig. 6.12.

The jitter tolerance mask in Fig. 6.13 has a corner frequency at 
“baud/1667”; above this frequency the jitter is filtered by the CDR circuit, and 
below this frequency the jitter is tracked by the CDR. This corner frequency 
corresponds to the fbw corner frequency of the LPF in Fig. 6.12.

Below the corner frequency in Fig. 6.13, the slope of the curve is specified 
as “20db per decade.” This corresponds to the slope of the curve in Fig. 6.12 
above the fbw corner frequency. The slope of this curve is determined by the 
order of the LPF implementation. A second-order filter is commonly used to 
produce a slope of 20dB per decade.

Jitter peaking is an important design parameter, but is not specifically 
addressed by Fig. 6.13. Excessive jitter peaking causes jitter amplification, 
causing overcorrection of the CDR sampling point and increasing bit errors 
in the system. However, overdamping to reduce or eliminate jitter peaking 
results in a longer time required for the PLL to lock (i.e., data acquisition 
time).
6.2.3.3 Jitter Transparent Applications

Some system applications contain elements which use loop timing to 
retransmit data without any significant filtering of jitter on the input. Consider 
the block diagram shown in Fig. 6.14. The CEI-11G-SR variant of the OIF CEI 
standard[1] is used in the reference model shown in Fig. 5.7. The compliance 
points in Fig. 6.14 are consistent with the reference model in Fig. 5.7. 

The egress data conditioner and the ingress data conditioner devices in this 
block diagram are typically optical transmitter and receiver devices which 
perform an electrical-to-optical and optical-to-electrical conversion, and 
retransmit data using a loop timing architecture. If the sample clock of the CDR 

© 2008 Optical Internetworking Forum. Used with permission.
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is used directly to retransmit data without using an additional PLL for jitter 
clean-up (as suggested by the loop timing description in Sect. 6.1.3.2), then any 
jitter on the input to the conditioner device is transferred to the output. This is 
called a jitter transparent application.

The jitter in jitter transparent applications accumulates as the data passes 
through the devices between the TE and RI compliance points. Interface 
standards for jitter transparent applications must allocate the jitter that may be 
contributed by each element, and must specify characteristics of the jitter 
transfer function for jitter transparent conditioner elements.

Although the data conditioner elements in Fig. 6.14 do not filter the 
recovered clock, there is still an inherent bandwidth associated with the CDR 
in the receiver. This bandwidth must comply with appropriate standards to 
ensure interoperability. Also, jitter peaking is specified to ensure stability of 
the overall system. 

An example of these specifications is shown in Table 6.1. This table applies 
to the ingress signal conditioner for telecom applications which must comply 
with [3], and is driving a CEI-11G-SR link as specified in [1]. Other tables 
in [1] specify requirements for the egress signal conditioner for telecom appli-
cations, and specify requirements for signal conditioners that must comply 
with various datacom applications. The jitter peaking requirements in this table 
are intended to specify both the maximum amplitude of the jitter peaking, and 
the minimum frequency at which the jitter peaking can start to increase the 
magnitude of the transfer function.

Table 6.1  Telecom signal conditioner, ingress direction

Characteristic Symbol Condition Min. Typ. Max. Unit

Jitter transfer bandwidth BW Data,a 8 MHz

Jitter peaking Frequency <120kHz 0.03 dB

Frequency >120kHz 1 dB
aPRBS-31, OC-192/SDH-64 sinusoidal jitter tolerance mask
©2008 Optical internetworking forum. All rights reserved. Used under permission

Fig. 6.14  Block diagram of a jitter transparent application
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6.2.3.4 Intermediate Frequency PLLs
The jitter trade-offs associated with an IF PLL are different from PLLs used 

as part of CDR circuits. In the latter case, the PLL must be designed to respond 
relatively quickly to changes in the frequency and phase of the serial data input. 
Conversely, IF PLLs typically have a continuous clock input at a stable fre-
quency. Therefore, IF PLLs are generally designed with a much lower fbw 
corner. This has the effect of filtering any jitter which does occur on the 
reference clock above this corner frequency, and thereby results in a stable, 
low-jitter clock source.

Spice simulations are used to determine various analog characteristics of 
the clock signal as it arrives at the HSS cores. 

6.3  Clock Floorplanning
The chip floorplan must consider the relative placement of IF PLL and HSS 

devices on the chip. Once this is determined, the physical design of the clock 
tree must be determined, and the clock must generally be prewired. A poorly 
designed clock tree will introduce signal integrity impairments. Likewise, 
clock wiring with excessive bends and vias will also impair signal integrity.

6.3.1 Clock Tree Architecture
The relative placement of IF PLL and HSS devices on the chip determines 

the distance over which the clock must be distributed. Differential clock 
buffers are typically used to redrive clock signals between the clock source and 
the HSS cores. However, there are practical limits on the capacitive load which 
can be driven by these buffers. Excessive load degrades signal amplitude and 
slew rate. In addition, driving the clock through an excessive number of stages 
results in excessive duty cycle distortion as will be described in Sect. 6.4.2. As 
the clock frequency increases, the impact of these factors on signal integrity of 
the clock increases. Chip floorplanning must therefore determine: 
• The placement of the IF PLL and HSS devices on the chip
• The number of buffer levels in the clock tree that are needed to drive the 

clock from the IF PLL to the HSS cores
• Fanout of each clock buffer stage

Table 6.2 Example of clock buffer max. load/levels vs. clock frequency

Frequency
(MHz)

Max load
(fF) Max. levels Frequency

(MHz)
Max load

(fF) Max. levels

751–800 1080 10 451–500 1450 16
701–750 1130 12 401–450 1540 16
651–700 1180 14 351–400 1650 16
601–650 1230 14 301–350 1800 16
551–600 1300 16 0–300 1950 16
501–550 1370 16
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The silicon vendor may provide characterization information regarding the 
drive capabilities of the clock buffer which may be used as a first-order 
approximation in designing the clock tree. Table 6.2 specifies the maximum 
load and maximum number of stages for an example of a differential clock 
buffer. This specification is provided as a function of the clock frequency.

The maximum load specification limits the length of the wire which may 
be driven by the clock buffer. For example, using the specification in Table 6.2, 
assume a clock buffer output is driving a wire which is connected to a single 
clock input. Furthermore, assume:
• The clock frequency is 375MHz
• The capacitive load due to the clock buffer output pin is 300fF
• The capacitive load due to the clock buffer input pin is 300fF
• The capacitive load of a wire is 292 fFmm1.
Given this clock frequency, the maximum load that can be driven by the clock 
output is 1,650 fF. Since the output pin of the driving buffer contributes 300 fF, 
and the input pin of the downstream buffer contributes another 300 fF, only 
1,050 fF of this can be due to the wire. The maximum length of this wire is 
therefore: 1,050fF/(292fFmm–1) = 3.6mm.

The above example assumed a clock buffer driving a fanout of one. If the 
clock source is supplying a clock to more than one HSS core, the clock tree 
must often be constructed such that the clock buffer drives more than one 
buffer (or HSS) input. As the fanout is increased, the length of the wire from 
the buffer output to any of the loads is reduced. Consider that the above 
example is modified such that the clock buffer is driving the clock inputs of 
two buffers. Given the buffer can drive 1650fF, after allowing for load 
associated with the two inputs, only 750fF of load can be due to the wire. This 
corresponds to a wire length of: 750fF / (292fFmm–1) = 2.57mm.

Note that this wire length indicates the total wire length that can be driven. 
Assume that the clock signal wiring from the above example is split at the 
output of the clock buffer, with one wire going to one buffer input in one 
direction, and another wire going to another buffer input in the opposite 
direction. The sum of these wire lengths cannot exceed 2.57mm.

As can be surmised from this example, the number of clock buffers in the 
clock tree and the placement of these buffers must be carefully planned to 
ensure the clock can be driven over the required distance to all of the HSS 
cores. Once elements of the clock tree have been placed on the chip and wired, 
signal integrity is analyzed for the actual layout as described in Sect. 6.4.

6.3.2 Clock Tree Wiring
Once PLLs, HSS cores, and clock buffers have been placed on the physical 

layout of the chip, the clock network is prewired. The true and complement 
legs of the signal must always be routed parallel to each other, otherwise the 
common mode noise rejection property of differential signals is negated. Also, 
any significant mismatch in length or load results in substantial DCD.
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True and complement signal wiring is illustrated in Fig. 6.15. In addition to 
the clock signal wires, shield wires connected to an AC ground are routed in 
adjacent tracks. Wire widths and spacing is carefully selected to minimize 
signal impairments and control the transmission line impedance. 

6.4  Signal Integrity of the Clock Network
The run length of clock traces in the reference clock distribution network, 

the number of clock buffers in the network, and the number of HSS cores 
which can be driven from a single IF PLL source impact the signal integrity of 
the reference clock. Spice, an industry standard circuit simulation tool, is 
typically used to check the analog characteristics of the differential clock tree 
and the propagation of the clock signal through the differential clock buffers 
and wire segments. 

6.4.1 Analog Signal Levels and Slew Rates
Each leg of a differential signal can be viewed individually as a single-

ended signal. The rate of change of voltage of this signal is related to the 
current that can be sourced by the clock buffer, and the capacitance being 
driven. This relationship is defined by:

where dV is the change in voltage, I is the current sourced by the clock driver, 
C is the lump sum capacitance of the wires and input circuits connected to the 
driver, and dt is the change in time. 

The value of I is primarily determined by the size of the transistors used in 
the clock driver, and is a fixed value for a given clock buffer. According to 
(6.18), as C increases, the slew rate of the signal increases. This in turn can 
limit the differential amplitude ( Vdiff ) of the signal as shown in Fig. 6.16. The 
signals of the “1× Clock Waveform” in this figure has sufficient time to 
transition to the maximum signal amplitude. However, at four times the 
frequency (“4× Clock Waveform”), the clock signals only have time to 
transition across a fraction of the dynamic range. Increasing C (thus increasing 
the slew rate) for a fixed frequency has the same affect. In addition to reducing 
the differential amplitude, large values of C can also impact the Vhi and Vlo rail 
voltages of the signal, and can shift the common mode voltage ( Vcm ).

Fig. 6.15  Parallel wiring of differential clocks
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Clock signals must meet specifications for analog signal levels and slew 
rates at the input of each clock buffer in the clock distribution network, as well 
as at the reference clock inputs to the HSS cores. Rail voltages beyond their 
maximum/minimum limits and excessive Vdiff levels can cause distortion of 
the signal. Insufficient Vdiff levels, shifts in Vcm, and excessive slew rates can 
introduce duty cycle distortion and random jitter. The following subsections 
provide more detailed definitions for each of these signal parameters, and 
provide examples of measurements from Spice simulations.
6.4.1.1 Input Signal Levels

Each leg of a differential signal swings between a high and a low rail 
voltage ( Vhi and Vlo respectively). For the first of the measured differential 
signals shown in Fig. 6.17, these levels correspond to:

Vhi = approximately 1,300mV
Vlo = approximately 620mV

resulting in a dynamic range of 679mV. The second signal shown in this figure 
has a dynamic range of 667mV.
6.4.1.2 Differential Amplitude

The differential amplitude ( Vdiff ) is defined as:
 Vdiff = 2 ( Vhi −  Vlo ) 

where Vhi and Vlo are high and low rail voltages of the signal, respectively, as 
defined previously. This amplitude is generally expressed in units of millivolts 
peak-to-peak differential (mVppd), or alternatively in volts peak-to-peak 
differential (Vppd). For the differential signals in Fig. 6.17, Vdiff equals 1,358, 
and 1,334 mVppd, respectively. 

Differential receivers require Vdiff be constrained within specified limits 
order to ensure circuits have sufficient input signal amplitude to provide an 
adequate signal to noise ratio, and to ensure the receiver input is not overdriven 
(which may result in nonlinear distortion). Vdiff must be checked to ensure it is 
within specified ranges at the input to every circuit in the clock distribution 
network, including the inputs of both clock buffers and HSS cores.

Fig. 6.16  Effect of slew rate on maximum amplitude
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Fig. 6.17  Example of input level measurements

6.4.1.3 Common Mode Voltage
Common mode voltage ( Vcm ) is the average voltage on any one leg of a 

differential signal pair. By definition:
 Vcm = (Vhi + Vlo) / 2

where Vhi and Vlo are high and low rail voltages of the signal, respectively, as 
defined previously.

Since the true and complement legs of the signal are always driven to 
opposite rails, Vcm may also be defined as the average voltage of the two legs 
of the differential signal. Figure 6.18 shows an example of a differential signal 
and its corresponding common mode voltage. In this example, the common 
mode voltage is 952.92 mV.

Differential receivers require Vcm be constrained within specified limits to 
ensure circuits are within their linear operating ranges. A Vcm value outside of 
the specified limits may cause transistors to saturate and reduce the dynamic 
range of the signal swing. This would reduce the resulting differential 

(6.20)
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amplitude of the signal output. Vcm must be checked to ensure it is within 
specified ranges at the input to every circuit in the reference clock distribution 
network, including the inputs of both clock buffers and HSS cores.
6.4.1.4 Signal Rise/Fall Times

Rise time ( trise ) is the time required for a signal to transition from a 
specified low value to a specified high value. Fall time ( tfall ) is the time 
required for a signal to transition from a specified high value to a specified low 
value. The term slew rate is also used to refer to the rise and fall times of 
signals.

Rise and fall times are generally measured from some percentage of the low 
value to some percentage of the high value (or vice versa). For differential 
signal shown in Fig. 6.19, the rise time transition is 0.12ns as measured from 
the 10% to 90% points of the signal swing. The corresponding fall time is also 
0.12ns. 

Slow slew rates create a larger window of uncertainty as to exactly when 
the receiver circuit detects the signal crossover and switches states. This 
degrades the jitter performance of the circuit. On the other hand, excessively 
fast slew rates generate noise in surrounding circuits. Limits may be specified 
at various circuit inputs for either maximum or minimum slew rates. Slew rates 
must be checked to ensure they are within specified ranges at the input to every 
circuit in the reference clock distribution network, including the inputs of both 
clock buffers and of HSS cores.

6.4.2 Duty Cycle Distortion
The duty cycle of a signal is defined as:

 Duty cycle = Tpwh / Tcyc
where Tpwh is the pulse width high duration, and Tcyc is the clock cycle time or 
clock period. Duty cycle is generally expressed as a fraction or percentage.  A 
perfect square wave has a duty cycle of 50%. 

Duty cycle distortion (DCD) is a type of jitter which may result from either 
unequal rise/fall times of signals, and/or from a DC offset between the two legs 
of the differential signal pair. This type of jitter is described further Sect. 8.2.2.1. 
DCD can accumulate in the clock distribution network as illustrated in 
Fig. 6.20. This figure shows an IF PLL driving a clock distribution network 
consisting of two stages of clock buffers. 

For the clock buffers in this example:
trise > tfall

and the buffer output begins to transition when the input crosses the signal 
midpoint. 
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Fig. 6.18  Example of common mode voltage measurements

Fig. 6.19  Example of rise and fall time measurements
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At point (1), the output of the IF PLL has a 50% duty cycle. However, the 
slower trise transition of the first clock buffer reduces the duty cycle of the 
output at point (2). The slower trise transition at point (2) delays the start of the 
transition of the output of the second clock buffer at point (3), and the duty 
cycle at point (3) is thus reduced over that of point (2). If additional stages are 
added to this clock distribution network, the duty cycle of the clock would 
continue to be reduced with each successive stage. At some point the signal 
output of the clock buffer would not have time to swing across the full dynamic 
range, and may not switch at all. 

The clock signal must meet specifications for duty cycle at the input to each 
clock buffer in the clock distribution network, as well as the reference clock 
inputs to the HSS cores driven by the network. 

6.4.3 Differential Clock Analysis Methodology
The clock analysis methodology must ensure the reference clock distribu-

tion network provides clock signals to all of the HSS cores which meet the 
required analog characteristics necessary to guarantee proper low-jitter 
operation of the cores. 

The basic flowchart for performing analysis of the clock network is shown 
in Fig. 6.21. The input to this flow is the chip layout, including a fully wired 
reference clock distribution network. First, circuit parasitics are extracted from 
the chip design for both best case and worst case process conditions using the 
appropriate parasitic extraction software (assumed to be IBM ChipEdit in the 
figure). These clock net parasitic values are then used to build Spice decks and 
used to run Spice simulations. Results must be verified to ensure conformance 
to HSS core requirements. If analog signal characteristics are not within 
specified ranges, the clock distribution network design must be modified and 
the analysis repeated. 

This flow is discussed in more detail in the following sections. Examples of 
Spice decks and report formats are drawn from the software tools used to 
analyze differential clock trees for IBM ASIC chips.

Fig. 6.20  Cumulative effect of DCD in a clock distribution network
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Fig. 6.21  Analysis flow chart
6.4.3.1 Extraction of Clock Tree Parasitic Values

Figure 6.22 shows a typical clock tree routed from the IF PLL to an HSS 
core. Parasitics for this clock tree are extracted from the chip design using IBM 
ChipEdit or other equivalent parasitic extraction software. When the extraction 
is completed there are two separate extracted netlists for each differential clock 
tree in the design: one for best case and one for worst case conditions. 

The next step is to create appropriate differentially wired Spice decks for 
each differential clock tree in the design based on the parasitic information 
extracted from the composite differential clock nets. These decks are then 
simulated using Spice.
6.4.3.2 Spice Deck Creation and Simulation

Spice decks used to simulate the differential clock tree must include the 
following elements: (1) Instantiations of models for all clock buffers in the 
clock distribution network; (2) Modeling of the parasitics for clock tree nets for 
both the true and complement legs of the differential signals; (3) Instantiations 
of models for all of the HSS cores connected to the clock tree; (4) Connections 
for any unused inputs of cells in the clock tree (for example, unused inputs to 
differential multiplexors that are included in the clock tree); and (5) Spice 
measurement statements that measure all of the signal characteristics of 
interest at each cell in the differential clock tree.
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  Net Extraction

Worst Case Clock
   Net Extraction

Extract Parasitics with
Full License ChipEdit

Meet all specs 
for both BC       
and WC?

Redesign 
w/Fully Wired 
Diff Clk tree

Submit design

Yes

No

BC .include files &
   submit decks

 Chip Design w/Fully
 Wired Diff Clk Tree

WC .include files &
   submit decks

 HSPICE 
Simulator



290 High Speed Serdes Devices and Applications

Fig. 6.22  Example of a typical clock tree route
For designers of IBM ASIC chips, IBM provides utilities which assist in the 

creation of Spice decks for analyzing differential clock trees. These utilities 
create individual Spice files that contain the above elements. Spice “submit deck” 
template files are also supplied which can be used to submit the required 
simulations after customization of the following parameters:
Clock Frequency: The reference clock frequency must be customized for the 
particular application that is being analyzed.
Temperature: The minimum and maximum junction temperature ( Tj ) limits 
specified for the chip must be customized for the particular chip containing the 
clock tree being analyzed. Note that these values should match the temperature 
conditions at which the netlist extraction was performed.
VDD: The minimum and maximum power supply voltage ( Vdd ) limits 
specified for the chip must be customized for the particular chip containing the 
clock tree being analyzed. Note that these values should match the power 
supply voltages at which the netlist extraction was performed.

An example of a Spice submit deck template file for an IBM ASIC chip is 
shown in Fig. 6.23.

Once the decks have been modified with application-specific parameters, 
they are simulated using Spice. Simulations need to be run for both best case 
and worst case environmental conditions for every clock tree. The next step is 
to analyze the simulation output to see whether the clock signals have met the 
required analog characteristics to guarantee the low-jitter operation. 
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Fig. 6.23  Spice submit deck example

* HSS DIFFCLK test - Best Case Simulation
* Filename: skel_bc.sp
* .default is to probe every node, might want to change that.
*
* ==> IBM ASIC process settings <==
.param sigma     = xyz      $ (bc  nc  wc) => (bc_sigma  nc_sigma   wc_sigma )
.temp            = 0           $ (bc  nc  wc) => (bc_temp     nc_temp        wc_temp )
.param vdd       = 1.7         $ (bc  nc  wc) => (bc_vdd    nc_vdd       wc_vdd )
.param vss       = 0
.param vavdd2    = 2.5
.param vswing    = 0.25

*.options brief
.options search=’./models’
.option parhier=local

***********************************************************************
*
*.options acout=0 captab
.options post

.inc ‘blk_netlist.inc’                      $include extracted listing of path blocks

.inc ‘blk_netlist_comp.inc’           $include extracted listing of complement path parasitics

.inc ‘blk_netlist_true.inc’              $include extracted listing of true path parasitics

.inc ‘blk_netlist_load.inc’             $include file with pseudo-HSS load models 

.inc ‘blk_netlist_meas.inc’            $include file with all pre-built .measure statements

.global vdd vss gnd lt mc
vdd    vdd   0 vdd
vss    vss   0 vss
vlt    lt    0 vss
ven    en    0 vdd
vmc    mc    0 vss
vavdd2 avdd2 0 vavdd2

.param tper=1.11ns                         $ 900 MHz default (1/1.11ns)

.param trise=100ps tfall=trise tup=’(tper-trise-tfall)/2’

.param tstop=100ns  linedel=’tper/2’ t2=’2*tper’

vdrv_t pad  vss pulse(‘(vavdd2/2)+vswing’ ‘(vavdd2/2)-vswing’ 1n trise tfall tup tper)
vdrv_c padn vss pulse(‘(vavdd2/2)-vswing’ ‘(vavdd2/2)+vswing’ 1n trise tfall tup tper)

.TRAN 10ps 10ns

.end
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Fig. 6.24  Report file example
6.4.3.3 Analysis to Determine the Integrity of the Clock Signal

After each of the Spice simulations has been successfully completed, the 
differential clock signals must be analyzed at the input to each differential 
clock buffer and each HSS core in the clock tree to be certain that the HSS 
cores will perform adequately. Figure 6.24 contains an example of a report 
produced for an IBM ASIC chip based on the measurement statements in the 
Spice include file produced for this chip. Pass/fail status for each measurement 
is reported in this example. 

If the analysis does not meet all of the criteria for both best and worst 
case conditions, the differential clock must to be redesigned and the 
analysis must be repeated, as was indicated in Fig. 6.21. Depending on the 
situation, any of the following corrective actions may be necessary: select 
clock buffers with higher/lower drive strengths, reroute signal traces to 
reduce the number of vias or directional changes, reduce the distance 
between clock buffers, etc.

$DATA1 SOURCE=’SPICE’ VERSION=’Y-2006.09-SP1   ‘
.TITLE ‘* hss diffclk test - best case simulation’

       hss01t_pp =     0.679           PASS   (minimum < Vpp)
    hss01t_trise =  2.20e-10         PASS   (trise < maximum)
    hss01t_tfall =  1.55e-10         PASS   (tfall < maximum)
hss01t_dutycycle =    49.11       PASS   (minimum < DC < maximum)
       hss01c_pp =     0.667          PASS   (mimimum < Vpp)
    hss01c_trise =  2.261e-10      PASS   (trise < maximum)
    hss01c_tfall =  1.572e-10      PASS   (tfall < maximum)
hss01c_dutycycle =    50.3147  PASS   (minimum < DC < maximum)
      hss01_vcma =     0.944        PASS   (minimum < Vcm < maximum)
      hss01_vcmb =     0.856        PASS   (minimum < Vcm < maximum)
       hss01_vcm  =     0.930        PASS   (minimum < Vcm < maximum)

*******   End of HSS core input measurements. *******

******* Intermediate CLKDIFF book measurements. *******
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
HSS_PCIE_CLKDIFF_U01t_pp =     0.9184   PASS   (minimum < Vpp)
HSS_PCIE_CLKDIFF_U01c_pp =     0.9182   PASS   (minimum < Vpp)
HSS_PCIE_CLKDIFF_U01_vcm = 0.8436   PASS (minimum < Vcm <maximum

******* End of HSS differential clock report.
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6.5  References and Additional Reading
The following interface standards documents are referenced in this chapter:

1. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability 
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical 
Internetworking Forum, Feb. 28 2005.

2. “Serial ATA Revision 2.5”, Serial ATA International Organization 
(http:\\www.sata-io.org), Oct. 27 2005.

3. “ITU-T G.783 - Series G: Transmission Systems and Media, Digital 
Systems and Networks, Digital Terminal Equipment - Characteristics of 
SDH Equipment Functional Blocks”, International Telecommunications 
Union, 2006.

The following reading is recommended for more information regarding 
clock jitter and PLL jitter transfer functions:
4. “Jitter, Noise, and Signal Integrity at High Speed”, Mike Peng Li, 

Prentice Hall, 2007.
5. “Design of Integrated Circuits for Optical Communications”, Behzad 

Razavi, McGraw-Hill, 2003.

6.6  Exercises
1. Figure 6.1 illustrates the effects of power supply noise on the output of a 

single-ended clock buffer. A novice engineer suggests that compression 
of the signal does not matter because the power supply compression 
would also reduce the switching threshold voltage of the input to the next 
clock buffer in the distribution network. Explain why this is a fallacy.

2. Explain why it is more important to avoid high-frequency reference 
clocks on the circuit board than it is to avoid them on the chip.

3. The OIF SFI-5 (version 1) protocol uses the SxI-5 electrical layer 
discussed in Sect. 5.2. This protocol specifies that the frequency of the 
reference clock into the chip is 1/4 of the link baud rate.
a. Assuming a 2.488Gbps baud rate on each link, what is the frequency 

of this reference clock?
b. Given that the available on-chip PLLs for the target technology are 

limited to a reference clock input frequency of 400MHz or less, 
which of the topologies in Fig. 6.3 must be used to support this 
configuration?

c. Specify the logic levels on the HSS EX10 PLL slice pins and the 
value that must be programmed for the Tx/Rx slice Rate Select to 
select the correct baud rate and reference clock frequency for this 
interface.
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d. Draw a block diagram showing the connections to the HSS EX10 
HSSREFCLKT/C input pins. Assume test requirements dictate that a 
on-chip PLL must be used to source the reference clock during 
manufacturing test.

4. Two HSS EX10 cores are used in an OIF SPI-S application (see Fig. 5.5) 
requiring four data lanes and one status lane. The baud rate of these lanes 
is 10Gbps. In the sink chip for this interface, the transmitter must transmit 
status at exactly the same baud rate as the received data.
(a) Draw the clock connections between the two HSS EX10 cores that 

are necessary to implement this interface on the sink chip. 
(b) For the HSS EX10 being used to receive the SPI-S data, specify the 

reference clock frequency, PLL slice HSSDIVSEL and HSSREFDIV 
pin values, the Receive Configuration Mode Register setting, and the 
SONET Clock Mode Register setting.

(c) For the HSS EX10 being used to transmit the SPI-S status, specify the 
PLL slice HSSDIVSEL and HSSREFDIV pin values, and the 
Transmit Configuration Mode Register setting.

5. Draw block diagrams of the reference clock distribution for chips which 
use HSS EX10 cores to implement interfaces for each pair of baud rates 
listed below. The interfaces for these baud rates are implemented using 
separate HSS EX10 cores and are operational at the same time. Use as 
few on-chip PLLs as possible in each case.
(a) 8.50 Gbps and 4.25 Gbps
(b) 10.3125 Gbps and 1.25 Gbps
(c) 10.3125 Gbps and 8.50 Gbps

6. Draw block diagrams of the reference clock distribution for chips which 
use HSS EX10 cores to implement interfaces for each pair of baud rates 
listed below. These interfaces share pins on the chip and therefore must be 
implemented with the same HSS EX10 core. Software programs select 
which interface is being used by changing the configuration of the HSS 
EX10 core and/or the on-chip PLL divider settings. (The external 
reference clock frequency cannot be changed.) The available on-chip 
IF PLL supports frequency multiplication factors in the range of 2.0 – 
16.0 in increments of 0.25. Use as few IF PLLs as possible in each case, 
and use differential multiplexors to select between different IF PLL 
outputs only if different reference clock frequencies are required.
(a) 8.50 Gbps and 4.25 Gbps
(b) 10.3125 Gbps and 1.25 Gbps
(c) 10.3125 Gbps and 8.50 Gbps
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7. Draw the block diagram of the reference clock distribution for a chip 
which implements the Backplane Ethernet baud rates of 1.25, 3.125, and 
10.3125Gbps. Assume the same HSS EX10 core must be used for all 
three cases and is provisioned by software. Also assume on-chip PLLs are 
available with restrictions as described in Exercise 6.

8. Draw the block diagram of the reference clock distribution for a chip 
which implements the Fibre Channel baud rates of 3.18750, 8.50000, and 
10.51875Gbps. Assume the same HSS EX10 core must be used for all 
three cases and is provisioned by software. Also assume on-chip PLLs are 
available with the restrictions in Exercise 6.

9. Assume the phase jitter variation of a clock signal is modeled with a 
uniform triangular waveform with an amplitude of 10ps and a frequency 
fjitter = 0.1 fclock . Calculate the phase jitter, period jitter, and cycle-to-
cycle jitter of this clock for 15 consecutive clock cycles.

10. Assume the phase jitter variation of a clock signal is modeled as a 
summation of two sinusoidal components, each of which can be 
calculated using (6.5). The first component has a frequency 
fjitter = 0.05 fclock and an amplitude of 10ps. The second component has a 
frequency fjitter = 0.1667 fclock and an amplitude of 5ps. Calculate the 
phase jitter, period jitter, and cycle-to-cycle jitter of this clock for 25 
consecutive clock cycles.

11. Prove that when fjitter = 0.5 fclock , (6.6) reduces to (6.4), and 
(6.10) reduces to (6.9).

12. What is the limit of Jperiod and Jcycle as determined by (6.6) and 
(6.10) respectively, if fjitter << fclock .

13. Given the jitter tolerance mask in Fig. 6.5, specify the bandwidth of the 
PLL used in the CDR circuit given the following baud rates:
(a). 10.3125 Gbps  (b). 8.50 Gbps  (c). 3.125 Gbps

14. Assume that a PLL used in a CDR circuit is designed such that: 
fbw < fbaud / 2. Is this compliant with the mask in Fig. 6.5? Explain.

15. Assuming clock buffers with characteristics described in Sect. 6.3.1 and 
Table 6.2, calculate maximum wire lengths for the following cases:
(a) fclock = 775MHz, fanout = 2
(b) fclock = 250MHz, fanout = 3
(c) fclock = 500MHz, fanout = 1

16. Given the wire lengths calculated in Exercise 15, assume the buffer inputs 
for the indicated fanouts are equidistant from the driving buffer, and are in 
opposite directions on the chip. What is the maximum distance between 
the driving buffer and each buffer input?
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17. Describe the effects which may be encountered if the following analog 
parameters are beyond their specified ranges on the input to a differential 
clock buffer:
(a) Vcm too high or too low
(b) Vdiff too low
(c) Vdiff too high
(d) Slew rate too fast
(e) Slew rate too slow

18. Describe how mismatches in the trise and tfall parameters of the single-
ended signals can contribute to a mismatch in propagation delay resulting 
in deterministic jitter on the output waveform. 

19. The high and low voltages of a differential signal are provided below for 
various systems. For each pair of voltages, calculate the corresponding 
Vcm and Vdiff values.
(a) 1.05 V, 0.35V
(b) 1100 mV, 600mV
(c) 675 mV, 155mV
(d) 920 mV, 330mV

20. Given the following Vcm and Vdiff values, calculate the Vhi and Vlo 
voltages: 
(a) Vcm = 550 mV, Vdiff = 300 mVppd
(b) Vcm = 600 mV, Vdiff = 400 mVppd
(c) Vcm = 750 mV, Vdiff = 120 mVppd
(d) Vcm = 700 mV, Vdiff = 1200 mVppd

21. A clock distribution network for a 400-MHz reference clock consists of a 
string of four differential clock buffers. The design of these buffers is 
such that there is a mismatch between the propagation delay for the rising 
and falling edges of the clock signal given the net capacitance for the 
current chip layout. For each buffer:
• tpd (rise) = 300ps 
• tpd (fall) = 500ps
Draw a timing diagram showing the resulting differential amplitude 
waveform and duty cycle on the output of each clock buffer stage.

22. Assume that the clock buffers in a clock distribution network require a 
500ps minimum pulse width to guarantee the buffer output switches. 
Given the clock distribution network in Exercise 21, draw conclusions as 
to whether the output of each stage is usable.
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Chapter 7
Test and Diagnostics

HSS devices incorporate features which support various levels of testing by 
the chip manufacturer, the system manufacturer, and by the end user (as part 
of a diagnostic test suite). These levels of testing include:
JTAG 1149.1/1149.6 Test. The JTAG 1149.1 and 1149.6 standards [1,2] 
define a method of performing chip-to-chip stuck-fault testing during circuit 
board manufacture. This requires test structures which must be incorporated in 
all chips to support this testing. 
Pseudo-Random Bit Sequence (PRBS) Test. HSS cores generally provide a 
means of transmitting a PRBS pattern and checking it at the receiver. Such test 
sequences are used for manufacturing test and characterization of HSS cores, 
as well as characterization of serial data links in systems.
Logic Built-In-Self-Test (LBIST). The chip designer often includes LBIST 
capabilities on the chip which support in-system diagnostics testing. LBIST 
implementations are not standardized; each system design team develops their 
own methodology. 
Manufacturing Test. The chip manufacturer runs a series of tests on each chip 
after wafer fabrication, and again after module assembly. Manufacturing tests 
used to test HSS devices are developed by the HSS design team. The details of 
such tests are usually not of importance to the chip designer, however the chip 
designer must sometimes provide controllability or observability of certain 
pins on the HSS core to facilitate such tests.
Characterization Test. As part of the design development process, the HSS 
core design team generally builds test chips containing the HSS core for the 
purposes of laboratory test and measurement. Certain features of the HSS core 
are not tested on each chip as part of the manufacturing process, but rather are 
guaranteed through laboratory measurement on test chips and through analysis 
of parameter variation based on the tolerances of the manufacturing process. 
The results of design characterization test are documented in a characterization 
report. HSS core designs often include features which are intended to support 
characterization testing and facilitate the measurement of various design 
characteristics. In some cases these design features may also be used by the 
system designer to characterize the chip usage within the system design.

Although portions of the above topics may have been covered to some 
extent in prior chapters, this chapter covers these test topics in depth. This 
chapter primarily concentrates on standards, typical implementations, and 
general approaches that are relevant to chip designers using HSS devices. 
Other topics, such as detailed manufacturing test flows or detailed descriptions 
of characterization features, vary significantly from one HSS implementation 
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to another and are therefore discussed at a more general level in this text. This 
chapter extends the description of the HSS EX10 core that was used as a 
tutorial example in Chap.2 to add appropriate test features.

Fig. 7.1  JTAG boundary scan interface architecture

7.1  IEEE JTAG 1149.1 and 1149.6
The Joint Test Action Group (JTAG) was formed in 1985 to develop better 

methods of performing manufacturing test on circuit boards. The increasing use 
of multilayer circuit boards and nonlead-frame ICs was making test points 
inaccessible to test probes. To provide sufficient test of the chip interconnect, it 
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was necessary to develop the ability for each chip in the system to drive outputs 
with arbitrary logic levels and capture logic levels on inputs. A standard 
interface, common to all chips and with a minimal number of pins, was needed 
to access the control and observe test points. This interface could then be used 
during circuit board manufacturing test to perform stuck-fault testing of the 
entire interconnect (including the connection of the chips to the circuit board) 
and achieve high test coverage. The result of this work was published in 1990 
as IEEE Std. 1149.1-1990, and is commonly called JTAG 1149.1.

7.1.1 JTAG 1149.1 Overview
Fig. 7.1 illustrates a conceptual block diagram for the implementation of 

JTAG 1149.1 on a chip. Using the 5-pin standard interface bus and the test 
access port (TAP) control circuitry, data can be launched through the outputs 
of one chip and captured by another chip on the card, thus effectively testing 
the chip solder bumps or wirebonds, the solder connections on the package and 
card, the wiring on the card, plus any cables and connectors. 

The JTAG 5-pin standard interface bus consists of the following pins, as 
shown in Fig. 7.1:
Test Clock (TCK). This pin is the JTAG clock input which clocks all JTAG 
registers and the TAP Controller.
Test Mode Select (TMS). This pin is a control input used to select the state of 
the TAP Controller.
Test Data In (TDI). This pin is the JTAG data input used to serially scan data 
into JTAG registers.
Test Data Out (TDO). This pin is the JTAG data output used to serially scan 
data out of JTAG registers.
Test Reset (TRST). This pin is the JTAG input used to force a reset of JTAG 
registers and the TAP Controller state. This input is optional; a reset state may 
also be forced through assertion of TMS for five clock cycles. 

The key components of the JTAG 1149.1 implementation shown in Fig. 7.1 
are described in the subsections which follow.
7.1.1.1 TAP Controller

The TAP Controller is a finite state machine which implements the state 
diagram defined in the IEEE 1149.1 standard. This state diagram is shown in 
Fig. 7.2. State transitions within this state diagram occur based on logic level 
on the TMS pin during rising edges of the TCK pin. The TMS logic values 
corresponding to these transitions are shown on the arcs in Fig. 7.2.

Note that it is possible to uniquely return to the Test-Logic-Reset state from 
any state in this state diagram within five TCK cycles by asserting TMS = 1. 
Once in this initial state, additional TMS values and TCK cycles transition the 
TAP controller to the appropriate desired state.
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Fig. 7.2 Tap controller state diagram
JTAG registers may be loaded and read by scanning data through the 

TDI/TDO pins when the TAP Controller is in the appropriate state. The 
Instruction Register is selected for scanning when the TAP Controller is in the 
Shift-IR state. The ID Register, Bypass Register, Boundary Scan Register, or 
other implementation-specific registers may be scanned when the TAP 
Controller is in the Shift-DR state. The contents of the Instruction Register 
determine which of these data registers is selected. 

When registers are serially scanned, data is actually scanned through a 
shadow register so that the contents of the actual register are not corrupted 
during the scan process. Data is transferred in parallel from all bits of the 
shadow register to the actual register when the TAP Controller is in either the 
Update-IR or Update-DR state. Likewise, the Capture-IR and Capture-DR 
states are used to capture status data in the Instruction Register, or capture logic 
values from chip inputs in the Boundary Scan Register prior to serially 
scanning this data out of the chip.
7.1.1.2 Instruction Register

The contents of the Instruction Register determines the address and control 
information that selects which of various data registers is to be accessed. 
Values for this register are called test instructions. The JTAG 1149.1 standard 
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defines three required test instructions, six optional instructions, and allows for 
other implementation-specific instructions. The instructions defined by the 
JTAG 1149.1 standard are described briefly as follows:
Required Instructions:
BYPASS Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the Bypass Register without affecting operation 
of the chip.
SAMPLE/PRELOAD Instruction. When the Instruction Register contains this 
instruction, serial data is scanned through the Boundary Scan Register while 
the chip remains in a functional mode.
EXTEST Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the Boundary Scan Register and the chip is 
placed in a mode where the Boundary Scan Register drives chip outputs and 
receives chip inputs.
Optional Instructions:
INTEST Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the Boundary Scan Register and the chip is 
placed in a mode where the Boundary Scan Register controls internal inputs to 
the chip logic and captures internal outputs of the chip logic.
RUNBIST Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through a user-specific data register and runs a Built-In-
Self-Test sequence.
CLAMP Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the Bypass Register and the chip is placed in a 
mode where the current contents of the Boundary Scan Register drive chip 
outputs.
HIGHZ Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the Bypass Register and the chip is placed in a 
mode where chip outputs are driven to a high impedance state.
IDCODE Instruction. When the Instruction Register contains this instruction, 
serial data is scanned through the ID Register without affecting operation of 
the chip.
USERCODE Instruction. When the Instruction Register contains this 
instruction, serial data is scanned through the ID Register without affecting 
operation of the chip. Additional user-defined data is captured in the ID 
Register as part of this instruction.
7.1.1.3 Bypass Register

The Bypass Register is a required one-bit register which allows data to be 
scanned through an abbreviated path from the TDI pin to the TDO pin. The 
BYPASS instruction is loaded into chips which are not involved in a test to 
shorten the serial scan path on the circuit board and thereby speed-up the test 
sequence.
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7.1.1.4 ID Register
The ID Register is an optional register which contains a unique identifica-

tion code for the chip. This allows the test program to automatically identify 
chips on the circuit board and the order in which these chips are connected into 
the scan chain. The test program can then reference information about the chip 
to determine the test sequence.
7.1.1.5 Boundary Scan Register

The Boundary Scan Register is a required register which consists of one 
Boundary Scan Cell (BSC) corresponding to each chip input pin, chip output 
pin, and chip output enable control signal. Depending on the instruction loaded 
in the Instruction Register, the BSC may control the logic level driven on 
output pins and may capture logic levels on chip input pins. Optionally, the 
BSC may also override chip input logic levels being driven to internal chip 
logic and capture the logic levels being driven by internal chip logic to outputs. 

The frequency of operation of serial data signals for HSS cores precludes 
connecting additional logic between the Serdes device and the chip pins. HSS 
cores must therefore provide some means of bypassing the normal Serdes 
functions, driving BSC logic levels to output pins, and capturing logic levels 
on input pins. Without such support, the serial data interconnect would not be 
testable, and chips using these cores would not comply with the JTAG 1149.1 
standard. This is discussed further in the next section.

7.1.2 HSS Core Support for JTAG 1149.1
When the EXTEST instruction is loaded in the Instruction Register, the 

chip outputs are driven by the logic levels loaded into the corresponding BSCs, 
and the logic levels on chip inputs are captured in BSCs associated with the 
input pins. In addition, BSCs associated with output enable control signals 
determine whether outputs are driven or are in a high impedance state. The 
launch and capture elements for a chip-to-chip interconnect path are shown in 
Fig. 7.3. Stuck-fault testing of the interconnect path is performed by launching 
data from the BSC associated with the output of the driver chip, and capturing 
the corresponding data in the BSC at the receiving chip.

Signal integrity requirements for an HSS core dictate that the Serdes 
driver and receiver circuits connect directly to chip pins. Intervening logic 
would not be able to operate at the necessary data rates, and even the 
connection of additional gate inputs to the signal would create impedance 
mismatches and degrade signal quality. To support JTAG 1149.1, the HSS 
core must provide a transmit bypass path so that a BSC may be used to drive 
serial data outputs, and a receive bypass path so that the logic level on the 
serial data input may be captured in a BSC. The logic levels being driven and 
captured are essentially DC levels, and therefore the normal serializer and 
deserializer functions of the HSS core must be bypassed to be able to drive 
and receive these signals. 
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Fig. 7.3  Chip to Chip Interface with JTAG 1149.1 Test Features
The HSS EX10 core discussed in Chap. 2 includes bypass functions on 

both the transmitter and receiver slices which were primarily intended to 
support JTAG 1149.1. The transmitter bypass function is described in Sect. 
2.2.6 and the receiver bypass function is described in Sect. 2.3.6. Connec-
tion of the various signals to the JTAG Boundary Scan Cells is shown in 
Fig. 2.6. 

7.1.3 HSS Core Support for JTAG 1149.6
When applied to high-speed serial data interconnect, there are several 

drawbacks to testing within the constraints of the JTAG 1149.1 standard. 
First, JTAG 1149.1 is limited to DC stuck-fault testing. Changing the logic 

levels being driven on the interconnect requires successively loading data 
through the JTAG scan chain into the JTAG Boundary Scan Registers on the 
chips of the circuit board, an inherently slow process. If the interconnect is 
DC coupled, then DC stuck-fault testing may be adequate. However, if the 
high-speed serial data link includes decoupling capacitors, then a DC logic 
level cannot be driven across the interconnect. In such cases, JTAG 1149.1 
would be unable to test the serial data interconnect. 

Second, JTAG 1149.1 tests the serial data link as if it were a single wire 
with a DC logic level driven on it. In fact, the serial data consists of a 
differential signal. When a logic level of 0 is driven, then one leg of the 
differential pair is driven low and the other is driven high (and vice-versa for a 
logic 1 level). This was described in Sect. 1.3.4 and was illustrated in Fig. 1.16 
and Fig. 1.18.

It is possible for one leg of the differential pair to be unconnected, and yet 
have JTAG 1149.1 perform a successful test of the link. To illustrate this, Fig. 
1.16 has been modified as shown in Fig. 7.4. Although the JTAG 1149.1 logic 
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levels would be DC levels, signal transitions are shown in the figure for the 
purposes of covering both the logic 0 and logic 1 cases. The first logic 1 and 
logic 0 level shown in Fig. 7.4 is normal with both the true (T) and complement 
(C) signals at proper logic levels. 

However, for the second logic 1 and logic 0 level shown in the figure, the 
complement leg of the signal (the dashed line) has failed and is biased to the 
common mode voltage. The corresponding received differential signal is 
shown in Fig. 7.5. As shown, the failure of the complement leg of the signal 
reduces the amplitude of the received signal, but the correct logic levels are still 
received. Because JTAG 1149.1 is limited to treating the differential serial data 
link as a single interconnect path, the test cannot distinguish between the 
normal and failure cases in Fig. 7.5, and the test passes even in the presence of 
the failure.

Fig. 7.4  Single-ended signals showing failure of complement leg

Fig. 7.5 Differential peak-to-peak signal with failure of complement leg
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Consequently, in 2003 the IEEE Joint Test Action Group defined the IEEE 
1149.6 standard which addresses deficiencies in the 1149.1 standard related to 
differential I/O testing and AC coupled I/O testing. The IEEE 1149.6 test 
standard, also known as “AC JTAG,” requires independent observability of 
both the true and complement side of a differential I/O.  Two additional TAP 
functions are defined which support generation of pulses on AC coupled links.  
The EXTEST_PULSE instruction generates a single pulse, while the 
EXTEST_TRAIN instruction generates a sequence of pulses.  The standard 
also requires a test receiver cell, implemented as a hysteretic comparator, 
which is used to observe pulses on AC coupled links.  In AC mode, the test 
receiver cell is an edge detector which can detect either a positive-going or 
negative-going edge, indicating the presence or absence of a pulse propagating 
through a capacitor.  In DC mode, the test receiver acts like a buffer.  

Fig. 7.6 illustrates the modifications to Fig. 7.3 required for AC coupled 
serial data links for compliance with the 1149.6 “AC JTAG” standard.

The HSS EX10 core described in Chap. 2 includes edge detector functions 
in the receiver to support the JTAG 1149.6 standard. These functions are 
described in Sect. 2.3.6, and connection of the various signals to JTAG 
Boundary Scan Cells is shown in Fig. 2.6. The additional functions associated 
with the JTAG Boundary Scan Cell on the transmitter do not require any addi-
tional logic in the HSS transmitter design.

Note that while the signals generated and received by JTAG 1149.6 are suf-
ficiently high frequency to pass through any decoupling capacitors included in 
the interconnect, they are still typically well below the intended baud rate for 
the core. Pulses are generated by TCK, the maximum frequency of which is 
limited by the slowest interconnect path on the circuit board. Clock frequencies 
well below 1MHz are typical. JTAG 1149.6 is not intended to perform 
at-speed test. 

Fig. 7.6 AC coupled serdes with 1149.6 test structures
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7.2  PRBS Testing and Loopback Paths
As was discussed in prior chapters, HSS cores generally provide pseudo- 

random bit sequence (PRBS) generators and checkers for diagnostic purposes. 
These circuits are used for manufacturing test, characterization test, and in-
system diagnostic tests to determine the integrity of Serdes circuits and the link 
interconnect. The capabilities of the PRBS generator in the HSS EX10 core are 
described in Sect. 2.2.7, and the capabilities of the PRBS checker are described 
in Sect. 2.3.8.

7.2.1 Loopback Paths
The ability to loop data at various points within the protocol stack is an 

important diagnostic capability of serial protocols and interfaces. Some proto-
cols require certain loopback paths be present in hardware to facilitate system 
diagnostic functions. Even when diagnostic requirements are not specified by 
the protocol standard, chip development teams require certain diagnostic paths 
to facilitate chip and system characterization. Often, PRBS pattern generator 
and checker logic is included in lower layers of the protocol logic and/or the 
HSS cores. This logic allows basic checking of the hardware datapath and 
interconnections without requiring a fully functional software/hardware 
protocol stack.

Fig. 7.7 illustrates an egress data path consisting of protocol transmit logic 
and an HSS transmitter, and an ingress data path consisting of an HSS receiver 
and protocol receiver logic. Possible loopback paths are shown in the figure. 
(Note that the names of these paths as shown in the figure and used in this text 
are the author’s names. Names of diagnostic loopback paths used in other 
sources may vary. There is no standard set of names for loopback paths.) 

In should be noted that not all of these diagnostic loopback paths will exist 
in a given chip. Also, Fig. 7.7 oversimplifies the implementation of these 
loopback paths. For example, the parallel data output of the HSS receiver 
cannot be directly connected to the parallel data input of the HSS transmitter 
without an elastic buffer to perform clock compensation. These loopback paths 
are discussed in somewhat more detail in the following subsection.
7.2.1.1 Serial Diagnostic Loopback

The serial diagnostic loopback path wraps data from the output of the HSS 
transmitter to the input of the HSS receiver, and can only exist for Full Duplex 
HSS cores which contain both transmitters and receivers in the same core. This 
path provides a means for performing diagnostics on the ASIC chip through 
the HSS transmitter and receiver. If data can be transmitted and received 
through this diagnostic path, then most of the chip’s functional path has been 
tested. (For some HSS core implementations there may be a small amount of 
analog circuitry that is not exercised by this loopback path. Also, the 
connection through the chip package is not tested.) 
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Fig. 7.7 Possible loopback paths
The Serial Diagnostic Loopback is also useful for HSS core test and char-

acterization. The PRBS generator in the HSS transmitter sends data, and this 
data is looped to the HSS receiver and checked by the PRBS checker in the 
HSS receiver. This PRBS test does not require higher layers of the protocol 
stack (either implemented in hardware or software) to be operational. By 
running the PRBS test repeatedly and for sustained periods of time, and 
measuring the number of PRBS errors that occur, the bit error rate (BER) of 
the HSS hardware can be estimated.

Full Duplex HSS cores which implement these loopback paths always pair 
transmitters and receivers in the core such that specific transmitter slices are 
wrapped to specific receiver slices. Chip designers need to be cognizant of the 
chip and application requirements associated with the Serial Diagnostic 
Loopback path, and reconcile these requirements with the pairing implemented 
by the HSS core. If there is a requirement for traffic to be generated by the 
protocol transmit logic and looped through the Serial Diagnostic Loopback 
path to the receiver, then the interconnection of HSS transmitters and receivers 
to the protocol logic is constrained by the pairing of these transmitters and 
receivers in the HSS core.
7.2.1.2 External Serial Loopback

The External Serial Loopback path is similar in function to the Serial 
Diagnostic Loopback path, except that it is implemented external to the chip 
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by the engineer in the lab. How this loopback connection is made depends on 
the design of the printed circuit board. It may consist of jumper wires, a test jig 
plugged into a connector, or some other means. Because it requires physical 
reconnection of the link external to the chip, this loopback path typically only 
exists in a lab environment.

The diagnostic purpose of this path is similar to the Serial Diagnostic 
Loopback path, albeit with better coverage. (The chip package interconnect 
and all stages of the HSS transmitter and receiver are included in the path being 
tested.) Also, since any arbitrary connection can be made outside of the chip, 
the limitations of transmitter/receiver pairing that applied to the internal Serial 
Diagnostic Loopback path do not apply for this path.
7.2.1.3 Remote Line Loopback

The Remote Line Loopback path takes data received through the HSS 
receiver, and retransmits this data on the HSS transmitter. This path supports 
system diagnostics by allowing an interface port to send test data to the remote 
device, and have that device retransmit the data back without requiring 
processing by higher layers of the protocol. Using this function, system 
diagnostics can test the signal integrity of the electrical interconnect. Some 
protocols, such as PCI Express, require implementation of this path. 

As noted previously, implementation of this path is not as simple as 
connecting the parallel data output of the HSS receiver to the HSS trans-
mitter. If plesiosynchronous reference clocks are used for each end of the 
link, then the receive data clock is at a slightly different frequency from 
that of the transmitter. Even if the two ends of the link are synchronously 
clocked, phase differences will still exist between the parallel data clocks 
for the receiver and the transmitter. Therefore an elastic buffer is required 
in this path. In the case of plesiosynchronous clocking, this elastic buffer 
may need to add or drop bytes (or symbols) as defined by the protocol to 
perform clock compensation. 

This elastic buffer is already typically part of the Protocol Receive Logic. 
Therefore, the existing elastic buffers in this logic are generally included in the 
Remote Line Loopback path; there would be no benefit in implementing 
separate elastic buffers for diagnostic operations. The result is that the Remote 
Line Loopback path, when implemented, is an integral part of the function of 
the Protocol Logic. It is generally implemented by wrapping the output of the 
elastic buffers in the Protocol Receive Logic to the transmit data path of the 
Protocol Transmit Logic. 

An alternative implementation of the Remote Line Loopback path 
retransmits data using a loop timing mode in which the receive data clock is 
used as the reference clock for the transmitter. However, this assumes loop 
timing mode is supported by the selected HSS cores, and is implemented in the 
chip design. The logic requirements for implementing loop timing mode were 
discussed in Sect. 6.1.3.2. 
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7.2.1.4 Parallel Diagnostic Loopback
The Parallel Diagnostic Loopback path wraps data from the output of the 

Protocol Transmit Logic to the input of the Protocol Receive Logic. The 
purpose of this diagnostic path is similar to the function of the Serial Diagnos-
tic Loopback, except that the HSS cores are excluded from the data path. This 
is useful for testing higher layers of the protocol in cases where the HSS 
hardware is not yet operational (either because the configuration has not been 
programmed correctly, because of hardware problems, or because of intercon-
nect problems). It may also be used in conjunction with the Serial Diagnostic 
Loopback path to isolate problems to the HSS cores. If data is successfully 
wrapped through the Parallel Diagnostic Loopback path, but cannot be 
wrapped through the Serial Diagnostic Loopback path, then the problem may 
be assumed to be in the HSS cores.

Implementation of this path requires both data and clocks to be switched at 
the inputs to the Protocol Receive Logic. Normally, the parallel data clock for 
the parallel data input of the Protocol Receive Logic is driven by the HSS 
Receiver. When the Parallel Diagnostic Loopback path is active, this clock 
must be connected to the same clock source that is driving the Protocol 
Transmit Logic (usually the parallel data clock output of the HSS transmitter).
7.2.1.5 Remote Payload Loopback

The Remote Payload Loopback path wraps data from the output of the 
Protocol Receive Logic to the input of the Protocol Transmit Logic. This diag-
nostic path differs from the Remote Line Loopback path in that a substantial 
amount of the protocol processing is included in both the receive and transmit 
data paths. While the Remote Line Loopback path typically retransmits data as 
received (possibly with some adjustment for clock compensation), the Remote 
Payload Loopback path retransmits the same payload data but with different 
management information.

When this loopback path is executed in a SONET system, for example, the 
SONET section and line overhead are processed in the receive logic and SPEs 
are wrapped to the transmit logic. The transmit logic maps SPEs into SONET 
frames with locally generated overhead, complete with pointer management as 
needed. The section and line overhead functions of both ends of each section 
continue to operate and exchange information normally, even while the SPE is 
wrapped. System diagnostics in the SONET network can implement fault 
isolation by wrapping the SPE at various LTE and PTE elements.

7.2.2 PRBS Circuits and Data Patterns
A string of binary digits (“1” and “0” bits) is called a pseudo-random 

sequence if it meets two conditions:
• Local randomness (i.e. the next output of a sequence generator is roughly 

equally likely to be a “1” as a “0”); and 
• Reproducibility (i.e., when the sequence generator is reset to an initial 

state, the exact random sequence of “1” and “0” bits is replicated). 
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7.2.2.1 PRBS Generator Circuits
Linear Feedback Shift Registers (LFSRs) are the most common method of 

generating pseudo-random sequences.  A shift register is a collection of flip-
flops or other storage elements connected such that the state of each element is 
shifted to the next element in response to a clock signal. Feedback in an LFSR 
occurs when the outputs of selected stages of the shift register are summed 
(XOR’d) and connected back to the shift register input.  The length of the 
sequence that is generated and the likelihood of producing a certain maximum 
run length are mathematically dependent on the number of stages in the shift 
register and the details of the feedback connections.  If the sequence generated 
by an n-stage LFSR has a period of 2n − 1, it is a maximum-length sequence. 

The LFSR implementation of a PRBS-7 generator is shown in Fig. 7.8. The 
PRBS-7 pattern consists of seven flip-flops with the appropriate feedback term 
implemented using an XOR gate (i.e., a binary summation function). In Fig. 
7.8, the flip-flops have been assigned indices “1” through “7”; the feedback 
term is generated by XOR’ing the outputs of flip-flops “6” and “7.” 
Mathematical polynomials are often used as a short-hand method of specifying 
the PRBS pattern being implemented. The polynomial for PRBS-7 is

 PRBS7 = x7 + x6 + 1 
The powers of the “x” terms indicate time-shift delay and directly correlate 

to the positions of the feedback taps in the LFSR implementation.
The LFSR implementation shown in Fig. 7.8 is a serial implementation 

which produces one bit of the PRBS sequence for each clock cycle. Parallel 
implementations of PRBS generators which produce any number of bits of the 
sequence per clock cycle are also possible. Such circuits are designed by 
mathematically calculating the necessary logic equations using the PRBS 
polynomial. 

For example, assume an implementation of (7.1) using seven flip-flops 
with the initial states defined below, where the number in the parenthesis 
indicates the advance of n = 0 bits of the sequence:

x7(0) = x7 x3(0) = x3

x6(0) = x6 x2(0) = x2

x5(0) = x5 x1(0) = x1

x4(0) = x4

After the sequence is advanced by one bit, the contents of a serial imple-
mentation LFSR would shift by one bit, and the feedback term would be loaded 
into the first bit:

x7(1) = x6 x3(1) = x2

x6(1) = x5 x2(1) = x1

x5(1) = x4 x1(1) = x7+ x6

x4(1) = x3

(7.1)
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Fig. 7.8 PRBS7 generator implementation using a LFSR

Fig. 7.9 PRBS7 generator 8-bit parallel implementation
As the sequence continues to advance, the contents of the LFSR after 8 bits 

of the sequence would be:
x7(8) = x7+ x6 x3(8) = x3+ x2

x6(8) = x6+ x5 x2(8) = x2+ x1

x5(8) = x5+ x4 x1(8) = x7+ x6+ x1

x4(8) = x4+ x3

These equations are implemented in the circuit shown in Fig. 7.9. Each 
clock cycle advances this PRBS generator by eight bit positions. The current 
eight bits of the PRBS sequence are provided as a parallel output of this circuit. 
Seven of these bits are determined directly by the current state of the PRBS 
generator, while the eighth bit is derived from a combination of state bits for 
the current state. 
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Fig. 7.10 PRBS7 checker block diagram
HSS cores commonly include PRBS generators and checkers, and gener-

ally support a selection of PRBS test patterns. However, PRBS generators and 
checkers are also frequently implemented in higher layers of the protocol 
stack. Any such circuits generally use an n-bit parallel implementation to 
match the width of the data path at this layer.
7.2.2.2 PRBS Checker Circuits

A typical implementation of a PRBS checker consists of a PRBS generator 
circuit, a comparator, and a state machine which controls the initialization 
sequence of the checker. A block diagram of this is shown in Fig. 7.10. 

Before checking can begin, the PRBS checker must initialize its LFSR state 
based on the data being received so that it can successfully predict the expected 
data. This is called synchronizing to the PRBS pattern. For a PRBS-n pattern, 
n bits must be received to initialize the LFSR. After initializing the LFSR most 
designs then check some number of additional bits to make sure the PRBS 
checker is in fact predicting the expected data correctly. Miscompares during 
this period may indicate a bit error occurred while the LFSR state was being 
initialized. If the data compares correctly, then the PRBS checker asserts the 
Sync status indication and begins to check data.

Once the State Machine of the PRBS checker asserts the Sync status, any 
subsequent miscompares between the LFSR state and the incoming data are 
assumed to represent bits that have been corrupted by the serial data path, and 
result in the State Machine asserting the Error status output. Depending on the 
implementation of the PRBS checker, it may be possible to count the exact 
number of bits which were received incorrectly. Note that with this architec-
ture, any discontinuity in the PRBS pattern inserted by the generation source 
(for example, skipping bits, freezing the pattern for a few bits, reinitializing the 
LFSR, etc.) causes the PRBS checker to be out of sync and report continuous 
errors in the pattern. If such a discontinuity occurs, the PRBS checker must be 
reinitialized.
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An alternative self-synchronizing implementation of a PRBS checker is 
sometimes used which reloads the LFSR state from the datastream continu-
ously. The next n-bits of the PRBS sequence are predicted based on the 
previous n-bits received; these bits are compared to the next n-bits received 
and any errors are reported. This architecture may require less logic to 
implement and adapts to any discontinuity in the PRBS pattern inserted by the 
generation source. The drawback of this architecture is that any bit errors in the 
received pattern not only cause miscompares on the bits which are actually in 
error, but also cause some number of future bits to be incorrectly predicted. A 
single bit error may therefore be reported as several bits being in error.
7.2.2.3 Data Patterns

Many PRBS polynomials exist and several of these are commonly imple-
mented in high-speed Serdes devices. The order of the polynomial determines 
the number of flops required to implement the LFSR. This also determines the 
maximum run length of all 1’s or all 0’s that can exist in the PRBS pattern. 
Higher-order polynomials can generate longer run lengths without transitions, 
and therefore the data patterns contain more low frequency content. This 
stresses the CDR in the HSS receiver more than a data pattern which has a 
higher transition density. A PRBS-7 pattern (which is generated using an order 
7 polynomial) may be sufficient to characterize a system which uses 8B/10B 
encoding, however this pattern would not contain a sufficient transition density 
to stress a system which uses 64B/66B encoding or scrambling. A PRBS 
pattern which can produce longer run lengths, such as a PRBS-31 pattern, is 
more desirable to test such systems.

Another consideration involves the limitations of test equipment. Assume 
a test setup in which the data pattern must be checked by test equipment which 
has a limited data buffer. Usually it is desirable that the test equipment buffer 
be able to capture and analyze the entire test pattern. If analysis is only based 
on a randomized segment of the pattern, results may depend on which portion 
of the pattern is captured. Although testing using PRBS-31 may be desirable, 
the size of the data buffer in the test equipment may preclude use of a pattern 
of this length. A PRBS-23 pattern may be more practical in this case.

As described in Sect. 2.2.7, the HSS EX10 Core supports the test patterns 
shown in Table 7.1. The various PRBS polynomials referenced above are 
supported. Options include both the PRBS pattern, and the corresponding 
inverted pattern. Unmodified PRBS patterns mathematically have slightly 
higher probability of generating a 1 bit than a 0 bit. Over time this accumulates 
a DC charge on the capacitor of an AC coupled system. Correspondingly, an 
inverted PRBS pattern has a slightly higher probability of generating a 0 bit 
than a 1 bit. Providing both patterns allows the user to decide which pattern is 
appropriate.
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7.2.3 PRBS Test Sequence
Fig. 7.11 illustrates a PRBS generator connected to a PRBS checker, 

along with typical control and status signals associated with this logic. The 
corresponding control and status signals are defined in Table 7.2. 
Depending on the implementation of the core, these signals may be pins on 
the core, internal registers, or both. The HSS EX10 PRBS generator was 
described in Sect. 2.2.7, and the corresponding PRBS checker was 
described in Sect. 2.3.8.

Execution of a PRBS test sequence involves the proper sequencing of these 
control signals, and monitoring of the corresponding status signals. A typical 
sequence proceeds as follows:
Step One: Set appropriate control signals to select the desired loopback mode 
(if applicable). If loopback is selected, then the transmitter and receiver used 
in this test sequence must be in the same chip. Otherwise, the remainder of this 
sequence may require programming the PRBS generator and PRBS checker 
circuits located in different chips.

For the HSS EX10 core, the Full Duplex Wrap Enable bit in the Receive 
Test Control Register defined in Table 2.7 enables a Serial Diagnostic 
Loopback path. This loopback path is also selected by the RXxPRBSEN pin 
defined in Table 2.3. The register bit drives the FDWRAP signal shown in the 
Receiver Concept Diagram in Fig. 2.7.

When FDWRAP is asserted, the Pseudo-Random Code Generator shown in 
the Transmitter Concept Diagram in Fig. 2.4 drives data through the various 
stages of the transmitter serializer to the Wrapback signal. The FDWRAP 
signal in Fig. 2.7 selects the Wrapback data as the source for data into the AGC 
Mux. This data is subsequently processed by the DFE and deserialization 
stages, and checked by the Pattern Recognition Logic at the output of the 
deserializer stage.

Table 7.1  Test patterns supported by the test pattern generator

Pattern generated PRBS polynomial

PRBS7+ x7 + x6 + 1

PRBS7- (inverted)

PRBS23+ x23 + x18 + 1

PRBS23- (inverted)

PRBS31+ x31 + x28 + 1

PRBS31- (inverted)

1010101.... Not applicable

(Repeating pattern of 64 “1”s then 64 “0”s) Not applicable



Test and Diagnostics  315

Fig. 7.11 PRBS control signals

Table 7.2  PRBS control/status ports

Block Port Type Description

PRBS 
generator

Enable Control 
Input

PRBS generator circuit enable; “0” = normal operation, 
“1” = enable generation of the selected PRBS pattern. 

Reset Control 
Input

Reset the PRBS generator LFSR to a known state. Also 
reset any implementation specific status states.

Pattern 
Select

Control 
Input

One or more bit input which selects the PRBS test 
pattern. 

Force 
Error

Control 
Input

Insert an error into the PRBS sequence which should 
trigger an error at the PRBS checker.

PRBS 
checker

Enable Control 
Input

PRBS checker circuit enable; “0” = normal operation, 
“1” = enable checking of the selected PRBS pattern. 

Reset Control 
Input

Reset the PRBS checker LFSR to a known state. Also 
reset status states.

Pattern 
Select

Control 
Input

One or more bit input which selects the PRBS test 
pattern. 

Sync 
Status

Status 
Output

PRBS checker pattern sync monitor; “0” = not sync’d, 
“1” = pattern checker sync’d to data

Error 
Status

Status 
Output

PRBS checker error monitor; “0” = no error; 
“1” = error.

PRBS
Checker

PRBS
Generator

Enable
Reset

Pattern Select
Force Error

Sync Status
Error StatusEnable

Reset
Pattern Select

Serial Data
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Step Two: Program the PRBS generator in the HSS transmitter as follows:
1. Set control inputs to select the desired PRBS pattern. 

For the HSS EX10 core, this is selected by setting the Test Pattern Se-
lect bits of the Transmit Test Control Register in Table 2.6. When the 
PRBS generator is enabled using the TXxPRBSEN pin, the value of 
this register is overridden and the PRBS-7 test pattern is selected.

2. Reset the PRBS generator using the appropriate control input. 
For the HSS EX10 core, this is accomplished by asserting the PRBS 
Reset bit in the Transmit Test Control Register defined in Table 2.6, or 
the TXxPRBSRST pin defined in Table 2.2.

3. Enable the PRBS generator using the appropriate control input. 
For the HSS EX10 core, this is accomplished by asserting the Test 
Pattern Generator Enable bit in the Transmit Test Control Register 
defined in Table 2.6, or the TXxPRBSEN pin defined in Table 2.2.

The PRBS generator should now be transmitting the selected data pattern.
Step Three: Program the PRBS checker in the HSS receiver as follows:
1. Set control inputs to select the desired PRBS pattern.

For the HSS EX10 core, this is selected by setting the Test Pattern Se-
lect bits of the Receive Test Control Register in Table 2.7. When the 
PRBS checker is enabled using the RXxPRBSEN pin, the value of this 
register is overridden and the PRBS-7 test pattern is selected.

2. Reset the PRBS checker using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the PRBS 
Reset bit in the Receive Test Control Register defined in Table 2.7, or 
the RXxPRBSRST pin defined in Table 2.3.

3. Enable the PRBS checker using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the PRBS 
Check Enable bit in the Receive Test Control Register defined in Table 
2.7, or the RXxPRBSEN pin defined in Table 2.3.

The PRBS checker should now be monitoring the incoming serial data and 
attempting to synchronize to the selected data pattern.
Step Four: The PRBS checker initializes its LFSR as described previously to 
synchronize to the data pattern being received. Once this process is complete, 
the PRBS checker asserts the PRBS Sync status and begins to check data.

If PRBS Sync does not go active within a reasonable period of time, it is 
indicative that either the serial data is not reaching the receiver, or that the 
serial data contains too many bit errors for the PRBS checker to synchronize to 
the pattern. It may also indicate the PRBS generator and PRBS checker are not 
set for the same data pattern or baud rate. (Although if the baud rates are 
multiples of each other, some PRBS patterns match anyway!)
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For the HSS EX10 core, PRBS Sync status is reported in the 
RXxPRBSSYNC bit of the Receive Test Control Register defined in Table 2.7, 
and on the RXxPRBSSYNC output pin defined in Table 2.3.
Step Five: Once PRBS Sync is asserted, the PRBS checker is checking the 
serial data. Any errors cause PRBS Error to be asserted. This signal may be a 
level or a pulse, depending on the implementation. 

For the HSS EX10 core, PRBS Error status is reported in the RXxPRBSERR 
bit of the Receive Test Control Register defined in Table 2.7, and on the 
RXxPRBSERR output pin defined in Table 2.3.
Step Six: To terminate the PRBS sequence, both the generator and checker 
must be disabled using the corresponding Enable signals. Note that if the 
generator is disabled first, the PRBS pattern is interrupted and the PRBS 
checker will flag the error.

7.3  Logic Built-In-Self-Test (LBIST)
Another test feature which is frequently desirable on chips is the ability to 

perform an in-circuit structural self-test of the chip. 
Functional test sequences exercise the chip through a sequence which is 

similar to the intended operation of the chip, and checks that the chip behaves 
consistently with the expected functional description. While it is possible to 
design functional BIST into a chip, this may require extensive design effort and 
may exercise only a fraction of the logic in the chip. 

Structural test sequences differ in that they exercise the logic gates and flip-
flops in the chip, and ensure that gates behave with their intended logic func-
tion. No attempt is made to construct the sequence such that it mimics actual 
operational function of the chip. Unlike functional BIST, structural BIST can 
be implemented using a more generalized approach requiring less effort, and 
usually results in more of the chip logic being exercised. 

Self-testing of the high-speed analog circuits in HSS cores is generally 
performed using the PRBS generator and checker functions described previ-
ously. However, HSS cores also contain lower-speed digital logic, and it is 
generally desirable to include those portions of the HSS cores within the logic 
domains being tested by a chip-level Logic BIST (LBIST) controller.

7.3.1 LBIST Architecture
Structural testing of chips require that all flip-flops on a chip be connected 

into scan chains. Each flip-flop on the chip has two data inputs: one input pin 
which is the functional input data to the flip-flop, and one scan data input pin 
which loads data into the flip-flop when the chip is in a scan mode. The func-
tional input pins of the flip-flops are connected as dictated by the chip design. 
The scan data input pins are connected such that the flip-flops of the chip form 
an arbitrary number of shift registers which can be serially scanned to load or 
read the current state of the chip. 



318 High Speed Serdes Devices and Applications

Fig. 7.12 Logic Built-In-Self-Test (LBIST) general architecture

Fig. 7.13 Multiple Input Shift Register (MISR)
An at-speed LBIST controller repeatedly executes the following sequence 

of steps:
1. Set the chip logic to scan mode, and load all of the scan chains on the chip 

with pseudo-random data.
2. Override chip inputs and assert pseudo-random values for chip inputs to 

internal chip logic.
3. Deassert scan mode, and generate one functional clock cycle to the chip 

logic. The state of all flip-flops on the chip is updated based on the logic 
function of the combinatorial logic feeding each flip-flop.

4. Capture the logic levels of chip outputs and compare to expected values.
5. Set the chip logic to scan mode, and read all of the scan chains on the 

chip, comparing the scan chain contents to expected values.
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The above sequence can be optimized by overlapping some steps. For 
example, reading the scan chains in step 5 can overlap loading the scan chains 
for step 1 of the next test iteration.

The general architecture shown in Fig. 7.12 is typically used for most 
LBIST implementations. The Test Timer in this figure is a state machine 
sequencer which asserts control signals to execute the various steps of the 
above sequence. This block directly controls all clocks and test mode control 
signals on the chip while LBIST is active. 

Generating pseudo-random stimulus for LBIST is readily accomplished 
using LFSR circuits similar to those used for designing PRBS generators and 
checkers. As shown in Fig. 7.12, LFSRs are typically used both for generating 
pseudo-random values for chip inputs, as well as for loading scan chains 
through the Scan Register Input (SRI).

Checking chip outputs and analyzing the Scan Register Output (SRO) are 
typically not performed by directly checking the data. The expected results are 
dependent on the chip design, and direct checking would require an arbitrarily 
large amount of expected data to be coded in the chip. 

Rather than do this, data are checked using Multiple-Input-Shift-Register 
(MISR) circuits. A MISR performs parallel capture of signature test data from 
a circuit having multiple output pins. Fig. 7.13 shows an example of a MISR. 
Similar to an LFSR, the MISR implements feedback taps according to a 
polynomial. In addition, various signals to be checked are XOR’d with the 
current state of the MISR at each stage. In an LBIST implementation, the 
various chip output and Scan Register Output signals that are to be checked are 
connected as inputs to one or more MISR circuits. 

The LBIST controller executes an arbitrarily large number of test cycles, 
collecting results using MISR circuits as part of each test cycle. After a 
preset number of test cycles, the state of each MISR corresponds to a unique 
signature value. Any logic which is not behaving correctly will corrupt this 
signature such that the MISR does not end up in the correct state. (It is possible 
for multiple logic errors to cancel each other such that the MISR signature is 
correct, but this is extremely unlikely.) Therefore, the LBIST controller only 
needs to check that the MSIR signatures match their expected values, and does 
not need to check results after every test cycle.

7.3.2 LBIST Considerations for HSS Cores
During the LBIST test sequence, the LBIST controller must load and 

read the scan chains of the HSS core, and must be able to generate single 
clock cycles to update the state of flip-flops within the core. However, HSS 
cores generally contain PLL circuits which generate clocks internal to the 
core. To support LBIST, the core design must permit these internal clock 
sources to be disabled, and permit external control of these clocks for test 
purposes. 
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Another consideration is that analog circuits within the HSS core are 
generally not in a known state during LBIST. If the logic value of outputs of 
these analog circuits cannot be predicted, and if these unknown states affect the 
values captured in flip-flops which are included in the logic being tested by 
LBIST, then the resulting MISR signatures cannot be uniquely predicted. To 
support LBIST, it is necessary for the core design to fence analog circuit 
outputs such that these signals are forced to known values where they are used 
in the digital logic domain. This fencing logic must force these values 
throughout the execution of the LBIST sequence.

Assuming the HSS core design includes the appropriate test control of 
internal clocks and the appropriate fencing logic, then the digital logic of the 
HSS core can be included as part of the chip logic being tested by LBIST. 
However, the LBIST designer still needs to consider the speed at which this 
logic can be exercised. The test clock inputs to the HSS core may not support 
the same clock frequencies at which the high-speed internally generated clocks 
would operate. It is desirable for LBIST to be executed at the highest possible 
frequency; however, this highest possible frequency is generally gated by the 
slowest path within the clock domain being tested. Skew and loading levels on 
the clock distribution for the test clocks may further affect the frequency of 
LBIST operation. The LBIST designer needs to account for any frequency 
limitations relevant to LBIST execution that are an inherent part of the HSS 
core implementation.

7.4  Manufacturing Test
HSS cores are tested during manufacturing test using a combination of 

stuck-fault and at-speed digital test patterns, LBIST, and parametric measuring 
techniques. This combination of test techniques is needed to adequately test 
both the digital logic and analog logic present in the HSS cores. Testing falls 
in two categories: tests that are applied globally to the chip logic, including any 
HSS cores, and tests that are HSS-specific. Fig. 7.14 describes a typical 
manufacturing test flow.

7.4.1 Chip Level Test
Chip level manufacturing tests are performed globally on the chip. Since 

logic in the HSS cores is part of the logic on the chip, chip level tests also test 
the HSS logic. HSS cores must be designed to support these tests. As shown in 
Fig. 7.14, the test sequence starts by performing a short, basic test to ensure 
scan chains are intact. If the scan chains are intact, then subsequent tests can be 
executed. 
7.4.1.1 Scan Test

Scan test, also called DC Stuck-Fault Testing, is a structural test of chip 
logic to verify that logic gates perform their intended functions and no stuck-
at-0 or stuck-at-1 faults exist. Many types of manufacturing defects can be 
detected by this type of testing.
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Fig. 7.14 Typical manufacturing test flow
To support scan test, all flip-flops on the chip are connected into scan 

chains. Scan chains also provide support for LBIST, and were discussed pre-
viously in this chapter. The testing concepts which apply to scan test and 
LBIST are similar; the difference is that scan test is applied using external 
tester equipment during the chip manufacturing process (either when testing 
chips on the wafer or when testing assembled modules), while LBIST is con-
trolled by on-chip logic.

Scan test repeatedly executes the following sequence of steps. 
1. Set the chip logic to scan mode, and load all of the scan chains on the chip 

with the desired data pattern.
2. Drive chip inputs with the desired data pattern.
3. Deassert scan mode, and generate one clock cycle to the chip logic. This 

causes the state of all flip-flops on the chip to be updated based on the 
logic function of the combinatorial logic feeding each flip-flop.

4. Capture the logic levels of chip outputs and compare to expected values.
5. Set the chip logic to scan mode, and read all of the scan chains on the 

chip, comparing the scan chain contents to expected values. As was the 
case for LBIST, this step can be overlapped with loading the scan chains 
for the next test iteration.

Note that in the prior discussion the data patterns for LBIST were generated 
using LFSRs since such generation needed to be performed on-chip. Data 
patterns for general scan test do not have the same restrictions. Arbitrary 
patterns may be used to target testing of specific circuits and minimize the 
number of required test patterns.
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The clock frequency used in step 3 is very slow compared to normal oper-
ating frequencies of the chip. Some scan test architectures use functional 
clocks to execute step 3, while some scan test architectures use separate test 
clocks to launch and capture the functional data. In either case, traditional scan 
testing generally does not execute the launch/capture step at operational clock 
frequencies. Such testing is intended to globally target chip logic which may 
be designed for operation at many different clock frequencies, may contain 
multicycle paths, etc. Software which generates traditional scan test patterns 
does not consider timing. To ensure the data patterns are valid, scan test is 
usually applied using clock frequencies much lower than the expected opera-
tional frequencies of the chip.
7.4.1.2 At-Speed Structural Test

While DC stuck-fault testing has historically proven extremely useful for 
capturing manufacturing defects, transition faults are a prevalent failure mech-
anism for deep submicron chip technologies, and therefore DC stuck-fault 
testing is insufficient. Transition faults are manufacturing defects which result 
in abnormally large circuit propagation delays. DC stuck-fault testing is not a 
sufficient test method because the launch/capture cycle is too slow to capture 
the improper behavior of the circuit.

Various schemes exist for executing scan test with at-speed launch/capture 
cycles to test for transition faults. Such schemes rely on software that is aware 
of the expected circuit timing when generating the at-speed test patterns. At-
speed test pattern generation software is significantly more complex than soft-
ware used for the generation of DC stuck-fault test patterns. Each test pattern 
can only target a single clock domain (or clock domains running at the same 
clock frequency), and multicycle logic paths must be excluded from the test. 
Clock gating logic can complicate test generation. As a result, the at-speed test 
pattern set generally requires more test patterns and has lower coverage than a 
DC stuck-fault test pattern set for a given chip. 

For the above reasons, both sets of patterns are used during the manufactur-
ing test process. Traditional scan test is applied first using the shorter and more 
complete DC stuck-fault test pattern set. If failures occur, no further testing is 
required and test execution time is thereby optimized. If no defects are found 
with DC stuck-fault testing, then the at-speed test pattern set is applied.
7.4.1.3 Voltage Screen

Assuming a chip is initially operational and free of defects, circuits are still 
subject to deterioration over time which eventually causes the chip to cease to 
operate. Chips have the highest probability of failing either during the first few 
hours/days/weeks of operation (early lifetime failures) or beyond their expect-
ed lifetime after years of operation (end of life failures). It is desirable for chip 
manufacturing tests to incorporate methods of ensuring chips subject to early 
lifetime failures are not used to build systems. 

One method of catching early lifetime failures would be to power on and 
operate the chip for several weeks prior to shipping the chip. It should be 
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obvious this is not a practical approach since it would stall the manufacturing 
process and utilize expensive test equipment for long periods of time. A better 
approach is to apply stresses that accelerate the deterioration of the chip so that 
chips subject to early lifetime failures fail within seconds rather than weeks. 

Voltage Screen testing is one method of doing this. Voltage Screen testing 
is a reliability stress test performed on digital logic of the chip. The test 
sequence raises the power supply voltage well beyond normal operating con-
ditions (typically to a voltage two times higher than the nominal power supply 
voltage) to cause latent early lifetime failure defects to become hard failures at 
the tester. The voltage of the chip is elevated for some period of time, after 
which scan test is repeated to determine if new stuck-at faults exist.
7.4.1.4 IDDQ or Leakage Test

Leakage testing, also called IDDQ testing, has historically proven to be a 
useful screening test to find various classes of manufacturing defects. The 
IDDQ acronym derives from the historical association of such testing with 
quiescent current. However, the test actually measures leakage current.

As is discussed in Chap. 9, circuit power dissipation includes AC (active) 
power, DC (leakage) power, and DC quiescent power components. Support for 
leakage testing generally requires a control signal or other method of precon-
ditioning the chip to disable any DC current paths, and thereby eliminate (or at 
least minimize) any DC quiescent power components. Many analog circuits, 
including those in HSS cores, have DC current paths which must be disabled, 
and a test control signal is usually provided to disable these circuits. Leakage 
testing is performed with the chip properly preconditioned, and with no signal 
switching occurring. In the absence of signal switching (zero activity factor), 
the AC active power component is also insignificant. The result is that the DC 
leakage power is the only significant contributor to current being drawn from 
the power supply.

Given these conditions, the leakage current being drawn from the power 
supply is measured and compared to an expected limit. Excessive leakage 
current is an indicator that the chip contains significant manufacturing defects. 
Because leakage testing does not take much time to perform, it is an efficient 
screening method. It can be used early in the test sequence as a quick screen 
test; if the test fails then no further testing is required and test execution time 
is thereby optimized.
7.4.1.5 PLL Macro Tests

Although PLL tests are not really chip level tests, HSS cores contain PLLs, 
and basic PLL tests are often conducted on all PLLs on the chip in parallel. In 
addition, as is discussed in Chap. 6, clock distribution networks for reference 
clocks to HSS cores are often sourced by intermediate frequency PLLs. It is 
desirable to test the interaction between the PLL driving the reference clock 
and the PLL in the HSS core. For these reasons the PLL macro tests have been 
included as part of this discussion of chip level tests.
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The following PLL tests are examples of typical PLL tests which are 
applied in common to all PLLs on the chip. These tests are executed prior to 
any other HSS-specific tests, since subsequent tests are dependent on defect-
free PLLs. 
PLL lock/voltage regulator test. This is a test to check the functionality of the 
intermediate frequency PLL together with the embedded HSS PLL and verify 
that they have achieved lock.  If the PLL slice of the HSS core contains a 
voltage regulator, the output voltage of this regulator is measured.
Filter Capacitor Leakage Test. This test measures the quiescent leakage 
current through the PLL filter capacitors to ensure they are defect-free. All 
PLLs on the chip are usually tested at the same time.

7.4.2 HSS Macro Test
Once chip level tests have completed, including any PLL macro tests, spe-

cialized macro tests are applied to other cores on the chip as needed. HSS cores 
generally require a suite of specialized tests which utilize the PRBS function-
ality described previously in this chapter. In this section, several typical tests 
are described which may be used to test an HSS core similar to the HSS EX10 
core as described in Chap. 2. An actual HSS design may require some or all of 
these tests, and may require other tests depending on the functionality.

The simplest possible approach for HSS macro tests would be based on the 
assumption that the test equipment used to test the chip and module has the 
ability to contact any pin on the chip, and has the ability to drive and receive 
the high-speed serial data signals at the maximum supported baud rate. 
However, this would utilize state-of-the-art high-speed test equipment which 
would correspondingly be very expensive. Reduced pin count test approaches 
used by some ASIC chip manufacturers do not contact the high-speed pins on 
the chip, and would not support driving and receiving signals at the full baud 
rate even if they did. By not having as many tester channels and not requiring 
high-speed testers, manufacturing test costs are reduced. Such test approaches 
rely on loopback tests and other indirect test techniques to verify the operation 
of the HSS core. Reduced pin count test methods are assumed for the HSS 
macro tests described below.
7.4.2.1 Transmitter to Receiver Wrapback Test 

The HSS Tx/Rx Wrap test is an “at speed” self-test which checks the func-
tionality of the transmit to receive wrap path by generating pseudo-random 
data and applying it to the first stage of the receive logic. On the HSS EX10, 
this test uses the built-in PRBS capabilities and the wrap path. The test se-
quence generates a PRBS data pattern, and wraps the output of the transmitter 
to the serial input of the receiver. The PRBS checker in the receiver checks the 
PRBS sequence for errors. The state of the PRBS sync and error status signals 
upon completion of the test determines whether the test passed or failed.

HSS simplex cores may be designed to support a manufacturing wrap test. 
For example, a receiver core can additionally contain a PRBS generator and a 
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test driver that injects PRBS data onto the serial data path of the receiver. 
Likewise, a transmitter can additionally contain a test receiver which receives 
the transmitter output signal and connects to a PRBS checker. Simple designs 
are possible for these test circuits since they only need to operate in a wrap 
mode where the wrap path can be assumed to be low-loss. Macro test methods 
for simplex cores with such test circuits are therefore similar to the correspond-
ing full-duplex cores.
7.4.2.2 Receiver Sensitivity Test

The purpose of this test is to ensure the receiver input stage is correctly 
differentiating between a “0” and a “1” level. This test is not an at-speed test; 
the signal levels are static for each iteration of the test.

Differential voltage levels are applied to the HSS receiver serial inputs and 
the output of the slicer logic of the HSS receiver is monitored to determine 
whether the correct logic state is being received. (If the receiver contains a 
DFE, then the slicer logic is part of the DFE circuit.) The test sequence gener-
ally drives a nominal differential voltage level, and repeats the test for both a 
“0” and “1” logic level.

The output of the slicer logic (or corresponding circuit in the DFE) is an 
internal point within the HSS receiver. This point may be accessed through a 
test port on the core, but is more likely accessed by scanning out state values 
of the core to determine the state values of flip-flops which latch the slicer 
output. Most test pattern generation software has this capability.
7.4.2.3 Receiver Gain Control Test

Most HSS receivers include an Automatic Gain Control (AGC) circuit 
which is used to amplify the signal as needed so that the signal to subsequent 
circuits falls into a more limited range. The purpose of the receiver gain control 
test is to test that the AGC is properly amplifying the signal. To avoid requiring 
test equipment capability to drive precision signals, built-in circuits are utilized 
in the case of the HSS EX10 core. The AGC offset current digital to analog 
converter (IDAC) in the receiver is programmed to apply a differential input 
voltage level at the RXxIP and RXxIN chip pads.

In the HSS EX10 receiver design, the resulting differential level passes 
through gain stages in both the AGC and DFE and arrives at a summing node 
in the DFE. At this summing node a nulling voltage (of opposite polarity to the 
AGC source signal) is added to the AGC sourced voltage. In one test, the 
nulling voltage is of a lesser magnitude than the AGC produced level, resulting 
in an overall positive summed voltage which is detected as a logical “1” down-
stream from the DFE. In the second test, the summed voltage has a negative 
polarity and produces a logical “0” result. Functional clocks shift the result 
through the analog DFE logic to the digital CDR logic where a scan operation 
can observe the test results. 
7.4.2.4 Receiver Offset IDAC Test 

In this test sequence, the AGC Offset IDAC is itself tested. The IDAC is 
programmed to generate precise differential output voltage levels at the RXxIP 
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and RXxIN differential inputs to the HSS receiver. The termination resistor that 
attaches to these nets remains engaged, while most other functions that interact 
with the RXxIP/N nets are disabled. The test is run with the Receiver set for DC 
mode and with any common mode voltage bias circuits powered down.

When the AGC Offset IDAC sinks current it draws it through the RXxIP/N 
differential inputs from the tester voltage source. The tester performs a precise 
analog current measurement at the RXxIP and RXxIN pins, and compares these 
measurements to expected ranges for each value of the AGC Offset IDAC.
7.4.2.5 Signal Detect Test 

Voltage levels are applied simultaneously at all HSS receiver differential 
serial inputs and the signal detect logic state is scanned out and compared to 
expected values. Multiple test passes are performed with various signal 
amplitude levels. The common mode voltage (Vcm) of the incoming signal is 
also varied.

Table 2.18 described the signal detect thresholds for “good” and “bad” 
signals for various settings of the Signal Detect Control Register for the HSS 
EX10 core. Signal amplitudes above the “good” threshold should always be 
detected; signal amplitudes below the “bad” threshold should never be 
detected. 
7.4.2.6 Receiver DC Terminating Resistance 

This is a parametric test that ensures that the terminating resistor is within 
the specification and associated registers are wired and working correctly in 
the HSS receiver. 

The test is performed by using manufacturing test equipment to measure 
the termination impedance as seen between the RXxIP and RXxIN pins.
7.4.2.7 Receiver Common Mode Voltage Bias Test 

This is a test for the receiver Common Mode Bias circuits to insure defect-
free operation in both DC and AC coupled modes. 

The test is performed by setting the receiver for each supported coupling 
mode, and measuring the bias voltage on the RXxIP and RXxIN pins when these 
pins are not being driven by the test equipment.
7.4.2.8 JTAG Receiver Test

The purpose of the JTAG receiver test is to verify the input from the RXxIP 
and RXxIN pins in DC and AC modes for both a “0 to 1” and a “1 to 0” pattern. 
Although this test sequence requires data transitions to be driven onto the 
receiver inputs, these data transitions are at data rates typical for JTAG 1149.6 
signals (typically no more than 1 MHz). Test equipment capable of driving 
higher baud rates is not required for this test.

For this test sequence, the input differential voltage applied on the RXxIP 
and RXxIN pins starts at the maximum allowed input voltage and then is 
reduced to the minimum level that will sustain the output value. Test results for 
each signal amplitude are determined through observation of the RXxBSOUT 
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and RXxACJZTP/N outputs as described in Sect. 2.3.6. The test is repeated for 
both “0 to 1” and “1 to 0” transitions.
7.4.2.9 Transmitter Drive Strength Test 

The driver used in the HSS EX10 has an FFE circuit with three taps and 
seven segments. Each tap contains one, two, or four segments. The drive 
current of each segment is controlled by values programmed into the 
corresponding FFE segment weighting coefficient values programmed in the 
Transmit TapX Coefficient Registers, and the value programmed into the 
Transmit Power Register. These registers are described in Table 2.6 for the 
HSS EX10 core. The values in these registers are converted to an analog 
control voltage which scales the output drive current of each driver segment. 

The voltage levels for the serial driver differential output, TXxOP and 
TXxON, are measured for various combinations of FFE tap coefficient values 
and transmit power values. Too many combinations exist to expect exhaustive 
testing; the test engineer for the HSS core must optimize the cases to be tested 
with the goal of maximizing circuit coverage of the test with as few test 
iterations as possible. For the HSS EX10 core, a reasonable approach is to test 
each combination of FFE tap coefficient values using the maximum setting for 
the transmit power, and then to test various additional transmit power levels 
with arbitrary FFE tap coefficient values.

For each test iteration, the test sequence must scan the chip to set the appro-
priate values for tap coefficients, transmitter power, and logic state. The 
voltage levels on the TXxOP and TXxON pins are then measured and compared 
to expected values. Note that these are static voltage measurements; data does 
not transition during this test.
7.4.2.10 Transmitter Terminating Resistance Test

This is a parametric test that ensures that the terminating resistor is within 
the specification and associated registers are wired and working correctly in 
the HSS driver.

The test is performed by using manufacturing test equipment to measure 
the termination impedance as seen between the TXxOP and TXxON pins.

7.5  Characterization and Qualification Testing
Characterization testing is performed to ensure that the HSS transmitter and 

receiver perform both logically and electrically to specific requirements for 
performance, amplitude, and jitter across the full spectrum of process, voltage, 
and temperature (PVT) conditions. Qualification typically occurs after the 
HSS design has been fabricated, tested, characterized, and reliability-stressed 
using multiple lots of hardware including fast, nominal, and slow chips. Char-
acterization testing is typically accomplished using an HSS test chip which 
contains multiple copies of transmitter and receiver links, driven by an IF PLL 
and/or differential clock receiver, and including FIFOs between the receivers 
and transmitters. The test chips are fabricated with intentional process 
variation for NFET and PFET threshold voltage (Vt ) and effective transistor 
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channel length (Leff ). For HSS characterization, these HSS test chips are 
typically mounted on an Evaluation Board which can be connected to clock 
and pattern generation and recognition equipment, cables and/or backplane 
channels, and whose control registers can be accessed through a parallel data 
port and programmed via software on a PC. An example of a characterization 
setup is shown in Fig. 7.15.

As discussed in Sect. 4.1.2, serial data interface standards specify that the 
serial data must meet requirements for amplitude, eye width, and jitter to be in 
compliance and to ensure interoperability between HSS transmitters and 
receivers designed by different vendors.  In addition, the characterization lab 
testing of an HSS test chip supports model to hardware correlation between the 
Spice, behavioral, and S-parameter simulation models used for signal integrity 
analysis.

The following subsections discuss various topics regarding characteriza-
tion testing for HSS transmitters and receivers, including examples of the types 
of testing that is typically performed.

7.5.1 Transmitter Tests
7.5.1.1 Test Conditions

Fig. 7.16 illustrates two possible measurement points for characterization 
of transmitter devices. The transmitter devices to be tested are identified as the 
device under test (DUT) blocks.

One method of performing such measurements would be to connect test 
equipment directly to the output of a transmitter. The test equipment provides 
an ideal load for the transmitter, with no intervening channel to distort the 
signal. Some protocol standards do specify the transmitter output pin as a com-
pliance point, and in such cases compliance measurements are performed 
directly at the transmitter output. 

Fig. 7.15 HSS characterization and qualification lab setup
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Fig. 7.16 Lab characterization conditions for the transmitter
Note, however, that in a real system the channel does distort the signal. This 

distortion, and associated signal integrity topics, are discussed in Chap. 8. HSS 
transmitters often contain an FFE circuit which is capable of altering the 
transmitted signal. The FFE emphasizes the transmitted signal to cancel the 
distortion effects of the channel, and thereby provide good signal quality at the 
receiver input. Measurements performed at the transmitter output must be 
performed using defined FFE settings, and provide no guidance as to the signal 
quality at the receiver.

An alternative used by many protocol standards is to define the character-
istics of a compliance channel, and to perform transmitter characterization by 
measuring the transmitted signal at the far-end of this channel. This is also 
shown in Fig. 7.16, with the DUT driving a channel, and test equipment 
connected to the far-end of the channel. In this case, the FFE is expected to be 
set based on the channel characteristics to obtain the best possible signal 
quality at the test point.

HSS design teams perform characterization testing of their transmitter 
devices using both methods. Specifications for jitter and amplitude of the 
transmitter output require measurements directly at this point. Characterization 
of the FFE and model to hardware correlation of hardware to various signal 
integrity models requires measurements at the far-end of known channels. 
Furthermore, compliance testing for various protocol standards requires 
measurements be taken consistent with the test methods and conditions defined 
by the standards document.
7.5.1.2 Driver Transmit Jitter Output

This test quantifies the transmitter jitter output while transmitting several 
different serial data patterns. Link protocols generally specify the data patterns 
to be used for jitter compliance measurements. For example, the HSS EX10 
transmitter described in Chap. 2 would be characterized with the PRBS-7 and 
PRBS-10 patterns, as well as the “0101” clock pattern. Clock patterns do not 
have pattern dependent jitter, and therefore this pattern is useful for determining 
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the random jitter (RJ); the PRBS patterns are used to characterize total 
jitter (TJ). Deterministic jitter (DJ) can be determined mathematically once TJ 
and RJ are known. Jitter is discussed further in Sect. 8.2. 

Jitter output testing uses a test setup similar to Fig. 7.17. Measurements are 
made with and without power supply noise to ensure performance in an inte-
grated chip environment.  Deterministic jitter (DJ), RJ, duty cycle 
distortion (DCD) and TJ at a 10–12 bit error rate are compared to the link 
compliance specifications. Software techniques are used to decompose jitter 
into deterministic and random components, however these techniques 
sometimes have trouble distinguishing between low levels of periodic and 
random jitter.
7.5.1.3 Driver FFE Characterization

The transmitter FFE is used to reduce intersymbol interference. Fig. 7.18 
and 7.19 show the effect of the various FFE taps and their polarity. The figures 
use a repeating 00001111 pattern to clearly show how the tap points affect the 
bits before and after the transition. The FFE capabilities must be correlated to 
signal integrity analysis software, such as the HSSCDR simulation tool 
discussed in Sect. 8.4.2. HSSCDR is used to analyze the S-parameters for 
backplane examples, and determine proper FFE tap weights needed to equalize 
these backplanes. These values are then used to perform hardware measure-
ments, and the simulated eye diagrams are correlated with the measured eye 
diagrams.

Fig. 7.17 Lab setup example for jitter generation
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Fig. 7.18 Tap 0 (precursor) negative tap 0

Fig. 7.19 Tap 0 (precursor) positive tap 0
7.5.1.4 Differential Amplitude

The differential amplitude of the HSS EX10 transmitter is measured with 
various test patterns and under various test conditions. The minimum 
differential amplitude of the measured data eye envelope that is observed 
defines the amplitude limits of the inner eye; the maximum differential 
amplitude of the measured data eye envelope defines the amplitude limits of 
the outer eye.



332 High Speed Serdes Devices and Applications

PRBS test patterns are used to determine overall data eye envelope limits. 
The frequency at which the transmitted signal switches, as well as the rise and 
fall times of the signal, affects the amplitude of the signal swing. If measure-
ments are being performed through a compliance channel, then signal 
amplitude is also affected by the frequency response and the loss characteris-
tics of the channel. Such effects are pattern dependent, and randomized data 
with appropriate spectral content is necessary to determine the amplitude limits 
of the data eye envelope.

Low frequency tone patterns also produce useful measurements. Such 
patterns are used to determine the low frequency amplitude of the driver as 
well as rise and fall times. For the HSS EX10 transmitter, which supports 
10 Gbps baud rates, a 531.25 MHz tone is appropriate for performing these 
measurements.

Using a PRBS test pattern, and a test setup where measurements are 
performed at the end of a compliance channel, the resulting measurements do 
give some insight into the signal amplitudes and jitter which must be tolerated 
by the receiver device. However, these measurements can be misleading. Often 
these measurements are performed with test equipment providing an ideal 
impedance match; specifications in protocol standards may even require an 
ideal impedance match (with minimal tolerance) as part of the test conditions 
for measurements. In a real system, the impedance tolerance for the receiver 
device is generally less stringent than the specified test conditions. This creates 
reflections in the real system which can result in the receiver device seeing a 
signal amplitude that is greater than the amplitude range specified in the 
protocol standard. Such conditions are not a violation of the standard, and the 
receiver device must tolerate these amplitudes.
7.5.1.5 Eye Mask Measurements

Many protocols use eye masks to specify the amplitude and total jitter 
limits of the transmitted signal. Eye masks may be specified at either the 
transmitter output, or at the far end of a specified compliance channel.

Fig. 7.20 Eye mask measurement with a Golden PLL
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Fig. 7.21 Example of a transmitter eye mask

Fig. 7.22 Differential amplitude measurements
Fig. 7.20 illustrates a lab setup using an oscilloscope which may be used to 

perform eye mask measurements [3]. The transmitter to be tested is connected 
to a conversion amplifier which converts the differential signal to the corre-
sponding single-ended signal. (In some cases this conversion amplifier may be 
integrated with the oscilloscope.) The output of the conversion amplifier is 
split and connected to the oscilloscope data input, and through a Golden PLL 
to the trigger input of the oscilloscope. The Golden PLL must have defined 
bandwidth characteristics, and is used to obtain a stable low-jitter reference 
clock for triggering the oscilloscope.
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An example of an eye mask specification is shown in Fig. 7.21. This mask 
specifies both maximum and minimum limits for differential amplitude and 
total jitter of the transmitter output. The shape of the inner eye mask also 
results in an implied specification for maximum rise/fall time of the signal. 
When performing compliance testing for a given protocol, the measured signal 
eye must remain within the specified eye mask envelope. Fig. 7.22 illustrates 
a measured eye waveform with an eye mask also displayed. The measured eye 
is well within the eye mask boundaries shown on the scope trace. 

Signal excursions beyond the boundaries of the eye mask specification are 
not necessarily an indication of noncompliance. Such excursions may occur as 
long as the frequency of such violations does not exceed the specified BER. 
The limits and shape of the eye mask waveform is a function of the target BER, 
and assumes continuous data collection by the test equipment. If a sampling 
oscilloscope is used, the eye mask must be adjusted using mathematical 
analysis to obtain correct results [3].

The HSS EX10 core described in Chap. 2 included a Digital Eye circuit 
which allowed certain signal quality measurements to be performed in an oper-
ational environment without test equipment. This function was described in 
Sect. 2.3.11. The minimum differential signal amplitude and eye width after 
equalization can be measured using this function.

When using test equipment, measurements are made only on the top surface 
of the circuit board with microstrip links to eliminate the effects of board vias 
(which vary significantly depending on the board design). Measurements 
typically include the affect of an SMP (subminiature push-on) connector, 
1.6-in. board traces, 0201 decoupling capacitors, as well as the package and IC 
circuitry. 

Fig. 7.23 Relative wander measurement

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.
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7.5.1.6 Multilane Synchronization
Protocols which bit-interleave or byte-stripe data across multiple serial 

data lanes generally specify limitations on the maximum phase difference 
between the various lanes to constrain the deskew range which must be 
handled at the receiver. In Sect. 4.1.2.5 the terms wander and skew were 
defined to describe variation in the arrival time of the signals of a multilane 
interface. Skew is the constant component of the phase difference between two 
lanes, while wander may vary over time due to changes in temperature, 
voltage, or noise. Since timing variations for both skew and wander can be 
tracked by the CDR in the receiver, these parameters are only of significance 
for multilane interfaces. 

Fig. 7.23 illustrates a lab setup for measuring skew and wander [3]. Two 
transmit lanes of the device under test are connected to Golden PLLs which 
filter out the high-frequency jitter on the respective lanes. One lane is con-
nected to the data input of the oscilloscope, while the other lane is used as a 
trigger. The constant portion of the phase difference between the two channels 
is the skew, while the time varying portion is the wander.

7.5.2 Receiver Tests
7.5.2.1 Jitter Tolerance

Jitter tolerance testing quantifies the ability of the receiver to receive 
incoming data in the presence of jitter. Receiver jitter tolerance is measured for 
both synchronous and plesiosynchronous reference clocks. Receiver jitter 
tolerance compliance can be tested for both optical and backplane applications, 
as determined by the applicable standard.

Optical mode testing of the HSS EX10 core is accomplished using a bit 
error rate tester (BERT) as a data source. The BERT is capable of injecting 
controlled amounts of jitter. Optical testing is performed using jitter that is pre-
dominantly nonequalizable. This jitter is generated by the BERT and includes 
random jitter (RJ), bounded uncorrelated jitter (BUJ), and sinusoidal 
jitter (SJ). The testing also includes a compliance channel to create intersym-
bol interference which is partially equalized using the DFE in the receiver. 
Jitter is applied over a range of frequencies and amplitudes to ascertain the 
maximum jitter tolerance of the HSS receiver. The jitter tolerance limit is 
determined by the point where one or more errors is detected in the transmitted 
pattern within a specified time period.

Backplane mode testing of the HSS EX10 is accomplished by inserting 
various backplanes between the HSS EX10 transmitter and receiver. This 
testing demonstrates the types of links that can be equalized when the HSS 
EX10 core is used at both the transmit and receive ends of the channel. Since 
the data source is the HSS EX10 transmitter, other types of jitter (RJ, BUJ, SJ) 
are determined by the characteristics of the transmitter and cannot be adjusted 
during this test.
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Fig. 7.24 Jitter tolerance lab setup

Fig. 7.25 Typical sinusoidal jitter mask
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Fig. 7.24 illustrates a lab setup for jitter tolerance testing. The Noise Source 
and PRBS Generator are sources of RJ and BUJ, and modulate the voltage 
controlled delay line to inject this jitter onto the BERT output. Sinusoidal jitter 
is then added by a sinusoidal noise generator and intersymbol interference is 
added by the compliance channel.

Levels of RJ and BUJ used in jitter tolerance testing correspond to jitter 
specifications for the transmitter device as defined in the protocol standard. 
The purpose of SJ is to provide margin in the receiver design; the amount of SJ 
to be injected is defined as part of the test specification. SJ may be defined in 
terms of a mask as a function of frequency, an example of which is shown in 
Fig. 7.25. The sinusoidal jitter frequency is varied as part of the test sequence, 
with the amplitude adjusted according to the mask.
7.5.2.2 Receiver Signal Detection Test

The signal detection test determines the receiver input signal amplitudes (in 
terms of differential voltage) that cause the signal detect status indicator to go 
active or inactive. The signal detect specification has two limits:
• The upper limit is the minimum input voltage level where signal detect 

status is guaranteed to be asserted, indicating presence of a signal.
• The lower limit is the maximum input voltage level where signal detect 

status is guaranteed to not be asserted, indicating loss of signal.
These two limits are shown in Fig. 7.26. In the range between these limits, 

the signal indication status is not guaranteed to have any particular value. 
Although it would be ideal to have the upper and lower limits be the same 
value, tolerances seen in real hardware circuits make this impossible. Some 
tolerance is required to allow for variation in the actual threshold point where 
the circuit switches state. The difference between the upper and the lower 
limits reflects this variation.

Fig. 7.26 Receiver signal detect test sequence
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Fig. 7.27 Receiver signal detection test lab setup
Fig. 7.26 also illustrates the sequence for the signal detection test. First, the 

input level is set to the minimum level supported by the test setup and the input 
amplitude is increased until signal detect starts to toggle. This voltage is 
recorded as the maximum logic 0 level (point 3). The signal is incremented 
further until signal detect is static at logic 1. This value is recorded as the 
minimum logic 1 level (point 4). If the HSS signal detect circuitry has no hys-
teresis, then points 1 and 2 in the figure are equivalent to points 4 and 3. Oth-
erwise, the test is repeated by setting the input level to the maximum level 
supported by the test setup and incrementally decreasing the signal amplitude.

Fig. 7.27 illustrates the lab setup for this test. The BERT outputs, shown at 
the bottom of the diagram, are attenuated and then passed through two 50-ohm 
power splitters. These split the signal so that the half the receiver signal is 
going to the DUT and the other half is observed on the scope so that amplitude 
can be measured.

7.5.3 General Tests
The following tests are general and apply to both transmitters and receivers.
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7.5.3.1 Return Loss
As discussed in Sect. 1.4.1, the channel is an electrical transmission line 

composed of circuit board traces and vias, connectors and/or cables. Reflected 
energy due to impedance mismatches reduce the signal amplitude. 

Return loss measures the returned energy from a signal launched into the 
package ball at either the transmitter or the receiver. Return loss is specified as 
the difference, in dB, between the forward and reflected logarithmic power. 
Return loss measurements are typically characterized for the both the HSS 
transmitter and receiver, and for both differential and common modes. An 
example of return loss measurements under various conditions is shown in 
Fig. 7.28.
7.5.3.2 Power Dissipation

Power dissipation is measured by turning on groups of receiver and 
transmitter links on an HSS test chip and monitoring the change in the supply 
current for various power supplies used by the HSS cores. Measurements are 
repeated for slow, nominal, and fast chips, across various DFE and FFE 
settings, and at various temperature and power supply voltage settings. The 
measured values are compared to the simulated power values. Power 
calculations are discussed in Chap. 9.

HSS implementations are often compared using a “power per link” metric. 
This metric typically includes the total power dissipation requirements drawn 
from all power supplies for one transmitter device plus one receiver device. 
This metric also includes the power dissipation of the PLL slice; this 
contribution is assumed to be amortized over all links in the core, and the per 
link contribution is adjusted accordingly.

Fig. 7.28 Common mode return loss
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7.6  References and Additional Reading
The following standards documents are applicable to topics in this chapter:

1. “IEEE Std 1149.1-2001 IEEE Standard Test Access Port and Boundary-
Scan Architecture,” Institute for Electrical and Electronic Engineers, 
2001.

2. “IEEE Std 1149.6-2003 IEEE Standard for Boundary-Scan Testing of 
Advanced Digital Networks,” Institute for Electrical and Electronic 
Engineers, 2003.

The following standards documents contain descriptions of jitter 
terminology and compliance test methods applicable to various interface 
standards described in Chap. 5:
3. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability 

agreements for 6G+ bps and 11G+ bps I/O,” OIF-CEI-02.0, Optical 
Internetworking Forum (http:\\www.oiforum.com), Feb. 28 2005.

4. “ANSI INCITS TR-34-2004: INCITS Technical Report for Information 
Technology - Fibre Channel - Methodologies for Jitter and Signal Quality 
Specification (MJSQ),” American National Standards Institute, Inc., 
International Committee for Information Technology Standards, Jan. 1 
2004.

The following reading is recommended for more information regarding 
structural testing methods:
5. “Built-in Test for VLSI, Pseudorandom Techniques,” Paul H. Bardell, 

William H. McAnney, Jacob Savir, Wiley, 1987.
6. “An Automated, Complete, Structural Test Solution for SERDES,” 

Stephen Sunter, Aubin Roy, J-F Cote, International Test Conference 
(ITC), 2004.

7.7  Exercises
1. A circuit board manufacturer requires that all chips being assembled on a 

circuit board must support JTAG 1149.1 or JTAG 1149.6. Explain the 
motivation for this.

2. Does either JTAG 1149.1 or JTAG 1149.6 perform at-speed test of signals 
on the circuit board? Why or why not?

3. Draw the timing diagram for a sequence of the JTAG 1149.1 TCK and 
TMS signals which places the JTAG tap controller in the Shift-IR state 
regardless of the initial state.

4. Draw the timing diagram for a sequence of the JTAG 1149.1 TCK and 
TMS signals which places the JTAG tap controller in the Capture-DR 
state assuming the tap controller is initially in the Shift-IR state.
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5. The I/O for a given chip consists exclusively of eight HSS EX10 cores. 
Assuming all of the channels on these cores are used, how many JTAG 
1149.1 Boundary Scan Cells must be included in the Boundary Scan 
Register to control and observe these I/O?

6. Assume the chip in Exercise 5 must support JTAG 1149.6. How many 
Boundary Scan Cells must be included in the Boundary Scan Register to 
comply with JTAG 1149.6?

7. What additional test coverage does JTAG 1149.6 provide which is not 
provided by JTAG 1149.1? Does this affect the design of the HSS 
transmitter and/or the receiver?

be open and the differential signal still passes JTAG 1149.1 stuck-fault 
testing. Draw similar waveforms to illustrate behavior when the ‘true’ leg 
of the signal is open.

9. Explain why the Serial Diagnostic Loopback path in Fig. 7.7 is generally 
not implemented for simplex core configurations. Discuss the signal 
integrity implications.

10. Explain why the Remote Line Loopback path in Fig. 7.7 requires an 
elastic buffer between the HSS Rx and the HSS Tx. Discuss the 
implications of implementing this path for a plesiosynchronous system.

11. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator 
which uses the following polynomial: G(x) = x7 + x6 + 1.

12. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS checker 
which checks the following polynomial: G(x) = x7 + x3 + 1.

13. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator 
which uses the following polynomial: G(x) = x23 + x18 + 1.

14. Modify the logic in exercise 13 to support generation of both PRBS23+ 
and PRBS23– patterns.

15. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator 
which uses the following polynomial: G(x) = x31 + x28 + 1.

16. Write a program to generate the complete PRBS data pattern for each of 
the PRBS polynomials listed Table 7.1, and collect the following statistics 
for each of the PRBS patterns in this table: 
• Maximum run length
• Average run length
• Ratio of number of 1’s in the pattern relative to the total number of bits
(Run length is the number of consecutive 0’s or 1’s.)

17. An HSS EX10 transmitter and receiver are to be externally connected in a 
wrap configuration and tested using a PRBS23+ sequence. Specify a 
series of register write cycles (specifying register address and data) that 
executes this sequence.

8. Figures 7.4 and 7.5 illustrate how the “complement” leg of the signal may 
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18. In addition to various PRBS patterns, the HSS EX10 transmitter also 
supports data patterns which generate alternating 0’s and 1’s. 
(a) How are these patterns generally used? 
(b) Why is there no support on the receiver for checking these patterns?

19. An MISR circuit is connected to 32 scan outputs of a device under test, 
and calculates the corresponding test signature using the polynomial: 
C(x) = x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 + 

x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x + 1

Design logic (Verilog or VHDL) for this MISR circuit. (Note that your 
answer to Chap. 4 Exercise 20 or 21 may be a useful starting point.)

20. An analog block is instantiated in a digital design and must be fenced off 
such that LBIST may be used to test the digital design. 
(a) Draw an example of the fencing logic associated with the output of 

the analog block.
(b) What fencing logic is required for inputs to the analog block?
(c) If there is a requirement that inputs to the analog block be observable 

during the LBIST sequence, what logic should be added for inputs to 
the analog block?

21. Explain the advantage (from a test cost standpoint) of performing 
“Leakage Test” early in the test sequence shown in Fig. 7.14.

22. Assume an HSS core contained a significant number of analog circuits 
which contained DC current paths that could not be disabled for leakage 
test. 
(a) How would this impact the ability to perform a Leakage test for the 

rest of the chip? 
(b) If all of the DC current paths in the HSS core are powered from a 

separate analog Vdd power supply input to the chip, can you suggest 
a workaround that allows leakage testing of the rest of the chip?

23. The scan test and at-speed test shown in Fig. 7.14 are both structural tests 
while the HSS Macro Test “Transmitter to Receiver Wrapback Test” 
described in Sect. 7.4.2.1 is a functional test. All of these tests provide test 
coverage for logic in the HSS core. Contrast the differences between these 
tests.

24. Explain the purpose of the “Voltage Screen” test in Fig. 7.14. Is it possible 
for the chip to pass the first “Scan Test” and “At-Speed Test”, and then 
fail the “Scan Test” executed after the Voltage Screen step?



Test and Diagnostics  343

25. Two test configurations are shown in Fig. 7.16 for performing 
characterization tests on a transmitter device. Assume an eye mask is used 
to specify signal characteristics of the transmitted signal. 
(a) Explain why measurements for one of these configurations must be 

performed without transmit equalization. 
(b) Explain why Tx equalization can be used in the other configuration.

26. If a traditional eye mask as described in Fig. 7.21 is used to specify signal 
characteristics, then any measurements taken at the transmitter must be 
performed with transmit equalization turned off. Suggest an alternative 
method of specifying a transmitter waveform at the output of the 
transmitter (not using a compliance channel) that includes the affects of 
transmit equalization. (Hint: IEEE 802.3 Backplane Ethernet variant 
10GBASE-KR came up with one approach.)

27. Assume various test patterns are used to characterize the jitter generated 
by a transmitter device using the test configuration shown in Fig. 7.17.
(a) Using a PRBS pattern, will the corresponding measured jitter be RJ, 

DJ, or TJ?
(b) Do you expect significant differences in the measurement for a 

PRBS-7 pattern as opposed to a PRBS-31 pattern? Why or why not?
(c) Using an alternating ‘00110011...” pattern, will the corresponding 

measured jitter be RJ, DJ, or TJ? Why?
28. Does a test pattern exist which can be used to characterize the jitter 

generated by the transmitter device in Fig. 7.17 that only exhibits 
deterministic jitter? Why or why not?

29. The discussion of transmit equalization in Sect. 1.3.2 defined 
preemphasis and deemphasis classifications for FFE architectures. Which 
of these applies to the waveforms in Fig. 7.18, 7.19? Why?

30. Draw waveforms similar to Fig. 7.18, Fig. 7.19 for an FFE which uses an 
architecture that is the opposite of that in exercise 29.

31. What is the purpose of the “Golden PLL” in Fig. 7.20?
32. Assume an eye mask as described in Fig. 7.21 is used to specify signal 

characteristics for a transmitter device. The T_Y2 parameter corresponds 
to the maximum differential amplitude allowed on the transmitter output 
under the specified test conditions. In an actual system using a compliant 
transmitter device, is it possible for a receiver device to see a differential 
amplitude that exceeds this specification? Why or why not?
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33. Fig. 7.23 illustrates a test configuration used to measure the wander and 
skew between two transmit data lanes of an interface. Explain why the 
“Golden PLL” devices are required. How would omitting the “Golden 
PLL” devices affect the measurement?

34. For the test configuration in Fig. 7.23:
(a) If a single measurement is taken, does this measurement indicate the 

skew or the wander between the two data lanes (or some mixture)?
(b) Suggest a test procedure to perform a series of measurements such 

that the value of both the skew and wander can be determined.
35. A jitter tolerance test is performed on a receiver device using the test 

configuration in Fig. 7.24. During the 24 hour test period, some errors are 
received. How many errors are allowed if the receiver device is to meet 
the following bit error rates?
(a) BER = 10-12  (b) BER = 10-15  (c) BER = 10-18

36. Sinusoidal Jitter is injected on the signal as part of a jitter tolerance test 
using the test configuration shown in Fig. 7.24.
(a) The test configuration also injects both RJ and DJ components onto 

the signal. What is the purpose of injecting SJ as well?
(b) The amount of SJ injected depends on the frequency of this jitter 

component, and is defined by the mask in Fig. 7.25. Why does SJ 
have a larger amplitude at lower frequencies?

37. A signal detection test is performed on a receiver device using the test 
sequence described in Fig. 7.26, and with the thresholds shown in that 
figure. What is the expectation for whether RXxSIGDET is asserted for 
each of the following signal amplitudes:
(a) 70 mVppd  (b) 180 mVppd  (c) 100 mVppd
(d) 175 mVppd  (e) 85 mVppd  (f) 173 mVppd

38. Given the HSS EX10 core described in Chap. 2:
(a) Suggest a test sequence for characterizing power dissipation of the 

core for various equalization modes of the transmitter and receiver.
(b) How would you convert these power dissipation numbers to a “power 

per link” metric?
(c) How is the power dissipation contribution of the PLL slice handled in 

this metric?
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Chapter 8  
Signal Integrity

The data rates at which serial links typically operate are very often greater 
than the inherent bandwidth capabilities of the channel which connects the 
transmitter device to the receiver device. Signal integrity analysis is therefore 
required to determine whether the signal being transmitted, as distorted by the 
channel, is recoverable by the receiver. 

This chapter focuses on the types and sources of jitter in detail. Signal 
integrity analysis techniques are described using both circuit simulation and 
statistical analysis techniques.

8.1  Probability Density Functions
A probability density function (PDF) defines the probability of a sample x having 

a certain value for the universe of possible values of x. In the context of jitter, x is 
defined as the timing deviation of a given edge of the signal, and p(x) is the probability 
of the signal edge having this amount of deviation. Before discussing the various 
contributors to jitter, it is useful to review the mathematics behind two common 
PDFs: the PDF for a Gaussian distribution, and the PDF for a dual-Dirac distribution. 

8.1.1 Gaussian Distribution
The Gaussian distribution is well studied in the field of probability and statis-

tics. It can be used to characterize many naturally occurring physical phenomena 
and it does a good job of representing the random jitter component of serial data 
transitions. A Gaussian distribution is defined by two values: the mean, represented 
by the “�” symbol, and the standard deviation, represented by the “"” symbol. The 
mean is the central position of the curve on the x-axis, and the standard deviation 
is a measure of the width of the distribution. By definition, the Gaussian distribu-
tion is unbounded, meaning that no matter how far a value is from the mean value, 
there is a nonzero probability of encountering an occurrence at that value. Fig. 8.1 
illustrates a PDF for a Gaussian distribution for which � = 0, " = 1.

The PDF corresponding to Fig. 8.1 is defined by the following equation:

where $ = (x – �), representing the difference between the amount of deviation 
of a given edge transition (x) and the mean of the distribution (�). The p($, ") 
function specifies the probability distribution and can be integrated between 
two limits to determine the probability of x (or $) having a value within those 
limits. Integration of the (8.1) is easier if $ is normalized in terms of ", 
suggesting the substitution: z = (x – �) / ".
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Making this substitution into (8.1), and then integrating (8.1) over the range 
of -∞ to z with respect to t results in:

where error function erf(z) is defined as:

Equation (8.3) is called a cumulative distribution function (CDF), and rep-
resents the cumulative probability that the deviation of a given edge transition 
(x) is in the range: -∞ < x < z. The CDF in (8.2) may be used to determine the 
probability of z being between two limits:

Using this formula, it can be demonstrated that approximately 68.26% of the 
events are within one " of the mean (�), 95.45% of the events are within two " 
of the mean, and 99.73% of the events are within three " of the mean.

A Gaussian distribution is inherently unbounded with the PDF curve 
stretching from -∞ to +∞. The greater the number of samples that are accumu-
lated, the more likely it is that some of those samples are low probability events 
far from the mean. For example, assume that test equipment is used to measure 
the peak-to-peak limits of unbounded Gaussian Jitter for an HSS link. The 
longer the period over which the measurement is taken, the greater the number 

Fig. 8.1  Probability density function of a gaussian distribution
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of signal transitions being observed, and the larger the peak-to-peak jitter value 
reported. For a truly Gaussian jitter source, the measured jitter approaches 
infinity as the measurement period is increased.

A somewhat more useful measurement for an unbounded Gaussian distri-
bution is the root-mean-square (RMS) value, which represents the samples of 
the distribution that are within one " of the mean. Unlike the peak-to-peak 
value, the RMS value converges to a fixed value determined by " as the 
number of samples increases. As noted previously, 68.26% of the samples are 
in this range. Conversely, 31.74% of the samples are not in the range specified 
by the RMS value.

The peak-to-peak value of the measured jitter in the previous example 
tended toward infinity as the measurement time increased, and therefore this 
was not a useful measurement to use as a design constraint. The RMS value of 
the measured jitter converged on a useful value, but since more than 31% of 
the data transitions have more deviation than the RMS value, this value is also 
not an appropriate design constraint. 

What is needed is an appropriate “worst case” limit for the jitter such that 
any jitter beyond this limit is sufficiently improbable. The specified bit error 
rate (BER) for the link imposes such a limit. The BER is defined as the ratio 
of the number of bit errors (which in this context are assumed to be caused by 
jitter events in the tails of the Gaussian distribution) to the total number of bits 
transmitted. By excluding events in the tails of the Gaussian distribution from 
consideration, a bounded (rather than unbounded) Gaussian distribution 
results. 

A bounded Gaussian distribution is represented mathematically by the 
bounded equation:

where K is the normalization constant for the PDF, selected so that p($, ") 
integrates to 1 over the range of -∞ to +∞ .

Given this PDF, the corresponding CDF specified by P(z), and a target BER 
limit, the probability of an event beyond the range specified by the BER must 
be constrained such that:

BER ≥ [1−(P(z) − P(−z))]
Q is related to the target BER by the following equation [6]:
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where erfc(x) is the inverse of the error function erf(x): erfc(x) = 1 - erf(x), and 
the above equation results from the expansion of this function.

Given Q, the peak-to-peak ( zp−p ), peak ( zpeak ), and RMS ( zrms ) values 
of z are related as follows:

zpeak = Q x zrms
zp−p = 2 x zpeak

Some values of Q (to two decimal places) corresponding to various values 
of BER are shown in Table 8.1. A BER of 10-12 corresponds to Q = 7.03; a BER 
of 10-15 corresponds to Q = 7.94.

Gaussian distributions, both bounded and unbounded, are useful for 
modeling various types of jitter. Some of these jitter sources result from 
random events, while others are not random but are not correlated with the data 
(and therefore can be modeled with a bounded Gaussian distribution).

8.1.2 Dual-Dirac Distribution
Samples modeled by a dual-Dirac probability density function have equal 

probability of occurring at each of two values of x, as shown in Fig. 8.2. The 
mean (�) of the function lies at the midpoint between the two values of x, and 
the PDF is nonzero for x = (� + A). The dual-Dirac function is represented 
mathematically by the equation:

p(x, A) = 0.5 [δ((x − µ)−A) + δ ((x − µ ) + A)] (8.9)
where �(x) is the impulse response of x:

In Fig. 8.2, � = 0, A = 1. 
The Dual-Dirac PDF is useful for modeling certain forms of deterministic 

jitter. For lack of a better model, it is also often used as a general model for 
correlated deterministic jitter.

Table 8.1   Q factors for different BER targets

BER Q BER Q
10-3 3.09 10-10 6.36
10-4 3.72 10-11 6.71
10-5 4.27 10-12 7.03
10-6 4.75 10-13 7.35
10-7 5.20 10-14 7.65
10-8 5.61 10-15 7.94
10-9 6.00 10-16 8.22

δ x( )
∞ when  x 0•,
0 when x 0≠,




and δ t( ) td
∞

∞
∫ 1==

when x = 0

−

(8.8)

(8.10)
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8.2  Jitter
One of the most important considerations in the performance of high-speed 

serial links is jitter. Jitter is defined as the deviation in arrival time of a signal 
from its ideal or expected arrival time. The amount of jitter present on a serial 
link is related to the achievable BER. If the jitter on a serial link is excessive, 
data errors result and overall link performance is degraded, possibly to 
unacceptable levels.

This chapter is only concerned with jitter where the deviation occurs 
sufficiently fast that the CDR circuit in the serial link cannot track the 
deviation. As was discussed in Sect. 4.1.2.5, wander and skew can also be 
considered to be forms of jitter, but with the variation in arrival time changing 
at much lower frequencies. Wander and skew components of jitter are 
therefore tracked by the CDR and do not affect the signal integrity of the serial 
link, although they may affect FIFO design in the protocol logic.

8.2.1 Jitter Components
This section describes the various components of jitter and the associated 

terminology. This topic is complicated by the fact that different standards use 
different terminologies. The following discussion uses one of the more 
common sets of terms for jitter types, and also provides alternative terminol-
ogy where appropriate.

As was defined in Sect. 1.4.3, the total jitter (TJ) of the signal is the overall 
jitter as seen at the point of measurement. Total jitter can be measured directly 
on hardware and is calculated by determining the ideal bit time minus the 
actual eye width. Total Jitter is generally specified as either a peak or peak-to-
peak value. As will be described in Sect. 8.2.3, jitter is statistical in nature and 
the value is related to the target BER of the serial link. Hardware measurements 
of TJ must be taken over a sufficient length of time to ensure a valid measurement 

Fig. 8.2 Probability density function of a dual-dirac distribution
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for the target BER. The measurement must also be based on sufficiently 
random data to ensure all possible pattern-dependent effects have been 
observed. A typical oscilloscope providing a + 3 sigma histogram of eye width 
values is not an accurate portrayal of the eye width for a 10-12 BER, and using 
such a measurement understates the jitter of the system.

Traditionally, jitter is subdivided into the following two components: 
deterministic jitter (DJ), and random jitter (RJ). Each of these categories 
accumulates differently in the link and results in different requirements for 
compliance and budgeting schemes.
Deterministic jitter. This is the amount of the total jitter for which the jitter 
distribution is non-Gaussian. Deterministic jitter is always bounded in 
amplitude and is created by specific, identifiable causes. The terminology used 
in [1] for DJ is high probability jitter (HPJ). Four types of jitter are typically 
included as part of the DJ component:
• Duty cycle distortion (DCD) results from the difference in width between 

a logic “0” and a logic “1.” This element of DJ is the result of a driver 
circuit that has rise and fall times that are not equal. Another cause of 
DCD results when a DC voltage offset is present between the true and 
complement legs of the differential signal. Pulse width shrinkage due to 
passive or active components of the channel may also be a factor. DCD is 
sometimes called pulse width distortion.

• Data dependent jitter (DDJ) includes timing variations that result from 
nonclocklike serial data waveforms as they propagate through a channel 
with bandwidth limitations. Given knowledge of the preceding and 
subsequent bits of the transmission, the DDJ component of the jitter is 
predictable, and therefore may be corrected through equalization. DDJ is 
also called pattern dependent jitter or intersymbol interference (ISI).

• Periodic jitter (PJ) is jitter which has a single fundamental harmonic plus 
possible multiple even and odd harmonics. PJ results from various 
electromagnetic noise sources in the system such as power supply noise 
and crosstalk from periodic signals. Clock signals are periodic signals 
which cause crosstalk that results in PJ on the victim signal.

• Sinusoidal jitter (SJ) is jitter which has a single fundamental harmonic 
and no additional harmonics. Sinusoidal jitter is generally defined in the 
context of applied SJ for jitter tolerance testing of a receiver device. For 
this reason it is generally considered separate from the periodic jitter 
which arises from sources in the system.

• Bounded uncorrelated jitter (BUJ) includes all components of non-
Gaussian jitter which are not included in the various components listed 
above. Nonclock crosstalk aggressor signals operating at a baud rate that 
is synchronous to the baud rate of the victim signal produce jitter on the 
victim which is non-Gaussian and is also not correlated with data on the 
victim signal.
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Random jitter (RJ). This is the amount of the total jitter which conforms to a 
Gaussian jitter distribution. The terminology used in [1] for RJ is Gaussian 
jitter (GJ). Random jitter is caused by semiconductor imperfections and 
quantum effects, as well as certain types of crosstalk. Two types of jitter are 
typically included as part of the RJ component:
• Uncorrelated unbounded Gaussian jitter (UUGJ) is the component of RJ 

for which the jitter distribution is a true Gaussian distribution. This 
component results from the imperfections in the semiconductor crystal 
lattice, the thermal vibrations of the conductor atoms, and many other 
small contributors. Measured over time, the peak-to-peak value grows as 
the measurement time increases. 

• Correlated bounded Gaussian jitter (CBGJ) is the component of RJ for 
which the jitter distribution is Gaussian, but the amplitude is bounded and 
correlates with the signal amplitude being transmitted. Crosstalk aggres-
sor signals operating at a baud rate that is asynchronous to the baud rate of 
the victim produce jitter on the victim which may be approximated as a 
bounded Gaussian distribution, and is included in the CBGJ component.

Table 8.2 illustrates the taxonomy of the jitter components which make up 
TJ, classifying these components as either having bounded or unbounded mag-
nitudes, and whether they are correlated or uncorrelated to the data being sent.

If all of the jitter sources were deterministic in nature, the extreme values 
of the timing variations could be calculated, and the absolute worst case and 
best case timing variation could be calculated with confidence. However, the 
random elements of jitter make it impossible to determine hard limits for 
timing variations; rather the timing limits need to be expressed in terms of 
probabilities of timing variation outside the defined limits.

Table 8.2  Jitter taxonomy

Total jitter (TJ)
(at BER of 

interest)

Deterministic 
jitter (DJ)

Data dependent jitter (DDJ)

Bounded

Correlated
Duty cycle distortion (DCD)

Sinusoidal jitter (SJ) 
(applied)

Uncorrelated

Bounded uncorrelated jitter 
(BUJ) (including PJ)

Random Jitter 
(RJ)

Correlated bounded Gaussian 
jitter (CBGJ)

Uncorrelated unbounded 
Gaussian jitter (UUGJ)

Unbounded
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8.2.2 Deterministic Jitter
This section describes the various components of DJ in detail. It is 

important to understand the components of DJ in the system since equalization 
features may be incorporated into the HSS core design to compensate for 
correlated DJ components.
8.2.2.1 Duty Cycle Distortion

Duty cycle distortion, also known as pulse width distortion, results from 
various types of asymmetry in the electrical signals that are being transmitted 
on the serial link.

Fig. 8.3 demonstrates one possible source of DCD, where one leg of the 
differential pair has a DC offset compared to the other leg. The offset shifts the 
point at which the differential signals cross, and results in asymmetry between 
the width of the “0” and “1” bits.

Another common cause of DCD within a high speed serial link is asymme-
try between the rise and fall times of the transmitter circuit. Fig. 8.4 illustrates 
a waveform where the fall time of the differential waveform is faster than the 
rise time. The result is that the bit width of the “1” is reduced, and the bit width 
of the “0” is expanded.

A probability density function can be developed for DCD by recognizing 
that this jitter is characterized by two mean values (�1, �2), where one of these 
means is associated with the deviation of the rising edge of the signal, and the 
other mean is associated with the deviation of the falling edge. Any given 
signal edge has a 0.50 probability of being a rising edge (and therefore having 
a jitter of approximately �1), and a 0.50 probability of being a falling edge (and 
therefore having a jitter of approximately �2). The dual-Dirac PDF is appropri-
ate for modeling this distribution. 

Fig. 8.3 DCD resulting from DC offset
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For any jitter distribution, the overall mean (�) is zero, and therefore:
� = (�1 + �2)/2 = 0
A = (�1 – �2)/2 = DJDCD

where DJDCD is the peak-to-peak value of the DCD jitter component, and � 
and A are characteristics of the dual-Dirac PDF defined in (8.9). The resulting 
PDF for DCD is therefore defined by the following equation [5]:

Since DCD jitter is correlated with the data being transmitted, equalization 
circuits can compensate for this jitter component.

8.2.2.2 Data Dependent Jitter
Data dependent jitter refers to the timing variations caused by the 

bandwidth limitations of the channel being traversed by the signal. This type 
of jitter, also known as pattern dependent jitter or intersymbol interference 
(ISI), is observed on nonclocklike waveforms since the frequency spectrum of 
such signals is continually changing. DDJ leads to varying amounts of signal 
attenuation and phase delay when exposed to the frequency response charac-
teristics of a typical transmission channel. Such effects are not observed on 
clock waveforms which have constant frequency components. 

Virtually all data channels exhibit increasing insertion loss as the frequency 
of the signal increases. More expensive channel components (exotic materials 
and more costly design and fabrication techniques) can mitigate these effects 
to a degree, but high baud rates still expose these signals to a significant 
amount of signal attenuation resulting in DDJ contribution.

Fig. 8.4 DCD resulting from rise/fall time asymmetry
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An example of these effects is shown in Fig. 8.5. Instances where multiple 
“1” or “0” bits are sent in a row allow the signal to settle near rail voltages, 
while higher transition densities cause signals to reverse before reaching these 
voltage limits. When the signal starts near the voltage rails, it takes longer for 
the signal to transition. In the figure, a long string “1” bits is followed by a “010” 
sequence. The bit transition from “1” to the first “0” bit slides the crossover 
point well into the bit window, while the transition from “0” back to “1” occurs 
somewhat faster. Although it may appear that the waveform is exaggerated in 
this figure, in reality this is not atypical at higher baud rates for an uncompen-
sated channel.

DDJ is dependent on the data pattern and the frequency response of the 
channel; no general equation for the PDF exists. Since DDJ jitter is correlated 
with the data being transmitted, equalization circuits can compensate for this 
jitter component.
8.2.2.3 Periodic Jitter

Periodic jitter refers to the timing variations caused by various electrical 
noise sources within the system which are characterized by a fixed frequency 
spectrum. Such noise sources have a single fundamental frequency component 
and may also include harmonic frequencies. The jitter induced on the serial 
data link is correlated to the spectral components of the noise source, but is not 
necessarily correlated to the data pattern being transmitted on the victim signal. 

Power supply noise is an obvious potential source of periodic jitter. 
However, the spectral components of power supply noise are usually well 
below the cutoff frequency for the CDR circuit design, and therefore this noise 
is generally tracked by the CDR circuit. Nevertheless, it is prudent for system 
designers to take steps to minimize the amount of periodic jitter in the system, 
since most systems must meet EMI requirements dictated by government 
regulations. (Such regulations are defined by the Federal Communications 
Commission for equipment sold in the United States.)

Fig. 8.5 Data dependent jitter example
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Clock signals distributed through the system are a more significant source 
of periodic jitter. Clock signals have a single fundamental frequency compo-
nent and this frequency is generally above the cutoff frequency for the CDR 
circuit design. Square waves additionally generate harmonics of the fundamen-
tal, with the amplitude of the harmonics increasing as the rise/fall times 
become faster.

When periodic signals become a crosstalk aggressor for a noise victim 
serial link, periodic jitter results. If the clock signal frequency is related to the 
serial data rate, then the periodic jitter is a non-Gaussian jitter source. This may 
occur, for instance, if the reference clock distribution network is acting as a 
crosstalk aggressor on a serial data link which is transmitted using this refer-
ence clock. Any clock that is frequency locked to this reference clock is also a 
potential non-Gaussian periodic jitter source.

The PDF corresponding to PJ depends on the periodic waveform of the 
crosstalk aggressor. However, a useful mathematical model can be developed 
by assuming the periodic waveform corresponds to the Sinusoidal Jitter case 
of a single sinusoidal signal. The waveform for this is:

The corresponding PDF for periodic jitter due to this jitter source is [5]:

This function is graphed in Fig. 8.6 for A = 4. The dual-Dirac function may 
be used as an approximation for this function, resulting in the equation:

The above equation is valid for PJ caused by a single sinusoidal signal. 
However, PJ is often caused by multiple signals which may or may not be 
sinusoidal, and are often asynchronous with respect to each other and to the 

Fig. 8.6 Probability density function for a single sinusoidal aggressor PJ
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victim link. As the number of signals contributing to PJ increases, the PDF for 
PJ resembles a bounded Gaussian distribution [5].

Most sources of PJ result in jitter which is not correlated to the data pattern 
being transmitted on the link of interest. Equalization circuits are not capable 
of compensating for uncorrelated jitter.
8.2.2.4 Bounded Uncorrelated Jitter

Bounded uncorrelated jitter, also called uncorrelated bounded High Proba-
bility Jitter (UBHPJ) in [1], refers to timing variations that are bounded in 
nature but are not directly related to the data pattern that is being sent on the 
high speed link. These variations can be caused by crosstalk noise coupling 
from adjacent channels which are transmitting asynchronous data. Since these 
noise sources do not have any correspondence to the data that is being sent on 
the serial data link of interest, the resulting jitter appears random with respect 
to the serial data pattern. 

Crosstalk aggressors for adjacent channels can appear Gaussian or non-
Gaussian. If the data on the crosstalk aggressor is truly unrelated and is 
asynchronous to the baud rate of the crosstalk victim, then the jitter may be 
approximated with a bounded Gaussian distribution and included in the CBGJ 
component. Otherwise, the jitter is likely to be non-Gaussian and is included 
as BUJ. Note this distinction between CBGJ and BUJ in [1] is somewhat arbi-
trary; some texts consider all crosstalk sources as BUJ [5].

The PDF for BUJ is modeled using a bounded Gaussian distribution:

where $ = (x – �), representing the difference between the amount of jitter of a 
given edge transition (x) and the ideal timing of the signal (�). BUJ(x) is the 
probability density function for the BUJ component.

Equalization circuits are generally not capable of compensating for 
Bounded Uncorrelated Jitter. If the crosstalk aggressor is known (as in the case 
of a transmitter device acting as a crosstalk aggressor for an adjacent receiver 
device), then the data pattern on the aggressor may be used by a crosstalk can-
cellation circuit to compensate for crosstalk at the receiver. Otherwise, the 
crosstalk contribution generally cannot be removed.

8.2.3 Random Jitter
The jitter taxonomy specified in Table 8.2 uses the definitions in [1], which 

describe random jitter as composed of UUGJ and CBGJ. Other texts have 
defined CBGJ as part of BUJ, and limit the definition of random jitter to 
unbounded components [5].

BUJ x( ) 1
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σ
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Equalization is useful for mitigation of jitter which correlates to the data 
pattern being transmitted. Since random jitter is due to factors for which no 
such correlation exists, equalization is of no use in mitigating random jitter. It 
is therefore critical that the HSS circuits be designed to minimize random jitter 
to the greatest extent possible.
8.2.3.1 Uncorrelated Unbounded Gaussian Jitter

Uncorrelated unbounded gaussian jitter refers to timing variations that are 
approximated by a Gaussian distribution function and are unbounded in range. 
This type of jitter is caused by thermal vibrations of the semiconductor crystal 
structures, material boundaries that have less than perfect valence electron 
mapping due to semiregular doping density and process anomalies, thermal 
vibrations of conductor atoms, and other smaller contributing factors.

The PDF for UUGJ is similar to (8.1):

where $ = (x - �), representing the difference between the amount of jitter of a 
given edge transition (x) and the ideal timing of the signal (�). UUGJ(x) is the 
probability density function for the UUGJ component.

Because UUGJ is unbounded, it is generally specified as an RMS value (see 
Sect. 8.1.1). Alternatively, specification of a BER allows UUGJ to be 
considered as part of CBGJ. As was discussed in Sect. 8.1.1, the BER 
specification permits discarding the tails of the Gaussian distribution, and thus 
bounding the jitter value. For protocol standards which specify RJ and an 
associated BER, the RJ is generally assumed to be CBGJ and is modeled as 
described in the next section.
8.2.3.2 Correlated Bounded Gaussian Jitter

Correlated bounded gaussian jitter refers to timing variations that are 
bounded in nature, and appear as a Gaussian distribution with respect to the 
data pattern that is being sent on the high-speed link. These variations may be 
caused by crosstalk noise coupling from adjacent channels which is transmit-
ting unrelated data patterns. If the data on the crosstalk aggressor are truly 
unrelated and is asynchronous to the baud rate of the crosstalk victim, then the 
jitter may be approximated with a bounded Gaussian distribution and included 
in the CBGJ component. Otherwise, the jitter is likely to be non-Gaussian and 
is included as BUJ.
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The PDF for CBGJ is modeled using a bounded Gaussian distribution:

where $ = (x - �), representing the difference between the amount of jitter of a 
given edge transition (x) and the ideal timing of the signal (�). CBGJ(x) is the 
probability density function for the CBGJ component.

8.2.4 Total Jitter and Mathematical Models
The total jitter that is expected to be observed on a link is a combination of 

the deterministic jitter and the random jitter components. The exact position of 
a given instance of a data edge may be predicted to some degree by the data 
pattern being transmitted as based on the deterministic jitter components. 
However, the random jitter component of the signal adds some degree of 
uncertainty as to the exact position. At higher baud rates, the DJ components 
usually dominate the total jitter, and may result in the data eye being com-
pletely closed at the input to the receiver device. Fortunately, equalization can 
compensate for many of these DJ components. The RJ contribution to the total 
jitter is generally of much lower magnitude, and equalization cannot compen-
sate for this component.

To see how DJ and RJ is combined to determinate the total jitter, the PDF 
associated with each type of jitter is needed. Total jitter (TJ) is the mathemat-
ical convolution of these jitter distribution functions.

In the prior sections of this chapter, bounded Gaussian distributions were 
used to model several uncorrelated jitter components, including:
• Periodic jitter, assuming multiple sources contribute to PJ such that the 

overall jitter conforms to a bounded Gaussian distribution
• Bounded uncorrelated jitter
• Correlated bounded gaussian jitter and
• Uncorrelated unbounded gaussian jitter, assuming the distribution is 

truncated by assuming a BER
These jitter components can be modeled as a combined Gaussian Jitter (GJ) 

with a bounded Gaussian distribution as defined by the following equation:
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In the prior sections of this chapter, the dual-Dirac distribution function was 
shown to be a reasonable model for the DCD component of deterministic jitter, 
as well as for a single sinusoidal PJ component. The distribution function for 
DDJ is less clear. However, the dual-Dirac function is often used to model the 
overall deterministic jitter (DJ) as is described in [1,3,5]. As is noted in [5], 
this is an assumption with yields a reasonable approximation and keeps the 
math simple.

Deterministic jitter is defined by dual-dirac distribution function: 

where W is the peak-to-peak amplitude (or width) of the DJ component.
The probability distribution function for total jitter (TJ) is formed by 

convolution of (8.18) and (8.19):

Equation 8.20 is plotted in Fig. 8.7 for the cases of W = 3 and W = 4. The 
characteristics of the dual-Dirac model for the DJ component produce peaks in 
the TJ PDF at x = ±W / 2. The roll-off of the curve from these points is deter-
mined by the Gaussian Jitter component and the standard deviation. 

A data eye is constructed by examining two consecutive edges of the data, 
separated by 1 UI, where UI = the unit interval (bit width). Adding the TJ PDF 
for a data edge at x = 0 to the TJ PDF for the next consecutive data edge at 
x = UI (and scaling so that the result integrates to 1 over the range +∞ ), the 
resulting equation is:

The PDF represented by (8.21) is plotted in Fig. 8.8 for the range 
x = 0 – 10 (= 1 UI). The timing deviation associated with the data edge which 
would ideally fall at x = 0 forms the left-hand portion of the plot, while the 
timing deviation of the edge at x = 10 forms the right-hand portion of the plot. 
From this PDF it should be obvious that the eye width depends on both the bit 
width and the shape of the TJ PDF.
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Fig. 8.7 Examples of jitter distribution for total jitter

Fig. 8.8 TJ PDF of two consecutive bits (eye width)
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Fig. 8.9 TJ CDF of two consecutive bits (bathtub curve)

Fig. 8.10 Generalized bathtub curve based on dual-Dirac model
PDF in Fig. 8.8 is integrated to form the CDF plotted in Fig. 8.9. The 

TJ PDF for the bit centered at x = 0 is integrated over the range x to +∞ to form 
the left-hand curve in Fig. 8.9, while the TJ PDF for the bit centered at x = 10 
is integrated over the range -∞ to x to form the right-hand curve. The resulting 
plot shows the envelope for the total jitter as a function of the BER. 

The left and right curves in Fig. 8.9 form a bathtub curve, where the 
difference between the two sides of the bathtub is the eye width for a given 
target BER. As the BER becomes sufficiently small, the sides of the bathtub 
curve in Fig. 8.9 can be approximated by straight lines. The slope of the sides 
of the bathtub curve is related to the Q of the circuit as was defined in Sect. 
8.1.1. Equation 8.7 specifies the relationship between Q and BER.
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Fig. 8.10 illustrates a general bathtub curve which normalizes x on a scale 
of 0–1 UI, and plots the y-axis as a function of Q rather than as a function of 
BER. At Q = 0, the eye width is entirely defined by the DJ component of the 
jitter. As the Q is increased (downward movement on the y-axis), the GJ 
component causes the eye to narrow. This peak value of GJ is a function of Q 
as defined in (8.8). Lower BER requires a higher Q, and results in less eye 
width. The slope of the eye wall lines are therefore:

where $ = (x - �), DJ is the peak value of the deterministic jitter, and GJ is the 
RMS value of the Gaussian jitter. (Equation 8.22 assumes the eye walls are 
symmetrical. In some systems this may not be valid, and in a more general case 
Qleft and Qright may have different slopes.) A BER of 10-12 corresponds to 
Q = 7.03; a BER of 10-15 corresponds to Q = 7.94. Additional Q values for 
various BERs were given in Table 8.1.

Note that this mathematical model for total jitter is based upon the assump-
tion that the dual-Dirac Model is an appropriate model for deterministic jitter. 
Remember that this model assumes the timing of each sampled edge deviates 
from the ideal timing by either +(DJ / 2) or -(DJ / 2), with no values in between. 
As might be expected, a realistic PDF for DJ is likely to have many sampled 
edges which are between these values. Analysis in [5] indicates that using the 
dual-Dirac model to model the deterministic jitter of the link tends to overesti-
mate the amount of DJ that will be present in a real system. This model is 
therefore appropriate to estimate worst case jitter, but characterization testing 
should not expect this model to correlate with hardware measurements.

8.2.5 Jitter Budgets
An example of a jitter budget is provided in Table 8.3. The chosen example 

is the jitter budget for the CEI-11G-LR interface as specified in [1]. This jitter 
budget is laid out in tabular form, with columns containing the contributions 
from various types of jitter, and with rows containing the contributions at 
various stages of the serial link.

Jitter contributors in this table are categorized as uncorrelated and 
correlated based on whether the jitter can be correlated to the data pattern. 
Gaussian (or random) jitter consists of an uncorrelated unbounded Gaussian 
jitter component and a correlated bounded Gaussian jitter component, and are 
listed in the corresponding columns. Correlated components of deterministic 
jitter, including DCD and DDJ components, are contained in the correlated 
bounded high probability jitter (CBHPJ) column. Remaining uncorrelated 
components of deterministic jitter, including PJ and BUJ components, are 
contained in the uncorrelated bounded high probability jitter (UBHPJ) 
column.

Qleft Qright• τ DJ×( ) 1
GJ
-------×= =− (8.22)
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Contributions of the UUGJ and CBGJ columns are combined in the 
Gaussian column of the total jitter, while contributions of the UBHPJ 
and CBHPJ columns are combined in the high probability column. Note 
that while the High Probability jitter is combined by adding the 
component jitter values, the Gaussian jitter must be combined using an 
RMS summation. This is because the probability of independent 
Gaussian events all having worst case values is extremely unlikely. On 
the other hand, the RMS summation of UUGJ and CBGJ produces a 
Gaussian jitter value corresponding to a BER consistent with the 
component numbers.

The SJ column reserves a portion of the jitter budget for applied SJ as part 
of jitter tolerance testing. This jitter component does not exist in an operational 
system.

Finally, the Gaussian, sinusoidal, and high probability jitter totals are 
summed to produce an overall total jitter.

The table assumes the jitter contribution of the transmitter device is entirely 
uncorrelated while distortion in the channel is entirely correlated. The sum of 

Table 8.3  CEI-11G-LR informative jitter budget [1]

Source

Uncorrelated jitter Correlated jitter Total jitter

Un-
bounded 
Gaussian

Bounded 
high prob.

Bounded 
Gaussian

Bounded 
high prob. Gaussian Sinu-

soidal
High 
prob. Total

Abbreviation UUGJ UBHPJ CBGJ CBHPJ
Unit UIpp UIpp UIpp UIpp UIpp UIpp UIpp UIpp
Transmitter 0.150a 0.150a 0.150 0.150 0.300
Channel 0.230 0.400
Receiver 
input 0.150 0.150 0.230 0.400a 0.275 0.550 0.825

Equalizer -0.300
Post 
Equalizer 0.150a 0.150a 0.230 0.100a 0.275 0.250 0.525

DFE 
penalties 0.100

Clock and 
Sampler 0.150 0.100 0.100

Budget 0.212 0.250 0.230 0.300 0.313 0.050 0.550 0.913
Note:
aThese values are normative values in [1]
bDue to receiver equalization, it reduces the ISI as seen inside the receiver. Thus this number 

is negative
cIt is assumed that the eye is closed at the receiver, hence receiver equalization is required
©2008 Optical internetworking forum. All rights reserved. Used under permission.
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the jitter contributed by the transmitter device and the channel is seen at the 
receiver input. Note that the total jitter indicates very little eye opening at the 
receiver input. Given jitter penalties introduced by receiver logic, it would be 
impossible to receive this signal without equalization. As shown in the table, 
equalization provides a negative contributor to the CBHPJ component of the 
jitter budget. This equalization benefit offsets most of the jitter penalties of the 
receiver logic. 

Jitter penalties for the receiver include clock and sampling penalties, DFE 
penalties, and post equalizer penalties. Clock and sampling penalties account 
for reference clock jitter and other uncertainties in the signal sampling point 
introduced by the CDR circuit. The equalization benefit assumed an ideal DFE 
circuit with infinite precision of tap weights which can be programmed to 
precisely cancel post-cursors; DFE penalties account for non ideal features of 
a realizable DFE implementation, including quantized tap weights and circuit 
imperfections. Circuit imperfections introduced in the receiver after the DFE 
are accounted for as part of post equalizer penalties.

Jitter contributors are totalled on the Budget line of the table. The total jitter 
on this line is 0.913 UI. Any value less than 1.0 indicates that the eye is open 
and data can be received. The extent to which this number is less than 1.0 
indicates margin built into the specification. 

8.2.6 Jitter Tolerance
Jitter tolerance is the ability of the receiver to successfully recover data in 

the presence of jitter. Jitter tolerance measurements represent the amount of 
jitter that is allowable at any given frequency while maintaining a specified 
BER. 

Fig. 8.11 illustrates an typical receiver jitter tolerance mask. This mask 
specifies the amount of applied SJ as a function of frequency. Jitter tolerance 
testing is performed by sweeping the frequency of the applied SJ, and adjusting 
the amplitude as needed to conform to the mask. If the receiver continues to 
receive data and meet the specified BER, then the receiver device conforms to 
the jitter tolerance specification. To measure jitter tolerance of the receiver 
device, the amplitude of the applied SJ is increased until the specified BER is 
no longer achieved. 

The applied SJ amplitude for the high frequency portion of the curve is 
specified by the jitter budget for the interface. The jitter budget in Table 8.3 for 
the CEI-11G-LR interface specifies this amplitude as 0.050 UI. Jitter ampli-
tudes are generally described in terms of UI of the serial data stream.

For lower jitter frequencies, the CDR sampling point tracks the jitter rather 
than having to find a sampling point with sufficient margin to tolerate the jitter. 
This is reflected in the curve in Fig. 8.11 by the applied SJ being increased for 
frequencies below the baud rate divided by 1667. “Jitter” in lower frequency 
ranges was discussed in Sect. 4.1.2.5, where the terminology of skew and 
wander was introduced.
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Fig. 8.11 Jitter tolerance mask example
Measuring the jitter tolerance of receiver devices, and confirming that this 

jitter tolerance exceeds the specifications required for standards compliance, is 
a necessary part of receiver characterization testing. Receiver characterization 
testing was described in Sect. 7.5.2.1.

8.3  Spice Models
The traditional approach to signal integrity analysis uses circuit simulation 

to determine whether the serial data signal meets necessary electrical charac-
teristics at the receiver device. Since the general subject of this text includes 
HSS applications, the discussion of signal integrity would not be complete 
without including traditional approaches. However, as will be noted, execution 
times limit the extent to which signal integrity analysis can be exhaustively 
performed using circuit simulation. While some approaches to mitigate this are 
discussed, it is generally not practical to analyze signal integrity for baud rates 
of 5 Gbps and above using Spice simulations. This is especially true when the 
HSS receiver employs complex equalization. Statistical approaches are 
discussed in Sect. 8.4 which are more appropriate at higher baud rates.

If signal integrity analysis is going to employ circuit simulations, Spice 
models of the HSS core are needed to support such simulations. These models 
may be based on extracted device level models, or alternatively may be a 
behavioral model. The advantages and disadvantages of each model type is 
discussed in this section.

8.3.1 Traditional Spice Models
Traditional Spice models are based upon extracted device level models. 

These models are created by well-proven device and parasitic extraction 
programs. These extraction programs are verified for each new circuit tech-
nology during the technology qualification process to ensure that accurate 
models are produced. 

SJ

Total Wander Amplitude

baud/1667

20dB/dec

20MHz

High
Frequency
Amplitude

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.
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The traditional Spice models for HSS cores are very much like the Spice 
models of standard I/O cells. Two major differences between HSS Spice 
models and standard I/O cell models are
• The HSS models are intended to operate at much higher frequencies and 

because of this they are much more complex than most standard I/O 
models and include many more control nodes.

• The Spice models for HSS cores only model the external interface cir-
cuitry so that some of the control nodes on the Spice model correspond to 
internal signals in the hard core. The user must consult relevant documen-
tation on the Spice model, and determine the appropriate values for these 
control nodes based on the application. 

The added complexity of the HSS Spice models means that they are more 
complex to integrate into a testbench due to the added connections that must 
be correctly set to make the model operate properly. Sometimes the internal 
signals corresponding to these control nodes are based upon a combination of 
HSS core parameters (either register values on input pin values). In such cases 
it may be necessary to calculate values for the control nodes based upon how 
the application is expected to configure the HSS core. In general, the transmit-
ter models are much more complex than the receiver models due to the fact that 
a greater portion of the transmitter circuit is included in the Spice models.

Fig. 8.12 Typical Spice model of an HSS transmitter circuit
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Fig. 8.12 depicts a typical extracted Spice model for an HSS transmitter 
circuit with typical model nodes, including differential clock input pins, mul-
tiplexed data input pins, serial data output pins, pins to set preemphasis coeffi-
cients, sign pins for the preemphasis coefficients, slew control pins, transmitter 
output power pins, termination selection pins, internal power supply pins, and 
so forth. The settings of these nodes affect the characteristics of the transmitted 
signal. 

Although the function of the data and clock pins is obvious, the proper 
values for the preemphasis, slew, output power, and termination selection 
nodes depend on the configuration set by the application and correspondence 
between this configuration and the internal control nodes of the core. If this is 
the Spice model for an HSS EX10 core, these control nodes do not necessarily 
correlate directly to register values. For example, the PWR[0:6] pins in 
Fig. 8.12 are partially based on the transmit power register in Table 2.6, but 
also must be scaled based on the transmit tapx coefficient register settings. 
Intervening logic in the HSS transmitter which generates the PWR[0:6] signals 
from various register values is not modeled in the Spice model in the interest 
of minimizing the complexity of the model, and the user of the model must 
make up for this by manually determining the proper values.

The Spice model is generally limited to modeling the analog external 
interface portion of the transmitter. Referring to the HSS EX10 transmitter 
block diagram in Fig. 2.4, this included the driver/equalizer and JTAG blocks. 
All of the parallel to serial conversion logic, BIST logic, clock generators, etc., 
in Fig. 2.4 are excluded for the Spice model. This is sufficient to support sim-
ulation of the interaction between the core circuitry and the external serial data 
channel.

Assuming the required signal characteristics for the input to the HSS 
receiver slice are specified, then the Spice model for the receiver only needs to 
provide an accurate model for the receiver termination and load characteristics. 
Referring to the HSS EX10 receiver block diagram in Fig. 2.7, the VGA Amp, 
signal detect block, and the JTAG receivers are included in the Spice model 
and are sufficient to support signal integrity simulations assuming an open eye 
exists at the receiver input. Other circuits are excluded from the Spice model. 

It should be noted that at higher baud rates the signal input to the receiver 
may not have an open eye. The DFE circuit would need to be included in the 
Spice model to verify that equalization allows the signal to be properly 
received. However, circuit simulations which include the DFE circuits would 
have prohibitively long execution times.

8.3.2 Hybrid Spice/Behavioral Models
Extracted Spice models have a long history of use in signal integrity 

analyses, and as such most chip designers are very familiar with the use of 
these models and the accuracy of the analysis results. However, the increased 
complexity of these models leads to some negative consequences for a typical 
signal integrity analysis. First, while this type of model does a very good job 
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of representing the deterministic performance of the actual core, the random 
elements of performance are much more difficult to predict and model. If the 
random elements are accurately included in the model, typical random varia-
tions mean that only a very few bits per time interval are affected in such a way 
as to cause problems in the data stream. The net result is that a very large 
number of bits would need to be simulated to successfully develop the required 
signal integrity statistics and thereby ensure the target BER is achieved. Sim-
ulating the transmission of a large number of bits through a complex Spice 
model is not a good approach for simulation efficiency, and results in very long 
simulation execution times. Furthermore, a large number of scenarios may 
need to be run to determine optimal power and equalizer settings. As a result, 
weeks of simulation may be required to perform signal integrity analysis for a 
single serial data channel. When one considers tolerances on the channel 
model as well as the number of different channels that are in a typical applica-
tion, the turn around time for the signal integrity analysis quickly becomes 
unrealistic.

Hybrid behavioral Spice models are a second class of models for HSS 
cores. In this case, the model is still a Spice model and is built with Spice 
constructs, but the model is not generated through the use of an automated 
device and parasitic extraction program. Such models are usually coded 
manually. This type of Spice model is a simplified model which contains 
sufficient functionality to demonstrate the behavioral characteristics of the 
actual hardware. 

The advantage of a simplified model is that the simulation run time is sig-
nificantly reduced when compared to that of a full extracted version of the 
model. The model remains an Spice model containing nodes for each of the 
necessary signal pins, but the detailed device models and extracted parasitics 
are no longer included. In their place, appropriate circuitry to model important 
functional characteristics is instantiated within the model. Since this is not a 
device-for-device match to the hardware, the model may be simplified by 
removing all references to internal nodes and limiting the Spice model nodes 
to only those pins that would be recognized by the chip designer at the core 
level. The external view of the hybrid model appears much the same as that of 
the fully extracted model as shown in Fig. 8.13, but the contents of the model 
are modified to make the model run much faster.

While the simplifications described above offer significant simulation time 
advantages over that of fully extracted Spice models, there are some draw-
backs to this type of model as well. First, there is no comprehensive design 
automation software to generate this type of model. Some portions of the 
process may be automated, but the model designer must still identify each of 
the circuit characteristics that is required to be incorporated into the model, and 
then develop an overall model that accurately describes those characteristics.



Signal Integrity  369

Fig. 8.13 Typical Spice hybrid model of an hss transmitter
Subsequent to creation of the hybrid model, the functional behavior of the 

model must be verified through extensive testing and correlation to hardware 
measurements. Any differences found between hardware and model behavior 
require changes to the model to correct the simulations. This dependence on 
hardware results means that the final iterations of the model may not be avail-
able until late in the development cycle. Once a final model is generated and 
has been through the entire verification process, the accuracy of the hybrid 
behavioral model should be equivalent to that of a model generated through 
netlist extraction.

A successful hybrid model for an HSS core can significantly improve the 
simulation time for a single simulation scenario, but the wide array of control 
nodes on the cores can still result in a large number of simulation scenarios 
being required to determine the optimal settings for a given channel. 

8.3.3 Spice Simulation Matrices
HSS Spice models are typically used to simulate the interaction of the core 

circuitry with the serial data channel. There is a large matrix of variables that 
are typically investigated during the signal integrity analysis of an HSS link. 
The following parameters were defined for the HSS EX10 core in Chap. 2, and 
are of significance to the signal integrity of the link.
Transmitter Power Level. The HSS EX10 transmitter defined a Transmit 
power register in Table 2.6 which allowed provisioning of the transmitter 
launch amplitude. For the HSS EX10, this parameter is a 7-bit value supporting 
128 different amplitude settings. 
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Transmitter slew rate settings. The HSS EX10 transmitter defined a slow slew 
control in the transmit driver mode control register in Table 2.6 which allowed 
provisioning of the transmitter slew rate. For the HSS EX10, this parameter is 
a 3-bit value with five valid settings. Various industry standards define 
minimum slew rates which may require particular settings of this parameter for 
compliance.
Transmitter preemphasis settings. The HSS EX10 transmitter incorporated a 
feed forward equalizer (FFE). Coefficients for this equalizer were provisioned 
using the transmit tapx coefficient registers as defined in Table 2.6. The 
number of bits in these equalizer coefficient values vary, but in almost all cases 
a large matrix of possible preemphasis settings exists. (The HSS EX10 has 
three FFE taps with a total of 15 bits leading to 32,768 possible settings.) Prior 
knowledge of the preemphasis effects (or a good simulation plan) could reduce 
the size of the matrix significantly, but there would still be a significant number 
of simulations that could be needed to arrive at an optimal setting.
Transmitter termination values. Although this feature was not provided on the 
HSS EX10 core, some HSS cores provide more than one option for termination 
impedance. In such cases, the appropriate value to use would generally be 
dictated by the interface standard. However, there may be cases where the 
signal integrity engineer wants to explore which of various options provides 
the best signal integrity. 
Transmitter AC/DC coupling. The HSS EX10 transmitter supported either AC 
or DC coupling, as provisioned by the HSSTXACMODE pin defined in Table 
2.1. This pin is generally tied based on the coupling method used by the 
channel. However, there may be cases where the signal integrity engineer 
wants to explore which of these coupling schemes provides the best signal 
integrity.
Transmitter data rate. The data rate is a significant factor in link operation. 
Some serial link applications only need to operate at a single data rate, while 
others require support for multiple data rates depending upon the specific 
platform in which they are deployed.
Transmitter data pattern. There are a number of encoding methods for data 
transmitted across serial links. Scrambling, 8B/10B, and 64B/66B were 
discussed for the various protocols in covered in Chap. 5. There are also a 
number of test patterns defined by various protocols for compliance testing. 
The specific characteristics of each pattern drive different performance levels 
on the serial links. Chip designers sometimes use Spice models to investigate 
the performance trade-offs associated with various data encoding methods and 
compliance test patterns.
Transmitter process/voltage/temperature (PVT) settings. HSS cores, like 
every other circuit on a chip, are affected by environmental operating condi-
tions (transistor junction temperature and power supply voltage), and by 
manufacturing process parameter variations. Spice models allow specification 
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of these parameters. The signal integrity engineer must explore several combi-
nations of values for these parameters to ensure that any chip which was man-
ufactured within normal process variation constraints, and operating within 
specified environmental conditions will in fact operate within the specified 
BER of the system. Generally the signal integrity engineer, working with the 
chip manufacturer, define a number of PVT corners which must be checked. 
Receiver AC/DC coupling. The HSS EX10 transmitter supported either AC or 
DC coupling, as provisioned by the HSSRXACMODE pin defined in Table 2.1. 
Similar to the pin associated with the transmitter, this pin is tied based on the 
coupling method used by the channel. However, there may be cases where the 
signal integrity engineer wants to explore which of these coupling schemes 
provides the best signal integrity.
Receiver termination values. As was discussed for the transmitter, some HSS 
cores provide more than one option for termination impedance. In such cases, 
the appropriate value is generally dictated by the interface standard. However, 
there may be cases where the signal integrity engineer wants to explore which 
of various options provides the best signal integrity.
Receiver process/voltage/temperature (PVT) settings. As was discussed for 
the transmitter, receiver operation is affected by manufacturing process param-
eters, junction temperature, and power supply voltage. Receiver operation 
must therefore be simulated at various PVT corner conditions. Note that, given 
the transmitter and receiver devices of the link are on different chips, the PVT 
conditions of the transmitter and receiver are likely to be different. Therefore 
simulations must include all of the various combinations of transmitter PVT 
and receiver PVT conditions.

The results from all of these simulations are compared to the required 
signal characteristics specified for the HSS core at the BER of interest. 
The required eye height and width must be verified at the input pins of the 
receiver. Fig. 8.14 shows a typical channel configuration that might be 
simulated, along with the raw serial data pattern at the receiver and the 
corresponding eye diagram.

HSS cores that support data rates in excess of 5Gbps may expect a closed 
eye at the receiver input. Such cores depend on receiver equalization 
functions to open the eye, which (as discussed previously) are generally not 
modeled in the Spice model. At these data rates, statistical simulation 
approaches are often used in place of Spice simulations. Such simulations 
run faster than Spice, can automate the determination of optimal settings for 
equalization variables, and can accurately account for random variations in 
the core and channel, including crosstalk effects. The next section discusses 
this in more detail.
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Fig. 8.14 Typical Spice simulation results

8.4  Statistical Approach to Signal Integrity
Circuit simulation using Spice models provides an accurate measure of the 

resulting signal waveform given the input conditions which are simulated. 
However, unless the input conditions are varied over a statistically representa-
tive range, Spice simulations do not guarantee that the BER of the system 
meets the specification. A BER of 10-b implies that the signal may violate the 
specified eye mask no more often than once every 10b bits. Many, many data 
patterns must be simulated under a variety of crosstalk and noise conditions to 
ensure the resulting signal meets this requirement. Lengthy simulations are 
required to guarantee a BER of 10-12 and simulations are prohibitively long for 
higher BER specifications.

At higher baud rates, intersymbol interference (ISI) becomes a key source 
of signal distortion. ISI is a component of data dependent jitter (DDJ), and is 
primarily caused by frequency response limitations of the channel. At higher 
baud rates, ISI effects stretch over multiple bit intervals, with the waveform of 
the current bit being affected by previous bits. In many cases the eye at the 
receiver is closed due to ISI, and receiver equalization is required to compen-
sate. The receiver equalization must be included in the analysis in such cases 
to ensure the signal can be received properly and that the BER specification is 

prohibitive.
met. In a Spice circuit simulation environment, this would be computationally 



Signal Integrity  373

The OIF common electrical I/O (CEI) Implementation Agreement [1] 
was discussed in Sect. 5.2.5. This standard specifies normative channel 
requirements, and a statistical analysis approach was developed in conjunc-
tion with the development of this standard to verify compliance of the 
channel with these requirements. This approach is described in detail in [3], 
and was subsequently published in [1] as the normative method of determin-
ing channel compliance. An open source software tool called StatEye is 
available from [4], and implements this analysis. Other software tools also 
exist which implement similar statistical approaches, including the IBM 
HSSCDR tool described in Sect. 8.4.2. 

8.4.1 Analysis Approach
Statistical approaches to signal integrity analysis can produce reliable 

results with significantly less computation than circuit simulation 
approaches. Transmitter jitter generation is statistically modeled using the 
dual-Dirac model for deterministic components, and using the Gaussian 
model for random components. Measured frequency response models are 
used for components of jitter due to the channel. The resulting analysis can 
project jitter behavior and the corresponding eye opening of the signal for a 
given BER at either the input to the receiver or at the output of the receiver 
equalization circuit. Statistical signal analysis can model complex receiver 
equalization circuits in the simulation without significant computational pen-
alties. Additionally, software used to perform statistical analysis often 
includes algorithms which can determine the optimal settings for both trans-
mitter and receiver equalization circuits.

The statistical analysis approach presented in this section is also described 
in [1] and [3], and is representative of the analysis performed by this class of 
software tools.
8.4.1.1 Pulse Response

Fig. 8.15 illustrates an example of input and output signals of a channel. 
The channel in this example is modeled by a simple RC network. The input 
data pattern is “011010011100,” and an ideal input signal is assumed in the 
figure. The voltage level achieved by each bit of the output waveform depends 
on whether the values of prior bits were the same or different. This type of data 
dependent jitter is called intersymbol interference. While this example 
modeled the channel with an RC network, realistic channels generally also 
have inductance and impedance mismatches. The addition of inductance 
potentially causes ringing of the response signal, and impedance mismatches 
cause reflections which may lag the bit transition by up to several bit times.

The pulse response of a channel is defined as the received pulse for an 
ideal square wave launched into the channel, where the pulse width of the 
square wave is one unit interval. This response is calculated either by convolv-
ing the pulse with the impulse response of the channel, or by multiplying the 
Fourier spectrum of the ideal transmitted square wave with the channel 
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response and taking the inverse Fourier transform, as described in [1]. The 
resulting receive pulse is illustrated graphically as shown in Fig. 8.16.

The amplitude of the receive pulse at discrete baud-spaced intervals in 
Fig. 8.16 are called cursors. The cursor corresponding to the maximum signal 
amplitude is labelled c0 . Cursors prior to this reference point are called 
precursors, and are labelled cn , where n < 0. Cursors after this reference point 
are called postcursors, and are labelled cn , where n > 0. Generally, only 
precursors which are within a few bit times of the main signal are significant, 
and only postcursors which are within twice the propagation time of the 
channel are significant. The R($) matrix represents this channel response:

where rn($) are the cursors of the pulse response at sample point $, and m is the 
number of cursors considered over a range that is symmetrical with respect to 
the sample point.

The ideal square wave launched into the channel is distorted by the channel 
due to ISI. If the ISI sufficiently distorts the signal, as is common at higher 
baud rates, the signal eye at the receiver may be closed. When this occurs, the 
channel cannot be analyzed as a stand-alone component to determine interop-
erability within the system, and equalization circuits must be included in the 
analysis.
8.4.1.2 Component Models

Fig. 8.17 illustrates the three fundamental components of any link: the 
transmitter device (including any FFE and/or other equalization), the channel 
interconnect (modeled as a channel frequency response), and the receiver 
device (including any DFE and/or other equalization). 

Fig. 8.15 Channel pulse response
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Fig. 8.16 Receive pulse representation

Fig. 8.17 Serial link components
These components must each be modeled, and then must be analyzed 

together to determine whether the overall link is operable. While an ideal 
square wave launched into the channel may produce a closed eye, the output of 
a transmitter device which incorporates equalization is not an ideal square 
wave. The signal emphasis injected by the transmit equalizer can partially 
cancel the ISI characteristics of the channel response. Similarly, even if the 
signal eye is closed at the input of the receiver device, equalization in the 
receiver may still be able to correctly receive the serial data.
Transmitter Model. A block diagram of a generalized transmitter device model 
is shown in Fig. 8.18. This consists of a data generation stage, transmitter 
equalization (usually an FFE), and stages which add losses associated with the 
transmitter driver stage and device package. In general, jitter (both determinis-
tic and random jitter) introduced at the transmitter also must be considered. For 
the analysis described in this section, transmit jitter is considered as part of the 
sampling jitter in the receiver model.
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Data Generator. This stage generates the bit sequences that are used by the 
analysis. The length of the bit sequences is determined by the number of 
cursors m in (8.23). Given m cursors of the channel pulse response, data 
sequence n is represented by the following matrix:

where each dn,b (b = 1−m) is either “− 1” or “+1.” Given that N = 2m bit 
sequences are possible, the resulting matrix is

where D is the matrix defining all possible bit sequences of length m. 
In a scrambled system, each of the possible bit sequences has an equal prob-

ability of occurring. In a system using a block code, the probability associated 
with each bit sequence is weighted based upon its frequency of occurrence in 
the block code, and some bit sequences may have zero probability. The prob-
ability associated with each bit sequence is

where pd(n) is probability associated with bit sequence n occurring, and where 
n = 1− N. The summation of all of the pd(n) must equal 1.
Transmitter Equalization. HSS devices almost universally employ transmitter 
equalization to compensate for distortions introduced by the channel. This 
transmitter equalization is usually an FFE as was described in Sect. 1.3.2. 
Fig. 8.19 illustrates a 3-tap FFE similar to the FFE associated with the HSS 
EX10 core that was described in Sect. 2.2.3.

The transmitted signal level at the output of this FFE at any given time is 
determined by the current bit being transmitted, as well as the bit before and 
after the current bit. Each of these bits is multiplied by the an equalizer coeffi-
cient, and all of these results are summed together. For a 3-tap FFE, eight 
different output levels are possible for a fixed set of coefficient values (as 
shown in Fig. 8.19). Statistical analysis must determine the link response given 
a transition between any pair of these output levels.

Fig. 8.18 Transmitter device model
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Fig. 8.19 Transmitter filter function
Transmitter equalization modifies the Dn matrix specified in (8.24). The 

resulting D’n matrix is formed as follows:

where each element of this matrix is

In (8.28), the summation is performed over the range of t corresponding to 
the taps of the FFE, where ct is the coefficient associated with FFE tap t. If 
dn,b+t is “+1,” then the FFE tap adds to the amplitude; and if dn,b+t is “-1” the 
FFE tap subtracts from the amplitude. Similarly, the D matrix in (8.25) 
becomes:
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Transmitter Losses. There are two sources of signal loss associated with the 
transmitter which must be considered.

The first of these is the insertion loss resulting from bandwidth limitations 
of the transmitter driver stage. A real transmitter is not capable of generating 
an ideal NRZ pulse. The Tx21 term used in (8.30) defines a low-pass filter 
which band-limits the transmitter output to a realistic level. The OIF common 
electrical I/O (CEI) specifies a single pole filter with a corner frequency at 3/4 
of the baud rate [1], which is a sufficient model for CML-style circuits.

The second of these is the transmitter return loss due to impedance mis-
matches associated with the device package. The Tx22 term used in (8.30) 
specifies the package return loss as a function of frequency.

The following matrix defines Tx* which represents the combined losses of 
the transmitter:
.

The form of this equation may be recognized as an S-parameter matrix. 
S-parameter matrices will be described in more detail in the next section.
Channel Response. The frequency response characteristics of the channel are 
typically measured, and the measured data is used for frequency domain 
analysis of the link. 

Fig. 8.20 illustrates use of a 4-port vector network analyzer (VNA) to 
measure the frequency response characteristics of the channel for a differential 
signal. One of the differential ports of the VNA is connected to the differential 
pair at one end of the channel, and the other differential port is connected to the 
other end of the channel.

The VNA applies signals of various frequencies to one end of the channel 
and measures the response signal on each of the ports (including the driving 
port). Frequencies are tested at regular step intervals starting at a very low 
frequency and continuing to a frequency higher than the intended baud rate for 
the channel. Both differential and common mode signals are generated, and 
both differential and common mode response is measured. All combinations of 
stimulus ports and response ports are tested. The resulting frequency response 
data is organized into scattering parameter matrices (commonly called 
S-parameters), as shown in Fig. 8.20. The nomenclature used to reference the 
various frequency response matrices is

SRSji
where: R = response type (C = common mode, or D = differential)

S = stimulus type (C = common mode, or D = differential)
j = output port (1 or 2)
i = input port (1 or 2)

Tx ω〈 〉
1 Tx21 ω〈 〉

1 Tx22 ω〈 〉
=

(8.30)
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The SDDxx are the more relevant parameters in this discussion and are used 
by subsequent analysis. These S-parameters characterize the transfer function 
of the channel for differential signals.
• SDD11 is the input differential return loss
• SDD21 is the input differential insertion loss
• SDD22 is the output differential return loss
• SDD12 is the output differential insertion loss

The return loss characteristics contribute to signal reflections and the 
insertion loss characteristics contribute to signal attenuation. 

The other S-parameter quadrants are also potentially relevant to the system 
designer, but are not used by the statistical signal analysis described in this 
chapter. The SDCxx quadrant characterizes common mode to differential con-
version, and is an indication of EMI susceptibility. The SCDxx quadrant char-
acterizes differential to common mode conversion, and is an indication of EMI 
radiation. The propagation of common mode signals is described by the SCCxx 
quadrant, and is not of concern for links using a properly designed differential 
receiver device.

Fig. 8.21 illustrates measurement of the frequency response between the 
primary differential channel and another nearby channel. This nearby channel 
is a potential crosstalk aggressor. Two cases are shown in the figure: far-end 
crosstalk (FEXT) is measured with the VNA connected to the end of the 
crosstalk channel that is furthest from the connection to the primary channel. 
Near-end crosstalk (NEXT) is measured with the VNA connected to the end of 
the crosstalk channel that is nearest to the connection to the primary channel. 
Which measurement is of significance depends on where the drivers are on 
each of these channels.

Fig. 8.20 S-parameter measurement using a VNA
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Coupling of stimulus from the crosstalk aggressor channel onto the primary 
differential channel causes noise on the signal which is a key source of jitter. 
For any given differential channel, any number of NEXT and FEXT aggressor 
channels may exist which have significant potential to degrade the signal 
integrity of the channel. Measurements should be taken for all significant 
crosstalk aggressors, and should be included in the channel analysis.
Receiver Model. A block diagram of a generalized receiver device model is 
shown in Fig. 8.22. This model introduces loss associated with the device 
package, compensation due to receiver equalization, and the effects of jitter 
(both deterministic and random jitter). In the analysis described by the next 
section, the jitter introduced in this model covers impairments due to both jitter 
generation by the transmitter and sampling jitter introduced by the CDR circuit 
in the receiver.

Fig. 8.21 S-parameter crosstalk measurement

Fig. 8.22 Receiver device model
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Receiver Package Model. As was the case for the transmitter, the receiver 
device package introduces impedance discontinuities which result in return 
loss. The Rx11 term used in (8.31) specifies this package return loss as a 
function of frequency. This term is captured in matrix form, where Rx(*) 
represents the combined receiver losses:

The form of this equation is once again an S-parameter matrix.
The transmitter loss matrix, and the receiver loss matrix are convolved with 

the channel response, giving a combined transfer function for the channel:

where Sm,n is the measured 4-port differential S-parameters for the channel. 
Tx<*> and Rx<*> were defined by (8.30) and (8.31), respectively. 
Receiver Equalization. At higher baud rates, HSS devices typically employ 
receiver equalization to cancel post cursors of the channel pulse response. This 
receiver equalization is usually a decision feedback equalizer (DFE) as was 
described in Sect. 1.3.2. Fig. 8.23 illustrates a 5-tap DFE similar to the DFE 
associated with the HSS EX10 core that was described in Sect. 2.3.2.

A block diagram of a receiver equalizer with five baud-spaced DFE taps is 
shown in Fig. 8.23. The receiver model must model the receiver sample point 
function (which controls the threshold at which the input signal is sampled by 
the DFE), and the equalizer function of the receiver. Bit values of the previous 
n samples are multiplied by equalizer coefficients and summed to the input 
signal to affect the decision as to whether the input bit is a 0 or 1. In this 
manner, the DFE is capable of equalizing up to n postcursors of the input 
signal, where n is the number of DFE taps.

Fig. 8.23 Receiver filter function
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The k coefficients of the DFE in Fig. 8.23 form the matrix:

where K represents the response of the DFE, and coefficients k1− kn are the 
coefficients of an n-tap DFE. This matrix is the same size as that of the R($) 
channel response matrix defined in (8.23), with entries corresponding to matrix 
positions $ labelled -m/2 to -1, and +1 to +m/2. Matrix K in (8.33) contains 
DFE coefficients k1−kn in positions of the matrix corresponding to $ in the 
range of 1−n, and 0 in all other positions. 
Sample Jitter. The analysis presented in the next section incorporates Data 
Dependent Jitter (DDJ) by analyzing all possible waveforms propagating 
through the channel with the transfer function defined in Eqn (8.32). Crosstalk 
is also incorporated into this analysis. Additional sources of jitter in the system 
include:

• Transmitter jitter generation, and
• Sampling jitter in the receiver

Deterministic jitter generation in the transmitter is primarily the result of 
jitter on the clock reference of the transmitter circuit. Dominant forms of deter-
ministic jitter are therefore the result of duty cycle distortion, and periodic 
jitter. The dual-Dirac model is appropriate to model these types of jitter. In 
addition, Gaussian jitter results from semiconductor imperfections and 
quantum effects. Therefore, the equation for total jitter (TJ) in (8.20) provides 
the PDF for the transmitter jitter generation.

Sampling jitter in the receiver CDR circuit results from similar root causes. 
The clock reference for this circuit is subject to DCD and PJ, and Gaussian 
jitter again results from semiconductor-related effects. The equation for total 
jitter in (8.20) also provides the PDF for the sampling jitter.

The analysis described in the next section injects jitter into the analysis of 
the received signal using the PDF of the total jitter as defined (8.20). This 
approach is intended to model both the transmitter jitter generation and the 
sampling jitter, as described above.
8.4.1.3 Statistical Eye Analysis

Each pulse response waveform at the receiver input is analyzed as illus-
trated in Fig. 8.24 and as described by the following steps:
Determining Channel Response. The first step in the analysis procedure is to 
form the channel response matrix for R($) as defined by (8.23). 

The channel response is determined by the transfer function for the channel, 
Tr(*), as defined by (8.23). The pulse response of the channel is plotted as 
shown by the waveform on the left side of Fig. 8.24. The position of the c0 
cursor is chosen arbitrarily on the pulse response waveform, and baud-spaced 
precursors and postcursors are determined from this arbitrary reference point 
in the manner described in Sect. 8.4.1.1. These cursors define the rn($) 
elements of the R($) matrix.

K 0... 0 k n 4 ... kn 0 … 0= −− − (8.33)
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Fig. 8.24 Probability density function for pulse response
Determining the DFE Response. Once the channel response matrix R($) has 
been determined, static DFE tap coefficient values are selected to cancel 
postcursors of the channel response. An n-tap DFE can negate up to n 
postcursors. The DFE tap coefficient values determined in this step are used to 
form the DFE response matrix K as defined in (8.33).

The channel response, in the presence of receive equalization, becomes the 
equalized cursors defined by:

where rn($) are the cursors of the pulse response at sample point $, as defined 
by (7.14), and coefficients ki ( i in the range of 1− b ) are the coefficients of a 
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b-tap DFE. The nomenclature cn($), where cn($) = rn($) - kn is used to 
designate elements of the C($) matrix.

Given an ideal DFE, the ki ( i in the range of 1− b) coefficients are selected 
such that the resulting cn($) elements are zero. Real DFE circuits do not have 
infinite precision and range, and therefore these cn($) elements are minimized 
but may be nonzero.
Building the Probability Density Function. Given a fully random datastream 
with no transmitter equalization and a limited number of cursors, the cursors 
superimpose on each other with equal probability. 

This is illustrated in Fig. 8.24. The possible signal amplitudes are formed 
by superimposing the c0 cursor with each possible combination of +cn($) or 
-cn($) values for the remaining cursors. Each combination of superimposed 
cursors represents the signal amplitude for the corresponding bit sequence of 
1’s and 0’s. Each bit sequence is equally likely to occur for a fully random 
datastream, and a PDF for the corresponding signal amplitude can be built by 
creating a histogram of amplitude values and normalizing the result. The 
resulting PDF is illustrated on the right side of Fig. 8.24.

Mathematically, the amplitude of the signal for a given sequence of bits and 
a given sample point ($) is:

An = dn % C($) 
Considering all possible combinations of d = { -1, +1 }, the number of bit 

sequences for which An has a given value is

and normalizing this (by dividing by the number of patterns) gives the proba-
bility density function for a given sample point ($). For a channel with an ideal 
transfer function, the signal at the c0 sample point would have an amplitude 
of 1, and all precursors and postcursors would have an amplitude of 0. In the 
presence of ISI, other amplitudes have nonzero probability.

Assuming a fully random datastream and no transmitter equalization, the 
PDF of the ISI for a given sample point $, is therefore:

This equation sums the number of bit sequences dn for which the convolution 
of the bit sequence with the equalized channel response c($) results in a given 
value of ISI. The number of such patterns is divided by the total number of 
patterns to determine the probability of this value of ISI. 

If transmitter equalization is used, this alters the dn matrix as specified by 
(8.26). Also, if the datastream is not fully random, then each bit sequence has 
a probability of occurrence pd(n) as defined in (8.27). 

A dn C τ( )×
n
∑=

p ISI τ,( ) 1

2m
------- δ dn C τ( )⋅( ) ISI•[ ]

n 1=

2m

∑= − (8.35)
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A more generic form of (8.35) is therefore:

where (8.36) calculates the probability of a given value of ISI for a given 
sampling point $. The matrix of these probability values for all possible values 
of ISI forms the probability density function associated with sampling point $. 
Similarly, probabilities and corresponding crosstalk PDFs may be generated 
for the crosstalk pulse response (using S-parameters measured as described in 
Fig. 8.21). 

Note that simplifications of the above algorithm are described in [3].
Varying the Sampling Point. The arbitrary choice of c0 in effect chooses a 
sampling point for the CDR circuit in the receiver. Equation 8.36 calculates the 
PDF of the ISI given this sampling point. Additional PDFs may similarly be 
calculated for other values of c0 . By repeating the process in Fig. 8.24 and 
building PDFs for different c0 , and then weighting these PDFs based on the TJ 
PDF in (8.20), jitter is incorporated into the analysis. 

The CDR sampling point is assumed to be nominally centered, but with 
some jitter around the ideal sampling point. Some of this jitter is due to jitter 
sources in the CDR circuit, and some of this jitter is the result of jitter genera-
tion in the transmitter. As previously noted, the PDF for the total jitter from the 
combination of these sources is defined in (8.20).

The pulse response PDFs for the forward channel, the crosstalk PDFs, and 
the PDF for the sampling jitter may therefore be combined to form a joint 
probability density function ( pjoint ). This calculation involves convolving the 
crosstalk PDFs with the forward channel PDFs, and multiplying this result by 
the PDF for the sampling jitter. This PDF is calculated as follows:

where:
Pfwd(ISI, $) is the probability density function of the ISI of the forward 
channel (from (8.36))
Pxtalk(ISI, $) is the probability density function of the crosstalk 
(determined in a similar manner to Pfwd(ISI, $), but using S-parameters for 
the crosstalk channel response as measured in Fig. 8.21)
Pjitter($, w, ") is the dual-Dirac PDF of the transmit and sampling jitter 
(from (8.20))

p ISI τ,( ) pd n( ) δ d 'n C τ( )⋅( ) ISI[ ]
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The resulting pjoint probability density function incorporates the effects of 
forward channel response, crosstalk channel response, and jitter. 
Plotting the Results. Using the combined joint probability density function 
( pjoint ) defined by (8.37), the PDF for the signal amplitude at various values 
of $ is plotted across a 1 UI range as shown in Fig. 8.25(a). Points of these 
PDFs corresponding to similar BERs are connected as shown in Fig. 8.25(b) to 
form eye contours. As BER is reduced, the points being connected on the PDF 
curves move downward on the lower tail of each curve, reducing the amplitude 
of the signal. In addition, the point at which this eye contour crosses the zero 
line determines the eye width, and reducing the BER also results in less eye 
width.

The joint PDF in (8.37) can be integrated to produce the corresponding 
Cumulative Distribution Function, and can be plotted as a bathtub curve as 
shown in Fig. 8.25(c). As was described in Sect. 8.2.4, the bathtub curve plots 
eye width as a function of BER. The slope and y-intercept of the bathtub curve 
can be used to approximate the decomposition of the jitter into deterministic 
jitter and Gaussian jitter components as described in Fig. 8.10. 

The statistical eye shown in Fig. 8.25(d) is determined using the eye 
contours in Fig. 8.25(b). These contours are cut off at the zero line and plotted 
on both sides of the decision threshold axis to produce an equivalent receiver 
eye. The statistical eye shown in the figure is specified for different levels of 
probability, or circuit Q. The relationship between Q and BER was discussed 
in Sect. 8.1.1. 

The statistical eye for a given Q and corresponding BER indicates the 
bounds of the eye width and amplitude corresponding to this probability level. 
Given the statistical eye for a BER of 10-12 (Q = 7.04), for example, the signal 
remains outside the contour of this statistical eye opening most of the time, but 
strays into this contour with a frequency of once every 1012 bits. If the eye 
contour for this BER is sufficiently open for the receiver to correctly receive 
the signal, then the corresponding BER is 10-12 or better. 

Generally, the minimum acceptable eye opening is defined by the interface 
standard or by the HSS receiver vendor. Using measured channel S-parameters 
and models for the transmitter and receiver, the resulting statistical eye 
opening is determined. If this eye is at least as open as the minimum acceptable 
eye opening for the BER of interest, then the channel design meets require-
ments. To the extent that the eye is more open than required, margin exists in 
the system.
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Fig. 8.25 Generation of the bathtub curve and the data eye
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8.4.2 HSSCDR Software
There are a number of software tools which perform the statistical signal 

analysis described in the previous section. One or the other of these tools will 
likely be used by the signal integrity engineer analyzing the system design of 
the serial data channels associated with HSS cores. It is therefore instructive to 
provide some description of the data entry and output reports associated with 
this class of tools.

An open source software tool called StatEye is available from [4], and 
implements the analysis described in Sect. 8.4.1. Another example of such a 
tool is the IBM HSSCDR software tool, used to analyze serial links for IBM 
ASIC chips. HSSCDR is used as an example for the descriptions in this 
section, primarily because the description of the graphical user interface data 
entry is more straightforward. Although the details vary, the types of data 
which must be entered to run HSSCDR are representative of the data entry for 
other statistical-based signal integrity analysis tools including StatEye. Also, 
the report outputs described are representative of any statistical-based signal 
integrity analysis tool. All such software tools use statistical methods to 
calculate the signal eye shape.

The entry screen for the IBM HSSCDR software tool is shown in Fig. 8.26. 
The entry screen has four columns, corresponding to the transmitter model, 
channel model, and receiver model for the serial link being analyzed, and a 
column to define report outputs that are to be generated. To illustrate basic 
concepts, entry fields are described generally in this section.
8.4.2.1 Transmitter Entry

The entry fields associated with the transmitter model are in the left column 
of the entry screen in Fig. 8.26.
Core. This field selects the specific IBM HSS core at the transmit end of the 
serial link.
Technology. This field selects the IBM ASIC process technology for the chip 
containing the HSS transmitter. In conjunction with the Core field, this 
uniquely selects one of the built-in transmitter models.
Options. This field allows selection of the operating mode for the transmitter. 
Selections typically provide for enabling/disabling use of the transmitter FFE, 
predefined FFE coefficient settings, selection of the transmitter amplitude 
level, etc.
Corner. This field selects worst case, nominal, or best case process, voltage, 
and temperature conditions for analysis. Analysis should be performed for all 
process corners since results may vary. 
Package. This field selects one of several package models to be used for the 
transmitter chip package.
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Fig. 8.26 HSSCDR graphical user interface
8.4.2.2 Channel Entry

The entry fields associated with the channel model are in the second 
column from the left of the entry screen in Fig. 8.26.
Channel. This field selects a command file which defines S-Parameter format 
options and loads S-parameters for the channel to be analyzed.
Data Pattern. This field selects the data pattern to be analyzed. Scrambled data 
is fully random and all bit sequences are equally likely. Systems using block 
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coding or scrambled block coding constrain the allowed bit sequences and alter 
the probabilities associated with each bit sequence as was described by (8.26).
Frequency Offset. For a plesiosynchronous clocked system, this field selects 
the frequency offset between the reference clocks of the Tx and the Rx device, 
specified in parts per million (ppm). This is used to calculate the PDF for CDR 
sampling. More tightly constrained tolerances reduce sampling jitter and 
improve link performance.
Data Rate. This field selects the baud rate of the signal to be analyzed.
Number of Bits. This field selects the number of data bits to be simulated. 
Higher numbers result in more statistical accuracy, but increase execution 
time. HSSCDR uses a default value of 2,40,000 bits which is found to be 
sufficient for most cases.
8.4.2.3 Receiver Entry

The entry fields associated with the receiver model are in the second 
column from the right of the entry screen in Fig. 8.26.
Core. This field selects the specific IBM HSS core at the receive end of the 
serial link.
Technology. This field selects the IBM ASIC process technology for the chip 
containing the HSS receiver. In conjunction with the Core field, this uniquely 
selects one of the built-in receiver models. Note that the transmitter chip and 
the receiver chip in a real system may use different HSS cores or even different 
ASIC technologies.
Options. This field allows selection of the operating mode for the receiver. 
Selections may provide for enabling/disabling use of the receiver DFE, etc. 
Corner. This field selects worst case, nominal, or best case process, voltage, 
and temperature conditions for analysis. Results should be performed for all 
process corners since results may vary. Note that the transmitter chip and the 
receiver chip in a real system may not be operating at the same process corner. 
All combinations of process corners for the transmitter and receiver chips 
should be analyzed.
Package. This field selects one of several package models to be used for the 
receiver chip package.
8.4.2.4 Output Selection

The entry fields associated with output plots and reports are in the right 
column of the entry screen in Fig. 8.26.
Output Plots. This field selects which of various output plots and reports are to 
be generated. These are discussed below.
Legend. This field specifies the label used in output plots and reports.
New/Append/Replace. This field determines whether this analysis is appended 
to or replaces prior analysis in the log file.
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Eye Detect Node. This field determines whether output plots and reports are 
generated based on the signal at the receiver output, the receiver input, or the 
transmitter output.

The following plots and reports can be generated by the HSSCDR software:
Log Bit Error Rate (LBER) Plot. An example of this plot is shown in 
Fig. 8.27. The eye width (x-axis) is plotted as a function of BER (y-axis). This 
is the bathtub curve output of the statistical signal analysis.
Eye Diagram Plot. An example of this plot is shown in Fig. 8.27. This plots the 
eye diagram at the node selected by eye detect node selection.
Impulse Response Plot. An example of this plot is shown in Fig. 8.28. This 
plots the impulse response of the channel as defined by the S-Parameters for 
the channel.
Frequency Response Plot. An example of this plot is shown in Fig. 8.28. This 
plots the SDD21 insertion loss for the channel as defined by the S-parameters 
for the channel.
Eye Height Plot. This plots the cumulative distribution function for the eye 
height at receiver output.
Text Output File. This file contains the results of analysis in a text form. 
Contents of this file are specific to the software tool, and are beyond the scope 
of this text.
Sinusoidal Jitter (SJ) Plot. This file plots jitter tolerance as a function of 
sinusoidal jitter. 
8.4.2.5 Filter Coefficient Optimization

As has been discussed previously, the HSS transmitter may include an FFE 

Likewise, the HSS receiver may include a DFE which must be modeled by the 
receiver model also described in Sect. 8.4.1.2. Signal integrity analysis results 
are dependent on these filter functions being tuned to provide optimal results 
for a given channel.

As was discussed in Sect. 8.4.1.3, the optimal values for DFE coeffi-
cients are determined by selecting values which negate postcursors in the 
pulse response waveform at the input of the receiver. This algorithm is 
straightforward, and is an integral part of most software tools used to 
perform statistical eye analysis, including the HSSCDR software.

Optimizing FFE coefficients is less straightforward. Generally, these coef-
ficients are optimized by performing analysis for various coefficient values 
until the “best” eye opening is achieved at the receiver output. The criteria used 
to determine the “best” eye opening may vary: algorithms exist which attempt 
to maximize the eye amplitude, and other algorithms exist which attempt to 
maximize the eye width. In point of fact, both eye amplitude and eye width 
contribute to the resulting BER, and therefore some algorithms calculate the 
overall BER of the eye and use this as a basis for determining the “best” eye 
opening.

which must be modeled by the transmitter model described in Sect. 8.4.1.2. 
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Fig. 8.27 Log bit error rate (LBER) and eye diagram output plots

Fig. 8.28 Impulse response and frequency response output plots
Many software tools which perform statistical signal analysis, including 

HSSCDR, incorporate an algorithm for determining optimal FFE coefficient 
values. FFE coefficients to be used for analysis may either be forced by the 
user to specific values, or may be automatically determined. One important use 
of such software tools is to determine the optimal FFE coefficient values to be 
used when testing the hardware, and when using the serial link in the system 
environment.
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8.4.2.6 Pass/Fail Criteria
The end goal of using HSSCDR (or any other signal integrity analysis tool) 

is, of course, to predict whether or not the serial link will operate correctly 
when all of the channel impairments in an actual application are considered. 

The software does not produce a PASS/FAIL result for a simulation. The 
user must use the program to investigate all of the process corners and environ-
ment conditions, including channel variations and crosstalk contributions, and 
then interpret the results of simulations to determine whether adequate margin 
exists for the application.

Many of the interface standards discussed in Chap. 5 specify requirements 
for eye dimensions that must be met at the receiver to claim compliance with 
the standard. Statistical eye analysis allows users to determine whether or not 
these criteria are met. 

8.5  References and Additional Reading
The following standards documents are applicable to topics in this chapter:

1. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability 
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical 
Internetworking Forum (http:\\www.oiforum.com), Feb. 28 2005.

2. “ANSI INCITS TR-34-2004: INCITS Technical Report for Information 
Technology - Fibre Channel - Methodologies for Jitter and Signal Quality 
Specification (MJSQ)”, American National Standards Institute, Inc., 
International Committee for Information Technology Standards, Jan. 1 
2004.

The following reading is recommended for more information regarding 
statistical signal integrity analysis methods and StatEye software:
3. “Channel Compliance Testing Utilizing Novel Statistical Eye 

Methodology”, Anthony Sanders, Mike Resso, John D’Ambrosia, IEC, 
Designcon, 2004. 

4. Open source StatEye Software and additional documentation is available 
at http\\www.stateye.org.

The following reading is recommended for more information regarding 
signal integrity analysis in general:
5. “Jitter, Noise, and Signal Integrity at High Speed”, Mike Peng Li, 

Prentice Hall, 2007.
6. “Dwdm Network Designs and Engineering Solutions”, Ashwin Gumaste, 

Tony Anthony, Cisco Press, 2003.
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8.6  Exercises
(1) Use (8.1) to calculate p($, ") for x given a Gaussian distribution with � 

and " as specified below:
(a) x = 2.0, � = 3.0, " = 1.5  (b) x = 5.0, � = 2.0, " = 0.5
(c) x = 4.0, � = -1.0, " = 1.5  (d) x = 1.5, � = 1.5, " = 0.75

(2) Given a Gaussian distribution of x, calculate the probability that x is 
within 1.5 " of �.

(3) Use (8.5) to calculate p($, ") for x given a bounded Gaussian distribution 
with �, ", and $max as specified below:
(a) x = 2.0, � = 3.0, " = 1.5, $max = 4.5
(b) x = 5.0, � = 2.0, " = 0.5, $max = 1.5
(c) x = 4.0, � = -1.0, " = 1.5, $max = 5.5
(d) x = 1.5, � = 1.5, " = 0.75, $max = 1.0

(4) Assume an unbounded Gaussian distribution where zrms has the values 
specified below. Given the specified BER, what is the zp−p value?
(a) zrms = 0.02 UI, BER = 10-12  (b) zrms = 0.020 UI, BER = 10-15

(c) zrms = 30 ps, BER = 10-9  (d) zrms = 0.10 UI, BER = 10-12

(5) Use (8.9) to calculate p(x, A) for x given a dual-Dirac distribution with � 
and A as specified below:
(a) x = 2.0, � = 3.0, A = 1.5  (b) x = 1.5, � = 3.0, A = 1.5
(c) x = 0.5, � = -1.0, A = 1.5  (d) x = -0.75, � = 0, A = 0.75

(6) What is the probability of x being in the specified range given a dual-
Dirac distribution with � and A as specified below:
(a) 1.0 < x < 2.0, � = 3.0, A = 1.5  (b) 1.0 < x < 5.0, � = 3.0, A = 1.5
(c) -2.0 < x < 0.0, � = -1.0, A=1.5  (d) x = 0.75, � = 0, A = 0.75

(7) For each of the jitter types below, specify which PDF is used to model this 
component, state whether this model is optimistic or pessimistic, and state 
whether equalization can compensate for this type of jitter.
(a) DCD  (b) PJ  (c) BUJ
(d) UUGJ  (e) CBGJ

(8) What type of jitter results from each of the following system contributors:
(a) Transistor device effects
(b) Channel transfer function
(c) Crosstalk from a clock signal
(d) Crosstalk from a data signal (not in the same clock domain)
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(9) Use (8.20) to calculate TJ($, W, ") of x given total jitter distribution with 
�=0, and with " and W as specified below:
(a) x = 0.2, " = 0.02, W = 0.15  (b) x = 0.2, " = 0.03, W = 0.08
(a) x = 0.4, " = 0.03, W = 0.08  (b) x = 0.15, " = 0.02, W = 0.25

(10) For each case of " and W in exercise 9, calculate the eye width given:
(a) BER = 10-9  (b) BER = 10-12  (c) BER = 10-15

(11) Does the jitter budget in Table 8.3 still result in an operational link 
assuming the following hypothetical cases:
(a) If the UUGJ of the transmitter doubles?
(b) If the UBHPJ of the transmitter increases by 0.100 UI, and the 

receive equalization is also improved to provide an additional –0.080 
UI of jitter compensation.  

(12) Figure 8.11 describes the SJ generated as part of a jitter tolerance test.
(a) Draw a figure similar to Fig. 8.11 with jitter amplitudes and 

frequencies labelled. Assume a CEI-11G-LR link operating at 
11.1Gbps with the jitter budget in Table 8.3 and the skew/wander 
budget in Table 4.3.  

(b) Is SJ typically encountered in a real system? Explain.
(c) At lower frequencies the SJ in part (a) of this question is several UI. 

Why does the link work even with this much jitter?
(13) Using the HSS EX10 description in Chap. 2, speculate as to which I/O 

pins and register bits may affect each of the control inputs to:
(a) The Spice model for the HSS EX10 transmitter in Fig. 8.12 which 

was produced using traditional circuit extraction methods.
(b) The hybrid Spice model for the HSS EX10 transmitter in Fig. 8.13.

(14) Spice simulation is to be performed to verify signal integrity of a link 
which uses HSS EX10 cores on both the transmitter and receiver end. 
The transmitter power level, slew rate, and preemphasis settings have 
already been determined. The data coding, data rate, coupling, and 
termination have also been specified for the link. The Spice models 
support selection of best case, nominal, and worst case PVT conditions. 
Create a simulation matrix which indicates the Spice runs that must be 
performed to validate signal integrity under all PVT conditions.

(15) A block code is devised which has a maximum run length of 2 bits. 
Given m = 5 cursors of the channel response are significant, devise a 
D matrix as described by (8.25) which represents all possible bit 
sequences allowed by this block code.
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(16) Assume a 3-tap FFE with the coefficients ct−1 = 0.15, ct = 0.80, and 
ct+1 = −0.05. Given the D matrix from exercise 15, construct a D’ matrix as 
described by (8.29) which represents the equalized bit sequences.

(17) Given S-parameters of a channel, in general SDD21 g SDD12 and 
SDD11 g SDD22. Explain why this is the case.

(18) Draw a diagram of a channel consisting of a transmitter chip on one 
circuit board driving a link to a receiver chip on a different circuit board, 
and connected through a backplane. Label the various points on this 
channel where impedance discontinuities may occur.

(19) The HSS EX10 core described in Chap. 2 contained both transmitters and 
receivers. The transmitter slices and receiver slices are physically alternated 
on this core. For this core configuration, which type of crosstalk (FEXT or 
NEXT) is more likely to be a significant factor for signal integrity?

(20) A system designer chooses to use simplex cores to implement an 
interface to reduce link signal integrity issues due to NEXT. The 
resulting links still have FEXT which must be considered in the 
analysis. Why does this system designer prefer to deal with the FEXT 
instead of the NEXT?

(21) In (8.32) the channel S-parameters are convoluted with the S-
parameters for the transmitter and receiver package models. This 
equation reflects the fact that the chip packages are part of the channel 
interconnect between the driver circuit and the receiver circuit. Explain 
why it is not easier to simply include the transmitter and receive 
packages in the S-parameter measurements for the channel.

(22) Given the output plot of the bathtub curve shown in Fig. 8.27, what is 
the approximate eye width for each of the following BER values?
(a) BER = 10-9  (b) BER = 10-12  (c) BER = 10-15

(23) Given the output plot of the SDD21 channel response shown in Fig. 8.28, 
what is the loss at each of the following frequencies?
(a) 4GHz  (b) 2GHz  (c) 1GHz

(24) Many systems use simulations (using StatEye, HSSCDR, or a similar 
tool) to determine a set of FFE coefficients that works for all links 
regardless of how cards are populated on the backplane. What is the 
disadvantage of this approach as opposed to dynamic training as was 
described for the Backplane Ethernet standard described in Chap. 5?
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Chapter 9
Power Analysis

In Chap. 1, HSS cores were introduced as being the result of increases in silicon 
density outpacing increases in the pin densities of chip packaging technologies. 
Increases in silicon circuit density have also outpaced advances in the ability of 
chip packages to dissipate heat. Predicting and controlling the power dissipation 
of the chip design has become an increasingly important part of chip design.

The multiplexing and demultiplexing functions of HSS cores operate at 
very high frequencies, and the associated signals have high activity factors. 
High frequencies typically require higher voltages in order to provide the 
necessary circuit performance, and higher voltages increase power dissipation. 
The nature of the function performed by HSS cores dictates that these cores are 
power hungry devices. 

The power consuming circuits in the HSS core can be categorized into two 
basic types: digital logic circuits and nondigital logic circuits. Power in 
nondigital logic circuits can be subcategorized as follows: AC (active) power, 
DC (leakage) power, and DC quiescent power. Digital Logic AC power is a 
function of the applied voltage (Vs), the frequency ( f ) of operation, and the 
activity factor (AF) for the given circuit. DC leakage power is a function of the 
chip process technology, transistor threshold voltage (Vt) temperature, and the 
supply voltage (Vs). DC quiescent power is a function of the circuit design and 
results from the amount of continuous power that is needed to sustain the 
circuit (for example, to operate an amplifier). The factors that affect power 
dissipation are discussed in this chapter, along with methods the designer can 
use to control the power dissipation of the HSS core.

9.1  Digital Logic Circuits
The discussion of power dissipation for digital logic circuits can be broken 

into the categories of AC (active) power and DC (leakage) power. 

9.1.1 Digital Logic Active or AC Power
AC power can be derived several different ways and for this discussion can 

start with the well-known physics textbook power relationship 

where Ps is the power delivered from the power supply, Is is the supply current, 
and Vs is the supply voltage. Another well-known relationship from physics 
textbooks is the definition of capacitance:

Ps Is V
s

,⋅= (9.1)

C q
Vc
-----,= (9.2)
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where C is the capacitance value, q is the charge on the capacitor, and Vc is the 
voltage across the capacitor.

Equation (9.2) can be rewritten as:

Assuming C is a constant and differentiating (9.2) with respect to time 
results in

and by definition: 

Combining (9.4) and (9.5) results in

The energy stored on a capacitor can be assumed to have the following 
relationship:

where C is the capacitor value, and Vc is the voltage on the capacitor. This 
relationship can be derived from the previous physics relationships as is shown 
below. The energy stored on a capacitor is simply a function of the static 
voltage on the capacitor Vc and capacitance value C, and is not a function of 
the time it takes to charge the capacitor.

Assuming a capacitor of value C is being charged with a current I, the 
voltage on the capacitor rises at a constant rate as defined by (9.6). This 
equation can be rewritten as:

Integrating Eqn 9.8 with respect to t and assuming V(0) = 0 results in

Assuming a constant current I, the energy to charge this capacitor after a 
time T (in seconds) is:

Substituting Vc(t) from (9.9) into (9.10) results in:

Vc
q
C
---- ⋅=

d
dt
-----Vc

d
dt
-----q 1

C
----=

I dq
dt
------=

dv
dt
------ I

C
----=

Ec
1
2
---C Vc

2⋅=

dv I
C
---- 
  dt=

Vc t( ) I
C
---- 
  td

0
∫⋅

I
C
---- 
  t= = .

E T( ) P t( ) td

0

T

∫ I Vc t( ) td

0

T

∫⋅= =

E T( ) I
C
---- 
  t⋅ td

0

T

∫ I I
C
---- t2

2
----

0

T
⋅ ⋅ T2

2
------ I2

C
----⋅= = =

(9.3)

(9.4)

. (9.5)

. (9.6)

, (9.7)

. (9.8)

(9.10)

(9.11)

(9.9)

⋅
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From (9.9), the voltage on the capacitor after T seconds is

Combining Eqn 9.11 and Eqn 8.38, and rearranging the result:

which is equivalent to (9.7). This equation also implies that it does not matter 
how much time (T) is required to charge the voltage (Vc), the energy stored on 
it is the same. Although this analysis assumes Ic and dv/dt are constants (and 
this text will continue to do so for simplicity), it can also be shown that (9.7) 
remains valid even if these parameters are variable over time. Proof of this is 
beyond the scope of this text.

The above analysis leads to a simple model using a lump sum capacitance 
which can be used for analysis of digital logic power relationships in the 
CMOS chip as shown in Fig. 9.1a. The model shown in the figure consists of 
a power supply delivering power through a current limiting device to charge 
the lump sum capacitance of the network (represented by C in prior analysis). 
The “current limiting device” represents the transistor of the CMOS logic gate, 
and the “network” is the output net of the CMOS logic gate which is connected 
to transistor inputs of other CMOS logic gates. Assuming Is and Vs are 
constant, then the power is calculated as described in (9.1), and the supply 
energy (Es) provided by the power supply to charge the capacitance of the 
network is:

Rearranging Eqn 9.6, the following equation is obtained

and substituting Eqn 9.15 into Eqn 9.14 results in the equation

Fig. 9.1 Network model for AC power

Vc T( ) I
C
---- 
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E T( ) C
C
---- T2

2
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C
----⋅ ⋅ C

2
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----⋅ 

  T I
C
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 ⋅ ⋅ 1
2
--- C Vc

2⋅ ⋅= = = .

Es Ps T⋅ Is Vs T⋅ ⋅= =

Is C dv
dt
------⋅=

Es C dv
dt
------ Vs T⋅ ⋅ ⋅=

Vc

Vs = Vdd

Vtran

Ic

Voltage
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Supply
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Vc

Vs = Vdd

Vtran

Ic
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Is
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(9.12)

(9.13)

(9.14)

(9.15)

(9.16)
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Allowing for the capacitor to charge for a time (T) until the capacitor is 
fully charged to the power supply voltage (Vs), and making the simplifying 
assumption that the rate of change of the voltage (dv/dt) is constant during this 
period, the following relationship results:

Rearranging Eqn 8.43, and substituting this into (8.42)

The conclusion implied by (9.18) is that the energy delivered by the power 
supply to the network is twice the charge stored on the lump sum capacitance 
of the network (as was indicated by (9.13)). The difference between the supply 
energy (Es) and the energy stored on the capacitor (Ec) is dissipated by the 
current limiting device and is released as heat. 

Now consider how this model appears when the capacitance is being dis-
charged. Fig. 9.1b shows the charge stored on the capacitance discharging 
through another transistor to ground. During this discharge, the transistor dis-
sipates all of the energy stored on the capacitor as heat, and the power supply 
does not supply any additional energy to the network.

As the network capacitance is charged and then discharged through one 
complete cycle, the total energy supplied by the power supply is specified by 
(9.18). All of this energy is dissipated as heat during the cycle: one-half of it 
during the charging phase and one-half of it during the discharging phase. 
Assuming the network switches states at a constant rate of F cycles per second, 
the resulting power dissipation is

where Es (joules) is the power supply energy for one cycle and Ps (joules/sec 
or watts) is the power supply power at the specified frequency.

Substituting (9.18) for Es results in

If all of the logic gates on the chip switched at the same rate as defined by F, 
then (9.20) could be extrapolated to calculate supply power (Ps) for the entire 
chip by using a value for C which corresponds to the sum of all net 
capacitances on the chip. Of course, some signals in the chip switch more often 
than other signals, and using the same value of F for all circuits would not be 
appropriate. It therefore becomes useful to introduce the concept of an average 
Activity Factor (AF) defined as follows:

where Fs is the frequency of the signal and Fc is the frequency of the clock 
associated with this logic. The Activity Factor (AF) is the ratio of these 
frequencies.

Vs
dv
dt
------ T⋅=

Es C Vs( )2⋅=

Ps Es F⋅=

Ps C Vs( )2 F⋅ ⋅=

AF
Fs

Fc
-----=

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)
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The Activity Factor can be calculated in the following manner: Fs is 
determined by the number of times the signal toggles divided by the time 
period (Tp) over which the measurement is taken, and divided by 2 since both 
a rising and falling transition are required to produce one cycle of the signal. 
Fc is calculated in a similar manner for the clock signal. This results in

where TGs is the number of signal toggles and TGc is the number of clock 
toggles summed over the time period Tp. The Tp terms cancel, and the equation 
reduces to the ratio of toggles of the signal over toggles of the clock. Of course, 
a real signal does not toggle at a constant rate, but rather may have bursts of 
activity followed by quiescent periods. However, if toggle activity is measured 
over a sufficiently long period, the resulting value of Fs is representative of 
average activity, and is an accurate predictor of the average power consumed. 

Given the relation:

and substituting for F in (9.20), the result is

This power analysis approach can be extended beyond that of a single 
signal and can be applied to all signals in a region of a chip or across an entire 
chip. In the context of (9.24), scope is limited to the digital logic domain of the 
HSS core. All net capacitances on CMOS digital signals in the HSS core can 
be lumped together into a single lumped capacitance term and used in (9.24). 
Each interconnect wire has a set of capacitance components associated with it, 
including wire-to-ground, wire-to-substrate, wire-to-wire, and gate-to-sub-
strate capacitances, all of which should be included. The activity factor AF is 
calculated as a weighted average of the activity factors of the individual 
signals, where the net capacitance is used to weight this calculation. 

Fig. 9.2 CMOS transistor leakage currents
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The C term in (9.24) is more or less proportional to the area of the digital 
logic in the core and affects power dissipation linearly. The Fc and AF terms 
also have a linear relationship to power dissipation. However, the Vs2 term 
indicates that the value of Vs has a dramatic impact on power dissipation. Small 
reductions in Vs can substantially reduce power dissipation.

9.1.2 Digital Logic Leakage or DC Power
Digital Logic Leakage power (DC power) is proportional to the total 

leakage current in all of the transistors in the digital logic section of the HSS 
core. This leakage current in each transistor is made up of several different 
leakage mechanisms including:

1. Subthreshold Leakage Current ( Isubvt )
2. Gate dielectric (tunneling) Current ( Igate )
3. Junction Leakage current ( Ijxn ), and
4. Gate Induced Drain Leakage Current ( Igidl )

The above leakage components are illustrated in Fig. 9.2, and account for 
the majority of the total leakage current. Lesser contributors are not considered 
in this text. The total leakage current, for purposes of this discussion, is 
therefore the sum of these components

Note that each of the leakage components in (9.25) has a different 
dependency on voltage and temperature.
9.1.2.1 Subthreshold Leakage Current

Isubvt is the leakage current between the CMOS transistor drain and source 
terminals when the device is turned off. Isubvt is determined by the magnitude 
of the threshold voltage and the slope of the subthreshold voltage region of the 
current − voltage (IV ) curve for the transistor. 

Fig. 9.3 NMOS transistor IV curve

Ileakage Isubvt Igate Ijxn Igidl+ + += (9.25)

VT
Vgs
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Fig. 9.3 illustrates the ideal IV curve for an NMOS transistor, which plots 
the log of the drain-to-source current ( Ids ) as a function of the gate-to-source 
voltage ( Vgs ). The subthreshold region of this curve corresponds to Vgs values 
below the transistor threshold voltage ( Vt ); in this region Ids increases 
exponentially as a function of Vgs. Typically Ids > 0 mA when Vgs = 0V; the 
value of Ioff is defined as Ids at Vgs = 0V.

This drain current in the sub threshold region of the curve can be calculated 
by the following equation [3]

where
Vds = drain-to-source voltage on the transistor
Vgs = gate-to source voltage on the transistor
Vt = threshold voltage of the transistor
T = junction temperature of the transistor (in Kelvin)
k = Boltzmann’s constant
q = magnitude of the electronic charge
L = transistor channel length
Z = transistor channel width
� = low field mobility of the semiconductor material
Cd = depletion layer capacitance of the semiconductor material
Ci = insulator capacitance of the semiconductor material
Cit = fast interface state capacitance of the semiconductor material
C$ = [ 1 + (Cd + Cit) / Ci ]

The Cd, Ci, and Cit capacitance parameters, as well as �, are determined by 
the semiconductor material. Given a particular chip fabrication process, the 
values of these parameters are subject to process variation, but are otherwise 
constants for a given chip. The Z, L, and Vt parameters are determined by the 
transistor design. Some variation of Vt may occur due to process variation, but 
these parameters are also otherwise constants for a given transistor on a given 
chip. Operating conditions are specified by the Vds, Vgs, and T terms. 

Equation (9.26) can therefore be rewritten as a function of the operating 
conditions and various constants:
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Equation (9.27) is further reduced by substituting the conditions for Ioff : 
Vds = Vs, and Vgs = 0V. Given that Vs >> q/kT, the dependencies on Vds and 
Vgs are eliminated and (9.27) becomes

Equation (9.28) implies that Isubvt has a strong dependence on temperature, 
but no dependence on Vs. However, this equation does not provide a complete 
picture. The dependence of (9.26) (and by extension (9.28)) on Vds assumes 
threshold voltage ( Vt ) and ( L ) are fixed quantities for the transistor device. 
In reality, Vt is dependent on both Vds and L. As the device electric field 
increases (either by increasing Vds or shortening L) the drain induced barrier 
lowering (DIBL) effect results in a lowering of the threshold voltage, which 
correspondingly increases Isubvt. The threshold voltage also decreases as the 
temperature increases, decreasing the slope of the IV curve in the subthreshold 
voltage region, and further enhancing the Ioff leakage current.

This effect on Ioff is illustrated in Fig. (9.8) as an upward shift in the point 
at which the IV curve crosses the Vgs = 0 axis as Vds is increased. Increased Ioff 
can also be caused by decreasing channel length (L). Figures 9.4 and 9.5 show 
the relationship of Ioff to decreasing channel length and increasing Vds = Vs, 
respectively, and are based on characterization data collected for an example 
of an ASIC chip fabrication technology. Fig. 9.4 also shows data collected for 
various junction temperatures. The characterization data suggests an exponen-
tial relationship between these parameters and the corresponding Isubvt leakage 
current. For operating temperatures greater than about 50°C this leakage 
mechanism dominates over all others.

The empirical data suggests that Isubvt, when the effects of DIBL are 
included, is exponentially related to the power supply voltage. Also, the empir-
ical data suggests that the Isubvt dependence on T is also exponential once 
DIBL is considered. This implies that the terms in (9.28) containing T can be 
replaced by an exponential dependency. The following equation results

where: 
Vs = power supply voltage (in volts)
T = junction temperature of the transistor (in Kelvin)
VREF = empirical constant (in volts) derived from transistor characterization 

data
TREF = empirical constant (in Kelvin) derived from transistor characterization 

data
Ksubvt = empirical constant (in amps) derived from transistor characterization 

data
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Fig. 9.4 Ioff relationship to channel length

Fig. 9.5 Ioff relationship to power supply voltage
Equation (9.29), with appropriate constants derived empirically from char-

acterization data, is a reasonable approximation of Isubvt assuming that values 
of Vs and T are in typical operating ranges: Vs > 2Vt and T > 0C (273K). 
Behavior as these parameters approach zero is more complex, and other terms 
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in (9.26) become significant. However, given that circuit speed is important to 
HSS devices, lower supply voltages are generally not used, and the above re-
striction can be assumed. Furthermore, nominal/maximum temperatures used 
in calculating power dissipation for typical circuit applications generally 
exceed the above limit.

The above equations applied to a single transistor device, and the constants 
in these equations applied to specific transistor characteristics. One approach 
to calculating the Isubvt leakage current for the overall circuit would be to sum 
the contributions of the individual transistors in the circuit. However, note that 
the number of transistors turned off (Vgs = 0V and Vds = Vs) at any given time 
is state dependent. The form of (9.29) can be extended to model the total Isubvt 
leakage current for the HSS core by assuming that the constants in (9.29) are 
derived using characterization data which measures power dissipation for the 
HSS core rather than individual transistors. This is represented by the 
following equation

where: 
Vs = power supply voltage for the core (in volts)
T = junction temperature of the core (in Kelvin)
VcREF = empirical constant (in volts) derived from HSS core characterization 

data
TcREF = empirical constant (in Kelvin) derived from HSS core 

characterization data
Kcsubvt = empirical constant (in amps) derived from HSS core 

characterization data
The constants in (9.30) differ from those in the prior equations in that these 

constants apply to the overall HSS core logic rather than individual transistors. 
Kcsubvt , VcREF, and TcREF are not calculated, but rather are empirically 
derived through measuring power dissipation as part of characterization testing 
of the HSS core in a laboratory environment. As such, these coefficients are 
inherently based on the average transistor characteristics and the average 
number of transistors for which Vgs = 0V applies at any given point in time 
(thereby take into account the dependencies on circuit state). Equation (9.30) 
is therefore a reasonable approximation of the Icsubvt leakage current for the 
digital logic in the HSS core (and for nondigital circuits as well if such logic is 
included in the characterization test per Sect. 9.2.2). 
9.1.2.2 Gate Dielectric or Tunneling Current

Igate is the leakage current between the gate electrode and the substrate. 
This current results from a tunneling leakage mechanism whereby the elec-
trons directly tunnel from the silicon surface to the gate through the forbidden 
energy gap of the SiO2 dielectric layer. When the gate voltage is high with 
respect to the channel this leakage current adds to the Ion current, however, the 
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additional current must be sourced from the node driving the gate. When the 
gate voltage is low with respect to the channel, this leakage is sourced from the 
channel and flows to ground.

The Igate leakage current has a weak dependence on temperature and an 
exponential dependence on power supply voltage (Vs). This leakage current is 
also exponentially dependent on oxide thickness, with thinner oxide thickness 
resulting in larger Igate leakage. Gate tunneling current is more pronounced in 
thinner oxide device gates (around 12 Å), and less of an issue with transistors 
designed for low power applications which usually employ thicker gate oxides 
(around 18 Å). 

If the HSS core (or the chip) implements a stand-by mode in which portions 
of the core are powered down while selected FETs remain active to hold state 
values, then the gate tunneling current imposes a lower limit on stand-by power 
dissipation. Gate tunneling currents sourced by active FETs continue to tunnel 
through the gates of inactive FETs while the core is in stand-by mode. Con-
versely, the target stand-by power dissipation specification for the core 
imposes a limit on the number of FETs which may be active while the core is 
in stand-by mode.
9.1.2.3 Junction Leakage Current

Ijxn is the leakage current between the cathode and the anode of the reverse 
biased junction of the drain (and source) to the well (body) terminals of the 
transistor. This leakage component is the result of band-to-band tunneling as 
illustrated in Fig. 9.6. When the channel (either the drain or the source) of the 
transistor is biased at a higher voltage with respect to the substrate, electrons 
(for an n-channel device) tunnel from the valence band of the p-region to the 
conduction band of the n-region. For a p-channel device, holes tunnel in the 
opposite direction.

The reverse-biased junction of a CMOS transistor is shown in Fig. 9.7. The 
source and drain of the transistor are assumed to be at a higher voltage than the 
substrate in this figure. Under these conditions, leakage currents result from 
electrons (or holes) tunneling across the reverse-biased junctions into the substrate.

Fig. 9.6 Tunneling through a reverse biased pn junction
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Fig. 9.7 CMOS transistor junction leakage currents

This leakage current is an exponential function of the voltage from the drain 
(or source) to the body terminal (Vdb or Vsb) of the transistor [2]. Assuming 
Vd = Vs and Vb = 0, then

Vdb = Vsb = Vs
and an exponential dependence once again exists on Vs. 
9.1.2.4 Gate Induced Drain Leakage Current

Igidl is the additional leakage current, also caused by band-to-band tunnel-
ing, between the reverse biased junction and the channel of the transistor in the 
presence of the vertical gate field. This gate field can result in an amplification 
of the standard reverse bias junction leakage. As is shown in Fig. 9.8, at some 
Vgs < 0V point the Ids current increases with increasingly negative Vgs 
voltages. As Vds increases, the trough of this curve moves toward Vgs = 0V, 
resulting in a delta between the ideal Ijxn leakage and the measured leakage. 

In Fig. 9.7, Igidl results at the p− n junctions immediately below the gate. 
Without an electric field, Ijxn current would be uniform across the entire p− n 
junction. However, the electric field induced by the gate causes additional 
current to flow in the immediate region below the gate.

Igidl is weakly temperature dependent, but exponentially dependent on voltage 
in a similar manner to Ijxn . Worst case leakage current occurs when Vd = Vs.

Igidl is primarily a concern with low power technologies where the thresh-
old voltage has been increased to limit the Isubvt component. Such technologies 
reduce leakage currents, but the higher threshold voltage reduces switching 
speeds of the transistor devices. HSS cores typically do not use low power 
technologies since this conflicts with requirements to achieve high baud rates.
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9.1.2.5 Total Leakage Power
Equation (9.30), repeated here, was noted as a reasonable approximation 

for total Icsubvt of the HSS core

In general, the Icsubvt contribution to leakage current dominates over the 
other leakage contributors. (Igidl can be significant for high Vt devices used in 
low power technologies, but as noted previously this is not usually a concern 
for HSS cores.) Therefore, (9.30) is a reasonable approximation for the overall 
leakage current for the HSS core

where the Kcleak, VcREF, and TcREF constants in this equation are the result of 
characterization testing of the HSS core considering all leakage currents, and 
not just the Icsubvt leakage component.
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Fig. 9.8 N-Channel IV curve defining various tunneling effects
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The total power dissipation associated with (9.31) is therefore

Once again the value of Vs has a dramatic impact on power consumption. 
Small reductions in Vs can substantially reduce power dissipation. Maximum 
junction temperature also has a significant impact on the power dissipation, 
and circuit operation at lower temperatures can substantially impact power 
dissipation.

9.2  Non Digital Logic Circuits
As was the case for digital logic circuits, the discussion of power dissipa-

tion for nondigital logic circuits can also be broken into the categories of AC 
(active) power and DC (leakage) power. In addition, DC quiescent power also 
contributes to the power dissipation for nondigital logic circuits.

9.2.1 AC (Active) Power
Active power for nondigital logic circuits results from similar switching 

activity of the signals to that of digital logic circuits, and is calculated in a 
similar manner. Eqation (9.24) described this calculation, and can be applied 
to digital or nondigital logic circuits (or the combination thereof) based on the 
scope of the C and AF parameters used in the equation.

9.2.2 DC (Leakage) Power
Leakage power for nondigital logic circuits results from similar mecha-

nisms to that of digital logic circuits, and is calculated in a similar manner. 
Equation (9.32) described this calculation, and can be applied to digital or 
nondigital logic circuits (or the combination thereof) based on the scope of the 
characterization testing used to determine the Kcleak, VcREF, and TcREF values.

9.2.3 Quiescent Power
The quiescent current (Iq) in a nondigital logic circuit is defined as the DC 

current drawn by the circuit while the circuit is in a quiescent state with no 
activity. By definition, power is related to Iq as follows

where Psq is the power delivered by the power supply, Iq is the steady-state 
circuit current, and Vs is the supply voltage. Iq results from DC current paths 
in a nondigital (analog) circuit, and does not include any leakage current. Some 
DC steady-state current paths approximate the behavior of current sources for 
which power dissipation is proportional to Vs. Other DC steady-state current 
paths approximate the behavior of resistances for which power dissipation is 
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proportional to Vs2. Power dissipation due to quiescent current paths is 
therefore modeled by the following equation

where constants K1q and K2q are empirically determined for a given HSS core.

9.3  HSS Power
This section combines the power equations developed previously, and 

discusses topics related to power dissipation for the overall HSS core.

9.3.1 HSS Power Equation
The power in the HSS core is the sum of all types of power consuming 

circuits discussed previously, including digital and nondigital circuits; AC 
power, DC leakage power, and DC quiescent power. Equation (9.35) 
summarizes this relationship 

where Phss is the total power dissipated and consumed from the supply by the 
HSS core. The Psac and Psleak terms are calculated as described in (9.24) and 
(9.32), and calculated such that AC power and leakage power for all digital and 
nondigital circuits of the HSS core are included in these terms. The Psq term 
for nondigital circuits is calculated using (9.34).

When the underlying equations for these terms are substituted into (9.35), 
the following equation results

Phss = (C $ Fc $ AF $ Vs
2) + 

(K1q $ Vs) + (K2q $ Vs2) +
(Kcleak $ exp( T / TcREF ) $ exp( Vs / VcREF ) $ Vs)

Equation (9.36) can further be rearranged as follows:
Phss = [(C $ Fc $ AF) + K2q] $ Vs

2 +
[(Kcleak $ exp( T / TcREF ) $ exp( Vs / VcREF )) + K1q] $ Vs 

where Phss is a function of Vs, T, Fc, plus various empirically derived coeffi-
cients. Equation (9.37) is strongly dependent on Vs, with linear, quadratic, and 
exponential terms associated with the power supply voltage.

While (9.37) does combine all of the power dissipation factors into a single 
equation, this is not the end of the story. Often, multiple sets of coefficients 
may be supplied for (9.37). These various sets of coefficients may reflect the 
following depending on the applicability to a given HSS core:
• HSS cores consist of some number of transmitter, receiver, and PLL slices 

as shown in Fig. 9.9. Coefficients are generally specified separately for 
each slice to facilitate scaling the calculation of Phss to arbitrary core 
configurations.

• In cases where the HSS core requires more than one power supply, 
coefficients are specified separately for each power supply.

Psq
K1q

Vs⋅( ) K2q
+ Vs2

⋅=

Phss Psac Pcleak Psq+ +=

(9.34)

(9.35)

(9.36)

(9.37)
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• Coefficients are generally specified for various chip fabrication process 
points (nominal, worst case, best case).

• If the HSS core includes modes of operation where power dissipation is 
reduced, coefficients are generally specified for each of these modes.

Generally, the coefficients associated with Phss calculations are provided to 
the chip designer for each slice of the HSS core. This allows the chip designer 
to perform analysis to determine the amount of power required for each trans-
mitter, receiver, and PLL slice. The HSS power dissipated on the chip is cal-
culated by multiplying each of these power calculations by the corresponding 
number of core slices. 

Other factors in the above list are described in more detail below.

9.3.2 Multiple Power Supplies
Many HSS cores require more than one power supply input. It is necessary 

to calculate the power dissipation separately for each supply using (9.37). The 
coefficients used in this equation are specific to the supply for which power is 
being calculated.
9.3.2.1 Logic Power Supply (Vdd)

All HSS cores have a primary power supply input which is used to supply 
power to digital logic, as well as portions of the nondigital logic. Most of the 
power consumed by the HSS core is generally drawn from this supply. This 
supply is usually shared with other digital logic on the chip, and therefore may 
include significant amounts of noise.

Fig. 9.9 Basic block diagram of typical high-speed serdes 
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Because of the strong dependence of Phss on supply voltage Vs in (9.37), 
power dissipation is minimized by using the lowest possible Vdd voltage. AC 
and leakage power terms in (9.37) dominate power dissipation associated with 
this supply; quiescent power is not a significant factor for the Vdd supply 
unless this supply is used to power termination networks.
9.3.2.2 Analog Power Supply (AVdd)

Some HSS circuits may have a separate analog power supply input. Analog 
circuits may require a supply voltage higher than the voltage of the Vdd supply, 
or may require a power supply with less noise than would be present on the 
Vdd supply. Using a separate AVdd supply provides noise isolation from the 
Vdd supply, and provides a higher supply voltage where it is needed. Using the 
higher voltage only where needed optimizes power dissipation. 

Dominant terms in (9.37) for the AVdd supply depend on which circuits in 
the HSS core use this supply. As with Vdd, selecting the lowest possible 
voltage for AVdd is desirable to minimize power dissipation.
9.3.2.3 Termination Supply (AVtt)

It is sometimes desirable to provide a separate power supply input for 
biasing termination impedance networks. The higher the amplitude of the dif-
ferential signal, the higher the AVtt voltage must be to avoid clipping the 
signal. Such clipping can damage transmitter and receiver devices in addition 
to impacting signal integrity, and therefore should be avoided. 

HSS cores sometimes bias termination networks by tieing AVtt to Vdd 
internal to the core, while other designs may provide separate AVtt supply 
inputs. In the latter case, AVtt is tied to a voltage as required by the application, 
which may be the same or greater than the Vdd voltage. 

Since the AVtt supply is generally used to bias output drivers and resistive 
termination networks, quiescent power terms in (9.37) dominate for this 
supply. If the core internally ties AVtt to the Vdd supply, then this power is 
included in the equation for Vdd as increased quiescent power. As with the 
other supplies, selecting the lowest possible voltage for the AVtt supply is 
desirable to minimize power dissipation.

Note that a termination supply on a receiver device is sometimes referred 
to as the AVtr supply. In a DC coupled application, AVtt and AVtr would gen-
erally be tied to a common Vtt power supply.

9.3.3 Chip Fabrication Process
The values of the various coefficients in (9.37) are strongly influenced by 

chip fabrication process variation. These coefficients are usually defined for a 
nominal chip fabrication process, resulting in calculations which yield nominal 
power values. A given chip may consume more or less power depending on the 
actual manufacturing process conditions. 

It is useful to also provide coefficients associated with worst case 
(maximum power) chip fabrication process. Calculations using these 



414 High Speed Serdes Devices and Applications

coefficients predict the maximum possible power dissipation. Power dissipa-
tion on a given chip may be significantly less than this value.

9.3.4 Mode-Dependent Power
9.3.4.1 Functional Mode Dependencies

Some HSS cores support various modes of operation which affect power 
dissipation. The power dissipation for the HSS EX10 transmitter slice de-
scribed in Chap. 2 is affected by the Transmit Power Register setting defined 
in Table 2.6. Driving higher amplitudes on differential signals results in higher 
internal capacitive load, and as such Psac increases. Various sets of coefficients 
for (9.37) are supplied for common settings of the Transmit Power Register.

The power dissipation for the HSS EX10 receiver core defined in Chap. 2 
is affected by the DFE/non-DFE Mode Select setting in the Receive Configu-
ration Mode Register defined in Table 2.7. When non-DFE mode is selected, 
the DFE circuit is bypassed and the activity factor of the associated logic is sig-
nificantly reduced. This results in lower power dissipation for the receiver 
slice. When DFE-3 mode is selected, portions of the DFE circuit are bypassed, 
resulting in higher power dissipation than non-DFE mode, but still less than 
DFE-5 mode where the entire DFE is being used. Equation (9.37) coefficients 
are supplied for the receiver slice for each functional mode.

The features noted above are commonly recognized to influence power 
dissipation on most HSS core designs which support these features. Depending 
on the design of the HSS core, other configuration parameters may also result 
in significant effects on power dissipation. 
9.3.4.2 Power Down Modes

Many HSS cores include the capability to selectively power down portions 
of the core. While power down mode controls may disable power distribution 
in some HSS core designs, the HSS EX10 core defined in Chap. 2 uses the 
more common approach of gating clocks to the affected circuits. The activity 
factor of the affected logic is forced to zero, thus eliminating Psac power dissi-
pation term. Leakage and quiescent power dissipation is generally not affected 
when clocks are gated. 

There are a number of control signals on the HSS EX10 core, as defined in 
Table 2.1−2.3, which selectively power down portions of the core. Some of 
these control signals are used to disable unused channels, while others are used 
to implement a PCI Express dynamic power management scheme as was 
described in Sect. 5.5.4. The PCI Express link power states are defined as 
follows:

• L0: Normal Operation, Active Transmit and Receive 
• L0s: Power Saving, Transmit and/or Receive Idle
• L1: Standby, Transmit and Receive in Sleep Mode
• L2: Powered Down, Tx and Rx Powered Off, Beacon Enabled

Table 9.1 summarizes the power control pins of the HSS EX10 and their 
typical application.
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Table 9.1 HSS EX10 power mode core pin definitions

Pin name Typical use Description

PLL signals

HSSPDWNPLL Power down cores 
on unused interfaces

HSS PLL Power Down
0=normal operation, 
1=power down the HSS PLL Slice

HSSSTATEL2 PCI Express power 
state L2

Power down signal which powers off part of the 
PLL slice in compliance with implementation of a 
PCI Express L2 link state. Also forces power down 
of transmitter and receiver slices
0=normal operation
1=core is in L2 link state

Transmitter signals

TXxPWRDWN Power down unused 
Tx channels on a 
core

Transmit Power State:
Power down signal which powers off the Transmit-
ter slice.
0 = normal operation,
1 = Power down

TXxSTATEL1 PCI Express power 
state L1

Transmit Power State:
Power down signal which powers off the Transmit-
ter slice in compliance with implementation of a 
PCI Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state

TXxELECIDLE PCI Express power 
state L0s

Transmit Electrical Idle:
Forces transmit serial data to an electrical idle sig-
nal level.
0 = normal operation,
1 = electrical idle state

Receiver signals

RXxPWRDWN Power down unused 
Rx channels on a 
core

Receive Power State:
Power down signal which powers off the Receiver 
slice.
0 = normal operation,
1 = power down

RXxSTATEL1 PCI Express power 
state L1

Receive Power State:
Power down signal which powers off the Receiver 
slice in compliance with implementation of a PCI 
Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state
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9.3.5 Power Dissipation Breakdown
The discussion of HSS power dissipation is not complete without some 

discussion of the magnitude of the relative contributions of various HSS core 
components and power terms to the overall HSS core power dissipation. As is 
shown in Fig. 9.9, the HSS core is made up of three slices: the Phase Lock 
Loop (PLL) slice, the transmitter (TX) slice, and the receiver (RX) slice. 

For purposes of this discussion, assume a typical full duplex HSS core con-
sisting of one PLL slice, four transmitters, and four receivers. Also assume that 
this core has a separate AVdd supply used to supply power to analog circuits 
in the PLL slice, and separate AVtt and AVtr supplies to power termination 
networks. The AVtt supply powers the output driver stage of the transmitter. 
The following relative contributions were determined through analysis of 
examples of actual cores with a configuration similar to that of the HSS EX10 
core defined in Chap. 2. 

Considering this typical core configuration, the PLL dissipates approxi-
mately 10% of the total core power, the four Tx slices dissipate 40% of the core 
power, and the four Rx slices dissipate the remaining 50% of the total core 
power. 

Within the PLL slice, around 34% of the PLL power is dissipated in digital 
circuits and 66% is dissipated in the analog circuits. A further breakout of the 
PLL digital circuit power shows that 75% of the power dissipation is AC power 
and the remaining 25% is leakage. The breakout of the PLL analog circuit 
power shows that only 20% of the power dissipation is dynamic (AC) power 
and the remaining 80% is quiescent power.

Within the Tx slice, around 23% of the Tx power is dissipated in digital 
circuits and 77% is dissipated in the analog circuits. A further breakout of the 
Tx digital circuit power shows that 80% of the power dissipation is AC power, 
and the remaining 20% of the power is leakage. The breakout of the Tx analog 
circuit power shows that only 20% of the power dissipation is dynamic (AC) 
power and the remaining 80% is quiescent power. Approximately 60% of the 
power for the Tx slice is supplied by the AVtt supply, most of this being the 
quiescent power component. The remaining power is supplied by the Vdd 
power source.

Within the Rx slice, around 48% of the Rx power is dissipated in digital 
circuits and 52% is dissipated in the analog circuits. A further breakout of the 
Rx digital circuit power shows that 77% of the power dissipation is AC power 

RXxSIGDETEN Power down signal 
detect circuit on 
channels which do 
no use RXxSIGDET

Signal Detect Enable
0=Signal Detect power control using Signal Detect 
Power Down bit in SIGDET Control Register,
1=Signal Detect circuit powered on

Table 9.1 HSS EX10 power mode core pin definitions

Pin name Typical use Description
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and the remaining 23% of the power is leakage. The breakout of the Tx analog 
circuit power shows that only 20% of the power dissipation is dynamic (AC) 
power and the remaining 80% is quiescent power. Most of the power for the 
Rx slice is supplied by the Vdd power source, with almost no power dissipated 
by the AVtr supply.

These relative power contributions should not be taken as absolute values, 
but rather as a representative aid to the chip designer as to where attention can 
be focused to save power. For example, the large quiescent power contributor 
in the Tx can be reduced by reducing the AVtt supply voltage.

9.4  Reducing Power Dissipation
This section discusses general techniques for reducing power dissipation of 

the HSS design, and of the system using the HSS core.

9.4.1 Power Concerns for the HSS Core Design
The architecture of the HSS design is probably the largest contributor to the 

power dissipation of the core. More complex design architectures require more 
logic gates and more circuit transistors, and correspondingly result in greater 
power dissipation. Of course, complex design architectures may be the neces-
sary result to meet other requirements such as baud rate or to provide the 
feature set necessary for a particular protocol standard. Performing trade-offs 
between features, baud rate, and power dissipation is a necessary part of the 
design process for any HSS design.

However, HSS core architecture and design topics are not the subject of this 
text. In general, minimizing the number of logic gates and analog circuits (for 
a given clock frequency) results in the lowest power dissipation. This text 
assumes appropriate trade-offs have been made by the design process, and 
focuses on approaches for minimizing the power dissipation given a particular 
design architecture.
9.4.1.1 Clock Frequencies

All stages of an HSS core datapath must process bits at the target baud rate. 
However, these bits can be processed serially, or can be processed in parallel 
at a lower clock frequency. Except for the differential serial data output stage 
of the HSS transmitter and the differential receiver stage of the HSS receiver, 
all circuits within the HSS core can be designed to any arbitrary datapath width 
in order to reduce the clock frequency of the circuit.

Equation (9.24), repeated below, states that the AC power of logic is 
linearly related to both C and Fc of the circuit:

Assume that two options exist for logic block. One option processes an 
n-bit data path using a clock of frequency f. The other option processes a 2n-bit 
data path using a clock frequency of f / 2. Given the data being processed is 
the same, the value of AF can be assumed to be equivalent for both circuits. It is 

Psac
C Fc AF Vs( )2··

⋅ ⋅ ⋅ ⋅= (9.38)
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also assumed that Vs is the same for both circuits. The first logic block uses a 
higher clock frequency while the second design likely requires more logic 
gates (increasing the value of C). 

From a power dissipation standpoint, the optimal choice between these two 
circuits depends on the implementation details and the resulting logic size. If 
the second implementation (which must process a 2n-bit data path) contains 
twice the number of logic gates of the smaller logic block, then the Psac of the 
two implementations is equivalent. In addition, since Pcleak is also propor-
tional to the number of logic gates, the implementation using Fc = f is the 
proper choice for optimal power dissipation in this example.

In general, a wider datapath operating at a lower frequency reduces power 
dissipation if the implementation of this circuit is such that the number of logic 
gates does not grow at the same rate as the increase in datapath width. The 
power dissipation of the two circuits must meet the following equation to 
justify the larger (slower) circuit:

where C1 is the capacitance associated with the circuit with the wider datapath, 
C2 is the capacitance associated with the circuit with the higher clock frequen-
cy, FC is the frequency of the clock for the circuit with the wider datapath, and 
n is the ratio of the clock frequencies for the two circuits. This equation as-
sumes AF and Vs are the same for both circuits, and assumes Pcleak scales lin-
early with the logic size (and capacitance). This equation can be rearranged as 
follows:

If Pcleak << Psac, then this equation reduces to:

There are two cases which must be considered where the trade-off sug-
gested by the above equation is not valid. 

First, the derivation of this equation assumed the power supply voltage (Vs) 
is equivalent for both circuits. If reducing the clock frequency allows the 
circuit to use a lower supply voltage, then the reduced Vs

2 term more than 
compensates for the increased number of circuits.

Second, the above discussion regarding datapath logic blocks (and circuits) 
does not necessarily apply to initialization, control, and status logic. Logic with 
low activity factors already has minimal contribution of Psac to power dissipa-
tion. However, there is additional benefit to reducing the frequency of clock 
signals themselves. The lowest possible clock frequency should be used in 
order to minimize power dissipation of this logic.

C1 Fc⋅ Pcleak+ C2 nFc⋅
C2
C1
-------Pcleak+<

C1 C2
nC1FC Pcleak+
C1 FC Pcleak+( )
-----------------------------------------⋅<

C1 n C⋅ 2<

(9.39)

(9.40)

. (9.41)
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9.4.1.2 Clock Gating
Clock signals by definition have an inherent activity factor of 1, and are 

therefore a key contributor to Psac in any logic design. If a logic block is not 
needed for some period of time, the clock signal can still cause significant 
power dissipation even if AF = 0 for all nonclock signals. Gating the clock to 
the circuit provides substantial power reduction.

Datapath logic in the HSS core processes data on every clock cycle, and 
clocks to such logic cannot be gated during normal operation. However, clocks 
can be gated off for power-down modes. Also, operational modes may exist 
where clocks may be turned off for some circuits. Examples of such modes for 
the HSS EX10 core include:
• Non-DFE or DFE3 selections for the DFE/non-DFE Mode Select setting 

in the Receive Configuration Mode Register defined in Table 2.7. These 
modes gate the clock to portions of the DFE logic of the receiver slice.

• Setting Signal Detect Power Down in the Signal Detect Control Register 
defined in Table 2.7. This powers down the signal detection circuit for 
applications which do not use this function.

In general, if a function contributes significantly to power dissipation and 
may not be needed in some applications, then it is worthwhile to provide the 
user with the capability to turn off the function. Such capabilities are generally 
implemented by gating off the associated clocks to the logic block, which 
results in AF = 0, and eliminates Psac power dissipation.

Initialization, control, and status logic blocks are also candidates for gating 
the clock off when the circuit is not performing useful work.
9.4.1.3 Multiple Vt Logic Circuits

The threshold voltage ( Vt ) of transistors used to implement a logic gate 
has an influence on both AC power dissipation ( Psac ) and the leakage power 
dissipation ( Pcleak ). Higher transistor Vt levels result in lower leakage 
currents, but also impact circuit timing. The slower slew times of such circuits 
increase the period over which the gate draws current while switching states, 
and thereby increases Psac . 

Often, logic gates are available in an ASIC technology which use a variety 
of transistor devices with different Vt levels. Logic gates using a lower Vt are 
used in circuits where timing performance is of greatest concern, and higher Vt 
logic gates are used in slower circuits to reduce leakage currents.

Note that it is not the case that higher Vt devices should be used universally 
in slower circuits. Two cases should be considered:

First, in circuits with higher activity factors, the increase in Psac associated 
with such devices may more than offset the Pcleak savings. Synthesis tools with 
power optimization capabilities are generally used to select logic gates for ini-
tialization, control, and status circuits in the HSS core. Higher Vt devices are 
generally used in such logic except where faster circuits are needed on critical 
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timing paths. Datapath circuits must function at higher speeds and have rela-
tively high activity factors; these circuits rarely use high Vt devices. 

Additionally, if use of higher Vt devices forces the use of a higher power 
supply voltage in order to meet circuit performance requirements, then the 
increased power dissipation associated with the higher supply voltage offsets 
any advantage of using the higher Vt devices. Synthesis tools optimize for a 
specified Vs and do not consider potential advantages of reducing the power 
supply voltage. If the potential exists to lower the power supply voltage, and 
restricting the circuit to lower Vt devices facilitates this, then this is almost 
always the optimal approach.
9.4.1.4 Multiple Power Supplies

As was discussed earlier in this chapter, some HSS cores require multiple 
power supply inputs. The logic power supply ( Vdd ) is typically used to 
supply power to most circuits in the HSS core. This supply is also used by most 
of the logic on the chip, and as such the chip designer specifies the Vdd voltage 
to be as low as possible to minimize power dissipation. 

Additional power supplies may be required by the HSS core if:
• Supply voltages higher than Vdd are required by some circuits 
• Critical analog circuits require isolated power supplies with minimal 

noise
These additional power supplies generally use a supply voltage which is at 

least equal to, and often greater than, the voltage of the Vdd supply. Higher 
supply voltages substantially increase power dissipation. For this reason, the 
HSS core designer should power as many circuits as possible using the Vdd 
supply. Circuits powered by additional power supplies should be minimized, 
especially if it is expected that these supplies will use higher supply voltages.

9.4.2 Power Dissipation Concerns for the Chip Designer
For the chip designer, minimizing power dissipation of the HSS core re-

quires utilizing power savings features of the HSS core to the extent that the 
application permits. Relevant considerations are listed below, however, many 
of these items are probably obvious to most readers at this point.
Turn off Unused Channels. HSS cores generally include multiple transmitter 
and receiver slices. Depending on the number of links required for a given chip 
and the granularity of the number of links available per HSS core, some chips 
may have transmitter and/or receiver slices which are never used. Also, some 
chips may have multiple modes of operation, and some of these modes may not 
use some of the HSS links. In these cases, unused HSS transmitters and 
receivers should be powered down using the appropriate control inputs.
Minimize Power Supply Voltages. Chip and system designers should always 
use the minimum possible power supply voltage(s) as permitted by the appli-
cation. As was obvious from earlier topics in this chapter, Vs has a dramatic 
impact on power dissipation.
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Minimize the Baud Rate. Generally, baud rates are dictated by the application. 
However, lower baud rates do reduce power dissipation. Using lower baud 
rates during periods when less bandwidth is required is one approach for 
reducing power dissipation.
Minimize Transmit Amplitude. The differential amplitude ( Vdiff ) of the trans-
mitted signal affects the quiescent power of the transmitter driver stage. Lower 
amplitudes dissipate less power. Transmit amplitude is provisionable on most 
HSS cores. Minimum signal amplitude may be constrained by protocol speci-
fications and/or by signal integrity requirements for the link, however, the 
minimum possible amplitude should always be used if power dissipation is a 
concern.
Select Operational Modes to Reduce Power. The HSS core may support pro-
visioning of operational modes such that unnecessary functions are turned off 
to reduce power. For the HSS EX10 core, this included Non-DFE or DFE-3 
selections for the DFE/non-DFE Mode Select setting in the Receive Configu-
ration Mode Register defined in Table 2.7. If either the Non-DFE or DFE-3 
selections are sufficient to meet signal integrity requirements of the link, then 
these modes can be used and power dissipation of the receiver is reduced. 
Power Down States. Some applications may experience periods when no 
useful data is being sent or received on the serial data interface. During such 
periods, links can be partially or completely powered down to reduce power 
dissipation. The PCI Express application defines protocols associated with 
entering and exiting power down states during such periods, and utilizes power 
state control signals on the HSS core as was described in Sect. 9.3.4.2.

9.5  References and Additional Reading
The following reading is recommended for more information regarding 

topics in this chapter:
1. “Thermal and Power Management of Integrated Circuits”, A. Vassighi 

and M. Sachdev, Springer, Berlin, 2006.
2. “ULSI Devices”, C.Y. Chang and S.M. Sze, Wiley, New york, 2000.
3. “Solid State Electronic Devices”, B. G. Streetman and S. Banerjee, 

Prentice Hall, New Jersy, 2000.

9.6  Exercises
1. For the driving CMOS logic inverter circuit in the figure below: 

(a) Highlight the portions of the circuit which compose the lump sum 
capacitance C which stores charge driven by the inverter.

(b) Indicate the current path when the inverter charges the this lump sum 
capacitance.

(c) Indicate the current path for discharging this lump sum capacitance.
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(d) If more circuits are driven by this inverter, how does this affect power 
dissipation?

2. Calculate activity factors ( AF ) for the following signals:
(a) 100-MHz clock signal.
(b) Data signal transmitting a 00110011... repeating pattern.
(c) Data signal transmitting a 00001111010100110011... repeating 

pattern.
(d) Control signal which is set during initialization and is not changed.

3. Using your answer to Chap. 7 Exercise 16, calculate activity factor for the 
output of a Pseudorandom Bit Sequence (PRBS) generator which uses the 
following polynomial: G(x) = x7 + x6 + 1.

4. Calculate AC power dissipation ( Psac ) for each of the following cases:
(a) 100-MHz clock buffer driving a 10pF load and a 1.2V supply.
(b) 100-MHz clock buffer driving a 10pF load and a 0.8V supply.
(c) 200-MHz clock buffer driving a 20pF load and a 1.2V supply.

5. Calculate AC power dissipation ( Psac ) for each of the following cases:
(a) Logic gate driving a 50pF load with an activity factor of 0.1 and 

powered by a 1.0V supply.
(b) Logic gate driving a 25pF load with an activity factor of 0.2 and 

powered by a 1.0V supply.
6. Calculate total AC power dissipation ( Psac ) for a circuit composed of the 

following logic blocks assuming Vs = 1.2 V:
Logic Block Clock Frequency Activity Factor Lump Capacitance
Block #1 100 MHz 0.3 172 nF
Block #2 333 MHz 0.5 88 nF
Block #3 333 MHz 0.01 250 nF
Block #4 25 MHz 0.5 205 nF

Vdd VddDriving
Inverter Load
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7. The circuit described in Exercise 6 is modified such that logic block #2 is 
partitioned into a voltage island on the chip for which Vs = 0.8V. Recalcu-
late Psac for a circuit given this change.

8. Logic gates are available in an ASIC technology which use transistor 
devices with one of two Vt levels. In order to reduce leakage current in the 
circuit, should the higher Vt or lower Vt logic gates be used? Explain your 
answer in terms of its affect on the calculation of Isubvt .

9. A logic gate must operate across a temperature range of 0−100oC. Which 
of these temperature limits results in the lowest Isubvt ? Compare Isubvt at 
each of these temperature limits. (Note: K = C + 273.15.)

10. Assume the driving CMOS logic inverter circuit in Exercise 1 is driving a 
logic “1” to the load circuit. This means the p-FET transistor of the in-
verter is conducting current in an on state, and the n-FET transistor is 
turned off. Show the leakage currents through these transistors while in 
this state.

11. Explain using Fig. 9.3 why increasing Vt reduces Isubvt .
12. The IV curve in Fig. 9.3 is somewhat simplified; more realistic IV curves 

are shown in Fig. 9.8. Given your answer to Exercise 11 and the definition 
of GIDL in Fig. 9.8, why do you think GIDL is more of a concern in low 
power ASIC technologies which use higher Vt transistors?

13. Given all other factors are constant, how does increasing the power 
supply voltage from 1.0 to 1.2V impact Pcleak based on (9.32)? How is 
Phss impacted based on (9.37)?

14. Given all other factors are constant, how does increasing the maximum 
junction temperature from 100 to 125oC impact Pcleak for a circuit based 
on (9.32)? How is Phss impacted based on (9.37)? 
(Note: K = oC + 273.15.)

15. Quiescent Power calculations for nondigital circuits have both Vs and Vs
2 

terms. What types of circuits are associated with each of these terms?
16. Assume the HSS EX10 core has Vdd, AVdd, Vtt, and Vtr power supply 

inputs. How many sets of coefficients for (9.37) would need to be 
supplied to the chip designer to support power calculations for nominal 
and worst case power dissipation? (Ignore operating mode dependencies 
when answering this question.)

17. There is a desire to build a spreadsheet to calculate power dissipation for 
the HSS EX10 core using the sets of coefficients described in Exercise 16. 
However, it is also desired that the spreadsheet allow the user to select 
between four possible values for the Transmit Power Register, and the 
various DFE/non-DFE Mode Select operating modes. How many sets of 
coefficients for (9.37) would need to create this spreadsheet?
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18. The Transmit Power Register in the HSS EX10 transmitter sets the Vdiff 
amplitude of the transmitted signal. Which variables in (9.36) would you 
expect are affected by this value?

19. The DFE/non-DFE Mode Select operating mode programmed in the 
Receive Configuration Mode Register in the HSS EX10 receiver turns off 
portions of the DFE digital logic circuit by gating the clocks to this 
circuit. Which variables in Eqn 9.36 would you expect are affected by this 
operating mode?

20. Assume the HSS EX10 TXxELECIDLE pin reduces Tx slice power by 
60%, and TXxSTATEL1 reduces Tx slice power by 90%. Similarly, 
RXxSTATEL1 reduces Rx slice power by 90%. Also, the HSSSTATEL2 pin 
reduces PLL slice power by 80% in addition to forcing all Tx and Rx 
slices into L1 power state. Given the power breakdown for the HSS EX10 
core described in Sect. 9.3.5, how much is the power dissipation reduced 
for each of the following PCI Express power states?
(a) All links in L0s power state.
(b) All links in L1 power state.
(c) HSS core in L2 power state.

21. Alternative HSS EX10 core configurations are proposed which include 
different numbers of transmitter and receiver slices. Given the power 
breakdown for the HSS EX10 core described in Sect. 9.3.5, estimate the 
power dissipation for each of the configurations below relative to the 
four-lane full duplex HSS EX10 configuration described.
(a) Simplex transmit core with one PLL and four Tx slices.
(b) Simplex receive core with one PLL and four Rx slices.
(c) Full duplex core with one PLL, eight Tx, and eight Rx slices.

22. Two versions of a datapath circuit are considered for inclusion in a 10-
Gbps HSS core design. One version processes data serially while the 
other version processes 4-bit parallel data. The implementation of the 
parallel version of the circuit requires four times as much logic. Which 
circuit is optimal from a power dissipation perspective?

23. How does your answer to Exercise 22 change if the 4-bit parallel data 
circuit requires twice as much logic as the serial circuit?

24. Derive (9.40) from Eqn (9.39).
25. Given methods of reducing power dissipation described in Sect. 9.4.2, 

discuss how improvements to the design of the channel (i.e., printed 
circuit board materials, connector selection, backplane design, etc.) can 
lead to lower power dissipation for the system.
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Chapter 10
Chip Integration

A general methodology flowchart for the chip design process is shown in 
Fig. 10.1 [1]. This flowchart illustrates the major steps that must be performed 
to transform the chip design into a manufacturable chip. (In practice, many 
steps are overlapped to speed up the process and are iterated as the design is 
altered or optimized. For simplicity, linear processing of the traditional meth-
odology is assumed for this discussion.)

The chip design is initially expressed in some higher form by the chip designers, 
usually in a High-level Design Language (HDL). This design is simulated using 
various means to verify that the design meets applicable design specifications. The 
design is then processed by a synthesis tool to map the design into the available 
library of logic gates and to optimize the logic structure. Specialized synthesis tools 
add Design-For-Test structures and clock trees. The resulting gate-level netlist is 
verified using Static Timing Analysis software to verify prelayout timing require-
ments are met; Test Structure Verification software to verify testability require-
ments are met; and Formal Verification software to verify that the gate-level 
representation of the design is boolean equivalent to the original HDL design.

The gate-level netlist is the input to a physical design process which in-
cludes floorplanning, layout and wiring, and optimization. Major blocks and 
I/O cells are placed as part of the floorplanning stage. Logic gates are placed 
and nets are wired during the layout and wiring stage. The optimization stage 
consists of analyzing the timing of the routed design and making appropriate 
changes to the logic mapping or placement. Extracted resistance and capaci-
tance characteristics of the routed wires are used in this stage by Static Timing 
Analysis software to obtain an accurate view of the timing characteristics of 
the design and verify all requirements are met. Timing characteristics may also 
be used to perform full-timing simulation of the gate-level design.

Once the logical and physical design of the chip is verified to meet all requirements, 
chip manufacturing data is generated. At this stage, it is also possible to use Automatic 
Test Pattern Generator (ATPG) software to generate test patterns for the chip.

All of the components used in the chip design, including HSS cores, must 
support the methodology used to design the chip. Significant facets of using 
HSS cores within this methodology are discussed in this chapter, including:
• Simulation models for HSS cores
• Test synthesis support
• Timing models and timing assertions to support static timing analysis
• Floorplanning considerations

This chapter is not intended to be a comprehensive chip design 
methodology discussion. HSS cores are processed in the same manner as any 
other monolithic logic blocks through much of the chip design methodology. 
However, the topics in this chapter warrant special consideration.
D. R. Stauffer et al., High Speed Serdes Devices and Applications, 425
© Springer 2008
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Fig. 10.1 Chip design methodology [1]
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10.1  Simulation Models
Simulation is the primary method used to verify that chip designs function 

as intended and meet the requirements of the chip specification. The chip 
design and verification teams generate stimulus for chip inputs, simulate the 
chip design’s response to the stimulus, and check that the chip outputs behave 
as expected. Models must exist for all components of the chip design, includ-
ing HSS cores, in order to support this simulation.

The simulation model for the HSS core must accurately reflect the behavior 
of the hardware. To the extent that variation exists between the behavior of the 
HSS model and the hardware, the risk is increased that a chip design may pass 
its simulation testcases and then not work in hardware. However, simulating 
the HSS core through an accurate reset and initialization sequence is computa-
tionally expensive. Chip design and verification teams generally prefer to be 
able to abbreviate the reset and initialization process for most simulation runs, 
and limit simulation of the full sequence to only a few testcases. Also, accu-
rately modeling the analog behavior of the core is not relevant if the resulting 
analog characteristics cannot be observed in the digital simulation. An Analog 
Mixed Signal (AMS) simulation is required in order to observe these effects. 
However, AMS simulations are generally not done at the chip level, and would 
be computationally expensive if they were performed.

10.1.1 Reset and Initialization Short Cuts
The HSS EX10 core reset sequence was described in Fig. 2.16. There are a 

number of wait loops in the reset sequence which generally require from 
hundreds of microseconds to several milliseconds to complete in hardware. A 
full function digital simulation would need to simulate all of these steps to ini-
tialize the HSS cores before any operational functions could be simulated. This 
would require significant execution time for the typical event-driven simula-
tion software, and simulating the reset sequence more than a few times would 
not provide any additional coverage of chip functionality. 
10.1.1.1 Power Application

The first wait loop in Fig. 2.16, “Allow time for core inputs to stabilize,” 
exists to allow input pins to the core to stabilize after power is applied to the 
chip. None of the logic in the chip can be reliably reset until the power supply 
reaches its steady-state value and circuits are driving valid logic “0” or “1” 
levels. This may take many milliseconds in hardware, but this behavior is not 
modeled at all in a digital simulation. This step in the process may be 
abbreviated in a digital simulation, and HSSRESET may be asserted almost 
immediately after the simulation starts. Since the chip logic controls when 
HSSRESET is asserted, abbreviating this wait loop does not require special 
support from the simulation model for the HSS core. However, the chip 
designer should ensure the ability exists to speed up wait loops for any relevant 
finite state machines which may exist in the chip design or the simulation 
environment.
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10.1.1.2 PLL Calibration and Lock
The second wait loop in Fig. 2.16, “Wait for PLL Reset Completion,” exists 

to allow the PLL slice to achieve a lock state. After the HSS core is reset, the 
PLL slice executes a calibration sequence which adjusts circuit parameters 
until the PLL successfully locks to the reference clock input. In hardware this 
process may take from hundreds of microseconds to several milliseconds. 
While it is useful to simulate the detailed behavior of the PLL for a few 
testcases (to make sure chip logic responds correctly when realistic delays are 
involved), it is not efficient to perform this simulation for every simulation run.

To provide better efficiency for chip simulations, most simulation models 
of HSS cores include a mode of operation which shortens the PLL calibration 
and lock sequence by jumping directly to a lock state after a small arbitrary 
delay. This feature may be activated using one of several means, the most 
common of which is to provide a Verilog parameter or VHDL generic on the 
simulation model which selects the corresponding mode of operation. 

For example, assume the simulation model for the HSS EX10 core 
described in Chap. 2 has a Verilog parameter BYPASS_CAL. When this param-
eter is set to “1,” PLL state machine outputs are forced to a “locked” state after 
minimal delay, and chip simulation of transmit and receive functions com-
mences. This results in simulation waveforms as shown in Fig. 10.2, where the 
calibration sequence completes only 1,644 ns after the HSSRESET input is 
deasserted. In this figure, the transmitters start to send data at some point 
before HSSPLLLOCK is asserted. Although serial data is driven onto the 
receiver inputs in this simulation, the HSS receivers do not attempt to deseri-
alize data until after HSSPLLLOCK is asserted.

Fig. 10.2 Reset sequence with BYPASS_CAL = “1”
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10.1.1.3 Rx Training 
Additional wait loops in Fig. 2.16, “Wait for Rx Training Completion,” 

exist to allow the CDR circuit to find the center of the data eye, and to allow 
the DFE circuit to train on the receive data and determine the optimal set of 
coefficients to use. This process may take several hundred microseconds in 
hardware, but generally is not modeled in a digital simulation. In hardware, the 
receive data waveform has jitter and other signal impairments; CDR and DFE 
circuits must compensate for these impairments. On the other hand, a digital 
simulation generates pristine “1” and “0” levels with no impairments. Even if 
the CDR and DFE circuit operation were to be modeled in the simulation 
model, there is no signal degradation to exercise these functions.

CDR circuits are often modeled with the equivalent digital function in HSS 
simulation models. However, assuming a pristine receiver input with no jitter, 
the CDR finds the center of the eye and starts receiving data correctly after only 
a small delay. 

The only DFE behavior which needs to be modeled in the HSS simulation 
model is the DFE interaction with chip logic or system software. This includes 
supporting register read/write operations for DFE parameters and generating 
any relevant status signals. If the DFE circuit is modeled in the simulation 
model, then this circuit trains nearly immediately, and the resulting filter coef-
ficients are trivial. More often, a behavioral model is used for this circuit.

As indicated above, CDR and DFE circuits should train quickly in a digital 
simulation environment where the receiver input does not have any signal im-
pairments. It is therefore generally not necessary to incorporate special features 
into the HSS simulation model to shorten the execution of Rx Training.

10.1.2 Simulation ‘X’ States
When power is initially applied to a state element in a circuit (either a flip-

flop, latch, or SRAM cell), the initial value of that state element is undefined. 
The value initializes to either a logic “0” or “1” depending on power supply 
sequencing, circuit conditions, and other factors. The initial value may or may 
not vary after every power cycle. In a well-designed circuit, the initial value of 
these state elements does not matter. Either the circuit is subsequently reset to 
force state elements to known values, or values in some state elements force 
values in downstream state elements to known values after a few clock cycles.

The determination as to whether a circuit is well designed is part of design 
verification. It is possible, for instance, to design a finite state machine for 
which some of the state codes are not used. Such a state machine may include 
a reset input to set the state to an initial value, or alternatively may be designed 
so that invalid states always transition to the reset state. However, a poorly 
designed state machine may loop between one or more invalid states if it 
powers up in an invalid state, and may never get properly initialized. Design 
verification must ensure all circuits in the device under test are initialized to 
known states by whatever means, and cannot power up in a state which leads 
to the circuit hanging in an invalid state.



430 High Speed Serdes Devices and Applications

A potential method of verifying that circuits cannot power up in an invalid 
state is to verify that the device under test can be initialized properly for all 
possible initial values of its state elements. This would require a simulation run 
for every possible combination of initial values. Given n state elements in the 
device under test, 2n simulation runs are required for exhaustive verification. 
Unless the device under test is relatively small, exhaustive verification using 
this approach is prohibitive due to the number of simulation runs involved. A 
random sampling of initial states is possible, but would not be guaranteed to 
find all problems that may exist for a particular design.

Event-driven simulators have approached this problem by initially assign-
ing a value of “X” to state elements in the simulation. Logic gates calculate 
output values using a signal resolution function whereby the output of the gate 
is a “1” or “0” only if the gate inputs cause this value to be known. For 
example, the output corresponding to various combinations of “0” and “1” on 
the inputs of an AND gate are defined by the logic function. However, if one 
or both of the inputs are “X”, then:

“X” AND “X” = “X”
“X” AND 1 = 1 AND “X” = “X”
“X” AND 0 = 0 AND “X” = 0.

Likewise for an OR gate:
“X” OR “X” = “X”
“X” OR 1 = 1 OR “X” = 1
“X” OR 0 = 0 OR “X” = “X”.

Event-driven simulation propagates signals according to these resolution 
functions. In a well-designed circuit the “X” states are forced to known values 
by reset signal(s) or by other means within a few clock cycles. If the device 
under test reaches a state where no “X” states remain, this proves exhaustively 
that the circuit cannot power up in a state where initialization is not possible. 
Subsequent simulations from this state may be assumed to be representative of 
device operation regardless of the initial power-up state of the circuit.

This approach of using “X” states to verify initialization of the device under 
test is a pessimistic approach. The chip designer may reset state elements or 
otherwise add logic to eliminate the propagation of “X” states in simulation, 
while the real hardware may operate normally without this additional logic. 
However, this additional logic is viewed as necessary design overhead to 
ensure the design has been exhaustively verified and avoid any problems going 
undetected. 

This discussion is relevant to the simulation model for the HSS core in the 
following manner: This simulation model must be initialized within the chip to 
eliminate “X” states for signals within the model, and must not have “X” states 
driven on output signals which interfere with the initialization of other chip 
logic. In order to accomplish this, the chip designer may need to ensure certain 
inputs to the core are at known values, or to sequence input signals to the core 
in a specific manner. 
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For the HSS EX10 core, the HSSRESET input resets the HSS core to a 
known state and eliminates “X” states within the model. However, certain 
inputs to the core must be at known values (not “X”) when HSSRESET is 
asserted. If these inputs are not at known values, clock signals within the core 
are “X,” and the simulation model reloads “X” values. 

Table 10.1 defines the requirements for the simulation model of the HSS 
EX10 core. Signals which gate or otherwise affect propagation of clocks 
internal to the simulation model are listed in this table. These signals must be 
driven to known values as indicated before HSSRESET is asserted or the 
model for this core cannot be initialized. Note that although the HSS EX10 is 
a tutorial example, unless the core designer goes to the effort to gate signals 
internally, there are similar requirements for any HSS core. 

Table 10.1  Signal requirements for initializing the HSS EX10 model

Slice Signal Value Description of rationale

PLL HSSREFCLK[T,C] Oscillating The reference clock must be running and stable 
when HSSRESET is asserted

HSSREFDIV 0 or 1 This input controls a clock divider and must be a 
known value to avoid “X” on internal clocks

HSSDIVSEL[1:0] 0 or 1 This input controls a clock divider and must be a 
known value to avoid “X” on internal clocks

HSSPDWNPLL 0 This input controls power to the PLL slice and 
must be “0,” otherwise clocks are gated off

HSSRESYNCCLKIN 0 This input gates clocks in the simulation model, 
and must be “0” to avoid “X” on internal clocks

HSSSTATEL2 0 This input controls power to the PLL slice and 
must be “0,” otherwise clocks are gated off

TX TXxPWRDWN 0 This input controls power to the Tx slice and must 
be “0,” otherwise clocks are gated off

TXxSTATEL1 0 This input controls power to the Tx slice and must 
be “0,” otherwise clocks are gated off

RX RXxPWRDWN 0 This input controls power to the Rx slice and 
must be “0,” otherwise clocks are gated off

RXxSTATEL1 0 This input controls power to the Rx slice and 
must be “0,” otherwise clocks are gated off

RXxDATASYNC 0 This input gates clocks in the simulation model 
for the Rx deserialization stage, and must be “0” 
to avoid “X” on internal clocks
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10.1.3 Modeled and Unmodeled Behavior
While it is desirable that simulation models for HSS cores accurately reflect 

the behavior of the hardware, it is not desirable for models to be of such detail 
that simulation run times are adversely impacted. Furthermore simulation 
models are used in a digital simulation environment where many of the analog-
mixed signal functions of the core are not exercised or observable. Functions 
which cannot be exercised or observed need not be modeled. Behavioral 
models are used for these circuits to model the equivalent digital behavior and 
thereby improve execution times for simulations using the model. As a general 
rule, features and functions implemented in the digital logic of the core are 
fully implemented in the simulation model, whereas AMS features and 
functions are either implemented with a behavioral model or not modeled.

Chapter 2 provided a detailed description of the HSS EX10 core which has 
been used as a tutorial example throughout this text. This section continues to 
develop this tutorial example by describing which functions are modeled in a 
hypothetical simulation model for this core, and which functions are not 
modeled or modeled behaviorally. 
10.1.3.1 Reset Sequence

The reset sequence is fully modeled in the HSS EX10 simulation model, 
including all control and status signals, and all state machines involved in the 
reset sequence and VCO calibration. The analog PLL circuits are replaced with 
a behavioral model which simulates the digital behavior of the circuit.

The simulation model executes the reset sequence in a similar manner to 
hardware, accurately modeling signal handshakes, timing, VCO calibration 
results, etc. As was discussed previously, it is often desirable to shorten the 
execution time associated with VCO calibration. The BYPASS_CAL parameter 
was defined to do this.
10.1.3.2 Data Serialization and Deserialization

The parallel data interface of both the transmitter and receiver are fully 
modeled. Parallel data inputs of the transmitter are serialized, and data is 
driven onto the serial data outputs. Since this is a digital simulation model, the 
serial data outputs are driven to “0” and “1” values according to the data bit 
being sent. The true and complement legs of the differential signal are always 
driven to opposite values.

Serial data inputs to the receiver are deserialized and are driven to the 
parallel data output of the receiver. Note that the RXxI[P,N] inputs must have 
opposite values to result in a valid decode of the digital bit; if the serial data 
inputs are the same level, the model decodes this as an “X” value. Modeling of 
this interface includes deriving the RXxDCLK frequency from the incoming 
serial data and modeling the operation of RXxDATASYNC.
10.1.3.3 Analog Signal Characteristics

The registers defined in Table 2.6 contain parameters that set analog char-
acteristics of the transmitted serial signal, including signal amplitude and slew 
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rate. Although these registers are included in the digital simulation model for 
the HSS core, they have no affect on the operation of the model. 

Equalizer operation is also modeled in a limited fashion. Since the serial 
data output of the digital simulation model can only be “0” or “1,” the 
waveform variations generated by the FFE are not observable in the digital 
simulation environment. For this reason, only the register interface is generally 
modeled. A behavioral model is used to model any analog circuits which may 
be needed to provide appropriate register readback values. (One exception to 
this may be inverting the polarity of the serial data output based on the sign bit 
for the z0 filter coefficient. This feature is useful for simulation of some 
applications.)

In a similar manner to the transmitter, Table 2.7 defines registers in the 
receiver associated with the DFE. Only the register interface of the DFE is 
generally modeled. A behavioral model is used to model any analog circuits 
which may be needed to provide appropriate register readback values. Since 
the received data is an ideal signal in a digital simulation environment, any 
more detailed functionality would not be exercised even if it were modeled. 
10.1.3.4 Power Control

Various controls on the HSS EX10 core force portions of the core into 
various power down states. The outward effects of these controls are modeled 
in the HSS EX10 simulation model. TXCTS and TXBPWRDWN have been 
asserted in the example shown in Fig. 10.3, forcing the corresponding serial 
data outputs of the respective channels to a “Z” value. TXBPWRDWN also 
stops clocks in the transmitter slice as evidenced by TXBDCLK remaining at 
a fixed level. TXCTS only shuts down the driver stage and does not stop any 
clocks. 

Fig. 10.3 Transmitter power down
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Fig. 10.4 Full, half, and quarter rates
10.1.3.5 Data Rate Selections

The full-, half-, quarter-, and eighth-rate modes of the HSS EX10 core are 
fully modeled in the simulation model. Figure 10.4 illustrates a case where the 
“A” and “D” transmitter channels are operating at full rate, the “B” channel is 
operating at half rate, and the “C” channel is operating at quarter rate. The 
figure illustrates how this affects the TXxDCLK operating frequencies. Note 
that while the duty cycle of the TXxDCLK is approximately 50% in full-rate 
mode, this is not true in all modes.
10.1.3.6 Diagnostics

All diagnostic functions which are primarily implemented in digital logic 
are modeled in the HSS EX10 simulation model. These include:
• PRBS generator and PRBS checker logic circuits
• Loopback paths
• JTAG 1149.1 and 1149.6 functions

Although these functions may also be used during chip manufacturing test, 
these functions are primarily needed for system characterization and system 
manufacturing test. The chip designer must verify not only the normal func-
tional operation of the chip, but also the diagnostic test modes of the chip. It is 
therefore important that the simulation model for the HSS core contain support 
for these functions.

10.2  Test Synthesis
Manufacturing test for the HSS EX10 core was described in Chap. 7. As 

was discussed in that chapter, the chip is tested using some form of scan test, 
and the digital logic of the HSS core is tested as part of this scan test. Scan test 
performs DC stuck fault testing and is capable of achieving high coverage 
metrics using efficient test patterns generated by ATPG software. In addition, 
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a suite of Macro Tests is applied to the HSS core to test analog circuits and 
electrical parametrics.

Requirements are imposed on the chip designer in order to facilitate execu-
tion of the various types of manufacturing test. Test control signals and scan 
chain inputs and outputs on the HSS core must be connected to the correct chip 
level signals. Macro test execution may require controllability and observabil-
ity of various HSS core pins in order to facilitate test execution. Additionally, 
some HSS core pins may require preconditioned logic values during scan test, 
macro test, or JTAG test execution.

This mish-mash of requirements falls on the chip designer to implement. 
This section starts by discussing logic structures to implement various classes 
of requirements. Later, the concept of a test wrapper is discussed, which is 
delivered as part of the HSS core design kit, and allows connection of these 
logic structures to be automated.

10.2.1 Scan Test Support
The HSS EX10 core description in Chap. 2 did not include necessary pins 

to support manufacturing test of the core. In order to facilitate scan testing of 
the HSS EX10, the pins described in Table 10.2 are added to the core. 

Table 10.2 HSS EX10 scan test pins

Pin name Type Description

SCANIN[8:0] In Scan chain input pins. All the flip-flops in each PLL, Tx, or Rx slice 
are connected as a long scan shift register when SCANGATE is 
asserted. The HSS EX10 core has nine slices (one PLL, four Tx, 
and four Rx) and therefore has a total of nine scan inputs

SCANOUT[8:0] Out Scan chain output pins. See description of SCANIN[8:0] for more 
information

SCANGATE In Test control pin which is asserted ( = “1” ) when scanning the scan 
chains of the HSS EX10 core

TESTENABLE In Test control pin which is asserted ( = “1” ) at all times when execut-
ing scan test and macro test sequences

LT In Test control pin which is asserted ( = “1” ) to disable any DC leak-
age current paths in the core to facilitate Iddq testing

DI In Test control pin which is asserted ( = “1” ) to disable all drivers on 
the chip

RI In Test control pin which is asserted ( = “1” ) to disable all receivers 
on the chip

ZDI Out Redriven DI signal

ZRI Out Redriven RI signal



436 High Speed Serdes Devices and Applications

Scan test requires all of the flip-flops on the chip to be configured as scan 
shift registers when specific chip-level input signals are asserted. Table 10.2 
assumes flip-flops in each slice of the core have been connected as such, and 
the inputs/outputs of these scan chains have been added as SCANIN and 
SCANOUT pins of the core, respectively. Core scan chains are embedded by 
the chip designer within chip scan chains. Although it would be sufficient to 
connect all of the flip-flops of the core into one scan chain, the lowest manu-
facturing cost is realized when the chip contains as many scan chains as 
possible (within limitations imposed by the number of package pins), and the 
scan chains have roughly equal numbers of flip-flops in each scan chain. 

The SCANGATE pin controls whether or not the scan chain operates as a 
shift register, or whether flip-flops are connected to their functional data 
sources. This signal is connected to one of the chip-level manufacturing test 
signals and must be asserted to scan the chip.

The TESTENABLE pin performs design-specific functions to ensure test 
functions are accessible, and to disable functions that are to be excluded from 
testing. This pin is connected to an appropriate chip-level manufacturing test 
signal which is expected to be held active through all stages of manufacturing 
test, and which is expected to be held inactive in an operational system.

Additional test pins are defined in Table 10.2 which perform specific, but 
commonly required, functions:
• The LT pin disables DC current paths so that quiescent currents are not 

lumped into leakage current measurements, thus supporting a chip-level 
Iddq or Leakage Test as described in Sect. 7.4.1.4. 

• The Driver Inhibit (DI) and Receiver Inhibit (RI) pins defined in 
Table 10.2 disable the drivers and receivers, respectively, in the HSS 
EX10 core. These signals are used during chip I/O tests, and must be 
connected to the equivalent chip-level manufacturing test signals. The DI 
and RI input pins are redriven onto the ZDI and ZRI output pins to support 
a daisy-chain connection of these signals to adjacent chip I/O. 

It is the responsibility of the chip designer to connect scan chains of the core 
into chip level scan chains, and to connect the various test control signals to 
appropriate sources. Automation methods are considered later in this section.

10.2.2 Macro Test Support
10.2.2.1 Input Controllability

Macro tests for the HSS EX10 core were described in Chap. 7. In order to 
execute these tests, various pins on the HSS EX10 must be preconditioned to 
specific values, or must be fully controllable. The following cases may exist:
• HSS pin must be held at logic “0” for all test sequences.
• HSS pin must be held at logic “1” for all test sequences.
• HSS pin must be held at logic “0” or “1” depending on the test.
• HSS pin must be changed or toggled during the test sequence.
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Fig. 10.5 Macro test logic for controllability
Logic to implement these cases is illustrated in Fig. 10.5. This logic 

assumes a Macro Test Enable which is asserted and held throughout all macro 
test sequences, and is not asserted during normal operation of the chip. As 
shown in the figure, this signal is used to force signals which must be precon-
ditioned to fixed values of “0” or “1” during macro test sequences.

For cases where the signal must be preconditioned with a value that varies 
from test to test, a transparent latch is inserted as shown in Fig. 10.5. The 
Macro Test Enable signal is used to control the E input of this latch. During 
normal function, the latch is held flush such that the functional signal always 
controls the pin on the HSS core. During test operation, the latch is disabled so 
that it holds whatever value has been loaded into it. Although the scan connec-
tions are not shown in Fig. 10.5, it is assumed that this latch is stitched into the 
chip scan chains. The desired precondition value is scanned into the latch prior 
to execution of the test sequence, and then is held since the Macro Test Enable 
holds the E pin at a logic “0” during the test sequence.

Finally, consider the case where the HSS pin must be fully controllable 
during the macro test sequence. Signals which must be pulsed or toggled 
during the test sequence must be controlled from a chip input in order to do so. 
This input is usually not the normal functional path for driving the HSS pin. As 
shown in Fig. 10.5, a multiplexor selects between the normal functional 
control signal and the test signal source; the selection control for this multi-
plexor is the Macro Test Enable signal. Since the chip input pad is only used 
as a test signal source when testing the HSS core, this same input may be used 
for other purposes during other modes of operation. For instance, this pin may 
also be a scan input when scanning the chip, and may be a functional signal 
input for some unrelated function during normal chip operation.
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10.2.2.2 Output Observability
The above discussion concerned controllability of HSS input pins to 

support macro test execution. In a similar manner, some HSS output pins 
require observability during the macro test sequence. Two cases exist: 
• Final value of the HSS pin at the conclusion of the test must be observed.
• HSS pin must be observed dynamically during the macro test sequence.

Logic to implement these cases is illustrated in Fig. 10.6. This logic 
assumes the same Macro Test Enable signal which was defined previously. 
This logic also assumes a Macro Test Complete signal which is held at logic 
‘0’during execution of the test sequence, and is asserted at the end of the test 
sequence to capture results. 

Fig. 10.6 Macro test logic for observability

For cases where the HSS pin logic value must be observed at the conclusion 
of the test, a transparent latch is inserted as shown in Fig. 10.6, and is used in 
a similar manner to the transparent latch in Fig. 10.5. During normal function, 
the latch is held flush by the Macro Test Enable signal such that the HSS output 
signal always propagates to downstream logic. During test operation, the latch 
E pin is controlled by the Macro Test Complete signal. This signal is held low 
during the test sequence and goes high at the end of the sequence, capturing the 
HSS signal output logic level in the latch. The latched value is subsequently 
scanned out of the chip. 

If the HSS output pin must be dynamically observed during execution of 
the test sequence, then the signal must be observable at a chip output pad. This 
output is usually not the functional connection for the HSS signal. As shown 
in Fig. 10.6, the HSS pin is driven to both its functional sink as well as a test 
sink. The buffers shown in the figure are not logically required, but may be 
required to preserve net names for some design automation flows. The test 
sink, a chip output pad, may also be used for other purposes during other modes 
of operation. For instance, this pin may also be a scan output when scanning 
the chip, and may be a functional signal output for some unrelated function 
during normal chip operation. A multiplexor would be used to select the source 
of the signal driving the chip output pin based on the operational or test mode.
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10.2.2.3 HSS EX10 Example
Continuing with the expansion of the HSS EX10 tutorial example, Table 10.3 

defines macro test requirements for the HSS EX10 core. Preconditioning is 
required for many of the HSS input pins. Pins not listed in this table are gated 
with other signals internal to the HSS core and do not affect test execution. 

During macro test, chip pads must drive the HSSRESET, TXxPRBSRST, 
RXxPRBSRST, and RXxPRBSFRCERR signals. Each of these signals must be 
driven by a chip input pad during macro test execution. This chip input may be 
shared by all of the HSS cores (and all channels of the same HSS core) on the 
chip. Four test inputs are required regardless of the number of cores on the 
chip.

Table 10.3 HSS EX10 macro test controllability and observability

Pin name Type Slice Controllability/observability description

HSSRESET In PLL Full controllability required during test sequence

HSSPLLLOCK Out PLL Full observability required during test sequence

HSSPDWNPLL
HSSRECCAL
HSSRESYNCCLKIN
HSSSTATEL2

In PLL Preconditioned to “0” for all tests

HSSREFDIV
HSSDIVSEL[1:0]
HSSPRTWRITE
HSSPRTAEN
HSSPRTADDR[7:0]
HSSPRDATAIN[15:0]

In PLL Preconditioned to “0” or “1” depending on test

TXxPRBSRST In Tx Full controllability required during test sequence

TXxBYPASS
TXxPWRDWN
TXxSTATEL1
TXxELECIDLE

In Tx Preconditioned to “0” for all tests

TXxTS In Tx Preconditioned to “1” for all tests

TXxPRBSEN In Tx Preconditioned to “0” or “1” depending on test

RXxPRBSRST
RXxPRBSFRCERR

In Rx Full controllability required during test sequence

RXxDATASYNC
RXxPHSLOCK
RXxPWRDWN
RXxSTATEL1
RXxSIGDETEN

In Rx Preconditioned to “0” for all tests

RXxACJPD[P,N]
RXxPRBSEN

In Rx Preconditioned to “0” or “1” depending on test

RXxSIGDET Out Rx Must obverse value at conclusion of the test
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The RXxSIGDET and HSSPLLLOCK outputs require observability. In the 
case of RXxSIGDET, the logic value can be captured in a latch and observed at 
the conclusion of the test sequence. In the case of HSSPLLLOCK, the signal 
must be observed dynamically, and therefore the signal must drive a chip 
output during the test sequence.

10.2.3 JTAG Logic Connections
10.2.3.1 JTAG Boundary Scan Cell Connections

As was discussed in Sect. 7.1, JTAG 1149.1 and JTAG 1149.6 compliance 
require all input/output signals of the chip connect to Boundary Scan Cells. 
This places a requirement on the HSS core to provide signals to connect to the 
Boundary Scan Cell, which is part of the JTAG Boundary Scan Register. HSS 
pin connections to Boundary Scan Cells were described for the HSS EX10 core 
in Sects. 2.2.6 and 2.3.6.
10.2.3.2 Input Preconditioning

In addition to the signals described in Sects. 2.2.6 and 2.3.6, additional pins 
on the HSS core may need to be preconditioned to specific logic values for 
JTAG testing. The following cases may exist: 
• HSS pin must be held at logic “0” for JTAG test execution.
• HSS pin must be held at logic “1” for JTAG test execution.
• HSS pin must be controlled by the JTAG TAP Controller.

Logic to implement these cases is illustrated in Fig. 10.7. This logic 
assumes a JTAG Compliance Enable is asserted and held by the TAP controller 
when appropriate JTAG instructions have been loaded, and is not asserted 
during normal operation of the chip. Logic in Fig. 10.7 preconditions and 
multiplexes signals in a similar manner to Fig. 10.5.

Fig. 10.7 Logic for JTAG test preconditioning
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10.2.3.3 HSS EX10 Example
Continuing to expand the HSS EX10 example, Table 10.4 defines the 

JTAG signal connection requirements for this core. Many of the pins in this 
table are connected to the Boundary Scan Cells, while the rest are described 
below.

The HSSJTAGCE pin is driven by the TAP Controller based on a decode of 
the contents of the JTAG Instruction Register. This is the equivalent descrip-
tion to the JTAG Compliance Enable signal described in Fig. 10.7, and this 
signal is typically connected to the HSSJTAGCE pin. This signal is used 
internal to the HSS EX10 core to gate signals and enable JTAG test mode. 
Table 10.4 describes additional signals which must be preconditioned in logic 
outside the core by HSSJTAGCE. 

Preconditioned signals must be driven to valid values during JTAG test. 
The reset sequence for the chip is not executed during JTAG testing of a circuit 
board, and therefore the state of most flip-flops on the chip is unknown. If, for 
example, some of these signals are driven by a programmable control register, 
the state of this register is unknown during JTAG test. In order to ensure values 
are valid during JTAG, these pins must either be tied directly to a logic “0” or 

Table 10.4 HSS EX10 JTAG test preconditioning requirements

Pin name Type Slice Controllability/observability description

HSSJTAGCE In PLL Driven by the JTAG TAP Controller based on con-
tents of the JTAG Instruction Register

HSSACJPC
HSSACJAC

In PLL Signal connections to boundary scan cells

HSSPDWNPLL In PLL Preconditioned to “0” during JTAG test

HSSTXACMODE
HSSRXACMODE

In PLL Tied to “0” or “1” based on system design

TXxBSIN
TXxJTAGTS

In Tx Signal connections to boundary scan cells

TXxBSOUT Out Tx Signal connections to boundary scan cells

TXxJTAGAMPL[1:0] In Tx Tied to “0” or “1” during JTAG test. 
(Only used when HSSJTAGCE = “1.”)

TXxPWRDWN In Tx Preconditioned to “0” during JTAG test

RXxBSOUT Out Rx Signal connections to boundary scan cells

RXxACJPDP
RXxACJPDN

In Rx Signal connections to boundary scan cells

RXxACJZTP
RXxACJZTN

Out Rx Connection to boundary scan cell

RXxPWRDWN In Rx Preconditioned to “0” during JTAG test



442 High Speed Serdes Devices and Applications

“1” level, must be connected to a chip I/O, or must be connected to logic which 
is controlled by a JTAG compliance signal. 

10.2.4 Automation of Test Requirements
A number of requirements for test connections to the HSS core have been 

discussed, the implementation of which has been left as an exercise to the chip 
designer. This suggests opportunities for Design-For-Test (DFT) design 
automation software to be used in the following areas:
• DFT design automation software tools which make logical changes to the 

netlist to stitch scan chains, generate and connect JTAG boundary scan 
cells, etc.

• Additional files in the design kit for the HSS core which provide logic and 
connections for test signals. A test wrapper is discussed in this section 
which serves this purpose.

10.2.4.1 Design Automation Software
Software tools exist which are capable of automatically connecting some of 

the test signals discussed in this section.
Scan chain stitching software connects scan input and output pins of flip-

flops and latches on the chip into contiguous scan chains. Such software can 
also stitch scan chain segments embedded in the HSS cores into the chip level 
scan chains. This software is generally sophisticated enough to perform stitch-
ing based on the physical locations of the elements on the chip (stitching flip-
flops based on nearby neighbors), and to balance scan chains such that scan 
chains have roughly equal numbers of flip-flops in each chain.

Top level insertion software generates the logic for JTAG boundary scan 
cells and connects JTAG signals to boundary scan cells. This software is also 
capable of generating logic for I/O sharing. Chip input pins may have func-
tional use during normal chip operation, may be used as a scan input, and may 
connect to an HSS core (or another core type) to control a signal during macro 
test. Likewise, chip output pins may have defined functional use, may be used 
as a scan output, and may be used to observe an HSS core signal during macro 
test. 

Top level insertion software is driven by input from the chip designer 
supplied in the form of I/O definition statements in an I/O control file. Each I/O 
statement specifies the net name associated with the I/O; the I/O cell type 
(name of the library cell or other keyword); net names of signals associated 
with functional, scan, and macro test use; and net names associated JTAG 
boundary scan cell connections. 

The base functionality of top level insertion software assumes that all of the 
nets referenced by the statements in the I/O control file exist at the top level of 
the chip. Test signals on HSS cores must be routed through the chip design 
hierarchy to the top level so that these signals may be connected to the appro-
priate sources and sinks. Alternatively, it is possible to add preprocessing to the 
top level insertion software such that test signals do not need to be routed 
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through the chip hierarchy. This approach is discussed further in the next 
section.
10.2.4.2 Test Wrappers

Sects. 10.2.2 and 10.2.3 discussed logic which was required to be added by 
the chip designer around the HSS core. This logic gated signals to the HSS core 
to force preconditioned values, and provided controllability and observability 
of various HSS pins for macro test and for JTAG test. Given requirements for 
a specific pin, the logic associated with the pin is typically one of the cases il-
lustrated in either Fig. 10.5, 10.6, or 10.7 (or some combination thereof). This 
test logic does not vary significantly from one instance of the HSS core to the 
next, or from one chip design to the next. This suggests that the logic can be 
supplied in the form of a test wrapper as part of the design kit for the HSS core. 

A test wrapper is a Verilog or VHDL design which instantiates the HSS 
core and provides the necessary test support logic around the core. This is 
shown conceptually in Fig. 10.8. Inputs to the test wrapper consist of func-
tional signals and test signals, and any preconditioning logic or multiplexor 
logic is included in the wrapper. The chip designer connects functional signals 
as needed by the application, and connects test signals to appropriate test 
control sources; control logic is provided by the test wrapper.

Fig. 10.8 Test wrapper concept diagram
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In order to implement automation, the test signal input and output ports in 
Fig. 10.8 are removed from the Verilog module statement (or VHDL entity 
statement). Instead, test signals are tied to their normal (functional) values 
inside the test wrapper. These nets are “tagged” in the test wrapper so that the 
nets are recognized by top level insertion software. “Tags” may use net 
attributes, special net names, special cells, or special instance names to identify 
the nets to the top level insertion software. Software scans the chip netlist for 
tagged nets, removes the tie values from these nets, and connects the nets to the 
appropriate sources and sinks in the top-level of the chip netlist. When this 
approach is used to process test wrappers, there is no longer a need for the chip 
designer to connect test signals through the chip netlist hierarchy.

An integrated netlist processing flow which combines I/O definition 
statement examples and a test wrapper with appropriate design automation 
software can greatly simplify implementation of the test requirements for the 
HSS core. What started out as a rather complex set of requirements to support 
various test modes becomes an almost fully automated methodology for 
generating and connecting the necessary test logic.

10.2.5 Running Macro Test using the JTAG Interface
The discussion of JTAG 1149.1 in Sect. 7.1.1 described an optional 

RUNBIST instruction which can be loaded into the JTAG Instruction Register. 
This instruction is sometimes utilized to execute a Macro Test sequence 
controlled by internal state machines within the HSS core. When the JTAG 
Instruction Register contains the RUNBIST instruction, signals are 
preconditioned to run Macro Test as needed. Signals which require 
controllability to either logic “0” or logic “1” can be driven from additional 
user-defined registers scanned through the JTAG interface; signals which must 
be observed at the conclusion of the test can be similarly captured in user-
defined registers. Signals toggled during the test sequence are controlled by 
BIST state machines in the HSS core.

Using the JTAG interface to execute the Macro Test sequence is attractive 
because it simplifies the requirements for special test connections to the HSS 
core and potentially eliminates most of the logic that would otherwise need to 
be added by the chip designer (or included in a test wrapper). However, this 
approach does not reduce the complexity of the macro test implementation, but 
rather simply embeds the associated logic in the HSS core. If this approach is 
used, the Macro Test sequence is dictated by the design of the associated state 
machines in the HSS core. This sequence cannot be significantly altered by 
reprogramming chip test equipment.

Despite these limitations, Macro Test execution through the JTAG 
interface is widely implemented on HSS cores. This is especially true on 
mature core designs targeting lower baud rates.
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10.3  Static Timing Analysis
Static timing analysis software is used in the methodology shown in 

Fig. 10.1 to exhaustively verify that timing requirements of all logic paths on 
the chip have been met. Static timing analysis requires a timing model for all 
physical blocks on the chip, including HSS cores. This timing model defines 
timing checks at the input pins of the HSS core and propagation delays associ-
ated with timing paths through the core. The format of the timing model 
depends upon the software being used to perform static timing analysis.

For the HSS EX10 core example, the timing model must include the 
following timing information:
• Propagation delays from the HSSREFCLK[T,C] clock inputs to all clock 

outputs of the core, including: TXxDCLK, RXxDCLK, RXxRCVC16, and 
HSSRESYNCCLKOUT.

• Pulse Width test at the HSSREFCLK[T,C] clock input pins.
• Setup and Hold test at the TXxD[n:0] pins referenced to the corresponding 

TXxDCLK output clock.
• Propagation delays from the RXxDCLK output clocks to the correspond-

ing RXxD[n:0] output pins.
• Setup and Hold test at the HSSRESYNCCLKIN input pin referenced to the 

HSSRESYNCCLKOUT clock output.
• Timing tests and propagation delays associated with the register interface, 

including:
– Pulse Width test at the HSSPRTWRITE input pin.
– Setup and Hold tests at the HSSPRTDATAIN, HSSPRTADDR, and 

HSSPRTAEN input pins referenced to HSSPRTWRITE.
– Propagation delays from the HSSPRTADDR and HSSPRTAEN input 

pins to the HSSPRTDATAOUT output pins.
Although the above is specific to the HSS EX10 tutorial example core, 

similar timing parameters for clocks and parallel data apply generically to any 
HSS core. Timing parameters for the register read/write interface are similar to 
the requirements for any core with an interface used to read/write registers.

10.3.1 Clock Timing
The timing model for the HSS EX10 core includes propagation delays asso-

ciated with the timing paths from the HSSREFCLKT/C input pins to the 
RXxRCVC16, HSSRESYNCCLKOUT, TXxDCLK, and RXxDCLK outputs. 
Assuming the PLL is locked, these clock outputs do have a fixed frequency 
relationship to the reference clock, and the timing model incorporates these 
propagation delay paths so that timing phase properties of the reference clock 
may be inherited by the corresponding clock outputs. However, static timing 
analysis software has shortcomings in how these clocks are checked and prop-
agated. These are described in the following sections.
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10.3.1.1 Differential Clock Analysis
Static timing analysis tools do not perform sufficient analysis to ensure the 

signal integrity of differential signals. Therefore, the HSSREFCLK[T,C] 
signals should be primarily verified using Spice as was described in Sect. 6.4.3. 
RXxRCVC16 clocks, if used, should be analyzed in a similar manner using 
Spice.

In some cases the chip may contain protocol logic which is clocked by a 
single-ended clock derived from a differential clock. In these cases, the phase 
and frequency associated with the reference clock does become relevant for 
logic connected to the single-ended portion of the clock tree. This case is 
illustrated in Fig. 10.9. The buffer shown in the figure is a differential clock 
buffer with a differential input and both single-ended and differential outputs.

Fig. 10.9 Chip logic clocked by a differential clock

10.3.1.2 TXxDCLK / RXxDCLK Clock Outputs
For purposes of this discussion, the TXxDCLK and RXxDCLK output pins 

are referred to generically as the DCLK outputs. 
Timing Adjusts

The frequency of the DCLK clock outputs is fractionally related to the 
frequency of the HSSREFCLK[T,C] input on the HSS EX10 core. The phase 
relationship between DCLK and HSSREFCLK is indeterminate.

Static timing analysis propagates the clock attributes of the HSSREFCLK 
signals through the HSS timing model to the DCLK outputs. Because of static 
timing analysis limitations, propagation through the delay path in the timing 
model causes the DCLK outputs to be treated as data signals as shown in 
Fig. 10.10. The arrival time of the rising and falling edges of the DCLK output 
are determined by adding the propagation delays in the timing model to the 
rising edge arrival time at the HSSREFCLKT input pin. For proper analysis to 
occur at downstream sinks for DCLK, the arrival time of the falling edge must 
be shifted by one-half DCLK cycle. Parameters must also be set on this pin to 
indicate the signal is, in fact, a clock.
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These actions are communicated to the static timing analysis software using 
directives, called timing assertions, which are written by the chip design team. 
The command format for timing assertions is specific to the software tool 
being used. The following example assumes the IBM EinsTimer software is 
used to perform static timing analysis of a chip containing an HSS EX10 core 
with the instance name HSS_TX_CORE. (An equivalent example using com-
mands for Synopsys software is provided later in this section.) Consider the 
transmitter portion of an HSS EX10 core running at a data rate of 8.5 Gbps 
with an 16-bit data bus width. The cycle time of this clock is 1.882 ns, taking 
into account the baud rate, data width, and rate mode settings at which the HSS 
core is used by this application. The leading (rising) edge of the signal arrival 
on the DCLK pins should be adjusted by +0.00 ns, and the trailing (falling) 
edge should be adjusted by +0.941 ns (one-half of the clock cycle).

Assuming that the clock phase name arriving on the HSSREFCLK pins is 
TXREFCLK, and the new phase name associated with the TXADCLK output 
pin is DCLK+, then the following timing assertions are needed. A DCLK+ 
phase definition is created using the following timing assertion:

et::create_clock -period 1.882 -waveform { 0.0 0.941 } -name “DCLK”

The timing of the DCLK+ clock falling edge is adjusted with the 
TXREFCLK@L tag as shown in the following timing assertions:

et::adjust_signal -pins { "HSS_TX_CORE/TXADCLK" } -rise \
-time 0.0 -phase "TXREFCLK@L” 

et::adjust_signal -pins { "HSS_TX_CORE/TXADCLK " } -fall \
-time 0.941 -phase "TXREFCLK@L” 

et::rename_phase -pins { "HSS_TX_CORE/TXADCLK " } -phase * \
-new_phase "DCLK+" 

The “@L” suffix of the TXREFCLK phase notation in these assertions indi-
cates that a data signal is being adjusted, and that this data signal was propa-
gated from the rising edge arrival time on the HSSREFCLK input. The first 

Fig. 10.10 Timing adjust for DCLK outputs
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timing assertion adjusts the leading edge arrival time, and the second assertion 
adjusts the falling edge. The last timing assertion changes the phase name on 
the TXADCLK pin from TXREFCLK to DCLK. The “+” suffix indicates that 
this is a clock signal (as opposed to a data signal). 

As noted in Sect. 4.2.4, the TXxDCLK and RXxDCLK outputs of the HSS 
EX10 do not have a guaranteed phase relationship. Transmit protocol logic 
should use either elastic FIFOs to retime data to individual TXxDCLK clock 
domains or the HSSRESYNCCLKIN input to synchronize the transmitters. In 
the latter case, channel-to-channel skew specifications for the HSS core must 
be taken into account in the timing analysis. 
Clock Jitter

The clock output of the HSS PLL slice is divided in the HSS core to 
produce the TXxDCLK and RXxDCLK outputs. Jitter on the PLL clock is a 
source of jitter on the DCLK outputs. An additional source of jitter for 
RXxDCLK results from the CDR circuit tracking the center of the received data 
eye. The CDR circuit that was described in Sect. 3.3.1 updated sampling phase 
in quantized steps; these updates cause jitter on the corresponding RXxDCLK.

The jitter on DCLK is period related and varies from one edge to the next. 
Because the first edge can move independently with respect to the next edge 
(which could also move sooner or later), the application must account for 
periods of shrinkage or growth in the cycle time caused by jitter. Fig. 10.11 
illustrates how this jitter can affect DCLK. As shown, the edges of the “Jittery 
DCLK” may shift by +0.05 (units are not important) relative to the ideal clock. 
Worst case conditions occur when consecutive edges shift in opposite direc-
tions. Period jitter in this example is 0.10.

DCLK jitter is of significance since it results in cycle times which may be 
less than the ideal cycle time. The clock cycle time must be adjusted by the 
period jitter value to ensure flip-flop setup times are met. 

Table 10.5 provides an example of a jitter specification for the HSS EX10 
core. Using this specification, the timing assertions in the example from the 
previous section may be amended with the following additional assertion:

et::set_clock_jitter -clocks “DCLK” -jitter_late 0.071 -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate HSS_TX_CORE

Fig. 10.11 HSS DCLK jitter

105

9.955.05

0

0

-jitter+jitter

ideal 

Jittery 
DCLK

DCLK



Chip Integration  449

This timing assertion defines the amount of jitter on the DCLK clock phase. 
Static timing analysis software uses this value when evaluating setup tests by 
assuming a cycle time of: cycle time – jitter = 1.811 ns.
Duty Cycle Variation

The duty cycle of the clock must be considered to properly evaluate pulse 
width checks throughout the clock tree, as well as to evaluate timing for any 
logic clocked by the falling clock edge. 

Assume a duty cycle variation from 45% of the cycle time to 55% of the 
cycle time is specified for the HSS EX10 core. The timing assertions in the 
example from the previous sections are modified as follows:

et::create_clock -period 1.882 -waveform { 0.0 0.941 } -name “DCLK”

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK"} -rise \
-time 0.0 -phase "TXREFCLK@L” 

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK "} -fall \ 
-time 1.0351 -phase "TXREFCLK@L” -late

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK "} -fall \
-time 0.8469 -phase "TXREFCLK@L” -early

et::rename_phase -pins {"HSS_TX_CORE/TXADCLK "} -phase * \
-new_phase "DCLK+" 

et::set_clock_jitter -clocks “DCLK” -jitter_late 0.071 -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate HSS_TX_CORE

The adjust_signal timing assertion for the falling clock edge has been split 
into two assertions in this example, with separate adjust times specified for late 
and early signal arrival. The late value is 1.0351 ns (55% of the cycle time), 
and the early value is 0.8469 ns (45% of the cycle time). Static timing analysis 
software uses one or the other of these values depending on the context of the 
timing test being evaluated.
Timing Assertions for Synopsys Software Tools

Prior sections developed an example of timing assertions for the 
TXxDCLK or RXxDCLK pins which used the IBM EinsTimer software to 
perform static timing analysis. In this section, the equivalent timing assertions 
for analysis using Synopsys timing analysis software is presented. 

The following timing assertion defines the clock waveform on the HSS core pin:
create_clock -name DCLK -period 1.882 -waveform [ list 0.0 0.941 ] \

HSS_TX_CORE/TXADCLK

Table 10.5 HSS EX10 DCLK period jitter

Channel type
Data bus width (bits) 

8 10 16 20

TX +71 ps +151 ps +71 ps +71 ps
RX +153 ps +208 ps +153 ps +153 ps

For example, the TX core specifies period jitter as +71 ps, which means the DCLK 
period could grow or shrink by 71 ps. This effect is modeled in the same timing run 
by adding a set clock jitter statement to the timing assertions
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Although this timing assertion is similar to the EinsTimer phase definition 
assertion in “Timing Adjusts” under, the above assertion does more than just 
define the clock phase. It additionally sets the named HSS core pin as the 
source of this clock, and sets the signal waveform on this pin with the specified 
ideal arrival times. (Unlike EinsTimer, any signal propagation through the 
Synopsys timing model for the HSS core is ignored once this timing assertion 
is applied to the clock output pin.) The Synopsys create_clock assertion is 
therefore equivalent to the et::create_clock, et::adjust_signal, and 
et::rename_phase EinsTimer assertions in Sect. 10.3.1.2.

The Synopsys set_clock_latency timing assertion adjusts the timing of a signal in 
a similar manner to the EinsTimer et::adjust_signal assertion. This assertion is used 
to adjust the HSS clock output to account for the effects of both jitter and duty cycle 
variation. The following Synopsys timing assertions are the equivalent of the 
EinsTimer assertions in “Duty Cycle Variation” under Sect. 10.3.1.2:

create_clock -name DCLK -period 1.882 -waveform [ list 0.0 0.941 ]  \
HSS_TX_CORE/TXADCLK

set_clock_latency -source -rise -late 0.071 [ get_clocks DCLK ]
set_clock_latency -source -rise -early 0.0 [ get_clocks DCLK ]
set_clock_latency -source -fall -late 0.0941 [ get_clocks DCLK ]
set_clock_latency -source -fall -early -0.0941 [ get_clocks DCLK ]

The first two set_clock_latency assertions adjust the timing of the rising 
edge of the clock used in setup tests to account for jitter. Remaining assertions 
adjust the timing of the falling edge of the clock to account for duty cycle.

10.3.2 Receiver Parallel Data Outputs
The timing relationship between RXxD[19:0] and RXxDCLK is best 

explained by looking at the expected timing in a functional environment. 
Figure 10.12 shows HSS receive data connected to downstream flip-flops 
clocked by RXxDCLK. While the fanout of the data signals is limited to a few 
flip-flops, RXxDCLK is driven to a larger fanout through a clock tree. 

Figure 10.12 also shows the timing for the RXxD signals and for the 
RXxDCLK at points A and B. The rising edge of RXxDCLK launches data at 
the HSS core, and the same clock edge (delayed by the clock tree) captures the 
data at the flip-flops in the chip logic. This is possible because the delay with 
which RXxDCLK propagates through the clock tree is typically greater than 
the delay incurred by the RXxD signals.

There are two issues with this from a static timing analysis perspective. The 
first of these issues results because static timing analysis software assumes that 
if a clock edge is used to launch data, then the data should be captured by the 
next clock edge. However, the interface has in this case been designed such that 
data should be captured by the same clock edge. As can be seen in the figure, 
the data is not inherently held long enough to be captured by the next clock 
edge, especially when the delay of the clock tree is considered. It is therefore 
necessary to adjust the data arrival time to arrive one clock cycle later.
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Assume an HSS EX10 core with the instance name HSS_RX_CORE is 
running at a data rate of 8.5 Gbps with a 16-bit data bus width, as was the case 
in prior examples. The cycle time is therefore 1.882 ns. The following 
EinsTimer timing assertions perform the necessary adjustment:

et::adjust_signal -pins { "HSS_RX_CORE/RXAD*" } -rise -fall \
-time 1.882 -phase * -late

et::adjust_signal -pins { "HSS_RX_CORE/RXAD*" } -rise -fall \
 -time 1.729 -phase * -early

Note that separate adjust times have specified for late and early signal 
arrival. While the late timing value is usually adjusted by the full clock cycle 
time, the early timing value must account for period clock jitter, and is there-
fore, cycle time – jitter = 1.882 – 0.153 ns = 1.729 ns.

Without these adjustments, static timing analysis will report hold time 
violations on the RXxD signals. This could be corrected by adding buffers to 
delay these signals, however, such logic would be completely unnecessary.

The following Synopsys timing assertions perform the equivalent adjustments:
set_input_delay 1.882 -max [ get_pin HSS_RX_CORE/RXAD* ]
set_input_delay 1.729 -min [ get_pin HSS_RX_CORE/RXAD* ]

The second issue from a static timing analysis perspective occurs when 
timing analysis is performed on early versions of the chip layout. The chip 
physical design process often performs the early stages of layout and timing 
closure using ideal clock timing. When such analysis is performed, the RXxD 
signals do incur some propagation delay, while there is no delay incurred by 
RXxDCLK. Under these conditions, static timing analysis reports setup time 
violations on most or all of the sinks for the RXxD signals.

Fig. 10.12 HSS receive data timing
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This issue is fixed by inserting an arbitrary delay on the RXxDCLK nets. 
Optimal methods for doing this vary somewhat based on static timing analysis 
software being used. For example, the solution for Synopsys software is to 
modify the timing assertions for the RXxDCLK pins that were described in 
“Timing Assertions for Synopsys Software Tools” under Sect. 10.3.1.2. The 
delay values associated with the set_clock_latency timing assertions are 
modified to include an arbitrary delay that is representative of the delay of the 
postlayout clock tree. This delay is used during prelayout timing analysis, and 
is removed for postlayout timing analysis.

10.3.3 Register Interface
The HSS EX10 core defined in Chap. 2 has an interface for reading and 

writing registers in the core. Although many variations exist for register inter-
faces, the example covered here for the HSS EX10 is representative. 

Pins associated with this interface were defined in Table 2.1. Register read and 
write cycle timing is shown in Fig. 10.13, with the corresponding timing parameter 
values defined in Table 10.6. This interface consists of an address enable 
(PRTAEN), address bus (PRTADDR), write strobe signal (PRTWRITE), and 
input/output data busses (PRTDATAIN, PRTDATAOUT). Although signals are 
synchronized to various clock domains internal to the HSS EX10 core, the 
interface appears as an asynchronous interface to the chip logic outside of the core. 

Read cycles occur whenever PRTAEN is held high and PRTWRITE remains 
low as shown in Fig. 10.13. Register read data on PRTDATAOUT is valid 
within the output valid time (Tov) after PRTAEN and PRTADDR are stable. 
This is a combinatorial propagation delay path.

Write data is strobed into registers by PRTWRITE = 1 as shown in 
Fig. 10.13. PRTAEN, PRTADDR, and PRTDATAIN must be stable before the 
rising edge of PRTWRITE, as defined by setup time Tsu, and must be held after 
the falling edge of PRTWRITE, as defined by hold time Thd. The PRTWRITE 
signal must also comply with minimum pulse width Tpw, and the minimum 
time between write cycle pulses Tipw.

The timing model for the HSS EX10 core implements checks for each of 
the timing parameters described above. Depending on the design of the logic 
which drives this interface, timing assertions may be needed for static timing 
analysis software to properly evaluate this interface.

First, consider that PRTWRITE is a clock signal for purposes of timing 
analysis. On the timing model, this pin is the clock side of setup and hold tests, 
and is a termination point for pulse width tests. Chip logic may drive this signal 
from control logic which propagates a data phase to this pin. If this is the case, 
timing assertions must be written to redefine the arrival times of signals at this 
pin as clock signals. This is performed in a similar manner to the description in 
“Timing Adjusts” under Sect. 10.3.1.2 for DCLK.
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Fig. 10.13 HSS receive data timing

Table 10.6 Register access timing parameters
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Second, note that the timing parameters defined in Table 10.6 are relatively 
slow compared to the cycle times of other interfaces on the HSS core. If these 
signals are driven from control logic which is clocked at higher clock rates, the 
Tov cycle time may be greater than the clock cycle time, and this path must be 
treated as a multicycle path. Timing assertions may use any of several coding 
styles to accomplish this.

10.3.4 Transmitter Synchronization
The HSS EX10 core supports transmitter synchronization using the 

HSSRESYNCCLKIN and HSSRESYNCCLKOUT pins as was described in 
Sect. 2.4.7. This scheme requires logic interconnecting these pins as shown in 
Fig. 2.15 (for synchronizing multiple HSS cores).
10.3.4.1 Critical Timing

The timing for the Resync net in Fig. 2.15 is a critical path which is 
launched by a rising edge clock and captured by a falling edge clock. This half 
cycle path must meet a tight timing budget. The falling edge of the clock is 
used to solve hold time issues and provides excess margin, however, this 
creates issues meeting the setup time. The following factors contribute to the 
timing budget for this net:
• Must support the minimum HSSREFCLKx period
• Must tolerate skew in the clock tree for the HSSRESYNCCLKOUT which 

clocks the flip-flop driving the net
• Must tolerate HSS PLL static phase error variation. This is the core-to-

core variation in the skew between the HSSREFCLKx input and the 
HSSRESYNCCLKOUT output when the HSS PLL is locked

• Must tolerate skew in the clock tree used for HSSRESYNCCLKOUT in 
each of the staged pipelines

• Must tolerate duty cycle of HSSRESYNCCLKOUT signal when using 
both rising and falling edges

Based on these considerations, an example of a timing budget for the 
RESYNC signal to be sampled in each of the pipeline clock domains is

1,250-ps period * (0.40) = 500 ps (penalty @ 40% duty cycle)
– 100-ps REFCLK skew
– 100-ps PLL static phase error variation
– 100-ps RESYNCCLKOUT skew

= 200 ps (clock-to-output of resync latch, plus setup time of 
pipeline input latch).

This budget is insufficient for most “slow-chip” cases. It is therefore nec-
essary to “slack steal” by taking the negative clock edge from an earlier point 
in the clock tree. With reasonable effort, excess hold slack can be shifted to 
improve setup slacks, and thus close timing on this path.
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10.3.4.2 Timing Assertions
In order to time this transmitter synchronization scheme properly, appropri-

ate timing assertions must be applied to the HSSRESYNCCLKOUT output. 
These are clock outputs, and must be defined as such in a similar manner to 
how the DCLK clock outputs were handled in “Timing Adjusts” under Sect. 
10.3.1.2. It is necessary to check cases for each reference clock frequency 
which may be used by the application. These different clock frequencies can 
be checked as part of the same analysis run.

The first step is to define the various clocks. This can be performed using 
the following timing assertions for the IBM EinsTimer tool 

et::create_clock -period $clock_period -waveform { 0.000 $falling_edge } \
-name RESYNCCLK${ref_freq}_${core}

or the corresponding Synopsys timing assertions:
create_clock -name RESYNCCLK${ref_freq}_${core} -period $clock_period \

-waveform [ list 0.000 $falling_edge ] \
CORE${core}/HSSRESYNCCLKOUT

where a separate clock must be defined for the HSSRESYNCCLKOUT pin of 
each core instance ($core) in the group. If multiple reference clock frequencies 
may be used by the application, then separate clocks must be defined on each 
of these output pins and for each frequency case ($ref_freq). The ideal time of 
the falling edge ($falling_edge) and the clock period ($period) are determined 
for each reference clock frequency.

Next, it is necessary to define that clocks of different frequencies should not 
be compared. This is performed using the EinsTimer timing assertion:

et::set_phase_pair_exclusion -clock1 RESYNCCLK${ref_freq_1}_${core_1} \
-clock2 RESYNCCLK${ref_freq_2}_${core2}

or the Synopsys timing assertions:
set_false_path -from RESYNCCLK${ref_freq_1}_${core_1} \

-to RESYNCCLK${ref_freq_2}_${core_2}
set_false_path -from RESYNCCLK${ref_freq_2}_${core_2} \

-to RESYNCCLK${ref_freq_1}_${core_1}
where these assertions must be iterated such that each pair of clocks that have 
different frequencies is defined as a false path.

Assume the core-to-core skew for the HSS EX10 core has been specified to 
be 200 ps. This skew affects the arrival times of clocks coming from different 
cores. In order to account for this skew value in the timing analysis, the arrival 
times of the clocks must be adjusted by the skew amount. This is performed 
using the following EinsTimer timing assertions:

et::set_user_delta_adjust -data RESYNCCLK${ref_freq}_${base_core} \
-clock RESYNCCLK${ref_freq}_${core_N} \
-late -adjust -0.200
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et::set_user_delta_adjust -data RESYNCCLK${ref_freq}_${base_core} \
-clock RESYNCCLK${ref_freq}_${core_N} \
-early -adjust -0.200

or the Synopsys timing assertion:
set_clock_uncertainty 0.200 [get_clocks RESYNCCLK${ref_freq}_${core_N}]

where $base_core corresponds to the HSSRESYNCCLKOUT which launches 
the RESYNC signal in Fig. 2.15, and $core_N corresponds to all other HSS 
cores. The above commands must be iterated for each value of $core_N and 
$ref_freq. The result of these commands is that the arrival times of clocks from 
all other HSS cores have been adjusted to arrive from 200 ps early to 200 ps 
late relative to the clocks from the first core. This skew value is independent of 
the clock frequency.

Finally, in a similar manner to how the DCLK clock outputs were handled 
in “Timing Adjusts” under Sect. 10.3.1.2, EinsTimer assertions are required to 
adjust timing on the HSSRESYNCCLKOUT pins, and to define these pins as 
clocks:

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ -time 0.000 -rise

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ \
-time [ expr 0.55 * $clock_period ] -fall -late

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ \
-time [ expr 0.45 * $clock_period ] -fall -early

et::set_clock_jitter -clocks RESYNCCLK${ref_freq}_${core}+ \
-jitter_late $jitter -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate CORES${core}

Corresponding Synopsys timing assertions are:
set_clock_latency -source -rise -late $jitter \

[ get_clocks RESYNCCLK${ref_freq}_${core} ]
set_clock_latency -source -rise -early 0.0 \

[ get_clocks RESYNCCLK${ref_freq}_${core} ]
set_clock_latency -source -fall -late [expr $dc_hi_limit * $clock_period ] \

[ get_clocks RESYNCCLK${ref_freq}_${core} ]
set_clock_latency -source -fall -early [expr $dc_lo_limit * $clock_period ] \

[ get_clocks RESYNCCLK${ref_freq}_${core} ]
where these commands must be iterated for each $ref_clock and $core, and the 
values of clock period ($clock_period) is set based on the clock frequency. 
Parameters for period jitter ($jitter) and duty cycle high and low limits ($dc_hi_limit 
and $dc_lo_limit) are set based on the clock specification for the HSS core.

10.3.5 Serial Data Timing
The transmit and receive serial data signals cannot be analyzed using static 

timing analysis, but rather should be analyzed using Spice as was defined in 
Sect. 8.3. The timing model for the HSS EX10 core does not model any 
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propagation delay timing arcs to the transmit serial data pins, nor does it 
implement any timing checks on the receive serial data pins.

10.3.6 Skew Management
Two kinds of skew are discussed below: lane-to-lane skew as defined in 

Sect. 4.1.2.5, and skew within the differential signal pair.
10.3.6.1 Lane-to-Lane Skew

As defined in Sect. 4.1.2.5, lane-to-lane skew is the constant portion of the 
arrival time difference between any two data signals of a multilane interface. 
Skew results from differences in reference clock routing to the Serdes cores, 
differences in clock routing within the Serdes cores, and differences in routing 
of serial data signals in the package and circuit boards. Because skew impacts 
the design of deskew logic at the receiver, many multilane protocol standards 
constrain the amount of skew that may be present at the package output pins of 
the transmitter chip.

Skew is not usually verified through timing analysis. Rather, skew is 
managed in the chip design process by determining the transmit skew require-
ments, and then defining a skew budget which allocates how much of this skew 
may be consumed by each contributor. Contributors to skew at the transmitter 
include:
• Clock skew in the reference clock distribution network connections to the 

HSSREFCLK pins. This contributor is within the control of the chip 
physical designer, and usually can be constrained to a small value.

• Skew due to data and clock routing trace length differences within the 
Serdes core. This is specified as lane-to-lane skew for the HSS core.

• Skew due to tolerances resulting from the resynchronization scheme used 
to synchronize transmitters in different cores. These tolerances result 
from PLL design tolerances that become a factor when the various trans-
mitters being synchronized are in different cores and therefore are 
clocked by different PLL slices. This skew contributor may be specified 
as a core-to-core skew for the HSS core. Sometimes this core-to-core 
skew is specified such that it incorporates both the core-to-core and 
lane-to-lane contributors (and thus is used instead of the lane-to-lane 
value when multiple cores are involved).

• Skew due to signal routing differences in the package design result in 
time-of-flight variation. The extent to which skew can be minimized in 
the package design depends on how many signals are in the synchronized 
group, signal density, pin assignment constraints, etc. Also, skew manage-
ment may conflict with other signal integrity requirements such as mini-
mizing impedance discontinuities. As described in Table 10.7, a 
reasonable target for skew “Matching within a Bundle” is around 29 ps 
given current package technologies. 

Assuming the clock tree, HSS core, and package each meet the skew 
requirements defined by the specified skew budget, then the skew requirement 
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at the transmitter output is met by design. Note that the above assumes that 
HSSRESYNCCLKIN, or an equivalent function, is being used to resynchronize 
the transmitters. If this is not the case, then the lane-to-lane or core-to-core 
skew contributed by the HSS core is not defined.
10.3.6.2 Differential Pair Skew

Skew between the true and complement legs of the differential signal must 
be controlled to minimize duty cycle distortion (DCD), a key component of 
deterministic jitter (DJ). Typical package contributions to this skew are 
specified as the “Matching within Pair” parameter in Table 10.7. The specifi-
cation for the skew contribution of the transmitter device is typically supplied 
by the vendor, and is generally in the range of 5 ps or less at higher baud rates. 
Skew contribution due to the channel can be analyzed using the analysis 
methods described in Chap. 8 to determine the effects of any DCD on link 
performance.

10.3.7 Timing Backannotation for Simulation
Fig. 10.1 implied support for determining propagation delays and timing 

checks associated with a chip design and backannotating this timing informa-
tion into a simulation environment in order to perform simulations of the chip 
with actual timing. This is generally implemented by performing static timing 
analysis on the design and generating a Standard Delay Format (SDF) file. 
This file can be read by most event-driven simulators. Simulation models for 
ASIC library cells and cores on the chip are parameterized; the event-driven 
simulator sets delay parameters and timing check parameters based on the 
contents of the SDF file. The timing used in the simulation thereby reflects the 
actual timing of the postlayout chip.

In the case of HSS cores, several clocks are generated by the core. These 
clock outputs required timing assertions, as defined previously, in order to 
correctly evaluate chip timing. These clock outputs also cause problems for 
SDF generation. The parameters for the timing arc from HSSREFCLK to clock 
outputs are not set correctly. Also, output-to-output timing arcs such as the 
timing arc from the RXxDCLK outputs to the corresponding RXxD parallel data 
outputs are not set correctly. The following approach is a workaround for these 
issues:
• Timing analysis for SDF generation must be performed using a special 

timing model for the HSS core which does not contain any timing arcs to 
clock outputs, or any timing arcs for output-to-output paths.

• Simulation timing parameters (for arrival times, slews, etc.) for output 
clocks must be either set manually by the user or permitted to use default 
values.

• Simulation timing parameters (for arrival times, slews, etc.) for parallel 
data outputs (or any other output-to-output timing paths) must be either 
set manually by the user or permitted to use default values.



Chip Integration  459

Of course, the user may be able to write scripts to extract the necessary 
parameter values from timing reports, perform any necessary manipulations of 
these values, and generate commands for the target event-driven simulation 
software. Alternatively, while the default delay values may not reflect the 
actual chip design, simulation with the defaults may be sufficient to meet the 
user’s intended purpose. (Keep in mind that static timing analysis is generally 
used as the primary method of verifying chip timing. Full-timing event-driven 
simulation is computationally intensive, and is used only to a limited extent.)

10.4  Chip Floorplan and Package Considerations
This section focuses on chip physical floorplan and package design con-

straints. Connecting high-speed signals between silicon chips and circuit 
boards through chip packages requires certain electrical parameters be con-
strained in order to avoid signal integrity concerns. 

10.4.1 Packages
Fig. 10.14 illustrates common methods of connecting silicon chips to pack-

ages. Wirebond packages include both Fine Pitch Plastic Ball Grid Array 
(FBGA) and Electrically Enhanced Plastic Ball Grid Array (EPBGA) package 
types. FBGA packages use wires to connect wirebond pads on the chip periph-
ery to package balls. This type of package is relatively inexpensive, but does 
not have good signal integrity qualities. EPBGA packages are a newer technol-
ogy which improves signal integrity by using short wires to connect the chip to 
substrate; substrate wiring then connects the signal to the package balls. 
EPBGA packages are attractive from a cost perspective relative to Flip-Chip 
packages, and keeping wires short significantly improves signal integrity.

At higher baud rates, Flip-Chip packages are commonly used to meet 
stringent electrical parameters. These packages bond C4 pads on the silicon 
directly to pads on the chip substrate, and substrate wiring then connects 
signals to package balls. (C4 is short for Controlled Collapse Chip Connec-
tions.) FC-PBGA packages tend to be more expensive since substrates must 
usually be customized based on the chip I/O assignments.

Fig. 10.14 Cross-sectional view of wirebond and flip-chip packages
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Electrical parameters of the packaged die must achieve stringent require-
ments in order to support high-speed signals. Table 10.7 provides examples of 
package electrical parameters for the HSS EX10 serial data signals. Parameters 
in this table are readily achievable with an FC-PBGA.

The first portion of this table species resistance and inductance parameters 
for various HSS power supply inputs. These specifications represent limits 
assumed for HSS circuit design, and are constraints imposed on the package 
substrate design.

The lower portion of Table 10.7 specifies package requirements for differ-
ential signal I/O, including specification of skew parameters and signal 
integrity parameters.

“Matching within a pair” is one of the skew parameters specified in the 
table, and specifies the maximum time-of-flight skew between the true and 
complement legs of the differential signal pair; excessive skew between these 
signal legs contributes to DCD. “Matching within a bundle” specifies the 
time-of-flight skew requirement between different serial lanes of a multilane 
interface. This skew contributes to the protocol skew budget as was discussed 
in Sect. 4.2.6.3.

The signal integrity and achievable baud rate of Serdes signals are a 
function of the SDD21 (insertion loss) and SDD11 or SDD22 (return loss) of the 
package. Channel response and S-Parameters were discussed in “Channel 
Response” under Sect. 8.4.1.2 in Chap. 8. Figure 10.15 illustrates the Rx and 
Tx insertion loss requirements for the package side of a Serdes application, 
assuming the HSS signal termination is a 100-  resistive load. Table 10.7 
specifies the insertion loss at fb / 2 must be –2 dB or less. Figure 10.16 plots 
return loss specifications for various protocol standards as a function of baud 
rate. Package return loss must be less than whichever of these curves are 
relevant to the application. The insertion loss and return loss contributions of 
the transmitter package were considered in (8.30); the contributions of the 
receiver package were considered in (8.31).

Fig. 10.15 Rx and Tx differential insertion loss package requirements
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Table 10.7 Package electrical parameters for serdes

Parameter Min. Nom. Max. Units

Core power supplies

AVDD25 Resistance 0.8 at 1.8V nom
2.0 at 2.5V nom

ohm

Inductance 5 nH

ATST Resistance 4 ohm

Inductance 11 nH

AVTT, AVTR 
(per C4)

Resistance 0.357 ohm

Inductance 4 nH

VDD/GND Compression 25 at 1.2V mV

Differential signal I/O

Rx & Tx serial I/O 
(including vias)

Resistance 2.6 ohm

Differential 
impedance

85 100 115 ohm

Matching within pair 2.9 ps

Matching within bundle 29.1 ps

BGA adjacency TNSEWD 
Swappable

Rx trace and via isolation: 
Tx link to Rx link

–40 at 0 to fb/2 dB

Rx trace and via isolation: 
Rx link to Rx link

–35 at 0 to fb/2 dB

Tx trace and via isolation –30 at 0 to fb/2 dB

Rx differential return loss SDD11

Rx differential insertion loss SDD21 –2 at fb/2 dB

Tx differential return loss SDD22

Tx differential insertion loss SDD21 –2 at fb/2 dB

Tx transition time 40 ps

Tx voltage swing 0.7 V
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Fig. 10.16 Selected differential return loss package requirements

Fig. 10.17 BGA serdes RX TX separation
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Fig. 10.18 Flip-chip die and package ball footprint

Fig. 10.19 Radial connections from die C4 balls to package BGAs
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The “BGA Adjacency” entry in Table 10.7 specifies TNSEWD, which 
indicates that the module I/O for the true and complement legs of the differen-
tial signal must be adjacent in either the north, south, east, west, or diagonal 
direction on the chip. 

In addition, the package design must also consider BGA assignments 
relative to other Tx/Rx signal pairs in order to minimize coupled noise and 
resistance in the package design. Power, Ground, or Test Signals may be posi-
tioned between high-speed signal pairs for noise isolation. Figure 10.17a 
provides examples of BGA assignments for 3–4 Gbps differential signals. Dif-
ferential signals within a bundle are sometimes allowed to be adjacent to each 
other at these baud rates, with power and ground BGAs assigned between 
bundles. Figure 10.17b provides examples of BGA assignments for 10-Gbps 
differential signals. At higher baud rates each Tx/Rx signal pair is electrically 
isolated from other signal pairs.

Figure 10.18 illustrates HSS cores on the edge of a die. The HSS cores are 
designed to be placed directly underneath the chip C4 solder balls that connect 
to the differential signals. On the Flip-Chip package, the substrate wires signals 
radially from the C4 pads to the package balls as is shown in Fig. 10.19. To 
minimize noise, inner C4s are routed to inner BGAs, and outer C4s are routed 
to outer BGAs. Figure 10.19 assumes a 4-Gbps baud rate with BGA adjacency 
rules similar to the examples in Fig. 10.17a.

At lower baud rates, HSS cores can be packaged in either flip-chip or care-
fully designed wirebond substrates. The benefits of HSS cores are just as 
attractive for low cost applications. Although the less expensive wirebond 
packaging does not provide an optimal electrical environment for high-speed 
applications, it can generally support up to 3.2 Gbps assuming care is taken to 
ensure the package design meets electrical performance targets. Higher baud 
rates are also possible with new developments in wirebond packaging technol-
ogy that specifically target Serdes support.

The insertion loss specifications in Fig. 10.15 and return loss specifications 
in Fig. 10.16 also can be applied to package designs for applications in this 
lower baud rate range. The frequency-based “Trace and Via Isolation” require-
ments in Table 10.7 also apply. Differential signal matching for lower baud 
rate applications can be relaxed somewhat relative to the specifications in 
Table 10.7; “Matching Within a Pair” is typically specified as 5 ps, and 
“Matching with a Bundle” is typically 50 ps.

For HSS applications, FBGA wirebond substrates typically use two signal 
and two power layers. HSS signals and analog power/ground are routed as 
microstrips on the top layer of the laminate. An analog ground plane in the 
region of the HSS BGA and bondfingers is recommended to enable the use of 
vias to supply analog ground in cases where there is not sufficient space for a 
dedicated solder ball assignment. Additionally, a plane for the analog power 
supply (AVdd) in the HSS region is recommended. Figure 10.20 illustrates the 
signal pair matching and shielding of the Rx and Tx signal microstrip signals 
on the top layer of the laminate.
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Fig. 10.20 Shielding and matched signal routing in wirebond package

Fig. 10.21 Optimal BA assignments for a x1 wirebond serdes configuration
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High-speed performance of bondwires in the package is strongly dependent 
upon bondwire length, with shorter bondwires performing better than longer 
ones. As the bondwire length increases, bandwidth degrades rapidly and cou-
pling increases. Bondwire lengths for HSS signals are recommended to be 
4 mm or less in order to meet insertion loss and isolation targets.

Signal assignment to the package solder ball (BGA) locations in the wire-
bond FBGA region has a large impact on both wireability and electrical per-
formance. Assignment of neighboring signals results in coupling not only from 
solder balls, but also from vias and microstrips that are in close proximity. 
Table 10.8 summarizes adjacency rules for BGA assignments for wirebond 
HSS cores. Figure 10.21 shows an example of optimal package BGA and 
bondfinger assignments for a single lane Serdes that meets the electrical per-
formance targets at the package solder balls and pin-through-hole (PTH) vias.

10.4.2 Chip Physical Design
10.4.2.1 HSS Core Footprint

The HSS EX10 core described in Chap. 2 supports 10-Gbps baud rates, and 
therefore must meet stringent electrical specifications. This core is therefore 
designed for use in FC-PBGA packages. The core should be placed under or 
adjacent to the C4 solder balls on the die, which connect the differential signals 
to the package substrate once the die is packaged. Figure 10.22 illustrates the 
footprint of this core when placed on the south side of the die. C4 solder balls 
are shown, and both Tx and Rx signal pins are located adjacent to C4s. This 
arrangement minimizes I/O wiring. A very short, fat metal wire and a stacked 
via is sufficient to wire the connection.

HSS cores designed for wirebond packages are placed around the edge of 
the chip in the region normally occupied by peripheral wirebond I/O. Figure 
10.23a shows the chip edge for a single row wirebond chip layout with a single 
lane HSS core positioned next to the edge. The layout uses wide-wire, 
low-resistance connections to the bondfinger pads, seen at the die edge, and 
follows the restrictions for adjacency assignments described in Fig. 10.21. 

Table 10.8 Permissible BGA assignment adjacencies for wirebond HSS

Neighboring signals

HSS signal Power/
ground

DC 
signals

Low 
activity 
factor 
signals

RXxIP/N of 
neighbor 

HSS

TXxOP/N 
of neighbor 

HSS

Switching 
signal with 

trise < 200 ps

HSSREFCLKT/C Yes Yes Yes No No No

RXxIP/N Yes Yes Yes Yes No No

TXxOP/N Yes Yes Yes No Yes Yes

Analog Vdd/Gnd Yes Yes Yes Yes Yes Yes
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Figure 10.23b extends this to a layout containing eight-lane wirebond HSS 
core. Tx and Rx slice circuitry and corresponding bondfingers are located to 
the right and left of the PLL slice.

Fig. 10.22 HSS EX10 4 port full duplex core footprint

Fig. 10.23 HSS cores on wirebond chip edge
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10.4.2.2 Chip Layout
Ideally, HSS cores are positioned during chip layout such that the Rx and 

Tx pins of the core are as close as possible to their assigned C4 pads as shown 
in Fig. 10.22. The core should always be oriented so that HSS internal pins are 
along the side of the core facing away from the edge of the die. The HSS core 
should be placed as close as possible to the die edge to maximize the die area 
available for chip logic placement. (Logic gates are generally not placed in any 
space between the HSS core and the edge of the die.) Placing the HSS core 
toward the edge of the die also has advantages from a noise perspective.

On wirebond chips, HSS cores are positioned along the edge of the die near 
bondfingers as shown in Fig. 10.23. The Rx and Tx pins of the core are as close 
as possible to their assigned bondfingers.

Figure 10.24 shows the recommended die locations for the HSS EX10 core 
assuming flip-chip packaging. The HSS cores can be positioned in one or two 
concentric rings around the die. Ideally, all cores would be located in the outer 
ring, as close to the die edge as possible. If more cores are required than can be 
placed in this ring, then cores can also be placed in the inner ring. The gap 
between the rings accommodates wiring tracks for the on-chip logic 
connections to the outer ring of HSS cores.

Once HSS cores have been placed, power routing is performed to connect 
power supplies to the cores, and the serial I/O signals are wired. Figure 10.25 
illustrates power routing of the AVTT and AVTR power supplies for the HSS 
EX10 core. Fig. 10.26 illustrates an example of a short, fat wire connection 
between a serial data signal and the adjacent C4 pad.

Fig. 10.24 Recommended serdes on-die locations for flip chip packages
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Fig. 10.25 HSS EX10 core power routing (AVTT and AVTR)

Fig. 10.26 RX pin to C4 wiring
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10.4.2.3 Floorplan Considerations
Whether packaged in a flip-chip or wirebond package, HSS cores are sus-

ceptible to on-chip noise, and should not be placed near banks of noisy 
switching I/O or embedded memories. HSS cores are best placed on separate 
chip edges away from any noisy switching I/O. Layout engineers often use the 
“1-mm rule” for separating HSS cores from any embedded memories.

HSS cores are typically surrounded by on-chip decoupling capacitors in 
order to minimize the power supply voltage compression and transient noise at 
the core. Figure 10.27 illustrates a wirebond chip floorplan with a single lane 
HSS core on the south-side die edge surrounded by decoupling capacitors. 

Figure 10.28 illustrates a chip floorplan with an IF PLL in the south center of 
the die edge, and two pairs of eight-port Serdes cores on either side of this PLL. 
Another IF PLL is located in the northeast corner of the die, along with two 
four-port Serdes cores. On-chip decoupling capacitors have been placed around 
the Serdes and the PLLs, as well as around the numerous embedded memories in 
the center of the die. The outlining of these blocks in the left view shown in 
Fig. 10.28 actually results from the display of these decoupling capacitors.

Legacy “IR Drop” analysis calculates power supply compression as a static 
value resulting from average supply current. This static analysis is generally 
insufficient and does not take into account transient currents which cause volt-
age noise on the power supply. Excessive compression on the power supply 
input of the HSS core could result in the core not being able to operate at the 
specified data rate. Even more modest transient noise can impact jitter perfor-
mance of the core. An example of a typical specification for voltage compres-
sion due to static and transient effects is no more than 25 mV Vdd/Gnd 
compression for a 1.2V supply as listed in Table 10.7.

Fig. 10.27 Wirebond die layout containing single-lane HSS core
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The east and west sides of the die in Fig. 10.28 contain banks of switching 
I/Os. The die view on the right is a heat graph of the transient power supply 
analysis performed on this die. The shading indicates the largest transient volt-
age compression is around the switching I/Os, while the compression around 
the PLLs and HSS cores is minimal.

Chip layout and package designs for HSS cores must address all of the 
topics discussed in this section in order to avoid impacting signal integrity. 
These topics included flip-chip C4 ball or wirebond bondfinger pad adjacency 
considerations, package BGA adjacency considerations, differential signal 
routing and shielding in the package, fat-wire routing and shielding of HSS 
signals and analog supplies on chip, and noise mitigation in the chip layout. 
Chip layout noise mitigation requires performing layout to isolate the HSS 
cores from noise sources, and inclusion of sufficient decoupling capacitance.

10.5  References
For more detail on the ASIC chip design methodology described in this 

chapter, see:
1. “Design Methodology for IBM ASIC Products”, J.J. Engel, T.S. 

Guzowski, A. Hunt, D.E. LAckey, L.D. Pickup, R.A. Proctor, K. 
Reynolds, A.M. Rincon, D.R. Stauffer, IBM Journal of Research and 
Development, July 1996.

Interested IBM employees and IBM ASIC customers may wish to consult 
the following IBM HSS databooks for more detailed descriptions of timing 
assertions, test wrappers, and HSS footprints.
2. “High Speed Serdes (HSS) – 10G Optimized in Cu-65 Core Databook”, 

SA15-6164-00, IBM.

Fig. 10.28 Flip-chip die layout containing HSS cores
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10.6  Exercises
1. Specify the truth table for a 2-to-1 multiplexor assuming that inputs may 

have a value of “0,” “1,” or “X.”
2. Specify the state table for a positive-edge triggered flip-flop with an 

asynchronous reset input assuming inputs have a value of “0,” “1,” or “X.”
3. Design logic to use the signal driving the HSSRESET input of an HSS 

EX10 core to force core inputs to values specified in Table 10.1 during the 
reset. (HSSREFCLK[T,C] is not gated.)

4. For each of the following functions of the transmitter slice of the HSS 
EX10 core, explain to extent to which you would expect these functions 
to be modeled in a digital simulation model:
(a) Function of the Transmit Power Register
(b) Functions of the Transmit Test Control Register
(c) Function of the Slow Slew Control in the Transmit Driver Mode 

Control Register
(d) Function of the Rate Select in the Transmit Configuration Mode 

Register
(e) Function of the TXxELECIDLE pins
(f) Function of the TXxRCVRDETEN pins and corresponding 

TXxRCVRDETTRUE and TXxRECVRDETFALSE output pins
(g) Function of the TXxOBS pins
(h) Function of the TXxBEACONEN pins

5. For each of the following functions of the receiver slice of the HSS EX10 
core, explain to extent to which you would expect these functions to be 
modeled in a digital simulation model:
(a) Function of the DFE Data and Edge Sample Register and the DFE 

Amplitude Sample Register
(b) Functions of the control signals in the Receive Test Control Register
(c) Functions of the Signal Detect Level and Signal Detect Power Down 

in the Signal Detect Control Register
(d) Function of the Parallel Data Bus Width in the Receive Configuration 

Mode Register
(e) Function of the Sonet Clock Control Register
(f) Function of the DFE Tap X Registers (for taps 1–5)
(g) Function of the RXxDATASYNC pins
(h) Function of the RXxSIGDET pins 
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6. The macro test controllability and observability requirements for the HSS 
EX10 core are specified in Table 10.3, and the corresponding require-
ments for JTAG Test are specified in Table 10.4. 
(a) Design logic which implements these requirements for the PLL slice 

of an HSS EX10 core.
(b) Design logic which implements these requirements for the 

Transmitter slice of an HSS EX10 core.
(c) Design logic which implements these requirements for the Receiver 

slice of an HSS EX10 core.
7. Input and output pins in Table 10.3 which must controlled or observed 

during the test sequence must be accessible through I/O pins during the 
test. Assuming input pins can be shared, but output pins cannot be shared, 
how many total I/O pins are required to support Macro Test for a single 
HSS EX10 core with four transmit and four receive slices?

8. Making the same assumptions as stated in Exercise 7, how many total I/O 
pins are required to support Macro Test for four HSS EX10 cores on the 
same chip?

9. Write EinsTimer and Synopsys timing assertions for the TXADCLK pin of 
an HSS EX10 core which account for jitter and duty cycle variation of 
this clock. Assume the clock period is 2.10 ns, the data width is set for 
10 bits, and the duty cycle variation is +5% of the cycle time.

10. Write EinsTimer and Synopsys timing assertions for the RXADCLK pin of 
an HSS EX10 core which account for jitter and duty cycle variation of 
this clock. Assume the clock period is 1.90 ns, the data width is set for 
16 bits, and the duty cycle variation is +7% of the cycle time.

11. Sect. 10.3.2 describes adjustments to the timing of the RXADCLK and 
associated RXAD* pins to avoid false setup and hold violations. 
Fig. 10.12 illustrated the intended launch and capture timing for the 
RXAD* pins. Assuming analysis is being performed on a postlayout 
netlist, use a timing diagram to illustrate the various timing adjustments to 
RXADCLK (per Sect. 10.3.1) and RXAD* data signals (per Sect. 10.3.2) 
that contribute to performing setup tests at the flip-flops capturing the 
data. Repeat this illustration for hold tests.

12. Fig. 10.12 illustrated the intended launch and capture timing for the 
RXAD* pins. Looking at this figure, it appears that rather than counting 
on clock tree delay to meet timing requirements for this interface, it 
would be possible to use the falling edge of RXADCLK to capture the 
data. Explain why this is not a good idea. (Hint: What if the data width 
and rate select are changed by the application?)
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13. Using Fig. 10.12, explain why setup time violations occur when 
performing timing analysis on a prelayout netlist with an ideal clock tree 
(i.e., clock tree delay is zero).

14. Why must skew between the true and complement legs of the differential 
signal be minimized? What are the impacts as this skew increases?

15. Write EinsTimer timing assertions for the HSSRESYNCCLKOUT pins of 
two HSS EX10 cores which must be synchronized together which only 
use the divider ratios 16 and 20. Assume the frequency of 
HSSRESYNCCLKOUT is 2.5 ns when the divider ratio of 16 is used, that 
clock jitter is 0.080 ns, duty cycle variation is +6% of the clock period, 
and core-to-core skew is specified to be 150 ps.

16. Write Synopsys timing assertions for the HSSRESYNCCLKOUT pins of 
two HSS EX10 cores with similar requirements to those specified in 
Exercise 15.

17. Table 5.5 describes the lane-to-lane skew requirements for the transmitter 
output of an OIF SFI-5.2 interface. The baud rate for SFI-5.2 is 
9.95328 Gbps. Assume the HSS EX10 core-to-core skew is 450 ps. 
Suggest a skew budget for all skew contributors on the chip which 
complies with the SFI-5.2 specification for transmit skew.

18. Does Table 5.5 impose skew requirements on the receiving chip for the 
OIF SFI-5.2 interface? Explain.

19. Applying your knowledge of signal integrity for differential signals, why 
do you think FC-PBGA packages are better suited for higher baud rates as 
compared to wirebond packages?

20. The placement of one example of an HSS core is shown on the south side 
of the die, left of center, in Fig. 10.24. How many of these HSS cores can 
you fit on the die, utilizing both the outer and inner rings?
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155, 166, 177–180, 184–188, 266
scan chains 315–319, 433–435, 440

JTAG 300, 301
scan mode 315, 316, 319
scan test 318–321, 432–434
SCANGATE 433, 434
SCANIN 433, 434
SCANOUT 433, 434
scrambling 9, 15, 65, 125, 134, 140–143, 

155, 166, 168, 169, 171–173, 175, 
183, 184, 187, 188, 208, 210, 217, 
225, 227, 244, 245, 250, 368, 374, 387

self-synchronizing scrambler 
140–143, 210, 227

sidestream scrambler 140–142, 171, 
244

Serdes-Framer Interface (SFI-5 or 
SFI5.2) 155–158, 165, 166, 177–184

Serial ATA (SATA) 65, 78, 168, 268
Serial Attached SCSI (SAS) 65, 72, 78, 168
Serial Diagnostic Loopback 304–306
serializer stage 9, 61, 112–114
Signal Detect 41, 49, 68, 71–73, 80, 87, 

92, 93, 116, 129, 130, 248, 249, 324, 
335, 336, 365, 414, 417

Signal Detect Control Register 49, 72, 
73, 324, 414, 417

signal integrity 9, 10, 18–24, 35, 79, 196, 197, 
238, 264, 268, 279, 300, 326–328, 
343–391, 411, 419, 444, 455, 457

clocks 281–290
Spice analysis 363–369
statistical analysis 370–384

simplex core 8, 17, 31, 65, 78, 99, 100, 
322, 323

simulation models (event-driven 
simulation) 423, 425–432

single data rate (SDR) 3, 4, 57
single-ended signal 6, 17, 232, 261, 263, 

281, 331
Sinusoidal Jitter (SJ) 220, 233, 235, 277, 

333, 335, 348, 349, 353, 361, 362, 389
skew (on a multi-lane interface) 84, 91, 

130, 131, 135, 148, 149, 151, 153, 
155–157, 184, 206, 261, 266, 318, 
333, 347, 362, 446, 452–456, 458

skew budget 156, 157, 184, 266, 455, 458
skip symbol (SKP) 134, 154, 207, 

242–245
slew rate 4, 45, 56, 57, 91, 117, 279, 281, 

282, 284, 368, 430
Sonet Clock Control Register 48, 80
source synchronous interface 2–7, 165
S-Parameters 19, 24, 196, 326, 328, 376, 

377, 379, 383, 384, 387, 389, 458
Spice 23, 279, 281, 282, 286–290, 

363–370, 444, 454
behavioral models 365–367
extracted models 363–365

speed negotiation 91, 227, 228
Spread Spectrum Clocking (SSC) 48, 78, 

93, 247, 267
Standard Delay Format (SDF) 456
StatEye software 24, 197, 371, 386
static timing analysis. See timing analysis
statistical eye 14, 24, 79, 129, 196, 357, 

380–386, 389, 391
statistical signal integrity analysis 

371–390
status channel 184, 186, 187
Sub-Threshold Leakage Current (Isubvt) 

400, 402–404, 406, 407
synchronous clock 132, 133, 306, 333
Synchronous Digital Hierarchy (SDH). 
See Synchronous Optical NETwork 
(SONET)

Synchronous Optical NETwork 
(SONET) 15, 39, 48, 65, 132, 133, 
140, 165, 166, 168–178, 180, 183, 
198, 207, 208, 212, 213, 266, 307

BIP 144
Forward Error Correction 146
scrambler 142
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T
TCP/IP model 125
termination (of signal) 17, 34, 56, 60, 71, 

109, 114, 127, 219, 233, 324, 325, 
365, 368, 369, 411, 414

test synthesis (DFT) 423
test wrapper 433, 440, 441
TESTENABLE 433, 434
threshold voltage (Vt) 325, 395, 

400–402, 406, 417
timing analysis 423, 443–454, 456, 457

clock duty cycle 447, 448
clock jitter 275, 446–449, 454
register interface 450, 452
resynchronization function 452–454
RXxD receive data 448, 449
serial data 454

timing assertions
HSSRESYNCCLKOUT 453, 454
RXxD receive data 449
TXxDCLK and RXxDCLK 

445–448
timing model (of HSS) 443, 444, 448, 

450, 454, 456
Total Jitter (TJ) 22, 23, 184, 192, 219, 

233–235, 246, 247, 328, 347, 349, 
356, 357, 359, 360, 362, 380, 383

Transmit Coefficient Control Register 
44, 59, 92

Transmit Configuration Mode Register 
43, 53–55, 61, 91, 107, 114

Transmit Driver Mode Control Register 
45, 57–60, 91, 109, 368

Transmit Polarity Register 46, 58, 59
Transmit Power Register 46, 56–59, 

64, 91, 108, 109, 325, 365, 367, 
412

Transmit TapX Coefficient Register 45, 
58, 59, 91, 108, 325, 365, 368

Transmit Test Control Register 44, 64, 
78, 314

Transmitter (Tx) Slice 31, 35–38, 43–46, 
53–66, 99, 107–114, 250

JTAG 439
macro test 437
power dissipation 412, 414

power down 431
reset and configuration 90–92, 429

transport layer 125
TXxBEACONEN 37, 66
TXxBSIN 36, 62, 63, 439
TXxBSOUT 36, 439
TXxBYPASS 37, 62, 437
TXxD 36, 53–55, 61, 90, 91, 

136, 443
TXxDCLK 31, 36, 53–55, 60, 61, 65, 84, 

88, 91, 148, 157, 228, 232, 274, 443, 
444, 446, 447

TXxELECIDLE 38, 65, 413, 437
TXxJTAGAMPL 37, 63, 64, 439
TXxJTAGTS 36, 63, 64, 439
TXxOBS 36, 65
TXxOP/N 36, 62, 108, 325
TXxPRBSEN 36, 44, 437
TXxPRBSRST 36, 437
TXxPWRDWN 37, 60, 413, 429, 437, 

439
TXxRCVRDETEN 37, 66
TXxRCVRDETFALSE 37, 66
TXxRCVRDETTRUE 37, 66
TXxSTATEL1 38, 66, 413, 429, 437
TXxTS 36, 60, 64, 91, 92, 437

U
Uncorrelated Bounded High Probability 

Jitter (UBHPJ) 192–194, 354
Uncorrelated High Probability Jitter 

(UHPJ) 192, 193
Uncorrelated Unbounded Gaussian Jitter 

(UUGJ) 192–194, 349, 354–356, 360, 
361

Unit Interval (defined) 22

V
Variable Gain Amplifier (VGA) 52, 70, 

71, 114, 365
VCO calibration 42, 83, 84, 88, 90, 105, 

426, 430
VCO Coarse Calibration Control 

Register 42, 83, 84
VCO Coarse Calibration Status Register 

42, 83
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Vdd power supply 288, 410, 411, 418
Vector Network Analyzer (VNA) 19, 

376, 377
Voltage Controlled Oscillator (VCO) 83, 

101, 105, 275, 426
Voltage Regulator (PLL) 100, 103, 104, 

322
voltage screen test 320, 321

W
WAN Interface Sublayer (WIS) 198, 

200, 208, 212, 213
wander (on a multi-lane interface) 130, 

131, 147, 149, 151, 156, 157, 184, 
333, 347, 362

Wirebond packages 297, 457, 462, 464, 
466, 468, 469

wrap back. See loopback test

X
XAUI. See 10 Gigabit Attachment Unit 

Interface (XAUI)
XFI. See 10 Gigabit Serial Electrical 

Interface (XFI)
XGMII Extended Sublayer (XGXS) 

154, 167, 198, 204–207

Z
ZDI 433, 434
ZRI 433, 434


