
High Speed Serdes Devices and Applications

David R. Stauffer • Jeanne Trinko Mechler
Michael Sorna • Kent Dramstad
Clarence R. Ogilvie • Amanullah Mohammad

High Speed Serdes Devices
and Applications

James Rockrohr

iv High Speed Serdes Devices and Applications

Jeanne T. Mechler
IBM Corporation
Essex Junction, VT
USA

Clarence R. Ogilvie
IBM Corporation
Essex Junction, VT
USA

James D. Rockrohr
IBM Microelectronics
Hopewell Junction, NY
USA

David R. Stauffer
IBM Corporation
Essex Junction, VT
USA

Kent Dramstad
IBM Corporation
Essex Junction, VT
USA

Amanullah Mohammad
IBM Corporation
Research Triangle Park, NC
USA

Michael A. Sorna
IBM Microelectronics
Hopewell Junction, NY
USA

ISBN 978-0-387-79833-2

Library of Congress Control Number: 2008925643

© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written per-
mission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any
form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or heareafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to
press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN 978-0-387-79834-9

 v

Preface
The simplest method of transferring data through the inputs or outputs of a

silicon chip is to directly connect each bit of the datapath from one chip to the
next chip. Once upon a time this was an acceptable approach. However, one
aspect (and perhaps the only aspect) of chip design which has not changed
during the career of the authors is Moore’s Law, which has dictated substantial
increases in the number of circuits that can be manufactured on a chip. The pin
densities of chip packaging technologies have not increased at the same pace
as has silicon density, and this has led to a prevalence of High Speed Serdes
(HSS) devices as an inherent part of almost any chip design.

HSS devices are the dominant form of input/output for many (if not most)
high-integration chips, moving serial data between chips at speeds up to 10
Gbps and beyond. Chip designers with a background in digital logic design
tend to view HSS devices as simply complex digital input/output cells. This
view ignores the complexity associated with serially moving billions of bits of
data per second. At these data rates, the assumptions associated with digital
signals break down and analog factors demand consideration. The chip
designer who oversimplifies the problem does so at his or her own peril.

Despite this, many chip designers who undertake using HSS cores in their
design do not have a sufficient background to make informed decisions on the
use of HSS features in their application, and to appreciate the potential pitfalls
that result from ignoring the analog nature of the application. Databooks
describe the detailed features of specific HSS devices, but usually assume that
the reader already understands the fundamentals. This is the equivalent of
providing detailed descriptions of the trees, but leaving the reader struggling to
get an overview of the forest.

This text is intended to bridge this gap, and provide the reader with a broad
understanding of HSS device usage. Topics typically taught in a variety of
courses using multiple texts are consolidated in this text to provide sufficient
background for the chip designer that is using HSS devices on his or her chip.
This text may be viewed as consisting of four sections as outlined below.

The first three chapters relate to the features, functions, and design of HSS
devices. Chapter 1 introduces the reader to the basic concepts and the resulting
features and functions typical of HSS devices. Chapter 2 builds upon these
concepts by describing an example of an HSS core, thereby giving the reader
a concrete implementation to use as a framework for topics throughout the
remainder of the text. Although loosely based on the HSS designs offered in
IBM ASIC products, this HSS EX10 is a simplified tutorial example and shares
many features/functions with product offerings from other vendors. Finally,
Chap. 3 introduces interested readers to the architecture and design of HSS
cores using the HSS EX10 as an example.

The next two chapters describe the features and functions of protocol logic
used to implement various network protocol interface standards. Chapter 4

v

vi High Speed Serdes Devices and Applications

introduces concepts related to interface standards, as well as design
architectures for various protocol logic functions. Chapter 5 provides an
overview of various protocol standards in which HSS cores are used.

The next four chapters cover specialized topics related to HSS cores.
Chapter 6 describes clock architectures for the reference clock network which
supplies clocks to the HSS core, as well as floorplanning and signal integrity
analysis of these networks. Chapter 7 covers various topics related to testing
HSS cores and diagnostics using HSS cores. Chapter 8 covers basic concepts
regarding signal integrity, and signal integrity analysis methods. Chapter 9
covers power dissipation concepts and how these relate to HSS cores.

Finally, any HSS core is not complete without a set of design kit models to
facilitate integration within the chip design. Chapter 10 discusses various
topics regarding the design kit models that require special consideration when
applied to HSS cores.

 vii

Acknowledgments
The authors wish to thank the following IBM colleagues without whose

contributions and reviews this text would not be possible: William Clark,
Nanju Na, Stephen Kessler, Ed Pillai, M. Chandrika, Peter Jenkins, Douglas
Massey, Suzanne Granato, Della Budell, and Jack Smith.

In addition, the authors would like to thank Thucydides Xanthopoulos of
Cavium Networks for his detailed and insightful review of this text, and
Andrea Kosich for making it possible to utilize material from Optical
Internetworking Forum Interoperability Agreements.

vii

Table of Contents ix

Table of Contents
Preface v
Acknowledgments vii

Chapter 1: Serdes Concepts. 1
1.1 The Parallel Data Bus 1
1.2 Source Synchronous Interfaces 2

Reducing the Number of I/O Pins 2
Clock Forwarding 3
Higher Speed Source Synchronous Interfaces 4

1.3 High-Speed Serdes 8
Serializer / Deserializer Blocks 9
Equalizers 10
Clock and Data Recovery (CDR) 14
Differential Driver 15
Differential Receiver 17
Diagnostic Functions 17
Phase-Locked Loop 19

1.4 Signal Integrity 19
The Channel 19
Package Models 21
Jitter 21
Channel Analysis Tools 23

1.5 Signaling Methods 24
1.6 Exercises 27

Chapter 2: HSS Features and Functions 31
2.1 HSS Core Example: HSS EX10 10-Gbps Core 31

HSS EX10 Input/Output Pin Descriptions 32
HSS EX10 Register Descriptions 41

2.2 HSS EX10 Transmitter Slice Functions 53
Transmitter Parallel Data 54
Transmitter Signal Characteristics 56
Transmitter FFE Programming 58
Transmitter Power Control 59
Half-Rate/Quarter-Rate/Eighth-Rate Operation 60
JTAG 1149.1 and Bypass Mode Operation 62
PRBS / Loopback Diagnostic Features 64
Out of Band Signalling Mode (OBS) 65
Features to Support PCI Express 65

2.3 HSS EX10 Receiver Slice Functions 66
Receiver Data Interface 68
DFE and Non-DFE Receiver Modes 70

ix

x Table of Contents

Serial Data Termination and AC/DC Coupling 71
Signal Detect 71
Receiver Power Control 72
JTAG 1149.1/1149.6 and Bypass Mode Operation 73
Half-Rate/Quarter-Rate/Eight-Rate Operation 76
PRBS / Loopback Diagnostic Features 77
Phase Rotator Control/Observation 78
Support for Spread Spectrum Clocking 78
Eye Quality 79
SONET Clock Output 80
Features to Support PCI Express 80

2.4 Phase-Locked Loop (PLL) Slice 80
Reference Clock 81
Clock Dividers 82
Power On Reset 82
VCO Coarse Calibration 83
PLL Lock Detection 83
Reset Sequencer 84
HSS Resynchronization 84
PCI Express Power States 87

2.5 Reset and Reconfiguration Sequences 87
Reset and Configuration 87
Changing the Transmitter Configuration 90
Changing the Receiver Configuration 92

2.6 References and Additional Reading 93
2.7 Exercises 94

Chapter 3: HSS Architecture and Design. 99
3.1 Phase Locked Loop (PLL) Slice 100

PLL Macro 101
Clock Distribution Macro 102
Reference Circuits 103
PLL Logic Overview 105

3.2 Transmitter Slice 107
Feed Forward Equalizer (FFE) Operation 109
Serializer Operation 112

3.3 Receiver Slice 114
Clock and Data Recovery (CDR) Operation 116
Decision Feedback Equalizer (DFE) Architectures 118
Data Alignment and Deserialization 121

3.4 References and Additional Reading 122
3.5 Exercises 123

Table of Contents xi

Chapter 4: Protocol Logic and Specifications 125
4.1 Protocol Specifications 125

Protocol Layers 125
Serial Data Specifications 126
Basic Concepts 132

4.2 Protocol Logic Functions 134
Bit/Byte Order and Striping/Interleaving 134
Data Encoding and Scrambling 136
Error Detection and Correction 143
Parallel Data Interface 147
Bit Alignment 152
Deskewing Multiple Serial Data Links 153

4.3 References and Additional Reading 158
4.4 Exercises 159

Chapter 5: Overview of Protocol Standards 165
5.1 SONET/SDH Networks 168

System Reference Model 169
STS-1 Frame Format 170
STS-N Frame Format 174
Clock Distribution and Stratum Clocks 176

5.2 OIF Protocols 177
System Reference Model 177
SFI-5.2 Implementation Agreement 180
SPI-S Implementation Agreement 184
CEI-P Implementation Agreement 188
Electrical Layer Implementation Agreements 190

5.3 Ethernet Protocols 197
Physical Layer Reference Model 198
Media Access Control (MAC) Layer 201
XGMII Extender Sublayer (XGXS) 204
10-Gb Serial Electrical Interface (XFI) 207
Backplane Ethernet 213
PMD Sublayers for Electrical Variants 218

5.4 Fibre Channel (FC) Storage Area Networks 220
Storage Area Networks (SANs) 220
Fibre Channel Protocol Layers 222
Framing and Signaling 222
Physical Interfaces 229
10-Gbps Fibre Channel 236

5.5 PCI Express 237
PCI Express Architecture 238
Physical Layer Logic 241
Electrical Physical Layer 246
Power States 249
PCI Express Implementation Example 250

xii Table of Contents

5.6 References and Additional Reading 251
5.7 Exercises 254

Chapter 6: Reference Clocks . 263
6.1 Clock Distribution Network 263

Single-Ended vs. Differential Reference Clocks 263
Reference Clock Sources 265
Special Timing Requirements 268
Special Test Requirements 270

6.2 Clock Jitter 270
Jitter Definitions 271
Jitter Effects 276
PLL Jitter 277

6.3 Clock Floorplanning 281
Clock Tree Architecture 281
Clock Tree Wiring 282

6.4 Signal Integrity of the Clock Network 283
Analog Signal Levels and Slew Rates 283
Duty Cycle Distortion 286
Differential Clock Analysis Methodology 288

6.5 References and Additional Reading 293
6.6 Exercises 293

Chapter 7: Test and Diagnostics 297
7.1 IEEE JTAG 1149.1 and 1149.6 298

JTAG 1149.1 Overview 299
HSS Core Support for JTAG 1149.1 302
HSS Core Support for JTAG 1149.6 303

7.2 PRBS Testing and Loopback Paths 306
Loopback Paths 306
PRBS Circuits and Data Patterns 309
PRBS Test Sequence 314

7.3 Logic Built-In-Self-Test (LBIST) 317
LBIST Architecture 317
LBIST Considerations for HSS Cores 319

7.4 Manufacturing Test 320
Chip Level Test 320
HSS Macro Test 324

7.5 Characterization and Qualification Testing 327
Transmitter Tests 328
Receiver Tests 335
General Tests 338

7.6 References and Additional Reading 340
7.7 Exercises 340

Table of Contents xiii

Chapter 8: Signal Integrity . 345
8.1 Probability Density Functions 345

Gaussian Distribution 345
Dual-Dirac Distribution 348

8.2 Jitter 349
Jitter Components 349
Deterministic Jitter 352
Random Jitter 356
Total Jitter and Mathematical Models 358
Jitter Budgets 362
Jitter Tolerance 364

8.3 Spice Models 365
Traditional Spice Models 365
Hybrid Spice/Behavioral Models 367
Spice Simulation Matrices 369

8.4 Statistical Approach to Signal Integrity 372
Analysis Approach 373
HSSCDR Software 388

8.5 References and Additional Reading 393
8.6 Exercises 394

Chapter 9: Power Analysis. 397
9.1 Digital Logic Circuits 397

Digital Logic Active or AC Power 397
Digital Logic Leakage or DC Power 402

9.2 Non Digital Logic Circuits 410
AC (Active) Power 410
DC (Leakage) Power 410
Quiescent Power 410

9.3 HSS Power 411
HSS Power Equation 411
Multiple Power Supplies 412
Chip Fabrication Process 413
Mode-Dependent Power 414
Power Dissipation Breakdown 416

9.4 Reducing Power Dissipation 417
Power Concerns for the HSS Core Design 417
Power Dissipation Concerns for the Chip Designer 420

9.5 References and Additional Reading 421
9.6 Exercises 421

xiv Table of Contents

Chapter 10: Chip Integration . 425
10.1 Simulation Models 427

Reset and Initialization Short Cuts 427
Simulation ‘X’ States 429
Modeled and Unmodeled Behavior 432

10.2 Test Synthesis 434
Scan Test Support 435
Macro Test Support 436
JTAG Logic Connections 440
Automation of Test Requirements 442
Running Macro Test using the JTAG Interface 444

10.3 Static Timing Analysis 445
Clock Timing 445
Receiver Parallel Data Outputs 450
Register Interface 452
Transmitter Synchronization 454
Serial Data Timing 456
Skew Management 457
Timing Backannotation for Simulation 458

10.4 Chip Floorplan and Package Considerations 459
Packages 459
Chip Physical Design 466

10.5 References 471
10.6 Exercises 472

Index. 475

Serdes Concepts 1

Chapter 1
Serdes Concepts
Table 1-1
Eqn 1-1

This chapter describes basic methods of transferring data from one chip to
another chip, either on the same circuit board or across a cable or backplane to
another circuit board. After reading this chapter, the reader should have a basic
understanding of the rationale for using high-speed serializer/deserializer
(Serdes) devices, and the inherent problems introduced by the high-speed
operation of such devices.

1.1 The Parallel Data Bus
The simplest method of transferring data through the inputs or outputs of a

silicon chip is to directly connect the datapath from one chip to the next chip (see
Fig. 1.1). Since data often consists of more than one bit of information, the datapath
is more than one-bit wide. In the figure, an n-bit datapath inside Chip #1 is driven
through chip outputs, across an n bit interconnect, through inputs of Chip #2, to an
n-bit datapath inside the receiving chip. Synchronous data is transferred between
the two chips since both chips are clocked by the same clock source.

There are two inherent problems of the parallel data bus shown in Fig. 1.1. The
first problem is that n input/output (I/O) pins are required on each chip to transfer
the data. At one point in history this was acceptable. However, Moore’s Law has
driven substantial increases in the number of circuits that can be manufactured on
a chip compared to a few decades ago. The pin densities of chip packaging
technologies have not increased at the same pace as silicon density. Therefore, I/O
pins are substantially more expensive than silicon circuits, and dedicating n I/O
pins for the above data bus is not acceptable for most chip applications.

The second inherent problem involves meeting timing requirements. The
data is launched synchronously by Chip #1 and is captured synchronously in
Chip #2 using the same clock. The data at the inputs of Chip #2 must meet
setup and hold times relative to the clock input of the chip. These setup and
hold times must be calculated with sufficient margin to allow for differences
in delay of the clock distribution path to the two chips, and through the chips
to the launch and capture flip-flops. Delays may vary based on chip process,
voltage, and temperature (PVT) conditions, and margin must be added to
account for worst case variations. For higher clock frequencies, it may be
necessary to use phase-locked loops (PLLs) in the chips to adjust the clock
phase in order to compensate for the clock distribution delay within the chip
and adapt to changing process, voltage, and temperature conditions. If the
clock frequency is high enough, it will not be possible to build a system that
will reliably transfer the data across this data bus.

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 1
© Springer 2008

2 High Speed Serdes Devices and Applications

1.2 Source Synchronous Interfaces
The two problems with the parallel data bus in Sect.1.1 can be eliminated

with the modifications to the system which are discussed in this section. These
approaches are extensions of the parallel data bus. The parallel data bus and all
of the extensions described in this section are considered to be source
synchronous interface architectures. Such architectures include any interface
where a clock input exists that can be used to capture the received data. This
may be either a reference clock used by both the transmitting and receiving
chip or the transmitting chip drives a clock to the receiving chip. In either case,
clock recovery circuits are not required for source synchronous interfaces.

1.2.1 Reducing the Number of I/O Pins
The first issue to be addressed is reducing the number of I/O pins required

to transfer the data between the chips. This is accomplished by multiplexing
the n bits of data at the output of Chip #1 onto k bits of interconnect (k < n),
and then demultiplexing the k bits of interconnect at the input of Chip #2 onto
an n bit internal datapath. This is shown in Fig. 1.2. The resulting system only
requires k I/O pins on each chip rather than the n pins previously required.

Chip
#1

Chip
#2

Clock
Source

nn n

Chip
#1

Chip
#2

Clock
Source

kn n

Fig. 1.1 Parallel data bus between two chips

Fig. 1.2 Serializing the data to reduce pin counts

Serdes Concepts 3

Of course, while the pin count requirements have been reduced by the ratio
of k : n , the required frequency of the reference clock has increased by the
inverse of this ratio. System designers generally do not like to distribute high-
speed reference clocks within the system due to noise, electromagnetic
interference (EMI), and power dissipation concerns. Often, a lower frequency
clock is distributed, and PLLs in the chips are used to multiply this reference
clock to a usable frequency. Variability of the phase of the resulting clock,
along with the higher frequency of data transfer, tends to exacerbate the timing
issues of the parallel data bus approach.

1.2.2 Clock Forwarding
In Fig. 1.3, a high-speed clock has been added to the datapath between the

two chips. This clock source is assumed to supply a clock frequency somewhat
lower than the frequency required to clock the data flip-flops on the chip
interconnect. PLLs are used in each chip to generate clocks at a multiple of this
frequency. The resulting clocks are used to launch and capture data in the
respective chips. The output clock of the PLL in Chip #1, which is used to
launch the data from this chip, is also an output of this chip. This clock is used
by Chip #2 to capture the data. This approach is called clock forwarding.

The advantage of this approach is that the high-speed clock used to launch
the data at Chip #1 is available to Chip #2 as a reference to capture the data.
Any variations in delays through clock distribution network driving the two
chips does not need to be taken into account in timing analysis. Only delay
variations between the clock path and the data bits are relevant. Variations
between these paths due to process, voltage, and temperature track each other
to some extent. The result is that timing analysis of the interface requires less
margin and setup and hold times are therefore easier to meet.

So far we have not made any distinction or recommendations regarding the
frequency of the high-speed clock relative to the bit rate of the interface. In
general, the high-speed clock shown in the figure could be single data rate
(SDR) or double data rate (DDR) (Fig. 1.4). The receiving chip captures data on
every rising (or every falling) edge of an SDR clock; while the receiving chip
captures data on every edge (both rising and falling edges) of a DDR clock.

Chip
#1

Chip
#2

Clock
Source

kn n

high speed clock

Fig. 1.3 High-speed clock forwarded with the data

4 High Speed Serdes Devices and Applications

The advantage of DDR clocks over SDR clocks lies in the bandwidth
requirements for the corresponding I/O drivers and receivers. An I/O cell being
used at a bit rate of b Mbits per second requires a bandwidth sufficient to
transmit a 101010... data pattern. This corresponds to a frequency spectrum
with an upper fundamental frequency limit of b/2 MHz. The corresponding
frequency of an SDR clock is b MHz, twice the spectral limit of the data.
However, the frequency of a DDR clock for the same interface is only b/2
MHz, consistent with the frequency spectrum of the data. Therefore, the same
I/O drivers and receivers can be used to drive and receive both the data and the
DDR clock.

Regardless of whether the high-speed clock is a SDR or a DDR clock, the
receiving chip uses this clock to directly capture the data. This chip also uses
the reference clock to generate an internal system clock at the same frequency.
These clocks are mesochronous. While the frequency is the same (given that
they share a common frequency reference), the phase relationship between the
clocks is unknown and may vary due to PVT variations. Therefore, the
receiving chip usually retimes the received data from the interface clock
domain to the clock domain of the internal chip clock. FIFOs are used to
perform this retiming function. It is desirable to minimize the number of flip-
flops being clocked by the interface clock in order to minimize delay in the
clock distribution network; otherwise timing issues will be exacerbated.

1.2.3 Higher Speed Source Synchronous Interfaces
The window of time during which data bits can be assumed to be valid is

called the eye. This name originates from the shape of the waveform when the
data signal is monitored on an oscilloscope that is continuously triggered. An
example of a serial data eye is shown in Fig. 1.5a. Eye closure results from
process, voltage, and temperature effects, as well as differences between signal
rise and fall times, slew rates, etc. The more the eye is closed, the more difficult
it is to find a point at which the signal can be reliability sampled to receive the
data. The serial data eye shown in Fig. 1.5b is completely closed.

The largest possible eye opening is desirable. The width and height of an
open eye can be measured as shown in Fig. 1.5c. The expected bit error rate
(BER) of the link directly correlates to the amount of eye opening (both width
and height). This section briefly describes some approaches to minimize eye
closure of the data signal. Eye waveforms are discussed further in later chapters.

DDR Clock

SDR Clock

Data

Fig. 1.4 Single data rate and double data rate clocks

Serdes Concepts 5

1.2.3.1 Differential Signals
Unequal signal rise and fall times of nondifferential signals contribute to

eye closure. Signals switching on the chip also create current variations on the
power distribution grid of the chip, which in turn cause variations in voltage
drop (noise) that can cause variation in delays of surrounding circuits. One
method of reducing the effects of these phenomenon on the eye width is to
drive differential signals between chips.

Differential signals represent the data bit using two electrical signals (true
and complement signals). A logic “0” is represented by the true signal driven
to its lower voltage limit, and the complement signal driven to its upper voltage
limit; a logic “1” is represented by the true signal driven to its upper voltage
limit, and the complement signal driven to its lower voltage limit. A differential
receiver device interprets the logic bit value based on the difference between
the two signals, and not based on the level of either signal individually.

(a) Open Data Eye (b) Closed Eye

(c) Measuring the Eye Opening

Fig. 1.5 Example of a serial data eye

6 High Speed Serdes Devices and Applications

Differential driver circuits tend to have linear current draw and generate
less noise on the power supply than equivalent single-ended drivers. Most
noise sources induce voltage variation equally on both the true and comple-
ment signals; such common mode noise is ignored by the receiver. Also, since
one leg of the differential signal is rising while the other is falling, or vice
versa, unequal rise and fall time effects cancel.

The drawback of differential signals is that two chip pins are required for
each data bit. However, this is offset by the higher speeds possible with
differential signals that are not possible with single-ended signals.
1.2.3.2 Multiple Interface Clocks

The interface clock in Fig. 1.3 is the same clock as is used to launch the data,
and in general is driven from a point in the clock distribution network as close to
the actual flip-flops that launch the data as possible. Phase variation is introduced
by any circuits which are not common to both the data path and clock path.
Silicon process variables do vary from circuit to circuit on the same chip, the
power distribution network may have unequal voltage drops to different circuits
which may vary based on switching currents, and the temperature may vary from
point to point on the chip. Tolerances and limits for all of these parameters must
be taken into account when calculating delays, setup times, and hold times
necessary for correct capture of the received data. At higher bit/baud rates, these
parameters may significantly reduce the eye opening, and become the dominant
mechanism for limiting the speed of the interface.

To maximize the eye width, the path through the clock tree to each of the
data flip-flops and to the clock output should share as many circuits as possible,
and the output driver for the clock should be similar to the output drivers for
the data. Ideally, the same clock buffer should drive the clock to the output
driver and should drive the clock input to all of the data flip-flops. The larger
the number of bits in the data bus, the more difficult this becomes to
implement. I/O drivers must be physically distributed based on the groundrules
for connections to package pins. The greater the distance between circuits, the
more process, voltage, and temperature variation, and the more circuits in the
clock distribution network which cannot be shared due to lack of proximity.

Chip
#1

Chip
#2

Clock
Source

k/2n/2 n/2
high speed clock

k/2n/2 n/2
high speed clock

Fig. 1.6 Multiple sets of data with separate high-speed clocks

Serdes Concepts 7

One technique used to improve eye width is to limit the number of data bits
associated with a given interface clock line. Wider data busses are built by
using multiple interface clocks, each clock associated with a subset of the data
bits. An example of this is shown in Fig. 1.6, where the k bit interconnect has
been subdivided into two groups, each with its own high-speed interface clock.
Note that the receiving chip must capture each group of data bits in separate
clock domains, and needs to retime this data to the common clock domain
internal to the chip.
1.2.3.3 Sample Edge Adaptation

Another technique used to permit higher speed operation of source
synchronous interfaces is to process the data signal at the receiver and adapt
the sampling phase of the clock on a per-bit basis. This is done by connecting
the received interface clock signal to the input of a multitap delay line, and
capturing the data signal in multiple flip-flops clocked by different clock
phases. Logic can then be used to determine the clock phases between which
data transitions are occurring, and select the optimal clock phase to be used to
capture the data. This scheme is shown in Fig. 1.7.

Schemes, such as shown in Fig. 1.7, may require a training pattern either
upon initialization of the interface or at regular intervals. If a training pattern
is used, phase selections remain static between training periods. More complex
implementations adjust dynamically based on the received data or based on
training patterns embedded in the data stream. Alternative architectures which
apply the data to the delay line are also possible. Note, however, that an
inherent characteristic of most of these schemes is that the phase adjustment is
less than plus/minus one bit time, and there must be a sufficient eye opening
such that an optimal sampling phase exists.

Given the advanced schemes discussed above, data rates for source
synchronous interfaces can be extended to several Gigabits per second (Gbps)
per interconnect bit. However, PVT variations make further increases in
interface speeds prohibitively complex. Beyond these speeds, High-Speed
Serdes devices that extract the clock from edge transitions in the data stream
become the preferred solution.

D

D

D

D

edge
select
logic

data

clock

data out

Fig. 1.7 Adapting the sampling clock phase in the receiver

8 High Speed Serdes Devices and Applications

1.3 High-Speed Serdes
High-Speed Serializer/Deserializer (HSS) devices are the dominant

implementation of I/O interfaces at speeds of 2.5Gbps and higher. Such
devices are differentiated from source−synchronous interfaces in that the
receiver device contains a clock and data recovery (CDR) circuit which
dynamically determines the optimal sampling point of the data signal based
upon the transition edges of the signal. In other words, clock information is
extracted directly from the data rather than relying on a separate clock.

Figure 1.8 illustrates the basic block diagram of the transmit and receive
channels of an HSS device. The transmitter serializes parallel data, equalizes it
for reasons that will be explained shortly, and then drives the serial data onto a
differential signal pair of interconnect wires. Feed forward equalizers (FFE)
are commonly used in High-Speed Serdes devices, as discussed in Sect. 1.3.2.
The receiver consists of a differential receiver, a CDR circuit which may also
integrate an equalizer, and deserializes the data based upon the sample point
established by the CDR. Peaking amplifiers and/or decision feedback
equalizers (DFE) are commonly used for equalization in High-Speed Serdes
receiver devices.

Note that Serdes cores are often designed to group multiple transmit and/or
receive channels into a single device. The individual channels generally
operate independently. Grouping channels allow some circuits to be shared
across channels (for example the PLL noted below), and therefore the resulting
block is more efficient in terms of chip area, cost, and power.

Serdes cores which contain only transmit or only receive channels are
called simplex cores; Serdes cores which contain both transmit and receive
channels are called full duplex cores. Note that the terminology “full duplex”
does not imply that the electrical interface is bidirectional. Any given electrical
interconnect channel has a fixed direction of data transmission. If a protocol
application requires “full duplex” communication, then independent transmit
and receive channels with independent interconnections are used to implement
the interface. Rationale for using simplex vs. full duplex cores may include

Serializer
Transmit Driver

Transmitter

n

Deserializer

Clock and

Receiver

Receiver

n

Equalization

Data Recovery
& Receive

Equalization

Fig. 1.8 Basic block diagram of typical high-speed serdes

Serdes Concepts 9

(1) chip floorplan to minimize wiring crossings in the package design or circuit
board design; (2) signal integrity concerns due to near-end crosstalk from
transmit signals onto receive signals; (3) or applications where the number of
transmit and receive channels is not equal.

The remainder of this section generically describes various circuits
mentioned above in more detail, as well as providing generic descriptions of
other circuits and functions commonly found in High-Speed Serdes cores.

1.3.1 Serializer/Deserializer Blocks
Conceptually, the input to the serializer transmit stage is an n-bit datapath

which is serialized to a one-bit serial data signal for application to the FFE and
Driver stages. Generally the value of n is a multiple of 8 or 10, and may be
programmable on some implementations. Values of n which are multiples of 8
are useful for sending unencoded and/or scrambled data bytes; values of n
which are multiples of 10 are useful for protocols which use 8B/10B coding,
as discussed further in Sect. 4.2.2.1. (The 8B/10B encoder is generally
implemented by logic outside the Serdes core.)

For simplicity, the block diagram in Fig. 1.8 illustrates the serializer
feeding one-bit data into the transmit equalization block. Actual
implementations may vary, and this datapath may be one or more bits wide. A
wider datapath through the equalizer block results in a more complex design,
but requires a lower operating frequency. Some implementations may initially
multiplex the n-bit input to an m-bit datapath (m < n) prior to the equalizer,
and perform the remainder of the serialization at the driver stage.

The serializer stage latches data on the n-bit input at the frequency of
baud rate/n. The high-speed clock in the Serdes is divided down to generate a
sample clock for the parallel data. Because the phase of this clock is
determined by the internal state of the serializer, the Serdes channel generally
provides this clock as an output for use by logic driving data to the transmit
channel.

Conceptually, the deserializer receive block performs the inverse function
of the serializer block. Serial data is deserialized onto an n-bit databus of
similar width to the serializer. A sample clock is generated by dividing down
the internal high-speed clock, and this clock is supplied as an output for use by
logic latching the parallel data. In a similar manner to the serializer, actual
implementations may perform partial deserialization in a prior stage.

Many Serdes receivers also include a feature to assist with data alignment
of the output. Most applications organize data into bytes or words (groups of
bytes). For 8B/10B encoded applications, data is organized into 10-bit encoded
symbols. The initialization of the clock divider in the deserializer is arbitrary,
and the data received on the parallel data bus will have an arbitrary alignment
that is unlikely to match the byte or symbol boundaries of the protocol. This
can be corrected by downstream logic to steer data onto the appropriate byte,
symbol, or word boundary. Alternatively, many Serdes receivers provide an
input which forces the deserializer to “slip” one bit. Downstream logic detects

10 High Speed Serdes Devices and Applications

that data is not aligned to the appropriate boundary, and repeatedly
pulses the deserializer control until the data “slips” to the desired
alignment.

1.3.2 Equalizers
The interconnect between the transmitter and receiver device (known as the

channel) acts as a filter at typical baud rates, and distorts the serial data signal
to varying extents. Figure 1.9 illustrates this distortion: The input waveform is
a clean digital signal, but the output waveform is significantly distorted. The
illustrated frequency response function for the channel is characteristic of a
low-pass filter. Signal distortion occurs because the signal baud rate is above
the cut-off frequency for this filter.

Signal integrity concerns frequently dictate that the data signal be equalized
at the transmitter and/or receiver in order to counter the effects of the channel
and decode the signal properly. Many variations on filter architectures are
possible, all of which accomplish this. Fig. 1.10 illustrates the addition of an
equalizer at the transmitter with a transfer function that is roughly the inverse
of the channel’s frequency response. This equalizer distorts the signal at the
transmitter output such that the resulting signal at the receiver input is a clean
waveform.

Most Serdes transmitter implementations include a FFE. The block
diagram for a three-tap FFE is shown in Fig. 1.11. The serial data signal is
delayed by several flip-flops which implement the taps for the filter. Each tap
is multiplied by a tap weight value (also called a filter coefficient), and the
results are summed and driven to the serial data output. FFE operation is
described further in Sect. 3.2.1.

The number of FFE taps on the filter, the spacing of these taps relative to
the baud rate, and the granularity of these tap weight values vary based on
implementation. The terminology preemphasis or deemphasis refer to the FFE
architecture, and indicate whether the data signal amplitude is increased or
decreased as compared to the nonemphasized value by the FFE tap. The
terminology precursor taps and postcursor taps refer to whether the FFE filter
taps operate on an advanced or delayed signal (respectively) relative to the
t = 0 tap. Baud-spaced taps are defined as taps where the delay from one filter
tap to the adjacent tap is one-bit time interval; fractional spacing of the taps is
also possible.

The FFE tap weights are selected to generate a filter with the inverse
transfer function of the channel transfer function. Various algorithms
exist for determining optimal FFE coefficient values; some select filter
coefficients to maximize signal amplitude at the receiver, while others
optimize eye width (i.e., minimizing jitter). More complex algorithms may
search for an optimal trade-off between amplitude and jitter in order to
optimize a more complex parameter (such as projected BER). FFE tap weights
are determined for many applications by design and coded as fixed values
within system software, however, there are some applications where FFE tap

Serdes Concepts 11

weights are adjusted dynamically by the protocol based on signal
characteristics at the receiver.

PCB, connectors, cables
Driver Receiver

Output
Waveform

Input
Bits

PCB, connectors, cables

Driver with
Receiverintegrated FFE

Equalized
WaveformPreemphasis

Example Using
Integrated FFE

z-1 z-1

+

X
ct-1 X

ct X
ct+1

serial
data

driver
output

3-tap FFE

Fig. 1.11 Three-tap feed forward equalizer operation

Fig. 1.10 Typical channel application with equalization at the transmitter

Fig. 1.9 Signal distortion for a typical channel application

Typical Backplane Application

12 High Speed Serdes Devices and Applications

Fig. 1.12 Typical channel application with equalization at the receiver

Fig. 1.13 Receiver frequency response for peaking amplifier settings

Fig. 1.14 Decision feedback equalizer architecture

PCB, connectors, cables
Driver

Input
Bits

Output Waveform

Receiver
with Equalization

Equalized
Waveform

Rx Frequency Response for Peaking Amplifier Settings
20

15

10

5

0

-5

G
ai

n
(d

B
)

108 109 1010

Frequency (Hz)

Peak 0

Peak 7

z-1

X
kn-4

serial
data

5-tap DFE

z-1 z-1 z-1 z-1_

X
kn X

kn-1 X
kn-2 X

kn-3

+

Serdes Concepts 13

Equalization may also be performed at the receiver as illustrated in
Fig. 1.12. Despite the signal distortion at the input of the receiver, this
equalizer corrects for the distortion and produces a clean waveform. For lower
speed or lower loss links, the most prevalent approach is to use some variant
of a peaking amplifier. Peaking amplifier circuits amplify the higher frequency
signal components more than the lower frequency components. If the peaking
amount is matched to the high frequency loss (difference between high
frequency and low frequency), then the channel is equalized and the eye is
opened up. Some Serdes devices allow programmable peaking levels; the
frequency response of such a peaking amplifier for various provisioned
settings is shown in Fig. 1.13.

For higher baud rates, the transfer function of the channel can cause
jitter exceeding the bit width of the data and significant loss of signal
amplitude at higher frequencies. A DFE stage is often included in receivers
for these baud rates in order to recover data despite the otherwise
“closed” eye.

A conceptual block diagram of a DFE circuit is shown in Fig. 1.14. The
serial data signal is applied to a slicer circuit which makes decisions as to
whether the incoming signal is a “0” or a “1”. The received serial data is then
delayed by a number of flip-flops which implement the filter taps. Each tap is
multiplied by a corresponding tap weight value, and the results are summed.
This sum is then used to correct the amplitude of the incoming signal, affecting
the decisions made by the slicer circuit. Slicer decisions are thus affected by
feedback based on prior data received. Although not shown in Fig. 1.14, some
DFE architectures use feedback to affect both the amplitude and the sample

Fig. 1.15 Virtual eye after equalization

14 High Speed Serdes Devices and Applications

time of the slicer circuit. Such architectures adjust the CDR sample time from
bit to bit based on feedback regarding the last several bits received.

As was the case for FFE circuits, the number of DFE taps on the filter, the
spacing of these taps relative to the baud rate, and the granularity of these tap
weight values vary. DFE implementations usually also contain logic which
trains the DFE and sets DFE tap weights to optimal values dynamically.

Using a DFE, the closed eye shown in Fig. 1.5b is cleaned up to produce
the virtual eye shown in Fig. 1.15. Note that the eye in this illustration is
produced by a DFE architecture which corrects the CDR sample time from bit
to bit. The DFE correction is valid for only one instance in time (based on the
history of the previous bits). As such, once the DFE makes a decision as to
whether the bit is “0” or “1”, the DFE then proceeds to make adjustments for
the next bit time which are different for the various signal traces of the
composite waveform. For this reason, the signal eye shown in the figure is
open for the bit of interest, but does not appear open for adjacent bits.

Many variations on equalizer architectures exist. As the baud rate increases,
equalizer architectures become increasing complex. In some cases, protocol
standards specify a base level of required equalizer functionality.

1.3.3 Clock and Data Recovery (CDR)
Conceptually, CDR circuits monitor transitions of the data signal and select

an optimal sampling phase for the data at the mid-point between edges. Since
the timing of data transitions includes a jitter component, the CDR must
perform some averaging to provide stability of this sampling point from one bit
to the next. Intersymbol interference (ISI) and other components of
deterministic jitter (DJ) are dependent on the spectral content of the data signal,
and this frequency spectrum does change based on the data content. Shifts in
this frequency spectrum sustained for hundreds of bits or more cause the CDR
to adjust the optimal sampling phase dynamically.

CDR architecture is discussed further in Sect. 3.3.1. Features of the CDR
may be of some significance to the Serdes user are discussed below.
1.3.3.1 Maximum Run Length

A significant parameter for the Serdes which is primarily the result of the
CDR design is the maximum number of consecutive “0” or “1” bits which can
be received before the sampling point of the CDR risks incorrectly sampling
the bits. An excessively long run of consecutive bits of the same value means
that the CDR is not detecting any data transitions, and therefore cannot recover
any clock information to ensure the data continues to be sampled in the center
of the eye. A small drift in the sampling point relative to the baud rate of the
data may cause the CDR to sample more “0” or more “1” bits than were
actually transmitted. Also, the sampling point may require recentering when
data transitions resume, and additional bits may be sampled incorrectly as this
adjustment occurs. Some CDR implementations drive the receive data to a
PLL and use the output of the PLL as the sample clock; clock outputs of the

Serdes Concepts 15

receiver may change frequency or stop when such CDRs do not receive data
transitions for a sustained length of time.

The maximum run length of consecutive “0” or “1” bits which must be
tolerated depends on the protocol application and the data encoding defined for
a given protocol. For example, protocols which use 8B/10B encoding are
guaranteed to have no more than 5 bit times between data transitions. Protocols
using another common encoding, 64B/66B, are guaranteed to see run lengths
no longer than 66 bit times. Scrambled protocols may encounter much longer
run lengths, and must determine requirements using statistical analysis. For
example, Sonet/SDH is a scrambled protocol which specifies systems must
meet a BER of 1 x 10−12. It is generally accepted that run lengths of scrambled
Sonet/SDH data longer than 80 bits statistically occur less frequently than the
specified BER. Therefore, a Serdes used to receive Sonet/SDH data must
tolerate a run length of 80 bits.

The run length which can be tolerated by a CDR design is related to the
frequency tolerance between the two clock sources. In a system using
plesiosynchronous clocks, the reference clock used by the receiver (and the
CDR circuit) may be running at a slightly different frequency from the
reference clock used by the transmitter, as is described further in Sect. 4.1.3.1.
The frequency tolerance between the two clock sources is generally specified
in parts per million (ppm). In a plesiosynchronous system, the CDR must
continually correct the phase of the sample clock to remain in the center of the
data eye. During periods where no data transitions are being received, the error
in phase position builds up. Therefore, as the frequency tolerance of the system
is increased (corresponding to larger allowed frequency difference between the
clock sources), the run length which can be tolerated by the CDR design is
reduced for a given performance (BER) target.
1.3.3.2 Clock Operation During System Initialization

In the above discussion, it was noted that some CDR architectures derive the
sample clock from the received data using a PLL. During system initialization or
during system operation when cables are unplugged, etc., no data transitions are
received for a substantial period of time. For some Serdes, this results in clock
outputs of the receiver changing frequency or stopping. Any downstream logic
clocked by these clock outputs must be designed to be tolerant of this frequency
change or to assume logic is not clocked during these periods.

1.3.4 Differential Driver
The differential driver stage is an analog circuit which drives the true and

complement legs of the differential signal. Output data must be driven such that
jitter is minimized. In some architectures, data is latched in a flip-flop clocked
at the baud rate, and the output of this flop is driven onto the differential output.
Such implementations require an internal high-speed clock running at the baud
rate. This is illustrated in Fig. 1.16.

16 High Speed Serdes Devices and Applications

Fig. 1.16 Driver stage architectures

Fig. 1.17 Single-ended complementary signals

Fig. 1.18 Differential peak-to-peak signal

D Q

Baud-Rate

Low Jitter Path

D Q

Half-Rate

D Q

0

1

MUX

Low Jitter Path

Clock

Clock

-2-4-6 0 642

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.7

0.8

0.9

A

B

-2-4-6 0 642

-0.6

-0.4

-0.2

0.2

0.4

0.6

2*(A-B)

Serdes Concepts 17

An alternative architecture, also shown in Fig. 1.16, uses an internal high-
speed clock running at a frequency equal to half of the baud rate. Data is
latched in two flip-flops on alternate edges of the high-speed clock. The high-
speed clock also controls a multiplexor which alternately selects which of the
flops drives the differential driver. Depending on the characteristics of the
silicon technology, this architecture may result in lower jitter than the full-rate
architecture.

Figure 1.17 illustrates typical voltage swings for the two legs of the
differential signal, assuming a termination voltage of approximately 1.8V. The
average voltage on the signal is the common mode voltage (Vcm). For this
example:

Vcm = (1.5V + 0.9V) / 2 = 1.2V.
The differential voltage (Vdiff) is calculated by taking the voltage of the

true leg and subtracting the voltage of the complement leg. Figure 1.18
illustrates the differential waveform corresponding to the single-ended signals
from Fig. 1.17.

This differential voltage swings between the following limits:
Vdiff = 1.5V − 0.9V = +0.6V
Vdiff = 0.9V − 1.5V = 0.6V

This waveform has a total peak-to-peak differential voltage of 1.2Vppd.
Note that the peak-to-peak voltage of the differential signal is twice the peak-
to-peak voltage of either single-ended signal considered individually.

1.3.5 Differential Receiver
The differential receiver stage is an analog comparator circuit which

compares the true and complement legs of the differential signal and outputs a
“0” or “1” logic level based on the relative signal voltages. Differential receiver
stages used with DFEs are linear amplifiers; the comparator circuit is incorpo-
rated into the DFE.

1.3.6 Diagnostic Functions
Additional logic is often incorporated into the transmitter and receiver

designs to provide diagnostic capabilities for chip manufacturing test, circuit
board manufacturing test, and system diagnostic tests. Typical functions
include:
1. Pseudo random Bit Sequence (PRBS) Checker. PRBS sequences can be
checked by comparing received data to the output of a local linear feedback
shift register implementing the corresponding characteristic polynomial.
Receiver devices often include a PRBS checker capable of checking one or
more PRBS test patterns.
2. Loopback or Wrap Paths. Full duplex Serdes devices often provide the
capability to wrap transmitter outputs to receiver inputs in order to self-check
the functionality of the Serdes. Simplex cores do not have this capability,

18 High Speed Serdes Devices and Applications

although some simplex transmitters include a test receiver, and some simplex
receivers include a test transmitter to perform self-test.
3. JTAG 1149.1 and JTAG 1149.6. These JTAG standards are used for
manufacturing test of circuit boards, and require insertion of boundary scan
cells on all chip I/O to support this testing. Since such logic cannot be inserted
on high-speed I/O without impacting signal integrity, the Serdes core must
provide appropriate hooks to drive differential outputs from boundary scan
cells at the transmitter device, and sample inputs in boundary scan cells at the
receiver device. JTAG 1149.6 expands the capabilities of JTAG 1149.1 to
permit testing through decoupling capacitors and support independent testing
of the true and complement legs of differential signals. JTAG 1149.1 and
1149.6 are covered in detail in Sect. 7.1.

Fig. 1.19 Clock distribution example using an ASIC IF PLL

ASIC
IF PLL

OSC

800 MHz

Tx(1)

Clock Tree

PLL (Mult by 8, 10,16, or 20)

Serializer Driver +
-

20

BIST

CH A Out

Serializer Driver +
-

20
CH D Out

Serializer Driver +
-

20
CH C Out

Serializer Driver +
-

20
CH B Out

200 MHz

Tx(n)
PLL (Mult by 8, 10,16, or 20)

Serializer Driver +
-

20

BIST

CH A Out

Serializer Driver +
-

20
CH D Out

Serializer Driver +
-

20
CH C Out

Serializer Driver +
-

20
CH B Out

PLL (Mult by 8, 10,16, or 20)

DeserializerReceiver+
-

20

BIST

CH B In

DeserializerReceiver+
-

20
CH A In

DeserializerReceiver+
-

20
CH C In

DeserializerReceiver+
-

20
CH D In

Rx(1)

Card

Rx(m)
PLL (Mult by 8, 10,16, or 20)

DeserializerReceiver+
-

20

BIST

CH B In

DeserializerReceiver+
-

20
CH A In

DeserializerReceiver+
-

20
CH C In

DeserializerReceiver+
-

20
CH D In

ASIC

ASIC Logic

Serdes Concepts 19

1.3.7 Phase-Locked Loop
The Serdes core requires an internal clock running at either the baud or half-

baud rate depending on the architecture of the driver and receiver stages.
Rather than distribute a high-speed clock throughout the chip, a lower
frequency reference clock is distributed within the chip, and a PLL is used in
the Serdes to multiply this clock to the appropriate frequency. A given Serdes
implementation may contain multiple instances of transmitter and/or receiver
channels. In such cases, it is common for a single PLL in the core to generate
clocks for all channels within the core.

The off-chip clock source often operates at an even lower frequency than
the on-chip reference clock. An additional PLL may be used in the chip to
multiply the frequency of the off-chip reference clock to meet the desired on-
chip reference clock frequency. Because the frequency of the on-chip reference
clock is usually higher than the off-chip reference clock (but less than the
internal clock in the Serdes core) the PLL which produces this clock is
sometimes called an intermediate frequency (IF) PLL.

An example of clock distribution using such an IF PLL is shown in
Fig. 1.19. An IF PLL is used to multiply the 200-MHz clock from an off-chip
oscillator by four. The resulting 800-MHz reference clock is distributed on-
chip to various Serdes cores. These Serdes cores each contain a PLL which
additionally steps up the frequency of the 800-MHz reference clock to the
desired baud rate.

1.4 Signal Integrity
This section provides an overview of the importance of signal integrity

analysis to the design of successful systems using High-Speed Serdes.

1.4.1 The Channel
The channel is defined as the electrical path between the transmitter and the

receiver, including printed circuit board traces, vias, cables, connectors,
decoupling capacitors, etc. The channel may traverse the printed circuit board
between two chips on the same card, or may traverse a system backplane
connecting two printed circuit boards.

At frequencies of interest, the printed circuit board is not a perfect
connection. Major channel impairments include insertion loss, reflections, and
crosstalk. Channel frequency response, including these impairments, is
typically measured using a vector network analyzer (VNA), and captured in a
Scattering Parameter matrix format (commonly called S-Parameters) as is
described in “Channel Response” under Sect. 8.4.1.2 in Chap. 8. Each of these
impairments impacts the BER of the link. Interface standards typically require
link BER performance in the range of 10− 12 to 10−15.

The equalization scheme used by Serdes devices must compensate for the
channel loss and other impairments in order to achieve the desired BER. A
common figure of merit is based on the evaluation of the insertion loss of the

20 High Speed Serdes Devices and Applications

channel at the Nyquist rate (two times the highest fundamental frequency of
the signal). From this metric, a qualitative assessment as to the difficulty of
signal propagation (and the necessary complexity of the equalization scheme)
can be made.

Figure 1.20 illustrates the measured insertion loss curve for a number of
examples of channels intended to support baud rates of 5Gbps and higher. The
frequency range of 5-Gbps data has a Nyquist rate of 5GHz, and the loss of
these channels at 5GHz is substantially higher than at lower frequencies.
Higher frequency components are therefore attenuated more than lower
frequencies, resulting in varied signal amplitudes at the receiver. (In addition,
the signal contains harmonic frequencies above 5GHz, but these are typically
filtered and are not critical to receiver operation.)

The channel transfer function is not strictly resistive, but also contains
capacitive and inductive components. This results in frequency-dependent
phase shift of the propagated signal. Such phase shift in effect causes the
propagation delay of the signal to vary based on frequency, appearing as data-
pattern-dependent jitter (discussed later in this section).

Although the above effects already contribute to significant signal
degradation, the insertion loss and phase shift associated with the channel is
usually not a straightforward linear function. The channel is an electrical
transmission line which is terminated at the receiver, and has impedance
discontinuities at each circuit board via, connector pin and abrupt bend in the
circuit board trace. Each impedance discontinuity results in reflections of the
electrical energy. As with any transmission line, reflected energy adds to or
subtracts from the signal amplitude at various points along the transmission
line, and results in resonances in the transfer function. This signal degradation
is generally worse for shorter channel lengths; loss characteristics of longer
channels tend to dampen reflections whereas signals may reflect between the
transmitter and receiver multiple times on a short channel.

Fig. 1.20 Insertion loss for various channel examples

Serdes Concepts 21

Crosstalk is energy coupled from an aggressor signal as noise on a victim
signal, and is another significant characteristic of the channel which causes
significant degradation of high-speed serial signals. While it would be nice to
isolate each differential signal pair such that crosstalk was not significant, this
is not practical in many real systems. The economics of most systems demand
signal densities through package pins, connectors, and backplanes which result
in neighboring signals causing crosstalk on the differential pair. Common-
mode noise is ignored, but any differences in the noise on the two legs of the
differential pair results in signal degradation.

1.4.2 Package Models
In addition to the channel as described above, the differential signal must

also propagate through the chip package for the transmitting chip and the chip
package for the receiving chip. While it would be convenient from an analysis
viewpoint to consider chip packages as part of the channel interconnect, it is
not practical to access the connections inside the package in order to measure
channel response in the lab. For this reason, channel measurements are
performed from package pads as described previously, and the transfer
function of the package is considered separately. Package models are supplied
by the chip manufacturer which model the transfer function of the package.
Analysis of the overall interconnect is performed by cascading the transmitter
package model, the channel transfer function, and the receiver package model.

Since trace lengths in the package substrate tend to be very short, insertion
loss and phase shift are usually not the dominant source of signal degradation
due to the package. Impedance mismatches and discontinuities tend to be a far
greater concern. A measurement of the returned energy from a signal launched
into the package ball at either the transmitter or the receiver is called return
loss. Better impedance matching of connections to the silicon device within the
package results in better return loss and less degradation of the signal.

1.4.3 Jitter
In an ideal world data bits would always transition at a fixed point relative

to the clock which launches each bit. In the real world there are variations in
the clock cycle time, data propagation delays, and signal slew times,
etc.Variation in the timing of the bit transition relative to an ideal clock is
called jitter. Jitter reduces the width of the data eye.

Any transmitter device has some amount of jitter in the launched data bit.
Jitter generation is a measure of the timing variation in the transmitted data
stream. Applications may include specifications for the maximum allowable
jitter generation by a transmitter device, as measured under specified test
conditions. Test conditions may include specification of test patterns to be
used, and the load to which the transmitter device is connected.

The jitter generated by the transmitter device is amplified by the channel.
The channel distorts the signal and introduces frequency-dependent phase

22 High Speed Serdes Devices and Applications

shift. As the data pattern of 1’s and 0’s shifts, the spectral content of the data
changes. This results in varying delay which becomes additional jitter at the
receiver. Crosstalk and reflections due to impedance discontinuities and return
loss also contribute to shift the transition points of signal edges at the receiver.

The receiver must be able to tolerate the amount of jitter that occurs on its
input. Jitter tolerance is a specification for the receiver device which defines
the “worst case” signal that the receiver is expected to receive correctly with
errors no greater than allowed by the specified BER. Applications may include
specifications for how to test jitter tolerance compliance, including test
patterns to be used and methods for generating a datastream with specified
amounts of jitter.

Jitter and jitter tolerance may be specified in picoseconds, but are more
often specified in terms of unit intervals (UI). Parameters are usually specified
as either peak-to-peak or root-mean-square, depending on the type of jitter.
One Unit Interval is the cycle time for the transmission of one bit on the
interface at the speed at which the link is running. A jitter specification of 0.30
UIpp indicates that the total peak-to-peak jitter cannot exceed 30% of the bit
time, leaving an eye opening of 70% of the bit time. A jitter tolerance
specification of 0.70 UIpp indicates that the receiver cannot expect more than
an eye opening of 30% of the bit time at its input.

Jitter transfer is the amount of the input jitter on the receiver input which
is passed through to the output (also called jitter gain). This parameter is
significant in applications which must retransmit data with the same timing as
the receive data. Since each stage of retransmission contributes additional jitter
to the overall system, a jitter transfer specification is required in such
applications to allocate how much jitter can be added within any one stage.

Many standards subdivide jitter into various types, and may use varying
terminology for the types of jitter. The following discussion describes a
commonly used terminology, and is sufficient for the purposes of general
understanding. More comprehensive definitions are found in Sect. 8.2.1:
1. Total Jitter (TJ). This is the total jitter of the signal as seen at the point of
measurement. TJ can be measured directly on hardware and is the ideal bit time
minus the actual eye width, specified as either a peak or peak-to-peak value.
2. Deterministic Jitter (DJ). This is the amount of the total jitter for which the
jitter distribution is non-Gaussian. Several components of DJ are dependent on
the data pattern being sent. The pattern of 1’s and 0’s which precedes the bit
transition affects when the transition occurs. Jitter caused by variations in rise,
fall, and slew times are also mostly deterministic. DJ is specified as either a
peak or peak-to-peak value.
3. Random Jitter (RJ). This is the amount of the total jitter for which the jitter
distribution is Gaussian. RJ does not correlate with the data pattern being sent.
Some amount of jitter has nothing to do with the data pattern, and is simply the
result of random processes. Because RJ is statistical in nature, it may be
specified either as a peak, peak-to-peak , or as a root-mean-square value.

Serdes Concepts 23

Generally interface standards specify two or three of the above jitter types. If
two of the above types are specified (typically TJ and DJ, or TJ and RJ), then
requirements for other type is implied. This approach allows trade-offs to be made
by system and component designers, while still complying with the standard.

The rationale for specifying different types of jitter is that some of the jitter
can be corrected. For instance, the FFE in the transmitter device alters the
transitions of the data edges based on the pattern of 1’s and 0’s being sent. In
effect, the FFE is used to inject DJ on the transmitter output. If the equalizer
coefficients are set properly, this injected DJ is the opposite of the DJ that is
created by the channel’s transfer function. The result is that the two DJ
contributors cancel and there is less jitter at the receiver.

The DFE in the receiver also operates to cancel the effects of DJ and
thereby improve the jitter tolerance of the receiver. The DFE has the advantage
of adapting to changing conditions of the channel, which may alter the
characteristics of the DJ over time. On the other hand, RJ is not predictable,
and therefore cannot be corrected by equalization. It is important to limit the
amount of RJ on the serial link.

1.4.4 Channel Analysis Tools
At serial link speeds up to 4Gbps it is generally possible to follow

reasonable design practices for the channel design. Spice TM or other
equivalent circuit simulators are used to perform simulations at these baud
rates. (In this text the term Spice is used generically as a designation for any of
these simulators.) (Note: Spice is a trademark of Synopsys, Inc.) Spice
simulations are used to verify signal integrity, and demonstrate that transmitter
and receiver devices will interoperate across the channel. This approach is
generally not sufficient at serial link speeds of 5Gbps and higher.

At higher serial links speeds, some care is required to design a channel
which does not unduly degrade the signal. There are cases where small design
changes can have substantial unexpected effects. Spice simulation can be used
to simulate the channel design. However, remember that signal degradation is
dependent on the data pattern and the crosstalk. Also, the more sophisticated
DFE-based cores use complex algorithms to determine tap coefficients, etc.,
real time. This behavior must be accurately simulated to account for
algorithmic errors and compensation techniques performed in logic. Spice
simulation cannot capture this behavior and is therefore not generally used for
the higher speed links. In addition, it is not sufficient to simulate a few
thousand bits; simulations must be long enough and contain enough randomly
generated data patterns on both the primary channel and the crosstalk channel
to ensure the system operates within the specified BER limits. This may
require a substantial amount of simulation.

Because of these simulation run-time requirements, statistical analysis of
channel designs has become prevalent at higher speeds. First, the channel
design is prototyped and lab measurements are made to determine the transfer
function characteristics of the channel. Transfer functions are measured for
both the channel of interest, and for noise coupling between the primary

24 High Speed Serdes Devices and Applications

channel and crosstalk channels. The resulting transfer functions are coded in a
form called S-Parameters. Alternatively, S-Parameters for subcomponents of
the channel (i.e., printed circuit boards, connectors, backplane, etc.) can be
measured individually and cascaded.

Next, statistical simulation of the channel is performed using a transmitter
model, the channel S-Parameters, package models for both transmitter and
receiver chips, and a receiver model. The transmitter and receiver models may
be models for specific vendor Serdes devices, or they may be ideal reference
models specified by an interface standard. The resulting “eye” on the output of
the receiver model is characterized by an eye width and height and is a function
of BER. If the “eye” is sufficiently “open” for the desired BER, then the system
will operate with no more than the specified number of bit errors.

The terminology “eye” is used loosely in the above paragraph, hence the
quotation marks. The receiver device often contains a DFE. By convention, the
“eye” is the signal at the sampling latch of a classical DFE design. However
for some DFE designs this may not be a single node, or may be beyond the
point where analog-to-digital conversion of the signal has been performed. The
notion of an analog “eye” at this point is a virtual mathematical concept; this
eye is not a measurable analog signal.

Note that signal integrity engineers often prefer to view analysis results in
the form of a bathtub curve which graphs eye opening as a function of Q of the
system (which relates to BER), as is described further in Sect. 8.2.4. The
geometry of this curve results from the dual-Dirac probability density
function, which models pattern-dependent jitter sources.

There are a number of implementations of tools that can be used to perform
statistical signal integrity analysis. A number of EDA vendors supply software
tools. Various silicon vendors have proprietary software to perform this
analysis (i.e., IBM’s HSSCDR software) which have built-in transmitter and
receiver models for the vendor’s Serdes. “StatEye” is an open source software
tool which performs this analysis (see http://www.stateye.org). HSSCDR
software is discussed in Sect. 8.4. Note that many of these software tools use
MatLabTM as the underlying calculation engine.

1.5 Signaling Methods
This chapter has thus far assumed differential signals which use two signal

levels that convey whether the bit being transmitted is a “0” or a “1”. This is
called non-return-to-zero (NRZ) signaling. (This name originally
differentiated NRZ signaling from signals which always returned to their zero
level between each transmitted bit.) The signal eye of an NRZ signal, shown in
Fig. 1.5a, can be sliced at the midpoint of the waveform (0mVppd) to
determine whether each bit is a “0” or a “1”. The baud rate of an NRZ signal
is equivalent to the data bit rate (after any encoding), and the maximum
fundamental frequency of the signal is half of this baud rate.

Multilevel signaling schemes are also possible. Figure 1.21 shows the signal
eyes for duobinary and four-level phase amplitude modulation (PAM-4).

Serdes Concepts 25

Duobinary uses three signal levels, requiring two slicer circuits to
determine the signal level. A “1” is indicated by any change in signal level,
while a “0” is indicated by no change in signal level. The baud rate of a
duobinary signal is the same as that of an equivalent NRZ signal. However,
because the signal cannot transition from one extreme of the dynamic range to
the other extreme in the same unit interval, the maximum fundamental
frequency of the signal is one-quarter of this baud rate.

PAM-4 uses four signal levels, requiring three slicer circuits to determine
the signal level. Each signal level represents the transmission of two bits, either
“00,” “01,” “10,” or “11.” The baud rate of a PAM-4 signal is half that of an

Fig. 1.21 Multilevel signaling eyes

Duobinary

PAM-4

26 High Speed Serdes Devices and Applications

equivalent NRZ signal, and the maximum fundamental frequency of this signal
is 50% of this baud rate (25% of the baud rate of an equivalent NRZ signal).

Because the signal spectrum of a duobinary and PAM-4 signal is reduced
from that of an NRZ signal, the insertion loss of the channel affects the signal
less. This is offset by the fact that splitting the dynamic range of the signal into
multiple levels results in a reduction of the eye height at the transmitter. If the
slope of the insertion loss curve is sufficiently steep, then classical analysis
indicates an advantage for the multilevel signal over that of the NRZ signal.
The eye height of a PAM-4 signal, for example, is reduced by approximately
9dB at the transmitter from that of an equivalent NRZ signal. If the difference
between the channel insertion loss at the NRZ baud rate vs. the PAM-4 baud
rate is greater than 9dB, then PAM-4 would result in more eye opening at the
receiver.

Note, however, that the classical analysis described above assumes no
equalization is used in the HSS device. If equalizers are used, then the effects
of these equalizers on channel response must be taken into account. Decision
feedback equalization in the receiver has the effect of flattening the overall
insertion loss of the system as shown in Fig. 1.22. While multilevel signaling
may have an advantage for a given channel when equalization is not used, this
advantage may not exist when NRZ is employed with a DFE in the receiver.

Most HSS devices integrated in ASIC chips use NRZ signaling, and all of
the interface standards discussed in this text are based on NRZ signaling.
Standards development efforts up to and including the 10–11 Gbps range have
found NRZ with DFE to produce better results than multilevel signaling
approaches. However, as HSS devices continue to target higher and higher data
rates, this may or may not be true in the future.

Fig. 1.22 Frequency response of a channel and considering DFE

0

-5

-10

-15

-20

-25

-30

-350 1 2 3 4 5 6
Frequency (GHz)

M
ag

ni
tu

de
 (d

B
)

Before DFE

After DFE
-6.8 dB

-13.1 dB

Serdes Concepts 27

1.6 Exercises
1. Assume the logic on the chip processes data using a 125-MHz clock. Data

is to be transferred from one chip to another chip across a parallel data bus
using the on-chip clock frequency. What parallel data bus width is
required to achieve the following bandwidths on the interface?
(a) 1Gbps? (b) 10Gbps? (c) 40Gbps?

2. Assume the logic on the chip processes data using a 125-MHz clock. Data
is to be transferred from one chip to another chip across a parallel data
bus. A maximum of 20 pins is to be used to transfer the data. If necessary
to meet this restriction, assume internal chip data is multiplexed as
described in Fig. 1.2 using the minimum possible multiplexor ratio. What
is the multiplexor ratio, number of pins required, and I/O data rate for
each of the following interface bandwidths? You should also comment on
whether the solution is practical given your knowledge of current ASIC
technologies.
(a) 1Gbps? (b) 10Gbps? (c) 40Gbps?

3. Assume a parallel data bus is constructed as shown in Fig. 1.2. The
propagation delay from the clock source to the clock inputs of the flip-
flops in chip #1 which launch the data is 5ns. The propagation delay from
the clock source to the clock inputs of the flip-flops in chip #2 which
capture the data is 2ns. The propagation delay of the data in chip #1 (from
the clock input of the flip-flops to the I/O pin) is 2ns. The setup time of
the inputs to chip #2 (for the I/O pin relative to the clock input of the flip-
flops capturing the data) is 1ns. The propagation delay of the channel is
negligible.
(a) What is the maximum data rate per pin at which this interface can

operate?
(b) The propagation delays and setup times in this problem may vary by

10% as voltage and temperature vary. Assuming these chips
must operate under all environmental conditions, what is the
maximum data rate per pin under the worst case combination of
conditions?

(c) Now assume the parallel data bus is constructed as shown in Fig. 1.3.
The propagation delay of the interface clock generated by chip #1 is
similar to that of the data. The propagation delay from the interface
clock input pin to the clock inputs of the flip-flops capturing the data
in chip #2 is 2ns. All other timing parameters remain the same. What
is the maximum data rate per pin at which this interface can operate?

28 High Speed Serdes Devices and Applications

(d) The I/O cells used to implement the above interface have a maximum
operating frequency of 200MHz. Given this restriction, should the
interface in (c) use a SDR clock or a DDR clock? What would the
frequency of each of these clocks need to be?

4. Figure 1.4 illustrates data being transmitted by a DDR clock. Logic to
transmit this data can be constructed using a combination of positive-edge
and negative-edge clocked flip-flops, and multiplexors. Draw a schematic
diagram for logic to implement this function. (Note: This logic cannot use
an SDR clock.)

5. A parallel data bus between chip #1 and chip #2 is 16-bits wide. How
many pins does each of the following architectures require?
(a) Single-ended signals with no forwarded interface clock.
(b) Single-ended signals with one forwarded interface clock for each

eight bits of data.
(c) Differential signals with one forwarded interface clock.
(d) Differential signals with one forwarded interface clock for each eight

bits of data.
6. Define a truth table for the edge select logic function in Fig. 1.7. For

purposes of this exercise, you can assume signal transitions are noise free.
7. Explain the difference between a simplex and a full duplex Serdes core.
8. Assume that the input to a serializer stage in the transmitter has a 16-bit

input and a 4-bit output. The datapath through the FFE logic is 4-bits, and
the driver stage serializes these 4-bits down to one serial bit. The baud
rate for this transmitter is 5Gbps. What is the frequency of the SDR clock
used by the driver stage? What is the frequency of the clock used by the
FFE logic? What is the frequency of the sample clock for the parallel
data?

9. Figure 1.11 illustrates a three-tap FFE with baud-spaced taps. Draw a
similar figure for a six-tap FFE with taps spaced at half-baud intervals.

10. A CDR circuit is sampling a signal which is operating at a baud rate of
3.125Gbps. The eye width of this signal is 0.35UI at the receiver, and the
CDR is sampling the signal in the exact center of the eye when a long
string of “0” bits begins. Plesiosynchronous clocks are employed, and the
frequency difference between the transmitter and the receiver clock rates
is 300ppm. What is the maximum run length of 0’s under these conditions
before the CDR sample point drifts past the edge of the eye.

Serdes Concepts 29

11. The high and low voltages of a differential signal are provided below for
various systems. For each pair of voltages, calculate the corresponding
Vcm and Vdiff values.
(a) 1.1V, 0.3V
(b) 1,050mV, 700mV
(c) 650mV, 150mV
(d) 900mV, 800mV

12. Assuming the worst case insertion loss curve in Fig. 1.20, what is the
approximate insertion loss at the maximum fundamental frequency of a
12-Gbps signal? Contrast this to the approximate insertion loss at the
maximum fundamental frequency of a 3-Gbps signal.

13. Explain the difference between jitter and jitter tolerance.
14. Qualitatively explain why equalization can correct for various pattern-

dependent forms of deterministic jitter.
15. Would you assume that the sum of deterministic jitter and random jitter is

equal to total jitter? Explain your answer. (You may want to peek at
Chap. 8.)

HSS Features and Functions 31

Chapter 2
HSS Features and Functions

In Chap. 1, a number of basic features and functions of High-Speed Serdes
(HSS) cores were discussed. In this chapter, the HSS EX10 10-Gbps core is
described. This core is a fictitious example which implements specific features
using specific input/output pins and programmable registers. The HSS EX10
is presented for tutorial purposes, with composite feature descriptions drawn
from a number of real HSS core examples.

The operation of various features of the EX10 is described in sufficient
detail for the reader to gain an appreciation of nuances associated with using
such a core. Since this is primarily a tutorial example, features are not
described in as much detail as would be found in the databook for a real HSS
core, and in some cases the operation and programming of certain functions
has been simplified where additional complexity would not serve an educa-
tional purpose. From this chapter, the reader should gain an appreciation for
the types of features that may or may not be found on a particular core, the
applications they are intended to support, and the details associated with using
these features which should be understood by the chip designer.

2.1 HSS Core Example: HSS EX10 10-Gbps Core
Similar to many real HSS core implementations, the EX10 is comprised of

subfunction blocks known as slices. A typical core consists of one and sometimes
more phase-locked loop (PLL) slices, some number of Transmitter (TX) Slices, and/or
some number of Receiver (RX) Slices. Simplex cores contain either transmitters or
receivers; full duplex cores contain both. Note the physical definition of a “slice” as
described for a specific core may vary slightly from this logical definition.

The naming convention used for EX10 pins is of the form:
<slice><signal_name>

where the “slice” prefix is either “HSS,” “TXx,” or “RXx.” The nomenclature
“HSS” is associated with signals on the PLL slice which are common to all
lanes of the EX10. Transmitter and receiver slice signals are prefixed with
“TXx” and “RXx,” where the “x” indicates the channel identifier for the
associated slice. This text uses the convention that an EX10 core containing
more than one TX and/or RX slice assigns channel identifiers starting with “A”
and incrementing upward. For example, the TXxDCLK signal name refers
generically to a signal on the TX slice, and a core with four TX slices would
name these signals TXADCLK for channel A, TXBDCLK for channel B, etc.

The EX10 configuration described in this chapter includes one PLL slice, four
TX slices, and four RX slices. Each slice has associated control and status signals. For

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 31
© Springer 2008

32 High Speed Serdes Devices and Applications

this example, many control and status signals are mapped into internal registers of the
core, while other signals are directly accessible as I/O pins of the core. (Some
functions are accessible both through I/O pins and through internal registers.) A
simple register read/write interface is provided to access internal registers of the core.
The reader should note that the allocation of functions between I/O pins and internal
registers is arbitrary; actual implementations may or may not allocate functions in the
same way, and many HSS cores do not have internal registers at all.

In the first section of this chapter, the EX10 I/O pins and register functions
are defined for each slice. Subsequent sections of this chapter describe
functional features of the EX10 in more detail. These descriptions can be used
as reference material when reading the subsequent chapters.

2.1.1 HSS EX10 Input/Output Pin Descriptions
Pins for the EX10 PLL slice are shown in Fig. 2.1 , and described in Table 2.1 .

Pins for the EX10 Transmitter slice are shown in Fig. 2.2 , and described in Table 2.2.
Pins for the EX10 Receiver slice are shown in Fig. 2.3 , and described in Table 2.3.
Transmitter and Receiver slice pin descriptions use the prefix “TXx” or “RXx”
(respectively) to indicate the generic signal name, where the “x” is replaced by “A,”
“B,” “C,” or “D” to indicate the particular instance of the slice within the core.

Fig. 2.1 HSS EX10 core PLL slice I/Os

HSSRESET

PLL

HSSRESYNCCLKIN

HSSDIVSEL[1:0]

HSSRESYNCCLKOUT

HSSPLLLOCK
HSSREFDIV

HSSRECCAL

HSSPRTWRITE
Register

HSSPDWNPLL

HSSPRTREADYHSSPRTAEN
HSSPRTADDR[7:0]

HSSPRTDATAIN[15:0] HSSPRTDATAOUT[15:0]
Interface

HSSRESETOUT

Power
HSSRXACMODE
HSSTXACMODE

HSSACJPC
HSSACJAC

HSSJTAGCE
JTAG

HSSSTATEL2

HSSEYEQUALITYSignal
Integrity

HSSREFCLK[T,C]

HSS Features and Functions 33

Table 2.1 HSS EX10 PLL slice core pin definitions

Pin name Type Description

PLL signals

HSSREFCLK[T,C] In Differential reference clock input to the PLL.
HSSREFCLKT is the true leg of the differential signal
pair; HSSREFCLKC is the complement leg

HSSREFDIV In Control signal to the PLL reference clock divider. See
HSSDIVSEL[1:0]below for application.
0=normal operation,
1=divide reference clock by 2

HSSDIVSEL[1:0] In PLL VCO C1 clock vs. HSSREFCLK ratio selector
HSSREFDIV = 0 HSSREFDIV = 1
00 = 16x 00 = 8x
01 = 20x 01 = 10x
10 = 32x 10 = 16x
11 = 40x 11 = 20x

HSSPDWNPLL In HSS PLL Power Down
0=normal operation,
1=power down the HSS PLL Slice

HSSRECCAL In HSS PLL Calibration Request
0=normal operation,
1=pulse high for minimum of eight HSSREFCLK cycles
to force PLL recalibration.

HSSRESET In Asynchronous reset input signal. This signal must be
asserted for a minimum of eight HSSREFCLK periods
any time after initial power on.
1=reset,
0=normal operation

HSSRESYNCCLKIN In This input is pulsed to cause a resync to occur. Pulse
must be synchronous to HSSRESYNCCLKOUT pin.
0=normal,
1=resync.
Multiple core resynchronization requires
HSSREFDIV = 0

HSSPLLLOCK Out PLL locked indicator.
0=unlocked,
1=locked

HSSRESETOUT Out This signal is asserted high during the VCO coarse
calibration and during the beginning of the reset
sequence.
0=normal,
1=reset in progress

34 High Speed Serdes Devices and Applications

HSSRESYNCCLKOUT Out This clock output is used to synchronize the
HSSRESYNCCLKIN signal

Register access bus signals

HSSPRTWRITE In Parallel Port Write.
0=read addressed register,
1=write addressed register

HSSPRTAEN In Parallel Port Address Enable. This is the result of
external address decode to select a given core instance
for access.
0=inactive, no read/write cycle,
1=active, access addressed register

HSSPRTADDR[7:0] In Parallel Port Address

HSSPRTDATAIN[15:0] In Parallel Port Input Data Bus

HSSPRTREADY Out Register port ready to access transmitter and receiver
registers. (PLL registers can be accessed at any time the
PLL is running.)
0=not ready,
1=ready (after reset sequence completed)

HSSPRTDATAOUT[15:0] Out Parallel Port Output Data Bus

JTAG signals

HSSJTAGCE In JTAG Test configuration enable.
0=normal operation,
1=JTAG test mode. This configures all necessary
internal logic to support JTAG test, eliminating the need
to configure multiple individual controls

HSSACJPC In JTAG mode clock signal

HSSACJAC In JTAG ACmode control signal.
0=dc coupled mode,
1=AC coupled mode

Power control

HSSRXACMODE In Sets the Receiver termination voltage.
0=dc coupling mode (VTR),
1=ac coupling mode (0.8*VTR)

HSSTXACMODE In Sets the Transmitter internal bias.
0=dc coupling mode,
1=ac coupling mode

Table 2.1 HSS EX10 PLL slice core pin definitions

Pin name Type Description

HSS Features and Functions 35

HSSSTATEL2 In Power down signal which powers off part of the PLL
slice in compliance with implementation of a PCI
Express L2 link state. Also forces power down of
transmitter and receiver slices.
0=normal operation,
1=core is in L2 link state

Signal Integrity

HSSEYEQUALITY Out HSS RX interrupt status signal.
0=inactive. No new status information available for any
RX links in the core.
1=active. New status information is available for at least
one RX in the core. When active, register 0x0F for each
RX link can be read to determine updated status

Fig. 2.2 HSS EX10 core transmitter slice I/Os

Table 2.1 HSS EX10 PLL slice core pin definitions

Pin name Type Description

TXxBSOUT

TXxPRBSEN PRBS
TXxPRBSRST

JTAG

TXxBSIN

TXxD[19:0] TXxDCLK

TXxO[P,N]
Port Data

TXxJTAGAMPL[1:0]

TXxOBS

TXxJTAGTS

TXxTS

TXxBYPASS

Generator

PCI Express
Support

TXxRCVRDETFALSE

TXxELECIDLE

TXxRCVRDETEN
TXxBEACONEN

TXxRCVRDETTRUE

PowerTXxPWRDWN
TXxSTATEL1

36 High Speed Serdes Devices and Applications

Table 2.2 Transmitter slice specific core pin definitions

Pin name Type Description

Port data signals

TXxD[19:0] In Parallel input data. TxD(0) is the LSB, and is transmitted
first on the serial output.
Unused inputs should be tied to an inactive level

TXxO[P,N] Out Output differential pair – connects to chip I/O

TXxDCLK Out Word clock used to capture parallel input data
TxD(19:0).
Data captured on rising edge of this clock. The
frequency of this clock is determined by the C1 clock
frequency, the selected bus width (8, 10, 16, or 20 bits),
and the selected data rate (full, half, quarter, or eighth-
rate)

TXxOBS In “Out of Band Signalling”: Drives transmitter outputs to
the DC common Mode voltage as required by certain
applications.
0=normal,
1=OBS mode enabled

TXxTS In Disables the transmitter output drivers.
1=normal operation,
0=disable (transmitter outputs are pulled up to AVTT
through internal 50-Ω termination resistors)

PRBS generator

TXxPRBSEN In TX Logic BIST enable signal.
0=normal,
1=enables internal loopback test

TXxPRBSRST In TX Logic BIST reset signal.
0=normal,
1=resets and restarts the BIST process

JTAG signals

TXxBSIN In Serializer Bypass Data. When TXxBYPASS is set to 1,
this data from the JTAG Boundary Scan Register cell is
transmitted on serial output.

TXxBSOUT Out Connected to the input of the JTAG Boundary Scan
Register cell.

TXxJTAGTS In Driver Tristate control.
This pin is only active if HSSJTAGCE = 1. The state of
this pin overrides the state of the TXxTS pin.
0=disable serial output driver when in JTAG test mode,
1=normal operation when in JTAG test mode

HSS Features and Functions 37

TXxJTAGAMPL[1:0] In When in JTAG Mode, these bits give the chip designer
the ability to select 1 of 4 output driver amplitude levels
overriding the Transmit Power Register.
00 = 30%, 01=44%, 10=72%, 11=100%

TXxBYPASS In Serializer Bypass Enable.
0=normal,
1=the data present on TXxBSIN is transmitted on serial
output

PCI express support

TXxBEACONEN In Transmit Beacon:
When enabled, drives a beacon signal on the transmit
serial data lines.
0 = normal operation,
1 = transmit beacon signal

TXxRCVRDETEN In Transmit Receiver Detect Enable:
Drives a transition on the serial data and measures the
charge time of the line in order to determine whether a
receiver is connected.
0 = normal operation,
1 = initiate a Receiver Detect sequence

TXxRCVRDETTRUE Out Transmit Receiver Detect True Status:
Asserted while TXxRCVRDETEN is high if the result
of the Transmit Receiver Detect operation is that a
receiver is detected.
0 = operation not in progress, not yet complete, or no
receiver is detected;
1 = operation is complete and a receiver is detected

TXxRCVRDETFALSE Out Transmit Receiver Detect False Status:
Asserted while TXxRCVRDETEN is high if the result
of the Transmit Receiver Detect operation is that a
receiver is not detected.
0 = operation not in progress, not yet complete, or
receiver is detected;
1 = operation is complete and a receiver is not detected

Power control

TXxPWRDWN In Transmit Power State:
Power down signal which powers off the Transmitter
slice.
0 = normal operation,
1 = power down

Table 2.2 Transmitter slice specific core pin definitions

Pin name Type Description

38 High Speed Serdes Devices and Applications

TXxSTATEL1 In Transmit Power State:
Power down signal which powers off the Transmitter
slice in compliance with implementation of a PCI
Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state

TXxELECIDLE In Transmit Electrical Idle:
Forces transmit serial data to an electrical idle signal
level in compliance with implementation of a PCI
Express L0s link state.
0 = normal operation,
1 = electrical idle state

Fig. 2.3 HSS EX10 core receiver slice I/Os

Table 2.2 Transmitter slice specific core pin definitions

Pin name Type Description

RXxD[19:0]

RX Data
RXxI[P,N] RXxDCLK

RXxPRBSEN RXxPRBSSYNC
RXxPRBSERRPRBS Checker

RXxBSOUT

RXxDATASYNC

RXxPRBSRST

RXxPRBSFRCERR

RXxSIGDET

RXxACJPDP RXxACJZTP

RXxACJPDN RXxACJZTN
JTAG

PowerRXxPWRDWN
RXxSTATEL1

RXxRCVC16[T,C]RXxSIGDETEN

HSS Features and Functions 39

Table 2.3 Receiver slice specific core pin definitions

Pin name Type Description

Port data signals

RXxI[P,N] In Input differential pair – Connects to chip I/O

RXxD[19:0] Out Parallel output data. RxD(0) is the LSB, and is received
first from the serial input

RXxDATASYNC In Data synchronization control pin. Each rising edge of
this signal causes 1 bit to be discarded from recovered
data, resulting in a 1-bit clock alignment adjustment.
0=normal,
1=discard 1 bit

RXxDCLK Out Word clock used to clock parallel output data
RXxD(19:0).
Data valid on rising edge of this clock. The frequency of
this clock is determined by the C1 clock frequency, the
selected bus width (8, 10, 16, or 20 bits), and the selected
data rate (full, half, quarter, or eighth-rate)

RXxSIGDET Out Signal Detect indicator.
0=no signal,
1=active signal

RXxRCVC16[T,C] Out SONET Reference Clock Output.
This differential output signal provides a divided down
version of the recovered RX data clock to support
SONET applications, which must synchronize TX and
RX channels. This clock can be configured via RX
register 0x02. This is a differential signal output:
RXxRCVC16T is the true leg of the differential signal
pair; RXxRCVC16C is the complement leg

JTAG signals

RXxACJPDP In JTAG scan input path for positive side of differential
input

RXxACJPDN In JTAG scan input path for negative side of differential
input

RXxACJZTP Out JTAG scan output path for positive side of differential
input

RXxACJZTN Out JTAG scan output path for negative side of differential
input

40 High Speed Serdes Devices and Applications

RXxBSOUT Out JTAG Receive Boundary Scan Out. When
HSSJTAGCE=1, these outputs assume the logic state
seen on the corresponding receiver input. When
HSSJTAGCE=0, these outputs assume logic state “0.”
Toggle rate for these signals is limited to 100MHz or
less

PRBS checker

RXxPRBSEN In RX Logic BIST enable signal.
0=normal (PRBS controlled via registers);
1=enables internal loopback test

RXxPRBSRST In RX Logic BIST reset signal.
0=normal;
1=resets RXxPRBSSYNC and RXxPRBSERR latches,
and restarts the BIST process

RXxPRBSFRCERR In RX Logic BIST force error signal. This enables
verification of the PRBS error detector.
0=normal;
1=forces errors in internal loopback path by changing
the loopback mux selector to the loop back selection

RXxPRBSERR Out RX Logic BIST error flag.
Once RXxPRBSSYNC is achieved, subsequent errors
cause this signal to be latched at 1. Passing condition is
for RXxPRBSSYNC=1 and RXxPBSERROR=0.
0=no error;
1=errors detected (latched, requires RXxPRBSRST to
clear)

RXxPRBSSYNC Out RX Logic BIST sync flag.
0=BIST pattern checker not in sync;
1=BIST pattern checker has achieved sync since last
RXxPRBSRST

Power control

RXxPWRDWN In Receive Power State:
Power down signal which powers off the Receiver slice.
0 = normal operation,
1 = power down

RXxSTATEL1 In Receive Power State:
Power down signal which powers off the Receiver slice
in compliance with implementation of a PCI Express L1
link state.
0=normal operation,
1=transmitter is in L1 link state

Table 2.3 Receiver slice specific core pin definitions

Pin name Type Description

HSS Features and Functions 41

2.1.2 HSS EX10 Register Descriptions
The HSSPRTADDR[7:0] inputs of the HSS EX10 core select the internal

register to be written or read. The HSSPRTADDR[7:4] address bits select
which slice is being addressed, and the HSSPRTADDR[3:0] bits select the
particular register within the slice. All registers are 16 bits wide, although in
many cases not all bits of the register have a defined function.

Table 2.4 describes how HSSPRTADDR[7:4] map to register space of the
HSS EX10 slices. Note that values 0xC and 0xD are broadcast addresses which
allow all TXx or RXx slice registers (respectively) to be written in parallel with
one write cycle. Not all values of HSSPRTADDR[7:4] are used.

Table 2.5 describes the registers and bit definitions for registers in the PLL
slice. Table 2.6 describes the registers and bit definitions for registers in the
transmitter slice. Table 2.7 describes the registers and bit definitions for
registers in the receiver slice.

RXxSIGDETEN In Signal Detect Enable
0=Signal Detect power control using Signal Detect
Power Down bit in SIGDET Control Register,
1=Signal Detect circuit powered on

Table 2.4 HSS EX10 address map

Addr
(7:3) Maps to slice

0x0 TXA Slice Registers

0x1 TXB Slice Registers

0x2 RXA Slice Registers

0x3 RXB Slice Registers

0x4 TXC Slice Registers

0x5 TXD Slice Registers

0x6 RXC Slice Registers

0x7 RXD Slice Registers

0x8 PLL Slice Registers

0xC Write all TXx Slice Registers in parallel.

0xD Write all RXx Slice Registers in parallel.

Table 2.3 Receiver slice specific core pin definitions

Pin name Type Description

42 High Speed Serdes Devices and Applications

Table 2.5 HSS EX10 PLL slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

0x0 16 R 0x0000 VCO Coarse Calibration Status Register

0 R 0 CCALCOMP, calibration complete signal where:
0=calibration not complete,
1=calibration complete

1 R 0 CCALERROR, calibration error occurred.
0=no errors,
1=calibration error occurred

2 R 0 LOCK_DETECTED signal:
0=not locked,
1=locked

15:3 R Unused

0x1 16 R/W 0x0000 VCO Coarse Calibration Control Register

0 R/W 0 Recalibrate signal, pulse high for minimum of eight
reference clocks then return low to initiate an
autocalibration sequence.
0 = normal (default),
1 = force PLL recalibration

15:1 R Unused

0x2 16 R/W 0x00FF Link Enable Register

0 R/W 1 Link enables to TXA. 0=disabled, 1=enabled

1 R/W 1 Link enables to TXB. 0=disabled, 1=enabled

2 R/W 1 Link enables to RXA. 0=disabled, 1=enabled

3 R/W 1 Link enables to RXB. 0=disabled, 1=enabled

4 R/W 1 Link enables to TXC. 0=disabled, 1=enabled

5 R/W 1 Link enables to TXD. 0=disabled, 1=enabled

6 R/W 1 Link enables to RXC. 0=disabled, 1=enabled

7 R/W 1 Link enables to RXD. 0=disabled, 1=enabled

15:8 R Unused

HSS Features and Functions 43

0x3 16 R/W 0x0000 Link Reset Register

0 R/W 0 Link reset to TXA. 0=normal, 1=reset

1 R/W 0 Link reset to TXB. 0=normal, 1=reset

2 R/W 0 Link reset to RXA. 0=normal, 1=reset

3 R/W 0 Link reset to RXB. 0=normal, 1=reset

4 R/W 0 Link reset to TXC. 0=normal, 1=reset

5 R/W 0 Link reset to TXD. 0=normal, 1=reset

6 R/W 0 Link reset to RXC. 0=normal, 1=reset

7 R/W 0 Link reset to RXD. 0=normal, 1=reset

15:8 R Unused

Table 2.6 HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

0x0 16 R/W 0x0008 Transmit Configuration Mode Register

1:0 R/W 00 Rate Select
00=Full rate (default)
01=Half rate
10=Quarter rate
11=Eighth rate

3:2 R/W 10 Parallel Data Bus Width
00=8 bit
01=10 bit
10=16 bit (default)
11=20 bit

15:4 R Unused

Table 2.5 HSS EX10 PLL slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

44 High Speed Serdes Devices and Applications

0x1 16 R/W 0x0000 Transmit Test Control Register
Note: TXxPRBSEN pin = “1” overrides this register and
forces PRBS7+ to be transmitted

2:0 R/W 000 Test Pattern Selector
000 = PRBS7+ (noninverted) (default)
001 = PRBS7− (inverted)
010 = PRBS23+ (noninverted)
011 = PRBS23– (inverted)
100 = PRBS31+ (noninverted)
101 = PRBS31– (inverted)
110 = 1010101....
111 = repeating pattern of 64 “1”s followed by
64 “0”s

3 R/W 0 Test Pattern Generator Enable
0=disable generator and select Customer Parallel Data
(default),
1=enable generator and select Test Pattern Data

4 R/W 0 PRBS Reset.
0=normal (default),
1=reset applied to Test Pattern generator

15:5 R Unused

0x2 16 R/W 0x0000 Transmit Coefficient Control Register

0 R/W 0 Apply Load
This bit applies the register-loaded values of coefficients,
power, polarity and FFE mode to the coefficient
recalculation logic, and presents this new value to the
analog circuits

1 R/W 0 Reset Coefficient Logic
0=normal (default),
1=reset

15:2 R Unused

Table 2.6 HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

HSS Features and Functions 45

0x3 16 R/W 0x0020 Transmit Driver Mode Control Register

1:0 R/W 00 FFE mode Select
00=FFE2 (default)
01=FFE3
10=reserved
11=Force Hi-Z

4:2 R/W 000 Slow Slew Control
Used to limit the minimum Transmitter output rise and
fall time.
000 = 24ps min. (default)
001= 36ps min.
101= 50ps min.
011= 60ps min.
111=100ps min.

15:5 R Unused

0x4 16 R/W 0x0000 Transmit Tap0 Coefficient Register

3:0 R/W 0000 FFE Tap 0 Coefficient
This register’s value is applied to the analog logic after
“Apply Load” (Transmit Coefficient Control Register
0x02 bit 0) is pulsed. The value read from this register is
the actual value being driven to the analog logic. Value is
unsigned magnitude. See the Transmit Polarity Register
0x08 for sign values

15:4 R Unused

0x5 16 R/W 0x003F Transmit Tap1 Coefficient Register

5:0 R/W 111111 FFE Tap 1 Coefficient
See the description for the Transmit Tap0 Coefficient
Register (0x04)

15:6 R Unused

0x6 16 R/W 0x0000 Transmit Tap2 Coefficient Register

4:0 R/W 00000 FFE Tap 2 Coefficient
See the description for the Transmit Tap0 Coefficient
Register (0x04)

15:5 R Unused

Table 2.6 HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

46 High Speed Serdes Devices and Applications

]

0x7 16 R/W 0x007F Transmit Power Register

6:0 R/W 0x7F Transmit amplitude value (unsigned positive magnitude).
Valid values are 0x20 minimum to 0x7F maximum.

15:7 R Unused

0x8 16 R/W 0x0007 Transmit Polarity Register

0 R/W 1 Polarity (sign) value for FFE Tap 0 Coefficient.
(0 = negative, 1 = positive)
This register’s value is applied to the analog logic after
“Apply Load” (Transmit Coefficient Control Register
0x02 bit 0) is pulsed. The value read from this register is
the actual value being driven to the analog logic

1 R/W 1 Polarity (sign) value for FFE Tap 1 Coefficient.
(0 = negative, 1 = positive)
See this register’s bit 0 description

2 R/W 1 Polarity (sign) value for FFE Tap 2 Coefficient.
(0 = negative, 1 = positive)
See this register’s bit 0 description

15:3 R Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

0x0 16 R/W 0x0038 Receive Configuration Mode Register
1:0 R/W 00 Rate Select

00=Full rate (default)
01=Half rate
10=Quarter rate
11=Eighth rate

3:2 R/W 10 Parallel Data Bus Width
00=8 bit
01=10 bit
10=16 bit (default)
11=20 bit

5:4 R/W 11 DFE/non-DFE Mode Selector:
00=DFE5,
01=DFE3,
10 or 11 =non-DFE

15:6 R Unused

Table 2.6 HSS EX10 transmitter slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

HSS Features and Functions 47

0x1 16 R/W 0x0000 Receive Test Control Register
Note: RXxPRBSEN pin = “1” overrides this register and
enables checking of a PRBS7+ pattern

2:0 R/W 000 Test Pattern Selector
000 = PRBS7+ (noninverted) (default)
001 = PRBS7− (inverted)
010 = PRBS23+ (noninverted)
011 = PRBS23− (inverted)
100 = PRBS31+ (noninverted)
101 = PRBS31− (inverted)
110 or 111 =Unused

3 R/W 0 PRBS Check Enable
0=disabled (default),
1=enabled

4 R/W 0 PRBS Reset.
0=normal (default),
1=reset applied to PRBS Checker

5 R/W 0 Full Duplex wrap enable.
0=normal. Selects primary input to the RX, and disables
the internal TX to RX wrap buffer (default),
1=wrap. Enables the wrap back driver in the TX to drive
the internal wrap path to this RX

6 R 0 State of RXxPRBSSYNC pin – PRBS checker status
0=PRBS checker not synchronized to incoming data,
1=PRBS checker synchronized and locked to incoming
PRBS data

7 R 0 State of RXxPRBSERR pin − PRBS checker status
0=PRBS pattern match or PRBS checker status = 0,
1=PRBS error detected after PRBS synchronized to
incoming data

8 R 0 State of RXxPRBSFRCERR pin – PRBS force error input
signal status
0=PRBS normal operation,
1=PRBS error forced by opening wrap path

15:10 R 0x00 Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

48 High Speed Serdes Devices and Applications

0x2 16 R/W 0x0000 Sonet Clock Control Register
Enable and frequency selection for RXxRCVC16[T/C]
clock output

1:0 R/W 0x0 Sonet Clock rate selector
00=C4 (default), 01=C8, 10=C16, 11=C4

2 R/W 0 Sonet Clock output enable
0=disabled,
1=enabled

15:3 R Unused
0x3 16 R/W 0x0000 Phase Rotator Control Register

0 R/W 0 Spread Spectrum Clocking Enable:
0=Spread Spectrum Clocking support disabled,
1=Spread Spectrum Clocking support enabled. Should not
be enabled unless SSC data is applied. RX Jitter tolerance
is improved in non-SSC mode

1 R/W 0 Reset Flywheel:
0=normal (default, the flywheel is enabled),
1=assert reset to the phase rotator flywheel (disable the
flywheel)

2 R/W 0 Freeze Flywheel:
0=normal (default),
1=freeze the phase rotator flywheel at its current update
rate. This can be used to prevent periods of inactivity from
altering the state of the flywheel

15:3 R Unused
0x4 16 R 0xXXXX Phase Rotator Position Register

These registers are continuously updated by the DFE
algorithms. To accurately read the values in these
registers, the DFE logic should be stopped by setting
“DFE Stand By” (bit 2 of register 0x06) to “1.”

5:0 R 0xXX Rotator Data channel Position:
Snapshot sample of DATA channel phase rotator position.
This is a six-bit vector indicating which of the 64 possible
positions the phase rotator is in

7:6 R Unused
13:8 R 0xXX Rotator AMP channel Position:

Snapshot sample of AMP channel phase rotator position.
This is a six-bit vector indicating which of the 64 possible
positions the phase rotator is in

15:14 R Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

HSS Features and Functions 49

0x5 16 R/W 0x0000 Signal Detect Control Register
4:0 R/W 00000 Signal Detect Level:

Unsigned value of comparator threshold used in SIGDET
circuit.

5 R/W 0 Signal Detect Power Down
0=enable (default – required for DFE mode),
1=power down the Signal Detect circuit

15:6 R Unused
0x6 16 R/W 0x000X DFE Control Register

0 R/W 0 DFE Control Logic Reset:
0=normal,
1=triggers a reset of the DFE logic

1 R X Not Random Data Status:
Proper training of the DFE engine requires sufficiently
random data flow. In order to prevent the DFE engine from
responding to periods of non-random data, a “random data
detector” function is built into the logic. This bit is read to
indicate current detection value of this logic.
0=Data is “random,”
1=Data is not “random”

2 R/W 0 DFE Stand By:
0=normal operation (default),
1=standby mode. All internal DFE operations are halted at
the next internal break point. Clocks continue to run, but
state machines are held idle

3 R/W 0 Sample DFE request.
0=inactive (default),
1=a rising edge causes the pipeline sampling logic to
capture a new snapshot, and makes the results available in
registers 0x07 and 0x08.

4 R 0 Sample DFE request completed.
0=inactive, or not ready yet (normal),
1=requested sample snapshot is now valid and available in
registers 0x07 and 0x08

15:5 R Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

50 High Speed Serdes Devices and Applications

0x7 16 R 0xXXXX DFE Data and Edge Sample Register
7:0 R 0xXX DFE Data Samples

These are the latest samples captured from the pipeline
registers in response to Sample DFE Request (reg 0x06
bit 4)

15:8 R 0xXX DFE Edge Samples
These are the latest samples captured from the pipeline
registers in response to Sample DFE Request (reg 0x06
bit 4)

0x8 16 R 0x00XX DFE Amplitude Sample Register
2:0 R XXX DFE Amplitude Samples

These are the latest samples captured from the pipeline
registers in response to Sample DFE Request (reg 0x06
bit 4)

5:3 R XXX DFE Amplitude Sample Qualifiers
These are the latest samples captured from the pipeline
registers in response to Sample DFE Request (reg 0x06
bit 4)

15:6 R Unused
0x9 16 R/W 0x0000 Digital Eye Control Register

4:0 R/W 0x00 Minimum eye height interrupt threshold
This is an unsigned vector value (positive) defining the
minimum acceptable eye amplitude, as measured by the
DFE logic, before “Eye Amplitude Error Flag” bit is set in
the Internal Status Register (reg 0x0F, bit 6) and interrupt
is triggered.
0x0: 0 threshold (default, no interrupt set)
0x1 – 0xE: 1/16 of range per step
0xF: threshold set at 15/16 of full range

9:5 R/W 0x00 Minimum eye width interrupt threshold
This is an unsigned vector value (positive) defining the
minimum acceptable eye width, as measured by the
Dynamic Data Centering logic algorithm, before “Eye
Width Error Flag” bit is set in the Internal Status Register
(reg 0x0F, bit 5) and interrupt is triggered.
0x0: 0 threshold (default, no interrupt set)
0x1 – 0xF: eye width threshold in rotator steps,
approximately 0.03UI per step

14:10 R 0x00 EYE WIDTH:
Latest available eye width measurement, in units of rotator
steps

15 R Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

HSS Features and Functions 51

0xA 16 R 0x00C0 DFE Tap 1 Register
This register is read to obtain the status of the DFE Tap 1
coefficient

5:0 R 0x00 Dac Tap 1: magnitude of DFE Tap 1 coefficient
7:6 R 11 Sign Tap 1: This sign represents the asserted sign of DFE

Tap 1 as it is applied to the summer, and changes under
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:8 R Unused
0xB 16 R 0x0060 DFE Tap 2 Register

This register is read to obtain the status of the DFE Tap 2
coefficient

4:0 R 0x00 Dac Tap 2: magnitude of DFE Tap 2 coefficient
6:5 R 11 Sign Tap 2: This sign represents the asserted sign of DFE

Tap 2 as it is applied to the summer, and changes under
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:7 R Unused
0xC 16 R 0x0030 DFE Tap 3 Register

This register is read to obtain the status of the DFE Tap 3
coefficient

3:0 R 0x00 Dac Tap 3: magnitude of DFE Tap 3 coefficient
5:4 R 11 Sign Tap 3: This sign represents the asserted sign of DFE

Tap 3 as it is applied to the summer, and changes under
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:6 R Unused
0xD 16 R 0x0030 DFE Tap 4 Register

This register is read to obtain the status of the DFE Tap 4
coefficient

3:0 R 0x00 Dac Tap 4: magnitude of DFE Tap 4 coefficient
5:4 R 11 Sign Tap 4: This sign represents the asserted sign of DFE

Tap 4 as it is applied to the summer, and changes under
normal operation in DFE mode
10 = negative, 01 = positive, 11 = zero

15:6 R Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

52 High Speed Serdes Devices and Applications

0xE 16 R 0x0030 DFE Tap 5 Register
This register is read to obtain the status of the DFE Tap 5
coefficient

3:0 R 0x00 Dac Tap 5: magnitude of DFE Tap 5 coefficient
5:4 R 11 Sign Tap 5: This sign represents the asserted sign of DFE

Tap 5 as it is applied to the summer, and changes under
normal operation in DFE mode.
10 = negative, 01 = positive, 11 = zero

15:6 R Unused
0xF 16 R 0x0000 Internal Status Register

This register is used to report the status of certain internal
operations. When status bits in this register change,
HSSEYEQUALITY is asserted. A write to this register
resets the HSSEYEQUALITY output.

0 R 0 Phase Rotator Calibration Complete.
0=calibration not completed,
1=phase rotator offset calibration process is completed

1 R 0 VGA locked First
This register is set when the VGA achieves lock, and is
cleared only by reset. It indicates lock was achieved at
least once

3:2 R 00 Unused
4 R 0 DFE training complete

This register is set when the DFE logic determines that its
H coefficients have converged since reset.
0=initial DFE convergence not yet achieved,
1=initial DFE convergence achieved

5 R 0 Eye Width Error Flag:
0=normal: Measured Data Eye Width at or above interrupt
threshold set in the Digital Eye Control Register
(reg 0x09);
1=error: Measured Data Eye Width below interrupt
threshold set in the Digital Eye Control Register
(reg 0x09)

6 R 0 Eye Amplitude Error Flag:
0=normal: Measured Data Eye Height at or above
interrupt threshold set in the Digital Eye Control Register
(reg 0x09);
1=error: Measured Data Eye Height below interrupt
threshold set in the Digital Eye Control Register
(reg 0x09)

15:7 R 0x000 Unused

Table 2.7 HSS EX10 receiver slice register definitions

Addr
(3:0) Bits R/W Reset

value Description

HSS Features and Functions 53

2.2 HSS EX10 Transmitter Slice Functions
In this section, the functions of the transmitter slice of the HSS EX10

10-Gbps core are described. This core supports transmit bit rates as low as
8.5 Gbps and as high as 11.1 Gbps. Frequent references are made to the pin
descriptions and register definitions found in Sect. 5.5.42.1. Although the HSS
EX10 is only a tutorial example, the reader should compare the functions of the
EX10 to real HSS cores with which the reader is familiar. Although implemen-
tations may vary, many similar functions will be found. In reading this chapter,
the reader should acquire an understanding of the types of functions that may
exist and some of the key features related to these functions.

A conceptual block diagram of the HSS EX10 transmitter is shown in
Fig. 2.4. The parallel data input of the transmitter (TXxD[19:0]) has a 20-bit
data width which may be programmed to capture 8, 10, 16, or 20 bits of user
data (based on the setting of the Parallel Data Bus Width control bits in the
Transmit Configuration Mode Register) on the rising edge of the word transmit
clock (TXxDCLK). Other cores may support different data widths.

Fig. 2.4 Transmitter concept diagram

Byte
8: 1

Driver/
equalizer

16/20-bit
Data

Clock

 PLL/Clock Divider

TXxBSIN

TXxDCLK

TXxOP/TXxON

Note: PLL is
shared across
all ports.

Pseudo-
random
code
generator

Mux

TXxD[19:0]

Control Registers

HSSPRTADDR
HSSPRTDATAIN
HSSPRTDATAOUT

Capture
Register

Divider

DataOut
Register

1.4 GHz

TXxPRBSEN

(one per core)

88/10/

Wrapback

TXxBSOUT

JTAG

Mux

54 High Speed Serdes Devices and Applications

The data in Fig. 2.4 is sampled and latched into a shift register synchronous
with the high-speed transmit clock. The low order byte is synchronously
loaded into a data out register that is clocked at one-eighth the bit rate, while
the higher ordered bytes are synchronously shifted to lower byte positions. The
8 bits in the data out register are transferred to the driver where they are further
serialized and transmitted at up to 11.1 Gbps. The transferred eight-bit data
byte is processed starting with the least significant bit (LSB) first, followed by
the next higher significant bit, and so forth. The driver/equalizer multiplexes the
8-bit stream and creates a current-mode differential signal that is frequency
equalized for the assumed media channel. The equalization is completely pro-
grammable but typically implements a finite impulse response (FIR) preem-
phasis filter using reduced current levels for longer run lengths. The core
expects valid user data to be available on the parallel interface on each cycle.

In addition to the datapath, Fig. 2.4 also includes the PLL (actually located
in the PLL slice), the PRBS generator (discussed later), and an interface for
reading and writing control registers. Note that not all cores use control
registers to implement slice control. Control signals can also be implemented
as individual pins on the core and controlled by chip logic or by protocol cores.
Which approach is used varies from one core family to the next, and is
somewhat based upon the required number of control and status signals. Using
internal registers in the core is a more efficient solution when an excessive
number of control and status signals are needed.

2.2.1 Transmitter Parallel Data
The TXxD[19:0] bus shown in Fig. 2.4 is a 20-bit datapath input to the

Transmitter Slice. Other cores may use a different names for this bus and may
have different bus widths. Consistent with the naming convention described
previously, the “x” in this naming convention represents the “channel id.” The
HSS EX10 has four TX channels with channel identifiers “A” through ‘D.”
Each TXxD bus also has an associated TXxDCLK clock output.

The HSS EX10 core allows the user to select one of several options for the
width of the TXxD bus to be used in a given application. For this example, the
20-bit TXxD bus can be programmed to use 8, 10, 16, or 20 bits of this bus.
Multiples of 10 bits are useful for applications which use 8B/10B data coding,
and multiples of 8 bits are useful for other applications. For the various
programmed bus widths, Table 2.8 describes which TXxD bits are used and
the corresponding TXxDCLK frequency as a function of baud rate.

The TXxDCLK clock latches the data on the TXxD data bus. Figure 2.5
illustrates the clock/data relationship for this interface. The variable ftx
represents the frequency of transmission or transmit data baud rate. The
TXxDCLK frequency is a fraction of this as determined by the Parallel Data
Bus Width in Table 2.8. (This is also affected by the Rate Select bits in the
Transmit Configuration Mode Register.)

HSS Features and Functions 55

Although all the transmitter slices in the core are frequency locked, each
transmitter slice operates independently, and it is generally not possible to
assume that the phase of each TXxDCLK is the same. The maximum phase
difference between any two TXxDCLK outputs at the core boundary is
specified in the core databook, and results from differences in signal buffering
and wiring parasitics within the core. These phase difference limits assume the
channels were resynchronized as part of the initialization of the interface;
otherwise no particular phase relationship can be assumed. (This feature of
HSS EX10 core is described later in this chapter.)

The TXxDCLK phases between two channels which are not contained
within the same core must also consider chip-level reference clock skew dif-
ferences generated by clock tree distribution and static phase error differences
of the different PLL Slices. Core-to-core phase difference limits are specified
in the core databook; these values again assume cores have been resynchro-
nized as part of the initialization sequence.

The HSS EX10 core allows the databus width to be changed at any time. If
the application requires the databus width to change dynamically, core docu-
mentation must be consulted to determine how the core behaves during this
transition. In particular, the latency before the change takes effect, and the
behavior of TXxDCLK during the transition must be considered. If the phase
difference between TXxDCLK outputs is of concern to the application, resyn-
chronization may be required.

Another consideration of Transmitter Slice usage is the bit order in which
bits of the parallel data bus are serially transmitted. The HSS EX10 core always
transmits bit 0 first. The user must be cautious that this is consistent with the
interface standard being implemented. If necessary the datapath connections to
TXxD inputs must be rearranged to obtain the desired bit order for
transmission.

Table 2.8 Data bus width function for transmitter section

Bus width bits of
“TX configuration

mode register’

TXxD19...
TXxD16

TXxD15...
TXxD10

TXxD9...
TXxD8

TXxD7...
TXxD0

TXxDCLK
frequency

00 Xa Xa Xa D7...D0 ftx/8

01 Xa Xa D9...D8 D7...D0 ftx/10

10 Xa D15...D10 D9...D8 D7...D0 ftx/16

11 D19...D16 D15...D10 D9...D8 D7...D0 ftx/20

a“X” represents do not care

56 High Speed Serdes Devices and Applications

2.2.2 Transmitter Signal Characteristics
Signal level and slew rate requirements vary for the various serial data

standards. Also, power dissipation can reduced by using smaller differential
signal levels, and crosstalk can be reduced by restricting slew rates. These
parameters are programmable for the HSS EX10 core, allowing the user to
adapt the core to the application.
2.2.2.1 Programmable Normalized Driver Power (NDP) Setting

The driver output power of the HSS EX10 transmitter is programmed using
the Transmit Power Register. When driving an ideal 100-Ω terminated
network, these output power settings set the differential voltage swing at the
driver output. The register field in the Transmit Power Register contains 7 bits
which allow the selection of 64 discrete power settings (some settings are not
supported). Each transmitter slice in the EX10 may be separately programmed.
Table 2.9 shows some typical register values for sample signal power levels.

Many applications require that signal power levels be adjusted based on the
frequency characteristics of the channel being driven by the transmitter slice.
Imperfect terminations, for instance, may cause the differential voltage swing
to be different from the ideal value shown in Table 2.9. Sometimes the
transmitter drives a backplane, and channel characteristics may vary based on
the card slot into which the card containing the transmitter is plugged. Also, the
core vendor may update the register values corresponding to specific values of
differential voltage swing in Table 2.9 as the result of core qualification. For
these reasons, most applications require that the signal power levels be
programmable. The HSS EX10 core includes registers inside the core; in cases
where power levels are controlled from input pins, it is the chip designer’s
responsibility to ensure programmability of these control pins.

The power supply voltage, termination voltage, and the desired driver
power level interact. The power supply and termination voltages must
somewhat greater than the maximum voltage driven by the transmitter. This
limits the supply voltage ranges that can be used for larger driver power
settings. For the HSS EX10, these limitations are specified in Table 2.10.

Fig. 2.5 Input data interface timing

TXxDCLK

TXxD[19:0]

ThTs

(1/ftx)*m

(1/ftx)*p
where:
m = 8, 10, 16, or 20
p = 4, 4, 8, or 10

HSS Features and Functions 57

2.2.2.2 Output Slew Rate Control
In order to support legacy protocols and reduce crosstalk, the minimum

slew rate of the HSS EX10 driver stage is programmable. Table 2.11 shows
examples of slew rate settings, and also shows typical applications
corresponding to these settings.

Table 2.9 Settings for typical output amplitudes

Minimum inner eye amplitude
(mVppd)

Transmit power register
setting for 8.5 Gbps

Transmit power register
setting for 11.1 Gbps

400 45 55

600 70 80

800 95 110

900 110 127

980 127 (N/A)

Test conditions: VDD = 1.1 V, AVTT = 1.4 V, worst case temperature and process, K28.5
data pattern, main tap only

Table 2.10 Desired output amplitude vs. required circuit supply voltages

Minimum achievable
output amplitudea

(mVppd)

Min. VDD
(V)

Max. VDD
(V)

Min. VTTb
(V)

Max. VTT
(V)

1,000 1.10 1.30 1.65 1.95

600 1.10 1.95

aVTT must always be equal to or greater than VDD
b‘1010...’ data pattern, 11.10 Gbps, FCPBGA package, power setting of 127

Table 2.11 Output slew rate control settings

Slow slew control bits of “Transmit
Driver Mode Control Register”

for Port x
Typical application

Approximate
minimum slew

Ratea (PS)

“000” Full rate 24

“001” Infiniband SDR and DDR 36

“011” XAUI at 3.125 Gbps 60

“101” Fibre channel at 4.25 Gbps 50

“111” Fibre channel at 1.06 Gbps 100

a20– 80% transition

58 High Speed Serdes Devices and Applications

2.2.3 Transmitter FFE Programming
The HSS EX10 transmitter includes a feed forward equalization (FFE) to

reduce intersymbol interference (ISI) at the receiver. This preemphasis
technique uses a FIR filter to compensate for the high frequency roll-off of the
transmission channel. Control inputs are provided to allow adjustment of the
driver FFE filter coefficients on a per-port basis. The following equation
describes the relationships of the FFE Coefficients.

H(Z) = K (C0 z +1 + C1 z 0+ C2 z –1) (2.1)
This Z-transform equation describes an FFE with three taps, including one pre-

and one post tap. Other cores may have FFEs with fewer or more taps.
The driver amplitude (K) is adjustable in the range of 0 – 1,320 (nominal)

mV peak-to-peak differential using the Transmit Power Register described
previously in this chapter. The relative weights and polarities of C0 to C2 are
configured using the three Transmit TapX Coefficient Registers (X = 0, 1, 2),
and the Transmit Polarity Register. The actual range of relative coefficient
weights is defined in Table 2.12.

The resolution of the levels is also indicated in Table 2.12, with each tap
having equal bit weighting. The driver circuit design enforces a constant driver
output power for any combination of coefficients and polarities, provided the
sum of coefficients C0 – C2 is 63 or higher (power decreases proportionally
below this sum). As coefficients are initialized or updated, the logic calculates
the appropriate internal amplitude (K) to maintain the overall output power at
the level defined in the Transmit Power register.

Table 2.12 Transmitter FFE summary

Tap coefficient # 0 1 2

Max current
(mA)

7.5 30 15

Relative max (%) 25 100 50

DAC resolution (bits) 6 8 7

Tap allocation Precursor Main tap Postcursor

Table 2.13 Transmit driver modes

Mode FFE mode select bits of “Transmit Driver
Mode Control Register” for Port x FFE taps activated

FFE2 “00” 0, 1

FFE3 “01” 0, 1, 2

(Reserved) “10” (Indeterminate)

Hi-Z “11” None (see Sect. 2.2.4.1)

HSS Features and Functions 59

To save power in certain applications, the FFE can be configured into
several configurations using the Transmit Driver Mode Control Register (see
Table 2.13). By using fewer taps, power is reduced.
2.2.3.1 Loading Transmit Coefficients

Many of the TX slice parameter control registers are not effective immedi-
ately after being written. Application of register values to the analog circuits is
controlled by writing the Apply Load bit in the Transmit Coefficient Control
Register. This allows the FFE and power level configuration to be completely
loaded in the individual registers and then simultaneously applied to the analog
circuits. For the HSS EX10, the values loaded into the Transmit TapX Coeffi-
cient Registers, the Transmit Power Register, the Transmit Polarity Register,
and the FFE Mode Select field of the Transmit Driver Mode Control Register
are not applied to the analog circuits until the Apply Load bit is pulsed. The
read-back value of these registers reflects the value being applied to the analog
circuits. If these registers are written and then read before the Apply Load bit
is pulsed, the old values are read. (The value of the Slow Slew Control field of
the Transmit Driver Mode Control Register is applied to the analog circuits
immediately, and is not gated by the Apply Load bit.)

For cores which do not contain internal registers, filter coefficients may be
set using input control pins. Sequencing updated values onto these pins is the
responsibility of the chip designer.

FFE coefficient values are not intended to be changed dynamically while
data is being transmitted (except as part of a speed negotiation or link optimi-
zation process). Significant changes to the TX slice configuration can cause
loss of data at the receiver until such time as the receiver adapts to the new
waveform characteristics.
2.2.3.2 FFE Coefficient Negotiation Support

Higher speed protocol standards sometimes support negotiation of trans-
mitter FFE settings based on characteristics of the signal at the receiver. IEEE
802.3ap Backplane Ethernet is an example of such an application. Implemen-
tations of such applications must update FFE coefficients in response to a full-
duplex training protocol by reading and writing the corresponding registers.

The training protocol used for Backplane Ethernet is introduced in Sect.
5.3.5.1. Some cores provide register control signals to more easily implement
the actions defined by this protocol, which include incrementing/decrementing
coefficient values. Such features are not defined for the HSS EX10 core.

2.2.4 Transmitter Power Control
Power management is becoming an increasingly important part of chip

designs. Various features are incorporated into HSS EX10 core to facilitate
turning off all or part of Transmitter Slice when the corresponding interfaces
are not in use.

60 High Speed Serdes Devices and Applications

2.2.4.1 Transmit Driver Disable Mode
The TXxTS pin forces transmit core drivers to an “off” state in which the

driver generates zero differential voltage and does not actively sink current on
its outputs (TXxOP and TXxON). This state can also be forced by the FFE
Mode Select bits of the Transmit Driver Mode Control Register.

While the transmit driver is disabled, the transmitter outputs are still
terminated and the outputs are pulled to the VTT voltage rail through that
termination. This mode only disables the driver outputs, the rest of the
transmitter circuitry is still functioning.
2.2.4.2 Selective Power Down

The HSS EX10 core has the capability to selectively power down indepen-
dent ports using the Link Enable Register in the PLL slice. This function may
also be performed using the TXxPWRDWN pin.

This power down mode is different from the Transmit Driver Disable Mode
discussed previously in that the entire transmitter slice is shut down. Each
transmitter slice within the core shares a common PLL, and generally the
per-link transmitter power budget quoted in core documentation includes a
prorated portion of the power for the PLL. Powering down the transmitter slice
therefore reduces the power dissipation of the link by approximately 70–85%
of the per-link power budget. The remaining 15–30% is consumed by the
associated PLL and clock buffering circuitry, which is not powered down. If
the entire core is to be powered down, each of the transmitter and receiver ports
must be “disabled,” and then the PLL Slice must be disabled using the
HSSPDWNPLL control signal.

The TXxDCLK output freezes at either a “0” or “1” value while the trans-
mitter port is disabled. A “glitch” or “sliver” can occur on TXxDCLK during
the transition into the power down state. Any chip logic outside of the core
which uses this clock must be designed to take this into account.

On initial power on reset, all ports are enabled, thus allowing all ports to go
to their reset state. Subsequent re-enabling of individual ports should be
followed by a corresponding port reset to ensure proper operation. If synchro-
nization is required between the re-enabled port and other ports, then a resyn-
chronization sequence is also required. (HSS EX10 resynchronization is
described later in this chapter.)

2.2.5 Half-Rate/Quarter-Rate/Eighth-Rate Operation
In full rate mode, the transmitter serializes and transmits data at a rate

determined by the cycle time of the high-speed clock generated by the PLL
slice. The baud rates over which the transmitter can operate in full rate mode
are limited by the Voltage-Controlled Oscillator (VCO) frequency range
supported by the design of the PLL slice. Wider VCO frequency ranges require
more complex circuit designs, and therefore this range is generally somewhat
limited. However, there are applications where operation is required at slower
baud rates, or where the interface must support switching between a full-rate

HSS Features and Functions 61

baud rate and legacy baud rates in order to support connections to legacy
equipment.

The HSS EX10 includes modes of operation which allow the core to
operate at a fraction of the full baud rate. Half-rate, quarter-rate, and eighth-
rate link operation is supported. These modes cause the TXxD parallel data to
be undersampled and shifted/multiplexed onto the serial data output at half,
quarter, or one-eighth the rate of full-rate operation. Selection of the rate mode
is performed using the Rate Select bits in the Transmit Configuration Mode
Register, and may be performed on a link-by-link basis. If lower speeds of
operation (with larger VCO frequency divisors) are required, external logic
may be used to further divide the sample rate of the parallel data.

Users of fractional rate modes should pay careful attention to the following
areas of core behavior when using these modes: TXxDCLK behavior, and FFE
filter behavior.
2.2.5.1 TXxDCLK Behavior for Half/Quarter/Eighth Rate

Activation of half-rate mode causes the transmit core to double the time
period of the TXxDCLK output as well as double the timing of the serializer
logic on a per-port basis. This has the effect of reducing the throughput by a
factor of two. Activation of quarter-rate mode causes the time period of
TXxDCLK to quadruple and reduces throughput by a factor of four; eighth-
rate mode causes the time period of TXxDCLK to octuple and reduces
throughput by a factor of eight.

When using external logic to implement additional fractional rate modes,
care should be taken to determine what mode of the HSS core is used to
implement the fractional rate mode. For example, the external logic may force
the HSS core into full-rate mode when implementing a 16th-rate mode through
external logic. The HSS rate mode being used affects the TXxDCLK
frequency and therefore correct understanding is necessary in order to properly
analyze timing of the interface.

If the application requires changing the rate mode, the chip designer also
needs to understand how TXxDCLK behaves during the transition, and
whether glitches are possible on this clock. For the HSS EX10 core, the
TXxDCLK completes its current cycle, then remains at a steady “0” while the
requested change is enabled, and then resumes normal operation at the new
rate. Logic connected to this clock experiences a temporary disruption in the
clock, but there is no glitching or slivering of the TXxDCLK during the
rate/bus width transition. Data transmitted during this mode change is invalid.
If synchronization is required between the links following a rate change, then
a resynchronization sequence is also required. (HSS EX10 core
resynchronization is described later in this chapter.)

Other core implementations may allow TXxDCLK to glitch or sliver during
the transition. In such cases, the chip designer may wish to gate the clock
outside the core during this transition. Alternatively, logic connected to this
clock may be reset after the transition completes to ensure proper operation.

62 High Speed Serdes Devices and Applications

Internal PLL circuits are unaffected by the rate mode selection. The
reference clock frequency should not be changed for fractional rate
operation. Power dissipation, although reduced, does not scale linearly with
data rate.
2.2.5.2 FFE Behavior for Half/Quarter/Eighth Rate

For the HSS EX10 core, the FFE is always a “T-spaced” filter with respect
to the signal rate (T = period of signal rate). In other words, the FFE tap spacing
is adjusted based on the rate select mode such that it always runs at the baud
rate. These circuits continue to work correctly if the port is set to half-rate,
quarter-rate, or eighth-rate speed modes.

For other cores, the user should carefully consult core documentation to
determine behavior of the FFE for fractional rate modes. If the FFE clocking
is not switched, a “T-spaced” filter would become a “T/2-spaced” filter when
used in half-rate mode. This would affect the calculation of filter coefficients.

2.2.6 JTAG 1149.1 and Bypass Mode Operation
The HSS EX10 core transmitter supports a bypass mode of operation in

which the parallel data capture and serialization logic is bypassed, and the
serial data output is forced to the logic value defined by bypass data input pins
on the core. This bypass function is sometimes used to support lower speed
source–synchronous interfaces for legacy applications. This bypass function is
also required for compliance with JTAG 1149.1 [1] and JTAG 1149.6 [2].
2.2.6.1 Transmit Bypass Path

The TXxBSIN data input and the TXxBYPASS transmit bypass control bit
are provided on the HSS EX10 core to support the transmitter bypass feature
and are limited to toggle rates of 100 MHz or less. When TXxBYPASS is
active, data provided to the TXxBSIN inputs forces the state of the TXxOP and
TXxON outputs. A truth table for this function is shown in Table 2.14.

2.2.6.2 JTAG Mode
JTAG 1149.1 requires that all chip outputs be controllable from a JTAG

Boundary Scan Register (BSR) under the control of a JTAG TAP Controller.
JTAG 1149.1 is used to perform stuck-at fault testing during the manufacture
of printed circuit boards. The transmitter bypass feature is of particular use to
provide JTAG compliance on interfaces that are driven by HSS transmitters.

Table 2.14 Transmit bypass path selection

TXxBSIN TXxBYPASSx TXxOP-TXxON

X 0 Normal operation

0 1 −

1 1 +

HSS Features and Functions 63

A block diagram of the JTAG function for the HSS EX10 core is shown in
Fig. 2.6. The HSSJTAGCE pin forces the HSS core into JTAG 1149.1 mode
in which all transmitters are forced into bypass mode. In this mode, TXxBSIN
determines the data being driven, TXxJTAGTS determines whether the trans-
mitter is enabled or in Hi-Z mode, and TXxJTAGAMPL[1:0] determines the
amplitude of the signal. For JTAG compliance, TXxBSIN and TXxJTAGTS
inputs must be driven from JTAG BSR cells, and TXxJTAGAMPL pins are
generally tied to VDD or GND. If the TXxJTAGAMPL pins are to be driven
from another source, the logic function driving these pins must drive a known
value during JTAG test mode. During JTAG test, chips on the circuit board are
entirely controlled through their JTAG interfaces and do not go through any
operational reset sequences. JTAG signals cannot be driven by flip-flops in the
chip (which do not get reset during JTAG test) unless these flip-flops are
forced to a known value by a JTAG Compliance Enable signal.

The HSSJTAGCE pin also forces the FFE into a suitable mode for JTAG
operation. The FFE is set to FFE2 mode, Tap 2 coefficients are set to values
determined by the TXxJTAGAMPL pins, other tap coefficients are set to 0,
and the output polarity is set to positive. This has the effect of driving the serial
data output to match the TXxBSIN data with no distortion due to filtering.

Fig. 2.6 Data path during boundary scan, DC coupled configuration

0

1
TXxBSIN

HSSJTAGCE

TXxJTAGTS

TXxBSOUT

TXxOP
BSR1

BSR2

RX Link

RXxIP RXxBSOUT
BSR5

CHIP2

HSSJTAGCE JTAG_BSR

TXxJTAGAMPL(1:0)

RXxINTXxON

BSR4

BSR6
RXxACJZTN

RXxACJZTP

RXxACJPDN

RXxACJPDP

 HSSACJPC
HSSACJAC

Tie VDD
AVTT

BSR3 1

0TXxTS

0
1

D

 JTAG_BSR

AVTR
0.8

HSSRXACMODE
o

AVTR

CHIP1
0
1

D

 JTAG_BSR TX Link
HSSTXACMODE

or GND

 JTAG_BSR

From TAP
Control
Logic

64 High Speed Serdes Devices and Applications

The pins used for implementation of the JTAG transmitter bypass function
may vary from core to core, and may or may not be shared with the pins used
for functional operation. The HSS EX10 includes the TXxJTAGAMPL and
TXxJTAGTS pins for use during JTAG. These pins, serve the same function
as the Transmit Power Register and TXxTS pins, respectively. The JTAG pins,
and their equivalent functional pins, are multiplexed in the core by the
HSSJTAGCE signal. Other cores may not provide separate pins, and may
require multiplexors outside the core to perform similar selection.

2.2.7 PRBS/Loopback Diagnostic Features
Diagnostic features are an essential part of any Serdes design. Such features

support system fault isolation requirements, and facilitate chip testing and
characterization. Essential diagnostic features for any Serdes include:
• Pseudorandom Bit Sequence (PRBS) Pattern generation/checking
• Support for loopback of data at key points within the system datapath
2.2.7.1 Transmit Test Patterns

The HSS EX10 supports the eight test patterns described in Table 2.15, as
selected by bits in the Transmit Test Control Register. These patterns are
available at all supported data rates. The repeating test patterns (1010... and the
64 1’s followed by 64 0’s patterns) generate data transition run length
extremes, with the first pattern generating data transitions at the fastest
possible rate and the other pattern generating data transitions at a very slow
rate. While these patterns are useful, the frequency spectrum of these patterns
is monotonic and does not stress the receiver as much as a pattern with a more
diverse spectral content. PRBS patterns provide more varied spectral content,
and therefore are more representative of real data. \

Table 2.15 Internal test pattern generator

Transmit test control reg [2:0] Pattern generated

000 PRBS7+

001 PRBS7– (inverted)

010 PRBS23+

011 PRBS23–

100 PRBS31+

101 PRBS31–

110 1010101....

111 (Repeating pattern of 64 ‘1’s then 64 ‘0’s)

HSS Features and Functions 65

PRBS patterns are produced using a linear feedback shift register. The
nomenclature PRBS-n is used as a short-hand reference to indicate a PRBS
pattern produced by a standard polynomial, where n is the order of the polyno-
mial. PRBS-31, PRBS-23, and PRBS-7 patterns are commonly used in many
systems. An order n polynomial implementation requires an n-bit shift register
along with a few XOR gates. The longest run length of 0’s or 1’s that can occur
in an n-order PRBS pattern is also n. Having different PRBS patterns available
allows the user to select the pattern that is most appropriate given the data
encoding used by the application. Using a PRBS-7 pattern to test a SONET
system which transmits scrambled data would be overly optimistic; using a
PRBS-31 pattern to test a Fibre Channel system which carries 8B/10B data and
therefore guarantees short run lengths would be overly pessimistic.
2.2.7.2 Loopback Paths and PRBS Checkers

The HSS EX10 core is a full-duplex configuration containing both trans-
mitters and receivers, and therefore includes the capability to loop the outputs
of the transmitter slices to the inputs of the receiver slices. This permits testing
through the entire datapath of the chip including the analog circuits. If the
transmitter is generating a PRBS or other diagnostic pattern, this pattern can be
validated using the PRBS Checker in the receiver.

Other cores implementing simplex core configurations containing only
transmitters may include simple receivers and PRBS checker circuits for the
sole purpose of providing a check of the PRBS pattern being sent.

2.2.8 Out of Band Signalling Mode (OBS)
The Serial Attached SCSI (SAS) and Serial ATA standards specify an out

of band signaling (OBS) mode that forces the driver output to a specific DC
state in order to signal certain conditions to the receiver. The TXxOBS pin
forces this state on the HSS EX10 core. When this pin is asserted, both the
serial output signal legs are driven to the same DC voltage that is nominally the
value of the common mode voltage during normal operation. The transmitter
data inputs are ignored in this mode. When TXxOBS returns to the low state,
the transmitter resumes normal operation.

2.2.9 Features to Support PCI Express
The HSS EX10 core includes support for features which are either required

or optional for implementations of the PCI Express standard. These PCI
Express related features in the HSS transmitter are described below.
2.2.9.1 Electrical Idle

When in an electrical idle state, transmitter outputs are driven to the
common mode voltage, as described further in Sect. 5.5.3.2. The
TXxELECIDLE pin controls entry and exit into this state on the HSS EX10
core. The common mode voltage in the electrical idle state is only at the correct
level if the link is AC Coupled (as required by the PCI Express standard). Note
that assertion of TXxELECIDLE stops the TXxDCLK for the link.

66 High Speed Serdes Devices and Applications

2.2.9.2 Receiver Detection
The transmitter is required to support detection of whether a receiver is

connected at the other end of the link. As described in Sect. 5.5.3.2, this is
performed by driving an abrupt change in the DC Common Mode voltage of
the link, and monitoring the amount of time it takes for the voltage on the wire
to settle to the new value.

The TXxRCVRDETEN input initiates the receiver detection operation on
the HSS EX10 core. One or the other of the TXxRCVRDETTRUE and
TXxRCVRDETFALSE output pins transitions high to indicate completion of
the receiver detect process; the former indicating a receiver is present, and the
latter indicating no receiver is connected to the link.
2.2.9.3 Beacon Signaling

Beacon signaling is optional in the PCI Express specification as described
in Sect. 5.5.3.2. The transmitter sends a low-frequency high/low waveform
called a beacon signal on the link to indicate a desire to exit the L2 power state
and return to a full-on state. The beacon signal has a pulse width of at least 2ns
and no more than 16 s. HSS EX10 core supports this feature and sends a
compliant beacon signal when the TXxBEACONEN pin is asserted.
2.2.9.4 PCI Express Power States

PCI Express defines a number of link power states which are described in
Sect. 5.5.4. The HSS EX10 core provides a TXxSTATEL1 pin which removes
power from most of the transmitter. Link logic may assert this pin when in the
L1 power state in order to reduce power dissipation. (Other pins exist on the
receiver and PLL slices to support PCI Express power states and are described
elsewhere in this chapter.)

2.3 HSS EX10 Receiver Slice Functions
A conceptual block diagram of a receiver slice for the HSS EX10 core is

shown in Fig. 2.7. This receiver is representative of the functionality of the
receiver slice designs for higher baud rates.

The receiver slice performs clock and data recovery (CDR) on the
incoming serial data stream. The quality of this operation is a dominant factor
for the bit error rate (BER) performance of the system. For enhanced perfor-
mance, several features are combined in this receiver architecture.

The differential data is received by an automatic gain control amplifier to
compensate for lossy media. Data is oversampled by a digital circuit that
detects the edge positions in the data stream. This digital circuit selects the
optimum data sample, and generates early and late signals to indicate the status
of the recovered clock alignment which are used to control the output phase
positions in a feedback loop. This feedback loop includes a filter to reduce
high-frequency jitter phenomenon, and a flywheel to improve jitter tolerance
and handling of long run length patterns. The effect of this feedback loop is to
maintain a static edge position in the oversampled data array by continuous
adjustment of the sampling phase locations.

HSS Features and Functions 67

Fig. 2.7 Receiver concept diagram

Clock Recovery

RXxDCLKRXxIP

BIST

RXxPRBSERR

RXxD[19:0]

Algorithm

ClkDiv by 2

PLL

RXxIN

RXxPRBSRST

RXxBSOUT
HSSJTAGCE

DATA[7:0]
CLOCK/8

8:
40

 D
es

er
ia

liz
er

an
d

D
at

a
C

lo
ck

(One per Core)

(to other TX and RX sections)

VGA
Amp

Control Registers

HSSPRTADDR

HSSPRTDATAIN

HSSPRTDATAOUT

Signal
Detect

RXxSIGDET

RXxPRBSSYNC

RXxPRBSEN

D
ec

is
io

n
Fe

ed
ba

ck
R

ec
ei

ve
r a

nd
1:

8
D

es
er

ia
liz

er

Phase Rotator
and

DFE Control
Algorithm

A
G

C
 m

ux

FDWrap

RXxACJZTP

RXxACJZTN

11

16

16and Control

Pattern
Recognition

Logic

Wrapback

68 High Speed Serdes Devices and Applications

The HSS EX10 core incorporates a Decision Feedback Equalizer (DFE).
The DFE used for this core is a 5-tap DFE; filter coefficients update dynami-
cally based on signal characteristics of the serial data. Cores operating at lower
baud rates may or may not include DFE circuits.

The parallel data output of the receiver (RXxD[19:0]) has a 20-bit data
width which may be programmed to output 8, 10, 16, or 20-bits of user data
(based on the setting of the Parallel Data Bus Width bits of the Receive
Configuration Mode Register) on each clock cycle. Serial data running at up to
11.1 GHz is processed and deserialized to the appropriate data width, and then
clocked out on the RXxD bus synchronous with RXxDCLK. The first serial bit
received is steered to the LSB of this bus, the next bit is steered to the next
higher significant bit, and so forth.

In addition to the datapath, Fig. 2.7 also includes the PLL located in the
PLL slice), the PRBS checker, JTAG 1149.6 receivers, Signal Detect logic,
and an interface for reading and writing control registers.

2.3.1 Receiver Data Interface
The RXxD[19:0] bus shown in Fig. 2.7 is a 20-bit datapath output of the

RX Slice. Other cores may use a different names for this bus and may have
different bus widths. Consistent with the naming convention described previ-
ously, the “x” in this naming convention represents the “channel id.” The HSS
EX10 has four receiver channels with channel identifiers “A” through “D.”
Each RXxD bus also has an associated RXxDCLK clock output.

The HSS EX10 core allows the user to select one of several options for the
width of the RXxD bus to be used in a given application. The 20-bit RXxD bus
can be programmed to use 8, 10, 16, or 20 bits. For the various programmed
bus widths, Table 2.16 describes which RXxD bits are used and the corre-
sponding RXxDCLK frequency as a function of baud rate.

The RXxDCLK clock launches the data on the RXxD data bus. Figure 2.8
illustrates the clock/data relationship for this interface. The variable frx
represents the frequency of reception or receive data baud rate. The
RXxDCLK frequency is a fraction of this as determined by the Parallel Data
Bus Width in Table 2.16. (This is also affected by the Rate Select bits in the
Receive Configuration Mode Register.)

The RX slices in the core independently derive frequencies of operation
from the incoming serial data stream. The RXxDCLKs for these channels may
or may not be frequency locked to each other depending on the application. If
serial data for a set of channels is launched by a common frequency reference,
then the RXxDCLKs are frequency locked. However, the CDR circuits of the
individual channels continue to make independent decisions as to when to
update sampling phase, and therefore it is generally not possible to assume that
the phase of each RXxDCLK is the same. The maximum phase difference
between any two RXxDCLK outputs at the core boundary therefore cannot be
predicted, even if the RXxDCLK outputs were in phase after reset. Use of
RXxDATASYNC also affects the phase of RXxDCLK.

HSS Features and Functions 69

The HSS EX10 core allows the data width to be changed at any time. If the
application requires the data width to change dynamically, core documentation
must be consulted to determine how the core behaves during this transition. In
particular, the latency before the change takes effect, and the behavior of
RXxDCLK during the transition must be considered.

Table 2.16 Data bus width function for receiver section

 Bus Width Bits of ‘RX
Configuration Mode

Register’

RXxD19...
RXxD16

RXxD15...
RXxD10

RXxD9...
RXxD8

RXxD7...
RXxD0

RXxDCLK
Frequency

00 0000 000000 00 D7...D0 frx/8

01 0000 000000 D9...D8 D7...D0 frx/10

10 0000 D15...D10 D9...D8 D7...D0 frx/16

11 D19...D16 D15...D10 D9...D8 D7...D0 frx/20

Fig. 2.8 Output data interface timing

Fig. 2.9 RXxDATASYNC timing diagram

b

m = 8, 10,

valid

RXxDCLK

RXxD19:RXxD0

PERIOD = (1/frx)*(m) ! tJITps

where:

th

thigh

tsu

16, or 20

‘1’

‘0’

‘1’

‘0’

RXxDATASYNC

Operation

Tskip

Skip
complete

1 RXxDCLK
cycle min

1 RXxDCLK cycle min

Mode
Full
Half
Quarter
Eighth

Tskip
32 UI
32 UI
16 UI

8 UI

Rate

>0 min

RXxDATASYNC must not
re-occur until after Tskip
from the previous
RXxDATASYNC.

70 High Speed Serdes Devices and Applications

Another consideration of Receiver Slice usage is the bit order in which bits
of the parallel data bus are serially received. For the HSS EX10 core, the first
bit received is always steered to bit 0 of the RXxD bus. The user must be
cautious that this is consistent with the interface standard being implemented.
If necessary the datapath connections to the RXxD inputs must be rearranged
to obtain the desired bit order.

Receive data alignment may be adjusted through the use of the
RXxDATASYNC control input, and may be independently adjusted on each
receiver slice. When the RXxDATASYNC signal transitions from a “0” to a
“1,” the deserializer within the receive logic ignores the most recent serial
input and holds the contents of the deserializer for one-bit clock cycle. The
RXxDATASYNC operation has the effect of changing the deserializer
alignment by one-bit position.

The RXxDATASYNC operation also has the effect of stretching the
corresponding RXxDCLK cycle. This behavior is dependent on the rate mode
selected. In full-and half-rate modes, the RXxDCLK is stretched 2 UI after
every RXxDATASYNC operation. In quarter-and eight-rate modes, the
RXxDCLK is stretched 1 UI after every RXxDATASYNC operation. Because
the cycle is always stretched, the minimum pulse width of the RXxDCLK
signal is never reduced. Figure 2.9 illustrates the timing requirements for the
RXxDATASYNC input.

2.3.2 DFE and Non-DFE Receiver Modes
In full-rate and half-rate modes the HSS EX10 receiver operates in one of

three equalization modes; non-DFE, DFE3, or DFE5. In quarter-rate and
eighth-rate modes only non-DFE mode is supported. In non-DFE mode, the
received input signal is processed through the variable gain amplifier (VGA)
then captured in the front end logic and deserialized. In DFE3 and DFE5
modes, the deserialized samples are processed using DFE algorithms that
automatically adjust the receiver threshold to better compensate for severe
pattern-dependent distortions in the channel. These modes are selected using
by the DFE/non-DFE Mode Select bits in the Receive Configuration Mode
Register as shown in Table 2.17.

Table 2.17 DFE/non-DFE mode select

Receiver mode DFE/non-DFE mode selector bits of “Receive
Configuration Mode Register” for Port x

DFE5 0 0

DFE3 0 1

non-DFE 1 0

non-DFE (default) 1 1

HSS Features and Functions 71

DFE5 and DFE3 modes use 5 and 3 filter taps, respectively for feedback. A
DFE-n mode makes decisions regarding whether a bit is “1” or “0” based on
the history of the last n bits received. DFE5 provides maximum performance
in terms of BER, while DFE3 may be used in cases where signal degradation
is not as severe. The non-DFE mode uses a fixed threshold receiver for cases
where signal degradation is small enough not to require further equalization.
The VGA amplifier is used in all modes of operation.

2.3.3 Serial Data Termination and AC/DC Coupling
The RX slice includes a termination resistance between the two legs of the

differential input as well as biasing to the termination supply voltage. The
common mode voltage that is seen on the differential signal tracks the termi-
nation supply voltage, and for this reason the termination supply may be
applied through separate power pins on the HSS core. On some cores, addi-
tional inputs may be provided to select the voltage range for this supply.

The HSS EX10 uses the nomenclature AVTT to designate the termination
supply at the transmitter and AVTR to designate the termination supply at the
receiver. These supply voltages are usually set to the same voltage to prevent
circulating DC currents and to insure proper operation and reliability of the
receiver. Note that there may be power supply sequencing requirements
between the AVTT/AVTR supplies and the main power supply.

Some applications and system designs use AC coupling on serial links to
eliminate some of these restrictions. An AC coupled system includes decou-
pling capacitors inserted inline with the serial data signals such that there is no
DC path between the transmitter and the receiver device. The decoupling
capacitor must have sufficient capacitance to pass the lowest spectral
frequency expected in the data. When AC coupling is employed, the common
mode bias point of the transmitter and the receiver do not need to be the same.

In a DC coupled link, the current path through the transmitter, the channel,
and the termination network in the receiver determines the resulting common
mode voltage. The HSS EX10 receiver is designed using the assumption that
the transmitter provides a termination which contributes to the voltage bias at
the receiver. The current path through the transmitter does not exist when
AC coupling is employed, and therefore the transmitter termination no longer
contributes to the DC voltage bias for the circuit. The HSS EX10 core has an
HSSRXACMODE control input on the PLL slice which enables biasing the
receiver’s termination network when the core is used in AC coupled applica-
tions. This pin enables an additional current path which biases the receiver
inputs to a common mode voltage equal to around 80% of the AVTR voltage,
which is optimal for operation of this receiver.

2.3.4 Signal Detect
Each individual receiver circuit includes signal detection circuitry. The

function of signal detection is to continuously monitor the attached media
channel and to provide feedback concerning link status. A “1” on the

72 High Speed Serdes Devices and Applications

RXxSIGDET output indicates that signal transitions are occurring on the link,
and the amplitude of the differential signal being received exceeds the
detection threshold; otherwise the RXxSIGDET output is “0”.

The signal detect output is determined by looking at the average value of
the received AC signal. Transitions in the state of the RXxSIGDET status have
some inherent latency, which can be attributed to the low-pass filtering
techniques used to distinguish signal from noise.

Many standards define the minimum signal level above which the signal
must be detected, however, different standards use different values for this
threshold. For the HSS EX10 core, the signal detect circuit threshold can be
adjusted to be compliant with various industry standards by programming the
Signal Detect Level bits in the Signal Detect Control Register. Examples of
signal detect threshold settings for this core are shown in Table 2.18.

Chip designers sometimes use RXxSIGDET to gate data or to disable
processing of data by downstream logic. However, signal detect thresholds are
sensitive to common mode voltage levels on the receiver inputs, and the
RXxSIGDET function often requires circuit level tuning based on hardware
characterization. For these reasons, erratic operation may be observed for early
users of a core, and it is generally good practice to provide a programmable
“chicken switch” to disable any such gating.

2.3.5 Receiver Power Control
Power management is becoming an increasingly important part of chip

designs. The HSS EX10 includes various features to facilitate turning off all or
part of Receiver Slices when the corresponding interfaces are not in use.
2.3.5.1 Selective Power Down

The HSS EX10 core has the capability to selectively power down indepen-
dent ports using the Link Enable Register in the PLL slice. This function may
also be performed using the RXxPWRDWN pin. Each receiver slice within the
core shares a common PLL, and generally the per-link receiver power budget
quoted in core documentation includes a prorated portion of the power for the
PLL. Powering down the receiver slice therefore reduces the power dissipation
of the link by approximately 70–85% of the per-link power budget. The
remaining 15–30% is consumed by the associated PLL and clock buffering cir-
cuitry, which is not powered down. If the entire core is to be powered down,

Table 2.18 Signal detect register settings

Industry standard
compatibility

Signal detect threshold,
AC coupled

SDLVLxD bits of “SIGDET
Control Register” for Port x

“Bad” signal “Good” signal Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Infiniband (2.5Gbps) <85mVppd >175mVppd 0 0 1 1 0
SAS (1.5 and 3.0Gbps) <120mVppd >240mVppd 0 1 1 0 0
Fibre channel (1.0625,

2.125, 4.25Gbps)
<90mVppd >250mVppd 0 1 0 0 1

HSS Features and Functions 73

each of the transmitter and receiver ports must be “disabled,” and then the PLL
Slice must be disabled using the HSSPDWNPLL control signal.

The RXxDCLK output freezes at either a “0” or “1” value while the
receiver port is disabled. A “glitch” or “sliver” can occur on RXxDCLK during
the transition into the power down state. Any chip logic outside of the core
which uses these clocks must be designed to take this into account.

On initial power on reset, all ports are enabled, thus allowing all ports to go
to their reset state. Subsequent re-enabling of individual ports should be
followed by a corresponding port reset to ensure proper operation.
2.3.5.2 Powering off Signal Detect

If the Signal Detect function in the HSS EX10 core is not needed in non-
DFE mode, it may be turned off using the Signal Detect Power Down bit of the
Signal Detect Control Register.

DFE filters sometimes use the signal detect function, and in such cases the
DFE will not operate correctly if the signal detect circuit is turned off, espe-
cially in high crosstalk environments. Note, however, that there are exceptions
where turning off signal detect may produce improved performance: high loss,
high-frequency channels operating in a low crosstalk environment being one
such example.

The RXxSIGDETEN input pin overrides the Signal Detect Power Down
control register bit and performs the same function. If this pin is asserted,
signal detect circuitry is forced to a power on state. This is useful in applica-
tions such as PCI Express where RXxSIGDET is used to detect a beacon signal
while the remainder of the link is powered down. The control register bit
cannot be written or read while the link is powered down.

2.3.6 JTAG 1149.1/1149.6 and Bypass Mode Operation
The HSS EX10 core receiver supports a bypass mode of operation in which

the data deserialization logic is bypassed, and the serial data input value is
driven to a bypass data output of the core. This bypass function is sometimes
used to support lower speed source–synchronous interfaces for legacy applica-
tions. This bypass function is also required for compliance with JTAG 1149.1
and JTAG 1149.6 [1, 2].
2.3.6.1 Receive Bypass Path

The RXxBSOUT bypass data output supports the receiver bypass feature
and is limited to toggle rates of 100MHz or less. The logic value of the differ-
ential data on the serial data input is driven to the RXxBSOUT pin.
2.3.6.2 JTAG 1149.1 Mode

JTAG 1149.1 requires that all chip inputs must be observable in a JTAG
BSR under the control of a JTAG TAP Controller. JTAG 1149.1 is used to
perform stuck-at fault testing during the manufacture of printed circuit boards.
The receiver bypass feature is of particular use to provide JTAG compliance
on interfaces that are connected to HSS receivers.

74 High Speed Serdes Devices and Applications

A block diagram of the JTAG function for the HSS EX10 core is shown in
Fig. 2.6. The HSSJTAGCE pin forces the HSS core into a mode which support
JTAG 1149.1 (or 1149.6), including forcing all receivers into bypass mode. In
this mode, the RXxBSOUT outputs reflect the value being received by the
differential receiver. For JTAG compliance, RXxBSOUT outputs must be
captured in JTAG BSR cells.
2.3.6.3 JTAG 1149.6 Mode

The JTAG 1149.1 DC stuck fault testing cannot be used to test links which
include decoupling capacitors in the channel. JTAG 1149.6 transmits pulse
waveforms which propagate through the decoupling capacitor and are received
by a JTAG 1149.6 receiver circuit. JTAG 1149.6 is also be used to perform
independent testing of the true/complement legs of the serial signal.

The JTAG1149.6 receiver circuit is shown in Fig. 2.6, along with the
associated RXxACJZTP and RXxACJZTN outputs of the core. These outputs
are latched in the JTAG 1149.6 BSR, and fed back to the RXxACJPDP and
RXxACJPDN inputs of the core.

Figure 2.10 illustrates the propagation of JTAG 1149.6 pulse signals
through the decoupling capacitors of the link.

Fig. 2.10 JTAG test receiver waveforms

Before

VinP

VinN

VinP-VinN

PreData

PreClock

Z

2 3 4 5 71 6 8

Capacitor

HSS Features and Functions 75

The signals in Fig. 2.10 are defined as follows:
Before Capacitor = HSS TX output before the AC coupling capacitor
Vinp = RXxIP or RXxIN (differential HSS RX input)
Vinn = Delayed internal Vinp signal at Test Receiver (TR) comparator
Vinp–Vinn = Signal detected by the TR’s edge detection circuit
PreData = RXxACJPDP or RXxACJPDN pin
PreClock = HSSACJPC pin
Z = RXxACJZTP or RXxACJZTN pin (output of TR)

The horizontal points in Fig. 2.10 are:
1. Z transitions high in response to the rising edge of the input signal
2. Z transitions low in response to the falling edge of the input signal
3. Z transitions high due to the hysteretic memory being loaded via

PreData/PreClock
4. Nothing happens at this rising edge because output is already high
5. Z transitions low in response to falling edge of the input signal
6. Nothing happens at in response to PreData/PreClock since output is

already at desired value
7. Z transitions high in response to the rising edge of the input signal
8. Z transitions low in response to falling edge of the input signal

The JTAG 1149.6 receiver has hysteresis built in as shown in Fig. 2.11.
RXxACJZTP/N outputs are generated per the truth table in Table 2.19.

Fig. 2.11 Hysteresis diagram of the ACJTAG test receiver

+Vhyst

-Vhyst
0

A=Vinp-Vinn: A is the voltage right at an each

HSSACJPC

Hysteresis Test Receiver’s inputs, not V(RXxIP-RXxIN)

76 High Speed Serdes Devices and Applications

2.3.7 Half-Rate/Quarter-Rate/Eight-Rate Operation
Similar to the discussion related to the transmitter, the HSS EX10 includes

modes of operation which allow the core to operate at a fraction of the baud
rate for full-rate mode. Half-rate, quarter-rate, and eighth-rate link operation is
supported. These modes cause the RXxD serial data to be undersampled as it
is shifted into internal shift registers used for deserialization. The net effect is
that serial data is sampled at half, quarter, or one-eighth the rate of full-rate
operation. Selection of the rate mode is performed using the Rate Select bits in
the Receive Configuration Mode Register, and may be performed indepen-
dently for each link. If lower speeds of operation are required, external logic
may be used to further divide the sample rate of the parallel data.
2.3.7.1 RXxDCLK Behavior for Half/Quarter/Eighth Rate

Activation of half-rate mode causes the receive core to double the time
period of the RXxDCLK output as well as double the timing of the deserializer
logic on a per-port basis. This has the effect of reducing the throughput by a
factor of two. Activation of quarter-rate mode corresponding causes the time
period of RXxDCLK to quadruple and reduces throughput by a factor of four;
eighth-rate mode causes the time period of RXxDCLK to octuple and reduces
throughput by a factor of eight.

When using external logic to implement additional fractional rate modes,
care should be taken to determine what mode of the HSS core is used to
implement the fractional rate mode. For example, the external logic may force
the HSS core into full-rate mode when implementing a 16th-rate mode through
external logic. The HSS rate mode being used affects the RXxDCLK
frequency and therefore correct understanding is necessary in order to properly
analyze timing of the interface.

Table 2.19 Truth table for AC JTAG test receiver when HSSJTAGCE=1

RXxIP/N HSSACJPC RXxACJPDP/
RXxACJPDN

RXxACJZTP/
RXxACJZTN

Transition from 0 to 1
(HSSACJAC=1) or

Steady State 1 (HSSACJAC=0)

0 X 1

Transition from 1 to 0
(HSSACJAC=1) or

Steady State 0 (HSSACJAC=0)

0 X 0

No Transitionaa 1 0 0

No Transitiona 1 1 1

aHSSACJP=1 and RXxIP/N transition at the same time should not have occurred because
they must be a mutually exclusive event in ac JTAG test

HSS Features and Functions 77

If the application changes the rate mode, the chip designer needs to under-
stand how RXxDCLK behaves during the transition, and whether glitches are
possible on this clock. For the HSS EX10 core, the RXxDCLK completes its
current cycle, then remains at a steady “0” while the requested change is
enabled, and then resumes normal operation at the new rate. Logic connected
to this clock experiences a temporary disruption in the clock, but there is no
glitching or slivering of the RXxDCLK during the rate/bus width transition.
Data received during the mode change is invalid.

Other core implementations may allow RXxDCLK to glitch or sliver
during the transition. In such cases, the chip designer may wish to gate the
clock outside the core during this transition. Alternatively, logic connected to
this clock may be reset after the transition completes to ensure proper
operation.

Internal PLL circuits are unaffected by the rate mode selection. The
reference clock frequency should not be changed for fractional rate
operation. Power dissipation, although reduced, does not scale linearly with
data rate.

2.3.8 PRBS/Loopback Diagnostic Features
Diagnostic features are an essential part of any Serdes design. Such features

support system fault isolation requirements, and facilitate chip testing and
characterization. Essential diagnostic features for any Serdes include:
• Pseudorandom Bit Sequence (PRBS) Pattern generation/checking
• Support for loopback of data at key points within the system datapath
2.3.8.1 Test Patterns

The receiver contains a flexible test pattern data checker. The data checker
is used to self-check the receiver port using an internal loopback test utilizing
data generated by its companion transmitter port. The test pattern checker may
also be used to self-check an entire TX-RX link with an external wrap back test
using an external channel between a compatible transmitter and receiver. For
the HSS EX10 core, the receiver controls to implement these tests are in the
Receive Test Control Register. Six test patterns can be checked as was
described for the transmitter in Table 2.15: PRBS7 normal and inverted,
PRBS23 normal and inverted, and PRBS31 normal and inverted.
2.3.8.2 Loopback Paths and PRBS Checkers

The HSS EX10 core is a full-duplex configuration containing both trans-
mitters and receivers, and therefore includes the capability to loop the outputs
of the transmitter slices to the inputs of the receiver slices. This permits testing
through the entire datapath of the chip including the analog circuits. If the
transmitter is generating a PRBS or other diagnostic pattern, this pattern can be
validated using the PRBS Checker in the receiver. Table 2.20 illustrates pro-
gramming for the various loopback modes of the HSS EX10 core.

78 High Speed Serdes Devices and Applications

Other cores implementing simplex core configurations containing only
receivers may include simple transmitters and PRBS generator circuits for the
sole purpose of providing a check of the PRBS pattern being sent.

2.3.9 Phase Rotator Control/Observation
The phase rotator is a critical element embedded within the receiver archi-

tecture and by design serves a critical role in the clock recovery function.
Although it is intended to operate automatically and without external interven-
tion, there are cases when some external control is desirable.

The rotator contains a flywheel mechanism which, when enabled, provides
a means of stepping the rotator in the absence of incoming data based on prior
history of the timing characteristics of the data being received. This is intended
to improve jitter tolerance and allow for extended run length data patterns. This
flywheel can be disabled or reset by the Freeze Flywheel and Reset Flywheel
bits of the Phase Rotator Control Register. A snapshot of the current phase
rotator position may be read from the Phase Rotator Position Register.

2.3.10 Support for Spread Spectrum Clocking
The receiver includes support for spread spectrum clocking (SSC). In a

system using SSC, the reference clock frequency of the transmitter is
frequency modulated at a low frequency around the nominal transmission rate.
The receiver’s CDR circuit must have enough range to track this frequency
shift and sample serial data correctly. SSC is typically used in systems to
reduce electromagnetic interference (EMI) by spreading the radiated energy of
the reference clocks and the transmitted data over a range of frequencies. SSC
is required by some standards (including SATA and SAS).

By default, the SSC support is turned off to maximize the jitter tolerance
margin and ensure that the CDR recovers from a loss of lock without a reset.

Table 2.20 Register settings for BIST tests

Test mode

TX test control register RX test control register

Test
pattern
[2:0]

PRBS
Gen

enable
[3]

PRBS
reset
[4]

Test pattern
[2:0]

PRBS
check
enable

[3]

PRBS
reset
[4]

FD
wrap
Sel
[5]

Receiver internal
loopback BIST

“000”
through
“101”

“1” 0->1->0 (must match
TX pattern)

“1” 0->1->0 “1”

External loopback “000”
through
“101”

“1” 0->1->0 (must match
TX pattern)

“1” 0->1->0 “0”

Normal operation ‘XXX’ “0” “0” ‘XXX’ “0” “0” “0”

HSS Features and Functions 79

For the HSS EX10 core, SSC is supported up to !6,000ppm around the local
reference clock modulated with a triangular waveform of no more than 33kHz.
This is sufficient to support common SSC tolerance ranges such as !3,000ppm
or 350/− 5,650ppm. When SSC is being used, the Spread Spectrum Clocking
Enable bit in the Phase Rotator Control Register must be set.

2.3.11 Eye Quality
Channel simulation methods were discussed in Chap.1, as well as the

concept of an “eye” at the output of the receiver. This “eye” does not actually
exist as an analog signal within the design, but rather was a virtual mathe-
matical “eye” in the digital logic domain at the output of the DFE. As such,
there is no method for measuring the signal characteristics of this eye with
test equipment in real hardware.

The channel simulations previously discussed are intended to characterize
a system and allow the system designer to meet signal integrity goals. An
inherent part of this process is to choose FFE coefficients which are optimal
for a given channel design. Note, however, that this optimization is based on
the characterized channels being representative of all systems. If significant
variations exist due to manufacturing tolerances, the chosen coefficients may
not always be optimal. Either excess margin must be built into the system or
yield fallout must be tolerated in order to overcome this. Either of these
impacts system manufacturing cost.

A better approach would be to optimize FFE coefficients dynamically
based on signal measurements within the system. This would require an ability
to “measure” the virtual “eye” at the output of the receiver’s DFE. Such
measurement requires logic features built into the receiver.

The HSS EX10 core does provide eye quality measurement features. The
DFE Data and Edge Sample Register, DFE Amplitude Sample Register, and
the Eye Width field of the Digital Eye Control Register provide parametric
information regarding the eye opening of the received signal. Values are
captured in these registers when directed by the Sample DFE Request bit in the
DFE Control Register. Software pulses this bit, and then polls until the Sample
DFE Request Complete bit is set in this register. After this bit is set, valid
values may be read from the other registers.

In addition, the HSS EX10 provides an alarm mechanism to flag when the
eye opening is less than programmed amplitude or eye width limits. Limit
values are programmed in the Digital Eye Control Register. When parametric
measurements of the received signal violate the Minimum Eye Width Interrupt
Threshold value, the Eye Width Error Flag bit is set in the Internal Status
Register. Likewise, violations of the Minimum Eye Amplitude Interrupt
Threshold value cause the Eye Amplitude Error Flag to be set. Any change to
status bit values in the Internal Status Register for any receive slice in the core
causes the HSSEYEQUALITY output to be asserted.

80 High Speed Serdes Devices and Applications

2.3.12 SONET Clock Output
Some applications require that data be transmitted using a frequency

reference derived from the recovered clock frequency of the received data
(called loop timing). Although the RXxDCLK output reflects the recovered
clock frequency, this output of the HSS core is not differential and therefore is
not readily usable as a reference clock for the transmitter.

The RXxRCVC16T/C pins of the HSS EX10 core provide a differential
clock output which is a suitable reference clock running at the recovered clock
frequency. The Sonet Clock Control Register enables and selects the frequency
of this clock. If not used, the clock should be disabled to reduce power.

Applications using this clock connect the RXxRCVRC16[T,C] pins of one
of the receiver slices to a PLL (for jitter clean-up), and connect the output of
the PLL to the HSSREFCLK[T,C] inputs of another HSS EX10 core driving
the transmit data. (This clock output should never drive the
HSSREFCLK[T,C] inputs of the same core!)

2.3.13 Features to Support PCI Express
The HSS EX10 core includes support for features which are either required

or optional for implementations of the PCI Express standard. These PCI
Express related features in the HSS receiver are described below.
2.3.13.1 Beacon Signaling

Beacon signaling is optional in the PCI Express specification as described
in Sect. 5.5.3.2. When the link is in a PCI Express L2 power state, the trans-
mitter can request exit from this power state by sending a beacon signal.

While the receiver would typically be powered down while the link is in an
L2 power state, power down of the signal detect circuit of the receiver is sep-
arately controlled. The HSS EX10 core includes an RXxSIGDETEN input
which controls power to the signal detect circuit. Link logic continues to enable
the signal detect circuit while in power down states, and can therefore detect
beacon signaling on the link using the RXxSIGDET status output of the core.
2.3.13.2 PCI Express Power States

PCI Express defines a number of link power states which are described in
Sect. 5.5.4. The HSS EX10 core provides a RXxSTATEL1 pin which removes
power from most of the receiver. Link logic may assert this pin when in the L1
power state in order to reduce power dissipation. (Other pins exist on the
transmitter and PLL slices to support PCI Express power states and are
described elsewhere in this chapter.)

2.4 Phase-Locked Loop (PLL) Slice
The PLL slice is usually common to all transmitter and receiver links in the

core. The block diagram of the PLL slice used in the HSS EX10 core is shown
in Fig. 2.12. The primary purpose of the PLL slice is to provide high-speed
clocks to the transmitter and receiver slices that are frequency locked to a

HSS Features and Functions 81

reference clock input. However, this slice is also the natural place to put other
miscellaneous logic which is common to all transmitter and receiver links. In
the HSS EX10, reset sequencers and miscellaneous registers for link reset and
enable are included in the PLL slice.

2.4.1 Reference Clock
The HSSREFCLK[T,C] pins are the reference clock input to the PLL slice

of the HSS EX10 core. The HSSREFCLKT pin is the true leg of the differential
signal pair; the HSSREFCLKC pin is the complement leg. This clock must be
driven by a low-jitter differential clock source for best jitter performance.

Fig. 2.12 Phase locked loop block diagram

HSSREFDIV

HSSREFCLK 0

12

8, 10, 16, 20

HSSDIVSEL1:0

PFD VCO C1

RESET SYNCHRONIZATION

FBCLK

HSSRESYNCCLKIN

HSSRESYNCCLKOUT

REFCLK

HSSRESET
HSSRECCAL

LOCK DETECTED

HSSPLLLOCK

CCALCOMP

LOCK DETECTION

VCO COARSE

CCALCOMP

VCOCOMP/M

HSSPRTADDR
HSSPRTDATAIN
HSSPRTWRITE

LINKEN7:0,
REGISTERS HSSDATAOUT

Controls

HSSPRTAEN

CLOCK
DIVIDERS

C2
C2-90
C4
C8
C16

 LINKRESET7:0

CALIBRATION

LOGIC

STATE MACHINE

82 High Speed Serdes Devices and Applications

2.4.2 Clock Dividers
There are several clock dividers in the PLL slice. On the HSS EX10 core,

the HSSREFDIV and HSSDIVSEL[1:0] pins are control signals for clock
dividers which can be provisioned to support a range of frequency options for
HSSREFCLK[T,C].

HSSDIVSEL[1:0] controls the frequency multiplication factor between the
VCO C1 clock output and the feedback clock (FBCLK). For the HSS EX10
core, 16, 20, 32, or 40 multiplier values are supported.

In addition, the HSSREFDIV input selects whether or not HSSREFCLK is
divided by two prior to the VCO input. If HSSREFDIV is “0” then the
frequency of HSSREFCLK is equivalent to FBCLK; otherwise HSSREFCLK
is twice the frequency of FBCLK. The latter case generally results in better
system jitter performance, however, the drawback is that a higher frequency
HSSREFCLK must be distributed on the chip.

The HSS EX10 PLL Slice also contains additional dividers which divide
the VCO C1 clock output for distribution to the TX/RX slices.

2.4.3 Power On Reset
Power-on-reset is initiated by asserting the HSSRESET pin for a minimum

number of reference clock cycles as shown in Fig. 2.13. The HSSRESETOUT
output of the HSS EX10 is driven active once the core enters a reset state, and
remains active until after the VCO calibration completes and clock outputs of
the core are at stable frequencies. This output may be used as a reset by logic
surrounding the HSS core.

Fig. 2.13 Power on reset (POR) sequence

HSSREFCLK

HSSRESET

HSSRESETOUT

HSSPLLLOCK

Core State RunResync Lock Detect VCO Coarse Calibration Reset

HSSPRTREADY >360ns
>90ns

1.1us3-8us.1 - 64ms

HSS Features and Functions 83

HSSPLLLOCK is asserted once the internal VCO clocks are determined to
be frequency locked to the HSSREFCLK input.

The HSSPRTREADY output pin is deasserted while the core is in a reset
state; and is reasserted when the reset sequence of the PLL slice has completed
and the registers of the transmitter and receiver slices are ready to be written
and/or read. Note that additional initialization of the logic in the transmitter and
receiver slices occurs after this, as is described in Sect. 2.5.

2.4.4 VCO Coarse Calibration
VCO within the PLL requires calibration after a power-on-reset. As is the

case with most VCO designs that must operate over a wide range of frequen-
cies, there are a number of tuning bit inputs to the VCO which must be set to
optimal values to select frequency band and reference voltage level. Setting
these bits can be left as an exercise to the user for some cores; the HSS EX10
core contains state machine logic which determines the optimal tuning settings
without user intervention. Calibration results are reported in the VCO Coarse
Calibration Status Register.

Different VCO calibration algorithms may be employed by HSS cores, and
it is beyond the scope of this text to describe any given algorithm. Some cores
provide registers to allow the user to override values of various tune bits and/or
read tune bit settings and VCO status. Details of such functions are specific to
the PLL slice design.

VCO calibration occurs as part of a reset sequence of the HSS EX10 core.
After the reset completes, the application may force recalibration using either
the HSSRECCAL input pin or the Recalibrate bit of the VCO Coarse Calibra-
tion Control Register.

2.4.5 PLL Lock Detection
The HSSPLLLOCK output is asserted to indicate the PLL is frequency

locked to the selected reference clock. The HSS EX10 core determines the lock
condition by comparing the frequency of the PLL feedback clock (FBCLK) in
Fig. 3.7 to that of the reference clock (REFCLK).

The PLL Lock Detect circuit for the HSS EX10 core is described in detail

one counter clocked by REFCLK. Each of these counters is allowed to run for
some specified period of time. If the number of times one of these counter is
clocked is more or less than the other counter (with some tolerance), then the
clock frequencies are not the same, indicating the PLL is not locked. If the two
counters have counted roughly the same number of clock cycles, then the PLL
is locked, and HSSPLLLOCK is asserted.

The length of time over which the clock frequencies are compared deter-
mines the accuracy of the lock condition being reported. If there is a frequency
delta between the two clocks, but the delta is sufficiently small, then HSS-
PLLLOCK may be reported despite a minor frequency difference.

in Sect. 3.1.4.2. This circuit contains one counter clocked by FBCLK, and

84 High Speed Serdes Devices and Applications

2.4.6 Reset Sequencer
A series of reset signals is distributed in the core to synchronize various

circuit functions in various clock domains. There are various clock dividers
located in both the PLL slice and in the individual transmitter and receiver
slices. The HSS EX10 PLL slice generates reset signals which are sequentially
asserted in order to ensure the circuit exits reset in an orderly manner. Various
divided clock outputs of the PLL slice are gated off during portions of the reset
sequence. This sequence is initiated by assertion of the HSSRESET pin, the
HSSRESYNCCLKIN pin, the HSSRECCAL pin, or the Recalibrate bit of the
VCO Coarse Calibration Control Register.

The reset sequencer is initiated after the VCO calibration completes.
Following completion of the reset sequence, the HSSPRTREADY output is
asserted. Prior to assertion of this signal, the user should not attempt to access
core registers or expect serial data transmission or reception.

Note that the EX10 core has additional initialization actions which must
occur in the individual transmitter and receiver slices after the PLL slice
completes the reset sequence. Other status conditions may need to be checked
to determine whether individual transmitter and receiver slices have completed
their initialization sequence and are ready to use.

2.4.7 HSS Resynchronization
2.4.7.1 Transmitter Resynchronization

The requirement to synchronize the clock dividers of the HSS transmitter
to minimize lane-to-lane skew was discussed previously in this chapter, and is
noted again in subsequent chapters as the application requirements of various
protocols are discussed. The HSS EX10 core exits the reset sequence with the
transmitter clock dividers aligned. (This may not be true for other cores.)
However, subsequent changes to the TX configuration (such as updating the
data width or rate mode selection) affect the operation of the clock divider in
the transmit logic. After updates to the transmitter configuration, the
TXxDCLK outputs of the various HSS TX slices do not have any guaranteed
phase relationship. Any TXxDCLK phase difference introduces skew onto the
transmitter outputs which may exceed the specifications for the application.

To meet such skew specifications the transmit slice logic of the HSS cores
must be resynchronized after being configured in order to realign the phases of
the TXxDCLK. The difficulty of implementing such a resynchronization
function, especially when the alignment must be performed across multiple
HSS cores, should be noted. The clock divider logic divides the internal high-
speed C2 clock down to the frequency at which the parallel data bus is clocked.
The high-speed clock in the HSS EX10 core runs at baud rate divided by 2,
which may be as high as 5.55GHz for this core. In order to successfully
resynchronize the clock dividers in all of the HSS transmit channels, all of the
clock dividers must be reset in the same cycle of this 5.55-GHz clock.

HSS Features and Functions 85

The complexity of this problem increases when multiple HSS cores are
involved. Each core has its own PLL, and while all of the PLLs are assumed to
be locked to the same reference clock, there is some inherent phase variation
between the high-speed clocks produced by each PLL. This reduces the
window in which the reset must occur in order to reset multiple cores in the
same clock cycle.

The typical solution for this problem at lower speeds is to synchronize the
reset to a 5.55-GHz clock, and drive this reset synchronously to all clock
dividers. However, this cannot be implemented in a typical ASIC because the
clock is simply too high a frequency. The propagation delay of the reset signal
from a synchronizer flip-flop to the various HSS cores would exceed the cycle
time of the 5.55-GHz clock.

The HSS EX10 core solves the problem by using a reset which is synchro-
nized to a lower frequency clock, and then distributing this reset and gating it
within the HSS core to ensure all clock dividers in the HSS core are reset in the
same cycle of the high-speed clock.

Two signals on the HSS EX10 core are associated with the resynchroniza-
tion feature:
HSSRESYNCCLKOUT: This output of the HSS EX10 core is the clock used
to synchronize the resync reset signal. Although this clock is of low frequency
than the internal high-speed clock, the frequency is higher than that of the
parallel data clocks. For the HSS EX10 core, the frequency of this clock is
equivalent to the HSSREFCLK input. (This does not mean the HSSREFCLK
can be used instead of using this output. The HSSRESYNCCLKOUT clock
and HSSREFCLK are mesochronous.)
HSSRESYNCCLKIN: This input of the HSS EX10 core is a reset signal
which is asserted to perform the resynchronization function. The signal must
be synchronized to HSSRESYNCCLKOUT.

In order to resynchronize the transmitters of a single HSS core, the chip
designer must implement logic as shown in Fig. 2.14. The Resync Input control
to the circuit is first synchronized to the falling edge of

Fig. 2.14 Resynchronization logic for a single core configuration

Resync Input
(async) Resync

Core # 1

This connection
provides slack stealing

to improve timing margin

HSSRESYNCCLKIN

HSSRESYNCCLKOUT

86 High Speed Serdes Devices and Applications

HSSRESYNCCLKOUT, and then is retimed to the rising edge before driving
HSSRESYNCCLKIN. The flip-flop which drives HSSRESYNCCLKIN
should be physically located near the HSS core pin on the chip.

This logic is extended in Fig. 2.15 to resynchronize multiple HSS cores.
The Resync Input control is first synchronized to the falling edge of the
HSSRESYNCCLKOUT from one of the cores, and then retimed to the rising
edge of each individual HSSRESYNCCLKOUT. Flops are added between this
retiming stage and the HSS core so that the retiming stage can be physically
located near the centralized synchronizer, and the last flop can be physically
located near the HSS core pin. Based on the physical distance between the HSS
cores, additional flops may need to be added.

The configuration of this logic (first synchronizing the Resync Input input
to the falling clock edge, and then retiming to rising edges) is key to
performing the synchronization across multiple cores. While the various
HSSRESYNCCLKOUT clocks are not in phase with each other, the specified
variation is less than half of the clock cycle. Therefore, synchronizing to the
falling edge of one of the clocks ensures that all of the retiming flops see the
signal in the same cycle in their respective clock domains.

Fig. 2.15 Resynchronization logic for a multiple core configuration

Resync Input
(async)

Core # 1

This connection
provides slack stealing

to improve timing margin

HSSRESYNCCLKIN

HSSRESYNCCLKOUT

Core # N
HSSRESYNCCLKIN

HSSRESYNCCLKOUT

Resync
(to all staged pipelines)

Components inside
this box should be
close to each other.

HSS Features and Functions 87

2.4.7.2 Receiver Resynchronization
The resynchronization feature of the HSS EX10 core also synchronizes

clock dividers in the receiver logic. However, RXxDCLK phases diverge on
the receiver during normal operation because the phase rotator logic in each
receiver slice makes independent update decisions as it tracks the recovered
frequency of the receive data. Therefore receiver resynchronization has no
practical purpose in most applications.

2.4.8 PCI Express Power States
PCI Express defines a number of link power states which are described in

Sect. 5.5.4. The HSS EX10 core includes an HSSSTATEL2 pin which
removes power from most of the core including the PLL. Link logic may assert
this pin when in the L2 power state in order to reduce power dissipation. (This
pin overrides the L1 power state controls on the TX/RX slices.)

2.5 Reset and Reconfiguration Sequences
Once the HSS links have been initialized, calibrated, and trained, then data

is transmitted and received through the serial link. However, it is also instruc-
tive to understand the sequences of operations necessary to initialize and
reconfigure the links, including:
• The procedure for initializing, calibrating, and training the link
• Procedures for changing operating parameters of the link (i.e., data rate,

FFE coefficients, etc.)
• Procedures for entering and exiting power down modes.

This section describes these operational sequences. Although the
programming details are described for the fictional HSS EX10 core, the
concepts apply broadly to HSS cores from many vendors.

2.5.1 Reset and Configuration
Power-on initialization of the HSS core requires a complex series of events

to occur within the core. The power-on reset signal (HSSRESET on the HSS
EX10 core) resets registers within the core and initiates this series of events.
First, the PLL is calibrated and locked to the reference clock while the transmit
and receive logic is held in a reset state. Then, the clock dividers in the transmit
and receive logic are initialized and the logic is enabled for transmitting and
receiving data. Once this happens, the CDR circuit in the receive logic must
train on the data eye before data can be received correctly. If the receiver
contains a DFE, this circuit is also trained and filter coefficients are set.

The reset values of the HSS registers may or may not reflect the desired rate
mode, bus data width, transmit amplitude, signal detect threshold, FFE
coefficient values, etc., for the desired application. External intervention (by
hardware state machines or by software programming) may therefore be
required during the initialization process to set appropriate operating modes.

88 High Speed Serdes Devices and Applications

Such programming cannot occur until after the completion of prerequisite parts
of the initialization process. For example, FFE coefficient values and other
transmitter operating mode parameters cannot be programmed before the PLL
is locked because the transmitter is held in a reset state.

A flowchart of the reset process for the HSS EX10 is shown in Fig. 2.16.
Some steps may not apply to a given HSS core, and signal names or status
indications may vary. However, in a general sense these steps (or a subset of
them) apply in most cases. Detailed descriptions of these steps follow:
Apply power. Turn on the power supplies to the core, paying attention to any
power sequencing requirements. If absolute maximum voltages are specified,
voltages should never exceed these values, even for transient periods when the
power is first applied.
Allow time for core input conditions to stabilize. Core inputs, including the
following, must stabilize before continuing:
• Power supply voltages must be stable within recommended operating

ranges.
• The HSSREFCLK input must be stable and operating within specified

frequency limits. Any PLL generating this clock should be locked.
• Core input pins must be stable and at valid logic levels. Some pins may

require specific values to permit the core to initialize properly.
Note that some core outputs may not be defined at this point in the sequence.
For example, the RXxDCLK and TXxDCLK outputs may not be running or
may be running at frequencies other than their normal specifications.
Reset the HSS core. Once the inputs and power supplies are stable, as previ-
ously described, the HSSRESET pin should be asserted and deasserted as

sequence shown in Fig. 2.16, which includes coarse calibration of the VCO.
All input pins on the core which affect PLL operation must be stable through-
out the reset sequence.

While the above description is specific to the HSS EX10 core, any HSS
core with a PLL must execute some form of calibration procedure. This
procedure is initiated by a core reset or other control signal, and a status
indication is asserted upon completion.
Wait for PLL reset completion. This status indication may take different forms
on different cores. On the HSS EX10 core, the rising transition of the
HSSPRTREADY pin indicates completion of the PLL reset sequence.

Depending on the PLL slice architecture and the VCO calibration
algorithm, it is possible for VCO calibration to fail. If VCO calibration fails,
the PLL never locks to the reference clock, and HSSPRTREADY is never
reasserted. Chip logic and/or software should implement a timeout in order to
initiate diagnostic and recovery actions should this circumstance occur.

described in Sect. 2.4.3. The PLL slice of the core then begins the reset

HSS Features and Functions 89

Fig. 2.16 Reset sequence flow

Allow time for core
inputs to stabilize

Apply HSSRESET

Wait for
PLL Reset

Apply Power

Completion

Start

not
stable

false

stable

true

Disable Unused Links

Shut off Transmit Outputs

Set Data Rate and
Bus Width

Set Tx Electrical and
Filter Parameters

Resync the HSS Cores

Load Tx Electrical and
Filter Parameters

Turn on Transmit Outputs

Transmitter Configuration

Update Tx Configuration

Enable Tx Protocol Logic

Disable Unused Links

Set Data Rate, Bus Width,
and Operating Mode

Reset the DFE

Set Spread Spectrum
Clocking Mode

Set Signal Detect
Threshold

Wait for
Rx Training
Completion

false

true

Receiver Configuration

Wait for
Rx Training

Update Rx Configuration

Enable Rx Protocol Logic

Completion

Link Operational

false

true

90 High Speed Serdes Devices and Applications

Registers should not be accessed while VCO calibration is in progress. Internal
clocks are not stable, and registers may be held reset during this process. The
notable exception to this rule applies to registers in the PLL slice which may
be accessed for diagnostic and recovery purposes in the event of VCO calibra-
tion failure.
Update the transmitter configuration (if necessary). After HSSPRTREADY
is asserted to indicate completion of the PLL slice reset, the transmitter begins
to serialize and transmit data on the TXxD inputs based on operational
parameters set by input pin values and/or default values in internal registers for
the transmitter logic. At this point, values of these parameters may be
reprogrammed as needed for the application. This procedure will be covered in
more detail shortly.
Supply parallel data to the transmitter data inputs. Once transmitter
parameters are set for the desired operating conditions, protocol logic drives
transmit data on the TXxD parallel data inputs of the transmitter.
Wait for the receiver to finish calibration. While the transmitter can
commence operation immediately after the reset sequence completes, the
receiver must train on the incoming serial data before valid data can be
received. Both CDR and DFE circuits require a training period before valid
data is received. The time required for the CDR to train is usually relatively
short, however, receivers with DFEs generally required a longer training
period since the training sequence must execute a convergence algorithm to
determine DFE coefficients. For the HSS EX10 core, DFE training may take
up to 410µ s as measured from the assertion of HSSPRTREADY, and
assuming there is serial data to receive on the link when the core exits reset.
The HSS EX10 core provides a status indicator (bit 4 in the Internal Status
Register) indicating completion of DFE training.
Update the receiver configuration (if necessary). After the receiver completes
training, the receiver deserializes and drives data onto the RXxD outputs based
on operational parameters set by input pin values and/or default values in
internal registers. Values of these parameters may be reprogrammed as needed
for the application at this time. This procedure will be covered in more detail
shortly.
Link operational. The receiver now starts to receive valid data. The application
protocol may begin its initialization, performing functions as described in
Chap.4.

2.5.2 Changing the Transmitter Configuration
The reset procedure described above included a step where the configura-

tion of the transmitter is changed. For HSS cores that do not have internal reg-
isters, input pins would presumably be tied to their operational values as
determined by the application, and no updates would be required. However,
HSS cores which have internal registers initially use a default configuration
(determined by register reset values) following the reset sequence. If the

HSS Features and Functions 91

application requires a configuration other than this default, then reprogram-
ming these registers is necessary.

Some applications may also require the transmitter configuration to be
reprogrammed at times other than immediately after a reset. For example,
some protocols negotiate link speed and therefore require reprogramming the
Rate Select controls in the Transmit Configuration Mode Register and the
Receive Configuration Mode Register. Some IEEE 802.3 Backplane Ethernet
variants negotiate FFE coefficients, as is described in Sect. 5.3.5.1.

The following is a general description of the procedure used to change the
transmitter configuration for the HSS EX10 core. This flow is described in
Fig. 2.16 as an expansion of the Update Tx Configuration step. Depending on
the application and the transmitter parameters being updated, some or all of
these steps may be required:
Disable unused links. Some of the transmitter and/or receiver channels may be
unused for some chip designs and applications. HSS cores provide a means of
disabling unused links so that they do not consume power or generate noise.
For the HSS EX10 core, this is performed using a Link Enable Register which
is part of the PLL slice register map. After reset, all links are enabled, and must
be reprogrammed to turn them off if they are not used.
Shut off the transmitter output. The TXxTS can be deasserted to shut off
transmitter outputs while the transmitter is being reconfigured.
Set data rate and bus width. Registers are written and/or core inputs are
changed to select the data rate and the TXxD parallel data bus width. These
settings affect the function of the transmitter clock dividers, and change the
TXxDCLK frequency. As discussed in Sect. 2.2.5.1, this clock may “glitch” or
“sliver” during this transition depending on the core design. If such glitches
can occur, this behavior must be taken into account when designing protocol
logic to connect to the HSS transmitter.
Resynchronize the links. TXxDCLK outputs will not remain in phase with
each other when the data rate and bus width are reprogrammed. Multilane
applications with skew requirements between transmitter lanes require the

of the HSS EX10 core.
Update transmitter electrical and filter parameters. The HSS EX10 core is
representative of the types of electrical and filter parameters which may be
provisionable on a typical transmitter. This core provides register control of the
following transmitter parameters, which can be provisioned at this step in the
process:
• Slew rate (Transmit Driver Mode Control Register – Slow Slew Control)
• Differential voltage amplitude (Transmit Power Register)
• FFE Mode (Transmit Driver Mode Control Register – FFE Mode Select)
• FFE Coefficient Values (Transmit TapX Coefficient Registers)

transmitters to be resynchronized. Sect. 2.4.7 describes resynchronization

92 High Speed Serdes Devices and Applications

Load transmitter electrical and filter parameters. For the HSS EX10 core, the
Apply Load bit in the Transmitter Coefficient Control Register must be written
for most of the above parameters to be applied to the analog circuits.
Note that provisioning of transmitter filter parameters must generally occur
after any updates to the data rate and bus width. FFE designs often scale
operation based on baud rate, and are dependent on the data rate being set
properly prior to updating the mode.
Turn on the transmitter output. If TXxTS was deasserted previously, then it is
reasserted at this time. .

The above procedure can be adapted with steps omitted as necessary based
on which parameters are to be updated. For instance, changing the data rate can
be achieved by reducing the above sequence to only the set data rate and bus
width step. (For multilane applications, the resynchronize the links step is also
required.)

2.5.3 Changing the Receiver Configuration
As was the case for the transmitter, the receiver initially uses a default con-

figuration (determined by register reset values) following the reset sequence.
If the application requires a configuration other than this default, then repro-
gramming these registers is necessary. Additionally, some applications may
also require the receiver configuration to be reprogrammed at times other than
immediately after a reset.

The following is a general description of the procedure that is used to
change the receiver configuration for the HSS EX10 core. This flow is
described in Fig. 2.16 as an expansion of the Update Rx Configuration step.
Depending on the application and the receiver parameters being updated, some
or all of these steps may be required.
Disable unused links. As was the case for the transmitter, some transmitter
and/or receiver channels may be unused for some chip designs or applications.
Unused receiver channels should be disabled. On the HSS EX10 core, the Link
Enable Register is used to disable unused links.
Note that the Link Enable Register on the HSS EX10 core does not disable the
signal detection circuitry. The RXxSIGDETEN pin turns off this circuitry, if
desired.
Set data rate, bus width, and operating mode. Registers are written and/or
core inputs are changed to select the data rate, the RXxD parallel data bus
width, and the operating mode (non-DFE, DFE3, or DFE5 on the HSS EX10
core).
The data rate and bus width settings affect the function of receiver clock
dividers and change the RXxDCLK frequency. As discussed in Sect. 2.3.7.1,
this clock may “glitch” or “sliver” during this transition depending on the core
design. If such glitches can occur, this behavior must be taken into account
when designing protocol logic to connect to the HSS receiver.

HSS Features and Functions 93

Reset the DFE. Changes to the data rate and DFE operating mode generally
cause corruption of data and require reinitialization of the DFE circuit. The
DFE Reset bit in the DFE Control Register of the HSS EX10 forces the DFE
to reinitialize and retrain.
Set spread spectrum clocking mode. If SSC is employed by the application,
this mode is enabled and any parameters are provisioned in this step.
Set signal detect threshold. Different applications specify different threshold
levels to delineate between signal detected and loss of signal conditions. HSS
cores often allow provisioning of the detection threshold for the signal
detection circuit. This threshold should be provisioned, if applicable, in this
step.
Wait for completion of CDR/DFE training. After changing the data rate, DFE
mode, or resetting the DFE, the CDR and (if applicable) the DFE circuits must
retrain. This requires some delay before the receive data is valid. The HSS
EX10 core provides a status indicator (bit 4 in the Internal Status Register)
indicating completion of DFE training.

As was the case for the transmitter, the above procedure can be adapted
with steps omitted as necessary based on which parameters are to be
updated.

2.6 References and Additional Reading
A comprehensive list of interface standards documents for various network

protocols can be found in Sect. 5.6. Refer to that list for more information on
standards mentioned in this chapter.

In addition, the following standards documents are referenced in this
chapter:
1. “IEEE Std 1149.1-2001 IEEE Standard Test Access Port and Boundary-

Scan Architecture”, Institute for Electrical and Electronic Engineers,
2001.

2. “IEEE Std 1149.6-2003 IEEE Standard for Boundary-Scan Testing of
Advanced Digital Networks”, Institute for Electrical and Electronic
Engineers, 2003.

Interested IBM employees and IBM ASIC customers may also wish to
consult the following IBM HSS databooks. The HSS EX10 core described in
this chapter was loosely based on these cores.
3. “High Speed Serdes (HSS) – 8.5 to 11.1 Gbps for Cu-08 Core Databook”,

SA15-5852-04, IBM.
4. “High Speed Serdes (HSS) – PCI Express Gen 2 for Cu-08 Core

Databook”, SA15-5846-02, IBM.

94 High Speed Serdes Devices and Applications

2.7 Exercises
1. An HSS EX10 transmitter slice is operating at 8.5Gbps. What is the

frequency of the TXxDCLK output corresponding to the following
configuration values for the Transmit Configuration Mode Register?
What pins of the TXxD bus are used for each of these configurations?
(a) 0x00 (b) 0x04 (c) 0x01. (d) 0x0E
(e) 0x0D (f) 0x03 (g) 0x0F. (h) 0x05

2. An HSS EX10 receiver slice is operating at 10.3125Gbps. What is the
frequency of the RXxDCLK output corresponding to the following
configuration values for the Receive Configuration Mode Register? What
pins of the RXxD bus are used for each of these configurations?
(a) 0x00 (b)0x04 (c)0x01 (d)0x0E (e)0x0D (f)0x03 (g)0x0F (h)0x05

3. Specify a series of register write cycles (specifying register address and
data) that resets the FFE coefficient logic and then programs the registers
of the HSS EX10 to set and apply the following parameters:
• FFE Coefficients (decimal): C0 = − 3, C1 = +18, C2 = +14
• Transmit Amplitude: 0x70
• Slew 50ps min.

4. The Link Enable Register and the Link Reset Register are both
implemented in the HSS EX10 PLL slice even though these registers
control the transmitter and receiver slices. Why?

5. What value should be written to the Link Enable Register to disable the
following combinations of channels?
(a) Disable TXA, TXB, and RXA
(b) Disable TXD and RXD
(c) Disable all channels except TXA and RXD

6. Specify a series of register write cycles (specifying register address and
data) that switches all transmitter channels from Full-Rate mode to
Quarter-Rate mode.

7. Specify the reference clock frequencies, PLL slice HSSDIVSEL and
HSSREFDIV pin values, and Transmit Configuration Mode Register
setting necessary to achieve the following baud rates. Note that there may
be multiple correct answers:
(a) 8.500Gbps (b) 2.125Gbps (c) 1.250Gbps
(d) 3.125Gbps (e) 10.3125Gbps

HSS Features and Functions 95

8. Assume HSS EX10 PLL slice pins are tied as follows: HSSDIVSEL = 00,
HSSREFDIV = 1. Specify the reference clock frequencies and Receive
Configuration Mode Register setting necessary to achieve the following
baud rates.
(a) 8.500Gbps (b) 2.125Gbps (c) 1.250Gbps
(d) 3.125Gbps (e) 10.3125Gbps

9. Two HSS EX10 cores are used in a SONET application requiring a baud
rate of 2.488Gbps. The transmitter must transmit data at exactly the same
baud rate as the received data:
(a) Draw the clock connections between the two HSS EX10 cores that

are necessary to implement this system.
(b) For the HSS EX10 being used to receive the SONET data, specify the

reference clock frequency, PLL slice HSSDIVSEL and HSSREFDIV
pin values, the Receive Configuration Mode Register setting, and the
SONET Clock Mode Register setting.

(c) For the HSS EX10 being used to transmit the SONET data, specify
the PLL slice HSSDIVSEL and HSSREFDIV pin values, and the
Transmit Configuration Mode Register setting.

10. Why is it not possible to connect JTAG Boundary Scan Cells directly onto
the serial data?

11. Name all of the HSS EX10 transmitter slice pins associated JTAG 1149.1
or 1149.6 implementation, describe the function of these pins, and
describe how these pins are connected.

12. Name all of the HSS EX10 receiver slice pins associated JTAG 1149.1 or
1149.6 implementation, describe the function of these pins, and describe
how these pins are connected.

13. What additional test coverage is provided by JTAG 1149.6 over that of
JTAG 1149.1? Which pins of the HSS EX10 are specifically associated
with JTAG 1149.6 and are not used for JTAG 1149.1?

14. Assume the HSS EX10 receiver is programmed such that data is received
on RXxD[19:0]. This receiver is used in an application where the bit
sequence “11000000110011111100” is used as a training pattern. Design
a state machine which has an input training_active, and an output which
controls the RXxDATASYNC pin on the HSS EX10 receiver slice. When
training_active is asserted, the state machine pulses RXxDATASYNC as
needed until the training pattern is aligned on the correct bit boundary.

96 High Speed Serdes Devices and Applications

15. Table 2.18 specifies two thresholds for the RXxSIGDET signal detect
function on the HSS EX10 receiver slice:
(a) Explain the difference between the “good” signal and “bad” signal

thresholds.
(b) What can you say about the state of RXxSIGDET when the amplitude

of the received signal is between the “good” signal and “bad” signal
thresholds.

16. The HSS EX10 TXA and RXA slices are to be placed in a wrap mode and
tested using a PRBS23+ sequence. Specify a series of register write
cycles (specifying register address and data) that executes this sequence.

17. An HSS EX10 transmitter and receiver are to be externally connected in a
wrap configuration and tested using a PRBS31-sequence. Specify a series
of register write cycles (specifying register address and data) that
executes this sequence.

18. The HSS EX10 TXA and RXA slices are to be tested using pins on the
core to control the PRBS test. Draw a timing diagram illustrating the
sequence of events on the relevant pins.

19. Specify a series of register read and write cycles (specifying register
address and data) that captures and reads the phase rotator position for the
HSS EX10 receiver slice.

20. Specify a series of register read and write cycles (specifying register
address and data) that captures and reads the DFE data, edge, and sample
values for the HSS EX10 receiver slice.

21. Specify a series of register read and write cycles (specifying register
address and data) that sets alarm thresholds for the digital eye amplitude
and width. The eye amplitude alarm should be triggered if the eye
amplitude is less than 25% of the full signal range, and the eye width
alarm should be triggered if the eye width is less than 0.33 UI.

22. Specify a series of register read and write cycles (specifying register
address and data) that sets alarm thresholds for the digital eye amplitude
and width. The eye amplitude alarm should be triggered if the eye
amplitude is less than 50% of the full signal range, and the eye width
alarm should be triggered if the eye width is less than 0.39 UI.

HSS Features and Functions 97

23. The relationship between HSSREFCLK, FBCLK, and various C1, C4,
etc. clocks is illustrated in Fig. 2.12. For each reference clock frequency
and divider setting below, determine the frequencies of the FBCLK, C1,
C2, C4, C8, and C16 clocks:
(a) f (HSSREFCLK) = 500MHz, HSSDIVSEL = 11, HSSREFDIV = 0
(b) f (HSSREFCLK) = 900MHz, HSSDIVSEL = 11, HSSREFDIV = 1
(c) f (HSSREFCLK) = 550MHz, HSSDIVSEL = 10, HSSREFDIV = 0
(d) f (HSSREFCLK) = 1GHz, HSSDIVSEL = 00, HSSREFDIV = 0
(e) f (HSSREFCLK) = 1GHz, HSSDIVSEL = 01, HSSREFDIV = 0

24. Assume the VCO in the HSS EX10 PLL slice requires an operating range
of 8.0–11.0 GHz for the C1 clock. How would you configure the HSS
EX10 to achieve a baud rate of 5Gbps?

25. Draw a logic diagram for the resynchronization logic necessary to
resynchronize four HSS EX10 cores which are subdivided into two
groups of two cores each. Each group is to be resynchronized
independently.

26. Draw a logic diagram for the resynchronization logic necessary to
resynchronize four HSS EX10 cores which are subdivided into two
groups of two cores each. A resync_mode control input is used to select
which of two resynchronization configurations is to be used. If
resync_mode = 0, then each group of two cores is resynchronized
independently. If resync_mode = 1, then all four cores are resynchronized
together.

27. Specify a series of register read and write cycles (specifying register
address and data) that sets the following configuration for all of the HSS
EX10 transmitter slices:
• Half rate mode
• 16-bit data bus width
• FFE coefficients (decimal): C0 = –3, C1 = +33, C2 = +14
• Transmit amplitude: 0x68
• Slew 50ps min.

28. Specify a series of register read and write cycles (specifying register
address and data) that sets the configuration listed in Exercise 27 for the
TXA and TXB slices of an HSS EX10 core, and sets the following
configuration for the remaining transmitter slices:
• Quarter-rate mode
• 10-bit data bus width
• FFE coefficients (decimal): C0 = +7, C1 = +35, C2 = −9
• Transmit amplitude: 0x5C
• Slew 50ps min.

98 High Speed Serdes Devices and Applications

29. Specify a series of register read and write cycles (specifying register
address and data) that uses the FFE Mode in the Transmit Driver Mode
Control Register of the HSS EX10 to disable all transmitter outputs, and
then update the configuration of all transmitter slices as described in
Exercise 27. Transmitter outputs should not be enabled until all
configuration updates have been made.

30. Explain why the PLL reset sequence must complete before the transmitter
and receiver configurations can be updated.

31. Specify a series of register read and write cycles (specifying register
address and data) that sets the following configuration for all of the HSS
EX10 receiver slices. Your sequence should include a DFE reset.
• Full-rate mode
• 20-bit data bus width
• DFE3 mode
• Spread spectrum clocking enabled
• Signal detect enabled and set for threshold value 0x12

32. Specify a series of register read and write cycles (specifying register
address and data) that sets the configuration listed in Exercise 31 for the
RXA and RXB slices of an HSS EX10 core, and sets the following
configuration for the remaining receiver slices. Your sequence should
include a DFE reset:
• Full-rate mode
• 16-bit data bus width
• DFE5 mode
• Spread spectrum clocking disabled
• Signal detect disabled

33. Specify a series of register read and write cycles (specifying register
address and data) that disables all transmitter outputs (using appropriate
registers), switches the data rate of all transmitter and receiver slices of an
HSS EX10 core to quarter rate mode, and enables the transmitter outputs
again. This sequence should not change any other configuration
parameters, and should reset the DFE if needed.

34. Provide a state diagram for a state machine which executes the sequence
shown in Fig. 2.16, ending after PLL Reset Completion block. State
transitions should be determined by appropriate HSS EX10 core status
signals, where applicable, and signals from timer circuits otherwise.

Chapter 3
HSS Architecture and Design

The tutorial example of the HSS EX10 core was introduced in Chap.2, and
was described from a user’s point of view. The description of this core is
continued in this chapter to cover architecture, major subsections, circuit
basics, and core construction. This description serves as an example of an
approach to Serdes architecture and design since a comprehensive treatment of
the subject would require an entire textbook.

As depicted in Fig. 3.1, the Serdes core contains three major sections (or
slices using the nomenclature introduced in Chap. 2). The HSS EX10 is
configured in a full duplex arrangement with both transmitter and receiver
functions present. Simplex cores contain either transmit or receive functions.

The phase-locked loop (PLL) slice provides the low jitter clocks for both
transmit and receive functions.

Fig. 3.1 Serdes core overview

PARALLEL

 CDR

RXP

RXN DFE

SERIAL

PARALLEL
 TO

 CDR

RXP

RXN DFE

SERIAL

PARALLEL
 TO

 CDR

RXP

RXN DFE

16 / 20
PARALLEL

 SERIAL
 TO

 TX FFE
TXD

TCLK

TXP

TXN

16 / 20
PARALLEL

 SERIAL
 TO

 TX FFE
TXD

TCLK

TXP

TXN

16 / 20
PARALLEL

 SERIAL
 TO

 TX FFE
TXD

TCLK

TXP

TXN
Parallel

Serial
To Tx FFE

TXD

TCLK

TXP

TXN

REFCLK

PFD

LPF

Divider
(N=16,20, 32, 40)

LC VCO

Serial

Parallel
To

 CDR

RXD

RCLK
RXP
RXN DFE

 C
4_

0/
90

 QP

PLL Slice

Tx Slice

Rx Slice

 C
2_

0/
90

16 / 20
32 / 40

C
L

K
G

E
N C

16
 C

8

Se
ria

l L
oo

pb
ac

k

16 / 20
32 / 40

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 99
© Springer 2008

100 High Speed Serdes Devices and Applications

The Transmitter (Tx) Slice performs the parallel to serial conversion as
well as supporting various feed forward equalizer (FFE) functions. Serialized
data is driven from the transmitter to the receiver for built-in self-test (BIST).

The final slice is the Receiver (Rx) slice where receive side equalization (either
a continuous-time equalizer or a decision feedback equalizer (DFE)) improves the
bit error rate (BER). Once the receive signal is equalized, the serial stream is then
driven through the serial to parallel converter (also called deserialization).

Each of these slices is covered in detail in the subsequent sections.

3.1 Phase-Locked Loop (PLL) Slice
The PLL slice contains a number of critical “centralized” functions that are

shared by the various transmit and receive slices. The PLL slice of the HSS
EX10 core services four pairs of transmitter and receiver slices. In practice, a
PLL slice may typically service up to eight pairs of Tx/Rx slices for full duplex
configurations, or up to 16 simplex transmitter or receiver slices. By sharing
the PLL slice across numerous channels, the area and power dissipation can be
amortized over the various Tx/Rx pairs, leading to substantially improved effi-
ciency. Of course, the down side to sharing the PLL is that the frequency of
operation for all channels is restricted to a single baud rate and binary subrates.
The PLL slice of the HSS EX10 drives a single frequency C1 clock to each
Tx/Rx slice, and each slice is provisioned to operate at either full rate, half rate,
quarter rate, or eighth rate as described in Sects. 2.2.5 and 2.3.7. In most appli-
cations this restriction causes no impacts. In applications where per-channel
baud rate programmability is desired, the chip designer ends up trading off the
area/power of additional PLL slices for this programmability.

A high-level block diagram of the PLL slice is shown in Fig. 3.2. There are
six major functions that reside in the PLL slice, including the PLL Macro,

Fig. 3.2 PLL slice block diagram

IREFx

PFD

Divider
PLL Macro

Current
Reference
Generation

}(to slices)

DIV 2 QP

DIV 2

DIV 2

DIV 2

Clock Distribution

C2_0P/N

C8P/N

C16P/N

Bandgap

Reference

REFCLKP/N

Reference Circuits

PLL Logic Voltage
Regulator

Level
Translator

C2_90P/N

Voltage

C4_0P/N
C4_90P/N

HSS Architecture and Design 101

Clock Generation and Distribution, Reference Circuits, Voltage Regulator,
PLL Control Logic, and Digital Control Signal Level Translators. A detailed
description of each block is covered in the following sections.

3.1.1 PLL Macro
The PLL Macro performs frequency synthesis and is the most important

macro in the PLL slice. At a high level, the input to the PLL is an on-chip
reference clock (at 1/16th to 1/40th of the baud rate) from which the PLL
synthesizes the full rate C1 differential clock. The nomenclature used
extensively in this chapter is to encode the subrate frequency in the clock name.
For instance, a SerDes running at 10Gbps would have a C1 clock at 10GHz.
Subrate clock examples are:

C2 = 10GHz / 2 = 5GHz,
C4 = 10GHz / 4 = 2.5GHz,

and so forth. Using the C1 clock, the clock distribution macro provides the
various subrate clocks using a cascade of differential divide-by-2 circuits
(ripple divide approach).

The architecture of the PLL Macro shown in Fig. 3.3 utilizes a classic Charge
Pump PLL approach described in numerous textbooks [1–5]. One of the most
critical design parameters of this PLL is that it must deliver a high quality clock
with minimal random jitter (RJ). At speeds above approximately 4GHz, meeting
stringent RJ specifications is only feasible using an LC-tank- based VCO. Many
monolithic integrated PLL designs use a ring of voltage- controlled delay
elements to form the oscillator. These ring-based VCOs are compact and can be
low power, however, their phase noise performance is not sufficient for I/O class
links due to the resulting RJ. The VCO in the HSS EX10 PLL slice is controlled
via a combination of coarse and fine control values. The fine control is driven
into the VCO as an analog control voltage. In addition, to lower the gain of the
VCO, a band selection scheme is implemented using a 4-bit binary weighted
input vector which controls the coarse tuning of the VCO by selecting one of
sixteen possible varactor combinations, resulting in 16 bands.

The remainder of the PLL follows a classic Charge Pump PLL
construction. Per Fig. 3.3, the REFCLK signal enters into the PLL through the
differential to single ended converter. The loop is then formed with the phase-
frequency detector (PFD), the Charge Pump (QP), a passive second-order loop
filter, the LC VCO, and an appropriate feedback divider. To maintain a
constant PLL bandwidth, the charge pump current is varied such that the
product of the charge pump current and the feedback divider value is a
constant. The various output frequency ranges, charge pump currents, and
feedback divide ratios are optimized to minimize the RJ.

102 High Speed Serdes Devices and Applications

Fig. 3.3 PLL macro block diagram

3.1.2 Clock Distribution Macro
The clock distribution macro contains two main functions. The first of these

is the ripple divider which uses the C1 differential clock to produce the
symmetric C2_0 (in-phase) and C2_90 (quadrature or I/Q phase) clocks.
Fig. 3.4 illustrates a simple symmetric current mode logic (CML) master/slave
flip-flop that performs this function. The design of the I/Q clock generator
separates a single master/slave flip-flop into two individual latches. The
outputs of each of these latches provide the I/Q clocks. Careful attention to the
loading at each output is necessary to assure the outputs remain locked in
quadrature; any loading imbalance would skew the separation.

Another major source of I/Q error arises due to duty cycle distortion (DCD)
on the C1 clock. The two latches trigger on the rising and falling edges of this
clock, and any DCD inducing timing variation of these edges relative to their
ideal placement directly impacts the separation.

Note that all of the signals are differential and therefore both polarities of
each clock are produced. Thus, this clock generation function produces the
four phases of clock needed for the receiver slice with phase offsets of 0, 90,
180, and 270°.

REFCLK

PFD

Divider
(N=16,20,32,40)

LC VCO

 QP

Loop Filter

C1P
C1N

LinAmp

 Band
 SelectB0-B3

HSS Architecture and Design 103

Fig. 3.4 Symmetric I/Q clock generation
Using similar divide-by-2 structures, the C4_0 and C4_90 clocks shown in

Fig. 3.2 are created. The remaining C8 and C16 clock outputs are created using
this topology; however, in the case of the HSS EX10 core, only one phase is
required for these clocks.

The outputs of the clock divider circuits are buffered to drive the clock
transmission lines to the transmitter and receiver slices. Since the transmitter
slice uses these clocks as a timebase, the duty cycle of these clocks is impor-
tant. Any DCD will produce jitter on the serial data output of the transmitter
slice. Additional circuitry may be added in some cases to actively control the
clock duty cycle. In addition, depending on the core configuration and number
of ports being serviced by the given PLL slice, multiple buffers are commonly
used to drive the associated load.

Depending on the operating mode provisioned for the Tx/Rx slices, some
of the clock dividers in Fig. 3.2 may be powered down to save power. For
example, if the Tx/Rx slices are operating in full-rate mode (using the C2 clock
variants), the C4, C8, and C16 dividers can be powered down. Note that power
control logic needs to consider the operating modes of all channels on a given
core in order to determine which clocks may be powered down.

3.1.3 Reference Circuits
The PLL Slice reference circuits generate various current and voltage

references required for proper operation. Fig. 3.5 depicts a simplified version
of this reference circuitry, the heart of which is a bandgap voltage reference
circuit. This circuit provides an ultra-stable output voltage based on the silicon
bandgap, providing a constant voltage independent of power supply,
temperature, and process. This voltage is ~1.22V for the HSS EX10.

The bandgap voltage provides the reference input to the PLL Voltage
regulator, the output of which is the primary power supply for the PLL. (A
1.2V VRR12 supply is used in the HSS EX10 PLL.) The voltage regulator
circuit uses a linear regulator scheme consisting of an op-amp, an NFET pass
element, and a passive feedback divider. For the HSS EX10, the total current
demand for the PLL circuit is in the range of 25–40mA. To provide adequate

D Q D Q C2_90P/N

 C2_0P/N

 C1 Clock

 latch latch

NOTE: all signals are differential

104 High Speed Serdes Devices and Applications

performance, the NFET device is chosen to be an low-Vt (LVT) variant and
typically is extremely large with device widths typically measured in
millimeters. The feedback divider reduces the common mode voltage of the
op-amp input, which improves gain and overall op-amp performance.

A key performance metric for a voltage regulator is the power supply
rejection ratio (PSRR), which is a measure of noise rejection on the power
supply input. The voltage regulator in the HSS EX10 provides a minimum of
15 dB PSRR over the AVdd power supply input, which helps minimize supply
induced noise on the sensitive PLL control inputs. As is the case for all linear
voltage regulators, the design must maintain significant gain and phase margin
in the negative feedback paths, and therefore various compensation capacitors
are needed which are not shown in Fig. 3.5.

The final section in Fig. 3.5 is the Current Reference generator. The output
of this circuit consists of one or more current sink outputs, typically in the
50–100 µ A range. As shown in the figure, current is pulled into the NFETs. In
each of the various Tx/Rx slices, a PFET current mirror is used to create local
replicas of the main IREF signal. This topology is typically chosen to minimize
the number of IREF mirrors (one PFET mirror feeds each NFET mirror) from
the bandgap reference to the point of use inside the Tx/Rx slices.

Fig. 3.5 Simplified reference circuitry

Bandgap

+

-

Reference

VRR12
(to PLL)

+

-

to Tx/Rx Slice IREF Inputs

AVDD

Voltage Regulator

Current Reference

HSS Architecture and Design 105

3.1.4 PLL Logic Overview
The PLL logic macro is a synthesized logic macro that accomplishes a

number of critical PLL logic functions. It also provides the necessary controls
to various analog circuits in the PLL as well as transfer of configuration and
status data. Functions include power-on-reset, reset synchronization, VCO
coarse calibration, and PLL lock detection. The VCO coarse calibration and
PLL lock detection functions are key, and are described in more detail below.
3.1.4.1 VCO Coarse Calibration

As described previously, an LC-based VCO is required to meet stringent RJ
specifications. A coarse/fine control scheme is used to minimize VCO gain.
Calibration of the VCO coarse control is a critical function implemented in the
PLL logic. The LC-based VCO has a four-bit (16 band) digital control vector
which must select the appropriate band upon power-up. This selection is
performed in two steps, starting by checking each band for a valid PLL Lock
(as described in Sect. 3.1.4.2). The algorithm then chooses the best band for
which PLL Lock can be achieved. In order to determine the best band, the
center frequencies of the bands must be measured and the difference between
the band center and the operating reference clock frequency is calculated. The
smallest delta frequency difference for the reference clock frequency is
considered to be the best band selection.

As an example, the graph in Fig. 3.6 shows various bands as a function of
frequency. The x-axis represents the VCO band control voltage range. The far
left indicates the minimum control voltage and hence minimum VCO
frequency for each band. Likewise, on the far right is the maximum control
voltage and maximum frequency. The y-axis depicts the VCO frequency. The
delta frequency is measured by first forcing the VCO control voltage to its
maximum value, and the corresponding maximum frequency of the band is
measured. Next, the VCO control voltage is forced to its minimum value, and
the minimum frequency of the band is measured. These two frequencies are
averaged and the result represents the center frequency of the band. The delta
between the center frequency of the band and the reference frequency is
calculated. The coarse calibration algorithm simply picks the band that has the
smallest difference between the desired frequency and band center.

The dotted line for Fdesired in Fig. 3.6 indicates an example of a desired
PLL operating frequency. This frequency can be serviced by three different
bands, indicated by the squares at the intersections of the dotted line and the
lines for bands 3, 4, and 5. For this example, the coarse calibration algorithm
would begin at band 0. Since dotted line for Fdesired does not intersect the line
for band 0, the PLL cannot lock for this band. Similarly, bands 1 and 2 cannot
achieve lock. When the algorithm reaches band 3, PLL lock is achieved with a
relatively large positive control voltage. The algorithm computes the
difference between the locked frequency and center of the band (the solid
vertical line), and then continues examining bands 4 and 5. After exhausting
all possibilities, the algorithm selects band 4 given that the intersection of the
Fdesired line and the band line is closest to the center frequency.

106 High Speed Serdes Devices and Applications

Fig. 3.6 VCO coarse calibration example

Fig. 3.7 Block diagram of PLL lock detect

Vmin Vmax

Fdesired

Band0

Band1

Band2

Band3

Band4

Band5

Band6

select Band4

Vcenter
0-V +V

A

Compare
Counter

REFCLK

FBCLK

Counter

LOCKDET

Detect
Lock

B
Detect
Lock

REF Timer

PLL Timer

HSS Architecture and Design 107

3.1.4.2 PLL Lock Detection
Figure 3.7 depicts the PLL Lock Detection circuitry implemented in the

PLL Logic of the HSS EX10 core. As shown in the figure this lock condition
is determined using the 2-bit counters, one for the reference clock and one for
the feedback clock within the PLL. The two counters are initialized at different
values with a separation count of two. If these counters do not equal each other
within a specified timeout period, then the PLL lock signal is asserted high to
indicate lock. If the clocks are not frequency locked, then at some point the
compare function will detect equal values in the counters and the lock
detection is deasserted.

The reference clock and feedback clock also clock the respective timer
circuits shown in the figure. These timers generate a periodic timeout signal. If
the comparator does not detect equal counter values within the timeout period,
the corresponding PLL lock indicator is set. If both PLL lock indicators are set,
then the LOCKDET output is asserted. This lock indication is generated using
timers in both clock domains to ensure both clocks are oscillating. The
LOCKDET output shown in Fig. 3.7 drives the HSSPLLLOCK output of the
HSS EX10 core.

The length of the timeout period determines the accuracy of the lock
condition being reported. If there is a frequency delta between the two clocks,
but the delta is sufficiently small, then LOCKDET may be reported despite a
minor frequency difference. For this to happen, the frequency delta would need
to be small enough so that it does not accumulate two clock cycles of difference
within the timeout period. The HSS EX10 core uses 10-bit timer counters, so
this delta would need to be less than 2 divided by 1024, or approximately
1,953ppm.

3.2 Transmitter Slice
Figure 3.8 illustrates a simplified block diagram of the HSS EX10

transmitter slice. The transmitter is implemented using a mixed signal
approach, combining custom high-speed CML and static CMOS circuitry with
a synthesized standard cell digital logic macro. To achieve the high rates of
speed involved (at 10Gbps a C2 clock frequency of 5GHz is required), most
circuits are implemented using a CML topology.

The PC2, PC4, PC8, and PC16 clock inputs in the lower right corner of
Fig. 3.8 are driven by the C2, C4, C8, and C16 clock outputs of the PLL slice
clock distribution macro. The MUX selects the appropriate clocks as
determined by the Rate Select bits of the Transmit Configuration Mode
Register described in Table 2.6. The selected clock enters the clock divider
block. This clock is driven onto the C2 clock output of the clock divider and
clocks the three stage shift register which forms the basis of the FFE. This
clock is also divided to provide C4, C8, and LC8 clocks to other transmitter
circuits.

108 High Speed Serdes Devices and Applications

Fig. 3.8 High-level transmitter block diagram
The driver stage shown in Fig. 3.8 uses a C2 half-rate clock as was

described by the second driver architecture in Fig. 1.16. The FFE shift register
consists of three stages and is 2-bits wide, and the multiplexors shown in
Fig. 3.8 between shift register stages implement the last stage of serialization.
The half-rate clock is used to clock these multiplexors, providing the timing
reference for the outbound bits. On the primary FFE tap, DEVEN is selected
when the clock is high and DODD is selected when the clock is low.

There are three taps in the FFE shown in Fig. 3.8: The cursor tap is
highlighted in gray and there is one precursor tap and one postcursor tap. Each
tap is serviced by a segment consisting of an XOR gate (which provides
individual polarity control), a predriver stage, and a driver output stage. The
three segments are summed together at the output node driving the TXxOP/N
pins. The magnitude of the tap weights is controlled by a combination of the
Power IDAC (controlled by the Transmit Power Register) and individual
Coefficient DACs (controlled by the Transmit Tap0–2 Coefficient Registers).

50

VTT

P0

50

P1 P2

C0
C1
C2Po

w
er

TxOP
TxON

TestRcv

DEVEN

DODD

D Q

D Q D Q

D Q D Q

D Q8:
2

Se
ria

liz
er

PC16
PC8
PC4
PC2

Fr
om

 P
LL

C
lo

ck
 D

is
tri

bu
tio

n
}Dividers

C2C4

LC8

C8

(Std Cell)

Logic
Serializer

TXDCLK

8/10/16/20

TXD[19:0]

ID
A

C

HSS Architecture and Design 109

An FFE coefficient update macro (residing in the standard cell logic section)
adjusts coefficient values at the circuit to enforce a constant driver output
power for any combination of coefficients and polarities as was described in
Sect. 2.2.3. As coefficients are initialized or updated, this logic calculates the
appropriate internal amplitude (K) to maintain the overall output power (and
differential output peak-to-peak swing) at the constant level defined in the
Transmit Power Register.

Driver termination is nominally set at 50Ω and achieved by using on-chip
uncalibrated precision resistors. This corresponds to a 100-Ω differential
termination. The termination is biased by the AVtt power supply.

3.2.1 Feed Forward Equalizer (FFE) Operation
The tap ranges and resolutions for the HSS EX10 FFE circuit were

described in Table 2.12, and this table is repeated in Table 3.1. In a non-
equalized case, the main tap provides 100% of the driver output amplitude. As
shown in the table, this limit corresponds to the maximum current that this tap
can provide. Limits for other taps were chosen after empirical studies of
equalization solutions for a variety of channel design examples.

Figure 3.9 illustrates a simplified generic FFE example. A simplified half-
rate FFE architecture is shown in Fig. 3.9a, and is representative of the circuit
in Fig. 3.8. This example explores a two-tap FFE case (i.e., FFE Mode Select
set to “FFE2” in the Transmit Driver Mode Control Register as described in
Table 2.6). The cursor and postcursor taps are set at +0.8 and − 0.2,
respectively. Figure 3.9b illustrates the various signal waveforms and the
resulting FFE output. The Serial Data or x(t) signal in Fig. 3.9b is the serial
data input to the FFE circuit. The x(t–T) and –x(t–T) signals are noninverted
and inverted polarities of the original signal delayed by one-bit time. Finally,
the Tx OUT or y(t) signal is the Tx Output waveform, and can be expressed by
the following mathematical summation:

Tx Out = y(t) = 0.8 x(t) – 0.2 x(t – T), (3.1)
where the signals y(t), x(t), and x(t–T) were defined above, and T is one-bit
time (or 1 UI).

Table 3.1 Transmitter FFE summary

Tap coefficient # 0 1 2

Max current (mA) 7.5 30 15

Relative max (%) 25 100 50

DAC resolution (bits) 6 8 7

Tap allocation Precursor Main tap Postcursor

110 High Speed Serdes Devices and Applications

Fig. 3.9 Example of feed forward equalizer operation
This example clearly illustrates how postcursor equalization affects the

output waveform. Each time the input waveform transitions up or down, the
instantaneous output increases in amplitude to a peak value of unity (the sum
of 0.8 + 0.2), producing a larger amplitude for one-bit time. The resulting
waveform has increased high frequency content, which compensates for the
high frequency loss of the channel.

To illustrate the performance advantage of using FFE in a system, before
and after measurements were made on a 20-in. FR4 lossy backplane with
approximately 10dB of loss at 3.2GHz (6.4Gbps example). Figure 3.10
depicts two eye diagrams from real hardware measurements. Eye diagrams
were introduced in Sect. 1.2.3, and are a common method of illustrating
transmit and receive signals in serial links.

In Fig. 3.10a, there is a substantial amount of eye closure due to high
frequency loss of the channel. The eye is barely open, and as a result the
channel is operating with very little margin.

x(t)

x(t-T)

-x(t-T)

Tx OUT

c0 c1

Tx OUT

+0.8 -0.2

a)

b)

DEVEN

DODD

D Q

D Q D Q

D Q D Q

D Q

y(t)

x(
t)

x(
t-T

)

y(t)

Serial Data

x(
t+

T)

where T= 1 bit time or UI

c2

HSS Architecture and Design 111

Fig. 3.10 Feed forward equalizer measured results
Figure 3.10b shows the behavior of the system when the FFE is optimally

configured. The operating margin of this link is substantially improved as seen
by the eye diagram. Note that the outer edge of the eye amplitude has been
reduced in response to the subtractive nature of the FFE. In fact, while
extensive FFE equalization can be applied to very lossy channels, eventually
the receiver sensitivity limits system performance as the FFE optimized eye
shrinks vertically. Therefore, there exists a finite amount of FFE equalization
that can be employed. This limit is related to the receiver sensitivity and
maximum transmitter launch voltage.

(a
) S

ig
na

l E
ye

 a
t R

ec
ei

ve
r

(b
) S

ig
na

l E
ye

 a
t R

ec
ei

ve
r

w
ith

ou
t F

FE
 E

qu
al

iz
at

io
n

w
ith

 O
pt

im
iz

ed
 F

FE

112 High Speed Serdes Devices and Applications

3.2.2 Serializer Operation
Serialization of the even and odd data streams from Fig. 3.8 is illustrated in

Fig. 3.11. A simplified schematic of the 2:1 Serializer is shown in Fig. 3.11a.
This simple tree structure has been successfully used at speeds over 40Gbps in
CMOS technologies and over 132Gbps in SiGe technologies. The key design
constraint that enables using this architecture for high baud rates is as follows:
the Tsq propagation delay of the multiplexor (from the select input to the
multiplexor output) must be less than the Tcq propagation delay of the latch
(from the clock input to the latch output).

This is illustrated in Fig. 3.11b. The two bits of parallel data, DEVEN and
DODD, are assumed to be time-aligned into the serializer and are synchronized
to the half-rate C2 clock. The first two latches capture the parallel DEVEN and
DODD signals, creating De and Do outputs on the rising edge of the C2clk
signal. The Do′ signal is generated by resampling the Do signal on the falling
edge of the C2 clock. These two signals are skewed by 1 UI and provide the
inputs to the 2:1 MUX. The C2 clock controls the select input of this MUX
such that when the De input is selected when the clock is low, and Do′ is
selected when the clock is high. If Tsq < Tcq, then the multiplexor always
selects a stable input signal, resulting in clean, glitch-free operation. This ping-
pong action is illustrated in Fig. 3.11b.

Fig. 3.11 Detailed 2:1 serializer stage operation

C2clk

Serial

D Q

0

1

D Q

D Q

Deven

Dodd

C2clk

Serial Data

De

Do

Do’

 Data

De

Do Do’
 x(t)

(a) 2:1 Serializer Circuit

(b) Timing Diagram

HSS Architecture and Design 113

Fig. 3.12 Detailed 8:2 serializer and clock divider stage operation
Working backward from the output serialization stage, the input to the 8:2

serializer stage consists of eight time-aligned parallel bits, and the output
consists of the DEVEN and DODD half-rate serial streams feeding the FFE shift
register. The 8:2 serializer is implemented using a cascade of four 2:1
serializers feeding two 2:1 stages. This circuit is illustrated in Fig. 3.12, along
with associated C4 and C8 clock dividers. The circuit topology and timing
constraints for the multiplexor stages in this circuit are similar to that of the 2:1
serializer in Fig. 3.11a. (Not shown in the figure are various clock buffers
required to drive the heavy clock loading on the C8 and C4 clocks.)

The LC8 clock in Fig. 3.12 is a buffered (single-ended CMOS) signal that
is used by the synthesized logic macro to clock the transmit data (D0–D7). The
timing specification across this interface is critical. For the HSS EX10 core
running at 10.0Gbps, the C8 clock operates at 1.25GHz, and the design of this
interface must assure proper setup and hold timing is met.

Deven

Dodd

C2clk

D Q

0

1

D Q

D Q

DQDQ

C4clkC8clk

D0

8:2 Serializer

C4/C8 Dividers

LC8

D Q

0

1

D Q

D Q

D Q

0

1

D Q

D Q

D Q

0

1

D Q

D Q

D Q

0

1

D Q

D Q

D Q

0

1

D Q

D Q

D4

D2

D6

D1

D5

D3

D7

114 High Speed Serdes Devices and Applications

Continuing to move backward in Fig. 3.8, the Serializer Logic macro
provides the initial stages of serialization. The HSS EX10 core supports
various transmit data bus widths as selected by the Parallel Data Bus Width
bits of the Transmit Configuration Mode Register described in Table 2.6. The
Serializer logic performs the appropriate multiplexing to output 8-bit parallel
data regardless of the selected data width. There are many logic configurations
which achieve this function; the most commonly used circuit is a shift register
which loads parallel data of arbitrary width, and shifts data by 8 bits at a time
as data is clocked to the 8:2 multiplexor stage.

In addition to serialization, the Serializer logic macro also provides the
support for Pseudorandom Bit Sequence (PRBS) pattern generation.
Capabilities of this circuit were described in detail in Sect. 2.2.7.

3.3 Receiver Slice
Fig. 3.13 illustrates a simplified version of the HSS EX10 receiver slice.

Note that the DFE feedback paths are not shown to simplify the diagram. As
with the transmitter slice, the receiver slice is implemented using a mixed
signal approach, combining custom high-speed CML and static CMOS
circuitry with a synthesized standard cell digital logic macro. Starting on the
left side of the figure, serial data is received on the RxIP/N inputs. Both AC
and DC coupled termination options are supported; the CMVbias circuit
provides bias options corresponding to each coupling option. The split termi-
nation network provides a half amplitude signal to the input of the variable
gain amplifier (VGA), while the Input Offset Compensation block adjusts this
network to cancel input referred common offset voltage at the receiver input.

In a DFE system, the information about how to optimally set the DFE taps
is contained in the amplitude information of the signal. As such, the entire front
end of the receiver must operate in its linear range and not clip the signal. When
channel losses in the path from the transmitter to the receiver are small, the
input signal amplitude at the receiver may be large, resulting in clipping unless
there is a reduction in signal swing. The VGA block performs this function and
the split termination provides a 1/2 amplitude (− 6dB) attenuation to help
maintain linearity.

The VGA is used to control the amplitude of the input and drives a
programmable shunt peaking amplifier. This Peaking Amp in turn drives three
sets of summer circuits in the DFE and CDR loops. The top two summer
circuits drive the DFE data and amplitude paths, while the lower summer
drives the DFE edge macro which provides the input into the CDR macro.

The DFE macro can be logically broken into two distinct functions. The
first of these functions (the DFE block in Fig. 3.13) moves the decision
threshold of the sampling latch around at the baud rate. The history of the
previously sampled bits is used to control this decision threshold and there are
2n possible levels, where n is the number of DFE taps. For example a five-tap
DFE dynamically modifies the decision threshold in one of 32 possible
combinations based on the history of previous bits sampled.

HSS Architecture and Design 115

Fig. 3.13 High-level receiver block diagram

Fig. 3.14 Half-rate bang–bang phase detector operation

RxIP
RxIN

DFE

Phase

V
G

A

PK

Input
 Cancellation
Offset

 SIGDET

ACJTAG

CMVBias

AVTR

+h1

-h1

1

0

A

h2-h5

DQ

 DQ

 DQ

 DQ DQ DQ

+h1

1

0

A

h2-h5

DQ

 DQ

 DQ

 DQ DQ DQ

 0

 0

 0

DQ

 DQ

DFE Edge

Rotator
I

QC2_90
C4_90

C2_0
C4_0

D
at

a
A

lig
nm

en
t /

 2
:8

 D
es

er
ia

liz
er

(Std Cell)

RXDCLK

8/10/16/20

RXD[19:0]

I DACs

CDR
Macro

Data

DeSer.

DFE
Engine

(Shared)

+
Misc

Dividers

Cd Ce Ca

Dummy Load

Phase
Rotator

Phase
Rotator

-h1

Serial
 Data

E0 D0 E1 D1 E0(n+1)

DEC0 INC0 DEC1 INC1

a)

b)

c)

116 High Speed Serdes Devices and Applications

The second DFE function is to determine the H1 to H5 tap coefficient
values, which is accomplished via an algorithm in the DFE Engine (the DFE
Engine block in Fig. 3.13).

Once the data has been equalized and captured, the data/edge/amplitude
samples are aligned and deserialized in the Data Alignment/2:8 Deserializer
block. This data is further processed in digital form by the three subfunctions
in the synthesized logic macro: the CDR Macro, the Data Deserializer, and the
DFE Engine functions. The data/edge/amplitude sample latches are clocked by
three independent phase rotators. These phase rotators use a set of I/Q (0/90°)
clocks and provide a digitally controlled phase interpolation function,
producing 64-step granularity across a 2 UI range. This corresponds to a net
time resolution of the phase rotator of 32 steps per UI.

Other blocks shown in Fig. 3.13 include the SigDet block which
implements the signal detection features (see Sect. 2.3.4) and the AC JTAG
block which provides low-speed board level testing (see Sect. 2.3.6).

3.3.1 Clock and Data Recovery (CDR) Operation
The CDR macro uses a twofold oversampling scheme, capturing four

samples across two bits (two edge and two data samples). In Fig. 3.13, the data
samples are captured in the DFE block and the edge samples are captured in
the DFE Edge block. Note that the DFE block and the DFE Edge block use
identical summers to maintain timing alignment between the two functions;
this is critical for proper data centering. As illustrated in Fig. 3.14, a simplified
bang–bang phase detector approach can be visualized. In practice, the HSS
EX10 core uses a 16-way bang–bang phase detector, with 16 data and 16 edge
samples implemented in the CDR logic macro. Digital filtering in the CDR
logic results in a loop bandwidth of approximately 1/1,000th of the baud rate
(depending upon incoming transition density).

There are four sets of latches in the bang–bang phase detector: the D0 and
D1 data latches (also used extensively in the DFE block) and the E0 and E1
edge latches (specifically in the DFE Edge block). Samples are latched in these
latches using clocks which are sequenced as follows: E0 is clocked first,
followed by D0, E1, and finally D1. This sequencing is shown in Fig. 3.14. As
shown in the figure, XOR gates are used to detect differences in phase. When
a difference exists between adjacent values, the XOR output is asserted.

The simplified bang–bang phase detector scheme is examined for three
cases of potential phase alignment in Fig. 3.14. In Fig. 3.14a, both the (E0, D0),
and the (E1, D1) latches are sampling the same portion of the waveform. Since
the digital values are the same, the DEC0 and DEC1 signals are not asserted.
Likewise the (D0, E1), and the (D1, E0) latches are sampling differing logic
levels, and therefore the INC0 and INC1 signals are asserted. The INC signal
causes the phase of all four clocks to shift to the left. The net effect of this is to
move the E0 and E1 clocks closer to the data transitions.

Figure 3.14b shows the opposite situation where the data edges are between
the E0/D0 and the E1/D1 samples. In this case, the DEC0 and DEC1 signals

HSS Architecture and Design 117

are asserted, and the clock phases shift to the right. The effect again is that the
E0 and E1 clocks are moved toward the data transitions.

Finally, Fig. 3.14c shows the case where the signal is in lock. In the absence
of noise, the lock condition for the phase detector is characterized by thrashing
back and forth one step around the ideal sample phase.

The digital INC/DEC signals are then used to control the sampling phase of
the clocks driving the Data/Edge latches. There are several popular schemes to
digitally control the sampling phase, including phase rotators, PLLs, delay
locked loops, and digital oversampling schemes. The HSS EX10 core utilizes
a phase rotator- based CDR.

A phase rotator is essentially a digital mixer circuit which accepts two
differential clocks with 90° separation, often referred to as In-phase and
Quadrature-phase (I & Q). Shown in Fig. 3.15, the half-rate (C2) input clocks
CK_I and CK_Q are mixed in various proportion to control the output phase
of the rotator. The linearity (phase out vs. digital phase control in) or step size
of a phase rotator is a strong function of the shape of the input clock
waveforms. Optimal performance is achieved when the input signals are very
close to sinusoidal waveforms. To that end, the SLEWBUF section controls the
slew rate of the input signals and produces a sine wave on the SCK_I and
SCK_Q outputs. Two 15-value IDACs (typically thermometer encoded)
control the amount of I vs. Q contribution to the output, and the POL signals
select the quadrant in which the output operates. The net result is that the
digital control word INT + POL can produce any one of 64 phases at the
ZP/ZN outputs.

Fig. 3.15 Phase rotator conceptual diagram

15-cell current-steering DAC

2

15

2

4

30

Fixed cell

21 …

…

INT

POL

VB

SCK-I
SCK-Q

SLEWBUF

CK-I

CK-Q

SLEW DAC4SLEW

ZP
ZN

15-cell current-steering DAC

2

15

2

4

30

Fixed cell

21 …

…

INT

POL

VB

SCK-I
SCK-Q

SLEWBUF

CK-I

CK-Q

SLEW DAC4SLEW

ZP
ZN

118 High Speed Serdes Devices and Applications

Fig. 3.16 Four quadrant phase rotator diagram
Fig. 3.16 illustrates a phase rotator quadrant diagram, showing the 64

possible combinations of phase. In order to track a frequency offset (in ppm)
between the incoming signal stream and the local C2 clocks, the digital control
word is periodically adjusted in a given direction. The greater the difference
between the signal baud rate and the local C2 clock frequency, the more often
the phase must be adjusted.

3.3.2 Decision Feedback Equalizer (DFE) Architectures
The heart of the DFE-based core is the high-speed analog function that

varies the sample latch thresholds at the baud rate. Figure 3.17 illustrates how
this DFE threshold movement improves the BER.

Fig. 3.17 Decision feedback equalizer threshold adjustment

+I,+Q−I,+Q

−I,−Q +I,−Q

14.5I+1.5Q

15.5I+0.5Q

15.5I− 0.5Q

14.5I− 1.5Q

0.5I+15.5Q
1.5I+14.5Q

− 0.5I+15.5Q
−1.5I+14.5Q

I

Q

+H1
−H1

0 1 1 1 1 1 0 1 0

Correct Bit

b)a)

0/1

0 1 1 1 1 1 1 1 0

Bit Error

HSS Architecture and Design 119

Fig. 3.17a shows a differential signal which has a significant amount of
intersymbol interference (ISI). The binary sequence transmitted is
“01111010.” Assuming a conventional latch with a 1/0 decision threshold at
zero, the received sequence for this signal with ISI would be “01111110.”
Since the input signal never crosses the 1/0 threshold, the sample latch
mistakenly captures a “1” instead of the runt “0” transition.

Now consider a single tap (H1) DFE. Per convention, the H1 tap operates
on the last bit received, H2 on the bit received before this, and so forth. The
latch sample threshold is adjusted as shown in Fig. 3.17b based on the value of
the previous received bit. If the previous bit is a “1,” the threshold is moved up
by the value of H1; conversely if the previous bit is “0” then the threshold is
adjusted down by the value of H1. If H1 is carefully chosen, the receiver can
properly discern the single “0” transition. The key is determining the correct
value for H1.

A “direct” feedback architecture implementation of this one-tap DFE is
depicted in Fig. 3.18. This architecture uses a full-rate clock. The direct
feedback approach is conceptually simple: Based on the digital value of the
sampled data, the sampled digital value is multiplied by the H1 coefficient and
fed back to the input of the sample latch. If the sampled data is “1,” then the
threshold of the latch for the next bit is increased by H1; if the sampled data is
“0,” then the threshold for the next bit is decreased by H1.

Timing requirements for the direct implementation are challenging. The
loop indicated by the arrow in Fig. 3.18 must meet the following equation:

Tcq + Tsum + Tsu < 1 UI, (3.2)
where Tcq is the latch propagation delay (clock input to the output), Tsum is
the propagation delay of the summer circuit, and Tsu is setup time of the latch.
At 11.1Gbps the bit time is only ~90ps. Given an analog value is being added
to the input waveform, the H1 feedback must settle to within 2–5% of the final
analog value within this time constraint. This constraint is difficult to meet at
higher baud rates. Although the direct feedback architecture is commonly used
for slower baud rates, other architectures are used at higher baud rates.

The “Speculative” (or “Unrolled”) feedback architecture implementation
of a one-tap DFE is depicted in Fig. 3.19. This technique is a little more costly

Fig. 3.18 Full-rate “direct” decision feedback equalizer

Input + D Q
(from PkAmp)

CLK

H1

-

X

Tcq + Tpd,sum + Tsu < 1 UI
(settle within 5% of final value)

Sampled
 Data

120 High Speed Serdes Devices and Applications

Fig. 3.19 Full-rate “speculative” decision feedback equalizer

in terms of hardware area and power, but the difficult timing of the direct
approach is avoided. The speculative architecture duplicates the summers and
latches. In the direct approach, the digital value of the previous received bit is
fed back into the first summer. The speculative approach instantiates two
latches and two summers. One summer uses a static value of +H1, while the
other uses a static value of –H1. A digital multiplexor selects the output of one
or the other sample latch based on whether the previous received bit was a “0”
or a “1.” As a result, the analog settling time and the propagation delay of the
summer circuit is removed from the critical timing path.

The HSS EX10 core uses a hybrid approach combining both speculative
and direct DFE tap feedback. Figure 3.20 illustrates the high level concept of
the hybrid approach. As was the case in Fig. 3.13, the feedback tap paths from the

Fig. 3.20 Half-rate hybrid “speculative-direct” DFE

+ D Q

bb D Q

D Q

-

-
Input

(from PkAmp)

Sampled
 Data

-h1

+h1

+h1

-h1

1

0

A

h2-h5

+h1

-h1

1

0

A

h2-h5 Dodd
Aodd

Aeven
Deven

D Q D QD Q

D Q

D QD QD Q

D Q

D Q

D Q

D Q

D Q

HSS Architecture and Design 121

even/odd data shift register are not shown to simplify the diagram. In this
figure, the H1 DFE tap is calculated speculatively, removing the baud spaced
timing constraint. The H2–H5 taps use direct feedback. Since the H2 tap
feedback is permitted to take up to two bit times, a half-rate clock is used. This
substantially reduces the power dissipation and simplifies the design at the cost
of doubling the number of sampling latches. Note this figure is simplified and
does not show all of the crossconnections and feedback connections. The
primary outputs of this DFE are two data bits: Deven and Dodd, and two
amplitude Aeven and Aodd signals. These signals are driven to the Data
Alignment/2:8 Deserializer macro shown in Fig. 3.13.

Figure 3.20 also shows the Aeven and Aodd latch paths in parallel to the H1
speculation latches. The Aeven and Aodd latches are used to determine the
magnitude of the H coefficients. The DFE tap weights (H1–H5) are computed
through amplitude and data sample correlation using a sign-error driven
algorithm. Tap weights are optimized to cancel postcursors of the signal as
described generally in Sect. 8.4.1.3. More detailed descriptions of equalization
circuits may be found in [6–10].

3.3.3 Data Alignment and Deserialization
Once the data has been captured in the DFE sample latches, the amplitude

latches, and the edge latches, the signals must be aligned and deserialized.
Figure 3.21 illustrates the 1:2 DEMUX macro that is the fundamental building
block of the deserialization process. As with the 2:1 MUX previously
described, this 1:2 DEMUX can be cascaded to realize larger deserialization
functions. The conceptual circuit topology is shown in Fig. 3.21a. Serial data
is applied to two latches, each triggering on opposite edges of the clock. In
order to time-align both serial streams, a third latch is added to recapture the
data on a common clock edge. Figure 3.21b shows the timing diagram of the
function. The net result of the deserialization is that two time-aligned half-rate
data streams are created from the single full-rate data stream. The Data
Alignment/2:8 Deserializer macro shown in Fig. 3.13 produces eight data bits,
eight edge bits, four amplitude bits, and a C8 clock synchronous with the
inbound serial stream.

A subsequent stage of the Data Alignment/2:8 Deserializer macro performs
additional deserialization. As was the case for the transmitter, the HSS EX10
core supports various receive data bus widths as selected by the Parallel Data
Bus Width bits of the Receive Configuration Mode Register described in
Table 2.7. Deserialization expands the 8-bit data bus to the appropriate data
width.

In addition to deserialization, the Data Alignment/2:8 Deserializer macro
also provides the support for Pseudorandom Bit Sequence (PRBS) pattern
checker. Capabilities of this circuit were described in detail in Sect. 2.3.8.

122 High Speed Serdes Devices and Applications

Fig. 3.21 Detailed 1:2 deserializer operation

3.4 References and Additional Reading
The following reading is recommended for more in depth information

regarding PLL circuit architectures and design:
1. “Phase-Locked Loops: Design, Simulation and Applications”, R. E. Best,

McGraw-Hill, New York, 2003.
2. “Design of Integrated Circuits for Optical Communication”, B. Razavi,

McGraw-Hill, New York, 2003.
3. “Design of Analog CMOS Integrated Circuits”, B. Razavi, McGraw-Hill,

New York, 2001.
4. “Charge-Pump Phase Locked Loops”, F. M. Gardner, IEEE Trans.

Commun., vol. COM-28, 1849–1858, 1980.
5. “A Comparison of MOS Varactors in Fully Integrated CMOS LC VCO’s

at 5 and 7 GHz”, H. Ainspan, et. al., European Solid State Circuits
Conference (ESSCIRC), Sept. 2000.

The following reading is recommended for more in depth information
regarding equalizer and CDR design:
6. “Equalization and Clock Recovery for a 2.5-10Gb/s 2-PAM/4-PAM

Backplane Transceiver Cell”, J.L. Zerbe, et. al., IEEE J. Solid-State
Circuits, Dec. 2003.

D Q

D Q

D Q

Deven

C2clk

Deven

Do Dodd

C2clk

Deven

Dodd

Do

 Data

(a) 1:2 Deserializer Circuit

(b) Timing Diagram

HSS Architecture and Design 123

7. “An 8Gb/s Source-Synchronous I/O Link with Adaptive Receiver
Equalization, Offset Cancellation and Clock Deskew”, J. Jaussi, et. al.,
IEEE Solid State Circuits Conference (ISSCC), Feb. 2004.

8. “A 6.25Gb/s Binary Adaptive, DFE with First Post Cursor Tap
Cancellation for Serial Backplane Communications”, R. Payne, et. al.,
ISSCC Digest of Technical Papers, Feb. 2005.

9. “A 6.4Gb/s CMOS SerDes Core with Feedforward and Decision-
Feedback Equalization”, M.A. Sorna, et. al., ISSCC Digest of Technical
Papers, Feb. 2005.

10. “A 10Gb/s 5-tap DFE / 4-tap FFE Transceiver in 90 nm CMOS”, M.
Meghelli, et. al., ISSCC Digest of Technical Papers, Feb. 2006.

3.5 Exercises
1. If the C1 clock in Fig. 3.2 is operating at 11GHz, what are the frequencies

of the C2_0, C2_90, C4_0, C4_90, C8, and C16 clocks?
2. For the various combinations of transmitter and receiver configurations

described below, indicate which of output clocks in Fig. 3.2 can be
powered down to save power:
(a) All transmitter and receiver slices operating in full-rate mode
(b) All transmitter and receiver slices operating in half-rate mode
(c) Some transmitter and receiver slices operating in half-rate mode, and

some in quarter-rate mode
3. Draw a timing diagram illustrating the C1 clock input and the four output

phases of the C2 clock for the circuit shown in Fig. 3.4.
4. Cascade two of the circuits in Fig. 3.4 to produce C2 and C4 clocks.
5. Refer to the graph in Fig. 3.6:

(a) Draw an alternative line for Fdesired which is half way between the
line shown and the bottom of the graph. Which bands can lock to this
frequency? Which band should be chosen by the Coarse Calibration
Algorithm?

(b) Draw an alternative line for Fdesired which is half way between the
line shown and the top of the graph. Which bands can lock to this
frequency? Which band should be chosen by the Coarse Calibration
Algorithm?

6. In Fig. 3.6, assume a value for Fdesired which is just below the top of the
graph. Can the PLL lock to this frequency? If so, what band is used?

7. The PLL lock detect circuit for the HSS EX10 is shown in Fig. 3.7. If the
timeout period were determined using 16-bit counters, this would change
the frequency tolerance at which the lock condition would be detected.
Calculate this frequency tolerance in parts per million (ppm).

124 High Speed Serdes Devices and Applications

8. Repeat Exercise 7 assuming the timeout period is determined by 5-bit
counters.

9. Referring to Fig. 3.9a, the multiplexor in each FFE tap segment selects
between either the DEVEN or DODD bit stream. However, note this must
be done in such a manner that the x(t+T) data bit is the next bit following
the x(t) bit, and the x(t–T) data bit is the bit prior to the x(t) bit. Indicate
the correct C2 clock polarities into the flip-flops and mux select input to
achieve this.

10. Draw a timing diagram illustrating the operation of Fig. 3.12.
11. Assume that the circuit in Fig. 3.9a is provisioned with the FFE

coefficients: x(t+T) = 0, x(t) = 0.7, and x(t–T) = +0.3. Draw a timing
diagram for this case similar to that in Fig. 3.9b.

12. Repeat Exercise 11 assuming the circuit in Fig. 3.9 is provisioned with
the FFE coefficients: x(t+T) = –0.2, x(t) = 0.8, and x(t–T) = 0.

13. Refer to Fig. 3.14. As noted in the description in the text for this figure,
steady-state operation of a half–rate bang-bang phase detector circuit is
characterized by thrashing between timing case (a) and (b) in the figure.
Draw the sample points for eight consecutive data bits illustrating this
thrashing. Also show the corresponding values of the DEC0, INC0,
DEC1, and INC1 control outputs.

14. In Fig. 3.17a, the bit stream “01111010” is incorrectly sampled as
“01111110”. Explain why the incorrectly sampled “0” bit does not
transition below the 0/1 sample threshold in this figure. (You may wish to
peek at Chap. 8 to answer this question.)

15. In Fig. 3.17b the bit stream is sampled correctly for the value of H1
shown:
(a) If H1 is half of the amplitude shown in the figure, what are the

sampled values of the bits?
(b) If H1 is twice the amplitude shown in the figure, what are the sampled

values of the bits?
16. For the bit stream shown in Fig. 3.17, and the circuit shown in Fig. 3.19,

draw a timing diagram showing the sampled bits on the inputs and output
of the multiplexor as well as the sampled data output of the circuit.

Protocol Logic and Specifications 125

Chapter 4
Protocol Logic and Specifications

HSS devices are frequently used as part of the implementation of a stan-
dardized interface for a network protocol. The specification for the network
protocol generally includes several layers of functionality. As described in this
chapter, the HSS device implements only a portion of the physical layer of the
network protocol. Additional logic is required to implement the remainder of
the physical layer, as well as portions of the data link layer. For purposes of
this text, this logic is referred to as protocol logic; the function of this logic
depends on the applicable network protocol standard.

This chapter covers a broad range of topics generally related to protocol speci-
fications and the implementation of protocol logic. Specific network protocol
standards are discussed in Chap.5. This chapter begins by describing construction
of network protocol standards, including protocol layers, methods of specifying
serial signals, and basic concepts regarding clocking methods and data organiza-
tion. Next, typical functions implemented in protocol logic are discussed, including
determining the bit/byte order of transmission; encoding and/or scrambling data for
transmission (and decoding/descrambling at the receiver); error detection and/or
correction; elastic FIFOs to retime data to local clock domains; and bit alignment
and deskew functions in the receiver. These topics are covered at a level which is
sufficient for the reader to understand basic approaches for logic design of these
functions; exercises at the end of the chapter enhance this understanding.

4.1 Protocol Specifications
This section covers a number of topics related to network protocol

standards, including protocol layers, methods of specifying serial data signals,
and basic concepts regarding clocking methods and data organization.

4.1.1 Protocol Layers
The TCP/IP model, or Internet Reference Model, was developed by the

Internet Engineering Task Force (IETF). This model partitions software and
hardware functions necessary to communicate on a network into several layers,
as shown in Fig. 4.1. Most serial link protocols loosely follow this model.

The application layer processes data in an application-specific format and
encapsulates this into the common format used by the transport layer. The
transport layer is responsible for end-to-end message transfer independent of
the underlying network, including error control, fragmentation, and flow
control. The network layer is responsible for packet routing; intermediate
nodes in the network perform network layer processing as needed to route the
packet from its source to its target. While higher layers are agnostic as to the
underlying protocol, the data link layer is responsible for formatting the data

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 125
© Springer 2008

126 High Speed Serdes Devices and Applications

into a specific format for transmission, and decoding the format of the received
data. Finally, the physical layer transmits/receives data to/from the media.

Fig. 4.1 TCP/IP reference model
Figure 4.1 also illustrates the common implementation of the various

protocol layers. The physical layer is implemented, or in some cases is partially
implemented, by the HSS device. Additional protocol logic in the chip imple-
ments the remainder of the physical layer and some or all of the data link layer,
and is the subject of this chapter. Portions of the data link and network layers
may be implemented by Network Processing Elements (NPEs), firmware, and
Content Addressable Memories (CAMs) in network router or enterprise
systems, or by software in low-end systems. Higher layers of the protocol are
almost always implemented in software.

4.1.2 Serial Data Specifications
Serial data interface standards specify that the serial data must meet certain

eye amplitude and eye width requirements at normative compliance points of
the interface in order to claim compliance. Details of the above statement are
elaborated upon by the subsections below.
4.1.2.1 Compliance Points

Serial data specifications are imposed at points in the system which are
defined by the interface standard as compliance points. Various standards
choose different points in the system to define as compliance points. In
general, the choice of compliance points tends to align with the needs of the
industry serviced by the standard.

Network Layer

Medium

Software
Transport Layer

Application Layer

Data Link Layer

Physical Layer

Protocol
Logic

Serdes

NPE / Firmware

Protocol Logic and Specifications 127

When evaluating a standard (or characterizing Serdes hardware compliance
with a standard), it is important to note the compliance points defined by the
standard. Compliance points may be at the chip pins or may be at intermediate
points within the channel such as circuit board connectors. The reference
channel may include an optical segment, in which case additional compliance
points would be defined for the optical signal.

The choice of compliance points affects how interface specifications
translate to HSS specifications. For example, if the Serdes transmitter
generates 10ps of jitter, and the specification requires no more than 10ps of
jitter measured at a compliance point defined as a connector pin, then it is
unlikely that the specification can be met. The circuit board traces, vias, and
connectors add additional jitter, resulting in measured jitter at the connector
exceeding 10ps. In such cases a budget amount of jitter must be assigned to
each component (the transmitter device and the circuit board) such that the
total is no greater than 10ps at the compliance point.

It is also necessary to consider the measurement conditions specified in the
standard. Often, measurements are specified for ideal (or nearly ideal)
conditions. The Serdes hardware must produce signals within the specified
range under the conditions specified. Signals may vary from these ranges in
real systems where conditions such as termination impedances and impedance
discontinuities are less than ideal.
4.1.2.2 Normative and Informative Specifications

When reading serial data interface standards, it is important to note
normative elements of the standard vs. informative elements of the standard.
The serial link can be viewed as a collection of the following three elements:
the Serdes Transmitter device (including the package), the channel, and the
Serdes Receiver device (including the package). Any interface standard must
impose normative requirements on at least two of the three elements of the
serial link in order to ensure interoperability between components. (It is
possible to provide normative requirements for all three elements, but
this requires substantially more analysis to ensure the requirements are self-
consistent.)

There is a normative specification for the element when requirements are
imposed which must be met in order to claim compliance. For example, the
standard may provide a normative specification of signal characteristics at the
Serdes Transmitter, and a normative specification of signal characteristics that
must be tolerated by the Serdes Receiver. Defining the channel is then left as
an exercise to the system designer. In this case, the channel specification is an
informative specification. The interface standard may provide informative
specifications of channel characteristics as guidance, or may leave it as an
exercise to the user to derive requirements from the transmitter and receiver
specifications. (The channel must be capable of propagating the worst case
signal produced by the Serdes transmitter to the Serdes receiver without dis-
torting the signal beyond the worst case signal allowed at the receiver.)

128 High Speed Serdes Devices and Applications

Informative specifications do not need to be verified in order to claim compli-
ance with the standard.

Note that an increasingly popular alternative at higher baud rates is to
define normative specifications for the Serdes transmitter and the channel, and
provide informative specifications for the signal at the Serdes receiver.
4.1.2.3 Serial Data Amplitude and Eye Width

One method of defining serial data characteristics at the compliance point
is through the use of an eye diagram, an example of which is shown in Fig. 4.2.
The example has parameterized the key geometric features of this diagram.
The data signal is measured over a period of time and the signal trace is
mapped onto the eye diagram. If the data signal strays into the gray zones, the
data signal is not in compliance.

The eye amplitude in this diagram is limited by the maximum signal ampli-
tude defined by the Y2 parameter, and the minimum signal amplitude defined
by the Y1 parameter. The Y2 parameter should never be violated. The Y1
parameter applies to a portion of the bit time as defined by parameters on the
X-axis of the graph; the signal is less than Y1 while it is switching. The eye
width in this diagram is limited by the maximum jitter defined by the X1
parameter. The X2 parameter has the affect of placing a maximum limit on the
rise and fall time of the signal. In some cases the X2 parameter may be 0.5 UI,
at which point the shape of central gray zone degenerates to a diamond shape.

Fig. 4.2 Example of a transmitter eye mask

X1 X2 1-X2 1-X1 1.00

Y2

Y1

0

Y2

Y1

A
m

pl
itu

de

Time (UI)

Protocol Logic and Specifications 129

The drawback of using eye diagrams to specify signal characteristics is that
many standards dictate use of an FFE to provide preemphasis or deemphasis of the
signal. The FFE induces a deliberate distortion of the signal at the transmitter in
order to partially cancel the distortion effects of the channel and provide a better
signal at the receiver. The distorted signal is likely to violate the eye diagram on
both the X- and Y-axis. The standard may handle this by specifying the eye mask
with the FFE disabled, or by adjusting the eye mask based on filter settings.

Eye diagrams (or equivalent specifications of signal amplitude and jitter)
may be used to specify the signal at the transmitter output (or some other
compliance point near the transmitter). They may also be used to specify the
signal at the receiver input (or some other compliance point near the receiver). In
such cases, they may be used either as a normative compliance specification for
a channel or for a Serdes receiver. In one case, the eye diagram at the receiver
represents the worst case signal output of a compliant channel when driven by a
compliant Serdes transmitter. In the other case, the eye diagram represents the
worst case signal input that a compliant Serdes receiver must tolerate.

Higher speed interface standards may expect the eye at the receiver input to
be closed, in which case an eye diagram cannot be specified at this point. Such
standards define a reference receiver which often includes a DFE. The DFE
circuit is a negative contributor to the jitter budget, in effect resulting in a more
open eye at the output of the DFE circuit than at the input. Of course, the output
of the DFE circuit is beyond the point where analog-to-digital conversion of
the signal has been performed. The notion of an analog “eye” at this point is
really a virtual concept; this eye is not a measurable analog signal. Compliance
is determined through mathematical calculation of the signal eye at this point,
and comparison to the eye mask specified by the standard.
4.1.2.4 Receiver Signal Detect Function

It is sometimes desirable for the receiver to detect the condition where the
transmitter is not sending a signal (either because it is disabled, powered down,
or unplugged). Under these conditions the loss of signal condition may be used
to avoid trying to receive and process any noise on the serial data input to the
Serdes receiver. Serdes receivers therefore generally provide a signal detect
feature which detects when the amplitude of the received signal falls below a
threshold level for a sustained period of time.

Depending on the interface standard, one or more of the following
parameters may be specified using various terminology:
Minimum signal amplitude. Signal amplitude above which the received signal
must be detected and correctly received.
Maximum loss of signal amplitude. Signal amplitude below which the receiver
must detect a “Loss of Signal” condition.
Loss of signal response time. Length of time allowed to flag “Loss of Signal”
or “Signal Detected” conditions.

These parameters place specifications on the design of the Serdes signal
detection circuit. The first two of these parameters determine a range for the
signal detection threshold. The threshold of the signal detection circuit cannot

130 High Speed Serdes Devices and Applications

be higher than the specification for minimum signal amplitude, and cannot be
lower than the specification for the maximum loss of signal amplitude. The
response time specification determines the length of time over which the signal
detection circuit monitors the signal before changing state to indicate that the
signal has been lost or has returned.

Various interface standards specify differing thresholds and response
times. For this reason, it is common for the Serdes receiver to implement a
programmable signal detection threshold and response time.
4.1.2.5 Jitter, Wander, and Skew

Jitter is the deviation from the ideal timing of an event at the mean
amplitude of the signal population. Low frequency deviations are tracked by
the clock recovery circuit, and do not directly affect the timing allocations
within a bit interval. Jitter that is not tracked by the clock recovery circuit
directly affects the timing allocations in a bit interval.

Common usage of the term “jitter” refers only to the portion of the jitter that
is not tracked by the clock recovery circuit. However, as illustrated in Fig.4.3,
the jitter frequency spectrum can be visualized as extending from DC to well
above the baud rate of the clock recovery circuit. In this example, the clock
recovery circuit cannot track jitter at a sinusoidal frequency above the baud
rate divided by 1667. Jitter in this range can be viewed as phase variations in a
signal (clock or data) after filtering the phase with a single-pole high-pass filter
with the –3dB point at the jitter corner frequency.

Some standards have used the terminology skew and wander to refer to
jitter at frequencies below the jitter corner frequency [1]. These parameters do
not have any affect on data reception on a given serial data link. However,
when multiple serial data links are used to implement an n-bit wide port,
differences in the skew and wander among the various links affect the design
of downstream protocol logic.

Skew is the constant portion of the difference in the arrival time between the
data of any two signals. This can be visualized as jitter on one signal relative
to the reference signal at DC (0 Hz). Skew results from differences in routing
trace lengths of clocks to the Serdes cores, differences in routing trace lengths
for clock distribution within the Serdes cores, and differences in routing of data
in the package and circuit boards. At higher baud rates, skew of several UI is
possible. If the protocol requires the outputs of multiple Serdes receivers to be
aligned, then the deskew function in the protocol logic must have sufficient
range to adjust the signal. Fig. 4.4 illustrates skew using a timing diagram. The
constant portion of the difference in arrival times of Lane Y relative to Lane X
corresponds to the skew.

Wander is the peak to peak variation in the phase of a signal (clock or data)
after filtering the phase with a single-pole low-pass filter with the –3db point
at the wander corner frequency in Fig. 4.3. Wander does not include skew.
Wander results from manufacturing process variation, voltage, and tempera-
ture differences between the circuitry for the two links being compared.

Protocol Logic and Specifications 131

Temperature variations can result in phase drift over time which contributes to
wander. Voltage variations can result in phase drift at frequencies correspond-
ing to the switching frequencies of the power supply. If the protocol requires
the outputs of multiple Serdes receivers to be aligned, then the deskew function
in the protocol logic must have sufficient range to adjust the signal to compen-
sate for both the skew and maximum amplitude of the wander. Furthermore,
FIFOs used to cross clock domains must have sufficient depth to handle the
maximum amplitude of the wander without overflow or underflow conditions
resulting. Wander is illustrated in the timing diagram in Fig. 4.4. The variable
portion of the difference in arrival times of Lane Y relative to Lane X corre-
sponds to the wander.

Fig. 4.3 Typical jitter spectrum

Fig. 4.4 Skew and relative wander timing diagram

© 2008 Optical Internetworking Forum. Used with permission.

Total Wander Amplitude

High
Frequency
Amplitude

20 dB/dec

baud / 1667 20 MHz

SJ

© 2008 Optical Internetworking Forum. Used with permission.

Relative Wander between
lanes X and Y (Peak to peak)

Lane Y The rising edges shown
are logically coincident
data at the transmitter.

Lane X

Skew between
Lanes X and Y

132 High Speed Serdes Devices and Applications

4.1.3 Basic Concepts
It is relevant to define a few basic concepts of network protocols regarding

clocking methods and data organization before discussing the details of
implementing protocol logic functions.
4.1.3.1 Synchronous vs. Plesiosynchronous Clocks

Telecom SONET/SDH networks generally use synchronous clocking.
Reference clocks are distributed across the entire network so that the transmit-
ter and receiver device on the link are clocked by the same reference clock and
are operating at exactly the same frequency as shown in Fig. 4.5. This is true

even when the transmitter and receiver are not in the same city (or state, or con-
tinent). Reference clock distribution does sometimes fail, and locally generated
reference clocks are used as backup clock sources. As would be the case for any
two clock signals generated by independent oscillators, the locally generated
reference clock cannot have exactly the same clock frequency. This frequency
tolerance between the two clock sources is generally specified in parts per
million (ppm). For telecom systems locally generated reference clocks for key
network elements must use high-quality (and expensive) oscillators that have
low ppm frequency tolerances. Protocol mechanisms allow bytes to occasionally
be dropped or added in order to adjust for any differences in clock frequencies.

Telecom networks also have a significant number of intermediate nodes
within a line segment. It would be expensive to distribute the reference clock
to each and every repeater node, and therefore these nodes often use the clock
recovered from the receive data as a clock source for transmission (called
loop timing). Such systems use the RXxDCLK output of the HSS receiver to
perform any processing of the data so that it is not necessary to add or drop
bytes. The system then retransmits data to the next node on the optical ring
using a reference clock that is frequency locked to this RXxDCLK frequency.
Any node on the SONET/SDH ring may use this method of clocking, although
there must be at least one node in the ring that retimes the data to a reference
clock. (If there are no nodes using a reference clock then the ring would
become a feedback loop and would be inoperable.)

HSS Tx HSS Rxserial link

Common clock source

Synchronous Clock Source

HSS Tx HSS Rxserial link

Plesiosynchronous Clock Source

Local
Oscillator

Local
Oscillator

Fig. 4.5 Clocking architectures

Protocol Logic and Specifications 133

In addition to use in telecom networks, synchronous clocking is also often
used for serial links where the transmitter and receiver are in close proximity
to each other. If both the transmitter and receiver chip are on the same circuit
board, both HSS devices may very well share a common oscillator. Since the
clock distribution network for this oscillator is localized and does not require
backup sources (unlike telecom applications), these applications may use
inexpensive oscillators with larger frequency tolerances than would be used in
telecom networks.

Ethernet, Fibre Channel, and other datacom protocols always operate using
locally generated reference clocks. These reference clocks are generated using
relatively inexpensive oscillators. In such networks, the reference clock for the
receiver device on the serial link is always operating at a slightly different
frequency than the transmitter device. This is called plesiosynchronous
clocking, and is also illustrated in Fig. 4.5. Protocols using plesiosynchronous
clocking must allow frequent adding and dropping of bytes in order to adjust
for differences in clock frequencies. The extent to which bytes may need to be
added or dropped depends on the specified frequency tolerance allowed for the
clock sources.
4.1.3.2 Packet vs. Continuous Transmission

HSS cores transmit and receive data continuously; it is up to higher layer
protocols to determine whether the data is useful or is simply filler which can
be discarded. Telecom protocols such as Synchronous Optical NETwork
(SONET) and Synchronous Digital Hierarchy (SDH) require continuous
transmission of a repetitive data frame containing control bytes and data bytes
in defined positions within the frame. Telecom protocols are designed in this
manner in order to facilitate time domain multiplexing of data into and out of
the frame, and thereby supply a guaranteed bandwidth to each client
connection on the link. SONET and SDH transmit 8,192 frames per second;
the higher the data baud rate, the more the data in the frame, and the more
client connections being multiplexed. The 8-kHz frame rate permits a voice
connection to achieve a 4kHz frequency response using one byte multiplexed
into each SONET/SDH frame. The SONET/SDH frame format is explained in
more detail in Sect.5.1.2.

Ethernet, Fibre Channel, and other datacom protocols collect data into
packets for transmission rather than relying on continuous transmission of the
data. Each packet of data generally includes the following components:
Packet header. May include start of packet delimiter, packet type and routing
information, sequence information, and other fields as defined by the protocol.
Data. Hopefully self-explanatory.
Packet trailer.: May include an end of packet delimiter and code words for
checking and/or correcting for errors in the packet. Cyclic Redundancy Check
(CRC) error checking is commonly used in many protocols.

The packet format for Ethernet is described in Sect. 5.3.2.1, and the packet
format for Fibre Channel is described in Sect. 5.4.3.1.

134 High Speed Serdes Devices and Applications

Packet-based protocols send idle symbols between packets. These symbols
do nothing except fill time, and the receiver may add or drop idle symbols as
needed to adjust for the difference in frequency between the received data and
the local reference clock. The protocol generally specifies a maximum packet
length, a minimum number of idles between packets, and a required frequency
tolerance for the local reference clock. These specifications determine the
amount of buffering required to ensure a packet can be received without
inducing errors due to the frequency mismatch, and ensure that sufficient
adjustment can be made between packets to compensate.

An extension of the packet-based approach is to transmit skip symbols at
regular intervals within the packet which the receiver may additionally add or
drop as needed. This allows the frequency tolerance of the local reference
clock to be further relaxed (and thereby permitting the use of less expensive
oscillators) without having to restrict packet length.

Packet protocols such as Ethernet are network protocols where each packet
of data has a source which originated the data and a destination to which the
data is to be routed. Although the network may consist of Full Duplex links
where each node can send and receive data from its neighbor, there is no
concept of the packet transmission requiring any particular response that
should be tracked at the lower layers of the protocol. (It is possible that the
application using the network, such as a web browser, might be expecting a
response. However, the network interface is not cognizant of this.) Telecom
protocols also fit this description of a network protocol, with routing deter-
mined by network management software outside of the protocol, and each
payload byte within the frame potentially having different add/drop points in
the network.

Other protocols, such as PCI Express, are transaction protocols. Some
nodes are master devices which may originate transactions, and other nodes
are slave devices which respond to transactions. When a master originates a
transaction, it expects a response from the target slave device, and tracks this
as part of the protocol implementation.

4.2 Protocol Logic Functions
Topics in this section describe functions typically implemented by protocol

logic, including: determining the bit/byte order of transmission; encoding
and/or scrambling of data; error detection and/or correction; elastic FIFOs to
retime data to local clock domains; and bit alignment and deskew functions.

4.2.1 Bit/Byte Order and Striping/Interleaving
All application protocol standards include an explicit definition of the order

in which bits and bytes are transmitted on the serial link. The order in which
bits within a byte (or encoded symbol) are transmitted is the bit order for the
interface. The order in which bytes (or encoded symbols) within a multibyte
(or multisymbol) word are transmitted is the byte order or symbol order.

Protocol Logic and Specifications 135

Some protocols use a single serial data link to transmit data. Protocols
requiring higher bandwidth use multiple serial data links to transmit data in a
coordinated fashion. Such protocols must allow for relative skew (differences
in the arrival times of data) between serial data arriving at the receiver inputs.
Such protocols require that serial data links be deskewed by the receiver to
compensate for this relative skew.

Protocols using multiple serial links must allocate the data to be transmitted
to specific serial data links. The order and manner in which the data is allocated
to the various links is called striping or interleaving. One method of
interleaving is to send one byte on one serial data link, the next byte at the same
time on a second serial data link, the third byte at the same time on a third serial
data link, and so forth such that n bytes are sent simultaneously on n serial data
links. This scheme is called byte striping. (If the protocol uses encoded
symbols, then each symbol is sent on a separate serial data link. This is still
commonly called byte-striping even though the symbols are not bytes.)

An example of byte striping is shown in Fig. 4.6. Each byte of a 32-bit data
word is allocated to a separate HSS transmitter. Assuming that bits 31 through
24 are connected in order to TXxD[7:0] of an HSS EX10 core, and that other
channels are connected similarly, the least significant bit of each byte is
transmitted first. This means that bits 24, 16, 8, and 0 of the 32-bit data word
are transmitted simultaneously by the various HSS links, followed by bits 25,
17, 9, and 1, and so forth, with bits 31, 23, 15, and 7 transmitted last.

An alternative is to transmit each n-bits of the data across n serial data links,
followed by the next n-bits of the data, and so forth. This scheme is called bit
interleaving. Bit interleaving has the advantage of requiring less buffering (and
less latency) at the receiver to perform deskew. However, some protocols use
data encoding to constrain the spectral characteristics of the serial data, and
these characteristics cannot be guaranteed when the resulting data is bit
interleaved across different serial data links.

An example of bit interleaving is also shown in Fig. 4.6. This example
transmits the least significant 4-bit nibble on the four serial data links (bits 3
through 0), followed by the next 4-bit nibble (bits 7 through 4), and so forth
until the last 4-bit nibble (bits 31 through 28) has been transmitted. This is
shown pictorially by mapping each 4-bit nibble into a 4-bit wide queue for
transmission, each column of which is then mapped to the corresponding HSS
transmitter. (This queue is not implemented in hardware; it just helps visualize
the bit mapping.) For the HSS EX10 core, implementation of this scheme
requires that bits 31, 27, 23, 19, 15, 11, 7, and 3 of the 32-bit data word are
connected to bits TXxD[7:0] of the HSS #1 transmitter, bits 30, 26, 22, 18, 15,
10, 6, and 2 of the data word are connected to bits TXxD[7:0] of the HSS #2
transmitter, and so forth. Note that bits 3, 2, 1, and 0 are mapped to the
TXxD[0] inputs of their respective transmitters in order to be transmitted first.

Any transmission order and interleaving scheme may be implemented
simply by mapping the data bits to the appropriate HSS transmitter inputs (and
doing the reverse of this mapping at the receiver).

136 High Speed Serdes Devices and Applications

Fig. 4.6 Examples of byte striping and bit interleaving

4.2.2 Data Encoding and Scrambling
The raw data being sent on any interface is arbitrary and for most

applications is not random. For example, a text file contains mostly printable
ASCII characters. Byte codes which do not correspond to legal ASCII values
do not occur. The byte codes for spaces and for “e” occur with higher
frequency, while the byte code for “q” and “x” occur only occasionally. Large

32-bit Word Bit-Interleaved Across 4 Links

24 25 26 27HSS 1

16 17 18 19HSS 2

8 9 10 11HSS 3

0 1 2 3HSS 4

32-bit Word Byte-Striped Across 4 Links

32-bit Data Word
27:24 23:20 19:16 15:12 11:8 7:4 3:031:28

HSS #1 HSS #2 HSS #3 HSS #4

HSS #1 HSS #2 HSS #3 HSS #4

32-bit Data Word
31:24 23:16 15:8 7:0

3 7 11 15HSS 1

2 6 10 14HSS 2

1 5 9 13HSS 3

0 4 8 12HSS 4

Protocol Logic and Specifications 137

blocks of spaces may occur with substantially higher probability than would be
predicted by the rules of a Gaussian probability distribution.

Transmission of raw data generally cannot be performed by Serdes which
use clock recovery circuits to extract clock information from the serial data
transitions. Any long string of 0 or 1 bits would lack any data transitions, and
the data sample point for the clock recovery circuit would drift from the center
of the eye, causing bit errors. At higher baud rates sudden shifts in spectral
characteristics of the data can cause data to be sampled incorrectly, even when
the data does contain transitions.
4.2.2.1 Block Codes

Block codes are one method of encoding data such that the maximum run
length of 0 or 1 bits on the serial data link is guaranteed regardless of the data
being transmitted. One of the most common block codes used by many
protocol standards is the 8B/10B code, originally patented by IBM. Every 8
bits of data is mapped into a corresponding 10-bit code word. There are two
possible 10-bit code words that correspond to each 8-bit data word; one of
these 10-bit code words is the positive disparity value, the other is the negative
disparity value. The code scheme has rules for alternating between the positive
disparity code word and the negative disparity code word. Following these
rules guarantees that the number of 0 bits and the number of 1 bits in the
encoded transmission is equal over time such that no DC bias builds up in the
line voltage. The 8B/10B code also provides for a number of control symbols
which may be used by the protocol. These control symbols cannot be confused
with data since their 10-bit code words are unique.

Figure 4.7 illustrates the mapping of data bytes and control symbols into
8B/10B code. The input to the encoder is a byte value and a flag indicating

Fig. 4.7 Construction of 8B/10B code

7 6 5 4 3 2 1 0

H G F E D C B A

H G FE D C B A

D /
K

D /
K

D /
K

D/K xx . y

Code Lookup

j h g f i e d c b a

Data or Control Byte Code and
control / data flag bit.

Bits are partitioned into two sub-blocks.

Sub-blocks are flipped.

Nomenclature for 8B/10B symbols
is: Kxx.y for control symbols
and Dxx.y for data symbols,
where xx = decimal value of bits E-A,
and y = decimal value of bits H-F.

Based on a table lookup, bits E-A are
mapped to a value for bits a b c d e i,
and bits H-F are mapped to a value
for bits f g h j.

138 High Speed Serdes Devices and Applications

whether the byte is a data byte or a control code. The bits of this byte are
grouped with the most significant three bits forming one group and the least
significant five bits forming another group. A nomenclature for code symbols
is created by using the notation “Dxx.y” for data bytes, or “Kxx.y” for control
codes, where “xx” is the decimal equivalent of bits E down to A, and “yy” is
the decimal equivalent of bits H down to F. These bit groupings (with the D/K
flag) are then mapped into groups of bits to form the 10-bit symbol, as shown
in Table 4.1. Bits “EDCBA” are mapped into 10-bit symbol bits “abcdei”;
while bits “HGF” are mapped into bits “fghj.” Note that there are two
encodings shown for each mapping: a negative disparity mapping (RD−)
which has at least as many 0’s as 1’s, and a positive disparity mapping (RD+)
which has at least as many 1’s as 0’s.

Table 4.1 8B/10B Data symbol mapping

Name EDCBA abcdei
(RD–)

abcdei
(RD+) Name EDCBA abcdei

(RD–)
abcdei
(RD+)

D00 00000 100111 011000 D16 10000 011011 100100
D01 00001 011101 100010 D17 10001 100011 100011
D02 00010 101101 010010 D18 10010 010011 010011
D03 00011 110101 001010 D19 10011 110010 110010
D04 00100 110101 001010 D20 10100 001011 001011
D05 00101 101001 101001 D21 10101 101010 101010
D06 00110 011001 011001 D22 10110 011010 011010
D07 00111 111000 000111 D23 10111 111010 000101
D08 01000 111001 000110 D24 11000 110011 001100
D09 01001 100101 100101 D25 11001 100110 100110
D10 01010 010101 010101 D26 11010 010110 010110
D11 01011 110100 110100 D27 11011 110110 001001
D12 01100 001101 00101 D28 11100 001110 001110
D13 01101 101100 101100 D29 11101 101110 010001
D14 01110 011100 011100 D30 11110 011110 100001
D15 01111 010111 101000 D31 11111 101011 010100

Name HGF fghj
(RD–)

fghj
(RD+) Name HGF fghj

(RD–)
fghj

(RD+)

Dxx.0 000 1011 0100 Dxx.4 100 1101 0010
Dxx.1 001 1001 1001 Dxx.5 101 1010 1010
Dxx.2 010 0101 0101 Dxx.6 110 0110 0110
Dxx.3 011 1100 0011 Dxx.7 111 1110 or

0111
0001 or

1000

Protocol Logic and Specifications 139

Table 4.2 provides mapping for valid control symbols. Not all values of the
“xx” bits are valid. Use of these control symbols varies somewhat depending
on the protocol application.

Note that any valid mapping of the “abcdei” bits contains no more than four
1’s or 0’s, and any valid mapping of the “fghj” bits contains no more than three
1’s or 0’s. The characteristics of the code are such that the maximum run length
that can ever be encountered is 5 bits.

A useful attribute of 8B/10B coding occurs because most (but not all) code
words in the 8B/10B code have a Hamming distance of two from all other valid
code words, and therefore most one-bit errors are detectable as a code word
violation at the receiver. Additional one-bit errors may be detected as a
violation of the disparity coding rules; receiving an RD– coding where an RD+
coding should have occurred, or vice versa, is likely the result of a bit error.

One drawback of 8B/10B codes is that the baud rate must be 25% higher
than the data rate. This overhead factor becomes expensive at higher baud
rates. For this reason, 64B/66B block codes have become more popular at
higher baud rates. The 64B/66B block code adds two overhead bits to every 64
bits of data. These overhead bits are generated to ensure a data transition occurs
and to equalize the number of 0 and 1 bits being transmitted. While the 8B/10B
block code guaranteed a run length of 0’s or 1’s no greater than five, the
64B/66B only guarantees a transition every 66 bits, and does not have the error
checking properties of the 8B/10B code. However, this is generally a
reasonable trade-off given that the overhead of this code is only 3.125%.

IEEE 802.3 Clause 49 [6] defines 64B/66B coding for Ethernet network
applications; this code is described in more detail in Sect. 5.3.4.2. The code is
constructed by adding a two bit block tag to each 64-bit data block. The block
tag is either “01” to indicate the 64-bit block contains data or “10” to indicate
the 64-bit block is a control block. Control blocks may include control fields
only, or a mixture of control fields and data. In either case, the block tag
ensures that a data transition exists. Block tags of “00” and “11” are not valid.

Table 4.2 8B/10B Control symbol mapping

Name EDCBA abcdei
(RD–)

abcdei
(RD+) Name HGF fghj

(RD–)
fghj

(RD+)

K23 10111 111010 000101 Kxx.0 000 1011 0100
K27 11011 110110 001001 Kxx.1 001 0110 1001
K28 11100 001111 110000 Kxx.2 010 1010 0101
K29 11101 101110 010001 Kxx.3 011 1100 0011
K30 11110 011110 100001 Dxx.4 100 1101 0010

Kxx.5 101 0101 1010
Kxx.6 110 1001 0110
Kxx.7 111 0111 1000

140 High Speed Serdes Devices and Applications

4.2.2.2 Scrambling
Scrambling involves XOR’ing the output of a Linear Feedback Shift

Register (LFSR) which generates a Pseudorandom Bit Sequence (PRBS) with
the data being transmitted. The data is descrambled at the receiver using the
inverse of the scrambling function. The purpose is to generate a more random-
ized content of 0’s and 1’s in the transmitted bit sequence, reducing the prob-
ability of a long run length of 0’s or 1’s occurring, and generating a frequency
spectrum which more closely approximates a Gaussian distribution. Scram-
bling has no overhead, unlike block codes which always add overhead bits to
the data.

Note that scrambling does not guarantee that a long run length of 0’s or 1’s
does not occur. Given any scrambler starting at a given LFSR state, there is
always a reverse scramble pattern which results in an all 0’s or all 1’s output.
However, the probability of such a pattern occurring (provided it was not
generated on purpose) is astronomically low, and can be discounted if the
probability is well below the specified BER of the system. SONET and SDH,
for example, are protocols which rely on scrambling to ensure data transitions
occur. It is generally accepted that tolerating a maximum run length of 80 bits
of all 0’s or 1’s is sufficient to ensure the system operates within the specified
BER of the system (BER = 10–12).

The scrambler algorithm is described using a shorthand polynomial
notation. The polynomial for the scrambling used with 10Gb Ethernet, 8Gb
Fibre Channel, etc., is:

G(x) = x58 + x39 + 1. (4.1)
The serial implementation of the LFSR for this polynomial requires a 58-bit

shift register (corresponding to the degree of the polynomial). The outputs of
the 39th and 58th bit are XOR’d together to produce the feedback into the first
bit of the shift register. The feedback term is also XOR’d with the data bit being
transmitted (to scramble) or the data bit being received (to descramble). The
LFSR is shifted by one bit for each bit transmitted or received.

The LFSR described above is part of the scrambler and descrambler imple-
mentations illustrated in Fig. 4.8. This figure illustrates both sidestream and
self-synchronizing configurations. The sidestream scrambler and descrambler
are implemented with identical logic. The feedback term loaded into the LFSR
differs for the self-synchronizing scrambler and descrambler.

The LFSR contents of a sidestream scrambler and descrambler are not
affected by the data being transmitted or received. In order to properly
descramble the data, the state of the LFSR at the descrambler must match the
state of the scrambler. In order to achieve this, the protocol must specify events
upon which the LFSR at the scrambler and at the descrambler are reset to a
seed value. One simple approach is to reset the scrambler and descrambler on
the Start of Packet delimiter at the start of every packet, or on the framing
pattern at the start of every SONET/SDH frame.

Protocol Logic and Specifications 141

Fig. 4.8 Serial scrambler and descrambling architectures
The requirement for synchronizing the scrambler and descrambler can be

eliminated by using a self-synchronizing scrambler. Fig. 4.8 illustrates these
functions for the polynomial defined previously. The self-synchronizing
scrambler differs from the sidestream scrambler in that the scrambled data bit
is shifted into the LFSR rather using the feedback term alone. Likewise, the
scrambled receive data is loaded into the LFSR at the descrambler. (The self-
synchronizing scrambler and descrambler are not exactly the same design.
They differ in terms of whether the data output or the data input are loaded into
the LFSR.) For this architecture, the state of the scrambler and descrambler is
entirely determined by the scrambled data. Regardless of the initial state of the
descrambler, the descrambler state is synchronized after the first 58 bits are
received, and correctly descrambles data thereafter.

Error propagation is one significant disadvantage of self-synchronizing
descramblers. If the descrambler shown in Fig. 4.8 receives a bit which is in
error, the incorrectly decoded bit alters the descrambler state. This error
generates additional errors based on the feedback terms of the polynomial. Any
error detection scheme must be robust enough to detect errors propagated by
the characteristics of the scrambler scheme.
4.2.2.3 Parallel Scramblers

Although scrambler circuits are generally described in terms of their serial
implementation, scrambling is generally not performed directly on the serial
bit stream. Practical scramblers at baud rates used by HSS devices are imple-
mented as part of the protocol logic and operate on the parallel data path.
The logic equations necessary to implement the parallel implementation
of a scrambler (or descrambler) are constructed through simple boolean

+

S1 S2 S3 S38 S39 S57 S58... ...

+

S1 S2 S3 S38 S39 S57 S58... ...

++
 Serial Self-Synchronizing Descrambler

Serial Sidestream Scrambler / Descrambler

S1 S2 S3 S38 S39 S57 S58... ...
++

 Serial Self-Synchronizing Scrambler

142 High Speed Serdes Devices and Applications

manipulation of the scrambler polynomial. For example, assume a Sonet/SDH
scrambler which uses the polynomial:

G(x) = x7 + x6 + 1. (4.2)
Assume the scrambler (or descrambler) for (4.2) is implemented using

seven flip-flops with the following initial states, where the number in the
parenthesis indicates the advance of n = 0 bits of the sequence:

x7(0) = x7 x3(0) = x3

x6(0) = x6 x2(0) = x2

x5(0) = x5 x1(0) = x1

x4(0) = x4

After the sequence is advanced by one bit, the content of the serial scrambler
state is shifted by one bit, and the feedback term is loaded into the first bit:

x7(1) = x6 x3(1) = x2

x6(1) = x5 x2(1) = x1

x5(1) = x4 x1(1) = x7+ x6

x4(1) = x3

As the sequence continues to advance, after 8 bits of the sequence the
scrambler state is:

x7(8) = x7+ x6 x3(8) = x3+ x2

x6(8) = x6+ x5 x2(8) = x2+ x1

x5(8) = x5+ x4 x1(8) = x7+ x6+ x1

x4(8) = x4+ x3

The above equations may be used to implement an 8-bit parallel sidestream
scrambler for the polynomial in (4.2). Given a 7-bit scrambler state, these
equations determine the next state for a parallel scrambler implementation.
Keeping in mind that the bit order for transmission of SONET/SDH is most
significant bit to least significant bit, the 8-bit data is scrambled using the
following equations:

d7scrambled = x7 + d7 d2scrambled = x2 + d2
d6scrambled = x6 + d6 d1scrambled = x1 + d1
d5scrambled = x5 + d5 d0scrambled = x7+ x6 + d0
d4scrambled = x4 + d4
d3scrambled = x3 + d3

where d7 is the most significant bit and d0 is the least significant bit. Likewise,
at the receiver data is descrambled with these same equations.

Another useful example is a self-synchronizing scrambler using the
polynomial defined in (4.1). This scrambler contains 58 flip-flops with the
following initial states at n = 0:

x58(0) = x58

...
x1(0) = x1

Protocol Logic and Specifications 143

Note that the “ ” is used to avoid writing out all 58 equations, however the
equations for the intermediate bits should be obvious. The first bit transmitted
is scrambled by the feedback term:

dscrambled = x58 + x39 + d
and the scrambler state is advanced by one bit as follows:

x58(1) = x57

...
x2(1) = x1

x1(1) = x58 + x39 + d
Assuming a 32-bit data bus where d31 is the first bit transmitted, and d0 is the
last bit transmitted, the data is scrambled using the following equations:

d31scrambled = x58 + x39 + d31
d30scrambled = x57 + x38 + d30
...
d1scrambled = x28 + x9 + d1
d0scrambled = x27 + x8 + d0

and the scrambler state is advanced by 32 bits using the following equations:
x58(32) = x26

...
x33(32) = x1

x32(32) = x58 + x39 + d31
...
x1(32) = x27 + x8 + d0

It is left as an exercise to the reader to adapt the above equations for the self-
synchronizing descrambler.

4.2.3 Error Detection and Correction
Any serial data link is prone to occasional bit errors, hopefully at a rate

below the specified BER for the system. Most protocol applications include
some means of detecting bit errors so that higher layers of the protocol may
take appropriate corrective or reporting actions. This section describes the
basics of error detection and correction schemes.
4.2.3.1 Parity Bits

Parity generation and checking is a simple form of error detection. Parity
is calculated by XOR’ing all of the bits of the transmission using one of the
following equations:

Peven = d0 + d1 + d2 + d3 + ... + dn (4.3)
Podd = d0 + d1 + d2 + d3 + ... + dn + 1. (4.4)

The parity bit generated by the selected equation is appended to the
transmission. Parity is again calculated at the receiver, this time with the
transmitted parity bit included in the calculation. Assuming no errors, the
check result for even parity is always “0,” and the check result for odd parity

...

144 High Speed Serdes Devices and Applications

is always “1.” A bit error causes the parity check to be incorrect, thereby
detecting the error.

Parity is guaranteed to detect any one-bit error in the transmission, but it
does not detect the error if two bits are corrupted. Bit errors in many transmis-
sion media tend to occur in bursts, and parity does not guarantee error detection
in such systems. As a result, parity is not commonly used to detect errors in
serial link applications.
4.2.3.2 Bit Interleaved Parity

Bit interleaved parity (BIP) is an extension of a parity calculation where the
data is broken into n-bit symbols, and the symbols are XOR’d together to form
an n-bit parity symbol. The notation BIP-n indicates a BIP calculation
performed on n-bit symbols.

SONET/SDH protocols use BIP-n for error detection. All bytes in the frame
are XOR’d together, and the resulting parity byte is transmitted in the BIP-8
SOH field of the next frame. At the receiver, the BIP-8 byte is recalculated and
compared with the BIP-8 field, and an error is flagged if a mismatch occurs.

Any parity error detection scheme is prone to multiple bit errors cancelling
such that the error is not detected. A BIP-n calculation is such that a burst of
bit errors up to n bits in length is detected by the BIP-n scheme. However, 2-
bit errors separated by n bit positions cancel. The BIP-n scheme is far from
robust, but larger values of n significantly reduce the probability of error can-
cellation. BIP-n schemes have proven sufficient for the SONET/SDH environ-
ment, where the only intent is to flag links which have degraded to an
unacceptable BER level so that corrective maintenance actions can be taken.
This application is not intended to ensure quality of the data being delivered.
4.2.3.3 Cyclic Redundancy Check (CRC)

Packet protocols often calculate a Cycle Redundancy Check (CRC) word
during transmission and reception of the packet. The remainder of the CRC
calculation is transmitted at the end of the packet. When the CRC is calculated
at the receiver, and this remainder is included, the result should always be a
fixed value. The calculation of the CRC word can be viewed mathematically
as the division of polynomials:

L(x) / G(x) = C(x), (4.5)
where L(x) is a polynomial containing all n terms of an n-bit wide calculation:

L(x) = xn + xn–1 + + x2 + x1 + 1 (4.6)
and G(x) is the standard generator polynomial. Several protocols including
Fibre Channel use the following n = 32 generator polynomial:
G(x) = x32 + x26 + x23 + x22 + x16 + x12 +

x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1. (4.7)
The resulting C(x) polynomial remainder is therefore:
C(x) = x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 +

x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x + 1. (4.8)

Protocol Logic and Specifications 145

A serial implementation of this CRC generator (or checker) consists of a
32-bit LFSR implementing the C(X) polynomial. The LFSR is reset to a seed
value at the start of the packet, and the serial data is XOR’d with the feedback
terms and shifted into the LFSR as each bit is transmitted. The remainder is
appended to the packet. At the receiver, the same LFSR implementation is
used, however, the CRC word at the end of the packet is included in the CRC
calculation at the receiver. The remainder in the LFSR after including this CRC
word should always be a fixed value.

Although multiple bit errors can cancel such that a CRC check does not flag
the error, this is extremely unlikely. CRC checks are very robust at flagging bit
errors, including multiple bit errors, bursts of errors, etc. However, CRC
checks have no ability to correct bit errors when they occur. Higher layer
protocols must take responsibility for recovering from any error events.
4.2.3.4 Error Correction

Protocol standards sometimes incorporate error correction schemes at high
baud rates. Use of these schemes is generally optional, and hardware
implementations are not widely deployed. This may change as baud rates for
serial link protocols continue to increase.

Error correction is used to improve the BER performance of an interface.
However, any error correction implementation inherently requires some
amount of buffering. Such buffering adds latency to the system which is
considered undesirable in many applications. For this reason, other methods of
improving system performance are generally pursued in the system design
before any error correction schemes are considered.

Forward Error Correction schemes used in protocol standards of interest to
serial links are generally based on some form of a cyclic code. At the transmit-
ter, data is broken into fixed length blocks. The error correction code words for
each block are calculated as data is being transmitted, and then are appended
to the block. At the receiver, the error correction code words are recalculated
and compared to the received values in much the same manner as error
detection code words are processed. If values do not match, then an error has
occurred.

Error correction schemes differ from error detection in that it is possible to
deduce which bits are in error from the recalculated error correction code
words. (Methods of doing this are beyond the scope of this text.) Given that the
bits which are in error can be identified, the values of these bits can be
corrected (by inverting the bits) and downstream logic processes the corrected
data. Note that it is not possible to identify which bits are in error until the
entire data block has been received, and the data bits which must be corrected
may be anywhere in the block. Therefore, the protocol logic must buffer the
data block until it is possible to determine whether corrections are needed. The
data block is then forwarded to downstream logic with any corrections.

The size of the data block and the number of bits in the error correction code
words therefore becomes a trade-off. Larger block sizes require larger buffers

146 High Speed Serdes Devices and Applications

and introduce more latency. Smaller block sizes introduce higher overhead for
error correction code words. The block size and complexity of the error correc-
tion code words also impact the strength of the code. Error correction strength
is an indication of how many bit errors may occur in the data block before the
error correction scheme cannot correctly identify which bits are incorrect. Bit
errors often occur in bursts, and the ability to correct such bursts is also an
important characteristic of the error correction code.

Cyclic error correction codes are partially described by the notation (n,m)
where n is the total number of symbols in the data block, and m is the number
of those symbols which are payload symbols. The difference n – m indicates
the number of symbols in the error correction code word. Often each symbol
is one bit, but the notation can be applied to any symbol size.

The IEEE 802.3ap Backplane Ethernet standard [7] defines a Forward
Error Correction scheme in clause 74 which is summarized in Sect. 5.3.5.3.
This scheme is optionally used as part of the 10GBASE-R physical coding
sublayer. This is a (2112,2080) code which is constructed by shortening the
cycle code (42987,42955). Data and transcode bits are mapped as shown in
Fig. 5.21 and the 32-bit error correction code word, calculated using (5.5), is
appended to the block. This code is capable of correcting a burst of up to
11-bit errors in the data block.

The Optical Internetworking Forum has defined a set of electrical link
standards for 5–6Gb and 8–11Gb baud rate ranges. The Common Electrical
I/O (CEI) Implementation Agreements are inherently designed for a
10–15 BER. The Common Electrical I/O Protocol (CEI-P) Implementation
Agreement [5], described in Sect. 5.2.4, defines a physical layer protocol for
use with CEI electrical links. This protocol optionally includes an error
correction scheme based on 1,584 bit data blocks as illustrated in Fig. 5.11. The
data block includes 1,560 payload bits, 4 status bits, and a 20-bit error
correction control word calculated using the Fire Code polynomial specified in
(5.2). Using this error correction scheme, the expected BER of the link is
extended beyond 10–18.

The ITU-T G709 protocol [7] implements an overhead shell around a
SONET or SDH protocol. The additional overhead bytes transmitted for G709
requires a 7% higher baud rate than for the native SONET/SDH protocol. This
overhead shell includes various control functions, and includes Reed-Solomon
error correction code words. Although a higher baud rate is employed, the error
correction improves the Signal-to-Noise of the system such that optical links
can run for longer distances between repeater units. This is a significant cost
reduction for long-lines telecom carriers.

This error correction scheme uses Reed-Solomon (255,239) code (where
symbols of this code are bytes rather than bits). The transmission is broken into
data blocks of 255 bytes, where every 4,080 bytes are byte interleaved among
16 independent Reed-Solomon codecs. A 16-byte error correction code word
is produced for each block. This scheme is capable of correcting errors in up to
8 bytes of each 255 byte data block.

Protocol Logic and Specifications 147

4.2.4 Parallel Data Interface
Serdes transmitter and receiver channels derive the parallel data clocks

from the baud rate clocks generated by the PLL slice in the Serdes core. The
clocks for each parallel interface are produced independently for each trans-
mitter and receiver channel, and are used to clock parallel data to the transmit-
ter, and to capture parallel data from the receiver. Although the system clock
on the chip may be derived from the same reference as is supplied to the HSS
cores, the phase relationship between the system clock and the parallel data
clocks on the Serdes cannot be guaranteed. This section describes techniques
used in protocol logic to interface to the parallel data interface of the HSS core.
4.2.4.1 Transmitter Parallel Data Interface

Figure 4.9 illustrates the parallel data interface to two or more HSS trans-
mitter channels. Transmit data originates on the chip synchronous to a system
clock, and is supplied in parallel to the logic associated with multiple HSS
transmitter channels. Each HSS transmitter has an associated parallel data
input and parallel data clock output. The system clock is assumed to be
frequency locked to the reference clock for the HSS cores, however, the phase
relationship between the system clock and the parallel data clocks cannot be
known or guaranteed. In this example, it is also assumed that the phase
relationship between parallel data clocks of different transmitters is also
indeterminate.

In Fig. 4.9, elastic FIFOs are used to synchronize the data in the system
clock domain to the parallel data interface for each individual transmitter
channel. The n-deep elastic FIFO consists of n registers, each with a bit width
corresponding to the width of the parallel data interface. Data is written into
one of these registers on each system clock as determined by the current value
of the write address counter. Data is read from one of these registers on each
parallel data clock as determined by the current value of the read address
counter. The write address counter and the read address counter are reset to
address values with a difference of n / 2. Assuming the system clock and
parallel data clock remain frequency locked, and assuming an appropriate
value for FIFO depth n, the FIFO operates indefinitely after reset without the
possibility of an overflow or underflow.

Note that only a small number of flops are clocked by the parallel data
clock. This allows this clock domain to be implemented with minimal clock
latency on the chip, aiding in timing closure on this timing critical interface.

The depth of the FIFO is selected to take into account any wander that may
occur between the system clock and the parallel data clock. Wander results
from differing delays of the system clock distribution path relative to the clock
path through the HSS core. The delay of these paths varies over time due to
process, voltage, and temperature variation in different regions of the chip. As
the two clocks drift relative to each other, the FIFO must have sufficient depth
to absorb this variation without an overflow or underflow occurring.

148 High Speed Serdes Devices and Applications

Fig. 4.9 Serdes transmitter elastic buffers
If the application is a multibit interface, and the various transmitter

channels must meet a skew specification at the output of the chip, then
additional considerations apply. Any phase difference between parallel data
clocks, or any difference in when FIFO counters begin to increment after a
reset, results in additional skew which may exceed the specification.
Therefore, implementations of multibit interfaces must ensure the following:
• The parallel data clocks must be initialized such that they are in phase.

The HSS EX10 core provides a resynchronization feature which resets
clock dividers, resulting in TXxDCLKs being approximately in phase.

• The elastic FIFOs must be initialized such that they exit reset approxi-
mately in phase. Figure 4.10 illustrates a timing example where the elastic
FIFOs have not been properly reset, and skew is induced as a result.

Assuming the above conditions are met, skew contributors are limited to
propagation delay differences in the routing of the reference clock distribution
network to the HSS cores, time of flight differences for serial data signals
through the package, and the channel-to-channel skew specifications for the
HSS cores as defined in the core databook.

An alternative approach is shown in Fig. 4.11. This scheme assumes that
the various transmitter channels have been resynchronized, and therefore
parallel data clocks are approximately in phase. This implementation uses one
of these parallel data clocks to read data from all FIFOs; other parallel data
clocks are not used.

H
SS

 T
x

H
SS

 T
x

:
:

read
address

write
address

data

clock

read
address

write
address

data

clock

data

system clock

elastic FIFO

elastic FIFO

Protocol Logic and Specifications 149

Fig. 4.10 Skew induced by out-of-sync elastic FIFO read pointers

Fig. 4.11 Serdes transmitter elastic buffers (alternative approach)
This approach solves the problem of ensuring all FIFOs exit reset in phase

with each other. However, this approach does introduce additional difficulty in
closing timing on the parallel data interface:
• Setup and hold times of parallel data inputs must be adjusted to take into

account channel-to-channel, and in some cases core-to-core, specifica-
tions for skew and wander. This has the effect of increasing both the setup
and hold times.

• The FIFO read address is distributed to more logic, which may increase
propagation delay. These signals are in the critical timing path.

FIFO 1 Rd Addr
FIFO 2 Rd Addr

HSS 1 Data In
HSS 2 Data In

0 1 2 3
0 0 1 2

FIFO Reset

Byte 0
Byte 0 Byte 0

Byte 1 Byte 2 Byte 3
Byte 1 Byte 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15HSS 1 Serial Data

FIFO 2 Reset is held for an extra cycle.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7HSS 2 Serial Data

Result is 8 bits of skew between HSS 1 and HSS2 serial data.

H
SS

 T
x

H
SS

 T
x

:
:

read
address

write
address

data

clock

read
address

write
address

data

clock

data

system clock

elastic FIFO

elastic FIFO

150 High Speed Serdes Devices and Applications

4.2.4.2 Receiver Parallel Data Interface
Figure 4.12 illustrates the parallel data interface to two or more HSS

receiver channels. Serial data is received by each HSS receiver channel, is
deserialized, and then is driven onto the parallel data outputs of the core. Each
receiver channel has a parallel data clock which should be used to sample the
data output. The frequency of this clock is recovered from the bit transitions on
the incoming data, and in applications using plesiosynchronous clocks this
clock frequency is not the same as the local reference clock.

In this example, elastic FIFOs are used to synchronize the data in the local
RXxDCLK domains to the system clock domain. The n-deep elastic FIFO
consists of n registers, with a bit width corresponding to the parallel data width.
Data is written into one of these registers on each RXxDCLK as determined by
the current value of the write address counter. Data is read from one of these
registers on each system clock as determined by the current value of the read
address counter. The write address counter and the read address counter are
reset to address values that have a difference of n / 2. In plesiosynchronous
applications, the FIFO read and write pointers eventually catch up with each
and a FIFO overflow or underflow may occur. The protocol must provide a
mechanism to add or drop bytes (or symbols) to correct for differences in the
clock rate. The depth required for the FIFO depends on the exact mechanism
used and the frequency tolerance specification for the reference clock.

An example of calculating the minimum required FIFO depth follows:
Assume a packet protocol application where data is transmitted as packets of
up to 32,768 bytes in length. Between packets there are idle symbols which are
ignored by the protocol. These symbols may be duplicated or dropped if
needed to recenter the FIFO pointers. Assume the protocol specifies that a
200 ppm frequency difference is allowed between the reference clocks for the
transmitter and the receiver of the link. Therefore:
• Frequency difference = 200 / 1,000,000 = 0.0002
• 1 UI slip occurs every 1 / 0.0002 = 5,000 bits
• Packet length of 32,768 bytes = 262,144 bits
• The total slip that occurs during a maximum length packet is up to:

262,144 / 5,000 = 53 bits (rounding up) = 7 bytes (rounding up)
The elastic FIFO must therefore tolerate the write and read pointers drifting

by up to +7 FIFO locations relative to each other during the reception of a
frame. The minimum depth of this FIFO is therefore 15 bytes (a range of
+7 locations from the current location). In addition, the designer may want to
increase the FIFO depth in order to avoid having to handle boundary condi-
tions when FIFO pointers are at their extreme limits.

The elastic FIFO must be designed with some mechanism to recenter the
read and/or write pointers while idles are being received between frames.
Many possible design approaches are possible for this problem. The selected
solution is often dictated by the needs of the application, and specific
approaches are beyond the scope of this text.

Protocol Logic and Specifications 151

Fig. 4.12 Serdes receiver elastic buffers
The parallel data clocks from each of the receiver channels have no

guaranteed phase relationship to either the system clock (even if frequency
lock can be assumed) or to each other. If the various receiver channels
represent multiple serial data bits on a multibit interface where all the bits are
being driven by the same far-end chip, then the channels can be assumed to be
frequency locked to each other. It may be possible, depending on the HSS core
design, to assume the parallel data clocks of the various receiver channels are
in phase immediately after a reset or resynchronization of the channels.
However, as soon as reset completes the clock recovery function in each
channel makes independent decisions as to when to update the data sampling
point. Therefore, the phase relationships between the parallel data clocks
quickly drift relative to each other, and no assumptions as to phase relationship
should ever be assumed. Routing of clocks within the core contributes an
additional skew factor, and variations in voltage and temperature contribute to
wander, causing further phase differences.

Figure 4.12 assumes a system where each HSS channel is receiving an
independent serial bit data bit stream. If the various receiver channels represent
multiple serial data bits on a multibit interface, then there may be skew
between the various bits of the data as it arrives at the various receiver
serial data inputs. Deskew logic is the subject of a separate discussion in
Sect. 4.2.6.

It is important to note that because a phase relationship between the parallel
data clocks cannot be assumed, this potential phase difference contributes
additional skew and wander which impacts the required deskew range.

H
SS

 R
x

H
SS

 R
x

:
:

read
address

write
address

data

clock

read
address

write
address

data

system clock

elastic FIFO

elastic FIFO

data

data

clock

152 High Speed Serdes Devices and Applications

4.2.5 Bit Alignment
The protocol logic inherently drives an integral number of bytes (or 10 bit

symbols) of data into the parallel data inputs of the HSS transmitter. This data
is serialized by the HSS transmitter, driven across the channel, and deserialized
by the HSS receiver. The byte (or symbol) boundaries of the bit stream are not
inherently known to the HSS receiver, and therefore the parallel data output of
the receiver channel may be misaligned. For example, an 8-bit output may
contain the latter portion of one byte and the first portion of the byte after that.

An example of this is shown in Fig. 4.13 where parallel data is transmitted
least significant bit first, and then is deserialized starting at a bit position that
is three bits out of sync with the transmitter. The resulting parallel data at the
receiver appears significantly different from that which was transmitted. (It is
not actually different − the bits are all there but just out of alignment.)

Fig. 4.13 Arbitrary bit alignment of received data

Fig. 4.14 Bit alignment using datasync

Tx Parallel 1101 1110 1010 1101 1101 1110 1010 1101

0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1Serial Data 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1

Rx Parallel Data 1011 1011 1101 0101 1011 1011

H
SS

 T
x

H
SS

 R
xSerial Data8Tx Data 8

Rx Data

Data

H
SS

 R
x

data

Comparator

State Machine

RXxDATASYNC

Protocol Logic and Specifications 153

Fig. 4.15 Generic deskew logic
Most Serdes cores provide a mechanism to adjust the bit alignment until it

falls on the desired byte (or symbol) boundary. The RXxDATASYNC feature
on the HSS EX10 core was described in Chap. 2. Use of this feature requires
that the protocol have a method of determining the proper byte (or symbol)
alignment. One common method uses a symbol that occurs in the data stream,
such as the idle symbols occurring between packets, to align the receiver.
Figure 4.14 provides a block diagram of the logic that would perform bit
alignment. The data output of the receiver is monitored by a comparator circuit
to determine whether or not the data is bit aligned. (The data can be monitored
either before or after the elastic FIFO, although monitoring prior to the FIFO
might be necessary for some FIFO designs.) If the data is not aligned, then a
state machine pulses the RXxDATASYNC input. This causes the data to “slip”
by one bit. If the data remains unaligned, the state machine repeats this process
until the data is aligned on the desired boundary. Once the data is aligned, it
should remain aligned unless the interface is reinitialized.

The bit alignment feature is used by both serial interfaces and multibit
interfaces. This feature is also related to deskew, as discussed in Sect. 4.2.6. It
is not necessary to use the RXxDATASYNC feature to perform bit alignment;
this function can also be performed by downstream logic in the datapath
without interaction with the HSS core.

4.2.6 Deskewing Multiple Serial Data Links
Any interface implemented using multiple serial data links requires that the

output of the various links be deskewed to correct for any skew introduced by
the transmitter chip, the channel, and the HSS receiver. In many applications
several UI of skew may exist, and the deskew logic must have a sufficient
range to correct for this.

A generic example of the deskew logic for a single serial data link is shown
in Fig. 4.15. This example assumes the parallel data output of the HSS receiver
is n-bits wide. The n-bit parallel data is retimed to the system clock domain,

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

n

n

n

n

B
ar

re
l S

hi
fte

r

Control

n

154 High Speed Serdes Devices and Applications

and then is connected to the input of this deskew logic. The deskew logic
shown includes three registers which contain the last 3n bits of data. The barrel
shifter stage is a 3n : n multiplexor which can select any n consecutive bits out
of the 3n bit input, thus providing a total deskew range of 3n bits.

The select input for the barrel shifter is controlled by unspecified control
logic in this example. This control logic determines the correct setting for the
barrel shifter associated with each serial data link. The goal is for the outputs
of all of the barrel shifters to be aligned such the combined output is a single
k by n bit parallel data bus (where k is the number of serial data links). Many
schemes exist in protocol standards for providing a reference for control logic
to use to perform deskew. Some of these are discussed below.
4.2.6.1 Deskew Schemes

This section describes several deskew approaches used by various protocol
standards to provide a reference for aligning multiple serial data lanes of an
interface. More detailed descriptions of these deskew methods are provided,
where applicable, in Chap. 5.
Link Synchronization Patterns. Some protocol standards specify a link syn-
chronization or training pattern which is transmitted regularly. The deskew
function of the XGMII Extended Sublayer (XGXS) Physical Coding Sublayer
(PCS) associated with IEEE 802.3 10Gb Ethernet [6] is an example of an
interface which uses a specified pattern for deskew. The XGXS PCS is a four-
lane packet-based protocol which uses 8B/10B block encoding. As described
in Sect. 5.3.3.2, various control symbols are transmitted on the link between
packets; these include align symbols (K28.3) which are transmitted at intervals
of 16–31 symbol times. Align symbols are transmitted on all links simulta-
neously, and are used by the receiver to deskew the links. Given the interval at
which these symbols are transmitted, deskew of up to +15 symbol times (150
UI) is possible (although achieving this might require reception of several align
symbols with various spacings).

The K28.3 symbol is chosen for performing deskew because its bit
sequence is unique. This minimizes the possibility of falsely detecting the
symbol in a data stream, and incorrectly deskewing the interface as a result.
Such false detection, called aliasing, can occur for some training patterns used
for alignment if the there is not a robust mix of “1” and “0” values on each link,
and if the data immediately preceding or following the training pattern coinci-
dentally has the right value.

PCI Express, another packet-based protocol which uses 8B/10B block
code, does not explicitly specify how the receiver is to perform deskew.
However, the skip ordered set which is transmitted between packets is
typically used by the receiver to perform this function in a similar manner to
the XGXS PCS application. The skip ordered set consists of a COM symbol
(K28.5) followed by three SKP symbols (K28.0), and is transmitted on all lanes
simultaneously. (Note that intermediary nodes may add or detract SKP
symbols, so the receiver may see a COM followed by up to six SKP symbols.)

Protocol Logic and Specifications 155

Framing References. The Scalable System packet Interface (SPI-S) [4]
defined by the Optical Internetworking Forum (OIF) uses a variation on the
alignment pattern scheme. As described in Sect.5.2.3.3, deskew is performed
across multiple lanes by leveraging the framing position of the individual links.
The tag bits of the 66-bit code words of IEEE 64B/66B code as defined by
IEEE 802.3 Clause 49 [6] are always “01” or “10.” Framing is performed on
individual links by examining bits for several consecutive code words, and
searching for a framing reference where the tag bits are always valid (i.e., never
“00” or “11”). Once a frame reference is established for each link, deskew may
be performed across links by comparing the relative frame reference positions.
Using this method, deskew of up to +32 UI is possible.

In general, any method used to establish a framing reference for a link may
be leveraged to deskew multiple links. As an alternative to 64B/66B bit code
words, SPI-S may also carry data coded and scrambled as described by the OIF
Common Electrical I/O Protocol (CEI-P) Implementation Agreement [5].
CEI-P payload is mapped into frames as shown in Fig. 5.11, and the receiver
searches for a frame reference where the FEC parity bits are consistently valid.
Once a frame reference is established for each link, deskew is performed across
links in a similar manner to the previous case.
Deskew Channel. The OIF Serdes-Framer Interface Generation 5 (SFI-5)
protocol [2] uses a deskew channel to transmit a reference for alignment of the
data channels. The deskew channel transmits a framing pattern, followed by 64
bits from each data channel in a round robin fashion. Deskew logic in the
receiver uses the framing pattern as a reference point and aligns each data
channel to corresponding data on the deskew channel.

The OIF SFI-5.2 Implementation Agreement [3] also uses a deskew
channel, but with the contents described in Sect. 5.2.2.2. The deskew channel
transmits a 10-bit frame consisting of bits from each of the four data channels
and even/odd parity bits corresponding to the data channels. Deskew logic uses
parity calculations to determine reference points for the 10-bit deskew frame,
and then aligns data channels to the bits on the deskew channel.
4.2.6.2 Optimizing the Deskew Implementation

The reader may note that the generic deskew circuit in Fig. 4.15 was essen-
tially an n-bit wide shift register and a barrel shifter used to insert a selectable
delay into the data pipeline. There are two opportunities in the receiver logic
prior to reaching this circuit where similar delays can be inserted to perform a
similar function. This presents an opportunity to distribute the deskew
function so that the shift register in Fig. 4.15 is reduced in size or even
eliminated.

The first opportunity for optimization utilizes the RXxDATASYNC
function. Previously, this function was described in the context of correcting
byte (or symbol) alignment on a byte-striped serial data link. Given that each
serial data link is byte (or symbol) aligned, any remaining skew present
between data links at the deskew stage is in units of bytes or symbols. Other
arbitrary bit alignments are not possible. This reduces the complexity of any

156 High Speed Serdes Devices and Applications

alignment comparisons for the control logic, as well as reducing the
complexity of the barrel shifter.

Also, for bit-interleaved applications, the RXxDATASYNC function is
available to perform some of the deskew. For an n-bit wide parallel data path
output of the HSS receiver, the RXxDATASYNC can be used to perform
deskew within an n-bit range. The circuit in Fig. 4.15 can be used to perform
additional deskew if this range is not sufficient.

The next opportunity for optimization utilizes the elastic FIFO function.
The FIFO already implements the equivalent of the shift register in Fig. 4.15,
and the read pointer and output multiplexor implement a limited barrel shifter
function. Assuming a byte-striped application where RXxDATASYNC has
been used to achieve bit alignment at the input to the FIFO, deskew can be
implemented by adjusting the read pointer address. This potentially eliminates
any requirement for additional downstream logic. Note, however, that the
FIFO depth must be sufficient to permit deskew adjustments without resulting
in FIFO overruns or underruns.
4.2.6.3 Skew Budget

The required range of the deskew logic is determined by the specification
for skew and relative wander at the receiver input pins, plus any additional
skew introduced by the receiver circuits.

Table 4.3 provides selected specifications for skew and relative wander for
the Optical Internetworking Forum SFI-5.2 interface as described in [3]. As
shown in this table, the transmitter must meet skew and relative wander
requirements as measured on the serial data output pins. Skew may result due
to several factors in the transmitter chip, including: differences in signal
routing of the reference clock to the individual HSS cores, differences in signal
routing internal to the HSS cores, and time of flight differences in the routing
of the serial data signals through the chip package. The total contribution of all
these factors must not exceed 5.50 UI peak-to-peak as measured at the output
pins of the chip package.

In addition to skew, if the transmitter uses multiple HSS cores to implement
the interface then phase differences may exist between the individual PLL
slices in these cores. These phase differences may vary over time as tempera-
ture and voltage conditions change. This results in relative wander as specified
in Table 4.3. Because relative wander is below the cutoff frequency of the
CDR, the elastic FIFO and deskew logic must compensate for this variation.

Table 4.3 also specifies skew and relative wander at the receiver input. The
difference between the skew specifications for the transmitter and the receiver
reflects the skew that is allowed to be introduced by routing differences in the
channel. Pattern-dependent distortions introduced by the channel may also
result in slightly more relative wander as seen at the receiver. The total skew
plus relative wander as seen at the receiver is of significance to the design of
the deskew logic.

Protocol Logic and Specifications 157

When determining the range for the deskew logic, the designer starts with
the specification for skew and wander at the receiver input, and then adds the
additional skew contributors within the receiver. An example is shown in
Table 4.4, although note any calculation is implementation dependent.

The first contributor that is considered in this table results from signal
routing differences within the receiver chip, including: differences in signal
routing of the reference clock to the individual HSS cores, differences in signal
routing internal to the HSS cores, and time of flight differences in the routing
of the serial data signals through the chip package. The magnitude of these
contributors is implementation dependent, but it is reasonable to assume that
the values are similar to the corresponding values for the transmitter. Table 4.4
assumes these contributors result in an addition 5.50 UIpp of skew.

The other contributor to skew in the receiver results from the phase
differences between the RXxDCLK outputs of the various receiver slices.
Unlike the transmitter, where synchronizing the phases of the TXxDCLK
clocks is critical to meet the interface skew specifications, there is usually no
attempt to synchronize RXxDCLKs. Even if these clocks were to be
resynchronized, the CDR circuits in the individual receiver slices operate
independently and the RXxDCLK phases would diverge over time. If the
receiver slices are part of different HSS cores, then phase differences between
the individual PLLs in each of these cores also contribute to changes to the
RXxDCLK phase. If the interface uses RXxDATASYNC to perform a symbol
alignment function, this changes the RXxDCLK phase by design. The only
safe assumption for the deskew logic designer is that the phase relationships of
the RXxDCLK clocks is arbitrary and any relationship is possible. Assuming
an n-bit parallel data path, the cumulative effect of these factors can result in
up to n UI of skew. This is reflected in Table 4.4 assuming n = 8.

As can be seen from the above example, a substantial deskew range may be
required. The total skew budget for all contributors in Table 4.4 is 26UIpp.
Often one of the receive channels is chosen as a reference, and other channels
are deskewed to align data with the reference channel. In most applications it
is possible for the reference channel to be at the extreme limit of the skew
specification, and therefore the deskew logic on the other channels in this
example requires a total range of + 26UIpp.

Table 4.3 Selected specifications for OIF SFI-5.2 skew and relative wander

Parameter
System points

Units
Tx Output Rx Input

Skew 5.50 11.00 UI peak-to-peak

Relative wander 1.30 1.50 UI peak-to-peak

Total Skew + Wander at Receiver 12.50 UI peak-to-peak

158 High Speed Serdes Devices and Applications

4.3 References and Additional Reading
A comprehensive list of interface standards documents for various network

protocols can be found in Sect. 5.6. Refer to that list for more information on
standards mentioned in this chapter.

In addition, the following interface standards documents are referenced in
this chapter:
1. “Common Electrical I/O (CEI) – Electrical and Jitter Interoperability

agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical
Internetworking Forum, Feb. 28 2005.

2. “Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for
40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-01.0, Optical
Internetworking Forum, Jan. 29 2002.

3. “Serdes Framer Interface Level 5 Phase 2 (SFI-5.2): Implementation
Agreement for 40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-
02.0, Optical Internetworking Forum, Oct. 2 2006.

4. “Scalable System Packet Interface (SPI-S) Implementation Agreement:
System Packet Interface Capable of Operating as an Adaption Layer for
Serial Data Links”, OIF-SPI-S-01.0, Optical Internetworking Forum,
Nov. 17 2006.

Table 4.4 Skew budget for sample SFI-5.2 implementation

Parameter Rx Input Notes

Total skew + wander
at receiver

12.50UIpp Per interface specification

Skew introduced in
receiver due to signal
routing differences

5.50UIpp Sum of following:
• Time-of-flight differences in routing of

serial data signals through receiver
package.

• Differences in signal routing internal to
the HSS Rx cores.

• Differences in signal routing of the
reference clock to individual HSS cores
in the receiver chip.

Skew introduced in
receiver due to
RXxDCLK phase
differences.

8.00UIpp Assumes parallel data bus width = 8 bits

Total skew budget
for deskew logic

26.00 UIpp UI peak-to-peak

Protocol Logic and Specifications 159

5. “Common Electrical I/O – Protocol (CEI-P) – Implementation
Agreement”, OIF-CEI-P-01.0, Optical Internetworking Forum, March
2005.

6. “IEEE Standard for Information Technology – Telecommunications and
Information Exchange Between Systems – Local and Metropolitan Area
Networks – Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications”, IEEE
802.3-2005, Institute of Electrical and Electronic Engineers, Dec. 12
2005.

7. “Amendment: Ethernet Operation over Electrical Backplanes”, IEEE
P802.3ap, Draft 3.3, Institute of Electrical and Electronic Engineers, Jan.
26 2007.

8. “ITU-T G.709 – Series G: Transmission Systems and Media, Digital
Systems and Networks, Digital Terminal Equipment – General, Interface
for the Optical Transport Network (OTN)”, International
Telecommunications Union, 2001.

4.4 Exercises
1. Draw an eye mask similar to that shown in Fig. 4.2 for each set of

parameters below. Label all indices and indicate the minimum eye width
and eye height:
(a) T_X1 = 0.1 UI, T_X2 = 0.3 UI, T_Y1 = 400mV, T_Y2 = 600mV
(b) T_X1 = 0.25 UI, T_X2 = 0.50UI, T_Y1 = 200mV, T_Y2 = 400mV
(c) T_X1 = 1ps, T_X2 = 2ps, T_Y1 = 400mV,

T_Y2 = 600mV, 4ps = 1 UI
2. Some sample signal detect threshold settings for the HSS EX10 receiver

were described in Table 2.18. Assume the amplitude of a serial data signal
is initially 50mVppd, and slowly ramps up to 400mVppd, and then back
down to 50mVppd. Show the corresponding RXxSIGDET waveform for
each of the threshold settings in Table 2.18, and show the signal
amplitudes at which RXxSIGDET is “0,” “1,” or “X” (indeterminate).
Assume the loss of signal response time is zero.

160 High Speed Serdes Devices and Applications

3. Deskew logic for a particular application is expected to be set based on a
training pattern when the interface is initialized, and then is expected to
receive data continuously thereafter:
(a) One proposal for this interface specifies a relatively large value for

the skew between data lanes. Other than affecting the elastic buffer
sizes and training pattern selection, are there any issues created by the
large skew value? Why?

(b) Another proposal for this interface specifies a relatively large value
for the wander between data lanes. Other than affecting the elastic
buffer sizes and training pattern selection, are there any issues created
by the large wander value? Why?

4. Protocol logic which uses a 128-bit datapath (with bits labelled DX127 to
DX0) is to be connected in a bit-interleaved fashion to eight serial data
links for transmission. Two HSS EX10 cores are used to implement this
interface; the Tx slices of these cores are labelled D7 to D0. (Bits DX0
and D0 are the least significant bits for these interfaces.) The most
significant byte of the 128-bit datapath is transmitted first on the D7 to D0
serial data channels, followed by the next most significant byte, etc., until
all 16 bytes have been transmitted. Specify the connections of the
DX[127:0] to TXxD[15:0] pins on the transmitter slices that implement
this bit transmission order.

5. Two HSS EX10 cores (with eight receiver slices labelled D7 to D0) are to
be connected to protocol logic using a 128-bit datapath with bits labelled
DX127 to DX0. (Bits DX0 and D0 are the least significant bits for these
interfaces.) The data is byte-striped across the interface from least
significant byte (transmitted on D0) to most significant byte (transmitted
on D7) when it is transmitted, and the least significant bit of each byte is
transmitted first. Specify the connections of the RXxD[15:0] pins on the
receiver slices to the DX[127:0] bits corresponding to this bit
transmission order.

6. The following data bytes are to be coded using 8B/10B block code.
Determine the corresponding Dxx.y nomenclature for each of these data
bytes:
(a) “13”h (b) “22”h (c) “5B”h. (d) “E6”h
(e) “F1”h (f) “30”h (g) “77”h. (h) “8A”h

7. For each of the data bytes in Exercise 6 specify the corresponding 10-bit
codeword (bits a to j) for both positive and negative disparity.

Protocol Logic and Specifications 161

8. The following 10-bit codewords are coded using 8B/10B block code.
Determine the corresponding Dxx.y or Kxx.y nomenclature for these
codewords, and whether the codeword uses positive or negative disparity.
(a) “346”h (b) “0FC”h (c) “241”h. (d) “225”h
(e) “218”h (f) “3AA”h (g) “0BE”h. (h) “184”h

9. For each of the codewords in Exercise 8 specify the corresponding D/K
bit and data byte value.

10. What is the longest run length of 0’s or 1’s that can be formed by
concatenating one 8B/10B codeword with another codeword of the
opposite disparity? Give an example of two codewords which result in
this maximum run length.

11. Provide eight examples of Dxx.y symbols which result in the same
codeword for both positive and negative disparity.

12. Design logic (Verilog or VHDL) for a self-synchronizing serial scrambler
and descrambler which uses the following scrambler polynomial:
G(x) = x58 + x39 + 1.

13. Design logic (Verilog or VHDL) for a self-synchronizing 8-bit parallel
scrambler and descrambler which uses the scrambler polynomial
specified in Exercise 12.

14. Design logic (Verilog or VHDL) for a sidestream serial scrambler (or
descrambler) which uses the following scrambler polynomial:
G(x) = x7 + x6 + 1.

15. Design logic (Verilog or VHDL) for a sidestream 16-bit parallel
scrambler (or descrambler) which uses the scrambler polynomial
specified in Exercise 14.

16. Modify the logic for the scrambler in Exercise 13 as follows: Add a D/K
bit to the data path. When the D/K bit = 0, the data is scrambled and the
scrambler state is advanced. When the D/K bit = 1, the data is not
scrambled and the scrambler state remains unchanged.

17. Modify the logic for the scrambler in Exercise 15 as follows: The
scrambler searches the unscrambled data input for the value ‘F628’h.
When this data value occurs, the data is not scrambled and the scrambler
state is reset to all 1’s for the next cycle clock cycle.

18. Design logic (Verilog or VHDL) for a BIP-8 generator. This logic has a
16-bit input which is passed through to the output. When the 16-bit input
data is “F628”h, the BIP-8 accumulator is reset to the value determined
by XOR’ing the “F6”h and “28”h bytes. This 16-bit data value marks the
beginning of the frame and occurs every 405 clock cycles. Each byte for
the next 404 clock cycles is XOR’d with the accumulator state. At the end

162 High Speed Serdes Devices and Applications

of each frame, the accumulated BIP-8 value is saved in a register, and a
new BIP-8 calculation begins.

19. Modify the logic for the BIP-8 generator in Exercise 18 as follows: Add a
16-bit data output for the circuit driven by multiplexors which normally
redrive the 16-bit data input onto the data output. The multiplexors
alternatively allow the most significant 8-bits of the data output to be
driven from the BIP-8 value that was saved in a register. Add state
machine logic such that the BIP-8 value from the previous frame (which
is saved in the register at the end of each frame) is inserted into the 90th
byte position of the frame (the most significant byte of the 45th clock
cycle after the beginning of the frame).

20. Design logic (Verilog or VHDL) for a serial implementation of the 32-bit
CRC generator described by (4.8). Assume the CRC seed value is all 1’s.
The logic should have a packet_gate input and a crc_reset input. The
crc_reset input is asserted (to “1”) for one clock cycle while packet_gate
= “0” to reset the LFSR to the seed value. The LFSR state is updated
based on the data input for every clock cycle that
packet_gate = “1.”

21. One method of implementing a CRC checker is to calculate the CRC for
the received frame, including the CRC field. The remainder of this
calculation (if there are no bit errors) is always the same value. For the
CRC implementation in Exercise 20, what would this value be?

22. Design logic (Verilog or VHDL) for an 8-bit parallel implementation of
the 32-bit CRC generator described by (4.8). The CRC seed value and
control inputs should be the same as specified in Exercise 20.

23. Modify the logic for the CRC generator in Exercise 22 as follows: Add an
8-bit data output for the circuit driven by multiplexors which normally
redrive the 8-bit data input onto the data output. The multiplexors
alternatively allow each byte of the CRC remainder to be driven onto the
data output. Add state machine logic such that each byte of the CRC
remainder is driven to the output on the four consecutive clock cycles
after packet_gate transitions from “1” to “0.” (This implementation
assumes that packet_gate = “1” continuously for transmission of each
data packet, and returns to “0” between packets.)

24. Design logic (Verilog or VHDL) for a single instance of an elastic buffer
in Fig. 4.9. Assume the elastic buffer is 10-bits wide and 4-symbols deep.
Include a reset input to initialize the read and write addresses.

25. Design logic (Verilog or VHDL) which instantiates four of the elastic
buffers designed in Exercise 24, and connects these in the configuration
shown in Fig. 4.11.

Protocol Logic and Specifications 163

26. If the HSS transmitters shown in Fig. 4.11 are not resynchronized, explain
how the resulting behavior of the interface can add skew between data
lanes. Illustrate this with appropriate timing diagrams.

27. A novice engineer proposes that all of the logic on the chip associated
with the transmit interface shown in Fig. 4.11 can be clocked by the
TXxDCLK output of one of the HSS cores, and that this eliminates the
need for the elastic FIFOs. There are several thousand flip-flops in the
logic block that are associated with this transmit interface. Why is this not
a good idea?

28. Design logic (Verilog or VHDL) which instantiates four of the elastic
buffers designed in Exercise 24, and connects these in the configuration
shown in Fig. 4.9. For purposes of this exercise, synchronization issues
associated with resetting the FIFO read pointers can be ignored.

29. Design logic to drive the reset inputs to the elastic buffers in Exercise 28
such that the FIFO read pointers will exit reset in phase. (Hint: An
approach similar to the HSSRESYNC logic described in Sect. 2.4.7 is
needed.)

30. Modify the logic for the elastic buffer designed in Exercise 24 as follows:
• Add control logic in the write clock domain which compares the read

and write address. If a K28.0 8B/10B symbol is being written to the
buffer, and the read address is lagging the write address by 3 FIFO
words (i.e., write address + 1 = read address), then the symbol is not
written into the FIFO and the write address is not updated.

• Add control logic in the read clock domain which compares the read
and write address. If a K28.0 8B/10B symbol is being read from the
buffer, and the read address is lagging the write address by 1 FIFO
word (i.e., read address + 1 = write address), then the read address is
not updated in this cycle. This causes the K28.0 symbol to be read
twice.

31. Given that comparing the read and write addresses of the elastic buffer in
Exercise 30 required the comparison of values from two different
asynchronous clock domains, how was this handled in your design? If
your design did not handle the asynchronous domain crossing such that
the resulting design will operate without bugs, then suggest possible
approaches for fixing this problem.

32. The elastic buffer in Exercise 30 uses K28.0 symbols to adjust the FIFO
read and write addresses and thus avoid overflow and underflow events.
This elastic buffer is used in the receiver of a plesiosynchronous system
for which a frequency tolerance of 400ppm has been specified. However,
if the K28.0 symbols do not occur with sufficient frequency, overflows or
underflows may still occur. What is the maximum spacing of the K28.0
symbols that can be allowed in the system?

164 High Speed Serdes Devices and Applications

33. Repeat Exercise 32 assuming the frequency tolerance is 50 ppm.
34. Design logic (Verilog or VHDL) for a bit alignment circuit as described

by Fig. 4.13. The circuit should have a 10-bit data input, and should
include comparators which can detect reception of a K28.5 8B/10B
symbol regardless of the bit alignment of this symbol. If a K28.5 symbol
is received but it is not aligned on the 10-bit input, then the logic should
create an RXxDATASYNC pulse.

35. Assume the K28.5 symbols received by the circuit described in Exercise
34 are initially misaligned by two bits. Draw a timing diagram illustrating
operation of the circuit in Exercise 34 until such time as the K28.5
symbols are properly aligned.

36. Design logic (Verilog or VHDL) for a barrel shifter circuit as described by
Fig. 4.15. The circuit should have a 10-bit data input and a 10-bit data
output, and should be able to realign data to any 10-bit boundary. For
purposes of this exercise, assume the multiplexor select is an input to the
circuit.

37. Modify the logic for the elastic buffer designed in Exercise 36 as follows:
Add comparators which can detect reception of a K28.5 8B/10B symbol
regardless of the bit alignment of this symbol. Add control logic which
sets the multiplexor selection based on the alignment of the received
K28.5 symbol such that the K28.5 is aligned on the 10-bit boundary of the
data output.

38. Design logic (Verilog or VHDL) which instantiates two elastic buffers as
described in Exercise 30, and two bit alignment circuits as described in
Exercise 34. In addition, the logic is needed to implement the following
functionality:
• The 10-bit output of one of the elastic buffers (the reference lane) is

always delayed by one clock cycle.
• The 10-bit output of the other elastic buffer is connected to a barrel

shifter circuit which has the capability for delaying the data by 0–3
clock cycles.

• A control circuit monitors the reference lane output, and adjusts the
barrel shifter such that a K28.5 symbol appears on the output of this
circuit in the same clock cycle as a K28.5 symbol on the reference
lane. (The protocol always sends K28.5 symbols simultaneously on
all lanes.)

39. Is the logic implemented in Exercise 38 sufficient for the skew budget in
Table 4.4? Why or why not?

Overview of Protocol Standards 165

Chapter 5
Overview of Protocol Standards

Older protocol standards defined electrical interfaces which used source
synchronous bus approaches that were described in Chap. 1. As interface stan-
dards evolved to higher and higher data rates, most standards turned to specifi-
cation of high-speed signals implemented with HSS cores. This chapter is by no
means a complete summary of all of the protocol standards for which HSS cores
are used, nor does this chapter contain sufficient information to design the logic
associated with any given protocol standard. The goal is simply to provide the
reader with a basic knowledge of some of the more popular standards.

Some of the protocol standards that are popular and relevant as of the time
of this writing are listed below:
1. Telecom Standards

(a) International Standards:
• SONET / SDH: Telcordia GR-253-Core

SONET (Synchronous Optical NETwork) is a serial protocol for optical
telecom networks used within North America; SDH (Synchronous
Digital Hierarchy) is the equivalent protocol used on other continents.
The protocol is based on continuously sending frames containing
multiple connection clients at the rate of 8,192 frames per second.
Relevant baud rates are: 2.48832Gbps (OC-48), 9.95328Gbps
(OC-192), and 39.81312Gbps (OC-768).

(b) Optical Internetworking Forum (OIF):

OIF is an industry forum which develops Implementation
Agreements that define interfaces internal to a system that are
not within the scope of other standards bodies.
• OIF-SxI-5-01.0: System Interface Level 5 (SxI-5): Common Electrical

Characteristics for 2.488–3.125Gbps Parallel Interfaces

SxI-5 is an electrical layer standard incorporated by reference in the
SFI-5 and SPI-5 protocols. Relevant baud rates are from 2.488Gbps up
to 3.125Gbps.

• OIF-SFI5-01.0: Serdes Framer Interface Level 5 (SFI-5): 40Gbps
Interface for Physical Layer Devices

SFI-5 is a protocol layer standard defining the chip-to-chip or chip-to-
module interface between a SONET/SDH Framer chip and an OC-768
40-Gbps Serdes chip. It is also used to interface between a Framer or
Serdes chip and a Forward Error Correction (FEC) chip. Protocol uses

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 165
© Springer 2008

166 High Speed Serdes Devices and Applications

16 SxI-5 electrical links at 2.48832Gbps per link to achieve 39.81312
Gbps, plus an additional link used as a deskew reference. Baud rates are
higher on links between a FEC chip and a Serdes chip; baud rate in this
application depends on the FEC implementation.

• OIF-SPI5-01.1: System Packet Interface Level 5 (SPI-5): OC-768
System Interface for Physical and Link Layer Devices

SPI-5 is a protocol layer standard defining chip-to-chip or backplane
interfaces between SONET/SDH Framer chips and other Network
Processing Elements (NPE) of an OC-768 system. The protocol uses 16
SxI-5 electrical links to implement an interface with a total bandwidth of
39.81312–50.000Gbps. Additional links in the opposite direction are
used to communicate queue status.

• OIF-CEI-02.0: Common Electrical I/O (CEI): Electrical and Jitter
Interoperability agreements for 6G+ bps and 11G+ bps I/O

CEI is an electrical layer standard for interfaces with baud rates in the
range of 4.976–6.375Gbps, and in the range of 9.95–11.10Gbps. Multiple
variants are defined to target various reach objectives (short reach chip-to-
chip, and long reach backplane). This electrical layer specification is
incorporated by reference in the CEI-P and SFI-5.2 protocols.

• OIF-CEI-P-01.0: Common Electrical I/O: Protocol (CEI-P):
Implementation Agreement

CEI-P is a protocol standard for a Physical coding sublayer for CEI
electrical interfaces, specifying overhead bits using a variation on
64B/66B block encoding with data scrambling for encoding data on CEI
electrical links. The specification includes FEC codes used for error
checking, and optionally for error correction. This lower layer protocol
is incorporated by reference in the SPI-S protocol.

• OIF-SFI5-02.0: Serdes Framer Interface Level 5 Phase 2 (SFI-5.2):
Implementation Agreement for 40Gbps Interface for Physical Layer
Devices

SFI-5.2 is a protocol layer standard defining the chip-to-chip or chip-to-
module interface with similar application to SFI-5. The protocol uses
four CEI-11G-SR electrical links at 9.95328 Gbps per link to achieve
39.81312Gbps, plus an additional link used as a deskew reference.

• OIF-SPI-S-01.0: Scalable System Packet Interface Implementation
Agreement: System Packet Interface Capable of Operating as an
Adaption Layer for Serial Data Links

The SPI-S protocol layer standard defines chip-to-chip or backplane
interfaces between SONET/SDH Framer chips and other Network
Processing Elements (NPE) of an OC-768 system. The protocol extends
SPI-5 and other prior protocols defined by OIF, specifying a scalable
interface (both in terms of baud rate and in terms of bit width) capable of

Overview of Protocol Standards 167

achieving any bandwidth. SPI-S builds on top of the CEI-P sublayer,
although it may also be used with other 64B/66B encoded protocols.

2. Data Networking Standards
(a) IEEE Std-802.3 Ethernet: Ethernet is a packet protocol for data networks.

The standard is written as a clause-based document which has expanded
over time to include a multitude of interface variants. A sampling of relevant
variants are listed below.
• IEEE Std 802.3, 2000 Edition, Clause 38: 1000Base-SX, LX

This clause defines a Physical Medium Dependent (PMD) layer for
1,000Mbps Ethernet. This protocol uses 8B/10B encoding, so the actual
baud rate is 1.25Gbps.

• IEEE Std 802.3ae, 2002 Edition, Clause 47: XGMII Extended Sublayer
(XGXS) and 10-Gb Attachment Unit Interface (XAUI) Specification

This clause defines a Physical Medium Dependent (PMD) layer for a 10-
Gbps Ethernet interface between two chips, and is sometimes used
across a backplane. The XAUI interface is specified as four links using
8B/10B encoding and running at a baud rate of 3.125Gbps.

• IEEE Std 802.3ak, 2004 Edition, Clause 54: 10GBASE-CX4
Specification

This clause defines a physical medium dependent (PMD) layer for a
10-Gbps Ethernet interface over an IBT cable. The protocol is similar to
the XAUI specification in clause 47.

• IEEE Std 802.3ap, Clauses 70, 71, and 72: Backplane Ethernet

These clauses define a physical medium dependent (PMD) layers for
using the Ethernet protocol across a backplane. Clause 70 specifies a
1,000Mbps PMD layer similar to clause 38. Clause 71 specifies a four
link at 3.125Gbps PMD layer similar to clause 47. Clause 72 specifies a
serial 10.3Gbps PMD layer.

3. Storage Networking Standards
(a) INCITS T11 Fibre Channel: Fibre Channel is a packet protocol for storage

networks. Fibre Channel is used both for communication between systems in
storage area networks and between host and disk drive devices. Fibre
Channel is specified by a collection of documents which specify the physical
layer, protocol, and other aspects of systems. Key documents are listed
below.
• FC-PI-4: Fibre-Channel: Physical Interfaces: 4

This standard specifies electrical and optical physical layer Fibre
Channel variants defined by the T11.2 Task Group. The more popular
serial variants utilize a single link at a baud rate of 1.0625, 2.125, 4.250,
or 8.500Gbps. There is also a 10Gbps variant specified in a separate

168 High Speed Serdes Devices and Applications

document which utilizes an interface similar to XAUI (see prior Ethernet
descriptions).

• FC-FS-2: Fibre-Channel: Framing and Signaling: 2

This standard specifies the Fibre Channel protocol for use over any of the
physical layer variants specified in FC-PI-x and is defined by the T11.3
Task Group. The protocol utilizes 8B/10B block encoding. Serial
variants with baud rates of 8.500Gbps also scramble data prior to the
block encoding stage.

(b) INCITS T10 Serial Attached SCSI: 2 (SAS-2) T10/1760: SAS is a packet
protocol for storage networks. SAS is used for communication between
host and disk drive devices. Current supported baud rates are 1.5 and
3.0Gbps; a 6.0-Gbps baud rate is expected in the future. The protocol
utilizes 8B/10B block encoding with data scrambled prior to the block
encoding stage.

(c) Serial ATA International Organization: Serial ATA Revision 2.5 (SATA):
SATA is a packet protocol for storage networks. SATA is used for
communication between host and disk drive devices. Current supported baud
rates are 1.5 and 3.0Gbps; a 6.0-Gbps baud rate is expected in the future.
The protocol utilizes 8B/10B block encoding.

4. Transaction Protocols
(a) Peripheral Component Interconnect Special Interest Group (PCI-SIG): PCI

Express Baseline Specification, Version 2.0: PCI Express is a transaction
protocol for interconnecting peripheral devices in computing and
communication platforms. Current supported baud rates are 2.5 and 5.0 Gbps.
Ports use 1, 2, 4, 8, 12, 16, or 32 links in parallel to scale bandwidth as
needed. The protocol utilizes 8B/10B block encoding with data scrambled
prior to the block encoding stage.

(b) InfiniBand Trade Association (IBTA) Infiniband Architecture Specification
Volume 2, Release 1.2: Infiniband is a transaction protocol for
interconnecting host and peripheral devices, generally through a switch
fabric. Current supported baud rates are 2.5, 5.0, and 10.0Gbps. Ports use 1,
4, or 12 links in parallel to scale bandwidth as needed. The protocol utilizes
8B/10B block encoding.

A selection of the above standards are described in more detail in the re-
mainder of this chapter. Detailed references for these standards documents are
provided in Sect. 5.6.

5.1 SONET/SDH Networks
The original work on the Synchronous Optical NETwork (SONET)

standard was performed by Bell Communications Research (Bellcore), now
Telcordia, which was founded as the result of the breakup of American
Telephone and Telegraph (AT&T) in 1984. Prior to SONET, higher bandwidth
telecommunications equipment tended to use proprietary specifications and

Overview of Protocol Standards 169

interoperability of equipment made by different vendors was not generally
possible. Bellcore proposed SONET to the American National Standards
Institute (ANSI) in 1985 as a network solution for fiber standardization.

The International Telecommunications Union (ITU-T) began working on
the Synchronous Digital Hierarchy (SDH) standard in 1986. This was in
response to progress in the United States on SONET, which was not compati-
ble with existing needs of Europe. The United States officially proposed
SONET to ITU-T for consideration in the SDH standard in 1986. (The ITU-T
is sponsored by the United Nations and the official representative to this body
is the United States Department of State.) For political reasons the direction of
the SDH standard diverged from the original proposals. Intense work in the
ANSI T1X1.4 committee resulted in publication of a revised proposal in
February, 1988 that adopted for the most part the bit rates and formats in the
emerging SDH standard. ITU-T published the SDH specifications, known as
G.707, G.708, and G.709, in June 1988. SONET and SDH differs in terminol-
ogy, and in the definition and use of certain overhead fields and alarm
conditions, however, they are otherwise fully compatible.

Currently, SONET is the dominant standard used for telecommunications
in North America, and SDH is the dominant standard on other continents. Most
telecommunications equipment can be configured to comply with either
standard.

This section describes the system reference model and frame formats used
by SONET/SDH. Overhead bytes in the frame format are described to the
extent that they are relevant to the HSS core carrying SONET/SDH traffic.
Clock requirements are also discussed, since these are especially relevant to
SONET/SDH networks.

5.1.1 System Reference Model
The SONET system reference model is shown in Fig. 5.1. There are four

protocol layers defined by SONET: the photonic layer, the section layer, the
line layer, and the path layer. These layers are defined below:
Photonic layer. This layer consists of the transmission path consisting of an
electrical to optical conversion, optical interconnection, and optical to electri-
cal conversion. There are a variety of photonic layers that have been employed
for SONET and SDH networks.
Section layer. This layer manages transport of SONET frames across the
physical path using the photonic layer. Section Overhead (SOH) bytes of the
SONET frame are generated and monitored by the section layer regenerators.
These overhead bytes are used for framing, scrambling, and error monitoring.
Regenerators receive and retransmit the SONET frames, and do not modify the
payload contents of the frame or overhead bytes for other layers. Regenerators
must use the timing of the received signal as a reference for transmission since
there is no provision in the section layer to add or drop bits of the frame.

170 High Speed Serdes Devices and Applications

Fig. 5.1 SONET architecture

Line layer. The line layer manages the transport of the SONET payload across the
physical medium. Functions of this layer include multiplexing and synchronization
functions. LTE units can multiplex multiple lower speed SONET lines onto a
higher speed SONET line, and vice versa. LTE units also perform pointer manage-
ment to allow bytes to be added or dropped to adjust the frequency of the received
data to the local clock reference. Line Overhead (LOH) bytes of the SONET frame
are generated and monitored by the LTE unit to perform these functions.
Path layer. This layer maps network service components into a format that the
line layer requires, and manages the end-to-end transport of these services.
Path Overhead (POH) bytes of the SONET frame are generated and monitored
by the PTE unit to perform these functions.

It may also be interesting to the reader to understand the scale of the above
layers. The physical length of a section can vary from hundreds of meters to
many kilometers depending on the type of photonic layer being used. LTE
units break the network into maintenance spans, and the line span may be
anywhere from several kilometers to hundreds of kilometers in length. The
path termination can be in different cities or on different continents.

5.1.2 STS-1 Frame Format
The basic frame format of SONET is the Synchronous Transport Signal

Level 1 (STS-1) frame shown in Fig. 5.2. This frame is viewed as a two-
dimensional array of bytes, consisting of columns 1–90, and rows 1–9. Row 1
is transmitted from left to right, followed by row 2, etc. In order to achieve
transmission of one frame every 125 µ s, the frame must be sent at a line rate of
51.840 Mbps.

Columns 4–90 inclusive contain payload data, including any path
management overhead. Columns 1, 2, and 3 contain SOH and LOH overhead
bytes as shown in the figure. These are defined further below.

PTE LTE LTE PTERegen Regen

Section

Path

PTE = Path Terminating Equipment
LTE = Line Terminating Equipment

Section Section SectionSection

Line LineLine

Overview of Protocol Standards 171

Fig. 5.2 STS-1 Frame
5.1.2.1 SONET Scrambler

Except for the bytes in row 1, columns 1–3, the SONET frame is scrambled
with a sidestream scrambler. The row 1 overhead bytes are not scrambled so
that they can be reliably used as a framing pattern. The scrambler resets after
the J0 byte of each frame and uses the polynomial:

G(x) = x7 + x6 + 1. (5.1)
SONET does not use any block coding. Scrambling provides a high proba-

bility that bit transitions will occur in the serial data. However, it is possible for
payload data to contain a pattern which, when scrambled, produces a long run
length of “1” or “0” bits. It is generally accepted that designing hardware to
handle a run length of 80 is sufficient; the probability of longer run lengths is
less than the specified 10–12 BER.
5.1.2.2 Section Overhead (SOH) Bytes

The nine bytes located in rows 1, 2, and 3, and columns 1, 2, and 3, are used
by section regenerator equipment to perform section functions. The following
bytes are of particular relevance to the topics in this text:
Framing Bytes (A1, A2):The A1/A2 bytes are a hardcoded 16-bit hexadecimal
value of “F628”h, and are not scrambled. The receive logic in the section
regenerator looks for the “F628”h data pattern in order to determine where the
frame begins, and aligns row/column states based on this. Note that this data
pattern may also occur in other overhead bytes or in payload data (called
aliasing). The receive logic looks for this pattern to repeat at the proper interval
for several frames before declaring that frames are being received correctly.
B1:The B1 byte is a BIP-8 even parity calculation generated by XOR’ing all
the scrambled bytes in the frame together, and then inserting the result in the
B1 byte position in the following frame.The B1 byte is inserted in the frame

A1 A2 J0

B1 E1 F1

D1 D2 D3

B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

S1 M0 E2

H1 H2 H3

1 2 3 4 5 6 7 8 9 85 87 88 89 9086

LOH

SOH

Payload

172 High Speed Serdes Devices and Applications

before scrambling. This is the primary method of error checking used by the
SONET section layer.

Other SOH bytes provide management functions which, while important,
are beyond the scope of this text.
5.1.2.3 Line Overhead (LOH) Bytes

The 18 bytes located in rows 4–9, and columns 1, 2, and 3, are used by LTE
units to perform line functions. The following bytes are of particular relevance
to the topics in this text:
Pointer Bytes (H1, H2, H3): The payload frame, called the synchronous
payload envelope (SPE), may begin at any position within the payload portion
of the STS-1 frame. The H1/H2 bytes provide a row/column position for the
first byte of the SPE as shown in Fig. 5.3. The SPE frames continue from this
position for the next 783 payload bytes, stretching into the next frame and the
start of the next SPE.

From time to time the LTE unit may adjust the start of the SPE in order to
compensate for clock frequency differences. Figure 5.3 illustrates an example
of positive stuffing to compensate for the SPE source running slower than the
line transmitter in the LTE. When this occurs, an extra byte of nondata is
stuffed in the payload position following the H3 byte, and the payload pointer
is incremented so that the next SPE starts one byte later in the STS-1 frame.

A pointer adjustment can also be made to adjust for the SPE source running
faster than the line transmitter in the LTE. This is called negative stuffing.
When this occurs, an extra byte of payload data is transmitted as the H3 byte,
and the payload pointer is decremented so that the next SPE starts one byte
earlier in the STS-1 frame. The H3 byte does not contain useful information
except when used for negative stuffing.

The format of the H1/H2 bytes and the protocol for the LTE generation and
response for these bytes is beyond the scope of this text. However, note that the
maximum rate at which pointers may be adjusted is once every four STS-1
frames, and pointers can only be adjusted by one byte at a time. This places
stringent limits on the accuracy of clock sources for telecom equipment.
B2: The B2 byte is a BIP-8 even parity calculation generated by XOR’ing all
the bytes in the frame together prior to scrambling, except for the SOH bytes.
The result is inserted as the B2 byte before scrambling the following frame.
This is the primary method of error checking used by the SONET line layer.

Note that B2 differs from B1 in that (1) B2 is calculated prior to scrambling
while B1 is calculated using scrambled data and (2) B2 excludes the SOH bytes
from the calculation. This is consistent with the SONET layer definitions, since
the SOH contents and the scrambled version of the data are not accessible to
the line layer.

Other LOH bytes provide management and status functions which, while
important, are beyond the scope of this text.

Overview of Protocol Standards 173

Fig. 5.3 LOH pointers to SPE

5.1.2.4 Synchronous Payload Envelope (SPE) and Path Overhead (POH)
The SPE format in Fig. 5.4 consists of 9 rows by 87 columns. Of these, the

first column contains the path overhead (POH) bytes, columns 30 and 59
contain fixed stuff which is not useful information, and the remaining columns
contain the payload. Note that the column numbers in the SPE are relative to
the start of the SPE in the STS-1 frame as determined by the H1/H2 bytes.

POH bytes provide management and status functions which, while impor-
tant, are beyond the scope of this text. However, the following byte is signifi-
cant to this discussion:

H1 H2 H3

1 2 3 4 5 6 7 8 9 85 87 88 89 9086

H1 H2 H3

H1 H2 H3

H1/H2 Point to
start of SPE within
the STS-1 frame.

Positive Stuffing
pointer adjustment
causes byte after H3
to be “stuffed” and
pointer reference
to increment.

174 High Speed Serdes Devices and Applications

Fig. 5.4 Synchronous payload envelope (SPE) format

B3: The B3 byte is a BIP-8 even parity calculation generated by XOR’ing all
the bytes in the SPE together prior to scrambling. The result is inserted as the
B3 byte before scrambling the following SPE. This is the primary method of
error checking used by the SONET path layer.

5.1.3 STS-N Frame Format
SONET evolved from the proprietary methods of the telecommunications

industry for multiplexing lower speed lines onto higher speed lines. As a result, a
key feature of SONET is that some number n of STS-1 frames may be multiplexed
together to form an STS-n frame. When STS-1 frames are stacked in this manner,
the transmission order becomes: send the row 1 column 1 byte of each STS-1
frame in turn, followed by the row 1 column 2 byte of each STS-1 frame in turn,
and so forth. When lower speed STS-1 frames are multiplexed into higher speed
STS-n frames, the bit rate increases by n. Regardless of the multiplexing factor,
there are always 8,000 STS-n frames sent per second, or one frame per 125 µs.

Note that this multiplexing is performed at the SONET line layer. Multiple
SPE sources are mapped into STS-1 frames, and these STS-1 frames are mul-
tiplexed together to form an STS-n frame. Each STS-1 frame has its own LOH
and its own SPE (including POH). The H1/H2 bytes for each STS-1 frame do
not have to be the same, and SPEs for each STS-1 frame may start at arbitrary
different positions.

J1

B3

C2

F2

H4

F3

K3

N1

G1

1 2 3 4 5 6 7 8 9 82 84 85 86 8783

PayloadColumn 1: Path Overhead
Columns 30 and 59: Fixed Stuff
Remaining Columns: Payload Data

Overview of Protocol Standards 175

SOH bytes are added in the SONET section layer after line layer multiplex-
ing has already occurred. For this reason, only the SOH bytes associated with
the first STS-1 frame are defined, and the SOH byte positions in the other
STS-1 frames are not used by the protocol. The exception to this is:
Framing Bytes (A1, A2): These bytes are fixed values for all STS-1 frames in
the STS-n frame. Receiving equipment uses the transition between the A1 and
A2 bytes to determine the frame alignment.
J0/Z0: The J0 byte is associated with the first STS-1 frame in the STS-n frame.
The corresponding bytes in the remaining frames are designated as Z0 bytes,
and are reserved for future definition.

The above description of multiplexing independent STS-1 frames into an
STS-n frame is the classical definition of SONET multiplexing. Other concat-
enated formats are also defined, which permit an STS-n frame (n > 1) to have
a single LOH and a concatenated payload. Details of these definitions are
beyond the scope of this text. When such formats are used, a “c” is appended
to the notation. For example, an STS-3c frame is a concatenated STS-3 frame.

Although in theory any STS-n level is allowed, only certain values of n are
commonly used. The common levels and their corresponding line rates are
shown in Table 5.1. Note that although n = 1 is the base value for frame defi-
nition, it is not a commonly used line rate. The lowest SONET line rate in
common use corresponds to multiplexing together three STS-1 frames to form
an STS-3 frame. This corresponds to the SDH definition of an STM-1 frame.
Commonly used line rates increase by factors of four thereafter.

Another point that should be made is that the row 1 SOH bytes are not
scrambled for line rates up to STS-192/OC-192. For STS-192, there are 576
consecutive unscrambled bytes in the frame, which begins to affect the spectral
characteristics and DC balance of the signal. Depending on the J0/Z0 byte
values, excessive run lengths are also possible. Scrambling is therefore
redefined for OC-768 such that only the last 64 A1 bytes and first 64 A2 bytes
are unscrambled. This was deemed acceptable since framing functions only
look for the transition between the A1 and A2 bytes.

Table 5.1 Commonly used SONET/SDH speeds

Optical level
terminology

Electrical level
terminology Line rate SDH equivalent

terminology

OC-3 STS-3 155.520Mbps STM-1

OC-12 STS-12 601.344Mbps STM-4

OC-48 STS-48 2.48832Gbps STM-16

OC-192 STS-192 9.95328Gbps STM-64

OC-768 STS-768 39.81312Gbps STM-256

176 High Speed Serdes Devices and Applications

5.1.4 Clock Distribution and Stratum Clocks
A traditional packet switching network is only concerned with switching

the source and destination of data on a per packet basis. Packets are not subdi-
vided with various bytes fed to different destinations. Therefore, the need for
network synchronization may not be obvious to readers experienced with
IP networks and the Internet.

In SONET and SDH the payload envelope (SPE) is subdivided. When the
SONET path is used for classic telephone voice connections, each payload
byte of the SPE is associated with a different telephone call and has its own
independent source and destination. Each telephone conversation is allocated
one byte in each STS-1 frame, providing a total bandwidth of 8,000 bytes per
second, and generating a voice bandwidth of 4kHz. Switching systems must be
able to separate out individual bytes in the SPE to add telephone connections
originating locally, or drop telephone connections terminating locally.

In order for all of this to work, the SONET/SDH network must operate
synchronously. Furthermore, to facilitate intercommunication between
networks owned by different carriers, all of the networks in the world must be
synchronized. Clock distribution therefore becomes a major concern.

The primary reference clock (PRC) used for SONET systems is the atomic
master clock maintained by the United States government in Boulder,
Colorado. This clock reference is distributed using the Global Positioning
System (GPS). Prior to GPS, the Long-Range Navigation System (LORAN)
was used. This clock is distributed to major sites containing SONET network
equipment as the Stratum 1 primary clock reference. Stratum 2 clocks are
connected to this stratum 1 clock; Stratum 3 clocks connect to stratum 2
clocks, etc. When clock distribution fails, then a local oscillator must provide
the clock reference within a defined frequency tolerance.

Table 5.2 describes the four stratum levels for clocks. The stratum 1 clock
requires either a Cesium or Rubidium clock reference to back up the clock
distribution from the GPS source. This is then distributed to toll switches,
which have a backup clock source requiring stratum 2 accuracy. The stratum 2
clock is sufficiently accurate so that the toll switch should continue to operate
with fewer than 255 errors in 86 days after loosing the connection to the
stratum 1 clock reference.

Stratum 2 clocks are distributed across stratum 3 distribution to Local
Switches in local telephone exchanges and Digital Cross-Connect Systems
(DCS). These devices must have local clock backups with stratum 3 accuracy
that are sufficient so that the unit can continue to operate with fewer than
255 errors in 24 hours after loosing the connection to the stratum 2 clock
reference.

Rather than using expensive clock connections in the SONET network,
many lower-level devices use loop timing to receive and retransmit data.
Stratum 4 user equipment, section regenerators, etc. will often provide the
capability to use the clock derived from the receive data to generate the

Overview of Protocol Standards 177

reference clock for transmission. In order to support loop timing, HSS
receivers must provide a suitable clock output for the received data clock
which can be used by a PLL to supply a reference clock for the HSS
transmitter. This clock must not be gated, and must minimize jitter as much as
possible.

5.2 OIF Protocols
The Optical Internetworking Forum (OIF) is an industry forum in which

member companies develop Implementation Agreements (IAs) which
standardize interfaces within telecom systems that are not within the scope of
internationally recognized standards bodies. OIF develops implementation
agreements for both optical and electrical interfaces; the electrical interface
applications are of interest to this text.

This section describes the system reference model used by OIF, and
describes the relationship of this model to a number of OIF implementation
agreements and to SONET/SDH. HSS devices are used in the implementation
of electrical interfaces with baud rates of 2.488 Gbps and above. A selection of
recently published protocol layer implementation agreements, and the under-
lying electrical layer implementation agreements, are described in some detail.
Note that descriptions of these interfaces primarily focuses on details relevant
to Serdes cores, as well as details related to the approach of the interface to the
issues described in Chap. 4. The reader is referred to the references at the end
of this chapter for a more complete description of these interfaces.

5.2.1 System Reference Model
The system reference model used by OIF is shown in Fig. 5.5. This model

describes a line card as consisting of a Serdes device connected to a PHY
device by a Serdes-Framer Interface (SFI), with the PHY device then
connected to Link Layer devices by a System Packet Interface (SPI). The
dataflow from the Link device through to the Serdes device is the transmit
interface from the perspective of the line card; the dataflow from the Serdes
device through to the Link device is the receive interface. Note that each
electrical interface in this path has HSS transmitters and receivers associated

Table 5.2 Commonly used SONET/SDH speeds

Stratum level Accuracy Connected equipment

Stratum 1 0.00001ppm
(1 s / 300,000yr)

Primary clock reference

Stratum 2 0.016ppm Toll switches

Stratum 3 4.6ppm Local switches,
Digital cross-connect systems

Stratum 4 No requirement PBX systems, T1 muxes

178 High Speed Serdes Devices and Applications

with it; therefore the context of these terms is important. Sometimes these
paths are referred to as the egress and ingress path (respectively) to avoid
confusion.

The Serdes device in this figure is generally one or more chips implement-
ing a SONET/SDH OC-192 (10 Gbps) or OC-768 (40 Gbps) interface,
although other possibilities also exist. Very often the Serdes is implemented in
a Silicon–Germanium (SiGe) or Indium Phosphide (InP) technology, where
interface complexity is a significant cost and power driver. SFI protocols
therefore strive to minimize the complexity of this interface.

The other end of the SFI connects to a PHY chip. For SONET/SDH appli-
cations, this is generally a SONET/SDH Framer chip or a Forward Error
Correction (FEC) chip. SFI is used to connect Serdes devices to FEC or Framer
devices; it is also used to connect the FEC device to the Framer device. The
receive side of the Framer chip processes the various overhead layers of the
SONET/SDH protocol, and extracts data for the link layer. This data is
formatted into packets and sent to the receive link layer device using an SPI
protocol. The transmit side of the Framer chip receives packets from the
transmit link layer device and formats this into SONET/SDH frames for trans-
mission by the Serdes device.

Figure 5.6 extends this system reference model into the context of a broader
system. The link layer devices in Fig. 5.5 are represented generically as
network processing elements (NPEs) in Fig. 5.6. SPI connects the
SONET/SDH Framer to the link layer NPEs, and is also used to connect NPEs
to other NPEs and to the switch fabric. This packet processing environment is
independent of the protocol implemented by the line card, and SPI has also
been used in Ethernet systems. Note that Fig. 5.6 distinguishes the SPI packet
traffic from the transaction-based look-aside interfaces in the system, which
require different protocols.

Fig. 5.5 OIF System reference model

Transmit
Link Layer

Device

Receive
Link Layer

Device

SERDES
Device

+
Optics

PHY
Device

Data

Transmit
Interface

Status

Data

Status

Receive
Interface

SERDES Framer
Interface (SFI-5)

System Packet
Interface (SPI-5)

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

Overview of Protocol Standards 179

Fig. 5.6 OIF system reference model (extended)

Table 5.3 OIF implementation agreements

SONET
rate

Interface
type Protocol layer IA Electrical layer IA General notes

OC-48 SPI OIF-SPI3-01.0 (SPI-3) 104Mbps x 8 lanes + status

OC-192 SPI OIF-SPI4-01.0 (SPI-4.1) 311+ Mbps x 32 lanes + status.
Limited industry use

OIF-SPI4-02.01 (SPI-4.2) 622+ Mbps x 16 lanes + status.
Widely used in industry

SFI OIF-SFI4-01.0 (SFI-4) 622+ Mbps x 16 lanes.
Widely used in industry

OIF-SFI4-02.0
(SFI-4.2)

OIF-SxI5-01.0
(SxI-5)

2.5 Gbps x 4 lanes

OC-768 SPI OIF-SPI5-01.1
(SPI-5)

OIF-SxI5-01.0
(SxI-5)

2.500−3.125 Gbps x 16 lanes +
status

SFI OIF-SFI5-01.0
(SFI-5)

OIF-SxI5-01.0
(SxI-5)

2.500−3.125 Gbps x 16 lanes +
deskew

OIF-SFI5-02.0
(SFI-5.2)

OIF-CEI-02.0
Clause 8

9.952+ Gbps x 4 lanes +
deskew

OC-xxx SPI OIF-SPI-S-01.0
(SPI-S)

OIF-CEI-P-01.0
(CEI-P)

OIF-CEI-02.0 Scalable to any width and link
speed

XCVR

XCVR

XCVR

XCVR

SONET
Framer

or
Ethernet

MAC

Switch
Fabric

Interface

Memory or
Coprocessor

Scalable System Packet
Interface (SPI-S)

Look Aside InterfacesControl Interface

NPE

M
es

sa
gi

ng

NPE

M
es

sa
gi

ng

Memory or
Coprocessor

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

180 High Speed Serdes Devices and Applications

Table 5.3 relates various OIF implementation agreements to the system
reference model and to generations of SONET/SDH. OIF protocols associated
with OC-48 are designated as level 3 and contain a “-3” in the common name;
OC-192 protocols are indicated by a “-4,” and OC-768 protocols with a “-5.”
OIF protocols are additionally correlated to the reference model as either SFI
or SPI protocols. (There are also OIF protocols associated with Time Domain
Multiplexor (TDM) systems which are not discussed in this text.) From time to
time, as newer HSS technologies come into existence, OIF has published an
implementation agreement which is intended to replace a previous implemen-
tation agreement with an interface definition that uses fewer signals. For
instance, SFI-5.2 implements a 4 x 10 Gbps datapath to replace the SFI-5 which
used a 16 x 2.5 Gbps interface.

Earlier OIF implementation agreements defined the electrical layer and the
protocol layer of the interface in the same document. Starting with protocols
based on 2.5-Gbps HSS technologies, OIF began defining the electrical layer
in a separate document, and using this layer in multiple protocols. Starting with
SPI-S, OIF has also moved to scalable protocols rather than redefining the
protocol for every SONET/SDH generation.

To provide a representative and hopefully relevant sampling of the various
protocols in Table 5.3, this text focuses on descriptions of SFI-5.2 and SPI-S.
These protocols are the most recent generations of the SFI and SPI protocols,
respectively. This text also describes the corresponding implementation
agreements which provide lower level protocol and electrical layer building
blocks for these protocols.

5.2.2 SFI-5.2 Implementation Agreement
The SFI-5.2 Implementation Agreement targets OC-768 SONET/SDH

applications using a 4 lane by 9.952 Gbps datapath. SFI-5.2 incorporates the
electrical layer defined by CEI Clause 8 by reference, which supports baud
rates in the range of 9.95–11.1 Gbps to allow for telecom applications using
FEC protocols. The SFI-5.2 protocol does not require data to be encoded in any
specific way (as long as data meets criteria defined by CEI), but does contain
specific features to facilitate transmission of bit-interleaved SONET/SDH
frames.
5.2.2.1 Reference Model Description

The SFI-5.2 reference model is shown in Fig. 5.7. As shown in this figure,
the SFI-5.2 interface is used between Serdes and FEC devices, and between
FEC and Framer devices. For systems which do not include a FEC device,
SFI-5.2 is used to connect the Serdes device directly to the Framer device.
Each interface consists of a 4 lane wide datapath plus an additional lane used
for deskew. The deskew channel uses pattern matching to align each data lane
with the deskew channel (and thereby align data lanes with each other). This is
described more later.

Overview of Protocol Standards 181

Fig. 5.7 Serdes–Framer interface reference model
Compliance points in the system are identified at the various device pins

using the designations TI, RI, TE, RE, and RES. These designations differentiate
the various compliance points for the electrical transmitters (T) and
receivers (R) on the egress (E) and ingress (I) datapaths. Note that the Serdes
input RES is differentiated from other egress receivers. Jitter budgets are
described for each of these combinations of compliance points in more detail
later.

SFI-5.2 signals are described in Table 5.4.
5.2.2.2 Deskew Description

The contents of the deskew channel are generated as described in Fig. 5.8.
A 10-bit frame is generated as follows:
1. One bit from each of the data lanes is transmitted in a round-robin fashion

on the deskew channel.
2. The odd parity calculation for the bits in step 1 is transmitted on the

deskew channel.
3. Step 1 is repeated.
4. The even parity calculation for the bits in step 3 is transmitted on the

deskew channel.

System to Optics

Optics to System

RXDATA[3:0]

RXDSC

RXS

RXDATA[3:0]

RXDSC

RXS

TXREFCK TXREFCK
TXREFCK

RXREFCK

FEC
Processor

Framer

TXDATA[3:0]

TXDSC TXDSC

RXREFCK

TE

TIR I

R ETE

TIR I

Serdes

TXDATA[3:0]
R ES

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

182 High Speed Serdes Devices and Applications

Fig. 5.8 Deskew channel generation

Table 5.4 SFI-5.2 pin descriptions

Pin name Direction Description

Receive signals

RXDATA[3:0] Optics to
system

Receive Data. Data is bit-interleaved with RXDATA[3]
being first data bit received from serial optics. Baud rate is in
range 9.95–11.1Gbps

RXDSC Optics to
system

Receive Deskew Channel. Continuously transmits 10-bit
reference frames as described below

RXREFCK Optics to
system

Receive Reference Clock. The frequency of RXREFCK is
1/16th the baud rate of RXDATA/RXDSC. This clock is
recovered by the optics from the serial data. Signal must be
driven; use at the receiver is optional

RXS Optics to
system

Receive Status. LVCMOS active high alarm indicating data
is invalid. Signal must be driven; downstream use is
optional

Transmit signals

TXDATA[3:0] System to
optics

Transmit Data. Data is bit-interleaved with TXDATA[3]
being first data bit transmitted by serial optics. Baud rate is
in range 9.95–11.1 Gbps

TXDSC System to
optics

Transmit Deskew Channel. Continuously transmits 10-bit
reference frames as described below

TXREFCK System to
optics

Transmit Reference Clock. The frequency of TXREFCK is
1/16th the baud rate of TXDATA/TXDSC. At least one
device in the transmit chain must use this clock

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

bit3,2DATA[0]

bit2,2DATA{1}

bit1,2DATA[2]

bit0,2DATA[3]

bit3,1

bit2,1

bit1,1

bit0,1

bit3,3

bit2,3

bit1,3

bit0,3

bit3,5

bit2,5

bit1,5

bit0,5

bit3,4

bit2,4

bit1,4

bit0,4

bit3,6

bit2,6

bit1,6

bit0,6

bit3,8

bit2,8

bit1,8

bit0,8

bit3,7

bit2,7

bit1,7

bit0,7

bit3,9

bit2,9

bit1,9

bit0,9

bit3,0

bit2,0

bit1,0

bit0,0

bit3,10

bit2,10

bit1,10

bit0,10

bit2,1DSC bit3,0 bit1,2 odd parbit0,3 bit3,5 bit1,7bit2,6 bit0,8 even par bit3,10

Alternating Odd/Even Parity

Overview of Protocol Standards 183

The receiver uses the deskew channel to align the data lanes as follows:
1. The parity bits are used to determine the frame alignment of the deskew

channel. The deskew logic at the receiver calculates parity for each 4 bits
and compares the results of this calculation to the received parity bit. If
mismatches occur, then the frame alignment is not correct, and the deskew
logic steps its reference point (possibly using RXxDATASYNC on the
HSS core). When parity calculations consistently predict the parity bits on
the deskew channel, then the deskew frame alignment is correct.

2. Once step 1 is complete, the deskew logic compares each data bit to the
corresponding data bits on the deskew channel. If the bits do not match,
the data lane is misaligned, and the deskew logic steps its reference point
on the data lane (possibly using RXxDATASYNC on the HSS core, and
additional downstream logic if more range is required). When data bits
consistently match, the data lane is aligned.

3. When all data lanes are aligned, then the interface is aligned and ready to
receive data correctly.

The deskew frame definition is considerably less complex than that used in the
SFI-5 Implementation Agreement. This simplification was justified to
optimize the cost and power of the Serdes devices, which are often
implemented using non-CMOS technologies.
5.2.2.3 Nibble Inversion

SFI-5.2 is protocol agnostic and allows transmission of data encoded in any
manner that is compliant with the CEI electrical layer. However, SFI-5.2
objectives specifically require the interface to be capable of carrying bit-
interleaved SONET/SDH data. The framing pattern of SONET/SDH is not
scrambled, and can lead to excessive run lengths and DC unbalance.

To eliminate these issues, SFI-5.2 requires data on the data lanes to be
inverted for five nibbles out of every ten nibbles. This inversion is mandatory
when the interface is carrying SONET/SDH data, and is optional otherwise.
The five nibbles during which the data is to be inverted are correlated with the
deskew channel frame, and correspond to the five data nibbles (five bits on
each lane) leading up to and coinciding with transmission of the odd parity bit
on the deskew channel.
5.2.2.4 Clock Architectures

SFI-5.2 defines reference clocks for the egress and ingress paths, but the
connection of these clocks is left as an exercise for the system designer. In most
SONET/SDH systems, reference clocks are produced by high-quality oscilla-
tors and driven directly to the Serdes device in order to optimize jitter perfor-
mance. The Serdes device divides this reference clock and distributes it to
other chips in the system.

184 High Speed Serdes Devices and Applications

5.2.2.5 Skew Budget
Table 5.5 describes the Skew and Wander budget, and the Jitter budget for

various compliance points in Fig. 5.7. The terms skew, wander, and jitter were
defined in Sect. 4.1.2.5. The deskew logic in the receiver must have sufficient
range to accommodate the sum of the skew and wander seen at the receiver
input (plus any additional skew/wander introduced by the receiver). Note that
the skew requirement at RES is significantly more stringent than for RE; this is
to minimize complexity of the Serdes device.

5.2.3 SPI-S Implementation Agreement
The Scalable System Packet Interface (SPI-S) defines an interface for

transmitting packet traffic between Network Processor Elements (NPEs).
Fig. 5.9 illustrates various system configurations. Each interface consists of
some number of data lanes, and an optional status channel transmitting in the
opposite direction. Unidirectional and bidirectional configurations are
allowed; asymmetric unidirectional configurations include status channels in
both directions.

The SPI-S protocol can be mapped onto an IEEE 64B/66B coding and
scrambling layer, or onto a CEI-P coding and scrambling layer. Both of these
layers are based on a data rate to baud rate ratio of 64:66. The protocol is
independent of the electrical layer definition, however, is generally assumed to
use one of the options defined in the CEI Implementation Agreement.

Table 5.5 SFI-5.2 jitter / wander / skew budget

Parameter Signal
type

System points
Units

Ti/Te Ri/Re Res

Skew Data 5.50 11.00 6.10 UI Peak

Correlated wander All 5.00 7.00 7.00 UI peak to peak

Uncorrelated wander All 0.65 0.75 0.75 UI peak to peak

Total wander All 5.65 5.75 5.75 UI peak to peak

Relative wander All 1.30 1.50 1.50 UI peak to peak

Skew + (rel. wander) / 2 All 6.15 11.75 6.85 UI peak to peak

Deterministic jitter Data 0.15 UI peak to peak

Total jitter Data 0.30 0.65 0.65 UI peak to peak

 ©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

Overview of Protocol Standards 185

Fig. 5.9 SPI-S configurations

SERDES
Device

+
Optics

PHY
Device

Transmit
Interface

Unidirectional Payload
Data Flow with reverse

status channel

Egress : 1-N PHY Links
Ingress: 1 PHY Link

TX Packet Data

Reverse Channel Flow Control

Data

Status (optional)

2-N Physical Links

SERDES Framer
Interface (SFI-5)

Transmit
Link Layer

Device

SPI-S: Scalable
System Packet

interface

Status (optional)

SERDES
Device

+
Optics

PHY
Device

Transmit
Interface

Receive
Interface

Full Duplex
Logical Links

2-N PHY Links: Rx/Tx
TX Packet Data & RX Flow Control

RX Packet Data & TX Flow Control

Data

Status (optional)

Data

 Status (optional)

2-N
PHY Links

SPI-S: Scalable
System Packet

interface

SERDES
FRAMER (SFI-x)

Transmit
Link Layer

Device

Receive
Link Layer

Device

SERDES
Device

+
Optics

PHY
Device

Transmit
Interface

Single Simplex Logical
Link

1-N PHY Links: Egress
TX Packet Data ,

with optional messaging

Data

Status (optional)

1-N
Simplex

PHY Links

SPI-S: Scalable
System Packet

interface

SERDES Framer
Interface (SFI-5)

Transmit
Link Layer

Device

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

186 High Speed Serdes Devices and Applications

5.2.3.1 Data Path Operation
Data is transmitted over SPI-S in bursts with idles transmitted between

bursts. The bursts may be complete packets, where the packet includes control
words to indicate the start of the packet, end of packet, etc., and the packet
length may be any integer number of bytes. Alternatively, the packet may be
subdivided into segments, where the length of a segment is a provisionable
constant, and where one or more segments may be transmitted in a burst.

Data within the packet is organized into 64-bit blocks as shown in Fig. 5.10.
Each block consists either of a control word and four data bytes, or of eight
data bytes. A tag field indicates which block format applies. When SPI-S is
mapped in IEEE 64B/66B, the tag field selects whether the word sync is “01”
or “10”; for CEI-P the tag is mapped to a dedicated bit in the CEI-P word. The
control word consists of flags which indicate the control word type, an address
specifying the destination of the packet, and a CRC field used for error detec-
tion. Detailed definitions for the control word are beyond the scope of this text.

Note that SPI-S does not define a baud rate or a data width. The protocol is
scalable to any baud rate or data width.
5.2.3.2 Status Channel

SPI-S includes a status channel used to transmit queue status from the
receiver backward to the transmitter source. The status channel is defined as
two bits which indicate whether the queue is satisfied, hungry, or starving. This
status channel must be transmitted by the receiver device at the same baud rate
as the received data. If the HSS cores from both chips are provided with a
reference clock from a common clock source, then this requires no special
attention. If a common clock source is not guaranteed, then the HSS core trans-
mitting the status channel must use loop timing and connect the HSSREFCLK
input through a PLL to the recovered clock output of one of the receiver lanes
on the HSS core receiving the SPI-S data.

Fig. 5.10 CEI-P 64B/66B block formats

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

TAG=0: Data Block
8 bytes = Octal Data Word

TAG=1: Control Block
4 bytes = Control Word

4 bytes = Quad Data Word

MSB LSB

DATA OCTET
N+7

DATA OCTET
N+6

 DATA OCTET
N+5

DATA OCTET
N+4

DATA OCTET
N+3

DATA OCTET
N+2

DATA OCTET
N+1DATA OCTET N

4 bytes = Control Word
DATA OCTET

N+3
DATA OCTET

N+2
DATA OCTET

N+1DATA OCTET N

TAG

TAG

Flags
[4:0]

31 27 26

Address [14:0]

12 11 0

CRC [11:0]

Overview of Protocol Standards 187

SPI-S defines the link state machines at the receiver and transmitter that
generate and respond to the status channel as well as control word fields. SPI-S
also defines provisionable parameters relevant to these link states. Link state
and parameter definitions are beyond the scope of this text.
5.2.3.3 Framing Modes

As mentioned previously, SPI-S may be mapped onto an IEEE 64B/66B
coding and scrambling layer, or onto a CEI-P coding and scrambling layer.
IEEE 64B/66B Coding:

IEEE 64B/66B coding and scrambling is defined in IEEE 802.3ae-2002
Clause 49. The SPI-S block tag is mapped into the IEEE 64B/66B framing
field with a value of either a “01” or “10,” and the remainder of the SPI-S block
is mapped into the 64-bit payload field.

Framing is performed by receiver deskew logic by searching for the bit
positions within the 66-bit symbol which are consistently either “01” or “10,”
and never “00” or “11.” This provides a framing reference to distinguish tag
fields from payload data. When the data width of the interface is 2 or more
lanes, deskew is performed across lanes by aligning the tag field references.
CEI-P Coding:

The OIF CEI-P Implementation Agreement defines a coding and
scrambling layer which provides an alternative to the IEEE 64B/66B code. The
tag bit and 64-bit payload words of each block are mapped into CEI-P frames
as shown in Fig. 5.11. Other fields in this frame, as well as framing procedures,
will be described shortly for CEI-P.

Fig. 5.11 CEI-P mapping

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

T Payload 64 bits T Payload 64 bits T Payload 64 bits

S[0]

S[1]

S[2]

S[3]

20 FEC Parity bits

F1
58
3

Always Scrambled

17 Parity,
Scrambler Sync

3 Parity,
STATE[2:0]

F0 F65 F130 F194

Order of Transmission

O
rd

er
 o

f T
ra

ns
m

is
si

on

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

188 High Speed Serdes Devices and Applications

5.2.4 CEI-P Implementation Agreement
The CEI-P Implementation Agreement defines three sublayers of the

protocol stack:
Adaption layer. This layer provides client signal alignment, performance
monitoring, and mapping functions to convert from client protocol formats to
CEI-P formats. This layer is application specific and is not specified in CEI-P.
Aggregation layer. This is an optional layer which multiplexes and
de-multiplexes clients onto the CEI-P lane. This permits n lanes of a given
baud rate to share one lane running at n times the baud rate. The purpose is to
allow scalability of legacy protocols onto higher speed electrical lanes. For
example, two OC-48 clients may share a CEI-6G lane using CEI-P. The
detailed definition of this layer is beyond the scope of this text.
Framing layer. This layer defines the CEI-P framing, coding, scrambling,
error detection and correction, etc. Key aspects of this are discussed in this
section.
5.2.4.1 CEI-P Frame Format

The format of the 1584-bit CEI-P frame is defined in Fig. 5.11:
• Each 64-bit word of client data is mapped into the CEI-P payload words.
• The “T” bits are available for use by the client application; for SPI-S the

T bits indicate the format of the payload word.
• The S[3:0] bits are available for use by an application-specific

supervisory layer. Use of these bits is not defined in CEI-P.
• The FEC parity bits are generated by XOR’ing a 20-bit forward error

correction (FEC) code with a 3-bit state code.
The FEC code used in CEI-P is a Fire Code with the following generator

polynomial:
G(x) = (x13 + 1)(x7 + x + 1). (5.2)

Frames are scrambled using a free running scrambler with characteristic
polynomial:

G(x) = x17 + x14 + 1. (5.3)
All bits of the frame are scrambled. The receiver logic can determine the

correct scrambler state by subtracting the calculated value of the FEC bits from
received value of this field, and setting the descrambler state to be equal to the
most significant 17 bits of this subtraction.

The state value is recovered at the receiver by XOR’ing the calculated value
of the FEC bits with the received value of this field, and using the least signif-
icant 3 bits of this result as the state value. Note that any bit errors in the
received data potentially cause the state value to be incorrectly decoded, and
therefore the receiver logic must ignore transitory state transitions, and should
only respond if the state value is consistent for several consecutive frames.

Overview of Protocol Standards 189

Fig. 5.12 CEI-P sample framing algorithm
5.2.4.2 CEI-P Link States

CEI-P links implement state machines which provide for the transmission
of a specified training pattern. This training pattern may be used by the receiver
to train the CDR and DFE circuits. Bidirectional interfaces pair each CEI-P
link with a corresponding link in the reverse direction, and allow either chip to
request that the other chip send the training pattern. CEI-P links on unidirec-
tional interfaces only send training patterns when directed to do so by a super-
visory function.

The state value in the CEI-P frame indicates the current link state of the
transmitter. The receiver interprets the data on the link as either a training
pattern or CEI-P frames based on this state. The receiver can request transmis-
sion of the training pattern by having the transmitter with which it is paired
send the corresponding state request.

Detailed definitions of state values and state machine transitions are beyond
the scope of this text.
5.2.4.3 CEI-P Framing

Logic in the receiver is required to determine the CEI-P frame reference.
This is performed through a complex trial-and-error search utilizing the FEC

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

In-Frame. Reset
Mismatch counter.

Compute parity. Get 17-
bit scrambler pattern.
Load de-scrambler.

Reset Match counter.

Select different
candidate frame

boundary.

Received &
computed 17-bit

parity match in the
next frame?

No

Increment
Match counter &
compare to M2

count < M2

count >= M2

Yes

Received &
computed 17-bit

parity match in the
next frame?

Increment
Mismatch counter
& compare to M1

No

count < M1

Yes

count >= M1

Out-of-Frame.
Select arbitrary

candidate frame.

190 High Speed Serdes Devices and Applications

parity calculation. Although other algorithms are possible, CEI-P provides the
sample algorithm shown in Fig. 5.12. Parameters in this algorithm include:

Count: Frame match counter
M1: Constant number of mismatches required before the frame state
transitions from in-frame to out-of-frame.
M2: Constant number of matches required before the frame state
transitions from out-of-frame to in-frame.

The algorithm proceeds to find a frame reference in out-of-frame state as
follows:
1. Assume an arbitrary frame reference.
2. Calculate the FEC code for the next frame and use this to initialize the

descrambler state.
3. Calculate the FEC code for the next frame and compare to the received

value. If the values do not match, try a new frame reference and go back
to step 2. If the values match, then repeat this step for M2 frames.

4. If the calculated and received FEC codes match for M2 consecutive
frames, the frame state transitions to in-frame.

5.2.5 Electrical Layer Implementation Agreements
OIF has published two electrical layer implementation agreements:

• OIF-SxI-5-01.0: System Interface Level 5 (SxI-5): Common Electrical
Characteristics for 2.488–3.125 Gbps Parallel Interfaces: This implemen-
tation agreement defines an electrical layer for 2.488–3.125 Gbps link
baud rates.

• OIF-CEI-02.0: Common Electrical I/O (CEI): Electrical and Jitter
Interoperability agreements for 6G+ bps and 11G+ bps I/O: This imple-
mentation agreement is a clause-based document containing electrical
layer definitions for 4.96–6.375 Gbps link baud rates, and for
9.95–11.10 Gbps link baud rates.

SxI-5 consists of normative transmitter and receiver specifications. CEI
specifies a normative transmitter and a normative channel, and is described in
further detail in this section.
5.2.5.1 CEI Variants

The OIF CEI Implementation Agreement is a clause-based document
which specifies the variants shown in Table 5.6. For reference, SxI-5 is also
compared in this table.
5.2.5.2 Transmitter Electrical Parameters

Basic electrical characteristics of the transmitter specification for various
CEI variants are compared in Table 5.7.

Overview of Protocol Standards 191

The “Transmitter Reference Model” indicated in this table specifies the
assumptions regarding the feed forward equalizer (FFE) in the transmitter
device. There is no direct requirement specified for the transmitter in the
implementation agreement; rather this requirement is implicitly derived from
the channel compliance requirements. In some cases the description of the
reference model may not be physically implementable; “infinite precision” for
example is impossible to achieve in a digital design. This implies that the FFE
designer must over-design in order to achieve an FFE that is at least as capable
at compensating for the channel effects as the reference model specified.

The “Common Mode Voltage” specification in this table only applies if the
transmitter supports DC Coupling. CEI is generally AC coupled, with DC
coupling supported as an option.

Table 5.6 Common electrical I/O variants

Short name
Implementation

agreement
reference

Baud rate Reach objective

SxI-5 OIF-SxI-5-01.0 2.488–3.125Gbps Capable of driving
at least 8in. of FR4

with 1 or 2 connectors

CEI-6G-SR OIF-CEI-02.0
Clause 6

4.976–6.375Gbps Capable of driving
0–200mm of PCB

and up to 1 connector

CEI-6G-LR OIF-CEI-02.0
Clause 7

4.976–6.375Gbps Capable of driving
0–1,000mm of PCB

and up to 2 connectors

CEI-11G-SR OIF-CEI-02.0
Clause 8

9.95–11.1Gbps Capable of driving
0–200mm of PCB

and up to 1 connector

CEI-11G-MR OIF-CEI-02.0
Clause 9

9.95–11.1Gbps Capable of driving
0–600 mm of PCB

and up to 2 connectors
for low power
applications

CEI-11G-LR OIF-CEI-02.0
Clause 9

9.95–11.1Gbps Capable of driving
0–1,000 mm of PCB

and up to 2 connectors

192 High Speed Serdes Devices and Applications

Table 5.7 CEI transmitter electrical parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR
CEI-11G-MR

Transmitter
reference model

2-tap FFEa 2-tap FFEb No emphasis 3-tap FFEc

Output differential
voltage

400–750
mVppd

800–1,200
mVppd

360–770
mVppd

800–1,200
mVppd

Common mode
voltage

(AC coupled load)

0–1.8 V 100–1,700
mV

0–3.55 V 100–1,700
mV

Common mode
voltage

(DC coupled load)

Range
depends on
Vtt at the
receiver

630–1,100mV Range
depends on
Vtt at the
receiver

630–1,100
mV

Rise/fall time 30ps min. 30ps min. 24ps min. 24ps min.

Uncorrelated
bounded high

probability jitter
(T_UBHPJ)

0.15 UIpp 0.15 UIpp

Uncorrelated
unbounded

Gaussian jitter
(T_UUGJ)

0.15 UIpp 0.15 UIpp

Uncorrelated high
probability jitter

(T_UHPJ)

0.15 UIpp 0.15 UIpp

Duty cycle
distortion
(T_DCD)

0.05 UIpp 0.05 UIpp 0.05 UIpp

Total jitter (T_TJ) 0.30 UIpp 0.30 UIpp 0.30 UIpp 0.30 UIpp

aSingle post tap transmitter, with <3dB of emphasis and infinite precision accuracy
bEither a single pretap or posttap transmitter, with <6dB of emphasis, with infinite
precision accuracy
cEqualizing filter with 2 tap baud spaced emphasis no greater than a total of 6dB with finite
resolution no better than 1.5dB

Overview of Protocol Standards 193

The jitter terminology in Table 5.7 is unique to the CEI Implementation
Agreement. The detailed jitter budgets for each of the CEI clauses subdivided
the deterministic and random jitter components in order to differentiate
between contributors for which the FFE/DFE filters would or would not
compensate. Those parameters of the jitter budget which are normative are
shown in Table 5.7. The reader may generally assume as a first order
approximation:
• T_UBHPJ = Unequalizable Deterministic Jitter (DJ).
• T_UHPJ = T_UBHPJ + T_DCD + other high probability jitter

components.
• T_UUGJ = Unequalizable Random Jitter (RJ).
5.2.5.3 Receiver Electrical Parameters

Basic electrical characteristics of the receiver specification for various CEI
variants are compared in Table 5.8. The “Receiver Reference Model” indicated
in this table specifies the assumptions regarding the equalization in the receiver
device. Where two possible reference models have been specified for a given
CEI variant, the receiver designer may assume either one.

There is no direct requirement specified for the receiver equalization in the
implementation agreement; rather this requirement is implicitly derived from
the channel compliance requirements. DFE filters are assumed to have tap
weights with infinite precision; this is not physically implementable, and
implies the DFE designer must over-design in order to achieve equivalent
performance.

The “Common Mode Voltage” specification in this table only applies if the
transmitter supports DC Coupling. CEI is generally AC coupled, with DC
coupling supported as an option.

Fig. 5.13 Eye mask at output of receive equalizer for channel compliance

A
m

pl
itu

de
 (m

V
)

Time (UI)

0.0 0.5 1.01-R_X1R_X1

0

R_Y2

R_Y1

-R_Y1

-R_Y2A
m

pl
itu

de
 (m

V
)

Time (UI)

0.0 0.5 1.01-R_X1R_X1

0

R_Y2

R_Y1

-R_Y1

-R_Y2

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

194 High Speed Serdes Devices and Applications

Table 5.8 CEI receiver electrical parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR
CEI-11G-MR CEI-11G-LR

Receiver reference
model

No
equalization

5 tap DFE
with

constraints on
tap weights

See Note (1) 4 tap DFE
with

constraints on
tap weights

Input differential
voltage

125–750
mVppd

1,200mVppd
max.

110–1,050
mVppd

1,200mVppd
max.

Common mode
voltage (AC

coupled load)

0–1.8V 100–1,800mV 0–3.60V 100–1,800mV

Common mode
voltage (DC

coupled load)

Range
depends on
Vtt at the
receiver

595–(Vtt – 60)
mV

Range
depends on
Vtt at the
receiver

595–
(Vtt – 60) mV

Note (1)Two reference receivers are defined:
• Reference Receiver A (CEI-11G-SR/MR): No equalization
• Reference Receiver B (CEI-11G-SR only): Single-zero single-pole filter

Table 5.9 Channel compliance parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR

Transmitter reference model

Baud rate 6.375Gbps
(See Note (1))

6.375Gbps
(See Note (1))

11.1Gbps
(See Note(1))

11.1Gbps
(See Note (1))

 Equalization See Note (2) See Note (2) None See Note (2)

 Amplitude 400 mVppd 800 mVppd Both 360 and
770 mVppd
(See Note 3)

800 mVppd

 Jitter (T_UBHPJ) 0.15 UIpp 0.15 UIpp 0.15 UIpp 0.15 UIpp

Jitter (T_UUGJ) 0.15 UIpp 0.15 UIpp 0.15 UIpp 0.15 UIpp

Jitter (T_DCD) 0.05 UIpp

Overview of Protocol Standards 195

Tx edge rate filter As specified in
Note (4)

As specified in
Note (4)

As specified in
Note (4)

As specified in
Note (5)

Return loss RC Network
model (Note

(6))

RC Network
model (Note

(6))

RC Network
model (Note

(6))

RC Network
model (Note

(6))

Receiver reference model

Equalization None See Note (7) See Note (7) See Note (7)

Return loss RC Network
model (Note

(6))

RC Network
model (Note

(6))

RC Network
model (Note

(6))

RC Network
model (Note

(6))

Bit error rate
(BER)

10–15 10–15 10–15 10–15

Sampling point (See Note (8)) Not specified (See Note (8)) Not specified

Eye mask parameters

R_X1 0.30 UI 0.30 UI 0.35 UI /
0.25 UI

(See Note (9))

0.2625 UI

R_Y1 62.5mV 50mV 55mV 50mV

R_Y2 375mV Not specified 525mV Not specified

Note (1) Lower of maximum baud rate of channel or baud rate specified in table
Note (2) See Table 5.7, “Transmitter Reference Model” entry, column for corresponding

variant for specified transmitter equalization
Note (3) Channel compliance must be tested and pass for all specified amplitudes
Note (4) Transmitter edge filter is modeled as a simple 20dB/dec low-pass filter at 75% of

baud rate
Note (5) Transmitter edge filter is modeled as a simple 40dB/dec low-pass filter at 75% of

baud rate
Note (6) Return loss is modeled as an RC filter where R is the defined maximum allowed

DC resistance of the interface and C is increased until the defined maximum
return loss at the defined frequency is reached

Note (7) See Table 5.8, “Receiver Reference Model” entry, column for corresponding
variant for specified receiver equalization

Note (8) Sampling point is defined as midpoint between average zero crossings of the
differential signal

Note (9) First number is requirement when analyzing Reference Receiver A; second
number is requirement when analyzing Reference Receiver B

Table 5.9 Channel compliance parameters

CEI-6G-SR CEI-6G-LR CEI-11G-SR CEI-11G-LR

196 High Speed Serdes Devices and Applications

Parameters regarding “Input Differential Voltage” are informative specifi-
cations. The receiver must receive any signal generated by a compliant trans-
mitter driven through a compliant channel. For CEI variants with receiver
reference models using DFEs, the signal amplitude at the receiver may
approach zero for higher spectral components of the data.

Jitter parameters are also informative specifications with respect to the
receiver. The individual CEI clauses provide informative values for jitter at the
receiver which may be used as a guideline. The requirement is that the receiver
must receive any signal generated by a compliant transmitter and driven
through a compliant channel.
5.2.5.4 CEI Channel Compliance

All CEI variants include normative specifications for channel compliance.
Channel compliance is determined by frequency domain analysis of the
channel using the mathematical methods specified in the implementation
agreement. This is analysis is performed as follows:
• A reference transmitter is assumed which incorporates certain assump-

tions regarding launch amplitude, jitter, equalizer capabilities, etc.
• The channel response is measured and 4-port S-parameters are generated

for the channel.
• A reference receiver is assumed which incorporates certain assumptions

regarding return loss, equalizer capabilities, etc. In some cases, more than
one reference receiver is specified; the channel must work with all speci-
fied reference receivers.

• Statistical signal integrity analysis is performed with the above compo-
nents to determine the width and height of the virtual eye at the output of
the receiver equalizer. If there exists a set of filter coefficients for the
transmitter and the receiver which are legal, and which produce a virtual
eye that is of sufficient width and height for the target bit error rate
(BER), then the channel is compliant.

Table 5.9 specifies the reference transmitter and receiver assumptions for
channel compliance analysis of the various CEI variants. The table also
specifies the eye mask parameters for the output of the receive equalizer which
constitute the pass/fail condition; the eye mask is provided in Fig. 5.13. Note
that:

1 If more than one Receiver Reference Model is specified, then the channel
must pass using each reference model.

2. If more than one transmit amplitude is specified, then the channel must
pass using each specified amplitude.

3. CEI-11G-MR channel compliance uses:
– The transmitter reference model for CEI-11G-LR
– The receiver reference model A for CEI-11G-SR
– The eye mask parameters for CEI-11G-SR.

Overview of Protocol Standards 197

OIF has collaborated with the developers of an open source software tool
called StatEye to provide an implementation of the mathematics specified in
the CEI Implementation Agreement [12]. Certain releases of this tool include
templates for the various CEI variants. StatEye performs the necessary
statistical signal integrity analysis using these templates.

5.3 Ethernet Protocols
The Institute of Electrical and Electronics Engineers (IEEE) commissioned

a committee to develop open network standards. Since this committee started
work on this effort in February, 1980, the documents produced by this project
were designated using the nomenclature IEEE 802.x. Several different network
architectures were ultimately standardized, resulting in various “.x” exten-
sions. The “Ethernet” system originally developed by Xerox was standardized
and published as “IEEE 802.3 Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer Specifications” in
1985. Although the IEEE document does not use the term, the “Ethernet” name
continues to be commonly associated with this standard. While Ethernet was
once one of several network standards with significant deployment (for
example: the 802.5 Token Ring), over time it has emerged as the dominant
network standard. The IEEE 802.3 document has gone through several revi-
sions, adding additional clauses to support additional speeds, physical layers,
etc., since its original publication.

The historical network topology for an Ethernet system consisted of
multiple workstations connected to a common Ethernet bus using coaxial
cable. Whenever one of the workstations wanted to send data, the network
device would first listen to the bus to determine whether another workstation
was using it. If the bus was in use, the device would wait. If the bus was not in
use, the network device would transmit a data packet, while continuing to
monitor the bus for any collisions resulting from two devices starting transmis-
sion at the same time. If a collision occurred, the device would abort the trans-
mission and wait some amount of time before trying again. The CSMA/CD
portion of the title for the IEEE 802.3 document results from this historical
network access method.

Beginning in the early 1990s, “star-connected” network topologies became
the network configuration of choice. In a “star-connected” topology, each
workstation connects to a central network unit (either a network switch or a
network hub), and each connection is a point-to-point link implemented using
twisted-pair wire or optical fiber. Such topologies allowed full-duplex connec-
tions such that a network device can be both transmitting and receiving at the
same time. Since each link had only one transmitter, collisions were no longer
possible. Nevertheless, the CSMA/CD access methods were retained in the
IEEE 802.3 standard through the 10 Mbps, 100 Mbps, and 1 Gbps generations.
Clauses pertaining to 10 Gbps recognize that practical implementations are
point-to-point links, and no longer support CSMA/CD access methods.

198 High Speed Serdes Devices and Applications

5.3.1 Physical Layer Reference Model
Figure 5.14 illustrates the Media Access Control (MAC) layer and the

various components (with the associated Ethernet terminology) of the Physical
Layer associated with 10-Gbps Ethernet. The Reconciliation Layer remaps
signals between the 32-bit MAC/PLS service interface definition (clause 36)
and the 10-Gbps Ethernet Media-Independent Interface (XGMII) definition.
The MAC layer (via the Reconciliation Layer) and the Physical Layer are
interconnected using the XGMII. The Physical Layer consists of the Physical
Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer, and
the Physical Medium Dependent (PMD) sublayer. There are multiple clauses
of the IEEE 802.3 document which apply to these sublayers, depending on the
type of medium being used. HSS cores are used in the high-speed electrical
implementation of these layers.

Table 5.10 describes the relationship between 10-Gbps Ethernet variants
and normative clauses of the IEEE 802.3 document for the physical sublayers.
The published clauses relevant to 10-Gb Ethernet are summarized below:
Clause 44. Introduction to the 10Gbps Baseband Network: This clause is a
normative summary of applicable requirements for the 10-Gbps LAN/WAN
variants described in Table 5.10. This clause references other 10Gbps clauses.
Clause 46. Reconciliation Sublayer (RS) and 10 Gigabit Media Independent
Interface (XGMII): This clause defines both the Reconciliation Sublayer (RS)
and the XGMII.
Clause 47. XGMII Extender Sublayer (XGXS) and 10 Gigabit Attachment Unit
Interface (XAUI): This clause defines a method of extending the physical
distance between the MAC layer device and the PCS/PMA layer device. An
XGXS layer device is located near the MAC layer device (DTE XGXS), and a
similar XGXS layer device is located near the PCS/PMA layer device (PHY
XGXS). XAUI is the interface definition which interconnects the two XGXS
layer devices.
Clause 48. Physical Coding Sublayer (PCS) and Physical Medium Attachment
(PMA) sublayer, type 10GBASE-X: This clause defines the PCS and PMA
layers for connecting an XGMII to a PMD using a 4 lanes by 3.125Gbps
electrical interface. Block encoding/decoding (8B/10B), alignment, deskew,
and clock rate compensation are components of this clause.
Clause 49. Physical Coding Sublayer (PCS) for 64b/66b, type
10GBASE-R: This clause defines the PCS layer for connecting an XGMII to a
10-Gbps serial PMA layer. Block encoding/decoding (64B/66B), alignment,
and clock rate compensation are components of this clause.
Clause 50. WAN Interface Sublayer (WIS), type 10GBASE-W: This clause
defines a sublayer which exists between the PCS and the PMA layer for Wide
Area Network (WAN) variants. This sublayer maps Ethernet packets into the
Synchronous Payload Envelope (SPE) of an STS-192c SONET frame.

Overview of Protocol Standards 199

Fig. 5.14 LAN PHY/WAN PHY sublayers

Table 5.10 Relevant IEEE 802.3 clauses

Nomenclature Type PMD description

PC
S

la
ye

r c
la

us
e

PM
A

 la
ye

r c
la

us
e

PM
D

 la
ye

r c
la

us
e

W
IS

 (C
la

us
e

50
)

A
ut

o-
N

eg
. (

C
la

us
e

73
)

FE
C

 (C
la

us
e

74
)

10GBASE-SR LAN 850-nm serial optics 49 51 52
10GBASE-LR LAN 1,310-nm serial optics 49 51 52
10GBASE-ER LAN 1,550-nm serial optics 49 51 52

10GBASE-LX4 LAN 4 x 1,310-nm CWDM
optics

48 48 53

10GBASE-CX4 LAN 4 x 3.125 Gbps electrical
i/f

48 48 54

10GBASE-SW WAN 850-nm serial optics 49 51 52 X
10GBASE-LW WAN 1,310-nm serial optics 49 51 52 X
10GBASE-EW WAN 1,550-nm serial optics 49 51 52 X
10GBASE-KX4 Backplane 4 x 3.125Gbps electrical 48 48 71 X
10GBASE-KR Backplane 10 x Gbps serial electrical 49 51 72 X O

Key: X = Mandatory, O = Optional

Media Access Control (MAC)

Physical Coding Sublayer (PCS)

Physical Medium
Attachment (PMA)

Physical Medium
Dependent (PMD)

Medium

XGMII

Physical
Layer

Reconciliation Layer

200 High Speed Serdes Devices and Applications

Clause 51 Physical Medium Attachment (PMA) sublayer, serial: This clause
defines a PMA sublayer for interfacing the PCS sublayer defined in clause 49
(or the WIS sublayer defined in clause 50) to a PMD using a serial 10.3125-
Gbps electrical interface.
Clause 52 Physical Medium Dependent (PMD) sublayer and baseband
medium, type 10GBASE-S (Short Wavelength Serial) and 10GBASE-L (Long
Wavelength Serial) and 10GBASE-E (Extra Long Wavelength Serial): This
clause defines the electrical-to-optical and optical-to-electrical PMD layer for
10-Gbps serial optical devices.
Clause 53 Physical Medium Dependent (PMD) sublayer and baseband
medium, type 10GBASE-LX4: This clause defines the electrical-to-optical and
optical-to-electrical PMD layer for a 10-Gbps optical device which employs
Course Wave Division Multiplexing (CWDM) to transmit four 3.125Gbps
data streams on the fiber.
Clause 54 Physical Medium Dependent (PMD) sublayer and baseband
medium, type 10GBASE-CX4: This clause defines the electrical PMD layer for
a 10-Gbps electrical device which uses four 3.125-Gbps electrical differential
signals to transmit data across a cable.

The Ethernet variants also exist for communication across backplanes
within host systems. The clauses relevant to 10-Gb Backplane Ethernet are
summarized below:
Clause 69. Introduction to Ethernet operation over electrical
backplanes: This clause is a normative summary of applicable requirements
for the 1 Gbps and 10 Gbps backplane variants described in Table 5.10. This
clause references other clauses applicable to these variants.
Clause 71. Physical Medium Dependent Sublayer and Baseband Medium,
Type 10GBASE-KX4: This clause defines the electrical PMD layer for a 10-
Gbps electrical device which uses four 3.125-Gbps electrical differential
signals to transmit data across a backplane.
Clause 72. Physical Medium Dependent Sublayer and Baseband Medium,
Type 10GBASE-KR: This clause defines the electrical PMD layer for a 10-
Gbps serial electrical device which uses a 10.3125-Gbps electrical differential
signal to transmit data across a backplane. This clause additionally defines a
training frame structure and training state machine. This training protocol
monitors the signal metrics at the receiver during link initialization and updates
FFE coefficients in the transmitter in order to optimize performance of the link.
Clause 73. Auto-Negotiation for Backplane Ethernet: This clause defines
autonegotiation protocols which are mandatory for PCS/PMA layer implemen-
tations for Backplane Ethernet. This protocol allows devices to negotiate
which Backplane Ethernet variant is to be used, whether FEC is to be used, and
other parameters.

Overview of Protocol Standards 201

Clause 74. Forward Error Correction (FEC) sublayer for
10GBASE-R: This clause defines an optional FEC sublayer for enhancing the
BER performance of 10GBASE-KR.

5.3.2 Media Access Control (MAC) Layer
In this section the basic format of an Ethernet frame is discussed, as well as

the XGMII interface definition. Other details of MAC layer function are
beyond the scope of this text.
5.3.2.1 Ethernet Packet Format

Ethernet is a packet delivery system. The basic format of an Ethernet packet
is shown in Fig. 5.15. Each packet consists of a preamble and start frame
delimiter (SFD) to indicate the beginning of a packet, destination and source
addresses to identify the recipient and the sender, a packet length field indicat-
ing the number of data bytes in the packet, a variable length data field, and a
frame check sequence (FCS) field to facilitate error detection.

Each Ethernet network interface card (NIC) is assigned a unique MAC
address by its manufacturer. The first 24 bits of the 48-bit MAC address
identify the manufacturer and are assigned by the IEEE Registration Authority.
The remaining bits are assigned by the manufacturer and are generally pro-
grammed into the hardware such that they cannot be changed. This MAC
address uniquely identifies the NIC, even if the hardware moves to another
location.

The data portion of the MAC frame generally carries data for a higher layer
protocol, which also requires some control information to be transmitted. The
data portion of the frame in Fig. 5.15 often consists of a logical link control
(LLC) layer header followed by payload data. If there are fewer than 46 bytes
of payload data, then the payload data is padded to achieve this minimum
length.

Fig. 5.15 IEEE 802.3 ethernet frame

Preamble
(7 bytes)

SFD
(1)

Destination
Address
(6 bytes)

Source
Address
(6 bytes)

Length
(2)

Data
(Up to 1500 bytes)

FCS
(4 bytes)

Preamble: Idles which set timing.
Start Frame Delimiter (SFD): ‘AB’h indicating start of frame.
Destination Address: Six byte unique MAC address of recipient device.
Source Address: Six byte unique MAC address of sending device.
Length: Two bytes indicating length of data field.
Data: Layer 2 Payload Data field. Generally contains a Logical Link

Data is padded if shorter than 46 bytes.
Frame Check Sequence (FCS): Cyclic Redundancy Check (CRC)

Control (LLC) header and between 46 and 1500 bytes of payload data.

remainder for error detection.

202 High Speed Serdes Devices and Applications

5.3.2.2 10-Gb Media Independent Interface (XGMII)
The XGMII interface consists of the following signals:

TXD[31:0]: This 32-bit bus is the transmit data bus driven by the MAC to the
Physical Layer. Bit 31 is the most significant bit of this bus, and bit 0 is the
least significant bit. Ethernet data is transmitted least significant bit first (i.e.,
TXD[0] first, then TXD[1], and so forth through TXD[31]).
TXC[3:0]: These control bits indicate whether the corresponding bytes of the
TXD bus are data values or control values. The TXD[31:0] and TXC[3:0]
signals are organized into “lanes” as is explained shortly.
TX_CLK: This signal is a 156.25-MHz transmit DDR clock and is synchro-
nous to the TXD and TXC signals.
RXD[31:0]: This 32-bit bus is the receive data bus driven by the Physical
Layer to the MAC. Bit 31 is the most significant bit of this bus, and bit 0 is the
least significant bit. Ethernet data have received least significant bit first.
RXC[3:0]: These control bits indicate whether the corresponding bytes of the
RXD bus are data values or control values. The RXD[31:0] and RXC[3:0]
signals are organized into “lanes” as is explained shortly.
RX_CLK: This signal is a 156.25-MHz receive DDR clock and is synchronous
to the RXD and RXC signals.

Fig. 5.16 MAC serial bit order and XGMII data lanes

D31 D24 D23 D16 D15 D8 D7 D0................

D31 D24 D23 D16 D15 D8 D7 D0................

TXD[31:24] TXD[23:16] TXD[15:8] TXD[7:0]

Transmission Bit Order

RXD[31:24] RXD[23:16] RXD[15:8] RXD[7:0]

Received Bit Order

Lane 3 Lane 2 Lane 1 Lane 0XGMII
Lanes

(D0 transmitted first.)

(D0 received first.)

Overview of Protocol Standards 203

The TXD[31:0] and TXC[3:0] signals are organized into lanes as follows:
Lane 0 consists of TXD[7:0] and TXC[0].
Lane 1 consists of TXD[15:8] and TXC[1].
Lane 2 consists of TXD[23:16] and TXC[2].
Lane 3 consists of TXD[31:24] and TXC[3].

The RXD[31:0] and RXC[3:0] signals are organized into lanes in a similar
manner. The order in which MAC bits are mapped onto the XGMII signals is
illustrated in Fig. 5.16.

Table 5.11 XGMII frame example

Contents

XGMII Lane 3 XGMII Lane 2 XGMII Lane 1 XGMII Lane 0

TXC3
or

RXC3

TXD/
RXD

[31:24]

TXC2
or

RXC2

TXD/
RXD

[23:16]

TXC1
or

RXC1

TXD/
RXD
[15:8]

TXC0
or

RXC0

TXD/
RXD
[7:0]

Preamble /
start

0 “AA”h 0 “AA”h 0 “AA”h 1 “FB”h

SFD /
preamble

0 “AB”h 0 “AA”h 0 “AA”h 0 “AA”h

Frame data 0 Byte 4 0 Byte 3 0 Byte 2 0 Byte 1

.
:

.
:

.
:

.
:

.
:

.
:

.
:

.
:

End/frame
data

1 “FD”h 0 Byte N 0 Byte N–1 0 Byte N–2

Table 5.12 XGMII control characters

TXC/RXC TXD/RXD 8B/10B Code

MAC data 0 “00”h to
“FF”h

Dx.y

Idle 1 “07”h

Sequence (only valid in lane
0)

1 “9C”h K28.4

Start (only valid in lane 0) 1 “FB”h K27.7

Terminate 1 “FD”h K29.7

Transmit error propagation or
receive error

1 “FE”h K30.7

204 High Speed Serdes Devices and Applications

Table 5.11 illustrates the format of a packet on the XGMII bus. The first
preamble character generated by the MAC layer is replaced by the XGMII
“Start” control symbol (see control character definitions in Table 5.12), which
must be aligned in Lane 0 of the XGMII. The Start character is followed by six
additional preamble bytes, and the MAC Start Frame Delimiter. From the
perspective of the XGMII, all characters after the Start control character are
data bytes.

The next N data bytes correspond to the MAC frame header, data, and
Frame Check Sequence as defined previously. After the last FCS byte, a
“Terminate” control character is sent on the XGMII. Note that the length of the
MAC frame does not need to be divisible by four, and therefore the frame may
end (and the “Terminate” character may occur) on any lane of the XGMII. The
MAC layer may also abort the frame using an End character (‘FE’h). This
character is interpreted at the receiver as either MAC propagation of an error
on the transmitter or as a receive error detected by the Physical Layer.

In between frames, the Idle characters or Sequence characters are sent.

5.3.3 XGMII Extender Sublayer (XGXS)
The XGMII Extended Sublayer (XGXS) extends the reach the XGMII

interface across a 10-Gigabit Attachment Unit Interface (XAUI). This exten-
sion across XAUI, with an XGXS at either end, is shown in Fig. 5.17.

The XGXS encodes and serializes the XGMII transmit data (TXD/TXC
signals) for transmission on XAUI. Each XGMII lane is 8B/10B encoded, seri-
alized, and transmitted at a baud rate of 3.125Gbps. XAUI serial data signals
received by the XGXS are deserialized, 8B/10B decoded, and then driven to
the MAC or PHY on the XGMII receive data (RXD/RXC signals). XAUI is a
full duplex interface consisting of four transmit and four receive serial data
signals, corresponding to the four transmit and four receive lanes of XGMII.

It should be noted that the functions for the PCS/PMA sublayers defined in
clause 48 of the 802.3 specification are identical to the function of the XGXS
as specified in clause 47. The logic implementation is therefore similar. These
clauses differ in that clause 47 defines the electrical parameters for the serial
data signals that are applicable to XAUI. When used as the PCS/PMA layer for
10GBASE-X variants, the electrical characteristics of the signals between the
PMA and PMD sublayers are implementation dependent.

The XGXS function is also similar for backplane applications designed to
clause 71. Electrical parameters which apply for backplane applications are
contained in clause 71.

Overview of Protocol Standards 205

Fig. 5.17 XAUI/XGXS relationship to Ethernet layers
5.3.3.1 XGXS Function Overview

The PMA sublayer of an XGXS is implemented with HSS cores. The PCS
sublayer requires additional logic to implement the following functions:
• Transmitter pseudorandom idle generation between packets.
• Clock compensation between the HSS core clock domains for each lane

and the XGMII clock domain (through insertion or deletion of Idles
between packets).

• 8B/10B encoding of XGMII transmit data to the PMA; 8B/10B decoding
of PMA receive data to the XGMII.

• Receiver detection of synchronization idles.
• Generation of bit alignment pulses to the HSS core to perform symbol

alignment of 8B/10B symbols received by the HSS core.
• Receiver detection of align idles and deskew of all lanes.

Media Access Control (MAC)

Physical Coding Sublayer (PCS)

Physical Medium
Attachment (PMA)

Physical Medium
Dependent (PMD)

Medium

XGMII

Physical
Layer

Reconciliation Layer

XGMII
XGXS

XGXS

XAUI

206 High Speed Serdes Devices and Applications

The HSS core implements the following XGXS PMA sublayer functions:
• Generation of XGXS transmit clocks (for data between the PCS and PMA

sublayers) based on the local reference clock.
• Serialization of PMA transmit data and transmission over XAUI.
• Reception of XAUI data, clock data recovery, and generation of XGXS

receive clocks (for data between the PMA and PCS sublayers).
• Deserialization of PMA receive data for the PMA interface to the PCS

sublayer.
• Implementation of a bit alignment feature (as implemented on the HSS

EX10 core by the RXxDATASYNC input) to facilitate bit-shifting and
alignment of receive data on the interface between the PMA and PCS
sublayer.

• Continuous status indication of valid clocks and data to the PCS sublayer.
The signals which interface between the PCS and PMA sublayers are im-

plementation dependent. The following signal descriptions are based on IBM
cores, but are typical of what would be generically required:
PMA_DATA_OUT_LANEx[9:0] (x = 0,1,2,3): These busses are the transmit
data for each PMA lane. There are four sets of signals corresponding to each
of the four lanes. Data for each lane is 10-bits wide corresponding to the 10-bit
symbol produced by 8B/10B encoding.
PMA_TXR_CLK_IN[3:0]: These are the 312.5MHz transmit symbol clock
outputs of the HSS core and used by the XGXS PCS layer logic. There is one
clock per lane. The resynchronization function of the HSS core must be used
to minimize skew between transmit clocks.
PMA_DATA_IN_LANEx[9:0] (x = 0,1,2,3): These busses are the receive data
for each PMA lane. There are four sets of signals corresponding to each of the
four lanes. Data for each lane is 10-bits wide corresponding to the 10-bit
symbol produced by 8B/10B encoding.
PMA_RCVR_CLK_IN[3:0]: These are the 312.5-MHz receive symbol clock
outputs of the HSS core and used by the XGXS PCS layer logic. There is one
clock per lane.
PMA_DATA_SYNC_LANE[3:0]: These outputs of the PCS sublayer are
connected to the RXxDATASYNC inputs of the HSS core for each of the
respective lanes.
PMA_CLKS_READY: Status input from the HSS core to the PCS sublayer
indicating that the PLL is locked, clocks are stable, and the HSS core is ready
to receive and transmit data. The proper function of this signal depends on the
defined initialization sequence for the HSS core being used.

One of the functions of the XGXS PCS receive logic is to compensate for
frequency differences between PMA_RCVR_CLK_IN (as determined by the
far-end transmitter’s clock reference) and the XGMII clocks (derived from
the local clock reference). There is a 100 ppm tolerance between these clocks.

Overview of Protocol Standards 207

The XGXS PCS has sufficient buffer capability such that this frequency
difference is tolerated, and Idles are added or dropped between packets to
compensate. When PMA_CLKS_READY is not asserted, it indicates that
clocks may be beyond this specification, and therefore no attempt is made to
receive data or compensate for differences in clock frequencies.
5.3.3.2 Ordered Sets and Special Code Groups

The XGXS PCS sublayer performs 8B/10B encoding and decoding of
MAC frames. Each byte of data maps to a corresponding 10-bit symbol. In
addition, the XGMII control characters in Table 5.12, with the exception of the
Idle character, directly map to corresponding 10-bit symbols. This mapping is
shown in Table 5.12 using the symbol nomenclature for 8B/10B codes. (The
8B/10B block code was described in Sect. 4.2.2.1.)

XGMII Idles are randomly converted to one of the following 10-bit codes:
Sync (K28.5), Skip (K28.0), or Align (K28.3). A LFSR is used to randomly
either generate Sync or Skip symbols. Align symbols are inserted at randomized
intervals in the range of 16–31 symbols, with this interval also determined by
a LFSR. The same symbol is transmitted on all lanes.

Align symbols are used by the receive PCS logic to perform deskew across
all lanes of the interface such that the XGMII RXD[31:0] output is aligned to
a common clock domain. The Align symbol is unique and does not otherwise
occur in the protocol. Since it is transmitted on all lanes simultaneously, and is
only transmitted every 16–31 symbols, the lanes can be deskewed by aligning
the occurrence of this symbol.

Skip symbols are used by the receive PCS logic to adjust for frequency
differences between the recovered receive clock and the local XGMII clock.
Skip symbols are inserted or dropped as needed.

The Sequence symbol (K28.4) is used on lane 0, in conjunction with Dxx.y
symbols on the other lanes, to convey management information. Such informa-
tion is inserted by the MAC layer between frames in place of Idles, and is
conveyed through the XGXS accordingly.

The Sync symbol does not have any special use.

5.3.4 10-Gb Serial Electrical Interface
The 10-Gb Serial Electrical Interface (XFI) was developed as part of the

10-Gigabit Small Form Factor Pluggable (XFP) Multi Source Agreement
(MSA). This MSA was developed by a consortium of optics module vendors
who agreed to source optics modules meeting the XFP requirements. The XFI
is a 10-Gbps serial electrical interface for communications between the XFP
module and a SONET framer chip, or an Ethernet PCS/PMA layer. The PCS
and PMA sublayers defined in clauses 49 and 51, respectively, define the
necessary functions to interface between XGMII and XFI, and are used with
all 10-Gb Ethernet serial variants (including backplane applications using the
PMD defined in clause 72). Although the XFI acronym does not appear

208 High Speed Serdes Devices and Applications

anywhere in the IEEE 802.3 standard, for historical reasons implementations
of clause 49 and 51 are commonly called XFI.

The XFI PCS encodes and serializes the XGMII transmit data (TXD/TXC
signals) for transmission on XFI. Each XGMII lane is 64B/66B encoded,
scrambled, serialized, and transmitted at a baud rate of 10.3125 Gbps. XFI
serial data signals received by the XFI PCS are deserialized, descrambled,
64B/66B decoded, and then driven to the MAC or PHY on the XGMII receive
data (RXD/RXC signals). XFI is a full duplex interface consisting of one
transmit and one receive serial data signals.

An optional 16-bit bus is defined to interface between the PCS sublayer and
the PMA sublayer. While this is the reference interface between the XFI PCS
and the HSS core implementing the PMA sublayer as defined by clause 49, it
does require data to be transferred on the parallel bus of the HSS core at
644.53 Mtransfers per second. Implementations may choose HSS core options
which utilize more bits of parallel data at a slower transfer rate. (Available IBM
cores use a 32-bit interface.) The definition of this interface has significance
for two reasons:
• The 66-bit code word blocks produced by 64B/66B encoding of the

XGMII data are not an integer multiple of the width of the parallel data
bus on most HSS cores. Data must be steered from cycle to cycle by
“gearbox” logic in order to map the 66-bit blocks onto the 16-bit (or
32-bit) parallel data bus of the HSS core.

• 10GBASE-W Wide Area Network (WAN) variants are intended to inter-
operate with other network nodes on a SONET/SDH network. These
variants define a WAN Interface Sublayer (WIS) in clause 50 which maps
the Ethernet packets into a SONET SPE, and then wraps this data with
SONET/SDH overhead bytes with the level of support defined in
clause 50. WIS is sandwiched between the PCS and PMA sublayers for
10GBASE-W variants.

5.3.4.1 XFI Function Overview
The PMA sublayer of an XFI is implemented with HSS cores. The PCS

sublayer requires additional logic to implement the following functions:
• Mapping XGMII data into block payloads.
• Clock compensation between the HSS core clock domain and the XGMII

clock domain (through insertion or deletion of Idles between packets).
• 64B/66B encoding and scrambling of XGMII transmit data to the PMA;

64B/66B decoding and descrambling of PMA receive data to the XGMII.
• Gearbox data steering to map 66-bit code words onto the HSS core

parallel data bus for transmission, and similarly unmap received data.
• Receiver detection of sync headers in received data stream.
• Block alignment using sync headers to form 66-bit blocks from incoming

data.

Overview of Protocol Standards 209

The HSS core implements the following XFI PMA sublayer functions:
• Generation of XFI transmit clock (for data between the PCS and PMA

sublayers) based on the local reference clock.
• Serialization of PMA transmit data and transmission over XFI.
• Reception of XFI data, clock data recovery, and generation of XFI receive

clock (for data between the PMA and PCS sublayers).
• Deserialization of PMA receive data for the PMA interface to the PCS

sublayer.
• Continuous status indication of valid clocks and data to the PCS sublayer.

The signals which interface between the PCS and PMA sublayers are
implementation dependent. A 16-bit PMA Service Interface (XSBI) is defined
for reference in clause 51, but is not required. Some variation from the XSBI
definition exists in most XFI implementations. The following signal descrip-
tions are based on IBM cores, but are typical of what would be generically
required:
TX_DATA_OUT[31:0]: This is the transmit data parallel data bus connection
from the XFI PCS to the HSS core.
PMA_TX_CLK: This is the 322.265-MHz transmit clock output of the HSS
core and is used by the XFI PCS sublayer logic.
RX_DATA_IN[31:0]: This is the receive data parallel data bus connection
from the HSS core to the XFI PCS.
PMA_RX_CLK: This is the 322.265-MHz receive clock output of the HSS
core and is used by the XFI PCS sublayer logic.
PMA_TX_READY: Status input from the HSS core to the XFI PCS sublayer
indicating that the PLL is locked, clocks are stable, and the HSS core is ready
to transmit data. The proper function of this signal depends on the defined
initialization sequence for the HSS core being used.
PMA_RX_READY: Status input from the HSS core to the XFI PCS sublayer
indicating that the PLL is locked, clocks are stable, and the HSS core is ready
to receive data. The proper function of this signal depends on the defined
initialization sequence for the HSS core being used.

One of the functions of the XFI PCS receive logic is to compensate for
frequency differences between PMA_RCVR_CLK_IN (as determined by the
far-end transmitter’s clock reference) and the XGMII clocks (derived from the
local clock reference). There is a 100 ppm tolerance between these clocks. The
XFI PCS has sufficient buffer capability such that this frequency difference is
tolerated, and Idles are added or dropped between packets to compensate.
When PMA_TX_READY or PMA_RX_READY is not asserted, it indicates
that clocks may be beyond this specification, and therefore no attempt is made
to receive data or compensate for differences in clock frequencies.

210 High Speed Serdes Devices and Applications

Fig. 5.18 MAC XGMII data mapping into 64B/66B code word

Fig. 5.19 64B/66B data blocks and control blocks
5.3.4.2 64B/66B Encoding and Scrambling

The XFI PCS maps MAC data on the XGMII into 66-bit code words for
transmission in the manner shown in Fig. 5.18. The reverse of this mapping is
performed at the receiver. Two data transfers on the XGMII bus are mapped
into a single 64-bit block. This block is scrambled with a self-synchronizing
scrambler implementing the polynomial:

G(x) = x58 + x39 + 1. (5.4)
A two-bit Sync Header (either “10” or “01”) is then added to the block to

form a 66-bit code word. The code word is transmitted with the Sync Header
bits transmitted first, followed by data starting with the least significant bit and
proceeding to the most significant bit.

The Sync Header is not scrambled and is always “10” or “01,” limiting the
data run length such that at least one transition occurs every 66 bits. The XFI
PCS logic at the receiver determines the alignment of the 66-bit block by
looking for an alignment where the sync header is consistently “10” or “01.”

D31 D24 D23 D16 D15 D8 D7 D0................

D7 D5 D3 D1

Transmit Bit Order
(D0 received first.)

D31 D24 D23 D16 D15 D8 D7 D0................

Consecutive transfers
on the XGMII bus.

1st transfer

2nd transfer

D6 D4 D2 D0

Scrambler

S7 S5 S3 S1S6 S4 S2 S0

XGMII
TXD[31:0]

Sync Header
added to word.

D0 D2 D4 D6D1 D3 D5 D7

Type Data / O Fields / C Fields based on Type

01

10

2 650 1Bits:

Overview of Protocol Standards 211

Figure 5.18 illustrates the code words with the most significant bit toward
the left and the least significant bit toward the right. It is more convenient when
discussing block encoding to picture the code with the first bit to be transmitted
on the left and the last bit to be transmitted on the right, as in Fig. 5.19.

There are two code word formats shown in Fig. 5.19. The first is a data
block formed from two consecutive transfers of XGMII data. The sync header
field is “01” for this block format when viewed with the first bit transmitted on
the left. A sync header field of “10” indicates a control block. A control block
contains either all control information, or a mix of control information and
data. The first byte of the control block is the block type field and determines
the format of the remainder of the block.

Table 5.13 Control block formats

XGMII
contents Block type Remaining bytes

Idle “1E”h Control characters

Sequence “4B”h Ordered Set mapped from first XGMII transfer followed by
control bytes

“2D”h Control characters followed by Ordered Set mapped from
second XGMII transfer

“55”h Two Ordered Sets mapped from consecutive XGMII transfers

Start “78”h First seven bytes of packet data

“33”h Four control characters followed by
first three bytes of packet data

Combined
sequence /

start

“66”h Ordered set mapped from first XGMII transfer and first three
bytes of packet data mapped from second XGMII transfer

Terminate “87”h Control bytes

“99”h Last 1 bytes of packet data followed by control characters

“AA”h Last 2 bytes of packet data followed by control characters

“B4”h Last 3 bytes of packet data followed by control characters

“CC”h Last 4 bytes of packet data followed by control characters

“D2”h Last 5 bytes of packet data followed by control characters

“E1”h Last 6 bytes of packet data followed by control characters

“FF”h Last 7 bytes of packet data

212 High Speed Serdes Devices and Applications

Block types are defined in Table 5.13. Block types are used to denote the
start and end of packets, and the transmission of ordered sets. Control charac-
ters are 7-bit fields; eight control characters plus the 8-bit block type field can
be transmitted in a single control block. Ordered sets include a 4-bit O code
and three data bytes; two ordered sets plus an 8-bit block type field can be
transmitted in a single control block. The precise bit mapping for control char-
acters, ordered sets, and data into the block formats in Table 5.13 is beyond the
scope of this text. It should be noted that some of these formats have unused
bits as the result of how field sizes combine.

The following control bytes are defined for use in control blocks:
• Idle is encoded as the seven bit control character: “0000000.”
• Error is encoded as the seven bit control character: “0011110.”

Various other control character codes are either reserved or illegal.
5.3.4.3 WAN Interface Sublayer (WIS)

10GBASE-W Wide Area Network (WAN) variants interoperate with other
network nodes on a SONET/SDH network. The WAN Interface Sublayer
(WIS) defined in clause 50 maps the Ethernet packets into a SONET SPE, and
then wraps this data with SONET/SDH overhead bytes. WIS is sandwiched
between the PCS and PMA sublayers for 10GBASE-W variants.

The frequency of operation of the PMA sublayer when used with a
10GBASE-W PMD must match the STS-192 bit rate. Therefore, the following
bit rates and clock rates apply when WIS is used:
• The PMA sublayer operates at 9.95328 Gbaud for 10GBASE-W variants.
• The clocks for a 16-bit XSBI interface to this PMA sublayer operate at

622.08 MHz. The clocks for a 32-bit equivalent interface (as used by IBM
cores) operate at 311.04 MHz.

• The maximum transfer rate on a 16-bit XSBI interface from the PCS sublayer
into the WIS is 599.04 Mtransfers per second to allow for SONET/SDH
overhead added by the WIS. The maximum transfer rate on an equivalent
32-bit interface (as used by IBM cores) is 299.52 Mtransfers per second.

To properly limit the transfer rate through the PCS layer to the WIS, the
MAC layer must be provisioned to insert extra idles between frames. WIS
drops Idle characters to make room for the SONET/SDH overhead bytes.

Figure 5.20 illustrates the SONET/SDH overhead bytes which are
implemented by WIS.
Section overhead (SOH). Framing pattern A1/A2 bytes and the B1 byte are
supported. A fixed path trace value is generated and checked for the J0 byte.
Line overhead (LOH). The B2 and M1 (STS-N extension of M0) bytes are
supported. H1/H2 pointer bytes are set to a constant value corresponding to a
fixed position of the SPE in the STS-192 frame. K1/K2 are set to fixed values.
Path overhead (POH). The B3 and G1 bytes are supported. J1 and C2 are set
to fixed values.

Overview of Protocol Standards 213

Fig. 5.20 WIS support for SONET/SDH overhead
Overhead bytes not listed above are not supported. They are set to fixed

values and are not checked.
One last note on the WIS sublayer is in regard to the orientation of most

significant bit and least significant bits on the interface between this layer and
other sublayers. Ethernet bits are transmitted least significant bit first, while
SONET/SDH octets are transmitted most significant bit first. For this reason,
bit/octet ordering is interposed between the PCS and the PMA sublayers by the
WIS sublayer.

5.3.5 Backplane Ethernet
There are three significant features associated with Backplane Ethernet

which are not used in other Ethernet variants. These features are:
• Training protocol (defined in Clause 72 for 10GBASE-KR)
• Autonegotiation (defined in Clause 73 for all Backplane Ethernet

variants)
• Forward error correction (FEC) (defined in Clause 74 for optional use

with 10GBASE-KR)
5.3.5.1 Training Protocol

The training protocol is included in the IEEE 802.3 clause 72 specification
for the 10GBASE-KR variant and must be executed upon start-up to initialize
the PMD for this variant. This protocol continuously exchanges fixed-length
training frames between the PMD and the link partner. The training frames

A1 A2 J0

B1 E1 F1

D1 D2 D3

B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

S1 M1 E2

H1 H2 H3

1 2 3 4

LOH

SOH

J1

B3

C2

F2

H4

F3

K3

N1

G1

POH

Set to fixed values.

Fully supported.

Set to fixed

Supported.

values.

214 High Speed Serdes Devices and Applications

contain both a pseudorandom training pattern and an FFE coefficient control
field. During the training process, each PMD monitors the quality of the
received training pattern and generates FFE coefficient control commands to
the PMD at the other end of the link. At the same time the PMD monitors
received FFE coefficient control commands and updates the HSS configura-
tion accordingly. It is important to note that Ethernet assumes full-duplex com-
munication between PMDs, making it possible to perform two-way
communication to negotiate link parameters.
Training Frames:

The training frame is a fixed length frame containing the following fields:
• Frame Marker. A four byte unique marker pattern denoting the start of

the training frame. The marker pattern is “FFFF0000” hexadecimal. This
marker is transmitted at 10.3125 Gbps.

• Coefficient Update. A 16-bit coefficient update field which allows the
PMD to request changes to the FFE coefficients being used by the PMD
at the other end of the link. This 16-bit coefficient field is transmitted
using Manchester coding at a baud rate which is one-eighth of the normal
10.3125 Gbps baud rate. Transmission of this 16-bit field is the equivalent
of transmitting 16 bytes at 10.3125 Gbps.

• Status Report. A 16-bit status field which indicates whether the PMD has
finished its training process, as well as the status of any requested FFE
coefficient updates. This 16-bit coefficient field is transmitted using
Manchester coding at a baud rate which is one-eighth of the normal
10.3125 Gbps baud rate. Transmission of this 16-bit field is the equivalent
of transmitting 16 bytes at 10.3125 Gbps.

• Training Pattern. Pseudorandom data generated with the polynomial:
G(x) = 1 + x9 + x11

This field is 512 bytes in length (4,094 bits PRBS bits followed by two
zero bits), transmitted at 10.3125 Gbps.

The purpose of using low-speed Manchester encoding for the Coefficient
Update and Status Report fields is to ensure reliable information is communi-
cated even when the link performance is not optimized. These fields can be
implemented by transmitting the parallel data byte “00000000” or “11111111”
to represent a Manchester encoded “0” bit, and transmitting the parallel data
byte “00001111” or “11110000” to represent a Manchester encoded “1” bit.
(The byte pattern used to denote a Manchester encoded “0” or “1” is selected
to ensure that a transition always occurs between bits.)

The Coefficient Update field contains the following subfields:
• Preset. Forces all FFE coefficients to be set to a state where equalization

is turned off (i.e., coefficients for the main FFE tap is set to its maximum
value, and coefficients for precursor and postcursor taps are set to zero).

• Initialize. Forces FFE to be turned on and coefficients to be set to
predefined initialization values.

Overview of Protocol Standards 215

• Coefficient (+1) Update. Directs that the postcursor FFE coefficient shall
be incremented, decremented, or held at current value. .

• Coefficient (0) Update. Directs that the main FFE coefficient shall be
incremented, decremented, or held at current value.

• Coefficient (-1) Update. Directs that the precursor FFE coefficient shall
be incremented, decremented, or held at current value.

Update requests to increment or decrement coefficients should only be sent if
the received Status Report field corresponding to the coefficient indicates the
coefficient is in not updated state.

The Status Report field contains the following subfields:
• Receiver Ready. Indicates that reporting node has finished training its

receiver and is ready to receive data.
• Coefficient (+1) Status. Reports that the postcursor FFE coefficient is not

updated, is updated, is at maximum value, or is at minimum value. The
PMD initially reports all coefficient status as not updated. After receiving
a Coefficient Update request to update the coefficient, the PMD updates
the coefficient and then reports either updated, maximum, or minimum
status. After receiving a Coefficient Update request to hold the previous
value, the PMD returns status to not updated.

• Coefficient (0) Status. Reports that the main FFE coefficient is not
updated, is updated, is at maximum value, or is at minimum value. Status
transitions are similar to the description for the postcursor FFE
coefficient.

• Coefficient (–1) Status. Reports that the precursor FFE coefficient is not
updated, is updated, is at maximum value, or is at minimum value. Status
transitions are similar to the description for the postcursor FFE
coefficient.

The coefficient status and coefficient update fields associated with each
FFE coefficient operate according to a simple two-way handshake as described
above. Each PMD assesses the quality of the received signal (through analysis
of the training pattern), and then instructs its partner node to update FFE
coefficients in an attempt to improve the quality of the signal.
Training State Machine:

The training state machine is also defined by clause 72. When a node
detects a signal on the link, it starts sending training frames and waits for
reception of valid training frames from its link partner. Once training frames
are being received, the node allows the receiver equalization to train, and
determines whether updates are required to the transmitter equalization. FFE
coefficient updates are requested via command bits in the transmitted training
frame; the link partner’s acknowledgement of these requests are
communicated via the status bits in the received training frame.
Simultaneously, the node monitors command bits in the received training
frame to determine whether local FFE coefficient updates are being requested

216 High Speed Serdes Devices and Applications

by the link partner, and if applicable executes these requests and returns an
acknowledgement via the transmitted training frame.

It should be noted that clause 72 does not specify the algorithms which
should be employed to determine optimal equalizer settings. These algorithms
are left as an exercise to the designer, and some implementations may even
choose to use preset FFE coefficient values. (Although such implementations
may not work well in some system configurations.)

The methods of determining signal quality and criteria for exiting training
are also not specified by clause 72. These methods and criteria may be based
on the PRBS pattern in the training frame, or may use other proprietary features
of the HSS core.
HSS Features:

Some HSS cores may implement features which aid in signal quality
assessment and allow faster updates to FFE coefficient values. Features such as the
following are helpful to the implementation of the clause 72 Training Protocol:
• FFE coefficient negotiation requires assessment of the eye quality of the

signal being received by the receive PMD layer. This signal quality is not
directly observable by measurements at higher sublayers. The HSS EX10
digital eye feature assesses eye quality and provides training state
machines with quick access to these measurements. This is useful for
implementing the training protocol.

• FFE coefficient updates by a partner link during the training process
should be made in a timely manner. HSS core features to quickly reset,
load, increment, or decrement FFE coefficients speed up training.

5.3.5.2 Autonegotiation
The autonegotiation protocol is defined in IEEE 802.3 clause 73.

Backplane Ethernet PHYs are required to implement the autonegotiation
protocol, however, use of the protocol is under the control of the management
interface and is optional. The protocol allows a device to advertise the modes
of operation it supports to another device at the remote end of a backplane
Ethernet link, and to detect the corresponding operational modes being adver-
tised by the other device. The objective is to allow the devices to agree to a
configuration that maximizes the performance of the link. The protocol addi-
tionally ensures that the PHY device is attached to its link partner at the remote
end of the link, and is not responding to a crosstalk signal.

Autonegotiation is performed using low-speed Manchester encoding of the
information to be exchanged. Clause 73 describes a number of Differential
Manchester Encoding (DME) pages which are exchanged by the protocol.
Autonegotiation supports the following partial list of functions:
• Advertise which backplane Ethernet variants are supported and negotiate

which variant should be selected.
• Advertise whether the interface supports FEC and negotiate whether to

enable FEC.

Overview of Protocol Standards 217

• Communicate additional message information.
Clause 73 defines the DME page formats, management interface variables,

and autonegotiation state machines that must be implemented by all Backplane
Ethernet nodes.
5.3.5.3 Forward Error Correction (FEC)

The FEC sublayer is defined as being inserted between the PCS and PMA
sublayers. However, it should be noted that some efficiency is gained by
combining the PCS sublayer and FEC sublayer implementations. The FEC
sublayer at the transmitter performs the following functions:
• The 66-bit code words generated by the PCS layer are unscrambled.
• Every 32 consecutive 66-bit code words are mapped into a FEC frame

with the format shown in Fig. 5.21. Each 66-bit code word is mapped into
a 65-bit word position in the FEC frame. This is performed by converting
the two-bit Sync Header into a one-bit Transcoding bit.

• Parity bits are generated and appended to the FEC Frame.
• The resulting 2112 bit FEC Frame is scrambled and output to the PMA

sublayer.
The FEC sublayer at the receiver performs the following functions:
• The 2112 bit FEC Frame is received from the PMA sublayer and

unscrambled.
• The parity bits are generated and compared to the received parity bits. If a

mismatch occurs, bit errors are corrected if possible.
• The 65-bit word positions in the FEC frame are encoded into 66-bit code

words, scrambled, and output to the PCS sublayer.
Obviously, the cascaded scrambling/unscrambling logic in the PCS

sublayer and FEC sublayer can be eliminated if the sublayers are combined.
Some additional efficiency may also be gained in the conversion between Sync
Header bits and Transcoding bits.

The FEC used to calculate parity bits is based on a (2112,2080) code which
is constructed by shortening the cycle code (42987,42955). This code is calcu-
lated using the generator polynomial:

g(x) = x32 + x23 + x21 + x11 + x2 + 1. (5.5)
Given a polynomial representation of the information bits m(x), the code

word c(x) is calculated as follows:
p(x) = x32 m(x) mod g(x), (5.6)

c(x) = p(x) + x32 m(x). (5.7)

218 High Speed Serdes Devices and Applications

Fig. 5.21 Clause 74 FEC frame

5.3.6 PMD Sublayers for Electrical Variants
The IEEE 802.3 documents defines several PMD sublayer variants for

10-Gb Ethernet. Of these, many are optical interfaces which are not relevant to
this text. This section summarizes the electrical variants which include
10GBASE-CX4, and Backplane Ethernet variants 10GBASE-KX4 and
10GBASE-KR. Also included in this section is the electrical definition of
XAUI in clause 47.

The 10GBASE-CX4 specifies a normative cable assembly as the channel
for this variant. Normative electrical parameters have been defined for both the
transmitter and the receiver, however, jitter tolerance of the receiver is
implicitly specified based on the transmitter jitter and normative channel
(cable) characteristics.

Other electrical variants covered in this section provide normative
specifications for the transmitter and receiver. An informative specification for
Backplane Ethernet channels is provided in Annex 69B.

Transmitter electrical parameters are defined in Table 5.14. XAUI uses a
traditional eye mask for describing limits for signal amplitude and total jitter.
PMD clauses for other variants specify a time domain waveform template; the
transmitter output waveform must fit within this template. The waveform
template for 10GBASE-KR is parameterized based on FFE coefficient
settings, which affect the shape of the transmit waveform.

Receiver electrical parameters are defined in Table 5.15. XAUI specifies
that the receiver must tolerate 0.65 UIpp of jitter at its input, although no spec-
ification is provided for the type of jitter. 10GBASE-CX4 jitter tolerance is
implied as discussed previously. The Backplane Ethernet variants use the
Interference Tolerance Test defined in Annex 69.A to verify receiver jitter

T0 T1 T2 T3Word 0 (64b) Word 1 (64b) Word 2 (64b) Word 3 (64b)
T4 T5 T6 T7Word 4 (64b) Word 5 (64b) Word 6 (64b) Word 7 (64b)
T8 T9 T10 T11Word 8 (64b) Word 9 (64b) Word 10 (64b) Word 11 (64b)
T12 T13 T14 T15Word 12 (64b) Word 13 (64b) Word 14 (64b) Word 15 (64b)
T16 T17 T18 T19Word 16 (64b) Word 17 (64b) Word 18 (64b) Word 19 (64b)
T20 T21 T22 T23Word 20 (64b) Word 21 (64b) Word 22 (64b) Word 23 (64b)
T24 T25 T26 T27Word 24 (64b) Word 25 (64b) Word 26 (64b) Word 27 (64b)
T28 T29 T30 T31Word 28 (64b) Word 29 (64b) Word 30 (64b) Word 31 (64b)

32 parity

Payload
Words

Transcode
BIts

FEC Parity Bits

Overview of Protocol Standards 219

tolerance. The description of this test is beyond the scope of this text. Some of
the jitter parameters used to perform this test are listed in Table 5.15 for the
applicable variants.

Minimum signal amplitude at the receiver is not specified for any of the
variants. A maximum amplitude is specified, although the actual amplitude
may exceed this in a real system with an imperfect termination impedance. The
minimum amplitude is implied by the BER specification; the signal amplitude
must be sufficient for the receiver to receive the data and meet the specified
BER.

Table 5.14 Ethernet PMD transmitter electrical parameters

10GBASE-CX4
(Clause 54)

XAUI
(Clause 47)

10GBASE-KX4
(Clause 71)

10GBASE-KR
(Clause 72)

Number of
lanes and baud

rate

4 lanes x
3.125 Gbps
± 100 ppm

4 lanes x
3.125 Gbps
± 100 ppm

4 lanes x
3.125 Gbps
± 100 ppm

1 lane x 10.3125
Gbps ± 100 ppm

Transmitter
waveform

Time domain
waveform

Eye Mask Time domain
waveform

Time domain
waveform as a

function of FFE

Output
differential

voltage

800–1,200
mVppd

800–1,600
mVppd

800–1,200
mVppd

1,200 mVppd
max

Common mode
voltage

(AC coupled)

–0.4 to 1.9 V –0.4 to 2.3 V –0.4 to 1.9 V 0–1.9 V

Rise/fall time 60–130 ps 60–130 ps 24–47 ps

Random jitter
(RJ)

0.27 UIpp 0.27 UIpp 0.15 UIpp

Deterministic
jitter (DJ)

0.17 UIpp Near end:
± 0.085 UI

Far end:
± 0.185 UI

0.17 UIpp 0.15 UIpp

Duty cycle
distortion

(DCD)

0.035 UIpp

Total jitter (TJ) 0.35 UIpp Near end:
± 0.175 UI

Far end:
± 0.275 UI

0.35 UIpp 0.28 UIpp

220 High Speed Serdes Devices and Applications

5.4 Fibre Channel (FC) Storage Area Networks
The Technical Committee T11 (formerly X3T9.3) of the International

Committee for Information Technology Standards (INCITS) began work on
the Fibre Channel standard for Storage Area Networks (SANs) in 1988.
INCITS coordinates with the American National Standards Institute (ANSI),
and the initial versions of the Fibre Channel standard were approved by ANSI
in 1994.

Hardware was deployed on a wide scale in 1998 for the 1.0625-Gbps serial
baud rate in the initial Fibre Channel standard. Since then, additional serial
variants have been added for 2.125 and 4.25 Gbps, and T11 is developing an
8.50-Gbps serial variant as of this writing. Variants have also been defined for
10.5-Gbps serial and an equivalent throughput variant implemented with four
lanes by 3.1875-Gbps, however, these variants are less popular.

5.4.1 Storage Area Networks
Storage Area Networks (SANs) connect servers on the Internet Protocol

(IP) network to storage devices. The SAN network can be configured in any
number of ways. Fibre Channel supports two devices communicating directly
across a point-to-point link. Some simple examples of more interesting config-
urations are shown in Fig. 5.22, including a simple fabric topology where
various servers on the IP Network connect to a Fibre Channel Switch. Any
number of Tape, Disk, or Redundant Arrays of Independent Disk (RAID)

Table 5.15 Ethernet PMD receiver electrical parameters

10GBASE-CX4
(Clause 54)

XAUI
(Clause 47)

10GBASE-KX4
(Clause 71)

10GBASE-KR
(Clause 72)

Number of
lanes and baud

rate

4 lanes x
3.125 Gbps
± 100 ppm

4 lanes x
3.125 Gbps
± 100 ppm

4 lanes x
3.125 Gbps
± 100 ppm

1 lane x 10.3125
Gbps ± 100 ppm

Receiver jitter
tolerance

(all units UIpp)

Implied 0.65 UIpp Interference
tolerance test

with:
SJ = 0.17
RJ = 0.18

Interference
tolerance test

with:
SJ = 0.115
RJ = 0.130

DCD = 0.035

Input
differential

voltage

1,200 mVppd
max

1,600 mVppd
max

1,600 mVppd
max

1,200 mVppd
max

Bit error rate 10–12 10–12 10–12 10–12

Receiver
coupling

AC AC AC AC

Overview of Protocol Standards 221

systems are connected to the Fibre Channel switch, allowing the server to
access storage without impacting traffic on the IP Network.

The SAN application virtualizes the storage connected to the fabric, in
effect converting storage into one big disk. Files can be directed to any physical
storage device based on available capacity, and mirroring of data can be em-
ployed for redundancy. Disk to Tape backup can be performed across the SAN
without impacting traffic on the IP Network.

The SAN fabric configuration in Fig. 5.22 is limited by the number of ports
available on the Fibre Channel Switch. A more complex SAN fabric may
include multiple switches, thereby providing scalability to support any number
of attached servers and devices. Also, Fibre Channel supports physical variants
that can operate over optical links up to 100 km long. Therefore, the Fibre
Channel switches can be physically distributed. This provides support for
applications requiring remote mirroring of data at multiple sites, and backup to
remote facilities (providing better disaster recovery).

Figure 5.22 also illustrates an arbitrated loop topology. Fibre Channel
allows up to 127 devices to be connected in a loop without requiring a Fibre
Channel switch. Devices arbitrate and gain control of the loop, and then com-
municate as if the link were point-to-point. This is not a token passing network;
only one pair of devices can engage in the active exchange of frames at any
given time. The bandwidth of the loop is shared among all devices on the loop.
The arbitration methods for arbitrated loops are not addressed in this text; the
reader is referred to the appropriate references for more information.

Fig. 5.22 Storage area network (SAN) configurations

Server

Server

:
:

IP Network

Fibre Channel
Switch

Tape System

Disk System

RAID System

Fabric Topology

Server

Server

:
:

IP Network

Tape System

Disk System

RAID System

Arbitrated Loop Topology

222 High Speed Serdes Devices and Applications

5.4.2 Fibre Channel Protocol Layers
Fibre Channel defines the following levels of the Fibre Channel architec-

ture and standards, and specifies these levels in various documents:
FC-0 Level.

This level defines the transmission media, transmitters, and receivers and
their interfaces. Various “Fibre Channel – Physical Interfaces” documents,
designated FC-PI-x, specify this level.
FC-1 Level.

This level defines serial encoding, decoding, and error control functions of
the transmission protocol. The “Fibre Channel – Framing and Signaling–2”
document, designated FC-FS-2, specify this level.
FC-2 Level.

This level defines the rules and mechanisms needed to transfer blocks of
data between two devices. FC-FS-2 also defines this level.
FC-3 Level.

This level defines a set of services that are common across multiple ports
of a node. FC-FS-2 partially defines this level. The “Fibre Channel – Link
Services” document, designated FC-LS, specifies extended link services.
FC-4 Level.

This level defines mapping between lower levels of the Fibre Channel
standards and Upper Level Protocols. Fibre Channel does not specify this level.

5.4.3 Framing and Signaling
The Fibre Channel framing and signaling layer are specified in “Fibre Channel

–Framing and Signaling – 2” document, commonly referred to as “FC-FS-2.” This
document supersedes prior specifications of the FC-FS layer, and extends frame
formats to add new features while maintaining backward compatibility. (Future
FC-FS-x versions may supersede this document.) This section summarizes the
framing and signaling features which are of some relevance to HSS.
5.4.3.1 Frame Format

Fibre Channel traffic is organized into 32-bit words of control and data
information, which is subsequently 8B/10B encoded and transmitted across the
physical interface. Although individual fields and payload data may be defined
in terms of bytes, the organization into 32-bit words is applied throughout the
FC-FS-2 document, and streamlines the implementation by consistently using
a 32-bit parallel datapath.

Payload data is organized into frames as shown in Fig. 5.23, delineated by a
Start of Frame (SOF) and End of Frame (EOF) delimiter. The SOF and EOF
delimiters, as well as the Idles and other control information between frames, are
examples of Ordered Sets. An ordered set is a 32-bit control word consisting of one
8B/10B control symbol, followed by three 8B/10B data symbols. There are
multiple ordered sets defined for coding of SOF and EOF delimiters. Different

Overview of Protocol Standards 223

SOF codings are used to request and initiate a connection between two devices for
a given service class, and to transmit payload data for the resulting connection.
Different EOF codings are used by the sending device to indicate whether the
frame payload data as sent is valid, corrupted, or truncated. The definition of the
coding of the SOF and EOF ordered sets is beyond the scope of this text.

Fig. 5.23 Fibre channel frame

Fig. 5.24 Fibre channel header

SOF
(4 bytes)

Frame
Header

(24 bytes)

Data
(0 to 2112 bytes)

EOF
(4 bytes)

Start Of Frame (SOF): Ordered Set denoting beginning of the frame.
Extended Header: Optional header extension supported for FC-2 frames.
Frame Header: Required frame header for FC-1 and FC-2 frames.
Data: Frame payload of anywhere from 0 to 2112 bytes in length.
Cyclic Redundancy Check (CRC): Frame check CRC for error detection.
End Of Frame (EOF): Ordered Set denoting end of the frame.

Extended
Header

(optional)
CRC

(4 bytes)

R_CTL D_ID

S_IDCS_CTL

TYPE F_CTL

SEQ_ID DF_CTL SEQ_CNT

OX_ID RX_ID

Parameter

31 24 23 16 15 0807 00

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

R_CTL: Routing Control
D_ID: Destination Address Identifier
S_ID: Source Address Identifier
CS_CTL: Class Specific Control / Priority
TYPE: Data Structure Type
F_CTL: Frame Control
DF_CTL: Data Field Control
SEQ_ID: Sequence Identifier
SEQ_CNT: Sequence Count
OX_ID: Originator Exchange Identifier
RX_ID: Recipient Exchange Identifier
Parameter: Definition depends on TYPE.

224 High Speed Serdes Devices and Applications

IDLE ordered sets, and ordered sets denoting other control information, are
sent between frames. The receiver can use these ordered sets in conjunction
with the RXxDATASYNC feature on the HSS receiver to align the received
data to a 32-bit word boundary in order to simplify downstream processing.
Note that with the exception of the four lane variant of 10GFC (which will be
discussed separately), Fibre Channel variants are serial data streams and links
do not need to be deskewed relative to other links.

The frame content between the SOF and EOF delimiters includes the
following fields:
Extended header.

FC-2 frames contain an optional header extension of variable length.
Definition of the content of this field is beyond the scope of this text.
Frame header.

This is a field consisting of six words (24 bytes) which uniquely identify
the frame sequence and routing. This field is discussed further below.
Data field.

Payload data consisting of 0–2112 bytes. The number of data bytes must be
divisible by four (i.e. an integral number of 32-bit words).
Cyclic redundancy check (CRC).

Frame check remainder of a CRC calculation performed using the
polynomial described in Sect. 4.2.3.3.

The Frame Header field consists of six words as shown in Fig. 5.24. General
descriptions of fields in this header which are relevant to this text follow:
Destination Address Identifier (D_ID).

This field identifies the node(s) on the fabric which are the intended
recipients of the frame. Each device on the fabric has a unique 24-bit address,
and may also be assigned one or more alias IDs. This address is not fixed (as
in the case of Ethernet MAC addresses); it is assigned dynamically by the
fabric when the node initially connects (or “logs in”) to the fabric.
Source Address Identifier (S_ID).

This field identifies the node on the fabric which originated the frame.
Sequence ID (SEQ_ID).

When a sequence is initiated for transmission between a pair of nodes on
the fabric (identified by D_ID and S_ID), a sequence ID is assigned to this
connection. All frames associated with this sequence are identified the
sequence ID transmitted in the SEQ_ID field.
Sequence Count (SEQ_CNT).

For a given open sequence associated with a specific sequence ID, each
frame transmitted for this sequence is assigned a two-byte sequence count
value. This value is incremented for each frame transmitted. This allows the
recipient to verify that all frames have been received, and the order of these
frames.

Overview of Protocol Standards 225

Other fields serve various control functions. The Routing Control (R_CTL)
identifies the type of routing service (basic or extended link services, device
data, link control, video, etc.), and information type (solicited/unsolicited
control/data). The CS_CTL field either specifies additional class specific
control information, or a priority level, depending on the F_CTL field. The
Data Structure Type (TYPE) field provides additional information specific to
the routing service defined by R_CTL. The Frame Control (F_CTL) field
provides various sequence control and status flags. The Data Field Control
(DF_CTL) flags the presence of additional optional headers in the payload
data. The Originator Exchange ID (OX_ID) and Recipient Exchange ID
(RX_ID) identify exchange IDs assigned for exchanges of sequences. The
definition of the PARAMETER field depends on the frame type. Detailed
definitions of these fields are beyond the scope of this text. The reader is
referred to the FC-FS-2 document for further information on these fields.
5.4.3.2 8B/10B Encoding and Scrambling

Figure 5.25 and 5.26 illustrate block diagrams of the datapath of the transmitter
and receiver, respectively. These block diagrams show the relationship between
the 8B/10B encoder/decoder, CRC generation/checking, and scrambling/descram-
bling functions. Scrambling is only relevant to 8GFC serial variants; lower baud
rate serial variants are not scrambled. (The 10GFC variant is discussed later.)

Data words in the transmit datapath of the link layer shown in Fig. 5.25 are
applied to the CRC generator, and the remainder is multiplexed onto the datapath
at the end of the frame. Data is scrambled (for 8GFC only), and then multiplexed
with Ordered Set primitives that are transmitted between frames or as SOF/EOF
delimiters. Note that primitives are not scrambled and are not part of the CRC
calculation. The physical layer 8B/10B encodes the data, and then uses an HSS
core to transmit the data serially. Ordered Sets are aligned on word boundaries and
defined such that only the first byte can be a Kxx.y control symbol (denoted prior
to encoding in the figure by the Z bit) in the 8B/10B code.

Bytes (or the corresponding 8B/10B symbols) of each word are transmitted
in the order of left to right. Symbols of the 8B/10B code are specified as 10-bit
encoded values with bits labeled a through j. Bits within each symbol are
transmitted serially in order starting with bit a and ending with bit j.

The physical layer of the receive datapath shown in Fig. 5.26 deserializes
the data and decodes the 8B/10B symbols. Primitives are processed directly in
the link layer. Data is descrambled (for 8GFC only) and propagated to down-
stream logic. CRC is calculated for the unscrambled data and the result is
compared to the transmitted value.

The CRC Generator polynomial used by Fibre Channel is the same as was
defined in Sect. 4.2.3.3. The CRC calculation is performed in a manner that is
equivalent to a serial CRC calculation using the following byte/bit order: The
byte order is the same as the order in which bytes (or corresponding symbols)
are transmitted. The bit order within each byte is least significant bit through
most significant bit. The CRC remainder is calculated across all words of the
frame between the Start Of Frame (SOF) delimiter and the CRC field.

226 High Speed Serdes Devices and Applications

Fig. 5.25 Transmitter datapath block diagram

Fig. 5.26 Receiver datapath block diagram

Data dwordbit
31

bit
0 Primitivebit

31
bit
0

CRC Generatorbit
31

bit
0

Scramblerbit
31

bit
0

DwordZ

8b10b
Enc.

8b10b
Enc.

8b10b
Enc.

8b10b
Enc.

Shift Registershift
out

PHY
Layer

Link
Layer

Shift Register shift
in

8b10b
Dec.

8b10b
Dec.

8b10b
Dec.

8b10b
Dec.

DwordZ

Descramblerbit
31

bit
0

CRC Generatorbit
31

bit
0 Data dwordbit

31
bit
0 Primitivebit

31
bit
0

Dword
Compare

PHY
Layer

Link
Layer

Overview of Protocol Standards 227

The motivation for scrambling 8GFC serial variants is to avoid CDR
biasing issues impacting the link jitter budget, as was discussed in Chap. 1. The
8GFC serial variants use a self-synchronizing scrambler with the following
polynomial:

G(x) = x58 + x39 + 1. (5.8)
The scrambler (and descrambler) are reset at the start of every frame to

avoid any error propagation from one frame to the next. (Otherwise a received
bit error at the end of one frame could corrupt the next frame as well.) By using
a self-synchronizing scrambler, any variation in the content of the frame causes
subsequent bytes to be scrambled differently. The SEQ_CNT field of the
header is always guaranteed to change from frame to frame, even for a frame
retransmission, and therefore the retransmitted frame is scrambled differently
each time.

Note that the bit order for scrambling is not the same as the bit order defined
for CRC calculation. Scrambling is performed equivalent to serially scram-
bling a bit stream consisting of each 32-bit word in the bit order of most sig-
nificant bit to least significant bit. This convention simplifies implementation
assuming a 32-bit datapath.
5.4.3.3 Speed Negotiation

One of the most common parameters that is negotiated by many protocols
is the baud rate of the interface. The Fibre Channel standard, as an example,
specifies a speed negotiation algorithm in the FC-FS-2 document which is
designed to allow hardware to interoperate with legacy hardware supporting
lower Fibre Channel speeds. It is important to note that Fibre Channel assumes
full-duplex communication between PMDs, making it possible to perform
two-way communication to negotiate link parameters. The following steps
summarize operation of the Fibre Channel speed negotiation algorithm:
1. The port initially cycles through supported transmit speeds and

transmits a specified data pattern until a response is received. Once
a response (any response) is received, the port transitions to the
next step.

2. The port starts negotiation by setting both the Serdes transmitter and
receiver to the maximum speed supported by the port.

3. In this step the port performs a “master” role in the negotiation, poten-
tially trying different transmit baud rates. This step exits when either it
becomes obvious that the other port has assumed a “follow” role in the
negotiation (indicating the other port is happy with the current transmit
baud rate on this port), or the other port is performing a “master” roll at
the same baud rate as this port (in which case this port relinquishes the
“master” roll to the other port). This step proceeds as follows:
(a) The port transmits a specified data pattern at the current transmit baud

rate, and compares received data to the specified data pattern at the
current receive baud rate. If no errors are detected, then the port
proceeds to step 4.

228 High Speed Serdes Devices and Applications

(b) If errors are detected then the port tries other receive baud rates look-
ing for one where the data pattern is received correctly. If there is a
baud rate when the data pattern is received correctly, then the port
proceeds to step 4.

(c) If no receive baud rates result in a correct data pattern, the port tries a
lower baud rate for the transmitter and repeats the process.

4. In this step the port performs a “follow” role in the negotiation, and con-
tinues this role until negotiation completes. This proceeds as follows:
(a) The port sets the transmit baud rate to match the receive baud rate.
(b) The port continues to transmit the specified data pattern, comparing

received data to the expected data. If the other port is still assuming a
“master” role and changes its transmit speed, then the received data
miscompares. In this case the port tries another baud rate for the
receiver, sets the transmitter baud rate to match, and repeats this step.

(c) If the port successfully compares the received data to the specified
data pattern, the negotiation is complete.

The above negotiation also uses a watchdog timer and, optionally, monitors
the RXxSIGDET signal for a Loss of Signal condition. In the event the
watchdog timer expires, the negotiation process restarts at step 1. Loss of
Signal causes the process to return to step 3.

The Fibre Channel speed negotiation sequence is generally implemented by
a hardware state machine. The time spent monitoring the received data, and
transitioning between steps, is constrained with minimum and maximum wait
time specifications intended to ensure the follower port can try up to four
receive baud rates before the master attempts to change the transmit baud rate.

To support this sequence, the HSS core must support changes of the baud
rate between the speeds supported by Fibre Channel without requiring
complete reinitialization of the core, or generating substantially periods where
the receiver will detect a Loss of Signal. The HSS core must also support the
transmitter and receiver baud rates being set independently. The transition
between baud rates should not cause the HSS core to generate glitches on the
TXxDCLK or RXxDCLK outputs. Such glitches could result in erroneous
operation of logic being clocked by these clocks.

Currently defined Fibre Channel serial variant baud rates are 8.5 Gbps,
4.25 Gbps, 2.125 Gbps, and 1.0625 Gbps. Fibre Channel hardware is generally
designed to support the latest baud rate and at least the next lower baud rate.
The HSS EX10 core supports Fibre Channel baud rates by configuring the core
to support the 8.5-Gbps baud rate, and using the rate select feature to select
“Half-,” “Quarter-,” or “Eighth” rate modes to support legacy baud rates.
Switching the selected rate does not require substantial reinitialization of the
core, and if the proper sequence is executed this change of selection does not
causes glitches on the parallel data clocks. Specific sequences to support this
are described in Sect. 2.5.

Overview of Protocol Standards 229

Fig. 5.27 Fibre channel interoperability points example

5.4.4 Physical Interfaces
The Fibre Channel physical interfaces layer variants are specified in “Fibre

Channel – Physical Interfaces – 2” document, commonly referred to as “FC-
PI-2.” At the time of this writing, drafts exist for FC-PI-3 and FC-PI-4, which
will eventually specify additional physical interfaces for 10GFC and 8GFC.

This section describes the compliance points for Fibre Channel physical inter-
faces. Fibre Channel uses the terminology “Interoperability Points” to refer to com-
pliance points. This section also summarizes electrical specifications at the
Interoperability Points for Fibre Channel physical variants. Optical interface spec-
ifications are important to Fibre Channel, but are beyond the scope of this text.
5.4.4.1 Interoperability Points

Fibre Channel defines electrical interoperability points at input/output pins
of the chip, card connector, and internal PMD connector. Also, and possibily
most important, the interoperability points defined at the input and output of
the enclosure. Note, however, that these latter points may be electrical but are
more often optical. The interoperability points defined by the FC-PI-x
documents are as follows:
Alpha T (T) and Alpha R (R).

Interoperability points at the chip output pins of the transmitter and the chip
input pins of the receiver for a Fibre Channel device or retiming element. This
is an electrical interoperability point.
Beta T (T) and Beta R (R).

Interoperability points at the internal connector nearest to the alpha point.
This may be a card backplane connector in systems where Fibre Channel
traffic is carried across the backplane. In the event that the internal connector
nearest to the alpha point meets the definition of a delta or gamma point, then

FC
Link

FC
Link

T R

T R

T R

T R

FC
Link

FC
Link

T R

T R

T R

T R

PMD

T R

T R T R

EL
EC

TR
IC

A
L

C
O

M
PO

N
EN

TS

ENCLOSURE

ELECTRICAL
COMPONENTS

230 High Speed Serdes Devices and Applications

the connector is a delta or gamma point and there is no beta point on the link.
This is an electrical interoperability point.
Delta T (T) and Delta R (R).

Interoperability points at the internal connector of a removable Physical
Medium Device (PMD). This is an electrical interoperability point.
Gamma T (T) and Gamma R (R).

Interoperability points at the external enclosure connector. This is usually
an optical interoperability point. This is an electrical interoperability point for
variants which transport Fibre Channel across an electrical cable.
Epsilon T(T) and Epsilon R (R).

Equivalent of T and R interoperability points for physical interface
variants that assume an equalizer in the receiver.

Some examples of Fibre Channel connections and the associated interoper-
ability points are shown in Fig. 5.27. This figure contains two cards plugged
into a backplane which each have two Fibre Channel Tx/Rx links on them. The
chip input/output pins are defined as T and R interoperability points and the
connector pins nearest to these points are defined as the T and R interopera-
bility points. The example illustrates cases where the T and R interoperability
points are connected together across the backplane. This allows FC devices on
separate cards within the same enclosure to communicate without requiring an
intervening optical or electrical PMD.

The example in the figure also illustrates a removable PMD element with
T and R interoperability points at the internal connector within the enclosure,

and T and R interoperability points at the external connector. The specifica-
tion allows for the possibility that unspecified active components may be
required to convert between the electrical signals associated with the T and R
points, and the electrical signals associated with T and R points.

The example also illustrates the case of T and R interoperability points
interfacing directly to unspecified active components which provide T and R
interoperability points at the external connector. This case, for example, may
be represented by a PMD element which is not removable. In such cases, the
FC-PI-x documents do not specify the function of the active components or the
internal interface to those components.
5.4.4.2 Nomenclature and Types of Physical Interface Variants

Fibre Channel uses the following nomenclature to denote physical interface
variants:

NNN-AA-BB-C,
Where the NNN field designates the speed of the interface. Serial variants

of Fibre Channel support 100, 200, 400 MBytes per second as defined in
FC-PI-2, and FC-PI-4 additionally defines an 800 MBytes per second variant.
These speeds correspond to baud rates of 1.0625, 2.125, 4.25, and 8.50 Gbps,
respectively.

Overview of Protocol Standards 231

Table 5.16 Optical physical interface variants

Variant Specification Baud rate
(Gbps)

Laser
(nm) Receiver Max.

Range Fiber type

100-SM-LL-V FC-PI-2 1.0625 1,550 Limiting 50km Single mode

100-SM-LC-L FC-PI-2 1.0625 1,300 Limiting 10km Single mode

100-M5-SN-I FC-PI-2 1.0625 850 Limiting 500m 50 µm OM2 MM

100-M5E-SN-I FC-PI-4 1.0625 780/850 Limiting 860m 50 µm OM3 MM

100-M6-SN-I FC-PI-2 1.0625 780/850 Limiting 300m 62.5 µm OM1 MM

200-SM-LL-V FC-PI-2 2.125 1,550 Limiting 50km Single mode

200-SM-LC-L FC-PI-2 2.125 1,300 Limiting 10km Single mode

200-M5-SN-I FC-PI-2 2.125 850 Limiting 300m 50 µm OM2 MM

200-M5E-SN-I FC-PI-4 2.125 850 Limiting 500m 50 µm OM3 MM

200-M6-SN-I FC-PI-2 2.125 850 Limiting 150m 62.5 µm OM1 MM

400-SM-LC-L FC-PI-2 4.25 1,300 Limiting 10km Single mode

400-SM-LC-M FC-PI-2 4.25 1,300 Limiting 4km Single mode

400-M5-SN-I FC-PI-2 4.25 850 Limiting 150m 50 µm OM2 MM

400-M5E-SN-I FC-PI-4 4.25 850 Limiting 380m 50 µm OM3 MM

400-M6-SN-I FC-PI-2 4.25 850 Limiting 70m 62.5 µm OM1 MM

800-SM-LC-L FC-PI-4 8.50 1,300 Limiting 10km Single mode

800-SM-LC-I FC-PI-4 8.50 1,300 Limiting 1.4km Single mode

800-M5-SA-I FC-PI-4 8.50 850 Linear 100m 50 µm OM2 MM

800-M5-SN-S FC-PI-4 8.50 850 Limiting 50m 50 µm OM2 MM

800-M5E-SA-I FC-PI-4 8.50 850 Linear 300m 50 µm OM3 MM

800-M5E-SN-I FC-PI-4 8.50 850 Limiting 150m 50 µm OM3 MM

800-M6-SA-S FC-PI-4 8.50 850 Linear 40m 62.5 µm ΟΜ1 ΜΜ

800-M6-SN-S FC-PI-4 8.50 850 Limiting 21m 62.5 µm OM1 MM

232 High Speed Serdes Devices and Applications

The AA field designates the type of media. Options include single mode
optical fiber, various multimode optical fiber types, unbalanced (single-ended)
electrical links, or balanced (differential) electrical links. Optical fiber media
connect between T and R interoperability points; electrical links may
interconnect between any interoperability points.

The BB field designates the type of transmitter and receiver device used on
the link. The following transmitter devices are supported: 1,300 nm/1,550 nm
long-wave laser devices, 1,300-nm long wave cost reduced laser devices, and
850-nm short wave laser devices. At baud rates of up to 4.25 Gbps, a limiter
stage has typically been included in the optical receiver device. FC-PI-4
includes 8.50-Gbps variants for receivers containing a limiter stage, and also
includes variants which use a linear optical receiver. An additional variant is
defined in FC-PI-4 for an equalized electrical receiver.

The C field designates the distance range of the link. Maximum distances
of 70 m, 2 km, 4 km, 10 km, and 50 km are defined.

Not all combinations of these designators are valid. Physical layer optical
variants which have been defined (excluding 10GFC variants) are listed in
Table 5.16. Although these are of interest to Fibre Channel users and develop-
ers, optical variants are not relevant to electrical HSS cores and these specifi-
cations are not summarized in this text.

Electrical physical interface variants defined in FC-PI-2, as well as variants
which are defined in FC-PI-4, are listed in Table 5.17. All of these variants are
defined as AC Coupled.

For 1GFC and 2GFC, electrical variants are defined which support both
single-ended and differential interfaces, either within the enclosure or across
an electrical cable between enclosures. Specifications are defined for these
variants at T, R, T, R, T, and R interoperability points. Specifications for

T and R interoperability points are application dependent.

Table 5.17 Electrical physical interface variants

Variant Specification Baud rate Receiver Signal type

100-SE-EL-S FC-PI-2 1.0625Gbps No equalization Single-ended

100-DF-EL-S FC-PI-2 1.0625Gbps No equalization Differential

200-SE-EL-S FC-PI-2 2.125Gbps No equalization Single-ended

200-DF-EL-S FC-PI-2 2.125Gbps No equalization Differential

400-DF-EL-S FC-PI-2 4.25Gbps No equalization Differential

800-DF-EL-S FC-PI-4 8.50Gbps No equalization Differential

800-DF-EA-S FC-PI-4 8.50Gbps DFE Differential

Overview of Protocol Standards 233

At baud rates of 4.25 Gbps and above, electrical signaling using single-
ended signals is not practical, nor is it practical to transmit electrical signals at
these frequencies between enclosures. Therefore, only differential variants are
defined for 4GFC and 8GFC, and only intraenclosure interoperability points
are specified. Specifications are defined for these variants at T and R
interoperability points only.

For 8GFC, variants are specified for receivers that have no equalization and
for receivers that include a DFE. The 800-DF-EL-S (which assumes no
equalization in the receiver) is used for relatively short electrical links within
the enclosure, including links between FC devices and PMD devices, which
implement optical variants that include a limiter in the optical receiver. The T,

R, T, and R interoperability points apply to such interfaces.
The 800-DF-EA-S variant (which assumes a DFE circuit in the receiver) is

used for longer electrical links within the enclosure, and for any ingress link
from a PMD device which implements an optical variant that does not include
a limiter in the optical receiver. This variant additionally defines T and R
interoperability points. Note that it is assumed that T is equivalent to T,
however, there are differences in the specification for R and R.
5.4.4.3 Specifications for Electrical Parameters

Transmitter electrical parameters for electrical variants defined in FC-PI-4
are summarized in Table 5.18. Jitter specifications for T, T, and T points are
compliance measurements at the transmitter output with the transmitter con-
nected directly to a termination. Jitter specifications for R, R, and R points
are also compliance measurements for the transmitter output. These specifica-
tions are tested by connecting the transmitter to a reference channel as speci-
fied in FC-PI-4, and measuring the signal characteristics at the far end of the
channel.

Electrical receiver devices for electrical variants defined in FC-PI-4 must
receive a signal with a BER of 10− 12 or better when the signal has the ampli-
tude and jitter characteristics which are summarized in Table 5.19. The jitter
waveform is generated by combining a Deterministic Jitter (DJ) component
with a Sinusoidal Jitter (SJ) component. The amount of DJ is equivalent to the
maximum DJ allowed at the transmitter output. The resulting signal should be
constrained within the specified eye mask; these horizontal limits are specified
by the Total Jitter (TJ) component.

234 High Speed Serdes Devices and Applications

Table 5.18 Fiber channel transmitter electrical parameters (FC-PI-4)

100-DF-EL-S 200-DF-EL-S 400-DF-EL-S 800-DF-EL-S 800-DF-EA-S

Baud rate 1.0625 Gbps ±
100 ppm

2.125 Gbps ±
100 ppm

4.25 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

Type Differential Differential Differential Differential Differential

Transmitter
waveform

Eye mask Eye mask Eye mask Eye mask Statistical
Analysis

Output signal
voltage measured

at transmittera

T: 600−2,000
T: 650−2,000

T: 1,100−
2,000

T: 600−2,000
T: 650−2,000

T: 1,100−
2,000

T: 310−1,600
T: 310−1,600
T: 650−1,600

T: 180−700 T:665−1,200
T: 535−1,200

T: 180−700

Output signal
voltage

measured
through a

reference load
(mVppd)

Not applicable Not applicable T: 276−1,600
T: 276−1,600
T: 600−1,600

Not applicable Not applicable

Rise/fall time 100−385 75−192 ps Not specified Not specified Not specified

Deterministic
jitter (DJ)

(Interenclosure,
Units: UIpp)

T: 0.12
T: 0.13
R: 0.35
R: 0.36

T: 0.14
T: 0.16
R: 0.37
R: 0.39

T: 0.14
T: 0.37
R: 0.37
R: 0.39

T: 0.17
R: 0.42

T: 0.17

Deterministic
jitter (DJ)

(Intraenclosure,
Units: UIpp)

T: 0.11
R: 0.37

T: 0.20
R: 0.33

T: 0.33
R: 0.33

Not applicable See note (b)

Total jitter (TJ)
(Interenclosure,

Units: UIpp)

T: 0.25
T: 0.27
R: 0.54
R: 0.56

T: 0.26
T: 0.30
R: 0.57
R: 0.59

T: 0.26
T: 0.57
R: 0.57
R: 0.59

T: 0.31
R: 0.71

T: 0.31

Total jitter (TJ)
(Intraenclosure,

Units: UIpp)

T: 0.23
R: 0.58

T: 0.33
R: 0.52

T: 0.52
R: 0.52

Not applicable See note (b)

 (a)Units: mVpp for single-ended variants, mVppd for differential variants.
(b)Values of DDJ, BUJ, and RJ are specified for the βT, εT, εR, and βR points and are used in
statistical signal integrity analysis to determine compliance.

Overview of Protocol Standards 235

Table 5.19 Fibre channel receiver electrical parameters (FC-PI-4)

100-DF-EL-S 200-DF-EL-S 400-DF-EL-S 800-DF-EL-S 800-DF-EA-S

Baud rate 1.0625 Gbps
± 100 ppm

2.125 Gbps
± 100 ppm

4.25 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

8.50 Gbps
± 100 ppm

Type Differential Differential Differential Differential Differential

Receiver
waveform

Eye mask Eye mask Eye mask Eye mask Statistical
Analysis

Input signal
voltagea

R: 400–2,000
R: 370–2,000
R: 400–2,000

R: 400–2,000
R: 370–2,000
R: 400–2,000

R: 276–1,600
R: 370–1,600
R: 276–1,600

R: 340–850 Not specified

Sinusoidal
jitter (SJ)

(Interenclosure,
Units: UIpp)

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

T, R: 0.10
T, R: 0.10

Not applicable

Sinusoidal
jitter (SJ)

(Intraenclosure,
Units: UIpp)

T, R: 0.10 T, R: 0.10 T, R: 0.10 T, R: 0.10 See note (b)

Deterministic
jitter (DJ)

(Interenclosure,
Units: UIpp)

T: 0.12
T: 0.13
R: 0.35
R: 0.36

T: 0.14
T: 0.16
R: 0.37
R: 0.39

T: 0.14
T: 0.39
R: 0.37
R: 0.39

R: 0.47 Not applicable

Deterministic
jitter (DJ)

(Intraenclosure,
Units: UIpp)

T: 0.11
R: 0.37

T: 0.20
R: 0.33

T: 0.33
R: 0.33

Not applicable See note (b)

Total jitter (TJ)
(Interenclosure,

Units: UIpp)

T: 0.35
T: 0.37
R: 0.64
R: 0.66

T: 0.36
T: 0.40
R: 0.67
R: 0.69

T: 0.36
T: 0.69
R: 0.67
R: 0.69

R: 0.71 Not applicable

Total jitter (TJ)
(Intraenclosure,

Units: UIpp)

T: 0.33
R: 0.68

T: 0.43
R: 0.62

T: 0.62
R: 0.62

Not applicable See note (b)

 (a)Units: mVpp for single-ended variants, mVppd for differential variants.
(b)Values of DDJ, BUJ, and RJ are specified for the T, εT, εR, and βR points and are used in
statistical signal integrity analysis to determine compliance.

236 High Speed Serdes Devices and Applications

5.4.5 10-Gbps Fiber Channel
The Fibre Channel framing and signaling and physical interface layers for

10GFC are specified in the “Fibre Channel – 10 Gigabit” document,
commonly referred to as “10GFC.” This section summarizes the features
which are of some relevance to HSS.

As was discussed previously, Fibre Channel uses a nomenclature of the
following form to denote physical interface variants:

NNN-AA-BB-C,
Where the NNN field designates the speed of the interface. The speed for

10GFC is 1,200 MBytes per second.
The AA field designates the type of media. Options for 10GFC include:

single-mode optical fiber and various multimode optical fiber types similar to
those used with serial variants.

The BB field designates the type of transmitter and receiver device used on
the link. Serial 10GFC variants use either 850-nm or 1,300-nm laser devices.
Parallel 10GFC variants use either four lasers operating in parallel (850 nm),
or a four-lane CWDM (850 nm or 1,300 nm) optical transmitter.

The C field designates the distance range of the link. Variants exist for both
long and intermediate distances.

Valid physical interface variants for 10GFC are listed in Table 5.20. The
base bit rate of 10GFC is 10.2 Gbps. Physical interface variants fall into two
categories:
• Serial variants which assume 64B/66B encoding of the data and therefore

have a serial baud rate of 10.51875 Gbaud/s
• Four-lane parallel variants (either transmitting on four separate fibers or

transmitting four wavelengths using a CWDM PMD) which assume byte
striping of data across four lanes and 8B/10B encoding of each lane, and
operate at 3.1875 Gbaud/s on each lane.

Note that Table 5.20 additionally provides a column for reference to an
Ethernet variant. Several of the 10GFC physical interface variants are essen-
tially the same device as can be used for the referenced Ethernet PMD layer.
In addition, 10GFC specifies a few additional physical interface variants which
do not have an equivalent optics specification in Ethernet. The framing and
signaling specification for 4-lane 10GFC FC-0 (PMD) layer devices is similar
to the PCS/PMA layer defined by Clause 48 of the IEEE 802.3 Ethernet
standard. In addition, 10GFC defines the equivalent XGMII function to
transport data across XAUI interfaces within the enclosure. The framing and
signaling specification for serial 10GFC FC-0 (PMD) layer devices is similar
to the PCS/PMA layer defined by Clauses 49 and 51 of the IEEE 802.3
Ethernet standard.

Overview of Protocol Standards 237

5.5 PCI Express
PCI Express is a high-performance I/O bus architecture for interconnecting

peripheral devices in computing and communication platforms. It is the third
generation that evolved from PCI and PCI-X and is specifically designed to
overcome the performance limitations of those busses. In addition to the per-
formance advantage, PCI Express also reduces system cost because it requires
fewer package pins on the device and a smaller number of system board wires.
Furthermore, PCI Express systems are backward compatible with software for
PCI/PCI-X so that existing operating systems may be ported to PCI Express
with no changes to drivers or application programs.

PCI Express is developed by the membership of the Peripheral Component
Interconnect Special Interest Group (PCI-SIG). The initial PCI Express Base
Specification was published in April 2003, with various errata being corrected
in the Revision 1.1 document published in March 2005. This document speci-
fies what has come to be known as PCI Express Generation 1, which utilizes
2.5-Gbps Serdes technology. Revision 2.0 of this document, commonly called
PCI Express Generation 2, was published in December, 2006, and adds support
for a 5.0-Gbps baud rate.

The “PCI Express Card Electromechanical 2.0 Specification” is an addi-
tional companion specification which defines the electromechanical form
factors of PCI Express devices. These include:
Card electromechanical.

This form factor is for standard PC add-in cards similar to PCI cards, and supports
link widths from x1 to x16. Form factor is predominantly used by graphics cards,
although there are other cards available such as USB and network adaptors.

Table 5.20 10GFC physical interface variants

Variant Specification Baud rate Laser type Ethernet reference

1200-Mx-SN4P-I
(x = 5,5E,6)

10GFC 4 lane by
3.1875 Gbps

4 lane parallel Not applicable

1200-Mx-SN-I
(x = 5,5E,6)

10GFC 10.51875 Gbps Serial 10GBASE-SR

1200-Mx-SN4-I
(x = 5,5E,6)

10GFC 4 lane by
3.1875 Gbps

4 lane CWDM Not applicable

1200-SM-LL-L 10GFC 10.51875 Gbps serial 10GBASE-LR

1200-Mx-LC4-L
(x = 5,6)

10GFC 4 lane by
3.1875 Gbps

4 lane CWDM 10GBASE-LX4

1200-SM-LC4-L 10GFC 4 lane by
3.1875 Gbps

4 lane CWDM 10GBASE-LX4

238 High Speed Serdes Devices and Applications

Mini-card electromechanical.
This form factor is similar to PCMCIA cards for laptops and other

applications which require small size and power. Only x1 link width is
supported; a reduced signal amplitude is used.
Express module.

This form factor is for hot-pluggable cards in rack-mount servers. Form
factor supports link widths x1 to x8 in a single-wide module, and x1 to x16 in
a double-wide module.

HSS core feature settings for implementations which comply with the
above electromechanical specifications can be characterized and may be
specified by applications documentation available from the vendor. However,
chip-to-chip links and custom implementations still require the same signal
integrity analysis to determine feature settings as is required for other applica-
tions. PCI Express cards which may be used in multiple systems should
consider providing provisionability of HSS features to facilitate use in
nonstandard electromechanical environments.

5.5.1 PCI Express Architecture
The topology of a PCI Express bus and the device protocol layers associ-

ated with PCI Express is described in this section.
5.5.1.1 Physical Topology

Computers have an ever increasing demand for data bandwidth. In the past,
PCI and PCI-X systems delivered adequate performance using multidrop
parallel busses in which several devices shared each bus. Performance boosts
were achieved by increasing the effective bus clock frequency from 33 MHz,
66 MHz, 133 MHz, and beyond. However, these architectures required limita-
tions on the number of devices per bus to control electrical loading as the
frequency was increased.

The PCI Express hierarchy has a significantly different physical structure
from that of PCI. Instead of a parallel bus routed to several components, the
physical layer of PCI Express is a point-to-point connection similar to other
standards which utilize Serdes technology. The hierarchy routes traffic to
components through a switch. Each switch port is a virtual PCI to PCI bridge;
this allows existing PCI software to enumerate the hierarchy of components.

Figure 5.28 illustrates the main components in a typical PCI Express system,
including the CPU, memory, Root Complex, endpoint devices, switches, and
bridges to legacy PCI/PCI-X busses. The Root Complex connects the CPU and
memory subsystem to the PCI Express fabric. It generates PCI Express transaction
requests for the CPU and transmits them across one of its ports to the destination
device (either an endpoint or a switch). When a request arrives at an endpoint
device, the device completes the transaction by reading the requested data or writ-
ing data to the target location. In addition, the endpoint can initiate its own transac-
tions across the link to the Root Complex, another endpoint, or switch. A USB
device and Ethernet NIC are two examples of endpoint devices.

Overview of Protocol Standards 239

Fig. 5.28 PCI express bus physical topology

Fig. 5.29 PCI express device layers

CPU

PCI
Express
Endpoint

PCI
Express
Endpoint

PCI
Express
EndpointSwitch

PCI
Express
Endpoint

Bridge

PCI/PCI-X
Bus

MemoryRoot Complex

PCIe
Key:

Other bus

Device Core

PCI Express Core
Logic Interface

TX RX

Device Core

PCI Express Core
Logic Interface

TX RX

PCI Express Device A PCI Express Device B

TLP

Physical Layer Physical Layer

Link

Transaction Layer

Data Link Layer

Transaction Layer

Data Link Layer

Header/Data Header/Data

TLP

240 High Speed Serdes Devices and Applications

Fig. 5.30 PCI express frame format

A switch attaches multiple PCI Express devices together. Each port of the
switch behaves logically as a PCI-to-PCI bridge since its sole purpose is to for-
ward packets from the incoming port (Ingress Port) to the destination (Egress
Port). Each switch contains arbitration logic to determine the priority of the
packets being sent.
Device Layers

Figure 5.29 illustrates the layered architecture of a PCI Express device. The
top layer, Device Core, initiates transactions onto the PCI Express fabric and
executes transactions that it receives from other devices. This layer communi-
cates to/from the fabric through the PCI Express Core Logic Interface. PCI
Express does not specify the Device Core and PCI Express Core Logic Inter-
face; these layers are application specific logic and the design of these layers
varies from one implementation to the next. Root Complex core logic and an
endpoint Ethernet controller are two examples of Device Cores.

Every device must support the functionality of the bottom three layers of
the stack: the Transaction Layer, the Data Link Layer, and the Physical Layer.
These layers are composed of a transmit section that processes outbound traffic
through the transmit (Tx) side of the link, and a receive section that handles

Table 5.21 PCI express bandwidths

x1 x2 x4 x8 x12 x16 x32

Gen 1, 2.5 GTps 0.5 GBps 1.0 GBps 2.0 GBps 4.0 GBps 6.0 GBps 8.0 GBps 16 GBps

Gen 2, 5.0 GTps 1.0 GBps 2.0 GBps 4.0 GBps 8.0 GBps 12 GBps 16 GBps 32 GBps

From Device Core /
Software Layer

Start* Sequence
Number

Header Data ECRC LCRC End**

Created by Transaction Layer

Appended by Data Link Layer

Appended by Physical Layer

* STP symbol
** END symbol

Overview of Protocol Standards 241

incoming traffic from the receive (Rx) side. Each of these layers contributes to
the generation and processing of fields in the PCI Express packet shown in
Fig. 5.30.

The Transaction Layer assembles information from the Device Core into a
Transaction Layer Packet (TLP) for transmission. This packet includes a
header, up to 1024 32-bit words of data (4 kbytes), plus an optional End-to-End
CRC (ECRC) field used for error detection. The TLP is forwarded to the Data
Link Layer, which concatenates a sequence number and link CRC (LCRC),
and stores the resulting TLP in a local Retry Buffer. The purpose of the LCRC
is to detect errors in the transmission. Next, the TLP arrives at the Physical
Layer which appends a one byte Start delimiter symbol and a one byte End
delimiter symbol. Bytes of the packet are 8B/10B encoded by the Physical
Layer for transmission.

On the other side of the link, the receiving device follows the reverse
procedure to process fields in the packet and forward the TLP to the Transac-
tion Layer. First, the Physical Layer deserializes the incoming bitstream,
decodes the 8B/10B symbols, and removes the Start/End delimiter symbols.
The Data Link Layer then processes the sequence number and LCRC fields to
check for errors, and removes these fields. If there are no errors, the Data Link
Layer sends an acknowledge (ACK) Data Link Layer Packet (DLLP) to the
transmitting device to confirm successful delivery of the packet, allowing the
transmitting device to remove the packet from its Retry Buffer. (In the event
the Data Link Layer detects an LCRC error or other errors in the packet, a
Negative Acknowledge (NAK) DLLP is sent to the transmitting device and the
packet is resent.) Then the Data Link Layer forwards the TLP to the Transac-
tion Layer which uses the ECRC field to check for errors in the end-to-end
path, and forwards the TLP to the Device Core.

5.5.2 Physical Layer Logic
The PCI Express physical layer includes both physical layer logic and

physical layer electrical specifications. The physical layer electrical specifica-
tions are generally implemented with HSS cores, and the logical specifications
are implemented with companion logic.

A block diagram of the physical layer logic is shown in Fig. 5.31. An
n-wide port consists of n transmit and n receive HSS lanes and associated logic
to perform the physical layer function of the transmit and receive paths. State
machine logic to perform training is also a required element of the port.
5.5.2.1 Physical Layer Transmit Logic

Functions of the transmit data path in Fig. 5.31 are described below.

242 High Speed Serdes Devices and Applications

Fig. 5.31 Physical layer logic block diagram
Physical Packet Generation. The physical layer receives the TLP or DLLP
from the Data Link Layer, and forms a physical packet by adding control
symbols. The following control symbols are defined for PCI Express and
correspond to 10-bit control symbols in the 8B/10B block code. These symbols
are added in the transmission path as needed.
STP / SDP – Start Symbols (K27.7, K28.2). The physical layer adds a Start
symbol to delimit the beginning of the packet. Two Start symbols are defined:
Start TL Packet (STP) indicates the start of a TLP, and Start DLL Packet (SDP)
indicates the start of a DLLP.
END / EDB – End Symbols (K29.7, K30.7). The physical layer also adds an
End symbol to delimit the end of a packet. Two End symbols are defined: End
Good (END) indicates the normal end of a packet, and End Bad (EDB) indi-
cates the end of a packet which is to be ignored (possibly because it contains
an error).
COM – Comma Symbol (K28.5). The COM symbol is the first symbol of an
Ordered Set. Ordered Sets are described below.
SKP – Skip Symbol (K28.0). The SKP symbol is transmitted as part of a Skip
Ordered Set. Ordered Sets are described below.
FTS – Fast Training Sequence Symbol (K28.1). The FTS symbol is transmit-
ted as part of a Fast Training Sequence Ordered Set. Ordered Sets are described
below.

PHY Packet Generation

Byte Striping Logic

Scrambler

8B/10B Enc.

HSS Tx

Scrambler

8B/10B Enc.

HSS Tx

....

PHY Packet Processing

Byte Un-Striping Logic

Descrambler

8B/10B Dec.

Elastic Buf

Descrambler

8B/10B Dec.

Elastic Buf....

HSS Rx HSS Rx

Link
Training

From Data Link Layer To Data Link Layer

TX
Path

RX
Path

Overview of Protocol Standards 243

EIE – Electrical Idle Exit (K28.7). The EIE symbol is transmitted as part of an
Electrical Idle Exit Ordered Set used in systems operating at speeds greater
than 2.5 GT/s. Ordered Sets are described below.
PAD – Pad Symbol (K23.7). PAD symbols are transmitted at the end of a
packet, if needed, on unused lanes.
IDL – Idle Symbol (K28.3). IDL symbols are transmitted as part of an
Electrical Idle Ordered Set. Ordered Sets are described below.
TS1 / TS2 – Training Sequence Symbols (D10.2, D5.2). The TS1 and TS2
symbols are data symbols transmitted within training sequence ordered sets to
identify the type of ordered set.

The following Ordered Sets are defined for PCI Express:
Training sequences. Training sequence ordered sets TS1 and TS2 are transmit-
ted during link training in order to negotiate port parameters. This is described
in more detail later in this section.
Skip ordered set. The SKIP ordered set is scheduled to be transmitted at
periodic intervals. The periodic interval must be at least once every 1,538
symbol times, and no more than once every 1,180 symbol times. This ordered
set consists of the symbol sequence (COM,SKP,SKP,SKP). Receiver logic
may add/drop these symbols in the Elastic Buffer stage in order to compensate
for frequency differences between the recovered receive clock and the local
clock reference.

Note that transmission of a packet cannot be interrupted by a SKIP ordered
set. Therefore, if the SKIP is scheduled for transmission while a packet trans-
mission is in process, the SKIP is not transmitted until after the packet trans-
mission is complete. This might result in more than 1,538 symbol times
between the occurrence of SKIPs on the interface.
Electrical idle ordered set. This ordered set is transmitted by the transmit port
to inform the receive port that the transmitter wants to transition the link into
the Electrical Idle power management state. The ordered set consists of the
symbol sequence (COM,IDL,IDL,IDL).
Fast training sequence ordered set. This ordered set is transmitted by the
transmit port to quickly train the receiver and allow the receiver to achieve
symbol lock after exiting the Electrical Idle power management state. The
ordered set consists of the symbol sequence (COM,FTS,FTS,FTS).

244 High Speed Serdes Devices and Applications

Electrical idle exit ordered set. When operating at speeds greater than 2.5
GT/s, this ordered set is transmitted by the transmit port after exiting the
Electrical Idle power management state, and before transmitting the TS1/TS2
Ordered Sets. It is also transmitted periodically between TS1/TS2 Ordered
Sets. This ordered set has sufficient low frequency components to ensure
electrical idle detection circuits at the receiver recognize the exit condition.
(Some circuit implementations would have difficulty detecting the exit
condition on a higher loss channel without low frequency content.) The
ordered set consists of the symbol sequence (COM, 14 EIE symbols, TS1).

The Physical Packet Generation stage either transmits TLP or DLLP data
contents, control symbols, or ordered sets. If none of the above needs to be
transmitted, then Logical Idle symbols are transmitted (“00”h bytes).
Byte-Striping:

PCI Express specifies ports which consist of a link width of 1, 2, 4, 8, 12,
16, or 32 electrical links in each direction. Of these permitted widths, only link
widths of 1, 4, 8, and 16 are commonly used in the industry. Link widths, and
corresponding data bandwidth, are summarized in Table 5.21. The link width
for a given port is determined dynamically during training. For an n-link port,
bytes are striped to the lanes such that the first byte is transmitted on lane 0, the
second byte on lane 1, and so forth.

When the link width of the port is greater than 1, the following rules apply
for alignment of packets and ordered sets across the links of the port:
• The Start Packet delimiter is always transmitted on lane 0 unless the

packet is immediately following the end of another packet. In such cases,
the Start packet delimiter must be transmitted on a lane with a lane num-
ber divisible by 4 (i.e., lanes 0, 4, 8, etc.)

• The End Packet delimiter is always transmitted on a lane with a lane number divis-
ible by 4 –1 (i.e., lanes 3, 7, 11, etc.). If another packet does not start following the
end of the packet, then the remainder of the line is filled with PAD symbols.

• Ordered Sets and Logical Idle sequences must be transmitted on all lanes
simultaneously. Ordered Sets are not byte-striped across lanes, but rather
are transmitted in parallel on all lanes.

Scrambler:
Scrambling is performed using a sidestream scrambler which implements

the following polynomial:
G(x) = x16 + x5 + x4 + x3 + 1. (5.9)

The state value of the scrambler for each link of a multilink port must be
synchronized such that all links have the same scrambler state value at all
times. Data symbols and Logical Idle Sequences are scrambled; ordered sets
and other control symbols are not scrambled.

The scrambler state is updated by 8 bits for each byte transmitted regardless
of whether the byte is scrambled or not. The exception to this is SKP symbols.
The scrambler state does not advance when SKP symbols are transmitted since
receiver logic may add/drop SKP symbols prior to the descrambler stage.

Overview of Protocol Standards 245

The scrambler is reset to an all 1’s state whenever a COM symbol is
transmitted.
8B/10B Encoder

This stage encodes each byte into the corresponding 8B/10B encoded
symbol, and drives the parallel data input of the HSS transmitter. Block
8B/10B coding was described in Sect. 4.2.2.1.
5.5.2.2 Physical Layer Receiver Logic

Functions of the receive data path in Fig. 5.31 are described below.
Elastic Buffer

This stage consists of an elastic FIFO to compensate for clock frequency
differences between the receive clock from the HSS core and the local
reference clock. This compensation is performed by dropping SKP symbols as
needed if the receive clock is faster than the local clock, or adding additional
SKP symbols after SKP symbols in the incoming data if the receive clock is
slower than the local clock.

Implementations of this stage generally include a function to perform
symbol alignment on the input of the buffer. This is performed by searching for
COM symbols in the incoming data, and pulsing RXxDATASYNC (or alter-
natively by stepping the position of a barrel shifter), if needed, to adjust the
alignment. PCI Express refers to this process as achieving symbol lock.
8B/10B Decoder

This stage decodes each 8B/10B symbol into the corresponding data or
control byte. Block 8B/10B coding was described in Sect. 4.2.2.1.
Descrambler

This stage descrambles data in a similar manner to the scrambling
performed on the transmit data path.
Byte Un-Striping

This stage performs the inverse of the byte-striping process used at the
transmitter. A key function of this stage in a multi-lane port implementation is
lane-to-lane deskew of data. Although PCI Express does not specify precisely
how to do this, the common method is to add delay as needed such that COM
symbols for ordered sets are aligned with each other on all lanes.
Physical Packet Processing

This stage removes the Start and End of packet framing symbols from the
packet and forwards the TLP or DLLP to the Data Link Layer.
5.5.2.3 Link Training

The physical layer also implements state machines associated with link
training as implied by Fig. 5.31. Detailed descriptions of the training sequence
and state machine implementations are beyond the scope of this text, however,
the process is summarized below.

The following port parameters are negotiated as part of the link training
sequence:

246 High Speed Serdes Devices and Applications

Link width. The transmit and receive ports on a given link may have different
link widths. The training sequence determines the width of each port on the
link and picks a width that is supported by both ports.
Polarity inversion. PCI Express allows that a physical implementation may
intentionally or unintentionally reverse the true/complement signals of the
electrical differential signal. This results in the polarity of received data being
inverted. The training sequence detects that the polarity has been inverted, and
inverts the received data, if needed, to correct this.
Link data rate. PCI Express Gen 1 ports use a baud rate of 2.5 Gbaud/sec on
each link, while PCI Express Gen 2 ports may additionally support a baud rate
of 5.0 Gbaud/s. Future generations of the specification will define higher baud
rates. During training each node advertises supported speeds, and the link is
initialized to pick a speed that is supported by both ports.
Lane reversal. PCI Express allows a physical implementation to reverse the
physical wiring of lanes relative to the logical lane assignment. This might be
desirable to reduce the circuit board cost, as an example. Optionally, a port may
support detection that the assignment of lane numbers is reversed, and support
reordering of bytes accordingly in the Byte Un-Striping stage. If the port does
not support lane reversal, then the negotiation may instead result in a lower link
width in order to establish the communications path.

The transmit port sends TS1 or TS2 ordered sets on each link during the
training sequence. These ordered sets are 16 symbols long, and advertise
various port characteristics in order to negotiate the above port parameters.
Each port determines the characteristics of its partner based on the advertised
characteristics in the received training sequence, and then adapts accordingly.

The receiver link also trains its CDR circuit, achieves symbol lock, and performs
lane-to-lane deskew during the training sequence. The receiver must be fully
functional and ready to receive data before the training sequence can complete.

5.5.3 Electrical Physical Layer
This section describes the electrical parameters and features applicable to

implementation of the PCI Express Physical Layer.
5.5.3.1 Differential Signal Parameters

The PCI Express specification tests transmitter and receiver compliance
using eye masks for the transmitter output and for the jitter tolerance signal at
the receiver input. Electrical parameters for the transmitter are listed in Table
5.22. Electrical parameters for the receiver are listed in Table 5.23. Note that
some receiver parameters vary depending on the baud rate. Also note that
different specifications apply at 5.0 Gbps dependent on whether or not the
transmitter and receiver use the same or different reference clock sources.

Overview of Protocol Standards 247

The baud rate for all variants of PCI Express is specified with the tolerance
of +300 ppm. This tolerance is intended not only to allow for variation in
frequency between clock references at each end of the link, but also to allow
for Spread Spectrum Clocking (SSC). SSC varies the reference clock
frequency within a range in order to reduce EMI emissions, as was discussed
in Sect. 2.3.10, for the HSS EX10 core.

The transmitter specifications allow for deemphasis on the output signal.
An FFE in the transmitter can correct for intersymbol interference induced by
the channel. PCI Express assumes there is no equalization in the receiver.
5.5.3.2 Special Electrical Signaling Support

HSS cores which support PCI Express are required to implement a number
of unique features. Additional support is desirable for optional features of the

Table 5.22 PCI express transmitter electrical parameters

PCI Express Gen 1 PCI Express Gen 2

Baud rate 2.50 Gbps
± 300 ppm

5.00 Gbps
± 300 ppm

Transmitter waveform Eye mask is specified Eye mask is specified

Output signal voltage 800–1,200 mVppd 800–1,200 mVppd 1

DC common mode voltage 0 – 3.6 V 0 – 3.6 V

Rise/fall time 0.125 UI 0.125 UI

Total jitter (TJ) 0.30 UI 0.30 UI

1 Some electromechanical form factors specify a lower differential amplitude for the transmitter

Table 5.23 PCI express receiver electrical parameters

PCI Express Gen 1
PCI Express Gen 2

(common clock
architecture)

PCI Express Gen 2
(data clocked
architecture)

Baud rate (± 300 ppm) 2.50 Gbps 5.00 Gbps 5.00 Gbps

Jitter tolerance
waveform

Eye mask Eye mask Eye mask

Input signal voltage 175–1,200 mVppd 120–1,200 mVppd 100–1,200 mVppd

Deterministic jitter (DJ) Not specified 0.30 UI 0.24 UI

Total jitter (TJ) 0.60 UI 0.40 UI 0.34 UI

AC coupling capacitor 75–200 nF 75–200 nF 75–200 nF

248 High Speed Serdes Devices and Applications

PCI Express specification. These features are summarized in this section. Note
that several of these features are related to power management states which are
discussed in Sect. 5.5.4.
Electrical Idle

When in an electrical idle state, the transmitter outputs are driven to the
common mode voltage. Before transitioning into this state, the transmitter
must transmit one or more Electrical Idle Ordered Sets. To return to an
operating state, the transmitter must transmit FTS (for exit from the L0s Power
State) or TS1/TS2 ordered sets (for exit from the L1 Power State).

The receiver enters an electrical idle state upon receiving the Electrical Idle
Ordered Set. The receiver exits this state upon seeing a differential voltage on
the input in excess of the value allowed during an Electrical Idle state.

An HSS transmitter which supports PCI Express must provide the capabil-
ity to drive an electrical idle state on the link. The HSS receiver may continue
to operate and receive data while the transmitter is sending an electrical idle,
or may be partially powered down. Either way, the RXxSIGDET output
indicates there is no signal amplitude. When the HSS transmitter resumes
sending serial data, the receiver must be powered back on (if applicable),
retrain the CDR circuit, and reacquire symbol lock. If the receiver is powered
down, the signal detect circuit must remain powered on so that a wake-up event
can be detected. Obviously, retraining the CDR and reacquiring symbol lock
requires more time if the receiver was powered down.
Receiver Detection

The transmitter checks the link after a reset to determine whether a receiver
is connected at the other end. This is done by driving an abrupt change in the
DC Common Mode voltage of the link (either from ground rail to VDD power
rail or vice versa), and monitoring the amount of time it takes for the common
mode voltage on the wire to settle to the new value. If a receiver is present,
charging the AC coupling capacitance of the receiver causes this settling time
to be relatively slow. If no receiver is present, the settling time is relatively fast.
An HSS transmitter which supports PCI Express must provide the capability to
drive a receiver detection event and the detection circuitry to determine the
results.
Beacon Signaling

Beacon signaling is optional in the PCI Express specification, and may be
used in the implementation of L2 power states. The transmitter sends a low-
frequency high/low waveform called a beacon signal on the link to indicate a
desire to exit the L2 power state and return to a full-on state. The beacon signal
has a pulse width of at least 2 ns and no more than 16 s. The receiver is
powered down in the L2 power state, but must have some circuitry active
which can detect the beacon signal and notify the power management function
of the port. An HSS receiver which supports PCI Express must provide the
capability to detect the beacon signal.

Overview of Protocol Standards 249

5.5.4 Power States
PCI Express defines the L0, L0s, L1, L2, and L3 power management states,

each of which is intended to use progressively less power.
L0 Power State. The link transmitter and receiver are fully operational in this
power state.
L0s Power State. If the physical layer transmit logic has no TLP or DLLP
traffic to transmit for some length of time, the transmitter can initiate entry into
the L0s power state. The protocol for entry/exit to/from an electrical idle state
was described in “Electrical Idle” under Sect. 5.5.3.2. When the transmitter
once again has useful traffic to transmit, it exits the electrical idle state and
retrains the receiver.
Note that detailed rules exist in the PCI Express standard for when a link
should enter and exit the L0s power state. These rules vary based on the type
of device in the PCI Express architecture. There are also physical layer speci-
fications for maximum response times to enter and exit the L0s power state, as
well as specifications for the minimum time the transmitter must stay in this
power state once it has been initiated. These specifications are beyond the
scope of this text.
L1 Power State. The physical layer may enter the L1 power state upon
direction by the Data Link Layer. Both the transmit and the receive ports must
negotiate and agree to enter the L1 power state. This negotiation is performed
through DLLP traffic between the Data Link Layers of each node, the
description of which is beyond the scope of this text.
The transmitter enters the L1 power state in a similar manner to entry into the
L0s state as described in “Electrical Idle” under Sect. 5.5.3.2. The transmitter
exits the L1 power state by sending TS1/TS2 ordered sets. The receiver may
be powered down while in the L1 power state. To exit the L1 power state, the
signal detect circuit at the receiver (which is not powered down in this state),
detects the signal and the port logic restores power to the receiver. Recovery
time to retrain the receiver is expected to be longer when exiting L1 power state
than in the case of L0s power state.
As was the case for the L0s power state, the PCI Express specifies require-
ments for physical layer state transitions which apply to entry/exit to/from L1
power state. These specifications are beyond the scope of this text.
L2 Power State. The physical layer enters and exits the L2 power state upon
request. In this power state, a substantial portion of the HSS core can be
powered off, including portions of the PLL logic. A port which is in the L2
power state may request exit from this state by transmitting a beacon signal to
its link partner. Portions of the receiver which are still powered on can detect
this beacon signal and propagate this request for action by the system power
management software.

250 High Speed Serdes Devices and Applications

5.5.5 PCI Express Implementation Example
Figure 5.32 shows an IBM implementation of the PCI Express protocol

stack. This implementation is used to illustrate one example of how PCI
Express layers can be partitioned into functional blocks. The layers of the PCI
Express protocol are partitioned into the cores in Fig. 5.32 as follows:

Fig. 5.32 IBM set of cores for the PCI express protocol (Gen 1)

GBIF to PLB Core (GPL). GPL implements the PCI Express Core Logic
Interface layer, connecting the Transaction Layer logic to a vendor-specific
processor interface. This layer is application dependent and is not specified by
the PCI Express standard.
Upper Transaction Layer Core (UTL). UTL implements part of the
Transaction Layer logic, including transaction generation and ordering, end-
to-end CRC generation and checking, and virtual channel arbitration.

 Synthesizable logic
Hard core

Key:

 Additional customer logic
PCI Express Link (chip boundary)

PHYIF - Physical Interface Logic

HSS - High Speed SerDes core

TLDLP - Lower Transaction, Data Link, and logical
Physical core

PIPE Interface

CFG -
Configuration Space core

TLDLP Interface

GPL - GBIF to PLB core
GBIF Interface

Customer Interface Gen 2
Protocol
Wrapper

RX/TX
BuffersUTL-Upper Transaction Layer core

Transmit /
Replay
Buffer

Optional XBUS
registers

TLDLP/CFG Interface

Optional user
support logic

IFPLL -
Intermediate

Freq PLL

IBM
PIPE PHY
core (Gen 1)

Overview of Protocol Standards 251

Configuration Space Core (CFG). CFG implements the configuration control
registers specified by the PCI Express standard. This core supports interfaces
to user support logic and to an XBUS interface.
Transaction, Data Link, and Logical Physical Core (TLDLP). TLDLP
implements the remaining Transaction Layer functionality, the Data Link
Layer, and part of the Physical Layer logic, including Physical Layer Packet
Generation and Processing, Byte Striping and Unstriping, scrambling and
descrambling, and Training Sequence generation and control.
Physical Interface Logic (PHYIF). PHYIF implements the remaining Physical
Layer logic function, including 8B/10B encoding and decoding and elastic
buffers for clock compensation.

The PHY Interface for PCI Express Architecture (PIPE) connects the
TLDLP core of the Gen 2 Protocol Wrapper to the PHYIF core. The specifica-
tion for this interface is an industry standard developed by several companies
and published by Intel. This standard is intended to facilitate interoperability
of the lower levels of the Physical Layer with higher levels of the protocol
stack supplied by different vendors. This specification also dictates the alloca-
tion of physical layer functionality between the TLDLP and PHYIF cores. The
reader is referred to the standards document for more information.

The HSS EX10 core described in Chap. 2 included features specifically
intended to support the PCI Express protocol. These features were described in
Sect. 2.2.9 for the transmitter slice and in Sect. 2.3.13 for the receiver slice.
Additional power management features to support PCI Express were described
in Sect. 2.4.8.

5.6 References and Additional Reading
The following standards documents are relevant to “SONET/SDH

Networks” as described in Sect. 5.1:
1. “ANSI T1.105-2001 Synchronous Optical Network (SONET) – Basic

Description including Multiplex Structure, Rates, and Formats”,
American National Standards Institute, Inc., 2001.

2. “ITU-T G.707 – Series G: Transmission Systems and Media, Digital
Systems and Networks, Digital Terminal Equipment – General, Network
Node Interfaces for the Synchronous Digital Hierarchy (SDH)”,
International Telecommunications Union, 1996.

3. “ITU-T G.709 – Series G: Transmission Systems and Media, Digital
Systems and Networks, Digital Terminal Equipment – General, Interface
for the Optical Transport Network (OTN)”, International
Telecommunications Union, 2001.

4. “ITU-T G.783 – Series G: Transmission Systems and Media, Digital
Systems and Networks, Digital Terminal Equipment – Characteristics of
SDH Equipment Functional Blocks”, International Telecommunications
Union, 2006.

252 High Speed Serdes Devices and Applications

The following reading is recommended for more information regarding
“SONET/SDH Networks”:
5. “SONET”, Second Edition, Walter J. Goralski, McGraw-Hill, New York,

2000.
The following standards documents are relevant to “OIF Protocols” as

described in Sect. 5.2:
6. “System Interface Level 5 (SxI-5): Common Electrical Characteristics for

2.488–3.125 Gbps Parallel Interfaces”, OIF-SxI-5-01.0, Optical
Internetworking Forum (http://www.oiforum.com), Oct. 2002.

7. “Common Electrical I/O (CEI) – Electrical and Jitter Interoperability
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical
Internetworking Forum (http://www.oiforum.com), Feb. 28 2005.

8. “Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for
40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-01.0, Optical
Internetworking Forum (http://www.oiforum.com), Jan. 29 2002.

9. “Serdes Framer Interface Level 5 Phase 2 (SFI-5.2): Implementation
Agreement for 40Gb/s Interface for Physical Layer Devices”, OIF-SFI5-02.0,
Optical Internetworking Forum (http://www.oiforum.com), Oct. 2 2006.

10. “Scalable System Packet Interface (SPI-S) Implementation Agreement:
System Packet Interface Capable of Operating as an Adaption Layer for
Serial Data Links”, OIF-SPI-S-01.0, Optical Internetworking Forum
(http://www.oiforum.com), Nov. 17 2006.

11. “Common Electrical I/O – Protocol (CEI-P) – Implementation
Agreement”, OIF-CEI-P-01.0, Optical Internetworking Forum
(http://www.oiforum.com), Mar. 2005.

The following additional references are also relevant to “OIF Protocols”:
12. Information on StatEye software: http://www.stateye.org.

The following standards documents are relevant to “5.3 Ethernet
Protocols” as described in Sect. 5.3:
13. “IEEE Standard for Information Technology – Telecommunications and

Information Exchange Between Systems – Local and Metropolitan Area
Networks – Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications”, IEEE
802.3-2005, Institute of Electrical and Electronic Engineers, Dec. 12
2005.

14. “Amendment: Ethernet Operation over Electrical Backplanes”, IEEE
P802.3ap, Draft 3.3, Institute of Electrical and Electronic Engineers, Jan.
26 2007.

15. “INF-8077 10Gb Small Form Factor Pluggable Module”, Revision 4.5,
10 Gigabit Small Form Factor Pluggable (XFP) Multi Source Agreement
(MSA) Group (http://www.xfpmsa.org), Aug. 2005.

Overview of Protocol Standards 253

The following standards documents are relevant to “5.4 Fibre Channel (FC)
Storage Area Networks” as described in Sect. 5.4:
16. “ANSI INCITS 404-2006 For Information Technology – Fibre Channel –

Physical Interfaces-2 (FC-PI-2)”, American National Standards Institute,
Inc., International Committee for Information Technology Standards,
Aug. 11 2006.

17. “ANSI INCITS 424-2007 For Information Technology – Fibre Channel –
Framing and Signaling-2 (FC-FS-2)”, American National Standards
Institute, Inc., International Committee for Information Technology
Standards, Aug. 9 2007.

18. “ANSI INCITS 424-2007 AM1 For Information Technology – Fibre
Channel – Framing and Signaling-2 – Amendment 1 (FC-FS-2/AM1)”,
American National Standards Institute, Inc., International Committee for
Information Technology Standards, Aug. 9 2007.

19. “INCITS Project 1647-D – Fibre Channel – Physical Interfaces-4 (FC-PI-
4), Rev 8.00”, INCITS Working Draft Proposed American National
Standard for Information Technology, May 21, 2008.

20. “ANSI INCITS 364-2003 For Information Technology – Fibre Channel –
10 Gigabit (10GFC)”, American National Standards Institute, Inc.,
International Committee for Information Technology Standards, Nov. 6
2003.

The following standards documents are relevant to “5.5 PCI Express” as
described in Sect. 5.5:
21. “PCI Express Base Specification, Revision 2.0”, Peripheral Component

Interconnect Special Interest Group (PCI-SIG) (http://www.pcisig.com),
Dec. 20 2006.

22. “PHY Interface for the PCI Express Architecture”, Draft Version 1.90,
Intel Corporation, 2007.

23. “PCI Express Card Electromechanical Specification, Revision 2.0”,
Peripheral Component Interconnect Special Interest Group (PCI-SIG)
(http://www.pcisig.com), 2007.

The following reading is recommended for more information regarding
“5.5 PCI Express”:
24. “PCI Express System Architecture”, Ravi Budruk, Don Anderson, and

Tom Shanley, Mindshare, Inc., 2004.
Interested IBM employees and IBM ASIC customers may also wish to

consult the following IBM HSS databooks and application notes for more
information regarding IBM ASIC core offerings.
25. “High Speed Serdes (HSS) – PCI Express Gen 2 for Cu-08 Core

Databook”, SA15-5846-02, IBM.
26. “Implementing a PCI Express Device with IBM Cores”, SA15-5976-00,

IBM.

254 High Speed Serdes Devices and Applications

The following standards documents were additionally mentioned in this
chapter, although not covered in detail:
27. “ANSI INCITS 376 For Information Technology – Serial Attached SCSI

(SAS)”, American National Standards Institute, Inc., International
Committee for Information Technology Standards, Jan. 1 2003.

28. “Infiniband Architecture Specification Volume 2, Release 1.2”,
Infiniband Trade Association, October 2004.

29. “Serial ATA Revision 2.5”, Serial ATA International Organization
(http://www.sata-io.org), Oct. 27 2005.

5.7 Exercises
1. Answer each of the following questions to classify the SONET/SDH

protocol characteristics.
(a) Does the protocol use Synchronous or Plesiosynchronous clocking?
(b) Does the protocol use Packet-based or Continuous Transmission?
(c) Which block code and/or scrambling does the protocol use (if any)?
(d) What type of error detection is used by the protocol (if any)? Does the

protocol support error correction?
2. Answer each of the following questions to classify the SONET/SDH

protocol characteristics.
(a) Does this protocol use a serial bit stream or parallel lanes? Specify the

number of lanes, if applicable.
(b) Specify the baud rate(s) associated with each lane.
(c) If the protocol uses parallel lanes, briefly describe how deskew is

performed at the receiver.
3. Answer the questions in Exercises 1 and 2 for the OIF SFI-5.2 protocol.
4. Answer the questions in Exercises 1 and 2 for the OIF SPI-S protocol

assuming the protocol carries CEI-P lane traffic.
5. Answer the questions in Exercises 1 and 2 for the IEEE 802.3

10GBASE-KX4 variant of the Ethernet protocol.
6. Answer the questions in Exercises 1 and 2 for the IEEE 802.3

10GBASE-KR variant of the Ethernet protocol.
7. Answer the questions in Exercises 1 and 2 for the serial variants of the

INCITS T11 Fibre Channel protocol. Note that some answers may be
different for 8.5 Gbps from that of lower baud rates.

8. Answer the questions in Exercises 1 and 2 for the 10GFC variant of the
INCITS T11 Fibre Channel protocol.

Overview of Protocol Standards 255

9. Answer the questions in Exercises 1 and 2 for the Gen 1 variant of the
PCI Express protocol.

10. Answer the questions in Exercises 1 and 2 for the Gen 2 variant of the
PCI Express protocol.

11. Design logic (Verilog or VHDL) for a scrambler (or descrambler) for the
SONET/SDH which has 16-bit parallel data inputs and outputs.
Requirements for this scrambler are described in Sect. 5.1.2.1. Design
your scrambler to assume STS-1 frames. Note that your answer for
Chap. 4 Exercise 17 may be useful to get you started.

12. Modify the logic for the scrambler from Exercise 12 to scramble STS-3
frames.

13. Design logic (Verilog or VHDL) for a barrel shifter with 16-bit parallel
data inputs and outputs. The implementation should include control logic
to search for an “F628”h framing pattern. This framing pattern may occur
on the input with any arbitrary bit alignment. The control logic should set
the barrel shifter such that this pattern is aligned on the proper 16-bit
boundary on the data output.

14. The SONET/SDH protocol does not scramble the framing pattern and
therefore the logic in Exercise 13 can be used to detect and align on this
framing pattern. However, the data stream may also contain scrambled
data which matches this framing pattern. It is possible for aliasing to
occur such that the barrel shifter incorrectly aligns based on this data. In
order to avoid such aliasing, the control logic in Exercise 13 needs to be
modified to build hysteresis into the state machine decisions. Assuming
an STS-3 frame, modify the Verilog or VHDL logic from Exercise 13
such that the control logic implements the state transitions below:

Out of
Frame In Frame

Mismatch

Match
Framing Pattern Found
(Realign Data) Framing Pattern Repeats

at Correct Interval

Framing Pattern does
not repeat at correct interval

Framing Pattern
continues to repeat
at correct interval

Framing Pattern does
not repeat at correct interval

Subsequent Framing Pattern
is at correct interval

Search for
Framing
Pattern

Subsequent Framing
Pattern also does not
repeat at correct interval

256 High Speed Serdes Devices and Applications

15. SONET/SDH Line Overhead H1/H2 pointer operation for the case of
positive stuffing was illustrated in Fig. 5.3. Draw a similar illustration of
the case of negative stuffing.

16. SONET/SDH Line Overhead pointer operation allows pointer
justification (either positive or negative stuffing) to occur at most once
every four SONET frames. Assuming an STS-3 frame, what frequency
tolerance (in ppm) is required for the clock sources in order to avoid
needing to make adjustments more often? What is the frequency tolerance
assuming STS-12 frames?

17. Design logic (Verilog or VHDL) for a serial SFI-5.2 deskew channel
generator which has four one-bit inputs and generates the one-bit output
corresponding to Fig. 5.8.

18. Design logic (Verilog or VHDL) for a parallel SFI-5.2 deskew channel
generator which has four 10-bit inputs and generates the 10-bit parallel
output corresponding to Fig. 5.8. The 10-bit output will be serialized by
the HSS transmitter. Your design must take this into account and ensure
that the deskew channel is transmitted with the correct timing relationship
and bit order.

19. Design logic (Verilog or VHDL) for a parallel SFI-5.2 deskew channel
framing function. This logic should include a barrel shifter with a 10-bit
input and a 10-bit output. The control function for the barrel shifter
should align the data such that the bits of the sequence shown in Fig. 5.8
are aligned on the 10-bit boundary.

20. Design additional logic for the logic from Exercise 19 that aligns the
DATA[0] channel to the deskew channel. This logic should include a
barrel shifter with a 10-bit input and a 10-bit output. The control function
for the barrel shifter should compare the applicable data bits to the data
bits on the deskew channel and update alignment accordingly.

21. The skew and wander specification for the SFI-5.2 protocol is described
in Table 5.5, and an example of a skew budget for a receiver at the Ri or
Re compliance points was described in Table 4.4. Develop an equivalent
skew budget for a receiver at the Res assuming:
• Signal routing differences in the receiver are reduced to 1.5 UI.
• The deskew logic in the receiver chip performs the deskew at the full

baud rate of the interface with no deserialization.
22. Given the block formats defined in Fig. 5.10 for CEI-P, show the 66-bit

codewords for transmitting the following data packet:
• Address = “13FC”h
• Flags = “04”h
• CRC = “457”h (this is not the actual calculated value for this packet)
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h,

Overview of Protocol Standards 257

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h,
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h,
“1B”h, “1C”h, “1D”h, “1E”h, “1F”h.

23. Translate the 66-bit codewords of the packet described in Exercise 22 to
the equivalent T bits and payload within a CEI-P coding frame as
described in Fig. 5.11.

24. The IEEE 802.3 Ethernet standard uses the following acronyms in
relation to the interfaces defined in clauses 47 and 48: XGMII, XAUI, and
XGXS. Specify what these acronyms stand for and define them. How are
these three acronyms related?

25. The IEEE 802.3 Ethernet standard defines the PCS and PMA layers for
10GBASE-X variants in clause 48. Is the functionality described by this
clause sufficient to implement the XGXS function defined by clause 47?
Is the functionality described by this clause sufficient to implement the
10GBASE-KX4 Backplane Ethernet variant? Is additional functionality
required in either of these cases?

26. Given the following data packet, show the corresponding bus cycles on
the XGMII:
• Destination Address = “112233”h
• Source Address = “445566”h
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h,

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h,
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h,
“1B”h, “1C”h, “1D”h.

• FCS = “778899”h (this is not the actual calculated value for this
packet)

27. Given the XGMII packet in Exercise 26, show the corresponding bus
cycles on the four lanes of the XGXS interface to the HSS EX10 core.
These bus cycles will be using the equivalent 8B/10B code words.

28. Show 33 consecutive bus cycles on the four lanes of the XGXS interface to
the HSS EX10 core during an idle period between two packets. At some
point during this period a sequence ordered set is inserted with the 8B/10B
codewords corresponding to the data bytes “21”h, “22”h, and “23”h.

258 High Speed Serdes Devices and Applications

29. The XGXS function defined in Sect. 5.3.3 deskews data across the lanes
using the Align ordered set. This ordered set is transmitted at intervals
which range from every 16 symbols to every 31 symbols. Assume that
two lanes of the interface are skewed by 13 symbols (130 UI). Explain
why the deskew logic may not correctly align the interface on the first
attempt. Draw a timing diagram showing an example of a sequence of
Align ordered sets received on two lanes of the interface. Construct this
example to show the circumstances under which the interface is
misaligned on the first attempt, but is correctly aligned upon receiving a
subsequent Align ordered set.

30. The IEEE 802.3 Ethernet standard defines the PCS layer for 10GBASE-R
variants in clause 49. This PCS layer is commonly called “XFI.” This
clause includes a definition of the 64B/66B block code which is
summarized in Fig. 5.19 and Table 5.13. Given the XGMII packet in
Exercise 26, show the corresponding 64B/66B codewords as transmitted
by the HSS EX10 core. (Assume all control bits/bytes are idles.)

31. Your answer to Exercise 30 started the sequence with a control block
using one of the “Start” block types. Repeat this exercise using the other
“Start” block type.

32. Assume that an HSS EX10 receiver is connected to “gearbox” logic
which buffers the 32-bit output of the HSS core into 66-bit blocks. When
properly aligned, one 64B/66B code word is transferred on each cycle of
this 66-bit bus. Design logic (Verilog or VHDL) which implements a state
machine that monitors the output of the gearbox logic, and pulses
RXxDATASYNC if the codeword is not properly aligned.

33. Design logic (Verilog or VHDL) to implement the “gearbox” logic
described in Exercise 32. Hint: The logic design is simplified if you
assume that the input and the output of the logic operate at the same clock
rate, and that a control signal indicates cycles when new data is available
on the output.

34. The autonegotiation protocol defined in Clause 73 for the IEEE 802.3
Ethernet standard was described briefly in the text. One function of this
protocol is to advertise which Backplane Ethernet variants are supported
by a node, and to negotiate which of these variants to use. Suggest a truth
table which determines which variant to use based on the variants
supported by this node and the variants supported by the link partner.
Note that the variant to be used should adhere to the following priority
order: 10GBASE-KR (highest priority), 10GBASE-KX4, 1000BASE-KX
(lowest priority).

Overview of Protocol Standards 259

35. The training algorithm for the 10GBASE-KR variant of the IEEE 802.3
Ethernet standard was described briefly in the text. As noted, the standard
does not define the algorithms which should be employed to determine
optimal equalizer settings. Create a flow chart suggesting a possible
algorithm for optimizing the FFE coefficients. (The algorithm can use a
brute force approach.)

36. Draw a complete end-to-end block diagram of an INCITS T11 Fibre
Channel link, including: a host chip connected across a backplane to an
optical PMD, one PMD connected across an optical cable to another
PMD in a second enclosure, and the PMD in the second enclosure
connected across a backplane to another host chip. Label the
interoperability points on this diagram.

37. Assume that the optical PMDs in Exercise 36 use linear optical receivers.
How does this affect your labeling of the interoperability points?

38. Equations for a 32-bit parallel self-synchronizing scrambler using the
following polynomial were described in Sect. 4.2.2.3:
G(x) = x58 + x39 + 1.
Design the logic (Verilog or VHDL) for this scrambler. Add a K_bit
control signal. When K_bit = “1,” data is not scrambled and the
scrambler state is reset to “029438798327338”h. When K_bit = “0”,
data is scrambled and the scrambler state is advanced.

39. Design the logic (Verilog or VHDL) for the descrambler corresponding to
the scrambler in Exercise 38.

40. The data flow for a Fibre Channel 8GFC transmitter and receiver are
shown in Figs. 5.25 and 5.26, respectively. The data paths shown are 32-
bits wide throughout. Fibre Channel transmits and receives all Ordered
Sets on this 32-bit boundary, and requires that data packet length be an
integral number of 32-bit words. Discuss the merits of this approach in
relation to the logic complexity of the design.

41. The data flow for a Fibre Channel 8GFC transmitter and receiver are
shown in Figs. 5.25 and 5.26, respectively. Scrambling in this data flow
occurs prior to the 8B/10B encoder. Discuss the merits of this hierarchy
(as opposed to performing 8B/10B encoding and then scrambling the
encoded symbols) in relation to the spectral characteristics of data
through the optical devices.

42. The 10Gbps variants of Fibre Channel are listed in Table 5.20. Which of
these variants uses the XGXS logic defined in Sect. 5.3.3, and which of
these variants uses the XFI logic defined in Sect. 5.3.4?

43. Contrast the baud rates for the 10-Gbps Fibre Channel variants listed in
Table 5.20 with their Ethernet counterparts.

260 High Speed Serdes Devices and Applications

44. The PCI and PCI-X protocols which were the predecessors for PCI
Express needed to limit the number of devices on the bus to control
electrical loading as the frequency was increased. Given the discussion of
source synchronous busses in Chap. 1, explain why.

45. The PCI Express uses plesiosynchronous clocking and the protocol uses
Skip Ordered Sets to perform clock justification. When a node receives a
Skip Ordered Set, it may drop or add one SKP symbol in order to
compensate for clock frequency differences. Assuming the topology
diagram in Fig. 5.28, what is the maximum and minimum number of SKP
symbols in a Skip Ordered Set received by any PCI Express endpoint
from any other PCI Express endpoint?

46. Given the following packet contents, show the corresponding
transmission of the TLP (including start and end delimiters) as byte-
striped across 4, 8, or 16 PCI Express lanes.
• Data = “01”h, “02”h, “03”h, “04”h, “05”h, “06”h, “07”h, “08”h,

“09”h, “0A”h, “0B”h, “0C”h, “0D”h, “0E”, “0F”h, “10”h, “11”h,
“12”h, “13”h, “14”h, “15”h, “16”h, “17”h, “18”h, “19”h, “1A”h,
“1B”h, “1C”h, “1D”h, “1E”h.

47. As noted in the text, PCI Express endpoints must schedule a Skip Ordered
Set for transmission at least once every 1,538 symbol times. However, if
this transmission is scheduled immediately after the endpoint has started
transmitting a packet, then the Skip Ordered Set cannot be transmitted
until the packet finishes. What is the maximum number of symbol times
that can occur between Skip Ordered Sets as a result of this behavior?
What link width does this assume?

48. Assuming the maximum time between Skip Ordered Sets determined in
Exercise 47, calculate the minimum size required for the elastic buffers in
the receiver logic of the PCI Express endpoint.

49. Illustrate the symbol transmission across four PCI Express lanes for each
of the following Ordered Sets:
• Electrical Idle Ordered Set
• Skip Ordered Set
• Fast Training Ordered Set
• Electrical Idle Exit Ordered Set

50. Assume that the board designer for a PCI Express node determines that
reversing the physical wiring of both the transmit and receive lanes will
reduce the number of board layers and thereby reduce costs. The PCI
Express protocol logic driving the interface supports the lane reversal
option. Is it permissible for the board designer to implement this lane
reversal? Are there any potential impacts to system performance?

Overview of Protocol Standards 261

51. A PCI Express lane uses HSS EX10 cores at both the transmitter and
receiver end of the link:
(a) Describe the sequence of events which causes a PCI Express link to

transition from an L0 to an L0s power state.
(b) Describe the sequence of events which causes a PCI Express link to

transition from an L0s to an L0 power state.
52. Describe which pins on the HSS EX10 transmitter and receiver are

asserted while the corresponding PCI Express lane are in an L1 or L2
power state.

53. Compare the transmitter differential amplitude specifications for the
following:
(a) OIF CEI-11G-LR and Ethernet 10GBASE-KR
(b) OIF SxI-5, Ethernet electrical variants which use the XGXS logic

defined in Sect. 5.3.3, electrical variants of Fibre Channel 4GFC, and
PCI Express Gen 1

(c) OIF CEI-11G-SR, OIF CEI-11G-MR, and OIF CEI-11G-LR

Reference Clocks 263

Chapter 6
Reference Clocks

A significant consideration contributing to the performance of any high-
speed serial data link is the availability of a stable, low jitter reference clock.
In this chapter, on-chip clock distribution architectures are discussed, as well
as the electrical analysis of the clock distribution network.

6.1 Clock Distribution Network
When designing a circuit network for distributing the reference clock to

HSS devices, the following considerations warrant discussion.
• Type of signals (single-ended vs. differential)
• Direct distribution vs. use of an Intermediate Frequency PLL; and
• Any special requirements:

– Skew requirements for transmitter serial data outputs
– Loop timing (as discussed in Sect. 5.1.4)
– Manufacturing test considerations

6.1.1 Single-Ended vs. Differential Reference Clocks
Power distribution is a significant concern on high-density chips using

submicron fabrication processes. Voltage at any given circuit on the chip
depends on the current being drawn by the circuit and neighboring circuits, and
the resistance of the power distribution path. Additionally, as circuits in the
same vicinity switch states, localized transient noise occurs on the power
supply network. Power supply decoupling capacitance is often added in the
chip layout to reduce power supply noise; however, such capacitance is only
effective at reducing transient noise in the immediate vicinity of the capacitor.
Steady-state voltage drop and lower-frequency noise components are not
generally improved by on-chip power supply decoupling.

Critical noise-sensitive analog circuits in HSS cores are often powered from a
separate analog power supply to reduce the impacts of transient noise. Generally,
the analog power distribution is localized. The analog power supply input for an
HSS core is near the circuits which are connected to this power supply, and the core
input pin is generally connected directly to a chip pin. Unlike these critical analog
circuits, elements of a clock distribution network are not localized and are scattered
throughout the chip. Clock distribution circuits are generally powered by the same
noisy power supply used to supply power to the bulk of the digital logic on the chip.

The effects of power supply compression on a single-ended signal are
illustrated in Fig. 6.1, which shows two signals. One signal is illustrated by the
solid line which swings across the approximate full range of the power supply.
The other signal is illustrated by the dotted line where the power rail has been

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 263
© Springer 2008

264 High Speed Serdes Devices and Applications

compressed due to voltage drop in the power distribution network and/or
transient noise, and the signal amplitude has been reduced accordingly.
Keeping in mind that the sink device on this signal does not necessarily
experience the same power supply compression, a fixed switching threshold is
assumed at approximately half of the uncompressed power supply voltage.
This switching threshold is illustrated by the horizontal line at 0.6 V.

When power supply voltage to the circuit is reduced, the circuit switches more
slowly. Additionally, the midpoint of the signal transition shifts in relation to the
switching threshold of the sink circuit. As shown in Fig. 6.1, the point at which
signal transitions intersect the switching threshold is affected, thereby creating
jitter. This jitter on the reference clock input of an HSS core degrades the jitter
performance of the transmitter, and degrades jitter tolerance of the receiver.

Fig. 6.1 Single-ended signals in presence of transient power supply noise

Fig. 6.2 Differential signals in presence of transient power supply noise

-2-4-6 0 642

0.4

0.6

0.8

1.0

0.2

1.2

Jitter at Switching
Threshold Voltage

Full Swing SignalCompressed Signal
due to Power Supply
Transient Noise

-2-4-6 0 642

1.0

1.2

1.4

1.6

0.8

Full Swing Signal
(True & Complement)

Compressed Signal
due to Power Supply
Transient Noise

Signal True & Complement
Crossover Point Stable

Reference Clocks 265

The corresponding effects of power supply compression on a differential
signal are illustrated in Fig. 6.2. The solid lines in this figure illustrate the true
and complement legs of a differential signal which is swinging across the
approximate full single-ended range of each signal leg. The dotted lines illus-
trate the true and complement legs of a differential signal which is experienc-
ing power supply compression and therefore has reduced amplitude.

Unlike single-ended signals, the downstream differential receiver circuit
does not have a fixed signal switching threshold. Rather, the sink circuit
switches based on the crossover point of the true and complement legs of the
differential signal. As shown in Fig. 6.2, the amplitude reduction of the
differential signal affects both the true and complement legs of the signal in a
roughly equal fashion. This shifts the common mode voltage, but the crossover
point of the signal legs is not affected.

The power supply noise described above is one form of common mode
noise. Common mode noise sources affect the true and complement legs of the
signal equally. Other signals in the chip routed in parallel to the differential
clock can also cause coupled noise, a significant portion of which is common
mode noise. Differential buffers have superior noise rejection qualities for
common mode noise, and therefore coupled noise is less of a concern when
differential clocks are used.

As the reader may assume from the above analysis, differential clock
networks are preferred for distributing reference clocks across chips to HSS
cores. All of the following reasons contribute to this preference:
1. As illustrated by the prior analysis, differential buffers have superior

noise rejection qualities. Noise rejection is as much as 20 times better in
the lower frequency ranges than equivalent single-ended circuits.

2. Random noise levels generated by differential buffers are very minimal.
Common mode noise does not affect switching of the sink device, and
differential noise is very low.

3. Differential buffers are linear circuits with a relatively constant current
draw independent of switching state. Therefore, differential buffers do not
contribute significantly to chip-level noise. (This is unlike single-ended
clock buffers, where the combination of a high switching factor, the need
for crisp rise/fall transitions, and high loading of the output pin combine
to make these buffers significant noise aggressors on the chip.)

6.1.2 Reference Clock Sources
The input to the clock distribution network which drives the HSS core

reference clocks may either be driven directly from chip I/O pins, or may come
from an intermediate frequency (IF) phase locked loop (PLL). These two
options are shown in Fig. 6.3, and are discussed below.

266 High Speed Serdes Devices and Applications

6.1.2.1 Differential Receivers
The reference clock to the HSS core may be supplied directly from an off-

chip clock source. In such cases, a differential receiver is used to receive the
external differential signal as shown in Fig. 6.3, and to drive the on-chip clock
distribution network. In some cases, the differential receiver and clock
distribution network may be entirely contained in the HSS core with the clock
inputs of the core connecting directly to chip I/O pads. If there is more than one
HSS core on the chip which requires connection to the reference clock, then it
is generally preferable to provide one differential input to the chip, and to
distribute the clock to the various HSS cores on the chip. The on-chip clock
distribution network generally includes one or more differential clock buffers
to redrive the clock as needed to maintain signal integrity.

The disadvantage of directly using the external reference clock is that the
on-chip reference clock frequency must be the same as the frequency of the ref-
erence clock on the circuit board. The HSS EX10 core described in Chap.2 is
fairly typical of HSS cores designed for 10Gbps baud rates. The HSSREFDIV
and HSSDIVSEL[1:0] input pins on this core (see Table 2.1) control the divide
ratios for clock dividers in the PLL slice. The reference clock must therefore
be at one of the selectable ratios in the range of one-eighth to one-fortieth of
the baud rate. (The range for HSS cores designed for lower baud rates is typi-
cally one-fourth to one-twentieth of the baud rate.) Higher reference clock fre-
quencies which use lower PLL divider ratios result in better jitter performance
for the HSS transmitter, and better jitter tolerance performance for the HSS
receiver.

Although higher frequency reference clocks may be desirable from the
viewpoint of HSS jitter performance, distributing these higher frequencies on
the circuit board is not desirable from the standpoint of electromagnetic
Interface (EMI). Most systems are required to meet government standards for
EMI generation. (In the United States, these standards are set by the Federal
Communications Commission.) The EMI contribution for a signal is related to

Fig. 6.3 Reference clock network options

IF PLL Diff

CLKDIFF buffer

to HSS Core
HSSREFCLK input

Diff

CLKDIFF buffer

Diff. Receiver to HSS Core
HSSREFCLK input

Chip
Input
Pins

Chip
Input
Pins

(All signals shown are differential signals.)

Reference Clocks 267

its frequency and the length over which the signal is driven. Higher-frequency
clock signals distributed across the circuit board make a significant contribu-
tion to the EMI of the system, and therefore it is desirable to use lower frequen-
cies on the circuit board.
6.1.2.2 Intermediate Frequency (IF) PLL

An alternative configuration uses an on-chip, low-jitter PLL to step up the
frequency of the external reference clock source. As shown in Fig. 6.3, the chip
I/O pads connect directly to the IF PLL, and the output of this PLL drives the
on-chip clock distribution network. This allows the system to distribute a
lower-frequency reference clock on the circuit board, while still providing a
higher-frequency reference clock to the HSS cores. The overall jitter perfor-
mance of the clock distribution is improved using this topology, and overall
EMI is reduced.
6.1.2.3 Multiple Baud Rates

The same reference clock frequency and clock distribution network may
feed HSS cores that are operating at different baud rates. Figure 6.4 shows an
example where the same reference clock drives two HSS EX10 cores operating
at different baud rates. An external 106.25MHz reference clock is stepped up
to 531.25MHz by an IF PLL and then is distributed to two HSS EX10 cores.

The HSSDIVSEL inputs of the HSS EX10 cores are set differently. For the
first core:

HSSDIVSEL[1:0] = 01, and
HSSREFDIV=0.

This clock divider selection causes the HSS PLL slice to step up the
531.25MHz clock by a factor of 20, resulting in a 10.62Gbps baud rate.

Fig. 6.4 Example of single reference clock for multiple baud rates

IF PLL Diff

CLKDIFF buffer

CLKDIFF buffer

Chip
Input
Pins

HSSREFCLK[T,C]

HSSDIVSEL[1:0]
HSSREFDIV

Baud Rate
= 10.62 Gbps

0 1
0

HSSREFCLK[T,C]

HSSDIVSEL[1:0]
HSSREFDIV

Baud Rate
= 8.50 Gbps

0 0
0

HSS EX10

HSS EX10
PLL output
frequency =
531.25 MHz

Off-chip reference
clock frequency = 106.25 MHz

268 High Speed Serdes Devices and Applications

For the second core:
HSSDIVSEL[1:0] = 00, and
HSSREFDIV=0.

This selection causes the HSS PLL slice to step up the clock by a factor of
16, resulting in an 8.5Gbps baud rate.

Additional flexibility exists if multiple IF PLLs are used. The clock divid-
ers of the IF PLLs provide additional multiplier options, including fractional
multiplier ratios. A single external reference clock can feed one or more
IF PLLs configured for different multiplier ratios, and thereby be used to gen-
erate a wide variety of baud rates.

6.1.3 Special Timing Requirements
Some applications have requirements which drive the need for special con-

siderations when designing the reference clock distribution network. These
considerations are discussed below.
6.1.3.1 Transmit Data Skew

Skew was defined in Sect. 4.1.2.5 as the constant portion of the difference
in the arrival time between the data of any two in-band signals. This can be
visualized as jitter on one signal relative to the other signal (used as a reference
signal for this measurement) at DC (0 Hz). Skew results from differences in the
propagation delay of the reference clock to various HSS cores on the clock
distribution network, differences in clock routing to various transmitter or
receiver slices within the HSS core, and signal time-of-flight differences due
to routing of the signals through the package and circuit board.

Skew becomes significant to the reference clock distribution network in
cases where a multibit interface is implemented by more than one HSS core,
and a maximum skew is specified between various signals of the interface. In
such cases, the clock distribution network must be balanced to minimize clock
skew such that the clock arrives at all of the HSS cores at the same time.
Reference clock skew is one component contributing to skew between bits of
the transmit data; the chip designer must determine the skew budget allocation
for the various skew contributors such that the overall maximum skew specifi-
cation is met for the transmitted signals.

For applications where there is no skew specification, or where all bits of
the applicable interfaces are driven by the same HSS core using a common
PLL slice, there is no need to balance the reference clock distribution network.
6.1.3.2 Loop Timing

Loop timing was discussed generally in Sect. 4.1.3.1, and in Sect. 5.1.4 as
it relates to the SONET standard. Devices using loop timing are required to
retransmit data at the same frequency as received data. OIF SPI-S interfaces,
as described in Sect. 5.2.3, also have a requirement to transmit status channels
at the same frequency as received data.

Reference Clocks 269

To support these requirements, the HSS core must provide a differential
clock output which is recovered from the receive data and has acceptable jitter
characteristics to support its use as an input to a PLL. The RXxRCVC16[T,C]
outputs of the HSS EX10 core, as defined in Table 2.3, meet these requirements
and support the implementation of loop timing. An example of the resulting
HSS core interconnections is shown in Fig. 6.5. The reference clock for the
HSS core used to recover the receive clock is driven by an external clock
source through an IF PLL. The differential RXxRCVC16 clock output of this
core is connected to an additional IF PLL, and the output of this PLL drives the
HSSREFCLK input of the HSS cores used to transmit loop-timed data.

It is important to ensure that the HSS core’s RXxRCVC16 clock output is
not connected to the same core’s HSSREFCLK input. Such a feedback path
would not result in stable system operation.

Some applications may require a loop timing mode to be programmable. In
such cases, a differential multiplexor is added to drive the HSSREFCLK of the
transmitting HSS core, and selected between the recovered RXxRCVC16
clock output and the IF PLL clock source. This multiplexor may be
implemented either as separate logic outside of the HSS core (as would be the
case for the HSS EX10), or may be incorporated into the HSS core design.
6.1.3.3 Spread Spectrum Clocks

Another technique for EMI reduction makes use of spread spectrum clock
sources. Such clock sources produce a reference clock where the frequency is
deliberately swept over a frequency range of up to a few thousand parts-per-
million around the nominal frequency value. This reduces the amplitude of the
EMI energy peaks at the nominal frequency, and makes it easier for system
vendors to pass the corresponding EMI tests.

If spread spectrum clocking is being used, any PLLs driven by this clock
must support the use of a spread spectrum clock. PLLs which do not support
such clocks will loose lock as the frequency of the reference clock input

Fig. 6.5 Example of reference clock connections for loop timing

IF PLL Diff

CLKDIFF buffer

CLKDIFF buffer

Chip
Input
Pins HSSREFCLK[T,C]

RXxRCVC16[T,C]

Receive

HSSREFCLK[T,C] Transmit

HSS EX10

HSS EX10
IF PLL Diff

Data

Data

270 High Speed Serdes Devices and Applications

changes. The IF PLL and the PLL in the HSS core must both support the spread
spectrum range being generated by the external clock source.

Some protocol standards, such as Serial ATA (SATA), require use of
spread spectrum clocks [2].

6.1.4 Special Test Requirements
As a final consideration for reference clock distribution network topolo-

gies, note that the manufacturing test requirements for the HSS core may
depend on a PLL to provide reference clocks at the necessary frequencies to
conduct at-speed testing. The clock frequencies required to test the HSS core
may be too high to be supplied directly by inexpensive manufacturing test
equipment. Even if the application does not require an IF PLL, it may be
necessary to add a multiplexor to allow selection of a clock from a PLL for
executing the manufacturing test sequence.

An example of this is shown in Fig. 6.6. As shown, a test mode selection
signal allows the reference clock to be driven by a PLL for manufacturing test
purposes. For normal operation, the reference clock is driven by an off-chip
source through a differential receiver.

6.2 Clock Jitter
Jitter is discussed more generally as it relates to serial link operation in

Chap.8. This section discusses jitter specifically in the context of clock
signals.

Clock jitter is an important signal integrity concern which impacts the
performance of the serial link. The amount of jitter present on a serial link is
related to the achievable bit error rate (BER). If the jitter on a serial link is
excessive, data errors result and overall link performance is degraded, possibly
to unacceptable levels. Jitter generation is therefore a concern for PLLs in the
system, including both IF PLLs and high-frequency PLLs embedded in the
HSS core.

Fig. 6.6 Example of additional PLL for manufacturing test

PLL Diff

Diff

CLKDIFF buffer

Differential
to HSS Core
HSSREFCLK

Clock

Chip
Input
Pins

Source

Test Mode

Receiver input

Reference Clocks 271

6.2.1 Jitter Definitions
The topic of jitter was first introduced in Sect. 1.4.3 of this text, and is

defined more formally in Sect. 8.2 as the deviation in the arrival time of a
signal from its ideal or expected arrival time. Figure 6.7 illustrates timing
variation of the edges of a clock signal when compared to an ideal clock with
no jitter. The difference between a clock edge tn and the corresponding edge of
an ideal clock is the jitter associated with the clock edge. This jitter can be
quantified in terms of phase jitter, period jitter, or cycle-to-cycle jitter.
6.2.1.1 Phase Jitter

An ideal clock signal as shown in Fig. 6.7 has no jitter, and therefore every
clock cycle has the same clock period. Using the notation T to designate this
period, and assuming that edge T0 occurred at time 0, then Tn = n T, and the
difference between any two consecutive edges Tn − Tn-1 is Tcyc. The variation
of the actual clock edge from the ideal clock edge is the phase jitter of the clock
edge and is expressed mathematically as:

Jphase (n) = tn − nTcyc (6.1)

where n designates a specific clock edge, and Jphase(n) is the absolute jitter in
units of time for clock edge n.

Note that the value of phase jitter is absolute and accumulates over time.
This accumulation does not occur without bound. Assume the range of phase
jitter values for Jphase(n) is defined as + Jphase. Phase jitter is defined relative
to the ideal clock which has no jitter and therefore does not accumulate any
deviation. Therefore, on any clock edge n, the maximum deviation from the
ideal clock edge is still within the range + Jphase. Jitter on prior clock edges
have a combination of positive and negative jitter values which accumulate
such that the maximum deviation remains within this range.

This can be further visualized by examining Fig. 6.7. The clock edge at tn
deviates from the ideal clock by +jitter, resulting in a clock cycle period of:

tn − tn-1 = Tcyc + jitter

Fig. 6.7 Jitter on a clock signal

Tn+1Tn

tn+1 = Tn+1 - jittertn = Tn + jitter

Tn-1

tn-1 = Tn-1 + 0

ideal clock

Clock with
Jitter

jitter jitter

272 High Speed Serdes Devices and Applications

Assume that the value of jitter associated with this deviation is +Jphase.
Given the deviation associated with this clock cycle, the next clock cycle
cannot have the same period because this would cause the next edge to deviate
by more than +Jphase. Given that:

tn - tn-1 = Tcyc + Jphase
the next clock cycle is limited such that:

Tcyc - 2 Jphase < tn+1 - tn < Tcyc
Prior cycle times continue to accumulate such that phase jitter remains

within the proscribed bounds. It should be clear that restricting the accumula-
tion of phase jitter is necessary if the clock is to have the specified frequency
(and clock period). If phase jitter were allowed to accumulate without bound,
then the average cycle time of the clock would differ from Tcyc without bound.
If this occurs, then by definition the clock frequency is not 1 / Tcyc .
6.2.1.2 Period Jitter

Period jitter is the deviation of the period of a given clock cycle from that
of an ideal clock cycle. A clock cycle is defined by two consecutive clock
edges: tn and tn-1 . The period of the corresponding clock cycle is therefore:
tn - tn-1 , and the period jitter is defined mathematically as:

Jperiod(n) = (tn − tn-1) − Tcyc (6.2)
While phase jitter is an absolute value that accumulated mathematically

over time, period jitter is a relative value determined by the jitter of two con-
secutive clock edges. Period jitter may also be calculated by the equation:

Jperiod(n) = Jphase(n) − Jphase(n − 1) (6.3)
Assume the range of phase jitter values for Jphase(n) is defined as + Jphase,

where Jphase is the maximum phase jitter for a given clock. The maximum
period jitter Jperiod is bounded as follows:

Jperiod = 2 x Jphase (6.4)
where the range of jitter values for Jperiod(n) is defined as + Jperiod. This
maximum period jitter results when the phase jitter of one clock edge is +Jphase
followed by the next clock edge having a phase jitter of − Jphase (or vice versa).
This corresponds to a frequency of jitter variation (fjitter) such that:

fjitter = 0.5 fclock = 0.5 / Tcyc
This is improbable in a real system. More realistically, phase jitter varies

based on a periodic jitter function with frequency components significantly
less than the clock frequency.

Assume a clock signal for which the phase jitter variation is represented by
a sinusoidal function such that:

Jphase(n) = A sin (2π f jitter tn) (6.5)
where A is the amplitude of the phase jitter.

Reference Clocks 273

Figure 6.8 compares the phase jitter to the period jitter for the case of:
fjitter = 0.1 fclock = 0.1 / Tcyc

As is shown, the amplitude of the period jitter is less than that of the phase
jitter, and can be shown to have a peak amplitude of:

For the case of fjitter = 0.5 fclock, (6.6) reduces to (6.4.)
6.2.1.3 Cycle-to-Cycle Jitter

Cycle-to-cycle jitter is the deviation of the period of a given clock cycle
from that of the prior clock cycle as defined by:

Jcycle(n) = Jperiod(n) − Jperiod(n − 1) (6.7)
Clock cycles are defined by consecutive clock edges: tn and tn-1 , and tn-1

and tn-2. The period deviation of these two consecutive clock cycles is
(tn − tn−1) − (t n −1 − tn−2)

and the cycle-to-cycle jitter may also be calculated using the equation:
Jcycle(n) = (tn − 2tn − 1 + tn − 2) (6.8)

Assuming the range of period jitter values for phase jitter and period jitter
are designated using the notation in (6.4), the maximum cycle-to-cycle jitter
Jcycle is therefore bounded as follows:

Jcycle = 2 x Jperiod = 4 x Jphase (6.9)
where the range of jitter values for Jcycle(n) is defined as + Jcycle. Maximum
period jitter results when the phase jitter of one clock edge is +Jphase, followed
by the next clock edge having a phase jitter of − Jphase , followed by the next

Fig. 6.8 Comparison of clock phase, period, and cycle-to-cycle jitter

T / Tj = 10

time

A
m

pl
itu

de

Jphase(n) Jperiod(n) Jcycle(n)

Jperiod 2 πfjitterTcyc()sin Jphase××= (6.6)

274 High Speed Serdes Devices and Applications

clock edge having a phase jitter of +Jphase (or vice versa). As was the case for
(6.4), this requires an improbable frequency of jitter variation. Assuming
sinusoidal variation of phase jitter as was defined in (6.5), the corresponding
cycle-to-cycle jitter can be shown to have a peak amplitude of:

Figure 6.8 compares cycle-to-cycle jitter to the phase and period jitter of
this clock. For this example, the amplitude of the cycle-to-cycle jitter is further
reduced from that of the period jitter. Equation (6.10) reduces to (6.9) for:

fjitter = 0.5 fclock

6.2.1.4 Phase Noise
The phase jitter described by (6.1) in the time domain is the equivalent of phase
noise in the frequency domain. Consider the time domain equation for a
sinusoidal signal:

v(t) = Vmaxsin(ω t + θ) (6.11)
where v(t) is the instantaneous time domain voltage of the signal, Vmax is the
amplitude of the signal, * is the frequency (in rad s-1), and � is the initial phase
at time zero. For a nonideal clock source, the � value includes a noise
component which varies according to a probability distribution. This noise on
the phase component tends to shift the sinusoidal waveform either left or right.
The waveform in Fig. 6.9 illustrates this variation, comparing a sinusoidal
signal with phase noise to an ideal signal. It should be obvious from the figure
that the phase noise causes phase jitter in the time domain.

Fig. 6.9 Phase noise on a sinusoidal signal

Jperiod 4 πfjitterTcyc()sin[]2 Jphase××= (6.10)

Phase Variation

time

A
m

pl
itu

de

Ideal Signal Signal with Phase Noise

Reference Clocks 275

In the frequency domain, phase noise appears as modulation of the carrier
frequency. A typical power spectrum for a sinusoidal oscillator is illustrated in
Fig. 6.10. While an ideal oscillator would have a single spectral line at the
carrier frequency f0, real devices have phase noise which distributes this power
to adjacent frequencies and results in sidebands.

Figure 6.10 illustrates one sideband at frequency f0 + fm . The phase noise at a
given sideband offset is defined as the ratio of the power in a 1-Hz bandwidth
centered at f0 + fm to the total power of the carrier. The phase noise is generally
specified in units of dBcHz-1, where dBc is the ratio in dB relative to the carrier.

The noise power in the sidebands can be converted to random jitter in the
time domain. The phase jitter Jphase(n) in (6.1) was defined as the difference
between the time of the zero crossing of the actual signal to an ideal reference
signal with period Tcyc . Jphase(n) for signal edge n can be expressed in terms
of the phase noise as:

where �n is the phase noise, in radians, for the signal at edge n. The RMS value
of the phase jitter may therefore be derived from the phase noise �(n) by
summing over the phase noise over N edges and allowing N to approach ∞ :

Fig. 6.10 Phase noise in the frequency domain

Oscillator Power Spectrum

Frequency

Po
w

er

f0 f0 + fm

Jphase n() θn= 2π
Tcyc

 ⋅ (6.12)

Jpheas rms()
2 2π

Tcyc

2 1
N
---- θn

2

j 1=

N

∑N ∞→
lim (6.13)

− =

276 High Speed Serdes Devices and Applications

The summation in (6.13) may be approximated by [5]:

where the limit represents the average power of �n . Parceval’s theorem may
be used to equate this integral to the area under the curve for the power
spectrum in Fig. 6.10:

where Sn(f) denotes the noise power in the sideband centered at f .
The above description of phase noise for sinusoidal signals is sufficient to

illustrate the relationship between phase noise and phase jitter. Digital clock
signals are square waves, not sinusoidal waveforms, and may contain both RJ
and DJ phase components. A more generalized and in-depth treatment of this
subject is found in [4] and [5].

6.2.2 Jitter Effects
Clock jitter on the high-speed clocks within the HSS core degrades

performance of the serial link, and additionally affects timing analysis of logic
connected to the HSS core.
6.2.2.1 Serial Link Performance

Any jitter on the high-speed clock used to clock flip-flops in the transmitter
driver circuit results in jitter on the transmitter serial data output. It is necessary
to minimize clock jitter to minimize jitter on the serial data.

Jitter on the high-speed clock used for the clock and data recovery (CDR)
circuit in the receiver degrades link performance. The function of the CDR
circuit is to choose a sample point for the received serial data signal which is
approximately in the center of the data eye. Jitter on the high-speed clock
reference creates uncertainty in the sample point which reduces the jitter
tolerance of the receiver, and therefore increases the bit error rate of the link.
Obviously, it is desirable to minimize clock jitter to improve jitter tolerance
and reduce bit errors.
6.2.2.2 Digital Logic Timing

The high-speed clocks used by the transmitter and receiver slices
(TXxDCLK and RXxDCLK on the HSS EX10 core) are divided to produce
parallel data clock outputs used by logic driving or latching data to/from the
HSS core.

Jitter on the high-speed clocks accumulate and result in jitter on the parallel
data clocks. Although the parallel data clocks accumulate jitter over multiple
cycles of the high-speed clock, this jitter must still accumulate per the
description in Sect. 6.2.1.1. Jitter on the parallel data clocks is therefore

2π
Tcyc

 2 1

T
--- θn t() td

T 2⁄

∫T ∞→
lim(Jphase − rms)2 =

−T/2

2π
Tcyc

 2

Sn f() fd
∞

∞

∫=(Jphase − rms)2

−

(6.14)

(6.15)

Reference Clocks 277

consistent with the Jphase, Jperiod, and Jcycle jitter ranges of the corresponding
high-speed clocks.

Jitter on parallel data clocks must be taken into account when analyzing
timing of digital logic which uses these clocks. The minimum clock period is

Tmin = Tcyc − Jperiod (6.16)
Any given cycle of the parallel data clock may have a period of Tmin, and

propagation delays associated with the digital logic must allow proper
operation given this cycle time. Accounting for clock jitter in timing analysis
is described further in Sect. 10.3.1.

6.2.3 PLL Jitter
As noted earlier in this chapter, IF PLLs are widely used to generate

reference clock inputs to HSS cores. In addition, most HSS devices contain
PLL slices used to step up the reference clock frequency to a baud rate (or half
baud rate) clock.

A block diagram of a PLL is shown in Fig. 6.11(a). The PLL consists of a
phase detector, a low-pass filter (LPF), a voltage controlled oscillator (VCO),
and a divider (or multiplier) circuit used to generate the feedback clock. The
divider ratio determines the ratio between the frequency of the clock output
and the frequency of the reference clock input.

Phase jitter is a key parameter for evaluating the performance of the PLL
circuit. Phase jitter may result from the VCO operation. Additionally, phase
jitter may occur on the clock output as the result of jitter on the reference clock
input which is within the tracking bandwidth of the PLL.

Fig. 6.11 PLL block diagram and frequency domain model

Reference
Clock Input Phase

Detector
Low-Pass

Filter

Voltage
Controlled
Oscillator

Clock
Output

1/N
Divider

(a) PLL Block Diagram

(b) Frequency Domain Model

�i �o�e
+Reference

Clock Input Kd
Clock
OutputF(s) K0/s

+
_

278 High Speed Serdes Devices and Applications

6.2.3.1 Jitter Transfer Function
A PLL frequency domain model is shown in Fig. 6.11(b) and corresponds

to the block diagram in Fig. 6.8(a). This model is specified in the s-domain
using the Laplace transforms of the equivalent time domain functions. The
low- pass filter has been represented by an unspecified function F(s) in this
model. The corresponding PLL system transfer function is

The derivation of the above transfer function may be found in [4], along
with analysis of the magnitude and phase characteristics for various F(s)
functions.

The discussion in this text is limited to some key metrics used to
evaluate the PLL which are based on the plot of the magnitude of (6.17).
The general form of this plot is shown in Fig. 6.12, and is primarily

characteristics of this curve are of significance: the amplitude of the jitter
peaking, and the frequency at which the curve crosses the -3-dB
magnitude, called the jitter transfer bandwidth (fbw). These characteristics
are discussed further in the next few sections.
6.2.3.2 Jitter Tolerance Mask

HSS cores frequently use a PLL circuit as part of the CDR circuit in the
receiver. (The HSS EX10 core uses a phase rotator circuit instead of a PLL.)
In this application, the PLL locks to the frequency of the serial data and
generates the sampling clock for the receiver.

Fig. 6.12 PLL jitter transfer function

H0
θ0 s()

θi s()

KdK0F s()

s KdK0F s()+
----------------------------------= =

Frequency

M
ag

ni
tu

de
 (d

B
)

0
-3

fbw

Jitter
Peaking

(6.17)

determined by the low-pass filter (LPF) transfer function F(s). Two

Reference Clocks 279

Fig. 6.13 Jitter tolerance mask example
An example of a jitter tolerance mask is shown in Fig. 6.13. Jitter tolerance

testing using this mask is discussed in Sect. 7.5.2.1, and the significance of
sinusoidal jitter to jitter tolerance testing is generally discussed in Sect. 8.2.6.
The current discussion concentrates on the correspondence between characteris-
tics of the curve in Fig. 6.13 and the LPF function in Fig. 6.12.

The jitter tolerance mask in Fig. 6.13 has a corner frequency at
“baud/1667”; above this frequency the jitter is filtered by the CDR circuit, and
below this frequency the jitter is tracked by the CDR. This corner frequency
corresponds to the fbw corner frequency of the LPF in Fig. 6.12.

Below the corner frequency in Fig. 6.13, the slope of the curve is specified
as “20db per decade.” This corresponds to the slope of the curve in Fig. 6.12
above the fbw corner frequency. The slope of this curve is determined by the
order of the LPF implementation. A second-order filter is commonly used to
produce a slope of 20dB per decade.

Jitter peaking is an important design parameter, but is not specifically
addressed by Fig. 6.13. Excessive jitter peaking causes jitter amplification,
causing overcorrection of the CDR sampling point and increasing bit errors
in the system. However, overdamping to reduce or eliminate jitter peaking
results in a longer time required for the PLL to lock (i.e., data acquisition
time).
6.2.3.3 Jitter Transparent Applications

Some system applications contain elements which use loop timing to
retransmit data without any significant filtering of jitter on the input. Consider
the block diagram shown in Fig. 6.14. The CEI-11G-SR variant of the OIF CEI
standard[1] is used in the reference model shown in Fig. 5.7. The compliance
points in Fig. 6.14 are consistent with the reference model in Fig. 5.7.

The egress data conditioner and the ingress data conditioner devices in this
block diagram are typically optical transmitter and receiver devices which
perform an electrical-to-optical and optical-to-electrical conversion, and
retransmit data using a loop timing architecture. If the sample clock of the CDR

© 2008 Optical Internetworking Forum. Used with permission.

Total Wander Amplitude

High
Frequency
Amplitude

20 dB/dec

baud / 1667 20 MHz

SJ

280 High Speed Serdes Devices and Applications

is used directly to retransmit data without using an additional PLL for jitter
clean-up (as suggested by the loop timing description in Sect. 6.1.3.2), then any
jitter on the input to the conditioner device is transferred to the output. This is
called a jitter transparent application.

The jitter in jitter transparent applications accumulates as the data passes
through the devices between the TE and RI compliance points. Interface
standards for jitter transparent applications must allocate the jitter that may be
contributed by each element, and must specify characteristics of the jitter
transfer function for jitter transparent conditioner elements.

Although the data conditioner elements in Fig. 6.14 do not filter the
recovered clock, there is still an inherent bandwidth associated with the CDR
in the receiver. This bandwidth must comply with appropriate standards to
ensure interoperability. Also, jitter peaking is specified to ensure stability of
the overall system.

An example of these specifications is shown in Table 6.1. This table applies
to the ingress signal conditioner for telecom applications which must comply
with [3], and is driving a CEI-11G-SR link as specified in [1]. Other tables
in [1] specify requirements for the egress signal conditioner for telecom appli-
cations, and specify requirements for signal conditioners that must comply
with various datacom applications. The jitter peaking requirements in this table
are intended to specify both the maximum amplitude of the jitter peaking, and
the minimum frequency at which the jitter peaking can start to increase the
magnitude of the transfer function.

Table 6.1 Telecom signal conditioner, ingress direction

Characteristic Symbol Condition Min. Typ. Max. Unit

Jitter transfer bandwidth BW Data,a 8 MHz

Jitter peaking Frequency <120kHz 0.03 dB

Frequency >120kHz 1 dB
aPRBS-31, OC-192/SDH-64 sinusoidal jitter tolerance mask
©2008 Optical internetworking forum. All rights reserved. Used under permission

Fig. 6.14 Block diagram of a jitter transparent application

Transmit
Chip

Egress Data
Conditioner

CEI-11G-SR
Electrical Link

TE RES

Receiver
Chip

Ingress Data
Conditioner

CEI-11G-SR
Electrical Link

RI TI

Optical
Link

Reference Clocks 281

6.2.3.4 Intermediate Frequency PLLs
The jitter trade-offs associated with an IF PLL are different from PLLs used

as part of CDR circuits. In the latter case, the PLL must be designed to respond
relatively quickly to changes in the frequency and phase of the serial data input.
Conversely, IF PLLs typically have a continuous clock input at a stable fre-
quency. Therefore, IF PLLs are generally designed with a much lower fbw
corner. This has the effect of filtering any jitter which does occur on the
reference clock above this corner frequency, and thereby results in a stable,
low-jitter clock source.

Spice simulations are used to determine various analog characteristics of
the clock signal as it arrives at the HSS cores.

6.3 Clock Floorplanning
The chip floorplan must consider the relative placement of IF PLL and HSS

devices on the chip. Once this is determined, the physical design of the clock
tree must be determined, and the clock must generally be prewired. A poorly
designed clock tree will introduce signal integrity impairments. Likewise,
clock wiring with excessive bends and vias will also impair signal integrity.

6.3.1 Clock Tree Architecture
The relative placement of IF PLL and HSS devices on the chip determines

the distance over which the clock must be distributed. Differential clock
buffers are typically used to redrive clock signals between the clock source and
the HSS cores. However, there are practical limits on the capacitive load which
can be driven by these buffers. Excessive load degrades signal amplitude and
slew rate. In addition, driving the clock through an excessive number of stages
results in excessive duty cycle distortion as will be described in Sect. 6.4.2. As
the clock frequency increases, the impact of these factors on signal integrity of
the clock increases. Chip floorplanning must therefore determine:
• The placement of the IF PLL and HSS devices on the chip
• The number of buffer levels in the clock tree that are needed to drive the

clock from the IF PLL to the HSS cores
• Fanout of each clock buffer stage

Table 6.2 Example of clock buffer max. load/levels vs. clock frequency

Frequency
(MHz)

Max load
(fF) Max. levels Frequency

(MHz)
Max load

(fF) Max. levels

751–800 1080 10 451–500 1450 16
701–750 1130 12 401–450 1540 16
651–700 1180 14 351–400 1650 16
601–650 1230 14 301–350 1800 16
551–600 1300 16 0–300 1950 16
501–550 1370 16

282 High Speed Serdes Devices and Applications

The silicon vendor may provide characterization information regarding the
drive capabilities of the clock buffer which may be used as a first-order
approximation in designing the clock tree. Table 6.2 specifies the maximum
load and maximum number of stages for an example of a differential clock
buffer. This specification is provided as a function of the clock frequency.

The maximum load specification limits the length of the wire which may
be driven by the clock buffer. For example, using the specification in Table 6.2,
assume a clock buffer output is driving a wire which is connected to a single
clock input. Furthermore, assume:
• The clock frequency is 375MHz
• The capacitive load due to the clock buffer output pin is 300fF
• The capacitive load due to the clock buffer input pin is 300fF
• The capacitive load of a wire is 292 fFmm1.
Given this clock frequency, the maximum load that can be driven by the clock
output is 1,650 fF. Since the output pin of the driving buffer contributes 300 fF,
and the input pin of the downstream buffer contributes another 300 fF, only
1,050 fF of this can be due to the wire. The maximum length of this wire is
therefore: 1,050fF/(292fFmm–1) = 3.6mm.

The above example assumed a clock buffer driving a fanout of one. If the
clock source is supplying a clock to more than one HSS core, the clock tree
must often be constructed such that the clock buffer drives more than one
buffer (or HSS) input. As the fanout is increased, the length of the wire from
the buffer output to any of the loads is reduced. Consider that the above
example is modified such that the clock buffer is driving the clock inputs of
two buffers. Given the buffer can drive 1650fF, after allowing for load
associated with the two inputs, only 750fF of load can be due to the wire. This
corresponds to a wire length of: 750fF / (292fFmm–1) = 2.57mm.

Note that this wire length indicates the total wire length that can be driven.
Assume that the clock signal wiring from the above example is split at the
output of the clock buffer, with one wire going to one buffer input in one
direction, and another wire going to another buffer input in the opposite
direction. The sum of these wire lengths cannot exceed 2.57mm.

As can be surmised from this example, the number of clock buffers in the
clock tree and the placement of these buffers must be carefully planned to
ensure the clock can be driven over the required distance to all of the HSS
cores. Once elements of the clock tree have been placed on the chip and wired,
signal integrity is analyzed for the actual layout as described in Sect. 6.4.

6.3.2 Clock Tree Wiring
Once PLLs, HSS cores, and clock buffers have been placed on the physical

layout of the chip, the clock network is prewired. The true and complement
legs of the signal must always be routed parallel to each other, otherwise the
common mode noise rejection property of differential signals is negated. Also,
any significant mismatch in length or load results in substantial DCD.

Reference Clocks 283

True and complement signal wiring is illustrated in Fig. 6.15. In addition to
the clock signal wires, shield wires connected to an AC ground are routed in
adjacent tracks. Wire widths and spacing is carefully selected to minimize
signal impairments and control the transmission line impedance.

6.4 Signal Integrity of the Clock Network
The run length of clock traces in the reference clock distribution network,

the number of clock buffers in the network, and the number of HSS cores
which can be driven from a single IF PLL source impact the signal integrity of
the reference clock. Spice, an industry standard circuit simulation tool, is
typically used to check the analog characteristics of the differential clock tree
and the propagation of the clock signal through the differential clock buffers
and wire segments.

6.4.1 Analog Signal Levels and Slew Rates
Each leg of a differential signal can be viewed individually as a single-

ended signal. The rate of change of voltage of this signal is related to the
current that can be sourced by the clock buffer, and the capacitance being
driven. This relationship is defined by:

where dV is the change in voltage, I is the current sourced by the clock driver,
C is the lump sum capacitance of the wires and input circuits connected to the
driver, and dt is the change in time.

The value of I is primarily determined by the size of the transistors used in
the clock driver, and is a fixed value for a given clock buffer. According to
(6.18), as C increases, the slew rate of the signal increases. This in turn can
limit the differential amplitude (Vdiff) of the signal as shown in Fig. 6.16. The
signals of the “1× Clock Waveform” in this figure has sufficient time to
transition to the maximum signal amplitude. However, at four times the
frequency (“4× Clock Waveform”), the clock signals only have time to
transition across a fraction of the dynamic range. Increasing C (thus increasing
the slew rate) for a fixed frequency has the same affect. In addition to reducing
the differential amplitude, large values of C can also impact the Vhi and Vlo rail
voltages of the signal, and can shift the common mode voltage (Vcm).

Fig. 6.15 Parallel wiring of differential clocks

Shield

True

Complement

Shield

Ssh

Ssh

Stc

Wsh

Wtc

Wtc

Wsh

dV I
C
----dt= (6.18)

284 High Speed Serdes Devices and Applications

Clock signals must meet specifications for analog signal levels and slew
rates at the input of each clock buffer in the clock distribution network, as well
as at the reference clock inputs to the HSS cores. Rail voltages beyond their
maximum/minimum limits and excessive Vdiff levels can cause distortion of
the signal. Insufficient Vdiff levels, shifts in Vcm, and excessive slew rates can
introduce duty cycle distortion and random jitter. The following subsections
provide more detailed definitions for each of these signal parameters, and
provide examples of measurements from Spice simulations.
6.4.1.1 Input Signal Levels

Each leg of a differential signal swings between a high and a low rail
voltage (Vhi and Vlo respectively). For the first of the measured differential
signals shown in Fig. 6.17, these levels correspond to:

Vhi = approximately 1,300mV
Vlo = approximately 620mV

resulting in a dynamic range of 679mV. The second signal shown in this figure
has a dynamic range of 667mV.
6.4.1.2 Differential Amplitude

The differential amplitude (Vdiff) is defined as:
 Vdiff = 2 (Vhi − Vlo)

where Vhi and Vlo are high and low rail voltages of the signal, respectively, as
defined previously. This amplitude is generally expressed in units of millivolts
peak-to-peak differential (mVppd), or alternatively in volts peak-to-peak
differential (Vppd). For the differential signals in Fig. 6.17, Vdiff equals 1,358,
and 1,334 mVppd, respectively.

Differential receivers require Vdiff be constrained within specified limits
order to ensure circuits have sufficient input signal amplitude to provide an
adequate signal to noise ratio, and to ensure the receiver input is not overdriven
(which may result in nonlinear distortion). Vdiff must be checked to ensure it is
within specified ranges at the input to every circuit in the clock distribution
network, including the inputs of both clock buffers and HSS cores.

Fig. 6.16 Effect of slew rate on maximum amplitude

1x Clock
Waveform

4x Clock
Waveform

True

Complement

True

Complement

(6.19)

Reference Clocks 285

Fig. 6.17 Example of input level measurements

6.4.1.3 Common Mode Voltage
Common mode voltage (Vcm) is the average voltage on any one leg of a

differential signal pair. By definition:
 Vcm = (Vhi + Vlo) / 2

where Vhi and Vlo are high and low rail voltages of the signal, respectively, as
defined previously.

Since the true and complement legs of the signal are always driven to
opposite rails, Vcm may also be defined as the average voltage of the two legs
of the differential signal. Figure 6.18 shows an example of a differential signal
and its corresponding common mode voltage. In this example, the common
mode voltage is 952.92 mV.

Differential receivers require Vcm be constrained within specified limits to
ensure circuits are within their linear operating ranges. A Vcm value outside of
the specified limits may cause transistors to saturate and reduce the dynamic
range of the signal swing. This would reduce the resulting differential

(6.20)

286 High Speed Serdes Devices and Applications

amplitude of the signal output. Vcm must be checked to ensure it is within
specified ranges at the input to every circuit in the reference clock distribution
network, including the inputs of both clock buffers and HSS cores.
6.4.1.4 Signal Rise/Fall Times

Rise time (trise) is the time required for a signal to transition from a
specified low value to a specified high value. Fall time (tfall) is the time
required for a signal to transition from a specified high value to a specified low
value. The term slew rate is also used to refer to the rise and fall times of
signals.

Rise and fall times are generally measured from some percentage of the low
value to some percentage of the high value (or vice versa). For differential
signal shown in Fig. 6.19, the rise time transition is 0.12ns as measured from
the 10% to 90% points of the signal swing. The corresponding fall time is also
0.12ns.

Slow slew rates create a larger window of uncertainty as to exactly when
the receiver circuit detects the signal crossover and switches states. This
degrades the jitter performance of the circuit. On the other hand, excessively
fast slew rates generate noise in surrounding circuits. Limits may be specified
at various circuit inputs for either maximum or minimum slew rates. Slew rates
must be checked to ensure they are within specified ranges at the input to every
circuit in the reference clock distribution network, including the inputs of both
clock buffers and of HSS cores.

6.4.2 Duty Cycle Distortion
The duty cycle of a signal is defined as:

 Duty cycle = Tpwh / Tcyc
where Tpwh is the pulse width high duration, and Tcyc is the clock cycle time or
clock period. Duty cycle is generally expressed as a fraction or percentage. A
perfect square wave has a duty cycle of 50%.

Duty cycle distortion (DCD) is a type of jitter which may result from either
unequal rise/fall times of signals, and/or from a DC offset between the two legs
of the differential signal pair. This type of jitter is described further Sect. 8.2.2.1.
DCD can accumulate in the clock distribution network as illustrated in
Fig. 6.20. This figure shows an IF PLL driving a clock distribution network
consisting of two stages of clock buffers.

For the clock buffers in this example:
trise > tfall

and the buffer output begins to transition when the input crosses the signal
midpoint.

Reference Clocks 287

Fig. 6.18 Example of common mode voltage measurements

Fig. 6.19 Example of rise and fall time measurements

288 High Speed Serdes Devices and Applications

At point (1), the output of the IF PLL has a 50% duty cycle. However, the
slower trise transition of the first clock buffer reduces the duty cycle of the
output at point (2). The slower trise transition at point (2) delays the start of the
transition of the output of the second clock buffer at point (3), and the duty
cycle at point (3) is thus reduced over that of point (2). If additional stages are
added to this clock distribution network, the duty cycle of the clock would
continue to be reduced with each successive stage. At some point the signal
output of the clock buffer would not have time to swing across the full dynamic
range, and may not switch at all.

The clock signal must meet specifications for duty cycle at the input to each
clock buffer in the clock distribution network, as well as the reference clock
inputs to the HSS cores driven by the network.

6.4.3 Differential Clock Analysis Methodology
The clock analysis methodology must ensure the reference clock distribu-

tion network provides clock signals to all of the HSS cores which meet the
required analog characteristics necessary to guarantee proper low-jitter
operation of the cores.

The basic flowchart for performing analysis of the clock network is shown
in Fig. 6.21. The input to this flow is the chip layout, including a fully wired
reference clock distribution network. First, circuit parasitics are extracted from
the chip design for both best case and worst case process conditions using the
appropriate parasitic extraction software (assumed to be IBM ChipEdit in the
figure). These clock net parasitic values are then used to build Spice decks and
used to run Spice simulations. Results must be verified to ensure conformance
to HSS core requirements. If analog signal characteristics are not within
specified ranges, the clock distribution network design must be modified and
the analysis repeated.

This flow is discussed in more detail in the following sections. Examples of
Spice decks and report formats are drawn from the software tools used to
analyze differential clock trees for IBM ASIC chips.

Fig. 6.20 Cumulative effect of DCD in a clock distribution network

IF PLL
Chip
Input
Pins

HSSREFCLK[T,C] Tx
HSS EX101 2 3

1
2
3

Data

Reference Clocks 289

Fig. 6.21 Analysis flow chart
6.4.3.1 Extraction of Clock Tree Parasitic Values

Figure 6.22 shows a typical clock tree routed from the IF PLL to an HSS
core. Parasitics for this clock tree are extracted from the chip design using IBM
ChipEdit or other equivalent parasitic extraction software. When the extraction
is completed there are two separate extracted netlists for each differential clock
tree in the design: one for best case and one for worst case conditions.

The next step is to create appropriate differentially wired Spice decks for
each differential clock tree in the design based on the parasitic information
extracted from the composite differential clock nets. These decks are then
simulated using Spice.
6.4.3.2 Spice Deck Creation and Simulation

Spice decks used to simulate the differential clock tree must include the
following elements: (1) Instantiations of models for all clock buffers in the
clock distribution network; (2) Modeling of the parasitics for clock tree nets for
both the true and complement legs of the differential signals; (3) Instantiations
of models for all of the HSS cores connected to the clock tree; (4) Connections
for any unused inputs of cells in the clock tree (for example, unused inputs to
differential multiplexors that are included in the clock tree); and (5) Spice
measurement statements that measure all of the signal characteristics of
interest at each cell in the differential clock tree.

 Prepare WC
HSPICE decks

 Prepare BC
HSPICE decks

Best Case Clock
 Net Extraction

Worst Case Clock
 Net Extraction

Extract Parasitics with
Full License ChipEdit

Meet all specs
for both BC
and WC?

Redesign
w/Fully Wired
Diff Clk tree

Submit design

Yes

No

BC .include files &
 submit decks

 Chip Design w/Fully
 Wired Diff Clk Tree

WC .include files &
 submit decks

 HSPICE
Simulator

290 High Speed Serdes Devices and Applications

Fig. 6.22 Example of a typical clock tree route
For designers of IBM ASIC chips, IBM provides utilities which assist in the

creation of Spice decks for analyzing differential clock trees. These utilities
create individual Spice files that contain the above elements. Spice “submit deck”
template files are also supplied which can be used to submit the required
simulations after customization of the following parameters:
Clock Frequency: The reference clock frequency must be customized for the
particular application that is being analyzed.
Temperature: The minimum and maximum junction temperature (Tj) limits
specified for the chip must be customized for the particular chip containing the
clock tree being analyzed. Note that these values should match the temperature
conditions at which the netlist extraction was performed.
VDD: The minimum and maximum power supply voltage (Vdd) limits
specified for the chip must be customized for the particular chip containing the
clock tree being analyzed. Note that these values should match the power
supply voltages at which the netlist extraction was performed.

An example of a Spice submit deck template file for an IBM ASIC chip is
shown in Fig. 6.23.

Once the decks have been modified with application-specific parameters,
they are simulated using Spice. Simulations need to be run for both best case
and worst case environmental conditions for every clock tree. The next step is
to analyze the simulation output to see whether the clock signals have met the
required analog characteristics to guarantee the low-jitter operation.

Reference Clocks 291

Fig. 6.23 Spice submit deck example

* HSS DIFFCLK test - Best Case Simulation
* Filename: skel_bc.sp
* .default is to probe every node, might want to change that.
*
* ==> IBM ASIC process settings <==
.param sigma = xyz $ (bc nc wc) => (bc_sigma nc_sigma wc_sigma)
.temp = 0 $ (bc nc wc) => (bc_temp nc_temp wc_temp)
.param vdd = 1.7 $ (bc nc wc) => (bc_vdd nc_vdd wc_vdd)
.param vss = 0
.param vavdd2 = 2.5
.param vswing = 0.25

*.options brief
.options search=’./models’
.option parhier=local

*
*.options acout=0 captab
.options post

.inc ‘blk_netlist.inc’ $include extracted listing of path blocks

.inc ‘blk_netlist_comp.inc’ $include extracted listing of complement path parasitics

.inc ‘blk_netlist_true.inc’ $include extracted listing of true path parasitics

.inc ‘blk_netlist_load.inc’ $include file with pseudo-HSS load models

.inc ‘blk_netlist_meas.inc’ $include file with all pre-built .measure statements

.global vdd vss gnd lt mc
vdd vdd 0 vdd
vss vss 0 vss
vlt lt 0 vss
ven en 0 vdd
vmc mc 0 vss
vavdd2 avdd2 0 vavdd2

.param tper=1.11ns $ 900 MHz default (1/1.11ns)

.param trise=100ps tfall=trise tup=’(tper-trise-tfall)/2’

.param tstop=100ns linedel=’tper/2’ t2=’2*tper’

vdrv_t pad vss pulse(‘(vavdd2/2)+vswing’ ‘(vavdd2/2)-vswing’ 1n trise tfall tup tper)
vdrv_c padn vss pulse(‘(vavdd2/2)-vswing’ ‘(vavdd2/2)+vswing’ 1n trise tfall tup tper)

.TRAN 10ps 10ns

.end

292 High Speed Serdes Devices and Applications

Fig. 6.24 Report file example
6.4.3.3 Analysis to Determine the Integrity of the Clock Signal

After each of the Spice simulations has been successfully completed, the
differential clock signals must be analyzed at the input to each differential
clock buffer and each HSS core in the clock tree to be certain that the HSS
cores will perform adequately. Figure 6.24 contains an example of a report
produced for an IBM ASIC chip based on the measurement statements in the
Spice include file produced for this chip. Pass/fail status for each measurement
is reported in this example.

If the analysis does not meet all of the criteria for both best and worst
case conditions, the differential clock must to be redesigned and the
analysis must be repeated, as was indicated in Fig. 6.21. Depending on the
situation, any of the following corrective actions may be necessary: select
clock buffers with higher/lower drive strengths, reroute signal traces to
reduce the number of vias or directional changes, reduce the distance
between clock buffers, etc.

$DATA1 SOURCE=’SPICE’ VERSION=’Y-2006.09-SP1 ‘
.TITLE ‘* hss diffclk test - best case simulation’

 hss01t_pp = 0.679 PASS (minimum < Vpp)
 hss01t_trise = 2.20e-10 PASS (trise < maximum)
 hss01t_tfall = 1.55e-10 PASS (tfall < maximum)
hss01t_dutycycle = 49.11 PASS (minimum < DC < maximum)
 hss01c_pp = 0.667 PASS (mimimum < Vpp)
 hss01c_trise = 2.261e-10 PASS (trise < maximum)
 hss01c_tfall = 1.572e-10 PASS (tfall < maximum)
hss01c_dutycycle = 50.3147 PASS (minimum < DC < maximum)
 hss01_vcma = 0.944 PASS (minimum < Vcm < maximum)
 hss01_vcmb = 0.856 PASS (minimum < Vcm < maximum)
 hss01_vcm = 0.930 PASS (minimum < Vcm < maximum)

******* End of HSS core input measurements. *******

******* Intermediate CLKDIFF book measurements. *******
- -
HSS_PCIE_CLKDIFF_U01t_pp = 0.9184 PASS (minimum < Vpp)
HSS_PCIE_CLKDIFF_U01c_pp = 0.9182 PASS (minimum < Vpp)
HSS_PCIE_CLKDIFF_U01_vcm = 0.8436 PASS (minimum < Vcm <maximum

******* End of HSS differential clock report.

Reference Clocks 293

6.5 References and Additional Reading
The following interface standards documents are referenced in this chapter:

1. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical
Internetworking Forum, Feb. 28 2005.

2. “Serial ATA Revision 2.5”, Serial ATA International Organization
(http:\\www.sata-io.org), Oct. 27 2005.

3. “ITU-T G.783 - Series G: Transmission Systems and Media, Digital
Systems and Networks, Digital Terminal Equipment - Characteristics of
SDH Equipment Functional Blocks”, International Telecommunications
Union, 2006.

The following reading is recommended for more information regarding
clock jitter and PLL jitter transfer functions:
4. “Jitter, Noise, and Signal Integrity at High Speed”, Mike Peng Li,

Prentice Hall, 2007.
5. “Design of Integrated Circuits for Optical Communications”, Behzad

Razavi, McGraw-Hill, 2003.

6.6 Exercises
1. Figure 6.1 illustrates the effects of power supply noise on the output of a

single-ended clock buffer. A novice engineer suggests that compression
of the signal does not matter because the power supply compression
would also reduce the switching threshold voltage of the input to the next
clock buffer in the distribution network. Explain why this is a fallacy.

2. Explain why it is more important to avoid high-frequency reference
clocks on the circuit board than it is to avoid them on the chip.

3. The OIF SFI-5 (version 1) protocol uses the SxI-5 electrical layer
discussed in Sect. 5.2. This protocol specifies that the frequency of the
reference clock into the chip is 1/4 of the link baud rate.
a. Assuming a 2.488Gbps baud rate on each link, what is the frequency

of this reference clock?
b. Given that the available on-chip PLLs for the target technology are

limited to a reference clock input frequency of 400MHz or less,
which of the topologies in Fig. 6.3 must be used to support this
configuration?

c. Specify the logic levels on the HSS EX10 PLL slice pins and the
value that must be programmed for the Tx/Rx slice Rate Select to
select the correct baud rate and reference clock frequency for this
interface.

294 High Speed Serdes Devices and Applications

d. Draw a block diagram showing the connections to the HSS EX10
HSSREFCLKT/C input pins. Assume test requirements dictate that a
on-chip PLL must be used to source the reference clock during
manufacturing test.

4. Two HSS EX10 cores are used in an OIF SPI-S application (see Fig. 5.5)
requiring four data lanes and one status lane. The baud rate of these lanes
is 10Gbps. In the sink chip for this interface, the transmitter must transmit
status at exactly the same baud rate as the received data.
(a) Draw the clock connections between the two HSS EX10 cores that

are necessary to implement this interface on the sink chip.
(b) For the HSS EX10 being used to receive the SPI-S data, specify the

reference clock frequency, PLL slice HSSDIVSEL and HSSREFDIV
pin values, the Receive Configuration Mode Register setting, and the
SONET Clock Mode Register setting.

(c) For the HSS EX10 being used to transmit the SPI-S status, specify the
PLL slice HSSDIVSEL and HSSREFDIV pin values, and the
Transmit Configuration Mode Register setting.

5. Draw block diagrams of the reference clock distribution for chips which
use HSS EX10 cores to implement interfaces for each pair of baud rates
listed below. The interfaces for these baud rates are implemented using
separate HSS EX10 cores and are operational at the same time. Use as
few on-chip PLLs as possible in each case.
(a) 8.50 Gbps and 4.25 Gbps
(b) 10.3125 Gbps and 1.25 Gbps
(c) 10.3125 Gbps and 8.50 Gbps

6. Draw block diagrams of the reference clock distribution for chips which
use HSS EX10 cores to implement interfaces for each pair of baud rates
listed below. These interfaces share pins on the chip and therefore must be
implemented with the same HSS EX10 core. Software programs select
which interface is being used by changing the configuration of the HSS
EX10 core and/or the on-chip PLL divider settings. (The external
reference clock frequency cannot be changed.) The available on-chip
IF PLL supports frequency multiplication factors in the range of 2.0 –
16.0 in increments of 0.25. Use as few IF PLLs as possible in each case,
and use differential multiplexors to select between different IF PLL
outputs only if different reference clock frequencies are required.
(a) 8.50 Gbps and 4.25 Gbps
(b) 10.3125 Gbps and 1.25 Gbps
(c) 10.3125 Gbps and 8.50 Gbps

Reference Clocks 295

7. Draw the block diagram of the reference clock distribution for a chip
which implements the Backplane Ethernet baud rates of 1.25, 3.125, and
10.3125Gbps. Assume the same HSS EX10 core must be used for all
three cases and is provisioned by software. Also assume on-chip PLLs are
available with restrictions as described in Exercise 6.

8. Draw the block diagram of the reference clock distribution for a chip
which implements the Fibre Channel baud rates of 3.18750, 8.50000, and
10.51875Gbps. Assume the same HSS EX10 core must be used for all
three cases and is provisioned by software. Also assume on-chip PLLs are
available with the restrictions in Exercise 6.

9. Assume the phase jitter variation of a clock signal is modeled with a
uniform triangular waveform with an amplitude of 10ps and a frequency
fjitter = 0.1 fclock . Calculate the phase jitter, period jitter, and cycle-to-
cycle jitter of this clock for 15 consecutive clock cycles.

10. Assume the phase jitter variation of a clock signal is modeled as a
summation of two sinusoidal components, each of which can be
calculated using (6.5). The first component has a frequency
fjitter = 0.05 fclock and an amplitude of 10ps. The second component has a
frequency fjitter = 0.1667 fclock and an amplitude of 5ps. Calculate the
phase jitter, period jitter, and cycle-to-cycle jitter of this clock for 25
consecutive clock cycles.

11. Prove that when fjitter = 0.5 fclock , (6.6) reduces to (6.4), and
(6.10) reduces to (6.9).

12. What is the limit of Jperiod and Jcycle as determined by (6.6) and
(6.10) respectively, if fjitter << fclock .

13. Given the jitter tolerance mask in Fig. 6.5, specify the bandwidth of the
PLL used in the CDR circuit given the following baud rates:
(a). 10.3125 Gbps (b). 8.50 Gbps (c). 3.125 Gbps

14. Assume that a PLL used in a CDR circuit is designed such that:
fbw < fbaud / 2. Is this compliant with the mask in Fig. 6.5? Explain.

15. Assuming clock buffers with characteristics described in Sect. 6.3.1 and
Table 6.2, calculate maximum wire lengths for the following cases:
(a) fclock = 775MHz, fanout = 2
(b) fclock = 250MHz, fanout = 3
(c) fclock = 500MHz, fanout = 1

16. Given the wire lengths calculated in Exercise 15, assume the buffer inputs
for the indicated fanouts are equidistant from the driving buffer, and are in
opposite directions on the chip. What is the maximum distance between
the driving buffer and each buffer input?

296 High Speed Serdes Devices and Applications

17. Describe the effects which may be encountered if the following analog
parameters are beyond their specified ranges on the input to a differential
clock buffer:
(a) Vcm too high or too low
(b) Vdiff too low
(c) Vdiff too high
(d) Slew rate too fast
(e) Slew rate too slow

18. Describe how mismatches in the trise and tfall parameters of the single-
ended signals can contribute to a mismatch in propagation delay resulting
in deterministic jitter on the output waveform.

19. The high and low voltages of a differential signal are provided below for
various systems. For each pair of voltages, calculate the corresponding
Vcm and Vdiff values.
(a) 1.05 V, 0.35V
(b) 1100 mV, 600mV
(c) 675 mV, 155mV
(d) 920 mV, 330mV

20. Given the following Vcm and Vdiff values, calculate the Vhi and Vlo
voltages:
(a) Vcm = 550 mV, Vdiff = 300 mVppd
(b) Vcm = 600 mV, Vdiff = 400 mVppd
(c) Vcm = 750 mV, Vdiff = 120 mVppd
(d) Vcm = 700 mV, Vdiff = 1200 mVppd

21. A clock distribution network for a 400-MHz reference clock consists of a
string of four differential clock buffers. The design of these buffers is
such that there is a mismatch between the propagation delay for the rising
and falling edges of the clock signal given the net capacitance for the
current chip layout. For each buffer:
• tpd (rise) = 300ps
• tpd (fall) = 500ps
Draw a timing diagram showing the resulting differential amplitude
waveform and duty cycle on the output of each clock buffer stage.

22. Assume that the clock buffers in a clock distribution network require a
500ps minimum pulse width to guarantee the buffer output switches.
Given the clock distribution network in Exercise 21, draw conclusions as
to whether the output of each stage is usable.

Test and Diagnostics 297

Chapter 7
Test and Diagnostics

HSS devices incorporate features which support various levels of testing by
the chip manufacturer, the system manufacturer, and by the end user (as part
of a diagnostic test suite). These levels of testing include:
JTAG 1149.1/1149.6 Test. The JTAG 1149.1 and 1149.6 standards [1,2]
define a method of performing chip-to-chip stuck-fault testing during circuit
board manufacture. This requires test structures which must be incorporated in
all chips to support this testing.
Pseudo-Random Bit Sequence (PRBS) Test. HSS cores generally provide a
means of transmitting a PRBS pattern and checking it at the receiver. Such test
sequences are used for manufacturing test and characterization of HSS cores,
as well as characterization of serial data links in systems.
Logic Built-In-Self-Test (LBIST). The chip designer often includes LBIST
capabilities on the chip which support in-system diagnostics testing. LBIST
implementations are not standardized; each system design team develops their
own methodology.
Manufacturing Test. The chip manufacturer runs a series of tests on each chip
after wafer fabrication, and again after module assembly. Manufacturing tests
used to test HSS devices are developed by the HSS design team. The details of
such tests are usually not of importance to the chip designer, however the chip
designer must sometimes provide controllability or observability of certain
pins on the HSS core to facilitate such tests.
Characterization Test. As part of the design development process, the HSS
core design team generally builds test chips containing the HSS core for the
purposes of laboratory test and measurement. Certain features of the HSS core
are not tested on each chip as part of the manufacturing process, but rather are
guaranteed through laboratory measurement on test chips and through analysis
of parameter variation based on the tolerances of the manufacturing process.
The results of design characterization test are documented in a characterization
report. HSS core designs often include features which are intended to support
characterization testing and facilitate the measurement of various design
characteristics. In some cases these design features may also be used by the
system designer to characterize the chip usage within the system design.

Although portions of the above topics may have been covered to some
extent in prior chapters, this chapter covers these test topics in depth. This
chapter primarily concentrates on standards, typical implementations, and
general approaches that are relevant to chip designers using HSS devices.
Other topics, such as detailed manufacturing test flows or detailed descriptions
of characterization features, vary significantly from one HSS implementation

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 297
© Springer 2008

298 High Speed Serdes Devices and Applications

to another and are therefore discussed at a more general level in this text. This
chapter extends the description of the HSS EX10 core that was used as a
tutorial example in Chap.2 to add appropriate test features.

Fig. 7.1 JTAG boundary scan interface architecture

7.1 IEEE JTAG 1149.1 and 1149.6
The Joint Test Action Group (JTAG) was formed in 1985 to develop better

methods of performing manufacturing test on circuit boards. The increasing use
of multilayer circuit boards and nonlead-frame ICs was making test points
inaccessible to test probes. To provide sufficient test of the chip interconnect, it

ID Register

Bypass Register

Instruction Register

TAP Controller
TCK
TMS

TRST

TDO

TDI

Chip
Logic

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

C
hi

p
In

pu
t P

in
s

C
hi

p
O

ut
pu

t P
in

s

Boundary Scan Register

Test and Diagnostics 299

was necessary to develop the ability for each chip in the system to drive outputs
with arbitrary logic levels and capture logic levels on inputs. A standard
interface, common to all chips and with a minimal number of pins, was needed
to access the control and observe test points. This interface could then be used
during circuit board manufacturing test to perform stuck-fault testing of the
entire interconnect (including the connection of the chips to the circuit board)
and achieve high test coverage. The result of this work was published in 1990
as IEEE Std. 1149.1-1990, and is commonly called JTAG 1149.1.

7.1.1 JTAG 1149.1 Overview
Fig. 7.1 illustrates a conceptual block diagram for the implementation of

JTAG 1149.1 on a chip. Using the 5-pin standard interface bus and the test
access port (TAP) control circuitry, data can be launched through the outputs
of one chip and captured by another chip on the card, thus effectively testing
the chip solder bumps or wirebonds, the solder connections on the package and
card, the wiring on the card, plus any cables and connectors.

The JTAG 5-pin standard interface bus consists of the following pins, as
shown in Fig. 7.1:
Test Clock (TCK). This pin is the JTAG clock input which clocks all JTAG
registers and the TAP Controller.
Test Mode Select (TMS). This pin is a control input used to select the state of
the TAP Controller.
Test Data In (TDI). This pin is the JTAG data input used to serially scan data
into JTAG registers.
Test Data Out (TDO). This pin is the JTAG data output used to serially scan
data out of JTAG registers.
Test Reset (TRST). This pin is the JTAG input used to force a reset of JTAG
registers and the TAP Controller state. This input is optional; a reset state may
also be forced through assertion of TMS for five clock cycles.

The key components of the JTAG 1149.1 implementation shown in Fig. 7.1
are described in the subsections which follow.
7.1.1.1 TAP Controller

The TAP Controller is a finite state machine which implements the state
diagram defined in the IEEE 1149.1 standard. This state diagram is shown in
Fig. 7.2. State transitions within this state diagram occur based on logic level
on the TMS pin during rising edges of the TCK pin. The TMS logic values
corresponding to these transitions are shown on the arcs in Fig. 7.2.

Note that it is possible to uniquely return to the Test-Logic-Reset state from
any state in this state diagram within five TCK cycles by asserting TMS = 1.
Once in this initial state, additional TMS values and TCK cycles transition the
TAP controller to the appropriate desired state.

300 High Speed Serdes Devices and Applications

Fig. 7.2 Tap controller state diagram
JTAG registers may be loaded and read by scanning data through the

TDI/TDO pins when the TAP Controller is in the appropriate state. The
Instruction Register is selected for scanning when the TAP Controller is in the
Shift-IR state. The ID Register, Bypass Register, Boundary Scan Register, or
other implementation-specific registers may be scanned when the TAP
Controller is in the Shift-DR state. The contents of the Instruction Register
determine which of these data registers is selected.

When registers are serially scanned, data is actually scanned through a
shadow register so that the contents of the actual register are not corrupted
during the scan process. Data is transferred in parallel from all bits of the
shadow register to the actual register when the TAP Controller is in either the
Update-IR or Update-DR state. Likewise, the Capture-IR and Capture-DR
states are used to capture status data in the Instruction Register, or capture logic
values from chip inputs in the Boundary Scan Register prior to serially
scanning this data out of the chip.
7.1.1.2 Instruction Register

The contents of the Instruction Register determines the address and control
information that selects which of various data registers is to be accessed.
Values for this register are called test instructions. The JTAG 1149.1 standard

Capture-DR

Shift-DR

Select-DR-Scan

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Select-IR-Scan

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Run-Test/Idle

Test-Logic-Reset

0 0

00

0

1

0

0

1

0

1

1

0

0

1

0

1

1

1

1

1

1

0 0

1
1

0

0

1

1 1

0

Test and Diagnostics 301

defines three required test instructions, six optional instructions, and allows for
other implementation-specific instructions. The instructions defined by the
JTAG 1149.1 standard are described briefly as follows:
Required Instructions:
BYPASS Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the Bypass Register without affecting operation
of the chip.
SAMPLE/PRELOAD Instruction. When the Instruction Register contains this
instruction, serial data is scanned through the Boundary Scan Register while
the chip remains in a functional mode.
EXTEST Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the Boundary Scan Register and the chip is
placed in a mode where the Boundary Scan Register drives chip outputs and
receives chip inputs.
Optional Instructions:
INTEST Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the Boundary Scan Register and the chip is
placed in a mode where the Boundary Scan Register controls internal inputs to
the chip logic and captures internal outputs of the chip logic.
RUNBIST Instruction. When the Instruction Register contains this instruction,
serial data is scanned through a user-specific data register and runs a Built-In-
Self-Test sequence.
CLAMP Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the Bypass Register and the chip is placed in a
mode where the current contents of the Boundary Scan Register drive chip
outputs.
HIGHZ Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the Bypass Register and the chip is placed in a
mode where chip outputs are driven to a high impedance state.
IDCODE Instruction. When the Instruction Register contains this instruction,
serial data is scanned through the ID Register without affecting operation of
the chip.
USERCODE Instruction. When the Instruction Register contains this
instruction, serial data is scanned through the ID Register without affecting
operation of the chip. Additional user-defined data is captured in the ID
Register as part of this instruction.
7.1.1.3 Bypass Register

The Bypass Register is a required one-bit register which allows data to be
scanned through an abbreviated path from the TDI pin to the TDO pin. The
BYPASS instruction is loaded into chips which are not involved in a test to
shorten the serial scan path on the circuit board and thereby speed-up the test
sequence.

302 High Speed Serdes Devices and Applications

7.1.1.4 ID Register
The ID Register is an optional register which contains a unique identifica-

tion code for the chip. This allows the test program to automatically identify
chips on the circuit board and the order in which these chips are connected into
the scan chain. The test program can then reference information about the chip
to determine the test sequence.
7.1.1.5 Boundary Scan Register

The Boundary Scan Register is a required register which consists of one
Boundary Scan Cell (BSC) corresponding to each chip input pin, chip output
pin, and chip output enable control signal. Depending on the instruction loaded
in the Instruction Register, the BSC may control the logic level driven on
output pins and may capture logic levels on chip input pins. Optionally, the
BSC may also override chip input logic levels being driven to internal chip
logic and capture the logic levels being driven by internal chip logic to outputs.

The frequency of operation of serial data signals for HSS cores precludes
connecting additional logic between the Serdes device and the chip pins. HSS
cores must therefore provide some means of bypassing the normal Serdes
functions, driving BSC logic levels to output pins, and capturing logic levels
on input pins. Without such support, the serial data interconnect would not be
testable, and chips using these cores would not comply with the JTAG 1149.1
standard. This is discussed further in the next section.

7.1.2 HSS Core Support for JTAG 1149.1
When the EXTEST instruction is loaded in the Instruction Register, the

chip outputs are driven by the logic levels loaded into the corresponding BSCs,
and the logic levels on chip inputs are captured in BSCs associated with the
input pins. In addition, BSCs associated with output enable control signals
determine whether outputs are driven or are in a high impedance state. The
launch and capture elements for a chip-to-chip interconnect path are shown in
Fig. 7.3. Stuck-fault testing of the interconnect path is performed by launching
data from the BSC associated with the output of the driver chip, and capturing
the corresponding data in the BSC at the receiving chip.

Signal integrity requirements for an HSS core dictate that the Serdes
driver and receiver circuits connect directly to chip pins. Intervening logic
would not be able to operate at the necessary data rates, and even the
connection of additional gate inputs to the signal would create impedance
mismatches and degrade signal quality. To support JTAG 1149.1, the HSS
core must provide a transmit bypass path so that a BSC may be used to drive
serial data outputs, and a receive bypass path so that the logic level on the
serial data input may be captured in a BSC. The logic levels being driven and
captured are essentially DC levels, and therefore the normal serializer and
deserializer functions of the HSS core must be bypassed to be able to drive
and receive these signals.

Test and Diagnostics 303

Fig. 7.3 Chip to Chip Interface with JTAG 1149.1 Test Features
The HSS EX10 core discussed in Chap. 2 includes bypass functions on

both the transmitter and receiver slices which were primarily intended to
support JTAG 1149.1. The transmitter bypass function is described in Sect.
2.2.6 and the receiver bypass function is described in Sect. 2.3.6. Connec-
tion of the various signals to the JTAG Boundary Scan Cells is shown in
Fig. 2.6.

7.1.3 HSS Core Support for JTAG 1149.6
When applied to high-speed serial data interconnect, there are several

drawbacks to testing within the constraints of the JTAG 1149.1 standard.
First, JTAG 1149.1 is limited to DC stuck-fault testing. Changing the logic

levels being driven on the interconnect requires successively loading data
through the JTAG scan chain into the JTAG Boundary Scan Registers on the
chips of the circuit board, an inherently slow process. If the interconnect is
DC coupled, then DC stuck-fault testing may be adequate. However, if the
high-speed serial data link includes decoupling capacitors, then a DC logic
level cannot be driven across the interconnect. In such cases, JTAG 1149.1
would be unable to test the serial data interconnect.

Second, JTAG 1149.1 tests the serial data link as if it were a single wire
with a DC logic level driven on it. In fact, the serial data consists of a
differential signal. When a logic level of 0 is driven, then one leg of the
differential pair is driven low and the other is driven high (and vice-versa for a
logic 1 level). This was described in Sect. 1.3.4 and was illustrated in Fig. 1.16
and Fig. 1.18.

It is possible for one leg of the differential pair to be unconnected, and yet
have JTAG 1149.1 perform a successful test of the link. To illustrate this, Fig.
1.16 has been modified as shown in Fig. 7.4. Although the JTAG 1149.1 logic

Reg
Data Input

Data Output

Output Enable

From

From
To

To TDO

Chip 2Chip 1

Reg

Reg

MUX

MUX

MUX
TDI

TDI
TDO

304 High Speed Serdes Devices and Applications

levels would be DC levels, signal transitions are shown in the figure for the
purposes of covering both the logic 0 and logic 1 cases. The first logic 1 and
logic 0 level shown in Fig. 7.4 is normal with both the true (T) and complement
(C) signals at proper logic levels.

However, for the second logic 1 and logic 0 level shown in the figure, the
complement leg of the signal (the dashed line) has failed and is biased to the
common mode voltage. The corresponding received differential signal is
shown in Fig. 7.5. As shown, the failure of the complement leg of the signal
reduces the amplitude of the received signal, but the correct logic levels are still
received. Because JTAG 1149.1 is limited to treating the differential serial data
link as a single interconnect path, the test cannot distinguish between the
normal and failure cases in Fig. 7.5, and the test passes even in the presence of
the failure.

Fig. 7.4 Single-ended signals showing failure of complement leg

Fig. 7.5 Differential peak-to-peak signal with failure of complement leg

-2-4-6 0 642

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.7

0.8

0.9

T

C

-2-4-6 0 642

-0.6

-0.4

-0.2

0.2

0.4

0.6

2*(T-C)

Test and Diagnostics 305

Consequently, in 2003 the IEEE Joint Test Action Group defined the IEEE
1149.6 standard which addresses deficiencies in the 1149.1 standard related to
differential I/O testing and AC coupled I/O testing. The IEEE 1149.6 test
standard, also known as “AC JTAG,” requires independent observability of
both the true and complement side of a differential I/O. Two additional TAP
functions are defined which support generation of pulses on AC coupled links.
The EXTEST_PULSE instruction generates a single pulse, while the
EXTEST_TRAIN instruction generates a sequence of pulses. The standard
also requires a test receiver cell, implemented as a hysteretic comparator,
which is used to observe pulses on AC coupled links. In AC mode, the test
receiver cell is an edge detector which can detect either a positive-going or
negative-going edge, indicating the presence or absence of a pulse propagating
through a capacitor. In DC mode, the test receiver acts like a buffer.

Fig. 7.6 illustrates the modifications to Fig. 7.3 required for AC coupled
serial data links for compliance with the 1149.6 “AC JTAG” standard.

The HSS EX10 core described in Chap. 2 includes edge detector functions
in the receiver to support the JTAG 1149.6 standard. These functions are
described in Sect. 2.3.6, and connection of the various signals to JTAG
Boundary Scan Cells is shown in Fig. 2.6. The additional functions associated
with the JTAG Boundary Scan Cell on the transmitter do not require any addi-
tional logic in the HSS transmitter design.

Note that while the signals generated and received by JTAG 1149.6 are suf-
ficiently high frequency to pass through any decoupling capacitors included in
the interconnect, they are still typically well below the intended baud rate for
the core. Pulses are generated by TCK, the maximum frequency of which is
limited by the slowest interconnect path on the circuit board. Clock frequencies
well below 1MHz are typical. JTAG 1149.6 is not intended to perform
at-speed test.

Fig. 7.6 AC coupled serdes with 1149.6 test structures

Reg

Data

Data

Output

From

From

To

To TDO

Chip 2Chip 1

MUX

MUX

MUX

Enable

Output MUX

TDI Reg

Pulse
from TAP
Controller

AC
Mode

Input

Reg

MUX

Reg

MUX

Reg

TDI

TR

TR

TDOTR = Test
Receiver

306 High Speed Serdes Devices and Applications

7.2 PRBS Testing and Loopback Paths
As was discussed in prior chapters, HSS cores generally provide pseudo-

random bit sequence (PRBS) generators and checkers for diagnostic purposes.
These circuits are used for manufacturing test, characterization test, and in-
system diagnostic tests to determine the integrity of Serdes circuits and the link
interconnect. The capabilities of the PRBS generator in the HSS EX10 core are
described in Sect. 2.2.7, and the capabilities of the PRBS checker are described
in Sect. 2.3.8.

7.2.1 Loopback Paths
The ability to loop data at various points within the protocol stack is an

important diagnostic capability of serial protocols and interfaces. Some proto-
cols require certain loopback paths be present in hardware to facilitate system
diagnostic functions. Even when diagnostic requirements are not specified by
the protocol standard, chip development teams require certain diagnostic paths
to facilitate chip and system characterization. Often, PRBS pattern generator
and checker logic is included in lower layers of the protocol logic and/or the
HSS cores. This logic allows basic checking of the hardware datapath and
interconnections without requiring a fully functional software/hardware
protocol stack.

Fig. 7.7 illustrates an egress data path consisting of protocol transmit logic
and an HSS transmitter, and an ingress data path consisting of an HSS receiver
and protocol receiver logic. Possible loopback paths are shown in the figure.
(Note that the names of these paths as shown in the figure and used in this text
are the author’s names. Names of diagnostic loopback paths used in other
sources may vary. There is no standard set of names for loopback paths.)

In should be noted that not all of these diagnostic loopback paths will exist
in a given chip. Also, Fig. 7.7 oversimplifies the implementation of these
loopback paths. For example, the parallel data output of the HSS receiver
cannot be directly connected to the parallel data input of the HSS transmitter
without an elastic buffer to perform clock compensation. These loopback paths
are discussed in somewhat more detail in the following subsection.
7.2.1.1 Serial Diagnostic Loopback

The serial diagnostic loopback path wraps data from the output of the HSS
transmitter to the input of the HSS receiver, and can only exist for Full Duplex
HSS cores which contain both transmitters and receivers in the same core. This
path provides a means for performing diagnostics on the ASIC chip through
the HSS transmitter and receiver. If data can be transmitted and received
through this diagnostic path, then most of the chip’s functional path has been
tested. (For some HSS core implementations there may be a small amount of
analog circuitry that is not exercised by this loopback path. Also, the
connection through the chip package is not tested.)

Test and Diagnostics 307

Fig. 7.7 Possible loopback paths
The Serial Diagnostic Loopback is also useful for HSS core test and char-

acterization. The PRBS generator in the HSS transmitter sends data, and this
data is looped to the HSS receiver and checked by the PRBS checker in the
HSS receiver. This PRBS test does not require higher layers of the protocol
stack (either implemented in hardware or software) to be operational. By
running the PRBS test repeatedly and for sustained periods of time, and
measuring the number of PRBS errors that occur, the bit error rate (BER) of
the HSS hardware can be estimated.

Full Duplex HSS cores which implement these loopback paths always pair
transmitters and receivers in the core such that specific transmitter slices are
wrapped to specific receiver slices. Chip designers need to be cognizant of the
chip and application requirements associated with the Serial Diagnostic
Loopback path, and reconcile these requirements with the pairing implemented
by the HSS core. If there is a requirement for traffic to be generated by the
protocol transmit logic and looped through the Serial Diagnostic Loopback
path to the receiver, then the interconnection of HSS transmitters and receivers
to the protocol logic is constrained by the pairing of these transmitters and
receivers in the HSS core.
7.2.1.2 External Serial Loopback

The External Serial Loopback path is similar in function to the Serial
Diagnostic Loopback path, except that it is implemented external to the chip

HSS Tx HSS Rx

Protocol
Rx Logic

HSS
Core

Protocol
Rx Logic

Remote Payload
Loopback

Remote Line
Loopback

Parallel Diagnostic
Loopback

Serial Diagnostic
Loopback

External Serial
Loopback

308 High Speed Serdes Devices and Applications

by the engineer in the lab. How this loopback connection is made depends on
the design of the printed circuit board. It may consist of jumper wires, a test jig
plugged into a connector, or some other means. Because it requires physical
reconnection of the link external to the chip, this loopback path typically only
exists in a lab environment.

The diagnostic purpose of this path is similar to the Serial Diagnostic
Loopback path, albeit with better coverage. (The chip package interconnect
and all stages of the HSS transmitter and receiver are included in the path being
tested.) Also, since any arbitrary connection can be made outside of the chip,
the limitations of transmitter/receiver pairing that applied to the internal Serial
Diagnostic Loopback path do not apply for this path.
7.2.1.3 Remote Line Loopback

The Remote Line Loopback path takes data received through the HSS
receiver, and retransmits this data on the HSS transmitter. This path supports
system diagnostics by allowing an interface port to send test data to the remote
device, and have that device retransmit the data back without requiring
processing by higher layers of the protocol. Using this function, system
diagnostics can test the signal integrity of the electrical interconnect. Some
protocols, such as PCI Express, require implementation of this path.

As noted previously, implementation of this path is not as simple as
connecting the parallel data output of the HSS receiver to the HSS trans-
mitter. If plesiosynchronous reference clocks are used for each end of the
link, then the receive data clock is at a slightly different frequency from
that of the transmitter. Even if the two ends of the link are synchronously
clocked, phase differences will still exist between the parallel data clocks
for the receiver and the transmitter. Therefore an elastic buffer is required
in this path. In the case of plesiosynchronous clocking, this elastic buffer
may need to add or drop bytes (or symbols) as defined by the protocol to
perform clock compensation.

This elastic buffer is already typically part of the Protocol Receive Logic.
Therefore, the existing elastic buffers in this logic are generally included in the
Remote Line Loopback path; there would be no benefit in implementing
separate elastic buffers for diagnostic operations. The result is that the Remote
Line Loopback path, when implemented, is an integral part of the function of
the Protocol Logic. It is generally implemented by wrapping the output of the
elastic buffers in the Protocol Receive Logic to the transmit data path of the
Protocol Transmit Logic.

An alternative implementation of the Remote Line Loopback path
retransmits data using a loop timing mode in which the receive data clock is
used as the reference clock for the transmitter. However, this assumes loop
timing mode is supported by the selected HSS cores, and is implemented in the
chip design. The logic requirements for implementing loop timing mode were
discussed in Sect. 6.1.3.2.

Test and Diagnostics 309

7.2.1.4 Parallel Diagnostic Loopback
The Parallel Diagnostic Loopback path wraps data from the output of the

Protocol Transmit Logic to the input of the Protocol Receive Logic. The
purpose of this diagnostic path is similar to the function of the Serial Diagnos-
tic Loopback, except that the HSS cores are excluded from the data path. This
is useful for testing higher layers of the protocol in cases where the HSS
hardware is not yet operational (either because the configuration has not been
programmed correctly, because of hardware problems, or because of intercon-
nect problems). It may also be used in conjunction with the Serial Diagnostic
Loopback path to isolate problems to the HSS cores. If data is successfully
wrapped through the Parallel Diagnostic Loopback path, but cannot be
wrapped through the Serial Diagnostic Loopback path, then the problem may
be assumed to be in the HSS cores.

Implementation of this path requires both data and clocks to be switched at
the inputs to the Protocol Receive Logic. Normally, the parallel data clock for
the parallel data input of the Protocol Receive Logic is driven by the HSS
Receiver. When the Parallel Diagnostic Loopback path is active, this clock
must be connected to the same clock source that is driving the Protocol
Transmit Logic (usually the parallel data clock output of the HSS transmitter).
7.2.1.5 Remote Payload Loopback

The Remote Payload Loopback path wraps data from the output of the
Protocol Receive Logic to the input of the Protocol Transmit Logic. This diag-
nostic path differs from the Remote Line Loopback path in that a substantial
amount of the protocol processing is included in both the receive and transmit
data paths. While the Remote Line Loopback path typically retransmits data as
received (possibly with some adjustment for clock compensation), the Remote
Payload Loopback path retransmits the same payload data but with different
management information.

When this loopback path is executed in a SONET system, for example, the
SONET section and line overhead are processed in the receive logic and SPEs
are wrapped to the transmit logic. The transmit logic maps SPEs into SONET
frames with locally generated overhead, complete with pointer management as
needed. The section and line overhead functions of both ends of each section
continue to operate and exchange information normally, even while the SPE is
wrapped. System diagnostics in the SONET network can implement fault
isolation by wrapping the SPE at various LTE and PTE elements.

7.2.2 PRBS Circuits and Data Patterns
A string of binary digits (“1” and “0” bits) is called a pseudo-random

sequence if it meets two conditions:
• Local randomness (i.e. the next output of a sequence generator is roughly

equally likely to be a “1” as a “0”); and
• Reproducibility (i.e., when the sequence generator is reset to an initial

state, the exact random sequence of “1” and “0” bits is replicated).

310 High Speed Serdes Devices and Applications

7.2.2.1 PRBS Generator Circuits
Linear Feedback Shift Registers (LFSRs) are the most common method of

generating pseudo-random sequences. A shift register is a collection of flip-
flops or other storage elements connected such that the state of each element is
shifted to the next element in response to a clock signal. Feedback in an LFSR
occurs when the outputs of selected stages of the shift register are summed
(XOR’d) and connected back to the shift register input. The length of the
sequence that is generated and the likelihood of producing a certain maximum
run length are mathematically dependent on the number of stages in the shift
register and the details of the feedback connections. If the sequence generated
by an n-stage LFSR has a period of 2n − 1, it is a maximum-length sequence.

The LFSR implementation of a PRBS-7 generator is shown in Fig. 7.8. The
PRBS-7 pattern consists of seven flip-flops with the appropriate feedback term
implemented using an XOR gate (i.e., a binary summation function). In Fig.
7.8, the flip-flops have been assigned indices “1” through “7”; the feedback
term is generated by XOR’ing the outputs of flip-flops “6” and “7.”
Mathematical polynomials are often used as a short-hand method of specifying
the PRBS pattern being implemented. The polynomial for PRBS-7 is

 PRBS7 = x7 + x6 + 1
The powers of the “x” terms indicate time-shift delay and directly correlate

to the positions of the feedback taps in the LFSR implementation.
The LFSR implementation shown in Fig. 7.8 is a serial implementation

which produces one bit of the PRBS sequence for each clock cycle. Parallel
implementations of PRBS generators which produce any number of bits of the
sequence per clock cycle are also possible. Such circuits are designed by
mathematically calculating the necessary logic equations using the PRBS
polynomial.

For example, assume an implementation of (7.1) using seven flip-flops
with the initial states defined below, where the number in the parenthesis
indicates the advance of n = 0 bits of the sequence:

x7(0) = x7 x3(0) = x3

x6(0) = x6 x2(0) = x2

x5(0) = x5 x1(0) = x1

x4(0) = x4

After the sequence is advanced by one bit, the contents of a serial imple-
mentation LFSR would shift by one bit, and the feedback term would be loaded
into the first bit:

x7(1) = x6 x3(1) = x2

x6(1) = x5 x2(1) = x1

x5(1) = x4 x1(1) = x7+ x6

x4(1) = x3

(7.1)

Test and Diagnostics 311

Fig. 7.8 PRBS7 generator implementation using a LFSR

Fig. 7.9 PRBS7 generator 8-bit parallel implementation
As the sequence continues to advance, the contents of the LFSR after 8 bits

of the sequence would be:
x7(8) = x7+ x6 x3(8) = x3+ x2

x6(8) = x6+ x5 x2(8) = x2+ x1

x5(8) = x5+ x4 x1(8) = x7+ x6+ x1

x4(8) = x4+ x3

These equations are implemented in the circuit shown in Fig. 7.9. Each
clock cycle advances this PRBS generator by eight bit positions. The current
eight bits of the PRBS sequence are provided as a parallel output of this circuit.
Seven of these bits are determined directly by the current state of the PRBS
generator, while the eighth bit is derived from a combination of state bits for
the current state.

Reg Reg Reg Reg Reg Reg Reg+

1 2 3 4 5 6 7

Reg+

Reg

Reg

Reg

Reg

Reg

Reg

+

+

+

+

+

+

D7

D6

D5

D4

D3

D2

D1

D8+

312 High Speed Serdes Devices and Applications

Fig. 7.10 PRBS7 checker block diagram
HSS cores commonly include PRBS generators and checkers, and gener-

ally support a selection of PRBS test patterns. However, PRBS generators and
checkers are also frequently implemented in higher layers of the protocol
stack. Any such circuits generally use an n-bit parallel implementation to
match the width of the data path at this layer.
7.2.2.2 PRBS Checker Circuits

A typical implementation of a PRBS checker consists of a PRBS generator
circuit, a comparator, and a state machine which controls the initialization
sequence of the checker. A block diagram of this is shown in Fig. 7.10.

Before checking can begin, the PRBS checker must initialize its LFSR state
based on the data being received so that it can successfully predict the expected
data. This is called synchronizing to the PRBS pattern. For a PRBS-n pattern,
n bits must be received to initialize the LFSR. After initializing the LFSR most
designs then check some number of additional bits to make sure the PRBS
checker is in fact predicting the expected data correctly. Miscompares during
this period may indicate a bit error occurred while the LFSR state was being
initialized. If the data compares correctly, then the PRBS checker asserts the
Sync status indication and begins to check data.

Once the State Machine of the PRBS checker asserts the Sync status, any
subsequent miscompares between the LFSR state and the incoming data are
assumed to represent bits that have been corrupted by the serial data path, and
result in the State Machine asserting the Error status output. Depending on the
implementation of the PRBS checker, it may be possible to count the exact
number of bits which were received incorrectly. Note that with this architec-
ture, any discontinuity in the PRBS pattern inserted by the generation source
(for example, skipping bits, freezing the pattern for a few bits, reinitializing the
LFSR, etc.) causes the PRBS checker to be out of sync and report continuous
errors in the pattern. If such a discontinuity occurs, the PRBS checker must be
reinitialized.

PRBS
Generator

=Data State
Machine

Load

Sync
Error

Test and Diagnostics 313

An alternative self-synchronizing implementation of a PRBS checker is
sometimes used which reloads the LFSR state from the datastream continu-
ously. The next n-bits of the PRBS sequence are predicted based on the
previous n-bits received; these bits are compared to the next n-bits received
and any errors are reported. This architecture may require less logic to
implement and adapts to any discontinuity in the PRBS pattern inserted by the
generation source. The drawback of this architecture is that any bit errors in the
received pattern not only cause miscompares on the bits which are actually in
error, but also cause some number of future bits to be incorrectly predicted. A
single bit error may therefore be reported as several bits being in error.
7.2.2.3 Data Patterns

Many PRBS polynomials exist and several of these are commonly imple-
mented in high-speed Serdes devices. The order of the polynomial determines
the number of flops required to implement the LFSR. This also determines the
maximum run length of all 1’s or all 0’s that can exist in the PRBS pattern.
Higher-order polynomials can generate longer run lengths without transitions,
and therefore the data patterns contain more low frequency content. This
stresses the CDR in the HSS receiver more than a data pattern which has a
higher transition density. A PRBS-7 pattern (which is generated using an order
7 polynomial) may be sufficient to characterize a system which uses 8B/10B
encoding, however this pattern would not contain a sufficient transition density
to stress a system which uses 64B/66B encoding or scrambling. A PRBS
pattern which can produce longer run lengths, such as a PRBS-31 pattern, is
more desirable to test such systems.

Another consideration involves the limitations of test equipment. Assume
a test setup in which the data pattern must be checked by test equipment which
has a limited data buffer. Usually it is desirable that the test equipment buffer
be able to capture and analyze the entire test pattern. If analysis is only based
on a randomized segment of the pattern, results may depend on which portion
of the pattern is captured. Although testing using PRBS-31 may be desirable,
the size of the data buffer in the test equipment may preclude use of a pattern
of this length. A PRBS-23 pattern may be more practical in this case.

As described in Sect. 2.2.7, the HSS EX10 Core supports the test patterns
shown in Table 7.1. The various PRBS polynomials referenced above are
supported. Options include both the PRBS pattern, and the corresponding
inverted pattern. Unmodified PRBS patterns mathematically have slightly
higher probability of generating a 1 bit than a 0 bit. Over time this accumulates
a DC charge on the capacitor of an AC coupled system. Correspondingly, an
inverted PRBS pattern has a slightly higher probability of generating a 0 bit
than a 1 bit. Providing both patterns allows the user to decide which pattern is
appropriate.

314 High Speed Serdes Devices and Applications

7.2.3 PRBS Test Sequence
Fig. 7.11 illustrates a PRBS generator connected to a PRBS checker,

along with typical control and status signals associated with this logic. The
corresponding control and status signals are defined in Table 7.2.
Depending on the implementation of the core, these signals may be pins on
the core, internal registers, or both. The HSS EX10 PRBS generator was
described in Sect. 2.2.7, and the corresponding PRBS checker was
described in Sect. 2.3.8.

Execution of a PRBS test sequence involves the proper sequencing of these
control signals, and monitoring of the corresponding status signals. A typical
sequence proceeds as follows:
Step One: Set appropriate control signals to select the desired loopback mode
(if applicable). If loopback is selected, then the transmitter and receiver used
in this test sequence must be in the same chip. Otherwise, the remainder of this
sequence may require programming the PRBS generator and PRBS checker
circuits located in different chips.

For the HSS EX10 core, the Full Duplex Wrap Enable bit in the Receive
Test Control Register defined in Table 2.7 enables a Serial Diagnostic
Loopback path. This loopback path is also selected by the RXxPRBSEN pin
defined in Table 2.3. The register bit drives the FDWRAP signal shown in the
Receiver Concept Diagram in Fig. 2.7.

When FDWRAP is asserted, the Pseudo-Random Code Generator shown in
the Transmitter Concept Diagram in Fig. 2.4 drives data through the various
stages of the transmitter serializer to the Wrapback signal. The FDWRAP
signal in Fig. 2.7 selects the Wrapback data as the source for data into the AGC
Mux. This data is subsequently processed by the DFE and deserialization
stages, and checked by the Pattern Recognition Logic at the output of the
deserializer stage.

Table 7.1 Test patterns supported by the test pattern generator

Pattern generated PRBS polynomial

PRBS7+ x7 + x6 + 1

PRBS7- (inverted)

PRBS23+ x23 + x18 + 1

PRBS23- (inverted)

PRBS31+ x31 + x28 + 1

PRBS31- (inverted)

1010101.... Not applicable

(Repeating pattern of 64 “1”s then 64 “0”s) Not applicable

Test and Diagnostics 315

Fig. 7.11 PRBS control signals

Table 7.2 PRBS control/status ports

Block Port Type Description

PRBS
generator

Enable Control
Input

PRBS generator circuit enable; “0” = normal operation,
“1” = enable generation of the selected PRBS pattern.

Reset Control
Input

Reset the PRBS generator LFSR to a known state. Also
reset any implementation specific status states.

Pattern
Select

Control
Input

One or more bit input which selects the PRBS test
pattern.

Force
Error

Control
Input

Insert an error into the PRBS sequence which should
trigger an error at the PRBS checker.

PRBS
checker

Enable Control
Input

PRBS checker circuit enable; “0” = normal operation,
“1” = enable checking of the selected PRBS pattern.

Reset Control
Input

Reset the PRBS checker LFSR to a known state. Also
reset status states.

Pattern
Select

Control
Input

One or more bit input which selects the PRBS test
pattern.

Sync
Status

Status
Output

PRBS checker pattern sync monitor; “0” = not sync’d,
“1” = pattern checker sync’d to data

Error
Status

Status
Output

PRBS checker error monitor; “0” = no error;
“1” = error.

PRBS
Checker

PRBS
Generator

Enable
Reset

Pattern Select
Force Error

Sync Status
Error StatusEnable

Reset
Pattern Select

Serial Data

316 High Speed Serdes Devices and Applications

Step Two: Program the PRBS generator in the HSS transmitter as follows:
1. Set control inputs to select the desired PRBS pattern.

For the HSS EX10 core, this is selected by setting the Test Pattern Se-
lect bits of the Transmit Test Control Register in Table 2.6. When the
PRBS generator is enabled using the TXxPRBSEN pin, the value of
this register is overridden and the PRBS-7 test pattern is selected.

2. Reset the PRBS generator using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the PRBS
Reset bit in the Transmit Test Control Register defined in Table 2.6, or
the TXxPRBSRST pin defined in Table 2.2.

3. Enable the PRBS generator using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the Test
Pattern Generator Enable bit in the Transmit Test Control Register
defined in Table 2.6, or the TXxPRBSEN pin defined in Table 2.2.

The PRBS generator should now be transmitting the selected data pattern.
Step Three: Program the PRBS checker in the HSS receiver as follows:
1. Set control inputs to select the desired PRBS pattern.

For the HSS EX10 core, this is selected by setting the Test Pattern Se-
lect bits of the Receive Test Control Register in Table 2.7. When the
PRBS checker is enabled using the RXxPRBSEN pin, the value of this
register is overridden and the PRBS-7 test pattern is selected.

2. Reset the PRBS checker using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the PRBS
Reset bit in the Receive Test Control Register defined in Table 2.7, or
the RXxPRBSRST pin defined in Table 2.3.

3. Enable the PRBS checker using the appropriate control input.
For the HSS EX10 core, this is accomplished by asserting the PRBS
Check Enable bit in the Receive Test Control Register defined in Table
2.7, or the RXxPRBSEN pin defined in Table 2.3.

The PRBS checker should now be monitoring the incoming serial data and
attempting to synchronize to the selected data pattern.
Step Four: The PRBS checker initializes its LFSR as described previously to
synchronize to the data pattern being received. Once this process is complete,
the PRBS checker asserts the PRBS Sync status and begins to check data.

If PRBS Sync does not go active within a reasonable period of time, it is
indicative that either the serial data is not reaching the receiver, or that the
serial data contains too many bit errors for the PRBS checker to synchronize to
the pattern. It may also indicate the PRBS generator and PRBS checker are not
set for the same data pattern or baud rate. (Although if the baud rates are
multiples of each other, some PRBS patterns match anyway!)

Test and Diagnostics 317

For the HSS EX10 core, PRBS Sync status is reported in the
RXxPRBSSYNC bit of the Receive Test Control Register defined in Table 2.7,
and on the RXxPRBSSYNC output pin defined in Table 2.3.
Step Five: Once PRBS Sync is asserted, the PRBS checker is checking the
serial data. Any errors cause PRBS Error to be asserted. This signal may be a
level or a pulse, depending on the implementation.

For the HSS EX10 core, PRBS Error status is reported in the RXxPRBSERR
bit of the Receive Test Control Register defined in Table 2.7, and on the
RXxPRBSERR output pin defined in Table 2.3.
Step Six: To terminate the PRBS sequence, both the generator and checker
must be disabled using the corresponding Enable signals. Note that if the
generator is disabled first, the PRBS pattern is interrupted and the PRBS
checker will flag the error.

7.3 Logic Built-In-Self-Test (LBIST)
Another test feature which is frequently desirable on chips is the ability to

perform an in-circuit structural self-test of the chip.
Functional test sequences exercise the chip through a sequence which is

similar to the intended operation of the chip, and checks that the chip behaves
consistently with the expected functional description. While it is possible to
design functional BIST into a chip, this may require extensive design effort and
may exercise only a fraction of the logic in the chip.

Structural test sequences differ in that they exercise the logic gates and flip-
flops in the chip, and ensure that gates behave with their intended logic func-
tion. No attempt is made to construct the sequence such that it mimics actual
operational function of the chip. Unlike functional BIST, structural BIST can
be implemented using a more generalized approach requiring less effort, and
usually results in more of the chip logic being exercised.

Self-testing of the high-speed analog circuits in HSS cores is generally
performed using the PRBS generator and checker functions described previ-
ously. However, HSS cores also contain lower-speed digital logic, and it is
generally desirable to include those portions of the HSS cores within the logic
domains being tested by a chip-level Logic BIST (LBIST) controller.

7.3.1 LBIST Architecture
Structural testing of chips require that all flip-flops on a chip be connected

into scan chains. Each flip-flop on the chip has two data inputs: one input pin
which is the functional input data to the flip-flop, and one scan data input pin
which loads data into the flip-flop when the chip is in a scan mode. The func-
tional input pins of the flip-flops are connected as dictated by the chip design.
The scan data input pins are connected such that the flip-flops of the chip form
an arbitrary number of shift registers which can be serially scanned to load or
read the current state of the chip.

318 High Speed Serdes Devices and Applications

Fig. 7.12 Logic Built-In-Self-Test (LBIST) general architecture

Fig. 7.13 Multiple Input Shift Register (MISR)
An at-speed LBIST controller repeatedly executes the following sequence

of steps:
1. Set the chip logic to scan mode, and load all of the scan chains on the chip

with pseudo-random data.
2. Override chip inputs and assert pseudo-random values for chip inputs to

internal chip logic.
3. Deassert scan mode, and generate one functional clock cycle to the chip

logic. The state of all flip-flops on the chip is updated based on the logic
function of the combinatorial logic feeding each flip-flop.

4. Capture the logic levels of chip outputs and compare to expected values.
5. Set the chip logic to scan mode, and read all of the scan chains on the

chip, comparing the scan chain contents to expected values.

SRI A/B MCs SRO

Device Under Test MISRLFSR

:
:

PIs

:
:

PIs

{{
LFSR

Si
gn

at
ur

e
A

na
ly

ze
r

Test Timer

Reg+

0 1 2 3

Reg+ Reg+ Reg+ Reg+

4
Input

0
Input

1
Input

2
Input

3
Input

4

Test and Diagnostics 319

The above sequence can be optimized by overlapping some steps. For
example, reading the scan chains in step 5 can overlap loading the scan chains
for step 1 of the next test iteration.

The general architecture shown in Fig. 7.12 is typically used for most
LBIST implementations. The Test Timer in this figure is a state machine
sequencer which asserts control signals to execute the various steps of the
above sequence. This block directly controls all clocks and test mode control
signals on the chip while LBIST is active.

Generating pseudo-random stimulus for LBIST is readily accomplished
using LFSR circuits similar to those used for designing PRBS generators and
checkers. As shown in Fig. 7.12, LFSRs are typically used both for generating
pseudo-random values for chip inputs, as well as for loading scan chains
through the Scan Register Input (SRI).

Checking chip outputs and analyzing the Scan Register Output (SRO) are
typically not performed by directly checking the data. The expected results are
dependent on the chip design, and direct checking would require an arbitrarily
large amount of expected data to be coded in the chip.

Rather than do this, data are checked using Multiple-Input-Shift-Register
(MISR) circuits. A MISR performs parallel capture of signature test data from
a circuit having multiple output pins. Fig. 7.13 shows an example of a MISR.
Similar to an LFSR, the MISR implements feedback taps according to a
polynomial. In addition, various signals to be checked are XOR’d with the
current state of the MISR at each stage. In an LBIST implementation, the
various chip output and Scan Register Output signals that are to be checked are
connected as inputs to one or more MISR circuits.

The LBIST controller executes an arbitrarily large number of test cycles,
collecting results using MISR circuits as part of each test cycle. After a
preset number of test cycles, the state of each MISR corresponds to a unique
signature value. Any logic which is not behaving correctly will corrupt this
signature such that the MISR does not end up in the correct state. (It is possible
for multiple logic errors to cancel each other such that the MISR signature is
correct, but this is extremely unlikely.) Therefore, the LBIST controller only
needs to check that the MSIR signatures match their expected values, and does
not need to check results after every test cycle.

7.3.2 LBIST Considerations for HSS Cores
During the LBIST test sequence, the LBIST controller must load and

read the scan chains of the HSS core, and must be able to generate single
clock cycles to update the state of flip-flops within the core. However, HSS
cores generally contain PLL circuits which generate clocks internal to the
core. To support LBIST, the core design must permit these internal clock
sources to be disabled, and permit external control of these clocks for test
purposes.

320 High Speed Serdes Devices and Applications

Another consideration is that analog circuits within the HSS core are
generally not in a known state during LBIST. If the logic value of outputs of
these analog circuits cannot be predicted, and if these unknown states affect the
values captured in flip-flops which are included in the logic being tested by
LBIST, then the resulting MISR signatures cannot be uniquely predicted. To
support LBIST, it is necessary for the core design to fence analog circuit
outputs such that these signals are forced to known values where they are used
in the digital logic domain. This fencing logic must force these values
throughout the execution of the LBIST sequence.

Assuming the HSS core design includes the appropriate test control of
internal clocks and the appropriate fencing logic, then the digital logic of the
HSS core can be included as part of the chip logic being tested by LBIST.
However, the LBIST designer still needs to consider the speed at which this
logic can be exercised. The test clock inputs to the HSS core may not support
the same clock frequencies at which the high-speed internally generated clocks
would operate. It is desirable for LBIST to be executed at the highest possible
frequency; however, this highest possible frequency is generally gated by the
slowest path within the clock domain being tested. Skew and loading levels on
the clock distribution for the test clocks may further affect the frequency of
LBIST operation. The LBIST designer needs to account for any frequency
limitations relevant to LBIST execution that are an inherent part of the HSS
core implementation.

7.4 Manufacturing Test
HSS cores are tested during manufacturing test using a combination of

stuck-fault and at-speed digital test patterns, LBIST, and parametric measuring
techniques. This combination of test techniques is needed to adequately test
both the digital logic and analog logic present in the HSS cores. Testing falls
in two categories: tests that are applied globally to the chip logic, including any
HSS cores, and tests that are HSS-specific. Fig. 7.14 describes a typical
manufacturing test flow.

7.4.1 Chip Level Test
Chip level manufacturing tests are performed globally on the chip. Since

logic in the HSS cores is part of the logic on the chip, chip level tests also test
the HSS logic. HSS cores must be designed to support these tests. As shown in
Fig. 7.14, the test sequence starts by performing a short, basic test to ensure
scan chains are intact. If the scan chains are intact, then subsequent tests can be
executed.
7.4.1.1 Scan Test

Scan test, also called DC Stuck-Fault Testing, is a structural test of chip
logic to verify that logic gates perform their intended functions and no stuck-
at-0 or stuck-at-1 faults exist. Many types of manufacturing defects can be
detected by this type of testing.

Test and Diagnostics 321

Fig. 7.14 Typical manufacturing test flow
To support scan test, all flip-flops on the chip are connected into scan

chains. Scan chains also provide support for LBIST, and were discussed pre-
viously in this chapter. The testing concepts which apply to scan test and
LBIST are similar; the difference is that scan test is applied using external
tester equipment during the chip manufacturing process (either when testing
chips on the wafer or when testing assembled modules), while LBIST is con-
trolled by on-chip logic.

Scan test repeatedly executes the following sequence of steps.
1. Set the chip logic to scan mode, and load all of the scan chains on the chip

with the desired data pattern.
2. Drive chip inputs with the desired data pattern.
3. Deassert scan mode, and generate one clock cycle to the chip logic. This

causes the state of all flip-flops on the chip to be updated based on the
logic function of the combinatorial logic feeding each flip-flop.

4. Capture the logic levels of chip outputs and compare to expected values.
5. Set the chip logic to scan mode, and read all of the scan chains on the

chip, comparing the scan chain contents to expected values. As was the
case for LBIST, this step can be overlapped with loading the scan chains
for the next test iteration.

Note that in the prior discussion the data patterns for LBIST were generated
using LFSRs since such generation needed to be performed on-chip. Data
patterns for general scan test do not have the same restrictions. Arbitrary
patterns may be used to target testing of specific circuits and minimize the
number of required test patterns.

IDDQ Test

Scan Test

Test Scan Chain
Integrity

At-Speed Test

Voltage Screen

Scan Test (Repeated)

PLL and HSS Macro Tests
(per chip contents)

Note: If the chip fails any test, the chip is
discarded and subsequent tests are skipped.

322 High Speed Serdes Devices and Applications

The clock frequency used in step 3 is very slow compared to normal oper-
ating frequencies of the chip. Some scan test architectures use functional
clocks to execute step 3, while some scan test architectures use separate test
clocks to launch and capture the functional data. In either case, traditional scan
testing generally does not execute the launch/capture step at operational clock
frequencies. Such testing is intended to globally target chip logic which may
be designed for operation at many different clock frequencies, may contain
multicycle paths, etc. Software which generates traditional scan test patterns
does not consider timing. To ensure the data patterns are valid, scan test is
usually applied using clock frequencies much lower than the expected opera-
tional frequencies of the chip.
7.4.1.2 At-Speed Structural Test

While DC stuck-fault testing has historically proven extremely useful for
capturing manufacturing defects, transition faults are a prevalent failure mech-
anism for deep submicron chip technologies, and therefore DC stuck-fault
testing is insufficient. Transition faults are manufacturing defects which result
in abnormally large circuit propagation delays. DC stuck-fault testing is not a
sufficient test method because the launch/capture cycle is too slow to capture
the improper behavior of the circuit.

Various schemes exist for executing scan test with at-speed launch/capture
cycles to test for transition faults. Such schemes rely on software that is aware
of the expected circuit timing when generating the at-speed test patterns. At-
speed test pattern generation software is significantly more complex than soft-
ware used for the generation of DC stuck-fault test patterns. Each test pattern
can only target a single clock domain (or clock domains running at the same
clock frequency), and multicycle logic paths must be excluded from the test.
Clock gating logic can complicate test generation. As a result, the at-speed test
pattern set generally requires more test patterns and has lower coverage than a
DC stuck-fault test pattern set for a given chip.

For the above reasons, both sets of patterns are used during the manufactur-
ing test process. Traditional scan test is applied first using the shorter and more
complete DC stuck-fault test pattern set. If failures occur, no further testing is
required and test execution time is thereby optimized. If no defects are found
with DC stuck-fault testing, then the at-speed test pattern set is applied.
7.4.1.3 Voltage Screen

Assuming a chip is initially operational and free of defects, circuits are still
subject to deterioration over time which eventually causes the chip to cease to
operate. Chips have the highest probability of failing either during the first few
hours/days/weeks of operation (early lifetime failures) or beyond their expect-
ed lifetime after years of operation (end of life failures). It is desirable for chip
manufacturing tests to incorporate methods of ensuring chips subject to early
lifetime failures are not used to build systems.

One method of catching early lifetime failures would be to power on and
operate the chip for several weeks prior to shipping the chip. It should be

Test and Diagnostics 323

obvious this is not a practical approach since it would stall the manufacturing
process and utilize expensive test equipment for long periods of time. A better
approach is to apply stresses that accelerate the deterioration of the chip so that
chips subject to early lifetime failures fail within seconds rather than weeks.

Voltage Screen testing is one method of doing this. Voltage Screen testing
is a reliability stress test performed on digital logic of the chip. The test
sequence raises the power supply voltage well beyond normal operating con-
ditions (typically to a voltage two times higher than the nominal power supply
voltage) to cause latent early lifetime failure defects to become hard failures at
the tester. The voltage of the chip is elevated for some period of time, after
which scan test is repeated to determine if new stuck-at faults exist.
7.4.1.4 IDDQ or Leakage Test

Leakage testing, also called IDDQ testing, has historically proven to be a
useful screening test to find various classes of manufacturing defects. The
IDDQ acronym derives from the historical association of such testing with
quiescent current. However, the test actually measures leakage current.

As is discussed in Chap. 9, circuit power dissipation includes AC (active)
power, DC (leakage) power, and DC quiescent power components. Support for
leakage testing generally requires a control signal or other method of precon-
ditioning the chip to disable any DC current paths, and thereby eliminate (or at
least minimize) any DC quiescent power components. Many analog circuits,
including those in HSS cores, have DC current paths which must be disabled,
and a test control signal is usually provided to disable these circuits. Leakage
testing is performed with the chip properly preconditioned, and with no signal
switching occurring. In the absence of signal switching (zero activity factor),
the AC active power component is also insignificant. The result is that the DC
leakage power is the only significant contributor to current being drawn from
the power supply.

Given these conditions, the leakage current being drawn from the power
supply is measured and compared to an expected limit. Excessive leakage
current is an indicator that the chip contains significant manufacturing defects.
Because leakage testing does not take much time to perform, it is an efficient
screening method. It can be used early in the test sequence as a quick screen
test; if the test fails then no further testing is required and test execution time
is thereby optimized.
7.4.1.5 PLL Macro Tests

Although PLL tests are not really chip level tests, HSS cores contain PLLs,
and basic PLL tests are often conducted on all PLLs on the chip in parallel. In
addition, as is discussed in Chap. 6, clock distribution networks for reference
clocks to HSS cores are often sourced by intermediate frequency PLLs. It is
desirable to test the interaction between the PLL driving the reference clock
and the PLL in the HSS core. For these reasons the PLL macro tests have been
included as part of this discussion of chip level tests.

324 High Speed Serdes Devices and Applications

The following PLL tests are examples of typical PLL tests which are
applied in common to all PLLs on the chip. These tests are executed prior to
any other HSS-specific tests, since subsequent tests are dependent on defect-
free PLLs.
PLL lock/voltage regulator test. This is a test to check the functionality of the
intermediate frequency PLL together with the embedded HSS PLL and verify
that they have achieved lock. If the PLL slice of the HSS core contains a
voltage regulator, the output voltage of this regulator is measured.
Filter Capacitor Leakage Test. This test measures the quiescent leakage
current through the PLL filter capacitors to ensure they are defect-free. All
PLLs on the chip are usually tested at the same time.

7.4.2 HSS Macro Test
Once chip level tests have completed, including any PLL macro tests, spe-

cialized macro tests are applied to other cores on the chip as needed. HSS cores
generally require a suite of specialized tests which utilize the PRBS function-
ality described previously in this chapter. In this section, several typical tests
are described which may be used to test an HSS core similar to the HSS EX10
core as described in Chap. 2. An actual HSS design may require some or all of
these tests, and may require other tests depending on the functionality.

The simplest possible approach for HSS macro tests would be based on the
assumption that the test equipment used to test the chip and module has the
ability to contact any pin on the chip, and has the ability to drive and receive
the high-speed serial data signals at the maximum supported baud rate.
However, this would utilize state-of-the-art high-speed test equipment which
would correspondingly be very expensive. Reduced pin count test approaches
used by some ASIC chip manufacturers do not contact the high-speed pins on
the chip, and would not support driving and receiving signals at the full baud
rate even if they did. By not having as many tester channels and not requiring
high-speed testers, manufacturing test costs are reduced. Such test approaches
rely on loopback tests and other indirect test techniques to verify the operation
of the HSS core. Reduced pin count test methods are assumed for the HSS
macro tests described below.
7.4.2.1 Transmitter to Receiver Wrapback Test

The HSS Tx/Rx Wrap test is an “at speed” self-test which checks the func-
tionality of the transmit to receive wrap path by generating pseudo-random
data and applying it to the first stage of the receive logic. On the HSS EX10,
this test uses the built-in PRBS capabilities and the wrap path. The test se-
quence generates a PRBS data pattern, and wraps the output of the transmitter
to the serial input of the receiver. The PRBS checker in the receiver checks the
PRBS sequence for errors. The state of the PRBS sync and error status signals
upon completion of the test determines whether the test passed or failed.

HSS simplex cores may be designed to support a manufacturing wrap test.
For example, a receiver core can additionally contain a PRBS generator and a

Test and Diagnostics 325

test driver that injects PRBS data onto the serial data path of the receiver.
Likewise, a transmitter can additionally contain a test receiver which receives
the transmitter output signal and connects to a PRBS checker. Simple designs
are possible for these test circuits since they only need to operate in a wrap
mode where the wrap path can be assumed to be low-loss. Macro test methods
for simplex cores with such test circuits are therefore similar to the correspond-
ing full-duplex cores.
7.4.2.2 Receiver Sensitivity Test

The purpose of this test is to ensure the receiver input stage is correctly
differentiating between a “0” and a “1” level. This test is not an at-speed test;
the signal levels are static for each iteration of the test.

Differential voltage levels are applied to the HSS receiver serial inputs and
the output of the slicer logic of the HSS receiver is monitored to determine
whether the correct logic state is being received. (If the receiver contains a
DFE, then the slicer logic is part of the DFE circuit.) The test sequence gener-
ally drives a nominal differential voltage level, and repeats the test for both a
“0” and “1” logic level.

The output of the slicer logic (or corresponding circuit in the DFE) is an
internal point within the HSS receiver. This point may be accessed through a
test port on the core, but is more likely accessed by scanning out state values
of the core to determine the state values of flip-flops which latch the slicer
output. Most test pattern generation software has this capability.
7.4.2.3 Receiver Gain Control Test

Most HSS receivers include an Automatic Gain Control (AGC) circuit
which is used to amplify the signal as needed so that the signal to subsequent
circuits falls into a more limited range. The purpose of the receiver gain control
test is to test that the AGC is properly amplifying the signal. To avoid requiring
test equipment capability to drive precision signals, built-in circuits are utilized
in the case of the HSS EX10 core. The AGC offset current digital to analog
converter (IDAC) in the receiver is programmed to apply a differential input
voltage level at the RXxIP and RXxIN chip pads.

In the HSS EX10 receiver design, the resulting differential level passes
through gain stages in both the AGC and DFE and arrives at a summing node
in the DFE. At this summing node a nulling voltage (of opposite polarity to the
AGC source signal) is added to the AGC sourced voltage. In one test, the
nulling voltage is of a lesser magnitude than the AGC produced level, resulting
in an overall positive summed voltage which is detected as a logical “1” down-
stream from the DFE. In the second test, the summed voltage has a negative
polarity and produces a logical “0” result. Functional clocks shift the result
through the analog DFE logic to the digital CDR logic where a scan operation
can observe the test results.
7.4.2.4 Receiver Offset IDAC Test

In this test sequence, the AGC Offset IDAC is itself tested. The IDAC is
programmed to generate precise differential output voltage levels at the RXxIP

326 High Speed Serdes Devices and Applications

and RXxIN differential inputs to the HSS receiver. The termination resistor that
attaches to these nets remains engaged, while most other functions that interact
with the RXxIP/N nets are disabled. The test is run with the Receiver set for DC
mode and with any common mode voltage bias circuits powered down.

When the AGC Offset IDAC sinks current it draws it through the RXxIP/N
differential inputs from the tester voltage source. The tester performs a precise
analog current measurement at the RXxIP and RXxIN pins, and compares these
measurements to expected ranges for each value of the AGC Offset IDAC.
7.4.2.5 Signal Detect Test

Voltage levels are applied simultaneously at all HSS receiver differential
serial inputs and the signal detect logic state is scanned out and compared to
expected values. Multiple test passes are performed with various signal
amplitude levels. The common mode voltage (Vcm) of the incoming signal is
also varied.

Table 2.18 described the signal detect thresholds for “good” and “bad”
signals for various settings of the Signal Detect Control Register for the HSS
EX10 core. Signal amplitudes above the “good” threshold should always be
detected; signal amplitudes below the “bad” threshold should never be
detected.
7.4.2.6 Receiver DC Terminating Resistance

This is a parametric test that ensures that the terminating resistor is within
the specification and associated registers are wired and working correctly in
the HSS receiver.

The test is performed by using manufacturing test equipment to measure
the termination impedance as seen between the RXxIP and RXxIN pins.
7.4.2.7 Receiver Common Mode Voltage Bias Test

This is a test for the receiver Common Mode Bias circuits to insure defect-
free operation in both DC and AC coupled modes.

The test is performed by setting the receiver for each supported coupling
mode, and measuring the bias voltage on the RXxIP and RXxIN pins when these
pins are not being driven by the test equipment.
7.4.2.8 JTAG Receiver Test

The purpose of the JTAG receiver test is to verify the input from the RXxIP
and RXxIN pins in DC and AC modes for both a “0 to 1” and a “1 to 0” pattern.
Although this test sequence requires data transitions to be driven onto the
receiver inputs, these data transitions are at data rates typical for JTAG 1149.6
signals (typically no more than 1 MHz). Test equipment capable of driving
higher baud rates is not required for this test.

For this test sequence, the input differential voltage applied on the RXxIP
and RXxIN pins starts at the maximum allowed input voltage and then is
reduced to the minimum level that will sustain the output value. Test results for
each signal amplitude are determined through observation of the RXxBSOUT

Test and Diagnostics 327

and RXxACJZTP/N outputs as described in Sect. 2.3.6. The test is repeated for
both “0 to 1” and “1 to 0” transitions.
7.4.2.9 Transmitter Drive Strength Test

The driver used in the HSS EX10 has an FFE circuit with three taps and
seven segments. Each tap contains one, two, or four segments. The drive
current of each segment is controlled by values programmed into the
corresponding FFE segment weighting coefficient values programmed in the
Transmit TapX Coefficient Registers, and the value programmed into the
Transmit Power Register. These registers are described in Table 2.6 for the
HSS EX10 core. The values in these registers are converted to an analog
control voltage which scales the output drive current of each driver segment.

The voltage levels for the serial driver differential output, TXxOP and
TXxON, are measured for various combinations of FFE tap coefficient values
and transmit power values. Too many combinations exist to expect exhaustive
testing; the test engineer for the HSS core must optimize the cases to be tested
with the goal of maximizing circuit coverage of the test with as few test
iterations as possible. For the HSS EX10 core, a reasonable approach is to test
each combination of FFE tap coefficient values using the maximum setting for
the transmit power, and then to test various additional transmit power levels
with arbitrary FFE tap coefficient values.

For each test iteration, the test sequence must scan the chip to set the appro-
priate values for tap coefficients, transmitter power, and logic state. The
voltage levels on the TXxOP and TXxON pins are then measured and compared
to expected values. Note that these are static voltage measurements; data does
not transition during this test.
7.4.2.10 Transmitter Terminating Resistance Test

This is a parametric test that ensures that the terminating resistor is within
the specification and associated registers are wired and working correctly in
the HSS driver.

The test is performed by using manufacturing test equipment to measure
the termination impedance as seen between the TXxOP and TXxON pins.

7.5 Characterization and Qualification Testing
Characterization testing is performed to ensure that the HSS transmitter and

receiver perform both logically and electrically to specific requirements for
performance, amplitude, and jitter across the full spectrum of process, voltage,
and temperature (PVT) conditions. Qualification typically occurs after the
HSS design has been fabricated, tested, characterized, and reliability-stressed
using multiple lots of hardware including fast, nominal, and slow chips. Char-
acterization testing is typically accomplished using an HSS test chip which
contains multiple copies of transmitter and receiver links, driven by an IF PLL
and/or differential clock receiver, and including FIFOs between the receivers
and transmitters. The test chips are fabricated with intentional process
variation for NFET and PFET threshold voltage (Vt) and effective transistor

328 High Speed Serdes Devices and Applications

channel length (Leff). For HSS characterization, these HSS test chips are
typically mounted on an Evaluation Board which can be connected to clock
and pattern generation and recognition equipment, cables and/or backplane
channels, and whose control registers can be accessed through a parallel data
port and programmed via software on a PC. An example of a characterization
setup is shown in Fig. 7.15.

As discussed in Sect. 4.1.2, serial data interface standards specify that the
serial data must meet requirements for amplitude, eye width, and jitter to be in
compliance and to ensure interoperability between HSS transmitters and
receivers designed by different vendors. In addition, the characterization lab
testing of an HSS test chip supports model to hardware correlation between the
Spice, behavioral, and S-parameter simulation models used for signal integrity
analysis.

The following subsections discuss various topics regarding characteriza-
tion testing for HSS transmitters and receivers, including examples of the types
of testing that is typically performed.

7.5.1 Transmitter Tests
7.5.1.1 Test Conditions

Fig. 7.16 illustrates two possible measurement points for characterization
of transmitter devices. The transmitter devices to be tested are identified as the
device under test (DUT) blocks.

One method of performing such measurements would be to connect test
equipment directly to the output of a transmitter. The test equipment provides
an ideal load for the transmitter, with no intervening channel to distort the
signal. Some protocol standards do specify the transmitter output pin as a com-
pliance point, and in such cases compliance measurements are performed
directly at the transmitter output.

Fig. 7.15 HSS characterization and qualification lab setup

HSS
Test
Chip

Clock
Generation

and MUXing

Host (personal
computer)

Evaluation Board

Clock
Generation

Pattern
Generation
Equipment

Pattern
Recognition
Equipment

Test and Diagnostics 329

Fig. 7.16 Lab characterization conditions for the transmitter
Note, however, that in a real system the channel does distort the signal. This

distortion, and associated signal integrity topics, are discussed in Chap. 8. HSS
transmitters often contain an FFE circuit which is capable of altering the
transmitted signal. The FFE emphasizes the transmitted signal to cancel the
distortion effects of the channel, and thereby provide good signal quality at the
receiver input. Measurements performed at the transmitter output must be
performed using defined FFE settings, and provide no guidance as to the signal
quality at the receiver.

An alternative used by many protocol standards is to define the character-
istics of a compliance channel, and to perform transmitter characterization by
measuring the transmitted signal at the far-end of this channel. This is also
shown in Fig. 7.16, with the DUT driving a channel, and test equipment
connected to the far-end of the channel. In this case, the FFE is expected to be
set based on the channel characteristics to obtain the best possible signal
quality at the test point.

HSS design teams perform characterization testing of their transmitter
devices using both methods. Specifications for jitter and amplitude of the
transmitter output require measurements directly at this point. Characterization
of the FFE and model to hardware correlation of hardware to various signal
integrity models requires measurements at the far-end of known channels.
Furthermore, compliance testing for various protocol standards requires
measurements be taken consistent with the test methods and conditions defined
by the standards document.
7.5.1.2 Driver Transmit Jitter Output

This test quantifies the transmitter jitter output while transmitting several
different serial data patterns. Link protocols generally specify the data patterns
to be used for jitter compliance measurements. For example, the HSS EX10
transmitter described in Chap. 2 would be characterized with the PRBS-7 and
PRBS-10 patterns, as well as the “0101” clock pattern. Clock patterns do not
have pattern dependent jitter, and therefore this pattern is useful for determining

DUT
Test

Equipment
Test Equipment measurements
on transmitter output (ideal load).

DUT Test
Equipment

Test Equipment measurements
at far end of a specified
compliance channel.

330 High Speed Serdes Devices and Applications

the random jitter (RJ); the PRBS patterns are used to characterize total
jitter (TJ). Deterministic jitter (DJ) can be determined mathematically once TJ
and RJ are known. Jitter is discussed further in Sect. 8.2.

Jitter output testing uses a test setup similar to Fig. 7.17. Measurements are
made with and without power supply noise to ensure performance in an inte-
grated chip environment. Deterministic jitter (DJ), RJ, duty cycle
distortion (DCD) and TJ at a 10–12 bit error rate are compared to the link
compliance specifications. Software techniques are used to decompose jitter
into deterministic and random components, however these techniques
sometimes have trouble distinguishing between low levels of periodic and
random jitter.
7.5.1.3 Driver FFE Characterization

The transmitter FFE is used to reduce intersymbol interference. Fig. 7.18
and 7.19 show the effect of the various FFE taps and their polarity. The figures
use a repeating 00001111 pattern to clearly show how the tap points affect the
bits before and after the transition. The FFE capabilities must be correlated to
signal integrity analysis software, such as the HSSCDR simulation tool
discussed in Sect. 8.4.2. HSSCDR is used to analyze the S-parameters for
backplane examples, and determine proper FFE tap weights needed to equalize
these backplanes. These values are then used to perform hardware measure-
ments, and the simulated eye diagrams are correlated with the measured eye
diagrams.

Fig. 7.17 Lab setup example for jitter generation

HSS Rx

HSS Tx

Function Generator

Rx Ref Clk

Balun

Balun

Divide by 20

Tx Ref ClkSystem
Clock

Optical
Data Out

Optical
Data In

Electrical
CDR Input

BER OTNBERT sending PRBS23

Data Out Clock

Test and Diagnostics 331

Fig. 7.18 Tap 0 (precursor) negative tap 0

Fig. 7.19 Tap 0 (precursor) positive tap 0
7.5.1.4 Differential Amplitude

The differential amplitude of the HSS EX10 transmitter is measured with
various test patterns and under various test conditions. The minimum
differential amplitude of the measured data eye envelope that is observed
defines the amplitude limits of the inner eye; the maximum differential
amplitude of the measured data eye envelope defines the amplitude limits of
the outer eye.

332 High Speed Serdes Devices and Applications

PRBS test patterns are used to determine overall data eye envelope limits.
The frequency at which the transmitted signal switches, as well as the rise and
fall times of the signal, affects the amplitude of the signal swing. If measure-
ments are being performed through a compliance channel, then signal
amplitude is also affected by the frequency response and the loss characteris-
tics of the channel. Such effects are pattern dependent, and randomized data
with appropriate spectral content is necessary to determine the amplitude limits
of the data eye envelope.

Low frequency tone patterns also produce useful measurements. Such
patterns are used to determine the low frequency amplitude of the driver as
well as rise and fall times. For the HSS EX10 transmitter, which supports
10 Gbps baud rates, a 531.25 MHz tone is appropriate for performing these
measurements.

Using a PRBS test pattern, and a test setup where measurements are
performed at the end of a compliance channel, the resulting measurements do
give some insight into the signal amplitudes and jitter which must be tolerated
by the receiver device. However, these measurements can be misleading. Often
these measurements are performed with test equipment providing an ideal
impedance match; specifications in protocol standards may even require an
ideal impedance match (with minimal tolerance) as part of the test conditions
for measurements. In a real system, the impedance tolerance for the receiver
device is generally less stringent than the specified test conditions. This creates
reflections in the real system which can result in the receiver device seeing a
signal amplitude that is greater than the amplitude range specified in the
protocol standard. Such conditions are not a violation of the standard, and the
receiver device must tolerate these amplitudes.
7.5.1.5 Eye Mask Measurements

Many protocols use eye masks to specify the amplitude and total jitter
limits of the transmitted signal. Eye masks may be specified at either the
transmitter output, or at the far end of a specified compliance channel.

Fig. 7.20 Eye mask measurement with a Golden PLL

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

Golden
PLL

Oscilloscope
Clock

Reference

DUT

+
Differential
to single-

ended amp
Trigger

Signal

Test and Diagnostics 333

Fig. 7.21 Example of a transmitter eye mask

Fig. 7.22 Differential amplitude measurements
Fig. 7.20 illustrates a lab setup using an oscilloscope which may be used to

perform eye mask measurements [3]. The transmitter to be tested is connected
to a conversion amplifier which converts the differential signal to the corre-
sponding single-ended signal. (In some cases this conversion amplifier may be
integrated with the oscilloscope.) The output of the conversion amplifier is
split and connected to the oscilloscope data input, and through a Golden PLL
to the trigger input of the oscilloscope. The Golden PLL must have defined
bandwidth characteristics, and is used to obtain a stable low-jitter reference
clock for triggering the oscilloscope.

Am
pl

itu
de

 (m
V

)

Time (UI)

0.0 T_X1 T_X2 1-T_X2 1-T_X1 1.0

T_Y2

T_Y1

0

-T_Y1

-T_Y2Am
pl

itu
de

 (m
V

)

Time (UI)

0.0 T_X1 T_X2 1-T_X2 1-T_X1 1.0

T_Y2

T_Y1

0

-T_Y1

-T_Y2

© 2008 Optical Internetworking Forum. Used with permission.

334 High Speed Serdes Devices and Applications

An example of an eye mask specification is shown in Fig. 7.21. This mask
specifies both maximum and minimum limits for differential amplitude and
total jitter of the transmitter output. The shape of the inner eye mask also
results in an implied specification for maximum rise/fall time of the signal.
When performing compliance testing for a given protocol, the measured signal
eye must remain within the specified eye mask envelope. Fig. 7.22 illustrates
a measured eye waveform with an eye mask also displayed. The measured eye
is well within the eye mask boundaries shown on the scope trace.

Signal excursions beyond the boundaries of the eye mask specification are
not necessarily an indication of noncompliance. Such excursions may occur as
long as the frequency of such violations does not exceed the specified BER.
The limits and shape of the eye mask waveform is a function of the target BER,
and assumes continuous data collection by the test equipment. If a sampling
oscilloscope is used, the eye mask must be adjusted using mathematical
analysis to obtain correct results [3].

The HSS EX10 core described in Chap. 2 included a Digital Eye circuit
which allowed certain signal quality measurements to be performed in an oper-
ational environment without test equipment. This function was described in
Sect. 2.3.11. The minimum differential signal amplitude and eye width after
equalization can be measured using this function.

When using test equipment, measurements are made only on the top surface
of the circuit board with microstrip links to eliminate the effects of board vias
(which vary significantly depending on the board design). Measurements
typically include the affect of an SMP (subminiature push-on) connector,
1.6-in. board traces, 0201 decoupling capacitors, as well as the package and IC
circuitry.

Fig. 7.23 Relative wander measurement

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

Golden
PLL

Golden
PLL

Clock
Reference

DUT Oscilloscope
1/n

1/n Trigger

Test and Diagnostics 335

7.5.1.6 Multilane Synchronization
Protocols which bit-interleave or byte-stripe data across multiple serial

data lanes generally specify limitations on the maximum phase difference
between the various lanes to constrain the deskew range which must be
handled at the receiver. In Sect. 4.1.2.5 the terms wander and skew were
defined to describe variation in the arrival time of the signals of a multilane
interface. Skew is the constant component of the phase difference between two
lanes, while wander may vary over time due to changes in temperature,
voltage, or noise. Since timing variations for both skew and wander can be
tracked by the CDR in the receiver, these parameters are only of significance
for multilane interfaces.

Fig. 7.23 illustrates a lab setup for measuring skew and wander [3]. Two
transmit lanes of the device under test are connected to Golden PLLs which
filter out the high-frequency jitter on the respective lanes. One lane is con-
nected to the data input of the oscilloscope, while the other lane is used as a
trigger. The constant portion of the phase difference between the two channels
is the skew, while the time varying portion is the wander.

7.5.2 Receiver Tests
7.5.2.1 Jitter Tolerance

Jitter tolerance testing quantifies the ability of the receiver to receive
incoming data in the presence of jitter. Receiver jitter tolerance is measured for
both synchronous and plesiosynchronous reference clocks. Receiver jitter
tolerance compliance can be tested for both optical and backplane applications,
as determined by the applicable standard.

Optical mode testing of the HSS EX10 core is accomplished using a bit
error rate tester (BERT) as a data source. The BERT is capable of injecting
controlled amounts of jitter. Optical testing is performed using jitter that is pre-
dominantly nonequalizable. This jitter is generated by the BERT and includes
random jitter (RJ), bounded uncorrelated jitter (BUJ), and sinusoidal
jitter (SJ). The testing also includes a compliance channel to create intersym-
bol interference which is partially equalized using the DFE in the receiver.
Jitter is applied over a range of frequencies and amplitudes to ascertain the
maximum jitter tolerance of the HSS receiver. The jitter tolerance limit is
determined by the point where one or more errors is detected in the transmitted
pattern within a specified time period.

Backplane mode testing of the HSS EX10 is accomplished by inserting
various backplanes between the HSS EX10 transmitter and receiver. This
testing demonstrates the types of links that can be equalized when the HSS
EX10 core is used at both the transmit and receive ends of the channel. Since
the data source is the HSS EX10 transmitter, other types of jitter (RJ, BUJ, SJ)
are determined by the characteristics of the transmitter and cannot be adjusted
during this test.

336 High Speed Serdes Devices and Applications

Fig. 7.24 Jitter tolerance lab setup

Fig. 7.25 Typical sinusoidal jitter mask

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

BERT
Data
Output

Voltage
Controlled
Delay Line

Signal Filter
to define
edge rate

+
Compliant Channel

or Filter

DUT

Calibrated
Test Data

Sinusoidal Noise Source
for Generating Crosstalk

White Noise Source
for Generating UGJ

PRBS Noise Source
for Generating UHPJ

Jitter Control
Signal Filter

Jitter Control
Signal Filter

+
Clock

Reference

Wander can optionally
be applied directly to

FM input

Total SJ
Wander
Source

Clock
Reference
Input

© 2008 Optical Internetworking Forum. Used with permission.

Total Wander Amplitude

High
Frequency
Amplitude

20 dB/dec

baud / 1667 20 MHz

SJ

Test and Diagnostics 337

Fig. 7.24 illustrates a lab setup for jitter tolerance testing. The Noise Source
and PRBS Generator are sources of RJ and BUJ, and modulate the voltage
controlled delay line to inject this jitter onto the BERT output. Sinusoidal jitter
is then added by a sinusoidal noise generator and intersymbol interference is
added by the compliance channel.

Levels of RJ and BUJ used in jitter tolerance testing correspond to jitter
specifications for the transmitter device as defined in the protocol standard.
The purpose of SJ is to provide margin in the receiver design; the amount of SJ
to be injected is defined as part of the test specification. SJ may be defined in
terms of a mask as a function of frequency, an example of which is shown in
Fig. 7.25. The sinusoidal jitter frequency is varied as part of the test sequence,
with the amplitude adjusted according to the mask.
7.5.2.2 Receiver Signal Detection Test

The signal detection test determines the receiver input signal amplitudes (in
terms of differential voltage) that cause the signal detect status indicator to go
active or inactive. The signal detect specification has two limits:
• The upper limit is the minimum input voltage level where signal detect

status is guaranteed to be asserted, indicating presence of a signal.
• The lower limit is the maximum input voltage level where signal detect

status is guaranteed to not be asserted, indicating loss of signal.
These two limits are shown in Fig. 7.26. In the range between these limits,

the signal indication status is not guaranteed to have any particular value.
Although it would be ideal to have the upper and lower limits be the same
value, tolerances seen in real hardware circuits make this impossible. Some
tolerance is required to allow for variation in the actual threshold point where
the circuit switches state. The difference between the upper and the lower
limits reflects this variation.

Fig. 7.26 Receiver signal detect test sequence

85

175

Guarantee
Signal

Guarantee
No Signal

Decreasing Signal Amplitude

Increasing Signal Amplitude

1

2 3

4

V
si

gn
al

 (m
V

 p
-p

)

338 High Speed Serdes Devices and Applications

Fig. 7.27 Receiver signal detection test lab setup
Fig. 7.26 also illustrates the sequence for the signal detection test. First, the

input level is set to the minimum level supported by the test setup and the input
amplitude is increased until signal detect starts to toggle. This voltage is
recorded as the maximum logic 0 level (point 3). The signal is incremented
further until signal detect is static at logic 1. This value is recorded as the
minimum logic 1 level (point 4). If the HSS signal detect circuitry has no hys-
teresis, then points 1 and 2 in the figure are equivalent to points 4 and 3. Oth-
erwise, the test is repeated by setting the input level to the maximum level
supported by the test setup and incrementally decreasing the signal amplitude.

Fig. 7.27 illustrates the lab setup for this test. The BERT outputs, shown at
the bottom of the diagram, are attenuated and then passed through two 50-ohm
power splitters. These split the signal so that the half the receiver signal is
going to the DUT and the other half is observed on the scope so that amplitude
can be measured.

7.5.3 General Tests
The following tests are general and apply to both transmitters and receivers.

HSS Rx HSS Tx

Tx, Rx, and
system reference
clocks

Data Clk Clk’ CLK In Data In

BALUN

Rise Time Converter(s)

Attenuators

EDPPG

DCA

Chan 3 Chan 4

Power Splitters

Divide-by-40

Test and Diagnostics 339

7.5.3.1 Return Loss
As discussed in Sect. 1.4.1, the channel is an electrical transmission line

composed of circuit board traces and vias, connectors and/or cables. Reflected
energy due to impedance mismatches reduce the signal amplitude.

Return loss measures the returned energy from a signal launched into the
package ball at either the transmitter or the receiver. Return loss is specified as
the difference, in dB, between the forward and reflected logarithmic power.
Return loss measurements are typically characterized for the both the HSS
transmitter and receiver, and for both differential and common modes. An
example of return loss measurements under various conditions is shown in
Fig. 7.28.
7.5.3.2 Power Dissipation

Power dissipation is measured by turning on groups of receiver and
transmitter links on an HSS test chip and monitoring the change in the supply
current for various power supplies used by the HSS cores. Measurements are
repeated for slow, nominal, and fast chips, across various DFE and FFE
settings, and at various temperature and power supply voltage settings. The
measured values are compared to the simulated power values. Power
calculations are discussed in Chap. 9.

HSS implementations are often compared using a “power per link” metric.
This metric typically includes the total power dissipation requirements drawn
from all power supplies for one transmitter device plus one receiver device.
This metric also includes the power dissipation of the PLL slice; this
contribution is assumed to be amortized over all links in the core, and the per
link contribution is adjusted accordingly.

Fig. 7.28 Common mode return loss

340 High Speed Serdes Devices and Applications

7.6 References and Additional Reading
The following standards documents are applicable to topics in this chapter:

1. “IEEE Std 1149.1-2001 IEEE Standard Test Access Port and Boundary-
Scan Architecture,” Institute for Electrical and Electronic Engineers,
2001.

2. “IEEE Std 1149.6-2003 IEEE Standard for Boundary-Scan Testing of
Advanced Digital Networks,” Institute for Electrical and Electronic
Engineers, 2003.

The following standards documents contain descriptions of jitter
terminology and compliance test methods applicable to various interface
standards described in Chap. 5:
3. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability

agreements for 6G+ bps and 11G+ bps I/O,” OIF-CEI-02.0, Optical
Internetworking Forum (http:\\www.oiforum.com), Feb. 28 2005.

4. “ANSI INCITS TR-34-2004: INCITS Technical Report for Information
Technology - Fibre Channel - Methodologies for Jitter and Signal Quality
Specification (MJSQ),” American National Standards Institute, Inc.,
International Committee for Information Technology Standards, Jan. 1
2004.

The following reading is recommended for more information regarding
structural testing methods:
5. “Built-in Test for VLSI, Pseudorandom Techniques,” Paul H. Bardell,

William H. McAnney, Jacob Savir, Wiley, 1987.
6. “An Automated, Complete, Structural Test Solution for SERDES,”

Stephen Sunter, Aubin Roy, J-F Cote, International Test Conference
(ITC), 2004.

7.7 Exercises
1. A circuit board manufacturer requires that all chips being assembled on a

circuit board must support JTAG 1149.1 or JTAG 1149.6. Explain the
motivation for this.

2. Does either JTAG 1149.1 or JTAG 1149.6 perform at-speed test of signals
on the circuit board? Why or why not?

3. Draw the timing diagram for a sequence of the JTAG 1149.1 TCK and
TMS signals which places the JTAG tap controller in the Shift-IR state
regardless of the initial state.

4. Draw the timing diagram for a sequence of the JTAG 1149.1 TCK and
TMS signals which places the JTAG tap controller in the Capture-DR
state assuming the tap controller is initially in the Shift-IR state.

Test and Diagnostics 341

5. The I/O for a given chip consists exclusively of eight HSS EX10 cores.
Assuming all of the channels on these cores are used, how many JTAG
1149.1 Boundary Scan Cells must be included in the Boundary Scan
Register to control and observe these I/O?

6. Assume the chip in Exercise 5 must support JTAG 1149.6. How many
Boundary Scan Cells must be included in the Boundary Scan Register to
comply with JTAG 1149.6?

7. What additional test coverage does JTAG 1149.6 provide which is not
provided by JTAG 1149.1? Does this affect the design of the HSS
transmitter and/or the receiver?

be open and the differential signal still passes JTAG 1149.1 stuck-fault
testing. Draw similar waveforms to illustrate behavior when the ‘true’ leg
of the signal is open.

9. Explain why the Serial Diagnostic Loopback path in Fig. 7.7 is generally
not implemented for simplex core configurations. Discuss the signal
integrity implications.

10. Explain why the Remote Line Loopback path in Fig. 7.7 requires an
elastic buffer between the HSS Rx and the HSS Tx. Discuss the
implications of implementing this path for a plesiosynchronous system.

11. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator
which uses the following polynomial: G(x) = x7 + x6 + 1.

12. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS checker
which checks the following polynomial: G(x) = x7 + x3 + 1.

13. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator
which uses the following polynomial: G(x) = x23 + x18 + 1.

14. Modify the logic in exercise 13 to support generation of both PRBS23+
and PRBS23– patterns.

15. Design logic (Verilog or VHDL) for a 32-bit parallel PRBS generator
which uses the following polynomial: G(x) = x31 + x28 + 1.

16. Write a program to generate the complete PRBS data pattern for each of
the PRBS polynomials listed Table 7.1, and collect the following statistics
for each of the PRBS patterns in this table:
• Maximum run length
• Average run length
• Ratio of number of 1’s in the pattern relative to the total number of bits
(Run length is the number of consecutive 0’s or 1’s.)

17. An HSS EX10 transmitter and receiver are to be externally connected in a
wrap configuration and tested using a PRBS23+ sequence. Specify a
series of register write cycles (specifying register address and data) that
executes this sequence.

8. Figures 7.4 and 7.5 illustrate how the “complement” leg of the signal may

342 High Speed Serdes Devices and Applications

18. In addition to various PRBS patterns, the HSS EX10 transmitter also
supports data patterns which generate alternating 0’s and 1’s.
(a) How are these patterns generally used?
(b) Why is there no support on the receiver for checking these patterns?

19. An MISR circuit is connected to 32 scan outputs of a device under test,
and calculates the corresponding test signature using the polynomial:
C(x) = x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 +

x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x + 1

Design logic (Verilog or VHDL) for this MISR circuit. (Note that your
answer to Chap. 4 Exercise 20 or 21 may be a useful starting point.)

20. An analog block is instantiated in a digital design and must be fenced off
such that LBIST may be used to test the digital design.
(a) Draw an example of the fencing logic associated with the output of

the analog block.
(b) What fencing logic is required for inputs to the analog block?
(c) If there is a requirement that inputs to the analog block be observable

during the LBIST sequence, what logic should be added for inputs to
the analog block?

21. Explain the advantage (from a test cost standpoint) of performing
“Leakage Test” early in the test sequence shown in Fig. 7.14.

22. Assume an HSS core contained a significant number of analog circuits
which contained DC current paths that could not be disabled for leakage
test.
(a) How would this impact the ability to perform a Leakage test for the

rest of the chip?
(b) If all of the DC current paths in the HSS core are powered from a

separate analog Vdd power supply input to the chip, can you suggest
a workaround that allows leakage testing of the rest of the chip?

23. The scan test and at-speed test shown in Fig. 7.14 are both structural tests
while the HSS Macro Test “Transmitter to Receiver Wrapback Test”
described in Sect. 7.4.2.1 is a functional test. All of these tests provide test
coverage for logic in the HSS core. Contrast the differences between these
tests.

24. Explain the purpose of the “Voltage Screen” test in Fig. 7.14. Is it possible
for the chip to pass the first “Scan Test” and “At-Speed Test”, and then
fail the “Scan Test” executed after the Voltage Screen step?

Test and Diagnostics 343

25. Two test configurations are shown in Fig. 7.16 for performing
characterization tests on a transmitter device. Assume an eye mask is used
to specify signal characteristics of the transmitted signal.
(a) Explain why measurements for one of these configurations must be

performed without transmit equalization.
(b) Explain why Tx equalization can be used in the other configuration.

26. If a traditional eye mask as described in Fig. 7.21 is used to specify signal
characteristics, then any measurements taken at the transmitter must be
performed with transmit equalization turned off. Suggest an alternative
method of specifying a transmitter waveform at the output of the
transmitter (not using a compliance channel) that includes the affects of
transmit equalization. (Hint: IEEE 802.3 Backplane Ethernet variant
10GBASE-KR came up with one approach.)

27. Assume various test patterns are used to characterize the jitter generated
by a transmitter device using the test configuration shown in Fig. 7.17.
(a) Using a PRBS pattern, will the corresponding measured jitter be RJ,

DJ, or TJ?
(b) Do you expect significant differences in the measurement for a

PRBS-7 pattern as opposed to a PRBS-31 pattern? Why or why not?
(c) Using an alternating ‘00110011...” pattern, will the corresponding

measured jitter be RJ, DJ, or TJ? Why?
28. Does a test pattern exist which can be used to characterize the jitter

generated by the transmitter device in Fig. 7.17 that only exhibits
deterministic jitter? Why or why not?

29. The discussion of transmit equalization in Sect. 1.3.2 defined
preemphasis and deemphasis classifications for FFE architectures. Which
of these applies to the waveforms in Fig. 7.18, 7.19? Why?

30. Draw waveforms similar to Fig. 7.18, Fig. 7.19 for an FFE which uses an
architecture that is the opposite of that in exercise 29.

31. What is the purpose of the “Golden PLL” in Fig. 7.20?
32. Assume an eye mask as described in Fig. 7.21 is used to specify signal

characteristics for a transmitter device. The T_Y2 parameter corresponds
to the maximum differential amplitude allowed on the transmitter output
under the specified test conditions. In an actual system using a compliant
transmitter device, is it possible for a receiver device to see a differential
amplitude that exceeds this specification? Why or why not?

344 High Speed Serdes Devices and Applications

33. Fig. 7.23 illustrates a test configuration used to measure the wander and
skew between two transmit data lanes of an interface. Explain why the
“Golden PLL” devices are required. How would omitting the “Golden
PLL” devices affect the measurement?

34. For the test configuration in Fig. 7.23:
(a) If a single measurement is taken, does this measurement indicate the

skew or the wander between the two data lanes (or some mixture)?
(b) Suggest a test procedure to perform a series of measurements such

that the value of both the skew and wander can be determined.
35. A jitter tolerance test is performed on a receiver device using the test

configuration in Fig. 7.24. During the 24 hour test period, some errors are
received. How many errors are allowed if the receiver device is to meet
the following bit error rates?
(a) BER = 10-12 (b) BER = 10-15 (c) BER = 10-18

36. Sinusoidal Jitter is injected on the signal as part of a jitter tolerance test
using the test configuration shown in Fig. 7.24.
(a) The test configuration also injects both RJ and DJ components onto

the signal. What is the purpose of injecting SJ as well?
(b) The amount of SJ injected depends on the frequency of this jitter

component, and is defined by the mask in Fig. 7.25. Why does SJ
have a larger amplitude at lower frequencies?

37. A signal detection test is performed on a receiver device using the test
sequence described in Fig. 7.26, and with the thresholds shown in that
figure. What is the expectation for whether RXxSIGDET is asserted for
each of the following signal amplitudes:
(a) 70 mVppd (b) 180 mVppd (c) 100 mVppd
(d) 175 mVppd (e) 85 mVppd (f) 173 mVppd

38. Given the HSS EX10 core described in Chap. 2:
(a) Suggest a test sequence for characterizing power dissipation of the

core for various equalization modes of the transmitter and receiver.
(b) How would you convert these power dissipation numbers to a “power

per link” metric?
(c) How is the power dissipation contribution of the PLL slice handled in

this metric?

Signal Integrity 345

Chapter 8
Signal Integrity

The data rates at which serial links typically operate are very often greater
than the inherent bandwidth capabilities of the channel which connects the
transmitter device to the receiver device. Signal integrity analysis is therefore
required to determine whether the signal being transmitted, as distorted by the
channel, is recoverable by the receiver.

This chapter focuses on the types and sources of jitter in detail. Signal
integrity analysis techniques are described using both circuit simulation and
statistical analysis techniques.

8.1 Probability Density Functions
A probability density function (PDF) defines the probability of a sample x having

a certain value for the universe of possible values of x. In the context of jitter, x is
defined as the timing deviation of a given edge of the signal, and p(x) is the probability
of the signal edge having this amount of deviation. Before discussing the various
contributors to jitter, it is useful to review the mathematics behind two common
PDFs: the PDF for a Gaussian distribution, and the PDF for a dual-Dirac distribution.

8.1.1 Gaussian Distribution
The Gaussian distribution is well studied in the field of probability and statis-

tics. It can be used to characterize many naturally occurring physical phenomena
and it does a good job of representing the random jitter component of serial data
transitions. A Gaussian distribution is defined by two values: the mean, represented
by the “�” symbol, and the standard deviation, represented by the “"” symbol. The
mean is the central position of the curve on the x-axis, and the standard deviation
is a measure of the width of the distribution. By definition, the Gaussian distribu-
tion is unbounded, meaning that no matter how far a value is from the mean value,
there is a nonzero probability of encountering an occurrence at that value. Fig. 8.1
illustrates a PDF for a Gaussian distribution for which � = 0, " = 1.

The PDF corresponding to Fig. 8.1 is defined by the following equation:

where $ = (x – �), representing the difference between the amount of deviation
of a given edge transition (x) and the mean of the distribution (�). The p($, ")
function specifies the probability distribution and can be integrated between
two limits to determine the probability of x (or $) having a value within those
limits. Integration of the (8.1) is easier if $ is normalized in terms of ",
suggesting the substitution: z = (x – �) / ".

p τ σ,() 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅=

−
(8.1)

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 345
© Springer 2008

346 High Speed Serdes Devices and Applications

Making this substitution into (8.1), and then integrating (8.1) over the range
of -∞ to z with respect to t results in:

where error function erf(z) is defined as:

Equation (8.3) is called a cumulative distribution function (CDF), and rep-
resents the cumulative probability that the deviation of a given edge transition
(x) is in the range: -∞ < x < z. The CDF in (8.2) may be used to determine the
probability of z being between two limits:

Using this formula, it can be demonstrated that approximately 68.26% of the
events are within one " of the mean (�), 95.45% of the events are within two "
of the mean, and 99.73% of the events are within three " of the mean.

A Gaussian distribution is inherently unbounded with the PDF curve
stretching from -∞ to +∞. The greater the number of samples that are accumu-
lated, the more likely it is that some of those samples are low probability events
far from the mean. For example, assume that test equipment is used to measure
the peak-to-peak limits of unbounded Gaussian Jitter for an HSS link. The
longer the period over which the measurement is taken, the greater the number

Fig. 8.1 Probability density function of a gaussian distribution

PDF of a Gaussian Distribution

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Normalized sample value (x)

P
ro

ba
bi

lit
y

P z() 1
2π

---------- e
t2

2
----•

⋅ td
∞•

z

∫ 0.5 1 erf z
2

 += =

−

−

erf z() 2
π

------- e t2• td
0

z

∫⋅= −

P Z1 z Z2≤ ≤() P Z2() P Z1()•= −

(8.2)

(8.3)

(8.4)

Signal Integrity 347

of signal transitions being observed, and the larger the peak-to-peak jitter value
reported. For a truly Gaussian jitter source, the measured jitter approaches
infinity as the measurement period is increased.

A somewhat more useful measurement for an unbounded Gaussian distri-
bution is the root-mean-square (RMS) value, which represents the samples of
the distribution that are within one " of the mean. Unlike the peak-to-peak
value, the RMS value converges to a fixed value determined by " as the
number of samples increases. As noted previously, 68.26% of the samples are
in this range. Conversely, 31.74% of the samples are not in the range specified
by the RMS value.

The peak-to-peak value of the measured jitter in the previous example
tended toward infinity as the measurement time increased, and therefore this
was not a useful measurement to use as a design constraint. The RMS value of
the measured jitter converged on a useful value, but since more than 31% of
the data transitions have more deviation than the RMS value, this value is also
not an appropriate design constraint.

What is needed is an appropriate “worst case” limit for the jitter such that
any jitter beyond this limit is sufficiently improbable. The specified bit error
rate (BER) for the link imposes such a limit. The BER is defined as the ratio
of the number of bit errors (which in this context are assumed to be caused by
jitter events in the tails of the Gaussian distribution) to the total number of bits
transmitted. By excluding events in the tails of the Gaussian distribution from
consideration, a bounded (rather than unbounded) Gaussian distribution
results.

A bounded Gaussian distribution is represented mathematically by the
bounded equation:

where K is the normalization constant for the PDF, selected so that p($, ")
integrates to 1 over the range of -∞ to +∞ .

Given this PDF, the corresponding CDF specified by P(z), and a target BER
limit, the probability of an event beyond the range specified by the BER must
be constrained such that:

BER ≥ [1−(P(z) − P(−z))]
Q is related to the target BER by the following equation [6]:

p τ σ,() K 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅ ⋅= if τ τmax≤

0= if τ τmax>

BER 1
2
--- erfc Q

2

 2

 ⋅ 1

Q 2π
--------------- e

Q
2

⋅= =

−

(8.5)

(8.6)

(8.7)

−

348 High Speed Serdes Devices and Applications

where erfc(x) is the inverse of the error function erf(x): erfc(x) = 1 - erf(x), and
the above equation results from the expansion of this function.

Given Q, the peak-to-peak (zp−p), peak (zpeak), and RMS (zrms) values
of z are related as follows:

zpeak = Q x zrms
zp−p = 2 x zpeak

Some values of Q (to two decimal places) corresponding to various values
of BER are shown in Table 8.1. A BER of 10-12 corresponds to Q = 7.03; a BER
of 10-15 corresponds to Q = 7.94.

Gaussian distributions, both bounded and unbounded, are useful for
modeling various types of jitter. Some of these jitter sources result from
random events, while others are not random but are not correlated with the data
(and therefore can be modeled with a bounded Gaussian distribution).

8.1.2 Dual-Dirac Distribution
Samples modeled by a dual-Dirac probability density function have equal

probability of occurring at each of two values of x, as shown in Fig. 8.2. The
mean (�) of the function lies at the midpoint between the two values of x, and
the PDF is nonzero for x = (� + A). The dual-Dirac function is represented
mathematically by the equation:

p(x, A) = 0.5 [δ((x − µ)−A) + δ ((x − µ) + A)] (8.9)
where �(x) is the impulse response of x:

In Fig. 8.2, � = 0, A = 1.
The Dual-Dirac PDF is useful for modeling certain forms of deterministic

jitter. For lack of a better model, it is also often used as a general model for
correlated deterministic jitter.

Table 8.1 Q factors for different BER targets

BER Q BER Q
10-3 3.09 10-10 6.36
10-4 3.72 10-11 6.71
10-5 4.27 10-12 7.03
10-6 4.75 10-13 7.35
10-7 5.20 10-14 7.65
10-8 5.61 10-15 7.94
10-9 6.00 10-16 8.22

δ x()
∞ when x 0•,
0 when x 0≠,

and δ t() td
∞

∞
∫ 1==

when x = 0

−

(8.8)

(8.10)

Signal Integrity 349

8.2 Jitter
One of the most important considerations in the performance of high-speed

serial links is jitter. Jitter is defined as the deviation in arrival time of a signal
from its ideal or expected arrival time. The amount of jitter present on a serial
link is related to the achievable BER. If the jitter on a serial link is excessive,
data errors result and overall link performance is degraded, possibly to
unacceptable levels.

This chapter is only concerned with jitter where the deviation occurs
sufficiently fast that the CDR circuit in the serial link cannot track the
deviation. As was discussed in Sect. 4.1.2.5, wander and skew can also be
considered to be forms of jitter, but with the variation in arrival time changing
at much lower frequencies. Wander and skew components of jitter are
therefore tracked by the CDR and do not affect the signal integrity of the serial
link, although they may affect FIFO design in the protocol logic.

8.2.1 Jitter Components
This section describes the various components of jitter and the associated

terminology. This topic is complicated by the fact that different standards use
different terminologies. The following discussion uses one of the more
common sets of terms for jitter types, and also provides alternative terminol-
ogy where appropriate.

As was defined in Sect. 1.4.3, the total jitter (TJ) of the signal is the overall
jitter as seen at the point of measurement. Total jitter can be measured directly
on hardware and is calculated by determining the ideal bit time minus the
actual eye width. Total Jitter is generally specified as either a peak or peak-to-
peak value. As will be described in Sect. 8.2.3, jitter is statistical in nature and
the value is related to the target BER of the serial link. Hardware measurements
of TJ must be taken over a sufficient length of time to ensure a valid measurement

Fig. 8.2 Probability density function of a dual-dirac distribution

PDF of a Dual-Dirac Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

Sample Value (x)

Pr
ob

ab
ili

ty

350 High Speed Serdes Devices and Applications

for the target BER. The measurement must also be based on sufficiently
random data to ensure all possible pattern-dependent effects have been
observed. A typical oscilloscope providing a + 3 sigma histogram of eye width
values is not an accurate portrayal of the eye width for a 10-12 BER, and using
such a measurement understates the jitter of the system.

Traditionally, jitter is subdivided into the following two components:
deterministic jitter (DJ), and random jitter (RJ). Each of these categories
accumulates differently in the link and results in different requirements for
compliance and budgeting schemes.
Deterministic jitter. This is the amount of the total jitter for which the jitter
distribution is non-Gaussian. Deterministic jitter is always bounded in
amplitude and is created by specific, identifiable causes. The terminology used
in [1] for DJ is high probability jitter (HPJ). Four types of jitter are typically
included as part of the DJ component:
• Duty cycle distortion (DCD) results from the difference in width between

a logic “0” and a logic “1.” This element of DJ is the result of a driver
circuit that has rise and fall times that are not equal. Another cause of
DCD results when a DC voltage offset is present between the true and
complement legs of the differential signal. Pulse width shrinkage due to
passive or active components of the channel may also be a factor. DCD is
sometimes called pulse width distortion.

• Data dependent jitter (DDJ) includes timing variations that result from
nonclocklike serial data waveforms as they propagate through a channel
with bandwidth limitations. Given knowledge of the preceding and
subsequent bits of the transmission, the DDJ component of the jitter is
predictable, and therefore may be corrected through equalization. DDJ is
also called pattern dependent jitter or intersymbol interference (ISI).

• Periodic jitter (PJ) is jitter which has a single fundamental harmonic plus
possible multiple even and odd harmonics. PJ results from various
electromagnetic noise sources in the system such as power supply noise
and crosstalk from periodic signals. Clock signals are periodic signals
which cause crosstalk that results in PJ on the victim signal.

• Sinusoidal jitter (SJ) is jitter which has a single fundamental harmonic
and no additional harmonics. Sinusoidal jitter is generally defined in the
context of applied SJ for jitter tolerance testing of a receiver device. For
this reason it is generally considered separate from the periodic jitter
which arises from sources in the system.

• Bounded uncorrelated jitter (BUJ) includes all components of non-
Gaussian jitter which are not included in the various components listed
above. Nonclock crosstalk aggressor signals operating at a baud rate that
is synchronous to the baud rate of the victim signal produce jitter on the
victim which is non-Gaussian and is also not correlated with data on the
victim signal.

Signal Integrity 351

Random jitter (RJ). This is the amount of the total jitter which conforms to a
Gaussian jitter distribution. The terminology used in [1] for RJ is Gaussian
jitter (GJ). Random jitter is caused by semiconductor imperfections and
quantum effects, as well as certain types of crosstalk. Two types of jitter are
typically included as part of the RJ component:
• Uncorrelated unbounded Gaussian jitter (UUGJ) is the component of RJ

for which the jitter distribution is a true Gaussian distribution. This
component results from the imperfections in the semiconductor crystal
lattice, the thermal vibrations of the conductor atoms, and many other
small contributors. Measured over time, the peak-to-peak value grows as
the measurement time increases.

• Correlated bounded Gaussian jitter (CBGJ) is the component of RJ for
which the jitter distribution is Gaussian, but the amplitude is bounded and
correlates with the signal amplitude being transmitted. Crosstalk aggres-
sor signals operating at a baud rate that is asynchronous to the baud rate of
the victim produce jitter on the victim which may be approximated as a
bounded Gaussian distribution, and is included in the CBGJ component.

Table 8.2 illustrates the taxonomy of the jitter components which make up
TJ, classifying these components as either having bounded or unbounded mag-
nitudes, and whether they are correlated or uncorrelated to the data being sent.

If all of the jitter sources were deterministic in nature, the extreme values
of the timing variations could be calculated, and the absolute worst case and
best case timing variation could be calculated with confidence. However, the
random elements of jitter make it impossible to determine hard limits for
timing variations; rather the timing limits need to be expressed in terms of
probabilities of timing variation outside the defined limits.

Table 8.2 Jitter taxonomy

Total jitter (TJ)
(at BER of

interest)

Deterministic
jitter (DJ)

Data dependent jitter (DDJ)

Bounded

Correlated
Duty cycle distortion (DCD)

Sinusoidal jitter (SJ)
(applied)

Uncorrelated

Bounded uncorrelated jitter
(BUJ) (including PJ)

Random Jitter
(RJ)

Correlated bounded Gaussian
jitter (CBGJ)

Uncorrelated unbounded
Gaussian jitter (UUGJ)

Unbounded

352 High Speed Serdes Devices and Applications

8.2.2 Deterministic Jitter
This section describes the various components of DJ in detail. It is

important to understand the components of DJ in the system since equalization
features may be incorporated into the HSS core design to compensate for
correlated DJ components.
8.2.2.1 Duty Cycle Distortion

Duty cycle distortion, also known as pulse width distortion, results from
various types of asymmetry in the electrical signals that are being transmitted
on the serial link.

Fig. 8.3 demonstrates one possible source of DCD, where one leg of the
differential pair has a DC offset compared to the other leg. The offset shifts the
point at which the differential signals cross, and results in asymmetry between
the width of the “0” and “1” bits.

Another common cause of DCD within a high speed serial link is asymme-
try between the rise and fall times of the transmitter circuit. Fig. 8.4 illustrates
a waveform where the fall time of the differential waveform is faster than the
rise time. The result is that the bit width of the “1” is reduced, and the bit width
of the “0” is expanded.

A probability density function can be developed for DCD by recognizing
that this jitter is characterized by two mean values (�1, �2), where one of these
means is associated with the deviation of the rising edge of the signal, and the
other mean is associated with the deviation of the falling edge. Any given
signal edge has a 0.50 probability of being a rising edge (and therefore having
a jitter of approximately �1), and a 0.50 probability of being a falling edge (and
therefore having a jitter of approximately �2). The dual-Dirac PDF is appropri-
ate for modeling this distribution.

Fig. 8.3 DCD resulting from DC offset

Ideal
Waveform

(0V DC Offset)

Complement Waveform
has positive DC offset

Reduced ‘1’
bit width

Expanded ‘0’
bit width

True

True

Complement

Complement

Signal Integrity 353

For any jitter distribution, the overall mean (�) is zero, and therefore:
� = (�1 + �2)/2 = 0
A = (�1 – �2)/2 = DJDCD

where DJDCD is the peak-to-peak value of the DCD jitter component, and �
and A are characteristics of the dual-Dirac PDF defined in (8.9). The resulting
PDF for DCD is therefore defined by the following equation [5]:

Since DCD jitter is correlated with the data being transmitted, equalization
circuits can compensate for this jitter component.

8.2.2.2 Data Dependent Jitter
Data dependent jitter refers to the timing variations caused by the

bandwidth limitations of the channel being traversed by the signal. This type
of jitter, also known as pattern dependent jitter or intersymbol interference
(ISI), is observed on nonclocklike waveforms since the frequency spectrum of
such signals is continually changing. DDJ leads to varying amounts of signal
attenuation and phase delay when exposed to the frequency response charac-
teristics of a typical transmission channel. Such effects are not observed on
clock waveforms which have constant frequency components.

Virtually all data channels exhibit increasing insertion loss as the frequency
of the signal increases. More expensive channel components (exotic materials
and more costly design and fabrication techniques) can mitigate these effects
to a degree, but high baud rates still expose these signals to a significant
amount of signal attenuation resulting in DDJ contribution.

Fig. 8.4 DCD resulting from rise/fall time asymmetry

Ideal
Waveform

(Rise Time = Fall Time)

Asymmetric Waveform
(Rise Time > Fall Time)

Reduced ‘1’
bit width

Expanded ‘0’
bit width

True

Complement

True

Complement

DCD x() 0.5 δ x
DJDCD

2
--------------------•

 δ x
DJDCD

2
--------------------+

 += − (8.11)

354 High Speed Serdes Devices and Applications

An example of these effects is shown in Fig. 8.5. Instances where multiple
“1” or “0” bits are sent in a row allow the signal to settle near rail voltages,
while higher transition densities cause signals to reverse before reaching these
voltage limits. When the signal starts near the voltage rails, it takes longer for
the signal to transition. In the figure, a long string “1” bits is followed by a “010”
sequence. The bit transition from “1” to the first “0” bit slides the crossover
point well into the bit window, while the transition from “0” back to “1” occurs
somewhat faster. Although it may appear that the waveform is exaggerated in
this figure, in reality this is not atypical at higher baud rates for an uncompen-
sated channel.

DDJ is dependent on the data pattern and the frequency response of the
channel; no general equation for the PDF exists. Since DDJ jitter is correlated
with the data being transmitted, equalization circuits can compensate for this
jitter component.
8.2.2.3 Periodic Jitter

Periodic jitter refers to the timing variations caused by various electrical
noise sources within the system which are characterized by a fixed frequency
spectrum. Such noise sources have a single fundamental frequency component
and may also include harmonic frequencies. The jitter induced on the serial
data link is correlated to the spectral components of the noise source, but is not
necessarily correlated to the data pattern being transmitted on the victim signal.

Power supply noise is an obvious potential source of periodic jitter.
However, the spectral components of power supply noise are usually well
below the cutoff frequency for the CDR circuit design, and therefore this noise
is generally tracked by the CDR circuit. Nevertheless, it is prudent for system
designers to take steps to minimize the amount of periodic jitter in the system,
since most systems must meet EMI requirements dictated by government
regulations. (Such regulations are defined by the Federal Communications
Commission for equipment sold in the United States.)

Fig. 8.5 Data dependent jitter example

Ideal
Waveform

Waveform on
Bandlimited Channel

Reduced
bit width

Expanded
bit width

True

Complement

True

Complement

Signal Integrity 355

Clock signals distributed through the system are a more significant source
of periodic jitter. Clock signals have a single fundamental frequency compo-
nent and this frequency is generally above the cutoff frequency for the CDR
circuit design. Square waves additionally generate harmonics of the fundamen-
tal, with the amplitude of the harmonics increasing as the rise/fall times
become faster.

When periodic signals become a crosstalk aggressor for a noise victim
serial link, periodic jitter results. If the clock signal frequency is related to the
serial data rate, then the periodic jitter is a non-Gaussian jitter source. This may
occur, for instance, if the reference clock distribution network is acting as a
crosstalk aggressor on a serial data link which is transmitted using this refer-
ence clock. Any clock that is frequency locked to this reference clock is also a
potential non-Gaussian periodic jitter source.

The PDF corresponding to PJ depends on the periodic waveform of the
crosstalk aggressor. However, a useful mathematical model can be developed
by assuming the periodic waveform corresponds to the Sinusoidal Jitter case
of a single sinusoidal signal. The waveform for this is:

The corresponding PDF for periodic jitter due to this jitter source is [5]:

This function is graphed in Fig. 8.6 for A = 4. The dual-Dirac function may
be used as an approximation for this function, resulting in the equation:

The above equation is valid for PJ caused by a single sinusoidal signal.
However, PJ is often caused by multiple signals which may or may not be
sinusoidal, and are often asynchronous with respect to each other and to the

Fig. 8.6 Probability density function for a single sinusoidal aggressor PJ

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Sample value (x)

Pr
ob

ab
ili

ty

x A ωt φ0+()cos=

PJ x() 1

π 1 x A⁄()2•

----------------------------------=
−

PJ x() 0.5 δ x A() δ x A+()+[]= −

(8.12)

(8.13)

(8.14)

− A ≤ x ≤ A

356 High Speed Serdes Devices and Applications

victim link. As the number of signals contributing to PJ increases, the PDF for
PJ resembles a bounded Gaussian distribution [5].

Most sources of PJ result in jitter which is not correlated to the data pattern
being transmitted on the link of interest. Equalization circuits are not capable
of compensating for uncorrelated jitter.
8.2.2.4 Bounded Uncorrelated Jitter

Bounded uncorrelated jitter, also called uncorrelated bounded High Proba-
bility Jitter (UBHPJ) in [1], refers to timing variations that are bounded in
nature but are not directly related to the data pattern that is being sent on the
high speed link. These variations can be caused by crosstalk noise coupling
from adjacent channels which are transmitting asynchronous data. Since these
noise sources do not have any correspondence to the data that is being sent on
the serial data link of interest, the resulting jitter appears random with respect
to the serial data pattern.

Crosstalk aggressors for adjacent channels can appear Gaussian or non-
Gaussian. If the data on the crosstalk aggressor is truly unrelated and is
asynchronous to the baud rate of the crosstalk victim, then the jitter may be
approximated with a bounded Gaussian distribution and included in the CBGJ
component. Otherwise, the jitter is likely to be non-Gaussian and is included
as BUJ. Note this distinction between CBGJ and BUJ in [1] is somewhat arbi-
trary; some texts consider all crosstalk sources as BUJ [5].

The PDF for BUJ is modeled using a bounded Gaussian distribution:

where $ = (x – �), representing the difference between the amount of jitter of a
given edge transition (x) and the ideal timing of the signal (�). BUJ(x) is the
probability density function for the BUJ component.

Equalization circuits are generally not capable of compensating for
Bounded Uncorrelated Jitter. If the crosstalk aggressor is known (as in the case
of a transmitter device acting as a crosstalk aggressor for an adjacent receiver
device), then the data pattern on the aggressor may be used by a crosstalk can-
cellation circuit to compensate for crosstalk at the receiver. Otherwise, the
crosstalk contribution generally cannot be removed.

8.2.3 Random Jitter
The jitter taxonomy specified in Table 8.2 uses the definitions in [1], which

describe random jitter as composed of UUGJ and CBGJ. Other texts have
defined CBGJ as part of BUJ, and limit the definition of random jitter to
unbounded components [5].

BUJ x() 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅= if τ τmax≤

0= if τ τmax>

−
(8.15)

Signal Integrity 357

Equalization is useful for mitigation of jitter which correlates to the data
pattern being transmitted. Since random jitter is due to factors for which no
such correlation exists, equalization is of no use in mitigating random jitter. It
is therefore critical that the HSS circuits be designed to minimize random jitter
to the greatest extent possible.
8.2.3.1 Uncorrelated Unbounded Gaussian Jitter

Uncorrelated unbounded gaussian jitter refers to timing variations that are
approximated by a Gaussian distribution function and are unbounded in range.
This type of jitter is caused by thermal vibrations of the semiconductor crystal
structures, material boundaries that have less than perfect valence electron
mapping due to semiregular doping density and process anomalies, thermal
vibrations of conductor atoms, and other smaller contributing factors.

The PDF for UUGJ is similar to (8.1):

where $ = (x - �), representing the difference between the amount of jitter of a
given edge transition (x) and the ideal timing of the signal (�). UUGJ(x) is the
probability density function for the UUGJ component.

Because UUGJ is unbounded, it is generally specified as an RMS value (see
Sect. 8.1.1). Alternatively, specification of a BER allows UUGJ to be
considered as part of CBGJ. As was discussed in Sect. 8.1.1, the BER
specification permits discarding the tails of the Gaussian distribution, and thus
bounding the jitter value. For protocol standards which specify RJ and an
associated BER, the RJ is generally assumed to be CBGJ and is modeled as
described in the next section.
8.2.3.2 Correlated Bounded Gaussian Jitter

Correlated bounded gaussian jitter refers to timing variations that are
bounded in nature, and appear as a Gaussian distribution with respect to the
data pattern that is being sent on the high-speed link. These variations may be
caused by crosstalk noise coupling from adjacent channels which is transmit-
ting unrelated data patterns. If the data on the crosstalk aggressor are truly
unrelated and is asynchronous to the baud rate of the crosstalk victim, then the
jitter may be approximated with a bounded Gaussian distribution and included
in the CBGJ component. Otherwise, the jitter is likely to be non-Gaussian and
is included as BUJ.

UUGJ x() 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅= (8.16)
−

358 High Speed Serdes Devices and Applications

The PDF for CBGJ is modeled using a bounded Gaussian distribution:

where $ = (x - �), representing the difference between the amount of jitter of a
given edge transition (x) and the ideal timing of the signal (�). CBGJ(x) is the
probability density function for the CBGJ component.

8.2.4 Total Jitter and Mathematical Models
The total jitter that is expected to be observed on a link is a combination of

the deterministic jitter and the random jitter components. The exact position of
a given instance of a data edge may be predicted to some degree by the data
pattern being transmitted as based on the deterministic jitter components.
However, the random jitter component of the signal adds some degree of
uncertainty as to the exact position. At higher baud rates, the DJ components
usually dominate the total jitter, and may result in the data eye being com-
pletely closed at the input to the receiver device. Fortunately, equalization can
compensate for many of these DJ components. The RJ contribution to the total
jitter is generally of much lower magnitude, and equalization cannot compen-
sate for this component.

To see how DJ and RJ is combined to determinate the total jitter, the PDF
associated with each type of jitter is needed. Total jitter (TJ) is the mathemat-
ical convolution of these jitter distribution functions.

In the prior sections of this chapter, bounded Gaussian distributions were
used to model several uncorrelated jitter components, including:
• Periodic jitter, assuming multiple sources contribute to PJ such that the

overall jitter conforms to a bounded Gaussian distribution
• Bounded uncorrelated jitter
• Correlated bounded gaussian jitter and
• Uncorrelated unbounded gaussian jitter, assuming the distribution is

truncated by assuming a BER
These jitter components can be modeled as a combined Gaussian Jitter (GJ)

with a bounded Gaussian distribution as defined by the following equation:

CBGJ x() 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅= if τ τmax≤

0= if τ τmax>

−

GJ x() 1
2π

---------- 1
σ
--- e

τ2

2σ2
----------•

⋅ ⋅= if τ τmax≤

0= if τ τmax>

−

(8.17)

(8.18)

Signal Integrity 359

In the prior sections of this chapter, the dual-Dirac distribution function was
shown to be a reasonable model for the DCD component of deterministic jitter,
as well as for a single sinusoidal PJ component. The distribution function for
DDJ is less clear. However, the dual-Dirac function is often used to model the
overall deterministic jitter (DJ) as is described in [1,3,5]. As is noted in [5],
this is an assumption with yields a reasonable approximation and keeps the
math simple.

Deterministic jitter is defined by dual-dirac distribution function:

where W is the peak-to-peak amplitude (or width) of the DJ component.
The probability distribution function for total jitter (TJ) is formed by

convolution of (8.18) and (8.19):

Equation 8.20 is plotted in Fig. 8.7 for the cases of W = 3 and W = 4. The
characteristics of the dual-Dirac model for the DJ component produce peaks in
the TJ PDF at x = ±W / 2. The roll-off of the curve from these points is deter-
mined by the Gaussian Jitter component and the standard deviation.

A data eye is constructed by examining two consecutive edges of the data,
separated by 1 UI, where UI = the unit interval (bit width). Adding the TJ PDF
for a data edge at x = 0 to the TJ PDF for the next consecutive data edge at
x = UI (and scaling so that the result integrates to 1 over the range +∞), the
resulting equation is:

The PDF represented by (8.21) is plotted in Fig. 8.8 for the range
x = 0 – 10 (= 1 UI). The timing deviation associated with the data edge which
would ideally fall at x = 0 forms the left-hand portion of the plot, while the
timing deviation of the edge at x = 10 forms the right-hand portion of the plot.
From this PDF it should be obvious that the eye width depends on both the bit
width and the shape of the TJ PDF.

DJ τ W,()
δ τ W

2
-----•()

2

δ τ W
2
-----+()

2
---------------------+=

−

TJ τ W σ, ,() 1
2 2π
-------------- 1

σ
--- e

τ W
2

 2

2σ2
-------------------------•

e

τ W
2
-----+

 2

2σ2
----------------------•

+⋅ ⋅=
− −

−

f τ W σ UI, , ,() 1
4 2π
-------------- 1

σ
--- e

τ W
2
-----•

 2

2σ2
---------------------•

e

τ W
2
-----+

2

2σ2
----------------------•

e

τ UI• W
2
-----•

 2

2σ2
-----------------------------------•

e

τ UI• W
2
-----•

 2

2σ2
-----------------------------------•

+ + +⋅ ⋅=

− −
−

− −
− − − −

(8.20)

(8.19)

(8.21)

360 High Speed Serdes Devices and Applications

Fig. 8.7 Examples of jitter distribution for total jitter

Fig. 8.8 TJ PDF of two consecutive bits (eye width)

PDF for W=3

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Normalized sample value (x)

P
ro

ba
bi

lit
y

PDF for W=4

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Normalized sample value (x)
Pr

ob
ab

ili
ty

Eye Opening (UI = 10, W = 3)

0.00 2.00 4.00 6.00 8.00 10.00

Normalized sample value (x)

Pr
ob

ab
ili

ty

Signal Integrity 361

Fig. 8.9 TJ CDF of two consecutive bits (bathtub curve)

Fig. 8.10 Generalized bathtub curve based on dual-Dirac model
PDF in Fig. 8.8 is integrated to form the CDF plotted in Fig. 8.9. The

TJ PDF for the bit centered at x = 0 is integrated over the range x to +∞ to form
the left-hand curve in Fig. 8.9, while the TJ PDF for the bit centered at x = 10
is integrated over the range -∞ to x to form the right-hand curve. The resulting
plot shows the envelope for the total jitter as a function of the BER.

The left and right curves in Fig. 8.9 form a bathtub curve, where the
difference between the two sides of the bathtub is the eye width for a given
target BER. As the BER becomes sufficiently small, the sides of the bathtub
curve in Fig. 8.9 can be approximated by straight lines. The slope of the sides
of the bathtub curve is related to the Q of the circuit as was defined in Sect.
8.1.1. Equation 8.7 specifies the relationship between Q and BER.

TJ CDF (UI = 10, DJ = 3, GJ = 0.20)

-16

-11

-6

0.00 2.00 4.00 6.00 8.00 10.00

Normalized sample value (x)

lo
g(

B
ER

)

Eye Width

x = 1 UIx = 0
Q = 0

DJ DJ

DJ DJ

Q at BER

GJ % Q GJ % Q

362 High Speed Serdes Devices and Applications

Fig. 8.10 illustrates a general bathtub curve which normalizes x on a scale
of 0–1 UI, and plots the y-axis as a function of Q rather than as a function of
BER. At Q = 0, the eye width is entirely defined by the DJ component of the
jitter. As the Q is increased (downward movement on the y-axis), the GJ
component causes the eye to narrow. This peak value of GJ is a function of Q
as defined in (8.8). Lower BER requires a higher Q, and results in less eye
width. The slope of the eye wall lines are therefore:

where $ = (x - �), DJ is the peak value of the deterministic jitter, and GJ is the
RMS value of the Gaussian jitter. (Equation 8.22 assumes the eye walls are
symmetrical. In some systems this may not be valid, and in a more general case
Qleft and Qright may have different slopes.) A BER of 10-12 corresponds to
Q = 7.03; a BER of 10-15 corresponds to Q = 7.94. Additional Q values for
various BERs were given in Table 8.1.

Note that this mathematical model for total jitter is based upon the assump-
tion that the dual-Dirac Model is an appropriate model for deterministic jitter.
Remember that this model assumes the timing of each sampled edge deviates
from the ideal timing by either +(DJ / 2) or -(DJ / 2), with no values in between.
As might be expected, a realistic PDF for DJ is likely to have many sampled
edges which are between these values. Analysis in [5] indicates that using the
dual-Dirac model to model the deterministic jitter of the link tends to overesti-
mate the amount of DJ that will be present in a real system. This model is
therefore appropriate to estimate worst case jitter, but characterization testing
should not expect this model to correlate with hardware measurements.

8.2.5 Jitter Budgets
An example of a jitter budget is provided in Table 8.3. The chosen example

is the jitter budget for the CEI-11G-LR interface as specified in [1]. This jitter
budget is laid out in tabular form, with columns containing the contributions
from various types of jitter, and with rows containing the contributions at
various stages of the serial link.

Jitter contributors in this table are categorized as uncorrelated and
correlated based on whether the jitter can be correlated to the data pattern.
Gaussian (or random) jitter consists of an uncorrelated unbounded Gaussian
jitter component and a correlated bounded Gaussian jitter component, and are
listed in the corresponding columns. Correlated components of deterministic
jitter, including DCD and DDJ components, are contained in the correlated
bounded high probability jitter (CBHPJ) column. Remaining uncorrelated
components of deterministic jitter, including PJ and BUJ components, are
contained in the uncorrelated bounded high probability jitter (UBHPJ)
column.

Qleft Qright• τ DJ×() 1
GJ
-------×= =− (8.22)

Signal Integrity 363

Contributions of the UUGJ and CBGJ columns are combined in the
Gaussian column of the total jitter, while contributions of the UBHPJ
and CBHPJ columns are combined in the high probability column. Note
that while the High Probability jitter is combined by adding the
component jitter values, the Gaussian jitter must be combined using an
RMS summation. This is because the probability of independent
Gaussian events all having worst case values is extremely unlikely. On
the other hand, the RMS summation of UUGJ and CBGJ produces a
Gaussian jitter value corresponding to a BER consistent with the
component numbers.

The SJ column reserves a portion of the jitter budget for applied SJ as part
of jitter tolerance testing. This jitter component does not exist in an operational
system.

Finally, the Gaussian, sinusoidal, and high probability jitter totals are
summed to produce an overall total jitter.

The table assumes the jitter contribution of the transmitter device is entirely
uncorrelated while distortion in the channel is entirely correlated. The sum of

Table 8.3 CEI-11G-LR informative jitter budget [1]

Source

Uncorrelated jitter Correlated jitter Total jitter

Un-
bounded
Gaussian

Bounded
high prob.

Bounded
Gaussian

Bounded
high prob. Gaussian Sinu-

soidal
High
prob. Total

Abbreviation UUGJ UBHPJ CBGJ CBHPJ
Unit UIpp UIpp UIpp UIpp UIpp UIpp UIpp UIpp
Transmitter 0.150a 0.150a 0.150 0.150 0.300
Channel 0.230 0.400
Receiver
input 0.150 0.150 0.230 0.400a 0.275 0.550 0.825

Equalizer -0.300
Post
Equalizer 0.150a 0.150a 0.230 0.100a 0.275 0.250 0.525

DFE
penalties 0.100

Clock and
Sampler 0.150 0.100 0.100

Budget 0.212 0.250 0.230 0.300 0.313 0.050 0.550 0.913
Note:
aThese values are normative values in [1]
bDue to receiver equalization, it reduces the ISI as seen inside the receiver. Thus this number

is negative
cIt is assumed that the eye is closed at the receiver, hence receiver equalization is required
©2008 Optical internetworking forum. All rights reserved. Used under permission.

364 High Speed Serdes Devices and Applications

the jitter contributed by the transmitter device and the channel is seen at the
receiver input. Note that the total jitter indicates very little eye opening at the
receiver input. Given jitter penalties introduced by receiver logic, it would be
impossible to receive this signal without equalization. As shown in the table,
equalization provides a negative contributor to the CBHPJ component of the
jitter budget. This equalization benefit offsets most of the jitter penalties of the
receiver logic.

Jitter penalties for the receiver include clock and sampling penalties, DFE
penalties, and post equalizer penalties. Clock and sampling penalties account
for reference clock jitter and other uncertainties in the signal sampling point
introduced by the CDR circuit. The equalization benefit assumed an ideal DFE
circuit with infinite precision of tap weights which can be programmed to
precisely cancel post-cursors; DFE penalties account for non ideal features of
a realizable DFE implementation, including quantized tap weights and circuit
imperfections. Circuit imperfections introduced in the receiver after the DFE
are accounted for as part of post equalizer penalties.

Jitter contributors are totalled on the Budget line of the table. The total jitter
on this line is 0.913 UI. Any value less than 1.0 indicates that the eye is open
and data can be received. The extent to which this number is less than 1.0
indicates margin built into the specification.

8.2.6 Jitter Tolerance
Jitter tolerance is the ability of the receiver to successfully recover data in

the presence of jitter. Jitter tolerance measurements represent the amount of
jitter that is allowable at any given frequency while maintaining a specified
BER.

Fig. 8.11 illustrates an typical receiver jitter tolerance mask. This mask
specifies the amount of applied SJ as a function of frequency. Jitter tolerance
testing is performed by sweeping the frequency of the applied SJ, and adjusting
the amplitude as needed to conform to the mask. If the receiver continues to
receive data and meet the specified BER, then the receiver device conforms to
the jitter tolerance specification. To measure jitter tolerance of the receiver
device, the amplitude of the applied SJ is increased until the specified BER is
no longer achieved.

The applied SJ amplitude for the high frequency portion of the curve is
specified by the jitter budget for the interface. The jitter budget in Table 8.3 for
the CEI-11G-LR interface specifies this amplitude as 0.050 UI. Jitter ampli-
tudes are generally described in terms of UI of the serial data stream.

For lower jitter frequencies, the CDR sampling point tracks the jitter rather
than having to find a sampling point with sufficient margin to tolerate the jitter.
This is reflected in the curve in Fig. 8.11 by the applied SJ being increased for
frequencies below the baud rate divided by 1667. “Jitter” in lower frequency
ranges was discussed in Sect. 4.1.2.5, where the terminology of skew and
wander was introduced.

Signal Integrity 365

Fig. 8.11 Jitter tolerance mask example
Measuring the jitter tolerance of receiver devices, and confirming that this

jitter tolerance exceeds the specifications required for standards compliance, is
a necessary part of receiver characterization testing. Receiver characterization
testing was described in Sect. 7.5.2.1.

8.3 Spice Models
The traditional approach to signal integrity analysis uses circuit simulation

to determine whether the serial data signal meets necessary electrical charac-
teristics at the receiver device. Since the general subject of this text includes
HSS applications, the discussion of signal integrity would not be complete
without including traditional approaches. However, as will be noted, execution
times limit the extent to which signal integrity analysis can be exhaustively
performed using circuit simulation. While some approaches to mitigate this are
discussed, it is generally not practical to analyze signal integrity for baud rates
of 5 Gbps and above using Spice simulations. This is especially true when the
HSS receiver employs complex equalization. Statistical approaches are
discussed in Sect. 8.4 which are more appropriate at higher baud rates.

If signal integrity analysis is going to employ circuit simulations, Spice
models of the HSS core are needed to support such simulations. These models
may be based on extracted device level models, or alternatively may be a
behavioral model. The advantages and disadvantages of each model type is
discussed in this section.

8.3.1 Traditional Spice Models
Traditional Spice models are based upon extracted device level models.

These models are created by well-proven device and parasitic extraction
programs. These extraction programs are verified for each new circuit tech-
nology during the technology qualification process to ensure that accurate
models are produced.

SJ

Total Wander Amplitude

baud/1667

20dB/dec

20MHz

High
Frequency
Amplitude

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

366 High Speed Serdes Devices and Applications

The traditional Spice models for HSS cores are very much like the Spice
models of standard I/O cells. Two major differences between HSS Spice
models and standard I/O cell models are
• The HSS models are intended to operate at much higher frequencies and

because of this they are much more complex than most standard I/O
models and include many more control nodes.

• The Spice models for HSS cores only model the external interface cir-
cuitry so that some of the control nodes on the Spice model correspond to
internal signals in the hard core. The user must consult relevant documen-
tation on the Spice model, and determine the appropriate values for these
control nodes based on the application.

The added complexity of the HSS Spice models means that they are more
complex to integrate into a testbench due to the added connections that must
be correctly set to make the model operate properly. Sometimes the internal
signals corresponding to these control nodes are based upon a combination of
HSS core parameters (either register values on input pin values). In such cases
it may be necessary to calculate values for the control nodes based upon how
the application is expected to configure the HSS core. In general, the transmit-
ter models are much more complex than the receiver models due to the fact that
a greater portion of the transmitter circuit is included in the Spice models.

Fig. 8.12 Typical Spice model of an HSS transmitter circuit

V
C

C

C
0[

0:
3]

C
1[

0:
5]

D
RV

SL
EW

[0
:1

]

PW
R

[0
:6

]

V
B

G
A

P

AV
25

FFE Coefficients

C
2[

0:
4]

Si
gn

 B
its

Slew
Control

Transmit
Power

Term_75_In VSS
ZDI

OUT
OUTN

D0

D1

CLK_P
CLK_N

HSS EX10 Tx Model

(scaled)

(Traditional Extracted Model)

Signal Integrity 367

Fig. 8.12 depicts a typical extracted Spice model for an HSS transmitter
circuit with typical model nodes, including differential clock input pins, mul-
tiplexed data input pins, serial data output pins, pins to set preemphasis coeffi-
cients, sign pins for the preemphasis coefficients, slew control pins, transmitter
output power pins, termination selection pins, internal power supply pins, and
so forth. The settings of these nodes affect the characteristics of the transmitted
signal.

Although the function of the data and clock pins is obvious, the proper
values for the preemphasis, slew, output power, and termination selection
nodes depend on the configuration set by the application and correspondence
between this configuration and the internal control nodes of the core. If this is
the Spice model for an HSS EX10 core, these control nodes do not necessarily
correlate directly to register values. For example, the PWR[0:6] pins in
Fig. 8.12 are partially based on the transmit power register in Table 2.6, but
also must be scaled based on the transmit tapx coefficient register settings.
Intervening logic in the HSS transmitter which generates the PWR[0:6] signals
from various register values is not modeled in the Spice model in the interest
of minimizing the complexity of the model, and the user of the model must
make up for this by manually determining the proper values.

The Spice model is generally limited to modeling the analog external
interface portion of the transmitter. Referring to the HSS EX10 transmitter
block diagram in Fig. 2.4, this included the driver/equalizer and JTAG blocks.
All of the parallel to serial conversion logic, BIST logic, clock generators, etc.,
in Fig. 2.4 are excluded for the Spice model. This is sufficient to support sim-
ulation of the interaction between the core circuitry and the external serial data
channel.

Assuming the required signal characteristics for the input to the HSS
receiver slice are specified, then the Spice model for the receiver only needs to
provide an accurate model for the receiver termination and load characteristics.
Referring to the HSS EX10 receiver block diagram in Fig. 2.7, the VGA Amp,
signal detect block, and the JTAG receivers are included in the Spice model
and are sufficient to support signal integrity simulations assuming an open eye
exists at the receiver input. Other circuits are excluded from the Spice model.

It should be noted that at higher baud rates the signal input to the receiver
may not have an open eye. The DFE circuit would need to be included in the
Spice model to verify that equalization allows the signal to be properly
received. However, circuit simulations which include the DFE circuits would
have prohibitively long execution times.

8.3.2 Hybrid Spice/Behavioral Models
Extracted Spice models have a long history of use in signal integrity

analyses, and as such most chip designers are very familiar with the use of
these models and the accuracy of the analysis results. However, the increased
complexity of these models leads to some negative consequences for a typical
signal integrity analysis. First, while this type of model does a very good job

368 High Speed Serdes Devices and Applications

of representing the deterministic performance of the actual core, the random
elements of performance are much more difficult to predict and model. If the
random elements are accurately included in the model, typical random varia-
tions mean that only a very few bits per time interval are affected in such a way
as to cause problems in the data stream. The net result is that a very large
number of bits would need to be simulated to successfully develop the required
signal integrity statistics and thereby ensure the target BER is achieved. Sim-
ulating the transmission of a large number of bits through a complex Spice
model is not a good approach for simulation efficiency, and results in very long
simulation execution times. Furthermore, a large number of scenarios may
need to be run to determine optimal power and equalizer settings. As a result,
weeks of simulation may be required to perform signal integrity analysis for a
single serial data channel. When one considers tolerances on the channel
model as well as the number of different channels that are in a typical applica-
tion, the turn around time for the signal integrity analysis quickly becomes
unrealistic.

Hybrid behavioral Spice models are a second class of models for HSS
cores. In this case, the model is still a Spice model and is built with Spice
constructs, but the model is not generated through the use of an automated
device and parasitic extraction program. Such models are usually coded
manually. This type of Spice model is a simplified model which contains
sufficient functionality to demonstrate the behavioral characteristics of the
actual hardware.

The advantage of a simplified model is that the simulation run time is sig-
nificantly reduced when compared to that of a full extracted version of the
model. The model remains an Spice model containing nodes for each of the
necessary signal pins, but the detailed device models and extracted parasitics
are no longer included. In their place, appropriate circuitry to model important
functional characteristics is instantiated within the model. Since this is not a
device-for-device match to the hardware, the model may be simplified by
removing all references to internal nodes and limiting the Spice model nodes
to only those pins that would be recognized by the chip designer at the core
level. The external view of the hybrid model appears much the same as that of
the fully extracted model as shown in Fig. 8.13, but the contents of the model
are modified to make the model run much faster.

While the simplifications described above offer significant simulation time
advantages over that of fully extracted Spice models, there are some draw-
backs to this type of model as well. First, there is no comprehensive design
automation software to generate this type of model. Some portions of the
process may be automated, but the model designer must still identify each of
the circuit characteristics that is required to be incorporated into the model, and
then develop an overall model that accurately describes those characteristics.

Signal Integrity 369

Fig. 8.13 Typical Spice hybrid model of an hss transmitter
Subsequent to creation of the hybrid model, the functional behavior of the

model must be verified through extensive testing and correlation to hardware
measurements. Any differences found between hardware and model behavior
require changes to the model to correct the simulations. This dependence on
hardware results means that the final iterations of the model may not be avail-
able until late in the development cycle. Once a final model is generated and
has been through the entire verification process, the accuracy of the hybrid
behavioral model should be equivalent to that of a model generated through
netlist extraction.

A successful hybrid model for an HSS core can significantly improve the
simulation time for a single simulation scenario, but the wide array of control
nodes on the cores can still result in a large number of simulation scenarios
being required to determine the optimal settings for a given channel.

8.3.3 Spice Simulation Matrices
HSS Spice models are typically used to simulate the interaction of the core

circuitry with the serial data channel. There is a large matrix of variables that
are typically investigated during the signal integrity analysis of an HSS link.
The following parameters were defined for the HSS EX10 core in Chap. 2, and
are of significance to the signal integrity of the link.
Transmitter Power Level. The HSS EX10 transmitter defined a Transmit
power register in Table 2.6 which allowed provisioning of the transmitter
launch amplitude. For the HSS EX10, this parameter is a 7-bit value supporting
128 different amplitude settings.

C
0[

0:
3]

C
1[

0:
5]

D
RV

SL
EW

[0
:1

]

PW
R

[0
:6

]

FFE Coefficients

C
2[

0:
4]

Si
gn

 B
its

Slew
Control

Transmit
Power

Term_75_In VSS

OUT
OUTN

DATA[0:7]

CLK_P
CLK_N

HSS EX10 Tx Model
(Hybrid Model)

370 High Speed Serdes Devices and Applications

Transmitter slew rate settings. The HSS EX10 transmitter defined a slow slew
control in the transmit driver mode control register in Table 2.6 which allowed
provisioning of the transmitter slew rate. For the HSS EX10, this parameter is
a 3-bit value with five valid settings. Various industry standards define
minimum slew rates which may require particular settings of this parameter for
compliance.
Transmitter preemphasis settings. The HSS EX10 transmitter incorporated a
feed forward equalizer (FFE). Coefficients for this equalizer were provisioned
using the transmit tapx coefficient registers as defined in Table 2.6. The
number of bits in these equalizer coefficient values vary, but in almost all cases
a large matrix of possible preemphasis settings exists. (The HSS EX10 has
three FFE taps with a total of 15 bits leading to 32,768 possible settings.) Prior
knowledge of the preemphasis effects (or a good simulation plan) could reduce
the size of the matrix significantly, but there would still be a significant number
of simulations that could be needed to arrive at an optimal setting.
Transmitter termination values. Although this feature was not provided on the
HSS EX10 core, some HSS cores provide more than one option for termination
impedance. In such cases, the appropriate value to use would generally be
dictated by the interface standard. However, there may be cases where the
signal integrity engineer wants to explore which of various options provides
the best signal integrity.
Transmitter AC/DC coupling. The HSS EX10 transmitter supported either AC
or DC coupling, as provisioned by the HSSTXACMODE pin defined in Table
2.1. This pin is generally tied based on the coupling method used by the
channel. However, there may be cases where the signal integrity engineer
wants to explore which of these coupling schemes provides the best signal
integrity.
Transmitter data rate. The data rate is a significant factor in link operation.
Some serial link applications only need to operate at a single data rate, while
others require support for multiple data rates depending upon the specific
platform in which they are deployed.
Transmitter data pattern. There are a number of encoding methods for data
transmitted across serial links. Scrambling, 8B/10B, and 64B/66B were
discussed for the various protocols in covered in Chap. 5. There are also a
number of test patterns defined by various protocols for compliance testing.
The specific characteristics of each pattern drive different performance levels
on the serial links. Chip designers sometimes use Spice models to investigate
the performance trade-offs associated with various data encoding methods and
compliance test patterns.
Transmitter process/voltage/temperature (PVT) settings. HSS cores, like
every other circuit on a chip, are affected by environmental operating condi-
tions (transistor junction temperature and power supply voltage), and by
manufacturing process parameter variations. Spice models allow specification

Signal Integrity 371

of these parameters. The signal integrity engineer must explore several combi-
nations of values for these parameters to ensure that any chip which was man-
ufactured within normal process variation constraints, and operating within
specified environmental conditions will in fact operate within the specified
BER of the system. Generally the signal integrity engineer, working with the
chip manufacturer, define a number of PVT corners which must be checked.
Receiver AC/DC coupling. The HSS EX10 transmitter supported either AC or
DC coupling, as provisioned by the HSSRXACMODE pin defined in Table 2.1.
Similar to the pin associated with the transmitter, this pin is tied based on the
coupling method used by the channel. However, there may be cases where the
signal integrity engineer wants to explore which of these coupling schemes
provides the best signal integrity.
Receiver termination values. As was discussed for the transmitter, some HSS
cores provide more than one option for termination impedance. In such cases,
the appropriate value is generally dictated by the interface standard. However,
there may be cases where the signal integrity engineer wants to explore which
of various options provides the best signal integrity.
Receiver process/voltage/temperature (PVT) settings. As was discussed for
the transmitter, receiver operation is affected by manufacturing process param-
eters, junction temperature, and power supply voltage. Receiver operation
must therefore be simulated at various PVT corner conditions. Note that, given
the transmitter and receiver devices of the link are on different chips, the PVT
conditions of the transmitter and receiver are likely to be different. Therefore
simulations must include all of the various combinations of transmitter PVT
and receiver PVT conditions.

The results from all of these simulations are compared to the required
signal characteristics specified for the HSS core at the BER of interest.
The required eye height and width must be verified at the input pins of the
receiver. Fig. 8.14 shows a typical channel configuration that might be
simulated, along with the raw serial data pattern at the receiver and the
corresponding eye diagram.

HSS cores that support data rates in excess of 5Gbps may expect a closed
eye at the receiver input. Such cores depend on receiver equalization
functions to open the eye, which (as discussed previously) are generally not
modeled in the Spice model. At these data rates, statistical simulation
approaches are often used in place of Spice simulations. Such simulations
run faster than Spice, can automate the determination of optimal settings for
equalization variables, and can accurately account for random variations in
the core and channel, including crosstalk effects. The next section discusses
this in more detail.

372 High Speed Serdes Devices and Applications

Fig. 8.14 Typical Spice simulation results

8.4 Statistical Approach to Signal Integrity
Circuit simulation using Spice models provides an accurate measure of the

resulting signal waveform given the input conditions which are simulated.
However, unless the input conditions are varied over a statistically representa-
tive range, Spice simulations do not guarantee that the BER of the system
meets the specification. A BER of 10-b implies that the signal may violate the
specified eye mask no more often than once every 10b bits. Many, many data
patterns must be simulated under a variety of crosstalk and noise conditions to
ensure the resulting signal meets this requirement. Lengthy simulations are
required to guarantee a BER of 10-12 and simulations are prohibitively long for
higher BER specifications.

At higher baud rates, intersymbol interference (ISI) becomes a key source
of signal distortion. ISI is a component of data dependent jitter (DDJ), and is
primarily caused by frequency response limitations of the channel. At higher
baud rates, ISI effects stretch over multiple bit intervals, with the waveform of
the current bit being affected by previous bits. In many cases the eye at the
receiver is closed due to ISI, and receiver equalization is required to compen-
sate. The receiver equalization must be included in the analysis in such cases
to ensure the signal can be received properly and that the BER specification is

prohibitive.
met. In a Spice circuit simulation environment, this would be computationally

Signal Integrity 373

The OIF common electrical I/O (CEI) Implementation Agreement [1]
was discussed in Sect. 5.2.5. This standard specifies normative channel
requirements, and a statistical analysis approach was developed in conjunc-
tion with the development of this standard to verify compliance of the
channel with these requirements. This approach is described in detail in [3],
and was subsequently published in [1] as the normative method of determin-
ing channel compliance. An open source software tool called StatEye is
available from [4], and implements this analysis. Other software tools also
exist which implement similar statistical approaches, including the IBM
HSSCDR tool described in Sect. 8.4.2.

8.4.1 Analysis Approach
Statistical approaches to signal integrity analysis can produce reliable

results with significantly less computation than circuit simulation
approaches. Transmitter jitter generation is statistically modeled using the
dual-Dirac model for deterministic components, and using the Gaussian
model for random components. Measured frequency response models are
used for components of jitter due to the channel. The resulting analysis can
project jitter behavior and the corresponding eye opening of the signal for a
given BER at either the input to the receiver or at the output of the receiver
equalization circuit. Statistical signal analysis can model complex receiver
equalization circuits in the simulation without significant computational pen-
alties. Additionally, software used to perform statistical analysis often
includes algorithms which can determine the optimal settings for both trans-
mitter and receiver equalization circuits.

The statistical analysis approach presented in this section is also described
in [1] and [3], and is representative of the analysis performed by this class of
software tools.
8.4.1.1 Pulse Response

Fig. 8.15 illustrates an example of input and output signals of a channel.
The channel in this example is modeled by a simple RC network. The input
data pattern is “011010011100,” and an ideal input signal is assumed in the
figure. The voltage level achieved by each bit of the output waveform depends
on whether the values of prior bits were the same or different. This type of data
dependent jitter is called intersymbol interference. While this example
modeled the channel with an RC network, realistic channels generally also
have inductance and impedance mismatches. The addition of inductance
potentially causes ringing of the response signal, and impedance mismatches
cause reflections which may lag the bit transition by up to several bit times.

The pulse response of a channel is defined as the received pulse for an
ideal square wave launched into the channel, where the pulse width of the
square wave is one unit interval. This response is calculated either by convolv-
ing the pulse with the impulse response of the channel, or by multiplying the
Fourier spectrum of the ideal transmitted square wave with the channel

374 High Speed Serdes Devices and Applications

response and taking the inverse Fourier transform, as described in [1]. The
resulting receive pulse is illustrated graphically as shown in Fig. 8.16.

The amplitude of the receive pulse at discrete baud-spaced intervals in
Fig. 8.16 are called cursors. The cursor corresponding to the maximum signal
amplitude is labelled c0 . Cursors prior to this reference point are called
precursors, and are labelled cn , where n < 0. Cursors after this reference point
are called postcursors, and are labelled cn , where n > 0. Generally, only
precursors which are within a few bit times of the main signal are significant,
and only postcursors which are within twice the propagation time of the
channel are significant. The R($) matrix represents this channel response:

where rn($) are the cursors of the pulse response at sample point $, and m is the
number of cursors considered over a range that is symmetrical with respect to
the sample point.

The ideal square wave launched into the channel is distorted by the channel
due to ISI. If the ISI sufficiently distorts the signal, as is common at higher
baud rates, the signal eye at the receiver may be closed. When this occurs, the
channel cannot be analyzed as a stand-alone component to determine interop-
erability within the system, and equalization circuits must be included in the
analysis.
8.4.1.2 Component Models

Fig. 8.17 illustrates the three fundamental components of any link: the
transmitter device (including any FFE and/or other equalization), the channel
interconnect (modeled as a channel frequency response), and the receiver
device (including any DFE and/or other equalization).

Fig. 8.15 Channel pulse response

R τ() r m
2
----•

τ() ... r 1• τ() r1 τ() ... rm
2

τ()= − −

0.00 2.00 4.00 6.00 8.00 10.00 12.00

time (UI)

Vo
lta

ge

Input Output

(8.23)

Signal Integrity 375

Fig. 8.16 Receive pulse representation

Fig. 8.17 Serial link components
These components must each be modeled, and then must be analyzed

together to determine whether the overall link is operable. While an ideal
square wave launched into the channel may produce a closed eye, the output of
a transmitter device which incorporates equalization is not an ideal square
wave. The signal emphasis injected by the transmit equalizer can partially
cancel the ISI characteristics of the channel response. Similarly, even if the
signal eye is closed at the input of the receiver device, equalization in the
receiver may still be able to correctly receive the serial data.
Transmitter Model. A block diagram of a generalized transmitter device model
is shown in Fig. 8.18. This consists of a data generation stage, transmitter
equalization (usually an FFE), and stages which add losses associated with the
transmitter driver stage and device package. In general, jitter (both determinis-
tic and random jitter) introduced at the transmitter also must be considered. For
the analysis described in this section, transmit jitter is considered as part of the
sampling jitter in the receiver model.

time (UI)

Vo
lta

ge

c-1

c0

c1

c2

c3

c4
c5

Transmitter Device

Tx Model
(including FFE)

Receiver Device

Rx Model
(including DFE)

Channel
Response

376 High Speed Serdes Devices and Applications

Data Generator. This stage generates the bit sequences that are used by the
analysis. The length of the bit sequences is determined by the number of
cursors m in (8.23). Given m cursors of the channel pulse response, data
sequence n is represented by the following matrix:

where each dn,b (b = 1−m) is either “− 1” or “+1.” Given that N = 2m bit
sequences are possible, the resulting matrix is

where D is the matrix defining all possible bit sequences of length m.
In a scrambled system, each of the possible bit sequences has an equal prob-

ability of occurring. In a system using a block code, the probability associated
with each bit sequence is weighted based upon its frequency of occurrence in
the block code, and some bit sequences may have zero probability. The prob-
ability associated with each bit sequence is

where pd(n) is probability associated with bit sequence n occurring, and where
n = 1− N. The summation of all of the pd(n) must equal 1.
Transmitter Equalization. HSS devices almost universally employ transmitter
equalization to compensate for distortions introduced by the channel. This
transmitter equalization is usually an FFE as was described in Sect. 1.3.2.
Fig. 8.19 illustrates a 3-tap FFE similar to the FFE associated with the HSS
EX10 core that was described in Sect. 2.2.3.

The transmitted signal level at the output of this FFE at any given time is
determined by the current bit being transmitted, as well as the bit before and
after the current bit. Each of these bits is multiplied by the an equalizer coeffi-
cient, and all of these results are summed together. For a 3-tap FFE, eight
different output levels are possible for a fixed set of coefficient values (as
shown in Fig. 8.19). Statistical analysis must determine the link response given
a transition between any pair of these output levels.

Fig. 8.18 Transmitter device model

Dn dn 1, dn 2, … dn m,=

D

D1

D2

…
DN

d1 1, d1 2, … d1 m,

d2 1, d2 2, … d2 m,

… … … …
dN 1, dN 2, … dN m,

= =

Pd pd 1() pd 2() … pd N()=

Data Generator Transmitter
Equalization

Transmitter
Driver

Tx Package
Model

(8.25)

(8.24)

(8.26)

Signal Integrity 377

Fig. 8.19 Transmitter filter function
Transmitter equalization modifies the Dn matrix specified in (8.24). The

resulting D’n matrix is formed as follows:

where each element of this matrix is

In (8.28), the summation is performed over the range of t corresponding to
the taps of the FFE, where ct is the coefficient associated with FFE tap t. If
dn,b+t is “+1,” then the FFE tap adds to the amplitude; and if dn,b+t is “-1” the
FFE tap subtracts from the amplitude. Similarly, the D matrix in (8.25)
becomes:

z-1 z-1

+

X
ct-1 X

ct X
ct+1

serial
data

driver
output

+ct-1+ct+ct+1
+ct-1+ct-ct+1
-ct-1+ct+ct+1
-ct-1+ct-ct+1

+ct-1-ct+ct+1
+ct-1-ct-ct+1
-ct-1-ct+ct+1
-ct-1-ct-ct+1

3-tap FFE

D'n d 'n 1, d 'n 2, … d 'n m,=

d 'n b, ctδ dn b t+, 1•() ctδ dn b t+, 1+()•()
t
∑= − −

D '

D '1
D '2
…

D 'N

d '1 1, d '1 2, … d '1 m,

d '2 1, d '2 2, … d '2 m,

… … … …
d 'N 1, d 'N 2, … d 'N m,

= =

(8.28)

(8.27)

(8.29)

378 High Speed Serdes Devices and Applications

Transmitter Losses. There are two sources of signal loss associated with the
transmitter which must be considered.

The first of these is the insertion loss resulting from bandwidth limitations
of the transmitter driver stage. A real transmitter is not capable of generating
an ideal NRZ pulse. The Tx21 term used in (8.30) defines a low-pass filter
which band-limits the transmitter output to a realistic level. The OIF common
electrical I/O (CEI) specifies a single pole filter with a corner frequency at 3/4
of the baud rate [1], which is a sufficient model for CML-style circuits.

The second of these is the transmitter return loss due to impedance mis-
matches associated with the device package. The Tx22 term used in (8.30)
specifies the package return loss as a function of frequency.

The following matrix defines Tx* which represents the combined losses of
the transmitter:
.

The form of this equation may be recognized as an S-parameter matrix.
S-parameter matrices will be described in more detail in the next section.
Channel Response. The frequency response characteristics of the channel are
typically measured, and the measured data is used for frequency domain
analysis of the link.

Fig. 8.20 illustrates use of a 4-port vector network analyzer (VNA) to
measure the frequency response characteristics of the channel for a differential
signal. One of the differential ports of the VNA is connected to the differential
pair at one end of the channel, and the other differential port is connected to the
other end of the channel.

The VNA applies signals of various frequencies to one end of the channel
and measures the response signal on each of the ports (including the driving
port). Frequencies are tested at regular step intervals starting at a very low
frequency and continuing to a frequency higher than the intended baud rate for
the channel. Both differential and common mode signals are generated, and
both differential and common mode response is measured. All combinations of
stimulus ports and response ports are tested. The resulting frequency response
data is organized into scattering parameter matrices (commonly called
S-parameters), as shown in Fig. 8.20. The nomenclature used to reference the
various frequency response matrices is

SRSji
where: R = response type (C = common mode, or D = differential)

S = stimulus type (C = common mode, or D = differential)
j = output port (1 or 2)
i = input port (1 or 2)

Tx ω〈 〉
1 Tx21 ω〈 〉

1 Tx22 ω〈 〉
=

(8.30)

Signal Integrity 379

The SDDxx are the more relevant parameters in this discussion and are used
by subsequent analysis. These S-parameters characterize the transfer function
of the channel for differential signals.
• SDD11 is the input differential return loss
• SDD21 is the input differential insertion loss
• SDD22 is the output differential return loss
• SDD12 is the output differential insertion loss

The return loss characteristics contribute to signal reflections and the
insertion loss characteristics contribute to signal attenuation.

The other S-parameter quadrants are also potentially relevant to the system
designer, but are not used by the statistical signal analysis described in this
chapter. The SDCxx quadrant characterizes common mode to differential con-
version, and is an indication of EMI susceptibility. The SCDxx quadrant char-
acterizes differential to common mode conversion, and is an indication of EMI
radiation. The propagation of common mode signals is described by the SCCxx
quadrant, and is not of concern for links using a properly designed differential
receiver device.

Fig. 8.21 illustrates measurement of the frequency response between the
primary differential channel and another nearby channel. This nearby channel
is a potential crosstalk aggressor. Two cases are shown in the figure: far-end
crosstalk (FEXT) is measured with the VNA connected to the end of the
crosstalk channel that is furthest from the connection to the primary channel.
Near-end crosstalk (NEXT) is measured with the VNA connected to the end of
the crosstalk channel that is nearest to the connection to the primary channel.
Which measurement is of significance depends on where the drivers are on
each of these channels.

Fig. 8.20 S-parameter measurement using a VNA

Differential Channel

4-Port Vector
Network Analyzer

Port 1 Port 2

SDD11 SDD12 SDC11 SDC12
SDD21 SDD22 SDC21 SDC22
SCD11 SCD12 SCC11 SCC12
SCD21 SCD22 SCC21 SCC22

 Port 1 Port 2 Port 1 Port 2
Port 1

Port 2

Port 3

Port 4

 Differential Common

Common

Differential

RESPONSE

STIMULUS

380 High Speed Serdes Devices and Applications

Coupling of stimulus from the crosstalk aggressor channel onto the primary
differential channel causes noise on the signal which is a key source of jitter.
For any given differential channel, any number of NEXT and FEXT aggressor
channels may exist which have significant potential to degrade the signal
integrity of the channel. Measurements should be taken for all significant
crosstalk aggressors, and should be included in the channel analysis.
Receiver Model. A block diagram of a generalized receiver device model is
shown in Fig. 8.22. This model introduces loss associated with the device
package, compensation due to receiver equalization, and the effects of jitter
(both deterministic and random jitter). In the analysis described by the next
section, the jitter introduced in this model covers impairments due to both jitter
generation by the transmitter and sampling jitter introduced by the CDR circuit
in the receiver.

Fig. 8.21 S-parameter crosstalk measurement

Fig. 8.22 Receiver device model

Differential Channel

4-Port Vector
Network Analyzer

Port 1 Port 2

Crosstalk Aggressor Channel
FEXT
Case

Differential Channel

4-Port Vector
Network Analyzer

Port 1 Port 2

Crosstalk Aggressor Channel

NEXT
Case

Receiver
Equalization

Rx Package
Model

TJ

Signal Integrity 381

Receiver Package Model. As was the case for the transmitter, the receiver
device package introduces impedance discontinuities which result in return
loss. The Rx11 term used in (8.31) specifies this package return loss as a
function of frequency. This term is captured in matrix form, where Rx(*)
represents the combined receiver losses:

The form of this equation is once again an S-parameter matrix.
The transmitter loss matrix, and the receiver loss matrix are convolved with

the channel response, giving a combined transfer function for the channel:

where Sm,n is the measured 4-port differential S-parameters for the channel.
Tx<*> and Rx<*> were defined by (8.30) and (8.31), respectively.
Receiver Equalization. At higher baud rates, HSS devices typically employ
receiver equalization to cancel post cursors of the channel pulse response. This
receiver equalization is usually a decision feedback equalizer (DFE) as was
described in Sect. 1.3.2. Fig. 8.23 illustrates a 5-tap DFE similar to the DFE
associated with the HSS EX10 core that was described in Sect. 2.3.2.

A block diagram of a receiver equalizer with five baud-spaced DFE taps is
shown in Fig. 8.23. The receiver model must model the receiver sample point
function (which controls the threshold at which the input signal is sampled by
the DFE), and the equalizer function of the receiver. Bit values of the previous
n samples are multiplied by equalizer coefficients and summed to the input
signal to affect the decision as to whether the input bit is a 0 or 1. In this
manner, the DFE is capable of equalizing up to n postcursors of the input
signal, where n is the number of DFE taps.

Fig. 8.23 Receiver filter function

Rx ω〈 〉
Rx11 ω〈 〉 1

1 1
=

Tr ω〈 〉 Tx ω〈 〉
S11 ω〈 〉 S21 ω〈 〉

S12 ω〈 〉 S22 ω〈 〉
Rx ω〈 〉⊗ ⊗=

1 Tx21 ω〈 〉

1 Tx22 ω〈 〉

S11 ω〈 〉 S21 ω〈 〉

S12 ω〈 〉 S22 ω〈 〉

Rx11 ω〈 〉 1

1 1
⊗ ⊗=

z-1

X
kn-4

serial
data

5-tap DFE

z-1 z-1 z-1 z-1_

X
kn X

kn-1 X
kn-2 X

kn-3

+

(8.31)

(8.32)

382 High Speed Serdes Devices and Applications

The k coefficients of the DFE in Fig. 8.23 form the matrix:

where K represents the response of the DFE, and coefficients k1− kn are the
coefficients of an n-tap DFE. This matrix is the same size as that of the R($)
channel response matrix defined in (8.23), with entries corresponding to matrix
positions $ labelled -m/2 to -1, and +1 to +m/2. Matrix K in (8.33) contains
DFE coefficients k1−kn in positions of the matrix corresponding to $ in the
range of 1−n, and 0 in all other positions.
Sample Jitter. The analysis presented in the next section incorporates Data
Dependent Jitter (DDJ) by analyzing all possible waveforms propagating
through the channel with the transfer function defined in Eqn (8.32). Crosstalk
is also incorporated into this analysis. Additional sources of jitter in the system
include:

• Transmitter jitter generation, and
• Sampling jitter in the receiver

Deterministic jitter generation in the transmitter is primarily the result of
jitter on the clock reference of the transmitter circuit. Dominant forms of deter-
ministic jitter are therefore the result of duty cycle distortion, and periodic
jitter. The dual-Dirac model is appropriate to model these types of jitter. In
addition, Gaussian jitter results from semiconductor imperfections and
quantum effects. Therefore, the equation for total jitter (TJ) in (8.20) provides
the PDF for the transmitter jitter generation.

Sampling jitter in the receiver CDR circuit results from similar root causes.
The clock reference for this circuit is subject to DCD and PJ, and Gaussian
jitter again results from semiconductor-related effects. The equation for total
jitter in (8.20) also provides the PDF for the sampling jitter.

The analysis described in the next section injects jitter into the analysis of
the received signal using the PDF of the total jitter as defined (8.20). This
approach is intended to model both the transmitter jitter generation and the
sampling jitter, as described above.
8.4.1.3 Statistical Eye Analysis

Each pulse response waveform at the receiver input is analyzed as illus-
trated in Fig. 8.24 and as described by the following steps:
Determining Channel Response. The first step in the analysis procedure is to
form the channel response matrix for R($) as defined by (8.23).

The channel response is determined by the transfer function for the channel,
Tr(*), as defined by (8.23). The pulse response of the channel is plotted as
shown by the waveform on the left side of Fig. 8.24. The position of the c0
cursor is chosen arbitrarily on the pulse response waveform, and baud-spaced
precursors and postcursors are determined from this arbitrary reference point
in the manner described in Sect. 8.4.1.1. These cursors define the rn($)
elements of the R($) matrix.

K 0... 0 k n 4 ... kn 0 … 0= −− − (8.33)

Signal Integrity 383

Fig. 8.24 Probability density function for pulse response
Determining the DFE Response. Once the channel response matrix R($) has
been determined, static DFE tap coefficient values are selected to cancel
postcursors of the channel response. An n-tap DFE can negate up to n
postcursors. The DFE tap coefficient values determined in this step are used to
form the DFE response matrix K as defined in (8.33).

The channel response, in the presence of receive equalization, becomes the
equalized cursors defined by:

where rn($) are the cursors of the pulse response at sample point $, as defined
by (7.14), and coefficients ki (i in the range of 1− b) are the coefficients of a

A
m

pl
it

ud
e

All equal probable combination of cursors

Probability

Each possible amplitude
is the convolution of

the data stream dn with
the cursors rn }1,1{−=

∑=

d

rdA
n

nn

A
m

pl
itu

de Probability

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

Cursors of pulse
response waveform
are determined.

Each possible amplitude
is determined by convolution
of the bit sequence with c($).

PDF is built by summing the number
of bit sequences which produce each
amplitude value given c($), and dividing
by the total number of bit sequences.
(Assumes a fully random datastream.)

c0

C τ() R τ() K•=

r m
2
----•

τ() ... r 1 τ() r1 τ() k1 ... rb τ() kb• rb 1+ τ() ... rm
2

τ()•

c m
2

τ() ... c 1 τ() c1 τ() ... cb τ() cb 1+ τ() ... cm
2

τ()•

(8.34)

−

−

−

−

−

− −=

=

384 High Speed Serdes Devices and Applications

b-tap DFE. The nomenclature cn($), where cn($) = rn($) - kn is used to
designate elements of the C($) matrix.

Given an ideal DFE, the ki (i in the range of 1− b) coefficients are selected
such that the resulting cn($) elements are zero. Real DFE circuits do not have
infinite precision and range, and therefore these cn($) elements are minimized
but may be nonzero.
Building the Probability Density Function. Given a fully random datastream
with no transmitter equalization and a limited number of cursors, the cursors
superimpose on each other with equal probability.

This is illustrated in Fig. 8.24. The possible signal amplitudes are formed
by superimposing the c0 cursor with each possible combination of +cn($) or
-cn($) values for the remaining cursors. Each combination of superimposed
cursors represents the signal amplitude for the corresponding bit sequence of
1’s and 0’s. Each bit sequence is equally likely to occur for a fully random
datastream, and a PDF for the corresponding signal amplitude can be built by
creating a histogram of amplitude values and normalizing the result. The
resulting PDF is illustrated on the right side of Fig. 8.24.

Mathematically, the amplitude of the signal for a given sequence of bits and
a given sample point ($) is:

An = dn % C($)
Considering all possible combinations of d = { -1, +1 }, the number of bit

sequences for which An has a given value is

and normalizing this (by dividing by the number of patterns) gives the proba-
bility density function for a given sample point ($). For a channel with an ideal
transfer function, the signal at the c0 sample point would have an amplitude
of 1, and all precursors and postcursors would have an amplitude of 0. In the
presence of ISI, other amplitudes have nonzero probability.

Assuming a fully random datastream and no transmitter equalization, the
PDF of the ISI for a given sample point $, is therefore:

This equation sums the number of bit sequences dn for which the convolution
of the bit sequence with the equalized channel response c($) results in a given
value of ISI. The number of such patterns is divided by the total number of
patterns to determine the probability of this value of ISI.

If transmitter equalization is used, this alters the dn matrix as specified by
(8.26). Also, if the datastream is not fully random, then each bit sequence has
a probability of occurrence pd(n) as defined in (8.27).

A dn C τ()×
n
∑=

p ISI τ,() 1

2m
------- δ dn C τ()⋅() ISI•[]

n 1=

2m

∑= − (8.35)

Signal Integrity 385

A more generic form of (8.35) is therefore:

where (8.36) calculates the probability of a given value of ISI for a given
sampling point $. The matrix of these probability values for all possible values
of ISI forms the probability density function associated with sampling point $.
Similarly, probabilities and corresponding crosstalk PDFs may be generated
for the crosstalk pulse response (using S-parameters measured as described in
Fig. 8.21).

Note that simplifications of the above algorithm are described in [3].
Varying the Sampling Point. The arbitrary choice of c0 in effect chooses a
sampling point for the CDR circuit in the receiver. Equation 8.36 calculates the
PDF of the ISI given this sampling point. Additional PDFs may similarly be
calculated for other values of c0 . By repeating the process in Fig. 8.24 and
building PDFs for different c0 , and then weighting these PDFs based on the TJ
PDF in (8.20), jitter is incorporated into the analysis.

The CDR sampling point is assumed to be nominally centered, but with
some jitter around the ideal sampling point. Some of this jitter is due to jitter
sources in the CDR circuit, and some of this jitter is the result of jitter genera-
tion in the transmitter. As previously noted, the PDF for the total jitter from the
combination of these sources is defined in (8.20).

The pulse response PDFs for the forward channel, the crosstalk PDFs, and
the PDF for the sampling jitter may therefore be combined to form a joint
probability density function (pjoint). This calculation involves convolving the
crosstalk PDFs with the forward channel PDFs, and multiplying this result by
the PDF for the sampling jitter. This PDF is calculated as follows:

where:
Pfwd(ISI, $) is the probability density function of the ISI of the forward
channel (from (8.36))
Pxtalk(ISI, $) is the probability density function of the crosstalk
(determined in a similar manner to Pfwd(ISI, $), but using S-parameters for
the crosstalk channel response as measured in Fig. 8.21)
Pjitter($, w, ") is the dual-Dirac PDF of the transmit and sampling jitter
(from (8.20))

p ISI τ,() pd n() δ d 'n C τ()⋅() ISI[]

n 1=

2m

∑= −

pjoint ISI τ,() pxtalk ISI τ υ w+ +,() pfwd ISI τ υ+,()⊗[] pjitter υ w σ, ,()⋅{ } υd

∞•

∞

∫=

−

(8.36)

(8.37)

386 High Speed Serdes Devices and Applications

The resulting pjoint probability density function incorporates the effects of
forward channel response, crosstalk channel response, and jitter.
Plotting the Results. Using the combined joint probability density function
(pjoint) defined by (8.37), the PDF for the signal amplitude at various values
of $ is plotted across a 1 UI range as shown in Fig. 8.25(a). Points of these
PDFs corresponding to similar BERs are connected as shown in Fig. 8.25(b) to
form eye contours. As BER is reduced, the points being connected on the PDF
curves move downward on the lower tail of each curve, reducing the amplitude
of the signal. In addition, the point at which this eye contour crosses the zero
line determines the eye width, and reducing the BER also results in less eye
width.

The joint PDF in (8.37) can be integrated to produce the corresponding
Cumulative Distribution Function, and can be plotted as a bathtub curve as
shown in Fig. 8.25(c). As was described in Sect. 8.2.4, the bathtub curve plots
eye width as a function of BER. The slope and y-intercept of the bathtub curve
can be used to approximate the decomposition of the jitter into deterministic
jitter and Gaussian jitter components as described in Fig. 8.10.

The statistical eye shown in Fig. 8.25(d) is determined using the eye
contours in Fig. 8.25(b). These contours are cut off at the zero line and plotted
on both sides of the decision threshold axis to produce an equivalent receiver
eye. The statistical eye shown in the figure is specified for different levels of
probability, or circuit Q. The relationship between Q and BER was discussed
in Sect. 8.1.1.

The statistical eye for a given Q and corresponding BER indicates the
bounds of the eye width and amplitude corresponding to this probability level.
Given the statistical eye for a BER of 10-12 (Q = 7.04), for example, the signal
remains outside the contour of this statistical eye opening most of the time, but
strays into this contour with a frequency of once every 1012 bits. If the eye
contour for this BER is sufficiently open for the receiver to correctly receive
the signal, then the corresponding BER is 10-12 or better.

Generally, the minimum acceptable eye opening is defined by the interface
standard or by the HSS receiver vendor. Using measured channel S-parameters
and models for the transmitter and receiver, the resulting statistical eye
opening is determined. If this eye is at least as open as the minimum acceptable
eye opening for the BER of interest, then the channel design meets require-
ments. To the extent that the eye is more open than required, margin exists in
the system.

Signal Integrity 387

Fig. 8.25 Generation of the bathtub curve and the data eye

cdf(Jitter)

Signal
Amplitude

Zero
line

Zero line

Joint
Distribution

pdfs

pdf(Amplitude)

Signal
Amplitude

Zero
line

te

Arx(tsample, Q)

Q=5
Q=6
Q=7
Q=8

©2008 Optical Internetworking Forum. All Rights Reserved. Used under permission.

(a) PDFs are plotted
for $ in range 0-1 UI.

(b) Points associated
with similar BER
values are connected.

(c) Bathtub Curve

(d) Statistical Eye

388 High Speed Serdes Devices and Applications

8.4.2 HSSCDR Software
There are a number of software tools which perform the statistical signal

analysis described in the previous section. One or the other of these tools will
likely be used by the signal integrity engineer analyzing the system design of
the serial data channels associated with HSS cores. It is therefore instructive to
provide some description of the data entry and output reports associated with
this class of tools.

An open source software tool called StatEye is available from [4], and
implements the analysis described in Sect. 8.4.1. Another example of such a
tool is the IBM HSSCDR software tool, used to analyze serial links for IBM
ASIC chips. HSSCDR is used as an example for the descriptions in this
section, primarily because the description of the graphical user interface data
entry is more straightforward. Although the details vary, the types of data
which must be entered to run HSSCDR are representative of the data entry for
other statistical-based signal integrity analysis tools including StatEye. Also,
the report outputs described are representative of any statistical-based signal
integrity analysis tool. All such software tools use statistical methods to
calculate the signal eye shape.

The entry screen for the IBM HSSCDR software tool is shown in Fig. 8.26.
The entry screen has four columns, corresponding to the transmitter model,
channel model, and receiver model for the serial link being analyzed, and a
column to define report outputs that are to be generated. To illustrate basic
concepts, entry fields are described generally in this section.
8.4.2.1 Transmitter Entry

The entry fields associated with the transmitter model are in the left column
of the entry screen in Fig. 8.26.
Core. This field selects the specific IBM HSS core at the transmit end of the
serial link.
Technology. This field selects the IBM ASIC process technology for the chip
containing the HSS transmitter. In conjunction with the Core field, this
uniquely selects one of the built-in transmitter models.
Options. This field allows selection of the operating mode for the transmitter.
Selections typically provide for enabling/disabling use of the transmitter FFE,
predefined FFE coefficient settings, selection of the transmitter amplitude
level, etc.
Corner. This field selects worst case, nominal, or best case process, voltage,
and temperature conditions for analysis. Analysis should be performed for all
process corners since results may vary.
Package. This field selects one of several package models to be used for the
transmitter chip package.

Signal Integrity 389

Fig. 8.26 HSSCDR graphical user interface
8.4.2.2 Channel Entry

The entry fields associated with the channel model are in the second
column from the left of the entry screen in Fig. 8.26.
Channel. This field selects a command file which defines S-Parameter format
options and loads S-parameters for the channel to be analyzed.
Data Pattern. This field selects the data pattern to be analyzed. Scrambled data
is fully random and all bit sequences are equally likely. Systems using block

390 High Speed Serdes Devices and Applications

coding or scrambled block coding constrain the allowed bit sequences and alter
the probabilities associated with each bit sequence as was described by (8.26).
Frequency Offset. For a plesiosynchronous clocked system, this field selects
the frequency offset between the reference clocks of the Tx and the Rx device,
specified in parts per million (ppm). This is used to calculate the PDF for CDR
sampling. More tightly constrained tolerances reduce sampling jitter and
improve link performance.
Data Rate. This field selects the baud rate of the signal to be analyzed.
Number of Bits. This field selects the number of data bits to be simulated.
Higher numbers result in more statistical accuracy, but increase execution
time. HSSCDR uses a default value of 2,40,000 bits which is found to be
sufficient for most cases.
8.4.2.3 Receiver Entry

The entry fields associated with the receiver model are in the second
column from the right of the entry screen in Fig. 8.26.
Core. This field selects the specific IBM HSS core at the receive end of the
serial link.
Technology. This field selects the IBM ASIC process technology for the chip
containing the HSS receiver. In conjunction with the Core field, this uniquely
selects one of the built-in receiver models. Note that the transmitter chip and
the receiver chip in a real system may use different HSS cores or even different
ASIC technologies.
Options. This field allows selection of the operating mode for the receiver.
Selections may provide for enabling/disabling use of the receiver DFE, etc.
Corner. This field selects worst case, nominal, or best case process, voltage,
and temperature conditions for analysis. Results should be performed for all
process corners since results may vary. Note that the transmitter chip and the
receiver chip in a real system may not be operating at the same process corner.
All combinations of process corners for the transmitter and receiver chips
should be analyzed.
Package. This field selects one of several package models to be used for the
receiver chip package.
8.4.2.4 Output Selection

The entry fields associated with output plots and reports are in the right
column of the entry screen in Fig. 8.26.
Output Plots. This field selects which of various output plots and reports are to
be generated. These are discussed below.
Legend. This field specifies the label used in output plots and reports.
New/Append/Replace. This field determines whether this analysis is appended
to or replaces prior analysis in the log file.

Signal Integrity 391

Eye Detect Node. This field determines whether output plots and reports are
generated based on the signal at the receiver output, the receiver input, or the
transmitter output.

The following plots and reports can be generated by the HSSCDR software:
Log Bit Error Rate (LBER) Plot. An example of this plot is shown in
Fig. 8.27. The eye width (x-axis) is plotted as a function of BER (y-axis). This
is the bathtub curve output of the statistical signal analysis.
Eye Diagram Plot. An example of this plot is shown in Fig. 8.27. This plots the
eye diagram at the node selected by eye detect node selection.
Impulse Response Plot. An example of this plot is shown in Fig. 8.28. This
plots the impulse response of the channel as defined by the S-Parameters for
the channel.
Frequency Response Plot. An example of this plot is shown in Fig. 8.28. This
plots the SDD21 insertion loss for the channel as defined by the S-parameters
for the channel.
Eye Height Plot. This plots the cumulative distribution function for the eye
height at receiver output.
Text Output File. This file contains the results of analysis in a text form.
Contents of this file are specific to the software tool, and are beyond the scope
of this text.
Sinusoidal Jitter (SJ) Plot. This file plots jitter tolerance as a function of
sinusoidal jitter.
8.4.2.5 Filter Coefficient Optimization

As has been discussed previously, the HSS transmitter may include an FFE

Likewise, the HSS receiver may include a DFE which must be modeled by the
receiver model also described in Sect. 8.4.1.2. Signal integrity analysis results
are dependent on these filter functions being tuned to provide optimal results
for a given channel.

As was discussed in Sect. 8.4.1.3, the optimal values for DFE coeffi-
cients are determined by selecting values which negate postcursors in the
pulse response waveform at the input of the receiver. This algorithm is
straightforward, and is an integral part of most software tools used to
perform statistical eye analysis, including the HSSCDR software.

Optimizing FFE coefficients is less straightforward. Generally, these coef-
ficients are optimized by performing analysis for various coefficient values
until the “best” eye opening is achieved at the receiver output. The criteria used
to determine the “best” eye opening may vary: algorithms exist which attempt
to maximize the eye amplitude, and other algorithms exist which attempt to
maximize the eye width. In point of fact, both eye amplitude and eye width
contribute to the resulting BER, and therefore some algorithms calculate the
overall BER of the eye and use this as a basis for determining the “best” eye
opening.

which must be modeled by the transmitter model described in Sect. 8.4.1.2.

392 High Speed Serdes Devices and Applications

Fig. 8.27 Log bit error rate (LBER) and eye diagram output plots

Fig. 8.28 Impulse response and frequency response output plots
Many software tools which perform statistical signal analysis, including

HSSCDR, incorporate an algorithm for determining optimal FFE coefficient
values. FFE coefficients to be used for analysis may either be forced by the
user to specific values, or may be automatically determined. One important use
of such software tools is to determine the optimal FFE coefficient values to be
used when testing the hardware, and when using the serial link in the system
environment.

Signal Integrity 393

8.4.2.6 Pass/Fail Criteria
The end goal of using HSSCDR (or any other signal integrity analysis tool)

is, of course, to predict whether or not the serial link will operate correctly
when all of the channel impairments in an actual application are considered.

The software does not produce a PASS/FAIL result for a simulation. The
user must use the program to investigate all of the process corners and environ-
ment conditions, including channel variations and crosstalk contributions, and
then interpret the results of simulations to determine whether adequate margin
exists for the application.

Many of the interface standards discussed in Chap. 5 specify requirements
for eye dimensions that must be met at the receiver to claim compliance with
the standard. Statistical eye analysis allows users to determine whether or not
these criteria are met.

8.5 References and Additional Reading
The following standards documents are applicable to topics in this chapter:

1. “Common Electrical I/O (CEI) - Electrical and Jitter Interoperability
agreements for 6G+ bps and 11G+ bps I/O”, OIF-CEI-02.0, Optical
Internetworking Forum (http:\\www.oiforum.com), Feb. 28 2005.

2. “ANSI INCITS TR-34-2004: INCITS Technical Report for Information
Technology - Fibre Channel - Methodologies for Jitter and Signal Quality
Specification (MJSQ)”, American National Standards Institute, Inc.,
International Committee for Information Technology Standards, Jan. 1
2004.

The following reading is recommended for more information regarding
statistical signal integrity analysis methods and StatEye software:
3. “Channel Compliance Testing Utilizing Novel Statistical Eye

Methodology”, Anthony Sanders, Mike Resso, John D’Ambrosia, IEC,
Designcon, 2004.

4. Open source StatEye Software and additional documentation is available
at http\\www.stateye.org.

The following reading is recommended for more information regarding
signal integrity analysis in general:
5. “Jitter, Noise, and Signal Integrity at High Speed”, Mike Peng Li,

Prentice Hall, 2007.
6. “Dwdm Network Designs and Engineering Solutions”, Ashwin Gumaste,

Tony Anthony, Cisco Press, 2003.

394 High Speed Serdes Devices and Applications

8.6 Exercises
(1) Use (8.1) to calculate p($, ") for x given a Gaussian distribution with �

and " as specified below:
(a) x = 2.0, � = 3.0, " = 1.5 (b) x = 5.0, � = 2.0, " = 0.5
(c) x = 4.0, � = -1.0, " = 1.5 (d) x = 1.5, � = 1.5, " = 0.75

(2) Given a Gaussian distribution of x, calculate the probability that x is
within 1.5 " of �.

(3) Use (8.5) to calculate p($, ") for x given a bounded Gaussian distribution
with �, ", and $max as specified below:
(a) x = 2.0, � = 3.0, " = 1.5, $max = 4.5
(b) x = 5.0, � = 2.0, " = 0.5, $max = 1.5
(c) x = 4.0, � = -1.0, " = 1.5, $max = 5.5
(d) x = 1.5, � = 1.5, " = 0.75, $max = 1.0

(4) Assume an unbounded Gaussian distribution where zrms has the values
specified below. Given the specified BER, what is the zp−p value?
(a) zrms = 0.02 UI, BER = 10-12 (b) zrms = 0.020 UI, BER = 10-15

(c) zrms = 30 ps, BER = 10-9 (d) zrms = 0.10 UI, BER = 10-12

(5) Use (8.9) to calculate p(x, A) for x given a dual-Dirac distribution with �
and A as specified below:
(a) x = 2.0, � = 3.0, A = 1.5 (b) x = 1.5, � = 3.0, A = 1.5
(c) x = 0.5, � = -1.0, A = 1.5 (d) x = -0.75, � = 0, A = 0.75

(6) What is the probability of x being in the specified range given a dual-
Dirac distribution with � and A as specified below:
(a) 1.0 < x < 2.0, � = 3.0, A = 1.5 (b) 1.0 < x < 5.0, � = 3.0, A = 1.5
(c) -2.0 < x < 0.0, � = -1.0, A=1.5 (d) x = 0.75, � = 0, A = 0.75

(7) For each of the jitter types below, specify which PDF is used to model this
component, state whether this model is optimistic or pessimistic, and state
whether equalization can compensate for this type of jitter.
(a) DCD (b) PJ (c) BUJ
(d) UUGJ (e) CBGJ

(8) What type of jitter results from each of the following system contributors:
(a) Transistor device effects
(b) Channel transfer function
(c) Crosstalk from a clock signal
(d) Crosstalk from a data signal (not in the same clock domain)

Signal Integrity 395

(9) Use (8.20) to calculate TJ($, W, ") of x given total jitter distribution with
�=0, and with " and W as specified below:
(a) x = 0.2, " = 0.02, W = 0.15 (b) x = 0.2, " = 0.03, W = 0.08
(a) x = 0.4, " = 0.03, W = 0.08 (b) x = 0.15, " = 0.02, W = 0.25

(10) For each case of " and W in exercise 9, calculate the eye width given:
(a) BER = 10-9 (b) BER = 10-12 (c) BER = 10-15

(11) Does the jitter budget in Table 8.3 still result in an operational link
assuming the following hypothetical cases:
(a) If the UUGJ of the transmitter doubles?
(b) If the UBHPJ of the transmitter increases by 0.100 UI, and the

receive equalization is also improved to provide an additional –0.080
UI of jitter compensation.

(12) Figure 8.11 describes the SJ generated as part of a jitter tolerance test.
(a) Draw a figure similar to Fig. 8.11 with jitter amplitudes and

frequencies labelled. Assume a CEI-11G-LR link operating at
11.1Gbps with the jitter budget in Table 8.3 and the skew/wander
budget in Table 4.3.

(b) Is SJ typically encountered in a real system? Explain.
(c) At lower frequencies the SJ in part (a) of this question is several UI.

Why does the link work even with this much jitter?
(13) Using the HSS EX10 description in Chap. 2, speculate as to which I/O

pins and register bits may affect each of the control inputs to:
(a) The Spice model for the HSS EX10 transmitter in Fig. 8.12 which

was produced using traditional circuit extraction methods.
(b) The hybrid Spice model for the HSS EX10 transmitter in Fig. 8.13.

(14) Spice simulation is to be performed to verify signal integrity of a link
which uses HSS EX10 cores on both the transmitter and receiver end.
The transmitter power level, slew rate, and preemphasis settings have
already been determined. The data coding, data rate, coupling, and
termination have also been specified for the link. The Spice models
support selection of best case, nominal, and worst case PVT conditions.
Create a simulation matrix which indicates the Spice runs that must be
performed to validate signal integrity under all PVT conditions.

(15) A block code is devised which has a maximum run length of 2 bits.
Given m = 5 cursors of the channel response are significant, devise a
D matrix as described by (8.25) which represents all possible bit
sequences allowed by this block code.

396 High Speed Serdes Devices and Applications

(16) Assume a 3-tap FFE with the coefficients ct−1 = 0.15, ct = 0.80, and
ct+1 = −0.05. Given the D matrix from exercise 15, construct a D’ matrix as
described by (8.29) which represents the equalized bit sequences.

(17) Given S-parameters of a channel, in general SDD21 g SDD12 and
SDD11 g SDD22. Explain why this is the case.

(18) Draw a diagram of a channel consisting of a transmitter chip on one
circuit board driving a link to a receiver chip on a different circuit board,
and connected through a backplane. Label the various points on this
channel where impedance discontinuities may occur.

(19) The HSS EX10 core described in Chap. 2 contained both transmitters and
receivers. The transmitter slices and receiver slices are physically alternated
on this core. For this core configuration, which type of crosstalk (FEXT or
NEXT) is more likely to be a significant factor for signal integrity?

(20) A system designer chooses to use simplex cores to implement an
interface to reduce link signal integrity issues due to NEXT. The
resulting links still have FEXT which must be considered in the
analysis. Why does this system designer prefer to deal with the FEXT
instead of the NEXT?

(21) In (8.32) the channel S-parameters are convoluted with the S-
parameters for the transmitter and receiver package models. This
equation reflects the fact that the chip packages are part of the channel
interconnect between the driver circuit and the receiver circuit. Explain
why it is not easier to simply include the transmitter and receive
packages in the S-parameter measurements for the channel.

(22) Given the output plot of the bathtub curve shown in Fig. 8.27, what is
the approximate eye width for each of the following BER values?
(a) BER = 10-9 (b) BER = 10-12 (c) BER = 10-15

(23) Given the output plot of the SDD21 channel response shown in Fig. 8.28,
what is the loss at each of the following frequencies?
(a) 4GHz (b) 2GHz (c) 1GHz

(24) Many systems use simulations (using StatEye, HSSCDR, or a similar
tool) to determine a set of FFE coefficients that works for all links
regardless of how cards are populated on the backplane. What is the
disadvantage of this approach as opposed to dynamic training as was
described for the Backplane Ethernet standard described in Chap. 5?

Power Analysis 397

Chapter 9
Power Analysis

In Chap. 1, HSS cores were introduced as being the result of increases in silicon
density outpacing increases in the pin densities of chip packaging technologies.
Increases in silicon circuit density have also outpaced advances in the ability of
chip packages to dissipate heat. Predicting and controlling the power dissipation
of the chip design has become an increasingly important part of chip design.

The multiplexing and demultiplexing functions of HSS cores operate at
very high frequencies, and the associated signals have high activity factors.
High frequencies typically require higher voltages in order to provide the
necessary circuit performance, and higher voltages increase power dissipation.
The nature of the function performed by HSS cores dictates that these cores are
power hungry devices.

The power consuming circuits in the HSS core can be categorized into two
basic types: digital logic circuits and nondigital logic circuits. Power in
nondigital logic circuits can be subcategorized as follows: AC (active) power,
DC (leakage) power, and DC quiescent power. Digital Logic AC power is a
function of the applied voltage (Vs), the frequency (f) of operation, and the
activity factor (AF) for the given circuit. DC leakage power is a function of the
chip process technology, transistor threshold voltage (Vt) temperature, and the
supply voltage (Vs). DC quiescent power is a function of the circuit design and
results from the amount of continuous power that is needed to sustain the
circuit (for example, to operate an amplifier). The factors that affect power
dissipation are discussed in this chapter, along with methods the designer can
use to control the power dissipation of the HSS core.

9.1 Digital Logic Circuits
The discussion of power dissipation for digital logic circuits can be broken

into the categories of AC (active) power and DC (leakage) power.

9.1.1 Digital Logic Active or AC Power
AC power can be derived several different ways and for this discussion can

start with the well-known physics textbook power relationship

where Ps is the power delivered from the power supply, Is is the supply current,
and Vs is the supply voltage. Another well-known relationship from physics
textbooks is the definition of capacitance:

Ps Is V
s

,⋅= (9.1)

C q
Vc
-----,= (9.2)

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 397
© Springer 2008

398 High Speed Serdes Devices and Applications

where C is the capacitance value, q is the charge on the capacitor, and Vc is the
voltage across the capacitor.

Equation (9.2) can be rewritten as:

Assuming C is a constant and differentiating (9.2) with respect to time
results in

and by definition:

Combining (9.4) and (9.5) results in

The energy stored on a capacitor can be assumed to have the following
relationship:

where C is the capacitor value, and Vc is the voltage on the capacitor. This
relationship can be derived from the previous physics relationships as is shown
below. The energy stored on a capacitor is simply a function of the static
voltage on the capacitor Vc and capacitance value C, and is not a function of
the time it takes to charge the capacitor.

Assuming a capacitor of value C is being charged with a current I, the
voltage on the capacitor rises at a constant rate as defined by (9.6). This
equation can be rewritten as:

Integrating Eqn 9.8 with respect to t and assuming V(0) = 0 results in

Assuming a constant current I, the energy to charge this capacitor after a
time T (in seconds) is:

Substituting Vc(t) from (9.9) into (9.10) results in:

Vc
q
C
---- ⋅=

d
dt
-----Vc

d
dt
-----q 1

C
----=

I dq
dt
------=

dv
dt
------ I

C
----=

Ec
1
2
---C Vc

2⋅=

dv I
C

 dt=

Vc t() I
C

 td

0
∫⋅

I
C

 t= = .

E T() P t() td

0

T

∫ I Vc t() td

0

T

∫⋅= =

E T() I
C

 t⋅ td

0

T

∫ I I
C
---- t2

2

0

T
⋅ ⋅ T2

2
------ I2

C
----⋅= = =

(9.3)

(9.4)

. (9.5)

. (9.6)

, (9.7)

. (9.8)

(9.10)

(9.11)

(9.9)

⋅

Power Analysis 399

From (9.9), the voltage on the capacitor after T seconds is

Combining Eqn 9.11 and Eqn 8.38, and rearranging the result:

which is equivalent to (9.7). This equation also implies that it does not matter
how much time (T) is required to charge the voltage (Vc), the energy stored on
it is the same. Although this analysis assumes Ic and dv/dt are constants (and
this text will continue to do so for simplicity), it can also be shown that (9.7)
remains valid even if these parameters are variable over time. Proof of this is
beyond the scope of this text.

The above analysis leads to a simple model using a lump sum capacitance
which can be used for analysis of digital logic power relationships in the
CMOS chip as shown in Fig. 9.1a. The model shown in the figure consists of
a power supply delivering power through a current limiting device to charge
the lump sum capacitance of the network (represented by C in prior analysis).
The “current limiting device” represents the transistor of the CMOS logic gate,
and the “network” is the output net of the CMOS logic gate which is connected
to transistor inputs of other CMOS logic gates. Assuming Is and Vs are
constant, then the power is calculated as described in (9.1), and the supply
energy (Es) provided by the power supply to charge the capacitance of the
network is:

Rearranging Eqn 9.6, the following equation is obtained

and substituting Eqn 9.15 into Eqn 9.14 results in the equation

Fig. 9.1 Network model for AC power

Vc T() I
C

 T= .

E T() C
C
---- T2

2
------ I2

C
----⋅ ⋅ C

2
---- T I

C
----⋅

 T I
C
----⋅

 ⋅ ⋅ 1
2
--- C Vc

2⋅ ⋅= = = .

Es Ps T⋅ Is Vs T⋅ ⋅= =

Is C dv
dt
------⋅=

Es C dv
dt
------ Vs T⋅ ⋅ ⋅=

Vc

Vs = Vdd

Vtran

Ic

Voltage
Power
Supply

Is

Vc

Vs = Vdd

Vtran

Ic

Voltage
Power
Supply

Is

VcIc VcIc

(a) Charging (b) Discharging

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

400 High Speed Serdes Devices and Applications

Allowing for the capacitor to charge for a time (T) until the capacitor is
fully charged to the power supply voltage (Vs), and making the simplifying
assumption that the rate of change of the voltage (dv/dt) is constant during this
period, the following relationship results:

Rearranging Eqn 8.43, and substituting this into (8.42)

The conclusion implied by (9.18) is that the energy delivered by the power
supply to the network is twice the charge stored on the lump sum capacitance
of the network (as was indicated by (9.13)). The difference between the supply
energy (Es) and the energy stored on the capacitor (Ec) is dissipated by the
current limiting device and is released as heat.

Now consider how this model appears when the capacitance is being dis-
charged. Fig. 9.1b shows the charge stored on the capacitance discharging
through another transistor to ground. During this discharge, the transistor dis-
sipates all of the energy stored on the capacitor as heat, and the power supply
does not supply any additional energy to the network.

As the network capacitance is charged and then discharged through one
complete cycle, the total energy supplied by the power supply is specified by
(9.18). All of this energy is dissipated as heat during the cycle: one-half of it
during the charging phase and one-half of it during the discharging phase.
Assuming the network switches states at a constant rate of F cycles per second,
the resulting power dissipation is

where Es (joules) is the power supply energy for one cycle and Ps (joules/sec
or watts) is the power supply power at the specified frequency.

Substituting (9.18) for Es results in

If all of the logic gates on the chip switched at the same rate as defined by F,
then (9.20) could be extrapolated to calculate supply power (Ps) for the entire
chip by using a value for C which corresponds to the sum of all net
capacitances on the chip. Of course, some signals in the chip switch more often
than other signals, and using the same value of F for all circuits would not be
appropriate. It therefore becomes useful to introduce the concept of an average
Activity Factor (AF) defined as follows:

where Fs is the frequency of the signal and Fc is the frequency of the clock
associated with this logic. The Activity Factor (AF) is the ratio of these
frequencies.

Vs
dv
dt
------ T⋅=

Es C Vs()2⋅=

Ps Es F⋅=

Ps C Vs()2 F⋅ ⋅=

AF
Fs

Fc
-----=

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

Power Analysis 401

The Activity Factor can be calculated in the following manner: Fs is
determined by the number of times the signal toggles divided by the time
period (Tp) over which the measurement is taken, and divided by 2 since both
a rising and falling transition are required to produce one cycle of the signal.
Fc is calculated in a similar manner for the clock signal. This results in

where TGs is the number of signal toggles and TGc is the number of clock
toggles summed over the time period Tp. The Tp terms cancel, and the equation
reduces to the ratio of toggles of the signal over toggles of the clock. Of course,
a real signal does not toggle at a constant rate, but rather may have bursts of
activity followed by quiescent periods. However, if toggle activity is measured
over a sufficiently long period, the resulting value of Fs is representative of
average activity, and is an accurate predictor of the average power consumed.

Given the relation:

and substituting for F in (9.20), the result is

This power analysis approach can be extended beyond that of a single
signal and can be applied to all signals in a region of a chip or across an entire
chip. In the context of (9.24), scope is limited to the digital logic domain of the
HSS core. All net capacitances on CMOS digital signals in the HSS core can
be lumped together into a single lumped capacitance term and used in (9.24).
Each interconnect wire has a set of capacitance components associated with it,
including wire-to-ground, wire-to-substrate, wire-to-wire, and gate-to-sub-
strate capacitances, all of which should be included. The activity factor AF is
calculated as a weighted average of the activity factors of the individual
signals, where the net capacitance is used to weight this calculation.

Fig. 9.2 CMOS transistor leakage currents

AF

ΣTGs()
2 Tp⋅

ΣTGc()
2 Tp⋅

----------------------- ΣTGs()

ΣTGc()
------------------= =

Fs Fc AF⋅=

Psac C Fc AF Vs()2⋅ ⋅ ⋅=

Gate

DrainSource

Body

 Isubvt
IgateIgate

IjxnIjxn

(9.22)

(9.23)

(9.24)

402 High Speed Serdes Devices and Applications

The C term in (9.24) is more or less proportional to the area of the digital
logic in the core and affects power dissipation linearly. The Fc and AF terms
also have a linear relationship to power dissipation. However, the Vs2 term
indicates that the value of Vs has a dramatic impact on power dissipation. Small
reductions in Vs can substantially reduce power dissipation.

9.1.2 Digital Logic Leakage or DC Power
Digital Logic Leakage power (DC power) is proportional to the total

leakage current in all of the transistors in the digital logic section of the HSS
core. This leakage current in each transistor is made up of several different
leakage mechanisms including:

1. Subthreshold Leakage Current (Isubvt)
2. Gate dielectric (tunneling) Current (Igate)
3. Junction Leakage current (Ijxn), and
4. Gate Induced Drain Leakage Current (Igidl)

The above leakage components are illustrated in Fig. 9.2, and account for
the majority of the total leakage current. Lesser contributors are not considered
in this text. The total leakage current, for purposes of this discussion, is
therefore the sum of these components

Note that each of the leakage components in (9.25) has a different
dependency on voltage and temperature.
9.1.2.1 Subthreshold Leakage Current

Isubvt is the leakage current between the CMOS transistor drain and source
terminals when the device is turned off. Isubvt is determined by the magnitude
of the threshold voltage and the slope of the subthreshold voltage region of the
current − voltage (IV) curve for the transistor.

Fig. 9.3 NMOS transistor IV curve

Ileakage Isubvt Igate Ijxn Igidl+ + += (9.25)

VT
Vgs

log(Ids)

Sub-threshold Voltage Region

Power Analysis 403

Fig. 9.3 illustrates the ideal IV curve for an NMOS transistor, which plots
the log of the drain-to-source current (Ids) as a function of the gate-to-source
voltage (Vgs). The subthreshold region of this curve corresponds to Vgs values
below the transistor threshold voltage (Vt); in this region Ids increases
exponentially as a function of Vgs. Typically Ids > 0 mA when Vgs = 0V; the
value of Ioff is defined as Ids at Vgs = 0V.

This drain current in the sub threshold region of the curve can be calculated
by the following equation [3]

where
Vds = drain-to-source voltage on the transistor
Vgs = gate-to source voltage on the transistor
Vt = threshold voltage of the transistor
T = junction temperature of the transistor (in Kelvin)
k = Boltzmann’s constant
q = magnitude of the electronic charge
L = transistor channel length
Z = transistor channel width
� = low field mobility of the semiconductor material
Cd = depletion layer capacitance of the semiconductor material
Ci = insulator capacitance of the semiconductor material
Cit = fast interface state capacitance of the semiconductor material
C$ = [1 + (Cd + Cit) / Ci]

The Cd, Ci, and Cit capacitance parameters, as well as �, are determined by
the semiconductor material. Given a particular chip fabrication process, the
values of these parameters are subject to process variation, but are otherwise
constants for a given chip. The Z, L, and Vt parameters are determined by the
transistor design. Some variation of Vt may occur due to process variation, but
these parameters are also otherwise constants for a given transistor on a given
chip. Operating conditions are specified by the Vds, Vgs, and T terms.

Equation (9.26) can therefore be rewritten as a function of the operating
conditions and various constants:

Isubvt µ Cd Cit+()Z
L
--- kT

q

 2

1 e

q• Vds
kT

•

e

q Vgs Vt•()

CτkT

= ,−

− −

Isubvt K1 T()2 1 e

K2 Vds()

T

•

e

K3 Vgs()

T

e
K4
T

=

K1 µ Cd Cit+()Z
L
--- k

q

 2

= K2
q•

k
--------= K3

q
Cτk
---------= K4

qVt•

Cτk
--------------=

,

.

−

− −

(9.26)

(9.27)

404 High Speed Serdes Devices and Applications

Equation (9.27) is further reduced by substituting the conditions for Ioff :
Vds = Vs, and Vgs = 0V. Given that Vs >> q/kT, the dependencies on Vds and
Vgs are eliminated and (9.27) becomes

Equation (9.28) implies that Isubvt has a strong dependence on temperature,
but no dependence on Vs. However, this equation does not provide a complete
picture. The dependence of (9.26) (and by extension (9.28)) on Vds assumes
threshold voltage (Vt) and (L) are fixed quantities for the transistor device.
In reality, Vt is dependent on both Vds and L. As the device electric field
increases (either by increasing Vds or shortening L) the drain induced barrier
lowering (DIBL) effect results in a lowering of the threshold voltage, which
correspondingly increases Isubvt. The threshold voltage also decreases as the
temperature increases, decreasing the slope of the IV curve in the subthreshold
voltage region, and further enhancing the Ioff leakage current.

This effect on Ioff is illustrated in Fig. (9.8) as an upward shift in the point
at which the IV curve crosses the Vgs = 0 axis as Vds is increased. Increased Ioff
can also be caused by decreasing channel length (L). Figures 9.4 and 9.5 show
the relationship of Ioff to decreasing channel length and increasing Vds = Vs,
respectively, and are based on characterization data collected for an example
of an ASIC chip fabrication technology. Fig. 9.4 also shows data collected for
various junction temperatures. The characterization data suggests an exponen-
tial relationship between these parameters and the corresponding Isubvt leakage
current. For operating temperatures greater than about 50°C this leakage
mechanism dominates over all others.

The empirical data suggests that Isubvt, when the effects of DIBL are
included, is exponentially related to the power supply voltage. Also, the empir-
ical data suggests that the Isubvt dependence on T is also exponential once
DIBL is considered. This implies that the terms in (9.28) containing T can be
replaced by an exponential dependency. The following equation results

where:
Vs = power supply voltage (in volts)
T = junction temperature of the transistor (in Kelvin)
VREF = empirical constant (in volts) derived from transistor characterization

data
TREF = empirical constant (in Kelvin) derived from transistor characterization

data
Ksubvt = empirical constant (in amps) derived from transistor characterization

data

Isubvt K1T2 e
K4

T

=

Isubvt Ksubvt e

T
TREF

e

Vs
VREF

=

(9.28)

(9.29)

Power Analysis 405

Fig. 9.4 Ioff relationship to channel length

Fig. 9.5 Ioff relationship to power supply voltage
Equation (9.29), with appropriate constants derived empirically from char-

acterization data, is a reasonable approximation of Isubvt assuming that values
of Vs and T are in typical operating ranges: Vs > 2Vt and T > 0C (273K).
Behavior as these parameters approach zero is more complex, and other terms

Normalized Ioff vs Normalized Chanel Length (L)

with various Vdd and Temp

0.10

1.00

10.00

100.00

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Lpoly Variation from Nominal

Io
ff

X-
fa

ct
or

-10% Vdd

Vdd nom

+10% Vdd

-10% Vdd

Vdd nom

+10% Vdd

-10% Vdd

Vdd nom

+10% Vdd

85C

125C

25C

Ioff vs Voltage for nominal device@nom/25C

0.6

0.8

1

1.2

1.4

1.6

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Normalized Vdd

N
or

m
al

iz
ed

 Io
ff

406 High Speed Serdes Devices and Applications

in (9.26) become significant. However, given that circuit speed is important to
HSS devices, lower supply voltages are generally not used, and the above re-
striction can be assumed. Furthermore, nominal/maximum temperatures used
in calculating power dissipation for typical circuit applications generally
exceed the above limit.

The above equations applied to a single transistor device, and the constants
in these equations applied to specific transistor characteristics. One approach
to calculating the Isubvt leakage current for the overall circuit would be to sum
the contributions of the individual transistors in the circuit. However, note that
the number of transistors turned off (Vgs = 0V and Vds = Vs) at any given time
is state dependent. The form of (9.29) can be extended to model the total Isubvt
leakage current for the HSS core by assuming that the constants in (9.29) are
derived using characterization data which measures power dissipation for the
HSS core rather than individual transistors. This is represented by the
following equation

where:
Vs = power supply voltage for the core (in volts)
T = junction temperature of the core (in Kelvin)
VcREF = empirical constant (in volts) derived from HSS core characterization

data
TcREF = empirical constant (in Kelvin) derived from HSS core

characterization data
Kcsubvt = empirical constant (in amps) derived from HSS core

characterization data
The constants in (9.30) differ from those in the prior equations in that these

constants apply to the overall HSS core logic rather than individual transistors.
Kcsubvt , VcREF, and TcREF are not calculated, but rather are empirically
derived through measuring power dissipation as part of characterization testing
of the HSS core in a laboratory environment. As such, these coefficients are
inherently based on the average transistor characteristics and the average
number of transistors for which Vgs = 0V applies at any given point in time
(thereby take into account the dependencies on circuit state). Equation (9.30)
is therefore a reasonable approximation of the Icsubvt leakage current for the
digital logic in the HSS core (and for nondigital circuits as well if such logic is
included in the characterization test per Sect. 9.2.2).
9.1.2.2 Gate Dielectric or Tunneling Current

Igate is the leakage current between the gate electrode and the substrate.
This current results from a tunneling leakage mechanism whereby the elec-
trons directly tunnel from the silicon surface to the gate through the forbidden
energy gap of the SiO2 dielectric layer. When the gate voltage is high with
respect to the channel this leakage current adds to the Ion current, however, the

Icsubvt Kcsubvt e

T
TcREF

e

Vs
VcREF

,= (9.30)

Power Analysis 407

additional current must be sourced from the node driving the gate. When the
gate voltage is low with respect to the channel, this leakage is sourced from the
channel and flows to ground.

The Igate leakage current has a weak dependence on temperature and an
exponential dependence on power supply voltage (Vs). This leakage current is
also exponentially dependent on oxide thickness, with thinner oxide thickness
resulting in larger Igate leakage. Gate tunneling current is more pronounced in
thinner oxide device gates (around 12 Å), and less of an issue with transistors
designed for low power applications which usually employ thicker gate oxides
(around 18 Å).

If the HSS core (or the chip) implements a stand-by mode in which portions
of the core are powered down while selected FETs remain active to hold state
values, then the gate tunneling current imposes a lower limit on stand-by power
dissipation. Gate tunneling currents sourced by active FETs continue to tunnel
through the gates of inactive FETs while the core is in stand-by mode. Con-
versely, the target stand-by power dissipation specification for the core
imposes a limit on the number of FETs which may be active while the core is
in stand-by mode.
9.1.2.3 Junction Leakage Current

Ijxn is the leakage current between the cathode and the anode of the reverse
biased junction of the drain (and source) to the well (body) terminals of the
transistor. This leakage component is the result of band-to-band tunneling as
illustrated in Fig. 9.6. When the channel (either the drain or the source) of the
transistor is biased at a higher voltage with respect to the substrate, electrons
(for an n-channel device) tunnel from the valence band of the p-region to the
conduction band of the n-region. For a p-channel device, holes tunnel in the
opposite direction.

The reverse-biased junction of a CMOS transistor is shown in Fig. 9.7. The
source and drain of the transistor are assumed to be at a higher voltage than the
substrate in this figure. Under these conditions, leakage currents result from
electrons (or holes) tunneling across the reverse-biased junctions into the substrate.

Fig. 9.6 Tunneling through a reverse biased pn junction

Ec

Ev

Ec

Ev

n region

p region

electron tunnels
across junction

408 High Speed Serdes Devices and Applications

Fig. 9.7 CMOS transistor junction leakage currents

This leakage current is an exponential function of the voltage from the drain
(or source) to the body terminal (Vdb or Vsb) of the transistor [2]. Assuming
Vd = Vs and Vb = 0, then

Vdb = Vsb = Vs
and an exponential dependence once again exists on Vs.
9.1.2.4 Gate Induced Drain Leakage Current

Igidl is the additional leakage current, also caused by band-to-band tunnel-
ing, between the reverse biased junction and the channel of the transistor in the
presence of the vertical gate field. This gate field can result in an amplification
of the standard reverse bias junction leakage. As is shown in Fig. 9.8, at some
Vgs < 0V point the Ids current increases with increasingly negative Vgs
voltages. As Vds increases, the trough of this curve moves toward Vgs = 0V,
resulting in a delta between the ideal Ijxn leakage and the measured leakage.

In Fig. 9.7, Igidl results at the p− n junctions immediately below the gate.
Without an electric field, Ijxn current would be uniform across the entire p− n
junction. However, the electric field induced by the gate causes additional
current to flow in the immediate region below the gate.

Igidl is weakly temperature dependent, but exponentially dependent on voltage
in a similar manner to Ijxn . Worst case leakage current occurs when Vd = Vs.

Igidl is primarily a concern with low power technologies where the thresh-
old voltage has been increased to limit the Isubvt component. Such technologies
reduce leakage currents, but the higher threshold voltage reduces switching
speeds of the transistor devices. HSS cores typically do not use low power
technologies since this conflicts with requirements to achieve high baud rates.

Gate

DrainSource

Body

p substrate

n source n drain

Ijxn

Additional Igidl in region
just below the gate.

Power Analysis 409

9.1.2.5 Total Leakage Power
Equation (9.30), repeated here, was noted as a reasonable approximation

for total Icsubvt of the HSS core

In general, the Icsubvt contribution to leakage current dominates over the
other leakage contributors. (Igidl can be significant for high Vt devices used in
low power technologies, but as noted previously this is not usually a concern
for HSS cores.) Therefore, (9.30) is a reasonable approximation for the overall
leakage current for the HSS core

where the Kcleak, VcREF, and TcREF constants in this equation are the result of
characterization testing of the HSS core considering all leakage currents, and
not just the Icsubvt leakage component.

Vgs

Ids

0

Vd = 0.1V
Vd = 2.7V

Vd = 4.0V

Ioff

DIBLGIDL

Icsubvt
Kcsubvt

e

T
TcREF

e

Vs
VcREF

=

Icleak
Kcleak

e

T
TcREF

e

Vs
VcREF

,≅
(9.31)

Fig. 9.8 N-Channel IV curve defining various tunneling effects

410 High Speed Serdes Devices and Applications

The total power dissipation associated with (9.31) is therefore

Once again the value of Vs has a dramatic impact on power consumption.
Small reductions in Vs can substantially reduce power dissipation. Maximum
junction temperature also has a significant impact on the power dissipation,
and circuit operation at lower temperatures can substantially impact power
dissipation.

9.2 Non Digital Logic Circuits
As was the case for digital logic circuits, the discussion of power dissipa-

tion for nondigital logic circuits can also be broken into the categories of AC
(active) power and DC (leakage) power. In addition, DC quiescent power also
contributes to the power dissipation for nondigital logic circuits.

9.2.1 AC (Active) Power
Active power for nondigital logic circuits results from similar switching

activity of the signals to that of digital logic circuits, and is calculated in a
similar manner. Eqation (9.24) described this calculation, and can be applied
to digital or nondigital logic circuits (or the combination thereof) based on the
scope of the C and AF parameters used in the equation.

9.2.2 DC (Leakage) Power
Leakage power for nondigital logic circuits results from similar mecha-

nisms to that of digital logic circuits, and is calculated in a similar manner.
Equation (9.32) described this calculation, and can be applied to digital or
nondigital logic circuits (or the combination thereof) based on the scope of the
characterization testing used to determine the Kcleak, VcREF, and TcREF values.

9.2.3 Quiescent Power
The quiescent current (Iq) in a nondigital logic circuit is defined as the DC

current drawn by the circuit while the circuit is in a quiescent state with no
activity. By definition, power is related to Iq as follows

where Psq is the power delivered by the power supply, Iq is the steady-state
circuit current, and Vs is the supply voltage. Iq results from DC current paths
in a nondigital (analog) circuit, and does not include any leakage current. Some
DC steady-state current paths approximate the behavior of current sources for
which power dissipation is proportional to Vs. Other DC steady-state current
paths approximate the behavior of resistances for which power dissipation is

Pcleak Icleak Vs×≅ Kcleak e

T
TcREF

e

Vs
VcREF

Vs×=

Psq Iq VS⋅ ,= (9.33)

(9.32)

Power Analysis 411

proportional to Vs2. Power dissipation due to quiescent current paths is
therefore modeled by the following equation

where constants K1q and K2q are empirically determined for a given HSS core.

9.3 HSS Power
This section combines the power equations developed previously, and

discusses topics related to power dissipation for the overall HSS core.

9.3.1 HSS Power Equation
The power in the HSS core is the sum of all types of power consuming

circuits discussed previously, including digital and nondigital circuits; AC
power, DC leakage power, and DC quiescent power. Equation (9.35)
summarizes this relationship

where Phss is the total power dissipated and consumed from the supply by the
HSS core. The Psac and Psleak terms are calculated as described in (9.24) and
(9.32), and calculated such that AC power and leakage power for all digital and
nondigital circuits of the HSS core are included in these terms. The Psq term
for nondigital circuits is calculated using (9.34).

When the underlying equations for these terms are substituted into (9.35),
the following equation results

Phss = (C $ Fc $ AF $ Vs
2) +

(K1q $ Vs) + (K2q $ Vs2) +
(Kcleak $ exp(T / TcREF) $ exp(Vs / VcREF) $ Vs)

Equation (9.36) can further be rearranged as follows:
Phss = [(C $ Fc $ AF) + K2q] $ Vs

2 +
[(Kcleak $ exp(T / TcREF) $ exp(Vs / VcREF)) + K1q] $ Vs

where Phss is a function of Vs, T, Fc, plus various empirically derived coeffi-
cients. Equation (9.37) is strongly dependent on Vs, with linear, quadratic, and
exponential terms associated with the power supply voltage.

While (9.37) does combine all of the power dissipation factors into a single
equation, this is not the end of the story. Often, multiple sets of coefficients
may be supplied for (9.37). These various sets of coefficients may reflect the
following depending on the applicability to a given HSS core:
• HSS cores consist of some number of transmitter, receiver, and PLL slices

as shown in Fig. 9.9. Coefficients are generally specified separately for
each slice to facilitate scaling the calculation of Phss to arbitrary core
configurations.

• In cases where the HSS core requires more than one power supply,
coefficients are specified separately for each power supply.

Psq
K1q

Vs⋅() K2q
+ Vs2

⋅=

Phss Psac Pcleak Psq+ +=

(9.34)

(9.35)

(9.36)

(9.37)

412 High Speed Serdes Devices and Applications

• Coefficients are generally specified for various chip fabrication process
points (nominal, worst case, best case).

• If the HSS core includes modes of operation where power dissipation is
reduced, coefficients are generally specified for each of these modes.

Generally, the coefficients associated with Phss calculations are provided to
the chip designer for each slice of the HSS core. This allows the chip designer
to perform analysis to determine the amount of power required for each trans-
mitter, receiver, and PLL slice. The HSS power dissipated on the chip is cal-
culated by multiplying each of these power calculations by the corresponding
number of core slices.

Other factors in the above list are described in more detail below.

9.3.2 Multiple Power Supplies
Many HSS cores require more than one power supply input. It is necessary

to calculate the power dissipation separately for each supply using (9.37). The
coefficients used in this equation are specific to the supply for which power is
being calculated.
9.3.2.1 Logic Power Supply (Vdd)

All HSS cores have a primary power supply input which is used to supply
power to digital logic, as well as portions of the nondigital logic. Most of the
power consumed by the HSS core is generally drawn from this supply. This
supply is usually shared with other digital logic on the chip, and therefore may
include significant amounts of noise.

Fig. 9.9 Basic block diagram of typical high-speed serdes

PLL

Serializer
Transmit Driver

Transmitter

n

Deserializer

Clock and

Receiver

Receiver

n

Equalization

Data Recovery
& Receive

Equalization

Power Analysis 413

Because of the strong dependence of Phss on supply voltage Vs in (9.37),
power dissipation is minimized by using the lowest possible Vdd voltage. AC
and leakage power terms in (9.37) dominate power dissipation associated with
this supply; quiescent power is not a significant factor for the Vdd supply
unless this supply is used to power termination networks.
9.3.2.2 Analog Power Supply (AVdd)

Some HSS circuits may have a separate analog power supply input. Analog
circuits may require a supply voltage higher than the voltage of the Vdd supply,
or may require a power supply with less noise than would be present on the
Vdd supply. Using a separate AVdd supply provides noise isolation from the
Vdd supply, and provides a higher supply voltage where it is needed. Using the
higher voltage only where needed optimizes power dissipation.

Dominant terms in (9.37) for the AVdd supply depend on which circuits in
the HSS core use this supply. As with Vdd, selecting the lowest possible
voltage for AVdd is desirable to minimize power dissipation.
9.3.2.3 Termination Supply (AVtt)

It is sometimes desirable to provide a separate power supply input for
biasing termination impedance networks. The higher the amplitude of the dif-
ferential signal, the higher the AVtt voltage must be to avoid clipping the
signal. Such clipping can damage transmitter and receiver devices in addition
to impacting signal integrity, and therefore should be avoided.

HSS cores sometimes bias termination networks by tieing AVtt to Vdd
internal to the core, while other designs may provide separate AVtt supply
inputs. In the latter case, AVtt is tied to a voltage as required by the application,
which may be the same or greater than the Vdd voltage.

Since the AVtt supply is generally used to bias output drivers and resistive
termination networks, quiescent power terms in (9.37) dominate for this
supply. If the core internally ties AVtt to the Vdd supply, then this power is
included in the equation for Vdd as increased quiescent power. As with the
other supplies, selecting the lowest possible voltage for the AVtt supply is
desirable to minimize power dissipation.

Note that a termination supply on a receiver device is sometimes referred
to as the AVtr supply. In a DC coupled application, AVtt and AVtr would gen-
erally be tied to a common Vtt power supply.

9.3.3 Chip Fabrication Process
The values of the various coefficients in (9.37) are strongly influenced by

chip fabrication process variation. These coefficients are usually defined for a
nominal chip fabrication process, resulting in calculations which yield nominal
power values. A given chip may consume more or less power depending on the
actual manufacturing process conditions.

It is useful to also provide coefficients associated with worst case
(maximum power) chip fabrication process. Calculations using these

414 High Speed Serdes Devices and Applications

coefficients predict the maximum possible power dissipation. Power dissipa-
tion on a given chip may be significantly less than this value.

9.3.4 Mode-Dependent Power
9.3.4.1 Functional Mode Dependencies

Some HSS cores support various modes of operation which affect power
dissipation. The power dissipation for the HSS EX10 transmitter slice de-
scribed in Chap. 2 is affected by the Transmit Power Register setting defined
in Table 2.6. Driving higher amplitudes on differential signals results in higher
internal capacitive load, and as such Psac increases. Various sets of coefficients
for (9.37) are supplied for common settings of the Transmit Power Register.

The power dissipation for the HSS EX10 receiver core defined in Chap. 2
is affected by the DFE/non-DFE Mode Select setting in the Receive Configu-
ration Mode Register defined in Table 2.7. When non-DFE mode is selected,
the DFE circuit is bypassed and the activity factor of the associated logic is sig-
nificantly reduced. This results in lower power dissipation for the receiver
slice. When DFE-3 mode is selected, portions of the DFE circuit are bypassed,
resulting in higher power dissipation than non-DFE mode, but still less than
DFE-5 mode where the entire DFE is being used. Equation (9.37) coefficients
are supplied for the receiver slice for each functional mode.

The features noted above are commonly recognized to influence power
dissipation on most HSS core designs which support these features. Depending
on the design of the HSS core, other configuration parameters may also result
in significant effects on power dissipation.
9.3.4.2 Power Down Modes

Many HSS cores include the capability to selectively power down portions
of the core. While power down mode controls may disable power distribution
in some HSS core designs, the HSS EX10 core defined in Chap. 2 uses the
more common approach of gating clocks to the affected circuits. The activity
factor of the affected logic is forced to zero, thus eliminating Psac power dissi-
pation term. Leakage and quiescent power dissipation is generally not affected
when clocks are gated.

There are a number of control signals on the HSS EX10 core, as defined in
Table 2.1−2.3, which selectively power down portions of the core. Some of
these control signals are used to disable unused channels, while others are used
to implement a PCI Express dynamic power management scheme as was
described in Sect. 5.5.4. The PCI Express link power states are defined as
follows:

• L0: Normal Operation, Active Transmit and Receive
• L0s: Power Saving, Transmit and/or Receive Idle
• L1: Standby, Transmit and Receive in Sleep Mode
• L2: Powered Down, Tx and Rx Powered Off, Beacon Enabled

Table 9.1 summarizes the power control pins of the HSS EX10 and their
typical application.

Power Analysis 415

Table 9.1 HSS EX10 power mode core pin definitions

Pin name Typical use Description

PLL signals

HSSPDWNPLL Power down cores
on unused interfaces

HSS PLL Power Down
0=normal operation,
1=power down the HSS PLL Slice

HSSSTATEL2 PCI Express power
state L2

Power down signal which powers off part of the
PLL slice in compliance with implementation of a
PCI Express L2 link state. Also forces power down
of transmitter and receiver slices
0=normal operation
1=core is in L2 link state

Transmitter signals

TXxPWRDWN Power down unused
Tx channels on a
core

Transmit Power State:
Power down signal which powers off the Transmit-
ter slice.
0 = normal operation,
1 = Power down

TXxSTATEL1 PCI Express power
state L1

Transmit Power State:
Power down signal which powers off the Transmit-
ter slice in compliance with implementation of a
PCI Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state

TXxELECIDLE PCI Express power
state L0s

Transmit Electrical Idle:
Forces transmit serial data to an electrical idle sig-
nal level.
0 = normal operation,
1 = electrical idle state

Receiver signals

RXxPWRDWN Power down unused
Rx channels on a
core

Receive Power State:
Power down signal which powers off the Receiver
slice.
0 = normal operation,
1 = power down

RXxSTATEL1 PCI Express power
state L1

Receive Power State:
Power down signal which powers off the Receiver
slice in compliance with implementation of a PCI
Express L1 link state.
0=normal operation,
1=transmitter is in L1 link state

416 High Speed Serdes Devices and Applications

9.3.5 Power Dissipation Breakdown
The discussion of HSS power dissipation is not complete without some

discussion of the magnitude of the relative contributions of various HSS core
components and power terms to the overall HSS core power dissipation. As is
shown in Fig. 9.9, the HSS core is made up of three slices: the Phase Lock
Loop (PLL) slice, the transmitter (TX) slice, and the receiver (RX) slice.

For purposes of this discussion, assume a typical full duplex HSS core con-
sisting of one PLL slice, four transmitters, and four receivers. Also assume that
this core has a separate AVdd supply used to supply power to analog circuits
in the PLL slice, and separate AVtt and AVtr supplies to power termination
networks. The AVtt supply powers the output driver stage of the transmitter.
The following relative contributions were determined through analysis of
examples of actual cores with a configuration similar to that of the HSS EX10
core defined in Chap. 2.

Considering this typical core configuration, the PLL dissipates approxi-
mately 10% of the total core power, the four Tx slices dissipate 40% of the core
power, and the four Rx slices dissipate the remaining 50% of the total core
power.

Within the PLL slice, around 34% of the PLL power is dissipated in digital
circuits and 66% is dissipated in the analog circuits. A further breakout of the
PLL digital circuit power shows that 75% of the power dissipation is AC power
and the remaining 25% is leakage. The breakout of the PLL analog circuit
power shows that only 20% of the power dissipation is dynamic (AC) power
and the remaining 80% is quiescent power.

Within the Tx slice, around 23% of the Tx power is dissipated in digital
circuits and 77% is dissipated in the analog circuits. A further breakout of the
Tx digital circuit power shows that 80% of the power dissipation is AC power,
and the remaining 20% of the power is leakage. The breakout of the Tx analog
circuit power shows that only 20% of the power dissipation is dynamic (AC)
power and the remaining 80% is quiescent power. Approximately 60% of the
power for the Tx slice is supplied by the AVtt supply, most of this being the
quiescent power component. The remaining power is supplied by the Vdd
power source.

Within the Rx slice, around 48% of the Rx power is dissipated in digital
circuits and 52% is dissipated in the analog circuits. A further breakout of the
Rx digital circuit power shows that 77% of the power dissipation is AC power

RXxSIGDETEN Power down signal
detect circuit on
channels which do
no use RXxSIGDET

Signal Detect Enable
0=Signal Detect power control using Signal Detect
Power Down bit in SIGDET Control Register,
1=Signal Detect circuit powered on

Table 9.1 HSS EX10 power mode core pin definitions

Pin name Typical use Description

Power Analysis 417

and the remaining 23% of the power is leakage. The breakout of the Tx analog
circuit power shows that only 20% of the power dissipation is dynamic (AC)
power and the remaining 80% is quiescent power. Most of the power for the
Rx slice is supplied by the Vdd power source, with almost no power dissipated
by the AVtr supply.

These relative power contributions should not be taken as absolute values,
but rather as a representative aid to the chip designer as to where attention can
be focused to save power. For example, the large quiescent power contributor
in the Tx can be reduced by reducing the AVtt supply voltage.

9.4 Reducing Power Dissipation
This section discusses general techniques for reducing power dissipation of

the HSS design, and of the system using the HSS core.

9.4.1 Power Concerns for the HSS Core Design
The architecture of the HSS design is probably the largest contributor to the

power dissipation of the core. More complex design architectures require more
logic gates and more circuit transistors, and correspondingly result in greater
power dissipation. Of course, complex design architectures may be the neces-
sary result to meet other requirements such as baud rate or to provide the
feature set necessary for a particular protocol standard. Performing trade-offs
between features, baud rate, and power dissipation is a necessary part of the
design process for any HSS design.

However, HSS core architecture and design topics are not the subject of this
text. In general, minimizing the number of logic gates and analog circuits (for
a given clock frequency) results in the lowest power dissipation. This text
assumes appropriate trade-offs have been made by the design process, and
focuses on approaches for minimizing the power dissipation given a particular
design architecture.
9.4.1.1 Clock Frequencies

All stages of an HSS core datapath must process bits at the target baud rate.
However, these bits can be processed serially, or can be processed in parallel
at a lower clock frequency. Except for the differential serial data output stage
of the HSS transmitter and the differential receiver stage of the HSS receiver,
all circuits within the HSS core can be designed to any arbitrary datapath width
in order to reduce the clock frequency of the circuit.

Equation (9.24), repeated below, states that the AC power of logic is
linearly related to both C and Fc of the circuit:

Assume that two options exist for logic block. One option processes an
n-bit data path using a clock of frequency f. The other option processes a 2n-bit
data path using a clock frequency of f / 2. Given the data being processed is
the same, the value of AF can be assumed to be equivalent for both circuits. It is

Psac
C Fc AF Vs()2··

⋅ ⋅ ⋅ ⋅= (9.38)

418 High Speed Serdes Devices and Applications

also assumed that Vs is the same for both circuits. The first logic block uses a
higher clock frequency while the second design likely requires more logic
gates (increasing the value of C).

From a power dissipation standpoint, the optimal choice between these two
circuits depends on the implementation details and the resulting logic size. If
the second implementation (which must process a 2n-bit data path) contains
twice the number of logic gates of the smaller logic block, then the Psac of the
two implementations is equivalent. In addition, since Pcleak is also propor-
tional to the number of logic gates, the implementation using Fc = f is the
proper choice for optimal power dissipation in this example.

In general, a wider datapath operating at a lower frequency reduces power
dissipation if the implementation of this circuit is such that the number of logic
gates does not grow at the same rate as the increase in datapath width. The
power dissipation of the two circuits must meet the following equation to
justify the larger (slower) circuit:

where C1 is the capacitance associated with the circuit with the wider datapath,
C2 is the capacitance associated with the circuit with the higher clock frequen-
cy, FC is the frequency of the clock for the circuit with the wider datapath, and
n is the ratio of the clock frequencies for the two circuits. This equation as-
sumes AF and Vs are the same for both circuits, and assumes Pcleak scales lin-
early with the logic size (and capacitance). This equation can be rearranged as
follows:

If Pcleak << Psac, then this equation reduces to:

There are two cases which must be considered where the trade-off sug-
gested by the above equation is not valid.

First, the derivation of this equation assumed the power supply voltage (Vs)
is equivalent for both circuits. If reducing the clock frequency allows the
circuit to use a lower supply voltage, then the reduced Vs

2 term more than
compensates for the increased number of circuits.

Second, the above discussion regarding datapath logic blocks (and circuits)
does not necessarily apply to initialization, control, and status logic. Logic with
low activity factors already has minimal contribution of Psac to power dissipa-
tion. However, there is additional benefit to reducing the frequency of clock
signals themselves. The lowest possible clock frequency should be used in
order to minimize power dissipation of this logic.

C1 Fc⋅ Pcleak+ C2 nFc⋅
C2
C1
-------Pcleak+<

C1 C2
nC1FC Pcleak+
C1 FC Pcleak+()
---⋅<

C1 n C⋅ 2<

(9.39)

(9.40)

. (9.41)

Power Analysis 419

9.4.1.2 Clock Gating
Clock signals by definition have an inherent activity factor of 1, and are

therefore a key contributor to Psac in any logic design. If a logic block is not
needed for some period of time, the clock signal can still cause significant
power dissipation even if AF = 0 for all nonclock signals. Gating the clock to
the circuit provides substantial power reduction.

Datapath logic in the HSS core processes data on every clock cycle, and
clocks to such logic cannot be gated during normal operation. However, clocks
can be gated off for power-down modes. Also, operational modes may exist
where clocks may be turned off for some circuits. Examples of such modes for
the HSS EX10 core include:
• Non-DFE or DFE3 selections for the DFE/non-DFE Mode Select setting

in the Receive Configuration Mode Register defined in Table 2.7. These
modes gate the clock to portions of the DFE logic of the receiver slice.

• Setting Signal Detect Power Down in the Signal Detect Control Register
defined in Table 2.7. This powers down the signal detection circuit for
applications which do not use this function.

In general, if a function contributes significantly to power dissipation and
may not be needed in some applications, then it is worthwhile to provide the
user with the capability to turn off the function. Such capabilities are generally
implemented by gating off the associated clocks to the logic block, which
results in AF = 0, and eliminates Psac power dissipation.

Initialization, control, and status logic blocks are also candidates for gating
the clock off when the circuit is not performing useful work.
9.4.1.3 Multiple Vt Logic Circuits

The threshold voltage (Vt) of transistors used to implement a logic gate
has an influence on both AC power dissipation (Psac) and the leakage power
dissipation (Pcleak). Higher transistor Vt levels result in lower leakage
currents, but also impact circuit timing. The slower slew times of such circuits
increase the period over which the gate draws current while switching states,
and thereby increases Psac .

Often, logic gates are available in an ASIC technology which use a variety
of transistor devices with different Vt levels. Logic gates using a lower Vt are
used in circuits where timing performance is of greatest concern, and higher Vt
logic gates are used in slower circuits to reduce leakage currents.

Note that it is not the case that higher Vt devices should be used universally
in slower circuits. Two cases should be considered:

First, in circuits with higher activity factors, the increase in Psac associated
with such devices may more than offset the Pcleak savings. Synthesis tools with
power optimization capabilities are generally used to select logic gates for ini-
tialization, control, and status circuits in the HSS core. Higher Vt devices are
generally used in such logic except where faster circuits are needed on critical

420 High Speed Serdes Devices and Applications

timing paths. Datapath circuits must function at higher speeds and have rela-
tively high activity factors; these circuits rarely use high Vt devices.

Additionally, if use of higher Vt devices forces the use of a higher power
supply voltage in order to meet circuit performance requirements, then the
increased power dissipation associated with the higher supply voltage offsets
any advantage of using the higher Vt devices. Synthesis tools optimize for a
specified Vs and do not consider potential advantages of reducing the power
supply voltage. If the potential exists to lower the power supply voltage, and
restricting the circuit to lower Vt devices facilitates this, then this is almost
always the optimal approach.
9.4.1.4 Multiple Power Supplies

As was discussed earlier in this chapter, some HSS cores require multiple
power supply inputs. The logic power supply (Vdd) is typically used to
supply power to most circuits in the HSS core. This supply is also used by most
of the logic on the chip, and as such the chip designer specifies the Vdd voltage
to be as low as possible to minimize power dissipation.

Additional power supplies may be required by the HSS core if:
• Supply voltages higher than Vdd are required by some circuits
• Critical analog circuits require isolated power supplies with minimal

noise
These additional power supplies generally use a supply voltage which is at

least equal to, and often greater than, the voltage of the Vdd supply. Higher
supply voltages substantially increase power dissipation. For this reason, the
HSS core designer should power as many circuits as possible using the Vdd
supply. Circuits powered by additional power supplies should be minimized,
especially if it is expected that these supplies will use higher supply voltages.

9.4.2 Power Dissipation Concerns for the Chip Designer
For the chip designer, minimizing power dissipation of the HSS core re-

quires utilizing power savings features of the HSS core to the extent that the
application permits. Relevant considerations are listed below, however, many
of these items are probably obvious to most readers at this point.
Turn off Unused Channels. HSS cores generally include multiple transmitter
and receiver slices. Depending on the number of links required for a given chip
and the granularity of the number of links available per HSS core, some chips
may have transmitter and/or receiver slices which are never used. Also, some
chips may have multiple modes of operation, and some of these modes may not
use some of the HSS links. In these cases, unused HSS transmitters and
receivers should be powered down using the appropriate control inputs.
Minimize Power Supply Voltages. Chip and system designers should always
use the minimum possible power supply voltage(s) as permitted by the appli-
cation. As was obvious from earlier topics in this chapter, Vs has a dramatic
impact on power dissipation.

Power Analysis 421

Minimize the Baud Rate. Generally, baud rates are dictated by the application.
However, lower baud rates do reduce power dissipation. Using lower baud
rates during periods when less bandwidth is required is one approach for
reducing power dissipation.
Minimize Transmit Amplitude. The differential amplitude (Vdiff) of the trans-
mitted signal affects the quiescent power of the transmitter driver stage. Lower
amplitudes dissipate less power. Transmit amplitude is provisionable on most
HSS cores. Minimum signal amplitude may be constrained by protocol speci-
fications and/or by signal integrity requirements for the link, however, the
minimum possible amplitude should always be used if power dissipation is a
concern.
Select Operational Modes to Reduce Power. The HSS core may support pro-
visioning of operational modes such that unnecessary functions are turned off
to reduce power. For the HSS EX10 core, this included Non-DFE or DFE-3
selections for the DFE/non-DFE Mode Select setting in the Receive Configu-
ration Mode Register defined in Table 2.7. If either the Non-DFE or DFE-3
selections are sufficient to meet signal integrity requirements of the link, then
these modes can be used and power dissipation of the receiver is reduced.
Power Down States. Some applications may experience periods when no
useful data is being sent or received on the serial data interface. During such
periods, links can be partially or completely powered down to reduce power
dissipation. The PCI Express application defines protocols associated with
entering and exiting power down states during such periods, and utilizes power
state control signals on the HSS core as was described in Sect. 9.3.4.2.

9.5 References and Additional Reading
The following reading is recommended for more information regarding

topics in this chapter:
1. “Thermal and Power Management of Integrated Circuits”, A. Vassighi

and M. Sachdev, Springer, Berlin, 2006.
2. “ULSI Devices”, C.Y. Chang and S.M. Sze, Wiley, New york, 2000.
3. “Solid State Electronic Devices”, B. G. Streetman and S. Banerjee,

Prentice Hall, New Jersy, 2000.

9.6 Exercises
1. For the driving CMOS logic inverter circuit in the figure below:

(a) Highlight the portions of the circuit which compose the lump sum
capacitance C which stores charge driven by the inverter.

(b) Indicate the current path when the inverter charges the this lump sum
capacitance.

(c) Indicate the current path for discharging this lump sum capacitance.

422 High Speed Serdes Devices and Applications

(d) If more circuits are driven by this inverter, how does this affect power
dissipation?

2. Calculate activity factors (AF) for the following signals:
(a) 100-MHz clock signal.
(b) Data signal transmitting a 00110011... repeating pattern.
(c) Data signal transmitting a 00001111010100110011... repeating

pattern.
(d) Control signal which is set during initialization and is not changed.

3. Using your answer to Chap. 7 Exercise 16, calculate activity factor for the
output of a Pseudorandom Bit Sequence (PRBS) generator which uses the
following polynomial: G(x) = x7 + x6 + 1.

4. Calculate AC power dissipation (Psac) for each of the following cases:
(a) 100-MHz clock buffer driving a 10pF load and a 1.2V supply.
(b) 100-MHz clock buffer driving a 10pF load and a 0.8V supply.
(c) 200-MHz clock buffer driving a 20pF load and a 1.2V supply.

5. Calculate AC power dissipation (Psac) for each of the following cases:
(a) Logic gate driving a 50pF load with an activity factor of 0.1 and

powered by a 1.0V supply.
(b) Logic gate driving a 25pF load with an activity factor of 0.2 and

powered by a 1.0V supply.
6. Calculate total AC power dissipation (Psac) for a circuit composed of the

following logic blocks assuming Vs = 1.2 V:
Logic Block Clock Frequency Activity Factor Lump Capacitance
Block #1 100 MHz 0.3 172 nF
Block #2 333 MHz 0.5 88 nF
Block #3 333 MHz 0.01 250 nF
Block #4 25 MHz 0.5 205 nF

Vdd VddDriving
Inverter Load

Power Analysis 423

7. The circuit described in Exercise 6 is modified such that logic block #2 is
partitioned into a voltage island on the chip for which Vs = 0.8V. Recalcu-
late Psac for a circuit given this change.

8. Logic gates are available in an ASIC technology which use transistor
devices with one of two Vt levels. In order to reduce leakage current in the
circuit, should the higher Vt or lower Vt logic gates be used? Explain your
answer in terms of its affect on the calculation of Isubvt .

9. A logic gate must operate across a temperature range of 0−100oC. Which
of these temperature limits results in the lowest Isubvt ? Compare Isubvt at
each of these temperature limits. (Note: K = C + 273.15.)

10. Assume the driving CMOS logic inverter circuit in Exercise 1 is driving a
logic “1” to the load circuit. This means the p-FET transistor of the in-
verter is conducting current in an on state, and the n-FET transistor is
turned off. Show the leakage currents through these transistors while in
this state.

11. Explain using Fig. 9.3 why increasing Vt reduces Isubvt .
12. The IV curve in Fig. 9.3 is somewhat simplified; more realistic IV curves

are shown in Fig. 9.8. Given your answer to Exercise 11 and the definition
of GIDL in Fig. 9.8, why do you think GIDL is more of a concern in low
power ASIC technologies which use higher Vt transistors?

13. Given all other factors are constant, how does increasing the power
supply voltage from 1.0 to 1.2V impact Pcleak based on (9.32)? How is
Phss impacted based on (9.37)?

14. Given all other factors are constant, how does increasing the maximum
junction temperature from 100 to 125oC impact Pcleak for a circuit based
on (9.32)? How is Phss impacted based on (9.37)?
(Note: K = oC + 273.15.)

15. Quiescent Power calculations for nondigital circuits have both Vs and Vs
2

terms. What types of circuits are associated with each of these terms?
16. Assume the HSS EX10 core has Vdd, AVdd, Vtt, and Vtr power supply

inputs. How many sets of coefficients for (9.37) would need to be
supplied to the chip designer to support power calculations for nominal
and worst case power dissipation? (Ignore operating mode dependencies
when answering this question.)

17. There is a desire to build a spreadsheet to calculate power dissipation for
the HSS EX10 core using the sets of coefficients described in Exercise 16.
However, it is also desired that the spreadsheet allow the user to select
between four possible values for the Transmit Power Register, and the
various DFE/non-DFE Mode Select operating modes. How many sets of
coefficients for (9.37) would need to create this spreadsheet?

424 High Speed Serdes Devices and Applications

18. The Transmit Power Register in the HSS EX10 transmitter sets the Vdiff
amplitude of the transmitted signal. Which variables in (9.36) would you
expect are affected by this value?

19. The DFE/non-DFE Mode Select operating mode programmed in the
Receive Configuration Mode Register in the HSS EX10 receiver turns off
portions of the DFE digital logic circuit by gating the clocks to this
circuit. Which variables in Eqn 9.36 would you expect are affected by this
operating mode?

20. Assume the HSS EX10 TXxELECIDLE pin reduces Tx slice power by
60%, and TXxSTATEL1 reduces Tx slice power by 90%. Similarly,
RXxSTATEL1 reduces Rx slice power by 90%. Also, the HSSSTATEL2 pin
reduces PLL slice power by 80% in addition to forcing all Tx and Rx
slices into L1 power state. Given the power breakdown for the HSS EX10
core described in Sect. 9.3.5, how much is the power dissipation reduced
for each of the following PCI Express power states?
(a) All links in L0s power state.
(b) All links in L1 power state.
(c) HSS core in L2 power state.

21. Alternative HSS EX10 core configurations are proposed which include
different numbers of transmitter and receiver slices. Given the power
breakdown for the HSS EX10 core described in Sect. 9.3.5, estimate the
power dissipation for each of the configurations below relative to the
four-lane full duplex HSS EX10 configuration described.
(a) Simplex transmit core with one PLL and four Tx slices.
(b) Simplex receive core with one PLL and four Rx slices.
(c) Full duplex core with one PLL, eight Tx, and eight Rx slices.

22. Two versions of a datapath circuit are considered for inclusion in a 10-
Gbps HSS core design. One version processes data serially while the
other version processes 4-bit parallel data. The implementation of the
parallel version of the circuit requires four times as much logic. Which
circuit is optimal from a power dissipation perspective?

23. How does your answer to Exercise 22 change if the 4-bit parallel data
circuit requires twice as much logic as the serial circuit?

24. Derive (9.40) from Eqn (9.39).
25. Given methods of reducing power dissipation described in Sect. 9.4.2,

discuss how improvements to the design of the channel (i.e., printed
circuit board materials, connector selection, backplane design, etc.) can
lead to lower power dissipation for the system.

Chip Integration 425

Chapter 10
Chip Integration

A general methodology flowchart for the chip design process is shown in
Fig. 10.1 [1]. This flowchart illustrates the major steps that must be performed
to transform the chip design into a manufacturable chip. (In practice, many
steps are overlapped to speed up the process and are iterated as the design is
altered or optimized. For simplicity, linear processing of the traditional meth-
odology is assumed for this discussion.)

The chip design is initially expressed in some higher form by the chip designers,
usually in a High-level Design Language (HDL). This design is simulated using
various means to verify that the design meets applicable design specifications. The
design is then processed by a synthesis tool to map the design into the available
library of logic gates and to optimize the logic structure. Specialized synthesis tools
add Design-For-Test structures and clock trees. The resulting gate-level netlist is
verified using Static Timing Analysis software to verify prelayout timing require-
ments are met; Test Structure Verification software to verify testability require-
ments are met; and Formal Verification software to verify that the gate-level
representation of the design is boolean equivalent to the original HDL design.

The gate-level netlist is the input to a physical design process which in-
cludes floorplanning, layout and wiring, and optimization. Major blocks and
I/O cells are placed as part of the floorplanning stage. Logic gates are placed
and nets are wired during the layout and wiring stage. The optimization stage
consists of analyzing the timing of the routed design and making appropriate
changes to the logic mapping or placement. Extracted resistance and capaci-
tance characteristics of the routed wires are used in this stage by Static Timing
Analysis software to obtain an accurate view of the timing characteristics of
the design and verify all requirements are met. Timing characteristics may also
be used to perform full-timing simulation of the gate-level design.

Once the logical and physical design of the chip is verified to meet all requirements,
chip manufacturing data is generated. At this stage, it is also possible to use Automatic
Test Pattern Generator (ATPG) software to generate test patterns for the chip.

All of the components used in the chip design, including HSS cores, must
support the methodology used to design the chip. Significant facets of using
HSS cores within this methodology are discussed in this chapter, including:
• Simulation models for HSS cores
• Test synthesis support
• Timing models and timing assertions to support static timing analysis
• Floorplanning considerations

This chapter is not intended to be a comprehensive chip design
methodology discussion. HSS cores are processed in the same manner as any
other monolithic logic blocks through much of the chip design methodology.
However, the topics in this chapter warrant special consideration.
D. R. Stauffer et al., High Speed Serdes Devices and Applications, 425
© Springer 2008

426 High Speed Serdes Devices and Applications

Fig. 10.1 Chip design methodology [1]

Design Entry

Simulation

Logic Synthesis

Test Synthesis and
Clock Tree Synthesis

Static Timing
Analysis

Gate Level
Simulation

Test Structure
Verification

Formal
Verification

HDL Design

Gate Level
Netlist

Layout & Wiring

Placement-Based
Optimization

Standard Delay
Format (SDF)

File

Static Timing
Analysis

Manufacturing
Data

Extracted Net
RC Values

Automatic Test
Pattern Generation

Manufacturing
Test Data

Floorplanning

Chip Integration 427

10.1 Simulation Models
Simulation is the primary method used to verify that chip designs function

as intended and meet the requirements of the chip specification. The chip
design and verification teams generate stimulus for chip inputs, simulate the
chip design’s response to the stimulus, and check that the chip outputs behave
as expected. Models must exist for all components of the chip design, includ-
ing HSS cores, in order to support this simulation.

The simulation model for the HSS core must accurately reflect the behavior
of the hardware. To the extent that variation exists between the behavior of the
HSS model and the hardware, the risk is increased that a chip design may pass
its simulation testcases and then not work in hardware. However, simulating
the HSS core through an accurate reset and initialization sequence is computa-
tionally expensive. Chip design and verification teams generally prefer to be
able to abbreviate the reset and initialization process for most simulation runs,
and limit simulation of the full sequence to only a few testcases. Also, accu-
rately modeling the analog behavior of the core is not relevant if the resulting
analog characteristics cannot be observed in the digital simulation. An Analog
Mixed Signal (AMS) simulation is required in order to observe these effects.
However, AMS simulations are generally not done at the chip level, and would
be computationally expensive if they were performed.

10.1.1 Reset and Initialization Short Cuts
The HSS EX10 core reset sequence was described in Fig. 2.16. There are a

number of wait loops in the reset sequence which generally require from
hundreds of microseconds to several milliseconds to complete in hardware. A
full function digital simulation would need to simulate all of these steps to ini-
tialize the HSS cores before any operational functions could be simulated. This
would require significant execution time for the typical event-driven simula-
tion software, and simulating the reset sequence more than a few times would
not provide any additional coverage of chip functionality.
10.1.1.1 Power Application

The first wait loop in Fig. 2.16, “Allow time for core inputs to stabilize,”
exists to allow input pins to the core to stabilize after power is applied to the
chip. None of the logic in the chip can be reliably reset until the power supply
reaches its steady-state value and circuits are driving valid logic “0” or “1”
levels. This may take many milliseconds in hardware, but this behavior is not
modeled at all in a digital simulation. This step in the process may be
abbreviated in a digital simulation, and HSSRESET may be asserted almost
immediately after the simulation starts. Since the chip logic controls when
HSSRESET is asserted, abbreviating this wait loop does not require special
support from the simulation model for the HSS core. However, the chip
designer should ensure the ability exists to speed up wait loops for any relevant
finite state machines which may exist in the chip design or the simulation
environment.

428 High Speed Serdes Devices and Applications

10.1.1.2 PLL Calibration and Lock
The second wait loop in Fig. 2.16, “Wait for PLL Reset Completion,” exists

to allow the PLL slice to achieve a lock state. After the HSS core is reset, the
PLL slice executes a calibration sequence which adjusts circuit parameters
until the PLL successfully locks to the reference clock input. In hardware this
process may take from hundreds of microseconds to several milliseconds.
While it is useful to simulate the detailed behavior of the PLL for a few
testcases (to make sure chip logic responds correctly when realistic delays are
involved), it is not efficient to perform this simulation for every simulation run.

To provide better efficiency for chip simulations, most simulation models
of HSS cores include a mode of operation which shortens the PLL calibration
and lock sequence by jumping directly to a lock state after a small arbitrary
delay. This feature may be activated using one of several means, the most
common of which is to provide a Verilog parameter or VHDL generic on the
simulation model which selects the corresponding mode of operation.

For example, assume the simulation model for the HSS EX10 core
described in Chap. 2 has a Verilog parameter BYPASS_CAL. When this param-
eter is set to “1,” PLL state machine outputs are forced to a “locked” state after
minimal delay, and chip simulation of transmit and receive functions com-
mences. This results in simulation waveforms as shown in Fig. 10.2, where the
calibration sequence completes only 1,644 ns after the HSSRESET input is
deasserted. In this figure, the transmitters start to send data at some point
before HSSPLLLOCK is asserted. Although serial data is driven onto the
receiver inputs in this simulation, the HSS receivers do not attempt to deseri-
alize data until after HSSPLLLOCK is asserted.

Fig. 10.2 Reset sequence with BYPASS_CAL = “1”

Chip Integration 429

10.1.1.3 Rx Training
Additional wait loops in Fig. 2.16, “Wait for Rx Training Completion,”

exist to allow the CDR circuit to find the center of the data eye, and to allow
the DFE circuit to train on the receive data and determine the optimal set of
coefficients to use. This process may take several hundred microseconds in
hardware, but generally is not modeled in a digital simulation. In hardware, the
receive data waveform has jitter and other signal impairments; CDR and DFE
circuits must compensate for these impairments. On the other hand, a digital
simulation generates pristine “1” and “0” levels with no impairments. Even if
the CDR and DFE circuit operation were to be modeled in the simulation
model, there is no signal degradation to exercise these functions.

CDR circuits are often modeled with the equivalent digital function in HSS
simulation models. However, assuming a pristine receiver input with no jitter,
the CDR finds the center of the eye and starts receiving data correctly after only
a small delay.

The only DFE behavior which needs to be modeled in the HSS simulation
model is the DFE interaction with chip logic or system software. This includes
supporting register read/write operations for DFE parameters and generating
any relevant status signals. If the DFE circuit is modeled in the simulation
model, then this circuit trains nearly immediately, and the resulting filter coef-
ficients are trivial. More often, a behavioral model is used for this circuit.

As indicated above, CDR and DFE circuits should train quickly in a digital
simulation environment where the receiver input does not have any signal im-
pairments. It is therefore generally not necessary to incorporate special features
into the HSS simulation model to shorten the execution of Rx Training.

10.1.2 Simulation ‘X’ States
When power is initially applied to a state element in a circuit (either a flip-

flop, latch, or SRAM cell), the initial value of that state element is undefined.
The value initializes to either a logic “0” or “1” depending on power supply
sequencing, circuit conditions, and other factors. The initial value may or may
not vary after every power cycle. In a well-designed circuit, the initial value of
these state elements does not matter. Either the circuit is subsequently reset to
force state elements to known values, or values in some state elements force
values in downstream state elements to known values after a few clock cycles.

The determination as to whether a circuit is well designed is part of design
verification. It is possible, for instance, to design a finite state machine for
which some of the state codes are not used. Such a state machine may include
a reset input to set the state to an initial value, or alternatively may be designed
so that invalid states always transition to the reset state. However, a poorly
designed state machine may loop between one or more invalid states if it
powers up in an invalid state, and may never get properly initialized. Design
verification must ensure all circuits in the device under test are initialized to
known states by whatever means, and cannot power up in a state which leads
to the circuit hanging in an invalid state.

430 High Speed Serdes Devices and Applications

A potential method of verifying that circuits cannot power up in an invalid
state is to verify that the device under test can be initialized properly for all
possible initial values of its state elements. This would require a simulation run
for every possible combination of initial values. Given n state elements in the
device under test, 2n simulation runs are required for exhaustive verification.
Unless the device under test is relatively small, exhaustive verification using
this approach is prohibitive due to the number of simulation runs involved. A
random sampling of initial states is possible, but would not be guaranteed to
find all problems that may exist for a particular design.

Event-driven simulators have approached this problem by initially assign-
ing a value of “X” to state elements in the simulation. Logic gates calculate
output values using a signal resolution function whereby the output of the gate
is a “1” or “0” only if the gate inputs cause this value to be known. For
example, the output corresponding to various combinations of “0” and “1” on
the inputs of an AND gate are defined by the logic function. However, if one
or both of the inputs are “X”, then:

“X” AND “X” = “X”
“X” AND 1 = 1 AND “X” = “X”
“X” AND 0 = 0 AND “X” = 0.

Likewise for an OR gate:
“X” OR “X” = “X”
“X” OR 1 = 1 OR “X” = 1
“X” OR 0 = 0 OR “X” = “X”.

Event-driven simulation propagates signals according to these resolution
functions. In a well-designed circuit the “X” states are forced to known values
by reset signal(s) or by other means within a few clock cycles. If the device
under test reaches a state where no “X” states remain, this proves exhaustively
that the circuit cannot power up in a state where initialization is not possible.
Subsequent simulations from this state may be assumed to be representative of
device operation regardless of the initial power-up state of the circuit.

This approach of using “X” states to verify initialization of the device under
test is a pessimistic approach. The chip designer may reset state elements or
otherwise add logic to eliminate the propagation of “X” states in simulation,
while the real hardware may operate normally without this additional logic.
However, this additional logic is viewed as necessary design overhead to
ensure the design has been exhaustively verified and avoid any problems going
undetected.

This discussion is relevant to the simulation model for the HSS core in the
following manner: This simulation model must be initialized within the chip to
eliminate “X” states for signals within the model, and must not have “X” states
driven on output signals which interfere with the initialization of other chip
logic. In order to accomplish this, the chip designer may need to ensure certain
inputs to the core are at known values, or to sequence input signals to the core
in a specific manner.

Chip Integration 431

For the HSS EX10 core, the HSSRESET input resets the HSS core to a
known state and eliminates “X” states within the model. However, certain
inputs to the core must be at known values (not “X”) when HSSRESET is
asserted. If these inputs are not at known values, clock signals within the core
are “X,” and the simulation model reloads “X” values.

Table 10.1 defines the requirements for the simulation model of the HSS
EX10 core. Signals which gate or otherwise affect propagation of clocks
internal to the simulation model are listed in this table. These signals must be
driven to known values as indicated before HSSRESET is asserted or the
model for this core cannot be initialized. Note that although the HSS EX10 is
a tutorial example, unless the core designer goes to the effort to gate signals
internally, there are similar requirements for any HSS core.

Table 10.1 Signal requirements for initializing the HSS EX10 model

Slice Signal Value Description of rationale

PLL HSSREFCLK[T,C] Oscillating The reference clock must be running and stable
when HSSRESET is asserted

HSSREFDIV 0 or 1 This input controls a clock divider and must be a
known value to avoid “X” on internal clocks

HSSDIVSEL[1:0] 0 or 1 This input controls a clock divider and must be a
known value to avoid “X” on internal clocks

HSSPDWNPLL 0 This input controls power to the PLL slice and
must be “0,” otherwise clocks are gated off

HSSRESYNCCLKIN 0 This input gates clocks in the simulation model,
and must be “0” to avoid “X” on internal clocks

HSSSTATEL2 0 This input controls power to the PLL slice and
must be “0,” otherwise clocks are gated off

TX TXxPWRDWN 0 This input controls power to the Tx slice and must
be “0,” otherwise clocks are gated off

TXxSTATEL1 0 This input controls power to the Tx slice and must
be “0,” otherwise clocks are gated off

RX RXxPWRDWN 0 This input controls power to the Rx slice and
must be “0,” otherwise clocks are gated off

RXxSTATEL1 0 This input controls power to the Rx slice and
must be “0,” otherwise clocks are gated off

RXxDATASYNC 0 This input gates clocks in the simulation model
for the Rx deserialization stage, and must be “0”
to avoid “X” on internal clocks

432 High Speed Serdes Devices and Applications

10.1.3 Modeled and Unmodeled Behavior
While it is desirable that simulation models for HSS cores accurately reflect

the behavior of the hardware, it is not desirable for models to be of such detail
that simulation run times are adversely impacted. Furthermore simulation
models are used in a digital simulation environment where many of the analog-
mixed signal functions of the core are not exercised or observable. Functions
which cannot be exercised or observed need not be modeled. Behavioral
models are used for these circuits to model the equivalent digital behavior and
thereby improve execution times for simulations using the model. As a general
rule, features and functions implemented in the digital logic of the core are
fully implemented in the simulation model, whereas AMS features and
functions are either implemented with a behavioral model or not modeled.

Chapter 2 provided a detailed description of the HSS EX10 core which has
been used as a tutorial example throughout this text. This section continues to
develop this tutorial example by describing which functions are modeled in a
hypothetical simulation model for this core, and which functions are not
modeled or modeled behaviorally.
10.1.3.1 Reset Sequence

The reset sequence is fully modeled in the HSS EX10 simulation model,
including all control and status signals, and all state machines involved in the
reset sequence and VCO calibration. The analog PLL circuits are replaced with
a behavioral model which simulates the digital behavior of the circuit.

The simulation model executes the reset sequence in a similar manner to
hardware, accurately modeling signal handshakes, timing, VCO calibration
results, etc. As was discussed previously, it is often desirable to shorten the
execution time associated with VCO calibration. The BYPASS_CAL parameter
was defined to do this.
10.1.3.2 Data Serialization and Deserialization

The parallel data interface of both the transmitter and receiver are fully
modeled. Parallel data inputs of the transmitter are serialized, and data is
driven onto the serial data outputs. Since this is a digital simulation model, the
serial data outputs are driven to “0” and “1” values according to the data bit
being sent. The true and complement legs of the differential signal are always
driven to opposite values.

Serial data inputs to the receiver are deserialized and are driven to the
parallel data output of the receiver. Note that the RXxI[P,N] inputs must have
opposite values to result in a valid decode of the digital bit; if the serial data
inputs are the same level, the model decodes this as an “X” value. Modeling of
this interface includes deriving the RXxDCLK frequency from the incoming
serial data and modeling the operation of RXxDATASYNC.
10.1.3.3 Analog Signal Characteristics

The registers defined in Table 2.6 contain parameters that set analog char-
acteristics of the transmitted serial signal, including signal amplitude and slew

Chip Integration 433

rate. Although these registers are included in the digital simulation model for
the HSS core, they have no affect on the operation of the model.

Equalizer operation is also modeled in a limited fashion. Since the serial
data output of the digital simulation model can only be “0” or “1,” the
waveform variations generated by the FFE are not observable in the digital
simulation environment. For this reason, only the register interface is generally
modeled. A behavioral model is used to model any analog circuits which may
be needed to provide appropriate register readback values. (One exception to
this may be inverting the polarity of the serial data output based on the sign bit
for the z0 filter coefficient. This feature is useful for simulation of some
applications.)

In a similar manner to the transmitter, Table 2.7 defines registers in the
receiver associated with the DFE. Only the register interface of the DFE is
generally modeled. A behavioral model is used to model any analog circuits
which may be needed to provide appropriate register readback values. Since
the received data is an ideal signal in a digital simulation environment, any
more detailed functionality would not be exercised even if it were modeled.
10.1.3.4 Power Control

Various controls on the HSS EX10 core force portions of the core into
various power down states. The outward effects of these controls are modeled
in the HSS EX10 simulation model. TXCTS and TXBPWRDWN have been
asserted in the example shown in Fig. 10.3, forcing the corresponding serial
data outputs of the respective channels to a “Z” value. TXBPWRDWN also
stops clocks in the transmitter slice as evidenced by TXBDCLK remaining at
a fixed level. TXCTS only shuts down the driver stage and does not stop any
clocks.

Fig. 10.3 Transmitter power down

434 High Speed Serdes Devices and Applications

Fig. 10.4 Full, half, and quarter rates
10.1.3.5 Data Rate Selections

The full-, half-, quarter-, and eighth-rate modes of the HSS EX10 core are
fully modeled in the simulation model. Figure 10.4 illustrates a case where the
“A” and “D” transmitter channels are operating at full rate, the “B” channel is
operating at half rate, and the “C” channel is operating at quarter rate. The
figure illustrates how this affects the TXxDCLK operating frequencies. Note
that while the duty cycle of the TXxDCLK is approximately 50% in full-rate
mode, this is not true in all modes.
10.1.3.6 Diagnostics

All diagnostic functions which are primarily implemented in digital logic
are modeled in the HSS EX10 simulation model. These include:
• PRBS generator and PRBS checker logic circuits
• Loopback paths
• JTAG 1149.1 and 1149.6 functions

Although these functions may also be used during chip manufacturing test,
these functions are primarily needed for system characterization and system
manufacturing test. The chip designer must verify not only the normal func-
tional operation of the chip, but also the diagnostic test modes of the chip. It is
therefore important that the simulation model for the HSS core contain support
for these functions.

10.2 Test Synthesis
Manufacturing test for the HSS EX10 core was described in Chap. 7. As

was discussed in that chapter, the chip is tested using some form of scan test,
and the digital logic of the HSS core is tested as part of this scan test. Scan test
performs DC stuck fault testing and is capable of achieving high coverage
metrics using efficient test patterns generated by ATPG software. In addition,

Chip Integration 435

a suite of Macro Tests is applied to the HSS core to test analog circuits and
electrical parametrics.

Requirements are imposed on the chip designer in order to facilitate execu-
tion of the various types of manufacturing test. Test control signals and scan
chain inputs and outputs on the HSS core must be connected to the correct chip
level signals. Macro test execution may require controllability and observabil-
ity of various HSS core pins in order to facilitate test execution. Additionally,
some HSS core pins may require preconditioned logic values during scan test,
macro test, or JTAG test execution.

This mish-mash of requirements falls on the chip designer to implement.
This section starts by discussing logic structures to implement various classes
of requirements. Later, the concept of a test wrapper is discussed, which is
delivered as part of the HSS core design kit, and allows connection of these
logic structures to be automated.

10.2.1 Scan Test Support
The HSS EX10 core description in Chap. 2 did not include necessary pins

to support manufacturing test of the core. In order to facilitate scan testing of
the HSS EX10, the pins described in Table 10.2 are added to the core.

Table 10.2 HSS EX10 scan test pins

Pin name Type Description

SCANIN[8:0] In Scan chain input pins. All the flip-flops in each PLL, Tx, or Rx slice
are connected as a long scan shift register when SCANGATE is
asserted. The HSS EX10 core has nine slices (one PLL, four Tx,
and four Rx) and therefore has a total of nine scan inputs

SCANOUT[8:0] Out Scan chain output pins. See description of SCANIN[8:0] for more
information

SCANGATE In Test control pin which is asserted (= “1”) when scanning the scan
chains of the HSS EX10 core

TESTENABLE In Test control pin which is asserted (= “1”) at all times when execut-
ing scan test and macro test sequences

LT In Test control pin which is asserted (= “1”) to disable any DC leak-
age current paths in the core to facilitate Iddq testing

DI In Test control pin which is asserted (= “1”) to disable all drivers on
the chip

RI In Test control pin which is asserted (= “1”) to disable all receivers
on the chip

ZDI Out Redriven DI signal

ZRI Out Redriven RI signal

436 High Speed Serdes Devices and Applications

Scan test requires all of the flip-flops on the chip to be configured as scan
shift registers when specific chip-level input signals are asserted. Table 10.2
assumes flip-flops in each slice of the core have been connected as such, and
the inputs/outputs of these scan chains have been added as SCANIN and
SCANOUT pins of the core, respectively. Core scan chains are embedded by
the chip designer within chip scan chains. Although it would be sufficient to
connect all of the flip-flops of the core into one scan chain, the lowest manu-
facturing cost is realized when the chip contains as many scan chains as
possible (within limitations imposed by the number of package pins), and the
scan chains have roughly equal numbers of flip-flops in each scan chain.

The SCANGATE pin controls whether or not the scan chain operates as a
shift register, or whether flip-flops are connected to their functional data
sources. This signal is connected to one of the chip-level manufacturing test
signals and must be asserted to scan the chip.

The TESTENABLE pin performs design-specific functions to ensure test
functions are accessible, and to disable functions that are to be excluded from
testing. This pin is connected to an appropriate chip-level manufacturing test
signal which is expected to be held active through all stages of manufacturing
test, and which is expected to be held inactive in an operational system.

Additional test pins are defined in Table 10.2 which perform specific, but
commonly required, functions:
• The LT pin disables DC current paths so that quiescent currents are not

lumped into leakage current measurements, thus supporting a chip-level
Iddq or Leakage Test as described in Sect. 7.4.1.4.

• The Driver Inhibit (DI) and Receiver Inhibit (RI) pins defined in
Table 10.2 disable the drivers and receivers, respectively, in the HSS
EX10 core. These signals are used during chip I/O tests, and must be
connected to the equivalent chip-level manufacturing test signals. The DI
and RI input pins are redriven onto the ZDI and ZRI output pins to support
a daisy-chain connection of these signals to adjacent chip I/O.

It is the responsibility of the chip designer to connect scan chains of the core
into chip level scan chains, and to connect the various test control signals to
appropriate sources. Automation methods are considered later in this section.

10.2.2 Macro Test Support
10.2.2.1 Input Controllability

Macro tests for the HSS EX10 core were described in Chap. 7. In order to
execute these tests, various pins on the HSS EX10 must be preconditioned to
specific values, or must be fully controllable. The following cases may exist:
• HSS pin must be held at logic “0” for all test sequences.
• HSS pin must be held at logic “1” for all test sequences.
• HSS pin must be held at logic “0” or “1” depending on the test.
• HSS pin must be changed or toggled during the test sequence.

Chip Integration 437

Fig. 10.5 Macro test logic for controllability
Logic to implement these cases is illustrated in Fig. 10.5. This logic

assumes a Macro Test Enable which is asserted and held throughout all macro
test sequences, and is not asserted during normal operation of the chip. As
shown in the figure, this signal is used to force signals which must be precon-
ditioned to fixed values of “0” or “1” during macro test sequences.

For cases where the signal must be preconditioned with a value that varies
from test to test, a transparent latch is inserted as shown in Fig. 10.5. The
Macro Test Enable signal is used to control the E input of this latch. During
normal function, the latch is held flush such that the functional signal always
controls the pin on the HSS core. During test operation, the latch is disabled so
that it holds whatever value has been loaded into it. Although the scan connec-
tions are not shown in Fig. 10.5, it is assumed that this latch is stitched into the
chip scan chains. The desired precondition value is scanned into the latch prior
to execution of the test sequence, and then is held since the Macro Test Enable
holds the E pin at a logic “0” during the test sequence.

Finally, consider the case where the HSS pin must be fully controllable
during the macro test sequence. Signals which must be pulsed or toggled
during the test sequence must be controlled from a chip input in order to do so.
This input is usually not the normal functional path for driving the HSS pin. As
shown in Fig. 10.5, a multiplexor selects between the normal functional
control signal and the test signal source; the selection control for this multi-
plexor is the Macro Test Enable signal. Since the chip input pad is only used
as a test signal source when testing the HSS core, this same input may be used
for other purposes during other modes of operation. For instance, this pin may
also be a scan input when scanning the chip, and may be a functional signal
input for some unrelated function during normal chip operation.

HSS

Functional

Macro Test

Signal preconditioned
to logic 0 for test

Functional
Signal preconditioned

to logic 1 for test

D

E

Functional
Signal preconditioned
to logic 0 or 1 for test

1

0Functional

Test Signal
Signal controllable

from chip pad for test

Signal

Signal

Signal

from Chip Pad

Signal

Enable

438 High Speed Serdes Devices and Applications

10.2.2.2 Output Observability
The above discussion concerned controllability of HSS input pins to

support macro test execution. In a similar manner, some HSS output pins
require observability during the macro test sequence. Two cases exist:
• Final value of the HSS pin at the conclusion of the test must be observed.
• HSS pin must be observed dynamically during the macro test sequence.

Logic to implement these cases is illustrated in Fig. 10.6. This logic
assumes the same Macro Test Enable signal which was defined previously.
This logic also assumes a Macro Test Complete signal which is held at logic
‘0’during execution of the test sequence, and is asserted at the end of the test
sequence to capture results.

Fig. 10.6 Macro test logic for observability

For cases where the HSS pin logic value must be observed at the conclusion
of the test, a transparent latch is inserted as shown in Fig. 10.6, and is used in
a similar manner to the transparent latch in Fig. 10.5. During normal function,
the latch is held flush by the Macro Test Enable signal such that the HSS output
signal always propagates to downstream logic. During test operation, the latch
E pin is controlled by the Macro Test Complete signal. This signal is held low
during the test sequence and goes high at the end of the sequence, capturing the
HSS signal output logic level in the latch. The latched value is subsequently
scanned out of the chip.

If the HSS output pin must be dynamically observed during execution of
the test sequence, then the signal must be observable at a chip output pad. This
output is usually not the functional connection for the HSS signal. As shown
in Fig. 10.6, the HSS pin is driven to both its functional sink as well as a test
sink. The buffers shown in the figure are not logically required, but may be
required to preserve net names for some design automation flows. The test
sink, a chip output pad, may also be used for other purposes during other modes
of operation. For instance, this pin may also be a scan output when scanning
the chip, and may be a functional signal output for some unrelated function
during normal chip operation. A multiplexor would be used to select the source
of the signal driving the chip output pin based on the operational or test mode.

HSS

Macro Test Complete

D

E

Functional

Signal observed
at test conclusion

Test Signal

Signal observable
at chip pad for test

Functional Signal

Macro Test Enable

Signal

to Chip Pad

Chip Integration 439

10.2.2.3 HSS EX10 Example
Continuing with the expansion of the HSS EX10 tutorial example, Table 10.3

defines macro test requirements for the HSS EX10 core. Preconditioning is
required for many of the HSS input pins. Pins not listed in this table are gated
with other signals internal to the HSS core and do not affect test execution.

During macro test, chip pads must drive the HSSRESET, TXxPRBSRST,
RXxPRBSRST, and RXxPRBSFRCERR signals. Each of these signals must be
driven by a chip input pad during macro test execution. This chip input may be
shared by all of the HSS cores (and all channels of the same HSS core) on the
chip. Four test inputs are required regardless of the number of cores on the
chip.

Table 10.3 HSS EX10 macro test controllability and observability

Pin name Type Slice Controllability/observability description

HSSRESET In PLL Full controllability required during test sequence

HSSPLLLOCK Out PLL Full observability required during test sequence

HSSPDWNPLL
HSSRECCAL
HSSRESYNCCLKIN
HSSSTATEL2

In PLL Preconditioned to “0” for all tests

HSSREFDIV
HSSDIVSEL[1:0]
HSSPRTWRITE
HSSPRTAEN
HSSPRTADDR[7:0]
HSSPRDATAIN[15:0]

In PLL Preconditioned to “0” or “1” depending on test

TXxPRBSRST In Tx Full controllability required during test sequence

TXxBYPASS
TXxPWRDWN
TXxSTATEL1
TXxELECIDLE

In Tx Preconditioned to “0” for all tests

TXxTS In Tx Preconditioned to “1” for all tests

TXxPRBSEN In Tx Preconditioned to “0” or “1” depending on test

RXxPRBSRST
RXxPRBSFRCERR

In Rx Full controllability required during test sequence

RXxDATASYNC
RXxPHSLOCK
RXxPWRDWN
RXxSTATEL1
RXxSIGDETEN

In Rx Preconditioned to “0” for all tests

RXxACJPD[P,N]
RXxPRBSEN

In Rx Preconditioned to “0” or “1” depending on test

RXxSIGDET Out Rx Must obverse value at conclusion of the test

440 High Speed Serdes Devices and Applications

The RXxSIGDET and HSSPLLLOCK outputs require observability. In the
case of RXxSIGDET, the logic value can be captured in a latch and observed at
the conclusion of the test sequence. In the case of HSSPLLLOCK, the signal
must be observed dynamically, and therefore the signal must drive a chip
output during the test sequence.

10.2.3 JTAG Logic Connections
10.2.3.1 JTAG Boundary Scan Cell Connections

As was discussed in Sect. 7.1, JTAG 1149.1 and JTAG 1149.6 compliance
require all input/output signals of the chip connect to Boundary Scan Cells.
This places a requirement on the HSS core to provide signals to connect to the
Boundary Scan Cell, which is part of the JTAG Boundary Scan Register. HSS
pin connections to Boundary Scan Cells were described for the HSS EX10 core
in Sects. 2.2.6 and 2.3.6.
10.2.3.2 Input Preconditioning

In addition to the signals described in Sects. 2.2.6 and 2.3.6, additional pins
on the HSS core may need to be preconditioned to specific logic values for
JTAG testing. The following cases may exist:
• HSS pin must be held at logic “0” for JTAG test execution.
• HSS pin must be held at logic “1” for JTAG test execution.
• HSS pin must be controlled by the JTAG TAP Controller.

Logic to implement these cases is illustrated in Fig. 10.7. This logic
assumes a JTAG Compliance Enable is asserted and held by the TAP controller
when appropriate JTAG instructions have been loaded, and is not asserted
during normal operation of the chip. Logic in Fig. 10.7 preconditions and
multiplexes signals in a similar manner to Fig. 10.5.

Fig. 10.7 Logic for JTAG test preconditioning

HSS

Functional

JTAG

Signal preconditioned
to logic 0 for test

Functional
Signal preconditioned

to logic 1 for test

1

0Functional

JTAG Control
Signal controllable

from chip pad for test

Signal

Signal

Signal

Signal

Compliance
Enable

Chip Integration 441

10.2.3.3 HSS EX10 Example
Continuing to expand the HSS EX10 example, Table 10.4 defines the

JTAG signal connection requirements for this core. Many of the pins in this
table are connected to the Boundary Scan Cells, while the rest are described
below.

The HSSJTAGCE pin is driven by the TAP Controller based on a decode of
the contents of the JTAG Instruction Register. This is the equivalent descrip-
tion to the JTAG Compliance Enable signal described in Fig. 10.7, and this
signal is typically connected to the HSSJTAGCE pin. This signal is used
internal to the HSS EX10 core to gate signals and enable JTAG test mode.
Table 10.4 describes additional signals which must be preconditioned in logic
outside the core by HSSJTAGCE.

Preconditioned signals must be driven to valid values during JTAG test.
The reset sequence for the chip is not executed during JTAG testing of a circuit
board, and therefore the state of most flip-flops on the chip is unknown. If, for
example, some of these signals are driven by a programmable control register,
the state of this register is unknown during JTAG test. In order to ensure values
are valid during JTAG, these pins must either be tied directly to a logic “0” or

Table 10.4 HSS EX10 JTAG test preconditioning requirements

Pin name Type Slice Controllability/observability description

HSSJTAGCE In PLL Driven by the JTAG TAP Controller based on con-
tents of the JTAG Instruction Register

HSSACJPC
HSSACJAC

In PLL Signal connections to boundary scan cells

HSSPDWNPLL In PLL Preconditioned to “0” during JTAG test

HSSTXACMODE
HSSRXACMODE

In PLL Tied to “0” or “1” based on system design

TXxBSIN
TXxJTAGTS

In Tx Signal connections to boundary scan cells

TXxBSOUT Out Tx Signal connections to boundary scan cells

TXxJTAGAMPL[1:0] In Tx Tied to “0” or “1” during JTAG test.
(Only used when HSSJTAGCE = “1.”)

TXxPWRDWN In Tx Preconditioned to “0” during JTAG test

RXxBSOUT Out Rx Signal connections to boundary scan cells

RXxACJPDP
RXxACJPDN

In Rx Signal connections to boundary scan cells

RXxACJZTP
RXxACJZTN

Out Rx Connection to boundary scan cell

RXxPWRDWN In Rx Preconditioned to “0” during JTAG test

442 High Speed Serdes Devices and Applications

“1” level, must be connected to a chip I/O, or must be connected to logic which
is controlled by a JTAG compliance signal.

10.2.4 Automation of Test Requirements
A number of requirements for test connections to the HSS core have been

discussed, the implementation of which has been left as an exercise to the chip
designer. This suggests opportunities for Design-For-Test (DFT) design
automation software to be used in the following areas:
• DFT design automation software tools which make logical changes to the

netlist to stitch scan chains, generate and connect JTAG boundary scan
cells, etc.

• Additional files in the design kit for the HSS core which provide logic and
connections for test signals. A test wrapper is discussed in this section
which serves this purpose.

10.2.4.1 Design Automation Software
Software tools exist which are capable of automatically connecting some of

the test signals discussed in this section.
Scan chain stitching software connects scan input and output pins of flip-

flops and latches on the chip into contiguous scan chains. Such software can
also stitch scan chain segments embedded in the HSS cores into the chip level
scan chains. This software is generally sophisticated enough to perform stitch-
ing based on the physical locations of the elements on the chip (stitching flip-
flops based on nearby neighbors), and to balance scan chains such that scan
chains have roughly equal numbers of flip-flops in each chain.

Top level insertion software generates the logic for JTAG boundary scan
cells and connects JTAG signals to boundary scan cells. This software is also
capable of generating logic for I/O sharing. Chip input pins may have func-
tional use during normal chip operation, may be used as a scan input, and may
connect to an HSS core (or another core type) to control a signal during macro
test. Likewise, chip output pins may have defined functional use, may be used
as a scan output, and may be used to observe an HSS core signal during macro
test.

Top level insertion software is driven by input from the chip designer
supplied in the form of I/O definition statements in an I/O control file. Each I/O
statement specifies the net name associated with the I/O; the I/O cell type
(name of the library cell or other keyword); net names of signals associated
with functional, scan, and macro test use; and net names associated JTAG
boundary scan cell connections.

The base functionality of top level insertion software assumes that all of the
nets referenced by the statements in the I/O control file exist at the top level of
the chip. Test signals on HSS cores must be routed through the chip design
hierarchy to the top level so that these signals may be connected to the appro-
priate sources and sinks. Alternatively, it is possible to add preprocessing to the
top level insertion software such that test signals do not need to be routed

Chip Integration 443

through the chip hierarchy. This approach is discussed further in the next
section.
10.2.4.2 Test Wrappers

Sects. 10.2.2 and 10.2.3 discussed logic which was required to be added by
the chip designer around the HSS core. This logic gated signals to the HSS core
to force preconditioned values, and provided controllability and observability
of various HSS pins for macro test and for JTAG test. Given requirements for
a specific pin, the logic associated with the pin is typically one of the cases il-
lustrated in either Fig. 10.5, 10.6, or 10.7 (or some combination thereof). This
test logic does not vary significantly from one instance of the HSS core to the
next, or from one chip design to the next. This suggests that the logic can be
supplied in the form of a test wrapper as part of the design kit for the HSS core.

A test wrapper is a Verilog or VHDL design which instantiates the HSS
core and provides the necessary test support logic around the core. This is
shown conceptually in Fig. 10.8. Inputs to the test wrapper consist of func-
tional signals and test signals, and any preconditioning logic or multiplexor
logic is included in the wrapper. The chip designer connects functional signals
as needed by the application, and connects test signals to appropriate test
control sources; control logic is provided by the test wrapper.

Fig. 10.8 Test wrapper concept diagram

10.2.4.3 Combining Test Wrappers with Top Level Insertion
The previous description of test wrappers assumed all test signals were

connected by the chip designer. Almost universally, test signals must be
connected through the design hierarchy of the chip in order to make appropri-
ate connections at the top-level of the netlist. This produces an opportunity for
further automation by combining the test wrapper concept with preprocessing
functionality in the top level insertion software.

Verilog or VHDL Test Wrapper

Test
Logic

Functional
Signals

Test
Signals

JTAG CE
Macro Test Enable
Macro Test Complete

HSS
Test
Logic Functional

Signals

Test
Signals

444 High Speed Serdes Devices and Applications

In order to implement automation, the test signal input and output ports in
Fig. 10.8 are removed from the Verilog module statement (or VHDL entity
statement). Instead, test signals are tied to their normal (functional) values
inside the test wrapper. These nets are “tagged” in the test wrapper so that the
nets are recognized by top level insertion software. “Tags” may use net
attributes, special net names, special cells, or special instance names to identify
the nets to the top level insertion software. Software scans the chip netlist for
tagged nets, removes the tie values from these nets, and connects the nets to the
appropriate sources and sinks in the top-level of the chip netlist. When this
approach is used to process test wrappers, there is no longer a need for the chip
designer to connect test signals through the chip netlist hierarchy.

An integrated netlist processing flow which combines I/O definition
statement examples and a test wrapper with appropriate design automation
software can greatly simplify implementation of the test requirements for the
HSS core. What started out as a rather complex set of requirements to support
various test modes becomes an almost fully automated methodology for
generating and connecting the necessary test logic.

10.2.5 Running Macro Test using the JTAG Interface
The discussion of JTAG 1149.1 in Sect. 7.1.1 described an optional

RUNBIST instruction which can be loaded into the JTAG Instruction Register.
This instruction is sometimes utilized to execute a Macro Test sequence
controlled by internal state machines within the HSS core. When the JTAG
Instruction Register contains the RUNBIST instruction, signals are
preconditioned to run Macro Test as needed. Signals which require
controllability to either logic “0” or logic “1” can be driven from additional
user-defined registers scanned through the JTAG interface; signals which must
be observed at the conclusion of the test can be similarly captured in user-
defined registers. Signals toggled during the test sequence are controlled by
BIST state machines in the HSS core.

Using the JTAG interface to execute the Macro Test sequence is attractive
because it simplifies the requirements for special test connections to the HSS
core and potentially eliminates most of the logic that would otherwise need to
be added by the chip designer (or included in a test wrapper). However, this
approach does not reduce the complexity of the macro test implementation, but
rather simply embeds the associated logic in the HSS core. If this approach is
used, the Macro Test sequence is dictated by the design of the associated state
machines in the HSS core. This sequence cannot be significantly altered by
reprogramming chip test equipment.

Despite these limitations, Macro Test execution through the JTAG
interface is widely implemented on HSS cores. This is especially true on
mature core designs targeting lower baud rates.

Chip Integration 445

10.3 Static Timing Analysis
Static timing analysis software is used in the methodology shown in

Fig. 10.1 to exhaustively verify that timing requirements of all logic paths on
the chip have been met. Static timing analysis requires a timing model for all
physical blocks on the chip, including HSS cores. This timing model defines
timing checks at the input pins of the HSS core and propagation delays associ-
ated with timing paths through the core. The format of the timing model
depends upon the software being used to perform static timing analysis.

For the HSS EX10 core example, the timing model must include the
following timing information:
• Propagation delays from the HSSREFCLK[T,C] clock inputs to all clock

outputs of the core, including: TXxDCLK, RXxDCLK, RXxRCVC16, and
HSSRESYNCCLKOUT.

• Pulse Width test at the HSSREFCLK[T,C] clock input pins.
• Setup and Hold test at the TXxD[n:0] pins referenced to the corresponding

TXxDCLK output clock.
• Propagation delays from the RXxDCLK output clocks to the correspond-

ing RXxD[n:0] output pins.
• Setup and Hold test at the HSSRESYNCCLKIN input pin referenced to the

HSSRESYNCCLKOUT clock output.
• Timing tests and propagation delays associated with the register interface,

including:
– Pulse Width test at the HSSPRTWRITE input pin.
– Setup and Hold tests at the HSSPRTDATAIN, HSSPRTADDR, and

HSSPRTAEN input pins referenced to HSSPRTWRITE.
– Propagation delays from the HSSPRTADDR and HSSPRTAEN input

pins to the HSSPRTDATAOUT output pins.
Although the above is specific to the HSS EX10 tutorial example core,

similar timing parameters for clocks and parallel data apply generically to any
HSS core. Timing parameters for the register read/write interface are similar to
the requirements for any core with an interface used to read/write registers.

10.3.1 Clock Timing
The timing model for the HSS EX10 core includes propagation delays asso-

ciated with the timing paths from the HSSREFCLKT/C input pins to the
RXxRCVC16, HSSRESYNCCLKOUT, TXxDCLK, and RXxDCLK outputs.
Assuming the PLL is locked, these clock outputs do have a fixed frequency
relationship to the reference clock, and the timing model incorporates these
propagation delay paths so that timing phase properties of the reference clock
may be inherited by the corresponding clock outputs. However, static timing
analysis software has shortcomings in how these clocks are checked and prop-
agated. These are described in the following sections.

446 High Speed Serdes Devices and Applications

10.3.1.1 Differential Clock Analysis
Static timing analysis tools do not perform sufficient analysis to ensure the

signal integrity of differential signals. Therefore, the HSSREFCLK[T,C]
signals should be primarily verified using Spice as was described in Sect. 6.4.3.
RXxRCVC16 clocks, if used, should be analyzed in a similar manner using
Spice.

In some cases the chip may contain protocol logic which is clocked by a
single-ended clock derived from a differential clock. In these cases, the phase
and frequency associated with the reference clock does become relevant for
logic connected to the single-ended portion of the clock tree. This case is
illustrated in Fig. 10.9. The buffer shown in the figure is a differential clock
buffer with a differential input and both single-ended and differential outputs.

Fig. 10.9 Chip logic clocked by a differential clock

10.3.1.2 TXxDCLK / RXxDCLK Clock Outputs
For purposes of this discussion, the TXxDCLK and RXxDCLK output pins

are referred to generically as the DCLK outputs.
Timing Adjusts

The frequency of the DCLK clock outputs is fractionally related to the
frequency of the HSSREFCLK[T,C] input on the HSS EX10 core. The phase
relationship between DCLK and HSSREFCLK is indeterminate.

Static timing analysis propagates the clock attributes of the HSSREFCLK
signals through the HSS timing model to the DCLK outputs. Because of static
timing analysis limitations, propagation through the delay path in the timing
model causes the DCLK outputs to be treated as data signals as shown in
Fig. 10.10. The arrival time of the rising and falling edges of the DCLK output
are determined by adding the propagation delays in the timing model to the
rising edge arrival time at the HSSREFCLKT input pin. For proper analysis to
occur at downstream sinks for DCLK, the arrival time of the falling edge must
be shifted by one-half DCLK cycle. Parameters must also be set on this pin to
indicate the signal is, in fact, a clock.

HSS
HSSREFCLK[T,C]

chip
logic

Single-ended clock.
Timing analysis performed
on chip logic connected to
this clock.

Differential clock.
Should be verified
using Spice.

Chip Integration 447

These actions are communicated to the static timing analysis software using
directives, called timing assertions, which are written by the chip design team.
The command format for timing assertions is specific to the software tool
being used. The following example assumes the IBM EinsTimer software is
used to perform static timing analysis of a chip containing an HSS EX10 core
with the instance name HSS_TX_CORE. (An equivalent example using com-
mands for Synopsys software is provided later in this section.) Consider the
transmitter portion of an HSS EX10 core running at a data rate of 8.5 Gbps
with an 16-bit data bus width. The cycle time of this clock is 1.882 ns, taking
into account the baud rate, data width, and rate mode settings at which the HSS
core is used by this application. The leading (rising) edge of the signal arrival
on the DCLK pins should be adjusted by +0.00 ns, and the trailing (falling)
edge should be adjusted by +0.941 ns (one-half of the clock cycle).

Assuming that the clock phase name arriving on the HSSREFCLK pins is
TXREFCLK, and the new phase name associated with the TXADCLK output
pin is DCLK+, then the following timing assertions are needed. A DCLK+
phase definition is created using the following timing assertion:

et::create_clock -period 1.882 -waveform { 0.0 0.941 } -name “DCLK”

The timing of the DCLK+ clock falling edge is adjusted with the
TXREFCLK@L tag as shown in the following timing assertions:

et::adjust_signal -pins { "HSS_TX_CORE/TXADCLK" } -rise \
-time 0.0 -phase "TXREFCLK@L”

et::adjust_signal -pins { "HSS_TX_CORE/TXADCLK " } -fall \
-time 0.941 -phase "TXREFCLK@L”

et::rename_phase -pins { "HSS_TX_CORE/TXADCLK " } -phase * \
-new_phase "DCLK+"

The “@L” suffix of the TXREFCLK phase notation in these assertions indi-
cates that a data signal is being adjusted, and that this data signal was propa-
gated from the rising edge arrival time on the HSSREFCLK input. The first

Fig. 10.10 Timing adjust for DCLK outputs

True

Complement

HSSREFCLK[T,C]
(one clock cycle)

Rising and falling edges based on
rising edge of HSSREFCLK[T,C]
plus propagation delay in timing model.

TXxDCLK or
RXxDCLK pin
output timing

TXxDCLK or
RXxDCLK pin
after timing adjust

Falling edge is adjusted based on
cycle time of DCLK output.

one half DCLK cycle

448 High Speed Serdes Devices and Applications

timing assertion adjusts the leading edge arrival time, and the second assertion
adjusts the falling edge. The last timing assertion changes the phase name on
the TXADCLK pin from TXREFCLK to DCLK. The “+” suffix indicates that
this is a clock signal (as opposed to a data signal).

As noted in Sect. 4.2.4, the TXxDCLK and RXxDCLK outputs of the HSS
EX10 do not have a guaranteed phase relationship. Transmit protocol logic
should use either elastic FIFOs to retime data to individual TXxDCLK clock
domains or the HSSRESYNCCLKIN input to synchronize the transmitters. In
the latter case, channel-to-channel skew specifications for the HSS core must
be taken into account in the timing analysis.
Clock Jitter

The clock output of the HSS PLL slice is divided in the HSS core to
produce the TXxDCLK and RXxDCLK outputs. Jitter on the PLL clock is a
source of jitter on the DCLK outputs. An additional source of jitter for
RXxDCLK results from the CDR circuit tracking the center of the received data
eye. The CDR circuit that was described in Sect. 3.3.1 updated sampling phase
in quantized steps; these updates cause jitter on the corresponding RXxDCLK.

The jitter on DCLK is period related and varies from one edge to the next.
Because the first edge can move independently with respect to the next edge
(which could also move sooner or later), the application must account for
periods of shrinkage or growth in the cycle time caused by jitter. Fig. 10.11
illustrates how this jitter can affect DCLK. As shown, the edges of the “Jittery
DCLK” may shift by +0.05 (units are not important) relative to the ideal clock.
Worst case conditions occur when consecutive edges shift in opposite direc-
tions. Period jitter in this example is 0.10.

DCLK jitter is of significance since it results in cycle times which may be
less than the ideal cycle time. The clock cycle time must be adjusted by the
period jitter value to ensure flip-flop setup times are met.

Table 10.5 provides an example of a jitter specification for the HSS EX10
core. Using this specification, the timing assertions in the example from the
previous section may be amended with the following additional assertion:

et::set_clock_jitter -clocks “DCLK” -jitter_late 0.071 -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate HSS_TX_CORE

Fig. 10.11 HSS DCLK jitter

105

9.955.05

0

0

-jitter+jitter

ideal

Jittery
DCLK

DCLK

Chip Integration 449

This timing assertion defines the amount of jitter on the DCLK clock phase.
Static timing analysis software uses this value when evaluating setup tests by
assuming a cycle time of: cycle time – jitter = 1.811 ns.
Duty Cycle Variation

The duty cycle of the clock must be considered to properly evaluate pulse
width checks throughout the clock tree, as well as to evaluate timing for any
logic clocked by the falling clock edge.

Assume a duty cycle variation from 45% of the cycle time to 55% of the
cycle time is specified for the HSS EX10 core. The timing assertions in the
example from the previous sections are modified as follows:

et::create_clock -period 1.882 -waveform { 0.0 0.941 } -name “DCLK”

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK"} -rise \
-time 0.0 -phase "TXREFCLK@L”

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK "} -fall \
-time 1.0351 -phase "TXREFCLK@L” -late

et::adjust_signal -pins {"HSS_TX_CORE/TXADCLK "} -fall \
-time 0.8469 -phase "TXREFCLK@L” -early

et::rename_phase -pins {"HSS_TX_CORE/TXADCLK "} -phase * \
-new_phase "DCLK+"

et::set_clock_jitter -clocks “DCLK” -jitter_late 0.071 -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate HSS_TX_CORE

The adjust_signal timing assertion for the falling clock edge has been split
into two assertions in this example, with separate adjust times specified for late
and early signal arrival. The late value is 1.0351 ns (55% of the cycle time),
and the early value is 0.8469 ns (45% of the cycle time). Static timing analysis
software uses one or the other of these values depending on the context of the
timing test being evaluated.
Timing Assertions for Synopsys Software Tools

Prior sections developed an example of timing assertions for the
TXxDCLK or RXxDCLK pins which used the IBM EinsTimer software to
perform static timing analysis. In this section, the equivalent timing assertions
for analysis using Synopsys timing analysis software is presented.

The following timing assertion defines the clock waveform on the HSS core pin:
create_clock -name DCLK -period 1.882 -waveform [list 0.0 0.941] \

HSS_TX_CORE/TXADCLK

Table 10.5 HSS EX10 DCLK period jitter

Channel type
Data bus width (bits)

8 10 16 20

TX +71 ps +151 ps +71 ps +71 ps
RX +153 ps +208 ps +153 ps +153 ps

For example, the TX core specifies period jitter as +71 ps, which means the DCLK
period could grow or shrink by 71 ps. This effect is modeled in the same timing run
by adding a set clock jitter statement to the timing assertions

450 High Speed Serdes Devices and Applications

Although this timing assertion is similar to the EinsTimer phase definition
assertion in “Timing Adjusts” under, the above assertion does more than just
define the clock phase. It additionally sets the named HSS core pin as the
source of this clock, and sets the signal waveform on this pin with the specified
ideal arrival times. (Unlike EinsTimer, any signal propagation through the
Synopsys timing model for the HSS core is ignored once this timing assertion
is applied to the clock output pin.) The Synopsys create_clock assertion is
therefore equivalent to the et::create_clock, et::adjust_signal, and
et::rename_phase EinsTimer assertions in Sect. 10.3.1.2.

The Synopsys set_clock_latency timing assertion adjusts the timing of a signal in
a similar manner to the EinsTimer et::adjust_signal assertion. This assertion is used
to adjust the HSS clock output to account for the effects of both jitter and duty cycle
variation. The following Synopsys timing assertions are the equivalent of the
EinsTimer assertions in “Duty Cycle Variation” under Sect. 10.3.1.2:

create_clock -name DCLK -period 1.882 -waveform [list 0.0 0.941] \
HSS_TX_CORE/TXADCLK

set_clock_latency -source -rise -late 0.071 [get_clocks DCLK]
set_clock_latency -source -rise -early 0.0 [get_clocks DCLK]
set_clock_latency -source -fall -late 0.0941 [get_clocks DCLK]
set_clock_latency -source -fall -early -0.0941 [get_clocks DCLK]

The first two set_clock_latency assertions adjust the timing of the rising
edge of the clock used in setup tests to account for jitter. Remaining assertions
adjust the timing of the falling edge of the clock to account for duty cycle.

10.3.2 Receiver Parallel Data Outputs
The timing relationship between RXxD[19:0] and RXxDCLK is best

explained by looking at the expected timing in a functional environment.
Figure 10.12 shows HSS receive data connected to downstream flip-flops
clocked by RXxDCLK. While the fanout of the data signals is limited to a few
flip-flops, RXxDCLK is driven to a larger fanout through a clock tree.

Figure 10.12 also shows the timing for the RXxD signals and for the
RXxDCLK at points A and B. The rising edge of RXxDCLK launches data at
the HSS core, and the same clock edge (delayed by the clock tree) captures the
data at the flip-flops in the chip logic. This is possible because the delay with
which RXxDCLK propagates through the clock tree is typically greater than
the delay incurred by the RXxD signals.

There are two issues with this from a static timing analysis perspective. The
first of these issues results because static timing analysis software assumes that
if a clock edge is used to launch data, then the data should be captured by the
next clock edge. However, the interface has in this case been designed such that
data should be captured by the same clock edge. As can be seen in the figure,
the data is not inherently held long enough to be captured by the next clock
edge, especially when the delay of the clock tree is considered. It is therefore
necessary to adjust the data arrival time to arrive one clock cycle later.

Chip Integration 451

Assume an HSS EX10 core with the instance name HSS_RX_CORE is
running at a data rate of 8.5 Gbps with a 16-bit data bus width, as was the case
in prior examples. The cycle time is therefore 1.882 ns. The following
EinsTimer timing assertions perform the necessary adjustment:

et::adjust_signal -pins { "HSS_RX_CORE/RXAD*" } -rise -fall \
-time 1.882 -phase * -late

et::adjust_signal -pins { "HSS_RX_CORE/RXAD*" } -rise -fall \
 -time 1.729 -phase * -early

Note that separate adjust times have specified for late and early signal
arrival. While the late timing value is usually adjusted by the full clock cycle
time, the early timing value must account for period clock jitter, and is there-
fore, cycle time – jitter = 1.882 – 0.153 ns = 1.729 ns.

Without these adjustments, static timing analysis will report hold time
violations on the RXxD signals. This could be corrected by adding buffers to
delay these signals, however, such logic would be completely unnecessary.

The following Synopsys timing assertions perform the equivalent adjustments:
set_input_delay 1.882 -max [get_pin HSS_RX_CORE/RXAD*]
set_input_delay 1.729 -min [get_pin HSS_RX_CORE/RXAD*]

The second issue from a static timing analysis perspective occurs when
timing analysis is performed on early versions of the chip layout. The chip
physical design process often performs the early stages of layout and timing
closure using ideal clock timing. When such analysis is performed, the RXxD
signals do incur some propagation delay, while there is no delay incurred by
RXxDCLK. Under these conditions, static timing analysis reports setup time
violations on most or all of the sinks for the RXxD signals.

Fig. 10.12 HSS receive data timing

H
SS

 R
x

RXxDCLK

RXxD[19:0]

A B

RXxDCLK
at Point A

RXxDCLK
at Point B

Data 0 Data 1RXxD[19:0]

Data launched
by HSS Rx

Data Captured
in Chip Logic

452 High Speed Serdes Devices and Applications

This issue is fixed by inserting an arbitrary delay on the RXxDCLK nets.
Optimal methods for doing this vary somewhat based on static timing analysis
software being used. For example, the solution for Synopsys software is to
modify the timing assertions for the RXxDCLK pins that were described in
“Timing Assertions for Synopsys Software Tools” under Sect. 10.3.1.2. The
delay values associated with the set_clock_latency timing assertions are
modified to include an arbitrary delay that is representative of the delay of the
postlayout clock tree. This delay is used during prelayout timing analysis, and
is removed for postlayout timing analysis.

10.3.3 Register Interface
The HSS EX10 core defined in Chap. 2 has an interface for reading and

writing registers in the core. Although many variations exist for register inter-
faces, the example covered here for the HSS EX10 is representative.

Pins associated with this interface were defined in Table 2.1. Register read and
write cycle timing is shown in Fig. 10.13, with the corresponding timing parameter
values defined in Table 10.6. This interface consists of an address enable
(PRTAEN), address bus (PRTADDR), write strobe signal (PRTWRITE), and
input/output data busses (PRTDATAIN, PRTDATAOUT). Although signals are
synchronized to various clock domains internal to the HSS EX10 core, the
interface appears as an asynchronous interface to the chip logic outside of the core.

Read cycles occur whenever PRTAEN is held high and PRTWRITE remains
low as shown in Fig. 10.13. Register read data on PRTDATAOUT is valid
within the output valid time (Tov) after PRTAEN and PRTADDR are stable.
This is a combinatorial propagation delay path.

Write data is strobed into registers by PRTWRITE = 1 as shown in
Fig. 10.13. PRTAEN, PRTADDR, and PRTDATAIN must be stable before the
rising edge of PRTWRITE, as defined by setup time Tsu, and must be held after
the falling edge of PRTWRITE, as defined by hold time Thd. The PRTWRITE
signal must also comply with minimum pulse width Tpw, and the minimum
time between write cycle pulses Tipw.

The timing model for the HSS EX10 core implements checks for each of
the timing parameters described above. Depending on the design of the logic
which drives this interface, timing assertions may be needed for static timing
analysis software to properly evaluate this interface.

First, consider that PRTWRITE is a clock signal for purposes of timing
analysis. On the timing model, this pin is the clock side of setup and hold tests,
and is a termination point for pulse width tests. Chip logic may drive this signal
from control logic which propagates a data phase to this pin. If this is the case,
timing assertions must be written to redefine the arrival times of signals at this
pin as clock signals. This is performed in a similar manner to the description in
“Timing Adjusts” under Sect. 10.3.1.2 for DCLK.

Chip Integration 453

Fig. 10.13 HSS receive data timing

Table 10.6 Register access timing parameters

Symbol Description Limit
High
range
(ns)

Low
range
(ns)

Tov Output valid delay of HSSPRTDATAOUT[15:0],
relative to HSSPRTADDR[8:0] changing and
HSSPRTAEN=1

Max 10 10

Tsu Setup time of HSSPRTAEN, HSSPRTADDR[8:0] and
HSSPRTDATAIN[15:0] relative to the rise of
HSSPRTWRITE

Min. 15 22

Tpw Pulse width of HSSPRTWRITE Min. 15 22

Thd Hold time of HSSPRTADDR[8:0] and
HSSPRTDATAIN[15:0] relative to the fall of
HSSPRTWRITE

Min. 25 38

Tipw Write InActive pulse width of HSSPRTWRITE Min. 200 200

HSSPRTAEN

HSSPRTADDR

HSSPRTWRITE

REGISTER READ

HSSPRTDATAOUT

Tov Tov

0x0000

A1 A2 A3

D2 D3D1

HSSPRTAEN

HSSPRTADDR

HSSPRTWRITE

REGISTER WRITE

Tsu

Tpw

Thd

A4 A5

HSSPRTDATAIN D4 D5

Thd

Tov

0x0000

Tipw

Tsu

Tov

D4

Thd + Tov

HSSPRTDATAOUT

454 High Speed Serdes Devices and Applications

Second, note that the timing parameters defined in Table 10.6 are relatively
slow compared to the cycle times of other interfaces on the HSS core. If these
signals are driven from control logic which is clocked at higher clock rates, the
Tov cycle time may be greater than the clock cycle time, and this path must be
treated as a multicycle path. Timing assertions may use any of several coding
styles to accomplish this.

10.3.4 Transmitter Synchronization
The HSS EX10 core supports transmitter synchronization using the

HSSRESYNCCLKIN and HSSRESYNCCLKOUT pins as was described in
Sect. 2.4.7. This scheme requires logic interconnecting these pins as shown in
Fig. 2.15 (for synchronizing multiple HSS cores).
10.3.4.1 Critical Timing

The timing for the Resync net in Fig. 2.15 is a critical path which is
launched by a rising edge clock and captured by a falling edge clock. This half
cycle path must meet a tight timing budget. The falling edge of the clock is
used to solve hold time issues and provides excess margin, however, this
creates issues meeting the setup time. The following factors contribute to the
timing budget for this net:
• Must support the minimum HSSREFCLKx period
• Must tolerate skew in the clock tree for the HSSRESYNCCLKOUT which

clocks the flip-flop driving the net
• Must tolerate HSS PLL static phase error variation. This is the core-to-

core variation in the skew between the HSSREFCLKx input and the
HSSRESYNCCLKOUT output when the HSS PLL is locked

• Must tolerate skew in the clock tree used for HSSRESYNCCLKOUT in
each of the staged pipelines

• Must tolerate duty cycle of HSSRESYNCCLKOUT signal when using
both rising and falling edges

Based on these considerations, an example of a timing budget for the
RESYNC signal to be sampled in each of the pipeline clock domains is

1,250-ps period * (0.40) = 500 ps (penalty @ 40% duty cycle)
– 100-ps REFCLK skew
– 100-ps PLL static phase error variation
– 100-ps RESYNCCLKOUT skew

= 200 ps (clock-to-output of resync latch, plus setup time of
pipeline input latch).

This budget is insufficient for most “slow-chip” cases. It is therefore nec-
essary to “slack steal” by taking the negative clock edge from an earlier point
in the clock tree. With reasonable effort, excess hold slack can be shifted to
improve setup slacks, and thus close timing on this path.

Chip Integration 455

10.3.4.2 Timing Assertions
In order to time this transmitter synchronization scheme properly, appropri-

ate timing assertions must be applied to the HSSRESYNCCLKOUT output.
These are clock outputs, and must be defined as such in a similar manner to
how the DCLK clock outputs were handled in “Timing Adjusts” under Sect.
10.3.1.2. It is necessary to check cases for each reference clock frequency
which may be used by the application. These different clock frequencies can
be checked as part of the same analysis run.

The first step is to define the various clocks. This can be performed using
the following timing assertions for the IBM EinsTimer tool

et::create_clock -period $clock_period -waveform { 0.000 $falling_edge } \
-name RESYNCCLK${ref_freq}_${core}

or the corresponding Synopsys timing assertions:
create_clock -name RESYNCCLK${ref_freq}_${core} -period $clock_period \

-waveform [list 0.000 $falling_edge] \
CORE${core}/HSSRESYNCCLKOUT

where a separate clock must be defined for the HSSRESYNCCLKOUT pin of
each core instance ($core) in the group. If multiple reference clock frequencies
may be used by the application, then separate clocks must be defined on each
of these output pins and for each frequency case ($ref_freq). The ideal time of
the falling edge ($falling_edge) and the clock period ($period) are determined
for each reference clock frequency.

Next, it is necessary to define that clocks of different frequencies should not
be compared. This is performed using the EinsTimer timing assertion:

et::set_phase_pair_exclusion -clock1 RESYNCCLK${ref_freq_1}_${core_1} \
-clock2 RESYNCCLK${ref_freq_2}_${core2}

or the Synopsys timing assertions:
set_false_path -from RESYNCCLK${ref_freq_1}_${core_1} \

-to RESYNCCLK${ref_freq_2}_${core_2}
set_false_path -from RESYNCCLK${ref_freq_2}_${core_2} \

-to RESYNCCLK${ref_freq_1}_${core_1}
where these assertions must be iterated such that each pair of clocks that have
different frequencies is defined as a false path.

Assume the core-to-core skew for the HSS EX10 core has been specified to
be 200 ps. This skew affects the arrival times of clocks coming from different
cores. In order to account for this skew value in the timing analysis, the arrival
times of the clocks must be adjusted by the skew amount. This is performed
using the following EinsTimer timing assertions:

et::set_user_delta_adjust -data RESYNCCLK${ref_freq}_${base_core} \
-clock RESYNCCLK${ref_freq}_${core_N} \
-late -adjust -0.200

456 High Speed Serdes Devices and Applications

et::set_user_delta_adjust -data RESYNCCLK${ref_freq}_${base_core} \
-clock RESYNCCLK${ref_freq}_${core_N} \
-early -adjust -0.200

or the Synopsys timing assertion:
set_clock_uncertainty 0.200 [get_clocks RESYNCCLK${ref_freq}_${core_N}]

where $base_core corresponds to the HSSRESYNCCLKOUT which launches
the RESYNC signal in Fig. 2.15, and $core_N corresponds to all other HSS
cores. The above commands must be iterated for each value of $core_N and
$ref_freq. The result of these commands is that the arrival times of clocks from
all other HSS cores have been adjusted to arrive from 200 ps early to 200 ps
late relative to the clocks from the first core. This skew value is independent of
the clock frequency.

Finally, in a similar manner to how the DCLK clock outputs were handled
in “Timing Adjusts” under Sect. 10.3.1.2, EinsTimer assertions are required to
adjust timing on the HSSRESYNCCLKOUT pins, and to define these pins as
clocks:

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ -time 0.000 -rise

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ \
-time [expr 0.55 * $clock_period] -fall -late

et:::set_arrival -ports CORE${i}/HSSRESYNCCLKOUT \
-phase RESYNCCLK${ref_freq}_${core}+ \
-time [expr 0.45 * $clock_period] -fall -early

et::set_clock_jitter -clocks RESYNCCLK${ref_freq}_${core}+ \
-jitter_late $jitter -jitter_early 0.0 \
-half_cycle_jitter 0.0 -pll_gate CORES${core}

Corresponding Synopsys timing assertions are:
set_clock_latency -source -rise -late $jitter \

[get_clocks RESYNCCLK${ref_freq}_${core}]
set_clock_latency -source -rise -early 0.0 \

[get_clocks RESYNCCLK${ref_freq}_${core}]
set_clock_latency -source -fall -late [expr $dc_hi_limit * $clock_period] \

[get_clocks RESYNCCLK${ref_freq}_${core}]
set_clock_latency -source -fall -early [expr $dc_lo_limit * $clock_period] \

[get_clocks RESYNCCLK${ref_freq}_${core}]
where these commands must be iterated for each $ref_clock and $core, and the
values of clock period ($clock_period) is set based on the clock frequency.
Parameters for period jitter ($jitter) and duty cycle high and low limits ($dc_hi_limit
and $dc_lo_limit) are set based on the clock specification for the HSS core.

10.3.5 Serial Data Timing
The transmit and receive serial data signals cannot be analyzed using static

timing analysis, but rather should be analyzed using Spice as was defined in
Sect. 8.3. The timing model for the HSS EX10 core does not model any

Chip Integration 457

propagation delay timing arcs to the transmit serial data pins, nor does it
implement any timing checks on the receive serial data pins.

10.3.6 Skew Management
Two kinds of skew are discussed below: lane-to-lane skew as defined in

Sect. 4.1.2.5, and skew within the differential signal pair.
10.3.6.1 Lane-to-Lane Skew

As defined in Sect. 4.1.2.5, lane-to-lane skew is the constant portion of the
arrival time difference between any two data signals of a multilane interface.
Skew results from differences in reference clock routing to the Serdes cores,
differences in clock routing within the Serdes cores, and differences in routing
of serial data signals in the package and circuit boards. Because skew impacts
the design of deskew logic at the receiver, many multilane protocol standards
constrain the amount of skew that may be present at the package output pins of
the transmitter chip.

Skew is not usually verified through timing analysis. Rather, skew is
managed in the chip design process by determining the transmit skew require-
ments, and then defining a skew budget which allocates how much of this skew
may be consumed by each contributor. Contributors to skew at the transmitter
include:
• Clock skew in the reference clock distribution network connections to the

HSSREFCLK pins. This contributor is within the control of the chip
physical designer, and usually can be constrained to a small value.

• Skew due to data and clock routing trace length differences within the
Serdes core. This is specified as lane-to-lane skew for the HSS core.

• Skew due to tolerances resulting from the resynchronization scheme used
to synchronize transmitters in different cores. These tolerances result
from PLL design tolerances that become a factor when the various trans-
mitters being synchronized are in different cores and therefore are
clocked by different PLL slices. This skew contributor may be specified
as a core-to-core skew for the HSS core. Sometimes this core-to-core
skew is specified such that it incorporates both the core-to-core and
lane-to-lane contributors (and thus is used instead of the lane-to-lane
value when multiple cores are involved).

• Skew due to signal routing differences in the package design result in
time-of-flight variation. The extent to which skew can be minimized in
the package design depends on how many signals are in the synchronized
group, signal density, pin assignment constraints, etc. Also, skew manage-
ment may conflict with other signal integrity requirements such as mini-
mizing impedance discontinuities. As described in Table 10.7, a
reasonable target for skew “Matching within a Bundle” is around 29 ps
given current package technologies.

Assuming the clock tree, HSS core, and package each meet the skew
requirements defined by the specified skew budget, then the skew requirement

458 High Speed Serdes Devices and Applications

at the transmitter output is met by design. Note that the above assumes that
HSSRESYNCCLKIN, or an equivalent function, is being used to resynchronize
the transmitters. If this is not the case, then the lane-to-lane or core-to-core
skew contributed by the HSS core is not defined.
10.3.6.2 Differential Pair Skew

Skew between the true and complement legs of the differential signal must
be controlled to minimize duty cycle distortion (DCD), a key component of
deterministic jitter (DJ). Typical package contributions to this skew are
specified as the “Matching within Pair” parameter in Table 10.7. The specifi-
cation for the skew contribution of the transmitter device is typically supplied
by the vendor, and is generally in the range of 5 ps or less at higher baud rates.
Skew contribution due to the channel can be analyzed using the analysis
methods described in Chap. 8 to determine the effects of any DCD on link
performance.

10.3.7 Timing Backannotation for Simulation
Fig. 10.1 implied support for determining propagation delays and timing

checks associated with a chip design and backannotating this timing informa-
tion into a simulation environment in order to perform simulations of the chip
with actual timing. This is generally implemented by performing static timing
analysis on the design and generating a Standard Delay Format (SDF) file.
This file can be read by most event-driven simulators. Simulation models for
ASIC library cells and cores on the chip are parameterized; the event-driven
simulator sets delay parameters and timing check parameters based on the
contents of the SDF file. The timing used in the simulation thereby reflects the
actual timing of the postlayout chip.

In the case of HSS cores, several clocks are generated by the core. These
clock outputs required timing assertions, as defined previously, in order to
correctly evaluate chip timing. These clock outputs also cause problems for
SDF generation. The parameters for the timing arc from HSSREFCLK to clock
outputs are not set correctly. Also, output-to-output timing arcs such as the
timing arc from the RXxDCLK outputs to the corresponding RXxD parallel data
outputs are not set correctly. The following approach is a workaround for these
issues:
• Timing analysis for SDF generation must be performed using a special

timing model for the HSS core which does not contain any timing arcs to
clock outputs, or any timing arcs for output-to-output paths.

• Simulation timing parameters (for arrival times, slews, etc.) for output
clocks must be either set manually by the user or permitted to use default
values.

• Simulation timing parameters (for arrival times, slews, etc.) for parallel
data outputs (or any other output-to-output timing paths) must be either
set manually by the user or permitted to use default values.

Chip Integration 459

Of course, the user may be able to write scripts to extract the necessary
parameter values from timing reports, perform any necessary manipulations of
these values, and generate commands for the target event-driven simulation
software. Alternatively, while the default delay values may not reflect the
actual chip design, simulation with the defaults may be sufficient to meet the
user’s intended purpose. (Keep in mind that static timing analysis is generally
used as the primary method of verifying chip timing. Full-timing event-driven
simulation is computationally intensive, and is used only to a limited extent.)

10.4 Chip Floorplan and Package Considerations
This section focuses on chip physical floorplan and package design con-

straints. Connecting high-speed signals between silicon chips and circuit
boards through chip packages requires certain electrical parameters be con-
strained in order to avoid signal integrity concerns.

10.4.1 Packages
Fig. 10.14 illustrates common methods of connecting silicon chips to pack-

ages. Wirebond packages include both Fine Pitch Plastic Ball Grid Array
(FBGA) and Electrically Enhanced Plastic Ball Grid Array (EPBGA) package
types. FBGA packages use wires to connect wirebond pads on the chip periph-
ery to package balls. This type of package is relatively inexpensive, but does
not have good signal integrity qualities. EPBGA packages are a newer technol-
ogy which improves signal integrity by using short wires to connect the chip to
substrate; substrate wiring then connects the signal to the package balls.
EPBGA packages are attractive from a cost perspective relative to Flip-Chip
packages, and keeping wires short significantly improves signal integrity.

At higher baud rates, Flip-Chip packages are commonly used to meet
stringent electrical parameters. These packages bond C4 pads on the silicon
directly to pads on the chip substrate, and substrate wiring then connects
signals to package balls. (C4 is short for Controlled Collapse Chip Connec-
tions.) FC-PBGA packages tend to be more expensive since substrates must
usually be customized based on the chip I/O assignments.

Fig. 10.14 Cross-sectional view of wirebond and flip-chip packages

460 High Speed Serdes Devices and Applications

Electrical parameters of the packaged die must achieve stringent require-
ments in order to support high-speed signals. Table 10.7 provides examples of
package electrical parameters for the HSS EX10 serial data signals. Parameters
in this table are readily achievable with an FC-PBGA.

The first portion of this table species resistance and inductance parameters
for various HSS power supply inputs. These specifications represent limits
assumed for HSS circuit design, and are constraints imposed on the package
substrate design.

The lower portion of Table 10.7 specifies package requirements for differ-
ential signal I/O, including specification of skew parameters and signal
integrity parameters.

“Matching within a pair” is one of the skew parameters specified in the
table, and specifies the maximum time-of-flight skew between the true and
complement legs of the differential signal pair; excessive skew between these
signal legs contributes to DCD. “Matching within a bundle” specifies the
time-of-flight skew requirement between different serial lanes of a multilane
interface. This skew contributes to the protocol skew budget as was discussed
in Sect. 4.2.6.3.

The signal integrity and achievable baud rate of Serdes signals are a
function of the SDD21 (insertion loss) and SDD11 or SDD22 (return loss) of the
package. Channel response and S-Parameters were discussed in “Channel
Response” under Sect. 8.4.1.2 in Chap. 8. Figure 10.15 illustrates the Rx and
Tx insertion loss requirements for the package side of a Serdes application,
assuming the HSS signal termination is a 100- resistive load. Table 10.7
specifies the insertion loss at fb / 2 must be –2 dB or less. Figure 10.16 plots
return loss specifications for various protocol standards as a function of baud
rate. Package return loss must be less than whichever of these curves are
relevant to the application. The insertion loss and return loss contributions of
the transmitter package were considered in (8.30); the contributions of the
receiver package were considered in (8.31).

Fig. 10.15 Rx and Tx differential insertion loss package requirements

Acceptable
Region

0

-2

-4

0 fB/2 fB
Frequency (GHz)

fB = baud rate

D
iff

er
en

tia
l I

ns
er

tio
n

Lo
ss

 (d
B

)

Chip Integration 461

Table 10.7 Package electrical parameters for serdes

Parameter Min. Nom. Max. Units

Core power supplies

AVDD25 Resistance 0.8 at 1.8V nom
2.0 at 2.5V nom

ohm

Inductance 5 nH

ATST Resistance 4 ohm

Inductance 11 nH

AVTT, AVTR
(per C4)

Resistance 0.357 ohm

Inductance 4 nH

VDD/GND Compression 25 at 1.2V mV

Differential signal I/O

Rx & Tx serial I/O
(including vias)

Resistance 2.6 ohm

Differential
impedance

85 100 115 ohm

Matching within pair 2.9 ps

Matching within bundle 29.1 ps

BGA adjacency TNSEWD
Swappable

Rx trace and via isolation:
Tx link to Rx link

–40 at 0 to fb/2 dB

Rx trace and via isolation:
Rx link to Rx link

–35 at 0 to fb/2 dB

Tx trace and via isolation –30 at 0 to fb/2 dB

Rx differential return loss SDD11

Rx differential insertion loss SDD21 –2 at fb/2 dB

Tx differential return loss SDD22

Tx differential insertion loss SDD21 –2 at fb/2 dB

Tx transition time 40 ps

Tx voltage swing 0.7 V

462 High Speed Serdes Devices and Applications

Fig. 10.16 Selected differential return loss package requirements

Fig. 10.17 BGA serdes RX TX separation

0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14
-15
-16
-17
-18

1E+09 2E+09 3E+09 4E+09 5E+09 6E+09 7E+09 8E+09 9E+09 1E+101.1E+10
Sd

d1
1

(d
B

)

Frequency (Hz)

4G Fibre Channel Beta/Gamma
4G Fibre Channel Delta

6.375 Gbps CEI
11.1 Gbps CEI

IEEE 802.3ae XAUI

(a) BGA Serdes RX TX separation for data rates between 3 and 4 Gbps

(b) BGA Serdes RX TX separation for data rates of 10 Gbps showing
each RX or TX pair is electrically isolated from other pairs.

Package Edge

Package Edge

Rx Tx Noise-immune quiet signal
(power or ground)

Parallel Adjacent In-line Adjacent

Chip Integration 463

Fig. 10.18 Flip-chip die and package ball footprint

Fig. 10.19 Radial connections from die C4 balls to package BGAs

464 High Speed Serdes Devices and Applications

The “BGA Adjacency” entry in Table 10.7 specifies TNSEWD, which
indicates that the module I/O for the true and complement legs of the differen-
tial signal must be adjacent in either the north, south, east, west, or diagonal
direction on the chip.

In addition, the package design must also consider BGA assignments
relative to other Tx/Rx signal pairs in order to minimize coupled noise and
resistance in the package design. Power, Ground, or Test Signals may be posi-
tioned between high-speed signal pairs for noise isolation. Figure 10.17a
provides examples of BGA assignments for 3–4 Gbps differential signals. Dif-
ferential signals within a bundle are sometimes allowed to be adjacent to each
other at these baud rates, with power and ground BGAs assigned between
bundles. Figure 10.17b provides examples of BGA assignments for 10-Gbps
differential signals. At higher baud rates each Tx/Rx signal pair is electrically
isolated from other signal pairs.

Figure 10.18 illustrates HSS cores on the edge of a die. The HSS cores are
designed to be placed directly underneath the chip C4 solder balls that connect
to the differential signals. On the Flip-Chip package, the substrate wires signals
radially from the C4 pads to the package balls as is shown in Fig. 10.19. To
minimize noise, inner C4s are routed to inner BGAs, and outer C4s are routed
to outer BGAs. Figure 10.19 assumes a 4-Gbps baud rate with BGA adjacency
rules similar to the examples in Fig. 10.17a.

At lower baud rates, HSS cores can be packaged in either flip-chip or care-
fully designed wirebond substrates. The benefits of HSS cores are just as
attractive for low cost applications. Although the less expensive wirebond
packaging does not provide an optimal electrical environment for high-speed
applications, it can generally support up to 3.2 Gbps assuming care is taken to
ensure the package design meets electrical performance targets. Higher baud
rates are also possible with new developments in wirebond packaging technol-
ogy that specifically target Serdes support.

The insertion loss specifications in Fig. 10.15 and return loss specifications
in Fig. 10.16 also can be applied to package designs for applications in this
lower baud rate range. The frequency-based “Trace and Via Isolation” require-
ments in Table 10.7 also apply. Differential signal matching for lower baud
rate applications can be relaxed somewhat relative to the specifications in
Table 10.7; “Matching Within a Pair” is typically specified as 5 ps, and
“Matching with a Bundle” is typically 50 ps.

For HSS applications, FBGA wirebond substrates typically use two signal
and two power layers. HSS signals and analog power/ground are routed as
microstrips on the top layer of the laminate. An analog ground plane in the
region of the HSS BGA and bondfingers is recommended to enable the use of
vias to supply analog ground in cases where there is not sufficient space for a
dedicated solder ball assignment. Additionally, a plane for the analog power
supply (AVdd) in the HSS region is recommended. Figure 10.20 illustrates the
signal pair matching and shielding of the Rx and Tx signal microstrip signals
on the top layer of the laminate.

Chip Integration 465

Fig. 10.20 Shielding and matched signal routing in wirebond package

Fig. 10.21 Optimal BA assignments for a x1 wirebond serdes configuration

Power/Ground
Shields

Power/Ground
Shields

Signal Pairs

Signal Pairs

(c)

(b)

(a)

Space between pairs is not filled with analog
ground or power, but each pair is completely
and uniformly shielded in (b)

Space between
pairs is not filled
with analog
ground or power,
and the pairs are
not completely
shielded in (c)

Space between pairs is filled with
analog ground or power in (a)

C

B

B

AVdd

RXAIP

RXAIN

HSS
AVdd
HSS

AVdd
HSS

AVdd
HSS

AGnd
HSS

TXAOP

TXAON

AVdd
HSS

AGnd
HSS

ATB
HSS

AVdd
HSS

HSS
SYSCLK

INN

HSS
SYSCLK

INP

HSS
REXT
Gnd

REXT
HSS

C D

D

D

A
V

dd
R

X
A

IP
R

X
A

IN
H

SS
 A

V
dd

TX
A

O
P

TX
A

O
N

H
SS

 A
G

nd
V

dd
H

SS
 A

V
dd

H
SS

 A
G

nd
H

SS
 A

TB
H

SS
 S

Y
SC

LK
IN

N
H

SS
 S

Y
SC

LK
IN

P
H

SS
 A

V
dd

H
SS

 R
EX

T
H

SS
 R

EX
T

G
nd

G
nd

BGA Solder Ball
Assignments

Bondfinger Pad
Assignments

Via to
HSS AGnd
plane

HSS Configuration: x1 (single lane)
BGA Rows: 3
Package Technology: FBGA 2S2P
(Note: Bondfinger Pads and BGAs

are not drawn to scale)

Restricted Definitions for
Signals Adjacent to HSS:
(A) Only Power, Ground, DC signals,

or signals which seldom switch

(B) Signals in (A) or Rx of

neighboring HSS core.
(C) Signals in (A), Tx of

neighboring HSS core, or
signals with rise time of
200 ps or slower.

(D) Unrestricted.

(e.g. reset)

466 High Speed Serdes Devices and Applications

High-speed performance of bondwires in the package is strongly dependent
upon bondwire length, with shorter bondwires performing better than longer
ones. As the bondwire length increases, bandwidth degrades rapidly and cou-
pling increases. Bondwire lengths for HSS signals are recommended to be
4 mm or less in order to meet insertion loss and isolation targets.

Signal assignment to the package solder ball (BGA) locations in the wire-
bond FBGA region has a large impact on both wireability and electrical per-
formance. Assignment of neighboring signals results in coupling not only from
solder balls, but also from vias and microstrips that are in close proximity.
Table 10.8 summarizes adjacency rules for BGA assignments for wirebond
HSS cores. Figure 10.21 shows an example of optimal package BGA and
bondfinger assignments for a single lane Serdes that meets the electrical per-
formance targets at the package solder balls and pin-through-hole (PTH) vias.

10.4.2 Chip Physical Design
10.4.2.1 HSS Core Footprint

The HSS EX10 core described in Chap. 2 supports 10-Gbps baud rates, and
therefore must meet stringent electrical specifications. This core is therefore
designed for use in FC-PBGA packages. The core should be placed under or
adjacent to the C4 solder balls on the die, which connect the differential signals
to the package substrate once the die is packaged. Figure 10.22 illustrates the
footprint of this core when placed on the south side of the die. C4 solder balls
are shown, and both Tx and Rx signal pins are located adjacent to C4s. This
arrangement minimizes I/O wiring. A very short, fat metal wire and a stacked
via is sufficient to wire the connection.

HSS cores designed for wirebond packages are placed around the edge of
the chip in the region normally occupied by peripheral wirebond I/O. Figure
10.23a shows the chip edge for a single row wirebond chip layout with a single
lane HSS core positioned next to the edge. The layout uses wide-wire,
low-resistance connections to the bondfinger pads, seen at the die edge, and
follows the restrictions for adjacency assignments described in Fig. 10.21.

Table 10.8 Permissible BGA assignment adjacencies for wirebond HSS

Neighboring signals

HSS signal Power/
ground

DC
signals

Low
activity
factor
signals

RXxIP/N of
neighbor

HSS

TXxOP/N
of neighbor

HSS

Switching
signal with

trise < 200 ps

HSSREFCLKT/C Yes Yes Yes No No No

RXxIP/N Yes Yes Yes Yes No No

TXxOP/N Yes Yes Yes No Yes Yes

Analog Vdd/Gnd Yes Yes Yes Yes Yes Yes

Chip Integration 467

Figure 10.23b extends this to a layout containing eight-lane wirebond HSS
core. Tx and Rx slice circuitry and corresponding bondfingers are located to
the right and left of the PLL slice.

Fig. 10.22 HSS EX10 4 port full duplex core footprint

Fig. 10.23 HSS cores on wirebond chip edge

AVTR

AVTR

AVTT
AVTT

Rx Pins

Tx pins

Cell blockage
around M7 --
Tx pin on M8

Fuse Blockage
on M8

(a) Single-lane HSS core on
chip edge. Bond pads at die
edge are seen at bottom of
layout.

(b) 8-port HSS core. Shared
PLL slice is visible in center
of core.

468 High Speed Serdes Devices and Applications

10.4.2.2 Chip Layout
Ideally, HSS cores are positioned during chip layout such that the Rx and

Tx pins of the core are as close as possible to their assigned C4 pads as shown
in Fig. 10.22. The core should always be oriented so that HSS internal pins are
along the side of the core facing away from the edge of the die. The HSS core
should be placed as close as possible to the die edge to maximize the die area
available for chip logic placement. (Logic gates are generally not placed in any
space between the HSS core and the edge of the die.) Placing the HSS core
toward the edge of the die also has advantages from a noise perspective.

On wirebond chips, HSS cores are positioned along the edge of the die near
bondfingers as shown in Fig. 10.23. The Rx and Tx pins of the core are as close
as possible to their assigned bondfingers.

Figure 10.24 shows the recommended die locations for the HSS EX10 core
assuming flip-chip packaging. The HSS cores can be positioned in one or two
concentric rings around the die. Ideally, all cores would be located in the outer
ring, as close to the die edge as possible. If more cores are required than can be
placed in this ring, then cores can also be placed in the inner ring. The gap
between the rings accommodates wiring tracks for the on-chip logic
connections to the outer ring of HSS cores.

Once HSS cores have been placed, power routing is performed to connect
power supplies to the cores, and the serial I/O signals are wired. Figure 10.25
illustrates power routing of the AVTT and AVTR power supplies for the HSS
EX10 core. Fig. 10.26 illustrates an example of a short, fat wire connection
between a serial data signal and the adjacent C4 pad.

Fig. 10.24 Recommended serdes on-die locations for flip chip packages

HSS Core
Placement Region

HSS Core

Vddx C4

Vdd C4
Gnd C4

Sig C4

Chip Integration 469

Fig. 10.25 HSS EX10 core power routing (AVTT and AVTR)

Fig. 10.26 RX pin to C4 wiring

Ground via removed
shorting with fuse block

Trimmed AVTT port
shorting with FUSE

gnd port shorting with
core blockage cut

AVDDAVDD

AVTT AVTT

AVTR AVTR

VDD VDD

GND GNDGND

HSS Core
fuse
block

rx1

Net Default Wire
Code 50

M7/M8
Blockage
around the
Rx pin

M7 HSS Pin

M7 via
plane
blockage

GND

C4

GND

VDD

AVTR

470 High Speed Serdes Devices and Applications

10.4.2.3 Floorplan Considerations
Whether packaged in a flip-chip or wirebond package, HSS cores are sus-

ceptible to on-chip noise, and should not be placed near banks of noisy
switching I/O or embedded memories. HSS cores are best placed on separate
chip edges away from any noisy switching I/O. Layout engineers often use the
“1-mm rule” for separating HSS cores from any embedded memories.

HSS cores are typically surrounded by on-chip decoupling capacitors in
order to minimize the power supply voltage compression and transient noise at
the core. Figure 10.27 illustrates a wirebond chip floorplan with a single lane
HSS core on the south-side die edge surrounded by decoupling capacitors.

Figure 10.28 illustrates a chip floorplan with an IF PLL in the south center of
the die edge, and two pairs of eight-port Serdes cores on either side of this PLL.
Another IF PLL is located in the northeast corner of the die, along with two
four-port Serdes cores. On-chip decoupling capacitors have been placed around
the Serdes and the PLLs, as well as around the numerous embedded memories in
the center of the die. The outlining of these blocks in the left view shown in
Fig. 10.28 actually results from the display of these decoupling capacitors.

Legacy “IR Drop” analysis calculates power supply compression as a static
value resulting from average supply current. This static analysis is generally
insufficient and does not take into account transient currents which cause volt-
age noise on the power supply. Excessive compression on the power supply
input of the HSS core could result in the core not being able to operate at the
specified data rate. Even more modest transient noise can impact jitter perfor-
mance of the core. An example of a typical specification for voltage compres-
sion due to static and transient effects is no more than 25 mV Vdd/Gnd
compression for a 1.2V supply as listed in Table 10.7.

Fig. 10.27 Wirebond die layout containing single-lane HSS core

Chip Integration 471

The east and west sides of the die in Fig. 10.28 contain banks of switching
I/Os. The die view on the right is a heat graph of the transient power supply
analysis performed on this die. The shading indicates the largest transient volt-
age compression is around the switching I/Os, while the compression around
the PLLs and HSS cores is minimal.

Chip layout and package designs for HSS cores must address all of the
topics discussed in this section in order to avoid impacting signal integrity.
These topics included flip-chip C4 ball or wirebond bondfinger pad adjacency
considerations, package BGA adjacency considerations, differential signal
routing and shielding in the package, fat-wire routing and shielding of HSS
signals and analog supplies on chip, and noise mitigation in the chip layout.
Chip layout noise mitigation requires performing layout to isolate the HSS
cores from noise sources, and inclusion of sufficient decoupling capacitance.

10.5 References
For more detail on the ASIC chip design methodology described in this

chapter, see:
1. “Design Methodology for IBM ASIC Products”, J.J. Engel, T.S.

Guzowski, A. Hunt, D.E. LAckey, L.D. Pickup, R.A. Proctor, K.
Reynolds, A.M. Rincon, D.R. Stauffer, IBM Journal of Research and
Development, July 1996.

Interested IBM employees and IBM ASIC customers may wish to consult
the following IBM HSS databooks for more detailed descriptions of timing
assertions, test wrappers, and HSS footprints.
2. “High Speed Serdes (HSS) – 10G Optimized in Cu-65 Core Databook”,

SA15-6164-00, IBM.

Fig. 10.28 Flip-chip die layout containing HSS cores

472 High Speed Serdes Devices and Applications

10.6 Exercises
1. Specify the truth table for a 2-to-1 multiplexor assuming that inputs may

have a value of “0,” “1,” or “X.”
2. Specify the state table for a positive-edge triggered flip-flop with an

asynchronous reset input assuming inputs have a value of “0,” “1,” or “X.”
3. Design logic to use the signal driving the HSSRESET input of an HSS

EX10 core to force core inputs to values specified in Table 10.1 during the
reset. (HSSREFCLK[T,C] is not gated.)

4. For each of the following functions of the transmitter slice of the HSS
EX10 core, explain to extent to which you would expect these functions
to be modeled in a digital simulation model:
(a) Function of the Transmit Power Register
(b) Functions of the Transmit Test Control Register
(c) Function of the Slow Slew Control in the Transmit Driver Mode

Control Register
(d) Function of the Rate Select in the Transmit Configuration Mode

Register
(e) Function of the TXxELECIDLE pins
(f) Function of the TXxRCVRDETEN pins and corresponding

TXxRCVRDETTRUE and TXxRECVRDETFALSE output pins
(g) Function of the TXxOBS pins
(h) Function of the TXxBEACONEN pins

5. For each of the following functions of the receiver slice of the HSS EX10
core, explain to extent to which you would expect these functions to be
modeled in a digital simulation model:
(a) Function of the DFE Data and Edge Sample Register and the DFE

Amplitude Sample Register
(b) Functions of the control signals in the Receive Test Control Register
(c) Functions of the Signal Detect Level and Signal Detect Power Down

in the Signal Detect Control Register
(d) Function of the Parallel Data Bus Width in the Receive Configuration

Mode Register
(e) Function of the Sonet Clock Control Register
(f) Function of the DFE Tap X Registers (for taps 1–5)
(g) Function of the RXxDATASYNC pins
(h) Function of the RXxSIGDET pins

Chip Integration 473

6. The macro test controllability and observability requirements for the HSS
EX10 core are specified in Table 10.3, and the corresponding require-
ments for JTAG Test are specified in Table 10.4.
(a) Design logic which implements these requirements for the PLL slice

of an HSS EX10 core.
(b) Design logic which implements these requirements for the

Transmitter slice of an HSS EX10 core.
(c) Design logic which implements these requirements for the Receiver

slice of an HSS EX10 core.
7. Input and output pins in Table 10.3 which must controlled or observed

during the test sequence must be accessible through I/O pins during the
test. Assuming input pins can be shared, but output pins cannot be shared,
how many total I/O pins are required to support Macro Test for a single
HSS EX10 core with four transmit and four receive slices?

8. Making the same assumptions as stated in Exercise 7, how many total I/O
pins are required to support Macro Test for four HSS EX10 cores on the
same chip?

9. Write EinsTimer and Synopsys timing assertions for the TXADCLK pin of
an HSS EX10 core which account for jitter and duty cycle variation of
this clock. Assume the clock period is 2.10 ns, the data width is set for
10 bits, and the duty cycle variation is +5% of the cycle time.

10. Write EinsTimer and Synopsys timing assertions for the RXADCLK pin of
an HSS EX10 core which account for jitter and duty cycle variation of
this clock. Assume the clock period is 1.90 ns, the data width is set for
16 bits, and the duty cycle variation is +7% of the cycle time.

11. Sect. 10.3.2 describes adjustments to the timing of the RXADCLK and
associated RXAD* pins to avoid false setup and hold violations.
Fig. 10.12 illustrated the intended launch and capture timing for the
RXAD* pins. Assuming analysis is being performed on a postlayout
netlist, use a timing diagram to illustrate the various timing adjustments to
RXADCLK (per Sect. 10.3.1) and RXAD* data signals (per Sect. 10.3.2)
that contribute to performing setup tests at the flip-flops capturing the
data. Repeat this illustration for hold tests.

12. Fig. 10.12 illustrated the intended launch and capture timing for the
RXAD* pins. Looking at this figure, it appears that rather than counting
on clock tree delay to meet timing requirements for this interface, it
would be possible to use the falling edge of RXADCLK to capture the
data. Explain why this is not a good idea. (Hint: What if the data width
and rate select are changed by the application?)

474 High Speed Serdes Devices and Applications

13. Using Fig. 10.12, explain why setup time violations occur when
performing timing analysis on a prelayout netlist with an ideal clock tree
(i.e., clock tree delay is zero).

14. Why must skew between the true and complement legs of the differential
signal be minimized? What are the impacts as this skew increases?

15. Write EinsTimer timing assertions for the HSSRESYNCCLKOUT pins of
two HSS EX10 cores which must be synchronized together which only
use the divider ratios 16 and 20. Assume the frequency of
HSSRESYNCCLKOUT is 2.5 ns when the divider ratio of 16 is used, that
clock jitter is 0.080 ns, duty cycle variation is +6% of the clock period,
and core-to-core skew is specified to be 150 ps.

16. Write Synopsys timing assertions for the HSSRESYNCCLKOUT pins of
two HSS EX10 cores with similar requirements to those specified in
Exercise 15.

17. Table 5.5 describes the lane-to-lane skew requirements for the transmitter
output of an OIF SFI-5.2 interface. The baud rate for SFI-5.2 is
9.95328 Gbps. Assume the HSS EX10 core-to-core skew is 450 ps.
Suggest a skew budget for all skew contributors on the chip which
complies with the SFI-5.2 specification for transmit skew.

18. Does Table 5.5 impose skew requirements on the receiving chip for the
OIF SFI-5.2 interface? Explain.

19. Applying your knowledge of signal integrity for differential signals, why
do you think FC-PBGA packages are better suited for higher baud rates as
compared to wirebond packages?

20. The placement of one example of an HSS core is shown on the south side
of the die, left of center, in Fig. 10.24. How many of these HSS cores can
you fit on the die, utilizing both the outer and inner rings?

 475

Index
Numerics

10 Gigabit Attachment Unit Interface
(XAUI) 57, 167, 198, 204, 206,
218–220, 236

10 Gigabit Serial Electrical Interface
(XFI) 207–213

64B/66B Block Code 138, 368
CEI-P 155, 166, 184, 186, 187
Fibre Channel 236
run length 15
XFI (Ethernet) 167, 198, 208, 210

8B/10B Block Code 9, 137, 138, 368
Fibre Channel 168, 222, 225, 236
PCI Express 241, 242, 244, 245,

250
run length 15
signal connections 54
XGXS (Ethernet) 154, 167, 198,

203–207

A
AC JTAG. See JTAG 1149.6

(AC JTAG)
active (AC) power 321, 395–400,

408, 409, 411, 412,
414–417

activity factor (AF) 321, 395, 398, 399,
412, 416, 417

aliasing 154, 171
align symbol 154, 207
American National Standards Institute

(ANSI) 169, 220
application layer 125
At-Speed Structural Test 318, 320
Automatic Gain Control (AGC) 312,

333, 334
Automatic Test Pattern Generator

(ATPG) 432
AVdd power supply 104, 261, 411, 414,

459, 462
AVtt/AVtr power supply 36, 71, 109,

411, 414, 459, 466

B
backannotation (timing) 456
bang-bang phase detector 116
barrel shifter 154–156, 245
bathtub curve 24, 359, 360, 384, 389
beacon signalling 37, 66, 73, 80, 248,

249, 412
bit alignment 125, 134, 152, 153, 155,

156, 205, 206
Bit Error Rate (BER) 4, 369–371, 384,

389
CEI 195
clock jitter 268, 274
error correction 143–146, 201
Ethernet 220
Fibre Channel 233
relation to HSS circuits 66, 71, 100,

118
relation to run length 15
signal integrity 19–24, 345–361
Sonet/SDH 15, 140, 171
test 305, 328–333

Bit Interleaved Parity (BIP) 144,
171–173

bit interleaving 136, 156, 180, 183, 333
bit order

HSS core 55, 70
interface 125, 134, 142, 202, 225,

227
Bounded Uncorrelated Jitter (BUJ) 333,

335, 348, 349, 354–356, 360
Built-in Self-Test (BIST) 36, 40, 78, 99,

365, 442
Logic BIST (LBIST) 295,

315–318
BYPASS_CAL 426, 430
byte order (of interface) 125, 134, 225
byte striping 136, 155, 156, 236,

244–246, 250, 333

C
C4 pads 457, 462, 465, 466, 469

475

476 Index

channel (interconnect) 10, 19–21, 71, 74,
337, 368, 369, 376, 391

analysis 23, 24, 79, 196, 365–367,
369, 371, 387, 456

channel compliance 127, 128, 190,
191, 193, 196, 371

crosstalk 21, 23, 377, 378, 380, 383
equalization 54, 56, 58, 70, 79, 109,

110, 127, 247, 374, 381, 382
jitter contribution 348, 351, 352,

361, 362, 370, 380
response 10, 13, 19–21, 23, 26, 196,

343, 370–380
skew 153, 156
S-Parameters 377, 379, 384, 387

channel length (Leff) 326, 401, 402
characterization test 325–337
Clock and Data Recovery (CDR) 8, 14,

15, 66, 68, 78, 87, 90, 93, 114,
116–118, 156, 157, 189, 227, 246,
248, 274, 276–279, 311, 333, 347,
352, 353, 362, 378, 380, 383, 388,
427, 446

clock buffer (differential) 265, 279, 280,
444

Clock Forwarding 3
comma symbol (COM) 154, 242–245
Common Electrical I/O (CEI) 146, 166,

179, 180, 183, 184, 188, 190–197,
277, 278, 360–362, 371, 376

Common Electrical I/O Protocol (CEI-P)
146, 155, 166, 167, 179, 184, 186–190

common mode noise 6, 263, 280
Common Mode Voltage (Vcm) 17, 36,

65, 66, 71, 72, 104, 191–194, 219,
246–248, 263, 281–283, 302, 334

compliance channel 327, 330, 333, 335
compliance point 126–128, 326

Fibre Channel 230, 232, 233, 329
SFI Reference Model 181, 184,

277
Content Addressable Memories (CAMs)

126
continuous-time equalizer 100, 194
Correlated Bounded Gaussian Jitter

(CBGJ) 349, 354–356, 360–362

Correlated Bounded High Probability
Jitter (CBHPJ) 360

coupling (AC or DC) 34, 71, 114, 191,
193, 247, 248, 334, 368, 369

crosstalk 9, 19, 21–23, 56, 57, 73, 216,
348, 349, 353–355, 369, 370, 377,
378, 380, 383, 384, 391

FEXT 377, 378
NEXT 9, 378

Cumulative Distribution Function
(defined) 344

current-voltage (IV) curve 400–402
cursors (of pulse response) 372, 374,

381, 382
cycle-to-cycle jitter 271, 272, 275
Cyclic Redundancy Check (CRC) 133,

144, 145, 186, 224, 225, 227, 241, 249

D
Data Dependent Jitter (DDJ) 20,

348–352, 360, 370, 371, 380
data eye 4

amplitude 57, 79, 111, 128
characterization 326, 328–332, 348
duobinary 24, 25
equalization 10, 13, 110, 111, 216
eye mask (See eye diagram)
NRZ 24
PAM-4 24–26
relation to BER 4, 24, 332, 348, 359,

360, 370, 389
sampling 7, 14, 15, 137, 446
signal impairments 5, 6, 21, 22, 274,

347, 356, 362, 370, 372
signal integrity 79, 196
simulations 365, 369
statistical analysis 357, 359, 360,

371–373, 380–385
training 87, 427
virtual eye (See statistical eye)

data link layer 125, 126
PCI Express 240–242, 245, 249

data packet 125, 133, 134, 140, 144, 145,
150, 153, 154, 168, 176

Ethernet 134, 154, 167, 197, 198,
201, 204, 208, 211, 212

Index 477

data packet (Cont’d)
Fibre Channel 167
PCI Express 154, 240–245
SPI 178, 184, 186

DC Stuck Fault Testing. See scan test
Decision Feedback Equalizer (DFE), 13,

14, 17, 23, 50, 100, 114, 116, 129, 193,
233, 312, 333

circuit architecture 118–121
digital eye 79
HSS EX10 DFE 46, 48–52, 68, 70,

71
jitter budget 362
macro test 323
multilevel signalling 26
power dissipation 337, 412, 417,

419
simulation and analysis 23, 365,

372, 379–382, 388, 389, 431
training 87, 90, 93, 189, 427
use of signal detect 73

decoupling capacitors
on signal 18, 19, 74, 247, 248, 301,

303, 332
power supply 261, 468

deemphasis 10, 128, 247
deserializer stage 9, 70, 116, 121
Design-For-Test (DFT) design

automation 440
deskew channel 155, 180–183
deskew logic 151, 153–156, 183, 184,

187, 455
Deterministic Jitter (DJ) 14, 22, 23, 184,

193, 219, 233–235, 247, 274, 328,
346, 348–354, 356, 357, 360, 373,
378, 384, 456

DFE Amplitude Sample Register 50, 79
DFE Control Register 49, 79, 93
DFE Data and Edge Sample Register 50,

79
DFE TapX Register 51, 52
DI 433, 434
differential clock analysis 286–290
differential driver 15–17, 415
differential receiver 17, 264, 268, 282,

283, 325, 415

differential signal 5, 6, 8, 54, 71, 81, 281,
430

amplitude 46, 56, 72, 91, 281, 282,
323, 325, 329–332, 335, 411, 419

crosstalk 21, 56, 378
footprint 462, 464
input level 282
JTAG 18, 301–303
noise rejection 263
power supply compression 263
reference clock 261–263
skew 455, 456, 458
S-Parameters 377
timing analysis 444
wiring 280, 281

Differential Voltage (Vdiff) 17, 46, 281,
282, 419

digital eye 50, 52, 79, 332
Digital Eye Control Register 50, 79
double data rate (DDR) 3, 4, 57, 202
Drain Induced Barrier Lowering (DIBL)

402
Dual-Dirac probability density function

24, 343, 346, 350, 351, 353, 357, 360,
371, 380, 383

Duty Cycle Distortion (DCD) 102, 103,
192–194, 219, 220, 279, 280, 282,
284, 328, 348–350, 357, 360, 380,
456, 458

E
elastic FIFO 125, 134, 147–151, 153,

156, 243, 244, 250, 304, 306, 446
Electrical Idle State 38, 65, 243, 247,

248, 413
Electrically Enhanced Plastic Ball Grid

Array (EPBGA) package 457
Electromagnetic Interference (EMI) 3,

78, 247, 264, 265, 267, 352,
377

error correction 125, 134, 143, 145,
146, 155, 165, 166, 178, 180,
188–190, 200, 201, 213, 217

Ethernet. See IEEE 802.3
evaluation board 326
External Serial Loopback 305, 306

478 Index

eye (closure, opening, width) See data
eye.

eye diagram 107, 126, 128, 129, 195,
196, 218, 219, 233–235, 246, 247,
328, 330–332, 369, 389, 391

F
fall time. See slew rate
Feed Forward Equalizer (FFE) 8, 10, 11,

44–46, 58–63, 79, 87, 88, 91, 92, 99,
107–111, 128, 191, 200, 213–216,
218, 247, 325, 327, 328, 337, 368,
372–375, 386, 389–390, 431

FFE Coefficient Negotiation 59, 216
Fibre Channel 57, 65, 72, 133, 140, 144,

167, 168, 220–237
Fine Pitch Plastic Ball Grid Array

(FBGA) package 457
Flip-Chip packages 457, 458, 462, 466,

468, 469
floorplanning

clock 279, 280
core placement on die 464–466, 468
decoupling capacitors 468
I/O wiring 464, 466
pad assignments 462, 464
power routing 466
transient power supply analysis 469

Flywheel 48, 66, 78
Forward Error Correction (FEC). See

error correction
frame alignment 173, 183
full duplex core 8, 17, 31, 99, 100, 134,

304, 305, 414

G
Gate Dielectric Current (Igate) 400, 404,

405
Gate Induced Drain Leakage Current

(Igidl) 400, 406, 407
Gaussian distribution 22, 137, 140,

343–346, 349, 355, 371
bounded 345, 346, 349, 354, 356

Gaussian Jitter (GJ) 344, 345, 349, 356,
360, 380, 384

Golden PLL 331

H
High Probability Jitter (HPJ) 348
High Speed Serdes (definition) 8
HSSACJAC 34, 439
HSSACJPC 34, 75, 439
HSSCDR software 24, 328, 371,

386–391
HSSDIVSEL 33, 82, 264–266, 429, 437
HSSEYEQUALITY 35, 52, 79
HSSJTAGCE 34, 36, 40, 63, 64, 74, 439
HSSPDWNPLL 33, 60, 73, 429, 437,

439
HSSPLLLOCK 33, 83, 107, 426, 437,

438
HSSPRTADDR 34, 41, 437, 443, 450,

451
HSSPRTAEN 34, 437, 443, 450, 451
HSSPRTDATAIN 34, 437, 443, 450,

451
HSSPRTDATAOUT 34, 443, 450, 451
HSSPRTREADY 34, 83, 84, 88, 90
HSSPRTWRITE 34, 437, 443, 450, 451
HSSRECCAL 33, 83, 84, 437
HSSREFCLKT/C 33, 80–83, 88, 186,

267, 429, 443–445, 452, 455, 456
HSSREFDIV 33, 82, 264–266, 429, 437
HSSRESET 33, 82, 84, 87, 88, 425, 426,

429, 437
HSSRESETOUT 33, 82
HSSRESYNCCLKIN 33, 84, 429, 437,

443, 446, 452, 456
HSSRESYNCCLKOUT 34, 443,

452–454
HSSRXACMODE 34, 71, 369, 439
HSSSTATEL2 35, 87, 429, 437
HSSTXACMODE 34, 368, 439

I
I/Q clock generator 102
IDDQ Test. See leakage test
idle symbol (IDL) 134, 150, 153,

203–205, 207, 211, 212, 224,
243, 244

IEEE 802.3 (Ethernet) 133, 134, 138,
140, 154, 167, 168, 178, 197–220,
224, 236–238, 240

Index 479

IEEE 802.3ap Backplane Ethernet 59,
91, 146, 167, 200, 213–218

Infiniband 57, 72, 168
Input Offset Compensation 114
insertion loss 19–21, 26, 351, 376, 377,

389, 458, 462
Institute of Electrical and Electronics

Engineers (IEEE) 197
Intermediate Frequency (IF) PLL 19,

261–268, 275, 279–287, 325, 468
Internal Status Register 52, 79, 90, 93
International Committee for Information

Technology Standards (INCITS) 168
International Telecommunications

Union (ITU-T) 146, 169
interoperability points. See compliance

point
Intersymbol Interference (ISI) 14, 58,

118, 247, 328, 333, 335, 348, 351,
370, 371, 382, 383

IR Drop analysis 468

J
jitter 1–3, 15, 21–24, 66, 80–82, 99, 103,

127, 130, 177, 181, 183, 196, 218,
219, 221, 261, 262, 264–267, 284,
286, 325–327, 327, 330, 343,
345–363, 373, 378, 383, 384, 415,
448, 468

jitter (clock) 268–279, 446, 447
jitter amplification 277
jitter budget 117, 181, 184, 227,

360–362
jitter gain See jitter transfer
jitter generation 21, 268, 371, 378, 380,

383
jitter peaking 276–278
jitter tolerance 22, 36, 66, 78, 218,

220, 246, 247, 264, 277, 321, 335,
350–363

jitter transfer 22, 278
jitter transparent application 278
Joint Test Action Group (JTAG) 296,

303
JTAG 1149.6 (AC JTAG) 6, 56, 61–76,

104, 289, 295, 303, 324, 432, 438

JTAG Test 6, 295–303, 353, 432, 433,
438–441

HSS EX10 implementation 61, 62,
64–76

JTAG Boundary Scan Cell 300,
438, 440

JTAG Boundary Scan Register 61,
62, 299–300, 438

JTAG Bypass Register 299
JTAG Compliance Enable signal

438, 439
JTAG ID Register 299, 300
JTAG Instruction Register

298–300, 442
JTAG RUNBIST Instruction 299, 442
JTAG TAP Controller 61, 62, 297,

298, 438
receiver 56, 324, 353
signals 34, 36, 37, 39, 40, 297

Junction Leakage Current (Ijxn) 400, 406

L
leakage current (DC power) 321, 322,

395, 400–409, 411, 412, 414–415,
433, 434

leakage test 321, 322, 434
Linear Feedback Shift Register (LFSR)

15, 65, 140, 141, 145, 207, 307, 308,
311, 314, 317

Link Enable Register 42, 60, 72, 91, 92
Link Reset Register 43
Logic BIST (LBIST). See Built-in

Self-Test (BIST)
loop timing 80, 132, 176, 186, 261, 266,

267, 277, 278, 306
loopback test 15, 36, 40, 47, 64, 65, 77,

78, 304–307, 322, 432
LT 433, 434

M
Macro Test

HSS core 322–325, 433–438, 440,
441

Macro Test Complete signal 436
Macro Test Enable signal 435, 436
PLL 321, 322

480 Index

manufacturing test (of chip) 15, 261,
268, 295, 304, 318–325, 432–434

Multiple-Input-Shift-Register (MISR)
317, 318

N
network layer 125, 126
Network Processing Elements (NPEs)

126, 166, 178, 184

O
Optical Internetworking Forum (OIF)

155, 157, 165, 166, 177–197, 266,
277, 371, 376

Out of Band Signalling (OBS) 36, 65

P
package model 21, 24, 373, 379, 386,

388
packet. See data packet
Parallel Data Bus Width 43, 46, 53–55,

68, 69, 91, 92, 109, 114, 446
Parallel Diagnostic Loopback 307
parity (on deskew channel) 155, 181,

183
parity error detection 143, 144
PCI Express 37, 65, 80, 134, 154, 168,

237, 306
beacon 66, 73, 80
link state 35, 38, 40, 66, 80, 87

peaking amplifier 8, 13, 114
period jitter 270–272, 275,

449, 454
Periodic Jitter (PJ) 348, 352–354, 356,

357, 360, 380
Peripheral Component Interconnect

Special Interest Group (PCI-SIG) 168,
237

phase jitter 269–272, 274, 275
Phase Locked Loop (PLL) 14, 15, 19, 31,

99–107, 147, 156, 177, 266, 268, 337,
409, 410, 443, 455

bandgap voltage 103, 104
charge pump 101
clock distribution macro 102

HSS EX10 PLL Slice 32–35, 41–43,
54, 55, 60, 66, 68, 71–73, 80–87,
264, 413

jitter 275, 276, 446, 452
JTAG 439
Lock Detect 107
lock detect 83, 105, 206, 209
loop timing 186, 267
macro test 321, 322, 437
phase-frequency detector 101
power dissipation 414
power down 249
reset and configuration 87, 88, 90,

91, 426, 429, 430
test 317
voltage and current references 103, 104

phase noise 272–274
Phase Rotator 48, 52, 78, 116–118
Phase Rotator Control Register 48, 78
Phase Rotator Position Register 48, 78
physical layer 125, 126

CEI 146
Ethernet 197, 198, 202, 204
Fibre Channel 167, 168, 225, 232
PCI Express 238, 240–242,

244–246, 248–250
plesiosynchronous clock 15, 133, 150,

306, 333, 388
post-cursor taps 10, 108–110, 214, 215
post-cursors (of pulse response) 121,

362, 372, 379–382, 389
power dissipation 3, 8, 56, 59, 60, 62, 66,

72, 77, 80, 87, 91, 100, 101, 103, 120,
121, 183, 238, 248, 321, 395–419

testing 337
power management 59, 72, 248–250, 412

power states 38, 40, 66, 80, 87, 243,
247, 248, 413, 419

power supply (general) 6, 56, 88, 103,
131, 261, 262, 321, 337, 365, 368,
369, 395, 397, 398, 402, 404, 405,
408–410, 416, 418, 425, 427, 431,
458, 468

power supply (Vdd) 414, 415
power supply compression 261–263,

468

Index 481

power supply noise 261, 263, 328, 348,
352, 468, 469

Power Supply Rejection Ratio (PSRR)
104

pre-cursor taps 10, 108, 109, 214, 215
pre-cursors (of pulse response) 372, 382
preemphasis 10, 54, 58, 128, 365, 368
Probability Density Function (PDF)

bounded Gaussian distribution 345
definition 343
Dual-Dirac distribution 346
Gaussian distribution 343
Total Jitter 357

Process/Voltage/Temperature (PVT)
corners 1, 3, 4, 6, 7, 130, 147, 325,
368, 369, 386, 388

protocol logic 90–92, 125, 126,
130–132, 134–157, 304–306, 347,
444, 446

Pseudo-Random Bit Sequence (PRBS)
295, 304–315, 317, 322, 432

Bit Sequences (Patterns) 311, 312,
328, 330

Checker 17, 40, 47, 68, 77, 78, 121,
310, 311

Generator 36, 44, 54, 64, 65, 114,
308, 309, 335

Test Sequence 312–315
use in scrambling 140
use in training frame 214, 216

pulse width distortion. See Duty Cycle
Distortion (DCD)

Q
Q (of circuit) 24, 345, 346, 359, 360,

384
quiescent current (power) 321, 322,

395, 408, 409, 411, 412, 414, 415,
419, 434

R
Random Jitter (RJ) 22, 23, 101, 105, 193,

219, 282, 328, 333, 335, 348, 349,
354–356, 373, 378

Rate Select 43, 46, 54, 61, 62, 68, 76, 91,
107, 228, 432

Receive Configuration Mode Register
46, 68–70, 76, 91, 121, 412, 417, 419

Receive Test Control Register 47, 77, 78,
312, 314, 315

Receiver (Rx) Slice 31, 38–41, 46–52,
66–80, 100, 114–121, 250, 365, 417

JTAG 439
macro test 437
power dissipation 412, 414
reset and configuration 90, 92, 93,

427, 429
receiver detection 37, 66, 248
reference channel 233
register definitions (HSS EX10) 41–52
register interface 32, 34, 431, 450–452
Remote Line Loopback 306
Remote Payload Loopback 307
resynchronization function 33, 34, 55,

60, 61, 84–87, 91, 92, 148, 151, 157,
206, 452–455

return loss 21, 22, 195, 196, 332, 337,
376, 377, 379, 458, 459, 462

RI 433, 434
rise time. See slew rate
Root-Mean-Square (RMS) values 345,

355, 360, 361
run length 14, 15, 54, 64–66, 78, 137,

138, 140, 171, 175, 183, 210, 281, 308
RXxACJPDP/N 39, 74, 75, 437, 439
RXxACJZTP/N 39, 74, 75, 325, 439
RXxBSOUT 40, 73, 74, 324, 439
RXxD 39, 68, 70, 76, 90, 92, 443, 448,

450, 456
RXxDATASYNC 39, 68, 70, 153,

155–157, 183, 206, 224, 245, 429,
430, 437

RXxDCLK 39, 68–70, 73, 87, 88, 92,
132, 150, 157, 228, 274, 430, 443,
444, 446–448, 450, 456

RXxIP/N 39, 75, 323, 324, 430
RXxPHSLOCK 437
RXxPRBSEN 40, 47, 312, 314, 437
RXxPRBSERR 40, 47, 315
RXxPRBSFRCERR 40, 47, 437
RXxPRBSRST 40, 314, 437
RXxPRBSSYNC 40, 47, 315

482 Index

RXxPWRDWN 40, 72, 413, 429, 437, 439
RXxRCVC16T/C 39, 48, 267, 443, 444
RXxSIGDET 39, 72, 228, 248, 437, 438
RXxSIGDETEN 41, 73, 80, 92, 414, 437
RXxSTATEL1 40, 80, 413, 429, 437

S
sampling jitter 373, 378, 380, 383, 388
Scalable System Packet Interface (SPIS)

155, 166, 177–180, 184–188, 266
scan chains 315–319, 433–435, 440

JTAG 300, 301
scan mode 315, 316, 319
scan test 318–321, 432–434
SCANGATE 433, 434
SCANIN 433, 434
SCANOUT 433, 434
scrambling 9, 15, 65, 125, 134, 140–143,

155, 166, 168, 169, 171–173, 175,
183, 184, 187, 188, 208, 210, 217,
225, 227, 244, 245, 250, 368, 374, 387

self-synchronizing scrambler
140–143, 210, 227

sidestream scrambler 140–142, 171,
244

Serdes-Framer Interface (SFI-5 or
SFI5.2) 155–158, 165, 166, 177–184

Serial ATA (SATA) 65, 78, 168, 268
Serial Attached SCSI (SAS) 65, 72, 78, 168
Serial Diagnostic Loopback 304–306
serializer stage 9, 61, 112–114
Signal Detect 41, 49, 68, 71–73, 80, 87,

92, 93, 116, 129, 130, 248, 249, 324,
335, 336, 365, 414, 417

Signal Detect Control Register 49, 72,
73, 324, 414, 417

signal integrity 9, 10, 18–24, 35, 79, 196, 197,
238, 264, 268, 279, 300, 326–328,
343–391, 411, 419, 444, 455, 457

clocks 281–290
Spice analysis 363–369
statistical analysis 370–384

simplex core 8, 17, 31, 65, 78, 99, 100,
322, 323

simulation models (event-driven
simulation) 423, 425–432

single data rate (SDR) 3, 4, 57
single-ended signal 6, 17, 232, 261, 263,

281, 331
Sinusoidal Jitter (SJ) 220, 233, 235, 277,

333, 335, 348, 349, 353, 361, 362, 389
skew (on a multi-lane interface) 84, 91,

130, 131, 135, 148, 149, 151, 153,
155–157, 184, 206, 261, 266, 318,
333, 347, 362, 446, 452–456, 458

skew budget 156, 157, 184, 266, 455, 458
skip symbol (SKP) 134, 154, 207,

242–245
slew rate 4, 45, 56, 57, 91, 117, 279, 281,

282, 284, 368, 430
Sonet Clock Control Register 48, 80
source synchronous interface 2–7, 165
S-Parameters 19, 24, 196, 326, 328, 376,

377, 379, 383, 384, 387, 389, 458
Spice 23, 279, 281, 282, 286–290,

363–370, 444, 454
behavioral models 365–367
extracted models 363–365

speed negotiation 91, 227, 228
Spread Spectrum Clocking (SSC) 48, 78,

93, 247, 267
Standard Delay Format (SDF) 456
StatEye software 24, 197, 371, 386
static timing analysis. See timing analysis
statistical eye 14, 24, 79, 129, 196, 357,

380–386, 389, 391
statistical signal integrity analysis

371–390
status channel 184, 186, 187
Sub-Threshold Leakage Current (Isubvt)

400, 402–404, 406, 407
synchronous clock 132, 133, 306, 333
Synchronous Digital Hierarchy (SDH).
See Synchronous Optical NETwork
(SONET)

Synchronous Optical NETwork
(SONET) 15, 39, 48, 65, 132, 133,
140, 165, 166, 168–178, 180, 183,
198, 207, 208, 212, 213, 266, 307

BIP 144
Forward Error Correction 146
scrambler 142

Index 483

T
TCP/IP model 125
termination (of signal) 17, 34, 56, 60, 71,

109, 114, 127, 219, 233, 324, 325,
365, 368, 369, 411, 414

test synthesis (DFT) 423
test wrapper 433, 440, 441
TESTENABLE 433, 434
threshold voltage (Vt) 325, 395,

400–402, 406, 417
timing analysis 423, 443–454, 456, 457

clock duty cycle 447, 448
clock jitter 275, 446–449, 454
register interface 450, 452
resynchronization function 452–454
RXxD receive data 448, 449
serial data 454

timing assertions
HSSRESYNCCLKOUT 453, 454
RXxD receive data 449
TXxDCLK and RXxDCLK

445–448
timing model (of HSS) 443, 444, 448,

450, 454, 456
Total Jitter (TJ) 22, 23, 184, 192, 219,

233–235, 246, 247, 328, 347, 349,
356, 357, 359, 360, 362, 380, 383

Transmit Coefficient Control Register
44, 59, 92

Transmit Configuration Mode Register
43, 53–55, 61, 91, 107, 114

Transmit Driver Mode Control Register
45, 57–60, 91, 109, 368

Transmit Polarity Register 46, 58, 59
Transmit Power Register 46, 56–59,

64, 91, 108, 109, 325, 365, 367,
412

Transmit TapX Coefficient Register 45,
58, 59, 91, 108, 325, 365, 368

Transmit Test Control Register 44, 64,
78, 314

Transmitter (Tx) Slice 31, 35–38, 43–46,
53–66, 99, 107–114, 250

JTAG 439
macro test 437
power dissipation 412, 414

power down 431
reset and configuration 90–92, 429

transport layer 125
TXxBEACONEN 37, 66
TXxBSIN 36, 62, 63, 439
TXxBSOUT 36, 439
TXxBYPASS 37, 62, 437
TXxD 36, 53–55, 61, 90, 91,

136, 443
TXxDCLK 31, 36, 53–55, 60, 61, 65, 84,

88, 91, 148, 157, 228, 232, 274, 443,
444, 446, 447

TXxELECIDLE 38, 65, 413, 437
TXxJTAGAMPL 37, 63, 64, 439
TXxJTAGTS 36, 63, 64, 439
TXxOBS 36, 65
TXxOP/N 36, 62, 108, 325
TXxPRBSEN 36, 44, 437
TXxPRBSRST 36, 437
TXxPWRDWN 37, 60, 413, 429, 437,

439
TXxRCVRDETEN 37, 66
TXxRCVRDETFALSE 37, 66
TXxRCVRDETTRUE 37, 66
TXxSTATEL1 38, 66, 413, 429, 437
TXxTS 36, 60, 64, 91, 92, 437

U
Uncorrelated Bounded High Probability

Jitter (UBHPJ) 192–194, 354
Uncorrelated High Probability Jitter

(UHPJ) 192, 193
Uncorrelated Unbounded Gaussian Jitter

(UUGJ) 192–194, 349, 354–356, 360,
361

Unit Interval (defined) 22

V
Variable Gain Amplifier (VGA) 52, 70,

71, 114, 365
VCO calibration 42, 83, 84, 88, 90, 105,

426, 430
VCO Coarse Calibration Control

Register 42, 83, 84
VCO Coarse Calibration Status Register

42, 83

484 Index

Vdd power supply 288, 410, 411, 418
Vector Network Analyzer (VNA) 19,

376, 377
Voltage Controlled Oscillator (VCO) 83,

101, 105, 275, 426
Voltage Regulator (PLL) 100, 103, 104,

322
voltage screen test 320, 321

W
WAN Interface Sublayer (WIS) 198,

200, 208, 212, 213
wander (on a multi-lane interface) 130,

131, 147, 149, 151, 156, 157, 184,
333, 347, 362

Wirebond packages 297, 457, 462, 464,
466, 468, 469

wrap back. See loopback test

X
XAUI. See 10 Gigabit Attachment Unit

Interface (XAUI)
XFI. See 10 Gigabit Serial Electrical

Interface (XFI)
XGMII Extended Sublayer (XGXS)

154, 167, 198, 204–207

Z
ZDI 433, 434
ZRI 433, 434

