Metastability

赵启林 klin forqilin@163.com

Goal

- Define metastability
- Demonstrate various techniques to address metastability
- Discuss aspects of metastability that will need to be validated

What is metastability?

- Metastability is an undesirable non-equilibrium electronic state that can persist for a long period of time
- For example, a flip-flop is a device that has two welldefined states, traditionally designated 0 and 1
- Under certain conditions, the device can hover between these two states

What is the problem?

Metastable values can cause illegal signal values to propagate throughout the rest of the design

What causes metastability?

Non-deterministic resolution

Metastability Time

Effect factors:

- Process
- Temperature
- Voltage Sampled
- Electromagnetic wave

How to tolerate metastability?

MTBF: Mean Time Between Failure

MTBF example

Synchronizer Reliability

Synchronizer Reliability

Synchronizer effect – latency uncertainty

RTL simulation does not model silicon behavior accurately

Synchronizing multiple data bits

Reconvergence Problem

- Assume two signals must be mutually exclusive
- Cannot guarantee that the signals received in the Rx clock domain will be mutually exclusive!

CDC Verification Solution

- 1. Static analysis to identify synchronization errors
- 2. Protocol assertion generation to ensure correct transfer of data
- 3. Reconvergence verification with metastability injection

Any questions?

Thank you!