
1-2 Example Programs (如何取得程式碼) 

If you want to download the example program used in this book, please follow this link. 

However, the example programs use extensively several toolboxes, which should be 

downloaded and added to the search path of MATLAB. These toolboxes is accessible from the 

following links:  

1. Utility Toolbox  

2. DCPR Toolbox  

3. Audio Procesing Toolbox  

4. ASR Toolbox (For speech recognition only)  

5. Melody Recognition Toolbox (For melody recognition only)  

Once these toolboxes are downloaded, they need to be added to the search path of MATLAB. 

(Or you can simply edit addMyPath.m under the example programs to include these toolboxes.)  

Since the example programs are under constant revisions, you can take the following steps if 

you find a bug:  

1. Download all the toolboxes and try again.  

2. If it still does not work, send email to me at jang at cs dot nthu dot edu dot tw.  

You are also welcome to notify me if there is any mistakes in the texts/programs.  

The texts and programs of this book are provided for learning only. The author cannot be held 

responsible for any damage or loss directly or indirectly incurred by using the texts or programs.  

Finally, hope everyone can enjoy the use of MATLAB for audio signal processing.  

 

1-3 Web Resources (網路資源) 



There a numerous websites for speech/audio signal processing and recognition on the internet. 

Here we have a list of some of the commonly used websites, which can be linked for tutorials, 

discussions, papers, example code, etc.  

• http://www.phys.unsw.edu.au/~jw/dB.html 

Introduction to the definition of Decibels for measuring energy/volume of 

speech/audio signals.  

• http://www.phys.unsw.edu.au/~jw/hearing.html 

Introduction (including interactive demos) to curves of equal loudness.  

• http://www.phys.unsw.edu.au/music/ 

Homepage for "Music Acoustics".  

• http://www.phys.unsw.edu.au/~jw/musFAQ.html 

FAQ for "Music Acoustics".  

• http://www.wotsit.org 

File formats for various kinds, including audio and music.  

• http://www.speech.cs.cmu.edu/comp.speech/index.html 

FAQ for the newsgroup "Comp.Speech".  

• http://www.bdti.com/faq/dsp_faq.htm 

FAQ for the news group "Comp.DSP".  

• http://www.harmony-central.com/Effects/effects-explained.html 

Introduction to audio effects, including many examples.  

Chapter 2: MATLAB Basics 

It is very handy to use MATLAB for audio signal processing. To get started with MATLAB, 

please read the following tutorials on MATLAB basics directly.  

• MATLAB Primer by Sigmon (in English)  

• 02-初探 MATLAB.pdf（Examples）(in Chinese)  

使用 MATLAB 來處理音訊，非常簡單易學。以下是有關於 MATLAB 的入門介紹說明：  

• MATLAB Primer by Sigmon（英文）  



• 02-初探 MATLAB.pdf（範例程式）（中文）  

第 2 章作業 

• (*) When does n! explodes： Write a MATLAB script findN01.m to find the minimal 

value of n such that n!>realmax. What is the value of n? What is the value of (n-1)! ?  

• (*) Basic function for both scalar and vector inputs： Write a MATLAB function 

myFun01.m to evaluate the following expression:  

0.5*exp(x/3)-x*x*sin(x) 

where x is the input and y is the output of the function. You function should be 

able to handle both the situations when x is a scalar or a vector. Please use the 

following code segment to plot the expression:  

x=0:0.1:10; plot(x, myFun01(x));  

• (**) Function for computing the Fibonacci number：  

o Write a recursive function fibo.m to compute the Fibonacci sequence, which is 

defined as follows:  

fibo(n+2)=fibo(n+1)+fibo(n)  

The initial conditions are fibo(1)=0, fibo(2)=1.  

o What is the value returned by fibo(25)?  

o Please use the commands tic and toc to measure the computation time of fibo(25). 

If you don't know how to use tic and toc, please try "help tic" and "help toc" in 

MATLAB command window. Please state the specs of your computer and the 

computation time of fibo(25).  

o If you have taken Discrete Mathematics, you should already known that the n-th 

term of a Fibonacci sequence can be expressed as  

fibo(n)={[(1+a)/2]^(n-1)-[(1-a)/2]^(n-1)}/a  



where a is the square root of 5. Write a non-recursive function fibo2.m to 

compute Fibonacci sequence according to the above expression.  

o What is the value of fibo2(25)? Is it the same as fibo(25)?  

o Compare the computation time of fibo2(25) and fibo(25).  

o Please list the advantages and disadvantages of fibo.m and fibo2.m.  

• (**) Find the minimum of a matrix：  

o Write a MATLAB function minxy.m which can find the minimal element in a 

2-dimensional matrix:  

[minValue, minIndex] = minxy(matrix)  

where matrix is a 2-d matrix, minValue is the minimal element of the 

input matrix, and minIndex is an integer vector of length 2 indicating the 

indices of the minimal element. (In other words, matrix(minIndex(1), 

minIndex(2)) is equal to minValue.)  

o Test you program by typing the following statement in MATLAB command 

window:  

[minValue, minIndex]=minxy(magic(20))  

What are the returned values of minValue and minIndex?  

• (***) Function for ranking： We can use a vector to store the scores of midterm exam. 

Please write a function ranking01.m that takes the score vector and return the ranking. 

For instance, if x = [92, 95, 58, 75, 69, 82], the vector returned by ranking01(x) should be 

[2, 1, 6, 4, 5, 3], indicating 92 is ranked second, 95 is ranked first, etc. (If possible, please 

try vectorized code instead of for/while loops.)  

 

 



Chapter 3: Introduction to Audio Signals (音訊的簡介) 

3-1 Introduction to Audio Signals (音訊基本介紹) 

 

Audio signals are generally referred to as signals that are audible to humans. Audio signals 

usually come from a sound source which vibrates in the audible frequency range. The 

vibrations push the air to form pressure waves that travels at about 340 meters per second. Our 

inner ears can receive these pressure signals and send them to our brain for further recognition.  

所謂「聲音訊號」（Audio Signals）簡稱「音訊」，泛指由人耳聽到的各種聲音的訊號。一般來

說，發音體會產生震動，此震動會對空氣產生壓縮與伸張的效果，形成聲波，以每秒大約 340 公

尺的速度在空氣中傳播，當此聲波傳遞到人耳，耳膜會感覺到一伸一壓的壓力訊號，內耳神經再

將此訊號傳遞到大腦，並由大腦解析與判讀，來分辨此訊號的意義。  

There are numerous ways to classify audio signals. If we consider the source of audio signals, 

we can classify them into two categories:  

• Sounds from animals: Such as human voices, dog's barking, cat's mewing, 

frog's croaking. (In particular, Bioacoustics is a cross-disciplinary science, 

which investigates sound production and reception in animals.)  

• Sounds from non-animals: Sounds from car engines, thunder, door slamming, 

music instruments, etc.  

音訊可以有很多不同的分類方式，例如，若以發音的來源，可以大概分類如下：  

• 生物音：人聲、狗聲、貓聲等。  

• 非生物音：引擎聲、關門聲、打雷聲、樂器聲等。  

If we consider repeated patterns within audio signals, we can classify them into another two 

categories:  



• Quasi-periodic sound: The waveforms consist of similar repeated patterns such 

that we can perceive the pitch. Examples of such sounds include 

monophonical playback of most music instruments (such as pianos, violins, 

guitars, etc) and human's singing/speaking.  

• Aperiodic sound: The waveforms do not consists of obvious repeated patterns 

so we cannot perceive a stable pitch. Examples of such sounds include 

thunder pounding, hand clapping, unvoiced part in a human's utterance, and so 

on.  

若以訊號的規律性，又可以分類如下：  

• 準週期音：波形具有規律性，可以看出週期的重複性，人耳可以感覺其穩定音高

的存在，例如單音絃樂器、人聲清唱等。  

• 非週期音：波形不具規律性，看不出明顯的週期，人耳無法感覺出穩定音高的存

在，例如打雷聲、拍手聲、敲鑼打鼓聲、人聲中的氣音等。  

In principle, we can divide each short segment (also known as frame, with a length of about 20 

ms) of human's voices into two types:  

• Voiced sound: These are produced by the vibration of vocal cords. Since they 

are produced by the regular vibration of the vocal cords, you can observe the 

fundamental periods in a frame. Moreover, due to the existence of the 

fundamental period, you can also perceive a stable pitch.  

• Unvoiced sound: These are not produced by the vibration of vocal cords. 

Instead, they are produced by the rapid flow of air through the mouse, the nose, 

or the teeth. Since these sounds are produced by the noise-like rapid air flow, 

we can not observed the fundamenta period and no stable pitch can be 

perceived.  

It is very easy to distinguish between these two types of sound. When you pronunce an 

utterance, just put your hand on your throat to see if you feel the vibration of your vocal cords. If 

yes, it is voiced; otherwise it is unvoiced. You can also observe the waveforms to see if you can 

identify the fundamental periods. If yes, it is voiced; otherwise, it is unoviced.  



以人聲而言，我們可以根據其是否具有音高而分為兩類，如下：  

• Voiced sound: 由聲帶振動所發出的聲音，例如一般的母音等。由於聲帶振動，

造成規律性的變化，所以我們可以感覺到音高的存在。  

• Unvoiced soung: 由嘴唇所發出的氣音，並不牽涉聲帶的震動。由於波形沒有規

律性，所以我們通常無法感受到穩定音高的存在。  

要分辨這兩種聲音，其實很簡單，你只要在發音時，將手按在喉嚨上，若有感到震動，就是 voiced 

sound，如果沒有感到震動，那就是 unvoiced sound。  

The following figure shows the voiced sound of "ay" in the utterance "sunday".  

Example 1Input file audioIntro/voicedShow01.m 
figure; 

[y, fs, nbits]=wavReadInt('sunday.wav'); 

subplot(2,1,1) 

time=(1:length(y))/fs; 

plot(time, y); axis([min(time), max(time), -2^nbits/2, 2^nbits/2]); 

xlabel('Time (seconds)'); ylabel('Amplitude'); title('Waveforms of "sunday"'); 

 

frameSize=512; 

index1=0.606*fs; 

index2=index1+frameSize-1; 

line(time(index1)*[1, 1], 2^nbits/2*[-1 1], 'color', 'r');  

line(time(index2)*[1, 1], 2^nbits/2*[-1 1], 'color', 'r'); 

subplot(2,1,2); 

time2=time(index1:index2); 

y2=y(index1:index2); 

plot(time2, y2, '.-'); axis([min(time2), max(time2), -2^nbits/2, 2^nbits/2]); 

xlabel('Time (seconds)'); ylabel('Amplitude'); title('Waveforms of the voiced "ay" in "sunday"'); 

Output figure  

 



 

 

You can easiy identify the fundamental period in the closeup plot.  

On the other hand, we can also observe the unvoiced sound of "s" in the utterance "sunday", as 

shown in the following example:  

Example 2Input file audioIntro/unvoicedShow01.m 
[y, fs, nbits]=wavReadInt('sunday.wav'); 

subplot(2,1,1) 

time=(1:length(y))/fs; 

plot(time, y); axis([min(time), max(time), -2^nbits/2, 2^nbits/2]); 

xlabel('Time (seconds)'); ylabel('Amplitude'); title('Waveforms of "sunday"'); 

 

frameSize=512; 

index1=0.18*fs; 

index2=index1+frameSize-1; 

line(time(index1)*[1, 1], 2^nbits/2*[-1 1], 'color', 'r');  

line(time(index2)*[1, 1], 2^nbits/2*[-1 1], 'color', 'r'); 

subplot(2,1,2); 

time2=time(index1:index2); 

y2=y(index1:index2); 



plot(time2, y2, '.-'); axis([min(time2), max(time2), -inf inf]); 

xlabel('Time (seconds)'); ylabel('Amplitude'); title('Waveforms of the unvoiced "s" in "sunday"'); 

Output figure  

 

 

 

In contract, there is no fundamental periods and the waveform is noise-like.  

Hint  
You can also use CoolEdit for simple recording, replay and observation of audio signals.  

若要對聲音進行簡單的錄音、播放、觀察及處理，可以使用 CoolEdit 軟體。 

Audio signals actually represent the air pressure as a function of time, which is a continuous in 

both time and signal amplitude. When we want to digitize the signals for storage in a computer, 

there are several parameter to consider.  

• Sample rate: This is the number of sample points per second, in the unit of 

Hertz (abbreviated as Hz). A higher sample rate indicate better sound quality, 



but the storage space is also bigger. Commonly used sample rates are listed 

next:  

1. 8 kHz: Voice quality for phones and toys  

2. 16 KHz: Commonly used for speech recognition  

3. 44.1 KHz: CD quality  

• Bit resolution: The number of bits used to represent each sample point of audio 

signals. Commonly used bit resolutions are listed next:  

1. 8-bit: The corresponding range is 0~255 or -128~127.  

2. 16-bit: The corresponding range is -32768~32767.  

In other words, each sample point is represented by an integer of 8 or 16 bits. 

However, in MATLAB, all audio signals are normalized to floating-point number 

within the range [-1, 1] for easy manipulation. If you want to revert to the 

original integer values, you need to multiply the float-point values by 2^nbits/2, 

where nbits is the bit resolution.  

• Channels: We have mono for single channel and stereo for double channels.  

聲音代表了空氣的密度隨時間的變化，基本上是一個連續的函數，但是若要將此訊號儲存在電腦

裡，就必須先將此訊號數位化。一般而言，當我們將聲音儲存到電腦時，有下列幾個參數需要考

慮：  

• 取樣頻率（sample Rate）：每秒鐘所取得的聲音資料點數，以 Hertz（簡寫 Hz）

為單位。點數越高，聲音品質越好，但是資料量越大，常用的取樣頻率如下：  

1. 8 kHz：電話的音質、一般玩具內語音 IC 的音質  

2. 16 KHz：一般語音辨識所採用  

3. 44.1 KHz：CD 音質  

• 取樣解析度（Bit Resolution）：每個聲音資料點所用的位元數，常用的數值如下：  

1. 8-bit：可表示的數值範圍為 0~255 或 -128~127  

2. 16-bit：可表示的數值範圍為 -32768~32767  



換句話說，每個取樣點的數值都是整數，以方便儲存。但是在 MATLAB 的表示

法，通常把音訊的值正規化到 [-1, 1] 範圍內的浮點數，因此若要轉回原先的整

數值，就必須再乘上 2^nbits/2，其中 nbits 是取樣解析度。  

• 聲道：一般只分單聲道（Mono）或立體聲（Stereo），立體音即是雙聲道。  

Let take my utterance of sunday for example. It is a mono recording with a sample rate of 16000 

(16 KHz) and a bit resolution of 16 bits (2 bytes). It also contains 15716 sample points, 

corresponding to a time duration of 15716/16000 = 0.98 seconds. Therefore the file size is 

about 15716*2 = 31432 bytes = 31.4 KB. In fact, the file size for storing audio signals is usually 

quite big without compression. For instance:  

• If we used the same parameters for a one-minute recording, the file size will be 

60 sec x 16 KHz x 2 Byte = 1920 KB, close to 2 MB.  

• For audio music in a CD, we have stereo recordings with a sample rate of 44.1 

KHz, a bit resolution of 16 Bits. Therefore for a 3-minute audio music, the file 

size is 180 sec x 44.1 KHz x 2 Byte x 2 = 31752 KB = 32 MB. (From here you 

will also know the MP3 compression ratio is about 10.)  

以我所錄的「sunday」來說，這是單聲道的聲音，取樣頻率是 16000（16 KHz），解析度是 16 

Bits（2 Byte），總共包含了 15716 點（等於 15716/16000 = 0.98 秒），所以檔案大小就是 

15716*2 = 31432 bytes = 31.4 KB 左右。由此可以看出聲音資料的龐大，例如：  

• 如果我以相同的參數來進行錄音一分鐘，所得到的檔案大小大約就是 60 秒 x 16 

KHz x 2 Byte = 1920 KB 或將近 2 MB。  

• 以一般音樂 CD 來說，大部分是立體聲，取樣頻率是 44.1 KHz，解析度是 16 

Bits，所以一首三分鐘的音樂，資料量的大小就是 180 秒 x 44.1 KHz x 2 Byte x 

2 = 31752 KB = 32 MB。（由此可知，MP3 的壓縮率大概是 10 倍左右。）  

 

3-2 Basic Acoustic Features (基本聲學特徵) 



When we analyze audio signals, we usually adopt the method of short-term analysis since most 

audio signals are more or less stable within a short period of time, say 20 ms or so. When we do 

frame blocking, there may be some soverlap between neighboring frames to capture subtle 

change in the audio signals. Note that each frame is the basic unit for our analysis. Within each 

frame, we can observe the three most distinct acoustic features, as follows.  

• Volume: This feature represents the loudness of the audio signal, which is 

correlated to the amplitude of the signals. Sometimes it is also referred to as 

energy or intensity of audio signals.  

• Pitch: This feature represents the vibration rate of audio signals, which can be 

represented by the fundamental frequency, or equivalently, the reciprocal of 

the fundamental period of voiced audio signals.  

• Timbre: This feature represents the meaningful content (such as a vowel in 

English) of audio signals, which is characterized by the waveform within a 

fundamental period of voice signals.  

These three acoustic features can be related to the waveform of audio signals, as follows:  

當我們在分析聲音時，通常以「短時距分析」（Short-term Analysis）為主，因為音訊在短時間

內是相對穩定的。我們通常將聲音先切成音框（Frame），每個音框長度大約在 20 ms 左右，

再根據音框內的訊號來進行分析。在一個特定音框內，我們可以觀察到的三個主要聲音特徵可說

明如下：  

• 音量（Volume）：代表聲音的大小，可由聲音訊號的震幅來類比，又稱為能量

（Energy）或強度（Intensity）等。  

• 音高（Pitch）：代表聲音的高低，可由基本頻率（Fundamental Frequency）來

類比，這是基本週期（Fundamental Period）的倒數。  

• 音色（Timbre）：代表聲音的內容（例如英文的母音），可由每一個波形在一個

基本週期的變化來類比。  

這些特徵可用圖形說明如下：  



 

Take human voices as an example, then the above three acoustic features will correlates to 

some physical quantities:  

• Volume: It correlates to the compression of your lungs. A large volume of audio 

signals corresponds to a large compression.  

• Pitch: It correlates to the vibration frequency of your vocal cord. A high pitch 

corresponds to a high vibration frequency.  

• Timbre: It correlates to the positions and shapes of your lips and tongue. 

Different timbres corresponds to different positions and shapes of your lips and 

tongue.  

如果是用人聲來說明，這些語音特徵的物理意義如下：  

• 音量：代表肺部壓縮力量的大小，力量越大，音量越大。  

• 音高：代表聲帶震動的快慢，震動越快，音高會越高。  

• 音色：代表嘴唇和舌頭的位置和形狀，不同的位置和形狀，就會產生不同的語音

內容。  

We shall explain methods to extract these acoustic features in the other chapters of this book. It 

should be noted that these acoustic features mostly corresponds to human's "perception" and 

therefore cannot be represented exactly by mathematical formula or quantities. However, we 

still try to "quantitify" these features for further computer-based analysis in the hope that the 

used formula or quantities can emulate human's perception as closely as possible.  

有關這些語音特徵的抓取和分析，會在後續章節有詳細說明。特別要注意的是，這些特徵都是代

表「人耳的感覺」，並沒有一定的數學公式可尋，所以當我們試著在「量化」這些特徵時，只是



根據一些數據和經驗來量化，來盡量逼近人耳的感覺，但並不代表這些「量化」後的數據或公式

就可以完全代表聲音的特徵。  

The basic approach to the extraction of audio acoustic features can be summarized as follows:  

1. Perform frame blocking such that a strem of audio signals is converted to a set 

of frames. The time duration of each frame is about 20~30 ms. If the frame 

duration is too big, we cannot catch the time-varying characteristics of the 

audio signals. On the other hand, if the frame duration is too small, then we 

cannot extract valid acoustic features. In general, a frame should be contains 

several fundamental periods of the given audio signals. Usually the frame size 

(in terms of sample points) is equal to the powers of 2 (such as 256, 512, 

1024 ,etc) such that it is suitable for fast fourier transform.  

2. If we want to reduce the difference between neighboring frames, we can allow 

overlap between them. Usually the overlap is 1/2 to 2/3 of the original frame. 

The more overlap, the more computation is needed.  

3. Assuming the audio signals within a frame is stationary, we can extract acoustic 

features such as zero crossing rates, volume, pitch, MFCC, LPC, etc.  

4. We can perform endpoint detection based on zero crossing rate and volume, 

and keep non-silence frames for further analysis.  

音訊特徵抽取的基本方式如下：  

1. 將音訊切成一個個音框，音框長度大約是 20~30 ms。音框若太大，就無法抓出

音訊隨時間變化的特性；反之，音框若太小，就無法抓出音訊的特性。一般而言，

音框必須能夠包含數個音訊的基本週期。（另，音框長度通常是 2 的整數次方，

若不是，則在進行「傅立葉轉換」時，需補零至 2 的整數次方，以便使用「快

速傅立葉轉換」。）  

2. 若是希望相鄰音框之間的變化不是太大，可以允許音框之間有重疊，重疊部分可

以是音框長度的 1/2 到 2/3 不等。（重疊部分越多，對應的計算量也就越大。）  

3. 假設在一個音框內的音訊是穩定的，對此音框求取特徵，如過零率、音量、音高、

MFCC 參數、LPC 參數等。  



4. 根據過零率、音量及音高等，進行端點偵測（Endpoint Detection），並保留端點

內的特徵資訊，以便進行分析或辨識。  

When we are performing the above procedures, there are several terminologies that are used 

often:  

• Frame size: The sampling points within each frame  

• Frame overlap: The sampling points of the overlap between consecutive frames  

• Frame step (or hop size): This is equal to the frame size minus the overlap.  

• Frame rate: The number of frames per second, which is equal to the sample 

frequency divided by the frame step.  

Hint  
Note that these terminologies are not unified. Some papers use frame step to indicate hop size or frame rate instead. You 

should be cautious when reading papers with these terms. 

For instance, if we have a stream of audio signals with sample frequency fs=16000, and a 

frame duration of 25 ms, overlap of 15 ms, then  

• Frame size = fs*25/1000 = 400 (sample points)。  

• Frame overlap = fs*15/1000 = 240 (sample points)。  

• Frame step (or hop size) = 400-240 = 160 (sample points)。  

• Frame rate = fs/160 = 100 frames/sec。  

在進行上述分析時，有幾個名詞常用到，說明如下：  

• 音框點數（Frame Size）：每一個音框所含有的點數。  

• 音框重疊量（Frame Overlap）：音框之間重疊的點數。  

• 音框跳距（Frame Step or Hop Size）：此音框起點和下一個音框起點的距離點

數，等於音框點數減去音框重疊。  

• 音框率（Frame Rate）：每秒出現的音框數目，等於取樣頻率除以音框跳距。  

舉例而言，如果取樣頻率 fs=16000 且每一個音框所對應的時間是 25 ms，重疊 15 ms，那麼  

• Frame size = fs*25/1000 = 400 點。  



• Frame overlap = fs*15/1000 = 240 點。  

• Frame step (or hop size) = 400-240 = 160 點。  

• Frame rate = fs/160 = 100 frames/sec。  

3-3 Human Voice Production (人聲的產生) 

The procedure from human voice production to voice recognition involves the following steps:  

1. Rapid open and close of your vocal cords (or glottis) to generate the vibration in 

air flow.  

2. Resonance of the pharyngeal cavity, nasal cavity, and oral cavity.  

3. The vibration of air.  

4. The vibration of the ear drum (or tympanum).  

5. The reception of the inner ear.  

6. The recognition by the brain.  

The following diagram demonstrate the production mechanism for human voices.  

人聲的發音與接收流程，可以列出如下：  

1. 聲門的快速打開與關閉  

2. 聲道、口腔、鼻腔的共振  

3. 空氣的波動  

4. 接收者耳膜的振動  

5. 內耳神經的接收  

6. 大腦的辨識  

下列圖形說明人聲的發音機制：  



 

The production mechanism of human voices. 

人聲的發音機制  

Due to the pressure of the glottis and the air pushed from the lungs, the vocal cords can open 

and close very quickly, which generates vibrations in the air. The vibration is modulated by the 

resonances of pharyngeal/nasal/oral cavities, forming different timbre of your voices. In other 

words:  

• The vibration frequency of the vocal cords determines the pitch of the voices.  

• The positions/shapes of your lips, tongue, and nose determine the timbre.  

• The compression from your lungs determine the loudness of the voices.  

由於聲門（Glottis）的肌肉張力，加上由肺部壓迫出來的空氣，就會造成聲門的快速打開與關閉，

這個一疏一密的空氣壓力，就是人聲的源頭，在經由聲道、口腔、鼻腔的共振，就會產生不同的

聲音（音色）。換句話說：  

• 聲門震動的快，決定聲音的基本頻率（即音高）。  

• 口腔、鼻腔、舌頭的位置、嘴型等，決定聲音的內容（即音色）。  

• 肺部壓縮空氣的力量大小，決定音量大小。  



The following figure demonstrates the airflow velocity around the glottis and the voice signals 

measured around the mouth.  

下面這一張圖，顯示聲門附近的空氣流速，以及最後在嘴巴附近所量測到的聲波：  

 

Airflow velocity around the glottis and the resultant voices signals  

You can observe the movement of the vocal cords from the following link:  

經由下面這個連結，可以看到聲門運動的現象：  

http://www.humnet.ucla.edu/humnet/linguistics/faciliti/demos/vocalfolds/vocalfolds.htm （local 

copy）  

In fact, it is not easy to capture the movements of vocal cords due to its high frequency in 

movement. So we need to have high-speed cameras for such purpose, for instance:  

要拍到聲門運動，是相當不容易，必須使用高速的攝影機，例如  

http://www.kayelemetrics.com/Product%20Info/9700/9700.htm （local copy）  



We can conceive the production of human voices as a source-filter model where the source is 

the airflow caused by the vocal cords, and the filter includes the pharyngeal/nasal/oral cavities. 

The following figure shows the representative spectrum for each stage:  

所以人發音的過程，是由訊號源（聲門），經過濾波器（口腔、鼻腔、嘴型等），才得到最後的

聲音，這個過程可以和頻譜訊號一一對應如下：  

 
Source-filter model and the corresponding spectra 

人聲發音過程與與頻譜的對應  

We can also use the following block diagram to represent the source-filter model of human 

voice production:  

若用數學模型表示，可用下列方塊圖：  



 
Block diagram representation of source-filter model 

人聲發音過程的數學模型  

In general, a regular vibration of the glottis will generate quasi-periodic voiced sounds. On the 

other hand, if the source is irregular airflow, then we will have unvoiced sounds. Take the 

utterance of "six" for example:  

一般來說，當訊號源是間隔規律的波形時，通常代表有聲音，如果訊號源是雜亂的訊號，則得到

氣音，以下列的發音「six」為例：  

 

Unvoiced and voiced sounds 

氣音和有聲音  



We can clearly observe that "s" and "k" are unvoiced sounds, while "i" is a voiced sound.  

其中「s」和「k」都是無聲的氣音，只有「i」是有聲音。  

For Mandarin, almsot all unvoiced sounds happen at the beginning of a syllable. Take the 

utterance of "清" as in "清華大學" for example:  

1. No vibration from the glottis. Close your teech and push forward your tongue tip 

against the lower teeth to generate the unvoiced sound "ㄑ" by a jet of airflow.  

2. Keep almost the sampe position but start glottis vibration to pronunce the 

voiced "ㄧ".  

3. Keep glottis vibrate but retract your tongue to pronuced the final voiced "ㄥ".  

一般而言，中文的氣音只發生在字頭，不會是在字尾。以「清華大學」的「清」為例：  

1. 聲門不震動，上下顎咬合，舌頭前伸，完全是氣音，發出「ㄑ」  

2. 姿勢類似，聲門震動，發出「ㄧ」。  

3. 聲門維持同樣的震動，但是舌頭後縮，發出「ㄥ」。  

Hint  
Just put your hand on your throat, you can feel the vibration of the glottis. 

若要判斷你的聲門是否有震動，只要將手放在你的喉嚨位置，就可以感覺到聲門是否有震動。 

Here are some terminologies in both English and Chinese for your reference:  

以下是一些名詞的中英對照表：  

1. Cochlea：耳蝸  

2. Phoneme：音素、音位  

3. Phonics：聲學；聲音基礎教學法（以聲音為基礎進而教拼字的教學法）  

4. Phonetics：語音學  

5. Phonology：音系學、語音體系  

6. Prosody：韻律學；作詩法  

7. Syllable：音節  

8. Tone：音調  



9. Alveolar：齒槽音  

10. Silence：靜音  

11. Noise：雜訊  

12. Glottis：聲門  

13. larynx：喉頭  

14. Pharynx：咽頭  

15. Pharyngeal：咽部的，喉音的  

16. Velum：軟顎  

17. Vocal chords：聲帶  

18. Glottis: 聲門  

19. Esophagus：食管  

20. Diaphragm：橫隔膜  

21. Trachea：氣管  

Chapter 4: MATLAB for Audio Signal Processing 

4-1 Introduction 
The chapter introduces the functions within MATLAB that can be used for audio signal 

processing. In particular, we shall cover the topics of how to read .wav files, how to play audio 

signals, how to record from microphone, and how to save .wav files.  

This chapter is a partial translation of the original tutorial in Chinese: 20-音訊讀寫、錄製與播

放.pdf」.  

4-2 Reading Wave Files 
On the Windows platform, the most common file extension for audio signals is "wav". MATLAB 

can read such wave files via the command "wavread". The following example reads the wave 

file "sunday.wav" and display its waveform directly.  

Example 1Input file matlab4asp/readWave01.m 
[y, fs]=wavread('sunday.wav'); 

sound(y, fs);  % Playback of the sound data (播放此音訊) 

time=(1:length(y))/fs; % Time vector on x-axis (時間軸的向量) 



plot(time, y);  % Plot the waveform w.r.t. time (畫出時間軸上的波形) 

Output figure  

 

 

 

In the above example, "fs" is the sample rate which is 11025 in this case. This indicates that 

there are 11025 sample points per second when the clip was recorded. The vector "y" is a 

column vector containing the sample points of the speech signals. We can use "sound(y, fs)" to 

play the audio signals read from the wave file. "time" is a time vector in which each element 

corresponds to the time of each sample point. Therefore we can plot "y" against "t" to show the 

waveform directly.  

Most audio signals are digitized to have a bit resolution of 8 or 16 bits. If we want to know the bit 

resolution of the file "welcome.wav", we can use more output arguments to "wavread" to get the 

information, such as  

[y, fs, nbits]=wavread('sunday.wav');  



Moreover, if we want to know the time duration of a stream of audio signals, we can use 

"length(y)/fs" directly. The following example can obtain most of the important information of the 

wave file "welcome.wav".  

Example 2Input file matlab4asp/readWave02.m 
fileName='welcome.wav'; 

[y, fs, nbits]=wavread(fileName); 

fprintf('Information of the sound file "%s":\n', fileName); 

fprintf('Duration = %g seconds\n', length(y)/fs); 

fprintf('Sampling rate = %g samples/second\n', fs); 

fprintf('Bit resolution = %g bits/sample\n', nbits); 

Output message 

Information of the sound file "welcome.wav": 

Duration = 1.45134 seconds 

Sampling rate = 11025 samples/second 

Bit resolution = 8 bits/sample 

 

From the above example, it can be observed that all the audio signals are between -1 and 1. 

However, each sample point is represented by an 8-bit interger. How are they related? First of 

all, we need to know that  

1. If a wave file has a bit resolution of 8 bits, then each sample point is stored as 

an unsigned integer between 0 and 255 (= 2^8-1).  

2. If a wave file has a bit resolution of 16 bits, then each sample point is stored as 

an unsigned integer between -32768 (= 2^16/2) and 32767 (= 2^16/2-1).  

Since almost all variables in MATLAB have the data type of "double", therefore all sample 

points are converted into a floating-point number between -1 and 1 for easy manipulation. 

Therefore to retrieve the original integer values of the audio signals, we can proceed as follows.  

1. For 8-bit resolution, we can multiply "y" (the value obtained by wavread) by 128 

and then plus 128.  



2. For 16-bit resolution, we can multiply "y" (the value obtained by wavread) by 

32768.  

Here is an example.  

Example 3Input file matlab4asp/readWave03.m 
fileName='welcome.wav'; 

[y, fs, nbits]=wavread(fileName); 

y0=y*(2^nbits/2)+(2^nbits/2);  % y0 is the original values stored in the wav file (y0 是原先儲存在音訊檔案

中的值) 

difference=sum(abs(y0-round(y0))) 

Output message 

difference = 

 

     0 

 

 

In the above example, the difference is zero, indicating the retrived y0 contains no fractional 

parts. Moreover, to increase the generality, we use 2^nbits/2 directly instead of 128.  

We can also use the command "wavread" to read a stereo wave file. The returned variable will 

be a matrix of 2 columns, each containing the audio signals from a single channel. Example 

follows.  

Example 4Input file matlab4asp/readWave04.m 
fileName='flanger.wav'; 

[y, fs]=wavread(fileName); % Read wave file (讀取音訊檔) 

sound(y, fs);   % Playback (播放音訊) 

left=y(:,1);   % Left channel (左聲道音訊) 

right=y(:,2);   % Right channel (右聲道音訊) 

subplot(2,1,1), plot((1:length(left))/fs, left); 

subplot(2,1,2), plot((1:length(right))/fs, right); 

Output figure  



 

 

 

In the above example, MATLAB will read the wave file "flanger.wav", play the stereo sound, and 

plot two streams of audio signals in two subplots. Because the intnesities of these two channels 

are more or less complemntary to each other, which let us have an illusion that the sound 

source is moving back and forth between two speakers. (A quiz: how do you create such effect 

given a stream of audio signals?)  

If the wave file is too large to be read into memory directly, we can also use "wavread" to read a 

part of the audio signals directly. See the following example.  

Example 5Input file matlab4asp/readWave05.m 
[y,fs]=wavread('welcome.wav', [4001 5000]); % Read 4001~5000 sample points (讀取音訊檔第 4001 至 5000 點) 

figure; plot(y) 

Output figure  

 



 

 

The waveform in the above example represent the vowel of the second spoken Chinese 

character "迎" in the original "歡迎光臨". It is obvious that the waveform contain a fundamental 

period of about 100 sample points, corresponding to a time duration of 100/fs = 0.0091 seconds 

= 9.1 ms. This corresponds to a pitch frequency of 11025/100 = 110.25 Hz. This pitch is pretty 

close to two octave down the central la, or the 5th white key counting from the left.  

 

The perception of pitch of human ear is proportional to the logrithm of the fundamental 

frequency. The central la of a piano has a fundamental frequency of 440 Hz. One octave above 

it is 880 Hz, while one octave below it is 220 Hz. Each octave in the piano keyboard contains 12 

keys, including 7 white keys and 5 black ones, corresponding to 12 semitones within a octave. If 

we adopt the standard of MIDI files, the semitone of the central la is 69 with a fundamental 

frequency of 440. Therefore we can have a formula that converts a frequency into a semitone:  

semitone = 69 + 12*log2(freq/440)  



The process of computing the pitch contour of audio signals is usually called "pitch tracking". 

Pitch tracking is an important operation for applications such as text-to-speech synthesis, tone 

recognition and melody recognition. We shall explain more sophisticated methods for pitch 

tracking in the following chapters.  

If we want to obtain more information about a wave file, we can retrieve it from the 4th output 

arguments of the command "wavread", as follows.  

Example 6Input file matlab4asp/readWave06.m 
[y, fs, nbits, opts]=wavread('flanger.wav'); 

opts.fmt 

Output message 

ans =  

 

         wFormatTag: 1 

          nChannels: 2 

     nSamplesPerSec: 22050 

    nAvgBytesPerSec: 88200 

        nBlockAlign: 4 

     nBitsPerSample: 16 

 

 

In the above example, some quantities are explained next.  

1. wFormatTag is the format tag of the wave file.  

2. nChannels is the number of channels.  

3. nSamplePerSec is the number of samples per second, which is equal to the 

samping rate 22050.  

4. nAveBytesPerSec is the number of bytes per second. In this case, since we 

have two channels and the bit resolution is 2 bytes, therefore we have 22050*4 

= 88200.  



5. nBlockAlign is equal to the rato between nAveBytesPerSec and 

nSamplePerSec.  

6. nBitsPerSample is the bit resolution.  

Besides ".wav" files, MATLAB can also use the command "auread" to read the audio files with 
extension ".au". You can obtain related online help by typing "help auread" within the MATLAB 
command window. 
 

4-3 Playback of Audio Signals 

Once we can read the wave file into MATLAB, we can start process the audio signals by 

modifying their intensities, or changing their sample rates, and so on. Once the audio signals 

are processed, we need to play them for aural inspection. This section will introduce the 

MATLAB commands for play audio signals.  

The basic command for playing audio signals is "wavplay". The following example can load a 

stream of audio signals from the file "handel.mat" and play the signal immediately.  

Example 1Input file matlab4asp/wavPlay01.m 
load handel.mat  % Load the signals stored in handel.mat (載入儲存於 handel.mat 的音訊) 

wavplay(y, Fs);  % Playback of the signals (播放此音訊) 

 

Since the volume of playback is determined by the amplitude of the audio signals, we can 

change the amplitude to change the volume, as follows.  

Example 2Input file matlab4asp/playVolume01.m 
[y, fs]=wavread('welcome.wav'); 

wavplay(1*y, fs, 'sync'); % Playback with original amplitude (播放 1 倍震幅的音訊) 

wavplay(3*y, fs, 'sync'); % Playback with 3 times the original amplitude (播放 3 倍震幅的音訊) 

wavplay(5*y, fs, 'sync'); % Playback with 5 times the original amplitude (播放 5 倍震幅的音訊) 

 

In the above example, we increase the amplitude gradually, so we can perceive the increasing 

volume during playbacks. In particular, "wavplay" assume the input signals are between -1 and 

1. The the input signals are too large, we can hear "broken sound". To try out this for yourself, 

you can try "wavplay(100*y, fs)" to hear the result. Moreover, we put an extra input argument 



'sync' in the above example. This will make "wavplay" to play the signals synchronously. That is, 

the playback will not start until the previous playback is finished. We shall have more details 

later on.  

Hint  
In the above example, though we have increase the amplitude by a factor of 5, the intensity perceived by our ears is not by 

the factor of 5. This serve to exemplify that the perception of volume is not proportional linearly to the amplitude. In fact, it is 

proportional to the logrithm of the amplitude. 

If we change the sample rate during playback, it will affect the time duration as well as the 

perceived pitch. In the following example, we shall increase the sample rates gradually. So you 

will hear a shorter sound with high-pitch, just like the sound from the Disney cartoon character 

Donald Fauntleroy Duck.  

Example 3Input file matlab4asp/playFs01.m 
[y, fs]=wavread('welcome.wav'); 

wavplay(y, 1.0*fs, 'sync'); % Playback at the original speed (播放 1.0 倍速度的音訊) 

wavplay(y, 1.2*fs, 'sync'); % Playback at 1.2 times the original speed (播放 1.2 倍速度的音訊) 

wavplay(y, 1.5*fs, 'sync'); % Playback at 1.5 times the original speed (播放 1.5 倍速度的音訊) 

wavplay(y, 2.0*fs, 'sync'); % Playback at 2.0 times the original speed (播放 2.0 倍速度的音訊) 

 

On the other hand, if we lower the sample rate gradually, we shall get longer and low-pitched 

sounds. Eventually it will sound like a cow's sound.  

Example 4Input file matlab4asp/playFs02.m 
[y, fs]=wavread('welcome.wav'); 

wavplay(y, 1.0*fs, 'sync'); % Playback at the original speed (播放 1.0 倍速度的音訊) 

wavplay(y, 0.9*fs, 'sync'); % Playback at 0.9 times the original speed (播放 0.9 倍速度的音訊) 

wavplay(y, 0.8*fs, 'sync'); % Playback at 0.8 times the original speed (播放 0.8 倍速度的音訊) 

wavplay(y, 0.6*fs, 'sync'); % Playback at 0.6 times the original speed (播放 0.6 倍速度的音訊) 

 

If we want to keep the same time duration but increase or decreasing the pitch of audio signals, 

then we need to perform pitch shift or pitch scaling. It is beyond the scope of this chapter and 

will be explained in later chapters.  

If we reverse the audio signals by multiplying by -1, the perception will be exactly the same as 

the original. (This also serve to demonstrate that human's perception of audio is not affect by its 



phase.) However, if the reverse the audio signals in time axis, then it will sound like a foreign 

language. Pleae try the following example.  

Example 5Input file matlab4asp/playReverse01.m 
[y, fs]=wavread('welcome.wav'); 

wavplay(y, fs, 'sync');   % Playback of the original signal (播放正常的音訊波形) 

wavplay(-y, fs, 'sync');  % Playback of the up-down flipped signal (播放上下顛倒的音訊波形) 

wavplay(flipud(y), fs, 'sync');  % Playback of the left-right flipped signal (播放前後顛倒的音訊波形) 

 

When playing a strem of audio signals, MATLAB has two modes when playing a stream of 

audio signals, as follows.  

1. Synchronous: MATLAB will stop all the other execution of commands until the 

playback is finished.  

2. Asynchronous: MATLAB will continue the execution of other commands while 

the playback is proceeded.  

The following example can be used to demonstrate these two modes of playback.  

Example 6Input file matlab4asp/playSync01.m 
[y, fs]=wavread('welcome.wav'); 

wavplay(y, 1.0*fs, 'sync'); % Synchronous playback (同步播放 1.0 倍速度的音訊) 

wavplay(y, 0.8*fs, 'async'); % Asynchronous playback at 0.8 of the original speed (非同步播放 0.8 倍速度的音訊) 

wavplay(y, 0.6*fs, 'async'); % Asynchronous playback at 0.6 of the original speed (非同步播放 0.6 倍速度的音訊) 

 

After executing the above example, you will hear a synchronous playback with two 

asynchronous playbacks.  

When we are using "wavplay(y, fs)", the data type of the variable "y" can assume one of the 

following types: "double", "single", "int16", "uint8". If the type of "double" is assumed, the range 

of "y" has to be within -1 and 1. Any out-of-range elements of "y" will be clipped.  

MATLAB has another similar command for playback: sound. Please try the following example.  

Example 7Input file matlab4asp/playSync02.m 
load handel.mat 



sound(y, Fs);  % Playback at the right sampling rate 

sound(y, 1.2*Fs); % Playback at a faster sampling rate 

 

In the above example, we will two playbacks with slow and fast paces. This is simply the default 

mode of "sound" is asynchronous. Another similar command is "soundsc" which can scale up 

the audio signals for better playback result. Example follows.  

Example 8Input file matlab4asp/soundsc01.m 
[y, fs]=wavread('welcome.wav'); 

sound(y, fs);  % Playback of the original sound 

fprintf('Press any key to continue...\n'); pause 

soundsc(y, fs);  % Playback of the sound after scaling 

Output message 

Press any key to continue... 

 
The volume of the original "welcome.wav" is too small. After using "soundsc", the playback 
result is much better. 
 

4-4 Recording from Microphone 

You can also use the MATLAB command "wavrecord" to read the audio signals from the 

microphone directly. The command format is  

y = wavrecord(n, fs);  

where "n" is number of samples to be recorded, and "fs" is the sample rate. The following 

example will record 2 seconds from your microphone.  

Example 1Input file matlab4asp/wavRecord01.m 
fs=16000;  % Sampling rate (取樣頻率) 

duration=2;  % Recording duration (錄音時間) 

fprintf('Press any key to start %g seconds of recording...', duration); pause 

fprintf('Recording...'); 

y=wavrecord(duration*fs, fs); % duration*fs is the total number of sample points 

fprintf('Finished recording.\n'); 

fprintf('Press any key to play the recording...'); pause 

wavplay(y,fs); 



 

(You need to execute the above program to see the recording procedure clearly.) In the above 

example, "duration*fs" is the number of sample points to be recorded. The recorded sample 

points are stored in the variable "y", which is a vector of size 32000x1. The data type of "y" is 

double and the memory space taken by "y" is 256,000 bytes.  

Hint  
You can use the command whos to show the memory usage by all variables in the work space 

Hint  
The commands wayplay and wavrecord are only supported in Microsoft Windows platform. 

In the previous example, the number of channels is 1 and the data type for sample points is 

double. If we want to change these two default settings, we can introduce extra input arguments 

to the command "wavrecord". A detailed format of "wavrecord" is:  

y = wavrecord(n, fs, channel, dataType);  

where "channel" (usually 1 or 2) is the number of recording channels, and "dataType" (such as 

'double', 'single', 'int16', 'uint8') is the data type of the recorded sample points. Different data 

types will require different amount of memory space. Example follows.  

Example 2Input file matlab4asp/wavRecord02.m 
fs=16000;  % Sampling rate (取樣頻率) 

duration=2;  % Recording duration (錄音時間) 

channel=1;  % Mono (單聲道) 

fprintf('Press any key to start %g seconds of recording...', duration); pause 

fprintf('Recording...'); 

y=wavrecord(duration*fs, fs, channel, 'uint8');  % duration*fs is the number of total sample points 

fprintf('Finished recording.\n'); 

fprintf('Pressy any key to hear the recording...'); pause 

wavplay(y,fs); 

 

This example is almost the same as the previous one, except that the data type is 'uint8'. The 

sample points are still kept in the variable "y" with the same size 32000x1. But the elements 

within "y" are integers between 0 and 255. The memory space of "y" is now only 32000 bytes, 

which is only 1/8 of that in the previous example.  

Hint  



You can use class(y) to display the data type of variable "y". 

The following table shows the data types supported by the command wavrecord.  

Data 

types  

Space requirement per 

sample  
Range of the sample data  

double  8 bytes/sample  Real number within [-1, 1]  

single  4 bytes/sample  Real number within [-1, 1]  

int16  2 bytes/sample  
Integer within [-32768, 32767] or [-2^(nbits-1), 

2^(nbits-1)-1]  

uint8  1 byte/sample  Integer within [0, 255] or [0, 2^nbits-1]  

4-5 Writing Audio Files 

We can write ".wav" audio files by using the MATLAB command "wavwrite". The command 

format is  

wavwrite(y, fs, nbits, waveFile);  

where "y" is the audio data, "fs" is the sample rate, "nbits" is the bit resolution, and "waveFile" is 

the .wav file to be written to. For instance, we can follow the next example to write my recording 

to a file "test.wav".  

Example 1Input file matlab4asp/wavWrite01.m 
fs=11025;  % Sampling rate (取樣頻率) 

duration=2;  % Recording duration (錄音時間) 

waveFile='test.wav'; % Wav file to be saved (欲儲存的 wav 檔案) 

fprintf('Press any key to start %g seconds of recording...', duration); pause 

fprintf('Recording...'); 

y=wavrecord(duration*fs, fs); 

fprintf('Finished recording.\n'); 

fprintf('Press any key to save the sound data to %s...', waveFile); pause 

nbits=8;   % Bit resolution (每點的解析度為 8-bit) 

wavwrite(y, fs, nbits, waveFile); 

fprintf('Finished writing %s\n', waveFile); 

fprintf('Press any key to play %s...\n', waveFile); 

dos(['start ', waveFile]); % Start the application for .wav file (開啟與 wav 檔案對應的應用程式) 



 

(You need to execute the above example in order to experience the recording and the file 

saving.) In this example, we store the audio data in the data type 'uint8' and write the data to the 

wave file "test.wav". We then invoke the corresponding application for ".wav" for the playback of 

the file. Since the variable "y" for the command "wavwrite" should be a double within the range 

[-1, 1], we need to do some conversion if the recorded data is in other data types, such as 

'single', 'int16', or 'uint8'. Here is the table for conversion.  

Data types of "y" How to convert it to 'double' within [-1, 1] 

double  No conversion needed  

single  y = double(y);  

int16  y = double(y)/32768;  

uint8  y = (double(y)-128)/128;  

MATLAB can also write other audio files, such as '.au', which is the audio files used in 

NeXT/Sun workstations. The corresponding command is "auwrite". Please type "help auwrite" 

within the MATLAB command windows for more information on using this command.  

Hint  
If you want to do audio signal processing with MATLAB exclusively, you can save your audio data using "save" command 

to save them into .mat files. You can then load these mat files using the command "load" directly. 

菴 4 梒釬　 

1. (*) Obtain info from a mono audio file： Write a MATLAB script that can read the 

wave file "welcome.wav" and display the following information within this script.  

a. Number of sample points.  

b. Samping rate.  

c. Bit resolution  

d. Number of channels.  

e. Time duration of the recording (in terms of seconds)  

2. (*) Obtain info from a stereo audio file： Repeat the previous exercise with a 

MATLAB program to obtain the same information from the wave file "flanger.wav".  



3. (*) Wave recording： Write a MATLAB script to record 10 seconds of your utterance 

such as "My name is Roger Jang and I am a senior student at the CS department of 

National Tsing Hua University". Save your recording as myVoice.wav. Other 

recording parameters are: sample rate = 16 KHz, bit resolution = 16 bits. Please use 

the script print out answers to the following questions within the MATLAB window.  

a. How much space is taken by the audio data in the MATLAB workspace?  

b. What the data type of the audio data?  

c. How do you compute the amount of the required memory from the recording 

parameters?  

d. What is the size of myVoice.wav?  

e. How many bytes is used in myVoice.wav to record overheads other than the 

audio data itself?  

4. (*) Reverse playback： Write a MATLAB script to accomplish the following tasks:  

a. Record your utterance of "we" and play it backwards. Does it sound like "you"? 

(Please save the result to a wave file and demo its playback to the TA.)  

b. Record your utterance of "you" and play it backwards. Does it sound like "we"? 

(Please save the result to a wave file and demo its playback to the TA.)  

c. Record your utterance of "上海自來水來自海上" (for Chinese students) or "We 

are you" (for other students) and play it backwords. What does it sound like? 

(Please save the result to a wave file and demo its playback to the TA.)  

d. Can you think of any other utterances that sound meaningful when played 

backwords?  

5. (*) Audio signal manipulation： Write a MATLAB script to record your utterance of 

"today is my birthday". Try to explain the playback effect you observe after you try the 

following operations on the audio signals.  

a. Multiply the audio signals by -1.  

b. Reverse the audio signals in time axis.  

c. Multiply the audio signals by 10.  

d. Replace each sample by its square root.  

e. Replace each sample by its square.  

f. Clip the waveform such that sample data out of the range [-0.5, 0.5] are set to 

zero.  



g. Modify the waveform such that samples in the range [-0.5, 0.5] are set to zero; 

samples out of the range [-0.5, 0.5] are moved toward zero by the amount 0.5.  

6. (*) Audio signal grafting： Write a MATLAB script to accomplish the following tasks. 

(You need to find the boundaries by trials and errors, and put the related boundary 

indices into your MATLAB program for creating the required audio segments.)  

o (For Mandarin-speaking student) Record your utterance of "清華大學資訊系" 

and save it to a file first.  

a. If you connect the consonant part of "大" to the vowel part of "系", can 

you get the sound of "地"? (Please save the result to a wave file and 

demo its playback to the TA.)  

b. If you connect "系" to the vowel part of "大", can you get the sound of "

下"? (Please save the result to a wave file and demo its playback to the 

TA.)  

o (For other students) Record your utterance of "keep it simple" and save it to a 

file.  

a. Can you get the sound of "pimple" by connecting some portions of 

"Keep" and "simple"? (Please save the result to a wave file and demo its 

playback to the TA.)  

b. Can you get the sound of "simplest" by connect some portions of your 

recording? (Please save the result to a wave file and demo its playback 

to the TA.)  

7. (**) Experiments on the sample rate： Write a MATLAB script to record your 

utterance of "my name is ***" with a sample rate of 32 KHz and 8-bit resolution. Try to 

resample the audio signals at decreasing sample rates of 16 KHz, 8 KHz, 4 KHz, 2 

KHz, 1 KHz, and so on. At which sample rate you start to have difficulty in 

understanding the contents of the utterance?  

8. (**) Experiments on adding noise： Write a MATLAB script to record your utterance 

of "my name is ***" with a sample rate of 8 KHz and 8-bit resolution. We can add noise 

to the audio signals by using the following program snippet:  
9. k = 0.1; 

10. y2 = y + k*randn(length(y), 1);  % Add noise 

11. sound(y2, 8000);   % Playback 



12. plot(y2); 

Increase the value of k by 0.1 each time and answer the following questions.  

 . At what value of K you start to have difficulty in understanding the content of the 

playback?  

a. Plot the waveforms at different values of k. At what value of k you start to have 

difficulty in identifying the fundamental period of the waveform?  

13. (**) Create the illusion of a moving sound source： In the previous exercise, you 

have create myVoice.wav which is a mono audio file. Write a MATLAB script that can 

read the audio data from myVoice.wav, duplicate the audio data to create a stereo 

audio, and then modify the volume of each channels such that the playback can 

create an illusion that the sound source is moving between your two speakers. (Hint: 

You can observe the waveforms of the two channels in "flanger.wav".)  

14. (**) Resample audio signals： Write a MATLAB script to resample the audio signals 

in "sunday.wav" such that new waveform has a new sample rate of 11025. Plot these 

two waveform in the suplot(2, 1, 1). Plot their absolute difference in subplot(2, 1, 2).  

15. (*) 基本錄音： 請用 MATLAB 寫一小段程式，進行錄音三秒，錄音的內容是「清華大

學資訊系」，其中取樣頻率是 16 KHz，解析度是 8 位元，請將音訊儲存成 myVoice.wav 

檔案。  

 . 請問檔案大小為何？  

a. 若將音訊左右顛倒來播放，會有什麼效果？  

b. 若將音訊上下顛倒來播放，或有什麼效果？  

c. 若將音訊乘以 10 倍，或有什麼播放效果？  

d. 若將音訊的大小進行開平方，會有什麼播放效果？  

e. 若將音訊的大小進行平方，會有什麼播放效果？  

f. 若將音訊超過[-0.5, 0.5]的部分均設定為零，會有什麼播放效果？  

g. 若將音訊介於[-0.5, 0.5]的部分均砍掉，會有什麼播放效果？  

（提示：會用到的指令有 wavrecord, wavwrite, flipud, sign, sound 等。）  

16. (*) 讀入整數的音訊資料： 請寫一個函數 wavRead2.m，其用法和 MATLAB 內建的

函數 wavread.m 相同，用法如下：  



[y, fs, nbits] = wavread2('file.wav');  

唯一不同點，是所傳回來的音訊變數 y 是整數值，如果 nbits 是 8，則 y 的範圍必須

介於 -128 到 127 之間；如果 nbits 是 16，那麼 y 的範圍就會介於 -32768 至 

32767 之間。（提示：你必須先瞭解 wavread() 的用法。）  

17. (**) 如何建立音框： 請寫一個函數 buffer2.m，用法如下  

framedY = buffer2(y, frameSize, overlap);  

其中 y 是音訊訊號，frameSize 是音框的點數，overlap 則是相鄰音框重疊的點數，

framedY 則是一個矩陣，其列數等於音框的點數，行數則等於音框的數目。（若最後

幾點的音訊不足以塞滿一個音框，則捨棄這幾點資料。）使用範例如下：  

>> y=[1 2 3 4 5 6 7 8 9 10 11 12 13 14]; 

>> buffer2(y, 4, 1) 

 

ans = 

     1     4     7    10 

     2     5     8    11 

     3     6     9    12 

     4     7    10    13 

另，請問這個函數 buffer2.m 和 Signal Processing Toolbox 中的 buffer 函數有何不

同？  

18. (*) 取樣頻率的影響： 請用 MATLAB 寫一小段程式，進行錄音兩秒，錄音的內容是「我

是某某某」，其中取樣頻率是 32 KHz，解析度是 8 位元，請將音訊儲存成 

myVoice2.wav 檔案。請對訊號進行重新取樣（Resample），讓取樣頻率變成 16 KHz, 

8 KHz, 4 KHz, 2 KHz ...等等，請問當取樣頻率掉到多低時，你已經聽不出來原先的聲

音？  

19. (*) 雜訊的影響： 請用 MATLAB 寫一小段程式，進行錄音兩秒，錄音的內容是「我是

某某某」，其中取樣頻率是 8 KHz，解析度是 8 位元。假設音訊訊號是存在一個行向

量 y，我們可以以下列方式加入雜訊：  

20. k = 0.1; 



21. y2 = y + k*randn(length(y), 1);  % 加入雜訊 

22. sound(y2, 8000);    % 放音 

23. plot(y2); 

當 k 值由 0.1、0.2、0.3 等慢慢增大時，慢慢你的聲音會越來越模糊。  

 . 請問到 k 值是多少時，你會聽不出來原先講話的內容？  

a. 請問到 k 值是多少時，你會看不出來 y2 包含一段聲音的訊號？（換言之，在

放大 y2 的圖形後，你已經看不出來有基本週期的存在。）  

24. (**) 重新取樣： 請用 interp1 指令，對 myVoice2.wav 的音訊進行重新取樣，讓取樣

頻率變成 11025 Hz，並將結果儲存成 myVoice3.wav。  

25. (*) 時間反轉播放： 在下列的錄音及播放過程，請自行選定錄音參數，錄音時間 3 秒

即可。  

 . 請錄製聲音「上海自來水來自海上」，請先正向播放一次，然後再翻轉時間軸來

反向播放一次，聽看看有時麼差別。你可以從反向播放的聲音，預測原先正向播

放的聲音嗎？  

a. 請錄製聲音「we are you」，盡量放平聲調。請先正向播放一次，然後再翻轉時

間軸來反向播放一次，聽看看有時麼差別。為何麼反向播放和正向播放聽到類似

的聲音？中文是否有類似的範例？  

（提醒：假設錄音所得的音訊向量是 y，可以使用 flipud(y) 來進行上下翻轉或 fliplr(y) 

來進行左右翻轉。）  

26. (*) 音訊剪接 1： 請用 MATLAB 完成下列事項：  

 . 先進行錄音，取樣頻率為 16 KHz，解析度為 16 Bits，錄音時間三秒，錄音內容

是「清華大學資訊系」，請問檔案大小為何？如何直接由錄音設定來計算此大小？  

a. 請觀察波形，將所有的氣音設定為靜音（訊號值為零），存檔後播放聽看看。是

否能聽出來原先的內容？  

b. 請觀察波形，將所有的母音設定為靜音（訊號值為零），存檔後播放聽看看。是

否能聽出來原先的內容？  

c. 若將「大」的前半部（ㄉ）接到「系」的後半部（ㄧ），會不會得到「低」的聲

音？剪接後存成 wav 檔，再播放出來聽看看。  



d. 若將「系」的前半部（ㄒ）接到「清」的後半部（ㄧㄥ），會不會得到「星」的

聲音？剪接後存成 wav 檔，再播放出來聽看看。  

27. (*) 音訊剪接 2： 請改用 CoolEdit 來完成上一題。  

28. (***) 單聲道變雙聲道： 本題將一個單聲道音訊檔案經過處理後，變成一個左右游移的

雙聲道音訊檔案。  

 . 請將此檔案 flanger.wav 的左右聲道波形畫出來。由於左右聲道的音量漸進互

補，因此在播放時，會產生音源在左右聲道游移的效果。  

a. 請使用 load handel.mat 來載入一個音訊 y 及取樣頻率 Fs，請仿照 

flanger.wav 的方式，產生一個雙聲道的音訊檔案 handel.wav，使其聲音游移的

特性和 flanger.wav 類似。  

Chapter 5: Basic Features of Audio Signals (音訊的基本特徵) 

5-1 Volume (音量) 

The loudness of audio signals is the most prominant features for human aural perception. In 

general, there are several terms to describe the loudness of audio signals, including volume, 

intensity, and energy. Here we use the term "volume" for further discussion. Volume is a basic 

acoustic feature that is correlated to the sample amplitudes within each frame. Basically, there 

are two methods to compute the volume of each frame:  

1. The sum of absolute samples within each frame:  

volume = Σi=1
n |si|  

where si is the i-th sample within a frame, and n is the frame size. This method 

requires only integer operations and it is suitable for low-end platform such as 

micro-controllers.  

2. 10 times the 10-based logorithm of the sum of sample squares:  

volume = 10*log(Σi=1
n si

2)  



This method requires more floating-point computations, but it is (more or less) linearly 

correlated to our perception of loudness of audio signals. The quantity computed is 

also referred as the "log energy" in the unit of decibels. More explanations about 

decibel can be found in the page:  

http://www.phys.unsw.edu.au/~jw/dB.html（local copy）  

「音量」代表聲音的強度，又稱為「力度」、「強度」（Intensity）或「能量」（Energy），可

由一個音框內的訊號震幅大小來類比，基本上兩種方式來計算：  

1. 每個音框的絕對值的總和：這種方法的計算較簡單，只需要整數運算，適合用於低階平

台（如微電腦等）。  

2. 每個音框的平方值的總和，再取以 10 為底對數值，再乘以 10：這種方法得到的值是

以分貝（Decibels）為單位，是一個相對強度的值，比較符合人耳對於大小聲音的感覺。

以下網頁有對分貝的詳細說明：  

http://www.phys.unsw.edu.au/~jw/dB.html（近端備份）  

Some characteristics of volume are summarized next.  

• For recording in a common office using a uni-directional microphone, the volume of 

voiced sounds is larger than that of unvoiced sounds, and the volume of unvoiced 

sounds is also larger than that of environmental noise.  

• Volume is greatly influenced by microphone setups, mostly the microphone gain.  

• Volume is usually used for endpoint detection which tries to find the region of meanful 

voice activity.  

• Before computing the volume, it is advised that the frame should be zero-justified (the 

average value of the frame should be subtracted from each samples) to avoid the 

common DC-bias due to hardware defects.  

音量具有下列特性：  

• 一般而言，有聲音的音量大於氣音的音量，而氣音的音量又大於雜訊的音量。  

• 是一個相對性的指標，受到麥克風設定的影響很大。  



• 通常用在端點偵測，估測有聲之音母或韻母的開始位置及結束位置。  

• 在計算前最好先減去音訊訊號的平均值，以避免訊號的直流偏移（DC Bias）所導致的誤

差。  

The following example demonstrate how to use these two mehtods for volume computation:  

以下顯示如何以兩種方法來計算音量：  

Example 1Input file basicFeature/volume01.m 
waveFile='sunday.wav'; 

frameSize=256; 

overlap=128; 

 

[y, fs, nbits]=wavReadInt(waveFile); 

fprintf('Length of %s is %g sec.\n', waveFile, length(y)/fs); 

frameMat=buffer(y, frameSize, overlap); 

frameNum=size(frameMat, 2); 

volume1=zeros(frameNum, 1); 

volume2=zeros(frameNum, 1); 

for i=1:frameNum 

 frame=frameMat(:,i); 

 frame=frame-mean(frame);  % zero-justified 

 volume1(i)=sum(abs(frame));  % method 1 

 volume2(i)=10*log10(sum(frame.^2)); % method 2 

end 

 

time=(1:length(y))/fs; 

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs; 

subplot(3,1,1); plot(time, y); ylabel(waveFile); 

subplot(3,1,2); plot(frameTime, volume1, '.-'); ylabel('Volume (Abs. sum)'); 

subplot(3,1,3); plot(frameTime, volume2, '.-'); ylabel('Volume (Decibels)'); xlabel('Time (sec)'); 

Output message 

Length of sunday.wav is 0.98225 sec. 

  



Output figure  

 

 

 

Hint  
Note that in the above example, we have use a function wavReadInt() which converts all the samples into integer values. This 

function is available in the Audio Processing Toolbox. 

The above two methods of computing volume are only an approximation to our perception of 

loudness. However, the loudness is based on our perception and there could be significant 

differences between the "computed loudness" and the "perceived loudness". In fact, the 

perceived loudness is greatly affect by the frequcney as well as the timber of the audio signals. 

If we plot the equal percieved loudness against sinusoidal signals of various frequencies, we 

will have the following curves of equal loudness:  

基本上我們使用音量來表示聲音的強弱，但是前述兩種計算音量的方法，只是用數學的公式來逼

近人耳的感覺，和人耳的感覺有時候會有相當大的落差，為了區分，我們使用「主觀音量」來表

示人耳所聽到的音量大小。例如，人耳對於同樣振福但不同頻率的聲音，所產生的主觀音量就會



非常不一樣。若把以人耳為測試主體的「等主觀音量曲線」（Curves of Equal Loudness）畫出

來，就可以得到下面這一張圖：  

 
Curves of equal loudness determined experimentally by Fletcher, H. and Munson, W.A. (1933) J.Acoust.Soc.Am. 

6:59.  

The above figure also shows the sensitivity of the human ear with respect to frequency, which is 

simply the frequency response of the human ear. If you want to obtain the frequency response 

of your ears, you can jumpt the the "Equal Loudness Tester" pages:  

上面這一張圖，也代表人耳對於不同頻率的聲音的靈敏程度，這也就是人耳的頻率響應

（Frequency Response）。如果你要測試你自己的耳朵的頻率響應，可以到這個網頁「Equal 

Loudness Tester」試試看：  

http://www.phys.unsw.edu.au/~jw/hearing.html（近端備份）  

Besides frequencies, the perceived loudness is also greatly influenced by the timbre. For 

instance, we can try to pronounce several vowels using the same loudness level, and then plot 

the volume curves to see how they are related to the timbre or shapes/positions of lips/tougue, 

as shown in the following example.  



主觀音量除了和頻率有關外，也和音訊的內容（音色或是基本週期的波形）有關，例如，我們可

以盡量使用相同的主觀音量來錄下幾個發音比較單純的母音（ㄚ、ㄧ、ㄨ、ㄝ、ㄛ、ㄜ、ㄩ），

然後再用音量公式來算它們的音量，就應該可以看出來音量公式和發音嘴型的關係。  

Example 2Input file basicFeature/volume02.m 
waveFile='aeiou.wav'; 

frameSize=512; 

overlap=0; 

 

[y, fs, nbits]=wavReadInt(waveFile); 

fprintf('Length of %s is %g sec.\n', waveFile, length(y)/fs); 

frameMat=buffer(y, frameSize, overlap); 

frameNum=size(frameMat, 2); 

volume1=frame2volume(frameMat, 1); % method 1 

volume2=frame2volume(frameMat, 2); % method 2 

 

time=(1:length(y))/fs; 

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs; 

subplot(3,1,1); plot(time, y); ylabel(waveFile); 

subplot(3,1,2); plot(frameTime, volume1, '.-'); ylabel('Volume (Abs. sum)'); 

subplot(3,1,3); plot(frameTime, volume2, '.-'); ylabel('Volume (Decibels)'); xlabel('Time (sec)'); 

Output message 

Length of aeiou.wav is 5.337 sec. 

  

Output figure  

 



 

 

Hint  
In the above example, we have use a function frame2volume() which computes the volume using two methods. This function 

is available in the Audio Processing Toolbox. 

From the above example, you can observed that though the perceived loudness is the same, 

the computed volumes depend a lot on the timbers. In fact, we can perform another experiment 

to pronounce the same vowel but with different pitch to see how the perceived loudness 

depends on the fundamental frequency. This is left as an exercise.  

Since the perceived loudness is easily affected by the fundamental frequency as well as the 

timber, we need to adjust the amplitudes accordingly when we are performing text-to-speech 

synthesis or singing voice synthesis.  

主觀音量容易受到頻率和音色的影響，因此我們在進行語音或歌聲合成時，常常根據聲音的頻率

和內容來對音訊的振福進行校正，以免造成主觀音量忽大忽小的情況。  

5-2 Zero Crossing Rate (過零率) 



Zero-crossing rate (ZCR) is another basic acoustic features that can be computed easily. It is 

equal to the number of zero-crossing of the waveform within a given frame. ZCR has the 

following characteristics:  

• In general, ZCR of both unvoiced sounds and environment noise are larger than voiced 

sounds (which has observable fundamental periods).  

• It is hard to distinguish unvoiced sounds from environment noise by using ZCR alone 

since they have similar ZCR values.  

• ZCR is often used in conjunction with the volume for end-point detection. In particular, 

ZCR is used for detecting the start and end positings of unvoiced sounds.  

• Some people use ZCR for fundamental frequency estimation, but it is highly unreliable 

unless further refine procedure is taken into consideration.  

「過零率」（Zero Crossing Rate，簡稱 ZCR）是在每個音框中，音訊通過零點的次數，具有下

列特性：  

• 一般而言，雜訊及氣音的過零率均大於有聲音（具有清晰可辨之音高，例如母音）。  

• 是雜訊和氣音兩者較難從過零率來分辨，會依照錄音情況及環境雜訊而互有高低。但通常

氣音的音量會大於雜訊。  

• 通常用在端點偵測，特別是用在估測氣音的啟始位置及結束位置。  

• 可用來預估訊號的基頻，但很容易出錯，所以必須先進行前處理。  

The following facts should be well understood when we try to implement ZCR:  

1. If a sample is exactly located at zero, should we count it as zero crossing? Depending 

on the answer to this question, we have two method for ZCR computation.  

2. Most ZCR computation is based on the integer values of audio signals. If we want to 

do mean substraction, the mean value should be rounded to the nearest integer too.  

一般而言，在計算過零率時，需注意下列事項：  

1. 由於有些訊號若恰好位於零點，此時過零率的計算就有兩種，出現的效果也會不同。因

此必須多加觀察，才能選用最好的作法。  



2. 大部分都是使用音訊的原始整數值來進行，才不會因為使用浮點數訊號，在減去直流偏

移（DC Bias）時，造成過零率的增加。  

In the following, we use the above-mentioned two methods for ZCR computation of the wave 

file csNthu8b.wav:  

在以下範例中，我們使用兩種不同的方法來計算過零率：  

Example 1Input file basicFeature/zcr01.m 
waveFile='csNthu8b.wav'; 

frameSize=256; 

overlap=0; 

 

[y, fs, nbits]=wavReadInt(waveFile); 

frameMat=buffer(y, frameSize, overlap); 

zcr1=sum(frameMat(1:end-1, :).*frameMat(2:end, :)<=0);  % Method 2 

time=(1:length(y))/fs; 

frameNum=size(frameMat, 2); 

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs; 

 

subplot(2,1,1); plot(time, y); ylabel(waveFile); 

subplot(2,1,2); plot(frameTime, zcr1, '.-', frameTime, zcr2, '.-'); 

title('ZCR'); xlabel('Time (sec)'); 

legend('Method 1', 'Method 2'); 

Output figure  

 



 

 

From the above example, it it obvious that these two methods generate different ZCR curves. 

The first method does not count "zero positioning" as "zero crossing", there the corresponding 

ZCR values are smaller. Moreover, silence is likely to have low ZCR of method 1 and high ZCR 

for method 2 since there are likely to have many "zero positioning" in the silence region. 

However, this observation is only true for low sample rate (8 KHz in this case). For the same 

wave file with 16 KHz (csNthu.wav), the result is shown next:  

在上述的範例中，我們使用了兩種方式來計算過零率，得到的效果雖然不同，但趨勢是一致的。

（另外有一種情況，當錄音環境很安靜時，靜音的訊號值都在零點或零點附近附近跳動時，此時

是否計算位於零點的過零率，就會造成很大的差別。）如果取樣頻率提高，得到的結果也會不同：  

Example 2Input file basicFeature/zcr02.m 
waveFile='csNthu.wav'; 

frameSize=256; 

overlap=0; 

 

[y, fs, nbits]=wavReadInt(waveFile); 

frameMat=buffer(y, frameSize, overlap); 

zcr1=frame2zcr(frameMat, 1);  % Method 1 



zcr2=frame2zcr(frameMat, 2);  % Method 2 

time=(1:length(y))/fs; 

frameNum=size(frameMat, 2); 

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs; 

 

subplot(2,1,1); plot(time, y); ylabel(waveFile); 

subplot(2,1,2); plot(frameTime, zcr1, '.-', frameTime, zcr2, '.-'); 

title('ZCR'); xlabel('Time (sec)'); 

legend('Method 1', 'Method 2'); 

Output figure  

 

 

 

In the above example, methods 1 and 2 return similar ZCR curves. In order to used ZCR to 

distinguish unvoiced sounds from environment noise, we can shift the waveform before 

computing ZCR. This is particular useful is the noise is not too big. Example follows:  

Example 3Input file basicFeature/zcr03.m 
waveFile='csNthu.wav'; 

frameSize=256; 



overlap=0; 

 

[y, fs, nbits]=wavReadInt(waveFile); 

frameMat=buffer(y, frameSize, overlap); 

volume=frame2volume(frameMat); 

[minVolume, index]=min(volume); 

shiftAmount=2*max(abs(frameMat(:,index))); % shiftAmount is equal to the max. abs. sample within the frame of 

min. volume 

zcr1=frame2zcr(frameMat, 1); 

zcr2=frame2zcr(frameMat, 1, shiftAmount); 

 

subplot(2,1,1); plot(time, y); ylabel(waveFile); 

subplot(2,1,2); plot(frameTime, zcr1, '.-', frameTime, zcr2, '.-'); 

title('ZCR'); xlabel('Time (sec)'); 

legend('Method 1 without shift', 'Method 2 with shift'); 

Output figure  

 

 



 

In this example, the shift amount is equal to the maximal absolute sampe values within the 

frame with the minimum volume. Therefore the ZCR of the silence is reduced dratically, making 

it easier to tell unvoiced sounds from silence using ZCR.  

If we want to detect the meaningful voice activity of a stream of audio signals, we need to 

perform end-point detection or speech detection. The most straight method for end-point 

detection is based on volume and ZCR. Please refer to the next chapter for more information.  

若要偵測聲音的開始和結束，通常稱為「端點偵測」（Endpoint Detection）或「語音偵測」（Speech 

Detection），最簡單的方法就是使用音量和過零率來判別，相關細節會在後續章節說明。  

5-3 Pitch (音高) 

Old Chinese version  

Pitch is an important feature of audio signals, especially for quasi-periodic signals such as 

voiced sounds from human speech/singing and monophonic music from most music 

instruments. Intuitively speaking, pitch represent the vibration frequency of the sound source of 

audio signals. In other words, pitch is the fundamental frequency of audio signals, which is 

equal to the reciprocal of the fundamental period.  

「音高」（Pitch）是另一個音訊裡面很重要的特徵，直覺地說，音高代表聲音頻率的高低，而此

頻率指的是「基本頻率」（Fundamental Frequency），也就是「基本週期」（Fundamental Period）

的倒數。  

Generally speaking, it is not too difficult to observe the fundamental period within a 

quasi-periodic audio signals. Take a 3-second clip of a tuning fork tuningFork01.wav for 

example. We can first plot a frame of 256 sample points and identify the fundamental period 

easily, as shown in the following example.  

若直接觀察音訊的波形，只要聲音穩定，我們並不難直接看到基本週期的存在，以一個 3 秒的

音叉聲音來說，我們可以取一個 256 點的音框，將此音框畫出來後，就可以很明顯地看到基本

週期，請見下列範例：  



Example 1Input file basicFeature/pitchTuningFork01.m 
waveFile='tuningFork01.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=11000; 

frameSize=256; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

 

subplot(2,1,1); plot(y); grid on 

title(waveFile); 

line(index1*[1 1], [-1 1], 'color', 'r'); 

line(index2*[1 1], [-1 1], 'color', 'r'); 

subplot(2,1,2); plot(frame, '.-'); grid on 

point=[7, 189]; 

line(point, frame(point), 'marker', 'o', 'color', 'red'); 

 

periodCount=5; 

fp=((point(2)-point(1))/periodCount)/fs; % fundamental period (in sec) 

ff=1/fp;     % fundamental frequency (in Hz) 

pitch=69+12*log2(ff/440);   % pitch (in semitone) 

fprintf('Fundamental period = %g second\n', fp); 

fprintf('Fundamental frequency = %g Hertz\n', ff); 

fprintf('Pitch = %g semitone\n', pitch); 

  

Output message 

Fundamental period = 0.002275 second 

Fundamental frequency = 439.56 Hertz 

Pitch = 68.9827 semitone 

  

Output figure  

 



 

 

In the above example, the two red lines in the first plot define the start and end of the frame for 

our analysis. The second plot shows the waveform of the frame as well as two points (identified 

visually) which cover 5 fundamental periods. Since the distance between these two points is 

182 units, the fundamental frequency is fs/(182/5) = 16000/(182/5) = 439.56 Hz, which is equal 

to 68.9827 semitones. The formula for the conversion from pitch frequency to semitone is 

shown next.  

在上述範例中，上圖紅線的位置代表音框的位置，下圖即是 256 點的音框，其中紅線部分包含

了 5 個基本週期，總共佔掉了 182 單位點，因此對應的基本頻率是 fs/(182/5) = 16000/(182/5) 

= 439.56 Hz，相當於 68.9827 半音（Semitone），其中由基本頻率至半音的轉換公式如下：  

semitone = 69 + 12*log2(frequency/440)  

In other words, when the fundamental frequency is 440 Hz, we have a pitch of 69 semitones, 

which corresponds to "central la" or A4 in the following piano roll.  

換句話說，當基本頻率是 440 Hz 時，對應到的半音差是 69，這就是鋼琴的「中央 La」或是「A4」，

請見下圖。  



 
Hint  
The fundamental frequency of the tuning fork is designed to be 440 Hz. Hence the tuning fork are usually used to fine tune 

the pitch of a piano.  

一般音叉的震動頻率非常接近 440 Hz，因此我們常用音叉來校正鋼琴的音準。 

In fact, semitone is also used as unit for specify pitch in MIDI files. From the conversion formula, 

we can also notice the following facts:  

• Each octave contains 12 semitones, including 7 white keys and 5 black ones.  

• Each transition to go up one octave corresponds to twice the frequency. For instance, 

the A4 (central la) is 440 Hz (69 semitones) while A5 is 880 Hz (81 semitones).  

• Pitch in terms of semitones (more of less) correlates linearly to human's "perceived 

pitch".  

上述公式所轉換出來的半音差，也是 MIDI 音樂檔案所用的標準。從上述公式也可以看出：  

• 每個全音階包含 12 個半音（七個白鍵和五個黑鍵）。  

• 每向上相隔一個全音階，頻率會變成兩倍。例如，中央 la 是 440 Hz（69 Semitones），

向上平移一個全音階之後，頻率就變成 880 Hz（81 Semitones）。  

• 人耳對音高的「線性感覺」是隨著基本頻率的對數值成正比。  

The waveform of the tuning fork is very "clean" since it is very close to a sinusoidal signal and 

the fundamental period is very obvious. In the following example, we shall use human's speech 

as an examle of visual determination of pitch. The clip is my voice of "清華大學資訊系" 

(csNthu.wav). If we take a frame around the character "華", we can visually identify the 

fundamental period easily, as shown in the following example.  

音叉的聲音非常乾淨，整個波形非常接近弦波，所以基本週期顯而易見。若以我的聲音「清華大

學資訊系」來說，我們可以將「華」的部分放大，也可以明顯地看到基本週期，請見下列範例：  



Example 2Input file basicFeature/pitchVoice01.m 
waveFile='csNthu.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=11050; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

 

subplot(2,1,1); plot(y); grid on 

title(waveFile); 

line(index1*[1 1], [-1 1], 'color', 'r'); 

line(index2*[1 1], [-1 1], 'color', 'r'); 

subplot(2,1,2); plot(frame, '.-'); grid on 

point=[75, 477]; 

line(point, frame(point), 'marker', 'o', 'color', 'red'); 

 

periodCount=3; 

fp=((point(2)-point(1))/periodCount)/fs; % fundamental period 

ff=fs/((point(2)-point(1))/periodCount); % fundamental frequency 

pitch=69+12*log2(ff/440); 

fprintf('Fundamental period = %g second\n', fp); 

fprintf('Fundamental frequency = %g Hertz\n', ff); 

fprintf('Pitch = %g semitone\n', pitch); 

Output message 

Fundamental period = 0.008375 second 

Fundamental frequency = 119.403 Hertz 

Pitch = 46.42 semitone 

  

Output figure  

 



 

 

In the above example, we select a 512-point frame around the vowel of the character "華". In 

particular, we chose two points (with indices 75 and 477) that covers 3 complete fundamental 

periods. Since the distance between these two points is 402, the fundamental frequency is 

fs/(402/3) = 16000/(402/3) = 119.403 Hz and the pitch is 46.420 semitones.  

上列範例的下圖，是從「華」的韻母附近抓出來的 512 點的音框，其中紅線部分包含了 3 個基

本週期，總共佔掉了 402 單位點，因此對應的基本頻率是 fs/(402/3) = 16000/(402/3) = 119.403 

Hz，相當於 46.420 半音，與「中央 La」差了 22.58 個半音，接近但還不到兩個全音階（24 個

半音）。  

Conceptually, the most obvious sample point within a fundamental period is often referred to as 

the pitch mark. Usually pitch marks are selected as the local maxima or minima of the audio 

waveform. In the previous example of pitch determination for the tuning fork, we used two pitch 

marks that are local maxima. On the other hand, in the example of pitch determination for 

human speech, we used two pitch marks that are local minima instead since they are more 

obvious than local maxima. Reliable identification of pitch marks is an essential task for 

text-to-speech synthesis.  



在觀察音訊波形時，每一個基本週期的開始點，我們稱為「音高基準點」（Pitch Marks，簡稱 PM），

PM 大部分是波形的局部最大點或最小點，例如在上述音叉的範例中，我們抓取的兩個 PM 是局

部最大點，而在我的聲音的範例中，由於 PM 在局部最大點並不明顯，因此我們抓取了兩個局部

最小點的 PM 來計算音高。PM 通常用來調節一段聲音的音高，在語音合成方面很重要。  

Due to the difference in physiology, the pitch ranges for males ane females are different:  

• The pitch range for males is 35 ~ 72 semitones, or 62 ~ 523 Hz.  

• The pitch range of females is 45 ~ 83 semitones, or 110 ~ 1000 Hz.  

由於生理構造不同，男女生的音高範圍並不相同，一般而言：  

• 男生的音高範圍約在 35 ~ 72 半音，對應的頻率是 62 ~ 523 Hz。  

• 女生的音高範圍約在 45 ~ 83 半音，對應的頻率是 110 ~ 1000 Hz。  

However, it should be emphasized that we are not using pitch alone to identify male or female 

voices. Moreover, we also use the information from timbre (or more precisely, formants) for 

such task. More information will be covered in later chapters.  

但是我們分辨男女的聲並不是只憑音高，而還是依照音色（共振峰），詳見後續說明。  

As shown in this section, visual identification of the fundamental frequency is not a difficult task 

for human. However, if we want to write a program to identify the pitch automatically, there are 

much more we need to take into consideration. More details will be followed in the next few 

chapters.  

使用「觀察法」來算出音高，並不是太難的事，但是若要電腦自動算出音高，就需要更深入的研

究。有關音高追蹤的各種方法，會在後續章節詳細介紹。  

5-4 Timbre (音色) 

Timbre is an acoustic feature that is defined conceptually. In general, timbre refers to the 

"content" of a frame of audio signals, which is ideally not affected much by pitch and intensity. 

Theoretically, for quasi-periodic audio signals, we can use the waveform within a fundamental 

period as the timbre of the frame. However, it is difficult to analysis the waveform within a 



fundamental period directly. Instead, we usually use the fast Fourier transform (or FFT) to 

transform the time-domain waveform into frequency-domain spectrum for further analysis. The 

amplitude spectrum in the frequency domain simply represent the intensity of the waveform at 

each frequency band.  

「音色」（Timber）是一個很模糊的名詞，泛指音訊的內容，例如「天書」這兩個字的發音，雖

然都是第一聲，因此它們的音高應該是蠻接近的，但是由於音色的不同，我們可以分辨這兩個音。

直覺來看，音色的不同，代表基本週期的波形不同，因此我們可以使用基本週期的波形來代表音

色。若要從基本週期的波形來直接分析音色，是一件很困難的事。通常我們的作法，是將每一個

音框進行頻譜分析（Spectral Analysis），算出一個音框訊號如何可以拆解成在不同頻率的分量，

然後才能進行比對或分析。在頻譜分析時，最常用的方法就是「快速傅立葉轉換」（Fast Fourier 

Transform），簡稱 FFT，這是一個相當實用的方法，可以將在時域（Time Domain）的訊號轉

換成在頻域（Frequency Domain）的訊號，並進而知道每個頻率的訊號強度。  

If you want to experience real-time FFT demo, type the following command within the MATLAB 

command window:  

若要看看 FFT 的實際展示，可以輸入下列指令：  

• dspstfft_nt (MATLAB 5)  

• dspstfft_win32 (MATLAB 6 and 7)  

The opened Simulink block system looks like this:  

開啟的 Simulink 系統如下：  



 
When you start running the system and speak to the microphone, you will able to see the 

time-varying spectrum:  

當你啟動程式並開始對麥克風說話時，就會出現下列動態的「頻譜圖」（Spectrum），隨時間而

呈現急遽的變化：  

 

If we use different colors to represent the height of spectrum, we can obtain the spectrogram, 

as shown next:  



若將頻譜圖「立」起來，並用不同的顏色代表頻譜圖的高低，就可以得到頻譜對時間所產生的影

像，稱為 Spectrogram，如下：  

 

Spectrogram represent the time-varying spectrum displayed in a image map. The same 

utterance will correspond to the same pattern of spectrogram. Some experienced persons can 

understand the contents of the speech by viewing the spectragram alone. This is call 

"spectrogram reading" and related contests and information can be found on the Internet. For 

instance:  

• http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram_reading.html  

• http://home.cc.umanitoba.ca/~robh/howto.html  

Spectrogram 代表了音色隨時間變化的資料，因此有些厲害的人，可以由 Specgrogram 直接看

出語音的內容，這種技術稱為 Specgrogram Reading，有興趣的同學，可以在搜尋引擎上找到

很多相關的網頁，也可以試試自己的功力。  

第 5 章作業 



1. (*) Frequency-to-pitch conversion： Write an m-file function freq2pitch.m that 

convert a given frequency in Hz into the pitch in semitones. The format is  

pitch = 69 + 12*log2(freq/440)  

2. (*) Pitch-to-frequency conversion： Write an m-file function pitch2freq.m that 

converts a given pitch in semitones into the frequency in Hz. The format is  

freq = 440*2^((pitch-69)/12)  

3. (**) Visual inspection of pitch： Please follow the example of pitch determination by 

visual inspection in our text to identify the pitch (in terms of semitones with two digits 

of precision after the decimal) in the following two audio clips. Be sure to plot your 

result, just like what we did in the text.  

a. Write a script pitchTuningFork02.m for the clip of another sound fork, 

tuningFork02.wav.  

b. Write a script pitchVoice02.m for the vowel part of the character "系" of the 

utterance "清華大學資訊系", csNthu.wav  

4. (**) Frame-to-volume computation： Write an m-file function frame2volume.m which 

can compute the volume of a given frame. The format is  

volume = frame2volume(frame, method);  

where "frame" is the input frame and "method" is the method for volume computation 

(1 for abs. sum; 2 for log square sum), and "volume" is the output volume.  

5. (**) Wave-to-volume computation： Write an m-file function which can compute the 

volume of a given wave signals. The format is  

volume = wave2volume(wave, frameSize, overlap, method);  

where "wave" is the input wave signals, "frameSize" is the frame size, "overlap" is the 

overlap, "method" is the method for computing the volume (1 for abs. sum; 2 for log 

square sum), and "volume" is the output volume vector.  



6. (*) Volume vs. timbre： Write an m-file script plotVolVsTimbre.m that can record your 

utterance of "ㄚ、ㄧ、ㄨ、ㄝ、ㄛ" (example) with a sample rate of 16 KHz and a bit 

resolution of 16 bits. When doing the recording, please try your best to keep a 

constant perceived volume for all these five vowels. Then your program should plot 

the wave signals together with two volume vectors (with frame size = 512, hop size = 

160) computed via the two methods mentioned in this chapter. The obtained plots 

should be similar to the following image:  

 

From your plot, can you deduct the relationship between the volume and the shapes 

of your mouth? Try other vowels to see if your argument still holds.  

7. (**) Use sinusoids to synthesize waveform of given volume and pitch： In the 

following three sub-exercises, you are going to use the sine function to synthesize 

audio signals with given volume and pitch.  

a. Write an m-file script playSineWave01.m that uses a sinusoid of 0.8 amplitude 

to generate a 0.5-second mono signals with a pitch of 69 semitones, sample 

rate of 16 KHz. Your program should plot the waveform and play the signals. 

(Here is an example). The plot should look like this:  



 

Does the pitch sound the same as the recording of a tuning fork 

tuningFork01.wav? (Hint: a sinusoid with frequency f can be expressed as y = 

sin(2*pi*f*t).)  

b. Write an m-file script playSineWave02.m that uses the sinusoid to generate a 

mono wave signal of duration of 2 seconds, pitch of 60 semitones, sample rate 

of 16 KHz, bit resolution of 16 bits. Moreover, the waveform should be oscillate 

between 0.6 and 1.0 with a frequency of 5 Hz. Your program should plot the 

waveform and play the signal. (Here is an example). The plot should look like 

this:  



 

c. Write an m-file script playSineWave03.m to repeat the previous sub-problem, 

but the intensity of the waveform should decrease by following an exponential 

function exp(-t). Here is an example. Your plot should look like this:  

 



8. (***) Impact of frame sizes on volume： First of all, you need to record your 

utterance of "beautiful sundays" and save it to a wave file of 16 KHz, 16 bits, mono. 

My example is here. But please use your own recording instead of mine.  

a. Write an m-file script plotVolVsFrameSize01.m that reads the wave file and plot 

the volumes (as the absolute sum of a frame) with respect to frame sizes of 

100 癒 B200 癒 B300 癒 B400 癒 B500, and overlap of 0. Please use the same 

time axis for the first plot of the waveform, and the second plots of the 5 volume 

curves. You plot should look like this:  

 

b. Write an m-file script plotVolVsFrameSize02.m to repeat the previous 

sub-problem, but compute the volumes in terms of decibels. Your plot should 

look like this:  



 

9. Hint:  

o You can do the recording with either MATLAB or CoolEdit. But CoolEdit may be 

easier for you to edit the recordings, e.g., cut off leading or trailing slience, etc.  

o Since each volume vector corresponds to a different time vector, you can put all 

volume vectors in a volume matrix, and all time vectors in a time matrix, and 

plot 5 volume curves all at once. The length of these 5 curves are not the same, 

hence you need to pad the time/volume matrix with NaN.  

o Here are some functions in the Audio Processing Toolbox that can make your 

job easier: frame2volume.m, frame2sampleIndex.m.  

10. (***) Impact of the values of K on KCR： We can extend the definition of ZCR to 

KCR (k-crossing rate) which is the number of crossings over y = k in a frame. Write an 

m-file script plotKcrVsK01.m that read your recording of "beautiful sundays" (as 

integers) and plot 7 KCR curves with K equal to 0, 100, 200, ..., 600. The frame size is 

256 and the overlap is 0. You program should plot the waveform as well as the KCR 

curves on the same time axis. The plot should look like this:  



 

Do these KCR curves have different but consistent behavior on voiced and unvoiced 

sounds? Can you use KCR for unvoiced/voiced detection?  

11. (***) Playback of music notes： This problem concerns the playback of music notes 

using the concatenation of sinusoids.  

 . Write a m-file function note2wave01.m which can take a sequence of music 

notes and return the audio signals for playback. The format is  

wave=note2wave01(pitch, duration, fs)  

where "pitch" is the vector of note pitch in semitones (with 0 indicating silence), 

"duration" is the vector of note duration in seconds, "fs" is the sample rate of 

the output wave signals for playback. Using the following script to try your 

function and see if you can identify the song. (my result for your reference)  

pitch=   [55 55 55 55 57 55 0 57 60 0  64 0  62 62 62 62 60 64 60 0 57 55 55]; 

duration=[23 23 23 23 23 35 9 23 69 18 69 18 23 23 23 12 12 23 35 9 12 12 127]/64; 

fs=16000; 

wave=note2wave01(pitch, duration, fs); 

sound(wave, fs); 



  

a. If you concatenate the sinusoids of two different notes directly, you can hear 

obvious noise due to the discontinuity between waveforms of these two notes. 

Can you find a method to eliminate the noise so it is more pleasant to hear it? 

(Hint: There are several methods to solve the problem.)  

12. (**) 由一個音框計算一點音量： 請寫一個函數 frame2volume，由一個音框來計算音

量，其用法如下：  

volume = frame2volume(frame, method);  

其中 frame 是一個音框向量，method 則是代表使用的方法（'absSum' 代表使用絕對

值的總和，'logSquareSum' 代表使用平方和的對數），volume 則是音高。  

13. (**) 由一段聲音來計算音量向量： 請寫一個函數 wave2volume，由一段聲音來計算音

量向量，其用法如下：  

volume = wave2volume(wave, frameSize, overlap, method);  

其中 wave 是一段音訊向量，frameSize 是音框點數，overlap 是相鄰音框的重疊點數，

method 則是代表使用的方法（'absSum' 代表使用絕對值的總和，'logSquareSum' 代

表使用平方和的對數），而 volume 則是音量向量。  

14. (*) 音量與音色的關係： 請寫一段 MATLAB 程式，先進行錄音，取樣頻率為 16 KHz，

解析度為 16 Bits，錄音內容是「ㄚ、ㄧ、ㄨ、ㄝ、ㄛ」。在進行錄音時，盡量用同樣

的音量（憑個人的主觀感覺），每個音也要盡量平穩。然後將聲波和兩種音量圖（frame 

Size = 512，frame Step = 160）同時畫出來，所得到的圖形應該類似下圖：  



 

從你畫出來的圖形中，你可以歸納出音量和嘴型之間的關係嗎？你可以再試試其他母

音，看看你的推論是否適用於其他母音。  

15. (**) 使用正弦波產生特定音高及音量的音訊： 以下這三小題，都是用正弦波來產生特

定音高及音量的音訊。  

 . 請用震幅為 0.8 的正弦波產生一個 0.5 秒的音訊，音高為 69 Semitone，取樣

頻率為 16 KHz，單聲道。你的程式碼必須畫出此波形，並同時播放此聲音（偷

聽一下）。所得到的圖形應該類似下圖：  



 

此音訊的音高和音叉的聲音接近嗎？（提示：一個頻率為 f 的正弦波可以表示

成 y = sin(2*pi*f*t)。）  

a. 請用正弦波產生一個 2 秒的音訊，音高為 60 Semitone，取樣頻率為 16 KHz，

解析度為 16 Bits，單聲道，其波形的震幅隨著時間呈現另一個正弦波的變化，

平均值是 0.8，但在 0.6 和 1.0 之間震盪，震盪的頻率是 5 Hz。你的程式碼必

須畫出此波形，並同時播放此聲音（偷聽一下）。所得到的圖形應該類似下圖：  



 

b. 重複上一小題，但是聲波強度隨時間而遞減，遞減函數是 exp(-t)。你的程式碼必

須畫出此波形，並同時播放此聲音（偷聽一下）。所得到的圖形應該類似下圖：  

 

16. (***) 音框長度對音量計算的影響 1： 請讀入此檔案「朝辭白帝彩雲間.wav」，並畫出

當音框長度分別是 100、200、300、400、500 點時，音量（每個音框的絕對值的和）



對時間的圖形。請將原聲波和這 5 條音量曲線畫在同一個圖內，所得到的圖形應該類

似下圖：  

 

請特別注意，如果你的波形有偏移的現象，要先進行零點校正，畫出的音量才會正確。

（提示：因為音框長度不同，所得到的每一條音量曲線的點數也會不一樣，所以在畫圖

時，要比較小心。可以將五條音量曲線放在一個矩陣內，長度不足的部分，則填入 nan，

對應的時間也是如法泡製，然後再一次畫出。）  

17. (***) 音框長度對音量計算的影響 2： 請重複上題，但將音量的計算改成以分貝

（Decibels）為單位，也就是說，先取每個音框平方值的總和，再取以 10 為底對數值，

再乘以 10。  

18. (***) K 值對「過 K 率」的影響： 我們可以將「過零率」（Zero-Crossing Rate）延伸

成「過 K 率」（K-Crossing Rate，簡稱 KCR），也就是在每個音框中，訊號通過水平

線 y = K 的次數。請讀入此檔案「此恨綿綿無絕期.wav」，並將所有的音訊取樣值轉

成整數，然後畫出當 K = 1 ~ 10 時，KCR 對時間的圖形。請將原聲波和這 10 條 KCR 

曲線畫在同一個圖內，所得到的圖形應該類似下圖：  



 

這幾條 KCR 曲線在氣音所出現的位置，是否有明顯不同？我們是否可用 KCR 來偵測

氣音的存在？  

19. (*) 頻率至音高的轉換： 請寫一個函數 freq2pitch.m，來將頻率（單位是 Hertz）轉換

成為音高（單位是 Semitone），公式如下：  

pitch = 69 + 12*log2(freq/440)  

20. (*) 音高至頻率的轉換： 請寫一個函數 pitch2freq.m，來將音高（單位是 Semitone）

轉換成為頻率（單位是 Hertz），公式如下：  

freq = 440*2^((pitch-69)/12)  

21. (**) 觀察法量測音高： 請用觀察法來量測下列音訊的音高，請以 Semitone 為單位，

並保留小數以下兩位的精確度。（請務必畫圖，類似我們課文中的範例。）  

 . 另一支音叉的聲音。  

a. 「清華大學資訊系」的「系」的母音部分。  

（提示：你必須使用到頻率轉成半音差的公式。）  

22. (***) 音符的播放： 本題牽涉到如何對單軌的音符進行播放。  



 . 請寫一個函數 notePlay.m，其使用格式如下：  

wave=notePlay(pitch, duration, fs)  

其中 pitch 是一串音高（以 Semitone 為單位，若是 0，則代表沒有靜音），

duration 是對應的音長（以秒為單位），fs 則是合成的輸出訊號 wave 的取樣

頻率。請使用此函數來合成下列參數的 wave 並播放，聽得出來是什麼歌嗎？

（偷聽一下...）  

pitch=   [55 55 55 55 57 55 0 57 60 0  64 0  62 62 62 62 60 64 60 0 57 55 55]; 

duration=[23 23 23 23 23 35 9 23 69 18 69 18 23 23 23 12 12 23 35 9 12 12 127]/64; 

fs=16000 

  

a. 如果只是將兩段正弦波接起來，那麼在音符交接之處，波形會不連續，就會聽到

很明顯的雜音，尤其如果當音長很短時，這個問題特別嚴重。請問你有什麼好辦

法來消除這個雜音呢？（提示：至少應該有兩種辦法。）  

Chapter 6: End-Point Detection (EPD) 

6-1 Introduction to End-Point Detection (端點偵測介紹) 

The goal of end-point detection (EPD for short) is to identfy the important part of an audio 

segment for further processing. Hence EPD is also known as "speech detecton" or "voice 

activity detection" (VAD for short). EPD plays an important role in audio signal processing and 

recognition.  

Based on the acoustic features used for EPD, we can classify the EPD methods into two types:  

1. Time-domain methods:  

a. Volume: Volume is the most commonly used feature for EPD. However, it is 

usually hard to have a single universal threshold for EPD. In particular, a single 

volume threshold for EPD is likely to misclassify unvoiced sounds as silence for 

audio input from uni-directional microphone.  



b. Volume and ZCR: ZCR can be used in conjunction with volume to identify 

unvoiced sounds in a more reliable manner, as explained in the next section.  

The computation load is usually small so these methods can be ported to low-end 

platform such as micro-controllers.  

2. Frequency-domain methods:  

a. Variance in spectrum: Voiced sounds have more regular amplitude spectra, 

leading to smaller spectral variances.  

b. Entropy in spectrum: Regular amplitude spectra of voices sounds also generate 

low entropy, which can be used as a criterion for EPD.  

These methods usually require more computing power and thus are not portable to 

low-end platforms.  

Hint  
To put it simply, time-domain methods use only the waveform of audio signals for EPD. On the other hand, if we need to use 

the Fourier transform to analyze the waveforms for EPD, then it is frequency-domain method. More information on spectrum 

and Fourier transform will be detailed in later chapters. 

There are two types of errors in EPD, which cause different effects in speech recognition, as 

follows.  

• False Rejection: Speech frames are erroneously identified as silence/noise, leading to 

decreased recognition rates.  

• False Acceptance: Silence/noise frames are erroneously identified as speech frames, 

which will not cause too much trouble if the recognizer can take short leading/trailing 

silence into consideration.  

The other sections of this chapter will introduce both time-domain and frequency-domain 

methods for EPD.  

「端點偵測」（End-point Detection，簡稱 EPD）的目標是要決定音訊開始和結束的位置，所以

又可以稱為 Speech Detection 或是 VAD (Voice Activity Detection)。端點偵測在音訊處理與辨

識中，扮演一個重要的角色。  



常見的端點偵測方法與相關的特徵參數，可以分成兩大類：  

1. 時域（Time Domain）的方法：計算量比較小，因此比較容易移植到計算能力較差的微

電腦平台。  

a. 音量：只使用音量來進行端點偵測，是最簡單的方法，但是會對氣音造成誤判。

不同的音量計算方式也會造成端點偵測結果的不同，至於是哪一種計算方式比較

好，並無定論，需要靠大量的資料來測試得知。  

b. 音量和過零率：以音量為主，過零率為輔，可以對氣音進行較精密的檢測。  

2. 頻域（Frequency Domain）的方法：計算量比較大，因此比較難移植到計算能力較差

的微電腦平台。  

a. 頻譜的變異數：有聲音的頻譜變化較規律，變異數較低，可作為判斷端點的基準。  

b. 頻譜的 Entropy：我們也可以使用使用 Entropy 達到類似上述的功能。  

Hint  
簡單地說，若只是對聲音波形做一些較簡單的運算，就是屬於時域的方法。另一方面，凡是要用到傅立葉轉換（Fourier 

Transform）來產生聲音的頻譜，就是屬於頻譜的方法。這種分法常被用來對音訊處的方法進行分類，但有時候有一

些模糊地帶。有關於頻譜以及傅立葉轉換，會在後續的章節說明。 

錯誤的端點偵測，在語音辨識上會造成兩種效應：  

• False Rejection：將 Speech 誤認為 Silence/Noise，因而造成音訊辨識率下降  

• False Acceptance：將 Silence/Noise 誤認為 Speech，此時音訊辨識率也會下降，但是

我們可以在設計辨識器時，前後加上可能的靜音聲學模型，此時辨識率的下降就會比前

者來的和緩。  

以下各小節將針對這兩類的端點偵測方法來介紹。  

6-2 EPD in Time Domain (端點偵測：時域的方法) 

We shall introduce several time-domain methods for EPD in this section.  

The first method uses volume as the only acoustic feature for EPD. This is the most intuitive 

method with least computation. We only need to determine a volume threshold and any frame 

with a volume less than the threshold is regarded as silence. However, how to determine a 



good volume threshold is not obvious. Besides empirically determining the threshold, the best 

way is to use a set of labelled training data to find the best value for achieving the minimum 

error.  

In the following example, we shall use four different ways to compute volume thresholds for 

EPD of the wave file sunday.wav:  

Example 1Input file endPointDetection/epdVolTh01.m 
waveFile='sunday.wav'; 

[wave, fs, nbits] = wavread(waveFile); 

frameSize = 256; 

overlap = 128; 

 

wave=wave-mean(wave);    % zero-mean substraction 

frameMat=buffer2(wave, frameSize, overlap); % frame blocking 

frameNum=size(frameMat, 2);   % no. of frames 

volume=frame2volume(frameMat, 1);  % volume 

volumeTh1=max(volume)*0.1;   % volume threshold 1 

volumeTh2=median(volume)*0.1;   % volume threshold 2 

volumeTh3=min(volume)*10;   % volume threshold 3 

volumeTh4=volume(1)*5;    % volume threshold 4 

index1 = find(volume>volumeTh1); 

index2 = find(volume>volumeTh2); 

index3 = find(volume>volumeTh3); 

index4 = find(volume>volumeTh4); 

endPoint1=frame2sampleIndex([index1(1), index1(end)], frameSize, overlap); 

endPoint2=frame2sampleIndex([index2(1), index2(end)], frameSize, overlap); 

endPoint3=frame2sampleIndex([index3(1), index3(end)], frameSize, overlap); 

endPoint4=frame2sampleIndex([index4(1), index4(end)], frameSize, overlap); 

 

subplot(2,1,1); 

time=(1:length(wave))/fs; 

plot(time, wave); 

ylabel('Amplitude'); title('Waveform'); 

axis([-inf inf -1 1]); 

line(time(endPoint1(  1))*[1 1], [-1, 1], 'color', 'm'); 



line(time(endPoint2(  1))*[1 1], [-1, 1], 'color', 'g'); 

line(time(endPoint3(  1))*[1 1], [-1, 1], 'color', 'k'); 

line(time(endPoint4(  1))*[1 1], [-1, 1], 'color', 'r'); 

line(time(endPoint1(end))*[1 1], [-1, 1], 'color', 'm'); 

line(time(endPoint2(end))*[1 1], [-1, 1], 'color', 'g'); 

line(time(endPoint3(end))*[1 1], [-1, 1], 'color', 'k'); 

line(time(endPoint4(end))*[1 1], [-1, 1], 'color', 'r'); 

legend('Waveform', 'Boundaries by threshold 1', 'Boundaries by threshold 2', 'Boundaries by threshold 3', 'Boundaries by 

threshold 4'); 

 

subplot(2,1,2); 

frameTime=frame2sampleIndex(1:frameNum, frameSize, overlap); 

plot(frameTime, volume, '.-'); 

ylabel('Sum of Abs.'); title('Volume'); 

axis tight; 

line([min(frameTime), max(frameTime)], volumeTh1*[1 1], 'color', 'm'); 

line([min(frameTime), max(frameTime)], volumeTh2*[1 1], 'color', 'g'); 

line([min(frameTime), max(frameTime)], volumeTh3*[1 1], 'color', 'k'); 

line([min(frameTime), max(frameTime)], volumeTh4*[1 1], 'color', 'r'); 

legend('Volume', 'Threshold 1', 'Threshold 2', 'Threshold 3', 'Threshold 4'); 

Output figure  

 



 

 

In the above example, we have used four methods to compute the volume thresholds. These 

four methods all have their weakness, as explained next:  

1. A ratio times the maximal volume: Not reliable if there is an impulse in volume due to 

plosive sounds.  

2. A ratio times the median of the volume: Not reliable when silence occupy more than 

half of the audio signals.  

3. The minimal volume times a constant: This could go wrong is the noise if too big. 

Moreover, it is likely for some recordings to have a frame of zero volume.  

4. The volume of the first frame times a constant: This could go wrong if the first frame of 

the recording is unstable, which is not rare in practice.  

The ratios or constants in the above four methods should be determined through labeled 

training data. It should be noted wave files of different characteristics (recordings via 

uni-directional or omni-directional microphones, different sample rates, different bit resolutions, 

different frame sizes and overlaps) will have a different best thresholds.  



Of course, you also create a new threshold by using linear combinations of these thresholds, 

etc.  

From the above example, it is obvious that the leading unvoiced sound is likely to be 

misclassified as silence. Moreover, a single threshold might not perform well if the volume 

varies a lot. As a result, an improved method can be stated next:  

1. Use a upper threshold τu to determine the inital end-points.  

2. Extend the boundaries until they reach the lower threshold τl.  

3. Extend the boundaries further until they reach the ZCR threshold τzc.  

This method is illustrated as follows.  

 
The above improved method uses only three thresholds, hence it is possible to use grid search 

to find the best values via a set of labeled training data.  

Hint  
The above method is designed for speech recognition. For melody recognition, we do not need to consider unvoiced sounds 

since they do not have pitch at all. 

If we apply the above method for EPD of sunday.wav, the result can plotted as follows:  

Example 2Input file endPointDetection/epdVolZcr01.m 



waveFile='sunday.wav'; 

plotOpt = 1; 

[y, fs, nbits] = wavReadInt(waveFile); 

endPoint = epdByVolZcr(y, fs, nbits, [], plotOpt); 

Output figure  

 

 

 

In the above plot, the red and green lines indicates the beginning and end of sound, 

respectively. This example uses the function endPointDetect.m in the Audio Processing 

Toolbox, which use volume and ZCR as mentioned above for EPD.  

Now it should be obvious that the most difficult part in EPD is to distinguish unvoiced sounds 

from silence reilably. One way to achieve this goal is to use high-order difference of the 

waveform as a time-domain features. For instance, in the following example, we use order-1, 2, 

3 difference on the waveform of beautifulSundays.wav:  

Example 3Input file endPointDetection/highOrderDiff01.m 
waveFile='sunday.wav'; 



[wave, fs, nbits] = wavread(waveFile); 

frameSize = 256; 

overlap = 128; 

 

wave=wave-mean(wave);    % zero-mean substraction 

frameMat=buffer2(wave, frameSize, overlap); % frame blocking 

frameNum=size(frameMat, 2);   % no. of frames 

volume=frame2volume(frameMat, 1); 

sumAbsDiff1=sum(abs(diff(frameMat))); 

sumAbsDiff2=sum(abs(diff(diff(frameMat)))); 

sumAbsDiff3=sum(abs(diff(diff(diff(frameMat))))); 

sumAbsDiff4=sum(abs(diff(diff(diff(diff(frameMat)))))); 

 

subplot(2,1,1); 

time=(1:length(wave))/fs; 

plot(time, wave); ylabel('Amplitude'); title('Waveform'); 

subplot(2,1,2); 

frameTime=frame2sampleIndex(1:frameNum, frameSize, overlap)/fs; 

plot(frameTime', [volume; sumAbsDiff1; sumAbsDiff2; sumAbsDiff3; sumAbsDiff4]', '.-'); 

legend('Volume', 'Order-1 diff', 'Order-2 diff', 'Order-3 diff', 'Order-4 diff'); 

xlabel('Time (sec)'); 

Output figure  

 



 

 

It is obvious that the high-order difference (HOD) on the waveform can let us identify the 

unvoiced sound more easily for this case. Therefore you can take the union of high-volume and 

high HOD regions to have most robust of EPD.  

Hint  
If you have counter examples which invalids the use of HOD, please let me know. 

From the above example, a possible simple way of combining volume and HOD for EPD can be 

stated as follows:  

1. Compute volume (VOL) and the absolute sum of order-n difference (HOD).  

2. Select a weighting factor w within [0, 1] to compute a new curve VH = w*VOL + 

(1-w)*HOD.  

3. Find a ratio ρ to compute the threshold τ of VH to determine the end-points. The 

threshold is equal to VHmin+(VHmax-VHmin)*ρ.  

The above method involves three parameters to be determined: n, w, ρ. Typical values of these 

parameters are n = 4, w = 0.5, and ρ = 0.125. However, these values vary with data sets. It is 



always adviceable to have these values tuned by using the target data set for a more robust 

result.  

Of course, there are still plenty of other methods for EPD on time domain. The only limit is your 

imagination.  

6-3 EPD in Frequency Domain (端點偵測：頻域的方法) 

Voiced sounds have harmonic structures in the frequency-domain specta. Moreover, the 

energy distribution will be mostly biased toward the low-frequency bands. As a result, we can 

apply simple mathematical functions on the spectrum for EPD.  

If you are not familiar with the definition of spectrum (or more specific, amplitude spectrum), you 

do not need to worry about this at this stage. All you need to know is that the amplitude 

spectrum is the distribution of energy with respective to frequency. More information about the 

spectrum and its mathematical definition will be covered in later chapters.  

有聲音訊在頻譜上會有重複的諧波結構，因此我們也可以使用頻譜的變異數或是 Entropy 來進行

端點偵測，相關論文及投影片請見此連結。  

（待續）  

/jang/books/audioSignalProcessing/paper/endPointDetection/index.asp 

 

File listing: 

File name Size (Bytes) Last modified 

096.PDF 231553 2004/8/18 下午 11:41:15 

   

endPointDetectionViaEntropy.ppt 513024 2003/3/27 下午 10:13:18 

   

shenHL98-endpoint.pdf 366756 2004/8/18 下午 11:42:15 



   

第 6 章作業 

1. (**) EPD by volume and HOD：  

a. Record your voice of "Singapore is a fine place" and save it as "test.wav", with 

the format of 16 KHz, 16 bits, mono. (Hint: You can use waveFileRecord.m in 

the Audio Processing Toolbox for easy recording.)  

b. Write a script epdByVolHod01.m which do EPD by using volume and high-order 

difference. You should plot your result like this:  

 

(Hint: Be sure to understand all the examples provided in the text before you 

attemp this exercise. In particular, you should be familiar with the use of "line" 

command for adding lines to the existing plot.)  

c. Convert your script epdByVolHod01.m to a function epdByVolHod.m with the 

following usage:  

[epInSampleIndex, epInFrameIndex] = epdByVolHod(wave, fs, nbits, epdParam, plotOpt)  



where  

 epInFrameIndex: two-element end-points in frame index  

 epInSampleIndex: two-element end-points in sample index  

 wave: input audio signals within [-1, 1];  

 fs: sample rate  

 epdParam: EPD parameter, including three fields:  

 epdParam.frameSize: frame size  

 epdParam.overlap: overlap  

 epdParam.diffOrder: the order of difference (default: 4)  

 epdParam.volWeight: the weighting factor for volume (default: 0.5)  

 epdParam.vhRatio: the constant for obtaining the VH threshold of 

VHmin+(VHmax-VHmin)*epdParam.vhRatio (default 0.125)  

 plotOpt: 0 for silent operation, 1 for plotting the result (as shown in the 

previous sub-problem).  

Please test your program using the following script:  

waveFile='test.wav'; 

epdParam.frameSize = 256; 

epdParam.overlap = 0; 

epdParam.diffOrder=4; 

epdParam.volWeight=0.5; 

epdParam.vhRatio = 0.125; 

plotOpt = 1; 

out = epdByVolHod(wave, fs, nbits, epdParam, plotOpt); 

2. (Hint: You should finish part (b) before trying this one since it is trickier debugging an 

m-file function. When you are debugging your m-file function, be sure to issue "dbstop 

if error" or "dbstop if warning" to stop at the work space where errors/warnings occur. 

To clear the debugging flags, try "dbclear all". Also it would be better if you can follow 

the same flow as in epdByVol.m in the Audio Processing Toolbox.)  



3. (*) Recordings of digits and letters： This is a recording task for digits and letters. 

Please refer to this page for details.  

4. (***) Programming contest: end-point detection： Please read this page for details.  

 

The followings are old Chinese version.  

1. (*) 數字與字母的錄音： 此作業要讓各位進行數字與字母的錄音，細節請看此連結。  

2. (***) 程式競賽：端點偵測： 請見此連結。  

Audio Signal Processing and Recognition (音訊處理與辨識): 

Recording Task 

Roger Jang (張智星) 

 

In this task, you need to do the recordings for both digits and letters. The recording 

clips will be used for further exercises in the class, including end-point detection and 

speech recognition using DTW, etc. More specifically, you need to record 10 digits (0~9) 

and 26 letters (A~Z) twice to have 72 .wav files. Basically it will take about 10 minutes 

to finish the recording. Please follow the stey-by-step instructions closely.  

1. Please download winrar and install it. (Change the file extension to exe and then execute directly.)  
2. If this is your first time to do the recording task, please read important notes about recording. Please read them 

carefully. If you don't follow the rules, your recordings might not be in good shape and you need to do it again.  
3. Downlaod the recording program digitLetterRecordingProgram.rar and uncompress it into a folder 

"digitLetterRecordingProgram". Read the instructions in "readme.txt" and then you can start recording. For 
easy reference, the contents of digitLetterRecordingProgram/readme.txt are listed here:  

4. Please type "go" under MATLAB to start the recording of 0~9 digits and a~z letters. 

After recording, the program will generate a folder "waveFile/dddddd" where "dddddd" is your student ID, 
such as "921510". This directory should located at the same level as the f 
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2-1 MATLAB Introduction (MATLAB 入門簡介) 2-1 MATLAB Introduction 

(MATLAB 入門簡介) 

7-1 Introduction to Pitch Tracking (秞詢袚??賡) 

Old Chinese version  

From the previous chapter, you should know how to find the pitch by visual inspection and 

some simple computation. If we want the computer to automatically identify the pitch from audio 

signals, then we need to have some reliable methods for such a task of "pitch tracking". Once 

the pitch vector is identified, it can be used for extensive applications in audio signal processing, 

including:  

• Melody Recognition: Or QBSH (Query By Singing/Humming), that is, to retrieve a song 

from the music database that can match a person's singing or humming as close as 

possible.  

• Tone Recognition for tonal language (such as Mandarin): To identify each syllable's 

tone for computer assisted pronunciation training (CAPT).  

• Prosody Analysis for TTS (text-to-speech): To analyze and predict the best F0 curve for 

TTS applications.  

• Intonation Assessment: To compute the similarity between a test and a target 

utterances for CAPT.  

• Speech recognition: Pitch can be used to improve the recognition rates of speech 

recognition engines.  

In summary, pitch tracking is a fundamental step toward other important tasks for audio signal 

processing. Related research on pitch tracking has been reported for decades, and it still 

remains an hot topic in the literature. Therefore we need to know the basic concept of pitch 

tracking as a stepstone for other advanced audio processing techniques.  

Pitch tracking follows the general processing of short-term analysis for audio signals, as follows.  



1. Chop the audio signals into frames of 20 ms or so. Overlap is allowed between 

neighboring frames.  

2. Compute the pitch of each frame.  

3. Eliminate pitch from silence or unvoiced sounds. This can be done by using volume 

thresholding or pitch range thresholding.  

4. Smooth the pitch curve using median filters or other similar methods.  

In the processing frame blocking, we allow overlap between neighboring frames to reduce 

discontinuity between them. We can define "frame rate" as the frames per second for our 

analysis. For instance, if fs = 11025 Hz, frame size = 256, overlap = 84, then the frame rate is 

equal to fs/(frameSize-overlap) = 11025/(256-84) = 64. In other words, if we wish to have 

real-time pitch tracking (for instance, on the platform of micro-controllers), then the computer 

should be able to handle 64 frames per second. A small overlap will lead to a low frame rate. 

The process of frame blocking is shown next.  

When we choose the frame size and the overlap, we need to consider the following factors.  



• The frame size should cover at least two fundamental periods to fully capture the 

characteristics of the audio signals. Suppose that the pitch range of human voices is 

between 50 to 1000 Hz, and the sample rate is 16000 Hz, then we can derive the 

range of the frame size, as follows.  

a. If f = 50 Hz, then the fundamental period = fs/f = 16000/50 = 320 points and the 

frame size should be 2*320 = 640 points.  

b. If f = 1000 Hz, then the fundamental period = fs/f = 16000/1000 = 16 points and 

the frame size should be at least 2*16 = 32 points.  

• The frame size should not too big, otherwise it cannot capture time-varying 

characteristics of audio signals. A big frame size also require more computing time to 

process the frame.  

• The overlap is determined by the computing power of your platform. A big overlap leads 

to a big frame rate and thus requries more computing power. If we do not have 

enough computing power, we can reduce the overlap or even make the overlap 

negative.  

There are a number of methods to derive a pitch value from a single frame. Generally, these 

methods can be classified into time-domain and frequency-domain methods, as follows.  

• Time-domain methods  

o ACF: Autocorrelation function  

o SMDF: Average magnitude difference function  

o SIFT: Simple inverse filter tracking  

• Frequency-domain methods  

o Harmonic product spectrum method  

o Cepstrum method  

These methods will be covered in the rest of this chapter.  

7-2 ACF 

Old Chinese version  



In this section, we shall introduce the auto-correlation function (ACF) for pitch tracking. This is a 

time-domain method which estimates the similarity between a frame s(i), i = 0 ~ n-1, and its 

delayed version via the auto-correlation function:  

acf(τ) = Σi=0
n-1-τ s(i) s(i+τ)  

where τ is the time lag in terms of sample points. The value of τ that maximizes acf(τ) over a 

specified range is selected as the pitch period in sample points. The following figure 

demonstrates the operation of ACF:  

 

In other words, we shift the delayed version n times and compute the inner product of the 

overlapped parts to obtain n values of ACF.  

Take my utterance "sunday.wav" for example. If we take a frame of 512 points starting from the 

9000th point, which corresponds to the vowel part of "day", the ACF result is the following 

example:  

Example 1Input file pitchTracking/frame2acf01.m 
waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 



index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame); 

plotOpt=1; 

method=1; 

acf=frame2acf(frame, maxShift, method, plotOpt); 

Output figure  

 

 

 

The maximum of ACF occurs at the first point, which is obviously not what we want. If we set 

the values around the first maximum to be zero, we can identify the second maximum located at 

index 131 and the corresponding pitch is fs/(131-1) = 16000/130 = 123.08 Hz, or 46.94 

semitones.  

Hint  
In the above computation, we need to divide fs by 131 minus 1 since 131 is a 1-based index in MATLAB. 



The point of ACF at index 131 is referred as the pitch point for ACF. In order to identify the pitch 

point of ACF automatically, we can simply set the first few points of ACF to be zero and then 

find the maximal point of ACF. Please refer to the following example.  

Example 2Input file pitchTracking/frame2acfPitchPoint01.m 
waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame); 

method=1; 

acf=frame2acf(frame, maxShift, method); 

acf2=acf; 

maxFreq=1000; 

acf2(1:fs/maxFreq)=min(acf); 

minFreq=40; 

acf2(fs/minFreq:end)=min(acf); 

[maxValue, maxIndex]=max(acf2); 

 

subplot(2,1,1); 

plot(frame, '.-'); axis tight; title('Input frame'); 

subplot(2,1,2); 

xVec=1:length(acf); 

plot(xVec, acf, '.-', xVec, acf2, '.-', maxIndex, maxValue, 'ro'); 

axis tight; title(sprintf('ACF vector (method = %d)', method)); 

legend('Original ACF', 'Truncated ACF', 'ACF pitch point'); 

Output figure  

 



 

 

In the above figure, the first plot if the frame, the second plot is the original ACF and the 

modified ACF. The red circle is the maximal point of the modified ACF, which is also the correct 

pitch point. The modified ACF is obtained by setting ACF at some unlikely region for the pitch 

point to be zero. Specifically,  

a. Assuming the max. pitch is 1000 Hz. This leads to a fundamental period of fs/1000 = 

16000/1000 = 16 points. Therefore we can set the first 16 points of ACF to be zero.  

b. Assuming the min. pitch is 40 Hz. This leads to a fundamental period of fs/40 = 

16000/40 = 400 points. Therefore we can set all the elements of ACF after index 400 

to be zero.  

By using the described method, we can perform pitch tracking on a stream of audio signals, as 

shown in the next example.  

Example 3Input file pitchTracking/wave2pitchByAcf01.m 
waveFile='soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

y=y-mean(y); 

frameDuration=32; % in ms 



frameSize=round(frameDuration*fs/1000); 

overlap=0; 

maxShift=frameSize; 

maxFreq=1000; 

minFreq=40; 

n1=round(fs/maxFreq); % acf(1:n1) will not be used 

n2=round(fs/minFreq); % acf(n2:end) will not be used 

frameMat=buffer2(y, frameSize, overlap); 

frameNum=size(frameMat, 2); 

volume=frame2volume(frameMat); 

volumeTh=max(volume)/8; 

pitch=0*volume; 

for i=1:frameNum 

% fprintf('%d/%d\n', i, frameNum); 

 frame=frameMat(:, i); 

 acf=frame2acf(frame, maxShift, 1); 

 acf(1:n1)=-inf; 

 acf(n2:end)=-inf; 

 [maxValue, maxIndex]=max(acf); 

 freq=fs/(maxIndex-1); 

 pitch(i)=freq2pitch(freq); 

end 

 

frameTime=frame2sampleIndex(1:frameNum, frameSize, overlap)/fs; 

subplot(3,1,1); 

plot((1:length(y))/fs, y); set(gca, 'xlim', [-inf inf]); 

title('Waveform'); 

subplot(3,1,2); 

plot(frameTime, volume); set(gca, 'xlim', [-inf inf]); 

line([0, length(y)/fs], volumeTh*[1, 1], 'color', 'r'); 

title('Volume'); 

subplot(3,1,3); 

pitch2=pitch; 

pitch2(volume 

Output message 



Warning: In the directory "d:\users\jang\matlab\toolbox\audioProcessing", 

pitch2waveMex.mexw32 now shadows pitch2waveMex.dll. 

 Please see the MATLAB 7.1 Release Notes. 

> In wave2pitchByAcf01 at 43 

  In goWriteOutputFile at 32 

  

Output figure  

 

 

 

In the above example, we use simple volume thresholding with a threshold equal to one eighth 

of the maximum volume. That is, if a frame has a volume less than 1/8 of the maximum volume, 

then its pitch is set to zero. From the last plot of the above figure, it is obvious that the values of 

the pitch curve is mostly correct except for several erroneous points which deviate from the 

presumably smooth pitch curve. This discontinuous points will cause squeaky sounds during 

the playback of the pitch curve. We usually apply a smoothing operator (such as median filters) 



on the pitch curve as a post-process to eliminate erroneous points. Without using the smoothing 

operator, the results are shown in the following links:  

• Original wave file: soo.wav  

• Wave file of the identified pitch: sooPitch.wav。  

There are several variations of ACF that are also used commonly:  

1. The previously defeind ACF has a tapering effect since a larger τ will use a smaller 

overlap for the calculation. As an alternative, we can compute a new ACF by dividing 

the inner product by the size of the overlapped region, as shown in the next equation:  

acf(τ) = Σi=0
n-1-τ s(i) s(i+τ)/(n-τ)  

Due to the smaller overoap, the last few points of ACF may be unstable, as shown in 

the following example.  

Example 4Input file pitchTracking/frame2acf02.m 

waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame); 

plotOpt=1; 

method=2; 

acf=frame2acf(frame, maxShift, method, plotOpt); 

Output figure  

 



 

 

2. Another method to avoid tapering-off is to shift only the first half of a frame, as shown 

in the next equation:  

acf(τ) = Σi=0
n/2 s(i) s(i+τ)  

The overlap region will always be half of the frame size and the obtain ACF will not 

taper off. Please refer to the following example.  

Example 5Input file pitchTracking/frame2acf03.m 

waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame)/2; 

plotOpt=1; 



method=3; 

frame2acf(frame, maxShift, method, plotOpt); 

Output figure  

 

 

 

3. The range of ACF is usually known in advance. We can limit the range of ACF to be 

[-1, 1] by using the following formula for normalized ACF:  

acf(τ) = [2 Σ s(i) s(i+τ)]/[Σ s2(i) + Σ s2(i+τ)]  

All the summations in the above equation should have the same lower and upper 

bounds. The range of the above formula is [-1, 1] due to the following inequality:  

-(x2+y2) <= 2xy <= x2+y2  

If the selected pitch point is τ = τ0, then we define the clarity of this frame is  



clarity = acf(τ0).  

A higher clarity indicates the frame is closer to a pure periodic waveform. On the other 

hand, a lower clarity indicates the frame is less periodic, which is likely to be caused 

by unvoiced speech or silence.  

7-3 AMDF 

Old Chinese version  

The concept of AMDF (average magnitude difference function) is very close to ACF except that 

it estimates the distance instead of similarity between a frame s(i), i = 0 ~ n-1, and its delayed 

version via the following formula:  

amdf(τ) = Σi=0
n-1| s(i) - s(i-τ) |  

where τ is the time lag in terms of sample points. The value of τ that minimizes amdf(τ) over a 

specified range is selected as the pitch period in sample points. The following figure 

demonstrates the operation of AMDF:  

 



In other words, we shift the delayed version n times and compute the absolute sum of the 

difference in the overlapped parts to obtain n values of AMDF. A typical example of AMDF is 

shown below.  

Example 1Input file pitchTracking/frame2amdf01.m 
waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame); 

plotOpt=1; 

method=1; 

frame2amdf(frame, maxShift, method, plotOpt); 

Output figure  

 

 

 

From the above figure, it is obvious that the pitch period point should be the local minimum 



located at index=132. The corresponding pitch is equal to fs/(132-1) = 16000/131 = 122.14 Hz, 

or 46.81 semitones. This result is close but not exactly equal to the one obtained via ACF.  

Just like ACF, there are several variations of AMDF, as explained next.  

1. Due to less overlap AMDF tapers off with the lag τ. To avoid the taper-off, we can 

normalize AMDF by dividing it by the length of the overlap. The down sides include 

more computation and less robustness when τ is small. Here is an example.  

Example 2Input file pitchTracking/frame2amdf02.m 

waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame); 

plotOpt=1; 

method=2; 

frame2amdf(frame, maxShift, method, plotOpt); 

Output figure  

 



 

 

2. Another method to avoid AMDF's taper-off is to shift the first half of the frame only. In 

the following example, the length of the shifted segment is only 256, leading to an 

AMDF of 256 points:  

Example 3Input file pitchTracking/frame2amdf03.m 

waveFile='sunday.wav'; 

[y, fs, nbits]=wavread(waveFile); 

index1=9000; 

frameSize=512; 

index2=index1+frameSize-1; 

frame=y(index1:index2); 

maxShift=length(frame)/2; 

plotOpt=1; 

method=3; 

acf=frame2amdf(frame, maxShift, method, plotOpt); 

Output figure  



 

 

 

If the volume of the first half-frame is smaller than that of the second half-frame, it is 

better to flip the frame first such that a more reliable AMDF curve can be obtained.  

Since the computation of AMDF does not require multiplication, it is suitable for low computing 

platform such as embedded systems or micro-controllers.  

It is possible to combine ACF and AMDF to identify the pitch period point in a more robust 

manner. For instance, we can divide ACF by AMDF to obtain a curve for easy selection of the 

pitch point. For example:  

Example 4Input file pitchTracking/frame2acfOverAmdf01.m 
waveFile='soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

frameSize=256; 

frameMat=buffer(y, frameSize, 0); 

frame=frameMat(:, 292); 

method=1; 



maxShift=length(frame)/2; 

plotOpt=1; 

frame2acfOverAmdf(frame, maxShift, method, plotOpt); 

Output figure  

 

 

 

In the above example, we have used the singing voices from Prof. Soo who was the tenor of the 

choir at National Taiwan University. In the selected frame, the maxima of ACF or the minima of 

AMDF is not very obvious. But if we divide ACF by AMDF, the maxima of the final curves are 

much more obvious than either ACF or AMDF alone.  

In the next example, we shall use variations of ACF and AMDF for computing ACF/AMDF:  

Example 5Input file pitchTracking/frame2acfOverAmdf02.m 
waveFile='soo.wav'; 

[y, fs, nbits]=wavReadInt(waveFile); 

framedY=buffer(y, 256, 0); 

frame=framedY(:, 290); 



subplot(4,1,1); 

plot(frame, '.-'); 

title('Input frame'); axis tight 

subplot(4,1,2); 

method=1; out=frame2acfOverAmdf(frame, 256, method); 

plot(out, '.-'); title('ACF/AMDF, method=1'); axis tight 

subplot(4,1,3); 

method=2; out=frame2acfOverAmdf(frame, 256, method); 

plot(out, '.-'); title('ACF/AMDF, method=2'); axis tight 

subplot(4,1,4); 

method=3; out=frame2acfOverAmdf(frame, 128, method); 

plot(out, '.-'); title('ACF/AMDF, method=3'); axis tight 

Output figure  

 

 

 

In the above example, method=1 and method=2 lead to the same ACF/AMDF curve.  



In order to remove noise around zero of the original frame, we can apply center clipping before 

computing ACF or AMDF. Some of the commonly used techniques for center clipping are 

display in the following figure:  

 

7-4 SIFT 

另外，我們在用 ACF 時，有時候會將訊號先經過 inverse filtering，企圖找到原先聲帶的原始

訊號，這個原始訊號沒有經過口腔、鼻腔的作用，因此理論上會比較乾淨，ACF 所得到的效果會

比較好，這個方法稱為 SIFT (Simple Inverse Filter Tracking)，其示意圖如下：  

 
在上圖中，我們是將目前的訊號 s(n) 表示成前面 m 個訊號的線性組合：  



s(n) = a1s(n-1) + a2s(n-2) + ... + ams(n-m) + e(n)  

並利用最小平方法來找出最佳的 {a1, a2, ... , am}，使得 Σe2(n) 為最小，此 e(n) 又是所謂的 

excitation signal （原始激發訊號），再用此 e(n) 來進行 ACF，得到的效果較好。  

在以下的範例中，我們使用一個 order 為 20 的 LPC (linear predictive coefficients) 來進行 

SIFT:  

Example 1Input file pitchTracking/siftAcf01.m 
waveFile = 'soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

startIndex=15000; 

frameSize=256; 

endIndex=startIndex+frameSize-1; 

frame=y(startIndex:endIndex); 

order=20; 

[frame2, error, coef]=sift(frame, order); % Simple inverse filtering tracking 

maxShift=frameSize; 

method=1; 

acf0=frame2acf(frame, maxShift, method); 

acf1=frame2acf(error, maxShift, method); 

 

subplot(3,1,1) 

plot(1:frameSize, [frame, frame2]); 

legend('Original Signal', 'LPC estimate'); 

title('Original signal vs. LPC estimate'); 

subplot(3,1,2); 

plot(1:frameSize, error); 

grid on 

xlabel(['Residual signal when order = ', int2str(order)]); 

subplot(3,1,3); 

plot(1:frameSize, [acf0/max(acf0), acf1/max(acf1)]); 

grid on 

xlabel('Normalized ACF curves'); 

legend('Normalized ACF on original frame', 'Normalized ACF on residual signal'); 

Output figure  



 

 

 

由上圖可知，經過了 SIFT，我們使用 residual signal 來進行 ACF，所得到的圖形的高點比較

明顯，這會讓我們比較容易找到正確的音高點。  

使用 SIFT 加上 ACF 來進行音高追蹤的範例如下：  

Example 2Input file pitchTracking/wave2pitchBySiftAcf01.m 
waveFile='soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

y=y-mean(y); 

frameDuration=32; % in ms 

frameSize=round(frameDuration*fs/1000); 

overlap=0; 

maxShift=frameSize; 

maxFreq=1000; 

minFreq=40; 

n1=round(fs/maxFreq); % acf(1:n1) will not be used 

n2=round(fs/minFreq); % acf(n2:end) will not be used 



frameMat=buffer2(y, frameSize, overlap); 

frameNum=size(frameMat, 2); 

volume=frame2volume(frameMat); 

volumeTh=max(volume)/8; 

pitch=0*volume; 

lpcOrder=20;  % for sift 

for i=1:frameNum 

% fprintf('%d/%d\n', i, frameNum); 

 frame=frameMat(:, i); 

 [frame2, error, coef]=sift(frame, lpcOrder); % Simple inverse filtering tracking 

 acf=frame2acf(error, frameSize, 1); 

 acf(1:n1)=-inf; 

 acf(n2:end)=-inf; 

 [maxValue, maxIndex]=max(acf); 

 freq=fs/(maxIndex-1); 

 pitch(i)=freq2pitch(freq); 

end 

 

frameTime=frame2sampleIndex(1:frameNum, frameSize, overlap)/fs; 

subplot(3,1,1); 

plot((1:length(y))/fs, y); set(gca, 'xlim', [-inf inf]); 

title('Waveform'); 

subplot(3,1,2); 

plot(frameTime, volume); set(gca, 'xlim', [-inf inf]); 

line([0, length(y)/fs], volumeTh*[1, 1], 'color', 'r'); 

title('Volume'); 

subplot(3,1,3); 

pitch2=pitch; 

pitch2(volume 

Output figure  

 



 

 

當遇到雜訊時，基本上是沒有音高存在的，所以 ACF 或是 SMDF 得到的值都是不合理的過低

或過高值，因此在實作時，我們必須限定合理的音高範圍，如果超過此範圍，我們就認定沒有音

高存在（通常是直接將音高設定為零。）。  

有關於音高追蹤的各種其他方法，請見：  

• Pitch Detection Methods Review  

• Pitch Detection  

7-5 HPS 

本節介紹在頻域上的音高追蹤的方法，包含  

• Harmonic product spectrum (HPS)  

• Cepstrum method  

首先我們來看看 HPS，其示意圖如下：  



 
其中在 down-sampling 的部分，我們將頻譜訊號進行向下取樣，r=1 代表原訊號，r=2 代表隔一

點抓一點（訊號長度只有原先的 1/2），r=3 代表隔兩點抓一點（訊號長度只有原先的 1/3），

依此類推，得到各個「壓縮」的版本，再將這些「壓縮」的訊號加起來，示意圖如下：  

 



由於每一個壓縮後的訊號都會在基頻附近有一個高點，所以累加的結果，就會凸顯這個高點，比

較容易看出基頻的位置。  

以我的聲音「清華大學資訊系 3.wav」為例，如果從第 7200 點開始抓一個音框，相當於「華」

的韻母左右的位置，音框長度是 256，以此音框來進行 HPS，結果如下：  

Example 1Input file pitchTracking/hps01.m 
waveFile = 'soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

startIndex=15000; 

frameSize=256; 

endIndex=startIndex+frameSize-1; 

frame = y(startIndex:endIndex); 

zeroPaddedFrameSize=16*frameSize; 

output=frame2hps(frame, zeroPaddedFrameSize, 1); 

[maxValue, maxIndex]=max(output); 

line(maxIndex, output(maxIndex), 'marker', 'o', 'color', 'r'); 

fprintf('Pitch frequency = %f Hz\n', fs/zeroPaddedFrameSize*(maxIndex-1)); 

Output message 

Pitch frequency = 188.415527 Hz 

  

Output figure  

 



 

 

由上述圖形可知，HPS 的最高點的索引值是 71，因此對應的音高就是： fs/(16*frameSize)*(71-1) 

= 11025/(16*256)*70 = 188.42 Hz，或 54.32 半音。  

HPS 的特性說明如下：  

• HPS 所得到的音高解析度並不高，以上述範例而言，若不進行補零（Zero Padding），

則無論最高點的位置為何，音高都會是 11025/256 = 43.07 Hz z 的倍數。若需要提高

解析度，我們可以將音框進行補零，此時在頻譜就會有較高的解析度，得到的音高解析

度也會提高。在上述範例中，我們進行補零直到音框長度為 16*256 = 4096，所得到的

頻率解析度是 fs/4096 = 11025/4096 = 2.69 Hz。  

• 由 HPS 得到的音高並不很穩定，因為頻譜容易受到共振峰的影響，所以有時候 HPS 得

到的最大值並非對應於正確音高。若先拿掉共振峰的影響，再來進行 HPS，得到的效

果可能更好。  

7-6 Cepstrum 

另一個在頻域上的音高追蹤的方法，則是使用「倒頻譜」（Cepstrum），其定義是  

cepstrum = |ifft(log(|fft(frame)|))|  



倒頻譜的物理意義，可用下圖說明：  

典型的範例如下：  



 
因此，只要使用 high-pass liftering，就可以把在 low quefrency 部分拿掉，凸顯高點，就可以

抓出基頻的位置。  

在下面這個範例，我們對一個音框進行倒頻譜的計算：  

Example 1Input file pitchTracking/ceps01.m 
waveFile = 'soo.wav'; 

[y, fs, nbits]=wavread(waveFile); 

startIndex=15000; 

frameSize=256; 

endIndex=startIndex+frameSize-1; 

frame = y(startIndex:endIndex); 

zeroPaddedFrameSize=16*frameSize; 

output=frame2ceps(frame, zeroPaddedFrameSize, 1); 



[maxValue, maxIndex]=max(output); 

line(maxIndex, output(maxIndex), 'marker', 'o', 'color', 'r'); 

%fprintf('Pitch frequency = %f Hz\n', fs/zeroPaddedFrameSize*(maxIndex-1)); 

Output figure  

 

 

7-7 How to Increase Pitch Resolution (音高解析度的提升) 

另一個常碰到的問題，是音高解析度的問題。通常一個半音差等於 100 個「音分」（Cents），

若希望能得到高解析度的音高，我們可以調高取樣頻率以增加音訊在時域的解析度，這也會使 

ACF 或是 SMDF 的解析度隨之提高，進而提高音高的解析度。從數學上來說，音高和基本頻率

的關係如下：  

p = 69 + 12*log2(f/440) = 69 + 12*log2((fs/L)/440)  

其中 L 是基本週期的點數。當 L 增加 1 時，音高的改變量可以表示如下：  

ΔP = (69 + 12*log2((fs/L)/440)) - (69 + 12*log2((fs/(L+1))/440)) = -12*log2(1+1/L) = 

-12*log2(1+f/fs)  

其中 f 是基本頻率，fs 則是取樣頻率，ΔP 隨 fs 的變化情況可以使用下列範例來畫圖說明：  



Example 1Input file pitchTracking/pitchResolution01.m 
% Pitch resolution w.r.t. sampling rate and pitch 

fs=linspace(4000, 44100, 20)'; 

pitch=12*(1:7); 

deltaP=[]; 

for i=1:length(pitch) 

 f=440*2^((pitch(i)-69)/12); 

 deltaP=[deltaP, 12*log2(1+f./fs)]; 

end 

plot(fs, 100*deltaP, '.-'); 

axis tight; grid on 

xlabel('Samplinte rate (Hz)'); 

ylabel('\Delta p (Cents)'); 

title('\Delta p (Pitch resolution) w.r.t. fs and pitch'); 

% Display legends 

pitchStr={}; 

for i=1:length(pitch) 

 pitchStr={pitchStr{:}, ['pitch = ', int2str(pitch(i))]}; 

end 

legend(pitchStr); 

Output figure  

 



 

 

由以上圖形可以看出，當取樣頻率降低時，或是基本頻率提高時，音高的誤差就會變大（解析度

降低）。通常基本頻率不是我們所能控制的，因此若要提高音高的解析度，對於在時域上的音高

追蹤方法，我們可以提高取樣頻率，或是對聲波（或是 ACF、SMDF）進行向上取樣（Up Sampling）

或是內差（Interpolation）。  

同理，若要提高音高的解析度，對於在頻域上的音高追蹤方法，我們可以直接在每個音框進行補

零（Zero Padding），此時在頻譜的解析度就會提高，所計算出來的音高解析度也就跟著提高了。  

7-8 Software for Pitch Tracking (音高抓取的軟體) 

可用來抓取聲音音高的軟體相當多，以下列出幾種常用軟體，各位同學可以自行下載試試看。  

• Speech Filing System (SFS): http://www.phon.ucl.ac.uk/resource/sfs/ 

• Speech Analyzer  

• Solo Explorer  

• Praat  
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Old Chinese version  

1. (**) Frame-to-ACF computation： Write an m-file function myFrame2acf.m to 

compute ACF from a given frame, with the following usage:  

acf = myFrame2acf(frame);  

where frame is the input frame, and acf is the output ACF. The length of acf should be 

the same as that of frame. (Hint: You can check out the function frame2acf.m in the 

Audio Processing Toolbox. You can also use xcorr.m in the Signal Processing 

Toolbox to complete this exercise.)  

2. (**) Frame-to-AMDF computation： Write an m-file function myFrame2amdf.m to 

compute AMDF from a given frame, with the following usage:  

amdf = myFrame2amdf(frame);  

where frame is the input frame and amdf is the output AMDF. The length of amdf 

should be the same as that of frame. (Hint: You can check out the function 

frame2amdf.m in the Audio Processing Toolbox.)  

3. (**) Frame-to-AMDF/ACF computation： Write an m-file function 

myFrame2amdfOverAcf to compute AMDF over ACF from a input frame, with the 

following usage:  

amdfOverAcf = myFrame2amdfOverAcf(frame);  

Where frame is the input frame, and amdfOverAcf is the output AMDF/ACF. The 

length of amdfOverAcf should be the same as that of frame. Use this function to plot 

the curve of AMDF/ACF similar to this example. Does this method better than ACF or 

AMDF alone? If not, what methods can be used to improve the performance? (Hint: 

Please refer to frame2acfOverAmdf.m in the Audio Processing Toolbox.)  

4. (**) ACF-to-pitch computation： Write an m-file function myAcf2pitch.m which 

computes the pitch from a given vector of ACF, with the usage:  



pitch = myAcf2pitch(acf, fs, plotOpt);  

where acf is the input ACF vector, fs is the sample rate, pitch is the output pitch value 

in semitones. If plotOpt is not zero, your function needs to plot ACF and the selected 

pitch point.  

5. (**) AMDF-to-pitch computation： Write an m-file function myAmdf2pitch.m which 

computes the pitch from a given vector of AMDF, with the usage:  

pitch = myAmdf2pitch(amdf, fs, plotOpt);  

where amdf is the input AMDF vector, fs is the sample rate, pitch is the output pitch 

value in semitone. If plotOpt is not zero, your function needs to plot AMDF and the 

selected pitch point.  

6. (**) Frame-to-pitch computation： Write an m-file function myFrame2pitch which 

computes the pitch from a given frame using various methods, with the usage:  

pitch = myFrame2pitch(frame, fs, method, plotOpt);  

where frame is the vector of input frame, fs is the sample rate, method is the used 

pitch tracking method ('acf' for ACF, 'amdf' for AMDF, etc), pitch is the output pitch 

value in semitone. If plotOpt is not zero, your function needs to plot the frame, the 

ACF or AMDF curve, and the selected pitch point. Moreover, you function should 

have the capability for self demo. Please refer to frame2acf.m or frame2amdf.m in the 

Audio Processing Toolbox. (Hint: You will use several functions in the Audio 

Processing Toolbox, including freq2pitch.m、frame2acf.m、frame2amdf.m, etc. 

Moreover, you will also use myAcf2pitch.m and myAmdf2pitch.m in the previous 

exercises.)  

7. (**) Computation, display, and playback of pitch by ACF： Before trying this 

exercise, you should fully understand this example since this exercise follow the 

example closely. In this exercise, you are request to write an m-file script 

myWave2PitchByAcf01.m which accomplish the following tasks:  



o Record your own singing for 8 seconds, with 16 KHz, 16 bits, mono, and save it 

to a file test.wav. (You can use speech instead of singing, but the pitch tracking 

will be harder for speech.) Use this file DoReMi.wav unless there is absolutely 

no way for you to record.  

o Read test.wav and do frame blocking with a frame size of 512 and a overlap of 

0.  

o Compute the volume of each frame and find the volume threshold.  

o Compute ACF for each frame.  

o Identify the pitch point and compute the pitch in semitone.  

o Process the identify pitch vector to make it smooth, and to remove unlikely pitch. 

Possible methods include:  

a. If a frame has a volume lower than the volume threshold, set the 

corresponding pitch to zero.  

b. If an element in the pitch vector is out of the range of human voices, set 

it to zero.  

c. If an element in the pitch vector goes too high or too low compared with 

its neighbors, set it to the avarage of its neighbors (assuming its 

neighbors have similar pitch.)  

d. Smooth the pitch vector using median filter. (The corresponding 

command is median.)  

e. Any other methods that you can think of to do better post-processing on 

the pitch vector.  

o Plot the result with three subplots in a figure:  

a. The first subplot is the original waveform of the audio signals.  

b. The second subplot is the volume.  

c. The third subplot is the identified pitch vector.  

All three subplots should have the same time axis in terms of second.  

o Play the identify pitch vector. (Hint: you can use pvPlay.m in the Audio 

Processing Toolbox.)  



You need to fine-tune your program such that the identify pitch should be as close as 

possible to the original singing. You need to demo the following items to TA:  

9. Playback of test.wav.  

10. Plots mentioned earlier.  

11. Playback of the pitch vector.  

8. (***) Computation, display, and playback of pitch by AMDF： Write an m-file script 

myWave2PitchByAmdf01.m to repeat the previous exercise, but use AMDF instead. 

Compare your result with that of the previous example. (Hint: This is harder than the 

previous one since there might be several equally good minimum points to select.)  

9. (***) Computation, display, and playback of pitch by ACF/AMDF： Write an m-file 

script myWave2PitchByAmdf01.m to repeat the previous exercise, but use 

ACF/AMDF instead. Compare your result with that of the previous example. (Hint: 

This is harder than the previous one since there might be several equally good 

minimum points to select.)  

10. (***) Wave-to-pitch computation： Write an m-file function myWave2pitch.m which 

compute a pitch vector from a given stream of audio signals, with the usage:  

pitch = myWave2pitch(wave, fs, frameSize, overlap, method);  

where wave is input audio signals, fs is the sample rate, frameSize is the frame size in 

samples, overlap is the overlap in samples, and method specifies the method used for 

pitch tracking: 'acf' for ACF and 'amdf' for AMDF. If there is no pitch in a given frame, 

the corresponding element in the output pitch vector should be zero. (Hint: you should 

try the previous exercise before attemping this one.)  

11. (*) Recording task: Children's song recording： This recording task requires you to 

do recordings of children's songs and to manually label the pitch of the recordings. 

Please refer to this page for more details.  

Chapter 8: 音高追蹤的應用 

8-1 旋律辨識 



旋律辨識（Melody Recognition）是根據音高來辨識音樂的技術，其基本目的乃是要讓使用者

在哼唱一首歌之後，系統即可以從使用者的歌聲計算出音高向量，接者以此音高向量在音樂資料

庫中比對，找出最接近的歌。由於這種找歌方式並不牽涉到音樂的 Metadata（例如歌曲名稱、

歌詞、歌手、專輯、作詞者、作曲者等文字資訊），所以又稱為「內容式的音樂檢索」（Content-based 

Music Retrieval）。  

（待完成，請稍候，謝謝！）  

8-2 音調評分 

「音調評分」（Intonation Assessment）的目的是要以電腦來自動評斷一個人發音的音調是否

標準，並提示相異之處。舉例來說，外國人到了台灣學國語，最難學的就是國語的四聲，所以他

們會說「窩腰刀胎杯刊顛鷹」（我要到台北看電影），我們一聽，就知道是外國人在講國語，因

為完全沒有音調（全部都是一聲）。同樣地，我們在學英文時，碰到較長的句子，也很難把英文

的音調抓準，大部分只能平平地唸，因此老外一聽到老中講音調怪怪的英文，就知道你不是 native 

speaker。「音調評分」的目的，就是希望以電腦的快速運算能力，來顯示你講的英文語調和老

外的標準語調到底差多少，並同時顯示差異之處，以達到電腦輔助語言學習（CALL, 

Computer-Assisted Language Learning）的宗旨。  

以下是一個簡單的範例：  

• 老外講的標準語句：Can I take your order?  

• 使用我講的好的測試語句，下圖是電腦畫的音調曲線，其中老外的音調曲線是用圓圈（藍

色）來標示，我的音調曲線則是用方塊（紅色）來標示。由於我講的音調還可以，尾音

有跟著上揚，所以兩條曲線的趨勢基本上是一致的，因此我得到了 88.9 分。  

 



• 使用我講的壞的測試語句，下圖是電腦畫的音調曲線，其中老外的音調曲線是用圓圈（藍

色）來標示，我的音調曲線則是用方塊（紅色）來標示。由於我講的音調是肯定句的音

調，尾音是下降的，和老外尾音上揚的的音調差很多，兩條曲線的趨勢並不一致，因此

我只得到了 51.2 分。  

 

可能的實際應用如下：  

• 英文覆讀機、電子英文學習機：我們已經將此音調計算及評分機制實現在 8-bit 8051 平

台和凌陽 16-bit SPCE061 平台，這兩款微控制器的價格都在一美元左右，因此很適合

用在移動式的語言學習機。例如用在英文覆讀機或電子英文學習機，使用者不但可以聽

到例句的發音，更可以對著機器講同樣一句話，系統就會根據音調相似度來評分，同時

在螢幕上畫出兩條音調曲線，讓使用者可以知道哪裡的音調不對，進而可以反覆練習。

同時也可以運用利用音調評分的機制來設計從基本到進階的音調自我測驗，以便循序漸

進、自我挑戰、精益求精。  

• 語言學習軟體：一般人常問的問題是：是否有可能針對語音內容的相似度進行評分呢？

基本上，若要對語音內容進行評分，就要牽涉到語音辨識的計算，因此計算量比較大，

比較難在低階的 MCU 平台實現。但由於一般個人電腦的運算能力已經很強大，因此

我們可以在一般個人電腦上進行完整的語音評分（音調評分只是其中一部份），可以用

在各種語言學習軟體，比對的參數比較廣泛，可以包含音量、音高、過零率、有聲與無

聲音、倒頻譜參數、音節持續時間等，以達到更客觀的評分與分析。  

8-3 語音評分 

由於個人電腦的普及和運算速度的提高，「電腦輔助語言學習」（CALL, Computer Assisted 

Language Learning）的研發已經到達可以商業化的階段，其中又以「電腦輔助發音訓練」（CAPT, 



Computer Assisted Pronunciation Training）最受到矚目，因為其實用性很高，互動性很強，可

以大量彌補口說語言師資的不足。一般而言，我們又把「電腦輔助發音訓練」簡稱為「語音評分」

或「發音評分」等。  

以口說英文為例，語音評分的目的是要以電腦來自動評斷一個人的一句英文發音是否標準，並和

老外講的同一句話來進行比較，以圖表列出相近及相異之處，並以聲音或動畫來提示正確發音，

讓使用者反覆練習，以改進個人的英語發音。語音評分的流程可以說明如下：  

1. 對標準語句及測試語句抽取出語音的特徵參數（通常是 MFCC, Mel-frequency Cepstral 

Coefficients）。  

2. 以 Viterbi Decoding 來進行 Forced Alignment，以便切出來每一個子音及母音。此部

分需用到語者無關（Speaker-independent）的英文語音辨識核心。  

3. 對每一個子音及母音進行評分因素的擷取，包含音量、音高、音長等，以及之前已經取

得的 MFCC。  

4. 對每一個評分因素進行個別評分，然後進行加權平均，以得到最後的評分結果。這些評

分的因素有：  

a. 音色：語音的內容及發音的準確性，此部份的分數通常是經由計算 Acoustic 

Models 的機率值，並和類似音進行排名而得的分數，而不是直接和標準發音進

行比較所得的分數。這是因為標準發音的範例可能有限（例如只有男生或女生），

因此直接進行音色的相似度比對可能會造成使用者期望的誤差。  

b. 音調：經由每一個音節的音高曲線來和目標發音進行相似度比對。若是中文，就

要加上聲調辨識，以便決定使用者的發音是否符合華語的聲調和變調規則。  

c. 韻律（或是音長）：經由每一個音節的發音長度，來和目標語句進行相似度比對。  

d. 強度：經由每一個音節的發音音量，來和目標語句進行相似度比對。  

這邊有一個簡單的範例，我們先使用老外講的標準語句：She had your dark suit in greasy wash 

water all year，經由 Forced Alignment 處理後，可以得到下列結果：  

 



由上圖可看出，經由 Forced Alignment 之後，電腦已經將每一個音標所在的區域自動標示出來，

一旦這些標示是對的，以後的步驟就很簡單，我們就可以針對每一個音標來進行個別評分，然後

再計算總分。因此這部分「切音」的結果可說是影響評分系統的最重要因素。（為了使切音的結

果正確，我們的英文辨識引擎使用了兩個語料，一個是傳統的英文語料 TIMIT，另一個是台灣地

區的英文語料，此部分的語料收集是由工研院負責統籌，參與錄音與整理語料的學校包含台灣大

學、清華大學、交通大學、成功大學、師範大學）。  

使用我講的好的測試語句，下圖是波形及經由 Forced Alignment 的結果，基本上的切音位置都

是正確的：  

 
得到的評分結果是：  

Pitch  (22.40%):  93.64 

Magnitude (7.45%):  79.68 

Rhythm  (17.24%):  85.25 

Pronunciation (52.91%):  76.29 

--------------------------------------------- 

Score:  83.10 

 

若使用我講的差的測試語句，下圖是波形及經由 Forced Alignment 的結果：  

 
得到的評分結果是：  

Pitch  (22.40%):  91.58 



Magnitude (7.45%):  85.48 

Rhythm  (17.24%):  80.31 

Pronunciation (52.91%):  72.77 

--------------------------------------------- 

Score:  80.98 

 

在這一句英文中，我故意漏掉「wash」這個英文字，因此會導致在進行切音的位置錯誤，由上圖

可以看出，wash 的前半部被放在 water 語音的位置，而 water 則整個被壓縮了。由於唸法的

不完整，造成切字的錯誤，因此整段話的分數就會比較低。  

相關應用方面，可以列出如下：  

• 語言學習軟體：由於一般個人電腦的運算能力已經很強大，因此我們可以在一般個人電

腦上進行完整的語音評分，可以用在各種語言學習軟體，以達到更客觀的評分與分析，

以進行電腦輔助口說英語教學。  

• 英文覆讀機、電子英文學習機、PDA：由於語音評分需要的計算量相當大，因此比較難

在於低階的嵌入式系統（例如 8 位元或是 16 位元的 MCU）。但如果將平台放寬到 32 

位元的平台（例如 ARM），我們就可以進行比較完整的語音評分，可以隨時隨地進行

電腦輔助口說英語教學。（在低階的平台上，還是可以進行音調評分。）  

8-4 音腔評分 

（趕工中，請稍候，謝謝！）  

8-5 國語音調辨識 

（待完成，請稍候，謝謝！）  

第 8 章作業 

1. (**) 「一個音框是否有音高」的辨識： 請先由此比賽取得資料集 DS.mat（執行 

goCollectData.m 所得到的輸出檔案），請用你自己的錄音（有標示音高的檔案，至少



5 個）即可。請寫一個 MATLAB 程式 pitchExistTest01.m，先載入資料 DS.mat，然

後對資料集進行正規化後（將每個特徵的數值範圍進行線性調整，使其機率分佈接近於

平均值為零、標準差為 1 的高斯機率密度分佈，可用 dataNormalize.m 來對資料正規

化）後，來進行下列作業　. ：  

a. 請使用 KNNR 分類器以及 Leave-one-out 的效能指標，來選取最好的兩個特徵

（因為資料量不大，可用窮舉法）。請畫出 1 個圖，代表特徵依次被選取的過程。

所得到的圖形應該類似下圖：  

 

（提示：可用 inputSelectExhaustive.m 來進行輸入特徵的窮舉法選取。）  

b. 請顯示上一小題之二維資料的分佈概況。所得到的圖形應該類似下圖：  



 

（提示：可用 dcprDataPlot 來畫出資料的分佈圖。）  

c. 請針對上述二維的正規化資料，使用 SGC (Single-Gaussian Classifier)來對資料

進行分類，請畫出每個類別的 Gaussian 曲面，所得到的圖形應該類似下圖：  

 



（提示：可參考此範例。）  

d. 請畫出出上述分類法所對應的 Decision Boundaries，以及分類正確及錯誤的資

料點。所得到的圖形應該類似下圖：  

 

（提示：可參考此範例。）  

2. (***) 程式競賽：音高追蹤： 請見此連結。  

3. (***) 程式競賽：判斷一個音框是否具有音高： 請見此連結。  

Chapter 9: Digital Signals and Systems (數位訊號與系統) 

9-1 Discrete-Time Signals (離散時間訊號) 

Old Chinese version  

All signals in the real-world are continuous. In contrast, all signals stored in a computer use the 

unit of byte as the basic storage unit. Therefore these signals are referred to discrete-time 

signals. In mathematical notations, discrete-time signals can be represented by x(nT), where T 

is the sampling period (the reciprocal of the sample rate), n is an integer and nT is the elapsed 



time. For simplicity, we shall use x[n] to represent the discrete-time signal at time nT, with T 

implicitly defined.  

Hint  
In fact, signals stored in a computer are discrete in both time and their values. For the discussion for this chapter, we are only 

concerned with the discretization in time. 

In the following, we shall introduce some of the commonly used discrete-time signals:  

The unit impulse signal δ[n] is zero everywhere except at n = 0, where its value is 1. 

Mathematically, we can express the unit impulse signal as the following expression:  

δ[n] = 1, if n=0 

δ[n] = 0, otherwise

We can plot the unit impluse signal as follows:  

Example 1Input file digitalSignalsAndSystems/impulse01.m 
% Plot an unit impulse signal 

 

n = -5:5; 

x = 0*n; 

index=find(n==0); 

x(index)=1; 

 

% plot 

stem(n, x); 

axis([-inf, inf, -0.2, 1.2]); 

xlabel('n'); ylabel('x'); 

title('Unit Impulse Signal \delta[n]'); 

Output figure  

 



 

 

If we delay the unit impulse signal by k sample points, we have the following equation:  

δ[n-k] = 1, if n=k 

δ[n-k] = 0, otherwise

The above delayed unit imulse signal can be plotted as follows:  

Example 2Input file digitalSignalsAndSystems/impulse02.m 
% Plot an unit impulse signal 

 

n = -5:5; 

x = 0*n; 

index=find(n==0); 

x(index)=1; 

 

% plot 

stem(n, x); 

axis([-inf, inf, -0.2, 1.2]); 

xlabel('n'); ylabel('x'); 

title('Delayed Unit Impulse Signal \delta[n-k]'); 

set(gca, 'xticklabel', {'k-5', 'k-4', 'k-3', 'k-2', 'k-1', 'k', 'k+1', 'k+2', 'k+3', 'k+4', 'k+5'}); 



Output figure  

 

 

 

The above delayed unit impulse signal have the property of masking out other signals not at n = 

k. In other words, if we multiply any signals x[n] (n = -∞～∞) with δ[n-k], only the term of x[n-k] is 

left. This can be expressed as the following equation:  

x[k] = Σn=-∞
∞δ[n-k]‧x[n] 

By using this property, we can express any discrete-time signals as a linear combination of the 

unit impulse signals. This is especially handy when we derive the response of a linear 

time-invariant system. See the following section for more details.  

The unit step signal u[n] is 1 when n≧0, and 0 elsewhere. In mathematical notations, we have  

u[n] = 1, if n≧0 

u[n] = 0, otherwise

The unit step signal can be plotted, as shown in the next example:  



Example 3Input file digitalSignalsAndSystems/unitStep01.m 
% Plot an unit impulse signal 

 

n = -5:5; 

x = 0*n; 

index=find(n>=0); 

x(index)=1; 

 

% plot 

stem(n, x); 

axis([-inf, inf, -0.2, 1.2]); 

xlabel('n'); 

ylabel('x'); 

title('Unit Step Signal u[n]'); 

Output figure  

 

 

 

It should be noted that the unit impulse signal is the first-order difference of the unit step signal:  



δ[n] = u[n] - u[n-1].  

The sinusoidal signal is another commonly used discrete-time signals:  

sin[n] = sin(2πf(nT)) = sin(ωn))  

where f is the oscillation frequency of the sinusoidal signal and ω ( = 2πfT) is the normalized 

angular frequency. The sinusoidal signal can be plotted as follows:  

Example 4Input file digitalSignalsAndSystems/sinusoid01.m 
% Plot a sinusoidal signal 

 

n = 0:40; 

omega=0.3; 

x = sin(omega*n); 

 

% plot 

stem(n, x); 

axis([-inf, inf, -1.2, 1.2]); 

xlabel('n'); 

ylabel('x'); 

title('sin[\omega n]'); 

Output figure  

 



 

 

 

9-2 Linear Time-Invariant Systems (線性非時變系統) 

Old Chinese version  

For any given discrete-time signal x[n], we can send it to a system to obtain the output signal 

y[n], with the following mathematical notations:  

y[n] = L{x[n]}  

In other words, the input to the sysmte is a function x[n], n = 0～∞, while the output is also a 

function y[n], n = 0～∞。  

If the system, denoted by L{‧}, satisfies the following equations, it is called linear:  

1. If L{x[n]} = y[n], then L{kx[n]} = ky[n].  

2. If L{x1[n]} = y1[n] and L{x2[n]}= y2[n], then L{x1[n] + x2[n]} = y1[n] + y2[n].  

The above equations can be reduced to a single one:  



If L{x1[n]} = y1[n] and L{x2[n]}= y2[n], then L{ax1[n] + bx2[n]} = ay1[n] + by2[n], for all constants a 

and b.  

The above equation is referred to as the superposition principle. Namely, if a system satifies 

the superposition principle, then it is a linear system.  

If L{‧} satisties the following equation, it is called time-invariant:  

If L{x[n]} = y[n], then L{x[n-k]} = y[n-k], for all k ≧ 0.  

If a system is linear and time-invariant, we call it a linear time-invariant system, or LTI sytem 

for short.  

Hint  
For simplicity, we shall assume the input signal x[n] = 0 when n < 0. In other words, x[n] is activated when n ≧ 0, thus y[n] 

is nonzero only when n ≧ 0. 

For the rest of this book, we should assume all the systems under discussion are LTI systems.  

9-3 Convolution (旋積) 

Old Chinese version  

For any given arbitrary signal x[n], we can express it as a linear combination of the unit impulse 

signals, as follows:  

x[n] = Σk=0
∞x[k]δ[n-k]  

The right-hand side of the above equation can be viewed as the situation where  

• k is the index for time.  

• x[k] is a fixed function of time index k.  

• δ[n-k] is a function parameterized by n.  

Similarly, the above equation can be rewritten into another format:  

x[n] = Σk=0
∞x[n-k]δ[k]  

The right-hand side of the above equation can be viewed as the situation where  

• k is the index for time.  



• δ[k] is a fixed function of time index k.  

• x[n-k] is a function parameterized by n.  

For a given LTI system L{‧}, when the input signal x[n] is decomposed by the first method, the 

output y[n] can be expressed as follows:  

y[n] = L{x[n]}  

 = L{Σk=0
∞x[k]δ[n-k]} 

 = Σk=0
∞x[k]L{δ[n-k]} 

 = Σk=0
∞x[k]h[n-k]  

where h(n-k) = L{δ(n-k)} is the response of the system with respect to the input of the unit 

impulse signal at n = k. In other words, the output of an LTI system is determined by the input 

signal x[n] and the system's impulse response h[n]. More specifically, the impulse response of 

an LTI system exclusively determine the characteristics of the system.  

We can use the following plots to demonstrate the operations of the above formula:  

Example 1Input file digitalSignalsAndSystems/convolution01.m 
% Plot the operation of convolution 

 

n = -7:7; 

x = [0 0 0 0 0 0 0 1 2 3 0 0 0 0 0]; 

 

subplot(4,2,7); 

stem(n, x); 

limit=[min(n), max(n), 0, 5]; 

axis(limit); 

title('Input x[n]'); 

 

subplot(4,2,1); 

x0=0*x; 

x0(8)=x(8); 

stem(n, x0); 

axis(limit); 



h=text(0, x0(8), 'x[0]'); set(h, 'horiz', 'center', 'vertical', 'bottom'); 

 

subplot(4,2,2); 

y0=0*x; 

index=find(x0); 

for i=index:length(n) 

 y0(i)=x0(index)*exp(-(i-index)/2); 

end 

stem(n, y0); 

axis(limit); 

h=text(0, x0(8), 'x[0]*h[n-0]'); set(h, 'vertical', 'bottom'); 

 

subplot(4,2,3); 

x1=0*x; 

x1(9)=x(9); 

stem(n, x1); 

axis(limit); 

h=text(1, x1(9), 'x[1]'); set(h, 'horiz', 'center', 'vertical', 'bottom'); 

 

subplot(4,2,4); 

y1=0*x; 

index=find(x1); 

for i=index:length(n) 

 y1(i)=x1(index)*exp(-(i-index)/2); 

end 

stem(n, y1); 

axis(limit); 

h=text(1, x1(9), 'x[1]*h[n-1]'); set(h, 'vertical', 'bottom'); 

 

subplot(4,2,5); 

x2=0*x; 

x2(10)=x(10); 

stem(n, x2); 

axis(limit); 

h=text(2, x2(10), 'x[2]'); set(h, 'horiz', 'center', 'vertical', 'bottom'); 

 

subplot(4,2,6); 



y2=0*x; 

index=find(x2); 

for i=index:length(n) 

 y2(i)=x2(index)*exp(-(i-index)/2); 

end 

stem(n, y2); 

axis(limit); 

h=text(2, x2(10), 'x[2]*h[n-2]'); set(h, 'vertical', 'bottom'); 

 

subplot(4,2,8); 

stem(n, y0+y1+y2); 

axis(limit); 

title('Output y[n] = x[0]*h[n-0] + x[1]*h[n-1] + x[2]*h[n-2]'); 

Output figure  

 

 

 



If we choose to use the second method for decomposing x[n], then y[n] can be expressed as 

follows:  

y[n] = L{x[n]}  

 = L{Σk=0
∞x[n-k]δ[k]} 

 = Σk=0
∞x[n-k]L{δ[k]} 

 = Σk=0
∞x[n-k]h[k]} 

Since the computation of y[n] is used frequently, we shall define the convolution of two signals 

x[n] and h[n] as follows:  

y[n] = x[n]＊h[n] = Σk=0
∞x[k]h[n-k]} = Σk=0

∞x[n-k]h[k]} 

The convolution operator has the following characteristics:  

1. Commutative law:  

x[n]＊y[n] = y[n]＊x[n] 

2. Associative law:  

(x[n]＊y[n])＊z[n] = x[n]＊(y[n]＊z[n]) 

3. Distributive law:  

x[n]＊(y[n]+z[n]) = x[n]＊y[n]+x[n]＊z[n] 

4. Shift property:  

y[n]=x[n]＊h[n] → y[n-n1-n2]=x[n-n1]＊h[n-n2] 

5. Convolving with unit impulse:  

x[n]＊δ[n] = x[n] 



6. Width:  

If duration(x[n])=N1 and duration(y[n])=N2, then duration(x[n]＊y[n])=N1+N2-1. 

9-4 Eigen Functions (固有函數) 

Old Chinese version  

If the output of a system has the same type as its input signal, then the input signal is referred to 

as the eigen function of the system. In this section, we shall demonstrate that the exponential 

function (including the sinusoidal function as a special case) is an eigen function of the LTI 

system.  

Suppose that the input signal to our LTI system is an exponential function:  

x[n]=epn  

Then the output can be derived based on convolution:  

y[n] = x[n]*h[n]  

 = Σkx[n-k] h[k] 

 = Σkep(n-k) h[k] 

 = Σkepn-pk h[k] 

 = epnΣke-pk h[k] 

 = epnH(ep)  

In other words, the output signal y[n] is equal to the original input signal multiplied by a constant 

H(ep)（= Σke-pk h[k], which is not a function of time）. Hence it can be established that the 

exponential function is the eigen function of an LTI system.  

Based on the above fact, for any given input signal that can be decomposed as a linear 

combination of exponential functions, we can then apply the superposition principle to find the 

responses of these exponential functions first, and then linearly combine these responses to 

obtain the final output. In mathematical notations, we have:  

x[n] = aepn + beqn → y[n] = aH(ep) + bH(eq)  



Since the exponential function and the sinusoidal function are related by the famous Euler 

identity:  

ejθ = cos(θ) + j sin(θ)  

Therefore we can express the sinusoidal function as a linear combination of the exponential 

function:  

cos(θ) = (ejθ + e-jθ)/2 = Re{ejθ}  

sin(θ) = (ejθ - e-jθ)/(2j) = Im{ejθ}  

As a result, when the input signal is:  

x[n] = cos(ωn) = Re{ejωn}  

The corresponding response is:  

y[n] = Re{ejωnH(ejω)}  

 = Re{ejωn |H(ejω)| ejθ}, θ = ∠H(ejω) 

 = Re{|H(ejω)| ej(ωn+θ)}  

 = |H(ejω)| cos(ωn + θ)  

From the above derivation, we can see that the output is still a sinusoidal function, except that 

the amplitude is multiplied by |H(ejω)|, and the phase is shifted by θ = ∠H(ejω).  

Some terminologies are explained next.  

• The multiplier |H(ejω)| represents how the system amplifies or compresses the input 

signal depending on the angular frequency ω. Hence |H(ejω)| is called magnitude 

frequency response.  

• ∠H(ejω) is called phase frequency response, which is not used often since human's 

aural perception is not sensitive to phase shift.  

• H(ejω) is called the system's frequency response.  

Similarly, when the input signal is  

x[n] = sin(ωn) = Im{ejωn}  

The output can be derived as follows:  

y[n] = Im{ejωnH(ejω)}  

 = Im{ejωn |H(ejω)| ejθ}, θ = ∠H(ejω) 



 = Im{|H(ejω)| ej(ωn+θ)}  

 = |H(ejω)| sin(ωn + θ)  

In summary, we have the following important conclusion. For an LTI system, if the input signal 

is a single sinusoidal function, the output is also a same-frequency sinusoidal function, with the 

amplitude and phase modified by the system's frequency response H(ejω).  

In general, we can use an complex exponential function to subsume the input of sine and 

cosine functions:  

x[n] = ejωn  

The corresponding output is  

y[n] = ejωnH(ejω)  

Alternatively, H(ejω) is also referred to as the the discrete-time Fourier transform of h[n], 

which can be expressed as the following equation:  

H(ejω) = Σkh[k]e-jωk  

In the real world, we cannot have the complex exponential function as the input to a system. 

However, the derivation based on complex numbers does hold mathematically and it indeed 

makes our derivation more concise.  

Chapter 10: Fourier Transform (傅立葉轉換) 

10-1 Discrete-Time Fourier Transform (離散時間傅立葉轉換) 

Old Chinese version  

In the previous chapter, we have covered several important concepts:  

• The frequency response of an LTI system is the discrete-time Fourier transform of the 

system's impulse response.  

• The frequency response of an LTI system specifies how the system changes the 

amplitude and phase of an input sinusoidal function with a specific angular frequency 

ω.  



In particular, for a given discrete-time signal x[n], its discrete-time Fourier transform (DTFT for 

short) and the corresponding inverse transform can be expressed as follows:  

X(ejω) = Σke-jωk x[k]  

x[n] = (2π)-1∫2πX(ejω)ejωn dω

We can derive the second expression from the first expression easily. Since the period of X(ejω) 

is 2π, we can use any interval of length 2π for integration.  

From the second expression, we can decompose x[n] into an infinite linear combination of ejωn, 

where the amplitude of each basis function is specified by X(ejω). In other words, X(ejω) is 

actually the amplitude of the component of x[n] at the continuous angle frequency ω. This can 

be futher elaborated, as follows.  

From elementary calculus, we know that the integration of f(x) can be approximated by 

summation:  

∫0
2π f(x) dx = limN→∞Σk=0

N-1 f(k‧(2π/N))‧(2π/N) 

Therefore if x[n] is real, we can approximate it by using summation:  

x[n] = Re{(2π)-1∫2πX(ejω)ejωn dω}  

 = (2π)-1∫2π Re{X(ejω)ejωn} dω  

 = (2π)-1∫2π |X(ejω)| cos(ωn + θ) dω, θ=∠X(ejω)  

 = N-1 Σk=0
N-1 [|X(ejω)| cos(ωn + θ)]ω=2πk/N dω, N→∞ 

From the derivation above, x[n] has been decomposed into the linear combination N cosine 

functions with the angular frequency ω from 0 to 2π(N-1)/N, and the corresponding amplitude 

|X(ejω)|/N.  

From the discussion in this section and the previous section, we know that there are two 

important meanings of DTFT：  



1. If h[n] is the impulse response of an LTI system, then H(ejω)=Σkh[k]e-jωk represents the 

gain (|H(ejω)|) and phase shift (∠H(ejω)) when the input signal's angular frequency is 

ω.  

2. If x[n] is an arbitrary signal, then X(ejω)=Σkx[k]e-jωk represents the amplitude (|H(ejω)|) 

and the phase shift ( ∠H(ejω)) of the component at ω of x[n].  

Some important properties of DTFT are listed next.  

1. Linearity:  

z[n] = a x[n] + b y[n] ←→ Z(ejω) = a X(ejω) + b Y(ejω)  

2. Periodicity:  

X(ej(ω + 2 k π)) = X(ejω)  

Namely, the period of DTFT is 2π。  

3. Delay in time:  

y[n] = x[n-k] ←→ Y(ejω) = ejωk X(ejω)  

4. Convolution:  

y[n] = x[n]*h[n] ←→ Z(ejω) = X(ejω)Y(ejω)  

That is, convolution in time domain corresponds to multiplication in frequency domain.  

If x[n] is a real sequence, we can separate its DTFT X(ejω) into the real and imaginary parts:  

X(ejω) = Σke-jωk x[k]  

 = Σkx[k] cos(ωk) - j Σkx[k] sin(ωk) 

 = XR(ejω) + j XR(ejω)  

其中  

XR(ejω) = Σkx[k] cos(ωk)  

XI(ejω) = - Σkx[k] sin(ωk)  



This functions have the following properties:  

• Conjugate symmetric: X*(ejω) = X(e-jω)  

• XR(ejω) is an even function.  

• XI(ejω) is an odd function.  

• |X(ejω)| is an even function.  

• ∠X(ejω) is an odd function.  

10-2 Discrete Fourier Transform (離散傅立葉轉換) 

Old Chinese version  

In the previous section, we have introducde the discrete-time Fourier transform (DTFT) that 

transforms a discrete-time signal into a continuous function of its frequency components. Since 

DTFT is continuous in frequency, it is not suitable for digital processing by computers. In this 

section, we shall introduce discrete Fourier transform (DFT for short) that converts a 

discrete-time signals into its discrete-frequency components, which are suitable for further 

computer processing.  

Suppose that the discrete-time signal can be expressed as x[n], n = 0~N-1. Then the formula for 

DFT is:  

X[k]=(1/N) Σn=0
N-1 x[n] e-j2πnk/N, k=0, ..., N-1  

The coefficient X[k] represents the amplitude and phase of the component of x[n], n = 0~N-1 at 

a specific frequency (to be detailed later). Therefore X[k], k = 0~N-1, are usually referred to as 

spectrum.  

From X[k], we can also compute the original signal x[n], as follows:  

x[n]=Σk=0
N-1 X[k]ej2πnk/N, n=0, ..., N-1  

Hint  
DTFT and DFT are very similar; both are used to convert a discrete-time signal into its components at different frequencies. 

However, the former generates a continuous-frequency spectrum while the later produces a discrete-frequency spectrum. 



Here we have several important facts about X[k]:  

• If the length of the original signal x[n] is N, then the length of X[k] is also N.  

• In general, X[k] is a complex number with a magnitude of |(X[k])| （abs(X[k]) in 

MATLAB） and a phase of ∠X[k] (angle(X[k]) or atan(imag(X[k])/real(X[k]) in 

MATLAB).  

• If the time-domain signal x[n] is real, then X[k] and X[N-k] are complex conjugate 

staisfying |(X[k])| = |(X[N-k])| and ∠X[k] = -∠X[N-k].  

If x[n] is real, we can express it as follows:  

x[n] = X[0] 

+ X[1]ej2πn/N + X[N-1]ej2πn(N-1)/N 

+ X[2]ej2πn2/N + X[N-2]ej2πn(N-2)/N 

+ X[3]ej2πn3/N + X[N-3]ej2πn(N-3)/N 

+ ...  

For the terms involving k and N-k, we have  

X[k]ej2πnk/N + X[N-k]ej2πn(N-k)/N 

= X[k]ej2πnk/N + X[N-k]ej2πne-j2πnk/N 

= X[k]ej2πnk/N + X[N-k]e-j2πnk/N 

= 2 Re{X[k]ej2πnk/N}  

If we use mk and pk to represent the magnitude and phase of X[k], respectively, then the above 

equation can be simplified as follows:  

2 Re{mkexp(jpk)exp(j2πnk/N)} 

= 2 Re{mkexp(j(2πnk/N + pk)} 

= 2mkcos(2πnk/N + pk)  

In general, N is even and we can express x[n] as  

x[n] = X[0] + 2Σk=1
N/2-1mkcos(2πnk/N + pk) + mN/2cos(πn + pN/2)  

The above equation states that we can decompose x[n] into a DC component X[0] plus the 

summation of N/2 sinusoidal functions, where the amplitude and phase are determined by 

those of X[k], respectively. Therefore for a given real sequence x[n], we only need to have to 

observe X[k]，k = 0 ~ N/2 for spectrum analysis. This "one-side spectrum" consists of 1+N/2 



sinusoidal functions, with frequencies located at 0, fs/N, 2fs/N, 3fs/N, ..., N/2fs/N (=fs/2), with fs as 

the sample rate. These sinusoidal functions are referred as the fundamental sinusoids.  

If we employ the above direct method for computing DFT, the time complexity if O(n2). In 1965, 

a smart method based on divide-and-conquer was proposed to compute DFT with a time 

complexity of O(n log n). The method is called fast Fourier transform (FFT for short). In other 

words, FFT is an efficient method for computing DFT.  

First of all, let us use the MATLAB command fft to verify the conjugate property of the DFT 

coefficients:  

Example 1Input file ft/fftSym01.m 
% This example demonstrates the pair-wise conjugate of DFT (此範例展示實數訊號之 DFT 係數的共軛性) 

 

N=64;   % Length of vector 

x=randn(N, 1); 

z=fft(x); 

plot(z, 'o'); grid on 

%compass(z); 

% Connect conjugate pairs (將上下對稱的共軛點連起來) 

for i=2:N/2+1 

 twoPoint=z([i, N-i+2]); 

 line(real(twoPoint), imag(twoPoint), 'color', 'r'); 

end 

Output figure  

 



 

 

From the above plot, it can be seen that the DFT coefficients appear as complex conjugate 

pairs, which have the x-axis as the symmetric axis.  

Hint  
For real sequence x[n], n = 0~N-1:  

• If N is even, then X[0] and X[N/2] are real and all the other terms are complex conjugate pairs.  

• When N is odd, only X[0] is real and all the other terms are complex conjugate pairs. 

If x[n] happens to be one of the fundamental sinusoids, then the DFT coefficients should have 

only two non-zero terms, as shown in the following example:  

Example 2Input file ft/fft01.m 
% This example demonstrates the two-side DFT of a sinusoidal function (此範例展示一個簡單正弦波的傅立葉轉換，以雙

邊頻譜來顯示) 

% Since the sinusoidal function has a frequency to be a multiple of fs/N, the two-side DFT have only two nonzero terms. (此

正弦波的頻率恰巧是 freqStep 的整數倍，所以雙邊頻譜應該只有兩個非零點) 

 

N = 256;   % length of vector (點數) 

fs = 8000;   % sample rate (取樣頻率) 

freqStep = fs/N;  % freq resolution in spectrum (頻域的頻率的解析度) 



f = 10*freqStep;  % freq of the sinusoid (正弦波的頻率，恰是 freqStep 的整數倍) 

time = (0:N-1)/fs;  % time resolution in time-domain (時域的時間刻度) 

y = cos(2*pi*f*time);  % signal to analyze 

Y = fft(y);   % spectrum 

Y = fftshift(Y);  % put zero freq at the center (將頻率軸的零點置中) 

 

% Plot time data 

subplot(3,1,1); 

plot(time, y, '.-'); 

title('Sinusoidal signals'); 

xlabel('Time (seconds)'); ylabel('Amplitude'); 

axis tight 

 

% Plot spectral magnitude 

freq = freqStep*(-N/2:N/2-1); % freq resolution in spectrum (頻域的頻率的解析度) 

subplot(3,1,2); 

plot(freq, abs(Y), '.-b'); grid on 

xlabel('Frequency)');  

ylabel('Magnitude (Linear)'); 

 

% Plot phase 

subplot(3,1,3); 

plot(freq, angle(Y), '.-b'); grid on 

xlabel('Frequency)');  

ylabel('Phase (Radian)'); 

Output figure  

 



 

 

We can observe that:  

• In theory, the magnitude spectrum should have only two nonzero points. In practice, 

those zero points are not zero exactly, but very close to zero due to truncation or 

round-off errors.  

• The phase spectrum appears to be random. This is simply because of the fact that most 

of the spectrum is zero, and hence the phase does not bear any significant meanings 

at all.  

If x[n] is not one of the fundamental sinusoids, DFT will still decompose x[n] into the 

combination of fundamental sinusoids with spreaded magnitude spectrum:  

Example 3Input file ft/fft02.m 
% This example demonstrates the one-side DFT of a sinusoidal function (此範例展示一個簡單正弦波的傅立葉轉換，以雙

邊頻譜來顯示) 

% Since the sinusoidal function has a frequency not a multiple of fs/N, the two-side DFT smears. (此正弦波的頻率不是 

freqStep 的整數倍，所以雙邊頻譜會「散開」(Smearing)) 

 

N = 256;     % length of vector (點數) 

fs = 8000;     % sample rate (取樣頻率) 



freqStep = fs/N;    % freq resolution in spectrum (頻域的頻率的解析度) 

f = 10.5*freqStep;    % freq of the sinusoid (正弦波的頻率，不是 freqStep 的整數倍) 

time = (0:N-1)/fs;    % time resolution in time-domain (時域的時間刻度) 

signal = cos(2*pi*f*time);   % signal to analyze 

[mag, phase, freq]=fftTwoSide(signal, fs, 1); % compute and plot the two-side DFT 

Output figure  

 

 

 

In the above example, we have used the function fftTwoSide.m (in the Audio Processing 

Toolbox) for the computation of two-side spectrum, and then plot the time-domain signal, 

magnitude spectrum and phase spectrum.  

If x[n] is real, the magnitude spectrum is symmetric while the phase spectrum is anti-symmetric. 

Since we are dealing with audio signals which are all real, so we only need to have one-side 

spectrum for our analysis. In the following example, we shall use the function fftOneSide.m (in 

the Audio Processing Toolbox) to plot the time-domain signal and one-side magnitude/phase 

spectrum:  



Example 4Input file ft/fft03.m 
% Same as fft02.m but use one-side DFT instead (同 fft02.m，但以單邊頻譜來顯示) 

N = 256;     % length of vector (點數) 

fs = 8000;     % sample rate (取樣頻率) 

freqStep = fs/N;    % freq resolution in spectrum (頻域的頻率的解析度) 

f = 10.5*freqStep;    % freq of the sinusoid (正弦波的頻率，不是 freqStep 的整數倍) 

time = (0:N-1)/fs;    % time resolution in time-domain (時域的時間刻度) 

signal = cos(2*pi*f*time);   % signal to analyze 

[mag, phase, freq]=fftOneSide(signal, fs, 1); % Compute and plot one-side DFT 

Output figure  

 

 

 

Hint  
Signals from the real world are all real, so we only need to use fftOneSide.m to obtain one-side spectrum for spectrum 

analysis. 

In the following example, we shall demonstrate the one-side spectrum for a frame of an audio 

signal:  



Example 5Input file ft/fft04.m 
% This example demonstrates the DFT of a real-world audio signal (顯示一個語音音框的單邊頻譜) 

[y, fs]=wavread('welcome.wav'); 

signal=y(2047:2047+237-1); 

[mag, phase, freq]=fftOneSide(signal, fs, 1); 

Output figure  

 

 

 

In the above example, we can observe that there are harmonics in the magnitude spectrum. 

This is the result due to the fact that the time-domain signal is quasi-periodic. (To make the 

harmonics more obvious, we have carefully selected a time-domain signal containing three 

fundamental periods.)  

When the value of k is getting bigger, we will have the high-frequency components which are 

more likely to be noises in the original time-domain signal. We can actually delete 

high-frequency components and use only low-frequency components to approximate and 

synthesize the original signal, to achieve the following goals:  



• Data compression  

• Low-pass filter  

In the next example, we shall demonstrate how to synthesize a square wave using sinusolids:  

Example 6Input file ft/fftApproximate01.m 
% This example demos the effect of square wave approximation by DFT 

 

figure 

L = 15; N = 25; 

x = [ones(1,L), zeros(1,N-L)]; 

frameSize=length(x); 

 

runNum=3; 

for i=1:runNum, 

 pointNum=ceil(frameSize/(2*runNum)*i); % Actually 2*pointNum-1 coefs are taken 

 X = fft(x); 

 magX = abs(X); 

 

 remainIndex=[1:pointNum, frameSize-pointNum+2:frameSize]; 

 X2=0*X; 

 X2(remainIndex)=X(remainIndex); 

 x2=ifft(X2); 

 x2=real(x2); 

 

 subplot(3,2,2*i-1); 

 stem(x); 

 hold on 

 plot(x2, 'r'); 

 hold off 

 title(sprintf('x[n] and %d-points approximation', 2*pointNum-1)); 

 axis([-inf,inf,-0.5,1.5]) 

 

 subplot(3,2,2*i); 

 shiftedMagX=fftshift(magX); 

 plot(shiftedMagX, '.-'); axis tight 

 title('DFT of x[n]') 

 hold on 



 temp=ifftshift(1:frameSize); 

 ind=temp(remainIndex); 

 plot(ind, shiftedMagX(ind), 'or'); grid on 

 hold off 

end 

Output figure  

 

 

 

It is obvious that when we use more DFT coefficients for the synthesis, the reconstructed 

waveform is closer to the original one.  

The following example uses sinusoids to approximate the waveform of an utterance:  

Example 7Input file ft/fftApproximate02.m 
% This example demos the effect of FFT approximation 

 

[y, fs]=wavread('welcome.wav'); 

x=y(2047:2047+237-1); 



 

figure 

frameSize=length(x); 

 

runNum=3; 

for i=1:runNum, 

 pointNum=ceil(frameSize/(8*runNum)*i); % Actually 2*pointNum-1 coefs are taken 

 X = fft(x); 

 magX = abs(X); 

 

 remainIndex=[1:pointNum, frameSize-pointNum+2:frameSize]; 

 X2=0*X; 

 X2(remainIndex)=X(remainIndex); 

 x2=ifft(X2); 

 x2=real(x2); 

 

 subplot(3,2,2*i-1); 

 plot(x, '.-'); 

 hold on 

 plot(x2, 'r'); 

 hold off 

 title(sprintf('x[n] and %d-points approximation', 2*pointNum-1)); 

 set(gca, 'xlim', [-inf inf]); 

 

 subplot(3,2,2*i); 

 shiftedMagX=fftshift(magX); 

 plot(shiftedMagX, '.-'); 

 title('DFT of x[n]') 

 hold on 

 temp=ifftshift(1:frameSize); 

 ind=temp(remainIndex); 

 plot(ind, shiftedMagX(ind), 'or'); grid on 

 hold off 

 set(gca, 'xlim', [-inf inf]); 

end 

 

  



Output figure  

 

 

 

From the above example, it is known that we only need a few DFT coefficents to synthesize the 

original signal with satisfactory quality. This fact demonstrate that the high-frequency 

components are not important in reconstructing the original signal.  

For perfectly periodic signals, DFT will insert zeros inbetween, as follows:  

Example 8Input file ft/fftRepeat01.m 
% This example demos the effect of FFT for purely periodic signals 

[y, fs]=wavread('welcome.wav'); 

x=y(2047:2126);  % A full fundamental period 

 

runNum=5; 

for i=1:runNum 

 repeatedX = x*ones(1,i); 

 signal = repeatedX(:); 

% signal=zeros(runNum*length(x), 1);  % Zero-padding version 



% signal(1:length(repeatedX))=repeatedX(:); % Zero-padding version 

 [mag, phase, freq, powerDb]=fftOneSide(signal, fs); 

 mag=mag/length(signal); % Divided by vector length to normalize magnitude (due to the formula used by 

MATLAB) 

 

 subplot(runNum,2,2*i-1); 

 plot(signal, '.-'); grid on 

 title('x[n]'); set(gca, 'xlim', [-inf inf]); 

 

 subplot(runNum,2,2*i); 

 plot(freq, mag, '.-'); grid on; 

% set(gca, 'yscale', 'log'); 

 title('DFT of x[n]'); axis tight; 

end 

Output figure  

 

 

 

Why is it so? Without rigorous analysis, can you explain this phonomenon by intuition?  



If we pad the signal x[n] with zeros, the corresponding effect in frequency domain is 

interpolation, as shown in the next example:  

Example 9Input file ft/fftZeroPadding01.m 
% This example demos the effect of zero-padding of DFT 

 

for i=1:3 

 L = 5; N = 20*i; 

 x = [ones(1,L), zeros(1,N-L)]; 

 subplot(3,3,i*3-2); 

 stem(x); 

 title(sprintf('x[n] with N=%d',N)); 

 set(gca, 'xlim', [-inf inf]); 

 

 omega=((1:N)-ceil((N+1)/2))*(2*pi/N); 

 X = fft(x); 

 magX = fftshift(abs(X)); 

 subplot(3,3,i*3-1); 

 plot(omega, magX, '.-'); 

 title('Magnitude of DFT of x[n]') 

 set(gca, 'xlim', [-inf inf]); 

 

 phase=fftshift(angle(X)); 

 subplot(3,3,i*3); 

 plot(omega, phase, '.-'); 

 title('Phase of DFT of x[n]') 

 set(gca, 'xlim', [-inf inf]); 

 set(gca, 'ylim', [-pi pi]); 

end 

Output figure  

 



 

 

In other words, zero padding does not add new information to x[n]. However, DFT need to have 

the same length and the net result is the interpolation to have a dense sampling in the 

frequency domain.  

Hint  
For common audio signal processing, if the frame size is not 2n, then we need to use zero padding until the frame size is 2n. 

This is also easier for DFT since a fast method based on 2-radix FFT can be invoked directly. 

If we down sample the signal in the time domain, then the result in the spectrum is shown next:  

Example 10Input file ft/fftReSample01.m 
% This example demos the effect of FFT approximation 

 

[y, fs]=wavread('welcome.wav'); 

x=y(2047:2126); 

x=y(2047:2326); 

n=length(x); 

F = (0:n/2)*fs/n; 

 

runNum=5; 



for i=1:runNum, 

 newX=x(1:2^(i-1):length(x)); 

 newFs=fs/(2^(i-1)); 

 X = fft(newX); 

 magX = abs(X); 

 frameSize=length(newX); 

 

 subplot(runNum,2,2*i-1); 

 plot(newX, '.-'); 

 title('x[n]'); 

 set(gca, 'xlim', [-inf inf]); 

 

 subplot(runNum,2,2*i); 

 freq = (0:frameSize/2)*newFs/frameSize; 

 magX = magX(1:length(freq)); 

 M=nan*F; 

 M(1:length(magX))=magX; 

 plot(F, M, '.-'); 

 title('DFT of x[n]') 

 axis tight; 

end 

  

Output figure  

 



 

 

The more times we do down sampling, the smoother the time-domain signal will be. Therefore 

the high-frequency components in the spectrum are missing gradually.  

Moreover, we can express the time-domain signal as a linear combination of the fundamental 

sinusoids and then apply the least-square estimate to find the best coefficients of these 

sinusoids. It turns out that the coefficients identified by the least-square method are the same 

as those by fft, as shown next:  

Example 11Input file ft/fftViaLse01.m 
% FFT via least-squares estimate 

N=8; 

fs=1; 

time=(0:N-1)'/fs; 

x=rand(N,1)*2-1; 

 

A=ones(N,1); 

for i=1:N/2 

 A=[A, cos(2*pi*(i*fs/N)*time), sin(2*pi*(i*fs/N)*time)]; 

end 



th=A\x; 

 

plotNum=fix(N/2)+2; 

subplot(plotNum, 1, 1); 

N2=(N-1)*5+1;  % Insert 4 points between every 2 points for better observation (兩點間插入四點，以便觀

察波形) 

timeFine=linspace(min(time), max(time), N2); 

x2=th(1)*ones(N,1); 

plot(timeFine, th(1)*ones(N2,1), '.-', time, x2, 'or');  % Plot the first term (畫出第一項) 

ylabel('Term 0 (DC)'); axis([0 N/fs -1 1]); grid on 

 

for i=1:N/2  % Plot terms 2 to 1+N/2 (畫出第二至第 1+N/2 項) 

 freq=i*fs/N; 

 y=th(2*i)*cos(2*pi*freq*time)+th(2*i+1)*sin(2*pi*freq*time); % a term (每一項) 

 x2=x2+y; 

 fprintf('i=%d, sse=%f\n', i, norm(x-x2)/sqrt(N)); 

 subplot(plotNum, 1, i+1); 

 yFine=th(2*i)*cos(2*pi*(i*fs/N)*timeFine)+th(2*i+1)*sin(2*pi*(i*fs/N)*timeFine); % Finer verison for 

plotting 

 plot(timeFine, yFine, '.-', time, y, 'or'); ylabel(sprintf('Term %d', i)); 

 axis([0 N/fs -1 1]); grid on 

end 

 

% Plot the original signal (畫出原來訊號) 

subplot(plotNum, 1, plotNum) 

plot(time, x, 'o-'); axis([0 N/fs -1 1]); grid on 

xlabel('Time'); ylabel('Orig signals'); 

 

% Transform LSE result back to fft format for comparison (將 th 轉回 fft 並比較結果) 

F=fft(x); 

F2=[]; 

F2(1)=th(1)*N; 

for i=1:N/2 

 F2(i+1)=(th(2*i)-sqrt(-1)*th(2*i+1))*N/2; 

 if (i==N/2) 

  F2(i+1)=2*F2(i+1); 

 end 



end 

% symmetric of DFT (DFT 的對稱性) 

for i=N/2+2:N 

 F2(i)=F2(N-i+2)'; 

end 

 

error1=sum(abs(F2-F.')); % F.' is simple transpose (F.' 是不進行共軛轉換的轉置) 

error2=sum(abs(F2-F'));  % F' is conjugate transpose (F' 是進行共軛轉換的轉置) 

fprintf('Errors after transforming LSE to DFT coefficients (將 LSE 轉換成 DFT 係數的誤差)：error1=%f, error2=%f\n', 

error1, error2); 

fprintf('Due to the symmetry of DFT, one of the above error terms should be zero. (由於 DFT 的對稱性，上述誤差應該有

一項為零。)\n'); 

Output message 

i=1, sse=0.462366 

i=2, sse=0.310406 

i=3, sse=0.281771 

i=4, sse=0.000000 

Errors after transforming LSE to DFT coefficients (將 LSE 轉換成 DFT 係數的誤差)：

error1=0.000000, error2=10.527154 

Due to the symmetry of DFT, one of the above error terms should be zero. (由於 DFT 的

對稱性，上述誤差應該有一項為零。) 

  

Output figure  

 



 

第 10 章作業 

Old Chinese version  

1. (**) Spectrum of vowel of constant pitch： Write an m-file script to accomplish the 

following tasks:  

a. Record your utterance of the English letter "e" for 3 seconds, with 

16KHz/16Bits/Mono. (Please try to maintain a stable pitch and volume.)  

b. Use buffer2.m and frame2volume.m to do frame blocking and volume 

computation, respectively, with frameSize=32ms, overlap=0ms. Please identify 

the frame with the maximum volume, and the preceding/succeeding 2 frames, 

to have 5 frames in total.  

c. Use fft to compute the spectrum of these 5 frames and have the following plots:  

1. subplot(3,1,1): time-domain signals of these 5 frames.  

2. subplot(3,1,2): one-side magnitude spectra of these 5 frames.  

3. subplot(3,1,3): one-side phase spectra of these 5 frames.  

You plots should be similar to the following:  



 

Hints:  

 Before performing FFT on each frame, you should multiply the frame 

with the Hamming window to make the harmonics more obvious. The 

command is "frame=frame.*hamming(length(frame))".  

 When you plot the magnitude spectrum, you can use log scale on y-axis. 

To achieve this, you can simply issue "set(gca, 'yscale', 'log')" after the 

second plot.  

 In order to make the phase a continuous curve, you can use the function 

unwrap.  

d. Observe your plots and find which plots are more consistent within 5 frames? 

(Hint: Since our pronunciation of these 5 frames are the same, the features 

which are more invariant can be used for speech recognition.)  

2. (**) Spectrum of vowel of varying pitch： Write an m-file script to repeat the 

previous exercise, but change the recording to Mandarin of 「一ˊ」. This exercise can 

be used to observe the variation of spectrum under varying pitch.  

3. (**) ACF/AMDF of vowel of constant pitch： Repeat the first exercise using ACF & 

AMDF as the features. You plots should be similar to the following:  



 

4. (***) Use spectrum for classifying vowels： Write an m-file script to do the following 

tasks:  

a. Record a 5-second clips of the Chinese vowel 「ㄚ、ㄧ、ㄨ、ㄝ、ㄛ」 (or the 

English vowels "a, e, i, o, u") with 16KHz/16Bits/Mono. (Please try to maintain a 

stable pitch and volume, and keep a short pause between vowels to facilitate 

automatic vowel segmentation. Here is a sample file for your reference.)  

b. Use epdByVol.m (in Audio Processing Toolbox) to detect the starting and ending 

positions of these 5 vowels. If the segmentation is correct, you should have 5 

sound segments from the 3rd output argument of epdByVol.m. Moreover, you 

should set plotOpt=1 to verify the segmentation result. Your plot should be 

similar to the following:  



 

If the segmentation is not correct, you should adjust the parameters to 

epdByVol.m until you get the correct segmentation.  

c. Use buffer2.m to do frame blocking on these 5 vowels, with frameSize=32ms 

and overlap=0ms. Please plot 5 plots of one-sided magnitude spectra (use 

fftOneSide.m) corresponding to each vowel. Each plot should contains as 

many curves of magnitude spectra as the number of frames in this vowel. Your 

plots should be similar to those shown below:  



 

d. Use knnrLoo.m (in DCPR Toolbox) to compute the leave-one-our recognition 

rate when we use the one-side magnitude spectrum to classify each frame into 

5 classes of different vowels. In particular, we need to change the dimension of 

the feature from 1 to 257 and plot the leave-one-out recognition rates using 

KNNR with k=1. What is the maximum recognition rate? What is the 

corresponding optimum dimension? Your plot should be similar to the next 

one:  



 

e. Record another clip of the same utterance and use it as the test data. Use the 

original clip as the train data. Use the optimum dimension in the previous 

subproblem to compute the the frame-based recognition rate of KNNR with k=1. 

What is the frame-based recognition rate? Plot the confusion matrix, which 

should be similar to the following figure:  



 

f. What is the vowel-based recognition rate? Plot the confusion matrix, which 

should be similar to the following figure:  

 



(Hint: The vowel-based recognition result is the voting of frame-based results. 

You can use mode to compute the result of voting.)  

5. (***) Use ACF for classifying vowels： Repeat the previous exercise by using ACF 

as the acoustic features. Does it perform better than magnitude spectrum? (Hint: 

Some sort of ACF normalization will make the recognition better.)  

6. (***) Use AMDF for classifying vowels： Repeat the previous exercise by using 

AMDF as the acoustic features. Does it perform better than magnitude spectrum? 

(Hint: Some sort of AMDF normalization will make the recognition better.)  

Chapter 11: Digital Filters 

11-1 Filter Applications (濾波器應用) 

Old Chinese version  

In this section, we shall introduce the concept of digital filters and their applications. Most 

students who have taken DSP (digital signal processing) are more or less intimidated by the 

complexity of the underlying mathematics of digital filters. However, the focus of this section is 

on the applications of digital filters using MATLAB and the treatment should be pretty 

accessible for most engineering-majored students.  

To put it simply, a digital filter can be represented by two parameter vectors a and b, where the 

lenghts of a and b are p and q, respectively, and the first element of a is always 1, as follows:  

a = [1, a2, ... ap] 

b = [b1, b2, ... bq]  

If we apply a digital filter with parameters a and b to a stream of discrete-time signal x[n], the 

output y[n] should satisfy the following equation:  

y[n] + a2y[n-1] + a3y[n-2] + ... + apx[n-p+1] = b1x[n] + b2x[n-1] + ... + bqx[n-q+1] 

Or equivalently, we can express y[n] explicitly:  

y[n] = b1x[n] + b2x[n-1] + ... + bqx[n-q+1] - a2y[n-1] - a3y[n-2] - ... - apx[n-p+1]  



The preceding equation seems a little bit complicated. We shall give some more specific 

examples to make it more easily understood.  

First of all, if we have a filter with the parameters:  

a = [1] 

b = [1/5, 1/5, 1/5, 1/5, 1/5]  

Then the output of the filter is  

y[n] = (x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])/5  

This is a simple digital filter that sets y[n] as the average of the preceding five points of the input 

signals. In fact, this is a a so-called low-pass filter since after the averaging operator, the 

high-frequency component is averaged out while the low-frequency component is more or less 

retained. The effect of a low-pass filter is like putting a paper cup on the mouth while speaking, 

generating a murmuring-like indistinct sound.  

Hint  
Why putting a paper cup on the mouth makes it a low-pass filter? Can you think of an intuitive reason? 

The next example uses a low-pass filter on a speech input.  

Example 1Input file filter/lpf01.m 
waveFile='whatMovies.wav'; 

[x, fs, nbits]=wavread(waveFile); 

% Filter parameters 

a = [1]; 

b = [1, 1, 1, 1, 1]/5; 

y = filter(b, a, x); 

% Plot the result 

time = (1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); title('Original signal x[n]'); 

subplot(2,1,2); 

plot(time, y); title('Output signal y[n]'); 

wavwrite(y, fs, nbits, 'lpf01.wav'); % Save the output signal 

Output figure  



 

 

 

In the above example, "y = filter(b, a, x)" is the MATLAB command to generate the output signal 

y from the original signal x and the filter's parameters a and b. From the waveform plots, we can 

also observe that the high-frequency components (especially the unvoiced sounds, such as "s" 

in "movies" and "seen", and "c" in "recently") have a smaller amplitude after filtering. This is a 

typical effect of low-pass filters. We can also hear the original and the output signals:  

• Original signal x[n]：example/filter/whatMovies.wav  

• Output signal y[n]：example/filter/lpf01.wav  

Let us take a look at another filter with the parameters:  

a = [1] 

b = [1, -1]  

The output of the fitler is  

y[n] = x[n] - x[n-1]  

In other words, the output of the filter y[n] is equal to the difference of the preceding two points 

of x[n]. As the result, low-frequency components (with slow variations) will have low values 



while high-frequency components (with fast variations) will have high values. So this is a typical 

high-pass filter which amplifies high-frequency and suppresses low-frequency components. 

See the following example.  

Example 2Input file filter/hpf01.m 
waveFile='whatMovies.wav'; 

[x, fs, nbits]=wavread(waveFile); 

% Filter parameters 

a = [1]; 

b = [1, -1]; 

y = filter(b, a, x); 

% Plot the result 

time = (1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); title('Original signal x[n]'); 

subplot(2,1,2); 

plot(time, y); title('Output signal y[n]'); 

wavWrite(y, fs, nbits, 'hpf01.wav'); % Save the output signal 

Output figure  

 



 

 

From the waveform plots, we can observe that the amplitudes of the unvoiced sounds 

(high-frequency components) are relatively larger that of the voiced sounds (low-frequency 

components). We can also hear the sound clips directly:  

• Original signal x[n]：example/filter/whatMovies.wav  

• Output signal y[n]：example/filter/hpf01.wav  

After the high-pass filter, the output signal is like the output from a small radio set with noise-like 

creaky sounds.  

Besides low-pass and high-pass, digital filters can also produce some other familiar sound 

effects. For instance, if a filter has the following parameters:  

a = [1] 

b = [1, 0, 0, 0, ..., 0, 0.8] (That is, 3199 zeros between 1 and 0.8.)  

Then the output of the filter is:  

y[n] = x[n] + 0.8*x[n-3200]  



In other words, this filter can produce "one-fold echo" for the given input signal. If the sample 

frequency fs is 16kHz, then the time difference between the input and the echo is 3200/fs = 

3200/16000 = 0.2 second. Please see the following example.  

Example 3Input file filter/echo01.m 
waveFile='whatMovies.wav'; 

[x, fs, nbits]=wavread(waveFile); 

% Filter parameters 

delay=0.2; 

gain=0.8; 

a = [1]; 

b = [1, zeros(1, round(delay*fs)-1), gain]; 

y = filter(b, a, x); 

% Plot the result 

time = (1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); title('Original signal x[n]'); 

subplot(2,1,2); 

plot(time, y); title('Filter output y[n]'); 

wavWrite(y, fs, nbits, 'echo01.wav'); % Save the output signal 

Output message 

Warning: Data clipped during write to file:echo01.wav 

> In wavwrite>PCM_Quantize at 241 

  In wavwrite>write_wavedat at 267 

  In wavwrite at 112 

  In echo01 at 15 

  In goWriteOutputFile at 32 

  

Output figure  

 



 

 

In the above example, gain = 0.8 is the decay ratio of the echo, and delay = 0.2 is the delay time 

of the echo. We can hear the sound clips:  

• Original signal x[n]：example/filter/whatMovies.wav  

• Output signal y[n]：example/filter/echo01.wav  

The above filter can only produce one-fold echo. If we want to have a more realistic 

multiple-fold echo, we can use the following parameters:  

a = [1, 0, 0, 0, ..., 0, -0.8] (That is, 3199 zeros between 1 and -0.8.) 

b = [1]  

The output of the filter is  

y[n] = x[n] + 0.8*y[n-3200]  

The filter can produce a more realistic multiple-pass echo. If the sample frequency fs = 16kHz, 

then the time delay between echos is 3200/fs = 3200/16000 = 0.2 秒. See the following 

example.  

Example 4Input file filter/echo02.m 
waveFile='whatMovies.wav'; 

[x, fs, nbits]=wavread(waveFile); 



% Filter parameters 

delay=0.2; 

gain=0.8; 

a = [1 zeros(1, round(delay*fs)), -gain]; 

b = [1]; 

y = filter(b, a, x); 

% Plot the result 

time = (1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); title('Original signal x[n]'); 

subplot(2,1,2); 

plot(time, y); title('Filter output y[n]'); 

wavWrite(y, fs, nbits, 'echo02.wav'); % Save the output signal 

Output message 

Warning: Data clipped during write to file:echo02.wav 

> In wavwrite>PCM_Quantize at 241 

  In wavwrite>write_wavedat at 267 

  In wavwrite at 112 

  In echo02 at 15 

  In goWriteOutputFile at 32 

  

Output figure  

 



 

 

We can hear the sound clips:  

• Original signal x[n]：example/filter/whatMovies.wav  

• Output signal y[n]：example/filter/echo02.wav  

11-2 Filter Design (濾波器設計) 

Old Chinese version  

In the previous section, we have seen some basic filters and their applications. In this section, 

we shall cover some basic approaches to filter design using MATLAB.  

We can use the MATLAB command "butter" to design a Butterworth low-pass filter, with the 

following format:  

[b, a] = butter(order, wn, function)  

The input arguments to butter can be explained next:  



• order: order of the filte. A larger order leads to a better filtering effect. However, the 

required computing time is also proportional to the order since the the length of the 

parameters a and b is equal to order+1。  

• wn: normalized cutoff frequency within the range of 0 and 1. When the sample 

frequency is fs, the maximum allowable frequency in frequency-domain processing is 

fs/2. Therefore the normalized cutoff frequency wn is equal to the real cutoff 

frequency divided by fs/2.  

• function: a string representing the filter function, which could be 'low' or 'high', 

representing low-pass and high-pass, respectively.  

In the next example, we use the command "butter" to design a Butterworth low-pass filter.  

Example 1Input file filter/butter01.m 
fs=8000;  % Sampling rate 

filterOrder=5;  % Order of filter 

cutOffFreq=1000; % Cutoff frequency 

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low'); 

% === Plot frequency response 

[h, w]=freqz(b, a); 

plot(w/pi*fs/2, abs(h), '.-'); title('Magnitude frequency response'); 

grid on 

Output figure  

 



 

 

In the above example, we have designed a Butterworth filter with a cutoff frequency of 1000 Hz. 

The plot is the magnitude frequency response of the filter.  

When the order of the filter is bigger, the filtering effect is better at the cost of longer 

computation time. On the other hand, a smaller order leads to a shorter computation time and 

less desirable filtering effect. The following example demonstrates the magnitude frequency 

response as a function of the order of the Butterworth filter.  

Example 2Input file filter/butter02.m 
fs=8000;   % Sampling rate 

cutOffFreq=1000;  % Cutoff frequency 

allH=[]; 

for filterOrder=1:8; 

 [b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low'); 

 % === Plot frequency response 

 [h, w]=freqz(b, a); 

 allH=[allH, h]; 

end 

plot(w/pi*fs/2, abs(allH)); title('Frequency response of a low-pass utterworth filter'); 



legend('order=1', 'order=2', 'order=3', 'order=4', 'order=5', 'order=6', 'order=7', 'order=8'); 

  

Output figure  

 

 

 

As it is obvious in the above example, when the order is increased from 1 to 8, the magnitude 

frequency response is becoming sharper at the cutoff frequency of 1000 Hz.  

We can apply the above filter to a clip of a pop song to see if the high-frequency components 

can be removed. See the next example.  

Example 3Input file filter/butter03.m 
cutOffFreq=1000; % Cutoff frequency 

filterOrder=5;  % Order of filter 

[x, fs, nbits]=wavRead('wubai_solicitude.wav'); 

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low'); 

x=x(60*fs:90*fs); % 30-second signal 

y=filter(b, a, x); 



% ====== Save output files 

wavwrite(x, fs, nbits, 'wubai_solicitude_orig.wav'); 

wavwrite(y, fs, nbits, sprintf('wubai_solicitude_%d.wav', cutOffFreq)); 

% ====== Plot the result 

time=(1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); 

subplot(2,1,2); 

plot(time, y); 

Output message 

Warning: Data clipped during write to file:wubai_solicitude_1000.wav 

> In wavwrite>PCM_Quantize at 241 

  In wavwrite>write_wavedat at 267 

  In wavwrite at 112 

  In butter03 at 9 

  In goWriteOutputFile at 32 

  

Output figure  

 



 

 

We can hear the original and the output clips:  

• Original signal x[n]：example/filter/wubai_solicitude_orig.wav  

• Output signal y[n]：example/filter/wubai_solicitude_1000.wav  

The playback of the output signal demonstrates that the high-frequency components are 

eliminated from the original signal.  

If we set up the cutoff frequency to 100 Hz, then the output signal is almost inaudible unless we 

have a speaker with a subwoofer. See the next example.  

Example 4Input file filter/butter04.m 
cutOffFreq=100;  % Cutoff freq (截止頻率) 

filterOrder=5;  % Order of filter (濾波器的階數) 

[x, fs, nbits]=wavRead('wubai_solicitude.wav'); 

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low'); 

x=x(60*fs:90*fs); % 30 seconds of singing (30 秒歌聲) 

y=filter(b, a, x); 

% ====== Save wav files (存檔) 

wavwrite(x, fs, nbits, 'wubai_solicitude_orig.wav'); 



wavwrite(y, fs, nbits, sprintf('wubai_solicitude_%d.wav', cutOffFreq)); 

% ====== Plotting (畫圖) 

time=(1:length(x))/fs; 

subplot(2,1,1); 

plot(time, x); 

subplot(2,1,2); 

plot(time, y); 

Output message 

Warning: Data clipped during write to file:wubai_solicitude_100.wav 

> In wavwrite>PCM_Quantize at 241 

  In wavwrite>write_wavedat at 267 

  In wavwrite at 112 

  In butter04 at 9 

  In goWriteOutputFile at 32 

  

Output figure  

 



 

 

• Original signal x[n]：example/filter/wubai_solicitude_orig.wav  

• Output signal y[n]：example/filter/wubai_solicitude_100.wav  

Obviously, after the low-pass filter at a cutoff frequency of 100 Hz, most of the sounds are 

removed except for those from the bass drum.  

Hint  
In fact, the periodical sounds of the bass drum can help us tracking the beat of the music. This problem of beat tracking is an 

active research topic in the literature of music information retrieval. 

If you cannot identify the sounds of the bass drum, you can hear the playback of the following 

clips one by one. (If you use CoolEdit for playback, the progress bar can help you identify where 

the sounds of the bass drum are.)  

• Original signal：example/filter/wubai_solicitude_orig.wav  

• Cutoff frequency = 1000 Hz：example/filter/wubai_solicitude_1000.wav  

• Cutoff frequency = 500 Hz：example/filter/wubai_solicitude_500.wav  

• Cutoff frequency = 400 Hz：example/filter/wubai_solicitude_400.wav  

• Cutoff frequency = 300 Hz：example/filter/wubai_solicitude_300.wav  



• Cutoff frequency = 200 Hz：example/filter/wubai_solicitude_200.wav  

• Cutoff frequency = 100 Hz：example/filter/wubai_solicitude_100.wav  

In fact, by supplying appropriates input parameters, we can use the command "butter" to design 

four types of filters, including low-pass, high-pass, band-pass, band-stop filters. The following 

example plots typical frequency responses of these filters.  

Example 5Input file filter/butter05.m 
fs=8000;  % Sampling rate 

filterOrder=5;  % Order of filter 

 

% ====== low-pass filter 

cutOffFreq=1000; 

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low'); 

[h, w]=freqz(b, a); 

subplot(2,2,1); 

plot(w/pi*fs/2, abs(h), '.-'); 

xlabel('Freq (Hz)'); title('Freq. response of a low-pass filter'); grid on 

 

% ====== high-pass filter 

cutOffFreq=2000; 

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'high'); 

[h, w]=freqz(b, a); 

subplot(2,2,2); 

plot(w/pi*fs/2, abs(h), '.-'); 

xlabel('Freq (Hz)'); title('Freq. response of a high-pass filter'); grid on 

 

% ====== band-pass filter 

passBand=[1000, 2000]; 

[b, a]=butter(filterOrder, passBand/(fs/2)); 

[h, w]=freqz(b, a); 

subplot(2,2,3); 

plot(w/pi*fs/2, abs(h), '.-'); 

xlabel('Freq (Hz)'); title('Freq. response of a band-pass filter'); grid on 

 

% ====== band-stop filter 

stopBand=[1000, 2000]; 



[b, a]=butter(filterOrder, stopBand/(fs/2), 'stop'); 

[h, w]=freqz(b, a); 

subplot(2,2,4); 

plot(w/pi*fs/2, abs(h), '.-'); 

xlabel('Freq (Hz)'); title('Freq. response of a band-stop filter'); grid on 

Output figure  

 

 

 

 

第 11 章作業 

1. (**) Use filters to obtain pure-tone signals： Write a MATLAB script to separate 

a mixed signal of 3 pure-tone components, as follows.  

a. Load the audio file mixSinusoid.wav which is composed of three pure-tone 

signals with some noise. Can you identify the pitch of these three pure-tone 

signals by aural perception?  



b. Use fftOneSide.m to plot the one-side magnitude spectrum with respect to 

frequency. What are the frequencies of these three components?  

c. Use three Butterworth filters (low-pass, band-pass, and hig-hpass) to recover 

these three components. What is the cutoff frequency you used for designing 

each filter? Plot these three components for the first 1000 points.  

d. Play these three signals to see if you can hear pure tone. Add these three 

signals together and play it to see if you can resynthesize the original signal.  

Chapter 12: Speech Features 

12-1 共振峰 

Old Chinese version  

一般語音訊號的母音部分，都會出現重複性很高的基本週期，在一個基本週期內的波形，就是代

表語音的內容或音色。因此在理論上，我們可以進行下列分析：  

1. 在一個音框內抓出一個代表性的基本週期。  

2. 求取這個基本週期的 DFT。  

3. 使用 DFT 來計算頻譜能量，並用這些頻譜能量來代表這個音框的特徵，以進行語音辨

識。  

一般來說，頻譜能量的個數仍然太多，因此一個簡單的方式，是採用頻譜能量圖的局部最大點，

稱為共振峰（Formants），來作為語音特徵。以下這個範例，就是抓出一個音框內的一個完整的

基本週期，然後算出頻譜能量及對應的共振峰： Error: 

D:\users\jang\books\audioSignalProcessing\example\chap11-speechFeature\fftFormant01.m 

does not exist! 

12-2 MFCC 

Old Chinese version  



For speech/speaker recognition, the most commonly used acoustic features are mel-scale 

frequency cepstral coefficient (MFCC for short). MFCC takes human perception sensitivity 

with respect to frequencies into consideration, and therefore are best for speech/speaker 

recognition. We shall explain the stey-by-step computation of MFCC in this section.  

1. Pre-emphasis: The speech signal s(n) is sent to a high-pass filter:  

s2(n) = s(n) - a*s(n-1)  

where s2(n) is the output signal and the value of a is usually between 0.9 and 1.0. The 

z-transform of the filter is  

H(z)=1-a*z-1  

The goal of pre-emphasis is to compensate the high-frequency part that was 

suppressed during the sound production mechanism of humans. Moreover, it can also 

amplify the importance of high-frequency formants. The next example demonstrates 

the effect of pre-emphasis.  

Example 1Input file speechFeature/preEmphasis01.m 

waveFile='whatFood.wav'; 

[y, fs, nbits]=wavread(waveFile); 

a=0.95; 

y2 = filter([1, -a], 1, y); 

time=(1:length(y))/fs; 

wavwrite(y2, fs, nbits, 'whatFood_preEmphasis.wav');  

 

subplot(2,1,1); 

plot(time, y); 

title('Original wave: s(n)'); 

subplot(2,1,2); 

plot(time, y2); 

title(sprintf('After pre-emphasis: s_2(n)=s(n)-a*s(n-1), a=%f', a)); 

 

subplot(2,1,1); 



set(gca, 'unit', 'pixel'); 

axisPos=get(gca, 'position'); 

uicontrol('string', 'Play', 'position', [axisPos(1:2), 60, 20], 'callback', 'sound(y, fs)'); 

subplot(2,1,2); 

set(gca, 'unit', 'pixel'); 

axisPos=get(gca, 'position'); 

uicontrol('string', 'Play', 'position', [axisPos(1:2), 60, 20], 'callback', 'sound(y2, fs)'); 

  

Output figure  

 

 

 

In the above example, the speech after pre-emphasis sounds sharper with a smaller 

volume:  

o Original: whatFood.wav  

o After pre-emphasis: whatFood_preEmphasis.wav  



2. Frame blocking: The input speech signal is segmented into frames of 20~30 ms with 

optional overlap of 1/3~1/2 of the frame size. Usually the frame size (in terms of 

sample points) is equal power of two in order to facilitate the use of FFT. If this is not 

the case, we need to do zero padding to the nearest length of power of two. If the 

sample rate is 16 kHz and the frame size is 320 sample points, then the frame 

duration is 320/16000 = 0.02 sec = 20 ms. Additional, if the overlap is 160 points, then 

the frame rate is 16000/(320-160) = 100 frames per second.  

3. Hamming windowing: Each frame has to be multiplied with a hamming window in 

order to keep the continuity of the first and the last points in the frame (to be detailed 

in the next step). If the signal in a frame is denoted by s(n), n = 0,…N-1, then the 

signal after Hamming windowing is s(n)*w(n), where w(n) is the Hamming window 

defined by:  

w(n, α) = (1 - α) - α cos(2πn/(N-1))，0≦n≦N-1  

Different values of α corresponds to different curves for the Hamming windows shown 

next:  

Example 2Input file speechFeature/hammingWindow01.m 

% Plot of generalized Hamming windows 

N=100; 

n=(0:N-1)'; 

alpha=linspace(0,0.5,11)'; 

h=[]; 

for i=1:length(alpha), 

 h = [h, (1-alpha(i))-alpha(i)*cos(2*pi*n/(N-1))]; 

end 

plot(h); 

title('Generalized Hamming Window: (1-\alpha)-\alpha*cos(2\pin/(N-1)), 0\leqn\leqN-1'); 

 

legendStr={}; 

for i=1:length(alpha), 

 legendStr={legendStr{:}, ['\alpha=', num2str(alpha(i))]}; 

end 



legend(legendStr); 

Output figure  

 

 

 

In practice, the value of α is set to 0.46. MATLAB also provides the command hamming 

for generating the curve of a Hamming window.  

4. Fast Fourier Transform or FFT: Spectral analysis shows that different timbres in 

speech signals corresponds to different energy distribution over frequencies. 

Therefore we usually perform FFT to obtain the magnitude frequency response of 

each frame.  

When we perform FFT on a frame, we assume that the signal within a frame is 

periodic, and continuous when wrapping around. If this is not the case, we can still 

perform FFT but the incontinuity at the frame's first and last points is likely to introduce 



undesirable effects in the frequency response. To deal with this problem, we have two 

strategies:  

a. Multiply each frame by a Hamming window to increase its continuity at the first 

and last points.  

b. Take a frame of a variable size such that it always contains a integer multiple 

number of the fundamental periods of the speech signal.  

The second strategy encounters difficulty in practice since the identification of the 

fundamental period is not a trivial problem. Moreover, unvoiced sounds do not have a 

fundamental period at all. Consequently, we usually adopt the first strategy to mutiply 

the frame by a Hamming window before performing FFT. The following example 

shows the effect of multiplying a Hamming window.  

Example 3Input file speechFeature/windowing01.m 

fs=8000; 

t=(1:512)'/fs; 

f=306.396; 

 

original=sin(2*pi*f*t)+0.2*randn(length(t),1); 

windowed=original.*hamming(length(t)); 

[mag1, phase1, freq1]=fftOneSide(original, fs); 

[mag2, phase2, freq2]=fftOneSide(windowed, fs); 

 

subplot(3,2,1); plot(t, original); grid on; axis([-inf inf -1.5 1.5]); title('Original signal'); 

subplot(3,2,2); plot(t, windowed); grid on; axis([-inf inf -1.5 1.5]); title('Windowed signal'); 

subplot(3,2,3); plot(freq1, mag1); grid on; title('Energy spectrum (linear scale)'); 

subplot(3,2,4); plot(freq2, mag2); grid on; title('Energy spectrum (linear scale)'); 

subplot(3,2,5); plot(freq1, 20*log10(mag1)); grid on; axis([-inf inf -20 60]); title('Energy spectrum (db)'); 

subplot(3,2,6); plot(freq2, 20*log10(mag2)); grid on; axis([-inf inf -20 60]); title('Energy spectrum (db)'); 

Output figure  

 



 

 

In the above example, the singal is a sinusoidal function plus some noise. Without the 

use of a Hamming window, the discontinuity at the frame's first and last points will 

make the peak in the frequency response wider and less obvious. With the use of a 

Hamming, the peak is sharper and more distinct in the frequency response. The 

following example uses a speech signal for the same test.  

Example 4Input file speechFeature/windowing02.m 

waveFile='littleStar.wav'; 

[y, fs]=wavread(waveFile); 

 

n=512; 

t=(1:n)'/fs; 

startIndex=30418; 

endIndex=startIndex+n-1; 

 

original=y(startIndex:endIndex); 

windowed=original.*hamming(n); 

[mag1, phase1, freq1]=fftOneSide(original, fs); 



[mag2, phase2, freq2]=fftOneSide(windowed, fs); 

 

subplot(3,2,1); plot(original); grid on; axis([-inf inf -1 1]); title('Original signal'); 

subplot(3,2,2); plot(windowed); grid on; axis([-inf inf -1 1]); title('Windowed signal'); 

subplot(3,2,3); plot(freq1, mag1); grid on; title('Energy spectrum (linear scale)'); 

subplot(3,2,4); plot(freq2, mag2); grid on; title('Energy spectrum (linear scale)'); 

subplot(3,2,5); plot(freq1, 20*log(mag1)); grid on; axis([-inf inf -80 120]); title('Energy spectrum (db)'); 

subplot(3,2,6); plot(freq2, 20*log(mag2)); grid on; axis([-inf inf -80 120]); title('Energy spectrum (db)'); 

Output figure  

 

 

 

In the above example, we use a frame from a clip of singing voice for the same test. 

With the use of a Hamming window, the harmonics in the frequency response are 

much sharper.  

Remember that if the input frame consists of 3 identical fundamental periods, then the 

magnitude frequency response will be inserted 2 zeros between every two 



neighboring points of the frequency response of a single fundamental periods. (See 

the chapter on Fourier transform for more details.) In other words, the harmonics of 

the frequency response is generally caused by the repeating fundamental periods in 

the frame. However, we are more interested in the envelope of the frequency 

response instead of the frequency response itself. To extract an envelop-like features, 

we use the triangular bandpass filters, as explained in the next step.  

5. Triangular Bandpass Filters: We multiple the magnitude frequency response by a 

set of 20 triangular bandpass filters to get the log energy of each triangular bandpass 

filter. The positions of these filters are equally spaced along the Mel frequency, which 

is related to the common linear frequency f by the following equation:  

mel(f)=1125*ln(1+f/700)  

Mel-frequency is proportional to the logarithm of the linear frequency, reflecting similar 

effects in the human's subjective aural perception. The following example plots the 

relationship between the mel and the linear frequencies:  

Example 5Input file speechFeature/showMelFreq01.m 

linFreq=0:8000; 

melFreq=lin2melFreq(linFreq); 

plot(linFreq, melFreq); 

xlabel('Frequency'); 

ylabel('Mel-frequency'); 

title('Frequency to mel-frequency curve'); 

axis equal tight 

Output figure  

 



 

 

In practice, we have two choices for the triangular bandpass filters, as shown in the 

next example:  

Example 6Input file speechFeature/showTriFilterBank01.m 

fs=16000; 

filterNum=20; 

plotOpt=1; 

getTriFilterBankParam(fs, filterNum, plotOpt); 

Output figure  

 



 

 

The reasons for using triangular bandpass filters are two fold:  

o Smooth the magnitude spectrum such that the harmonics are flattened in order 

to obtain the envelop of the spectrum with harmonics. This indicates that the 

pitch of a speech signal is generally not presented in MFCC. As a result, a 

speech recognition system will behave more or less the same when the input 

utterances are of the same timbre but with different tones/pitch.  

o Reduce the size of the features involved.  

6. Discrete cosine transform or DCT: In this step, we apply DCT on the 20 log energy 

Ek obtained from the triangular bandpass filters to have L mel-scale cepstral 

coefficients. The formula for DCT is shown next.  

Cm=Σk=1
Ncos[m*(k-0.5)*π/N]*Ek, m=1,2, ..., L  

where N is the number of triangular bandpass filters, L is the number of mel-scale 

cepstral coefficients. Usually we set N=20 and L=12. Since we have performed FFT, 

DCT transforms the frequency domain into a time-like domain called quefrency 

domain. The obtained features are similar to cepstrum, thus it is referred to as the 



mel-scale cepstral coefficients, or MFCC. MFCC alone can be used as the feature for 

speech recognition. For better performance, we can add the log energy and perform 

delta operation, as explained in the next two steps.  

7. Log energy: The energy within a frame is also an important feature that can be easily 

obtained. Hence we usually add the log energy as the 13rd feature to MFCC. If 

necessary, we can add some other features at this step, including pitch, zero cross 

rate, high-order spectrum momentum, and so on.  

8. Delta cepstrum: It is also advantagous to have the time derivatives of 

(energy+MFCC) as new features, which shows the velocity and acceleration of 

(energy+MFCC). The equations to compute these features are:  

△Cm(t) = [Στ=-M
MCm(t+τ)τ] / [Στ=-M

Mτ2]  

The value of M is usually set to 2. If we add the velocity, the feature dimension is 26. If 

we add both the velocity and the acceleration, the feature dimension is 39. Most of the 

speech recognition systems on PC use these 39-dimensional features for recognition.  

第 12 章作業 

Old Chinese version  

1. (**) 計算中文母音共振峰並畫圖： 請寫一個 MATLAB 程式 

vowelFormantRecogChinese01.m，完成下列功能：  

a. 進行五秒錄音，錄音規格是 16KHz/16Bits/Mono，錄音內容是中文母音「ㄚ、ㄧ、

ㄨ、ㄝ、ㄛ」。（發音請盡量平穩，並在母音之間稍許停頓，以便後續進行自動

切音，可以試聽此範例檔案。）  

b. 使用 wave2formant.m (in ASR Toolbox) 來抓出兩個共振峰，相關規格是 

formantNum=2, frameSize=20ms, frameStep=10ms, lpcOrder=12，這些參數也

是 wave2formant.m 的預設參數。  

c. 使用 endPointDetect.m (in Audio Toolbox) 來找出這五個音的開始和結束位置。

請調整相關端點偵測參數，使得你的程式能夠自動地正確切出這五個音。你可以



設定 plotOpt=1，以便使用 endPointDetect.m 來畫出端點偵測結果，正確圖形

類似下圖：  

 

d. 並用不同的顏色，在二度空間畫出這五個音的共振峰。畫出圖形應該類似下圖：  

 



e. 請用 knnrLoo.m (in DCPR Toolbox) 來算出使用 knnr 將資料分成五類的 

leave-one-out 辨識率。  

2. (**) Frame to MFCC conversion： Write a MATLAB function frame2mfcc.m that can 

compute 12-dimensional MFCC from a given speech/audio frame. Please follow the 

steps in the text.  

Solution: Pleae check out the function in the Audio Processing Toolbox.  

3. (***) Use MFCC for classifying vowels： Write an m-file script to do the following 

tasks:  

a. Record a 5-second clips of the Chinese vowel 「ㄚ、ㄧ、ㄨ、ㄝ、ㄛ」 (or the 

English vowels "a, e, i, o, u") with 16KHz/16Bits/Mono. (Please try to maintain a 

stable pitch and volume, and keep a short pause between vowels to facilitate 

automatic vowel segmentation. Here is a sample file for your reference.)  

b. Use epdByVol.m (in Audio Processing Toolbox) to detect the starting and ending 

positions of these 5 vowels. If the segmentation is correct, you should have 5 

sound segments from the 3rd output argument of epdByVol.m. Moreover, you 

should set plotOpt=1 to verify the segmentation result. Your plot should be 

similar to the following:  

 



If the segmentation is not correct, you should adjust the parameters to 

epdByVol.m until you get the correct segmentation.  

c. Use buffer2.m to do frame blocking on these 5 vowels, with frameSize=32ms 

and overlap=0ms. Please generate 5 plots of MFCC (use frame2mfcc.m or 

wave2mfcc.m) corresponding to each vowel. Each plot should contains as many 

curves of MFCC vectors as the number of frames in this vowel. Your plots 

should be similar to those shown below:  

 

d. Use knnrLoo.m (in DCPR Toolbox) to compute the leave-one-our recognition 

rate when we use MFCC to classify each frame into 5 classes of different 

vowels. In particular, we need to change the dimension of the feature from 1 to 

12 and plot the leave-one-out recognition rates using KNNR with k=1. What is 

the maximum recognition rate? What is the corresponding optimum dimension? 

Your plot should be similar to the next one:  



 

e. Record another clip of the same utterance and use it as the test data. Use the 

original clip as the train data. Use the optimum dimension in the previous 

subproblem to compute the the frame-based recognition rate of KNNR with k=1. 

What is the frame-based recognition rate? Plot the confusion matrix, which 

should be similar to the following figure:  



 

f. What is the vowel-based recognition rate? Plot the confusion matrix, which 

should be similar to the following figure:  

 



(Hint: The vowel-based recognition result is the voting of frame-based results. 

You can use mode to compute the result of voting.)  

g. Perform feature selection based on sequential forward selection to select up to 

12 features. Plot the leave-one-out recognition rates with respective to the 

selected features. Your plot should be similar to the next one:  

 

What is the maximum recognition rate? What features are selected?  

h. Use LDA to project 12-dimentional data onto 2D plane and plot the data to see 

if the data has the tendency of natural clustering based on their classes. Your 

plot should be similar to the next one:  



 

What is the LOO recognition rate after LDA projection?  

i. Repeat the previous sub-problem using PCA.  

Chapter 13: Speaker Recognition (語者辨識) 

第 13 章作業 

1. (***) Programming contest: use GMM for speaker identification： Please see 

the detailed descriptions。  

Programming Contests for Audio Signal Processing 

Roger Jang (張智星) 

 
Old Chinese version  



The goal of this programming contest is to let students get familiar with the use of GMM 

(Gaussian Mixture Model) for speaker recognition. The students are required to tune a 

set of parameters to improve the recognition rates.  

1. Data to download:  
o exampleProgram.rar: All example programs  
o Wave files of Tang Poems to be use for this contest. TA will give the ftp address in the class.  

2. How to execute the example program:  
o Change addMyPath.m to point to the correct paths of the required toolboxes.  
o Set the variable waveDir in goExtractFeature.m to the path containing all the wave files.  
o Run the main program by typing "go" within MATLAB. The contents of go.m is shown next:  
o % This is the main file for speaker recognition 

o  

o goExtractFeature; 

o goTrainGmm; 

o goUtteranceRr; 

  

In other words, go.m invokes three other m-file scripts, with the following functions:  

a. goExtractFeature.m: Feature extraction.  
b. goTrainGmm.m: GMM training.  
c. goUtteranceRr.m: Evaluation of utterance-based recognition rates  

From the parameter settings at goExtractFeature.m, the script uses 10 utterances from each speaker, 
where the five odd-indexed utterances are used for training and the other ones are used for test. The 
inside-test recognition rate is 100% while the outside-test one is 99.00%. (Note that these are all 
utterance-based recognition rates.) The confusion matrix will also be given, as follows:  



 

3. What you need to demonstrate during the class:  
o Plot the frame-based recognition rates (both inside and outside tests) as a function of the number of 

mixtures which takes the values of 2, 4, 8, 16, 32. (You might need to have more sentences for training 
if the number of mixture is large.)  

o Use the number of mixtures at which the outside-test recognition rate is at its maximum. Plot the 
segment-based recognition rates (both inside and outside tests) as a function of the segment length (in 
terms of number of frames).  

o You need to combine the above two to have this plot of the recognition rate w.r.t. the segment length. 
You need to show 10 curves, corresponding to the inside and outside tests for mixture numbers = 2, 4, 
8, 16, 32.  

(Hint: Be sure to save the speakerData for further processing, since we do not change the feature set.)  

4. How to modify the program to get better utterance-based recognition rates (please refer to "Robust 
Text-Independent Speaker Identification using Gaussian Mixture Speaker Models"):  

o Our example program only take 10 utterances from each speaker. If you take all utterances from a 
speaker, the computing time will be much longer. To get around, you should try your best to find a 
high-speed computer for this contest.  

o For end-point detection, you should try to get rid of silence as well as unvoiced sounds.  
o For GMM model parameters, you can try the following items:  

 Change the number of mixtures in GMM. Choose a number that can have the best outside-test 
recognition rate.  

 Use different methods for the initialization of k-means. A better k-means can improve the 
performance of GMM.  



 Choose a VQ method by center-splitting. The function is vqLbg.m in DCPR toolbox.  
 Increase the iteration count to see if we can get a higher log probability.  

o For feature extraction, you can try the following items:  
 Use the feature extraction function by HTK (htkWave2mfccMex.dll).  
 Use MFCC only, which does not contain the log energy.  
 Try cepstral mean normalization  

o For reducing the computing time:  
 You can replace vqKmeans.m with vqKmeansMex.dll for speeding up.  
 If you think gmmTrain.m is too slow, you can write a C-callable mex file for speeding up.  

5. Performance evaluation: our TA will carry out both inside and outside tests to compute utterance-based 
recognition rates based on all the utterances (odd-indexed utterances as the training and even-indexed as the 
test set), and to have their average as the final performance index.  

6. The files for uploading:  
o gmmParam.mat: Parameters for GMM  
o method.txt: Description of your methods  
o Any files that are necessary for running your main program.  

 

第 13 章作業 

1. (***) Programming contest: use GMM for speaker identification： Please see 

the detailed descriptions。 

Chapter 14: Dynamic Programming 

14-1 Introduction to Dynamic Programming (動態規劃) 

Old Chinese version  

Dynamic programming (DP for short) is an effective method to find a optimum solution to a 

problem, as long as the solution can be defined recursively. DP roots in the principle of 

optimality proposed by Richard Bellman:  

An optimal policy has the property that whatever the initial state and the initial decisions are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the 

first decision.  



In terms of path finding problems, the principle of optimality states that any partial path of the 

optimum path should be itself an optimum path given the starting and ending nodes. This is an 

obvious principle that can be proved by contradiction. In practice, a great number of seemingly 

unrelated applications can be effectively solved by DP.  

To employ the procedure of DP to solve a problem, usually we need to specify the following 

items:  

I. Define the optimum-value function.  

II. Derive the recursive formula for the optimum-value function, together with its initial 

condition.  

III. Specify the answer of the problem in term of the optimum-value function.  

We shall give an example of DP by using the following graph:  

 
In the above graph, we can assume that:  

• Every node is a city and we use q(a) to represent the time required to go through the 

city represented by node a.  

• Every link is a route connecting two city. We use p(a, b) to represent the time required 

to go from node a to b.  



From the start point, how can we find a path the requires the minimum time to end at node 7? 

This is a typical problem of DP which can be solved systematically and efficiently by the 

following three steps:  

I. First of all, we can define the optimum-value function t(h) as the minimum time from the 

start point to node h (including the time for passing the node h).  

II. Secondly, the optimum-value function should satisfy the following recursive formula:  

t(h) = min{t(a)+p(a,h), t(b)+p(b,h), t(c)+p(c,h)} + q(h)  

In the above equation, we assume the fan-ins of node h are a, b, and c. Please refer 

to the next figure.  

 

And the initial condition is t(0)=0 where 0 is the start node.  

III. And finally, the answer to the original problem should be t(7). By using the recursion, we 

can have the following steps for computing the time required by the optimum path:  

1. t(0) = 0  

2. t(1) = t(0)+4+5 = 9  

3. t(2) = t(0)+2+4 = 6  

4. t(3) = t(0)+3+1 = 4  



5. t(4) = min(9+3, 6+2)+2 = 10  

6. t(5) = min(6+5, 4+1)+4 = 9  

7. t(6) = min(6+5, 4+8)+6 = 17  

8. t(7) = min(10+1, 9+3, 17+3)+1 = 12  

The value of the optimum-value function is shown as the red number in each node in 

the following figure:  

 

Hint  

You can open a new figure by clicking the above figure, and then click the newly opened figure to see each step 

of the recursion by DP. 

The above formulation of DP are usually referred to as the forward DP. On the other hand, we 

can defined the formula for backward DP in a similar manner:  

I. Firstly, the optimum-value function s(h) is defined as the minimum time from a node h to 

the end node (including the time for passing the end node but excluding the time for 

passing node h.)  



II. Secondly, the optimum-value function should satisfy the following recursive formula:  

s(h) = q(h) + min{p(h,a)+s(a), p(h,b)+s(b), p(h,c)+s(c)}  

where a, b, c are the fan-out of node h. The initial condition is s(7) = q(7).  

III. Finally, the answer to the original problem is s(0). By using the recusion, we can have 

the following steps for computing the time required by the optimum path:  

1. s(7) = 1  

2. s(6) = q(6)+3+s(7) = 6+3+1 = 10  

3. s(5) = q(5)+3+s(7) = 4+3+1 = 8  

4. s(4) = q(4)+1+s(7) = 2+1+1 = 4  

5. s(3) = q(3)+min{1+s(5), 8+s(6)} = 1 + min{9, 18} = 10  

6. s(2) = q(2)+min{2+s(4), 5+s(5), 5+s(6)} = 4 + min{6, 13, 15} = 10  

7. s(1) = q(1)+3+s(4) = 5 + 3 + 4 = 12  

8. s(0) = min{4+s(1), 2+s(2), 3+s(3)} = min(16, 12, 13} = 12  

The answer obtained from backword DP is the same as that of the forward DP.  

The efficiency of DP is based on the fact that we can use some previous results iteratively. 

Some common characteristics of DP are summarized as follows:  

• After finding the optimum fan-in node of a given node, it would be better to keep this 

information in the data structure for further use. This will help us to back track the 

optimum path at the ending node.  

• DP usually only gives the optimum path. If we want to find the second-best path, we 

need to invoke another method of top-n path finding, which is beyond our scope for 

the time being.  

 

14-2 Longest Common Subsequence 

Old Chinese version  



Given a sequence, we can delete any elements to form a subsequence of the original sequence. 

For instance, given a string s = uvwxyz, we can delete v and x to get a subsequence uwyz. For 

any given two sequences a and b, the similarity between them can be defined as the length of 

the longest common subsequence (LCS for short) of these two sequences, which can be 

computed efficiently by DP.  

Let us define the optimum-value function LCS(a, b) as the length of the longest common 

subsequence between a 和 b. Then the recursive formula for LCS can is shown next.  

1. LCS(ax, by) = LCS(a, b)+1 if x = y.  

2. LCS(ax, by) = max(LCS(ax, b), LCS(a, by)) if x ≠ y.  

The boundary conditions are LCS(a, []) = 0, LCS([], b) = 0。  

The following example is the result of a typical LCS result:  

Example 1Input file dp/lcs01.m 
str1 = 'prosperity'; 

str2 = 'properties'; 

plotOpt = 1; 

[lcscount, lcsPath, lcsStr, lcsTable] = lcs(str1, str2, plotOpt); 

Output figure  

 



 

14-3 Edit Distance 

Old Chinese version  

We can use three basic operations of "delete", "insert", and "substitute" to convert a string into 

another one. The edit distance between two strings is defined as the minimum number of the 

basic operations that are required to converting a string into another.  

We can also use the concept of DP to compute the edit distance between two strings. Let the 

optimum-value function ED(a, b) defined as the edit distance between strings a and b. Then the 

recursive formula for ED is shown next.  

1. ED(ax, by) = ED(a, b) if x = y.  

2. ED(ax, by) = min(ED(a, b), ED(ax, b), ED(a, by)) if x ≠ y.  

The boundary conditions are ED(a, []) = len(a), ED([], b) = len(b)。  

Hint  
The edit distance is also used in the command "fc" (under DOS) or "diff" (under UNIX) for compariing the contents of two 

text files. 



14-4 Dynamic Time Warping 

Old Chinese version  

The distance between two point x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] in a n-dimensional 

space can be computed via the Euclidean distance:  

dist(x, y) = |x - y| = [ (x1-y1)2 + (x2-y2)2 + ... + (xn-yn)2 ]1/2  

However, if the length of x is different from y, then we cannot use the above formula to compute 

the distance. Instead, we need a more flexible method that can find the best mapping from 

elements in x to those in y in order to compute the distance.  

The goal of dynamic time warping (DTW for short) is to find the best mapping with the 

minimum distance by the use of DP. The method is called "time warping" since both x and y are 

usually vectors of time series and we need to compress or expand in time in order to find the 

best mapping. We shall give the formula for DTW in this section.  

Let t and r be two vectors of lengths m and n, respectively. The goal of DTW is to find a 

mapping path {(p1, q1), (p2, q2), ..., (pk, qk)} such that the distance on this mapping path Σi=1
k ∣

t(pi) - r(qi)∣ is minimized, with the following constraints:  

• Boundary conditions: (p1, q1) = (1, 1), (pk, qk) = (m, n). This is a typical example of 

"anchored beginning" and "anchored end".  

• Local constraint: For any given node (i, j) in the path, the possible fan-in nodes are 

restricted to (i-1, j), (i, j-1), (i-1, j-1). This local constraint guarantees that the mapping 

path is monotonically non-decreasing in its first and second arguments. Moreover, for 

any given element in t, we should be able to find at least one corresponding element 

in r, and vice versa.  



 

How can we find the optimum mapping path in DTW? An obvious choice is forward DP, which 

can be summarized in the following three steps:  

1. Optimum-value function: Define D(i, j) as the DTW distance between t(1:i) and r(1:j), 

with the mapping path from (1, 1) to (i, j).  

2. Recursion: D(i, j) = ∣t(i) - r(j)∣ + min{D(i-1, j), D(i-1, j-1), D(i, j-1)}, with the initial 

condition D(1, 1) = ∣t(1) - r(1)∣.  

3. Final answer: D(m, n)  

In practice, we need to construct a matrix D of dimensions m×n first and fill in the value of D(1, 1) 

by using the initial condition. Then by using the recursive formula, we fill the whole matrix one 

element at a time, by following a column-by-column or row-by-row order. The final answer will 

be available as D(m, n), with a computational complexity of O(mn).  

If we want to know the optimum mapping path in addition to the minimum distance, we may 

want to keep the optimum fan-in of each node. Then at the end of DP, we can quickly back track 

to find the optimum mapping path between the two input vectors.  

We can also have the backward DP for DTW, as follows:  

1. Optimum-value function: Define D(i, j) as the DTW distance between t(i:m) and r(j:n), 

with the mapping path from (i, j) to (m, n).  

2. Recusion: D(i, j) = ∣t(i) - r(j)∣ + min{D(i+1, j), D(i+1, j+1), D(i, j+1)}, with the initial 

condition D(m, n) = ∣t(m) - r(n)∣  

3. Final answer: D(1, 1)  



The answer obtain by the backward DP should be that same as that obtained by the forward 

DP.  

Another commonly used local path constraint is to set the fan-in of 27°-45°-63° only, as shown 

in the following figure:  

 

The use of this local path constraint leads to the following potential results:  

• Some points in the input vectors could be skipped in the mapping path. This is 

advantageous if the input vectors contains sporadic outliners.  

• Since the optimum-value function is based on the total distance, sometimes the 

mapping path will take the local paths of 27° or 63° instead of 45° in attempting to 

minimize the total distance.  

If the required mapping path is "anchored beginning, anchored end", then the local path 

constraints can induce the global path constraints, as shown next:  



 
In the above figure, the feasible region for the mapping path is shown as a parallelogram. In 

filling up the matrix, we can save computation by skipping the elements outside the 

parallelogram. In addition, a feasible mapping exists only when the ratio of the input vectors' 

lengths are between 0.5 and 2.  

If the required mapping path is "anchored beginning and free end" (which is used for query by 

singing or humming), then the induced global path constraints are shown next:  

 



The feasible region for the mapping path is shown as a trapezoid in the above figure. Compared 

with the case of "anchored beginning and anchored end", we can save less computation by 

using this set constraints.  

If the required mapping path is "free beginning and free end" (which is used for 

speaker-dependent keyword spotting), then the induced global path constraints are shown next:  

 
The feasible region for the mapping path is shown as a parallelogram in the above figure. 

Compared with the case of "anchored beginning and free end", we can save less computation 

by using this set constraints.  

It should be noted that the global path constraints are induced as a result of the local path 

constraints of 27°-45°-63°. However, when we are using the local path constraints of 

0°-45°-90°，sometimes we still apply the global path constratins in order to limit the mapping 

path to a reasonable shape. In summary, the use of global path constraints serve two purposes:  

• Reduce computation load.  

• Limit the mapping path to be a reasonable path.  

In the following, we shall give some examples of DTW. For simplicity, we shall distinguish two 

types of DTW:  



• Type-1 is the DTW with 27°-45°-63° local path constraints.  

• Type-2 is the DTW with 0°-45°-90° local path constraints.  

First, we can use dtw1.m and dtwPlot.m to plot the mapping path of type-1 DTW in the following 

example:  

Example 1Input file dp/dtw1Plot01.m 
vec1=[71 73 75 80 80 80 78 76 75 73 71 71 71 73 75 76 76 68 76 76 75 73 71 70 70 69 68 68 72 74 78 79 80 80 78]; 

vec2=[69 69 73 75 79 80 79 78 76 73 72 71 70 70 69 69 69 71 73 75 76 76 76 76 76 75 73 71 70 70 71 73 75 80 80 80 78]; 

[minDist, dtwPath, dtwTable] = dtw1(vec1, vec2); 

dtwplot(vec1, vec2, dtwPath); 

Output figure  

 

 

 

In the above example, we deliberately put an outliner in vec1. Due to the local path constraints 

of type-1 DTW, this outliner is skipped in the optimum mapping path.  

Similarly, we can use dtw2.m and dtwPlot.m to plot the mapping path of type-2 DTW:  



Example 2Input file dp/dtw2Plot01.m 
vec1=[71 73 75 80 80 80 78 76 75 73 71 71 71 73 75 76 76 68 76 76 75 73 71 70 70 69 68 68 72 74 78 79 80 80 78]; 

vec2=[69 69 73 75 79 80 79 78 76 73 72 71 70 70 69 69 69 71 73 75 76 76 76 76 76 75 73 71 70 70 71 73 75 80 80 80 78]; 

[minDist, dtwPath, dtwTable] = dtw2(vec1, vec2); 

dtwplot(vec1, vec2, dtwPath); 

Output figure  

 

 

 

The outliner cannot be skipped since the local path constraints require each point in a vector 

has at least one correspondence in the other vector.  

By using dtwPlot2.m, we can use red segments to connect corresponding points in two vectors, 

as follows:  

Example 3Input file dp/dtwPlot02.m 
vec1=[71 73 75 80 80 80 78 76 75 73 71 71 71 73 75 76 76 68 76 76 75 73 71 70 70 69 68 68 72 74 78 79 80 80 78]; 

vec2=[69 69 73 75 79 80 79 78 76 73 72 71 70 70 69 69 69 71 73 75 76 76 76 76 76 75 73 71 70 70 71 73 75 80 80 80 78]; 

[minDist1, dtwPath1, dtwTable1] = dtw1(vec1, vec2); 



[minDist2, dtwPath2, dtwTable2] = dtw2(vec1, vec2); 

subplot(2,1,1); dtwplot2(vec1, vec2, dtwPath1); title('DTW alignment by dtw1'); 

subplot(2,1,2); dtwplot2(vec1, vec2, dtwPath2); title('DTW alignment by dtw2'); 

Output figure  

 

 

 

It becomes more obvious that type-1 DTW can have empty correspondence while type-2 DTW 

can have multiple correspondences. Moreover, we can use dtwPlot3.m to put the two vectors in 

3d space to have a more interesting representation:  

Example 4Input file dp/dtwPlot03.m 
vec1=[71 73 75 80 80 80 78 76 75 73 71 71 71 73 75 76 76 68 76 76 75 73 71 70 70 69 68 68 72 74 78 79 80 80 78]; 

vec2=[69 69 73 75 79 80 79 78 76 73 72 71 70 70 69 69 69 71 73 75 76 76 76 76 76 75 73 71 70 70 71 73 75 80 80 80 78]; 

[minDist1, dtwPath1, dtwTable1] = dtw1(vec1, vec2); 

[minDist2, dtwPath2, dtwTable2] = dtw2(vec1, vec2); 

subplot(2,1,1); dtwplot3(vec1, vec2, dtwPath1); title('DTW alignment by dtw1'); view(-10, 70); 

subplot(2,1,2); dtwplot3(vec1, vec2, dtwPath2); title('DTW alignment by dtw2'); view(-10, 70); 

Output figure  



 

 

 

Here are some slides for your reference:  

• DTW for melody recognition  

• DTW for speech recognition  

第 14 章作業 

1. (***) Function for edit distance： Please write an m-file function editDistance.m 

for computing edit distance, with the usage:  

[minDist, edPath, edTable] = editDistance(str1, str2)  

2. (***) MATLAB function for type-2 DTW： Write an m-file function dtw2m.m that is 

equivalent to dtw2mex.dll (or dtw1mex.mexwin32) in the DCPR toolbox. The usage is  

[minDistance, dtwPath, dtwTable] = dtw2m(vec1, vec2);  



You can use the following example as a script to test your program:  

Example 1Input file dp/dtw2test01.m 

vec1=[0 1 2 3 3 2 1 0 0 1 2 1 0]; 

vec2=[0 0 1 2 3 2 1 0 0 0 1 3 2 0]; 

[minDist1, dtwPath1, dtwTable1] = dtw2m(vec1, vec2); 

[minDist2, dtwPath2, dtwTable2] = dtw2mex(vec1, vec2); 

fprintf('minDist1=%g, minDist2=%g, error=%g\n', minDist1, minDist2, abs(minDist1-minDist2)); 

dtwPlot(vec1, vec2, dtwPath1, dtwPath2); 

Output message 

minDist1=3, minDist2=3, error=0 

  

Output figure  

 

 



 

For a more extensive test with timing measurement, try the following example:  

Example 2Input file dp/dtw2test02.m 

% Compare the speed/distance difference between various versions of type-1 DTW 

 

% ====== Output test 

beginCorner=1; endCorner=1; 

testNum=100; 

fprintf('%d runs of output tests:\n', testNum); 

for i=1:testNum 

 vec1=randn(1, 25); 

 vec2=randn(1, 30); 

 [minDist1, dtwPath1, dtwTable1] = dtw2m(vec1, vec2, beginCorner, endCorner); 

 [minDist2, dtwPath2, dtwTable2] = dtw2mex(vec1, vec2, beginCorner, endCorner); 

 if ~isequal(minDist1, minDist2) | ~isequal(dtwPath1, dtwPath2) | ~isequal(dtwTable1, dtwTable2) 

  figure('name', 'dtw2m()');  dtwplot(vec1, vec2, dtwPath1); 

  figure('name', 'dtw1mex()'); dtwplot(vec1, vec2, dtwPath2); 

  fprintf('Press any key to continue...\n'); pause 

 end 

end 

fprintf('\tDone!\n'); 

 

% ====== Speed test 

testNum=200; 

mat1=randn(testNum, 25); 

mat2=randn(testNum, 30); 

fprintf('%d runs of timing tests:\n', testNum); 

tic 

for i=1:testNum, dtw2m(mat1(i,:), mat2(i,:)); end 

time1=toc; 

tic 

for i=1:testNum, dtw2mex(mat1(i,:), mat2(i,:)); end 

time2=toc; 

fprintf('\ttime1=%g, time2=%g, ratio=time1/time2=%g\n', time1, time2, time1/time2); 



Output message 

100 runs of output tests: 

 Done! 

200 runs of timing tests: 

 time1=1.50159, time2=0.0140599, ratio=time1/time2=106.8 

 

For simplicity, you should only consider the following situations:  

o You only need to consider the case of "anchored beginning and anchored end".  

o You need to add the global constraints where the feasible region is a 

parallelogram.  

o You can assume the inputs are row vectors.  

The behavior of dtw2mex.dll should be exactly the same as those described in the 

text. If you find any discrepancies, feel free to let me know.  

3. (***) Implementation of a speaker-dependent voice-command system using 

DTW： In this exercise, you are going to use MATLAB to implement a 

speaker-dependent voice-command system. Basically, the user can record a 

3-second utterance and the system will identify the most likely command via DTW. To 

create such a system, we have two stage for registration and recognition, respectively. 

During the registration stage, we need to prepare a database where the user can 

register their utterances for recognition. This involves the following steps:  

i. Prepare a text file "command.txt" manually. The file should contains at least 10 

commands. An English example follows:  
ii. one 

iii. two 

iv. three 

v. five 

vi. ... 

You can also use the following Chinese example:  



牛肉麵 

珍珠奶茶 

貢丸湯 

韭菜盒子 

肉粽 

... 

(In fact, you can use any language you like to prepare the text file.)  

vii. Write a script for the users to record these commands twice. To increase the 

variability, you should record each command once in a run, for two runs. (You 

can use "textread" command to read the text file.)  

viii. After each recording, you should perform endpoint detection and feature 

extraction, and store all the information in a structure array recording of size 

2*n, where n is the number of voice comands in "command.txt". The structure 

array recording contains the following fields:  

 recording(i).text: Text for the i-th recording  

 recording(i).mfcc: MFCC for the i-th recording  

ix. Save the variable recording to recording.mat.  

During the recognition stage, the user can hit any key to start 3-second recording, 

and the system will demonstrate the top-10 results on the screen according to the 

DTW distance. The recognition stage invloves the following steps:  

x. Load recording.mat.  

xi. Obtain the user's 3-sec utterance.  

xii. Perform endpoint detection and feature extraction.  

xiii. Compare the MFCC with that of each recording in the array recording using 

DTW.  

xiv. Rank the distance.  

xv. List the top-10 result (by showing the texts) according to the distance.  

xvi. Go back to step ii unless ctrl-c is hit.  

Some hints follow:  



o All recordings are of the format: 16KHz, 16Bits, mono.  

o The system should allow the user to do repeated recordings until ctrl-C is hit.  

o You can use epdByVolHod.m for endpoint detection. After each recording, the 

result of endpoint detection should be displayed on the screen immediately to 

facilitate debugging. (It is in the Audio Processing Toolbox.)  

o You can use wave2mfcc.m for feature extraction. (It is in the Audio Processing 

Toolbox.)  

o You can use either dtw1mex.dll or dtw2mex.dll for DTW. (Both are in the DCPR 

toolbox.)  

When you demo your system to TA, make sure you can have at least 3 utterances to 

have the correct answer in top-1 results.  

4. (***) Programming contest: Use DTW for speaker-dependent speech 

recognition： Please follow this link to have more descriptions.  

Chapter 15: Hidden Markov Models (HMM) 

15-1 Introduction (簡介) 

Old Chinese version  

In the previous chapter, we have introduced DTW which is ideal for speaker-dependent ASR 

applications. This is suitable for the retrieval of utterances from the same speaker. A typical 

example of such applications is name dialing on mobile phones where you need to record your 

voices first. On the other hand, if we want to have speaker-independent ASR, we need to resort 

HMM (Hidden Markov Models) which is a statistic model that requires a massive amount of 

training data for reliable recognition. Based on the used statistical models, HMM can be 

classified into two categories:  

• Discrete HMM (DHMM for short): This type of HMM evaluates probabilities based on 

discrete data counting.  



• Continuous HMM (CHMM for short): This type of HMM evaluates probabilities based on 

continuous probability density functions such as GMM.  

We shall introduce these two types of HMMs for speech recognition in the following sections.  

15-2 Discrete HMM 

Old Chinese version  

The simplest ASR application is voice command recognition. To construct a voice command 

recognizer, we need to collect training data for each voice command. This data is used for 

constructing an HMM for each voice command. For a given utterance, we need to send the 

corresponding acoustic features (MFCC, for example) to each HMM for evaluation the log 

probability. The HMM with the highest log probability represents the predicted voice command 

for the given utterance.  

For simplicity in the following discussion, we shall assume our goal is to construct a 

speaker-independent digit recognizer that can recognize the utterance of 0 ~ 9. There are two 

steps involved in the design of such recognition system:  

1. Corpus collection: To achieve speaker independence, we need to have a wide 

collection of speech corpus, including:  

o Subjects: We need to have utterances from various subjects, including different 

genders, different age groups, different accent (from different regions), etc.  

o Recording devices: We need to use different microphones and different sound 

cards, etc.  

o Environment: We need to have a recording environment that is close to that of 

the recognizer at application. To increase the robustness, we should do the 

recording in lab/office as well as road sides, etc.  

2. Recognizer design: We need to design a recognizer based on HMM and test its 

performance. This will be detailed in the rest of this section.  



First of all, we need to construct a DHMM for each digit. Take the digit 「九」for example, the 

corresponding DHMM is shown next:  

In other words, we can segment the utterance of 「九」into 3 states, each representing the 

pronunciation of ㄐ, ㄧ, ㄡ. Note that each state covers a few frames, and the degree to which 

a frame belongs to a state is specified by a state probability. Moreover, for a given frame, it 

can stay in the current state with a self-transition probability, or transit to the next state with a 

next-transition probability.  

Before using DHMM, each frame is converted into a feature vector (such as MFCC), and each 

vector is transformed into a symbol. More specifically, feature vectors of the same state are 

partitioned into clusters using vector quantization. We then use the index of a cluster to 

represent the symbol of a frame. That is, if the feature vector of frame i belongs to cluster k, 

then the symbol of frame i is k, as shown in the following expression:  

k = O(i).  

In order to simplify the discussion, we define some variables shown next.  



• frameNum: The number of frames for a given utterance  

• dim: The dimension of the acoustic features used in our recognizer. (For instance, the 

basic MFCC has 12 dimensions.)  

• stateNum: the number of states in a DHMM  

• symbolNum: The number of symbols, or equivalently, the number of clusters after 

vector quantization.  

Usually we use the state and transition probabilities to characterize a given DHMM, as follows.  

• We use a stateNum×stateNum matrix A to denote the state probability, in which A(i, j) 

denotes the probability from state i to j. For instance, the probability of transition from 

state 1 to 2 is 0.3, hence A(1, 2) = 0.3. In general, A(i, j) satisfies the following 

conditions:  

o State transitions are allowed only between neighboring states. Hence A(i, j) = 0 

if j≠i and j≠i+1。  

o For a given state, the total of the self-state and next-state transition probabilities 

is equal to 1. Namely, A(i, i) + A(i, i+1) = 1, for all i.  

• We use a symbolNum×stateNum matrix B to denote the state probability, in which B(k, j) 

denotes the probability to which symbol k belongs to state j. Therefore to compute the 

probability of frame i, we need to find the corresponding symbol k=O(i), and then 

retrieve the probability from B(k, j).  

Assume that we already have matrices A and B for the DHMM of 「九」. Then for a given 

utterance, we can use Viterbi decoding to evaluate the probability of the utterance being 

generated by the DHMM. Viterbi decoding is based on the concept of dynamic program to 

assign each frame to a state such the accumulated probability can be maximized, as follows.  

1. The optimum-value function D(i, j) is defined as the maximum probability between t(1:i) 

and r(1:j), where t(1:i) the feature vectors of frame 1 to i, r(1:j) is the DHMM formed by 

state 1 to j. The optimum mapping path is from (1, 1) to (i, j).  

2. The recursion of D(i, j) can be expressed as follows:  

D(i, j) = B(O(i), j) + max{D(i-1, j)+A(j, j), D(i-1, j-1)+A(j-1, j)}  



The boundary conditions is  

D(1, j) = π(1, j) + B(O(1), j), j = 1 ~ stateNum  

3. The final answer is D(m, n).  

The schematic diagram is shown next:  

Note that in the above expression, we are using log probabilities for the following reasons:  

• Reduce the round-off errors due to repeated multiplications.  

• Use addition instead of multiplication to reduce computation load.  

Based on Viterbi decoding, we can find the optimum assignment of frames to states as well as 

the accumulated log probability of a given utterance to a DHMM. A larger log probability 

indicates the utterance is likely to be the voice command of the corresponding DHMM.  

To evaluate the probability of frame i to state j, there are two different methods:  



• For DHMM, we need to find the corresponding symbol O(i) and then look up the value 

of B(O(i), j) from matrix B.  

• For CHMM, B(O(i),j) is defined by a continuous probability density function. Please refer 

to the next section for detail.  

For a given DHMM, how can we define the optimum A and B? In general, the optimum values of 

of A and B should generate the maximum total log probability of all training utterance. As a 

result, we need to apply the concept of MLE to find the values of A and B.  

The procedure to find the optimum values of A and B is called re-estimation. The basic 

concept is close to that of k-means (Forgy's method) which identify parameters by Picard 

iteration. That is, we can guess the values of A and B first, then perform Viterbi decoding, and 

then identify A and B again based on the given optimum path, until the values of A and B 

converge. We can prove that during the iterations, the total probability will increase 

monotonically. However, we cannot guarantee the identify values of A and B is the global 

optimum values. The steps of re-estimation are explained next.  

1. Convert all utterances into acoustic features, say, 39-dimensional MFCC.  

2. Perform vector quantization on all feature vectors and find the symbol (index of a 

cluster center) of each feature vector.  

3. Guess the initial values of A and B. If there is no manual transcription, we can adopt 

the simple strategy of "equal division" shown next.  



4. Iterate the following steps until the values of A and B converge.  

o Viterbi decoding: Given A and B of an DHMM, find the optimum mapping paths 

of all the corresponding utterances of this DHMM.  

o Re-estimation: Use the optimum mapping paths to estimate the values of A and 

B.  

An example of estimating A is shown next:  



 
An example of estimating B is shown next:  

 
If we use D(i,j) to denote the probability to which frame i belongs to state j, then D(i,j) = B(O(i),j). 

Base on the path in the previous example, we can obtain the following values for D(i, j):  

• State 1: D(1,1)=B(2,1)=1/4, D(2,1)=B(1,1)=1/4, D(3,1)=B(3,1)=2/4, D(4,1)=B(3,1)=2/4  

• State 2: D(5,2)=B(1,1)=3/5, D(6,2)=B(1,1)=3/5, D(7,2)=B(2,1)=2/5, D(8,2)=B(1,1)=3/5, 

D(9,2)=B(2,1)=2/5  



• State 2: D(10,3)=B(4,3)=4/6, D(11,3)=B(4,3)=4/6, D(12,3)=B(4,3)=4/6, 

D(13,3)=B(2,3)=2/6, D(14,3)=B(2,3)=2/6, D(15,3)=B(4,3)=4/6  

If we use P(A, B, Path) as our objective function, then the above re-estimation can guarantee 

the monotonic increasing of the objective function, based on the following two facts.  

1. When A and B is given, Viterbi decoding can find the optimum mapping path to 

maximize P(A, B, Path).  

2. When the mapping path (Path) is given, re-estimation can find the optimum A and B to 

maximize P(A, B, Path).  

The first fact is obvious since the goal of Viterbi Decoding is to maximize the probability of each 

path, hence their total P(A, B, Path) will also be maximized. The second fact is also obvious, to 

be explained next.  

Take the above example for instance, the probability of the given path can be decomposed into 

three components based on each state:  

• State 1: D(1,1)A(1,1)D(2,1)A(1,1)D(3,1)A(1,1)D(4,1)A(1,2) = 

A(1,1)3A(1,2)D(1,1)D(2,1)D(3,1)D(4,1)  

• State 2: D(5,2)A(2,2)D(6,2)A(2,2)D(7,2)A(2,2)D(8,2)A(2,2)D(9,2)A(2,3) = 

A(2,2)4A(2,3)D(5,2)D(6,2)D(7,2)D(8,2)D(9,2)  

• State 3: D(10,3)A(3,3)D(11,3)A(3,3)D(12,3)A(3,3)D(13,3)A(3,3)D(14,3)A(3,3)D(15,3) = 

A(3,3)5D(10,3)D(11,3)D(12,3)D(13,3)D(14,3)D(15,3)  

Since we have N paths for N utterances, the total probability is the product of these N paths. 

When we are identifying the optimum values of A and B, we need to take these N paths into 

consideration. We shall decompose the total probability over N path into the probability 

associated with each state for finding the optimum values of A and B, as follows.  

First of all, we shall derive the optimum value of matrix A. For any given state, we can define the 

following quantities:  

• a: self-transition count (known)  

• b: next-transition count (known)  



• p: self-transition prob. (unknown)  

• q: next-transition prob. (unknown)  

Since we want to optimize the total transition probability associated with this state, we can form 

the following optimization problem:  

Max J(p, q) = pa qb s.t. p≧0, q≧, and p + q = 1  

We need to apply the theorem that the arithmetic mean is greater than or equal to the geometric 

mean:  

x1 + x2 + ... + xn ≧ n (x1 x2 ... xn)1/n  

The equality holds only when x1 = x2 = ... = xn. Based on the above inequality, we have  

p/a + p/a + ... + q/b + q/b ... ≧ (a + b) [(p/a)a(q/b)b]1/(a+b)  

1 ≧ (a + b) [(p/a)a(q/b)b]1/(a+b)  

The maximum value of J(p, q) = pa qb is aabb/(a+b)a+b, which happens at p/a = q/b, or 

equivalently, p=a/(a+b), q=b/(a+b).  

Secondly, we shall derive the optimum value of B. For any given state, assume that frames of 

this state belongs to 3 clusters. We can define the following quantities:  

• Symbol count: a, b, c (known)  

• State prob: p, q, r (unknown)  

Since we want to optimize the total state probability associated with this state, we can form the 

following optimization problem:  

J(p, q, r) = pa qb rc  

where p, q, r must satisfy p + q + r = 1. Based on the theorm (the arithmetic mean is greater 

than or equal to the geometric mean), we can obtain the optimum parameters p=a/(a+b+c), 

q=b/(a+b+c) , r=c/(a+b+c).  

Therefore by decomposing the total probability of N paths into the probability associated with 

each state, we can identify the optimum values of the transition and state probabilities of this 

state. This complete the coverage of re-estimation which can guarantee the monotonic 

increasing of the total log probability.  

• Slide for Discrete HMM  



15-3 Continuous HMM 

Once we grasp the concept of DHMM, it is straightforward to extend the concept to CHMM. 

The only difference between CHMM and DHMM is their representation of state probabilities:  

• DHMM uses a VQ-based method for computing the state probability. For instance, 

frame i has to be converted into the corresponding symbol k=O(i), and the probability 

of symbol k to state j is retrieved from B(k, j) of the matrix B.  

• CHMM uses a continious probability density function (such as GMM) for computing the 

state probability. In other words, B(O(i), j) in CHMM is prepresented by a continuous 

probability density function:  

B(O(i), j) = p(xi, θj)  

where p(‧,‧) is a PDF (such as GMM), xi is the feature vector of frame i, and θj is the 

parameter vector of this PDF of state j. The method for identifying the optimum of θj is 

based on re-estimation of MLE (Maximum Likelihood Estimate).  

In summary, the parameters of CHMM can be represented by the matrix A and the 

parameters θ = {θj|j = 1~m}. The method for finding the optimum values A and θ is 

again re-estimation, in which we need to guess the initial values of A and θ, perform 

Viterbi Decoding, and then use the optimum mapping paths to compute A and θ again. 

This procedure is repreated until the values of A and θ converge. It can be proved that 

during the iteration, the overall probability is monotonic increasing. However, we 

cannot guarantee the obtained maximum is the global maximum.  

The procedure for finding the parameters of CHMM is summarized next.  

1. Convert all utterances into acoustic features, say, 39-dimensional MFCC.  

2. Guess the initial values of A and θ. If there is no manual transcription, we can 

adopt the simple strategy of "equal division".  

3. Iterate the following steps until the values of A and θ converge.  



 Viterbi decoding: Given A and θ of a CHMM, find the optimum mapping 

paths of all the corresponding utterances of this CHMM.  

 Re-estimation: Use the optimum mapping paths to estimate the values 

of A and θ.  

Note that in each iteration of the above procedure, optimum value of matrix A is 

identified by frame counting, which is the same as that used in DHMM. On the other 

hand, the optimum value of θ is identified via MLE. Since p(‧,‧) in CHMM is a 

continuous function that can approximate the true PDF better, we can expect to 

achieve a better recognition rate than DHMM.  

第 15 章作業 

1. (*)簡森不等式：數學推導一： 對於 0≦λ≦1，請證明下列「簡森不等式」（Jensen's 

Inequality）：  

ln(λx1+(1-λ)x2) ≧ λln(x1) + (1-λ)ln(x2)  

2. (*)簡森不等式：數學推導二： 請用歸納法，證明下列一般化的「簡森不等式」（Jensen's 

Inequality）：  

ln(Σi=1
nλixi) ≧ λiΣi=1

nln(xi)  

其中 0≦λi≦1, i=1~n, 而且 Σi=1
nλi=1。  

3. (*)算數平均數大於或等於幾何平均數：數學推導： 請使用上一題的「簡森不等式」，

證明「算數平均數大於或等於幾何平均數」，公式如下：  

(Σi=1
nxi)/n ≧ (Πi=1

nxi)1/n  

其中 xi≧0, i=1~n。  

4. (*)轉換機率最佳值：數學推導： 請用直接微分的方式，求取下列函數的最大值，及所

對應的 p, q 值：  



J(p, q) = paqb  

其中 0≦p, q≦1 且 p+q=1。  

5. (**)狀態機率最佳值：數學推導： 請用 Lagrange's Multiplier 的方式，求取下列函數的

最大值，及所對應的 p, q, r 值：  

J(p, q, r) = paqbrc  

其中 0≦p, q, r≦1 且 p+q+r=1。  

6. (**)DHMM 最佳路徑： 請寫一個函數 dhmmEval.m，來進行 DHMM 最佳路徑的計算，

此函數的用法如下：  

[maxLogProb, dpPath] = dhmmEval(initPI, A, B, O)  

輸入參數的說明如下：  

a. A 代表轉移機率，其維度是 stateNum x stateNum  

b. B 代表符號對狀態的機率，其維度是 clusterNum x stateNum  

c. O 代表每一個音框所對應的符號，其維度是 frameNum x 1  

輸出參數的說明如下：  

d. maxLogProb 是一個純量，最佳路徑的纍加對數機率。  

e. dpPath 是一個向量，維度是 2 x frameNum，其中的每一個行向量即代表最佳路

徑的一點，課文中的範例而言，dpPath = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; 1 

1 1 1 2 2 2 2 2 3 3 3 3 3 3]。  

請用下列程式骨架來撰寫你的程式：  

原始檔（dhmmEval.m）：（灰色區域按兩下即可拷貝） 

function [maxLogProb, dpPath, dpTable] = dhmmEval(initPI, A, B, O) 

% dhmmEval: Evaluation of DHMM 

% Usage: [maxLogProb, dpPath, dpTable] = viterbiDecoding(initPI, A, B, O) 

%  initPI: Initial state log probability, 1 x stateNum 



%  A: Transition log probability, stateNum x stateNum 

%  B: State log probability, symbolNum x stateNum 

%  O: Observation sequence of this utterance, frameNum x 1 

%  maxLogProb: Maximum log probability of the optimal path 

%  dpPath: optimal path with size frameNum x 1 

 

frameNum = length(O); 

stateNum = length(A);  

dpTable = -inf*ones(frameNum, stateNum); 

 

if (stateNum>frameNum); error('Number of frames is less than the number of states!'); end 

 

% ====== Fill the first row (matrix view) 

dpTable(1,:)=initPI+B(O(1),:); 

% ====== Fill the first column (matrix view) 

for i=2:frameNum 

 ... 

end 

% ====== Fill each row (matrix view) 

for i=2:frameNum 

 for j=2:stateNum 

  ... 

 end 

end 

 

% ====== Back track to find the optimum path 

... 

欲測試你的程式，請先下載 dhmmEvalMex.dll，再用下列程式 dhmmEvalTest.m 來測

試你的結果：  

原始檔（dhmmEvalTest.m）：（灰色區域按兩下即可拷貝） 

% ====== Set up some parameters 

frameNum=100; 

stateNum=10; 

symbolNum=64; 



initPI=log([1, zeros(1, stateNum-1)]); 

selfTransProb=0.85; 

A=diag(selfTransProb*ones(stateNum,1)); A((stateNum+1):(stateNum+1):stateNum^2)=1-selfTransProb; 

A=A+eps; 

A=log(A); 

B=rand(symbolNum, stateNum); B=B*diag(1./sum(B)); 

B=log(B); 

O=ceil(rand(frameNum,1)*symbolNum); 

 

% ====== Start functionality and timing tests 

n=100; 

tic 

for j=1:n 

 [maxLogProb1, dpPath1, dpTable1] = dhmmEvalMex(initPI, A, B, O); 

end 

fprintf('dhmmEvalMex ==> %.2f, maxLogProb = %.9f\n', toc, maxLogProb1); 

tic 

for j=1:n 

 [maxLogProb2, dpPath2, dpTable2] = dhmmEval(initPI, A, B, O); 

end 

fprintf('dhmmEval ==> %.2f, maxLogProb = %.9f\n', toc, maxLogProb2); 

 

fprintf('Difference in maxLogProb = %g\n', abs(maxLogProb1-maxLogProb2)); 

fprintf('Difference in dpPath = %g\n', sum(sum(abs(dpPath1-dpPath2)))); 

fprintf('Difference in dpTable = %g\n', sum(sum(abs(dpTable1-dpTable2)))); 

若程式正確，則最後三列敘述所列印出的值應該都很小，小於 10 的 -6 次方。請問 

dhmmEvalMex.dll 的執行速度是你寫的 dhmmEval.m 的幾倍？  

7. (***)程式競賽：使用 DHMM 進行語者無關的語音辨識： 請見此連結。 

Chapter 16: Methods for Melody Recognition 

16-1 Introduction (簡介) 

Old Chinese version  



This chapter introduces methods for melody recognition. In fact, there are many different types 

of melody recognition. But in this chapter, we shall focus on melody recognition for query by 

singing/humming (QBSH), which is an intuitive interface for karaokes when one cannot recall 

the title or artist of a song to sing. Other applications include intelligent toys, on-the-fly scoring 

for karaokes, edutainment tools for singing and language learning, and so on.  

A QBSH system consists of three essential components:  

1. Input data: The system can take two types of inputs:  

a. Acoustic input: This includes singing, humming, or whisling from the users. For 

such an input, the system needs to compute the corresponding pitch contour, 

and convert them into note vector (optionally) for further comparison.  

b. Symbolic input: This includes music note representation from the user. Usually 

this is not a part of QBSH since no singing or humming is involved, but the 

computation procedure is quite the same, as detailed later.  

2. Song database: This is the song database which hosts a collection of songs to be 

compared with. For simplicity, most of the song database contains symbolic music 

whose music scores can be extracted reliable. Typical exmaples of symbolic music 

are MIDI files, which can be classified into two types:  

a. Monophonic music: For a given time, only a single voice of an instrument can 

be heard.  

b. Polyphonic music: Multiple voices can be heard at the same time. Most pop 

music is of this type.  

Most of the time, we are using monophonic symbolic music for melody recognition 

systems.  

Theoretically it is possible to use polyphonic audio music (such as MP3) for 

constructing the song database. However, it remains a tough and challenging 

problem to extract the major pitch (from vocals, for instance, for pop songs) from 

polyphonic audio music reliably. (This can be explained from the analogy of identifying 

swimming objects on a pond by the observed waveforms coming from two channels.)  



3. Methods for comparison: There are at least 3 types of methods for comparing the 

input pitch representation with songs in the database:  

a. Note-based methods: The input is converted into note vector and compared 

with each song in the database. This method is efficient since a note vector is 

much shorter when compared with the corresponding pitch vector. However, 

note segmentation itself may introduce errors, leading to the degradation in 

performance. Typical methods of this type include edit distance for music note 

vectors.  

b. Frame-based methods: The input and database songs are compared in the 

format of frame-based pitch vectors, where the pitch rate (or frame rate) can be 

varied from 8 to 64 points per second. The major advantage of this method is 

effectiveness, at the cost of more computation. Typical methods include linear 

scaling (LS) and dynamic time warping (DTW, including type-1 and 2).  

c. Hybrid methods: The input is frame-based while the database song is 

note-based. Typical methods include type-3 DTW and HMM (hidden markov 

models).  

We shall introduces these methods in the subsequent sections.  

16-2 Key Transposition (音調移位) 

Old Chinese version  

Since the query input may have a different key than those used in the song database, we need 

to perform key transposition before comparison.  

Depending on the methods for comparison, we have different schemes for key transposition, as 

follows:  

• One-shot method: If we are using linear scaling, we can simple shift the pitch vector to 

the mean or median of the database entry to guarantee the distance is minimized. 

This is very efficient and requires less computation.  



• Trial-and-error method: If we are using type-1 or type-2 DTW, we will not be able to 

know the best amount for key transposition in an efficient manner. As a result, we 

need to resort to a certain trial-and-error method to find the best pitch shift amount for 

key transposition.  

If we are using trial-and-error methods, we can actually adopt any methods for one-dimensional 

function optimization for such a purpose. Two commonly used methods are explained next.  

• Linear search (exhaustive search):  

1. Shift the mean of the input pitch vector t to the same value of the mean of the 

song in the database. (If the length of the input vector is m, the mean of the 

database song should be computed based on the same length too.)  

2. Add each element of [-2.0, -1.8, -1.6, ... 1.6, 1.8, 2.0] to t and compute the 

minimum distance between t and r.  

• Binary-like search:  

1. Shift the mean of the input pitch vector t to the same value of the mean of the 

song in the database. (If the length of the input vector is m, the mean of the 

database song should be computed based on the same length too.)  

2. Set s = 2.  

3. Shift t to each element of [-s, 0, s] and compute the distances to r to find the 

minimum distance. Shift t according to the minimum distance.  

4. Set s = s/2 and go back to the previous step until it converges. See the following 

schematic plot for the binary-like search:  



We can use the function binarySearch4min.m in the Utility Toolbox for binary-like search of the 

minimum of a single-input function. For instance, in the following example, we want to find the 

minimum of the humps function within [0, 1], and restrict the number of function evaluations to 

be 9:  

Example 1Input file mr/binarySearch4min01.m 
objFunction='humps';  % Objective function 

optimParam.searchRange=[0.0, 1.0]; 

optimParam.evalCount=9; 

optimParam.plotOpt=1; 

[minPair, allPairs]=binarySearch4min(objFunction, optimParam); 

fprintf('minX=%f, minY=%f\n', minPair(1), minPair(2)); 

x=linspace(optimParam.searchRange(1), optimParam.searchRange(2), 101); 

y=humps(x); 

line(x, y, 'color', 'r'); grid on 

set(gca, 'ylim', [min(y), max(y)]); 

Output message 

minX=0.625000, minY=11.297297 

  

Output figure  

 



 

 

In the above plot, each red point indicate a function evaluation. The number beside each red 

dot indicates the sequence in function evaluation. The identified minimum is indicated by a red 

square.  

In practice, for different applications, the user can adjust these parameters, including the search 

range and the number of function evaluation.  

16-3 Linear Scaling (線性伸縮) 

Old Chinese version  

Linear scaling (LS for short), also known as uniform scaling or global scaling, is the most 

straightforward frame-based method for melody recognition. Typical linear scaling involves the 

following three steps:  

1. Use interpolation to expand or compress the input pitch vector linearly. The scaling 

factor, defined as the length ratio between the scaled and the origianl vectors, could 

range from 0.5 to 2.0. If we take the step of 0.1 for the scaling factor, it leads to 16 



expanded or compressed versions of the original pitch vector. Of course, the 

scaling-factor bounds ([0.5, 2.0] for instance) and the resolution ( number of scaled 

pitch vectors, 16 for instance) are all adjustable parameters.  

2. Compare these 16 time-scaled versions with each song in the database. The minmum 

distance is then defined as the distance of the input pitch vector to a song in the 

database. You can simply use L1 or L2 norm to compute the distance, with 

appropriate processing for key transposition, to be detailed later.  

3. For a given input pitch vector, compute the distances to all songs in the database. The 

song with the minimum distance is the most likely song for the input pitch vector.  

The following plot is a typical example of linear scaling, with a scaling-factor bounds of [0.5, 2] 

and a resolution of 5. When the scaling factor is 1.5, the minimum distance is achieved.  

Simple as it is, in practice, we still need to consider the following detailed issues:  

1. Method for interpolation: Simple linear interpolation should suffice. Other advanced 

interpolations may be tried only if they will not make the computation prohibitive.  



2. Distance measures: We can use L1 norm (the sum of absolute difference of elements, 

also known as taxicab distance or Manhattan distance) or L2 norm (square root of the 

sum of squared difference of elements, also known as Euclidean distance) to 

compute the distance.  

Hint  

Lp norm of vectors x and y = [Σ|xi-yi|p]1/p 

3. Distance normalization: Usually we need to normalize the distance by the length of 

the vector to eliminate the biased introduced via expansion or compression.  

4. Key transposition: To achieve invariance in key transposition, we need to shift the 

input pitch vector to achieve a minimum distance when compared to the songs in the 

database. For different distance measures, we have different schemes for key 

transposition:  

o For L1 norm, we can shift the input pitch vector to have the same median as that 

of each song in the database.  

o For L2 norm, we can shift the input pitch vector to have the same mean as that 

of each song in the database.  

5. Rest handling: In order to preserve the timing information, we usually replace the rest 

with previous non-rest pitch for both input pitch vector and songs in the database. One 

typical example is "Row, Row, Row Your Boat" (original site, local copy).  

Characteristics of LS for melody recognition can be summarized as follows:  

• If the user's singing or humming is at a constant pace, LS usually gives satisfactory 

performance.  

• LS is also very efficient both in its computation and the one-shot way to handle key 

transposition.  

The following example is a typical result of using LS for distance comparison:  

Example 1Input file mr/linScaling01.m 
inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821 

51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836 



49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821 

51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415 

50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818 

51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958 

55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739 

59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286 

55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958 

54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818 

50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029 

52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351 

52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029 

52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858 

53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991 

51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408 

48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445 

49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365 

46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 

46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991]; 

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 

62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 

59 59 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55 

55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65 

65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60 

60 60 60 60 60 60]; 

resolution=21; 

sfBounds=[0.5, 1.5]; % Scaling-factor bounds 

distanceType=1;  % L1-norm 

[minDist1, scaledPitch1, allDist1]=linScalingMex(inputPitch, dbPitch, sfBounds(1), sfBounds(2), resolution, distanceType); 

distanceType=2;  % L2-norm 

[minDist1, scaledPitch2, allDist2]=linScalingMex(inputPitch, dbPitch, sfBounds(1), sfBounds(2), resolution, distanceType); 



allDist2=sqrt(allDist2); % To reduce computation, the L2-distance returned by linScalingMex is actually the 

square distance, so we need to take the square root. 

axisLimit=[0 370 40 80]; 

subplot(3,1,1); 

plot(1:length(dbPitch), dbPitch, 1:length(inputPitch), inputPitch); 

title('Database and input pitch vectors'); ylabel('Semitones'); 

legend('Database pitch', 'Input pitch', 'location', 'SouthEast'); 

axis(axisLimit); 

subplot(3,1,2); 

plot(1:length(dbPitch), dbPitch, 1:length(scaledPitch1), scaledPitch1, 1:length(scaledPitch2), scaledPitch2); 

legend('Database pitch', 'Scaled pitch via L_1 norm', 'Scaled pitch via L_2 norm', 'location', 'SouthEast'); 

title('Database and scaled pitch vectors'); ylabel('Semitones'); 

axis(axisLimit); 

subplot(3,1,3); 

ratio=linspace(sfBounds(1), sfBounds(2), resolution); 

plot(ratio, allDist1, '.-', ratio, allDist2, '.-'); 

xlabel('Scaling factor'); ylabel('Distances'); title('Normalized distances via L_1 & L_2 norm'); 

legend('L_1 norm', 'L_2 norm', 'location', 'SouthEast'); 

Output figure  

 



 

 

Hint  
Note that in order to save computation, linScalingMex uses the square of L2 norm instead of L2 norm literally. Therefore we 

need to do square root in order to get the correct distance based on L2 norm. 

16-4 DTW of Type-1 and 2 

Old Chinese version  

DTW (Dynamic Time Warping) is another commonly used method for frame-based approach to 

QBSH in melody recognition. The major advantages of DTW is its high recognition rate for 

QBSH. This is partly due to its robustness in dealing with undesirable pitch vectors, especially 

for type-1 DTW which allow skipping of sporadic unlikely pitch values. On the other hand, the 

major disadvantage of DTW is its requirement for massive computation, which is worsen by the 

fact that there is no one-shot scheme for dealing with key transposition. Since the applications 

of DTW are quite extensive in numerous different fields, research on speeding up DTW is a 

rather hot topic.  



For technical details of DTW, please refer to the chapter on dynamic programming. In this 

section, we shall give some examples of using DTW for QBSH. First of all, we can plot the 

mapping path when comparing a query input with a database entry using type-1 DTW, as 

follows:  

Example 1Input file mr/mrDtw1Plot01.m 
% inputPitch: input pitch vector 

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821 

51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836 

49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821 

51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415 

50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818 

51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958 

55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739 

59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286 

55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958 

54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818 

50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029 

52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351 

52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029 

52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858 

53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991 

51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408 

48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445 

49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365 

46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 

46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991]; 

% dbPitch: database pitch vector 

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 

62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 

59 59 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55 

55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 



60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65 

65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60 

60 60 60 60 60 60]; 

n=length(inputPitch); 

meanPitch=mean(dbPitch(1:n)); 

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean 

 

anchorBeginning=1; % Anchor beginning 

anchorEnd=0;  % Anchor end 

m=11;   % Number of pitch shifts for key transposition 

pitchStep=linspace(-2, 2, m); 

dtwDist=zeros(1, m); % DTW distances for different pitch shifts 

for i=1:length(pitchStep) 

 newInputPitch=inputPitch+pitchStep(i); 

 dtwDist(i) = dtw1(newInputPitch, dbPitch, anchorBeginning, anchorEnd); 

end 

[minValue, index]=min(dtwDist); 

optInputPitch=inputPitch+pitchStep(index); 

[minDist, dtwPath, dtwTable]=dtw1(optInputPitch, dbPitch, anchorBeginning, anchorEnd); 

dtwPlot(inputPitch+pitchStep(index), dbPitch, dtwPath); 

Output figure  

 



 

 

In the above example of type-1 DTW, we need to be aware of two issues:  

• For QBSH application, we have two types of comparisons:  

a. Comparison from beginning: The acoustic input corresponds to the beginning of 

a song in the database. This is exactly the case in the above example, so we 

set anchorBeginning=1 and anchorEnd=0.  

b. Comparison from anywhere: The acoustic input corresponds to the middle of a 

song. Under such a condition, we need to set anchorBeginning=0 and 

anchorEnd=0.  

In fact, if we can define the "beginning position" of a query input, then all comparisons 

can be viewed as "comparison from beginning" with different beginning positions. 

Several commonly used "beginning positions" are listed next, according to their 

complexities:  

3. The beginning of a song: This is not a realistic assumption since the most 

well-known part of a song does not necessarily starts from the beginning.  



4. The refrain (chorus or burden, 副歌) of a song: However, refrains of a song 

cannot be defined objectively.  

5. The beginning of each senence: This is most likely to be the case in karaoke 

systems since such information is already embedded in the songs in order to 

display the lyrics in a sentence-by-sentence manner.  

6. The beginning of each note: This is the final catchall which requires a lot of 

computation.  

• To deal with key transposition, we use a linear search between the interval of [-2, 2] 

with a resolution of 11. It is possible to use some sort of heuristic search, such as the 

one mentioned in section 2 of this chapter.  

Besides plotting the mapping path, we can also employ two other methods for displaying the 

result of DTW, as mentioned in the chapter of dynamic programming. One of them is the 

mapping between two curves in a 2D plane, as shown next:  

Example 2Input file mr/mrDtw1Plot02.m 
% inputPitch: input pitch vector 

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821 

51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836 

49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821 

51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415 

50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818 

51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958 

55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739 

59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286 

55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958 

54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818 

50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029 

52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351 

52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029 

52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858 

53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991 

51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408 

48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445 



49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365 

46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 

46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991]; 

% dbPitch: database pitch vector 

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 

62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 

59 59 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55 

55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65 

65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60 

60 60 60 60 60 60]; 

n=length(inputPitch); 

meanPitch=mean(dbPitch(1:n)); 

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean 

 

anchorBeginning=1; % Anchor beginning 

anchorEnd=0;  % Anchor end 

m=11;   % Number of pitch shifts for key transposition 

pitchStep=linspace(-2, 2, m); 

dtwDist=zeros(1, m); % DTW distances for different pitch shifts 

for i=1:length(pitchStep) 

 newInputPitch=inputPitch+pitchStep(i); 

 dtwDist(i) = dtw1(newInputPitch, dbPitch, anchorBeginning, anchorEnd); 

end 

[minValue, index]=min(dtwDist); 

optInputPitch=inputPitch+pitchStep(index); 

[minDist, dtwPath, dtwTable]=dtw1(optInputPitch, dbPitch, anchorBeginning, anchorEnd); 

dtwPlot2(inputPitch+pitchStep(index), dbPitch, dtwPath); 

Output figure  

 



 

 

Similarly, we can plot the mapping between two curves in a 3D space, as shown next:  

Example 3Input file mr/mrDtw1Plot03.m 
% inputPitch: input pitch vector 

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821 

51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836 

49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821 

51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415 

50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818 

51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958 

55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739 

59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286 

55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958 

54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818 

50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029 

52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351 

52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029 

52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858 

53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991 

51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408 



48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351 

52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445 

49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365 

46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 

46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991]; 

% dbPitch: database pitch vector 

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 

62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 

59 59 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55 

55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64 

64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65 

65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60 

60 60 60 60 60 60]; 

n=length(inputPitch); 

meanPitch=mean(dbPitch(1:n)); 

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean 

 

anchorBeginning=1; % Anchor beginning 

anchorEnd=0;  % Anchor end 

m=11;   % Number of pitch shifts for key transposition 

pitchStep=linspace(-2, 2, m); 

dtwDist=zeros(1, m); % DTW distances for different pitch shifts 

for i=1:length(pitchStep) 

 newInputPitch=inputPitch+pitchStep(i); 

 dtwDist(i) = dtw1(newInputPitch, dbPitch, anchorBeginning, anchorEnd); 

end 

[minValue, index]=min(dtwDist); 

optInputPitch=inputPitch+pitchStep(index); 

[minDist, dtwPath, dtwTable]=dtw1(optInputPitch, dbPitch, anchorBeginning, anchorEnd); 

dtwPlot3(inputPitch+pitchStep(index), dbPitch, dtwPath); 

Output figure  

 



 

 

Hint  
If you try the above example in MATLAB, you can actually rotate the plot to get a better view of the mapping between these 

two curves. 

We can simply change "dtw1" to "dtw2" in these examples to obtain the results of type-2 DTW. 

In practice, the performance of type-1 and type-2 DTW is likely to be data dependent. There is 

no guarantee as which one is the clear winner for different data sets.  

As long as we have grasped the characteristics of DP, we can devise tailored comparison 

methods suitable for different scenarios of melody recognition.  

16-5 DTW of Type-3 

Old Chinese version  

Once we grasp the principle of DP, we can modify DTW for our needs. In this section, we shall 

introduce another version of DTW with the following charactersitics:  



• Query input: This is a frame-based pitch vector. (For our previous task on pitch labeling, 

the corresponding time unit for each pitch point is 256/8000 = 1/31.25 = 0.032 s = 32 

ms.)  

• Reference song: This is a note-based pitch vector in which the note duration is 

discarded for simplicity.  

Let t be the input query vector and r be the reference vector. The optimum-value function D(i, j), 

defined as the mininum distance between t(1:i) and r(1:j), can be expressed in the following 

recursion:  

D(i, j) = min(D(i-1,j), D(i-1, j-1))+|t(i)-r(j)|  

Please refer to the following figure:  

For simplicity, we shall refer to DTW of this type as type-3 DTW, with the following 

characteristics:  

• Type-3 DTW computes the distance between a frame-based pitch vector and a 

note-based pitch vector. Therefore the computational complexity is lower than those 

of type-1 and type-2 DTW>  



• The note duration is not used in the note-based pitch vector for comparison. Hence the 

recognition rate should not be as good as type-1 and type-2 DTW.  

• There is no method for one-shot key transposition for type-3 DTW. So we have to rely 

on trial-and-error method for key transposition.  

The following is a typical example of using type-3 DTW for melody alignment:  

Example 1Input file mr/dtw3path01.m 
pv=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049 

50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351 

52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545 

51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049 

50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268 

55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471 

55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 

55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.218415 49.218415 

48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0 

0 55.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351 

52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445 

49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699 

57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965 

55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965 

56.237965 56.237965 55.788268 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.154445 50.154445 50.478049 51.143991 

51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836 

62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818 

62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739 

59.762739]; 

pv(pv==0)=[];    % Delete rests (刪除休止符) 

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77 

0 77 70 29 70 10 69 38 65 38 67 38 65 38]; 

note(2:2:end)=note(2:2:end)/64;  % The time unit of note duration is 1/64 seconds 

frameSize=256; overlap=0; fs=8000; 

timeStep=(frameSize-overlap)/fs; 

pv2=note2pv(note, timeStep); 

noteMean=mean(pv2(1:length(pv))); % Take the mean of pv2 with the length of pv 

pv=pv-mean(pv)+noteMean;  % Key transposition 

notePitch=note(1:2:end);  % Use pitch only (只取音高) 



notePitch(notePitch==0)=[];  % Delete rests (刪除休止符) 

[minDistance, dtwPath] = dtw3mex(pv, notePitch, 1, 0); 

dtwPlot(pv, notePitch, dtwPath); 

Output figure  

 

 

 

In the above example, before using type-3 DTW, we have performed the following 

preprocessing:  

1. Key transposition: We assume the tempo of the query input is the same as the 

reference song. Therefore we convert the note into frame-based pitch vector for 

computing the mean value based on the length of the input query. We then shift the 

input query to have the same mean of the reference song. We can replace this 

simplified operation by a more precise method for key transposition.  

2. Rest handling: We simply delete all rests in both the input query and the reference 

song. Again, this is a simplified operation which can be replaced by a more delicate 

procedure for rest handling.  



After the alignment of type-3 DTW in the above example, we can plot the original input PV, 

shifted PV, and the induced PV, as follows:  

Example 2Input file mr/dtw3inducedPitch01.m 
pv=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049 

50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351 

52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545 

51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049 

50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268 

55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471 

55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 

55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.218415 49.218415 

48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0 

0 55.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351 

52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445 

49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699 

57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965 

55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965 

56.237965 56.237965 55.788268 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.154445 50.154445 50.478049 51.143991 

51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836 

62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818 

62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739 

59.762739]; 

pv(pv==0)=[];    % Delete rests (刪除休止符) 

origPv=pv; 

pvLen=length(origPv); 

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77 

0 77 70 29 70 10 69 38 65 38 67 38 65 38]; 

note(2:2:end)=note(2:2:end)/64;  % The time unit of note duration is 1/64 seconds 

timeStep=256/8000; 

pv2=note2pv(note, timeStep); 

noteMean=mean(pv2(1:length(pv))); 

shiftedPv=pv-mean(pv)+noteMean;  % Key transposition 

notePitch=note(1:2:end);  % Use pitch only (只取音高) 

notePitch(notePitch==0)=[];  % Delete rests (刪除休止符) 

[minDistance, dtwPath] = dtw3mex(shiftedPv, notePitch, 1, 0); 

inducedPv=notePitch(dtwPath(2,:)); 



plot(1:pvLen, origPv, '.-', 1:pvLen, shiftedPv, '.-', 1:pvLen, inducedPv, '.-'); 

legend('Original PV', 'Best shifted PV', 'Induced PV', 4); 

fprintf('Min. distance = %f\n', minDistance); 

fprintf('Hit return to hear the original pitch vector...\n'); pause; pvPlay(origPv, timeStep); 

fprintf('Hit return to hear the shifted pitch vector...\n'); pause; pvPlay(shiftedPv, timeStep); 

inducedNote=pv2noteStrict(inducedPv, timeStep); 

fprintf('Hit return to hear the induced pitch vector...\n'); pause; notePlay(inducedNote); 

Output message 

Min. distance = 200.752223 

Hit return to hear the original pitch vector... 

Error in ==> dtw3inducedPitch01 at 18 

fprintf('Hit return to hear the original pitch vector...\n'); pause; pvPlay(origPv, 

timeStep); 

 

Error in ==> goWriteOutputFile at 32 

 eval(command); 

 

goWriteOutputFile 

1/10: linScaling01 

  

Output figure  

 



 

 

In the above example, the green line is the origina input PV, the green line is the shifted PV, and 

the red line is the induced PV. Since the discrepancy between the shifted and induced PVs is 

still too big, we can conclude that the key transposition is satisfactory. It is likely that the tempo 

of the query input is not close to that of the reference song. The reference song is "Happy 

Birthday" and we can hear the related files:  

• MIDI file of "Happy Birthday"  

• User's singing clip  

• Query pitch vector (with rests)  

• Query pitch vector (without rests)  

• Shifted query pitch vector (without rests)  

• Induced notes  

If we want to do a better job in the alignment, we need to improve key transposition. A 

straightforward method is to do a linear (exhaustive) search of 81 comparisons with the range 

[-2, 2], as shown in the following example:  

Example 3Input file mr/dtw3inducedPitch02.m 



pv=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049 

50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351 

52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545 

51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049 

50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268 

55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471 

55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 

55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.218415 49.218415 

48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0 

0 55.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351 

52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445 

49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699 

57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965 

55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965 

56.237965 56.237965 55.788268 54.097918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.154445 50.154445 50.478049 51.143991 

51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836 

62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818 

62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739 

59.762739]; 

pv(pv==0)=[];    % Delete rests (刪除休止符) 

origPv=pv; 

pvLen=length(origPv); 

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77 

0 77 70 29 70 10 69 38 65 38 67 38 65 38]; 

note(2:2:end)=note(2:2:end)/64;  % The time unit of note duration is 1/64 seconds 

timeStep=256/8000; 

pv2=note2pv(note, 256/8000); 

noteMean=mean(pv2(1:length(pv))); 

shiftedPv=pv-mean(pv)+noteMean;  % Key transposition 

notePitch=note(1:2:end);  % Use pitch only (只取音高) 

notePitch(notePitch==0)=[];  % Delete rests (刪除休止符) 

 

% Linear search of 81 times within [-2 2] (上下平移 81 次，得到最短距離) 

clear minDist dtwPath 

shift=linspace(-2, 2, 81); 

for i=1:length(shift) 

 newPv=shiftedPv+shift(i); 



 [minDist(i), dtwPath{i}] = dtw3mex(newPv, notePitch, 1, 0); 

end 

[minValue, minIndex]=min(minDist); 

bestShift=shift(minIndex); 

bestShiftedPv=shiftedPv+bestShift; 

inducedPv=notePitch(dtwPath{minIndex}(2,:)); 

plot(1:pvLen, origPv, '.-', 1:pvLen, bestShiftedPv, '.-', 1:pvLen, inducedPv, '.-'); 

legend('Original PV', 'Best shifted PV', 'Induced PV', 4); 

fprintf('Best shift = %f\n', bestShift); 

fprintf('Min. distance = %f\n', minValue); 

fprintf('Hit return to hear the original pitch vector...\n'); pause; pvPlay(origPv, 256/8000); 

fprintf('Hit return to hear the shifted pitch vector...\n'); pause; pvPlay(bestShiftedPv, timeStep); 

inducedNote=pv2noteStrict(inducedPv, 256/8000); 

fprintf('Hit return to hear the induced pitch vector...\n'); pause; notePlay(inducedNote); 

Output message 

Best shift = 1.250000 

Min. distance = 103.142939 

Hit return to hear the original pitch vector... 

Hit return to hear the shifted pitch vector... 

Hit return to hear the induced pitch vector... 

  

Output figure  

 



 

 

Due to a better key transposition, the alignment of type-3 DTW is improved significantly with a 

much less DTW distance. The related files are shown next:  

• Induced notes  

Hint  
In general, if we want to perform melody recognition, the exhaustive search for key transposition is impractical due to its 

excessive computational load. Some heuristic search, such as the binary-like search mentioned in section 2 of this chapter, 

should be employed instead for such purpose.  

In the above example, we can still find some obvious mistake for the alignment. For instance, 

the fifth induced is too short since it only covers 3 frames. To solve this problem and to improve 

type-3 DTW in general, we have the following stragegies:  

• Set the range of frame numbers being mapped to each note: For instance, the duration 

of the frames being mapped to a note should between the range [0.5, 2] of the 

duration of the note. This can enhance the performance since the duration of each 

note is used.  



• Use rests: Except for the leading and trailing rests, any rest in the query input indicates 

the end of the previous note and the beginning of the next note. We can use this cue 

for better alignment and query by singing/humming.  

We can simply modify our type-3 DTW to meet the above two requirement in order to increase 

the precision of alignment and the recognition rates of query by singing/humming.  

16-6 LCS and Edit Distance 

Old Chinese version  

We can use note-based approach for melody recognition. First of all, we need to segment the 

input query pitch vector into music notes. Assume the input pitch vector is represented by pv(i), 

i=1~n, then the most straightforward method for note segmentation can be described as the 

pseudo code shown next:  

for i=1:n 

 if |pv(i)-pv(i-1)|>θ & the current note is long enough 

  Finish the current note and start a new note 

 else 

  Add pv(i) to the current note 

 end 

end 

The following example demonstrates the use of pv2note.m for note segmentation:  

Example 1Input file mr/noteSegment01.m 
pitchVector=[49.21841 48.33041 48.33041 47.76274 48.04425 48.04425 47.76274 48.33041 48.04425 48.04425 48.04425 

47.48574 47.48574 47.48574 47.48574 47.48574 47.76274 48.04425 48.04425 47.76274 47.76274 47.76274 47.21309 

47.21309 47.21309 47.21309 47.21309 51.48682 51.48682 51.48682 51.48682 51.83658 51.83658 51.83658 51.83658 

51.83658 54.92247 54.09792 54.09792 54.09792 54.09792 54.09792 54.09792 54.92247 54.92247 54.92247 54.92247 

54.50529 54.50529 54.92247 54.50529 54.50529 54.09792 54.50529 55.34996 54.92247 54.92247 54.50529 54.50529 

54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 53.31086 53.31086 53.31086 53.31086 

56.23796 55.78827 55.78827 56.23796 56.69965 56.69965 56.69965 57.17399 56.69965 56.69965 56.69965 56.69965 

56.69965 56.69965 56.69965 57.17399 57.17399 57.17399 56.69965 56.69965 56.69965 56.69965 56.69965 56.69965 

56.69965 59.76274 59.76274 59.76274 59.21309 59.21309 59.21309 58.68037 58.68037 58.68037 58.68037 54.09792 

54.09792 54.09792 54.50529 54.50529 54.09792 54.09792 54.50529 54.92247 54.50529 54.50529 54.09792 53.69992 



53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 

53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 50.47805 51.48682 51.83658 52.19354 52.55803 

52.19354 52.55803 51.83658 51.83658 52.55803 52.93035 52.93035 52.93035 52.93035 52.93035 51.14399 51.14399 

54.50529 53.31086 52.55803 52.19354 52.19354 52.19354 52.55803 52.93035 54.09792 54.50529 54.92247 55.78827 

56.23796 56.23796 55.78827 55.34996 54.09792 54.09792 54.09792 51.48682 50.15444 50.15444 50.80782 51.14399 

51.14399 51.14399 51.14399 52.19354 52.19354 51.83658 51.83658 51.83658 51.48682 51.48682 51.48682 51.83658 

51.83658 51.48682 51.48682 51.48682 51.48682 51.48682 50.80782 50.80782 52.55803 51.48682 51.14399 50.80782 

51.14399 51.48682 51.48682 51.48682 50.80782 50.80782 50.80782 48.91732 48.62138 48.33041 48.33041 48.33041 

48.04425 48.91732 48.91732 48.91732 49.21841 49.21841 48.91732 48.62138 48.33041 48.33041 48.33041 49.83678 

48.62138 48.62138 48.62138 48.62138 48.62138 48.91732 49.52484 49.52484 48.91732 48.62138 48.33041]; 

timeStep=256/8000; 

pitchTh=0.8; 

minNoteDuration=0.1; 

plotOpt=1; 

note=pv2note(pitchVector, timeStep, pitchTh, minNoteDuration, plotOpt); 

fprintf('Hit return to hear the pitch vector...'); pause; fprintf('\n'); 

pvPlay(pitchVector, timeStep); 

fprintf('Hit return to hear the segmented note...'); pause; fprintf('\n'); 

notePlay(note, 1);  

Output message 

Warning: Could not find an exact (case-sensitive) match for 'noteplot'. 

d:\users\jang\matlab\toolbox\audioProcessing\notePlot.m is a case-insensitive match 

and will be used instead. 

You can improve the performance of your code by using exact 

name matches and we therefore recommend that you update your 

usage accordingly.  Alternatively, you can disable this warning using 

warning('off','MATLAB:dispatcher:InexactMatch'). 

> In pv2note at 42 

  In noteSegment01 at 6 

  In goWriteOutputFile at 32 

Hit return to hear the pitch vector... 

Hit return to hear the segmented note... 

  



Output figure  

 

 

 

In fact, the method implemented by pv2note.m is the simplest way for note segmentation. 

Possible enhancements include:  

1. Finish the current note whenever there is a rest.  

2. If the singer has a good absolute pitch, we can round off each note to the nearest 

integer. On the other hand, if the singer has a good relative pitch, we can shift up and 

down to find a best shift amount that minimizes the absolute error.  

3. We can also employ the concept of DP to find the best way for note segmentation, 

such that the difference between the original pitch vector and the segmented notes is 

minimized.  

Once we finish note segmentation, we can use the note-based representation for melody 

recognition, as follows.  



In the first method, we only consider the pitch difference between two neighboring notes, 

regardless of the note's absolute pitch and duration. For instance, if the note pitch is [69, 60, 58, 

62, 62, 67, 69], we can convert it into a ternary string [D, D, U, S, U, U] where D (down), U (up) 

and S (same) are used to described the relationship between two neighboring notes. Once we 

have convert both the input query and the reference song into two ternary string vectors, we 

can invoke LCS (longest common subsequence) or ED (edit distance) to compute their 

distance.  

In the second method, we use the note pitch directly, regardless of the note duration. For 

instance, if the note pitch is [69, 60, 58, 62, 62, 67, 69], we can simply invoke type-1 or type-2 

DTW to compute the distance. Since we are using the note pitch directly, we need to perform 

key transposition before invoking DTW. On the other hand, if we are using the difference of the 

note pitch for comparison, then we do not need to invoke key transposition.  

In the third method, we need to consider both note pitch and note duration. We can still use 

DTW-like method for comparison, except that we need to consider note pitch and note duration 

separately. For note pitch, we can take the difference to deal with key variation. For note 

duration, we can take the ratio of neighboring note duration to take care of tempo variation. We 

can then invoke DTW that compute the cost function as a weighted average of pitch and 

duration cost.  

16-7 旋律辨識的效能改進 

本章提出了很多旋律辨識的比對方法，每一種方法都有其優缺點，但是在實際應用時，最常被

提到的評價標準就是辨識率和計算時間。若不考慮其他次要因素，通常我們是希望辨識率越高越

好，而計算時間也是越少越好，但是這兩個因素會互相抵觸，套句俗話所說，總不能「又要馬兒

好，又要馬而不吃草」吧？因此在方法的選用以及效能的評估，我們都會話出辨識率對計算時間

的作圖，同時對於每一種方法，我們也會改變其參數，因此一種方法就會對應一條曲線，若有五

種方法，就會出現五條曲線，這時候我們就可以根據應用面的需求來選取一種適合的方法以及相

關的參數值。（請見本章作業。）  

當資料庫的歌曲越來越多時，比對所花的時間也會越來越慢，但對於一個實際應用的系統而言，

等待時間應該以不超過五秒為原則，因此我們必須在有限的時間內，找出各種辨識方法的組合，



以便能夠求取辨識率的最大值，這種方法稱為 Progressive Filtering，也就是先用一些粗略的方

法來刪除不可能的歌曲，再用比較精密的方法來進行詳細的比對，這樣就能夠大量節省比對時間，

也不會大幅降低辨識率。至於如何區分粗略及詳細的方法，以及如何安排每個方法的先後，這些

都需要詳細的數學分析，在此不再贅述。  

如果不考慮計算時間，只求辨識率的提升，那麼一個簡單的方法，就是使用多個辨識方法來進行

投票表決。例如，假設我們有 10 首 wav 檔案待辨識，共使用了三種方法，辨識結果請見下列表

單：  

wav 檔案 方法一 方法二 方法三 投票表決法  

a  0  1  1  1  

b  1  1  0  1  

c  1  0  1  1  

d  0  0  1  0  

e  0  1  0  0  

f  0  0  0  0  

g  1  0  0  0  

h  1  0  1  1  

i  0  1  1  1  

j  1  1  0  1  

辨識率：  50% 50% 50% 60%  

其中 1 代表辨識正確，0 代表辨識錯誤，換句話說，方法一、二、三的辨識率有是 50%，而進

行投票後，辨識率可以提升到 60%。若用集合的方式來表示，可見下圖，其中落於「方法一」

的元素代表辨識錯誤之歌曲，餘類推。由於方法一、二、三所辨識錯誤歌曲的重複性不高，因此

我們可以使用投票表決法，來達到提升辨識率的目標。  



 

Hint  
投票表決法一般而言，都可以提高辨識率，但是也有可能出現反效果，完全看錯誤資料的分佈而定。 

如果辨識的方法很多，我們也可以使用一套最佳化的方法，讓系統根據辨識率列表，找出三個最

有效的方法來進行投票表決，以得到最佳的辨識率。  

第 16 章作業 

Old Chinese version  

1. (*) Median for minimizing L-1 norm： For a given vector x = [x1, ... xn], prove that the 

median of elements in x can minimize the following objective function based on L-1 

norm:  

Median of x = arg minu Σ|xi-u|  



2. (*) Mean for minimizing L-2 norm： For a given vector x= [x1, ... xn], prove that the 

mean of elements in x can minimize the following objective function based on L-2 

norm:  

Mean of x = arg min u Σ(xi-u)2  

3. (**) Function for for note segmentation： Write an m-file function myPv2note.m for 

note segmentation, with the following usage:  

note = myPv2note(pitchVec, timeStep, pitchTh, minNoteDuration)  

where  

o pitchVec: The input pitch vector  

o timeStep: The time for each pitch point  

o pitchTh: Pitch threshold for creating a new note  

o minNoteDuration: The minimum duration of a note  

o note: The output note vector of the format [pitch, duration, pitch, duration, ...], 

where the units for pitch and duration are semitone and second, respectively.  

Besides using pitch difference, you also need to use rests (zeros in pitchVec) for note 

segmentation. The duration of a rest note can be shorter than minNoteDuration. How 

to test your function:  

f. Please use the pv file of "Happy Birthday" for note segmentation. You can hear 

the original wave clip and the corresponding midi file.  

g. Please use the pv file of "Twinkle Twinkle Little Star" for note segmentation. 

You can hear the original wave clip and the corresponding midi file.  

Hint:  

o You can start with the pv2note.m in the Melody Recognition Toolbox, which do 

not take rests into consideration.  

o You can use pvPlay.m to play the pitch vector, and use notePlay.m to play the 

output notes.  



4. (**) Function for linear scaling： Pleae write an m-file function mylinearScaling.m for 

linear scaling, with the following usage:  

[minDist, bestVec1, allDist] = myLinearScaling4mr(pitchVec1, pitchVec2, lowerRatio, 

upperRatio, resolution, distanceType)  

where  

o pitchVec1: pitch vector of the input query. This is the vector to be expanded or 

contracted.  

o pitchVec2: pitch vector of the reference song  

o lowerRatio: lower ratio for contraction  

o upperRatio: upper ratio for expansion  

o resolution: total number of contraction or expansion  

o distanceType: distnace type, 1 for L1 norm, 2 for L2 norm.  

o minDist: mininum distance of the linear scaling  

o bestVec1: the pitch vector of the input query after shifting, 

expansion/contraction that can achieve the mininum distance  

o allDist: all distances of linear scaling  

Note that:  

o If the expanded pitchVec1 is greater than the length of pitchVec2, then stop 

doing linear scaling.  

o For L-1 norm, we need to do median justification. For L-2 norm, we need to do 

mean justification.  

o You need to perform distance normalization.  

o You can assume the input vectors do not contain rests.  

How to test your program:  

o Please run this example this example, but replace linScalingMex with 

myLinearScaling to see if you can get the same result.  



o Use your function in the programming contest of melody recognition to see if 

you can achieve the same recognition rate.  

Hint: You can use "interp1" for interpolation, "median" for computing median, "mean" 

for computing mean, "norm" for computing Lp norm. If you do not know how to use 

"interp1", the following is an example:  

Example 1Input file interpDemo01.m 

n=10; 

x=1:n; 

y=rand(1,n);  % Original vector (原始向量) 

ratio=1.8;  % The vector interpolation should have a length equal to 1.8 times the original vector 

x2=1:1/ratio:n; 

y2=interp1(x, y, x2); % Vector after interpolation 

subplot(2,1,1), plot(x, y, 'o-', x2, y2, 'o:'); 

subplot(2,1,2), plot(1:length(y), y, 'o-', 1:length(y2), y2, 'o:'); 

fprintf('Desired length ratio = %f\n', ratio); 

fprintf('Actual length ratio = %f\n', length(y2)/length(y)); 

Output message 

Desired length ratio = 1.800000 

Actual length ratio = 1.700000 

  

Output figure  

 



 

 

5. (***) Function for type-3 DTW： Please write a m-file function myDtw3.m for type-3 

DTW, with the usage:  

[minDist, dtwPath, dtwTable] = myDtw3(vec1, vec2)  

You can start from the following skeleton:  

原始檔（dtw3skeleton.m）：（灰色區域按兩下即可拷貝） 

function [minDistance, dtwPath, dtwTable]=dtw3(vec1, vec2, beginCorner, endCorner) 

% dtw3: Dynamic time warping with local paths of 0 and 45 degrees 

% Usage: [minDistance, dtwPath, dtwTable]=dtw3(vec1, vec2, beginCorner, endCorner, plotOpt) 

%  vec1: testing vector, which should be a pitch vector 

%  vec2: reference vector, which should be a vector of note pitch 

%  minDistance: minimun distance of DTW 

%  dtwPath: optimal path of dynamical programming through the DTW table 

%   (Its size is 2xk, where k is the path length.) 

%  dtwTable: DTW table 

 



if nargin<3, beginCorner=1; end 

if nargin<4, endCorner=1; end 

 

% If input is vector, make it row vector 

if size(vec1,1)==1 | size(vec1,2)==1, vec1 = vec1(:)'; end 

if size(vec2,1)==1 | size(vec2,2)==1, vec2 = vec2(:)'; end 

 

size1=length(vec1); 

size2=length(vec2); 

 

% ====== Construct DTW table 

dtwTable=inf*ones(size1,size2); 

% ====== Construct the first element of the DTW table 

dtwTable(1,1)=vecDist(vec1(:,1), vec2(:,1)); 

% ====== Construct the first row of the DTW table (xy view) 

for i=2:size1 

 dtwTable(i,1)=dtwTable(i-1,1)+vecDist(vec1(:,i), vec2(:,1)); 

 prevPos(i,1).i=i-1; 

 prevPos(i,1).j=1; 

end 

% ====== Construct the first column of the DTW table (xy view) 

if beginCorner==0 

 for j=2:size2 

  dtwTable(1,j)=vecDist(vec1(:,1), vec2(:,j)); 

  prevPos(1,j).i=[]; 

  prevPos(1,j).j=[]; 

 end 

end 

 

% ====== Construct all the other rows of DTW table 

for i=2:size1 

 for j=2:size2 

  pointDist=vecDist(vec1(:,i), vec2(:,j)); 

  % ====== Check 45-degree predecessor 

  ... 

  % ====== Check 0-degree predecessor 

  ... 



 end 

end 

 

% ====== Find the overall optimum path 

[minDistance, dtwPath]=dtwBackTrack(dtwTable, prevPos, beginCorner, endCorner); 

 

% ========== Sub function =========== 

function distance=vecDist(x, y) 

distance=sum(abs(x-y)); 

To test your function:  

 . Try this example, but replace dtw3mex by myDtw3 to see if you can obtain the 

same result.  

a. Use your function in the programming contest of melody recognition, with 1 key 

transposition. What is the recognition rate?  

b. Use your function in the programming contest of melody recognition, with 5 key 

transposition. What is the recognition rate?  

6. (***) Methods for improving type-3 DTW： Write a m-file function myDtw3b.m for 

type-3 DTW, with the enhancements mentioned at the end of the section covering 

type-3 DTW:  

 . Set the range of frame numbers being mapped to each note: For instance, the 

duration of the frames being mapped to a note should between the range [0.5, 

2] of the duration of the note. This can enhance the performance since the 

duration of each note is used.  

a. Use rests: Except for the leading and trailing rests, any rest in the query input 

indicates the end of the previous note and the beginning of the next note. We 

can use this cue for better alignment and query by singing/humming.  

b. Use both of the above enhancements.  

Please test your function as follows:  

c. Use your function in the programming contest of melody recognition, with L-1 

norm and 1 key transposition. What is the three recognition rates?  



d. Use your function in the programming contest of melody recognition, with L-1 

norm and 5 key transposition. What is the three recognition rates?  

7. (***) Melody recognition rates w.r.t. LS resolutions and no. of key 

transpositions： Before attempting this exercise, you should first fully understand the 

example program in the programming contest of melody recognition. You tasks are 

explained next.  

 . Use linear scaling for melody recognition, and plot the recognition rate as a 

function of the computation time, but parameterized by the resolution for linear 

scaling from 5 to 12. Your plot should be similar to the following one:  

 

a. Use type-1 DTW for melody recognition, and plot the recognition rate as a 

function of the computation time, but parameterized by the numbers of key 

transposition of [1, 3, 5, 7, 9]. Your plot should be similar to the following one:  



 

8. Hint:  

o If the computing time is too long, you can use the first 100 wave files for this 

exercise.  

o It would be easier for you to do the computation and plotting if you modify the 

example program in the programming contest for melody recogntion into a 

single function.  

9. (***) Melody recognition rates w.r.t. pitch vector reduction ratio： Before 

attempting this exercise, you should first fully understand the example program in the 

programming contest of melody recognition. The pitch rate of our query pitch vector is 

fs/frameSize = 8000/256 = 31.25. If the computing time is too long, we can simply 

down-sample the pitch vector to reduce the size of the DTW table. In other words, we 

can explore the effect of PVRR (pitch vector reduction ratio) on the recognition rates 

of various methods. For a given value of pvrr, the pitch rate becomes 31.25/pvrr. You 

need to plot the recognition rates of 4 methods (LS, DTW1, DTW3, DTW3) with 

respect to computation time, but parameterized by PVRR which varies from 1 to 10. 

Your plot should be similiar with the following one:  



 

Hint:  

o If the computing time is too long, you can use the first 100 wave files for this 

exercise.  

o It would be easier for you to do the computation and plotting if you modify the 

example program in the programming contest for melody recogntion into a 

single function.  

10. (***) Creation of a prototypical QBSH system： In this exercise, you are going to 

write a MATLAB script to create a prototypical QBSH system. Basically, the user can 

sing/hum to the microphone for 8 seconds and the system can list the top-10 ranking 

of the retrieved songs based on their similarity to the query input. Your system should 

follow the following steps:  

 . Load the song database. This can be achieved by using  

songDb=songDbRead('childSong', 0);  

You can check the contents of songDb by typing  

dispStructInHtml(songDb);  



a. Convert the "track" field of each song to PV representation and attach the PV to 

a field "pv" of songDb. You can use the command note2pv.  

b. Do the recording with fs=8000, nbits=8.  

c. Perform pitch tracking by using the command wave2pitchByAcf. Plot the result 

of pitch tracking (by supplying appropriate arguments to the command) after 

each recording to make sure the pitch tracking result is satisfactory.  

d. Handle rests by using the command restHandle.  

e. Compare the query PV to each PV in the database using linear scaling.  

f. Display the top-10 retrieved songs based on the LS distances.  

You system should be able to let the user sing/hum as many songs as they want until 

ctrl-c is hit. When you demo your system to TA, make sure you can have at least 3 

humming/singing inputs to have the correct answer in top-10 results. (Hint: You need 

to use the Melody Recognition Toolbox.)  

11. (***) Programming contest: melody recognition： Please follow the link for more 

information.  

Chapter 17: HTK 

17-1 HTK Introduction (HTK 簡介) 

Old Chinese version  

HTK (Hidden Markov Model Toolkit) is a public-domain software for training HMM (Hidden 

Markov Models), mostly for the application of automatic speech recognition. Most of the related 

information can be found at the HTK website:  

http://htk.eng.cam.ac.uk/  

HTK was originally developed by the Machine Intelligence Lab of Engineering Department at 

Cambridge University. In 1999, Microsoft bought HTK from its owner Entropic Inc., and made it 

public-domain open-source software for enhancing the speech technology through collective 

efforts. As a result, now we can download the source of HTK from its website directly.  



The implementation of automatic speech recognition involves advanced techniques of HMM 

training and evaluation, which are not easily mastered by common programmers. Since the 

availability of HTK source code, the entry barrier became lower, which advances the research 

of speech technology rapidly. Currently most of the research labs in unversities and industry are 

using HTK for their research and development. As a result, HTK is the de facto standard tool for 

developing automatic speech recognition.  

This chapter will use several basic examples to demonstrate the use of HTK. We have tried to 

keep the examples as simple as possible while not omitting any important features of HTK. 

After getting familiar with these examples, the users can further consult HTK manual for other 

advanced features for your own research and development.  

17-2 HTK Example: Digit Recognition (HTK 基本範例一：數字辨

識) 

Old Chinese version  

To implement CHMM, usually we rely on HTK (Hidden Markov Model Toolket) for corpus 

preparation and training. In this section, we shall use a simple example to demonstrate the use 

of HTK. In this example, we want to construct CHMM for the recognition for the digits from 0 to 9 

in Mandarin. You will be able to know how to do corpus training, and how to compute the 

recognition rates.  

In this homepage, we intend to display files of several extensions (mlf, scp, template, cfg, pam, 

init, hmm, net, grammar, etc) via iframe tags in the web browser directly. To this end, you need 

to cancel the application associations for these extensions. (Otherwise there will be popup 

windows to ask if you want to download the files, etc.) You can use the following batch file to 

cancel the extension-application associations:  

原始檔（htk/delAssociation.bat）：（灰色區域按兩下即可拷貝） 
assoc .mlf= 

assoc .scp= 

assoc .template= 



assoc .cfg= 

assoc .pam= 

assoc .init= 

assoc .hmm= 

assoc .net= 

assoc .grammar= 

Please run the above batch file under the DOS prompt. Then you can reload this homepage 

such that all files can be displayed on within iframe tages in this page correctly.  

Hint  
You can use the command "assoc" to specify or delete file association with an application. For instance, if you want to delete 

file association with the extension "scp", you can type "assoc .scp=" under the DOS prompt. 

Before move on, you need to download the following files for this section:  

• HTK commands: After decompression, there are two directories "bin.win32" and "bin", 

which contain HTK commands and other data-processing commands, respectively. 

You need to add these two directories to the system's search path via 「控制台/系統/

進階/環境變數/系統變數」. If the decompressed directory is put as c:\htk, then you can 

also append the search path with the DOS window as follows:  
• set path=%path%;c:\htk\bin.win32;c:\htk\bin 

  

• Corpus and training scripts: There are two directories:  

o training: Training scripts.  

o waveFile: Corpus of digits 0 ~ 9 in Mandarin.  

Please place the directory "chineseDigitRecog" in a path without blanks. (Do not put 

them on the desktop since its path contains blanks.)  

Open a DOS window and change directory to chineseDigitRecog/training. Type "goSyl13.bat" 

in the DOS window to start training and performance evaluation. (You can also execute 

goSyl13.m within MATLAB to get the same results.) If the command runs smoothly until two 

confusion matrices are displayed on the screen, then everything is set up correctly.  



Before start our corpus training, we need to prepare two files manually. The first file is 

"digitSyl.pam" which specifies how to decompose the phonetic alphabets of each digit into the 

corresponding acoustic models. For simplicity, our current approach use each syllable as an 

acoustic model, as follows:  

原始檔（htk/chineseDigitRecog/training/digitSyl.pam）：（灰色區域按兩下即可拷貝） 
ba ba 

er er 

jiou jiou 

ling ling 

liou liou 

qi qi 

san san 

si si 

sil sil 

wu wu 

i i 

The above decomposition is a rough but simple way to define syllable-based acoustic models 

for this application. More delicate decompositions based on monophones or biphones will be 

explained later.  

Hint  
The extension "pam" represents phonetic alphabets to model. This is also referred to as the dictionary file in HTK. 

The second file is digitSyl.mlf, which define the contents (in the form of acoustic models) of 

each utterance, as follows:  

Example（htk/chineseDigitRecog/training/digitSyl.mlf）：  

In the above file, we use sil for silence. We add leading and trailing sil around ling to indicate the 

utterance of "0" is surrounded by silence.  

Hint  

• The extension of "mlf" stands for master label file, which is used to record the contents of each utterance.  



• HTK uses feature file names to map to the contents in an mlf file. Hence the feature file names should be unique. 

(The wave file names do not have to be unique.) 

In the following, we shall explain the contents of the MATLAB script goSyl13.m and the DOS 

batch file goSyl13.bat. Both these files involve three major tasks:  

I. Extraction of acoustic features of MFCC.  

II. Corpus training based on EM to find the optimum parameters.  

III. Performance evaluation based on recognition rate.  

We shall introduce these three steps in detail.  

I. Acoustic feature extraction of MFCC  

1. Create output directories 

We need to create 3 directories for holding output files:  

 output: For various intermediate output files  

 output\feature: For feature files of all utterances.  

 output\hmm: For HMM parameters during training  

The MATLAB commands are  

mkdir('output'); 

mkdir('output/feature'); 

mkdir('output/hmm'); 

The batch command is:  

for %%i in (output output\feature output\hmm) do mkdir %%i > nul 2>&1 

If the directories exist, the batch command will not display any warning 

messages.  

Hint  

The batch command listed above is copied directly from goSyl13.bat. If you want to execute the 

command within DOS prompt, be sure to change %%i to %i. Same for the following discussion. 



2. Generate digitSyl.mnl and digitSylPhone.mlf 

The MATLAB comand for generating syl2phone.scp is:  
3. fid=fopen('output\syl2phone.scp', 'w'); fprintf(fid, 'EX'); fclose(fid); 

The corresponding batch command is:  

@echo EX > output\syl2phone.scp 

The contents of syl2phone.scp are shown next:  

原始檔（htk/chineseDigitRecog/training/output/syl2phone.scp）：（灰色區域按兩

下即可拷貝） 

EX  

The string "EX" represents "expand", which serves to expand syllables into 

acoustic models to be used with the HTK command "HLED". This command is 

used to generate digitSyl.mnl and digitSylPhone.mlf, as shown next:  

HLEd -n output\digitSyl.mnl -d digitSyl.pam -l * -i output\digitSylPhone.mlf output\syl2phone.scp 

digitSyl.mlf 

In the above expression, input files are in blue while output files are in red. The 

output file digitSyl.mnl lists all the used acoustic models:  

原始檔（htk/chineseDigitRecog/training/output/digitSyl.mnl）：（灰色區域按兩下

即可拷貝） 

sil 

ling 

i 

er 

san 

si 

wu 

liou 

qi 



ba 

jiou 

Hint  

The extension "mnl" represents model name list. 

The file digitSylPhone.mlf contains the results of converting the syllable 

information in digitSyl.mlf into acoustic models for corpus training, as follows:  

Example（htk/chineseDigitRecog/training/output/digitSylPhone.mlf）：  

In this example, since we are using syllable-based acoustic models, the 

contents of digitSylPhone.mlf are the same as those in digitSyl.mlf.  

4. Generate wav2fea.scp 

Before extracting acoustic features, we need to specify the file mapping 

between each utterance (with extension .wav) and its corresponding feature 

file (with extension .fea). This mapping is specified in the file wav2fea.scp, 

which can be generated by the following MATLAB commands:  
5. wavDir='..\waveFile'; 

6. waveFiles=recursiveFileList(wavDir, 'wav'); 

7. outFile='output\wav2fea.scp'; 

8. fid=fopen(outFile, 'w'); 

9. for i=1:length(waveFiles) 

10.  wavePath=strrep(waveFiles(i).path, '/', '\'); 

11.  [a,b,c,d]=fileparts(wavePath); 

12.  fprintf(fid, '%s\t%s\r\n', wavePath, ['output\feature\', b, '.fea']); 

13. end 

14. fclose(fid); 

The corresponding batch command is much simpler:  

(for /f "delims=" %%i in ('dir/s/b wave\*.wav') do @echo %%i output\feature\%%~ni.fea)> 

output\wav2fea.scp 

The contents of wav2fea.scp are shown next:  



Example（htk/chineseDigitRecog/training/output/wav2fea.scp）：  

From the contents of wave2fea.scp, we know that all the feature files will be put 

under "output\feature" with a file extension of "fea".  

15. Use HCopy.exe for acoustic feature extraction 

Now we can use HTK command "HCopy" to generate MFCC feature files for all 

utterances:  
16. HCopy -C mfcc13.cfg -S output\wav2fea.scp 

In the above expression, mfcc13.cfg is a configuration file which specifies 

parameters for generating MFCC, with the following contents:  

原始檔（htk/chineseDigitRecog/training/mfcc13.cfg）：（灰色區域按兩下即可拷貝） 

#NATURALREADORDER = TRUE 

SOURCEKIND = WAVEFORM 

SOURCEFORMAT = WAV 

TARGETKIND = MFCC_E 

TARGETRATE = 100000.0 

WINDOWSIZE = 200000.0 

PREEMCOEF = 0.975 

NUMCHANS = 26 

CEPLIFTER = 22 

NUMCEPS = 12 

USEHAMMING = T 

DELTAWINDOW = 2  

ACCWINDOW= 2 

The meanings of these parameters can be found in the HTK manual.  

II. Corpus training based on EM to find the optimum parameters  

1. Generate file lists in trainFea.scp and testFea.scp 

We need to generate file lists for training and test sets, with the following 

MATLAB commands:  
2. outFile='output\trainFea.scp'; 



3. fid=fopen(outFile, 'w'); 

4. for i=1:460 

5.  wavePath=strrep(waveFiles(i).path, '/', '\'); 

6.  [a,b,c,d]=fileparts(wavePath); 

7.  fprintf(fid, '%s\r\n', ['output\feature\', b, '.fea']); 

8. end 

9. fclose(fid); 

10. outFile='output\testFea.scp'; 

11. fid=fopen(outFile, 'w'); 

12. for i=461:length(waveFiles) 

13.  wavePath=strrep(waveFiles(i).path, '/', '\'); 

14.  [a,b,c,d]=fileparts(wavePath); 

15.  fprintf(fid, '%s\r\n', ['output\feature\', b, '.fea']); 

16. end 

17. fclose(fid); 

From the above program, it is obvious that the first 460 files are for training, 

while all the others are for test. The corresponding batch commands are:  

for %%i in (train test) do ( 

 for /f %%j in (%%i.list) do @echo output\feature\%%j.fea 

) > output\%%iFea.scp 

Note that the above code segment read contents from files train.list and test.list 

(which are prepared in advance), and generates files trainFea.scp and 

testFea.scp for corpus training and recognition rate computation, respectively. 

The contents of trainFea.scp are:  

Example（htk/chineseDigitRecog/training/output/trainFea.scp）：  

18. Generate HMM template file 

For corpus training, we need to generate an HMM template file to specify the 

model structure, such as how many states in an acoustic model, how many 



streams in a state, and how many Gaussian components in a stream, and so 

on. The HTK command is:  
19. outMacro.exe P D 3 1 MFCC_E 13 > output\template.hmm 

where  

 P: HMM system type, which is fixed to "P" for the time being.  

 D: Types of the covariance matrix, which could be "InvDiagC", "DiagC", or 

"FullC". The "D" is the above command represents "DiagC", which is the 

most commonly used setting.  

 3: Number of states for a model  

 1: Indicate each state has 1 stream with 1 Gaussian component. (For 

example, "5 3" indicates there are 2 streams in a state, with 5 and 3 

Gaussian components, respectively.)  

 MFCC_E: The acoustic parameters are MFCC and energy.  

 13: Dimension of the feature vector.  

If this is done with MATLAB, we need to invoke genTemplateHmmFile.m, as 

follows:  

feaType='MFCC_E'; 

feaDim=13; 

outFile='output\template.hmm'; 

stateNum=3; 

mixtureNum=[1]; 

streamWidth=[13]; 

genTemplateHmmFile(feaType, feaDim, stateNum, outFile, mixtureNum, streamWidth); 

The generated template.hmm specifies an HMM of 3 states, with 1 stream per 

state, and 1 component per stream, with the following contents:  

Example（htk/chineseDigitRecog/training/output/template.hmm）：  



Since this file is used to specify the structure of HMM, all the parameters are 

given preset reasonable values. Moreover, the states are given indices from 2 

to 4 since the first and last states are dummy in HTK convention.  

20. Populate HMM template using all corpus 

In the next step, we need to compute the initial HMM parameters from the 

corpus and put them into template.hmm to generate output\hcompv.hmm. By 

doing so, we can have a set of parameters (for a single HMM of 3 states) which 

is a better guess than the preset value in template.hmm. Later on, we should 

copy the parameters to all of the HMMs for EM training. The following 

command can populate output\template.hmm to generate 

output\hcompv.hmm:  
21. HCompV -m -o hcompv.hmm -M output -I output\digitSylPhone.mlf -S output\trainFea.scp 

output\template.hmm 

The contents of the generated output\hcompv.hmm are:  

Example（htk/chineseDigitRecog/training/output/hcompv.hmm）：  

From the contents of output/hcompv.htmm, it can be observed that:  

 The transition probabilities are not changed.  

 The mean and variance of each Gaussian have been changed to the same 

values for all components. These values are obtained via MLE 

(maximum likelihood estimate) based on all corpus.  

22. Copy the contents of hcompv.hmm to generate macro.init 

In this step, we need to copy the contents of hcompv.hmm to each acoustic 

model, with the following MATLAB commands:  
23. % Read digitSyl.mnl 

24. modelListFile='output\digitSyl.mnl'; 

25. models = textread(modelListFile,'%s','delimiter','\n','whitespace',''); 

26. % Read hcompv.hmm 

27. hmmFile='output\hcompv.hmm'; 

28. fid=fopen(hmmFile, 'r'); 

29. contents=fread(fid, inf, 'char'); 



30. contents=char(contents'); 

31. fclose(fid); 

32. % Write macro.init 

33. outFile='output\macro.init'; 

34. fid=fopen(outFile, 'w'); 

35. source='~h "hcompv.hmm"'; 

36. for i=1:length(models) 

37.  target=sprintf('~h "%s"', models{i}); 

38.  x=strrep(contents, source, target); 

39.  fprintf(fid, '%s', x); 

40. end 

41. fclose(fid); 

The corresponding DOS batch commands are:  

  (for /f %%i in (output\digitSyl.mnl) do @sed 's/hcompv.hmm/%%i/g' output\hcompv.hmm) > 

output\macro.init 

The generated HMM parameter file is macro.init, with the following contents:  

Example（htk/chineseDigitRecog/training/output/macro.init）：  

This file contains the HMM parameters of 11 (sil、ling、i、er、san、si、wu、liou、

qi、ba、jiou) acoustic models.  

42. Use mxup.scp to modify macro.init to generate macro.0 

We copy output\macro.init to output\hmm\macro.0 first, and then use 

HHEd.exe to modify macro.0, with the following MATLAB commands:  
43. fid=fopen('output\mxup.scp', 'w'); fprintf(fid, 'MU 3 {*.state[2-4].mix}'); fclose(fid); 

44. copyfile('output/macro.init', 'output/hmm/macro.0'); 

45. cmd='HHEd -H output\hmm\macro.0 output\mxup.scp output\digitSyl.mnl'; 

46. dos(cmd); 

The corresponding batch commands are:  

copy /y output\macro.init output\hmm\macro.0 

(@echo MU 3 {*.state[2-4].mix}) > output\mxup.scp 



HHEd -H output\hmm\macro.0 output\mxup.scp output\digitSyl.mnl 

The contents of mxup.scp are shown next:  

原始檔（htk/chineseDigitRecog/training/output/mxup.scp）：（灰色區域按兩下即

可拷貝） 

MU 3 {*.state[2-4].mix} 

Its function is to increase the number of mixture components (of states 2 ~ 4) 

from 1 to 3. The contents of the generated macro.0 are:  

Example（htk/chineseDigitRecog/training/output/hmm/macro.0）：  

From the above contents, we can observe that the variances of the three 

mixtures of a given state are the same. But their mean vectors are different in 

order to better cover the dataset.  

47. Perform re-estimation to generate macro.1~macro.5 

Now we can start training to find the best parameters for each acoustic model, 

with the MATLAB commands:  
48. emCount=5; 

49. for i=1:emCount 

50.  sourceMacro=['output\hmm\macro.', int2str(i-1)]; 

51.  targetMacro=['output\hmm\macro.', int2str(i)]; 

52.  fprintf('%d/%d: 產生 %s...\n', i, emCount, targetMacro); 

53.  copyfile(sourceMacro, targetMacro); 

54.  cmd=sprintf('HERest -H %s -I output\\digitSylPhone.mlf -S output\\trainFea.scp 

output\\digitSyl.mnl', targetMacro); 

55.  dos(cmd); 

56. end 

The corresponding batch commands are:  

set current=0 

:loop  

 set /a prev=current 



 set /a current+=1 

 copy /y output\hmm\macro.%prev% output\hmm\macro.%current% 

 set cmd=HERest -H output\hmm\macro.%current% -I output\digitSylPhone.mlf -S output\trainFea.scp 

output\digitSyl.mnl 

 echo %cmd% 

 %cmd% 

if not %current%==5 goto :loop 

In the above commands, we use macro.0 as the initial guess for corpus training 

to generate macro.1, and then use macro.1 to perform re-estimation to 

generate macro.2. This re-estimation is repeated five times to generate 

macro.1 ~ macro.5 in "output\hmm\macro.*".  

Hint  

Since we do not have phone-level transcription, HTK will use flat start (or equal division) to assign an 

utterance uniformly to its transcribed sequence of models and states. 

III. Performance evaluation based on recognition rate  

1. Use digit.grammar to generate digit.net 

After corpus training, we need to evaluate the recognition rate based on a test 

data set. First of all, we need to construct the lexicon net, as follows:  
2. Hparse digit.grammar output\digit.net 

The contents of grammer.txt are:  

原始檔（htk/chineseDigitRecog/training/digit.grammar）：（灰色區域按兩下即可拷

貝） 

$syl=( ling | i | er | san | si | wu | liou | qi | ba | jiou ); 

(sil $syl sil) 

The contents of the generated digit.net are:  

Example（htk/chineseDigitRecog/training/output/digit.net）：  



The schematic diagram of the net is shown next:  

Hint  

Note that "!NULL" is a dummy node whose inputs can connected to its fanout directly. 

3. Evaluate the recognition rates for both the training and test sets 

This is achieved by the following HTK commands:  
4. HVite -H output\macro -l * -i output\result_test.mlf -w output\digit.net -S output\testFea.scp 

digitSyl.pam output\digitSyl.mnl 



The contents of the output file result_test.mlf are:  

Example（htk/chineseDigitRecog/training/output/result_test.mlf）：  

By using a similar command, we can also generate the recognition rate of the 

training set.  

5. Generate the confusion matrices for both inside and outside tests 

Finally, we can use the following commands to generate the confusion 

matrices:  
6. findstr /v "sil" output\result_test.mlf > output\result_test_no_sil.mlf 

7. findstr /v "sil" digitSyl.mlf > output\answer.mlf 

8. HResults -p -I output\answer.mlf digitSyl.pam output\result_test_no_sil.mlf > output\outsideTest.txt 

9. type output\outsideTest.txt 

The confusion matrix for the outside test is:  

Example（htk/chineseDigitRecog/training/output/outsideTest.txt）：  

Similarly, the confusion matrix for the inside test is:  

Example（htk/chineseDigitRecog/training/output/insideTest.txt）：  

As usually, the outside test is not as good as the inside test. One possible 

reason is that the training corpus is not big enough to cover a variety of accents 

from different individuals. Other possibilities could be the structures of the 

acoustic models. In the subsequent sections, we shall explore other model 

structures to improve the performance.  

17-3 Digit Recognition: Varying MFCC Dimensions (數字辨識：改

變 MFCC 維度) 

Old Chinese version  



In the previous section, we have demonstrated how to use HTK for Mandarin digit recognition. 

In this and the following sections, we shall change various settings (such as acoustic features, 

acoustic model configuration, etc) to improve the recognition rates.  

For modularity, we have packed the basic training and test programs into an m-file function 

htkTrainTest.m. This function takes a structure variable that specifies all the parameters for 

training, and generates the final test results.  

If we keep the configuration of the acoustic models, we can still change the acoustic features. In 

the previous section, we used a feature type of 13-dimensional MFCC_E. We can now change 

it to 26-dimensional MFCC_E_D or MFCC_E_D_Z. Furthermore, we can change it to 

39-dimensional MFCC_E_D_A or MFCC_E_D_A_Z. For simplicity, we have use the string 

representations for various feature types, as explained next.  

• E: Append energy.  

• D: Apply delta operator.  

• A: Apply acceleration operator.  

• Z: Apply cepstrum mean subtraction (CMS).  

The following exmaple uses 26-dimensional MFCC_E_D_Z for recognition:  

Example 1Input file htk/chineseDigitRecog/training/goSyl26.m 
htkParam=htkParamSet; 

htkParam.pamFile='digitSyl.pam'; 

htkParam.feaCfgFile='mfcc26.cfg'; 

htkParam.feaType='MFCC_E_D_Z'; 

htkParam.feaDim=26; 

htkParam.streamWidth=[26]; 

disp(htkParam) 

[trainRR, testRR]=htkTrainTest(htkParam); 

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR); 

Output message 

         pamFile: 'digitSyl.pam' 

      feaCfgFile: 'mfcc26.cfg' 



         waveDir: '..\waveFile' 

      sylMlfFile: 'digitSyl.mlf' 

    phoneMlfFile: 'digitSylPhone.mlf' 

         mnlFile: 'digitSyl.mnl' 

     grammarFile: 'digit.grammar' 

         feaType: 'MFCC_E_D_Z' 

          feaDim: 26 

      mixtureNum: 3 

        stateNum: 3 

     streamWidth: 26 

 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Inside test = 91.29%, outside test = 92.86% 

 

The corresponding batch file is goSyl26.bat.  

Furthermore, the following example uses 39-dimensional MFCC_E_D_A_Z:  

Example 2Input file htk/chineseDigitRecog/training/goSyl39.m 
htkParam=htkParamSet; 

htkParam.pamFile='digitSyl.pam'; 

htkParam.feaCfgFile='mfcc39.cfg'; 

htkParam.feaType='MFCC_E_D_A_Z'; 

htkParam.feaDim=39; 

htkParam.streamWidth=[39]; 

disp(htkParam) 

[trainRR, testRR]=htkTrainTest(htkParam); 

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR); 

Output message 



         pamFile: 'digitSyl.pam' 

      feaCfgFile: 'mfcc39.cfg' 

         waveDir: '..\waveFile' 

      sylMlfFile: 'digitSyl.mlf' 

    phoneMlfFile: 'digitSylPhone.mlf' 

         mnlFile: 'digitSyl.mnl' 

     grammarFile: 'digit.grammar' 

         feaType: 'MFCC_E_D_A_Z' 

          feaDim: 39 

      mixtureNum: 3 

        stateNum: 3 

     streamWidth: 39 

 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Inside test = 91.07%, outside test = 92.86% 

 

The corresponding batch file is goSyl39.bat.  

In the batch files, since we have not pack them into functions, the contents of batch files seem 

more complicated. But in fact, from goSyl13.bat to goSyl26.bat, only two lines have been 

changed. You can use the following command to verify their difference:  

fc goSyl13.bat goSyl26.bat 

Similarly, you can use the same method to verify the difference between goSyl26.bat and 

goSyl39.bat.  

17-4 Digit Recognition: Changing Acoustic Models (數字辨識：改

變 Model 單位) 



Old Chinese version  

In the previous sections, we use a syllable as an acoustic model. In this section, we shall 

decompose a syllable into phones and use each phone as an acoustic model. These phones 

are called monophones since they are independent of their following phones. If we have more 

training data and want to distinguish phone models in a more detailed manner, we can use the 

so-called biphones which is right-context dependent (RCD for short).  

The new pam file for using monophone acoustic models is digitMonophone.pam, as shown 

next:  

原始檔（htk/chineseDigitRecog/training/digitMonophone.pam）：（灰色區域按兩下即可拷貝） 
ba b a 

er er 

jiou j i o u 

ling l i ng 

liou l i o u 

qi q i 

san s a n 

si s i 

sil sil 

wu w u 

i i 

In fact, we only need to replace digitSyl.pam with digitMonophone.pam, then we can proceed 

with all the same training and test procedures covered in the previous sections to get the results, 

as shown in the following example:  

Example 1Input file htk/chineseDigitRecog/training/goMonophone13.m 
htkParam=htkParamSet; 

htkParam.pamFile='digitMonophone.pam'; 

htkParam.phoneMlfFile='digitMonophone.mlf'; 

htkParam.mnlFile='digitMonophone.mnl'; 

disp(htkParam) 

[trainRR, testRR]=htkTrainTest(htkParam); 

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR); 



Output message 

         pamFile: 'digitMonophone.pam' 

      feaCfgFile: 'mfcc.cfg' 

         waveDir: '..\waveFile' 

      sylMlfFile: 'digitSyl.mlf' 

    phoneMlfFile: 'digitMonophone.mlf' 

         mnlFile: 'digitMonophone.mnl' 

     grammarFile: 'digit.grammar' 

         feaType: 'MFCC_E' 

          feaDim: 13 

      mixtureNum: 3 

        stateNum: 3 

     streamWidth: 13 

 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Inside test = 79.24%, outside test = 75.89% 

 

The generated list of monophones are shown next:  

原始檔（htk/chineseDigitRecog/training/output/digitMonophone.mnl）：（灰色區域按兩下即可拷貝） 
sil 

l 

i 

ng 

er 

s 

a 

n 

w 



u 

o 

q 

b 

j 

The corresponding mlf file are shown next:  

Example（htk/chineseDigitRecog/training/output/digitMonophone.mlf）：  

The following examples uses 26-dimensional MFCC_E_D_Z:  

Example 2Input file htk/chineseDigitRecog/training/goMonoPhone26.m 
htkParam=htkParamSet; 

htkParam.pamFile='digitMonophone.pam'; 

htkParam.phoneMlfFile='digitMonophone.mlf'; 

htkParam.mnlFile='digitMonophone.mnl'; 

htkParam.feaCfgFile='mfcc26.cfg'; 

htkParam.feaType='MFCC_E_D_Z'; 

htkParam.feaDim=26; 

htkParam.streamWidth=[26]; 

disp(htkParam) 

[trainRR, testRR]=htkTrainTest(htkParam); 

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR); 

Output message 

         pamFile: 'digitMonophone.pam' 

      feaCfgFile: 'mfcc26.cfg' 

         waveDir: '..\waveFile' 

      sylMlfFile: 'digitSyl.mlf' 

    phoneMlfFile: 'digitMonophone.mlf' 

         mnlFile: 'digitMonophone.mnl' 

     grammarFile: 'digit.grammar' 

         feaType: 'MFCC_E_D_Z' 

          feaDim: 26 



      mixtureNum: 3 

        stateNum: 3 

     streamWidth: 26 

 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Inside test = 83.71%, outside test = 87.5% 

 

The following examples uses 39-dimensional MFCC_E_D_A_Z:  

Example 3Input file htk/chineseDigitRecog/training/goMonoPhone39.m 
htkParam=htkParamSet; 

htkParam.pamFile='digitMonophone.pam'; 

htkParam.phoneMlfFile='digitMonophone.mlf'; 

htkParam.mnlFile='digitMonophone.mnl'; 

htkParam.feaCfgFile='mfcc39.cfg'; 

htkParam.feaType='MFCC_E_D_A_Z'; 

htkParam.feaDim=39; 

htkParam.streamWidth=[39]; 

disp(htkParam) 

[trainRR, testRR]=htkTrainTest(htkParam); 

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR); 

Output message 

         pamFile: 'digitMonophone.pam' 

      feaCfgFile: 'mfcc39.cfg' 

         waveDir: '..\waveFile' 

      sylMlfFile: 'digitSyl.mlf' 

    phoneMlfFile: 'digitMonophone.mlf' 

         mnlFile: 'digitMonophone.mnl' 

     grammarFile: 'digit.grammar' 



         feaType: 'MFCC_E_D_A_Z' 

          feaDim: 39 

      mixtureNum: 3 

        stateNum: 3 

     streamWidth: 39 

 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Inside test = 84.6%, outside test = 89.29% 

17-5 Digit Recognition: Changing MFCC Dimensions and 

Gaussian Component Numbers (數字辨識：改變 MFCC 維度和

Gaussian 個數) 

Old Chinese version  

In this section, we shall change both the numbers of Gaussians as well as the dimensions of 

acoustic feature vectors.  

In the next example, we use 13-dimensional MFCC and plot the recognition rates of inside and 

outside tests as functions of the number of Gaussians:  

Example 1Input file htk/chineseDigitRecog/training/htkMixture01.m 
htkParam=htkParamSet; 

maxMixNum=8; 

 

for i=1:maxMixNum 

 htkParam.mixtureNum=i; 

 fprintf('====== %d/%d\n', i, maxMixNum); 

 [trainRR(i), testRR(i)]=htkTrainTest(htkParam); 



end 

 

plot(1:maxMixNum, trainRR, 'o-', 1:maxMixNum, testRR, 'o-'); 

xlabel('No. of mixtures'); ylabel('Recog. rate (%)'); 

legend('Inside test', 'Outside test'); 

Output message 

====== 1/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 2/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 3/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 4/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 5/8 



Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 6/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 7/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 8/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

  

Output figure  

 



 

 

In the above example, we have packed the corpus training and test in an m-file function 

htkTrainTest.m. Each time this function is invoked, it will do feature extraction. If the feature 

type is fixed, we can omit this part by changing this function for saving computation time.  

We can also use MFCC of dimensions 13, 26, and 39 to plot the recognition rates of inside and 

outside tests as functions of the number of Gaussian components, as shown in the following 

example:  

Example 2Input file htk/chineseDigitRecog/training/htkMixtureMfcc01.m 
% Get the RR when feature dim. and mixture no. are changing 

 

htkParam=htkParamSet; 

maxMixNum=8; 

 

for i=1:maxMixNum 

 htkParam.mixtureNum=i; 

 fprintf('====== %d/%d\n', i, maxMixNum); 

 [trainRR(i,1), testRR(i,1)]=htkTrainTest(htkParam); 

end 

 



htkParam.feaCfgFile='mfcc26.cfg'; 

htkParam.feaType='MFCC_E_D_Z'; 

htkParam.feaDim=26; 

htkParam.streamWidth=[26]; 

for i=1:maxMixNum 

 htkParam.mixtureNum=i; 

 fprintf('====== %d/%d\n', i, maxMixNum); 

 [trainRR(i,2), testRR(i,2)]=htkTrainTest(htkParam); 

end 

 

htkParam.feaCfgFile='mfcc39.cfg'; 

htkParam.feaType='MFCC_E_D_A_Z'; 

htkParam.feaDim=39; 

htkParam.streamWidth=[39]; 

for i=1:maxMixNum 

 htkParam.mixtureNum=i; 

 fprintf('====== %d/%d\n', i, maxMixNum); 

 [trainRR(i,3), testRR(i,3)]=htkTrainTest(htkParam); 

end 

 

plot( 1:maxMixNum, trainRR(:,1), '^-b', 1:maxMixNum, testRR(:,1), 'o-b', ... 

 1:maxMixNum, trainRR(:,2), '^-g', 1:maxMixNum, testRR(:,2), 'o-g', ... 

 1:maxMixNum, trainRR(:,3), '^-r', 1:maxMixNum, testRR(:,3), 'o-r'); 

xlabel('No. of mixtures'); ylabel('Recog. rate (%)'); 

legend('13D, Inside test', '13D, Outside Test', '26D, Inside Test', '26D, Outside test', '39D, Inside test', '39D, Outside test', 

'Location', 'BestOutside'); 

Output message 

====== 1/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 2/8 



Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 3/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 4/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 5/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 6/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 7/8 

Pruning-Off  

Pruning-Off  



Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 8/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 1/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 2/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 3/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 4/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  



Pruning-Off  

====== 5/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 6/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 7/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 8/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 1/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 2/8 



Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 3/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 4/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 5/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 6/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 7/8 

Pruning-Off  

Pruning-Off  



Pruning-Off  

Pruning-Off  

Pruning-Off  

====== 8/8 

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

Pruning-Off  

  

Output figure  

 

 

 

The above example take a longer time since it involves 24 cases of training and test. (3 

dimensions × 8 Gaussians = 24 cases).  

第 17 章作業 



Old Chinese version  

1. (**) Mandarin Digit Recognition： Please follow the steps in goSyl13.m to obtain the 

inside and outside-test recognition rates, where the traing and test copora will be 

given by TA in the class. The major part of this exercise is to prepare related scripts 

and parameter files, so your task is condensed to the writing of an m-file script 

goGenFile4htk.m which collects information of wave files and generates the following 

files for HTK training:  

a. digitSyl.mlf  

b. wav2fea.scp  

c. trainFea.scp & testFea.scp  

Then you can start training and computing recognition rates. For this part, you need to 

write an m-file script goHtkTrainTest.m to display the results. In particular, you need to 

compute the recognition rates for both inside and outside tests, when the dimension 

of MFCC is set to 13, 26, and 39, respectively. Please show the confusion matrices to 

TA for your demo. My results are  

o Based on goSyl13.m: inside test 86.38%, outside test 79.51%。  

o Based on goSyl26.m: inside test 92.07%, outside test 87.25%。  

o Based on goSyl39.m: inside test 95.17%, outside test 89.53%。  

Please be aware of the following facts:  

o Feature files cannot take Chinese name since HTK does not support.  

o Every feature file name should be unique, so you need to convert the Chinese 

directories into numbers, plus the original file names to form a unique name for 

each feature file. For instance, 912508 鄒銘軒\3a_7436_16017.wav ===> 

00002-3a_7436_16017.fea.  

o HTK is case sensitive, so you need to make sure a file name should appear 

correctly in a file list, and so on.  

Hint: You can use recursiveFileList.m to retrieve all wave files under a given directory.  



2. (***) Programming contest: Mandarin digit recognition： Repeat the previous 

exercise by trying all kinds of methods to obtain the maximum performance defined as 

the average recognition rate of both inside and outside tests. Please record all the 

related settings (dimension of acoustic feature, unit for acoustic model, number of 

states, number of streams, number of mixtures, etc) in method.txt, together with the 

description of your approach. Please upload the following files:  

o The method description file method.txt  

o The final macro file, with file name "final.mac"  

o All the other necessary files for computing recognition rates  

TA will use these files to reproduce your recognition rates.  

3. (**) English letters recognition： Please repeat the exercise 1, but use the corpus of 

English letters instead. TA will give the training and test corpora in the class.  

4. (**) Programming contest: English letters recognition： Please repeat the 

exercise 2, but use the corpus of English letters instead. TA will give the training and 

test corpora in the class.  

 

18-1 簡介 

給一組可辨識的詞彙或文句，在實際進行辨識之前，還有許多工作要進行：  

1. 對文句進進行標音：中文是標示注音，英文是標示音標。  

2. 產生辨識網路：根據需求，產生辨識網路，以便進行搜尋。  

本章將針對這些步驟進行說明。  

 

Chapter 18: 語音辨識前處理 

18-1 
給一組可辨識的詞彙或文句，在實際進行辨識之前，還有許多工作要進行： 



18-2 文字標音 

通常我們將可辨識的語句放在一個文字檔案，以唐詩為三百首例，若希望我們的辨識系統能夠

辨識使用者以語音輸入的一句唐詩，那我們共可抽出 3221 句，放在 tangPoem.rt 檔案內，如

下：  

Example（tangPoem.rt）：  

Hint  
rt 代表 recognizable text。 

對電腦而言，第一個步驟，就是要知道這些文句如何發音。如果 RT 的數量不大，我們當然可以

使用手工來標注音，但是對於大量的 RT 而言，就要靠電腦來自動進行標音工作。首先，電腦必

須知道每一個國字的注音，於是我們必須有一個 WPA 檔案，中文範例如下：  

... 

邶 bei ㄅㄟ 

采 cai ㄘㄞ 

金 jiN ㄐㄧㄣ 

長 JaG ㄓㄤ 

長 CaG ㄔㄤ 

門 mrN ㄇㄣ 

阜 fu ㄈㄨ 

... 

  

Hint  
wpa 代表 word to phonetic alphabet，也就是由字到注音或音標的對照表。 

在上述範例中，第一欄是國字，第二欄是對應於注音的音節代號，第三欄則是國語注音。由於語

音辨識系統目前並沒有用到音調資訊，所以上述的表格並沒有包含音調資訊。此外，此表格也列

出了破音字，例如「長」的發音有兩個。英文範例如下：  

... 

eiszner ay z n er 

eitel ay t ah l 

either iy dh er#ay dh er 

eitzen ay t z ah n 



ejaculate ih jh ae k y uw l ey t 

... 

在上述範例中，每一個英文詞彙就對應到一個發音（以音標代號表示，例如 ae 就是蝴蝶音），

同樣也會發生破音字，例如 either 就有兩種發音，此時我們使用 # 來分隔這兩種發音。  

Hint  
通常我們不直接使用注音符號或英文音標，因為文字格式比較難處理，因此我們多用音節代號或音標代號來處理。 

有了 WPA 檔案後，我們就可以進行「暴力法」的注音，以唐詩的「朝辭白帝彩雲間」來說，根

據破音字發音的各種組合就可以標示成四種發音：  

a. 朝（ㄓㄠ ）辭白（ㄅㄞˊ）帝彩雲間  

b. 朝（ㄓㄠ ）辭白（ㄅㄛˊ）帝彩雲間  

c. 朝（ㄔㄠˊ）辭白（ㄅㄞˊ）帝彩雲間  

d. 朝（ㄔㄠˊ）辭白（ㄅㄛˊ）帝彩雲間  

而「千里江崚一日還」則可標示成  

a. 千里江崚一日還（ㄏㄨㄢˊ）  

b. 千里江崚一日還（ㄏㄞˊ）  

c. 千里江崚一日還（ㄒㄩㄢˊ）  

因此我們可以根據此種暴力法，產生 SYL 檔案，此檔案以音節代號列出每一句可能的發音，範

例如下：  
... 

Cau-cy-bai-di-cai-YN-jieN 56 

Cau-cy-buo-di-cai-YN-jieN 56 

Jau-cy-bai-di-cai-YN-jieN 56 

Jau-cy-buo-di-cai-YN-jieN 56 

cieN-li-jiaG-lG-i-Ry-hai 57 

cieN-li-jiaG-lG-i-Ry-huaN 57 

cieN-li-jiaG-lG-i-Ry-sYaN 57 

... 

在上述範例中，前四句是「朝辭白帝彩雲間」的所有可能發音，而後三句則是「千里江崚一日還」

的所有可能發音，56 與 57 則是代表這兩句在 rt 檔案出現的位置（列數），以便反查。此種「暴

力注音法」的優缺點如下：  



• 優點：列出所有可能的發音，不會發生標注音出錯的情況。（這種情況特別適用於標示人

名的發音，例如我有位大學同學的大名是「陸重和」，在無法確認使用者會如何發音的

情況下，只有列舉所有可能的發音。）  

• 缺點：語音搜尋範圍變大，計算時間比較久，而且也產生一些不可能的發音，可能會降低

辨識率。  

另外一種方法，則是「詞庫標音法」，我們必須先見一個破音字的詞庫，把所有破音字可能出現

的詞彙列出來，例如：  
... 

口吃 0073-1252 

吃軟不吃硬 0021-3423-2094-0021-2814 

吃喝玩樂 0021-0371-3382-0414 

吃飯 0021-1284 

吃裡扒外 0021-1903-0232-3184 

... 

以「口吃」來說，對應的資料是：  

1. 007（ㄎㄡˇ的音碼）3（第三聲）  

2. 125（ㄐㄧˊ的音碼）2（第二聲）  

有了破音字詞庫後，我們就可以進行「詞庫標音法」，有兩種作法：  

1. Maximum matching：  

a. 從頭比對：我喜歡到廟口吃小吃 ===> 我|喜歡|到|廟口|吃|小吃  

b. 從尾比對：我喜歡到廟口吃小吃 ===> 我|喜歡|到|廟|口吃|小吃  

2. Dynamic programming：（細節待補充）  

「詞庫標音法」的優缺點如下：  

• 優點：不會產生不可能的發音。  

• 缺點：還是可能會出錯，例如  

o 搶詞：例如「我喜歡到廟口吃小吃」中的「廟口」和「口吃」。  

o 無法由詞庫判斷：「我還你 10 元」、「我還欠你 10 元」中間的「還」的發音，

必須靠詞性或語意分析，才能標示出正確發音。另外，一般人名的發音，也很難

從詞庫來判斷。  



在英文方面，則會遇到新的詞彙，這些詞彙可能不出現於 WPA 檔案之中，例如商標名 Benq 或 

google，或是人名 Schwarzenegger 或地名 Rocktop 等，此時就需要人工輔助標示，或是由電

腦進行發音的預測。  

18-3 辨識網路 

一般辨識方法，是針對每一句可辨識語句建立一個 HMM，然後再使用 Viterbi Search 來計算

每一個 HMM 的機率值。根據此種方式，我們可以建立一個語句網路（Lexicon Net），來規範 

Viterbi Search 計算中，可能產生的辨識語句，主要可以分為三類：  

a. Linear Net  

b. Tree Net  

c. Double-ended Tree Net  

以下列可辨識語句為範例：  

原始檔（政府機關名稱.rt）：（灰色區域按兩下即可拷貝） 
台北市 

台北市政府 

台北縣市 

台北縣政府 

台中市政府 

台中市政廳 

我們可以產生最簡單的 linear net，圖示如下：  

 



如果將每一條路徑向左對齊，並進行排序，可以找出重複的節點，如下圖之黃色節點：  

 

此時我們可以將這些在同一欄且發音相同的黃色節點合併成一個節點，如下：  

 
接著，從每一條路徑的尾端來看，我們可以往回走，找出為分叉之前的節點，如下圖之黃色節點：  

 
若從尾端來合併這些節點，可以得到如下圖的 double-ended tree net：  



 
在上述網路結構的簡化過程中，我們必須把握一個原則：簡化後的網路，其所有可能的路徑應該

和原來的網路結構相同。換句話說，無論是 linear net、tree net 或是 double-ended tree net，

其所有路徑所成的集合是完全一樣的。  

在上述說明中，我們是將 linear net 中的所有路徑向左對齊來進行排序，如果我們改成向右對齊

來進行排序，也可以得到另一組 tree net 及 double-end tree net。  

至於是否存在一種網路結構的化簡方法，可以在多項式時間內完成計算，並可以保證擁有最少數

目的節點，則目前無法得知。（我對演算法並不熟悉，若讀者有相關資訊，歡迎提供。）  

根據上述機關名稱所產生的 tree net，可以表示成下列 net 檔案：  

Example（政府機關名稱 treeNet.net）：  

在上述範例中，「N=18」代表有 18 個節點（Nodes），「L=22」代表有 22 條連結（Links），

「I=4 W=tai」則是說明第 4 個節點的發音是 tai，「J=16 S=10 E=14」則是記錄第 16 條連結

的開始位置是節點 10，結束位置是節點 14，餘類推。相關的圖示如下：  

 



相關投影片請見此連結。  

18-4 聲學模型 

一般語音辨識中，會以聲學模型來作為語音辨識的基本單位，因此要進行語音資料的訓練來求

取聲學模型的參數時，就必須要先確認聲學模型的結構。以下先介紹幾個常用的名詞：  

• 聲學模型（Acoustic Model，或簡稱 Model）：使用於 HMM 的一個抽象單位，通常一

個聲學模型包含數個狀態。我們可以使用音節或是音素作為一個聲學模型。  

• 音節（Syllables）：完整發音的單位，以中文來說，一個字元對應一個音節；以英文來

說，一個詞彙可以對應到數個音節，例如 tomorrow 有三個音節。  

• 音素（Phoneme）：或簡稱 Phone，是發音的最小單位，例如「大」的發音可以拆解成

ㄉ和ㄚ兩個音素，但是音素的拆解並非一成不變，例如碰到滑母音，我們通常就會將一

個注音符號拆成兩個音素，例如ㄞ、ㄟ、ㄠ、ㄡ等，這幾個母音在發音過程中，都會呈

現連續的變化。  

• Monophone：以單一音素作為一個聲學模型，例如ㄇ。  

• Biphone：以連續兩個音素作為聲學模型，通常是 RCD (Right-context dependent)，例

如將ㄇ出現於ㄇ-ㄚ和ㄇ-ㄧ視為兩個不同的聲學模型。  

• Triphone：以連續三個音素作為聲學模型，例如將ㄨ在ㄎ+ㄨ-ㄢ及ㄍ+ㄨ-ㄤ視為兩個不同

的聲學模型。  

以我們常用的語音辨識系統而言，是以 biphone 為聲學模型的單位，根據由音節到 Mixture 的階

層架構，我們可以畫出下列示意圖：  



 
在上圖中，每一個 state 又分成三個 stream，分別是 MFCC、ΔMFCC、ΔΔMFCC，由於 MFCC 

是最重要的語音特徵，因此我們使用 6 個 mixture 來對 MFCC 建模，至於 ΔMFCC 及 

ΔΔMFCC，我們各用兩個 mixture 來建模。  

若以辨識網路及 HMM 的觀點來看，示意圖如下：  

 
上圖中特別註明了三種 transition:  

• Type 0: Transition between syllable  

• Type 1: Transition between model  

• Type 2: Transition between state  

一旦確認聲學模型的架構，我們就可以使用 HTK 來對大量語料抽取出聲學模型的機率參數，請

見下一節的說明。  



 


