1-2 Example Programs (41 fa] B #5720 A)

If you want to download the example program used in this book, please follow this link.
However, the example programs use extensively several toolboxes, which should be
downloaded and added to the search path of MATLAB. These toolboxes is accessible from the

following links:

1. Utility Toolbox

2. DCPR Toolbox

3. Audio Procesing Toolbox

4. ASR Toolbox (For speech recognition only)

5. Melody Recognition Toolbox (For melody recognition only)

Once these toolboxes are downloaded, they need to be added to the search path of MATLAB.

(Or you can simply edit addMyPath.m under the example programs to include these toolboxes.)

Since the example programs are under constant revisions, you can take the following steps if

you find a bug:

1. Download all the toolboxes and try again.

2. If it still does not work, send email to me at jang at cs dot nthu dot edu dot tw.
You are also welcome to notify me if there is any mistakes in the texts/programs.

The texts and programs of this book are provided for learning only. The author cannot be held

responsible for any damage or loss directly or indirectly incurred by using the texts or programs.

Finally, hope everyone can enjoy the use of MATLAB for audio signal processing.

1-3 Web Resources (4454 &%)




There a numerous websites for speech/audio signal processing and recognition on the internet.
Here we have a list of some of the commonly used websites, which can be linked for tutorials,

discussions, papers, example code, etc.

http://www.phys.unsw.edu.au/~jw/dB.html
Introduction to the definition of Decibels for measuring energy/volume of
speech/audio signals.
e http://www.phys.unsw.edu.au/~jw/hearing.html
Introduction (including interactive demos) to curves of equal loudness.
o http://www.phys.unsw.edu.au/music/
Homepage for "Music Acoustics".
o http://www.phys.unsw.edu.au/~jw/musFAQ.html
FAQ for "Music Acoustics".
o http://www.wotsit.org
File formats for various kinds, including audio and music.
o http://www.speech.cs.cmu.edu/comp.speech/index.html
FAQ for the newsgroup "Comp.Speech".
o http://www.bdti.com/faq/dsp_faq.htm
FAQ for the news group "Comp.DSP".
o http://www.harmony-central.com/Effects/effects-explained.html

Introduction to audio effects, including many examples.

Chapter 2: MATLAB Basics

It is very handy to use MATLAB for audio signal processing. To get started with MATLAB,

please read the following tutorials on MATLAB basics directly.

o« MATLAB Primer by Sigmon (in English)
o 02-¥]# MATLAB.pdf (Examples) (in Chinese)
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« MATLAB Primer by Sigmon (F3)



o 02-WJ4K MATLAB.pdf (#fIfE) (30

2 R

e (*) When does n! explodes: Write a MATLAB script findNO1.m to find the minimal

value of n such that n!>realmax. What is the value of n? What is the value of (n-1)! ?

e (*)Basic function for both scalar and vector inputs: Write a MATLAB function

myFun01.m to evaluate the following expression:

0.5%exp(x/3)-x*x*sin(x)

where x is the input and y is the output of the function. You function should be
able to handle both the situations when x is a scalar or a vector. Please use the

following code segment to plot the expression:

x=0:0.1:10; plot(x, myFun01(x));

(**) Function for computing the Fibonacci number:

(0]

Write a recursive function fibo.m to compute the Fibonacci sequence, which is

defined as follows:
fibo(n+2)=fibo(n+1)+fibo(n)
The initial conditions are fibo(1)=0, fibo(2)=1.

What is the value returned by fibo(25)?

Please use the commands tic and toc to measure the computation time of fibo(25).
If you don't know how to use tic and toc, please try "help tic" and "help toc" in
MATLAB command window. Please state the specs of your computer and the
computation time of fibo(25).

If you have taken Discrete Mathematics, you should already known that the n-th

term of a Fibonacci sequence can be expressed as

fibo(n)={[(1+a)/2]*(n-1)-[(1-a)/2]*(n-1)}/a



where a is the square root of 5. Write a non-recursive function fibo2.m to

compute Fibonacci sequence according to the above expression.

o What is the value of fibo2(25)? Is it the same as fibo(25)?
o Compare the computation time of fibo2(25) and fibo(25).
o Please list the advantages and disadvantages of fibo.m and fibo2.m.
(**) Find the minimum of a matrix:
o Write a MATLAB function minxy.m which can find the minimal element in a

2-dimensional matrix:
[minValue, minIndex] = minxy(matrix)

where matrix is a 2-d matrix, minValue is the minimal element of the
input matrix, and minindex is an integer vector of length 2 indicating the
indices of the minimal element. (In other words, matrix(minindex(1),

minindex(2)) is equal to minValue.)

o Test you program by typing the following statement in MATLAB command

window:
[minValue, minindex]=minxy(magic(20))
What are the returned values of minValue and minindex?

(***) Function for ranking: We can use a vector to store the scores of midterm exam.
Please write a function ranking01.m that takes the score vector and return the ranking.

For instance, if x =[92, 95, 58, 75, 69, 82], the vector returned by ranking01(x) should be
[2, 1,6, 4,5, 3], indicating 92 is ranked second, 95 is ranked first, etc. (If possible, please

try vectorized code instead of for/while loops.)



Chapter 3: Introduction to Audio Signals (FaRHIE )

3-1 Introduction to Audio Signals (FEARAN4E)

Audio signals are generally referred to as signals that are audible to humans. Audio signals
usually come from a sound source which vibrates in the audible frequency range. The
vibrations push the air to form pressure waves that travels at about 340 meters per second. Our

inner ears can receive these pressure signals and send them to our brain for further recognition.
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There are numerous ways to classify audio signals. If we consider the source of audio signals,

we can classify them into two categories:

« Sounds from animals: Such as human voices, dog's barking, cat's mewing,
frog's croaking. (In particular, Bioacoustics is a cross-disciplinary science,
which investigates sound production and reception in animals.)

« Sounds from non-animals: Sounds from car engines, thunder, door slamming,

music instruments, etc.
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If we consider repeated patterns within audio signals, we can classify them into another two

categories:



e Quasi-periodic sound: The waveforms consist of similar repeated patterns such
that we can perceive the pitch. Examples of such sounds include
monophonical playback of most music instruments (such as pianos, violins,
guitars, etc) and human's singing/speaking.

o Aperiodic sound: The waveforms do not consists of obvious repeated patterns
so we cannot perceive a stable pitch. Examples of such sounds include
thunder pounding, hand clapping, unvoiced part in a human's utterance, and so

on.
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In principle, we can divide each short segment (also known as frame, with a length of about 20

ms) of human's voices into two types:

« Voiced sound: These are produced by the vibration of vocal cords. Since they
are produced by the regular vibration of the vocal cords, you can observe the
fundamental periods in a frame. Moreover, due to the existence of the
fundamental period, you can also perceive a stable pitch.

« Unvoiced sound: These are not produced by the vibration of vocal cords.
Instead, they are produced by the rapid flow of air through the mouse, the nose,
or the teeth. Since these sounds are produced by the noise-like rapid air flow,
we can not observed the fundamenta period and no stable pitch can be

perceived.

It is very easy to distinguish between these two types of sound. When you pronunce an
utterance, just put your hand on your throat to see if you feel the vibration of your vocal cords. If
yes, it is voiced; otherwise it is unvoiced. You can also observe the waveforms to see if you can

identify the fundamental periods. If yes, it is voiced; otherwise, it is unoviced.
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The following figure shows the voiced sound of "ay" in the utterance "sunday".

Example 1Input file audiolntro/voicedShow01.m

figure;

[y, fs, nbits]=wavReadInt('sunday.wav');

subplot(2,1,1)

time=(1:length(y))/fs;

plot(time, y); axis([min(time), max(time), -2”*nbits/2, 2”nbits/2]);
xlabel('Time (seconds)); ylabel('Amplitude'); title("Waveforms of “sunday™);

frameSize=512;

index1=0.606*fs;

index2=index1+frameSize-1;

line(time(index1)*[1, 1], 2”nbits/2*[-1 1], 'color’, 'r");
line(time(index2)*[1, 1], 2”nbits/2*[-1 1], 'color’, 'r");

subplot(2,1,2);

time2=time(index1:index2);

y2=y(index1:index2);

plot(time2, y2, '.-"); axis([min(time2), max(time2), -2”nbits/2, 2 nbits/2]);

xlabel('Time (seconds)); ylabel('Amplitude'); title("Waveforms of the voiced "ay" in "sunday™);

Output figure
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You can easiy identify the fundamental period in the closeup plot.

On the other hand, we can also observe the unvoiced sound of "s" in the utterance "sunday", as

shown in the following example:

Example 2Input file audiolntro/unvoicedShow01.m

[y, fs, nbits]=wavReadInt('sunday.wav');

subplot(2,1,1)

time=(1:length(y))/fs;

plot(time, y); axis([min(time), max(time), -2”nbits/2, 2nbits/2]);
xlabel('Time (seconds)); ylabel('Amplitude"); title("Waveforms of "sunday™);

frameSize=512;

index1=0.18*fs;

index2=index1+frameSize-1;

line(time(index1)*[1, 1], 2”nbits/2*[-1 1], ‘color’, 'r");
line(time(index2)*[1, 1], 2”nbits/2*[-1 1], ‘color’, 'r");
subplot(2,1,2);

time2=time(index1:index2);

y2=y(index1:index2);



plot(time2, y2, '.-"); axis([min(time2), max(time2), -inf inf]);
xlabel("Time (seconds)); ylabel('Amplitude'); title("\Waveforms of the unvoiced "s" in "sunday"");

Output figure
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In contract, there is no fundamental periods and the waveform is noise-like.

Hint
You can also use CoolEdit for simple recording, replay and observation of audio signals.

AR AT R LS G B RO, LU CoolEdit #CEE

Audio signals actually represent the air pressure as a function of time, which is a continuous in

both time and signal amplitude. When we want to digitize the signals for storage in a computer,

there are several parameter to consider.

e Sample rate: This is the number of sample points per second, in the unit of

Hertz (abbreviated as Hz). A higher sample rate indicate better sound quality,



but the storage space is also bigger. Commonly used sample rates are listed
next:

1. 8 kHz: Voice quality for phones and toys

2. 16 KHz: Commonly used for speech recognition

3. 44.1 KHz: CD quality

« Bit resolution: The number of bits used to represent each sample point of audio

signals. Commonly used bit resolutions are listed next:

1. 8-bit: The corresponding range is 0~255 or -128~127.

2. 16-bit: The corresponding range is -32768~32767.

In other words, each sample point is represented by an integer of 8 or 16 bits.
However, in MATLAB, all audio signals are normalized to floating-point number
within the range [-1, 1] for easy manipulation. If you want to revert to the
original integer values, you need to multiply the float-point values by 2*nbits/2,

where nbits is the bit resolution.

o Channels: We have mono for single channel and stereo for double channels.
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Let take my utterance of sunday for example. It is a mono recording with a sample rate of 16000
(16 KHz) and a bit resolution of 16 bits (2 bytes). It also contains 15716 sample points,
corresponding to a time duration of 15716/16000 = 0.98 seconds. Therefore the file size is
about 15716*2 = 31432 bytes = 31.4 KB. In fact, the file size for storing audio signals is usually

quite big without compression. For instance:

« If we used the same parameters for a one-minute recording, the file size will be
60 sec x 16 KHz x 2 Byte = 1920 KB, close to 2 MB.

e For audio music in a CD, we have stereo recordings with a sample rate of 44.1
KHz, a bit resolution of 16 Bits. Therefore for a 3-minute audio music, the file
size is 180 sec x 44.1 KHz x 2 Byte x 2 = 31752 KB = 32 MB. (From here you

will also know the MP3 compression ratio is about 10.)

PLBJEk [sunday | 2RER, 182 BB S, WEMHEZ 16000 (16 KHz) , f#NTEZ 16
Bits (2 Byte) , #4347 15716 % (Z5jA 15716/16000 = 0.98 #5) , JrLAk % K/ k2
15716*2 = 31432 bytes = 31.4 KB /5. Hn DIAE B S BRI, #ilin:
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3-2 Basic Acoustic Features (AN 2454)




When we analyze audio signals, we usually adopt the method of short-term analysis since most
audio signals are more or less stable within a short period of time, say 20 ms or so. When we do
frame blocking, there may be some soverlap between neighboring frames to capture subtle

change in the audio signals. Note that each frame is the basic unit for our analysis. Within each

frame, we can observe the three most distinct acoustic features, as follows.

o Volume: This feature represents the loudness of the audio signal, which is
correlated to the amplitude of the signals. Sometimes it is also referred to as
energy or intensity of audio signals.

« Pitch: This feature represents the vibration rate of audio signals, which can be
represented by the fundamental frequency, or equivalently, the reciprocal of
the fundamental period of voiced audio signals.

o Timbre: This feature represents the meaningful content (such as a vowel in
English) of audio signals, which is characterized by the waveform within a

fundamental period of voice signals.
These three acoustic features can be related to the waveform of audio signals, as follows:
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Take human voices as an example, then the above three acoustic features will correlates to

some physical quantities:

e Volume: It correlates to the compression of your lungs. A large volume of audio
signals corresponds to a large compression.

« Pitch: It correlates to the vibration frequency of your vocal cord. A high pitch
corresponds to a high vibration frequency.

« Timbre: It correlates to the positions and shapes of your lips and tongue.
Different timbres corresponds to different positions and shapes of your lips and

tongue.
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We shall explain methods to extract these acoustic features in the other chapters of this book. It
should be noted that these acoustic features mostly corresponds to human's "perception" and
therefore cannot be represented exactly by mathematical formula or quantities. However, we
still try to "quantitify" these features for further computer-based analysis in the hope that the

used formula or quantities can emulate human's perception as closely as possible.
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The basic approach to the extraction of audio acoustic features can be summarized as follows:

1. Perform frame blocking such that a strem of audio signals is converted to a set
of frames. The time duration of each frame is about 20~30 ms. If the frame
duration is too big, we cannot catch the time-varying characteristics of the
audio signals. On the other hand, if the frame duration is too small, then we
cannot extract valid acoustic features. In general, a frame should be contains
several fundamental periods of the given audio signals. Usually the frame size
(in terms of sample points) is equal to the powers of 2 (such as 256, 512,
1024 ,etc) such that it is suitable for fast fourier transform.

2. If we want to reduce the difference between neighboring frames, we can allow
overlap between them. Usually the overlap is 1/2 to 2/3 of the original frame.
The more overlap, the more computation is needed.

3. Assuming the audio signals within a frame is stationary, we can extract acoustic
features such as zero crossing rates, volume, pitch, MFCC, LPC, etc.

4. We can perform endpoint detection based on zero crossing rate and volume,

and keep non-silence frames for further analysis.
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When we are performing the above procedures, there are several terminologies that are used

often:
e Frame size: The sampling points within each frame
« Frame overlap: The sampling points of the overlap between consecutive frames
o Frame step (or hop size): This is equal to the frame size minus the overlap.
« Frame rate: The number of frames per second, which is equal to the sample
frequency divided by the frame step.
Hint

Note that these terminologies are not unified. Some papers use frame step to indicate hop size or frame rate instead. You

should be cautious when reading papers with these terms.

For instance, if we have a stream of audio signals with sample frequency fs=16000, and a

frame duration of 25 ms, overlap of 15 ms, then

e Frame size = fs*25/1000 = 400 (sample points).
e Frame overlap = fs*15/1000 = 240 (sample points).
e Frame step (or hop size) = 400-240 = 160 (sample points).

e Frame rate = fs/160 = 100 frames/sec.
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o Frame size = fs*25/1000 = 400 k.



« Frame overlap = fs*15/1000 = 240 4.
« Frame step (or hop size) = 400-240 = 160 %

e Frame rate = fs/160 = 100 frames/sec.

3-3 Human Voice Production (A1) 7 )

The procedure from human voice production to voice recognition involves the following steps:

1. Rapid open and close of your vocal cords (or glottis) to generate the vibration in
air flow.
. Resonance of the pharyngeal cavity, nasal cavity, and oral cavity.
. The vibration of air.

2
3
4. The vibration of the ear drum (or tympanum).
5. The reception of the inner ear.

6

. The recognition by the brain.

The following diagram demonstrate the production mechanism for human voices.
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The production mechanism of human voices.
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Due to the pressure of the glottis and the air pushed from the lungs, the vocal cords can open
and close very quickly, which generates vibrations in the air. The vibration is modulated by the
resonances of pharyngeal/nasal/oral cavities, forming different timbre of your voices. In other

words:

« The vibration frequency of the vocal cords determines the pitch of the voices.
e The positions/shapes of your lips, tongue, and nose determine the timbre.

o The compression from your lungs determine the loudness of the voices.
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The following figure demonstrates the airflow velocity around the glottis and the voice signals

measured around the mouth.
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Airflow velocity around the glottis and the resultant voices signals
You can observe the movement of the vocal cords from the following link:
LT IS MRS, LR 2B S

http://www.humnet.ucla.edu/humnet/linguistics/facilitidemos/vocalfolds/vocalfolds.htm  (local

copy)

In fact, it is not easy to capture the movements of vocal cords due to its high frequency in

movement. So we need to have high-speed cameras for such purpose, for instance:

CHRPVEMER), SAE ALY, S SRS, Bl

http://www.kayelemetrics.com/Product%20Info/9700/9700.htm (local copy)



We can conceive the production of human voices as a source-filter model where the source is
the airflow caused by the vocal cords, and the filter includes the pharyngeal/nasal/oral cavities.

The following figure shows the representative spectrum for each stage:
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Source-filter model and the corresponding spectra
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We can also use the following block diagram to represent the source-filter model of human

voice production:
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Block diagram representation of source-filter model
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In general, a regular vibration of the glottis will generate quasi-periodic voiced sounds. On the

other hand, if the source is irregular airflow, then we will have unvoiced sounds. Take the

utterance of "six" for example:

B, AR R B AR OBy, AR, AR AL KRR, RIS 2
WE, LURAIN SRS [six] A

amplitude of
speech
signal of

“six”
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Unvoiced and voiced sounds
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We can clearly observe that "s" and "k" are unvoiced sounds, while "i" is a voiced sound.

Horb [s] A0 Tk ARG, AT i) 28,

For Mandarin, almsot all unvoiced sounds happen at the beginning of a syllable. Take the

utterance of "/&" as in " ¥ k£ for example:

1. No vibration from the glottis. Close your teech and push forward your tongue tip
against the lower teeth to generate the unvoiced sound " { " by a jet of airflow.

2. Keep almost the sampe position but start glottis vibration to pronunce the
voiced " | "

3. Keep glottis vibrate but retract your tongue to pronuced the final voiced "/..".
— M, O LA, Aeafr R LIRS B [ ] Rl

1. BPIARE, ERSARE, AT, Seardsar, il 1<)
2. AL, BIEE), 11
3. BMAMERFIRIBRARE B, (Ham R4, &t 4] .

Hint
Just put your hand on your throat, you can feel the vibration of the glottis.
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Here are some terminologies in both English and Chinese for your reference:
PAR g — 24 5 1 Hh D B JRCR -

1. Cochlea: Hif}

Phoneme: &% . &1

Phonics: 5%, B E IR (LUE & AR i 20 10 0525
Phonetics: %%

Phonology: ##&%5:. fhEiE R

Prosody: #HIFE:; ERFik

Syllable: i

Tone: &4
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9. Alveolar: 5t
10.Silence:
11.Noise: HExH
12.Glottis: ["]
13.larynx: MEHA
14.Pharynx: 1 gH
15.Pharyngeal: WAEB, W
16.Velum: X5
17.Vocal chords: %
18. Glottis: #["]
19.Esophagus: £
20.Diaphragm: 4 fi5

21.Trachea: &
Chapter 4: MATLAB for Audio Signal Processing

4-1 Introduction

The chapter introduces the functions within MATLAB that can be used for audio signal
processing. In particular, we shall cover the topics of how to read .wav files, how to play audio

signals, how to record from microphone, and how to save .wav files.

This chapter is a partial translation of the original tutorial in Chinese: 20~ 5l %y . &5 MU Bl
Ji.pdf] .

4-2 Reading Wave Files

On the Windows platform, the most common file extension for audio signals is "wav". MATLAB
can read such wave files via the command "wavread". The following example reads the wave
file "sunday.wav" and display its waveform directly.

Example 1Input file matlab4asp/readWave0O1.m

[y, fs]=wavread('sunday.wav’);

sound(y, fs); % Playback of the sound data (#% 50t £ 7H)
time=(1:length(y))/fs; % Time vector on x-axis (s [ i 1] [ )



plot(time, y); % Plot the waveform w.r.t. time (& H 5 [Tl _E 9%0%)

Output figure
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In the above example, "fs" is the sample rate which is 11025 in this case. This indicates that
there are 11025 sample points per second when the clip was recorded. The vector "y" is a
column vector containing the sample points of the speech signals. We can use "sound(y, fs)" to
play the audio signals read from the wave file. "time" is a time vector in which each element

corresponds to the time of each sample point. Therefore we can plot "y" against "t" to show the

waveform directly.

Most audio signals are digitized to have a bit resolution of 8 or 16 bits. If we want to know the bit
resolution of the file "welcome.wav", we can use more output arguments to "wavread" to get the

information, such as

ly, fs, nbits]=wavread('sunday.wav');



Moreover, if we want to know the time duration of a stream of audio signals, we can use
"length(y)/fs" directly. The following example can obtain most of the important information of the
wave file "welcome.wav".

Example 2Input file matlab4asp/read\Wave02.m
fileName="welcome.wav';

[y, fs, nbits]=wavread(fileName);
fprintf('Information of the sound file "%s":\n', fileName);
fprintf(‘'Duration = %g seconds\n', length(y)/fs);
fprintf('Sampling rate = %g samples/second\n’, fs);

fprintf('Bit resolution = %g bits/sample\n’, nbits);
Output message

Information of the sound file “welcome.wav”:
Duration = 1.45134 seconds
Sampling rate = 11025 samples/second

Bit resolution = 8 bits/sample

From the above example, it can be observed that all the audio signals are between -1 and 1.
However, each sample point is represented by an 8-bit interger. How are they related? First of

all, we need to know that

1. If a wave file has a bit resolution of 8 bits, then each sample point is stored as
an unsigned integer between 0 and 255 (= 248-1).

2. If a wave file has a bit resolution of 16 bits, then each sample point is stored as
an unsigned integer between -32768 (= 2*16/2) and 32767 (= 2"16/2-1).

Since almost all variables in MATLAB have the data type of "double", therefore all sample
points are converted into a floating-point number between -1 and 1 for easy manipulation.

Therefore to retrieve the original integer values of the audio signals, we can proceed as follows.

1. For 8-bit resolution, we can multiply "y" (the value obtained by wavread) by 128

and then plus 128.



2. For 16-bit resolution, we can multiply "y" (the value obtained by wavread) by

32768.

Here is an example.

Example 3Input file matlab4asp/read\Wave03.m

fileName="welcome.wav’;

[y, fs, nbits]=wavread(fileName);

y0=y*(2"nbits/2)+(2"nbits/2); % y0 is the original values stored in the wav file (y0 & Ji 56 4775 25 AUk 22
TIE)

difference=sum(abs(y0-round(y0)))

Output message

difference =

In the above example, the difference is zero, indicating the retrived y0 contains no fractional

parts. Moreover, to increase the generality, we use 2*nbits/2 directly instead of 128.

We can also use the command "wavread" to read a stereo wave file. The returned variable will
be a matrix of 2 columns, each containing the audio signals from a single channel. Example

follows.

Example 4Input file matlab4asp/read\Wave04.m

fileName="flanger.wav';

[y, fs]=wavread(fileName); % Read wave file (FE{ES RHEE)

sound(y, fs); % Playback (%55 7i)
left=y(:,1); % Left channel (Z£3 18 % 51)
right=y(:,2); % Right channel (478 ¥ 3H)

subplot(2,1,1), plot((1:length(left))/fs, left);
subplot(2,1,2), plot((1:length(right))/fs, right);

Output figure



In the above example, MATLAB will read the wave file "flanger.wav", play the stereo sound, and
plot two streams of audio signals in two subplots. Because the intnesities of these two channels
are more or less complemntary to each other, which let us have an illusion that the sound

source is moving back and forth between two speakers. (A quiz: how do you create such effect

given a stream of audio signals?)

If the wave file is too large to be read into memory directly, we can also use "wavread" to read a

part of the audio signals directly. See the following example.

Example 5Input file matlab4asp/read\Wave05.m
[y,fs]=wavread(‘welcome.wav', [4001 5000]); % Read 4001~5000 sample points (zEH & aHA 5% 4001 %2 5000 %)
figure; plot(y)

Output figure
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The waveform in the above example represent the vowel of the second spoken Chinese
character "i11" in the original "#ilY¢[i#". It is obvious that the waveform contain a fundamental
period of about 100 sample points, corresponding to a time duration of 100/fs = 0.0091 seconds
= 9.1 ms. This corresponds to a pitch frequency of 11025/100 = 110.25 Hz. This pitch is pretty

close to two octave down the central la, or the 5th white key counting from the left.

e

DEFGA n-::DE FGABCDE FGABCDE GAB
The perception of pitch of human ear is proportional to the logrithm of the fundamental

P 8 b [ETaN T fo o BPE gkl = _.\_- 40 ; 513 S ASH

frequency. The central la of a piano has a fundamental frequency of 440 Hz. One octave above
it is 880 Hz, while one octave below it is 220 Hz. Each octave in the piano keyboard contains 12
keys, including 7 white keys and 5 black ones, corresponding to 12 semitones within a octave. If
we adopt the standard of MIDI files, the semitone of the central la is 69 with a fundamental

frequency of 440. Therefore we can have a formula that converts a frequency into a semitone:

semitone = 69 + 12*log,(freq/440)



The process of computing the pitch contour of audio signals is usually called "pitch tracking".
Pitch tracking is an important operation for applications such as text-to-speech synthesis, tone
recognition and melody recognition. We shall explain more sophisticated methods for pitch

tracking in the following chapters.

If we want to obtain more information about a wave file, we can retrieve it from the 4th output

arguments of the command "wavread", as follows.

Example 6Input file matlab4asp/read\Wave06.m
[y, fs, nbits, opts]=wavread('flanger.wav");

opts.fmt

Output message

ans =

wFormatTag: 1

nChannels: 2
nSamplesPerSec: 22050
nAvgBytesPerSec: 88200

nBlockAlign: 4

nBitsPerSample: 16

In the above example, some quantities are explained next.

1. wFormatTag is the format tag of the wave file.

2. nChannels is the number of channels.

3. nSamplePerSec is the number of samples per second, which is equal to the
samping rate 22050.

4. nAveBytesPerSec is the number of bytes per second. In this case, since we
have two channels and the bit resolution is 2 bytes, therefore we have 22050*4
= 88200.



5. nBlockAlign is equal to the rato between nAveBytesPerSec and
nSamplePerSec.

6. nBitsPerSample is the bit resolution.

Besides ".wav" files, MATLAB can also use the command "auread" to read the audio files with
extension ".au". You can obtain related online help by typing "help auread" within the MATLAB
command window.

4-3 Playback of Audio Signals

Once we can read the wave file into MATLAB, we can start process the audio signals by
modifying their intensities, or changing their sample rates, and so on. Once the audio signals
are processed, we need to play them for aural inspection. This section will introduce the

MATLAB commands for play audio signals.

The basic command for playing audio signals is "wavplay". The following example can load a

stream of audio signals from the file "handel.mat" and play the signal immediately.

Example 1Input file matlab4asp/wavPlay01.m
load handel.mat % Load the signals stored in handel.mat (i A\ f#£7#* handel.mat (1) #)
wavplay(y, Fs); % Playback of the signals (B0 #)

Since the volume of playback is determined by the amplitude of the audio signals, we can
change the amplitude to change the volume, as follows.

Example 2Input file matlab4asp/playVolume01.m

[y, fs]=wavread(‘welcome.wav");

wavplay(1*y, fs, 'sync"); % Playback with original amplitude (3 1 £% =18 2 a0)
wavplay(3*y, fs, 'sync"); % Playback with 3 times the original amplitude (%% 3 £57Z 08 1% 1)
wavplay(5*y, fs, 'sync"); % Playback with 5 times the original amplitude (%% 5 £%7Z M8 1% 1)

In the above example, we increase the amplitude gradually, so we can perceive the increasing
volume during playbacks. In particular, "wavplay" assume the input signals are between -1 and
1. The the input signals are too large, we can hear "broken sound". To try out this for yourself,

you can try "wavplay(100*y, fs)" to hear the result. Moreover, we put an extra input argument



'sync' in the above example. This will make "wavplay" to play the signals synchronously. That is,
the playback will not start until the previous playback is finished. We shall have more details
later on.

Hint

In the above example, though we have increase the amplitude by a factor of 5, the intensity perceived by our ears is not by

the factor of 5. This serve to exemplify that the perception of volume is not proportional linearly to the amplitude. In fact, it is

proportional to the logrithm of the amplitude.

If we change the sample rate during playback, it will affect the time duration as well as the
perceived pitch. In the following example, we shall increase the sample rates gradually. So you
will hear a shorter sound with high-pitch, just like the sound from the Disney cartoon character

Donald Fauntleroy Duck.

Example 3Input file matlab4asp/playFs01.m

[y, fs]=wavread('welcome.wav");

wavplay(y, 1.0*fs, 'sync’); % Playback at the original speed (#%/i 1.0 55 15 51)

wavplay(y, 1.2*fs, 'sync); % Playback at 1.2 times the original speed (#% /50 1.2 53 & 15 51)
wavplay(y, 1.5*fs, 'sync); % Playback at 1.5 times the original speed (#% /5 1.5 53 & 175 51)
wavplay(y, 2.0*fs, 'sync); % Playback at 2.0 times the original speed (#% /5 2.0 53 & 175 5H)

On the other hand, if we lower the sample rate gradually, we shall get longer and low-pitched
sounds. Eventually it will sound like a cow's sound.

Example 4Input file matlab4asp/playFs02.m

[y, fs]=wavread('welcome.wav");

wavplay(y, 1.0*fs, 'sync); % Playback at the original speed (#5/i% 1.0 £ & 175 5H)

wavplay(y, 0.9%fs, 'sync'); % Playback at 0.9 times the original speed (#% /5 0.9 53 J& 175 5H)
wavplay(y, 0.8*fs, 'sync'); % Playback at 0.8 times the original speed (#% /5 0.8 153 J& 1% 5H)
wavplay(y, 0.6*fs, 'sync); % Playback at 0.6 times the original speed (#% /5 0.6 153 J& 1% 5H)

If we want to keep the same time duration but increase or decreasing the pitch of audio signals,
then we need to perform pitch shift or pitch scaling. It is beyond the scope of this chapter and

will be explained in later chapters.

If we reverse the audio signals by multiplying by -1, the perception will be exactly the same as

the original. (This also serve to demonstrate that human's perception of audio is not affect by its



phase.) However, if the reverse the audio signals in time axis, then it will sound like a foreign

language. Pleae try the following example.

Example 5Input file matlab4asp/playReverse01.m

[y, fs]=wavread(‘welcome.wav’);

wavplay(y, fs, 'sync'); % Playback of the original signal (#%301E & 15 s\ E)
wavplay(-y, fs, 'sync’); % Playback of the up-down flipped signal (3L~ BRI )35 RR DL HE)
wavplay(flipud(y), fs, 'sync’); % Playback of the left-right flipped signal (4% Uit 1% SR (1) A TE)

When playing a strem of audio signals, MATLAB has two modes when playing a stream of

audio signals, as follows.

1. Synchronous: MATLAB will stop all the other execution of commands until the
playback is finished.
2. Asynchronous: MATLAB will continue the execution of other commands while

the playback is proceeded.

The following example can be used to demonstrate these two modes of playback.

Example 6Input file matlab4asp/playSync01.m

[y, fs]=wavread(‘welcome.wav');

wavplay(y, 1.0*fs, 'sync’); % Synchronous playback ([Fl20#1% 1.0 53 &A1)
wavplay(y, 0.8*fs, 'async); % Asynchronous playback at 0.8 of the original speed (AE[F2P %% 0.8 fiidE ¥ a)
wavplay(y, 0.6*fs, 'async); % Asynchronous playback at 0.6 of the original speed (AE[FI2P %7K 0.6 £ 34 /% K1)

After executing the above example, you will hear a synchronous playback with two

asynchronous playbacks.

When we are using "wavplay(y, fs)", the data type of the variable "y" can assume one of the
following types: "double", "single", "int16", "uint8". If the type of "double" is assumed, the range

of "y" has to be within -1 and 1. Any out-of-range elements of "y" will be clipped.

MATLAB has another similar command for playback: sound. Please try the following example.

Example 7Input file matlab4asp/playSync02.m

load handel.mat



sound(y, Fs); % Playback at the right sampling rate
sound(y, 1.2*Fs); % Playback at a faster sampling rate

In the above example, we will two playbacks with slow and fast paces. This is simply the default
mode of "sound" is asynchronous. Another similar command is "soundsc" which can scale up
the audio signals for better playback result. Example follows.

Example 8Input file matlab4asp/soundsc01.m

[y, fs]=wavread(‘welcome.wav');

sound(y, fs); % Playback of the original sound
fprintf('Press any key to continue...\n"); pause

soundsc(y, fs); % Playback of the sound after scaling
Output message

Press any key to continue...

The volume of the original "welcome.wav" is too small. After using "soundsc", the playback
result is much better.

4-4 Recording from Microphone

You can also use the MATLAB command "wavrecord" to read the audio signals from the
microphone directly. The command format is
y = wavrecord(n, fs);
where "n" is number of samples to be recorded, and "fs" is the sample rate. The following
example will record 2 seconds from your microphone.

Example 1Input file matlab4asp/wavRecord01.m

£5=16000; % Sampling rate (M EEHHZ)

duration=2; % Recording duration (% [H])

fprintf('Press any key to start %g seconds of recording...', duration); pause
fprintf('Recording...");

y=wavrecord(duration*fs, fs); % duration*fs is the total number of sample points
fprintf('Finished recording.\n’);

fprintf('Press any key to play the recording..."); pause

wavplay(y,fs);



(You need to execute the above program to see the recording procedure clearly.) In the above
example, "duration*fs" is the number of sample points to be recorded. The recorded sample
points are stored in the variable "y", which is a vector of size 32000x1. The data type of "y" is
double and the memory space taken by "y" is 256,000 bytes.

Hint

You can use the command whos to show the memory usage by all variables in the work space

Hint

The commands wayplay and wavrecord are only supported in Microsoft Windows platform.

In the previous example, the number of channels is 1 and the data type for sample points is
double. If we want to change these two default settings, we can introduce extra input arguments

to the command "wavrecord". A detailed format of "wavrecord" is:

y = wavrecord(n, fs, channel, dataType);
where "channel" (usually 1 or 2) is the number of recording channels, and "dataType" (such as
'double’, 'single’, 'int16', 'uint8') is the data type of the recorded sample points. Different data
types will require different amount of memory space. Example follows.

Example 2Input file matlab4asp/wavRecord02.m

fs=16000; % Sampling rate (HUERSER)
duration=2; % Recording duration ($% % 5 [H])
channel=1; % Mono (Fi2IE)

fprintf(‘Press any key to start %g seconds of recording...', duration); pause

fprintf('Recording...");

y=wavrecord(duration*fs, fs, channel, 'uint8"); % duration*fs is the number of total sample points
fprintf('Finished recording.\n');

fprintf(‘Pressy any key to hear the recording..."); pause

wavplay(y,fs);

This example is almost the same as the previous one, except that the data type is 'uint8'. The
sample points are still kept in the variable "y" with the same size 32000x1. But the elements
within "y" are integers between 0 and 255. The memory space of "y" is now only 32000 bytes,
which is only 1/8 of that in the previous example.

Hint



You can use class(y) to display the data type of variable "y".

The following table shows the data types supported by the command wavrecord.

Space requirement per

Range of the sample data

sample
double 8 bytes/sample Real number within [-1, 1]
single 4 bytes/sample Real number within [-1, 1]

Integer within [-32768, 32767] or [-2”(nbits-1),
intl6 2 bytes/sample
2 (nbits-1)-1]

uint8 1 byte/sample Integer within [0, 255] or [0, 2" nbits-1]

4-5 Writing Audio Files

We can write ".wav" audio files by using the MATLAB command "wavwrite". The command
format is
wavwrite(y, fs, nbits, waveFile);
where "y" is the audio data, "fs" is the sample rate, "nbits" is the bit resolution, and "waveFile" is
the .wav file to be written to. For instance, we can follow the next example to write my recording
to a file "test.wav".

Example 1Input file matlab4asp/wavWrite01.m

fs=11025; % Sampling rate (BUEAEZ)
duration=2; % Recording duration ($% 7 5 fif])

waveFile="testwav'; % Wav file to be saved (Ak 17 wav ¥ %)
fprintf('Press any key to start %g seconds of recording...", duration); pause
fprintf('Recording...");

y=wavrecord(duration*fs, fs);

fprintf(‘Finished recording.\n");

fprintf(‘'Press any key to save the sound data to %s...", waveFile); pause
nbits=8; % Bit resolution (525 (I f# b 44 8-bit)
wavwrite(y, fs, nbits, waveFile);

fprintf(‘'Finished writing %s\n', waveFile);

fprintf(‘'Press any key to play %s...\n', waveFile);

dos(['start ', waveFile]); % Start the application for .wav file (B RCEL wav K <35 RE 1 JE F L)



(You need to execute the above example in order to experience the recording and the file
saving.) In this example, we store the audio data in the data type 'uint8' and write the data to the
wave file "test.wav". We then invoke the corresponding application for ".wav" for the playback of
the file. Since the variable "y" for the command "wavwrite" should be a double within the range
[-1, 1], we need to do some conversion if the recorded data is in other data types, such as

'single’, 'int16', or 'uint8'. Here is the table for conversion.

Data types of "y"|How to convert it to ‘double’ within [-1, 1]

double No conversion needed
single y = double(y);

int16 y = double(y)/32768;
uint8 y = (double(y)-128)/128;

MATLAB can also write other audio files, such as '.au’, which is the audio files used in
NeXT/Sun workstations. The corresponding command is "auwrite". Please type "help auwrite"

within the MATLAB command windows for more information on using this command.

Hint
If you want to do audio signal processing with MATLAB exclusively, you can save your audio data using "save" command

to save them into .mat files. You can then load these mat files using the command "load" directly.

1. (*) Obtain info from a mono audio file: Write a MATLAB script that can read the

wave file "welcome.wav" and display the following information within this script.
a. Number of sample points.
b. Samping rate.
c. Bit resolution
d. Number of channels.
e. Time duration of the recording (in terms of seconds)
2. (*) Obtain info from a stereo audio file: Repeat the previous exercise with a

MATLAB program to obtain the same information from the wave file "flanger.wav".



3. (*) Wave recording: Write a MATLAB script to record 10 seconds of your utterance
such as "My name is Roger Jang and | am a senior student at the CS department of
National Tsing Hua University". Save your recording as myVoice.wav. Other
recording parameters are: sample rate = 16 KHz, bit resolution = 16 bits. Please use
the script print out answers to the following questions within the MATLAB window.

a. How much space is taken by the audio data in the MATLAB workspace?

b. What the data type of the audio data?

c. How do you compute the amount of the required memory from the recording
parameters?

d. What is the size of myVoice.wav?

e. How many bytes is used in myVoice.wav to record overheads other than the
audio data itself?

4. (*) Reverse playback: Write a MATLAB script to accomplish the following tasks:

a. Record your utterance of "we" and play it backwards. Does it sound like "you"?
(Please save the result to a wave file and demo its playback to the TA.)

b. Record your utterance of "you" and play it backwards. Does it sound like "we"?
(Please save the result to a wave file and demo its playback to the TA.)

c. Record your utterance of " i [ 2k /K 2k HifE 1" (for Chinese students) or "We
are you" (for other students) and play it backwords. What does it sound like?
(Please save the result to a wave file and demo its playback to the TA.)

d. Can you think of any other utterances that sound meaningful when played
backwords?

5. (*) Audio signal manipulation: Write a MATLAB script to record your utterance of
"today is my birthday". Try to explain the playback effect you observe after you try the
following operations on the audio signals.

a. Multiply the audio signals by -1.

b. Reverse the audio signals in time axis.

c. Multiply the audio signals by 10.

d. Replace each sample by its square root.

e. Replace each sample by its square.

f. Clip the waveform such that sample data out of the range [-0.5, 0.5] are set to

Zero.



g. Modify the waveform such that samples in the range [-0.5, 0.5] are set to zero;

samples out of the range [-0.5, 0.5] are moved toward zero by the amount 0.5.

6. (*) Audio signal grafting: Write a MATLAB script to accomplish the following tasks.

(You need to find the boundaries by trials and errors, and put the related boundary

indices into your MATLAB program for creating the required audio segments.)

o (For Mandarin-speaking student) Record your utterance of "5 3 k£ % 2l R"

and save it to a file first.

a.

If you connect the consonant part of "_X" to the vowel part of "Z&", can
you get the sound of "}"? (Please save the result to a wave file and
demo its playback to the TA.)

If you connect "&" to the vowel part of "X", can you get the sound of "
"? (Please save the result to a wave file and demo its playback to the
TA)

o (For other students) Record your utterance of "keep it simple" and save it to a

file.

a.

Can you get the sound of "pimple" by connecting some portions of
"Keep" and "simple"? (Please save the result to a wave file and demo its
playback to the TA.)

Can you get the sound of "simplest" by connect some portions of your
recording? (Please save the result to a wave file and demo its playback
to the TA.)

7. (**) Experiments on the sample rate: Write a MATLAB script to record your

utterance of "my name is

*k*n

with a sample rate of 32 KHz and 8-bit resolution. Try to

resample the audio signals at decreasing sample rates of 16 KHz, 8 KHz, 4 KHz, 2

KHz, 1 KHz, and so on. At which sample rate you start to have difficulty in

understanding the contents of the utterance?

8. (**) Experiments on adding noise: Write a MATLAB script to record your utterance

of "my name is

*k*kn

with a sample rate of 8 KHz and 8-bit resolution. We can add noise

to the audio signals by using the following program snippet:

9. k=0.1;

10.y2 =y + k*randn(length(y), 1); % Add noise

11.sound(y2, 8000);

% Playback



12.plot(y2);
Increase the value of k by 0.1 each time and answer the following questions.

. At what value of K you start to have difficulty in understanding the content of the
playback?

a. Plot the waveforms at different values of k. At what value of k you start to have
difficulty in identifying the fundamental period of the waveform?

13.(**) Create the illusion of a moving sound source: In the previous exercise, you
have create myVoice.wav which is a mono audio file. Write a MATLAB script that can
read the audio data from myVoice.wav, duplicate the audio data to create a stereo
audio, and then modify the volume of each channels such that the playback can
create an illusion that the sound source is moving between your two speakers. (Hint:
You can observe the waveforms of the two channels in "flanger.wav".)

14.(**) Resample audio signals: Write a MATLAB script to resample the audio signals
in "sunday.wav" such that new waveform has a new sample rate of 11025. Plot these
two waveform in the suplot(2, 1, 1). Plot their absolute difference in subplot(2, 1, 2).

15.(*) EAREF: &5/ MATLAB % /DB, MEATEE =8, Bargmaet [FHK
SR | BRI E 16 KHz, filf M2 8 Aot iR &l 47 myVoice.wav
%,

. TR S RN Ry ey 2

s A AT BB AR TR, AT AT R

Aot A L BB AR TR, BT AT R ?

Tk E AR L 10 £, B A B RROICR ?

ik A RN EEAT BT, A AT R OO ?

Aok A RN AT, A AT RO ?

f. R EREIE[-0.5, 0.5]I 7 Ak E 292, & A AT SRR TBOR ?

g. AR RS R[-0.5, O.5] (A S, S A3 AT SR IROBOR 2

o

o o

o

($or: &H2IMNFR4SH wavrecord, wavwrite, flipud, sign, sound %%, )

16.(*) FEABHHZTNER: &5 —HKI wavRead2.m, %M MATLAB N#)
PR wavread.m AH[E, FHYEWR:



Ly, fs, nbits] = wavread2('file.wav');

WE—AN ) B, 2 BT[] 2 (1) 2 R y R EE, R nbits & 8, R y [ 2H
A -128 | 127 2 [ WH nbits /& 16, ME y KIEM &R -32768 =
32767 M. ($err: RS wavread() A, D

17.(%) WIS EHE: 555 — M KEL buffer2.m, FVEWIE

={{14
Eﬂ

framedY = buffer2(y, frameSize, overlap);

Horpy ZEalESE, frameSize 2 FHERIELE, overlap  FIJ 2 AH A0 HE F A2 ) BL L,
framedY HIJE— (@R[, HAIEEERSHER RS, A7BONER SRS H .. Giig
BN A A CAZE I — Ml A, R S s A Bkl O AT S W

>> y=[123456789 10 11 12 13 14];
>> buffer2(y, 4, 1)

ans =
1 4 10
2 5) 11
3 6 12
4 7 10 13

Jy, ISR buffer2.m Fil Signal Processing Toolbox H11f] buffer i ¥ i A
7] ?

18.(*) BUSHARKIE: 55 MATLAB %—/NEFES, AT, BN g e [
SERRR ], MR EUERSERSE 32 KHz, fBRMTEEE 8 fiJc, sl Rife ik
myVoice2.wav f# % . s BEGEHEATH BT (Resample) , SERUERIAAR 1 16 KHz,
8 KHz, 4 KHz, 2 KHz .. 5555, G B BB i 2 2RI, PR CECHEAN Y AR B S ) 3

79

2

19.(*) #EENHKIRE: S MATLAB 55—/ PNBUEs, EATERE MM, Srmmaie [
HHAEL ISR 8 KHz, )2 8 fioc. fRmta sl g fe e (AT
oy, BT ELEL R 207 OISR

20. k =0.1;



21.
22.
I

y2 = y + k¥randn(length(y), 1); % HnNAEER
sound (y2, 8000) : % BT
plot (vy2) ;

WOk fHHT 0.1, 020 0.3 SEME MG RIS, 181 IR 0B o Sl A AR

IR K LRI, (I AR I A
a WFIE) K (LR, RETANA y2 QF BEEONE (T2, 6
BOK y2 B, RO AT AN (e )

24.(*) EHFBAK: 5 interp1 54, ¥ myVoice2.wav K EHELT FOHTER, REIEK

25.

26.

SHFRSER 11025 Hz, W& RAA 7R myVoice3.wav.,
(*) BHREAER: 75 RO RARBOETE, A TR 20, g 3 7
T
sk [ B AAOKA B E] o, FEEIERRRIS K, SRR R R ] il 2l
SR FEI—IK s G AT NG EE 22 il o AR RT DAARE S ) 8 S (PP o, TR R 5 I 1 4R
TR R 2
a. sEskEY [weareyou| , @EEBCFEM. SHCIERBRE—IK, K% F R
[ it 2 2 ) BT I, S T A IR JE 22 ) o T B8 S 1) 98 TSR L [ 8 TSI 380 AL
RIS ? SO A SR #4912

Chele: fRmessr Fras il a2 y, ATEMEA flipud(y) €47 B EIEEL fliplr(y)
AHEAT e AT . D

(*) HElBYEE 1. 5500 MATLAB Se 41 9.
C JRMEATERT, HUMBHER Ry 16 KHz, MENTREZy 16 Bits, $riipfi] =40, $%75 %A
s TE KRBT |, S PRI SR/ R T 2 ) B3 ey 5 8 ARG TS /N ?
a. EBEITE, A NSRS 2T GRIFERZE) , AREEIEES. &
17 A L A Lo A N 2
b. SEBISRLIY, KPTEMERT R AT GRIRERAE) |, ERERIEES. &
17 A L A Lo A A 2
c. #ikE [R) MRS ) 38 TR MEE 1),
T SRR wav B, THRECHRIEE A .

i

AERa] K]



d. #8 TR] RCEE (T 830 W] W (1 L), A/ TE] 1
B BIHRAE A wav B, PRI AR G .
27.(%) Ha\BIH#E 2. 558U CoolEdit A5Ep b —.
28.() REBESERE. AU B E AU SRR BRI
LTSRSV E
SRR IR % flanger.wav e A B TEPIE AR o R 2o A BT (1) o i
i, DSIMCAERR BNy, & AR SRR e A RS TR SR
a. i i load handel.mat ## N M5l y KHIERAHR Fs, GEfi
flanger.wav 1773, 24— S TE 1 & AR %€ handel.wav, A8 S 11
FevER flanger.wav JE{RL.

Chapter 5: Basic Features of Audio Signals (ZFFIEAREE)

5-1 Volume (F&)

The loudness of audio signals is the most prominant features for human aural perception. In
general, there are several terms to describe the loudness of audio signals, including volume,
intensity, and energy. Here we use the term "volume" for further discussion. Volume is a basic
acoustic feature that is correlated to the sample amplitudes within each frame. Basically, there

are two methods to compute the volume of each frame:
1. The sum of absolute samples within each frame:
volume = Zi=1" |sj|

where s; is the i-th sample within a frame, and n is the frame size. This method

requires only integer operations and it is suitable for low-end platform such as

micro-controllers.
2. 10 times the 10-based logorithm of the sum of sample squares:

volume = 10*log(Zi-1" si%)



This method requires more floating-point computations, but it is (more or less) linearly
correlated to our perception of loudness of audio signals. The quantity computed is

also referred as the "log energy" in the unit of decibels. More explanations about

decibel can be found in the page:

http://www.phys.unsw.edu.au/~jw/dB.html (local copy)

o) ARREENEE, XAEA [ ]  [98FE]  (Intensity) B¢ [fefE] (Energy) , HJ
P — {1 A DN (1) AR R i /N AR L, e A b A 7y X2l B A

1. RRAEHER AR BHME SRR JEAR 7 iR R R e i B, I SR O, 1 & AR
& (pra s

2. BRHEEHERT I E R, HIEL 10 AJRBEUE, FH3RbL 10 TG54 2N fE 2
LLor . (Decibels) AHAL, & MBS MIME, PUEART & NS A/ INE B 1A .
LR & 1 AT B0 KU e R R -

http://www.phys.unsw.edu.au/~jw/dB.html T i 43 )

Some characteristics of volume are summarized next.

« For recording in a common office using a uni-directional microphone, the volume of
voiced sounds is larger than that of unvoiced sounds, and the volume of unvoiced
sounds is also larger than that of environmental noise.

« Volume is greatly influenced by microphone setups, mostly the microphone gain.

« Volume is usually used for endpoint detection which tries to find the region of meanful
voice activity.

« Before computing the volume, it is advised that the frame should be zero-justified (the
average value of the frame should be subtracted from each samples) to avoid the

common DC-bias due to hardware defects.
o A YR

o SBOME, A IS RO RS ISR, R 1S R SO R
—EARBSTE R, 52 B0 TORBOE IS BAR K



o JHH AR A A, AT 2 BEEGE RE R B A0 7 B K A R
o (ERHART B ST E F G SR N2, LA sl SR F A2 (DC Bias) PIHE U1t
7=

The following example demonstrate how to use these two mehtods for volume computation:
DL B G e DL ph A 7 v AR A T A 2

Example 1Input file basicFeature/volume01.m
waveFile='sunday.wav';
frameSize=256;

overlap=128;

[y, fs, nbits]=wavReadInt(waveFile);

fprintf('Length of %s is %g sec.\n', waveFile, length(y)/fs);
frameMat=buffer(y, frameSize, overlap);
frameNum=size(frameMat, 2);
volumel=zeros(frameNum, 1);
volume2=zeros(frameNum, 1);

for i=1:frameNum

frame=frameMat(;,i);

frame=frame-mean(frame); % zero-justified
volumel(i)=sum(abs(frame)); % method 1
volume2(i)=10*log10(sum(frame.”2)); % method 2

end

time=(1:length(y))/fs;

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs;

subplot(3,1,1); plot(time, y); ylabel(waveFile);

subplot(3,1,2); plot(frameTime, volumel, '.-); ylabel("Volume (Abs. sum));

subplot(3,1,3); plot(frameTime, volume2, '.-"); ylabel("Volume (Decibels)'); xlabel("Time (sec)");

Output message

Length of sunday.wav is 0.98225 sec.



Output figure
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Hint
Note that in the above example, we have use a function wavReadInt() which converts all the samples into integer values. This

function is available in the Audio Processing Toolbox.

The above two methods of computing volume are only an approximation to our perception of
loudness. However, the loudness is based on our perception and there could be significant
differences between the "computed loudness" and the "perceived loudness". In fact, the
perceived loudness is greatly affect by the frequcney as well as the timber of the audio signals.
If we plot the equal percieved loudness against sinusoidal signals of various frequencies, we

will have the following curves of equal loudness:

A EPAME ] AR R 5 (58055, (EE iR AR S B s, FOR BRI~ s UkiE
IENEIRSE, MNHAEEATR R E AT R 2, & Ty, B TEBEE] ek
A NHPHERIE BN B, NHERFER IR EAFRSAR K, e B T8l S &



A= AU E 2R =88 S 3B% 4]  (Curves of Equal Loudness) &
&, wtnl LAS 2R 1S — okl -

Loudness | | 4]
120 120 pever | L |
~110 \{phons)
> 100

S
| Threshold of audibility

sound pressure level (dB re 2 1077 N/m

L] mEE |
20 40 60 100 200 500 1000 2000
Frequency {Hz)

000 10k 20k

Curves of equal loudness determined experimentally by Fletcher, H. and Munson, W.A. (1933) J.Acoust.Soc.Am.
6:59.

The above figure also shows the sensitivity of the human ear with respect to frequency, which is

simply the frequency response of the human ear. If you want to obtain the frequency response

of your ears, you can jumpt the the "Equal Loudness Tester" pages:

EfniE R, AR N EBAANRISASRE S B ORE, JE e N A
(Frequency Response) . HIAMRESEIR A CRE A2 E, v LLRIE A H [Equal
Loudness Tester] it :

http://www.phys.unsw.edu.au/~jw/hearing.html T i 43

Besides frequencies, the perceived loudness is also greatly influenced by the timbre. For
instance, we can try to pronounce several vowels using the same loudness level, and then plot

the volume curves to see how they are related to the timbre or shapes/positions of lips/tougue,

as shown in the following example.



TB T ERR TAHRA RSN, AN G OBGEIEAEIBOE) AR, i, 3]
DA AT AR R A RS RoAcds P AR g5 LU BLAG I B (Y L 10 XL & €0 &, 1,
RS R A SRS E MR i, At IERZ ] LU A o SN 355 s T [ Bl 4

Example 2Input file basicFeature/volume02.m
waveFile="aeiou.wav’;
frameSize=512;

overlap=0;

[y, fs, nbits]=wavReadInt(waveFile);

fprintf('Length of %s is %g sec.\n', waveFile, length(y)/fs);
frameMat=Dbuffer(y, frameSize, overlap);
frameNum=size(frameMat, 2);
volumel=frame2volume(frameMat, 1); % method 1

volume2=frame2volume(frameMat, 2); % method 2

time=(1:length(y))/fs;

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs;

subplot(3,1,1); plot(time, y); ylabel(waveFile);

subplot(3,1,2); plot(frameTime, volumel, '.-); ylabel("Volume (Abs. sum));

subplot(3,1,3); plot(frameTime, volume2, '.-"); ylabel("Volume (Decibels)"); xlabel('Time (sec)’);

Output message

Length of aeiou.wav is 5. 337 sec.

Output figure
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Hint
In the above example, we have use a function frame2volume() which computes the volume using two methods. This function

is available in the Audio Processing Toolbox.

From the above example, you can observed that though the perceived loudness is the same,
the computed volumes depend a lot on the timbers. In fact, we can perform another experiment
to pronounce the same vowel but with different pitch to see how the perceived loudness

depends on the fundamental frequency. This is left as an exercise.

Since the perceived loudness is easily affected by the fundamental frequency as well as the
timber, we need to adjust the amplitudes accordingly when we are performing text-to-speech

synthesis or singing voice synthesis.

TEE A D ZRRNE O 8, IR AT 57 BB & R, 3 W AR 5 R
AN AR A et A TR I, DA SRt il R e R MR

5-2 Zero Crossing Rate (& E %)




Zero-crossing rate (ZCR) is another basic acoustic features that can be computed easily. It is
equal to the number of zero-crossing of the waveform within a given frame. ZCR has the

following characteristics:

« In general, ZCR of both unvoiced sounds and environment noise are larger than voiced
sounds (which has observable fundamental periods).

« It is hard to distinguish unvoiced sounds from environment noise by using ZCR alone
since they have similar ZCR values.

o ZCR is often used in conjunction with the volume for end-point detection. In particular,
ZCR is used for detecting the start and end positings of unvoiced sounds.

« Some people use ZCR for fundamental frequency estimation, but it is highly unreliable

unless further refine procedure is taken into consideration.

[#2#% ] (Zero Crossing Rate, fiif ZCR) RAERHEZAES, Halm@Ea e, BAF
HIRFE

o MRIME, FERASCE SRR E S CRATIHW AT B &, PIneEs) .

o STRERIAT SR W 2 TOHEDE 30 3 AR 00 7, 8 M I By 1 0 A BB AR A T AT v (HTE 3
SR I B AR

o T AR S BT, R 02 PR AR (0 R A B R A R

o A HIATEAAGR ISR, (BARA S i, B A ZRSGIEAT A AL P

The following facts should be well understood when we try to implement ZCR:

1. If a sample is exactly located at zero, should we count it as zero crossing? Depending
on the answer to this question, we have two method for ZCR computation.
2. Most ZCR computation is based on the integer values of audio signals. If we want to

do mean substraction, the mean value should be rounded to the nearest integer too.
R, AERHEIE TR, FERC R S

1. HURAT LSRR IR AL 8 R R AR T WA, B RCR e ANl [
SR ZHZ IS, A eI R AT



2. KIS HB A & 5 s s S S AR AT, A AN R A B VR B GRS, 7EIR 2 B D
% (DC Bias) W, iR 8.

In the following, we use the above-mentioned two methods for ZCR computation of the wave

file csNthu8b.wav:

FELL R E0B,  BAE T R AR [R5 VA AR B 2

Example 1Input file basicFeature/zcr01.m
waveFile='csNthu8b.wav';
frameSize=256;

overlap=0;

[y, fs, nbits]=wavReadInt(waveFile);

frameMat=buffer(y, frameSize, overlap);

zcrl=sum(frameMat(1:end-1, :).*frameMat(2:end, :)<=0); % Method 2
time=(1:length(y))/fs;

frameNum=size(frameMat, 2);

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs;

subplot(2,1,1); plot(time, y); ylabel(waveFile);

subplot(2,1,2); plot(frameTime, zcrl, ".-', frameTime, zcr2, '.-Y;
title(ZCR"); xlabel("Time (sec)");

legend('Method 1', 'Method 2');

Output figure
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From the above example, it it obvious that these two methods generate different ZCR curves.
The first method does not count "zero positioning" as "zero crossing", there the corresponding
ZCR values are smaller. Moreover, silence is likely to have low ZCR of method 1 and high ZCR
for method 2 since there are likely to have many "zero positioning" in the silence region.
However, this observation is only true for low sample rate (8 KHz in this case). For the same

wave file with 16 KHz (csNthu.wav), the result is shown next:

FE BRI EIG T, BAME R T ARy AT I 2, S RIROREER A, (EEEE 2.
AT RENGDL, B S BRETAR Py, i IR E AR e T B o T B AL I By, Shiks
FET R TR R, e ISR K ZE . ) WIARIBSRR S, 13 B A R B ANIA .

Example 2Input file basicFeature/zcr02.m
waveFile='csNthu.wav';
frameSize=256;

overlap=0;

[y, fs, nbits]=wavReadInt(waveFile);
frameMat=buffer(y, frameSize, overlap);

zcrl=frame2zcr(frameMat, 1); % Method 1



zcr2=frame2zcr(frameMat, 2); % Method 2
time=(1:length(y))/fs;
frameNum=size(frameMat, 2);

frameTime=((0:frameNum-1)*(frameSize-overlap)+0.5*frameSize)/fs;

subplot(2,1,1); plot(time, y); ylabel(waveFile);

subplot(2,1,2); plot(frameTime, zcrl, ".-', frameTime, zcr2, '.-Y);
title(ZCR"); xlabel("Time (sec)");

legend('Method 1', 'Method 2');

Output figure
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In the above example, methods 1 and 2 return similar ZCR curves. In order to used ZCR to
distinguish unvoiced sounds from environment noise, we can shift the waveform before
computing ZCR. This is particular useful is the noise is not too big. Example follows:

Example 3Input file basicFeature/zcr03.m
waveFile='csNthu.wav';

frameSize=256;



overlap=0;

[y, s, nbits]=wavReadInt(waveFile);

frameMat=buffer(y, frameSize, overlap);

volume=frame2volume(frameMat);

[minVolume, index]=min(volume);

shiftAmount=2*max(abs(frameMat(:,index))); % shiftAmount is equal to the max. abs. sample within the frame of
min. volume

zcrl=frame2zcr(frameMat, 1);

zcr2=frame2zcr(frameMat, 1, shiftAmount);

subplot(2,1,1); plot(time, y); ylabel(waveFile);

subplot(2,1,2); plot(frameTime, zcrl, ".-', frameTime, zcr2, '.-Y;
title(ZCR"); xlabel("Time (sec)");

legend('Method 1 without shift', ‘Method 2 with shift");

Output figure
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In this example, the shift amount is equal to the maximal absolute sampe values within the
frame with the minimum volume. Therefore the ZCR of the silence is reduced dratically, making

it easier to tell unvoiced sounds from silence using ZCR.

If we want to detect the meaningful voice activity of a stream of audio signals, we need to
perform end-point detection or speech detection. The most straight method for end-point

detection is based on volume and ZCR. Please refer to the next chapter for more information.

2 B P B GG AN &5 R, R Ay [ i 848 | (Endpoint Detection) % [ 555 {#HH] ] (Speech
Detection) , 5 & B (1 7 V2l S 45 FH 5 RO 2 o Al ) ), AH B AN B0 & AE AR e B s ] .

5-3 Pitch (&5

Old Chinese version

Pitch is an important feature of audio signals, especially for quasi-periodic signals such as
voiced sounds from human speech/singing and monophonic music from most music
instruments. Intuitively speaking, pitch represent the vibration frequency of the sound source of
audio signals. In other words, pitch is the fundamental frequency of audio signals, which is

equal to the reciprocal of the fundamental period.

(] (Pitch) &5 — S R AR B 0 Rr L, FLE AR, S R S R 1 =, ik
BERSRIN L [ FASER | (Fundamental Frequency) , tlhJ& [ LAY | (Fundamental Period)
(I3 5

Generally speaking, it is not too difficult to observe the fundamental period within a
quasi-periodic audio signals. Take a 3-second clip of a tuning fork tuningFork01.wav for
example. We can first plot a frame of 256 sample points and identify the fundamental period

easily, as shown in the following example.

ﬁﬁ%ﬁ%ﬁ@gﬁkﬁ’]/ﬂﬁb, FREE, BN H A DI E A, BLH 3 P
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Example 1Input file basicFeature/pitchTuningFork01.m
waveFile="tuningFork01.wav';

[y, fs, nbits]=wavread(waveFile);

index1=11000;

frameSize=256;

index2=index1+frameSize-1;

frame=y(index1:index2);

subplot(2,1,1); plot(y); grid on
title(waveFile);

line(index1*[1 1], [-1 1], ‘color’, 'r");
line(index2*[1 1], [-1 1], ‘color’, 'r");
subplot(2,1,2); plot(frame, '.-"); grid on
point=[7, 189];

line(point, frame(point), 'marker’, ‘o', 'color’, 'red’);

periodCount=5;

fp=((point(2)-point(1))/periodCount)/fs; % fundamental period (in sec)

ff=1/fp; % fundamental frequency (in Hz)
pitch=69+12*log2(ff/440); % pitch (in semitone)
fprintf('Fundamental period = %g second\n', fp);

fprintf('Fundamental frequency = %g Hertz\n', ff);

fprintf('Pitch = %g semitone\n', pitch);

Output message

Fundamental period = 0.002275 second
Fundamental frequency = 439. 56 Hertz
Pitch = 68.9827 semitone

Output figure
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In the above example, the two red lines in the first plot define the start and end of the frame for
our analysis. The second plot shows the waveform of the frame as well as two points (identified
visually) which cover 5 fundamental periods. Since the distance between these two points is

182 units, the fundamental frequency is fs/(182/5) = 16000/(182/5) = 439.56 Hz, which is equal

to 68.9827 semitones. The formula for the conversion from pitch frequency to semitone is
shown next.

fE_ LR G, EEAAROA BEARSHERACE, FERE 256 BEH0EHe, LA aTaRis 8

T 5 EFEAIE, kT 182 HIL7EL, RIULHHERFEASER I fs/(182/5) = 16000/(182/5)

= 439.56 Hz, fH% A 68.9827 1% (Semitone) , A lIEASER 22 25 il A X R .

semitone = 69 + 12*logy(frequency/440)

In other words, when the fundamental frequency is 440 Hz, we have a pitch of 69 semitones,
which corresponds to "central 1a" or A4 in the following piano roll.

BATRER, HHREATARZE 440 Hz Iy, BHERIRE5 22 69, s =l ik La ot A4,

i i I o
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Hint
The fundamental frequency of the tuning fork is designed to be 440 Hz. Hence the tuning fork are usually used to fine tune

the pitch of a piano.
— R X REEN SRR AR R BEL 440 Hz, DR BRAM) 55 FH 35 SR AR 1 S 58 117 5 1

In fact, semitone is also used as unit for specify pitch in MIDI files. From the conversion formula,

we can also notice the following facts:

« Each octave contains 12 semitones, including 7 white keys and 5 black ones.

« Each transition to go up one octave corresponds to twice the frequency. For instance,
the A4 (central la) is 440 Hz (69 semitones) while A5 is 880 Hz (81 semitones).

« Pitch in terms of semitones (more of less) correlates linearly to human's "perceived

pitch".
IR A AT AR I B 22, o MIDI S SRR Z T AR E . 1 Bk A ST BUE

o BRI 12 fE O FSEmn e e

o BRI FARRG — A S, SRR WAT. B, Tk la & 440 Hz (69 Semitones) ,
o) FoP R — e B2 A%, SHF K 880 Hz (81 Semitones) .

o NEHIE M TARTEEEE | S BEE B AR W B U E L.

The waveform of the tuning fork is very "clean" since it is very close to a sinusoidal signal and
the fundamental period is very obvious. In the following example, we shall use human's speech
as an examle of visual determination of pitch. The clip is my voice of " ¥ k£ & Z{ R"

(csNthu.wav). If we take a frame around the character "#t", we can visually identify the

fundamental period easily, as shown in the following example.

B S AR, B BOCAR T RALZ, P DA TE IR b W A DABRAE S [TE 3R
BEENAR ] AE, BATTLUR T3] (88O, thn] LW SRR BIHACA ], 55 R 51041



Example 2Input file basicFeature/pitchVoice01.m
waveFile='csNthu.wav';

[y, fs, nbits]=wavread(waveFile);

index1=11050;

frameSize=512;

index2=index1+frameSize-1;

frame=y(index1:index2);

subplot(2,1,1); plot(y); grid on
title(waveFile);

line(index1*[1 1], [-1 1], ‘color’, 'r");
line(index2*[1 1], [-1 1], ‘color’, 'r");
subplot(2,1,2); plot(frame, '.-"); grid on
point=[75, 477];

line(point, frame(point), 'marker’, ‘o', 'color’, 'red’);

periodCount=3;

fp=((point(2)-point(1))/periodCount)/fs; % fundamental period
ff=fs/((point(2)-point(1))/periodCount); % fundamental frequency
pitch=69+12*log2(ff/440);

fprintf('Fundamental period = %g second\n', fp);

fprintf('Fundamental frequency = %g Hertz\n', ff);

fprintf('Pitch = %g semitone\n', pitch);

Output message

Fundamental period = 0. 008375 second
Fundamental frequency = 119. 403 Hertz
Pitch = 46.42 semitone

Output figure
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In the above example, we select a 512-point frame around the vowel of the character "#". In
particular, we chose two points (with indices 75 and 477) that covers 3 complete fundamental
periods. Since the distance between these two points is 402, the fundamental frequency is

fs/(402/3) = 16000/(402/3) = 119.403 Hz and the pitch is 46.420 semitones.

AEEI T E, R THE ] ERBEMHL N 2R 512 BRI EAE, P Ala s T 3 ik
AT, SEIAGET 402 HLALES, DG ERIEASEERZ fs/(402/3) = 16000/(402/3) = 119.403
Hz, tH&E R 46.420 k35, Bl [ La) 27 22.58 {3, BOLHEAZIMIE4EE (24

D

Conceptually, the most obvious sample point within a fundamental period is often referred to as
the pitch mark. Usually pitch marks are selected as the local maxima or minima of the audio
waveform. In the previous example of pitch determination for the tuning fork, we used two pitch
marks that are local maxima. On the other hand, in the example of pitch determination for
human speech, we used two pitch marks that are local minima instead since they are more
obvious than local maxima. Reliable identification of pitch marks is an essential task for

text-to-speech synthesis.



FEBSEEE AN BB IR, B — R AT ) B A6 R ARG 2 [ s R R | (Pitch Marks, fiifE PM),
PM K E 50 3B K R i i R s N Bl nE BI85 SR #a b, BAMATER K wmifE PM 52 )5
T E KEE, ER AV S H B, B PM AERIS B AN IR, DB API PR T w1 Je3 6
/MR PMOARGT S . PM O ARG T — BUB S I =, AERRS A O AR 2,

Due to the difference in physiology, the pitch ranges for males ane females are different:

« The pitch range for males is 35 ~ 72 semitones, or 62 ~ 523 Hz.

« The pitch range of females is 45 ~ 83 semitones, or 110 ~ 1000 Hz.
AR AR IE AR, 5 AR S B A R, — B

o BRI EHIERIAE 35 ~72 i, HHEMHAEL 62 ~ 523 Hz.
o WANFERMELAE 45 ~83 i, HERHEZE 110 ~ 1000 Hz,

However, it should be emphasized that we are not using pitch alone to identify male or female
voices. Moreover, we also use the information from timbre (or more precisely, formants) for

such task. More information will be covered in later chapters.
R FRAM 23 1 55 2 B AN e U v, MHE R RIS 0 (R |, BF RARATER Y] .

As shown in this section, visual identification of the fundamental frequency is not a difficult task
for human. However, if we want to write a program to identify the pitch automatically, there are
much more we need to take into consideration. More details will be followed in the next few

chapters.

A T ) A my, AR RN, (Ees 2R BB e, & 2R T
Flo AR EEHER S MTE, SRR AN A

5-4 Timbre (Ff)

Timbre is an acoustic feature that is defined conceptually. In general, timbre refers to the
"content" of a frame of audio signals, which is ideally not affected much by pitch and intensity.
Theoretically, for quasi-periodic audio signals, we can use the waveform within a fundamental

period as the timbre of the frame. However, it is difficult to analysis the waveform within a



fundamental period directly. Instead, we usually use the fast Fourier transform (or FFT) to
transform the time-domain waveform into frequency-domain spectrum for further analysis. The
amplitude spectrum in the frequency domain simply represent the intensity of the waveform at

each frequency band.

(& ] (Timber) Jje—ERBOHIRI 45, ZHR SN, Gl [RE ] &R
%%KEM B, e M5 o R S S I, (2 A C AN ] ﬁaﬁﬁuﬁ%@ﬁma

RARE, SEMAR, ﬁ%ﬁzliﬁﬁﬂﬂﬁiﬂiﬁﬂﬂﬁl, ﬁtﬁiﬂa‘iﬂLJ@?H?EZIK@EHE@%Z}F%KW%ET
o P ERIEAE A BOE AR B e €, e HRINEE . @ w RAMTELE, SR
HHEEEATHHRE 2047 (Spectral Analysis) ﬁﬁ 815 HE G ST A AT w] LASRAR A AN R AR (1) 45
SRIBA REMEAT LU B M o FESHRE A0 ATIRE, S5 IR vt [ PR a7 3 | (Fast Fourier
Transform) , fij# FFT, i&&— 1I*HEEEH§EI’J77/£, A LR AERE, (Time Domain) (RS
P AESHIE (Frequency Domain) FRERGE, S5 I 1M 40 S8 SR ) B R 08 7

If you want to experience real-time FFT demo, type the following command within the MATLAB

command window:

HEEER FFT MEEER, LA N o4

o dspstfft_nt (MATLAB 5)
o dspstfft win32 (MATLAB 6 and 7)

The opened Simulink block system looks like this:

BAR Simulink 2%
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o i
Thiz demo requires microphone input. Freq
Short-Time
Spectrum
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When you start running the system and speak to the microphone, you will able to see the

time-varying spectrum:

VR RE T B 4R ) 28 oo JRGR A IRy, e 3R AU BRE R [HHREE | (Spectrum) , B&is [ M
SR SSE =k L

| dzpstift win32fShort-Time Spectrum E@@
File Awes Chanmel: Window Help

Magnitude, dB

a 1 2 3 4 ] B
Fraguency (kHz)

If we use different colors to represent the height of spectrum, we can obtain the spectrogram,
as shown next:
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Spectrogram represent the time-varying spectrum displayed in a image map. The same
utterance will correspond to the same pattern of spectrogram. Some experienced persons can
understand the contents of the speech by viewing the spectragram alone. This is call
"spectrogram reading" and related contests and information can be found on the Internet. For

instance:

e http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram_reading.html

« http://home.cc.umanitoba.ca/~robh/howto.html

Spectrogram U T & (abER S LI ZRE, Nk EeEER AN, n Ll Specgrogram H#EE
HEESRINE, EMEE#TRE 4 Specgrogram Reading, 3 B[], wf LA & 5] 4 |- 465
RZ B E, Wl |8 amh .

¥ 5 TEEE



1.

(*) Frequency-to-pitch conversion: Write an m-file function freg2pitch.m that

convert a given frequency in Hz into the pitch in semitones. The format is

pitch = 69 + 12*log,(freq/440)

. (*) Pitch-to-frequency conversion: Write an m-file function pitch2freq.m that

converts a given pitch in semitones into the frequency in Hz. The format is
freq = 440*27((pitch-69)/12)

(**) Visual inspection of pitch: Please follow the example of pitch determination by
visual inspection in our text to identify the pitch (in terms of semitones with two digits
of precision after the decimal) in the following two audio clips. Be sure to plot your
result, just like what we did in the text.
a. Write a script pitchTuningFork02.m for the clip of another sound fork,
tuningFork02.wav.
b. Write a script pitchVoice02.m for the vowel part of the character "&" of the
utterance "5 # K EFAR", csNthu.wav
(**) Frame-to-volume computation: Write an m-file function frame2volume.m which

can compute the volume of a given frame. The format is
volume = frame2volume(frame, method);

where "frame" is the input frame and "method" is the method for volume computation

(1 for abs. sum; 2 for log square sum), and "volume" is the output volume.

. (**) Wave-to-volume computation: Write an m-file function which can compute the

volume of a given wave signals. The format is
volume = wave2volume(wave, frameSize, overlap, method);

where "wave" is the input wave signals, "frameSize" is the frame size, "overlap" is the
overlap, "method" is the method for computing the volume (1 for abs. sum; 2 for log

square sum), and "volume" is the output volume vector.



6. (*) Volume vs. timbre: Write an m-file script plotVolVsTimbre.m that can record your
utterance of "Y . | . X. ¥. T" (example) with a sample rate of 16 KHz and a bit
resolution of 16 bits. When doing the recording, please try your best to keep a
constant perceived volume for all these five vowels. Then your program should plot
the wave signals together with two volume vectors (with frame size = 512, hop size =
160) computed via the two methods mentioned in this chapter. The obtained plots

should be similar to the following image:
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From your plot, can you deduct the relationship between the volume and the shapes

of your mouth? Try other vowels to see if your argument still holds.

7. (**) Use sinusoids to synthesize waveform of given volume and pitch: Inthe
following three sub-exercises, you are going to use the sine function to synthesize
audio signals with given volume and pitch.

a. Write an m-file script playSineWave01.m that uses a sinusoid of 0.8 amplitude
to generate a 0.5-second mono signals with a pitch of 69 semitones, sample
rate of 16 KHz. Your program should plot the waveform and play the signals.

(Here is an example). The plot should look like this:



Does the pitch sound the same as the recording of a tuning fork

tuningFork01.wav? (Hint: a sinusoid with frequency f can be expressed as y =

sin(2*pi*f*t).)

b. Write an m-file script playSineWave02.m that uses the sinusoid to generate a
mono wave signal of duration of 2 seconds, pitch of 60 semitones, sample rate
of 16 KHz, bit resolution of 16 bits. Moreover, the waveform should be oscillate
between 0.6 and 1.0 with a frequency of 5 Hz. Your program should plot the

waveform and play the signal. (Here is an example). The plot should look like

this:



c. Write an m-file script playSineWave03.m to repeat the previous sub-problem,
but the intensity of the waveform should decrease by following an exponential

function exp(-t). Here is an example. Your plot should look like this:




. (**) Impact of frame sizes on volume: First of all, you need to record your
utterance of "beautiful sundays" and save it to a wave file of 16 KHz, 16 bits, mono.
My example is here. But please use your own recording instead of mine.
a. Write an m-file script plotVolVsFrameSize01.m that reads the wave file and plot
the volumes (as the absolute sum of a frame) with respect to frame sizes of
100 J#% B200 J# B300 Ji B400 J#% B500, and overlap of 0. Please use the same
time axis for the first plot of the waveform, and the second plots of the 5 volume

curves. You plot should look like this:
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b. Write an m-file script plotVolVsFrameSize02.m to repeat the previous
sub-problem, but compute the volumes in terms of decibels. Your plot should
look like this:
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9. Hint:

o You can do the recording with either MATLAB or CoolEdit. But CoolEdit may be
easier for you to edit the recordings, e.g., cut off leading or trailing slience, etc.

o Since each volume vector corresponds to a different time vector, you can put all
volume vectors in a volume matrix, and all time vectors in a time matrix, and
plot 5 volume curves all at once. The length of these 5 curves are not the same,
hence you need to pad the time/volume matrix with NaN.

o Here are some functions in the Audio Processing Toolbox that can make your
job easier: frame2volume.m, frame2sampleindex.m.

10.(**) Impact of the values of K on KCR: We can extend the definition of ZCR to
KCR (k-crossing rate) which is the number of crossings over y = k in a frame. Write an
m-file script plotKcrVsK01.m that read your recording of "beautiful sundays" (as
integers) and plot 7 KCR curves with K equal to 0, 100, 200, ..., 600. The frame size is
256 and the overlap is 0. You program should plot the waveform as well as the KCR

curves on the same time axis. The plot should look like this:
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Do these KCR curves have different but consistent behavior on voiced and unvoiced

sounds? Can you use KCR for unvoiced/voiced detection?

11.(***) Playback of music notes: This problem concerns the playback of music notes
using the concatenation of sinusoids.
Write a m-file function note2wave01.m which can take a sequence of music

notes and return the audio signals for playback. The format is

wave=note2wave01(pitch, duration, fs)

where "pitch" is the vector of note pitch in semitones (with 0 indicating silence),
"duration" is the vector of note duration in seconds, "fs" is the sample rate of
the output wave signals for playback. Using the following script to try your

function and see if you can identify the song. (my result for your reference)

pitch= [555555555755057600 640 6262626260 646005755 55];
duration=[23 23 23 23 23 359 23 69 18 69 18 23 23 23 12 12 23 359 12 12 127]/64;
fs=16000;

wave=note2wave01(pitch, duration, fs);

sound(wave, fs);



12.

13.

a. If you concatenate the sinusoids of two different notes directly, you can hear
obvious noise due to the discontinuity between waveforms of these two notes.
Can you find a method to eliminate the noise so it is more pleasant to hear it?
(Hint: There are several methods to solve the problem.)

() H—EEEFHE SR 5% (R E frame2volume, I FFHEARETH

L NAERFR I

=N
B,
volume = frame2volume(frame, method);

Hrp frame Z&— & HER &, method RIZCERAT 775 (‘absSum' A H 4 ¥}
{HIMEEFT, 'logSquareSum' AZAE A V-7 FRIMEED , volume HIE & .

—BEBERGITESENE: 55 K wave2volume, B akE H

volume = wave2volume(wave, frameSize, overlap, method);

Hrb wave J&— Bl &, frameSize & HEENEL, overlap S A0S HE 1) 52 B 4,
method HIJEACRAE M i (‘absSum' XAl A BHMEM4EF, 'logSquareSum' 1L
FAFF V7 FEEE0O . 1 volume RIJ& i [m) & o

14.(*) SRHESAMBIGE: 359 B MATLAB Fixt, JoiEqT8%s, WL % 16 KHz,

fRMTRE A 16 Bits, SR NAER (Y. 1. X ¥, T o EETHS, 38R
5 CGERMA MBS , S EESE IR RPN EE (frame
Size = 512, frame Step = 160) [rJlRFeE tH 2k, JIr 1S 20 1) e JE2 B RZ KLU T i«
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B AR A S o e Mg 7 (PR — AR Ay f I IESL3E n DL IR
%y = sin(2*pi*f*t). )
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19.(*) SEXREFEMER. 559 HEE freq2pitch.m, AEHEE (AR Hertz) i
WA E (AL E Semitone) , AR

pitch = 69 + 12*log,(freq/440)

20.(*) EETERNER. B (R pitch2freq.m, A E (BA7E Semitone)
PR R AR (BN Hertz) , AR

freq = 440*2/((pitch-69)/12)
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. e R E notePlay.m, o Af AT

wave=notePlay(pitch, duration, fs)

Hrp pitch /2 —H &% & (LI Semitone ZHifr, ¥ 0, AMCERATFET) &
duration JEEHER SR (LR AR , fs RIS A RS HASE wave HIBUE
BEA . GHAE R O A R T A2 B wave NGAE G HEAS H A AT ERES 2
(rfE—1..0

pitch= [555555555755057600 640 6262626260 6460057 5555];
duration=[23 23 23 23 23 359 23 69 18 69 18 23 23 23 12 12 23 35 9 12 12 127]/64;
fs=16000

a. WERFURRE R BOE SR B AR, IR EAE S A L b, Wob e AL, wlh e HE 2
IRWIERA R, JUIC R R o AR IRy, T I8l )RR ) i B o s PR A B A o
RAGH BRI TR Y (P B/ WAL, D

Chapter 6: End-Point Detection (EPD)

6-1 Introduction to End-Point Detection (@& EEIN48)

The goal of end-point detection (EPD for short) is to identfy the important part of an audio
segment for further processing. Hence EPD is also known as "speech detecton" or "voice
activity detection" (VAD for short). EPD plays an important role in audio signal processing and

recognition.
Based on the acoustic features used for EPD, we can classify the EPD methods into two types:

1. Time-domain methods:
a. Volume: Volume is the most commonly used feature for EPD. However, it is
usually hard to have a single universal threshold for EPD. In particular, a single
volume threshold for EPD is likely to misclassify unvoiced sounds as silence for

audio input from uni-directional microphone.



b. Volume and ZCR: ZCR can be used in conjunction with volume to identify

unvoiced sounds in a more reliable manner, as explained in the next section.

The computation load is usually small so these methods can be ported to low-end

platform such as micro-controllers.

2. Frequency-domain methods:
a. Variance in spectrum: Voiced sounds have more regular amplitude spectra,
leading to smaller spectral variances.
b. Entropy in spectrum: Regular amplitude spectra of voices sounds also generate

low entropy, which can be used as a criterion for EPD.

These methods usually require more computing power and thus are not portable to

low-end platforms.

Hint
To put it simply, time-domain methods use only the waveform of audio signals for EPD. On the other hand, if we need to use
the Fourier transform to analyze the waveforms for EPD, then it is frequency-domain method. More information on spectrum

and Fourier transform will be detailed in later chapters.

There are two types of errors in EPD, which cause different effects in speech recognition, as

follows.

« False Rejection: Speech frames are erroneously identified as silence/noise, leading to
decreased recognition rates.

« False Acceptance: Silence/noise frames are erroneously identified as speech frames,
which will not cause too much trouble if the recognizer can take short leading/trailing

silence into consideration.

The other sections of this chapter will introduce both time-domain and frequency-domain

methods for EPD.
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6-2 EPD in Time Domain Cit &5 R 5%)

We shall introduce several time-domain methods for EPD in this section.

The first method uses volume as the only acoustic feature for EPD. This is the most intuitive
method with least computation. We only need to determine a volume threshold and any frame

with a volume less than the threshold is regarded as silence. However, how to determine a



good volume threshold is not obvious. Besides empirically determining the threshold, the best

way is to use a set of labelled training data to find the best value for achieving the minimum

error.

In the following example, we shall use four different ways to compute volume thresholds for

EPD of the wave file sunday.wav:

Example 1Input file endPointDetection/epdVolTh01.m

waveFile='sunday.wav';
[wave, fs, nbits] = wavread(waveFile);
frameSize = 256;

overlap = 128;

wave=wave-mean(wave);
frameMat=Dbuffer2(wave, frameSize, overlap);
frameNum=size(frameMat, 2);
volume=frame2volume(frameMat, 1);
volumeThl=max(volume)*0.1;
volumeTh2=median(volume)*0.1;
volumeTh3=min(volume)*10;
volumeTh4=volume(1)*5;

index1 = find(volume>volumeThl);
index2 = find(volume>volumeTh2);
index3 = find(volume>volumeTh3);

index4 = find(volume>volumeTh4);

% zero-mean substraction
% frame blocking
% no. of frames
% volume
% volume threshold 1
% volume threshold 2
% volume threshold 3

% volume threshold 4

endPointl=frame2samplelndex([index1(1), index1(end)], frameSize, overlap);

endPoint2=frame2samplelndex([index2(1), index2(end)], frameSize, overlap);

endPoint3=frame2samplelndex([index3(1), index3(end)], frameSize, overlap);

endPoint4=frame2samplelndex([index4(1), index4(end)], frameSize, overlap);

subplot(2,1,1);
time=(1:length(wave))/fs;

plot(time, wave);

ylabel('Amplitude'); title("Waveform");
axis([-inf inf -1 1]);

line(time(endPointl( 1))*[1 1], [-1, 1], ‘color’, 'm");



line(time(endPoint2(  1))*[1 1], [-1, 1], ‘color’, 'g");

line(time(endPoint3( 1))*[1 1], [-1, 1], ‘color’, 'k');

line(time(endPoint4(  1))*[1 1], [-1, 1], 'color’, 'r");

line(time(endPoint1(end))*[1 1], [-1, 1], ‘color’, 'm");

line(time(endPoint2(end))*[1 1], [-1, 1], ‘color', 'g");

line(time(endPoint3(end))*[1 1], [-1, 1], ‘color’, 'k");

line(time(endPoint4(end))*[1 1], [-1, 1], ‘color’, 'r);

legend("Waveform', 'Boundaries by threshold 1', '‘Boundaries by threshold 2', ‘Boundaries by threshold 3', '‘Boundaries by
threshold 4%);

subplot(2,1,2);

frameTime=frame2samplelndex(1:frameNum, frameSize, overlap);
plot(frameTime, volume, '.-");

ylabel('Sum of Abs."); title("\Volume");

axis tight;

line([min(frameTime), max(frameTime)], volumeTh1*[1 1], ‘color’, 'm’);
line([min(frameTime), max(frameTime)], volumeTh2*[1 1], ‘color', 'g");
line([min(frameTime), max(frameTime)], volumeTh3*[1 1], ‘color’, 'k");
line([min(frameTime), max(frameTime)], volumeTh4*[1 1], ‘color’, 'r");

legend("Volume', "Threshold 1', "Threshold 2', "'Threshold 3', ‘Threshold 4%);

Output figure
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In the above example, we have used four methods to compute the volume thresholds. These

four methods all have their weakness, as explained next:

1. A ratio times the maximal volume: Not reliable if there is an impulse in volume due to
plosive sounds.

2. A ratio times the median of the volume: Not reliable when silence occupy more than
half of the audio signals.

3. The minimal volume times a constant: This could go wrong is the noise if too big.
Moreover, it is likely for some recordings to have a frame of zero volume.

4. The volume of the first frame times a constant: This could go wrong if the first frame of

the recording is unstable, which is not rare in practice.

The ratios or constants in the above four methods should be determined through labeled
training data. It should be noted wave files of different characteristics (recordings via
uni-directional or omni-directional microphones, different sample rates, different bit resolutions,

different frame sizes and overlaps) will have a different best thresholds.



Of course, you also create a new threshold by using linear combinations of these thresholds,

etc.

From the above example, it is obvious that the leading unvoiced sound is likely to be
misclassified as silence. Moreover, a single threshold might not perform well if the volume

varies a lot. As a result, an improved method can be stated next:

1. Use a upper threshold 1, to determine the inital end-points.
2. Extend the boundaries until they reach the lower threshold ;.

3. Extend the boundaries further until they reach the ZCR threshold 7.

This method is illustrated as follows.

E_sl[n)

Energy

Window end-time,
m (norm-sec)

Zero

crossings

Window end-time,
m (norme-sec)

The above improved method uses only three thresholds, hence it is possible to use grid search
to find the best values via a set of labeled training data.

Hint

The above method is designed for speech recognition. For melody recognition, we do not need to consider unvoiced sounds

since they do not have pitch at all.
If we apply the above method for EPD of sunday.wav, the result can plotted as follows:

Example 2Input file endPointDetection/epdVolZcrO1.m



waveFile='sunday.wav';
plotOpt = 1;
[y, fs, nbits] = wavReadInt(waveFile);

endPoint = epdByVolZcr(y, fs, nbits, [], plotOpt);

Output figure
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In the above plot, the red and green lines indicates the beginning and end of sound,
respectively. This example uses the function endPointDetect.m in the Audio Processing

Toolbox, which use volume and ZCR as mentioned above for EPD.

Now it should be obvious that the most difficult part in EPD is to distinguish unvoiced sounds
from silence reilably. One way to achieve this goal is to use high-order difference of the
waveform as a time-domain features. For instance, in the following example, we use order-1, 2,

3 difference on the waveform of beautifulSundays.wav:

Example 3Input file endPointDetection/highOrderDiff01.m

waveFile='sunday.wav';



[wave, fs, nbits] = wavread(waveFile);

frameSize = 256;

overlap = 128;

wave=wave-mean(wave); % zero-mean substraction
frameMat=Dbuffer2(wave, frameSize, overlap); 9% frame blocking
frameNum=size(frameMat, 2); % no. of frames

volume=frame2volume(frameMat, 1);
sumAbsDiffl=sum(abs(diff(frameMat)));
sumAbsDiff2=sum(abs(diff(diff(frameMat))));
sumAbsDiff3=sum(abs(diff(diff(diff(frameMat)))));
sumAbsDiff4=sum(abs(diff(diff(diff(diff(frameMat))))));

subplot(2,1,1);

time=(1:length(wave))/fs;

plot(time, wave); ylabel('Amplitude"); title('Waveform');

subplot(2,1,2);

frameTime=frame2samplelndex(1:frameNum, frameSize, overlap)/fs;

plot(frameTime', [volume; sumAbsDiffl; sumAbsDiff2; sumAbsDiff3; sumAbsDiff4]’, '.-";
legend("Volume', 'Order-1 diff', 'Order-2 diff', ‘Order-3 diff', '‘Order-4 diff");

xlabel('Time (sec));

Output figure
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It is obvious that the high-order difference (HOD) on the waveform can let us identify the
unvoiced sound more easily for this case. Therefore you can take the union of high-volume and
high HOD regions to have most robust of EPD.

Hint

If you have counter examples which invalids the use of HOD, please let me know.

From the above example, a possible simple way of combining volume and HOD for EPD can be

stated as follows:

1. Compute volume (VOL) and the absolute sum of order-n difference (HOD).

2. Select a weighting factor w within [0, 1] to compute a new curve VH = w*VOL +
(1-w)*HOD.

3. Find a ratio p to compute the threshold t of VH to determine the end-points. The

The above method involves three parameters to be determined: n, w, p. Typical values of these

parameters are n =4, w = 0.5, and p = 0.125. However, these values vary with data sets. It is



always adviceable to have these values tuned by using the target data set for a more robust

result.

Of course, there are still plenty of other methods for EPD on time domain. The only limit is your

imagination.

6-3 EPD in Frequency Domain CiZhifEll: $EEK )

Voiced sounds have harmonic structures in the frequency-domain specta. Moreover, the
energy distribution will be mostly biased toward the low-frequency bands. As a result, we can

apply simple mathematical functions on the spectrum for EPD.

If you are not familiar with the definition of spectrum (or more specific, amplitude spectrum), you
do not need to worry about this at this stage. All you need to know is that the amplitude
spectrum is the distribution of energy with respective to frequency. More information about the

spectrum and its mathematical definition will be covered in later chapters.
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(**) EPD by volume and HOD:

a. Record your voice of "Singapore is a fine place" and save it as "test.wav", with
the format of 16 KHz, 16 bits, mono. (Hint: You can use waveFileRecord.m in
the Audio Processing Toolbox for easy recording.)

b. Write a script epdByVolHod01.m which do EPD by using volume and high-order

difference. You should plot your result like this:

Waveform

Amplitude

Volume
Order-1 diff
Order-2 ditt
Order-3 dift

Order-4 dilf

L i

501 f

ol and HOD

lime (sec)

(Hint: Be sure to understand all the examples provided in the text before you
attemp this exercise. In particular, you should be familiar with the use of "line"

command for adding lines to the existing plot.)

c. Convert your script epdByVolHod01.m to a function epdByVolHod.m with the

following usage:

[epInSamplelndex, eplnFramelndex] = epdByVolHod(wave, fs, nbits, epdParam, plotOpt)



where

eplnFramelndex: two-element end-points in frame index

= eplnSamplelndex: two-element end-points in sample index

= wave: input audio signals within [-1, 1];

= fs: sample rate

= epdParam: EPD parameter, including three fields:
=epdParam.frameSize: frame size
=epdParam.overlap: overlap
=epdParam.diffOrder: the order of difference (default: 4)
=epdParam.volWeight: the weighting factor for volume (default: 0.5)
=epdParam.vhRatio: the constant for obtaining the VH threshold of

VHmint(VHmax-VHmin)*epdParam.vhRatio (default 0.125)
= plotOpt: O for silent operation, 1 for plotting the result (as shown in the

previous sub-problem).

Please test your program using the following script:

waveFile="test.wav';

epdParam.frameSize = 256;

epdParam.overlap = 0;

epdParam.diffOrder=4;

epdParam.volWeight=0.5;

epdParam.vhRatio = 0.125;

plotOpt = 1;

out = epdByVolHod(wave, fs, nbits, epdParam, plotOpt);

2. (Hint: You should finish part (b) before trying this one since it is trickier debugging an
m-file function. When you are debugging your m-file function, be sure to issue "dbstop
if error" or "dbstop if warning" to stop at the work space where errors/warnings occur.
To clear the debugging flags, try "dbclear all". Also it would be better if you can follow

the same flow as in epdByVol.m in the Audio Processing Toolbox.)



3. (*) Recordings of digits and letters: This is a recording task for digits and letters.
Please refer to this page for details.

4. (***) Programming contest: end-point detection: Please read this page for details.

The followings are old Chinese version.
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Audio Signal Processing and Recognition (FF:El\jZEFEELH ) :

Recording Task

Roger Jang ((R& &)

In this task, you need to do the recordings for both digits and letters. The recording
clips will be used for further exercises in the class, including end—point detection and
speech recognition using DTW, etc. More specifically, you need to record 10 digits (079)
and 26 letters (A"Z) twice to have 72 .wav files. Basically it will take about 10 minutes
to finish the recording. Please follow the stey—-by—step instructions closely.

1. Please download winrar and install it. (Change the file extension to exe and then execute directly.)
If this is your first time to do the recording task, please read important notes about recording. Please read them
carefully. If you don't follow the rules, your recordings might not be in good shape and you need to do it again.

3. Downlaod the recording program digitLetterRecordingProgram.rar and uncompress it into a folder
"digitLetterRecordingProgram". Read the instructions in "readme.txt" and then you can start recording. For
easy reference, the contents of digitLetterRecordingProgram/readme.txt are listed here:

4.  Please type “go” under MATLAB to start the recording of 079 digits and a” z letters.

After recording, the program will generate a folder "waveFile/dddddd" where "dddddd" is your student ID,
such as "921510". This directory should located at the same level as the f

Chapter 7: Pitch Tracking



7-1 Introduction to Pitch Tracking (FliFg#k??/&)

Old Chinese version

From the previous chapter, you should know how to find the pitch by visual inspection and
some simple computation. If we want the computer to automatically identify the pitch from audio
signals, then we need to have some reliable methods for such a task of "pitch tracking". Once

the pitch vector is identified, it can be used for extensive applications in audio signal processing,

including:

« Melody Recognition: Or QBSH (Query By Singing/Humming), that is, to retrieve a song
from the music database that can match a person's singing or humming as close as

possible.

« Tone Recognition for tonal language (such as Mandarin): To identify each syllable's
tone for computer assisted pronunciation training (CAPT).

« Prosody Analysis for TTS (text-to-speech): To analyze and predict the best FO curve for
TTS applications.

e Intonation Assessment: To compute the similarity between a test and a target
utterances for CAPT.

« Speech recognition: Pitch can be used to improve the recognition rates of speech

recognition engines.

In summary, pitch tracking is a fundamental step toward other important tasks for audio signal
processing. Related research on pitch tracking has been reported for decades, and it still
remains an hot topic in the literature. Therefore we need to know the basic concept of pitch

tracking as a stepstone for other advanced audio processing techniques.

Pitch tracking follows the general processing of short-term analysis for audio signals, as follows.



1. Chop the audio signals into frames of 20 ms or so. Overlap is allowed between
neighboring frames.

2. Compute the pitch of each frame.

3. Eliminate pitch from silence or unvoiced sounds. This can be done by using volume
thresholding or pitch range thresholding.

4. Smooth the pitch curve using median filters or other similar methods.

In the processing frame blocking, we allow overlap between neighboring frames to reduce
discontinuity between them. We can define "frame rate" as the frames per second for our
analysis. For instance, if fs = 11025 Hz, frame size = 256, overlap = 84, then the frame rate is
equal to fs/(frameSize-overlap) = 11025/(256-84) = 64. In other words, if we wish to have
real-time pitch tracking (for instance, on the platform of micro-controllers), then the computer
should be able to handle 64 frames per second. A small overlap will lead to a low frame rate.

The process of frame blocking is shown next.

Overlap

256 points/frame Frame Z.oom in

84 points overlap
11025/(256-84)=64 pitch/sec

When we choose the frame size and the overlap, we need to consider the following factors.



« The frame size should cover at least two fundamental periods to fully capture the
characteristics of the audio signals. Suppose that the pitch range of human voices is
between 50 to 1000 Hz, and the sample rate is 16000 Hz, then we can derive the
range of the frame size, as follows.

a. If f = 50 Hz, then the fundamental period = fs/f = 16000/50 = 320 points and the
frame size should be 2*320 = 640 points.

b. If f = 1000 Hz, then the fundamental period = fs/f = 16000/1000 = 16 points and
the frame size should be at least 2*16 = 32 points.

« The frame size should not too big, otherwise it cannot capture time-varying
characteristics of audio signals. A big frame size also require more computing time to
process the frame.

« The overlap is determined by the computing power of your platform. A big overlap leads
to a big frame rate and thus requries more computing power. If we do not have
enough computing power, we can reduce the overlap or even make the overlap

negative.

There are a number of methods to derive a pitch value from a single frame. Generally, these

methods can be classified into time-domain and frequency-domain methods, as follows.

» Time-domain methods
o ACF: Autocorrelation function
o SMDF: Average magnitude difference function
o SIFT: Simple inverse filter tracking
« Frequency-domain methods
o Harmonic product spectrum method

o Cepstrum method

These methods will be covered in the rest of this chapter.

7-2 ACF

Old Chinese version




In this section, we shall introduce the auto-correlation function (ACF) for pitch tracking. This is a
time-domain method which estimates the similarity between a frame s(i), i = 0 ~ n-1, and its

delayed version via the auto-correlation function:

acf(t) = Zizo™ " s(i) s(i+1)
where 1 is the time lag in terms of sample points. The value of T that maximizes acf(t) over a
specified range is selected as the pitch period in sample points. The following figure

demonstrates the operation of ACF:

Frame s(n): W VW N |
Shifted frame s(n-n): { A ANAA AN A TA RN EIAVEN
\ AN J
Y VT
n=30 acf(30) = inner product of overlap part
= dot(abs(s(30:256), s(1:227))
Pitch period
30

In other words, we shift the delayed version n times and compute the inner product of the

overlapped parts to obtain n values of ACF.

Take my utterance "sunday.wav" for example. If we take a frame of 512 points starting from the
9000th point, which corresponds to the vowel part of "day", the ACF result is the following

example:

Example 1Input file pitchTracking/frame2acf01.m
waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);

index1=9000;

frameSize=512;



index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame);
plotOpt=1;

method=1;

acf=frame2acf(frame, maxShift, method, plotOpt);

Output figure
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The maximum of ACF occurs at the first point, which is obviously not what we want. If we set

the values around the first maximum to be zero, we can identify the second maximum located at

index 131 and the corresponding pitch is fs/(131-1) = 16000/130 = 123.08 Hz, or 46.94

semitones.

Hint

In the above computation, we need to divide fs by 131 minus 1 since 131 is a 1-based index in MATLAB.



The point of ACF at index 131 is referred as the pitch point for ACF. In order to identify the pitch
point of ACF automatically, we can simply set the first few points of ACF to be zero and then

find the maximal point of ACF. Please refer to the following example.

Example 2Input file pitchTracking/frame2acfPitchPoint01.m
waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);
index1=9000;

frameSize=512;
index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame);

method=1;

acf=frame2acf(frame, maxShift, method);
acf2=acf;

maxFreq=1000;
acf2(1:fs/maxFreq)=min(acf);
minFreq=40;
acf2(fs/minFreq:end)=min(acf);

[maxValue, maxindex]=max(acf2);

subplot(2,1,1);

plot(frame, ".-"); axis tight; title('Input frame");

subplot(2,1,2);

xVec=1:length(acf);

plot(xVec, acf, ".-', xVec, acf2, '.-', maxindex, maxValue, 'ro");
axis tight; title(sprintf('ACF vector (method = %d)', method));
legend(‘Original ACF', 'Truncated ACF', 'ACF pitch point’);

Output figure
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In the above figure, the first plot if the frame, the second plot is the original ACF and the
modified ACF. The red circle is the maximal point of the modified ACF, which is also the correct
pitch point. The modified ACF is obtained by setting ACF at some unlikely region for the pitch

point to be zero. Specifically,

a. Assuming the max. pitch is 1000 Hz. This leads to a fundamental period of fs/1000 =
16000/1000 = 16 points. Therefore we can set the first 16 points of ACF to be zero.
b. Assuming the min. pitch is 40 Hz. This leads to a fundamental period of fs/40 =

16000/40 = 400 points. Therefore we can set all the elements of ACF after index 400

to be zero.

By using the described method, we can perform pitch tracking on a stream of audio signals, as

shown in the next example.

Example 3Input file pitchTracking/wave2pitchByAcfO1.m
waveFile='soo.wav';

[y, fs, nbits]=wavread(waveFile);

y=y-mean(y);

frameDuration=32; % in ms



frameSize=round(frameDuration*fs/1000);
overlap=0;
maxShift=frameSize;

maxFreq=1000;

minFreq=40;
nl=round(fs/maxFreq); % acf(1:n1) will not be used
n2=round(fs/minFreq); % acf(n2:end) will not be used

frameMat=buffer2(y, frameSize, overlap);
frameNum=size(frameMat, 2);
volume=frame2volume(frameMat);
volumeTh=max(volume)/8;
pitch=0*volume;
for i=1:frameNum
% fprintf('%d/%d\n', i, frameNum);
frame=frameMat(:, i);
acf=frame2acf(frame, maxShift, 1);
acf(1:n1)=-inf;
acf(n2:end)=-inf;
[maxValue, maxIndex]=max(acf);
freg=fs/(maxIndex-1);
pitch(i)=freq2pitch(freq);

end

frameTime=frame2samplelndex(1:frameNum, frameSize, overlap)/fs;
subplot(3,1,1);

plot((1:length(y))/fs, y); set(gca, 'xlim', [-inf inf]);

title("Waveform’);

subplot(3,1,2);

plot(frameTime, volume); set(gca, ‘xlim', [-inf inf]);

line([0, length(y)/fs], volumeTh*[1, 1], ‘color’, 'r");

title("Volume");

subplot(3,1,3);

pitch2=pitch;

pitch2(volume

Output message



Warning: In the directory “d:\users\jang\matlab\toolbox\audioProcessing”,
pitch2waveMex. mexw32 now shadows pitch2waveMex. d11.

Please see the MATLAB 7.1 Release Notes.

> In wave2pitchByAcf0l at 43

In goWriteOutputFile at 32

Output figure
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In the above example, we use simple volume thresholding with a threshold equal to one eighth
of the maximum volume. That is, if a frame has a volume less than 1/8 of the maximum volume,
then its pitch is set to zero. From the last plot of the above figure, it is obvious that the values of
the pitch curve is mostly correct except for several erroneous points which deviate from the
presumably smooth pitch curve. This discontinuous points will cause squeaky sounds during

the playback of the pitch curve. We usually apply a smoothing operator (such as median filters)



on the pitch curve as a post-process to eliminate erroneous points. Without using the smoothing

operator, the results are shown in the following links:

« Original wave file: soo.wav

« Wave file of the identified pitch: sooPitch.wav.
There are several variations of ACF that are also used commonly:

1. The previously defeind ACF has a tapering effect since a larger t will use a smaller
overlap for the calculation. As an alternative, we can compute a new ACF by dividing

the inner product by the size of the overlapped region, as shown in the next equation:
acf(t) = Zico™" " s(i) s(i+1)/(n-1)

Due to the smaller overoap, the last few points of ACF may be unstable, as shown in

the following example.

Example 4Input file pitchTracking/frame2acf02.m

waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);
index1=9000;

frameSize=512;
index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame);
plotOpt=1;

method=2;

acf=frame2acf(frame, maxShift, method, plotOpt);

Output figure
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2. Another method to avoid tapering-off is to shift only the first half of a frame, as shown

in the next equation:

acf(t) = Zi=o™? s(i) s(i+r)

The overlap region will always be half of the frame size and the obtain ACF will not

taper off. Please refer to the following example.

Example 5Input file pitchTracking/frame2acf03.m

waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);
index1=9000;

frameSize=512;
index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame)/2;
plotOpt=1;



method=3;

frame2acf(frame, maxShift, method, plotOpt);

Output figure
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. The range of ACF is usually known in advance. We can limit the range of ACF to be

[-1, 1] by using the following formula for normalized ACF:
acf(t) = [2 = s(i) s(i+7)]/[T s2(i) + = s%(i+7)]

All the summations in the above equation should have the same lower and upper

bounds. The range of the above formula is [-1, 1] due to the following inequality:
-(xP+y?) <= 2xy <= xP+y?

If the selected pitch point is t = 19, then we define the clarity of this frame is



clarity = acf(1o).

A higher clarity indicates the frame is closer to a pure periodic waveform. On the other
hand, a lower clarity indicates the frame is less periodic, which is likely to be caused

by unvoiced speech or silence.

7-3 AMDF

Old Chinese version

The concept of AMDF (average magnitude difference function) is very close to ACF except that
it estimates the distance instead of similarity between a frame s(i), i = 0 ~ n-1, and its delayed

version via the following formula:

amdf(t) = Zi™"| s(i) - s(i-7) |
where 1 is the time lag in terms of sample points. The value of t that minimizes amdf(t) over a
specified range is selected as the pitch period in sample points. The following figure

demonstrates the operation of AMDF:
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In other words, we shift the delayed version n times and compute the absolute sum of the

difference in the overlapped parts to obtain n values of AMDF. A typical example of AMDF is

shown below.

Example 1Input file pitchTracking/frame2amdf01.m
waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);

index1=9000;

frameSize=512;

index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame);

plotOpt=1;

method=1;

frame2amdf(frame, maxShift, method, plotOpt);

Output figure
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From the above figure, it is obvious that the pitch period point should be the local minimum



located at index=132. The corresponding pitch is equal to fs/(132-1) = 16000/131 = 122.14 Hz,

or 46.81 semitones. This result is close but not exactly equal to the one obtained via ACF.

Just like ACF, there are several variations of AMDF, as explained next.

1. Due to less overlap AMDF tapers off with the lag . To avoid the taper-off, we can
normalize AMDF by dividing it by the length of the overlap. The down sides include

more computation and less robustness when t is small. Here is an example.

Example 2Input file pitchTracking/frame2amdf02.m

waveFile='sunday.wav';

[y, fs, nbits]=wavread(waveFile);

index1=9000;

frameSize=512;

index2=index1+frameSize-1;
frame=y(index1:index2);
maxShift=length(frame);

plotOpt=1;

method=2;

frame2amdf(frame, maxShift, method, plotOpt);

Output figure
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2. Another method to avoid AMDF's taper-off is to shift the first half of the frame only. In
the following example, the length of the shifted segment is only 256, leading to an

AMDF of 256 points:
Example 3Input file pitchTracking/frame2amdf03.m

waveFile='sunday.wav';

Ly, fs, nbits]=wavread(waveFile);

index1=9000;

frameSize=512;

index2=index1+frameSize-1;
frame=y(index1:index2);

maxShift=length(frame)/2;

plotOpt=1;

method=3;

acf=frame2amdf(frame, maxShift, method, plotOpt);

Output figure
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If the volume of the first half-frame is smaller than that of the second half-frame, it is

better to flip the frame first such that a more reliable AMDF curve can be obtained.

Since the computation of AMDF does not require multiplication, it is suitable for low computing

platform such as embedded systems or micro-controllers.

It is possible to combine ACF and AMDF to identify the pitch period point in a more robust
manner. For instance, we can divide ACF by AMDF to obtain a curve for easy selection of the

pitch point. For example:

Example 4Input file pitchTracking/frame2acfOverAmdf01.m
waveFile='soo.wav';

[y, fs, nbits]=wavread(waveFile);

frameSize=256;

frameMat=Dbuffer(y, frameSize, 0);

frame=frameMat(:, 292);

method=1;



maxShift=length(frame)/2;
plotOpt=1;
frame2acfOverAmdf(frame, maxShift, method, plotOpt);

Output figure
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In the above example, we have used the singing voices from Prof. Soo who was the tenor of the

choir at National Taiwan University. In the selected frame, the maxima of ACF or the minima of

AMDEF is not very obvious. But if we divide ACF by AMDF, the maxima of the final curves are

much more obvious than either ACF or AMDF alone.

In the next example, we shall use variations of ACF and AMDF for computing ACF/AMDF:

Example 5Input file pitchTracking/frame2acfOverAmdf02.m

waveFile='soo.wav';

[y, fs, nbits]=wavReadInt(waveFile);
framedY =buffer(y, 256, 0);
frame=framedY (:, 290);



subplot(4,1,1);

plot(frame, '.-";

title('Input frame'); axis tight

subplot(4,1,2);

method=1; out=frame2acfOverAmdf(frame, 256, method);
plot(out, ".-"; title((ACF/AMDF, method=1"); axis tight
subplot(4,1,3);

method=2; out=frame2acfOverAmdf(frame, 256, method);
plot(out, ".-"; title((ACF/AMDF, method=2"); axis tight
subplot(4,1,4);

method=3; out=frame2acfOverAmdf(frame, 128, method);
plot(out, ".-"; title((ACF/AMDF, method=3"); axis tight

Output figure
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In the above example, method=1 and method=2 lead to the same ACF/AMDF curve.



In order to remove noise around zero of the original frame, we can apply center clipping before
computing ACF or AMDF. Some of the commonly used techniques for center clipping are

display in the following figure:

Clipping limits are set to p%o of the absolute maximum of
the audio signals
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s(n) = ais(n-1) + azs(n-2) + ... + aps(n-m) + e(n)
WA E NPT kAR AR {as, ag, ..., am}, 13 Ze(n) /b, 1t e(n) XIEFEM
excitation signal  (JREAWHEERRSE) , FHIE e(n) 2kRHEFT ACF, 15204

7ECL N R, 3AMAEH—1E order % 20 1] LPC (linear predictive coefficients) #&ifi4T
SIFT:

Example 1Input file pitchTracking/siftAcfO1.m
waveFile = 'soo.wav';

[y, fs, nbits]=wavread(waveFile);

startIndex=15000;

frameSize=256;

endIndex=startindex+frameSize-1;
frame=y(startindex:endIndex);

order=20;

[frame2, error, coef]=sift(frame, order); % Simple inverse filtering tracking
maxShift=frameSize;

method=1;

acfO=frame2acf(frame, maxShift, method);

acfl=frame2acf(error, maxShift, method);

subplot(3,1,1)

plot(1:frameSize, [frame, frame2]);

legend(‘Original Signal', 'LPC estimate');
title('Original signal vs. LPC estimate');
subplot(3,1,2);

plot(1:frameSize, error);

grid on

xlabel(['Residual signal when order =", int2str(order)]);
subplot(3,1,3);

plot(1:frameSize, [acfO/max(acf0), acfl/max(acfl)]);
grid on

xlabel('Normalized ACF curves');

legend('Normalized ACF on original frame', ‘Normalized ACF on residual signal’);

Output figure
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Example 2Input file pitchTracking/wave2pitchBySiftAcfO1.m
waveFile='soo.wav';

[y, fs, nbits]=wavread(waveFile);

y=y-mean(y);

frameDuration=32; % in ms
frameSize=round(frameDuration*fs/1000);

overlap=0;

maxShift=frameSize;

maxFreg=1000;

minFreq=40;

nl=round(fs/maxFreq); % acf(1:n1) will not be used

n2=round(fs/minFreq); % acf(n2:end) will not be used



frameMat=buffer2(y, frameSize, overlap);
frameNum=size(frameMat, 2);
volume=frame2volume(frameMat);
volumeTh=max(volume)/8;
pitch=0*volume;
IpcOrder=20; % for sift
for i=1:frameNum
% fprintf('%d/%d\n', i, frameNum);
frame=frameMat(:, i);
[frame2, error, coef]=sift(frame, IpcOrder); % Simple inverse filtering tracking
acf=frame2acf(error, frameSize, 1);
acf(1:n1)=-inf;
acf(n2:end)=-inf;
[maxValue, maxIndex]=max(acf);
freg=fs/(maxIndex-1);
pitch(i)=freq2pitch(freq);

end

frameTime=frame2samplelndex(1:frameNum, frameSize, overlap)/fs;
subplot(3,1,1);

plot((1:length(y))/fs, y); set(gca, 'xlim', [-inf inf]);

title("Waveform’);

subplot(3,1,2);

plot(frameTime, volume); set(gca, ‘xlim', [-inf inf]);

line([0, length(y)/fs], volumeTh*[1, 1], ‘color’, 'r");

title("Volume");

subplot(3,1,3);

pitch2=pitch;

pitch2(volume

Output figure
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¢ Pitch Detection Methods Review

o Pitch Detection

7-5 HPS
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e Harmonic product spectrum (HPS)

e Cepstrum method

HAERMMAEFR HPS, HoREEWT:
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Example 1Input file pitchTracking/hps01.m
waveFile = 'soo.wav’;

[y, fs, nbits]=wavread(waveFile);

startIndex=15000;

frameSize=256;

endIndex=startindex+frameSize-1;

frame = y(startindex:endIndex);
zeroPaddedFrameSize=16*frameSize;
output=frame2hps(frame, zeroPaddedFrameSize, 1);
[maxValue, maxindex]=max(output);

line(maxIndex, output(maxIndex), 'marker’, ‘o', 'color’, 'r");

fprintf(‘Pitch frequency = %f Hz\n', fs/zeroPaddedFrameSize*(maxIndex-1));

Output message

Pitch frequency = 188.415527 Hz

Output figure
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Example 1Input file pitchTracking/ceps01.m
waveFile = 'soo.wav’;

[y, fs, nbits]=wavread(waveFile);

startindex=15000;

frameSize=256;

endIndex=startindex+frameSize-1;

frame = y(startindex:endIndex);
zeroPaddedFrameSize=16*frameSize;

output=frame2ceps(frame, zeroPaddedFrameSize, 1);



[maxValue, maxIndex]=max(output);
line(maxIndex, output(maxIndex), ‘'marker', ‘o', ‘color’, 'r");

Y%fprintf(‘Pitch frequency = %f Hz\n', fs/zeroPaddedFrameSize*(maxIndex-1));

Output figure
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7-7 How to Increase Pitch Resolution (F =N E KR

Ty H R R R IR, e AT B AR PR . Gl 22 AF Y 100 fidl [ 7r] (Cents)
A5 A AT B e AT RE R v, JRAMT R AR iy BB SRR LI I SAE IR Sl R b 188, T8 g fid
ACF miit SMDF AT IERE v, METHR =y & my AR AT I o PEMSCSE L AGER, Hr i AR A A
B R

p = 69 + 12*l0gy(f/440) = 69 + 12*logy((fs/L)/440)
Hop L R AR . L W 1 R, e RSO ] LIRS
AP = (69 + 12*logy((fs/L)/440)) - (69 + 12*logz((fs/(L+1))/440)) = -12*logx(1+1/L) =
-12*logy(1+f/fs)
Horp f RAASER, fs RRIUERIRE, AP FE fs (R80T T LAATHT R 41 5 151 2 76 sl 558 1 -



Example 1Input file pitchTracking/pitchResolution01.m

Output figure



A p (Pitch resolution) w.rt. fs and pitch

i pitch = 12
i : i .| ———pitech =24
; pitch = 48
¢ | — pitch =60
i pitch = 72
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7-8 Software for Pitch Tracking (F =B EREE)
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« Speech Filing System (SFS): http://www.phon.ucl.ac.uk/resource/sfs/
e Speech Analyzer
« Solo Explorer
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Old Chinese version

1. (**) Frame-to-ACF computation: Write an m-file function myFrame2acf.m to

compute ACF from a given frame, with the following usage:
acf = myFrame2acf(frame);

where frame is the input frame, and acf is the output ACF. The length of acf should be
the same as that of frame. (Hint: You can check out the function frame2acf.m in the
Audio Processing Toolbox. You can also use xcorr.m in the Signal Processing

Toolbox to complete this exercise.)

2. (**) Frame-to-AMDF computation: Write an m-file function myFrame2amdf.m to

compute AMDF from a given frame, with the following usage:
amdf = myFrame2amdf(frame);

where frame is the input frame and amdf is the output AMDF. The length of amdf
should be the same as that of frame. (Hint: You can check out the function

frame2amdf.m in the Audio Processing Toolbox.)

3. (**) Frame-to-AMDF/ACF computation: Write an m-file function
myFrame2amdfOverAcf to compute AMDF over ACF from a input frame, with the

following usage:
amdfOverAcf = myFrame2amdfOverAcf(frame);

Where frame is the input frame, and amdfOverAcf is the output AMDF/ACF. The
length of amdfOverAcf should be the same as that of frame. Use this function to plot
the curve of AMDF/ACF similar to this example. Does this method better than ACF or
AMDF alone? If not, what methods can be used to improve the performance? (Hint:

Please refer to frame2acfOverAmdf.m in the Audio Processing Toolbox.)

4. (**) ACF-to-pitch computation: Write an m-file function myAcf2pitch.m which

computes the pitch from a given vector of ACF, with the usage:



pitch = myAcf2pitch(acf, fs, plotOpt);

where acf is the input ACF vector, fs is the sample rate, pitch is the output pitch value
in semitones. If plotOpt is not zero, your function needs to plot ACF and the selected

pitch point.

. (**) AMDF-to-pitch computation: Write an m-file function myAmdf2pitch.m which

computes the pitch from a given vector of AMDF, with the usage:
pitch = myAmdf2pitch(amdf, fs, plotOpt);

where amdf is the input AMDF vector, fs is the sample rate, pitch is the output pitch
value in semitone. If plotOpt is not zero, your function needs to plot AMDF and the

selected pitch point.

. (**) Frame-to-pitch computation: Write an m-file function myFrameZ2pitch which

computes the pitch from a given frame using various methods, with the usage:
pitch = myFrame2pitch(frame, fs, method, plotOpt);

where frame is the vector of input frame, fs is the sample rate, method is the used
pitch tracking method (‘acf' for ACF, 'amdf' for AMDF, etc), pitch is the output pitch
value in semitone. If plotOpt is not zero, your function needs to plot the frame, the
ACF or AMDF curve, and the selected pitch point. Moreover, you function should
have the capability for self demo. Please refer to frame2acf.m or frame2amdf.m in the
Audio Processing Toolbox. (Hint: You will use several functions in the Audio
Processing Toolbox, including freq2pitch.m. frame2acf.m. frame2amdf.m, etc.
Moreover, you will also use myAcf2pitch.m and myAmdf2pitch.m in the previous

exercises.)

. (**) Computation, display, and playback of pitch by ACF: Before trying this
exercise, you should fully understand this example since this exercise follow the
example closely. In this exercise, you are request to write an m-file script

myWave2PitchByAcf01.m which accomplish the following tasks:



Record your own singing for 8 seconds, with 16 KHz, 16 bits, mono, and save it

to a file test.wav. (You can use speech instead of singing, but the pitch tracking

will be harder for speech.) Use this file DoReMi.wav unless there is absolutely

no way for you to record.

0.

Read test.wav and do frame blocking with a frame size of 512 and a overlap of

Compute the volume of each frame and find the volume threshold.
Compute ACF for each frame.
Identify the pitch point and compute the pitch in semitone.

Process the identify pitch vector to make it smooth, and to remove unlikely pitch.

Possible methods include:

a.

If a frame has a volume lower than the volume threshold, set the
corresponding pitch to zero.

If an element in the pitch vector is out of the range of human voices, set
it to zero.

If an element in the pitch vector goes too high or too low compared with
its neighbors, set it to the avarage of its neighbors (assuming its
neighbors have similar pitch.)

Smooth the pitch vector using median filter. (The corresponding
command is median.)

Any other methods that you can think of to do better post-processing on

the pitch vector.

o Plot the result with three subplots in a figure:

a.
b.

C.

The first subplot is the original waveform of the audio signals.
The second subplot is the volume.

The third subplot is the identified pitch vector.

All three subplots should have the same time axis in terms of second.

o Play the identify pitch vector. (Hint: you can use pvPlay.m in the Audio

Processing Toolbox.)



You need to fine-tune your program such that the identify pitch should be as close as

possible to the original singing. You need to demo the following items to TA:

9. Playback of test.wav.

10.Plots mentioned earlier.

11.Playback of the pitch vector.
(***) Computation, display, and playback of pitch by AMDF: Write an m-file script
myWave2PitchByAmdf01.m to repeat the previous exercise, but use AMDF instead.
Compare your result with that of the previous example. (Hint: This is harder than the

previous one since there might be several equally good minimum points to select.)

. (***) Computation, display, and playback of pitch by ACF/AMDF: Write an m-file

script myWave2PitchByAmdf01.m to repeat the previous exercise, but use
ACF/AMDF instead. Compare your result with that of the previous example. (Hint:
This is harder than the previous one since there might be several equally good

minimum points to select.)

10. (***) Wave-to-pitch computation: Write an m-file function myWave2pitch.m which

11

compute a pitch vector from a given stream of audio signals, with the usage:
pitch = myWave2pitch(wave, fs, frameSize, overlap, method);

where wave is input audio signals, fs is the sample rate, frameSize is the frame size in
samples, overlap is the overlap in samples, and method specifies the method used for
pitch tracking: 'acf' for ACF and 'amdf' for AMDF. If there is no pitch in a given frame,

the corresponding element in the output pitch vector should be zero. (Hint: you should

try the previous exercise before attemping this one.)

.(*) Recording task: Children's song recording: This recording task requires you to

do recordings of children's songs and to manually label the pitch of the recordings.

Please refer to this page for more details.

Chapter 8: & =B HEMH) fEH
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Pitch (22. 40%) : 93. 64

Magnitude (7. 45%) : 79. 68

Rhythm (17. 24%) : 85. 25

Pronunciation (52.91%) : 76. 29

Score: 83. 10
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Magnitude (7. 45%) : 85. 48

Rhythm (17. 24%) : 80. 31
Pronunciation (52.91%) : 72.77
Score: 80. 98
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Chapter 9: Digital Signals and Systems (B FEEL R 41)

9-1 Discrete-Time Signals (BESR EE5E)

Old Chinese version

All signals in the real-world are continuous. In contrast, all signals stored in a computer use the
unit of byte as the basic storage unit. Therefore these signals are referred to discrete-time
signals. In mathematical notations, discrete-time signals can be represented by x(nT), where T

is the sampling period (the reciprocal of the sample rate), n is an integer and nT is the elapsed



time. For simplicity, we shall use x[n] to represent the discrete-time signal at time nT, with T

implicitly defined.

Hint
In fact, signals stored in a computer are discrete in both time and their values. For the discussion for this chapter, we are only

concerned with the discretization in time.
In the following, we shall introduce some of the commonly used discrete-time signals:

The unit impulse signal d[n] is zero everywhere except at n = 0, where its value is 1.

Mathematically, we can express the unit impulse signal as the following expression:

d[n]=1,ifn=0

3[n] = 0, otherwise

We can plot the unit impluse signal as follows:

Example 1Input file digitalSignalsAndSystems/impulse01.m

% Plot an unit impulse signal

n = -5:5;
X =0*n;
index=find(n==0);

x(index)=1;

% plot

stem(n, x);

axis([-inf, inf, -0.2, 1.2]);
xlabel('n’); ylabel('x");

title('Unit Impulse Signal \delta[n]');

Output figure
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If we delay the unit impulse signal by k sample points, we have the following equation:
8[n-k] = 1, if n=k
3[n-k] = 0, otherwise

The above delayed unit imulse signal can be plotted as follows:

Example 2Input file digitalSignalsAndSystems/impulse02.m

% Plot an unit impulse signal

n =-5:5;
X =0*n;
index=find(n==0);

x(index)=1;

% plot

stem(n, X);

axis([-inf, inf, -0.2, 1.2]);

xlabel('n’); ylabel('x’);

title('Delayed Unit Impulse Signal \delta[n-k]’);

set(gca, ‘xticklabel', {'k-5', 'k-4', 'k-3', 'k-2', 'k-1', 'k, 'k+1', 'k+2', 'k+3', 'k+4', 'k+5});



Output figure

Delayed Unit Impulse Signal 8[n-k]
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The above delayed unit impulse signal have the property of masking out other signals not at n =
k. In other words, if we multiply any signals x[n] (n = -eo~) with §[n-k], only the term of x[n-K] is

left. This can be expressed as the following equation:
X[K] = Zne-eo™S[N-K]X[N]

By using this property, we can express any discrete-time signals as a linear combination of the
unit impulse signals. This is especially handy when we derive the response of a linear

time-invariant system. See the following section for more details.
The unit step signal u[n] is 1 when n=0, and 0 elsewhere. In mathematical notations, we have

unl]=1,ifn=0

u[n] = 0, otherwise

The unit step signal can be plotted, as shown in the next example:



Example 3Input file digitalSignalsAndSystems/unitStep01.m

Output figure

Unit Step Signal u[n]
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It should be noted that the unit impulse signal is the first-order difference of the unit step signal:



d[n] = u[n] - u[n-1].
The sinusoidal signal is another commonly used discrete-time signals:
sin[n] = sin(2z=f(nT)) = sin(wn))
where f is the oscillation frequency of the sinusoidal signal and o ( = 2xfT) is the normalized
angular frequency. The sinusoidal signal can be plotted as follows:

Example 4Input file digitalSignalsAndSystems/sinusoid01.m

% Plot a sinusoidal signal

n = 0:40;
omega=0.3;

X = sin(omega*n);

% plot

stem(n, X);

axis([-inf, inf, -1.2, 1.2]);
xlabel('n");

ylabel('x");

title('sin[\omega nJ");

Output figure
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9-2 Linear Time-Invariant Systems (431 3ER: 5 R 41)

Old Chinese version

For any given discrete-time signal x[n], we can send it to a system to obtain the output signal

y[n], with the following mathematical notations:

y[n] = L{x[n]}
In other words, the input to the sysmte is a function x[n], n = 0~ while the output is also a

function y[n], n = 0~,
If the system, denoted by L{-}, satisfies the following equations, it is called linear:

1. If L{x[n]} = y[n], then L{kx[n]} = ky[n].
2. If L{x4[n]} = y41[n] and L{xz[n]}= y2[n], then L{x4[n] + x2[n]} = y1[n] + y2[n].

The above equations can be reduced to a single one:



If L{x4[n]} = y1[n] and L{xz[n]}= y2[n], then L{ax4[n] + bxz[n]} = ay4[n] + by,[n], for all constants a
and b.
The above equation is referred to as the superposition principle. Namely, if a system satifies

the superposition principle, then it is a linear system.
If L{-} satisties the following equation, it is called time-invariant:

If L{x[n]} = y[n], then L{x[n-K]} = y[n-Kk], forallk = O.
If a system is linear and time-invariant, we call it a linear time-invariant system, or LTI sytem
for short.
Hint
For simplicity, we shall assume the input signal x[n] = 0 when n < 0. In other words, x[n] is activated whenn = 0, thus y[n]

is nonzero only whenn = 0.

For the rest of this book, we should assume all the systems under discussion are LTI systems.

9-3 Convolution (igf&)

Old Chinese version

For any given arbitrary signal x[n], we can express it as a linear combination of the unit impulse

signals, as follows:

X[n] = Zk=0"X[K]8[N-K]

The right-hand side of the above equation can be viewed as the situation where

e k is the index for time.
« X[K] is a fixed function of time index k.

« d[n-K] is a function parameterized by n.

Similarly, the above equation can be rewritten into another format:
X[n] = Zk=0"X[N-K]8[K]

The right-hand side of the above equation can be viewed as the situation where

¢ k is the index for time.



« J[K] is a fixed function of time index k.

« X[n-k] is a function parameterized by n.

For a given LTI system L{-}, when the input signal x[n] is decomposed by the first method, the

output y[n] can be expressed as follows:

y[n] = K{x[n]}
= L{Zk=0"x[KI3[n-k]}
= Y=o X[KIL{B[n-K]}

= Seo™x[kIh[n-k]

where h(n-k) = L{d(n-k)} is the response of the system with respect to the input of the unit
impulse signal at n = k. In other words, the output of an LTI system is determined by the input
signal x[n] and the system's impulse response h[n]. More specifically, the impulse response of

an LTI system exclusively determine the characteristics of the system.

We can use the following plots to demonstrate the operations of the above formula:

Example 1Input file digitalSignalsAndSystems/convolution01.m

% Plot the operation of convolution

n=-7.7,
x=[000000012300000];

subplot(4,2,7);

stem(n, X);

limit=[min(n), max(n), 0, 5];
axis(limit);

title('Input x[n]");

subplot(4,2,1);
X0=0*x;
x0(8)=x(8);
stem(n, x0);

axis(limit);



h=text(0, x0(8), 'x[0]"); set(h, 'horiz', 'center’, ‘vertical’, 'bottom");

subplot(4,2,2);

y0=0%*x;

index=find(x0);

for i=index:length(n)
yO(i)=x0(index)*exp(-(i-index)/2);

end

stem(n, y0);

axis(limit);

h=text(0, x0(8), 'x[0]*h[n-0]"; set(h, 'vertical’, 'bottom");

subplot(4,2,3);
x1=0*x;
x1(9)=x(9);
stem(n, x1);
axis(limit);

h=text(1, x1(9), 'x[1]); set(h, 'horiz', 'center’, ‘vertical', 'bottom");

subplot(4,2,4);

y1=0%*x;

index=find(x1);

for i=index:length(n)
y1(i)=x1(index)*exp(-(i-index)/2);

end

stem(n, y1);

axis(limit);

h=text(1, x1(9), 'x[1]*h[n-1]"; set(h, 'vertical’, 'bottom");

subplot(4,2,5);
x2=0%*X;
x2(10)=x(10);
stem(n, x2);
axis(limit);

h=text(2, x2(10), 'X[2]"); set(h, ‘horiz', ‘center’, ‘vertical', 'bottom’);

subplot(4,2,6);



Output figure
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If we choose to use the second method for decomposing x[n], then y[n] can be expressed as

follows:

y[n] = Kx[n]}
= L{Zk=0"x[n-KI3[K]}
= Z=0” X[N-K]L{3[K]}

= Zy=0” X[N-KIh[K]}

Since the computation of y[n] is used frequently, we shall define the convolution of two signals

X[n] and h[n] as follows:

y[n] = x[n]* h[n] = Zk=o”x[KIN[N-K]} = Z=0™x[n-K]N[K]}

The convolution operator has the following characteristics:

1. Commutative law:

x[n]*y[n] = y[n]*x[n]

2. Associative law:

(x[n]*y[n]) * z[n] = X[n] * (y[n] * z[n])

3. Distributive law:

X[n]* (y[n]+z[n]) = x[n]*y[n]+x[n] * z[n]

4. Shift property:

y[n]=x[n]* h[n] — y[n-ni-nz]=x[n-ny]* h[n-n;]

5. Convolving with unit impulse:

X[n] *3[n] = x[n]



6. Width:

If duration(x[n])=N; and duration(y[n])=N,, then duration(x[n] * y[n])=N;+N,-1.

9-4 Eigen Functions (&7 K #0)

Old Chinese version

If the output of a system has the same type as its input signal, then the input signal is referred to
as the eigen function of the system. In this section, we shall demonstrate that the exponential
function (including the sinusoidal function as a special case) is an eigen function of the LTI

system.
Suppose that the input signal to our LTI system is an exponential function:

x[n]=e"
Then the output can be derived based on convolution:
y[n] = x[n]*h[n]
= 2 xX[n-k] h[K]
= %,e” " h[k]
= 5P h[k]
= M5 ™ hk]
= e”"H(eP)
In other words, the output signal y[n] is equal to the original input signal multiplied by a constant

H(eP) (= =™ h[k], which is not a function of time) . Hence it can be established that the

exponential function is the eigen function of an LTI system.

Based on the above fact, for any given input signal that can be decomposed as a linear
combination of exponential functions, we can then apply the superposition principle to find the
responses of these exponential functions first, and then linearly combine these responses to

obtain the final output. In mathematical notations, we have:

x[n] = ae™ + be™ — y[n] = aH(eP) + bH(e)



Since the exponential function and the sinusoidal function are related by the famous Euler

identity:

e = cos(0) + j sin(6)
Therefore we can express the sinusoidal function as a linear combination of the exponential
function:
cos(0) = (¢ + e¥)/2 = Re{e"}
sin(0) = (€ - e°)/(2j) = Im{e}
As a result, when the input signal is:
x[n] = cos(wn) = Re{e""}
The corresponding response is:
y[n] = Re{e""H(e*)}
= Re{&" [H(&")| €}, 6 = ~H(")
= Re{|H(&")| &'}
= |H(€")| cos(wn + 6)
From the above derivation, we can see that the output is still a sinusoidal function, except that

the amplitude is multiplied by |H(e’®)|, and the phase is shifted by 6 = <H(e").
Some terminologies are explained next.

« The multiplier [H(e!®)| represents how the system amplifies or compresses the input
signal depending on the angular frequency o. Hence |H(e*)| is called magnitude
frequency response.

« Z/H(") is called phase frequency response, which is not used often since human's
aural perception is not sensitive to phase shift.

o H(e") is called the system's frequency response.

Similarly, when the input signal is
x[n] = sin(on) = Im{e*"}
The output can be derived as follows:
y[n] = Im{&"H(&")}
= Im{&"" |H(")| &}, 0 = ZH(e")



= Im{|H(e")| &}

= |H(e™)]| sin(on + 0)
In summary, we have the following important conclusion. For an LTI system, if the input signal
is a single sinusoidal function, the output is also a same-frequency sinusoidal function, with the

amplitude and phase modified by the system's frequency response H(e"*).

In general, we can use an complex exponential function to subsume the input of sine and

cosine functions:

x[n] = &°"
The corresponding output is
yln] = &“"H(e")
Alternatively, H(e'®) is also referred to as the the discrete-time Fourier transform of h[n],
which can be expressed as the following equation:
H(e") = s¢h[k]e®*
In the real world, we cannot have the complex exponential function as the input to a system.
However, the derivation based on complex numbers does hold mathematically and it indeed

makes our derivation more concise.

Chapter 10: Fourier Transform (&7 3 #E#5R)

10-1 Discrete-Time Fourier Transform (BiEHUR? fid] (617 35 EEHR)

Old Chinese version

In the previous chapter, we have covered several important concepts:

« The frequency response of an LTI system is the discrete-time Fourier transform of the
system's impulse response.

« The frequency response of an LTI system specifies how the system changes the
amplitude and phase of an input sinusoidal function with a specific angular frequency

0.



In particular, for a given discrete-time signal x[n], its discrete-time Fourier transform (DTFT for

short) and the corresponding inverse transform can be expressed as follows:
X(6") = e x[K]
x[n] = 2n) 1 [,X(E)e" do
We can derive the second expression from the first expression easily. Since the period of X(e)

is 2rt, we can use any interval of length 2x for integration.

From the second expression, we can decompose x[n] into an infinite linear combination of ",
where the amplitude of each basis function is specified by X(e/®). In other words, X(€") is
actually the amplitude of the component of x[n] at the continuous angle frequency . This can

be futher elaborated, as follows.

From elementary calculus, we know that the integration of f(x) can be approximated by

summation:
Jo%™ f(x) dx = liMy-ZieoV* f(k-(21/N))-(27t/N)
Therefore if x[n] is real, we can approximate it by using summation:

x[n] = Re{(2n)™ [2:X(€)e"" dw}
= (2n)" f2: Re{X(e")""} do
= (21)2x IX(€®)] cos(wn + 0) dw, 6=/ X(e*)

= N 2o [IX(€)] cos(wn + 0)]y=2ugn dey, N—00

From the derivation above, x[n] has been decomposed into the linear combination N cosine
functions with the angular frequency o from 0 to 2n(N-1)/N, and the corresponding amplitude
IX(e')|/N.

From the discussion in this section and the previous section, we know that there are two

important meanings of DTFT:



1. If h[n] is the impulse response of an LTI system, then H(e*)=3ch[k]e ™ represents the
gain (JH(€*)|) and phase shift (<H(e"*)) when the input signal's angular frequency is
.

2. If x[n] is an arbitrary signal, then X(e"*)=x[k]e?** represents the amplitude (JH(e")|)
and the phase shift ( ~H(e!®)) of the component at » of x[n].

Some important properties of DTFT are listed next.
1. Linearity:
z[n] = a x[n] + b y[n] —— Z(e/®) = a X(€") + b Y(e')
2. Periodicity:
X (el * 2Ky = X (&)

Namely, the period of DTFT is 2x.

3. Delay in time:
y[n] = x[n-k] —— Y(&°) = &°* X(e!)
4. Convolution:
y[n] = x[n]*h[n] «— Z(€"") = X(")Y (")
That is, convolution in time domain corresponds to multiplication in frequency domain.

If x[n] is a real sequence, we can separate its DTFT X(ej“’) into the real and imaginary parts:
X(€°) = e x[K]
= % X[k] cos(wk) - j Zx[k] sin(wk)

= Xp(e") + j Xe(€")

=

Xr(€®) = Zix[k] cos(wk)
Xi(e!®) = - T x[K] sin(wk)



This functions have the following properties:

« Conjugate symmetric: X (¢/®) = X(e3*)
« Xr(e!®) is an even function.

« X|(€") is an odd function.

« |X(e!)| is an even function.

« /X(e")is an odd function.

10-2 Discrete Fourier Transform (@ EU# 7 BEEHR)

Old Chinese version

In the previous section, we have introducde the discrete-time Fourier transform (DTFT) that
transforms a discrete-time signal into a continuous function of its frequency components. Since
DTFT is continuous in frequency, it is not suitable for digital processing by computers. In this
section, we shall introduce discrete Fourier transform (DFT for short) that converts a
discrete-time signals into its discrete-frequency components, which are suitable for further

computer processing.

Suppose that the discrete-time signal can be expressed as x[n], n = 0~N-1. Then the formula for
DFT is:

X[K]=(1/N) Zp=o"" x[n] 7N k=0, ..., N-1
The coefficient X[k] represents the amplitude and phase of the component of x[n], n = 0~N-1 at
a specific frequency (to be detailed later). Therefore X[k], k = 0~N-1, are usually referred to as

spectrum.
From X[k], we can also compute the original signal x[n], as follows:

X[N]=Zk=0'" X[k]e?™N n=0, ..., N-1
Hint
DTFT and DFT are very similar; both are used to convert a discrete-time signal into its components at different frequencies.

However, the former generates a continuous-frequency spectrum while the later produces a discrete-frequency spectrum.



Here we have several important facts about X[K]:

« If the length of the original signal x[n] is N, then the length of X[k] is also N.

« In general, X[k] is a complex number with a magnitude of |(X[k])] (abs(X[k]) in
MATLAB) and a phase of /X]k] (angle(X[k]) or atan(imag(X[k])/real(X[Kk]) in
MATLAB).

« If the time-domain signal x[n] is real, then X[k] and X[N-k] are complex conjugate

staisfying |(XK])| = [XIN-k])| and ~X[K] = -~ X[N-K].

If x[n] is real, we can express it as follows:
x[n] = X[0]
+ X[1]ej2nn/N + X[N_1]ej2nn(N-1)/N
+ X[2]ej2nn2/N + X[N_z]ej2nn(N-2)/N
+ X[3]ej2nn3/N + X[N_3]ej2nn(N-3)/N
+ ..
For the terms involving k and N-k, we have
X[k]ej2nnk/N + X[N_k]ejZnn(N-k)/N
— X[k]ejZnnk/N + X[N_k]ej2nne-j2nnk/N
- X[k]ej2nnk/N + X[N_k]e-jZnnk/N
= 2 Re{X[k]e*"™WNy
If we use mg and pk to represent the magnitude and phase of X[k], respectively, then the above
equation can be simplified as follows:
2 Re{mexp(jpk)exp(j2rnk/N)}
= 2 Re{mkexp(j(2rnk/N + py)}
= 2mycos(2nnk/N + py)
In general, N is even and we can express x[n] as
x[n] = X[0] + 2%k=1""?*"mcos(2ank/N + py) + Mn2Cos(rn + prz)
The above equation states that we can decompose x[n] into a DC component X[0] plus the
summation of N/2 sinusoidal functions, where the amplitude and phase are determined by
those of X[k], respectively. Therefore for a given real sequence x[n], we only need to have to

observe X[k], k =0 ~ N/2 for spectrum analysis. This "one-side spectrum" consists of 1+N/2



sinusoidal functions, with frequencies located at 0, fs/N, 2fs/N, 3fs/N, ..., N/2fs/N (=fs/2), with fs as

the sample rate. These sinusoidal functions are referred as the fundamental sinusoids.

If we employ the above direct method for computing DFT, the time complexity if O(n?). In 1965,
a smart method based on divide-and-conquer was proposed to compute DFT with a time
complexity of O(n log n). The method is called fast Fourier transform (FFT for short). In other

words, FFT is an efficient method for computing DFT.

First of all, let us use the MATLAB command fft to verify the conjugate property of the DFT

coefficients:

Example 1Input file ft/fftSym01.m
% This example demonstrates the pair-wise conjugate of DFT (#1451 7~ Bt 8GN 982 DFT RESLHETE)

N=64; % Length of vector
x=randn(N, 1);
z=fft(x);
plot(z, '0"); grid on
%compass(z);
% Connect conjugate pairs (L 3 i) L i Bl 180 2
for i=2:N/2+1
twoPoint=z([i, N-i+2]);
line(real (twoPoint), imag(twoPoint), ‘color’, 'r');

end

Output figure
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From the above plot, it can be seen that the DFT coefficients appear as complex conjugate
pairs, which have the x-axis as the symmetric axis.
Hint

For real sequence x[n], n = 0~N-1:

o If N is even, then X[0] and X[N/2] are real and all the other terms are complex conjugate pairs.

e When N is odd, only X[0] is real and all the other terms are complex conjugate pairs.

If x[n] happens to be one of the fundamental sinusoids, then the DFT coefficients should have

only two non-zero terms, as shown in the following example:

Example 2Input file ft/fft01.m

% This example demonstrates the two-side DFT of a sinusoidal function (it #1451 & 7~ — 1 i B 1F 5% 0% (0 {7 Sk i, L &
A ACHUR)

% Since the sinusoidal function has a frequency to be a multiple of fs/N, the two-side DFT have only two nonzero terms. (It
IESZBHIBAAAG Ty /e freqStep MIAEENAY, BT LABEIS 4RGSR U IR 22 )

N = 256; % length of vector (£4%%)
fs = 8000; % sample rate (FUERAHR)

freqStep = fs/N; % freq resolution in spectrum (FFHE ISR (I fE AT )



f = 10*freqStep;

time = (0:N-1)/fs;

y = cos(2*pi*f*time);
Y = ff(y);

Y = fftshift(Y);

% Plot time data
subplot(3,1,1);
plot(time, y, .-Y;

title('Sinusoidal signals');

% freq of the sinusoid (IEFZ [FI5FA, it freqStep [I3EELRT)
% time resolution in time-domain (Ff3ak R ] Z 1 BE)

% signal to analyze

% spectrum

% put zero freq at the center CKFAE R fili ) 22 2 E )

xlabel('Time (seconds)’); ylabelCAmplitude’);

axis tight

% Plot spectral magnitude
freq = freqStep*(-N/2:N/2-1);
subplot(3,1,2);

plot(freq, abs(Y), '.-b"); grid on
xlabel('Frequency)");
ylabel('Magnitude (Linear)");

% Plot phase

subplot(3,1,3);

plot(freq, angle(Y), '.-b"); grid on
xlabel('Frequency)");
ylabel('Phase (Radian)');

Output figure

% freq resolution in spectrum (A1 K] SER (K 4T 1)



Sinusoidal signals
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We can observe that:

« In theory, the magnitude spectrum should have only two nonzero points. In practice,
those zero points are not zero exactly, but very close to zero due to truncation or
round-off errors.

« The phase spectrum appears to be random. This is simply because of the fact that most
of the spectrum is zero, and hence the phase does not bear any significant meanings

at all.

If x[n] is not one of the fundamental sinusoids, DFT will still decompose x[n] into the
combination of fundamental sinusoids with spreaded magnitude spectrum:

Example 3Input file ft/fft02.m

% This example demonstrates the one-side DFT of a sinusoidal function (JH: #0451 & 71— il i B 1E 5408 (A4 a7 B g, DLt
AR AHUR)

% Since the sinusoidal function has a frequency not a multiple of fs/N, the two-side DFT smears. (I 1E 5% % FISEFR A2
freqStep IFI#E8f, PrLA®EIBAHAEE S [#5] (Smearing))

N = 256; % length of vector (£4%%)
fs = 8000; % sample rate (BUERSHEZ)



freqStep = fs/N;
f = 10.5*freqStep;
time = (0:N-1)/fs;

signal = cos(2*pi*f*time);

% freq resolution in spectrum (HEI I FE (1 AT )
% freq of the sinusoid (IE52 B HIAHA, AJE freqStep FRIHEHIAY)
% time resolution in time-domain (3 (14 [ 11 1)

% signal to analyze

[mag, phase, freq]=fftTwoSide(signal, fs, 1); % compute and plot the two-side DFT

Output figure

Input signals (fs=8000)
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In the above example, we have used the function fftTwoSide.m (in the Audio Processing

Toolbox) for the computation of two-side spectrum, and then plot the time-domain signal,

magnitude spectrum and phase spectrum.

If x[n] is real, the magnitude spectrum is symmetric while the phase spectrum is anti-symmetric.

Since we are dealing with audio signals which are all real, so we only need to have one-side

spectrum for our analysis. In the following example, we shall use the function fftOneSide.m (in

the Audio Processing Toolbox) to plot the time-domain signal and one-side magnitude/phase

spectrum:



Example 4Input file ft/fft03.m

% Same as fft02.m but use one-side DFT instead ([7] fft02.m, {H L4855 sl BHOR)

N = 256;

fs = 8000;
freqStep = fs/N;

f = 10.5*freqStep;
time = (0:N-1)/fs;

signal = cos(2*pi*f*time);

% length of vector (%%4)

% sample rate (HUEESEA)
% freq resolution in spectrum (HEI I FE (1 AT )

% freq of the sinusoid (IE52 B HIAHA, AJE freqStep FRIHEHIAY)
% time resolution in time-domain (3 (14 R [ %11 J5)

% signal to analyze

[mag, phase, freq]=fftOneSide(signal, fs, 1); % Compute and plot one-side DFT

Output figure
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Hint

Signals from the real world are all real, so we only need to use fftOneSide.m to obtain one-side spectrum for spectrum

analysis.

In the following example, we shall demonstrate the one-side spectrum for a frame of an audio

signal:



Example 5Input file ft/fft04.m

% This example demonstrates the DFT of a real-world audio signal (87~ — 1l 555 25 HE 1) B IS 4 3 )
[y, fs]=wavread(‘welcome.wav');

signal=y(2047:2047+237-1);

[mag, phase, freq]=fftOneSide(signal, fs, 1);

Output figure
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In the above example, we can observe that there are harmonics in the magnitude spectrum.
This is the result due to the fact that the time-domain signal is quasi-periodic. (To make the
harmonics more obvious, we have carefully selected a time-domain signal containing three

fundamental periods.)

When the value of k is getting bigger, we will have the high-frequency components which are
more likely to be noises in the original time-domain signal. We can actually delete
high-frequency components and use only low-frequency components to approximate and

synthesize the original signal, to achieve the following goals:



o Data compression

o Low-pass filter

In the next example, we shall demonstrate how to synthesize a square wave using sinusolids:

Example 6Input file ft/fitApproximate01.m

% This example demos the effect of square wave approximation by DFT

figure
L =15; N = 25;
x = [ones(1,L), zeros(1,N-L)];

frameSize=length(x);

runNum=3;

for i=1:runNum,
pointNum=ceil(frameSize/(2*runNum)*i); % Actually 2*pointNum-1 coefs are taken
X = fft(x);
magX = abs(X);

remainindex=[1:pointNum, frameSize-pointNum+2:frameSize];
X2=0*X;

X2(remainindex)=X(remainlndex);

x2=ifft(X2);

x2=real(x2);

subplot(3,2,2*i-1);

stem(x);

hold on

plot(x2, 'r");

hold off

title(sprintf("x[n] and %d-points approximation’, 2*pointNum-1));
axis([-inf,inf,-0.5,1.5])

subplot(3,2,2*i);
shiftedMagX=fftshift(magX);
plot(shiftedMagX, ".-"); axis tight
title('DFT of x[n]’)

hold on



temp=ifftshift(1:frameSize);
ind=temp(remainindex);

plot(ind, shiftedMagX(ind), 'or'); grid on
hold off

end

Output figure
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It is obvious that when we use more DFT coefficients for the synthesis, the reconstructed

waveform is closer to the original one.

The following example uses sinusoids to approximate the waveform of an utterance:

Example 7Input file ft/fitApproximate02.m

% This example demos the effect of FFT approximation

[y, fs]=wavread('welcome.wav");
X=y(2047:2047+237-1);



figure

frameSize=length(x);

runNum=3;

for i=1:runNum,
pointNum=ceil(frameSize/(8*runNum)*i); % Actually 2*pointNum-1 coefs are taken
X = fft(x);
magX = abs(X);

remainindex=[1:pointNum, frameSize-pointNum+2:frameSize];
X2=0*X;

X2(remainlndex)=X(remainlndex);

x2=ifft(X2);

x2=real(x2);

subplot(3,2,2*i-1);

plot(x, '.-");

hold on

plot(x2, 'r");

hold off

title(sprintf('x[n] and %d-points approximation’, 2*pointNum-1));

set(gca, 'xlim', [-inf inf]);

subplot(3,2,2*i);
shiftedMagX=fftshift(magX);
plot(shiftedMagX, '.-");

title('DFT of x[n]")

hold on

temp=ifftshift(1:frameSize);
ind=temp(remainindex);

plot(ind, shiftedMagX(ind), 'or"); grid on
hold off

set(gca, xlim', [-inf inf]);

end



Output figure
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From the above example, it is known that we only need a few DFT coefficents to synthesize the
original signal with satisfactory quality. This fact demonstrate that the high-frequency

components are not important in reconstructing the original signal.

For perfectly periodic signals, DFT will insert zeros inbetween, as follows:

Example 8Input file ft/fftfRepeat01.m
% This example demos the effect of FFT for purely periodic signals
[y, fs]=wavread(‘welcome.wav');

X=Yy(2047:2126); % A full fundamental period

runNum=5;

for i=1:runNum
repeatedX = x*ones(1,i);
signal = repeatedX(:);

% signal=zeros(runNum*length(x), 1); % Zero-padding version



% signal(1:length(repeatedX))=repeatedX(:); % Zero-padding version
[mag, phase, freq, powerDb]=fftOneSide(signal, fs);
mag=mag/length(signal); % Divided by vector length to normalize magnitude (due to the formula used by

MATLAB)

subplot(runNum,2,2*i-1);
plot(signal, '.-"); grid on
title('x[n]"); set(gca, 'xlim', [-inf inf]);

subplot(runNum,2,2*i);

plot(freg, mag, '.-"); grid on;
% set(gca, 'yscale', 'log’);

title(DFT of x[n]); axis tight;

end

Output figure
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Why is it so? Without rigorous analysis, can you explain this phonomenon by intuition?



If we pad the signal x[n] with zeros, the corresponding effect in frequency domain is

interpolation, as shown in the next example:

Example 9input file ft/fftZeroPadding01.m

% This example demos the effect of zero-padding of DFT

for i=1:3
L =5; N = 20%i;
x = [ones(1,L), zeros(1,N-L)];
subplot(3,3,i*3-2);
stem(x);
title(sprintf('x[n] with N=%d',N));

set(gca, 'xlim', [-inf inf]);

omega=((1:N)-ceil(N+1)/2))*(2*pi/N);
X = fft(x);

magX = fftshift(abs(X));
subplot(3,3,i*3-1);

plot(omega, magX, ".-);
title("Magnitude of DFT of x[n]’)

set(gca, 'xlim', [-inf inf]);

phase=fftshift(angle(X));

subplot(3,3,i*3);

plot(omega, phase, .-");

title('Phase of DFT of x[n])

set(gca, xlim', [-inf inf]);

set(gca, 'ylim', [-pi pi]);
end

Output figure



x[n] with N=20 Magnitude of DFT of x[n] Phase of DFT of x[n]
K 6

1
7 2| /
4 [N ,.r“\ [N
05 fo o) ~ o
! \ ki , fow ]
2 ll,l’ -\ “, . ,.'l \‘Iu
Y V] 2 v
o eoosesoconoocod ol MWV — - -
5 10 15 20 -2 1] 2 -2 0 2
x[n] with N=40 Magnitude of DFT of x[n] Phase of DFT of x[n]
BT : . 6 : : : . .
2 M i,
P ™,
4 fo II A "‘\ s
M,
! \\ 01, [ N, || |
2 J ! SN
r RS
P Vo 2 nll N
. 7 i N
e e R [ A LAY,
10 20 30 40 -2 0 2 -2 0 2
x[n] with N=60 Magnitude of DFT of x[n] Phase of DFT of x[n]
[ : 6 . : — : -
Fia 2 N
4 A MO )
05 fo 0 \"‘J N
’ / 4 "'.J Y }
2 f \ " RS !
i ' o
A [N 2 |
AV PV
0 [I - -
-2 0 2 2 0 2

In other words, zero padding does not add new information to x[n]. However, DFT need to have
the same length and the net result is the interpolation to have a dense sampling in the
frequency domain.

Hint

For common audio signal processing, if the frame size is not 2", then we need to use zero padding until the frame size is 2".

This is also easier for DFT since a fast method based on 2-radix FFT can be invoked directly.
If we down sample the signal in the time domain, then the result in the spectrum is shown next:

Example 10Input file ft/fifReSample01.m

% This example demos the effect of FFT approximation

[y, fs]=wavread(‘welcome.wav");
x=y(2047:2126);
x=y(2047:2326);

n=length(x);

F = (0:n/2)*fs/n;

runNum=5;



Output figure
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The more times we do down sampling, the smoother the time-domain signal will be. Therefore

the high-frequency components in the spectrum are missing gradually.

Moreover, we can express the time-domain signal as a linear combination of the fundamental
sinusoids and then apply the least-square estimate to find the best coefficients of these
sinusoids. It turns out that the coefficients identified by the least-square method are the same

as those by fft, as shown next:

Example 11Input file ft/fftViaLse01.m
% FFT via least-squares estimate

N=8;

fs=1;

time=(0:N-1)'/fs;

x=rand(N,1)*2-1;

A=ones(N,1);
for i=1:N/2
A=[A, cos(2*pi*(i*fs/N)*time), sin(2*pi*(i*fs/N)*time)];

end



th=A\x;

plotNum=fix(N/2)+2;

subplot(plotNum, 1, 1);

N2=(N-1)*5+1; % Insert 4 points between every 2 points for better observation (py % [ 4 A PU%L, LAg
SPIE)

timeFine=linspace(min(time), max(time), N2);

x2=th(1)*ones(N,1);

plot(timeFine, th(1)*ones(N2,1), '.-', time, x2, 'or"); % Plot the first term (& i 25— 1IH)

ylabel("Term 0 (DC)"); axis([0 N/fs -1 1]); grid on

for i=1:N/2 % Plot terms 2 to 1+N/2 (& 125 %28 1+N/2 IH)
freg=i*fs/N;
y=th(2*i)*cos(2*pi*freq*time)+th(2*i+1)*sin(2*pi*freq*time); % a term (Bt —7JH)
X2=X2+Y;
fprintf('i=%d, sse=%f\n", i, norm(x-x2)/sqrt(N));
subplot(plotNum, 1, i+1);

yFine=th(2*i)*cos(2*pi*(i*fs/N)*timeFine)+th(2*i+1)*sin(2*pi*(i*fs/N)*timeFine); % Finer verison for
plotting

plot(timeFine, yFine, '.-', time, y, 'or"); ylabel(sprintf("Term %d', i));

axis([0 N/fs -1 1]); grid on
end

% Plot the original signal (& H 5 2 1 5%)
subplot(plotNum, 1, plotNum)

plot(time, x, '0-"); axis([0 N/fs -1 1]); grid on
xlabel('Time"); ylabel(‘Orig signals');

% Transform LSE result back to fft format for comparison (#f th &[0 fft 3 ELig&S )
F=fft(x);
F2=[l;
F2(1)=th(1)*N:
for i=1:N/2

F2(i+1)=(th(2*i)-sqrt(-1)*th(2*i+1))*N/2;

if (i==N/2)

F2(i+1)=2*F2(i+1);

end



end
% symmetric of DFT (DFT {155 1)
for i=N/2+2:N

F2(i)=F2(N-i+2)’;

end
errorl=sum(abs(F2-F.")); % F."is simple transpose (F." J& /N4y L i fr i )
error2=sum(abs(F2-F')); % F' is conjugate transpose (F' & 1 17 L i s 1) e 1)

fprintf('Errors after transforming LSE to DFT coefficients (#f LSE ##am DFT {REUNFRZ): errorl=%f, error2=%f\n’,
errorl, error2);

fprintf('Due to the symmetry of DFT, one of the above error terms should be zero. (117 DFT (R REME, iRee 2z sty
—IAA%E . )\n);

Output message

i=1, sse=0. 462366

i=2, sse=0. 310406

i=3, sse=0.281771

i=4, sse=0. 000000

Errors after transforming LSE to DFT coefficients () LSE 4% DFT {R¥NKIERZE) :
error1=0. 000000, error2=10.527154

Due to the symmetry of DFT, one of the above error terms should be zero. (HJ® DFT [{]
HAEYE, FREREEZA —HAE. )

Output figure
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Old Chinese version

1. (**) Spectrum of vowel of constant pitch: Write an m-file script to accomplish the
following tasks:

a. Record your utterance of the English letter "e" for 3 seconds, with
16KHz/16Bits/Mono. (Please try to maintain a stable pitch and volume.)

b. Use buffer2.m and frame2volume.m to do frame blocking and volume
computation, respectively, with frameSize=32ms, overlap=0ms. Please identify
the frame with the maximum volume, and the preceding/succeeding 2 frames,
to have 5 frames in total.

c. Use fft to compute the spectrum of these 5 frames and have the following plots:

1. subplot(3,1,1): time-domain signals of these 5 frames.
2. subplot(3,1,2): one-side magnitude spectra of these 5 frames.

3. subplot(3,1,3): one-side phase spectra of these 5 frames.

You plots should be similar to the following:
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Hints:

= Before performing FFT on each frame, you should multiply the frame
with the Hamming window to make the harmonics more obvious. The
command is "frame=frame.*hamming(length(frame))".
=  When you plot the magnitude spectrum, you can use log scale on y-axis.
To achieve this, you can simply issue "set(gca, 'yscale', 'log')" after the
second plot.
= In order to make the phase a continuous curve, you can use the function
unwrap.
d. Observe your plots and find which plots are more consistent within 5 frames?
(Hint: Since our pronunciation of these 5 frames are the same, the features
which are more invariant can be used for speech recognition.)

2. (**) Spectrum of vowel of varying pitch: Write an m-file script to repeat the
previous exercise, but change the recording to Mandarin of [ — “ ]. This exercise can
be used to observe the variation of spectrum under varying pitch.

3. (**) ACF/AMDF of vowel of constant pitch: Repeat the first exercise using ACF &

AMDF as the features. You plots should be similar to the following:
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(***) Use spectrum for classifying vowels: Write an m-file script to do the following

tasks:
[y

English vowels "a, e, i, 0, u") with 16KHz/16Bits/Mono. (Please try to maintain a

a. Record a 5-second clips of the Chinese vowel I« X, ¥. ©] (orthe
stable pitch and volume, and keep a short pause between vowels to facilitate
automatic vowel segmentation. Here is a sample file for your reference.)

b. Use epdByVol. m (in Audio Processing Toolbox) to detect the starting and ending
positions of these 5 vowels. If the segmentation is correct, you should have 5
sound segments from the 3rd output argument of epdByVol. m. Moreover, you
should set plotOpt=1 to verify the segmentation result. Your plot should be

similar to the following:
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If the segmentation is not correct, you should adjust the parameters to

epdByVol. m until you get the correct segmentation.

c. Use buffer2.m to do frame blocking on these 5 vowels, with frameSize=32ms
and overlap=0ms. Please plot 5 plots of one-sided magnitude spectra (use
fftOneSide. m) corresponding to each vowel. Each plot should contains as
many curves of magnitude spectra as the number of frames in this vowel. Your

plots should be similar to those shown below:
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d. Use knnrLoo. m (in DCPR Toolbox) to compute the leave-one-our recognition
rate when we use the one-side magnitude spectrum to classify each frame into
5 classes of different vowels. In particular, we need to change the dimension of
the feature from 1 to 257 and plot the leave-one-out recognition rates using
KNNR with k=1. What is the maximum recognition rate? What is the

corresponding optimum dimension? Your plot should be similar to the next

one:
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e. Record another clip of the same utterance and use it as the test data. Use the
original clip as the train data. Use the optimum dimension in the previous
subproblem to compute the the frame-based recognition rate of KNNR with k=1.
What is the frame-based recognition rate? Plot the confusion matrix, which

should be similar to the following figure:



0 91867

Conf. mat. of data counts Conf. mat. of recog. rates (%)
Overall recognition rate = 88.14%

f. What is the vowel-based recognition rate? Plot the confusion matrix, which

should be similar to the following figure:

Conf. mat. of data counts Conf. mat. of recoq. rates (%)
Overall recognition rate = 100%



(Hint: The vowel-based recognition result is the voting of frame-based results.

You can use mode to compute the result of voting.)

5. (***) Use ACF for classifying vowels: Repeat the previous exercise by using ACF
as the acoustic features. Does it perform better than magnitude spectrum? (Hint:
Some sort of ACF normalization will make the recognition better.)

6. (***) Use AMDF for classifying vowels: Repeat the previous exercise by using
AMDF as the acoustic features. Does it perform better than magnitude spectrum?

(Hint: Some sort of AMDF normalization will make the recognition better.)

Chapter 11: Digital Filters

11-1 Filter Applications (JEH 23 EH)

Old Chinese version

In this section, we shall introduce the concept of digital filters and their applications. Most
students who have taken DSP (digital signal processing) are more or less intimidated by the
complexity of the underlying mathematics of digital filters. However, the focus of this section is
on the applications of digital filters using MATLAB and the treatment should be pretty

accessible for most engineering-majored students.

To put it simply, a digital filter can be represented by two parameter vectors a and b, where the

lenghts of a and b are p and q, respectively, and the first element of a is always 1, as follows:

a=1[1,ay, ... ay
b = [b4, by, ... bq]
If we apply a digital filter with parameters a and b to a stream of discrete-time signal x[n], the
output y[n] should satisfy the following equation:
y[n] + azy[n-1] + azy[n-2] + ... + apx[n-p+1] = byx[n] + box[n-1] + ... + bgx[n-g+1]
Or equivalently, we can express y[n] explicitly:

y[n] = bix[n] + box[n-1] + ... + bgx[n-q+1] - azy[n-1] - azy[n-2] - ... - apx[n-p+1]



The preceding equation seems a little bit complicated. We shall give some more specific

examples to make it more easily understood.

First of all, if we have a filter with the parameters:

a=[1]
b =[1/5, 1/5, 1/5, 1/5, 1/5]
Then the output of the filter is
y[n] = (x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])/5
This is a simple digital filter that sets y[n] as the average of the preceding five points of the input
signals. In fact, this is a a so-called low-pass filter since after the averaging operator, the
high-frequency component is averaged out while the low-frequency component is more or less
retained. The effect of a low-pass filter is like putting a paper cup on the mouth while speaking,
generating a murmuring-like indistinct sound.
Hint

Why putting a paper cup on the mouth makes it a low-pass filter? Can you think of an intuitive reason?

The next example uses a low-pass filter on a speech input.

Example 1Input file filter/IpfO1.m
waveFile='whatMovies.wav';

[x, fs, nbits]=wavread(waveFile);

% Filter parameters

a=[1];

b=1[1,1,1,1,1]/5;

y = filter(b, a, x);

% Plot the result

time = (1:length(x))/fs;

subplot(2,1,1);

plot(time, x); title(‘Original signal x[n]’);
subplot(2,1,2);

plot(time, y); title('Output signal y[n]’);

wavwrite(y, fs, nbits, 'Ipf01.wav');% Save the output signal

Output figure
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In the above example, "y = filter(b, a, x)" is the MATLAB command to generate the output signal
y from the original signal x and the filter's parameters a and b. From the waveform plots, we can
also observe that the high-frequency components (especially the unvoiced sounds, such as "s"
in "movies" and "seen", and "c" in "recently") have a smaller amplitude after filtering. This is a

typical effect of low-pass filters. We can also hear the original and the output signals:

e Original signal x[n]: example/filter/whatMovies.wav

o Output signal y[n]: example/filter/IpfO1.wav

Let us take a look at another filter with the parameters:
a=[1]
b=[1,-1]
The output of the fitler is
y[n] = x[n] - x[n-1]
In other words, the output of the filter y[n] is equal to the difference of the preceding two points

of x[n]. As the result, low-frequency components (with slow variations) will have low values



while high-frequency components (with fast variations) will have high values. So this is a typical
high-pass filter which amplifies high-frequency and suppresses low-frequency components.
See the following example.

Example 2Input file filter/npfO1.m
waveFile='whatMovies.wav';

[x, fs, nbits]=wavread(waveFile);

% Filter parameters

a=[1];

b=1[1,-1];

y = filter(b, a, x);

% Plot the result

time = (1:length(x))/fs;

subplot(2,1,1);

plot(time, x); title(‘Original signal x[n]’);
subplot(2,1,2);

plot(time, y); title('‘Output signal y[n]’);
wavWrite(y, fs, nbits, 'hpfOl.wav'); % Save the output signal

Output figure
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From the waveform plots, we can observe that the amplitudes of the unvoiced sounds
(high-frequency components) are relatively larger that of the voiced sounds (low-frequency

components). We can also hear the sound clips directly:

e Original signal x[n]: example/filter/whatMovies.wav

e Output signal y[n]: example/filter/hpfO1.wav

After the high-pass filter, the output signal is like the output from a small radio set with noise-like

creaky sounds.

Besides low-pass and high-pass, digital filters can also produce some other familiar sound

effects. For instance, if a filter has the following parameters:

a=[1]
b=[1,0,0,0,...,0,0.8] (Thatis, 3199 zeros between 1 and 0.8.)
Then the output of the filter is:
y[n] = x[n] + 0.8*x[n-3200]



In other words, this filter can produce "one-fold echo" for the given input signal. If the sample
frequency fs is 16kHz, then the time difference between the input and the echo is 3200/fs =
3200/16000 = 0.2 second. Please see the following example.

Example 3Input file filter/echo01.m

waveFile='whatMovies.wav';

[, s, nbits]=wavread(waveFile);

% Filter parameters

delay=0.2;

gain=0.8;

a=[1];

b =[1, zeros(1, round(delay*fs)-1), gain];

y = filter(b, a, x);

% Plot the result

time = (1:length(x))/fs;

subplot(2,1,1);

plot(time, x); title('Original signal x[n]");

subplot(2,1,2);

plot(time, y); title('Filter output y[n]");

wavWrite(y, fs, nbits, 'echo01.wav'); % Save the output signal

Output message

Warning: Data clipped during write to file:echoOl. wav
> In wavwrite>PCM Quantize at 241

In wavwrite>write wavedat at 267

In wavwrite at 112

In echo0Ol1 at 15

In goWriteOutputFile at 32

Output figure
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In the above example, gain = 0.8 is the decay ratio of the echo, and delay = 0.2 is the delay time

of the echo. We can hear the sound clips:

« Original signal x[n]: example/filter/whatMovies.wav

e Output signal y[n]: example/filter/echo01.wav

The above filter can only produce one-fold echo. If we want to have a more realistic
multiple-fold echo, we can use the following parameters:
a=[1,0,0,0,..,0,-0.8] (That is, 3199 zeros between 1 and -0.8.)
b=[1]
The output of the filter is
y[n] = x[n] + 0.8*y[n-3200]
The filter can produce a more realistic multiple-pass echo. If the sample frequency fs = 16kHz,
then the time delay between echos is 3200/fs = 3200/16000 = 0.2 #}. See the following
example.

Example 4Input file filter/echo02.m
waveFile='whatMovies.wav';

[x, fs, nbits]=wavread(waveFile);



Output message

Warning: Data clipped during write to file:echo0O2. wav
> In wavwrite>PCM Quantize at 241

In wavwrite>write wavedat at 267

In wavwrite at 112

In echo02 at 15

In goWriteOutputFile at 32

Output figure
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We can hear the sound clips:

« Original signal x[n]: example/filter/whatMovies.wav

e Output signal y[n]: example/filter/echo02.wav

11-2 Filter Design (J82e:%=H)

Old Chinese version

In the previous section, we have seen some basic filters and their applications. In this section,

we shall cover some basic approaches to filter design using MATLAB.

We can use the MATLAB command "butter" to design a Butterworth low-pass filter, with the

following format:

[b, a] = butter(order, wn, function)

The input arguments to butter can be explained next:



« order: order of the filte. A larger order leads to a better filtering effect. However, the
required computing time is also proportional to the order since the the length of the
parameters a and b is equal to order+1.

« wn: normalized cutoff frequency within the range of 0 and 1. When the sample
frequency is fs, the maximum allowable frequency in frequency-domain processing is
fs/2. Therefore the normalized cutoff frequency wn is equal to the real cutoff
frequency divided by fs/2.

« function: a string representing the filter function, which could be 'low' or 'high’,

representing low-pass and high-pass, respectively.
In the next example, we use the command "butter" to design a Butterworth low-pass filter.

Example 1Input file filter/butter01.m

fs=8000; % Sampling rate

filterOrder=5; % Order of filter
cutOffFreq=1000; % Cutoff frequency

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low");

% === Plot frequency response

[h, w]=freqz(b, a);

plot(w/pi*fs/2, abs(h), '.-"); title('Magnitude frequency response');

grid on

Output figure
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In the above example, we have designed a Butterworth filter with a cutoff frequency of 1000 Hz.

The plot is the magnitude frequency response of the filter.

When the order of the filter is bigger, the filtering effect is better at the cost of longer
computation time. On the other hand, a smaller order leads to a shorter computation time and
less desirable filtering effect. The following example demonstrates the magnitude frequency

response as a function of the order of the Butterworth filter.

Example 2Input file filter/butter02.m

fs=8000; % Sampling rate
cutOffFreq=1000; % Cutoff frequency
allH=[];

for filterOrder=1:8;
[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low");
% === Plot frequency response
[h, w]=freqz(b, a);
allH=[allH, h];
end

plot(w/pi*fs/2, abs(allH)); title(‘Frequency response of a low-pass utterworth filter");



legend(‘order=1', ‘order=2', 'order=3', 'order=4', 'order=>5', 'order=6', 'order=7", 'order=8";

Output figure

As it is obvious in the above example, when the order is increased from 1 to 8, the magnitude
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frequency response is becoming sharper at the cutoff frequency of 1000 Hz.

We can apply the above filter to a clip of a pop song to see if the high-frequency components

can be removed. See the next example.

Example 3Input file filter/butter03.m

cutOffFreq=1000;
filterOrder=5;

% Cutoff frequency
% Order of filter

[x, fs, nbits]=wavRead(‘wubai_solicitude.wav");

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low");

x=X(60*fs:90*fs);
y=filter(b, a, X);

% 30-second signal



% ====== Save output files

wavwrite(X, fs, nbits, ‘wubai_solicitude_orig.wav');

wavwrite(y, fs, nbits, sprintf(‘wubai_solicitude_%d.wav', cutOffFreq));
% ====== Plot the result

time=(1:length(x))/fs;

subplot(2,1,1);

plot(time, x);

subplot(2,1,2);

plot(time, y);

Output message

Warning: Data clipped during write to file:wubai solicitude 1000. wav
> In wavwrite>PCM Quantize at 241

In wavwrite>write wavedat at 267

In wavwrite at 112

In butter03 at 9

In goWriteOutputFile at 32

Output figure
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We can hear the original and the output clips:

« Original signal x[n]: example/filter/wubai_solicitude_orig.wav

e Output signal y[n]: example/filter/wubai_solicitude 1000.wav

The playback of the output signal demonstrates that the high-frequency components are

eliminated from the original signal.

If we set up the cutoff frequency to 100 Hz, then the output signal is almost inaudible unless we

have a speaker with a subwoofer. See the next example.

Example 4Input file filter/butter04.m

cutOffFreq=100; % Cutoff freq (2 1F4HZ)
filterOrder=5; % Order of filter (Y % Ft) B #5)

[, fs, nbits]=wavRead(‘wubai_solicitude.wav’);

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low’);
x=x(60*fs:90*fs); % 30 seconds of singing (30 FV i)
y=filter(b, a, x);

% ====== Save wav files ({/})

wavwrite(x, fs, nbits, ‘wubai_solicitude_orig.wav');



wavwrite(y, fs, nbits, sprintf(‘wubai_solicitude_%d.wav', cutOffFreq));
% ====== Plotting (&)

time=(1:length(x))/fs;

subplot(2,1,1);

plot(time, x);

subplot(2,1,2);

plot(time, y);

Output message

Warning: Data clipped during write to file:wubai solicitude 100.wav
> In wavwrite>PCM Quantize at 241

In wavwrite>write wavedat at 267

In wavwrite at 112

In butter04 at 9

In goWriteOutputFile at 32

Output figure
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« Original signal x[n]: example/filter/wubai_solicitude_orig.wav

e Output signal y[n]: example/filter/wubai_solicitude 100.wav

Obviously, after the low-pass filter at a cutoff frequency of 100 Hz, most of the sounds are
removed except for those from the bass drum.

Hint

In fact, the periodical sounds of the bass drum can help us tracking the beat of the music. This problem of beat tracking is an

active research topic in the literature of music information retrieval.

If you cannot identify the sounds of the bass drum, you can hear the playback of the following
clips one by one. (If you use CoolEdit for playback, the progress bar can help you identify where

the sounds of the bass drum are.)

« Original signal: example/filter/wubai_solicitude orig.wav

o Cutoff frequency = 1000 Hz: example/filter/wubai_solicitude 1000.wav
 Cutoff frequency = 500 Hz: example/filter/wubai_solicitude 500.wav
 Cutoff frequency = 400 Hz: example/filter/wubai_solicitude 400.wav

o Cutoff frequency = 300 Hz: example/filter/wubai_solicitude 300.wav



 Cutoff frequency = 200 Hz: example/filter/wubai_solicitude 200.wav

o Cutoff frequency = 100 Hz: example/filter/wubai_solicitude 100.wav

In fact, by supplying appropriates input parameters, we can use the command "butter" to design
four types of filters, including low-pass, high-pass, band-pass, band-stop filters. The following
example plots typical frequency responses of these filters.

Example 5Input file filter/butter05.m

fs=8000; % Sampling rate
filterOrder=5; % Order of filter
% ====== low-pass filter

cutOffFreq=1000;

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), 'low);
[h, w]=freqz(b, a);

subplot(2,2,1);

plot(w/pi*fs/2, abs(h), '.-);

xlabel('Freq (Hz)"; title('Freq. response of a low-pass filter); grid on

% ====== high-pass filter

cutOffFreq=2000;

[b, a]=butter(filterOrder, cutOffFreq/(fs/2), ‘high');

[h, w]=freqz(b, a);

subplot(2,2,2);

plot(w/pi*fs/2, abs(h), '.-);

xlabel('Freq (Hz)"; title('Freq. response of a high-pass filter'); grid on

% ====== band-pass filter

passBand=[1000, 2000];

[b, a]=butter(filterOrder, passBand/(fs/2));

[h, w]=freqz(b, a);

subplot(2,2,3);

plot(w/pi*fs/2, abs(h), '.-);

xlabel('Freq (Hz)"; title('Freq. response of a band-pass filter'); grid on

% ====== band-stop filter
stopBand=[1000, 2000];



[b, a]=butter(filterOrder, stopBand/(fs/2), 'stop");
[h, w]=freqz(b, a);

subplot(2,2,4);

plot(w/pi*fs/2, abs(h), '.-");

xlabel('Freq (Hz)"); title('Freq. response of a band-stop filter'); grid on

Output figure
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1. (**) Use filters to obtain pure-tone signals:
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Write a MATLAB script to separate

a mixed signal of 3 pure-tone components, as follows.

a. Load the audio file mixSinusoid.wav which is composed of three pure-tone

signals with some noise. Can you identify the pitch of these three pure-tone

signals by aural perception?



b. Use fftOneSide.m to plot the one-side magnitude spectrum with respect to
frequency. What are the frequencies of these three components?

c. Use three Butterworth filters (low-pass, band-pass, and hig-hpass) to recover
these three components. What is the cutoff frequency you used for designing
each filter? Plot these three components for the first 1000 points.

d. Play these three signals to see if you can hear pure tone. Add these three

signals together and play it to see if you can resynthesize the original signal.

Chapter 12: Speech Features

Old Chinese version
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12-2 MFCC
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For speech/speaker recognition, the most commonly used acoustic features are mel-scale
frequency cepstral coefficient (MFCC for short). MFCC takes human perception sensitivity
with respect to frequencies into consideration, and therefore are best for speech/speaker

recognition. We shall explain the stey-by-step computation of MFCC in this section.
1. Pre-emphasis: The speech signal s(n) is sent to a high-pass filter:
s2(n) = s(n) - a*s(n-1)

where s,(n) is the output signal and the value of a is usually between 0.9 and 1.0. The

z-transform of the filter is
H(z)=1-a*z"

The goal of pre-emphasis is to compensate the high-frequency part that was
suppressed during the sound production mechanism of humans. Moreover, it can also
amplify the importance of high-frequency formants. The next example demonstrates

the effect of pre-emphasis.

Example 1Input file speechFeature/preEmphasis01.m

waveFile='whatFood.wav';

[y, fs, nbits]=wavread(waveFile);
a=0.95;

y2 = filter([1, -a], 1, y);
time=(1:length(y))/fs;

wavwrite(y2, fs, nbits, 'whatFood_preEmphasis.wav');

subplot(2,1,1);

plot(time, y);

title('Original wave: s(n)");

subplot(2,1,2);

plot(time, y2);

title(sprintf('After pre-emphasis: s_2(n)=s(n)-a*s(n-1), a=%f", a));

subplot(2,1,1);



set(gca, 'unit', 'pixel’);

axisPos=get(gca, 'position’);

uicontrol('string', 'Play’, 'position’, [axisPos(1:2), 60, 20], ‘callback’, 'sound(y, fs)");
subplot(2,1,2);

set(gca, 'unit', 'pixel’);

axisPos=get(gca, 'position’);

uicontrol('string’, 'Play’, 'position’, [axisPos(1:2), 60, 20], ‘callback’, 'sound(y2, fs)");

Output figure

Criginal wave: s(n)
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25

In the above example, the speech after pre-emphasis sounds sharper with a smaller

volume:

o Original: whatFood.wav

o After pre-emphasis: whatFood preEmphasis.wav



2. Frame blocking: The input speech signal is segmented into frames of 20~30 ms with
optional overlap of 1/3~1/2 of the frame size. Usually the frame size (in terms of
sample points) is equal power of two in order to facilitate the use of FFT. If this is not
the case, we need to do zero padding to the nearest length of power of two. If the
sample rate is 16 kHz and the frame size is 320 sample points, then the frame
duration is 320/16000 = 0.02 sec = 20 ms. Additional, if the overlap is 160 points, then
the frame rate is 16000/(320-160) = 100 frames per second.

3. Hamming windowing: Each frame has to be multiplied with a hamming window in
order to keep the continuity of the first and the last points in the frame (to be detailed
in the next step). If the signal in a frame is denoted by s(n), n = 0,...N-1, then the
signal after Hamming windowing is s(n)*w(n), where w(n) is the Hamming window

defined by:

w(n, o) = (1 - a) - a cos(2zn/(N-1)), 0=n=N-1

Different values of a corresponds to different curves for the Hamming windows shown

next:

Example 2Input file speechFeature/hammingWindow01.m

% Plot of generalized Hamming windows
N=100;
n=(0:N-1)’;
alpha=linspace(0,0.5,11);
h=[;
for i=1:length(alpha),
h = [h, (1-alpha(i))-alpha(i)*cos(2*pi*n/(N-1))];
end
plot(h);
title('Generalized Hamming Window: (1-\alpha)-\alpha*cos(2\pin/(N-1)), O\legn\leqN-1");

legendStr={};
for i=1:length(alpha),
legendStr={legendStr{:}, [\alpha=', num2str(alpha(i))1};

end



legend(legendsStr);

Output figure
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In practice, the value of a is set to 0.46. MATLAB also provides the command hamming

for generating the curve of a Hamming window.

Fast Fourier Transform or FFT: Spectral analysis shows that different timbres in
speech signals corresponds to different energy distribution over frequencies.
Therefore we usually perform FFT to obtain the magnitude frequency response of

each frame.

When we perform FFT on a frame, we assume that the signal within a frame is
periodic, and continuous when wrapping around. If this is not the case, we can still

perform FFT but the incontinuity at the frame's first and last points is likely to introduce



undesirable effects in the frequency response. To deal with this problem, we have two

strategies:

a. Multiply each frame by a Hamming window to increase its continuity at the first
and last points.
b. Take a frame of a variable size such that it always contains a integer multiple

number of the fundamental periods of the speech signal.

The second strategy encounters difficulty in practice since the identification of the
fundamental period is not a trivial problem. Moreover, unvoiced sounds do not have a
fundamental period at all. Consequently, we usually adopt the first strategy to mutiply
the frame by a Hamming window before performing FFT. The following example

shows the effect of multiplying a Hamming window.

Example 3Input file speechFeature/windowing01.m

fs=8000;
t=(1:512)"/fs;
f=306.396;

original=sin(2*pi*f*t)+0.2*randn(length(t),1);
windowed=original.*hamming(length(t));

[magl, phasel, freql]=fftOneSide(original, fs);
[mag2, phase2, freq2]=fftOneSide(windowed, fs);

subplot(3,2,1); plot(t, original); grid on; axis([-inf inf -1.5 1.5]); title("Original signal’);

subplot(3,2,2); plot(t, windowed); grid on; axis([-inf inf -1.5 1.5]); title("Windowed signal’);
subplot(3,2,3); plot(freql, magl); grid on; title(Energy spectrum (linear scale)');

subplot(3,2,4); plot(freq2, mag2); grid on; title(Energy spectrum (linear scale)');

subplot(3,2,5); plot(freql, 20*log10(magl)); grid on; axis([-inf inf -20 60]); title('Energy spectrum (db)");
subplot(3,2,6); plot(freq2, 20*log10(mag?2)); grid on; axis([-inf inf -20 60]); title('Energy spectrum (db)");

Output figure
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In the above example, the singal is a sinusoidal function plus some noise. Without the

use of a Hamming window, the discontinuity at the frame's first and last points will

make the peak in the frequency response wider and less obvious. With the use of a

Hamming, the peak is sharper and more distinct in the frequency response. The

following example uses a speech signal for the same test.

Example 4Input file speechFeature/windowing02.m

waveFile='littleStar.wav’;

[y, fs]=wavread(waveFile);

n=512;
t=(1:n)'/fs;
startindex=30418;

endIndex=startindex+n-1;

original=y(startindex:endIndex);
windowed=original.*hamming(n);

[magl, phasel, freql]=fftOneSide(original, fs);



[mag2, phase2, freq2]=fftOneSide(windowed, fs);

subplot(3,2,1); plot(original); grid on; axis([-inf inf -1 1]); title(‘Original signal’);

subplot(3,2,2); plot(windowed); grid on; axis([-inf inf -1 1]); title("Windowed signal’);

subplot(3,2,3); plot(freql, magl); grid on; title('Energy spectrum (linear scale));

subplot(3,2,4); plot(freq2, mag2); grid on; title('Energy spectrum (linear scale));
subplot(3,2,5); plot(freql, 20*log(magl)); grid on; axis([-inf inf -80 120]); title('Energy spectrum (db)");

subplot(3,2,6); plot(freq2, 20*log(mag?2)); grid on; axis([-inf inf -80 120]); title('Energy spectrum (db)");

Output figure
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In the above example, we use a frame from a clip of singing voice for the same test.
With the use of a Hamming window, the harmonics in the frequency response are

much sharper.

Remember that if the input frame consists of 3 identical fundamental periods, then the

magnitude frequency response will be inserted 2 zeros between every two



neighboring points of the frequency response of a single fundamental periods. (See
the chapter on Fourier transform for more details.) In other words, the harmonics of
the frequency response is generally caused by the repeating fundamental periods in
the frame. However, we are more interested in the envelope of the frequency
response instead of the frequency response itself. To extract an envelop-like features,

we use the triangular bandpass filters, as explained in the next step.

. Triangular Bandpass Filters: We multiple the magnitude frequency response by a
set of 20 triangular bandpass filters to get the log energy of each triangular bandpass
filter. The positions of these filters are equally spaced along the Mel frequency, which

is related to the common linear frequency f by the following equation:
mel(f)=1125*In(1+f/700)

Mel-frequency is proportional to the logarithm of the linear frequency, reflecting similar
effects in the human's subjective aural perception. The following example plots the

relationship between the mel and the linear frequencies:

Example 5Input file speechFeature/showMelFreq01.m

linFreq=0:8000;
melFreq=lin2melFreq(linFreq);
plot(linFreq, melFreq);
xlabel('Frequency');
ylabel('Mel-frequency");

title(‘Frequency to mel-frequency curve');

axis equal tight

Output figure
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In practice, we have two choices for the triangular bandpass filters, as shown in the

next example:
Example 6Input file speechFeature/showTriFilterBank01.m

fs=16000;

filterNum=20;

plotOpt=1;

getTriFilterBankParam(fs, filterNum, plotOpt);

Output figure
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The reasons for using triangular bandpass filters are two fold:

o Smooth the magnitude spectrum such that the harmonics are flattened in order
to obtain the envelop of the spectrum with harmonics. This indicates that the
pitch of a speech signal is generally not presented in MFCC. As a result, a
speech recognition system will behave more or less the same when the input
utterances are of the same timbre but with different tones/pitch.

o Reduce the size of the features involved.

6. Discrete cosine transform or DCT: In this step, we apply DCT on the 20 log energy
Ex obtained from the triangular bandpass filters to have L mel-scale cepstral

coefficients. The formula for DCT is shown next.
Cm=2k=1"cos[m*(k-0.5)*1/N]*Ex, m=1,2, ..., L

where N is the number of triangular bandpass filters, L is the number of mel-scale
cepstral coefficients. Usually we set N=20 and L=12. Since we have performed FFT,
DCT transforms the frequency domain into a time-like domain called quefrency

domain. The obtained features are similar to cepstrum, thus it is referred to as the



mel-scale cepstral coefficients, or MFCC. MFCC alone can be used as the feature for
speech recognition. For better performance, we can add the log energy and perform

delta operation, as explained in the next two steps.

7. Log energy: The energy within a frame is also an important feature that can be easily
obtained. Hence we usually add the log energy as the 13rd feature to MFCC. If
necessary, we can add some other features at this step, including pitch, zero cross
rate, high-order spectrum momentum, and so on.

8. Delta cepstrum: It is also advantagous to have the time derivatives of
(energy+MFCC) as new features, which shows the velocity and acceleration of

(energy+MFCC). The equations to compute these features are:
ACn(t) =[SV Crnl(t+1)t] / [Zeem™t?]

The value of M is usually set to 2. If we add the velocity, the feature dimension is 26. If
we add both the velocity and the acceleration, the feature dimension is 39. Most of the

speech recognition systems on PC use these 39-dimensional features for recognition.
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e. # Ml knnrLoo.m (in DCPR Toolbox) 25 H i knnr #§kL 43 5 A )
leave-one-out Ffii% .

2. (**) Frame to MFCC conversion: Write a MATLAB function frame2mfcc.m that can
compute 12-dimensional MFCC from a given speech/audio frame. Please follow the
steps in the text.

Solution: Pleae check out the function in the Audio Processing Toolbox.

3. (***) Use MFCC for classifying vowels: Write an m-file script to do the following
tasks:

a. Record a 5-second clips of the Chinese vowel [Y. | . X. ¥. ] (orthe
English vowels "a, e, i, 0, u") with 16KHz/16Bits/Mono. (Please try to maintain a
stable pitch and volume, and keep a short pause between vowels to facilitate
automatic vowel segmentation. Here is a sample file for your reference.)

b. Use epdByVol. m (in Audio Processing Toolbox) to detect the starting and ending
positions of these 5 vowels. If the segmentation is correct, you should have 5
sound segments from the 3rd output argument of epdByVol. m. Moreover, you
should set plotOpt=1 to verify the segmentation result. Your plot should be

similar to the following:
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If the segmentation is not correct, you should adjust the parameters to

epdByVol. m until you get the correct segmentation.

c. Use buffer2.m to do frame blocking on these 5 vowels, with frameSize=32ms
and overlap=0ms. Please generate 5 plots of MFCC (use frame2mfcc. m or
wave2mfcc. m) corresponding to each vowel. Each plot should contains as many
curves of MFCC vectors as the number of frames in this vowel. Your plots

should be similar to those shown below:
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d. Use knnrLoo. m (in DCPR Toolbox) to compute the leave-one-our recognition
rate when we use MFCC to classify each frame into 5 classes of different
vowels. In particular, we need to change the dimension of the feature from 1 to
12 and plot the leave-one-out recognition rates using KNNR with k=1. What is
the maximum recognition rate? What is the corresponding optimum dimension?

Your plot should be similar to the next one:
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e. Record another clip of the same utterance and use it as the test data. Use the
original clip as the train data. Use the optimum dimension in the previous
subproblem to compute the the frame-based recognition rate of KNNR with k=1.
What is the frame-based recognition rate? Plot the confusion matrix, which

should be similar to the following figure:



Conf. mat. of data counts

should be similar to the following figure:
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f. What is the vowel-based recognition rate? Plot the confusion matrix, which

Conf. mat. of recoq. rates (%)
Overall recognition rate = 100%




(Hint: The vowel-based recognition result is the voting of frame-based results.

You can use mode to compute the result of voting.)

g. Perform feature selection based on sequential forward selection to select up to
12 features. Plot the leave-one-out recognition rates with respective to the

selected features. Your plot should be similar to the next one:
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What is the maximum recognition rate? What features are selected?

h. Use LDA to project 12-dimentional data onto 2D plane and plot the data to see

if the data has the tendency of natural clustering based on their classes. Your

plot should be similar to the next one:



LDA projection of vowel data onto the first 2 discriminant vectors
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What is the LOO recognition rate after LDA projection?

i. Repeat the previous sub-problem using PCA.

Chapter 13: Speaker Recognition (F&& #ik)

1. (***) Programming contest: use GMM for speaker identification: Please see

the detailed descriptions.

Programming Contests for Audio Signal Processing

Roger Jang ((R& &)

Old Chinese version



The goal of this programming contest is to let students get familiar with the use of GMM
(Gaussian Mixture Model) for speaker recognition. The students are required to tune a
set of parameters to improve the recognition rates.

1. Data to download:

o exampleProgram.rar: All example programs

o Wave files of Tang Poems to be use for this contest. TA will give the ftp address in the class.
2. How to execute the example program:

o Change addMyPath.m to point to the correct paths of the required toolboxes.

o Set the variable waveDir in goExtractFeature.m to the path containing all the wave files.

o Run the main program by typing "go" within MATLAB. The contents of go.m is shown next:
o % This is the main file for speaker recognition

o}

o] goExtractFeature;

o} goTrainGmm;

o] goUtteranceRr;

In other words, go.m invokes three other m-file scripts, with the following functions:

a. goExtractFeature.m: Feature extraction.
b. goTrainGmm.m: GMM training.
c. goUtteranceRr.m: Evaluation of utterance-based recognition rates

From the parameter settings at goExtractFeature.m, the script uses 10 utterances from each speaker,
where the five odd-indexed utterances are used for training and the other ones are used for test. The
inside-test recognition rate is 100% while the outside-test one is 99.00%. (Note that these are all
utterance-based recognition rates.) The confusion matrix will also be given, as follows:



3. What you need to demonstrate during the class:

(0]

Plot the frame-based recognition rates (both inside and outside tests) as a function of the number of
mixtures which takes the values of 2, 4, 8, 16, 32. (You might need to have more sentences for training
if the number of mixture is large.)

Use the number of mixtures at which the outside-test recognition rate is at its maximum. Plot the
segment-based recognition rates (both inside and outside tests) as a function of the segment length (in
terms of number of frames).

You need to combine the above two to have this plot of the recognition rate w.r.t. the segment length.
You need to show 10 curves, corresponding to the inside and outside tests for mixture numbers = 2, 4,
8, 16, 32.

(Hint: Be sure to save the speakerData for further processing, since we do not change the feature set.)

4. How to modify the program to get better utterance-based recognition rates (please refer to "Robust
Text-Independent Speaker Identification using Gaussian Mixture Speaker Models"):

(0]

Our example program only take 10 utterances from each speaker. If you take all utterances from a
speaker, the computing time will be much longer. To get around, you should try your best to find a
high-speed computer for this contest.
For end-point detection, you should try to get rid of silence as well as unvoiced sounds.
For GMM model parameters, you can try the following items:
= Change the number of mixtures in GMM. Choose a number that can have the best outside-test
recognition rate.
= Use different methods for the initialization of k-means. A better k-means can improve the
performance of GMM.



= Choose a VQ method by center-splitting. The function is vgLbg.m in DCPR toolbox.
= Increase the iteration count to see if we can get a higher log probability.
o For feature extraction, you can try the following items:
= Use the feature extraction function by HTK (htkWave2mfccMex.dll).
= Use MFCC only, which does not contain the log energy.
= Try cepstral mean normalization
o For reducing the computing time:
= You can replace vqKkmeans.m with vqKmeansMex.dll for speeding up.
= |f you think gmmTrain.m is too slow, you can write a C-callable mex file for speeding up.
5. Performance evaluation: our TA will carry out both inside and outside tests to compute utterance-based
recognition rates based on all the utterances (odd-indexed utterances as the training and even-indexed as the
test set), and to have their average as the final performance index.
6. The files for uploading:
o gmmParam.mat: Parameters for GMM
o method.txt: Description of your methods
o Any files that are necessary for running your main program.

1. (***) Programming contest: use GMM for speaker identification: Please see

the detailed descriptions.

Chapter 14: Dynamic Programming

14-1 Introduction to Dynamic Programming (Z)jE#i#))

Old Chinese version

Dynamic programming (DP for short) is an effective method to find a optimum solution to a
problem, as long as the solution can be defined recursively. DP roots in the principle of

optimality proposed by Richard Bellman:

An optimal policy has the property that whatever the initial state and the initial decisions are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the

first decision.



In terms of path finding problems, the principle of optimality states that any partial path of the
optimum path should be itself an optimum path given the starting and ending nodes. This is an
obvious principle that can be proved by contradiction. In practice, a great number of seemingly

unrelated applications can be effectively solved by DP.

To employ the procedure of DP to solve a problem, usually we need to specify the following

items:

I. Define the optimum-value function.

II. Derive the recursive formula for the optimum-value function, together with its initial

condition.

lll. Specify the answer of the problem in term of the optimum-value function.

We shall give an example of DP by using the following graph:

Start

In the above graph, we can assume that:

« Every node is a city and we use q(a) to represent the time required to go through the

city represented by node a.

« Every link is a route connecting two city. We use p(a, b) to represent the time required

to go from node a to b.



From the start point, how can we find a path the requires the minimum time to end at node 77?
This is a typical problem of DP which can be solved systematically and efficiently by the

following three steps:

I. First of all, we can define the optimum-value function t(h) as the minimum time from the
start point to node h (including the time for passing the node h).

II. Secondly, the optimum-value function should satisfy the following recursive formula:

t(h) = min{t(a)+p(a,h), t(b)+p(b,h), t(c)+p(c,h)} + q(h)

In the above equation, we assume the fan-ins of node h are a, b, and c. Please refer

to the next figure.

And the initial condition is t(0)=0 where 0 is the start node.

lll. And finally, the answer to the original problem should be t(7). By using the recursion, we
can have the following steps for computing the time required by the optimum path:
1.40)=0
2.1(1) =t(0)+4+5=9
3.12) =t(0)+2+4 =6
4.1(3)=1(0)+3+1=4



5. t(4) = min(9+3, 6+2)+2 = 10
6. t(5) = min(6+5, 4+1)+4 = 9
7.1( (6+5, 4+8)+6 = 17
8. 1( (

min(10+1, 9+3, 17+3)+1 = 12

min

6
7

)
)
)
)

The value of the optimum-value function is shown as the red number in each node in

the following figure:

Start

Hint

You can open a new figure by clicking the above figure, and then click the newly opened figure to see each step

of the recursion by DP.

The above formulation of DP are usually referred to as the forward DP. On the other hand, we

can defined the formula for backward DP in a similar manner:

. Firstly, the optimum-value function s(h) is defined as the minimum time from a node h to
the end node (including the time for passing the end node but excluding the time for

passing node h.)



II. Secondly, the optimum-value function should satisfy the following recursive formula:

s(h) = q(h) + min{p(h,a)+s(a), p(h,b)+s(b), p(h,c)+s(c)}

where a, b, ¢ are the fan-out of node h. The initial condition is s(7) = q(7).

lll. Finally, the answer to the original problem is s(0). By using the recusion, we can have

the following steps for computing the time required by the optimum path:

1.s(7)=1

2.s(6) = q(6)+3+s(7) = 6+3+1 =10

3.s(5) = q(5)+3+s(7) = 4+3+1 =8

4.s(4)=q(4)+1+s(7)=2+1+1 =4

5. s(3) = q(3)+min{1+s(5), 8+s(6)} = 1 + min{9, 18} = 10

6. s(2) = q(2)+min{2+s(4), 5+s(5), 5+s(6)} = 4 + min{6, 13, 15} = 10
7.5(1)=q(1)+3+s(4)=5+3+4 =12

8. s(0) = min{4+s(1), 2+s(2), 3+s(3)} = min(16, 12, 13} = 12

The answer obtained from backword DP is the same as that of the forward DP.

The efficiency of DP is based on the fact that we can use some previous results iteratively.

Some common characteristics of DP are summarized as follows:

« After finding the optimum fan-in node of a given node, it would be better to keep this
information in the data structure for further use. This will help us to back track the
optimum path at the ending node.

« DP usually only gives the optimum path. If we want to find the second-best path, we
need to invoke another method of top-n path finding, which is beyond our scope for

the time being.

14-2 Longest Common Subsequence

Old Chinese version



Given a sequence, we can delete any elements to form a subsequence of the original sequence.
For instance, given a string s = uvwxyz, we can delete v and x to get a subsequence uwyz. For
any given two sequences a and b, the similarity between them can be defined as the length of
the longest common subsequence (LCS for short) of these two sequences, which can be

computed efficiently by DP.

Let us define the optimum-value function LCS(a, b) as the length of the longest common

subsequence between a f1 b. Then the recursive formula for LCS can is shown next.

1. LCS(ax, by) = LCS(a, b)+1ifx = y.
2. LCS(ax, by) = max(LCS(ax, b), LCS(a, by)) if x # .

The boundary conditions are LCS(a, []) = 0, LCS([], b) = 0.

The following example is the result of a typical LCS result:

Example 1Input file dp/lcs01.m

strl = 'prosperity’;

str2 = 'properties’;

plotOpt = 1;

[Icscount, IcsPath, lcsStr, IcsTable] = Ics(strd, str2, plotOpt);

Output figure
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14-3 Edit Distance

Old Chinese version

We can use three basic operations of "delete", "insert", and "substitute" to convert a string into
another one. The edit distance between two strings is defined as the minimum number of the

basic operations that are required to converting a string into another.

We can also use the concept of DP to compute the edit distance between two strings. Let the
optimum-value function ED(a, b) defined as the edit distance between strings a and b. Then the

recursive formula for ED is shown next.

1. ED(ax, by) =ED(a, b)ifx =y.
2. ED(ax, by) = min(ED(a, b), ED(ax, b), ED(a, by)) if x # y.

The boundary conditions are ED(a, []) = len(a), ED([], b) = len(b).
Hint
The edit distance is also used in the command "fc" (under DOS) or "diff" (under UNIX) for compariing the contents of two

text files.



14-4 Dynamic Time Warping

Old Chinese version

The distance between two point X = [X4, X2, ..., Xn] @and y = [y1, Y2, ..., Yn] in @ N-dimensional
space can be computed via the Euclidean distance:

dist(x, y) = [X - y| = [ (Xt=y1)* + (Xe-y2)* + ... + (Xe-Yn)* 1"
However, if the length of x is different from y, then we cannot use the above formula to compute

the distance. Instead, we need a more flexible method that can find the best mapping from

elements in x to those in y in order to compute the distance.

The goal of dynamic time warping (DTW for short) is to find the best mapping with the
minimum distance by the use of DP. The method is called "time warping" since both x and y are
usually vectors of time series and we need to compress or expand in time in order to find the

best mapping. We shall give the formula for DTW in this section.

Let t and r be two vectors of lengths m and n, respectively. The goal of DTW is to find a
mapping path {(p1, q1), (P2, 92), ---, (Px, qk)} such that the distance on this mapping path Tt |

t(pi) - r(q) | is minimized, with the following constraints:

« Boundary conditions: (p1, q1) = (1, 1), (px, 9k) = (M, n). This is a typical example of
"anchored beginning" and "anchored end".

« Local constraint: For any given node (i, j) in the path, the possible fan-in nodes are
restricted to (i-1, j), (i, j-1), (i-1, j-1). This local constraint guarantees that the mapping
path is monotonically non-decreasing in its first and second arguments. Moreover, for
any given element in t, we should be able to find at least one corresponding element

in r, and vice versa.
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How can we find the optimum mapping path in DTW? An obvious choice is forward DP, which

can be summarized in the following three steps:

1. Optimum-value function: Define D(i, j) as the DTW distance between t(1:i) and r(1:j),
with the mapping path from (1, 1) to (i, j).

2. Recursion: D(i, j) = | t(i)-r() | + min{D(i-1,j), D(i-1, j-1), D(i, j-1)}, with the initial
condition D(1, 1) = [ t(1)-r(1) | .

3. Final answer: D(m, n)

In practice, we need to construct a matrix D of dimensions mxn first and fill in the value of D(1, 1)
by using the initial condition. Then by using the recursive formula, we fill the whole matrix one
element at a time, by following a column-by-column or row-by-row order. The final answer will

be available as D(m, n), with a computational complexity of O(mn).

If we want to know the optimum mapping path in addition to the minimum distance, we may
want to keep the optimum fan-in of each node. Then at the end of DP, we can quickly back track

to find the optimum mapping path between the two input vectors.
We can also have the backward DP for DTW, as follows:

1. Optimum-value function: Define D(i, j) as the DTW distance between t(i:m) and r(j:n),
with the mapping path from (i, j) to (m, n).

2. Recusion: D(i,j)= | t(i)-r() | + min{D(i+1, j), D(i+1, j+1), D(i, j+1)}, with the initial
condition D(m, n) = | t(m) - r(n) |

3. Final answer: D(1, 1)



The answer obtain by the backward DP should be that same as that obtained by the forward
DP.

Another commonly used local path constraint is to set the fan-in of 27°-45°-63° only, as shown

in the following figure:

Dli f)
D=2, j+11 Dli-17-
O
Dii-1,7-2)

The use of this local path constraint leads to the following potential results:

« Some points in the input vectors could be skipped in the mapping path. This is
advantageous if the input vectors contains sporadic outliners.

« Since the optimum-value function is based on the total distance, sometimes the
mapping path will take the local paths of 27° or 63° instead of 45° in attempting to

minimize the total distance.

If the required mapping path is "anchored beginning, anchored end", then the local path

constraints can induce the global path constraints, as shown next:
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In the above figure, the feasible region for the mapping path is shown as a parallelogram. In

filling up the matrix, we can save computation by skipping the elements outside the
parallelogram. In addition, a feasible mapping exists only when the ratio of the input vectors'

lengths are between 0.5 and 2.

If the required mapping path is "anchored beginning and free end" (which is used for query by

singing or humming), then the induced global path constraints are shown next:




The feasible region for the mapping path is shown as a trapezoid in the above figure. Compared
with the case of "anchored beginning and anchored end", we can save less computation by

using this set constraints.

If the required mapping path is "free beginning and free end" (which is used for

speaker-dependent keyword spotting), then the induced global path constraints are shown next:

F 3 -

-

The feasible region for the mapping path is shown as a parallelogram in the above figure.
Compared with the case of "anchored beginning and free end", we can save less computation

by using this set constraints.

It should be noted that the global path constraints are induced as a result of the local path
constraints of 27°-45°-63°. However, when we are using the local path constraints of
0°-45°-90°, sometimes we still apply the global path constratins in order to limit the mapping

path to a reasonable shape. In summary, the use of global path constraints serve two purposes:

o Reduce computation load.

 Limit the mapping path to be a reasonable path.

In the following, we shall give some examples of DTW. For simplicity, we shall distinguish two
types of DTW:



e Type-1is the DTW with 27°-45°-63° local path constraints.
e Type-2 is the DTW with 0°-45°-90° local path constraints.

First, we can use dtw1.m and dtwPlot.m to plot the mapping path of type-1 DTW in the following
example:

Example 1Input file dp/dtw1Plot01.m
vecl=[7173758080807876757371717173757676687676757371707069 686872747879 8080 78];
vec2=[6969 737579807978 76737271707069696971737576767676767573717070717375808080 78];
[minDist, dtwPath, dtwTable] = dtw1(vecl, vec2);

dtwplot(vecl, vec2, dtwPath);

Output figure

DTW total distance = 13
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In the above example, we deliberately put an outliner in vec1. Due to the local path constraints

of type-1 DTW, this outliner is skipped in the optimum mapping path.

Similarly, we can use dtw2.m and dtwPlot.m to plot the mapping path of type-2 DTW:



Example 2Input file dp/dtw2Plot01.m
vecl=[7173758080807876757371717173757676687676757371707069 686872747879 8080 78];
vec2=[69 69 73 757980797876 737271707069 6969 7173757676 767676757371707071737580 8080 78];
[minDist, dtwPath, dtwTable] = dtw2(vecl, vec2);

dtwplot(vecl, vec2, dtwPath);

Output figure
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The outliner cannot be skipped since the local path constraints require each point in a vector

has at least one correspondence in the other vector.

By using dtwPlot2.m, we can use red segments to connect corresponding points in two vectors,

as follows:

Example 3input file dp/dtwPlot02.m
vecl=[7173758080807876757371717173757676687676757371707069 686872747879 8080 78];
vec2=[69 69 73757980797876737271707069696971737576767676767573717070717375808080 78];
[minDistl, dtwPath1, dtwTablel] = dtwl(vecl, vec2);



[minDist2, dtwPath2, dtwTable2] = dtw2(vecl, vec2);
subplot(2,1,1); dtwplot2(vecl, vec2, dtwPathl); title(DTW alignment by dtw1');
subplot(2,1,2); dtwplot2(vecl, vec2, dtwPath2); title(DTW alignment by dtw2');

Output figure

DTW alignment by dtw1

It becomes more obvious that type-1 DTW can have empty correspondence while type-2 DTW
can have multiple correspondences. Moreover, we can use dtwPlot3.m to put the two vectors in
3d space to have a more interesting representation:

Example 4Input file dp/dtwPlot03.m
vecl=[7173758080807876757371717173757676687676757371707069 6868 727478798080 78];
vec2=[69 69 73 757980797876 737271707069 6969 7173757676 767676757371707071737580 8080 78];
[minDistl, dtwPathl, dtwTablel] = dtwl(vecl, vec2);

[minDist2, dtwPath2, dtwTable2] = dtw2(vecl, vec2);

subplot(2,1,1); dtwplot3(vecl, vec2, dtwPathl); title(DTW alignment by dtw1'); view(-10, 70);

subplot(2,1,2); dtwplot3(vecl, vec2, dtwPath2); title(DTW alignment by dtw2'); view(-10, 70);

Output figure



DTW alignment by dtw1
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Here are some slides for your reference:

e DTW for melody recognition

o DTW for speech recognition

1. (***) Function for edit distance: Please write an m-file function editDistance.m

for computing edit distance, with the usage:

[minDist, edPath, edTable] = editDistance(str1, str2)

2. (***) MATLAB function for type-2 DTW: Write an m-file function dtw2m.m that is

equivalent to dtw2mex.dll (or dtw1mex.mexwin32) in the DCPR toolbox. The usage is

[minDistance, dtwPath, dtwTable] = dtw2m(vec1, vec2);



You can use the following example as a script to test your program:

Example 1Input file dp/dtw2test01.m

vecl=[0123321001210];

vec2=[00123210001320];

[minDistl, dtwPath1, dtwTablel] = dtw2m(vecl, vec2);

[minDist2, dtwPath2, dtwTable2] = dtw2mex(vecl, vec2);

fprintf('minDist1=%g, minDist2=%g, error=%g\n’', minDist1, minDist2, abs(minDist1-minDist2));
dtwPlot(vecl, vec2, dtwPathl, dtwPath?2);

Output message

minDist1=3, minDist2=3, error=0
Output figure
DTW total distances =3, 2
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For a more extensive test with timing measurement, try the following example:

Example 2Input file dp/dtw2test02.m

% Compare the speed/distance difference between various versions of type-1 DTW

% ====== Qutput test
beginCorner=1; endCorner=1;
testNum=100;
fprintf('%d runs of output tests:\n', testNum);
for i=1:testNum
vecl=randn(1, 25);
vec2=randn(1, 30);
[minDist1, dtwPath1, dtwTablel] = dtw2m(vecl, vec2, beginCorner, endCorner);
[minDist2, dtwPath2, dtwTable2] = dtw2mex(vecl, vec2, beginCorner, endCorner);
if ~isequal(minDist1, minDist2) | ~isequal(dtwPath1, dtwPath2) | ~isequal(dtwTablel, dtwTable2)
figure('name’, 'dtw2m()"); dtwplot(vecl, vec2, dtwPathl);
figure('name’, 'dtwimex()"); dtwplot(vecl, vec2, dtwPath?2);
fprintf('Press any key to continue...\n"); pause
end
end

fprintf(\tDone!\n');

% ====== Speed test

testNum=200;

matl=randn(testNum, 25);

mat2=randn(testNum, 30);

fprintf('%d runs of timing tests:\n', testNum);

tic

for i=1:testNum, dtw2m(mat1(i,:), mat2(i,:)); end
timel=toc;

tic

for i=1:testNum, dtw2mex(mat1(i,:), mat2(i,:)); end
time2=toc;

fprintf(‘\ttime1=%g, time2=%g, ratio=timel/time2=%g\n’, timel, time2, time1l/time2);



Output message

100 runs of output tests:
Done!
200 runs of timing tests:

timel=1.50159, time2=0.0140599, ratio=timel/time2=106.8

For simplicity, you should only consider the following situations:

o You only need to consider the case of "anchored beginning and anchored end".
o You need to add the global constraints where the feasible region is a
parallelogram.

o You can assume the inputs are row vectors.

The behavior of dtw2mex.dll should be exactly the same as those described in the

text. If you find any discrepancies, feel free to let me know.

. (™) Implementation of a speaker-dependent voice-command system using
DTW: In this exercise, you are going to use MATLAB to implement a
speaker-dependent voice-command system. Basically, the user can record a
3-second utterance and the system will identify the most likely command via DTW. To
create such a system, we have two stage for registration and recognition, respectively.
During the registration stage, we need to prepare a database where the user can
register their utterances for recognition. This involves the following steps:

i. Prepare a text file "command.txt" manually. The file should contains at least 10

commands. An English example follows:

ii. one

iii. two
iv. three
V. five

You can also use the following Chinese example:



SRl
DI
FAB
AT

(In fact, you can use any language you like to prepare the text file.)

vii.  Write a script for the users to record these commands twice. To increase the
variability, you should record each command once in a run, for two runs. (You
can use "textread" command to read the text file.)

viii.  After each recording, you should perform endpoint detection and feature
extraction, and store all the information in a structure array recording of size
2*n, where n is the number of voice comands in "command.txt". The structure
array recording contains the following fields:

= recording(i).text: Text for the i-th recording
= recording(i).mfcc: MFCC for the i-th recording

ix. Save the variable recording to recording. mat.

During the recognition stage, the user can hit any key to start 3-second recording,
and the system will demonstrate the top-10 results on the screen according to the

DTW distance. The recognition stage invloves the following steps:

X. Load recording. mat.
xi.  Obtain the user's 3-sec utterance.
xii.  Perform endpoint detection and feature extraction.
xiii. Compare the MFCC with that of each recording in the array recording using
DTW.
xiv.  Rank the distance.
xv. List the top-10 result (by showing the texts) according to the distance.

xvi.  Go back to step ii unless ctrl-c is hit.

Some hints follow:



o All recordings are of the format: 16KHz, 16Bits, mono.

o The system should allow the user to do repeated recordings until ctrl-C is hit.

o You can use epdByVolHod.m for endpoint detection. After each recording, the
result of endpoint detection should be displayed on the screen immediately to
facilitate debugging. (It is in the Audio Processing Toolbox.)

o You can use wave2mfcc.m for feature extraction. (It is in the Audio Processing
Toolbox.)

o You can use either dtw1mex.dll or dtw2mex.dll for DTW. (Both are in the DCPR

toolbox.)

When you demo your system to TA, make sure you can have at least 3 utterances to

have the correct answer in top-1 results.

4. (*™*) Programming contest: Use DTW for speaker-dependent speech

recognition: Please follow this link to have more descriptions.

Chapter 15: Hidden Markov Models (HMM)

15-1 Introduction (f&4}1)

Old Chinese version

In the previous chapter, we have introduced DTW which is ideal for speaker-dependent ASR
applications. This is suitable for the retrieval of utterances from the same speaker. A typical
example of such applications is name dialing on mobile phones where you need to record your
voices first. On the other hand, if we want to have speaker-independent ASR, we need to resort
HMM (Hidden Markov Models) which is a statistic model that requires a massive amount of
training data for reliable recognition. Based on the used statistical models, HMM can be

classified into two categories:

e Discrete HMM (DHMM for short): This type of HMM evaluates probabilities based on

discrete data counting.



e Continuous HMM (CHMM for short): This type of HMM evaluates probabilities based on

continuous probability density functions such as GMM.

We shall introduce these two types of HMMs for speech recognition in the following sections.

15-2 Discrete HMM

Old Chinese version

The simplest ASR application is voice command recognition. To construct a voice command
recognizer, we need to collect training data for each voice command. This data is used for
constructing an HMM for each voice command. For a given utterance, we need to send the
corresponding acoustic features (MFCC, for example) to each HMM for evaluation the log
probability. The HMM with the highest log probability represents the predicted voice command

for the given utterance.

For simplicity in the following discussion, we shall assume our goal is to construct a
speaker-independent digit recognizer that can recognize the utterance of 0 ~ 9. There are two

steps involved in the design of such recognition system:

1. Corpus collection: To achieve speaker independence, we need to have a wide
collection of speech corpus, including:

o Subjects: We need to have utterances from various subjects, including different
genders, different age groups, different accent (from different regions), etc.

o Recording devices: We need to use different microphones and different sound
cards, etc.

o Environment: We need to have a recording environment that is close to that of
the recognizer at application. To increase the robustness, we should do the
recording in lab/office as well as road sides, etc.

2. Recognizer design: We need to design a recognizer based on HMM and test its

performance. This will be detailed in the rest of this section.



First of all, we need to construct a DHMM for each digit. Take the digit [ /1] for example, the

corresponding DHMM is shown next:

0.7 0.8 1.0

Frames = [| [ UUOUUUARUUUOQUBUNROQUATOR0RENDL

In other words, we can segment the utterance of [JL] into 3 states, each representing the
pronunciation of 4, |, X.Note that each state covers a few frames, and the degree to which
a frame belongs to a state is specified by a state probability. Moreover, for a given frame, it
can stay in the current state with a self-transition probability, or transit to the next state with a

next-transition probability.

Before using DHMM, each frame is converted into a feature vector (such as MFCC), and each
vector is transformed into a symbol. More specifically, feature vectors of the same state are
partitioned into clusters using vector quantization. We then use the index of a cluster to
represent the symbol of a frame. That is, if the feature vector of frame i belongs to cluster k,

then the symbol of frame i is k, as shown in the following expression:

k = O(i).

In order to simplify the discussion, we define some variables shown next.



« frameNum: The number of frames for a given utterance

« dim: The dimension of the acoustic features used in our recognizer. (For instance, the
basic MFCC has 12 dimensions.)

« stateNum: the number of states in a DHMM

« symbolNum: The number of symbols, or equivalently, the number of clusters after

vector quantization.
Usually we use the state and transition probabilities to characterize a given DHMM, as follows.

» We use a stateNumxstateNum matrix A to denote the state probability, in which A(i, j)
denotes the probability from state i to j. For instance, the probability of transition from
state 1 to 2 is 0.3, hence A(1, 2) = 0.3. In general, A(i, j) satisfies the following
conditions:

o State transitions are allowed only between neighboring states. Hence A(i, j) = 0
if j#i and j#i+1,

o For a given state, the total of the self-state and next-state transition probabilities
is equal to 1. Namely, A(i, i) + A(i, i+1) = 1, for all i.

« We use a symbolNumxstateNum matrix B to denote the state probability, in which B(k, j)
denotes the probability to which symbol k belongs to state j. Therefore to compute the
probability of frame i, we need to find the corresponding symbol k=0(i), and then

retrieve the probability from B(k, j).

Assume that we already have matrices A and B for the DHMM of [ 1] . Then for a given
utterance, we can use Viterbi decoding to evaluate the probability of the utterance being
generated by the DHMM. Viterbi decoding is based on the concept of dynamic program to

assign each frame to a state such the accumulated probability can be maximized, as follows.

1. The optimum-value function D(i, j) is defined as the maximum probability between t(1:i)
and r(1:j), where t(1:i) the feature vectors of frame 1 to i, r(1:j) is the DHMM formed by
state 1 to j. The optimum mapping path is from (1, 1) to (i, j).

2. The recursion of D(i, j) can be expressed as follows:

D(i, j) = B(O(i), j) + max{D(i-1, j)*A(, j), D(-1, |-1)+A(-1, j)}



The boundary conditions is
D(1,j) ==n(1,j) + B(O(1),])),j =1~ stateNum
3. The final answer is D(m, n).

The schematic diagram is shown next:
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Note that in the above expression, we are using log probabilities for the following reasons:

« Reduce the round-off errors due to repeated multiplications.

« Use addition instead of multiplication to reduce computation load.

Based on Viterbi decoding, we can find the optimum assignment of frames to states as well as
the accumulated log probability of a given utterance to a DHMM. A larger log probability

indicates the utterance is likely to be the voice command of the corresponding DHMM.

To evaluate the probability of frame i to state j, there are two different methods:



« For DHMM, we need to find the corresponding symbol O(i) and then look up the value
of B(O(i), j) from matrix B.
« For CHMM, B(O(i),j) is defined by a continuous probability density function. Please refer

to the next section for detail.

For a given DHMM, how can we define the optimum A and B? In general, the optimum values of
of A and B should generate the maximum total log probability of all training utterance. As a

result, we need to apply the concept of MLE to find the values of A and B.

The procedure to find the optimum values of A and B is called re-estimation. The basic
concept is close to that of k-means (Forgy's method) which identify parameters by Picard
iteration. That is, we can guess the values of A and B first, then perform Viterbi decoding, and
then identify A and B again based on the given optimum path, until the values of A and B
converge. We can prove that during the iterations, the total probability will increase
monotonically. However, we cannot guarantee the identify values of A and B is the global

optimum values. The steps of re-estimation are explained next.

1. Convert all utterances into acoustic features, say, 39-dimensional MFCC.

2. Perform vector quantization on all feature vectors and find the symbol (index of a
cluster center) of each feature vector.

3. Guess the initial values of A and B. If there is no manual transcription, we can adopt

the simple strategy of "equal division" shown next.
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o Viterbi decoding: Given A and B of an DHMM, find the optimum mapping paths

of all the corresponding utterances of this DHMM.

o Re-estimation: Use the optimum mapping paths to estimate the values of A and

B.

An example of estimating A is shown next:



b 0,15
ACL, 1)=3/4, ACL,2)=1/4
{(2,2):1;3, AC2,3)=1/5
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An example of estimating B is shown next:
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State 1: B(1,1)=1/4, B(2, 1)=1/4, B(3,1)=2/4

State 2: B(1,2)=3/5, B(2,2)-2/5

State 3: B(2,3)-2/6, B(4,3)-4/6
FAELPTEE Y FF IR A K=0(1) » B sbsb F 4218 7k
AE jag k3 Bk, j)=B(0(i), j)

EY

States 3 P--
2
1 m‘ >

]%%ﬂ%ﬂ%ﬂ%}]}}}}ﬁameindice

2 2

[ 2]
—_
LN
L]
—
i
[ B
i
[ =]
oy
oy
=y

4 Symbols
| T — SR a4 9T o
W % 4 R GENTR 8 1E (B RS EAEA ) st R
If we use D(i,j) to denote the probability to which frame i belongs to state j, then D(i,j) = B(O(i),j)-

Base on the path in the previous example, we can obtain the following values for D(i, j):

. State 1: D(1,1)=B(2,1)=1/4, D(2,1)=B(1,1)=1/4, D(3,1)=B(3,1)=2/4, D(4,1)=B(3,1)=2/4

. State 2: D(5,2)=B(1,1)=3/5, D(6,2)=B(1,1)=3/5, D(7,2)=B(2,1)=2/5, D(8,2)=B(1,1)=3/5,
D(9,2)=B(2,1)=2/5



. State 2: D(10,3)=B(4,3)=4/6, D(11,3)=B(4,3)=4/6, D(12,3)=B(4,3)=4/6,
D(13,3)=B(2,3)=2/6, D(14,3)=B(2,3)=2/6, D(15,3)=B(4,3)=4/6

If we use P(A, B, Path) as our objective function, then the above re-estimation can guarantee

the monotonic increasing of the objective function, based on the following two facts.

1. When A and B is given, Viterbi decoding can find the optimum mapping path to
maximize P(A, B, Path).

2. When the mapping path (Path) is given, re-estimation can find the optimum A and B to
maximize P(A, B, Path).

The first fact is obvious since the goal of Viterbi Decoding is to maximize the probability of each
path, hence their total P(A, B, Path) will also be maximized. The second fact is also obvious, to

be explained next.

Take the above example for instance, the probability of the given path can be decomposed into

three components based on each state:

. State 1: D(1,1)A(1,1)D(2,1)A(1,1)D(3,1)A(1,1)D(4,1)A(1,2) =
A(1,1°A(1,2)D(1,1)D(2,1)D(3,1)D(4,1)

. State 2: D(5,2)A(2,2)D(6,2)A(2,2)D(7,2)A(2,2)D(8,2)A(2,2)D(9,2)A(2,3) =
A(2,2)*A(2,3)D(5,2)D(6,2)D(7,2)D(8,2)D(9,2)

. State 3: D(10,3)A(3,3)D(11,3)A(3,3)D(12,3)A(3,3)D(13,3)A(3,3)D(14,3)A(3,3)D(15,3) =
A(3,3)°D(10,3)D(11,3)D(12,3)D(13,3)D(14,3)D(15,3)

Since we have N paths for N utterances, the total probability is the product of these N paths.
When we are identifying the optimum values of A and B, we need to take these N paths into
consideration. We shall decompose the total probability over N path into the probability

associated with each state for finding the optimum values of A and B, as follows.

First of all, we shall derive the optimum value of matrix A. For any given state, we can define the

following quantities:

« a: self-transition count (known)

« b: next-transition count (known)



o p: self-transition prob. (unknown)

e g: next-transition prob. (unknown)

Since we want to optimize the total transition probability associated with this state, we can form
the following optimization problem:

Max J(p, q) = p® q° s.t. p=0,q=,andp +q = 1
We need to apply the theorem that the arithmetic mean is greater than or equal to the geometric
mean:

X1+ Xo+ ot Xy = N (X1 X2 .o X))
The equality holds only when x4 = x2 = ... = x,,. Based on the above inequality, we have
platpla+..+qgb+qg/b.. = (a+b)[(p/a)’(g/b)’]"e™
1 = (a+b)[(p/a)*(a/b)]" ™

atb

The maximum value of J(p, q) = p? q° is a®b®/(a+b)?*®, which happens at p/a = g/b, or

equivalently, p=a/(a+b), g=b/(a+b).

Secondly, we shall derive the optimum value of B. For any given state, assume that frames of

this state belongs to 3 clusters. We can define the following quantities:

« Symbol count: a, b, ¢ (known)

« State prob: p, q, r (unknown)

Since we want to optimize the total state probability associated with this state, we can form the
following optimization problem:

Jp,a,n=p'q"r°
where p, q, r must satisfy p + g + r = 1. Based on the theorm (the arithmetic mean is greater
than or equal to the geometric mean), we can obtain the optimum parameters p=a/(a+b+c),

g=b/(a+b+c) , r=c/(a+b+c).

Therefore by decomposing the total probability of N paths into the probability associated with
each state, we can identify the optimum values of the transition and state probabilities of this
state. This complete the coverage of re-estimation which can guarantee the monotonic

increasing of the total log probability.

e Slide for Discrete HMM



15-3 Continuous HMM

Once we grasp the concept of DHMM, it is straightforward to extend the concept to CHMM.

The only difference between CHMM and DHMM is their representation of state probabilities:

« DHMM uses a VQ-based method for computing the state probability. For instance,
frame i has to be converted into the corresponding symbol k=0O(i), and the probability
of symbol k to state j is retrieved from B(k, j) of the matrix B.

« CHMM uses a continious probability density function (such as GMM) for computing the
state probability. In other words, B(O(i), j) in CHMM is prepresented by a continuous

probability density function:

B(O(i), J) = p(xi, 6))

where p(-,-) is a PDF (such as GMM), x; is the feature vector of frame i, and 6; is the
parameter vector of this PDF of state j. The method for identifying the optimum of 6; is

based on re-estimation of MLE (Maximum Likelihood Estimate).

In summary, the parameters of CHMM can be represented by the matrix A and the
parameters 0 = {6;|j = 1~m}. The method for finding the optimum values A and 0 is
again re-estimation, in which we need to guess the initial values of A and 6, perform
Viterbi Decoding, and then use the optimum mapping paths to compute A and 0 again.
This procedure is repreated until the values of A and 6 converge. It can be proved that
during the iteration, the overall probability is monotonic increasing. However, we

cannot guarantee the obtained maximum is the global maximum.
The procedure for finding the parameters of CHMM is summarized next.

1. Convert all utterances into acoustic features, say, 39-dimensional MFCC.
2. Guess the initial values of A and 0. If there is no manual transcription, we can
adopt the simple strategy of "equal division".

3. lterate the following steps until the values of A and 6 converge.



= Viterbi decoding: Given A and 6 of a CHMM, find the optimum mapping
paths of all the corresponding utterances of this CHMM.
» Re-estimation: Use the optimum mapping paths to estimate the values

of A and 0.

Note that in each iteration of the above procedure, optimum value of matrix A is
identified by frame counting, which is the same as that used in DHMM. On the other
hand, the optimum value of 6 is identified via MLE. Since p(-,-) in CHMM is a
continuous function that can approximate the true PDF better, we can expect to

achieve a better recognition rate than DHMM.
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(Zi=1“xi)/n = (I_Ii=1nxi)1/n
H =0, i=1~n.

4. ()RR RAEE: BURMEE. S EEM T SRBCR AR BN iR R (E, S
HIEM p, g H:



J(p, q) = pq°
Hr 0=p,q=1 H p+g=1,
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J(p. q, 1) = p°g°r°
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[maxLogProb, dpPath] = dhmmEval(initPI, A, B, O)
Ty N2 W ER IR

a. A fRERE R, H4AES L stateNum x stateNum
b. B fCRFTHEEHREIER, HAEL L clusterNum x stateNum
c. O EE—(HZHEPTEHERI 5%, HAEEZ frameNum x 1

iy Y S BRI AN

d. maxLogProb J&—ff#lif, ek Eag 8 sz,

e. dpPath & —f A&, 4R 2 x frameNum, g — {647 1) BRI R ek i
P85, S REEn S, dpPath=[12345678910111213 14 15; 1
11122222333333].

ai H R AR A 2 A R AR I FE

JEUERE (dhmmEval.m) (B & s RN #2 5D

function [maxLogProb, dpPath, dpTable] = dhmmEval(initPI, A, B, O)

% dhmmEval: Evaluation of DHMM

% Usage: [maxLogProb, dpPath, dpTable] = viterbiDecoding(initPl, A, B, O)
% initPI: Initial state log probability, 1 x stateNum



% A: Transition log probability, stateNum x stateNum

% B: State log probability, symbolNum x stateNum

% O: Observation sequence of this utterance, frameNum x 1
% maxLogProb: Maximum log probability of the optimal path
% dpPath: optimal path with size frameNum x 1

frameNum = length(O);
stateNum = length(A);

dpTable = -inf*ones(frameNum, stateNum);

if (stateNum>frameNum); error('Number of frames is less than the number of states!"); end

% ====== Fill the first row (matrix view)
dpTable(1,:)=initPI+B(0O(1),:);
% ====== Fill the first column (matrix view)

for i=2:frameNum

% ====== Fill each row (matrix view)
for i=2:frameNum

for j=2:stateNum

end

end

% ====== Back track to find the optimum path

AERIRIFE R, 5558 T# dhmmEvalMex.dll, ] FAIFER, dhmmEvalTest.m &3]
AR & R

JAiGHE (dhmmEvalTest.m) : Okl m FRIm# )

% ====== Set up some parameters
frameNum=100;
stateNum=10;

symbolNum=64;



initPI=log([1, zeros(1, stateNum-1)]);

selfTransProb=0.85;

A=diag(selfTransProb*ones(stateNum,1)); A((stateNum+1):(stateNum+1):stateNum”2)=1-selfTransProb;
A=A+eps;

A=log(A);

B=rand(symbolNum, stateNum); B=B*diag(1./sum(B));

B=log(B);

O=ceil(rand(frameNum,1)*symbolNum);

9% ====== Start functionality and timing tests

[maxLogProbl, dpPathl, dpTablel] = dhmmEvalMex(initPI, A, B, O);
end
fprintf(‘'dhmmEvalMex ==> %.2f, maxLogProb = %.9f\n', toc, maxLogProb1l);
tic
for j=1:n

[maxLogProb2, dpPath2, dpTable2] = dhmmEval(initPl, A, B, O);
end

fprintf('dhmmEval ==> %.2f, maxLogProb = %.9f\n', toc, maxLogProb2);

fprintf('Difference in maxLogProb = %g\n', abs(maxLogProbl-maxLogProb2));
fprintf('Difference in dpPath = %g\n', sum(sum(abs(dpPath1-dpPath2))));
fprintf('Difference in dpTable = %g\n', sum(sum(abs(dpTablel-dpTable2))));

|
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Chapter 16: Methods for Melody Recognition

16-1 Introduction (f&41)

Old Chinese version



This chapter introduces methods for melody recognition. In fact, there are many different types
of melody recognition. But in this chapter, we shall focus on melody recognition for query by
singing/humming (QBSH), which is an intuitive interface for karaokes when one cannot recall
the title or artist of a song to sing. Other applications include intelligent toys, on-the-fly scoring

for karaokes, edutainment tools for singing and language learning, and so on.

A QBSH system consists of three essential components:

1. Input data: The system can take two types of inputs:

a. Acoustic input: This includes singing, humming, or whisling from the users. For
such an input, the system needs to compute the corresponding pitch contour,
and convert them into note vector (optionally) for further comparison.

b. Symbolic input: This includes music note representation from the user. Usually
this is not a part of QBSH since no singing or humming is involved, but the
computation procedure is quite the same, as detailed later.

2. Song database: This is the song database which hosts a collection of songs to be
compared with. For simplicity, most of the song database contains symbolic music
whose music scores can be extracted reliable. Typical exmaples of symbolic music
are MIDI files, which can be classified into two types:

a. Monophonic music: For a given time, only a single voice of an instrument can
be heard.

b. Polyphonic music: Multiple voices can be heard at the same time. Most pop

music is of this type.

Most of the time, we are using monophonic symbolic music for melody recognition

systems.

Theoretically it is possible to use polyphonic audio music (such as MP3) for
constructing the song database. However, it remains a tough and challenging
problem to extract the major pitch (from vocals, for instance, for pop songs) from
polyphonic audio music reliably. (This can be explained from the analogy of identifying

swimming objects on a pond by the observed waveforms coming from two channels.)



3. Methods for comparison: There are at least 3 types of methods for comparing the
input pitch representation with songs in the database:

a. Note-based methods: The input is converted into note vector and compared
with each song in the database. This method is efficient since a note vector is
much shorter when compared with the corresponding pitch vector. However,
note segmentation itself may introduce errors, leading to the degradation in
performance. Typical methods of this type include edit distance for music note
vectors.

b. Frame-based methods: The input and database songs are compared in the
format of frame-based pitch vectors, where the pitch rate (or frame rate) can be
varied from 8 to 64 points per second. The major advantage of this method is
effectiveness, at the cost of more computation. Typical methods include linear
scaling (LS) and dynamic time warping (DTW, including type-1 and 2).

c. Hybrid methods: The input is frame-based while the database song is
note-based. Typical methods include type-3 DTW and HMM (hidden markov

models).

We shall introduces these methods in the subsequent sections.

16-2 Key Transposition (F#A#4r)

Old Chinese version

Since the query input may have a different key than those used in the song database, we need

to perform key transposition before comparison.

Depending on the methods for comparison, we have different schemes for key transposition, as

follows:

« One-shot method: If we are using linear scaling, we can simple shift the pitch vector to
the mean or median of the database entry to guarantee the distance is minimized.

This is very efficient and requires less computation.



« Trial-and-error method: If we are using type-1 or type-2 DTW, we will not be able to
know the best amount for key transposition in an efficient manner. As a result, we

need to resort to a certain trial-and-error method to find the best pitch shift amount for
key transposition.

If we are using trial-and-error methods, we can actually adopt any methods for one-dimensional

function optimization for such a purpose. Two commonly used methods are explained next.

e Linear search (exhaustive search):

1. Shift the mean of the input pitch vector t to the same value of the mean of the
song in the database. (If the length of the input vector is m, the mean of the
database song should be computed based on the same length too.)

2. Add each element of [-2.0, -1.8, -1.6, ... 1.6, 1.8, 2.0] to t and compute the
minimum distance between t and r.

e Binary-like search:

1. Shift the mean of the input pitch vector t to the same value of the mean of the
song in the database. (If the length of the input vector is m, the mean of the
database song should be computed based on the same length too.)

2. Sets=2.

3. Shift t to each element of [-s, 0, s] and compute the distances to r to find the
minimum distance. Shift t according to the minimum distance.

4. Set s = s/2 and go back to the previous step until it converges. See the following
schematic plot for the binary-like search:

b t—|_2 *

Mean




We can use the function binarySearch4min.m in the Utility Toolbox for binary-like search of the
minimum of a single-input function. For instance, in the following example, we want to find the

minimum of the humps function within [0, 1], and restrict the number of function evaluations to

be 9:

Example 1Input file mr/binarySearch4min01.m
objFunction="humps'; % Objective function
optimParam.searchRange=[0.0, 1.0];

optimParam.evalCount=9;

optimParam.plotOpt=1;

[minPair, allPairs]=binarySearch4min(objFunction, optimParam);
fprintf('minX=%f, minY=%f\n', minPair(1), minPair(2));
x=linspace(optimParam.searchRange(1), optimParam.searchRange(2), 101);
y=humps(x);

line(x, y, ‘color', 'r"); grid on

set(gca, 'ylim', [min(y), max(y)]);
Output message

minX=0. 625000, minY=11.297297

Output figure
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In the above plot, each red point indicate a function evaluation. The number beside each red
dot indicates the sequence in function evaluation. The identified minimum is indicated by a red

square.

In practice, for different applications, the user can adjust these parameters, including the search

range and the number of function evaluation.

16-3 Linear Scaling (%8 48)

Old Chinese version

Linear scaling (LS for short), also known as uniform scaling or global scaling, is the most
straightforward frame-based method for melody recognition. Typical linear scaling involves the

following three steps:

1. Use interpolation to expand or compress the input pitch vector linearly. The scaling
factor, defined as the length ratio between the scaled and the origianl vectors, could

range from 0.5 to 2.0. If we take the step of 0.1 for the scaling factor, it leads to 16



expanded or compressed versions of the original pitch vector. Of course, the
scaling-factor bounds ([0.5, 2.0] for instance) and the resolution ( number of scaled
pitch vectors, 16 for instance) are all adjustable parameters.

2. Compare these 16 time-scaled versions with each song in the database. The minmum
distance is then defined as the distance of the input pitch vector to a song in the
database. You can simply use L1 or L2 norm to compute the distance, with
appropriate processing for key transposition, to be detailed later.

3. For a given input pitch vector, compute the distances to all songs in the database. The

song with the minimum distance is the most likely song for the input pitch vector.

The following plot is a typical example of linear scaling, with a scaling-factor bounds of [0.5, 2]

and a resolution of 5. When the scaling factor is 1.5, the minimum distance is achieved.

Target pitch in database @ [ L—n e v
Compressed by 0.5 [ '

Compressed by 0.75

Original 1nput pitch
Stretched by 1.5 = L
Stretched by 2 @ wpnd” LA N

-
-
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Simple as it is, in practice, we still need to consider the following detailed issues:

1. Method for interpolation: Simple linear interpolation should suffice. Other advanced

interpolations may be tried only if they will not make the computation prohibitive.

e = L



2. Distance measures: We can use Ly norm (the sum of absolute difference of elements,
also known as taxicab distance or Manhattan distance) or L, norm (square root of the
sum of squared difference of elements, also known as Euclidean distance) to

compute the distance.

Hint

L, norm of vectors x and y = [Z|x;-yi"]*

3. Distance normalization: Usually we need to normalize the distance by the length of
the vector to eliminate the biased introduced via expansion or compression.

4. Key transposition: To achieve invariance in key transposition, we need to shift the
input pitch vector to achieve a minimum distance when compared to the songs in the
database. For different distance measures, we have different schemes for key
transposition:

o For L4 norm, we can shift the input pitch vector to have the same median as that
of each song in the database.

o For Lz norm, we can shift the input pitch vector to have the same mean as that
of each song in the database.

5. Rest handling: In order to preserve the timing information, we usually replace the rest
with previous non-rest pitch for both input pitch vector and songs in the database. One

typical example is "Row, Row, Row Your Boat" (original site, local copy).

Characteristics of LS for melody recognition can be summarized as follows:

« If the user's singing or humming is at a constant pace, LS usually gives satisfactory
performance.
LS is also very efficient both in its computation and the one-shot way to handle key

transposition.

The following example is a typical result of using LS for distance comparison:

Example 1Input file mr/linScaling01.m
inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821
51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836



49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821
51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415
50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818
51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958
55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739
59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286
55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958
54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818
50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029
52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351
52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029
52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858
53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991
51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408
48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445
49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365
46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541
46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991];

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59
5959 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55
55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65
65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60
60 60 60 60 60 60];

resolution=21;

sfBounds=[0.5, 1.5]; % Scaling-factor bounds

distanceType=1; % L1-norm

[minDist1, scaledPitchl, allDist1]=linScalingMex(inputPitch, dbPitch, sfBounds(1), sfBounds(2), resolution, distanceType);
distanceType=2; % L2-norm

[minDist1, scaledPitch2, allDist2]=linScalingMex(inputPitch, dbPitch, sfBounds(1), sfBounds(2), resolution, distanceType);



allDist2=sgrt(allDist2); % To reduce computation, the L2-distance returned by linScalingMex is actually the
square distance, so we need to take the square root.

axisLimit=[0 370 40 80];

subplot(3,1,1);

plot(1:length(dbPitch), dbPitch, 1:length(inputPitch), inputPitch);

title('Database and input pitch vectors"); ylabel('Semitones');

legend('Database pitch’, 'Input pitch’, 'location’, 'SouthEast');

axis(axisLimit);

subplot(3,1,2);

plot(1:length(dbPitch), dbPitch, 1:length(scaledPitchl), scaledPitchl, 1:length(scaledPitch2), scaledPitch2);
legend('Database pitch’, 'Scaled pitch via L_1 norm', ‘Scaled pitch via L_2 norm’, 'location’, 'SouthEast');
title('Database and scaled pitch vectors'); ylabel('Semitones');

axis(axisLimit);

subplot(3,1,3);

ratio=linspace(sfBounds(1), sfBounds(2), resolution);

plot(ratio, allDist1, '.-', ratio, allDist2, '.-");

xlabel('Scaling factor'); ylabel('Distances"); title('Normalized distances viaL_1 & L_2 norm");

legend('L_1 norm’, 'L_2 norm’, 'location’, 'SouthEast’);

Output figure
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Hint
Note that in order to save computation, linScalingMex uses the square of L, norm instead of L, norm literally. Therefore we

need to do square root in order to get the correct distance based on L, norm.

16-4 DTW of Type-1 and 2

Old Chinese version

DTW (Dynamic Time Warping) is another commonly used method for frame-based approach to
QBSH in melody recognition. The major advantages of DTW is its high recognition rate for
QBSH. This is partly due to its robustness in dealing with undesirable pitch vectors, especially
for type-1 DTW which allow skipping of sporadic unlikely pitch values. On the other hand, the
major disadvantage of DTW is its requirement for massive computation, which is worsen by the
fact that there is no one-shot scheme for dealing with key transposition. Since the applications
of DTW are quite extensive in numerous different fields, research on speeding up DTW is a

rather hot topic.



For technical details of DTW, please refer to the chapter on dynamic programming. In this
section, we shall give some examples of using DTW for QBSH. First of all, we can plot the
mapping path when comparing a query input with a database entry using type-1 DTW, as

follows:

Example 1Input file mr/mrDtw1Plot01.m

% inputPitch: input pitch vector

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821
51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836
49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821
51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415
50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818
51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958
55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739
59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286
55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958
54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818
50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029
52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351
52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029
52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858
53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991
51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408
48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445
49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365
46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541
46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991];

% dbPitch: database pitch vector

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59
5959 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55
5555 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60



60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65
65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60
60 60 60 60 60 60];

n=length(inputPitch);

meanPitch=mean(dbPitch(1:n));

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean

anchorBeginning=1; % Anchor beginning
anchorEnd=0; % Anchor end
m=11; % Number of pitch shifts for key transposition
pitchStep=linspace(-2, 2, m);
dtwDist=zeros(1, m); % DTW distances for different pitch shifts
for i=1:length(pitchStep)
newlnputPitch=inputPitch+pitchStep(i);
dtwDist(i) = dtwl1(newlnputPitch, dbPitch, anchorBeginning, anchorEnd);
end
[minValue, index]=min(dtwDist);
optInputPitch=inputPitch+pitchStep(index);
[minDist, dtwPath, dtwTable]=dtw1 (optInputPitch, dbPitch, anchorBeginning, anchorEnd);
dtwPlot(inputPitch+pitchStep(index), dbPitch, dtwPath);

Output figure
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In the above example of type-1 DTW, we need to be aware of two issues:

« For QBSH application, we have two types of comparisons:
a. Comparison from beginning: The acoustic input corresponds to the beginning of
a song in the database. This is exactly the case in the above example, so we
set anchorBeginning=1 and anchorEnd=0.
b. Comparison from anywhere: The acoustic input corresponds to the middle of a
song. Under such a condition, we need to set anchorBeginning=0 and

anchorEnd=0.

In fact, if we can define the "beginning position" of a query input, then all comparisons
can be viewed as "comparison from beginning" with different beginning positions.
Several commonly used "beginning positions" are listed next, according to their

complexities:

3. The beginning of a song: This is not a realistic assumption since the most

well-known part of a song does not necessarily starts from the beginning.



4. The refrain (chorus or burden, Fll#k) of a song: However, refrains of a song
cannot be defined objectively.

5. The beginning of each senence: This is most likely to be the case in karaoke
systems since such information is already embedded in the songs in order to
display the lyrics in a sentence-by-sentence manner.

6. The beginning of each note: This is the final catchall which requires a lot of
computation.

« To deal with key transposition, we use a linear search between the interval of [-2, 2]
with a resolution of 11. It is possible to use some sort of heuristic search, such as the

one mentioned in section 2 of this chapter.

Besides plotting the mapping path, we can also employ two other methods for displaying the
result of DTW, as mentioned in the chapter of dynamic programming. One of them is the
mapping between two curves in a 2D plane, as shown next:

Example 2Input file mr/mrDtw1Plot02.m

% inputPitch: input pitch vector

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821
51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836
49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821
51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415
50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818
51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958
55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739
59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286
55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958
54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818
50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029
52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351
52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029
52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858
53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991
51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408
48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445



49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365
46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541
46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991];

% dbPitch: database pitch vector

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59
5959 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55
5555 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65
65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60
60 60 60 60 60 60];

n=length(inputPitch);

meanPitch=mean(dbPitch(1:n));

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean

anchorBeginning=1; % Anchor beginning
anchorEnd=0; % Anchor end
m=11; % Number of pitch shifts for key transposition
pitchStep=linspace(-2, 2, m);
dtwDist=zeros(1, m); % DTW distances for different pitch shifts
for i=1:length(pitchStep)
newInputPitch=inputPitch+pitchStep(i);
dtwDist(i) = dtwl1(newlnputPitch, dbPitch, anchorBeginning, anchorEnd);
end
[minValue, index]=min(dtwDist);
optInputPitch=inputPitch+pitchStep(index);
[minDist, dtwPath, dtwTable]=dtw1 (optInputPitch, dbPitch, anchorBeginning, anchorEnd);
dtwPlot2(inputPitch+pitchStep(index), dbPitch, dtwPath);

Output figure
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Similarly, we can plot the mapping between two curves in a 3D space, as shown next:

Example 3Input file mr/mrDtw1Plot03.m

% inputPitch: input pitch vector

inputPitch=[48.044247 48.917323 49.836778 50.154445 50.478049 50.807818 51.143991 51.486821 51.486821 51.486821
51.143991 50.154445 50.154445 50.154445 49.218415 51.143991 51.143991 50.807818 49.524836 49.524836 49.524836
49.524836 51.143991 51.143991 51.143991 51.486821 51.836577 50.807818 51.143991 52.558029 51.486821 51.486821
51.486821 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 51.143991 49.218415
50.807818 50.807818 50.154445 50.478049 48.044247 49.524836 52.193545 51.486821 51.486821 51.143991 50.807818
51.486821 51.486821 51.486821 51.486821 51.486821 55.788268 55.349958 54.922471 54.922471 55.349958 55.349958
55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 53.699915 58.163541 59.213095 59.762739 59.762739
59.762739 59.762739 58.163541 57.661699 58.163541 58.680365 58.680365 58.680365 58.163541 55.788268 54.505286
55.349958 55.788268 55.788268 55.788268 54.922471 54.505286 56.237965 55.349958 55.349958 55.349958 55.349958
54.505286 54.505286 55.349958 48.917323 50.478049 50.807818 51.143991 51.143991 51.143991 50.807818 50.807818
50.478049 50.807818 51.486821 51.486821 51.486821 51.486821 51.486821 51.486821 52.558029 52.558029 52.558029
52.558029 52.193545 51.836577 52.193545 53.310858 53.310858 53.310858 52.930351 52.930351 53.310858 52.930351
52.558029 52.193545 52.930351 53.310858 52.930351 51.836577 52.558029 53.699915 52.930351 52.930351 52.558029
52.930351 52.930351 52.558029 52.558029 52.558029 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 52.558029 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 52.930351 53.310858 53.310858
53.310858 52.193545 52.193545 52.193545 54.097918 52.930351 52.930351 52.930351 52.930351 52.930351 51.143991
51.143991 51.143991 48.917323 49.524836 49.524836 49.836778 49.524836 48.917323 49.524836 49.218415 48.330408



48.330408 48.330408 48.330408 48.330408 49.524836 49.836778 53.310858 53.310858 53.310858 52.930351 52.930351
52.930351 53.310858 52.930351 52.930351 52.558029 52.558029 51.143991 52.930351 49.218415 49.836778 50.154445
49.836778 49.524836 48.621378 48.621378 48.621378 49.836778 49.836778 49.836778 49.836778 46.680365 46.680365
46.680365 46.163541 45.661699 45.661699 45.910801 46.163541 46.163541 46.163541 46.163541 46.163541 46.163541
46.163541 46.163541 46.163541 46.163541 46.163541 46.163541 50.807818 51.486821 51.486821 51.143991];

% dbPitch: database pitch vector

dbPitch =[60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59
5959 59 59 59 62 62 62 62 62 62 62 62 62 62 62 62 59 59 59 59 59 59 59 59 59 59 59 59 59 55 55 55 55 55 55 55 55 55 55
55 55 55 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 64 64 64 64 64 64 64 64 64 64 64 64 64 67 67 67 67 67 67 67 67 67 67 67 67 64 64 64
64 64 64 64 64 64 64 64 64 64 60 60 60 60 60 60 60 60 60 60 60 60 60 67 67 67 67 67 67 67 67 67 67 67 67 65 65 65 65 65
65 65 65 65 65 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62 60 60 60 60 60 60 60
60 60 60 60 60 60];

n=length(inputPitch);

meanPitch=mean(dbPitch(1:n));

inputPitch=inputPitch-mean(inputPitch)+meanPitch; % Shift input pitch to have the same mean

anchorBeginning=1; % Anchor beginning
anchorEnd=0; % Anchor end
m=11; % Number of pitch shifts for key transposition
pitchStep=linspace(-2, 2, m);
dtwDist=zeros(1, m); % DTW distances for different pitch shifts
for i=1:length(pitchStep)
newInputPitch=inputPitch+pitchStep(i);
dtwDist(i) = dtwl1(newlnputPitch, dbPitch, anchorBeginning, anchorEnd);
end
[minValue, index]=min(dtwDist);
optlnputPitch=inputPitch+pitchStep(index);
[minDist, dtwPath, dtwTable]=dtw1 (optInputPitch, dbPitch, anchorBeginning, anchorEnd);
dtwPlot3(inputPitch+pitchStep(index), dbPitch, dtwPath);

Output figure
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Hint
If you try the above example in MATLAB, you can actually rotate the plot to get a better view of the mapping between these

two curves.

We can simply change "dtw1" to "dtw2" in these examples to obtain the results of type-2 DTW.
In practice, the performance of type-1 and type-2 DTW is likely to be data dependent. There is

no guarantee as which one is the clear winner for different data sets.

As long as we have grasped the characteristics of DP, we can devise tailored comparison

methods suitable for different scenarios of melody recognition.

16-5 DTW of Type-3

Old Chinese version

Once we grasp the principle of DP, we can modify DTW for our needs. In this section, we shall

introduce another version of DTW with the following charactersitics:



« Query input: This is a frame-based pitch vector. (For our previous task on pitch labeling,
the corresponding time unit for each pitch point is 256/8000 = 1/31.25 = 0.032 s = 32

ms.)

» Reference song: This is a note-based pitch vector in which the note duration is

discarded for simplicity.

Let t be the input query vector and r be the reference vector. The optimum-value function D(ji, j),
defined as the mininum distance between t(1:i) and r(1:j), can be expressed in the following

recursion:
D(i, j) = min(D(i-1,j), D(i-1, j-1))+[t(i)-r ()|
Please refer to the following figure:
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For simplicity, we shall refer to DTW of this type as type-3 DTW, with the following

characteristics:

« Type-3 DTW computes the distance between a frame-based pitch vector and a
note-based pitch vector. Therefore the computational complexity is lower than those

of type-1 and type-2 DTW>



« The note duration is not used in the note-based pitch vector for comparison. Hence the
recognition rate should not be as good as type-1 and type-2 DTW.
e There is no method for one-shot key transposition for type-3 DTW. So we have to rely

on trial-and-error method for key transposition.

The following is a typical example of using type-3 DTW for melody alignment:

Example 1Input file mr/dtw3pathO1.m

pv=[00000000000000000047.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049
50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351
52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545
51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049
50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268
55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471
55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958
55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 000000000000 0 0 0 49.218415 49.218415
48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0
055.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351
52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445
49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699
57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965
55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965
56.237965 56.237965 55.788268 54.097918 0000000000000 00 0 0 0 50.154445 50.154445 50.478049 51.143991
51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836
62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818
62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739
59.762739];

pv(pv==0)=[]; % Delete rests (/R {A E£F)

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77
0777029 70 10 69 38 65 38 67 38 65 38];

note(2:2:end)=note(2:2:end)/64; % The time unit of note duration is 1/64 seconds

frameSize=256; overlap=0; fs=8000;

timeStep=(frameSize-overlap)/fs;

pv2=note2pv(note, timeStep);

noteMean=mean(pv2(1:length(pv))); % Take the mean of pv2 with the length of pv

pv=pv-mean(pv)+noteMean; % Key transposition

notePitch=note(1:2:end); % Use pitch only (FLE =



notePitch(notePitch==0)=[]; % Delete rests (flBR IR 1E4F)
[minDistance, dtwPath] = dtw3mex(pv, notePitch, 1, 0);
dtwPlot(pv, notePitch, dtwPath);

Output figure

DTW total distance = 200.752
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In the above example, before using type-3 DTW, we have performed the following

preprocessing:

1. Key transposition: We assume the tempo of the query input is the same as the
reference song. Therefore we convert the note into frame-based pitch vector for
computing the mean value based on the length of the input query. We then shift the
input query to have the same mean of the reference song. We can replace this
simplified operation by a more precise method for key transposition.

2. Rest handling: We simply delete all rests in both the input query and the reference
song. Again, this is a simplified operation which can be replaced by a more delicate

procedure for rest handling.



After the alignment of type-3 DTW in the above example, we can plot the original input PV,
shifted PV, and the induced PV, as follows:

Example 2Input file mr/dtw3inducedPitch01.m

pv=[00000000000000000047.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049
50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351
52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545
51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049
50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268
55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471
55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958
55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 000000000000 0 0 0 49.218415 49.218415
48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0
055.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351
52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445
49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699
57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965
55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965
56.237965 56.237965 55.788268 54.097918 0000000000000 00 0 0 0 50.154445 50.154445 50.478049 51.143991
51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836
62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818
62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739
59.762739];

pv(pv==0)=[]; % Delete rests (f/FR{A 1E£F)

origPv=pv;

pvLen=length(origPv);

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77
0777029 70 10 69 38 65 38 67 38 65 38];

note(2:2:end)=note(2:2:end)/64; % The time unit of note duration is 1/64 seconds

timeStep=256/8000;

pv2=note2pv(note, timeStep);

noteMean=mean(pv2(1:length(pv)));

shiftedPv=pv-mean(pv)+noteMean; % Key transposition
notePitch=note(1:2:end); % Use pitch only (FLEX =)
notePitch(notePitch==0)=[]; % Delete rests (f/BR{A 1E£F)

[minDistance, dtwPath] = dtw3mex(shiftedPv, notePitch, 1, 0);
inducedPv=notePitch(dtwPath(2,:));



plot(1:pvLen, origPv, '.-', 1:pvLen, shiftedPv, .-, 1:pvLen, inducedPyv, ".-";
legend(‘Original PV, 'Best shifted PV', 'Induced PV', 4);

fprintf('Min. distance = %f\n’, minDistance);

fprintf('Hit return to hear the original pitch vector...\n"); pause; pvPlay(origPv, timeStep);
fprintf('Hit return to hear the shifted pitch vector...\n"); pause; pvPlay(shiftedPv, timeStep);
inducedNote=pv2noteStrict(inducedPv, timeStep);

fprintf('Hit return to hear the induced pitch vector...\n"); pause; notePlay(inducedNote);

Output message

Min. distance = 200. 752223

Hit return to hear the original pitch vector...

Error in ==> dtwdinducedPitchOl at 18

fprintf C Hit return to hear the original pitch vector...\n’); pause; pvPlay(origPv,

timeStep) ;

Error in ==> goWriteOutputFile at 32

eval (command) ;

goWriteOutputFile
1/10: 1linScalingO1

Output figure
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In the above example, the green line is the origina input PV, the green line is the shifted PV, and
the red line is the induced PV. Since the discrepancy between the shifted and induced PVs is
still too big, we can conclude that the key transposition is satisfactory. It is likely that the tempo
of the query input is not close to that of the reference song. The reference song is "Happy

Birthday" and we can hear the related files:

« MIDI file of "Happy Birthday"

 User's singing clip

o Query pitch vector (with rests)

» Query pitch vector (without rests)

« Shifted query pitch vector (without rests)

¢ Induced notes

If we want to do a better job in the alignment, we need to improve key transposition. A
straightforward method is to do a linear (exhaustive) search of 81 comparisons with the range
[-2, 2], as shown in the following example:

Example 3Input file mr/dtw3inducedPitch02.m



pv=[00000000000000000047.485736 48.330408 48.917323 49.836778 50.478049 50.807818 50.478049
50.807818 50.478049 49.836778 50.154445 49.836778 50.154445 50.478049 49.524836 0 0 52.930351 52.930351
52.930351 52.558029 52.193545 51.836577 51.836577 51.836577 52.558029 52.558029 52.930351 52.558029 52.193545
51.836577 51.486821 49.218415 48.330408 48.621378 48.917323 49.836778 50.478049 50.478049 50.154445 50.478049
50.807818 50.807818 50.154445 50.154445 50.154445 0 0 0 54.505286 55.349958 55.349958 55.788268 55.788268
55.788268 55.788268 55.788268 55.788268 55.788268 55.788268 55.349958 55.349958 54.505286 54.505286 54.922471
55.788268 55.788268 56.237965 55.788268 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958 55.349958
55.349958 55.349958 55.349958 54.922471 54.922471 54.097918 000000000000 0 0 0 49.218415 49.218415
48.917323 49.218415 49.836778 50.478049 50.478049 50.154445 49.836778 50.154445 49.524836 49.836778 49.524836 0
055.788268 53.699915 53.699915 53.310858 53.310858 53.310858 53.310858 52.930351 52.930351 52.930351 52.930351
52.930351 52.558029 52.193545 51.486821 50.154445 49.836778 49.836778 50.154445 50.478049 50.478049 50.154445
49.836778 49.836778 49.524836 49.524836 49.524836 0 0 0 0 56.699654 57.661699 58.163541 58.163541 57.661699
57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 57.661699 58.163541 57.173995 56.699654 56.237965
55.788268 56.237965 56.699654 56.699654 56.237965 55.788268 56.237965 56.237965 56.237965 56.237965 56.237965
56.237965 56.237965 55.788268 54.097918 0000000000000 00 0 0 0 50.154445 50.154445 50.478049 51.143991
51.143991 50.807818 50.154445 51.143991 50.154445 50.478049 50.807818 50.478049 0 0 0 60.330408 61.524836
62.154445 62.807818 62.807818 62.807818 62.807818 62.807818 63.486821 63.486821 63.486821 63.486821 62.807818
62.807818 61.524836 59.213095 58.163541 58.680365 59.213095 59.762739 59.762739 59.762739 59.762739 59.762739
59.762739];

pv(pv==0)=[]; % Delete rests (f/BR{A 1E£F)

origPv=pv;

pvLen=length(origPv);

note=[60 29 60 10 62 38 60 38 65 38 64 77 60 29 60 10 62 38 60 38 67 38 65 77 60 29 60 10 72 38 69 38 65 38 64 38 62 77
0777029 70 10 69 38 65 38 67 38 65 38];

note(2:2:end)=note(2:2:end)/64; % The time unit of note duration is 1/64 seconds

timeStep=256/8000;

pv2=note2pv(note, 256/8000);

noteMean=mean(pv2(1:length(pv)));

shiftedPv=pv-mean(pv)+noteMean; % Key transposition
notePitch=note(1:2:end); % Use pitch only (FLEL# =)
notePitch(notePitch==0)=[]; % Delete rests (&K 114F)

% Linear search of 81 times within [-2 2] (L. FF# 81 ¥k, 7336 k)
clear minDist dtwPath
shift=linspace(-2, 2, 81);
for i=1:length(shift)
newPv=shiftedPv+shift(i);



[minDist(i), dtwPath{i}] = dtw3mex(newPv, notePitch, 1, 0);
end
[minValue, minindex]=min(minDist);
bestShift=shift(minindex);
bestShiftedPv=shiftedPv+bestShift;
inducedPv=notePitch(dtwPath{minIndex}(2,:));
plot(1:pvLen, origPv, '.-', 1:pvLen, bestShiftedPv, .-', 1:pvLen, inducedPyv, '.-");
legend(‘Original PV, 'Best shifted PV, ‘Induced PV', 4);
fprintf('Best shift = %f\n', bestShift);
fprintf('Min. distance = %f\n', minValue);
fprintf('Hit return to hear the original pitch vector...\n"); pause; pvPlay(origPv, 256/8000);
fprintf('Hit return to hear the shifted pitch vector...\n"); pause; pvPlay(bestShiftedPv, timeStep);
inducedNote=pv2noteStrict(inducedPv, 256/8000);

fprintf('Hit return to hear the induced pitch vector...\n"); pause; notePlay(inducedNote);

Output message

Best shift = 1.250000

Min. distance = 103. 142939

Hit return to hear the original pitch vector...
Hit return to hear the shifted pitch vector...

Hit return to hear the induced pitch vector...

Output figure
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Due to a better key transposition, the alignment of type-3 DTW is improved significantly with a

much less DTW distance. The related files are shown next:
¢ Induced notes

Hint

In general, if we want to perform melody recognition, the exhaustive search for key transposition is impractical due to its

excessive computational load. Some heuristic search, such as the binary-like search mentioned in section 2 of this chapter,
should be employed instead for such purpose.

In the above example, we can still find some obvious mistake for the alignment. For instance,

the fifth induced is too short since it only covers 3 frames. To solve this problem and to improve

type-3 DTW in general, we have the following stragegies:

« Set the range of frame numbers being mapped to each note: For instance, the duration
of the frames being mapped to a note should between the range [0.5, 2] of the

duration of the note. This can enhance the performance since the duration of each
note is used.



« Use rests: Except for the leading and trailing rests, any rest in the query input indicates
the end of the previous note and the beginning of the next note. We can use this cue

for better alignment and query by singing/humming.

We can simply modify our type-3 DTW to meet the above two requirement in order to increase

the precision of alignment and the recognition rates of query by singing/humming.

16-6 LCS and Edit Distance

Old Chinese version

We can use note-based approach for melody recognition. First of all, we need to segment the
input query pitch vector into music notes. Assume the input pitch vector is represented by pv(i),
i=1~n, then the most straightforward method for note segmentation can be described as the

pseudo code shown next:

for i=1:n
if |pv(i)-pv(i-1)|>6 & the current note is long enough
Finish the current note and start a new note
else
Add pv(i) to the current note
end
end

The following example demonstrates the use of pv2note.m for note segmentation:

Example 1Input file mr/noteSegment01.m

pitchVector=[49.21841 48.33041 48.33041 47.76274 48.04425 48.04425 47.76274 48.33041 48.04425 48.04425 48.04425
47.48574 47.48574 47.48574 47.48574 47.48574 47.76274 48.04425 48.04425 47.76274 47.76274 47.76274 47.21309
47.21309 47.21309 47.21309 47.21309 51.48682 51.48682 51.48682 51.48682 51.83658 51.83658 51.83658 51.83658
51.83658 54.92247 54.09792 54.09792 54.09792 54.09792 54.09792 54.09792 54.92247 54.92247 54.92247 54.92247
54.50529 54.50529 54.92247 54.50529 54.50529 54.09792 54.50529 55.34996 54.92247 54.92247 54.50529 54.50529
54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 54.50529 53.31086 53.31086 53.31086 53.31086
56.23796 55.78827 55.78827 56.23796 56.69965 56.69965 56.69965 57.17399 56.69965 56.69965 56.69965 56.69965
56.69965 56.69965 56.69965 57.17399 57.17399 57.17399 56.69965 56.69965 56.69965 56.69965 56.69965 56.69965
56.69965 59.76274 59.76274 59.76274 59.21309 59.21309 59.21309 58.68037 58.68037 58.68037 58.68037 54.09792
54.09792 54.09792 54.50529 54.50529 54.09792 54.09792 54.50529 54.92247 54.50529 54.50529 54.09792 53.69992



53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992
53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 53.69992 50.47805 51.48682 51.83658 52.19354 52.55803
52.19354 52.55803 51.83658 51.83658 52.55803 52.93035 52.93035 52.93035 52.93035 52.93035 51.14399 51.14399
54.50529 53.31086 52.55803 52.19354 52.19354 52.19354 52.55803 52.93035 54.09792 54.50529 54.92247 55.78827
56.23796 56.23796 55.78827 55.34996 54.09792 54.09792 54.09792 51.48682 50.15444 50.15444 50.80782 51.14399
51.14399 51.14399 51.14399 52.19354 52.19354 51.83658 51.83658 51.83658 51.48682 51.48682 51.48682 51.83658
51.83658 51.48682 51.48682 51.48682 51.48682 51.48682 50.80782 50.80782 52.55803 51.48682 51.14399 50.80782
51.14399 51.48682 51.48682 51.48682 50.80782 50.80782 50.80782 48.91732 48.62138 48.33041 48.33041 48.33041
48.04425 48.91732 48.91732 48.91732 49.21841 49.21841 48.91732 48.62138 48.33041 48.33041 48.33041 49.83678
48.62138 48.62138 48.62138 48.62138 48.62138 48.91732 49.52484 49.52484 48.91732 48.62138 48.33041];
timeStep=256/8000;

pitchTh=0.8;

minNoteDuration=0.1;

plotOpt=1;

note=pv2note(pitchVVector, timeStep, pitchTh, minNoteDuration, plotOpt);

fprintf('Hit return to hear the pitch vector..."); pause; fprintf(\n");

pvPlay(pitchVector, timeStep);

fprintf(‘Hit return to hear the segmented note..."); pause; fprintf(\n’);

notePlay(note, 1);

Output message

Warning: Could not find an exact (case—sensitive) match for 'noteplot’.
d:\users\jang\matlab\toolbox\audioProcessing\notePlot.m is a case—insensitive match
and will be used instead.
You can improve the performance of your code by using exact
name matches and we therefore recommend that you update your
usage accordingly. Alternatively, you can disable this warning using
warning C off’,  MATLAB:dispatcher:InexactMatch’).
> In pv2note at 42

In noteSegmentOl at 6

In goWriteOutputFile at 32
Hit return to hear the pitch vector...

Hit return to hear the segmented note...



Output figure
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In fact, the method implemented by pv2note.m is the simplest way for note segmentation.

Possible enhancements include:

1. Finish the current note whenever there is a rest.

2. If the singer has a good absolute pitch, we can round off each note to the nearest
integer. On the other hand, if the singer has a good relative pitch, we can shift up and
down to find a best shift amount that minimizes the absolute error.

3. We can also employ the concept of DP to find the best way for note segmentation,
such that the difference between the original pitch vector and the segmented notes is

minimized.

Once we finish note segmentation, we can use the note-based representation for melody

recognition, as follows.



In the first method, we only consider the pitch difference between two neighboring notes,
regardless of the note's absolute pitch and duration. For instance, if the note pitch is [69, 60, 58,
62, 62, 67, 69], we can convert it into a ternary string [D, D, U, S, U, U] where D (down), U (up)
and S (same) are used to described the relationship between two neighboring notes. Once we
have convert both the input query and the reference song into two ternary string vectors, we
can invoke LCS (longest common subsequence) or ED (edit distance) to compute their

distance.

In the second method, we use the note pitch directly, regardless of the note duration. For
instance, if the note pitch is [69, 60, 58, 62, 62, 67, 69], we can simply invoke type-1 or type-2
DTW to compute the distance. Since we are using the note pitch directly, we need to perform
key transposition before invoking DTW. On the other hand, if we are using the difference of the

note pitch for comparison, then we do not need to invoke key transposition.

In the third method, we need to consider both note pitch and note duration. We can still use
DTW-like method for comparison, except that we need to consider note pitch and note duration
separately. For note pitch, we can take the difference to deal with key variation. For note
duration, we can take the ratio of neighboring note duration to take care of tempo variation. We
can then invoke DTW that compute the cost function as a weighted average of pitch and

duration cost.
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Old Chinese version

1. (*) Median for minimizing L-1 norm: For a given vector X = [X4, ... Xn], prove that the
median of elements in x can minimize the following objective function based on L-1

norm:

Median of x = arg min, Z|x;-u|



2. (*) Mean for minimizing L-2 norm: For a given vector x= [X1, ... Xn], prove that the
mean of elements in x can minimize the following objective function based on L-2

norm:
Mean of x = arg min y Z(xi-u)?

3. (**) Function for for note segmentation: Write an m-file function myPv2note.m for

note segmentation, with the following usage:
note = myPv2note(pitchVec, timeStep, pitchTh, minNoteDuration)
where

o pitchVec: The input pitch vector

o timeStep: The time for each pitch point

o pitchTh: Pitch threshold for creating a new note

o minNoteDuration: The minimum duration of a note

o note: The output note vector of the format [pitch, duration, pitch, duration, ...],

where the units for pitch and duration are semitone and second, respectively.

Besides using pitch difference, you also need to use rests (zeros in pitchVec) for note
segmentation. The duration of a rest note can be shorter than minNoteDuration. How

to test your function:

f. Please use the pv file of "Happy Birthday" for note segmentation. You can hear
the original wave clip and the corresponding midi file.
g. Please use the pv file of "Twinkle Twinkle Little Star" for note segmentation.

You can hear the original wave clip and the corresponding midi file.
Hint:

o You can start with the pv2note.m in the Melody Recognition Toolbox, which do
not take rests into consideration.
o You can use pvPlay.m to play the pitch vector, and use notePlay.m to play the

output notes.



. (*) Function for linear scaling: Pleae write an m-file function mylinearScaling.m for

linear scaling, with the following usage:

[minDist, bestVec1, allDist] = myLinearScalingdmr(pitchVec1, pitchVec2, lowerRatio,

upperRatio, resolution, distanceType)

where

o pitchVec1: pitch vector of the input query. This is the vector to be expanded or
contracted.

o pitchVec2: pitch vector of the reference song

o lowerRatio: lower ratio for contraction

o upperRatio: upper ratio for expansion

o resolution: total number of contraction or expansion

o distanceType: distnace type, 1 for Ly norm, 2 for L, norm.

o minDist: mininum distance of the linear scaling

o bestVec1: the pitch vector of the input query after shifting,
expansion/contraction that can achieve the mininum distance

o allDist: all distances of linear scaling

Note that:

@]

If the expanded pitchVec1 is greater than the length of pitchVec2, then stop

doing linear scaling.

o For L-1 norm, we need to do median justification. For L-2 norm, we need to do
mean justification.

o You need to perform distance normalization.

o You can assume the input vectors do not contain rests.

How to test your program:

o Please run this example this example, but replace linScalingMex with

myLinearScaling to see if you can get the same result.



o Use your function in the programming contest of melody recognition to see if

you can achieve the same recognition rate.

Hint: You can use "interp1" for interpolation, "median" for computing median, "mean’
for computing mean, "norm" for computing L, norm. If you do not know how to use

"interp1", the following is an example:

Example 1Input file interpDemo01.m

n=10;

x=1:n;

y=rand(1,n); % Original vector (J54f ] &)

ratio=1.8; % The vector interpolation should have a length equal to 1.8 times the original vector

x2=1:1/ratio:n;

y2=interpl(Xx, y, x2); % Vector after interpolation
subplot(2,1,1), plot(x, y, '0-', X2, y2, '0:";

subplot(2,1,2), plot(1:length(y), y, 'o-', 1:length(y2), y2, '0:");
fprintf('Desired length ratio = %f\n', ratio);

fprintf('Actual length ratio = %f\n', length(y2)/length(y));

Output message

Desired length ratio = 1.800000
Actual length ratio = 1.700000

Output figure
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5. (***) Function for type-3 DTW: Please write a m-file function myDtw3.m for type-3

DTW, with the usage:

[minDist, dtwPath, dtwTable] = myDtw3(vec1, vec2)

You can start from the following skeleton:

JRaEHE (dtw3skeleton.m) : ORI FEIAT#5HD

function [minDistance, dtwPath, dtwTable]=dtw3(vecl, vec2, beginCorner, endCorner)

% dtw3: Dynamic time warping with local paths of 0 and 45 degrees
Usage: [minDistance, dtwPath, dtwTable]=dtw3(vecl, vec2, beginCorner, endCorner, plotOpt)

%

% vecl: testing vector, which should be a pitch vector

% vec2: reference vector, which should be a vector of note pitch

% minDistance: minimun distance of DTW

% dtwPath: optimal path of dynamical programming through the DTW table
% (Its size is 2xk, where k is the path length.)

% dtwTable: DTW table



if nargin<3, beginCorner=1; end

if nargin<4, endCorner=1; end

% If input is vector, make it row vector
if size(vecl,1)==1 | size(vecl,2)==1, vecl = vecl(:)’; end

if size(vec2,1)==1 | size(vec2,2)==1, vec2 = vec2(:); end

sizel=length(vecl);
size2=length(vec2);

% ====== Construct DTW table
dtwTable=inf*ones(sizel,size2);
% ====== Construct the first element of the DTW table
dtwTable(1,1)=vecDist(vecl(:,1), vec2(:,1));
% ====== Construct the first row of the DTW table (xy view)
for i=2:sizel
dtwTable(i,1)=dtwTable(i-1,1)+vecDist(vecl(:,i), vec2(:,1));
prevPos(i,1).i=i-1;
prevPos(i,1).j=1;

% ====== Construct the first column of the DTW table (xy view)
if beginCorner==
for j=2:size2
dtwTable(1,j)=vecDist(vecl(:,1), vec2(:,j));
prevPos(1,j).i=[];
prevPos(1,j).j=[1;

end
end
% ====== Construct all the other rows of DTW table
for i=2:sizel

for j=2:size2

pointDist=vecDist(vecl(;,i), vec2(:,j));
% ====== Check 45-degree predecessor

% ====== Check 0-degree predecessor



end

end

% ====== Find the overall optimum path

[minDistance, dtwPath]=dtwBackTrack(dtwTable, prevPos, beginCorner, endCorner);

function distance=vecDist(x, y)

distance=sum(abs(x-y));

To test your function:

. Try this example, but replace dtw3mex by myDtw3 to see if you can obtain the
same result.

a. Use your function in the programming contest of melody recognition, with 1 key
transposition. What is the recognition rate?

b. Use your function in the programming contest of melody recognition, with 5 key
transposition. What is the recognition rate?

6. (***) Methods for improving type-3 DTW: Write a m-file function myDtw3b.m for
type-3 DTW, with the enhancements mentioned at the end of the section covering
type-3 DTW:

. Set the range of frame numbers being mapped to each note: For instance, the
duration of the frames being mapped to a note should between the range [0.5,
2] of the duration of the note. This can enhance the performance since the
duration of each note is used.
a. Use rests: Except for the leading and trailing rests, any rest in the query input
indicates the end of the previous note and the beginning of the next note. We
can use this cue for better alignment and query by singing/humming.

b. Use both of the above enhancements.

Please test your function as follows:

c. Use your function in the programming contest of melody recognition, with L-1

norm and 1 key transposition. What is the three recognition rates?



d. Use your function in the programming contest of melody recognition, with L-1
norm and 5 key transposition. What is the three recognition rates?
. (***) Melody recognition rates w.r.t. LS resolutions and no. of key
transpositions: Before attempting this exercise, you should first fully understand the
example program in the programming contest of melody recognition. You tasks are
explained next.
. Use linear scaling for melody recognition, and plot the recognition rate as a
function of the computation time, but parameterized by the resolution for linear
scaling from 5 to 12. Your plot should be similar to the following one:
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a. Use type-1 DTW for melody recognition, and plot the recognition rate as a
function of the computation time, but parameterized by the numbers of key

transposition of [1, 3, 5, 7, 9]. Your plot should be similar to the following one:
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8. Hint:

o If the computing time is too long, you can use the first 100 wave files for this
exercise.

o It would be easier for you to do the computation and plotting if you modify the
example program in the programming contest for melody recogntion into a
single function.

9. (***) Melody recognition rates w.r.t. pitch vector reduction ratio: Before
attempting this exercise, you should first fully understand the example program in the
programming contest of melody recognition. The pitch rate of our query pitch vector is
fs/frameSize = 8000/256 = 31.25. If the computing time is too long, we can simply
down-sample the pitch vector to reduce the size of the DTW table. In other words, we
can explore the effect of PVRR (pitch vector reduction ratio) on the recognition rates
of various methods. For a given value of pvrr, the pitch rate becomes 31.25/pvrr. You
need to plot the recognition rates of 4 methods (LS, DTW1, DTW3, DTW3) with
respect to computation time, but parameterized by PVRR which varies from 1 to 10.

Your plot should be similiar with the following one:



Recog. rate various methods

95 T T T T I T T
H H —o LB
12 o i —=— dtwl
| i : o dtw3
3
a5 5.-'
4
|l L R
§ 75 .'6?11’_ .}}.. - 2 -
o 7B
by R i .
2 Ik
D b 1543
o 65_ . .I e -
I
sof Yo | 2
% :
kL)
B 1
50
45 10 1 1 | 1 | 1 1 |
1 2 3 4 5 [ 7 -] 9 10
Time (sec)

Hint:

o If the computing time is too long, you can use the first 100 wave files for this
exercise.

o It would be easier for you to do the computation and plotting if you modify the
example program in the programming contest for melody recogntion into a

single function.

10.(**) Creation of a prototypical QBSH system: In this exercise, you are going to

write a MATLAB script to create a prototypical QBSH system. Basically, the user can
sing/hum to the microphone for 8 seconds and the system can list the top-10 ranking
of the retrieved songs based on their similarity to the query input. Your system should
follow the following steps:

. Load the song database. This can be achieved by using

songDb=songDbRead('childSong', 0);

You can check the contents of songDb by typing

dispStructinHtml(songDDb);



a. Convert the "track" field of each song to PV representation and attach the PV to
a field "pv" of songDb. You can use the command noteZ2pv.

b. Do the recording with fs=8000, nbits=8.

c. Perform pitch tracking by using the command wave2pitchByAcf. Plot the result
of pitch tracking (by supplying appropriate arguments to the command) after
each recording to make sure the pitch tracking result is satisfactory.

d. Handle rests by using the command restHandle.

e. Compare the query PV to each PV in the database using linear scaling.

f. Display the top-10 retrieved songs based on the LS distances.

You system should be able to let the user sing/hum as many songs as they want until
ctrl-c is hit. When you demo your system to TA, make sure you can have at least 3
humming/singing inputs to have the correct answer in top-10 results. (Hint: You need

to use the Melody Recognition Toolbox.)

11.(***) Programming contest: melody recognition: Please follow the link for more

information.

Chapter 17: HTK

17-1 HTK Introduction (HTK f&4})

Old Chinese version

HTK (Hidden Markov Model Toolkit) is a public-domain software for training HMM (Hidden
Markov Models), mostly for the application of automatic speech recognition. Most of the related

information can be found at the HTK website:

http://htk.eng.cam.ac.uk/
HTK was originally developed by the Machine Intelligence Lab of Engineering Department at
Cambridge University. In 1999, Microsoft bought HTK from its owner Entropic Inc., and made it
public-domain open-source software for enhancing the speech technology through collective

efforts. As a result, now we can download the source of HTK from its website directly.



The implementation of automatic speech recognition involves advanced techniques of HMM
training and evaluation, which are not easily mastered by common programmers. Since the
availability of HTK source code, the entry barrier became lower, which advances the research
of speech technology rapidly. Currently most of the research labs in unversities and industry are
using HTK for their research and development. As a result, HTK is the de facto standard tool for

developing automatic speech recognition.

This chapter will use several basic examples to demonstrate the use of HTK. We have tried to
keep the examples as simple as possible while not omitting any important features of HTK.
After getting familiar with these examples, the users can further consult HTK manual for other

advanced features for your own research and development.

17-2 HTK Example: Digit Recognition (HTK A& F—: BFH

)

Old Chinese version

To implement CHMM, usually we rely on HTK (Hidden Markov Model Toolket) for corpus
preparation and training. In this section, we shall use a simple example to demonstrate the use
of HTK. In this example, we want to construct CHMM for the recognition for the digits from 0 to 9
in Mandarin. You will be able to know how to do corpus training, and how to compute the

recognition rates.

In this homepage, we intend to display files of several extensions (mlf, scp, template, cfg, pam,
init, hmm, net, grammar, etc) via iframe tags in the web browser directly. To this end, you need
to cancel the application associations for these extensions. (Otherwise there will be popup
windows to ask if you want to download the files, etc.) You can use the following batch file to

cancel the extension-application associations:

JE GRS (htk/delAssociation.bat) :  (hfa s s T RI T #2 ED
assoc .mlf=
assoc .SCp=

assoc .template=



assoc .cfg=
assoc .pam=
assoc .init=
assoc .hmm=
assoc .net=

assoc .grammar=

Please run the above batch file under the DOS prompt. Then you can reload this homepage

such that all files can be displayed on within iframe tages in this page correctly.

Hint
You can use the command "assoc" to specify or delete file association with an application. For instance, if you want to delete

file association with the extension "scp", you can type "assoc .scp="under the DOS prompt.
Before move on, you need to download the following files for this section:

« HTK commands: After decompression, there are two directories "bin.win32" and "bin",
which contain HTK commands and other data-processing commands, respectively.
You need to add these two directories to the system's search path via [ =il &/ R4/

HERE BRI 50 8 R 57528 . If the decompressed directory is put as c:\htk, then you can

also append the search path with the DOS window as follows:
o set path=%path%:;c:\htk\bin.win32;c:\htk\bin

o Corpus and training scripts: There are two directories:
o training: Training scripts.

o waveFile: Corpus of digits 0 ~ 9 in Mandarin.

Please place the directory "chineseDigitRecog" in a path without blanks. (Do not put

them on the desktop since its path contains blanks.)

Open a DOS window and change directory to chineseDigitRecog/training. Type "goSyl13.bat"
in the DOS window to start training and performance evaluation. (You can also execute
goSyl13.m within MATLAB to get the same results.) If the command runs smoothly until two

confusion matrices are displayed on the screen, then everything is set up correctly.



Before start our corpus training, we need to prepare two files manually. The first file is
"digitSyl.pam" which specifies how to decompose the phonetic alphabets of each digit into the
corresponding acoustic models. For simplicity, our current approach use each syllable as an

acoustic model, as follows:

JREKE (htk/chineseDigitRecog/training/digitSyl.pam) : (B @ s~ B 2D
ba ba

er er
jiou jiou
ling ling
liou liou
qi qi
san san
Si Si
sil sil
wu wu

The above decomposition is a rough but simple way to define syllable-based acoustic models
for this application. More delicate decompositions based on monophones or biphones will be

explained later.

Hint

The extension "pam" represents phonetic alphabets to model. This is also referred to as the dictionary file in HTK.

The second file is digitSyl.mlf, which define the contents (in the form of acoustic models) of

each utterance, as follows:

Example (htk/chineseDigitRecog/training/digitSyl.mif) :

In the above file, we use sil for silence. We add leading and trailing sil around ling to indicate the

utterance of "0" is surrounded by silence.

Hint

e The extension of "mlf" stands for master label file, which is used to record the contents of each utterance.



e HTK uses feature file names to map to the contents in an mlf file. Hence the feature file names should be unique.

(The wave file names do not have to be unique.)

In the following, we shall explain the contents of the MATLAB script goSyl13.m and the DOS

batch file goSyl13.bat. Both these files involve three major tasks:

|. Extraction of acoustic features of MFCC.
II. Corpus training based on EM to find the optimum parameters.

lll. Performance evaluation based on recognition rate.

We shall introduce these three steps in detail.

|. Acoustic feature extraction of MFCC

1. Create output directories

We need to create 3 directories for holding output files:
= output: For various intermediate output files
= output\feature: For feature files of all utterances.

= output\hmm: For HMM parameters during training

The MATLAB commands are

mkdir(‘output’);
mkdir(‘output/feature");
mkdir(‘output/hmm’);

The batch command is:

for %%i in (output output\feature output\hmm) do mkdir %%i > nul 2>&1

If the directories exist, the batch command will not display any warning

messages.

Hint

The batch command listed above is copied directly from goSyl13.bat. If you want to execute the

command within DOS prompt, be sure to change %%i to %i. Same for the following discussion.



2. Generate diqitSyl.mnl and diqitSylPhone.mlf

The MATLAB comand for generating syl2phone.scp is:
3. fid=fopen(‘output\syl2phone.scp', ‘w'); fprintf(fid, 'EX"); fclose(fid);

The corresponding batch command is:
@echo EX > output\syl2phone.scp

The contents of syl2phone.scp are shown next:

J7iEFE (htk/chineseDigitRecog/training/output/syl2phone.scp) : (KR 184
ENAIEIEZ =)

EX

The string "EX" represents "expand", which serves to expand syllables into
acoustic models to be used with the HTK command "HLED". This command is

used to generate digitSyl.mnl and digitSylPhone.mlf, as shown next:

HLEd -n output\digitSyl.mnl -d digitSyl.pam -1 * -i output\digitSylPhone.mlf output\syl2phone.scp
digitSyl.mlf

In the above expression, input files are in blue while output files are in red. The

output file digitSyl.mnl lists all the used acoustic models:

J7iEFE (htk/chineseDigitRecog/training/output/digitSyl.mnl) : k& 83HW T
HIEIEZ A2

sil
ling
i

er
san
si
wu

liou



ba

jiou
Hint
The extension "mnl" represents model name list.

The file digitSylPhone.mlf contains the results of converting the syllable

information in digitSyl.mlf into acoustic models for corpus training, as follows:

Example (htk/chineseDigitRecog/training/output/digitSylPhone.mif) :

In this example, since we are using syllable-based acoustic models, the

contents of digitSylPhone.mlif are the same as those in digitSyl.mlf.

4. Generate wav2fea.scp

© © N o O

10.
11.
12.
13.
14.

Before extracting acoustic features, we need to specify the file mapping
between each utterance (with extension .wav) and its corresponding feature
file (with extension .fea). This mapping is specified in the file wav2fea.scp,

which can be generated by the following MATLAB commands:
wavDir="..\waveFile';
waveFiles=recursiveFileList(wavDir, ‘wav');
outFile="output\wav2fea.scp’;
fid=fopen(outFile, 'w");
for i=1:length(waveFiles)
wavePath=strrep(waveFiles(i).path, /', '\');
[a,b,c,d]=fileparts(wavePath);
fprintf(fid, '%s\t%s\r\n', wavePath, ['output\feature\', b, '.fea]);
end
fclose(fid);

The corresponding batch command is much simpler:

(for /f "delims=" %%i in ('dir/s/b wave\*.wav') do @echo %%i output\feature\%%~ni.fea)>

output\wav2fea.scp

The contents of wav2fea.scp are shown next:



Example (htk/chineseDigitRecog/training/output/wav2fea.scp) :

From the contents of wave2fea.scp, we know that all the feature files will be put

under "output\feature" with a file extension of "fea".

15. Use HCopy.exe for acoustic feature extraction

16.

Now we can use HTK command "HCopy" to generate MFCC feature files for all

utterances:

HCopy -C mfcc13.cfg -S output\wav2fea.scp

In the above expression, mfcc13.cfg is a configuration file which specifies

parameters for generating MFCC, with the following contents:

J7UGFE (htk/chineseDigitRecog/training/mfcc13.cfg) = (kA 43 F BT Ar$2 2D

#NATURALREADORDER = TRUE
SOURCEKIND = WAVEFORM
SOURCEFORMAT = WAV
TARGETKIND = MFCC_E
TARGETRATE = 100000.0
WINDOWSIZE = 200000.0
PREEMCOEF = 0.975
NUMCHANS = 26
CEPLIFTER =22

NUMCEPS = 12
USEHAMMING =T
DELTAWINDOW = 2
ACCWINDOW= 2

The meanings of these parameters can be found in the HTK manual.

Il. Corpus training based on EM to find the optimum parameters

1. Generate file lists in trainFea.scp and testFea.scp

2.

We need to generate file lists for training and test sets, with the following
MATLAB commands:

outFile="output\trainFea.scp';



10.
11.
12.
13.
14.
15.
16.
17.

© ©®© N o o &> W

fid=fopen(outFile, 'w");
for i=1:460
wavePath=strrep(waveFiles(i).path, /', '\');
[a,b,c,d]=fileparts(wavePath);
fprintf(fid, '%s\r\n’, ['output\feature\', b, ".fea']);
end
fclose(fid);
outFile="output\testFea.scp’;
fid=fopen(outFile, 'w");
for i=461:length(waveFiles)
wavePath=strrep(waveFiles(i).path, /', '\');
[a,b,c,d]=fileparts(wavePath);
fprintf(fid, '%s\r\n’, ['output\feature\', b, ".fea']);
end
fclose(fid);

From the above program, it is obvious that the first 460 files are for training,

while all the others are for test. The corresponding batch commands are:

for %%i in (train test) do (
for /T %%)j in (%%i.list) do @echo output\feature\%%j.fea
) > output\%%iFea.scp

Note that the above code segment read contents from files train.list and test.list

(which are prepared in advance), and generates files trainFea.scp and

testFea.scp for corpus training and recognition rate computation, respectively.

The contents of trainFea.scp are:

Example (htk/chineseDigitRecog/training/output/trainFea.scp) :

18. Generate HMM template file

For corpus training, we need to generate an HMM template file to specify the

model structure, such as how many states in an acoustic model, how many



streams in a state, and how many Gaussian components in a stream, and so

on. The HTK command is:
19. outMacro.exe P D 3 1 MFCC_E 13 > output\template.hmm

where

= P: HMM system type, which is fixed to "P" for the time being.

= D: Types of the covariance matrix, which could be "InvDiagC", "DiagC", or
"FullC". The "D" is the above command represents "DiagC", which is the
most commonly used setting.

= 3: Number of states for a model

= 1: Indicate each state has 1 stream with 1 Gaussian component. (For
example, "5 3" indicates there are 2 streams in a state, with 5 and 3
Gaussian components, respectively.)

= MFCC_E: The acoustic parameters are MFCC and energy.

= 13: Dimension of the feature vector.

If this is done with MATLAB, we need to invoke genTemplateHmmFile.m, as

follows:

feaType="MFCC_E’;
feaDim=13;
outFile='output\template.hnmm’;
stateNum=3;

mixtureNum=[1];
streamWidth=[13];

genTemplateHmmFile(feaType, feaDim, stateNum, outFile, mixtureNum, streamWidth);

The generated template.hmm specifies an HMM of 3 states, with 1 stream per

state, and 1 component per stream, with the following contents:

Example (htk/chineseDigitRecog/training/output/template.hmm) :



Since this file is used to specify the structure of HMM, all the parameters are
given preset reasonable values. Moreover, the states are given indices from 2

to 4 since the first and last states are dummy in HTK convention.

20. Populate HMM template using all corpus

21.

In the next step, we need to compute the initial HMM parameters from the
corpus and put them into template.hmm to generate output\hcompv.hmm. By
doing so, we can have a set of parameters (for a single HMM of 3 states) which
is a better guess than the preset value in template.hmm. Later on, we should
copy the parameters to all of the HMMs for EM training. The following
command can populate output\template.hmm to generate

output\hcompv.hmm:
HCompV -m -0 hcompv.hmm -M output -1 output\digitSylPhone.mlf -S output\trainFea.scp

output\template.nmm

The contents of the generated output\hcompv.hmm are:

Example (htk/chineseDigitRecog/training/output/hcompv.hmm) :

From the contents of output/hcompv.htmm, it can be observed that:

= The transition probabilities are not changed.
* The mean and variance of each Gaussian have been changed to the same
values for all components. These values are obtained via MLE

(maximum likelihood estimate) based on all corpus.

22. Copy the contents of hcompv.hmm to generate macro.init

23.
24,
25,
26.
27.
28.
29.

In this step, we need to copy the contents of hcompv.hmm to each acoustic

model, with the following MATLAB commands:
% Read digitSyl.mnl
modelListFile="output\digitSyl.mnl’;
models = textread(modelListFile,'%s','delimiter',\n’,'whitespace',");
% Read hcompv.hmm
hmmpFile="output\hcompv.hmm’;
fid=fopen(hmmFile, 'r);

contents=fread(fid, inf, ‘char");



30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

contents=char(contents');

fclose(fid);

% Write macro.init

outFile="output\macro.init’;

fid=fopen(outFile, 'w");

source='~h "hcompv.hmm"";

for i=1:length(models)
target=sprintf('~h "%s"™, models{i});
x=strrep(contents, source, target);
fprintf(fid, '%s', x);

end

fclose(fid);

The corresponding DOS batch commands are:

(for /f %%i in (output\digitSyl.mnl) do @sed 's/hcompv.hmm/%%i/g' outputthcompv.hmm) >

output\macro.init

The generated HMM parameter file is macro.init, with the following contents:

Example (htk/chineseDigitRecog/training/output/macro.init) :

This file contains the HMM parameters of 11 (sil. ling. i er. san. si. wu. liou.

gi. ba. jiou) acoustic models.

42. Use mxup.scp to modify macro.init to generate macro.0

43.
44,
45,
46.

We copy output\macro.init to output\hmm\macro.0 first, and then use

HHEd.exe to modify macro.0, with the following MATLAB commands:
fid=fopen(‘output\mxup.scp’, ‘w"); fprintf(fid, ‘MU 3 {*.state[2-4].mix}'); fclose(fid);
copyfile(‘output/macro.init', ‘output/hmm/macro.0");
cmd="HHEd -H output\hmm\macro.0 output\mxup.scp output\digitSyl.mnl’;
dos(cmd);

The corresponding batch commands are:

copy /y output\macro.init output\hmm\macro.0

(@echo MU 3 {*.state[2-4].mix}) > output\mxup.scp



HHEd -H output\hmm\macro.0 output\imxup.scp output\digitSyl.mnl
The contents of mxup.scp are shown next:

JR#AR% (htk/chineseDigitRecog/training/output/mxup.scp) : (K talE st i T B
CIEZ 320

MU 3 {*.state[2-4].mix}

Its function is to increase the number of mixture components (of states 2 ~ 4)

from 1 to 3. The contents of the generated macro.0 are:
Example (htk/chineseDigitRecog/training/output/hmm/macro.0) :

From the above contents, we can observe that the variances of the three
mixtures of a given state are the same. But their mean vectors are different in

order to better cover the dataset.

47. Perform re-estimation to generate macro.1~macro.5

Now we can start training to find the best parameters for each acoustic model,
with the MATLAB commands:

48. emCount=5;

49, for i=1:emCount

50. sourceMacro=['output\hmm\macro.', int2str(i-1)];

51. targetMacro=['output\nmm\macro.', int2str(i)];

52. fprintf('%d/%d: 74 %s...\n', i, emCount, targetMacro);

53. copyfile(sourceMacro, targetMacro);

54, cmd=sprintf(HERest -H %s -1 output\\digitSylPhone.mlf -S output\\trainFea.scp

output\digitSyl.mnl', targetMacro);
55. dos(cmd);
56. end

The corresponding batch commands are:

set current=0
:loop

set /a prev=current



set /a current+=1

copy /y output\hmm\macro.%prev% output\hmm\macro.%current%

set cmd=HERest -H output\hmm\macro.%current% -1 output\digitSylPhone.mif -S output\trainFea.scp
output\digitSyl.mnl

echo %cmd%

%cmd%

if not %current%==>5 goto :loop

In the above commands, we use macro.0 as the initial guess for corpus training
to generate macro.1, and then use macro.1 to perform re-estimation to
generate macro.2. This re-estimation is repeated five times to generate

macro.1 ~ macro.5 in "output\hmm\macro.*".

Hint

Since we do not have phone-level transcription, HTK will use flat start (or equal division) to assign an

utterance uniformly to its transcribed sequence of models and states.

lll. Performance evaluation based on recognition rate

1. Use digit.grammar to generate digit.net

After corpus training, we need to evaluate the recognition rate based on a test

data set. First of all, we need to construct the lexicon net, as follows:

2. Hparse digit.grammar output\digit.net
The contents of grammer.ixt are:

J7UGFE (htk/chineseDigitRecog/training/digit.grammar) : (kR 84w RT3
FO

Ssyl=(ling | i|er|san|si|wu|liou|qi]|ba]jiou);
(sil $sy! sil)

The contents of the generated digit.net are:

Example (htk/chineseDigitRecog/training/output/digit.net) :



The schematic diagram of the net is shown next:

Hint

Note that "INULL" is a dummy node whose inputs can connected to its fanout directly.

3. Evaluate the recognition rates for both the training and test sets

This is achieved by the following HTK commands:
4. HVite -H output\macro -l * -i output\result_test.mlIf -w output\digit.net -S output\testFea.scp
digitSyl.pam output\digitSyl.mnl



The contents of the output file result_test.mif are:

Example (htk/chineseDigitRecog/training/output/result_test.mif) :

By using a similar command, we can also generate the recognition rate of the

training set.

5. Generate the confusion matrices for both inside and outside tests

Finally, we can use the following commands to generate the confusion

matrices:
findstr /v "sil" output\result_test.mIf > output\result_test no_sil.mIf
findstr /v "sil" digitSyl.mlIf > output\answer.mif

HResults -p -1 output\answer.mlf digitSyl.pam output\result_test_no_sil.mIf > output\outsideTest.txt

© © N o

type output\outsideTest.txt

The confusion matrix for the outside test is:

Example (htk/chineseDigitRecog/training/output/outsideTest.txt) :
Similarly, the confusion matrix for the inside test is:

Example (htk/chineseDigitRecog/training/output/insideTest.txt) :

As usually, the outside test is not as good as the inside test. One possible
reason is that the training corpus is not big enough to cover a variety of accents
from different individuals. Other possibilities could be the structures of the
acoustic models. In the subsequent sections, we shall explore other model

structures to improve the performance.

17-3 Digit Recognition: Varying MFCC Dimensions (8{F#i#%k:

5 MFCC #:F¥)

Old Chinese version



In the previous section, we have demonstrated how to use HTK for Mandarin digit recognition.
In this and the following sections, we shall change various settings (such as acoustic features,

acoustic model configuration, etc) to improve the recognition rates.

For modularity, we have packed the basic training and test programs into an m-file function
htkTrainTest.m. This function takes a structure variable that specifies all the parameters for

training, and generates the final test results.

If we keep the configuration of the acoustic models, we can still change the acoustic features. In
the previous section, we used a feature type of 13-dimensional MFCC_E. We can now change
it to 26-dimensional MFCC_E_D or MFCC_E_D_Z. Furthermore, we can change it to
39-dimensional MFCC_E_D_A or MFCC_E_D_A_Z. For simplicity, we have use the string

representations for various feature types, as explained next.

« E: Append energy.
« D: Apply delta operator.
« A: Apply acceleration operator.

e Z: Apply cepstrum mean subtraction (CMS).

The following exmaple uses 26-dimensional MFCC_E_D_Z for recognition:

Example 1Input file htk/chineseDigitRecog/training/goSyl26.m
htkParam=htkParamSet;

htkParam.pamFile='digitSyl.pam’;

htkParam.feaCfgFile="mfcc26.cfg’;

htkParam.feaType="MFCC_E D Z/

htkParam.feaDim=26;

htkParam.streamWidth=[26];

disp(htkParam)

[trainRR, testRR]=htkTrainTest(htkParam);

fprintf('Inside test = %g%%, outside test = %g%%)\n’, trainRR, testRR);

Output message

pamFile: *digitSyl. pam’
feaCfgFile: 'mfcc26. cfg’



waveDir: .. \waveFile’
syIMIfFile: 'digitSyl.mlf’
phoneM1fFile: ’digitSylPhone. mlf’
mnlFile: ’digitSyl.mnl’
grammarFile: ’digit. grammar’
feaType: 'MFCC E D 7
feaDim: 26
mixtureNum: 3
stateNum: 3

streamWidth: 26

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Inside test = 91.29%, outside test = 92. 86%

The corresponding batch file is goSyl26.bat.

Furthermore, the following example uses 39-dimensional MFCC_E D A Z:

Example 2Input file htk/chineseDigitRecog/training/goSyl39.m
htkParam=htkParamSet;

htkParam.pamFile='digitSyl.pam’;

htkParam.feaCfgFile='mfcc39.cfg’;

htkParam.feaType="MFCC E D A Z}

htkParam.feaDim=39;

htkParam.streamWidth=[39];

disp(htkParam)

[trainRR, testRR]=htkTrainTest(htkParam);

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR);

Output message



pamFile:

" digitSyl. pam’

feaCfgFile: ’mfcc39. cfg’

waveDir: .. \waveFile’
syIMIfFile: 'digitSyl.mlf’

phoneM1fFile: ’digitSylPhone. mlf’
mnlFile: ’digitSyl.mnl’
grammarFile: ’digit. grammar’
feaType: 'MFCC E D A 7
feaDim: 39

mixtureNum: 3
stateNum: 3

streamWidth: 39

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—-Off
Inside test = 91.07%, outside test = 92. 86%

The corresponding batch file is goSyl39.bat.

In the batch files, since we have not pack them into functions, the contents of batch files seem
more complicated. But in fact, from goSyl13.bat to goSyl26.bat, only two lines have been

changed. You can use the following command to verify their difference:

fc goSyl13.bat goSyl26.bat
Similarly, you can use the same method to verify the difference between goSyl26.bat and
goSyl39.bat.

17-4 Digit Recognition: Changing Acoustic Models (87 #¥ak:

% Model FAT)




Old Chinese version

In the previous sections, we use a syllable as an acoustic model. In this section, we shall
decompose a syllable into phones and use each phone as an acoustic model. These phones
are called monophones since they are independent of their following phones. If we have more
training data and want to distinguish phone models in a more detailed manner, we can use the

so-called biphones which is right-context dependent (RCD for short).

The new pam file for using monophone acoustic models is digitMonophone.pam, as shown

next:

J74EHE (htk/chineseDigitRecog/training/digitMonophone.pam) : (KR FEIT# 2D
ba ba

er er
jiou jiou
ling ling
liou liou
qi gi
san san
Si Si

sil sil
wu wu

In fact, we only need to replace digitSyl.pam with digitMonophone.pam, then we can proceed
with all the same training and test procedures covered in the previous sections to get the results,

as shown in the following example:

Example 1Input file htk/chineseDigitRecog/training/goMonophone13.m
htkParam=htkParamSet;

htkParam.pamFile='digitMonophone.pam’;

htkParam.phoneMIfFile='digitMonophone.mif’;

htkParam.mnlFile='digitMonophone.mnl’;

disp(htkParam)

[trainRR, testRR]=htkTrainTest(htkParam);

fprintf('Inside test = %g%%, outside test = %g%%!\n', trainRR, testRR);



Output message

pamFile: ’digitMonophone. pam’
feaCfgFile: 'mfcc. cfg’
waveDir: .. \waveFile’
syIMIfFile: 'digitSyl.mlf’
phoneM1fFile: ’digitMonophone. mlf’
mnlFile: ’digitMonophone. mnl’
grammarFile: ’digit. grammar’
feaType: 'MFCC E’
feaDim: 13
mixtureNum: 3
stateNum: 3

streamWidth: 13

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Inside test = 79.24%, outside test = 75.89%

The generated list of monophones are shown next:

J74EHE (htk/chineseDigitRecog/training/output/digitMonophone.mnl) : (KR 3445 FEIF 3% 2D
sil

|

[

ng

er



o QO

The corresponding mlf file are shown next:

Example (htk/chineseDigitRecog/training/output/digitMonophone.mif) :

The following examples uses 26-dimensional MFCC_E D Z:

Example 2Input file htk/chineseDigitRecog/training/goMonoPhone26.m
htkParam=htkParamSet;

htkParam.pamFile='digitMonophone.pam’;
htkParam.phoneMIfFile='digitMonophone.mlf’;
htkParam.mnlFile="digitMonophone.mnl’;
htkParam.feaCfgFile="mfcc26.cfg’;
htkParam.feaType="MFCC_E D Z

htkParam.feaDim=26;

htkParam.streamWidth=[26];

disp(htkParam)

[trainRR, testRR]=htkTrainTest(htkParam);

fprintf('Inside test = %g%%, outside test = %g%%\n’, trainRR, testRR);

Output message

pamFile: ’digitMonophone. pam’
feaCfgFile: 'mfcc26. cfg’

waveDir: .. \waveFile’
syIMIfFile: 'digitSyl.mlf’

phoneM1fFile: ’digitMonophone. mlf’

mnlFile: ’digitMonophone. mnl’
grammarFile: ’digit. grammar’

feaType: 'MFCC E D 7

feaDim: 26



mixtureNum: 3
stateNum: 3

streamWidth: 26

Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Inside test = 83.71%, outside test = 87.5%

The following examples uses 39-dimensional MFCC_E D A Z:

Example 3Input file htk/chineseDigitRecog/training/goMonoPhone39.m
htkParam=htkParamSet;

htkParam.pamFile='digitMonophone.pam’;
htkParam.phoneMIfFile='digitMonophone.mlf’;
htkParam.mnlFile='digitMonophone.mnl’;
htkParam.feaCfgFile='mfcc39.cfg’;
htkParam.feaType='"MFCC_E D A Z'

htkParam.feaDim=39;

htkParam.streamWidth=[39];

disp(htkParam)

[trainRR, testRR]=htkTrainTest(htkParam);

fprintf('Inside test = %g%%, outside test = %g%%\n', trainRR, testRR);

Output message

pamFile: ’digitMonophone. pam’
feaCfgFile: ’mfcc39. cfg’
waveDir: .. \waveFile’
syIMIfFile: ' digitSyl.mlf’
phoneM1fFile: ’digitMonophone. mlf’
mnlFile: ’digitMonophone. mnl’

grammarFile: ’digit. grammar’



feaType: 'MFCC E D A 7
feaDim: 39
mixtureNum: 3
stateNum: 3

streamWidth: 39

Pruning—-Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off
Inside test = 84.6%, outside test = 89.29%

17-5 Digit Recognition: Changing MFCC Dimensions and
Gaussian Component Numbers (BUF#ah: 5% MFCC 4EEEF1

Gaussian %)

Old Chinese version

In this section, we shall change both the numbers of Gaussians as well as the dimensions of

acoustic feature vectors.

In the next example, we use 13-dimensional MFCC and plot the recognition rates of inside and

outside tests as functions of the number of Gaussians:

Example 1Input file htk/chineseDigitRecog/training/htkMixture01.m
htkParam=htkParamSet;

maxMixNum=8;

for i=1:maxMixNum
htkParam.mixtureNum=i;
fprintf('====== %d/%d\n’, i, maxMixNum);
[trainRR(i), testRR(i)]=htkTrainTest(htkParam);



end

plot(1:maxMixNum, trainRR, 'o-', 1:maxMixNum, testRR, '0-");
xlabel('No. of mixtures'); ylabel('Recog. rate (%)");
legend('Inside test', 'Outside test);

Output message

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—0ff
Pruning—0ff
Pruning—0ff



Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—-Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Output figure
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In the above example, we have packed the corpus training and test in an m-file function
htkTrainTest.m. Each time this function is invoked, it will do feature extraction. If the feature

type is fixed, we can omit this part by changing this function for saving computation time.

We can also use MFCC of dimensions 13, 26, and 39 to plot the recognition rates of inside and
outside tests as functions of the number of Gaussian components, as shown in the following

example:

Example 2Input file htk/chineseDigitRecog/training/htkMixtureMfcc01.m

% Get the RR when feature dim. and mixture no. are changing

htkParam=htkParamSet;

maxMixNum=8;

for i=1:maxMixNum
htkParam.mixtureNum=i;
fprintf('====== %d/%d\n’, i, maxMixNum);
[trainRR(i,1), testRR(i,1)]=htkTrainTest(htkParam);

end



htkParam.feaCfgFile="mfcc26.cfg’;
htkParam.feaType="MFCC_E D Z
htkParam.feaDim=26;
htkParam.streamWidth=[26];
for i=1:maxMixNum
htkParam.mixtureNum=i;
fprintf('====== %d/%d\n’, i, maxMixNum);
[trainRR(i,2), testRR(i,2)]=htkTrainTest(htkParam);

end

htkParam.feaCfgFile="mfcc39.cfg’;
htkParam.feaType="MFCC_E D A Z}
htkParam.feaDim=39;
htkParam.streamWidth=[39];
for i=1:maxMixNum
htkParam.mixtureNum=i;
fprintf('====== %d/%d\n’, i, maxMixNum);
[trainRR(i,3), testRR(i,3)]=htkTrainTest(htkParam);

end

plot( 1:maxMixNum, trainRR(:,1), "*-b', 1:maxMixNum, testRR(;,1), 'o-b’, ...
1:maxMixNum, trainRR(;,2), "*-g', 1:maxMixNum, testRR(;,2), '0-g/, ...
1:maxMixNum, trainRR(:,3), "*-r', 1:maxMixNum, testRR(:,3), 'o-r);
xlabel('No. of mixtures'); ylabel('Recog. rate (%)");
legend('13D, Inside test', ‘13D, Outside Test', '26D, Inside Test', ‘26D, Outside test', ‘39D, Inside test', '39D, Outside test',

'Location’, '‘BestOutside');

Output message

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off



Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—-Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off



Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Pruning—-Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—-Off
Pruning—-Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—-Off
Pruning—Off
Pruning—Off
Pruning—Off



Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—-Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—-Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—Off



Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—-Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—Off
Pruning—Off
Pruning—-Off

Pruning—Off
Pruning—Off



Pruning—Off
Pruning—Off
Pruning—Off

Pruning—Off
Pruning—Off
Pruning—-Off
Pruning—Off
Pruning—-Off

Output figure
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The above example take a longer time since it involves 24 cases of training and test. (3

dimensions x 8 Gaussians = 24 cases).

17 TEE
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1. (**) Mandarin Digit Recognition: Please follow the steps in goSyl13.m to obtain the
inside and outside-test recognition rates, where the traing and test copora will be
given by TA in the class. The major part of this exercise is to prepare related scripts
and parameter files, so your task is condensed to the writing of an m-file script
goGenFile4htk.m which collects information of wave files and generates the following
files for HTK training:

a. digitSyl.mif
b. wav2fea.scp

c. trainFea.scp & testFea.scp

Then you can start training and computing recognition rates. For this part, you need to
write an m-file script goHtkTrainTest.m to display the results. In particular, you need to
compute the recognition rates for both inside and outside tests, when the dimension

of MFCC is set to 13, 26, and 39, respectively. Please show the confusion matrices to

TA for your demo. My results are

o Based on goSyl13.m: inside test 86.38%, outside test 79.51%.
o Based on goSyl26.m: inside test 92.07%, outside test 87.25%.
o Based on goSyl39.m: inside test 95.17%, outside test 89.53%.

Please be aware of the following facts:

o Feature files cannot take Chinese name since HTK does not support.

o Every feature file name should be unique, so you need to convert the Chinese
directories into numbers, plus the original file names to form a unique name for
each feature file. For instance, 912508 #}#ff\3a_7436_16017.wav ===>
00002-3a_7436_16017 .fea.

o HTK s case sensitive, so you need to make sure a file name should appear

correctly in a file list, and so on.

Hint: You can use recursiveFileList.m to retrieve all wave files under a given directory.



2. (™) Programming contest: Mandarin digit recognition: Repeat the previous
exercise by trying all kinds of methods to obtain the maximum performance defined as
the average recognition rate of both inside and outside tests. Please record all the
related settings (dimension of acoustic feature, unit for acoustic model, number of
states, number of streams, number of mixtures, etc) in method.txt, together with the
description of your approach. Please upload the following files:

o The method description file method.txt
o The final macro file, with file name "final.mac"

o All the other necessary files for computing recognition rates
TA will use these files to reproduce your recognition rates.

3. (**) English letters recognition: Please repeat the exercise 1, but use the corpus of
English letters instead. TA will give the training and test corpora in the class.
4. (**) Programming contest: English letters recognition: Please repeat the

exercise 2, but use the corpus of English letters instead. TA will give the training and

test corpora in the class.
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a. feEAlbE: BRI 0z /NG ===> | 58K 2|5 1 |WZ] Nz
b. FERELE: BB Iz /Nz ===> 8|28k 2| Ei| 0z |z
2. Dynamic programming:  (4HEI#4H78)

[ AR A | B GREST

o BEBh: AwE LA REM I
o GREG: I RTREE B, Bl
o Ifa: Bt [IEEKE R g bz | i [gia ] A Tang
o MELrha e [FEIR10C)  [IREXIR 10 0] PRI 8] s,
WA SERITEEGEE T, A e R N IEMESE . oh, AN S, R
T ] o A o



FEGESCTT AL, H el B e s, G S s ] Be AN BUR WPA REZE 2, FllnfitE4 Benq 8k
google, = & N4 Schwarzenegger miith# Rocktop %5, MLl AN L% R, siehE
JEIEAT 955 1 THI

18-3 kA i

— MR TS, RSP R AR AU L — 8 HMM, A% FHEH] Viterbi Search 2leEt 5
T HMM [0 iAo, AT DL —HEE )49 (Lexicon Net) , ZRHL#I
Viterbi Search G145, RIHEZE A MRS f), Bl Loy A — .

a. Linear Net
b. Tree Net

c. Double-ended Tree Net

CLR F0 R ik ) 2% S 491«

JRUERE CEUFRERI A4 R0t © (Rl ssisim FRNars B
=¥ il
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&ALigT

£ LR BURF
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& rh T B

P my DL BB S 5L linear net, [EZR40 R
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B, RIS R i AR, B nl DAEMDGE, $eH Ao CZ R By, it e st iR,

k4
k4

._

E R AR S DRSS SeET R, W RAfS 240 R E ) double-ended tree net:



s— RV

7E Ak &SR i A i A b, AR (R R R AR ATES, LR AT RE I S %
TR AR A Bk G5 REAR [A) . FRf)Eg s, M2 linear net. tree net (/2 double-ended tree net,
T BT R A e 58—k .

EFIRFRHT, ALK linear net HH I A A In) A 8RS A AT HE Y, W SR BT SO v) A RS
RAEITHER, Al L4358 —4H tree net Az double-end tree net.

AL R AR AR 0, T LUAE 2 TG R 8 et 5, 0] DAORGS HEA f/D MK
FIRETRS, R AR (RBNEEVAWANE, HaE AR Ea, Bondt. H

MBS F IR KR 2 R T 2421 tree net, WA RE R4 net K %:
Example CEURHER] 4 7 treeNet.net) -

7 EdRdEEh, TN=18] {8£f 18 i (Nodes) , [L=22] {4 22 #&ifish (Links) ,
[1=4 W=tai] HIZ:RU% 4 (AEE 552 tai, [J=16 S=10 E=14] HIZE08%5 16 f&iiss
PRGN B2 BTEL 10, &5HA7 &SR 14, 680, ARMERW R

J=13

=14
L1200, # =130 18
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PR St Lt 45
18-4 2R
WA B, PR M AT 55 25 R S sk ok

R R, o LU SR AR A Rt
WU SRR (1 2 By, AUl B R SR R A R DL S A A1 ) 44 )«

o EELEI (Acoustic Model, BXfEFE Model) : A HMM [1—{f4h 867, wH—

{18 PSR 0,5 B IR T o AP T DA 5 B0 B o A (i S
i (Syllables) : SE#EFEE BN, AP SCAGHE, — (87 o6, DL SOk

N7

* H

a, W g a] DL B BUE B, 1 tomorrow A4 =T

e % (Phoneme) : ulfijf§ Phone, J&#f & /ML, Bl [ K] (R95w nl DL R
TRY W E, AR RN AE— AN SE, Ui B0 BEE, TR R —
EE SRR M 5 25, Blndh . o 4. X&, JERMESE SR, #e s

A 54k
o Monophone: ULEL—3 2 /E & — A, .

« Biphone: LUHGE M6 75 EAF A2 458, ¥ /& RCD (Right-context dependent), 4

BsRE RS T - R - T A R W AT AN[R] (R A
o Triphone: LI —fldl 75 2 AF A8 SRR, Bl Hs X AE T + X -5 [ <+ X -TOR 2 I AN [

INEEZ 2T RicE
DAFRAM & I B AR &L 5, /2 Lh biphone Z4E SR (W HLAT, #RBE i & B 3] Mixture [ F&

JE AR, A W] LU R A7 T



Syllable: 2 (tai) " Jt(bei) > T (shi)
T
Model: b+e e+i i+sil
N /I\
State: State 1| |State 2| |State 3
Stream: MFC AMi':CC AAMFCC
Mixture: l\\ Mixtuge Mixture
Mixture Mixture

1 LlEd, 51 state M4y =M stream, 43jll/& MFCC. AMFCC. AAMFCC, f#j® MFCC
B )RR, R 6 {f mixture 2K¥ MFCC &4, £jA AMFCC X
AAMFCC, FAM&HIifEl mixture 28 A

A LA . HMM BB ARG, el an h -

& (tai) it (bei)

t+a a+ti I+sil b+e e+ij i+sil

\

2 1

bl AR RERH T = transition:

» Type O: Transition between syllable
» Type 1: Transition between model

» Type 2: Transition between state

— U R AR (R 20, FRAPMT sk il AR HTK 2SR i b S R (R R 280, 5
R TR .






