Power Compiler™
User Guide

Version L-2016.03-SP4, September 2016

SYNOPSYS

Copyright Notice and Proprietary Information

©2016 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to
Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with
Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.

All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.

690 E. Middlefield Road
Mountain View, CA 94043
WWW.SYNnopsys.com

Power Compiler™ User Guide, Version L-2016.03-SP4

Copyright Notice for the Command-Line Editing Feature
© 1992, 1993 The Regents of the University of California. All rights reserved. This code is derived from software
contributed to Berkeley by Christos Zoulas of Cornell University.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice for the Line-Editing Library
© 1992 Simmule Turner and Rich Salz. All rights reserved.

This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the

University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and
redistribute it freely, subject to the following restrictions:

1.The authors are not responsible for the consequences of use of this software, no matter how awful, even if they arise

from flaws in it.

2.The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users ever

read sources, credits must appear in the documentation.

3.Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation.

4.This notice may not be removed or altered.

Power Compiler™ User Guide, Version L-2016.03-SP4

Power Compiler™ User Guide, Version L-2016.03-SP4

Contents

About ThisSUser GUIAEot e e e XXVi

CUStOMEr SUPPOI. . . o o XXViii

1. Introduction to Power Compiler

Power Compiler Methodology. e e 1-2
Power Library Models. 1-2
Power Analysis Technology e 1-3
Power Optimization Technology 1-4
Getting Started With Power Compiler. i 1-5
Library Requirements 1-5
Command-Line Interface 1-6
Graphical User Interface i i 1-6
License Requirements. 1-7
Reading and Writing Designs 1-8

2. Power Compiler Design Flow

Powerinthe Design CyCle 2-2
Power Optimization and Analysis Flow. 2-3
SIMUIALION . . . 2-5
Enable Power Optimization e 2-5
Synthesis and Power Optimization 2-5
Power Analysisand Reporting. 2-5

Power Compiler™ User Guide Version L-2016.03-SP4

3. Power Modeling and Calculation

POWEr TYPES . . o 3-2
Static POWET. . . oo 3-2
DynamiC POWET 3-2

SWiItChing POWer . . . e 3-2
Internal Power. 3-3

Calculating POWer. 3-4

Leakage Power Calculation. 3-4
Multithreshold Voltage Libraries 3-5
Internal Power Calculation. 3-6
NLDM Models. 3-7
State and Path Dependency. 3-8
Riseand FallPower 3-9
Switching Power Calculation i 3-10
Dynamic Power Calculation. 3-10
Dynamic Power Unit Derivationco .. 3-10
Power Calculation for Multirail Cells 3-12

Using CCS Power Librarieso et 3-14

Voltage Scaling. 3-14
Script Examples for Voltage Scaling 3-15

4. Generating SAIF Files

About Switching ACtiVity e 4-2
Introduction to SAIF Files 4-2
Generating SAIF Files 4-3
Generating SAIF Files From Simulation 4-4
Generating SAIF Files From SystemVerilog or Verilog Simulations.. 4-5
Generating SAIF Files From VHDL Simulation. 4-13
Generating SAIF Files From VCD Files. e 4-14
Convertinga VCD Filetoa SAIFFile 4-14
Generating SAIF Files from FSDB Output Files 4-15
Verilog Switching Activity Examples. 4-15
RTL EXample. . . 4-15
Verilog Design Description 4-15

RTL Testbench 4-17

RTL SAIFFIle. ... e e e 4-18

Contents vi

Power Compiler™ User Guide Version L-2016.03-SP4

Gate-Level Example 4-20
Gate-Level VerilogModule 4-20

Verilog Testbench 4-21
Gate-Level SAIFFile 4-22

VHDL Switching Activity Example e 4-23
VHDL Design Description 4-23
RTL Testbench. 4-24
RTL SAIF File . .. e e e 4-24

5. Annotating Switching Activity

Types of Switching Activity to Annotate 5-2
Annotating Switching Activity Using RTL SAIF Files 5-2
Using the Name-Mapping Database 5-3
Integrating the RTL Annotation With PrimeTime PX 5-4
Annotating Switching Activity Using Gate-Level SAIFFiles 5-4
Reading SAIF Files Using the read_saif Command 5-5
Reading SAIF Files Using the merge_saif Command.................... 5-6
Annotating Inferred Switching Activity. 5-7
Annotating Switching Activity Using the set_switching_activity Command. 5-8
Fully Versus Partially Annotating the Design 5-11
Analyzing the Switching Activity Annotation. 5-12
Removing the Switching Activity Annotation., 5-12
Design Objects Without Annotated Switching Activity 5-13
Default Switching Activity Values. 5-13
Propagating the Switching Activity. 5-14
Deriving the State- and Path-Dependent Switching Activity 5-15

6. Performing Power Analysis

OV IV W . . . i e 6-2
Identifying Power and ACCUIaCy e 6-2
Factors Affecting the Accuracy of Power Analysis 6-3
Switching Activity Annotation 6-3

Delay Model 6-4
Switching Activity Propagation and Accuracy. 6-4

Contents vii

Power Compiler™ User Guide

Version L-2016.03-SP4

Overriding Library Power Characterization.

Performing Gate-Level Power Analysis

Using the report_power Command

Using the report_power_calculation Command

Analyzing Power With Partially Annotated Designs

Power Correlation.c ...

Performing Power Correlation
Power Correlation Script

Analyzing the Design For Power Analysis

Characterizing a Design for Power.

Reporting the Power Attributes of Library Cells .

PowerReports

Power Report Summary
Net Power Report
CellPowerReport
GroupReport.
Hierarchical Power Reports.
Power Report for Block Abstraction.

7. Clock Gating

Introductionto Clock Gating

Using Clock-Gating Conditions.

Clock-Gating Conditions
Enable Condition
Setup Condition

Enabling or Disabling Clock Gating on Desig

Inserting Clock Gates

Using the compile_ultra -gate_clock Comma
Using the insert_clock_gating Command . .
Clock-Gate Insertion in Multivoltage Designs

Clock Gating Flows.

Contents

Inserting Clock Gates in the RTL Design. . .
Inserting Clock Gates in Gate-Level Design

noObjects.

nd ...

6-5

6-5
6-6
6-9

6-10
6-11
6-11

6-12
6-13
6-15

6-15
6-17
6-18
6-19
6-20
6-21
6-23

7-3

7-5
7-5
7-6
7-8

7-10
7-10
7-10
7-11

7-11
7-11
7-12

viii

Power Compiler™ User Guide

Version L-2016.03-SP4

Ensuring Accuracy When Using Ideal Clocks.

Specifying Clock-Gate Latency.
The set_clock_latency Command
The set_clock_gate_latency Command.0 ..

Applying Clock-Gate Latency ..
Resetting Clock-Gate Latency. .

Comparison of the Clock-Gate Latency Specification Commands

Calculating the Clock Tree Delay From Clock-Gating Cell to Registers.

Specifying Setupand Hold
Predicting the Impact of Clock Tree Synthesis

Choosing a Value for Setup. . ..
Choosing a Value for Hold.

Clock-Gating Styles

Default Clock-Gating Style.

Selecting Clock-Gating Style . . .
Choosing Gating Logic. . ..

Choosing an Integrated Clock-GatingCell
Choosing a Configuration for Discrete Gating Logic.

Choosing a Simple Gating C
Choosing a Simple Gating C

ellbyName............
elland Library by Name

Designating Simple Cells Exclusively for Clock Gating
Choosing a Specific Latchand Library

Choosing a Latch-Free Style
Improving Testability

Connecting the Test Ports Throughout the Hierarchy.
Using Instance-Specific Clock-Gating Style

Modifying the Clock-Gating Structure

Changing a Clock-Gated Registe

r to Another Clock-Gating Cell

Removing Clock-Gating Cells Fromthe Design
Rewiring Clock Gating After Retiming

Integrated Clock-Gating Cells.

Integrated Clock-Gating Cell Attri
Pin Attributes
Timing Considerations.

Clock-Gating Naming Conventions. .

Contents

Example Script for Naming Style

butes

7-13

7-13
7-14
7-15
7-17
7-17
7-17

7-18

7-19
7-21
7-22
7-23

7-23
7-24
7-26
7-27
7-27
7-29
7-34
7-34
7-34
7-36
7-36
7-37
7-42
7-43
7-46
7-46
7-47
7-47

7-48
7-48
7-50
7-51

7-51
7-53

Power Compiler™ User Guide Version L-2016.03-SP4

Example Script of Output Netlist 7-53
Keeping Clock-Gating Information in a Structural Netlist 7-54
Identifying and Preserving Clock-Gating Cells 7-55
Identification of Clock-GatingCells. 7-55

Explicit Identification of Clock-GatingCells 7-55
Preserving the Identified Clock-Gating Cells 7-56
Identified Clock-Gating Cells and dont_touch. 7-58
Handling Clock-Gating Edge Conflicts 7-59
Comparison of Clock-Gate Identification Methods 7-60
Usage Flow With the write_script Command 7-60

Usage Flow With the identify_clock_gating Command. 7-61
Replacing Clock-Gating Cells. 7-62
Clock-Gate Optimization Performed During Compilation 7-66
Hierarchical Clock Gating e e 7-66
Enhanced Register-Based Clock Gating. 7-68
Multistage Clock Gating. 7-70
Multistage Clock-Gating Flow. 7-72

Clock Gate Merging . . . o v oo vt ettt e e e e e e e 7-72
Placement-Aware Clock Gating in Design Compiler Graphical. 7-75
Clock Gating Multibit Registers i e 7-76
Performing Clock-Gating on DesignWare Components 7-77
Reporting Command for Clock Gates. 7-78
The report_clock_gating Command. 7-78

8. XOR Self-Gating

XOR Self-Gating ConCepts.o e e 8-2
Using XOR Self-Gating in Power Compiler 8-3
XOR Self-Gating FIows 8-3
Library Requirements for XOR Self-Gating 8-5
Unsupported Registers for XOR Self-Gating. 8-6
Sharing XOR Self-Gates. 8-6
Inserting XOR Self-Gates e 8-6
Specifying Objects for XOR Self-Gating 8-7
XOR Self-Gating the Clock-Gated Registers 8-7
Specifying Options for XOR Self-Gating 8-7

Contents X

Power Compiler™ User Guide Version L-2016.03-SP4

Querying the XOR Self-Gates e 8-8
Reportingthe XOR Self-Gates e e 8-8

9. Power Optimization

OV IV W . . . oo 9-2
Input and Output of Power Optimization 9-2
Power Optimization in Synthesis Flow. 9-4

General Gate-Level Power Optimization 9-5

Leakage Power Optimization e 9-5

Dynamic Power Optimization 9-5

Enabling Power Optimization 9-6
Leakage Power Optimization Based on Threshold Voltage. 9-7

Multiple Threshold Voltage Library Attributes. 9-7
The set_multi_vth_constraint Command 9-8
Analyzing the Multiple Threshold Voltage Library Cells 9-8
Leakage Optimization for Multicorner-Multimode Designs 9-10

Performing Power Optimization it 9-11
Settings for Power Optimization 9-11
Power Optimization in the Synopsys Physical Guidance Flow 9-11

Settings for Low-Power Placement. 9-12

10. Multivoltage Design Concepts

Multivoltage and Multisupply DeSIgNnS.ot 10-2
Library Requirements for Multivoltage Designs 10-2
Liberty PGPRInNSyntax 10-3
Level-ShifterCells 10-3

PG Pin Configuration Support 10-3
Isolation Cells 10-4
Using Standard Cells as IsolationCells 10-5
Single-Rail and Dual-Rail Isolation Cells 10-5
NOR-Style Isolation Cells e 10-6
Requirements of Level-Shifter and IsolationCells. 10-6
Retention RegisterCells 10-7
Multithreshold-CMOS Retention Registers. 10-7
Power-Switch Cells 10-9

Contents Xi

Power Compiler™ User Guide Version L-2016.03-SP4

Always-On Logic Cells. 10-9
POWEr DOMAINS e 10-10
Shut-Down BIOCKS 10-11
Marking Pass-Gate Library Pins. 10-11

Volage ArBaS 10-12

11. UPF Multivoltage Design Implementation

Multivoltage Design Flow Using UPF. 11-3
Power INtent CoNCEPLS e 11-5
UPF Script Example e 11-9
Defining Power Intent in UPF 11-11
Name Spacing Rules for UPF Objects and Attributes 11-12
Defining the Power Intentinthe GUI. 11-12
UPF Diagram VIEWo e 11-14
Creating Power DOmainsttt e e e e 11-14
Representation of Power Domain in the UPF Diagram View. 11-16
SO . o e 11-16
Expanding and Collapsing Power Domainsinthe GUI 11-17
Viewing Hierarchical Cell and Power Domain Boundaries 11-18
Creating SUPPlY PO,o e 11-20
Adding Port State Information to Supply Ports 11-21
Representation of Supply Ports in the UPF Diagram View 11-22
Creating Supply Nets 11-22
Specifying Primary Supply Nets for a Power Domain 11-23
Representing Supply Nets in the UPF Diagram View 11-24
Connecting Supply Nets 11-25
Converting the PG Information in RTLto UPF 11-26
Specifying SUppPly Sets. 11-26
Creating SUpply Sets.o 11-27
Creating Supply SetHandles. 11-28
Restricting Supply Sets Available to a Power Domain. 11-29
Refining Supply Sets. 11-29
Associating Supply Sets With Supply SetHandles 11-31

Contents Xii

Power Compiler™ User Guide Version L-2016.03-SP4

Rules for Associating Supply Sets. 11-31
Defining Power States for the Components of a Supply Set. 11-32
Correlated Grouping of Supply Voltage Triplets 11-33
AlWays-ONn LOgIC. . .. oot 11-34
Marking Library Cellsas Always-On 11-34
Marking Pass-Gate Library Pins 11-34
Always-On Optimization i e 11-35
Voltage-Aware Always-On Synthesis. 11-36
Always-On Optimization on Top-Level Feedthrough Nets. 11-36
Always-On Optimization on Disjoint Voltage Area. 11-36
Always-OnTie Cells. 11-38
Basic Always-On Tie Cell Mapping. 11-38
Enhanced Constant Propagation 11-39
Enhanced Always-On Tie CellMappingt 11-40
Specifying Level-Shifter Strategies 11-40
Using Specific Library Cells With the Level-Shifter Strategy 11-42
Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets 11-42
Representing Level-Shifter Strategies in the UPF Diagram View 11-42
Specifying Isolation Strategies 11-44
Using the set_isolation_control Command 11-46
Rules Applicable for Location Fanout 11-47
Order of Precedence of Isolation Strategies, 11-48
Using Specific Library Cells With Isolation Strategies 11-49
Aligning Isolation Strategies to Constant Drivers. 11-49
Isolation and Level-Shifter Cells Connected Back-to-Back 11-52
Representing Isolation Strategies in the UPF Diagram View. 11-53
Setting UPF Attributes on Ports and Hierarchical Cells 11-55
Setting Attributes on Ports 11-55
Specifying Supplies for Repeaters L. 11-57

Setting Attributes on Hierarchical Cells 11-59
Extending the Power Domain Boundary. 11-60

Setting Terminal Boundaries. i 11-60
Specifying Retention Strategies 11-62
Choosing Specific Library Cells With Retention Strategies 11-63
Retention Strategy and Clock-GatingCells 11-64
Representing Retention Strategies in the UPF Diagram View. 11-64

Contents Xiii

Power Compiler™ User Guide Version L-2016.03-SP4

Creating Power SWItChes 11-65
Representation of Power Switches in the UPF Diagram View. 11-65
Power State Tables 11-66
Creating Power State Tables 11-66
Defining the States of Supply Nets 11-67
Visually Analyzing Power State Tables in the UPF Diagram View. 11-68
Supportfor Well Bias 11-70
Inserting Power Management Cells i, 11-70
Reviewing the UPF Specifications 11-72
Commands to Query and Edit Design Objects 11-72
Reviewing the Power Intent Using the Design Vision GUI 11-73
Applying the Power Intent Changes 11-77
Examining and Debugging UPF Specifications 11-78
The check_mv_design Command. iiiiiiinnnnnnn. 11-78

MV AVISOr GUI . . .o e 11-78
Checking for Design Violations. 11-80
Examining Design Violations in the MV Advisor Violation Browser 11-83
Exploring the Violations 11-85

The analyze_mv_design Command 11-89
Analyzing Multivoltage Design Connectionsinthe GUI 11-89

Writing the Power Information. 11-92
Preserving the Command Orderinthe UPF File 11-93
Controlling the Line Widthinthe UPF' File 11-94
Writing and Reading Verilog Netlists With Power and Ground Information 11-95
Power and Ground Supply Connection Syntax 11-95
SUPPLY SetS . . oo 11-97
Power Switches 11-97
Reading Verilog Netlists With Power and Ground Supply Connections 11-98
Golden UPF Flowo 11-98
Reporting Commands forthe UPFFlow. 11-100
UPF-Based Hierarchical Multivoltage Flow Methodology. 11-101
Steps in the Hierarchical UPF Design Methodology 11-101
Block-Level Implementation 11-101
Top-Level Implementation. i 11-105

Contents Xiv

Power Compiler™ User Guide Version L-2016.03-SP4

Assembling Your Design.o 11-106
Characterization of Supply Sets and Supply Nets. 11-106
Criteria for Characterization i 11-106
Characterizationof Supply Sets 11-107
Automatic Inference of Related Supply Net. 11-108
Top-Level Design Integration. 11-110
Power Domain Mergingouu ettt 11-110
Legacy BIOCKS 11-111

12. Library Setup for Power Optimization

Basic Library Requirements for Multivoltage Designs 12-2
Power and Ground Pin Syntax 12-2
Converting Libraries to PG Pin Library Format 12-2

Using FRAM VieWw 12-2
Using Tcl Commandsttt 12-3
Tcl Commands for Low-Power Library Specification 12-5
Macro Cells with Fine-Grained Switches. 12-5

Library Usage in Multicorner-Multimode Designs. it 12-6

Link Libraries With Equal Nominal PVT Values. 12-6

Setting the dont_use Attribute on Library Cells 12-8
Distinct PVT Requirements e 12-8
Automatic Detection of Driving Cell Library 12-10
Relating the Minimum Library to the Maximum Library 12-11
Unique Identification of Libraries Basedon File Names 12-11

Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells . . . 12-12
Using the set_opcond_inference Command 12-12

Deviating from the Inferred Operating Condition and Its Impact. 12-13

13. Power Optimization in Multicorner-Multimode Designs

Optimizing Multicorner-Multimode Designs 13-2
Optimizing for Leakage Power. 13-2
Optimizing for Dynamic Power Using Low-Power Placement. 13-4

Reporting Commands. 13-5
report_scenarios Command 13-5
Reporting Examples for Multicorner-Multimode Designs. 13-6

Script Example for Multicorner-Multimode Flow 13-8

Contents XV

Power Compiler™ User Guide Version L-2016.03-SP4

Appendix A. Lower Domain Boundary Support

INErOdUCHION e A-2
Enabling the Lower Domain Boundary Feature A-2
Changes to the Application of the Isolation and Level-Shifter Strategies......... A-3
Specifying Design Instances Using Wildcard Characters A-4
Specifying Design Instances Using SystemVerilog Elements. A-5

Filtering the Design Elements Using the -applies to Option............... A-6
Insertion of Back-to-Back Isolation and Level-Shifter Cells. A-6
Impact on Hierarchical Flow i A-7
Bottom-Up FIOW. A-8
Top-Down FIOW A-9
Characterization of the Related Supply A-10

Appendix B. Integrated Clock-Gating Cell Example

Library DescCriplion e B-2
Example SchematiCs B-4
Rising-Edge Latch-Based Integrated Cells B-5
Rising-Edge Latch-Free Integrated Cells. B-7
Falling Edge Latch-Based Integrated Cells B-8
Falling-Edge Latch-Free Integrated Cells B-10

Appendix C. Attributes for Querying and Filtering
Derived Attribute Lists.o e C-2
Usage Examples. e e C-4

Appendix D. Power Compiler Command and Variable Reference

Getting Help D-2
Accessing Help e D-2
Man Page Viewing INStruCtions. D-2
Viewing Man Pagesin SolvNet D-2
Setting Up the UNIX Environment. i i e e D-3
Viewing Man Pages From UNIX D-3
Viewing Man Pages Fromdc_shell D-3
Power Compiler Commands.ttt e D-3

Contents XVi

Power Compiler™ User Guide

Contents

add_power_state.......
add_pst_state
all_clock gates
all_isolation_cells.
all_level shifters
all_self gates..........
all_upf_repeater_cells . ..
analyze library.
analyze dw_power
analyze_mv_design.
apply_clock_gate_latency
associate_supply_set ...
characterize...........
check_level_shifters
check_mv_design
compile
compile_ultra.
connect_logic_net......
connect_supply_net.
convert pg............
create_logic net
create_logic_port.......
create_power_domain. . .

Version L-2016.03-SP4

create_pPOWEr _State groUD oot vttt e e e ettt

create_power_switch. . ..
create_pst
create_supply net......
create_supply_port
create_supply_set......
find_objects
get_power_domains
get_power_switches
get_related_supply net. .
get_supply nets........

get_supply_ports
generate_mv_constraints

D-3
D-4
D-4
D-4
D-4
D-5
D-5
D-5
D-5
D-5
D-6
D-6
D-6
D-6
D-6
D-7
D-8
D-8
D-8
D-8
D-9
D-9
D-9
D-9
D-9

D-10

D-10

D-10

D-10

D-10

D-11

D-11

D-11

D-11

D-12

D-12

XVii

Power Compiler™ User Guide

Contents

Version L-2016.03-SP4

identify_clock_gating
infer_switching_activity e

insert_clock_gating
insert_isolation_cell
insert_mv_cells . ..
lib2saif
load_upf.........
map_isolation_cell .

map_level _shifter cell........

map_power_switch
map_retention_cell
merge_saif.
propagate_constrain

IS .

propagate_switching_activity.
query_cell_instanCes. e

query_cell_mapped

query_map_power_SWItCh.

query_net_ports. . .
query_port_net. . . .
query_port_state . .
query_power_switch
query pst........
query_pst_state.. . .
read _saif

remove_clock_gating.
remove_clock _gating_style
remove_dft_clock gating pin
remove_isolation_cell e
remove _level shifters e

remove_power_dom
remove_upf......

= 1] o

replace_clock_gates e

report_clock_gating

report_dft_clock gat
report_dft_clock_gat
report_isolation_cell

ing_configuration.
INg_PIN.

D-12
D-13
D-13
D-13
D-13
D-14
D-14
D-14
D-14
D-14
D-15
D-15
D-15
D-16
D-16
D-16
D-17
D-17
D-17
D-17
D-17
D-17
D-18
D-18
D-18
D-19
D-19
D-19
D-19
D-19
D-19
D-20
D-20
D-20
D-20
D-21

XViii

Power Compiler™ User Guide

Contents

report_level _shifter e

report_lib . .

report._ mv_library cells e
FEPOIT PO L . e
report_power_calculation. e
report_power_domaint e
report_power_gatingottt
report_power_pin_info.
report_power_SwitCh e

report_pst. .

report_retention_cell e

report_saif .

report_self_gating
FEPOIt_SUPPIY Nt . . . e
report_ SUpPPlY PO, . ..o e
reset_clock _gate latency e
reset_dft_clock_gating_configuration
reset_switching_activity. e
rewire_Clock_gating.

saif_map ..
save_upf ..

set_cell_internal_power.
set_clock_gate latency
set _clock gating_objects.
set_clock_gating_registers
set_clock_gating_enable.
set clock gating_style.
Sel_COSt PriONitY.
set_design_attributes.
set_dft clock gating_configuration.
set_dft_clock gating_pin.
set_dft_power_control
set_domain_supply _net.
Sel dONt_USE
Set_equivalent

set_isolation

Version L-2016.03-SP4

D-21
D-21
D-22
D-22
D-23
D-23
D-23
D-23
D-23
D-24
D-24
D-24
D-24
D-25
D-25
D-25
D-25
D-25
D-25
D-26
D-26
D-27
D-27
D-27
D-27
D-28
D-28
D-28
D-29
D-29
D-29
D-29
D-29
D-30
D-30
D-30

XiX

Power Compiler™ User Guide

Power Compiler Variables

Contents

set_isolation_cell
set_isolation_control
set leakage power_model
set level shifter................
set level shifter cell............
set_multi_vth_constraint
set_port_attributes.
set_power_clock_scaling.
set power guide...............
set_power_prediction.
set_power_switch_cell.
set query rules................
set_related_supply_net..........
set_replace_clock_gates.........
set retention
set_retention_cell.
set _retention_control............
set_retention_control_pins........
set _retention_elements..........
set_scenario_options.
set_scope
set_self _gating_objects..........
set_self_gating_options.
set_switching_activity
set_switching_activity_profile
set_upf_query_options
unset_power _guide.............
upf_version
write saif
write_script.

Version L-2016.03-SP4

abstraction_enable_power_calculation
compile_power_domain_boundary_optimization.

enable_golden_upf
enable_rule_based_query........

golden_upf_report_missing_objects

D-30
D-31
D-31
D-31
D-31
D-32
D-32
D-32
D-33
D-33
D-33
D-33
D-34
D-34
D-34
D-35
D-35
D-35
D-36
D-36
D-36
D-36
D-36
D-37
D-37
D-37
D-37
D-38
D-38
D-38

D-38
D-38
D-39
D-39
D-39
D-39

XX

Power Compiler™ User Guide

Contents

Version L-2016.03-SP4

hdlin_enable_upf_compatible_ naming

link_allow_upf_design_mismatch .

mv_allow _Is_on_leaf pin_ boundary

mv_allow_va_beyond_core_area .
mv_input_enforce_simple_names.

mv_insert_level_shifters on ideal nets,
mv_make_primary_supply_available_for_always on....................
mv_no_always_on_buffer_for_redundant_isolation

mv_no_cells_at default va......
mv_no_main_power_violations . . .
mv_output_enforce_simple_names
mv_output_upf_line_indent
mv_output_upf_line_width.

mv_skip_opcond_checking_for_unloaded_level_shifter

mv_upf tracking
mv_use_std_cell_for_isolation. . . .
physopt_power_critical_range. . . .
power_cg_all registers
power_cg_auto_identify.
power_cg_balance_stages
power_cg_cell naming_style.
power_cg_derive_related_clock . .
power_cg_designware.

power_cg_enable_alternative_algorithm.

power_cg_ext_feedback_loop. . ..
power_cg_flatten..............

power_cg_gated clock net naming_ style

power_cg_ignore_setup_condition

power_cg_inherit_timing_exceptions. L

power_cg_iscgs_enable
power_cg_module_naming_style .
power_cg_physically_aware_cg . .
power_cg_print_enable conditions

power_cg_print_enable_conditions max_terms........................

power_cg_reconfig_stages
power_cg_sequential_clock_gating

D-39
D-39
D-40
D-40
D-40
D-40
D-40
D-40
D-41
D-41
D-41
D-41
D-41
D-41
D-42
D-42
D-42
D-42
D-42
D-42
D-43
D-43
D-43
D-43
D-43
D-43
D-44
D-44
D-44
D-44
D-44
D-44
D-45
D-45
D-45
D-45

XXi

Power Compiler™ User Guide

Contents

power_default_static_probability
power_default_toggle_rate
power_default_toggle rate_type
power_do_not_size icg_cells . .
power_enable_clock_scaling. . .
power_enable_datapath_gating

Version L-2016.03-SP4

power_enable_one_pass power gating.................

power_enable_power_gating. . .
power_fix_sdpd_annotation. . . .

power_fix_sdpd_annotation_verbose
power_hdlc_do_not_split cg_cells
power_keep_license_after power commands

power_lib2saif_rise_fall_pd. . ..
power_low_power_placement. .

power_min_internal_power_threshold.

power_model_preference

power_opto_extra_high_dynamic_power_effort

power_preserve_rtl_hier_names

power_rclock_inputs_use_clocks fanout
power_rclock_unrelated_use_fastest
power_rclock_use _asynch_inputs. i,
power_remove_redundant_clock gates

power_rtl_saif file
power_sa_propagation_verbose

power_same_switching_activity

on_connected_objects

power_sdpd_message_tolerance
synlib_enable_analyze dw power
upf_allow_DD_primary_with_supply sets.............

upf_allow_refer_before_define .
upf_auto_iso_clamp_value
upf_auto_iso_enable_source. . .
upf_auto_iso_isolation_sense . .
upf_block_partition.
upf_charz_allow_port_punch. ..

upf_charz_enable_supply_port_punching.

upf_charz_max_srsn_messages

D-45
D-45
D-46
D-46
D-46
D-46
D-46
D-46
D-47
D-47
D-47
D-47
D-47
D-47
D-48
D-48
D-48
D-48
D-48
D-48
D-49
D-49
D-49
D-49
D-49
D-49
D-50
D-50
D-50
D-50
D-50
D-50
D-51
D-51
D-51
D-51

XXii

Power Compiler™ User Guide

Contents

upf_create_implicit_supply_sets

upf_enable_legacy block
upf_enable_relaxed charz
upf_extension

Version L-2016.03-SP4

upf_isols_allow_instances_in_elements
upf_iso_filter_elements _with_applies to..............................

upf_levshi_on_constraint_only .
upf name_map
upf_report_isolation_matching. .

upf_skip_ao_check for_els input..........
upf_suppress_etm_model_checking.
upf_suppress_message in_black box

upf_suppress_message_in_etm

D-51
D-51
D-52
D-52
D-52
D-52
D-52
D-52
D-53
D-53
D-53
D-53
D-53

XXiii

Power Compiler™ User Guide Version L-2016.03-SP4

Contents XXiV

Preface

This preface includes the following sections:
e About This User Guide

e Customer Support

XXV

Power Compiler™ User Guide Version L-2016.03-SP4

About This User Guide

This user guide describes the Power Compiler tool, its methodology, and its use. Power
Compiler is a comprehensive tool that assists you in analysis and optimization of your
design for power.

Audience

The Power Compiler User Guide builds on concepts introduced in Design Compiler
publications. It is assumed in this user guide that the user has some familiarity with Design
Compiler products.

Related Publications

For additional information about Power Compiler, see the documentation on the Synopsys
SolvNet® online support site at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to see the documentation for the following related Synopsys products:
» Design Compiler®

e DFT Compiler

* Formality®

. PrimeTime® PX

Release Notes

Information about new features, changes, enhancements, known limitations, and resolved
Synopsys Technical Action Requests (STARS) is available in the Power Compiler Release
Notes in SolvNet.

To see the Power Compiler Release Notes,

1. Go to the Download Center on SolvNet located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select Power Compiler, and then select a release in the list that appears.

Preface
About This User Guide XXVi

https://solvnet.synopsys.com/DownloadCenter

Power Compiler™ User Guide

Version L-2016.03-SP4

Conventions

The following conventions are used in Synopsys documentation.

Convention

Description

Courier

Courier italic

Courier bold

[]

Ctrl+C

Edit > Copy

Indicates syntax, such as write_file.

Indicates a user-defined value in syntax, such as
write_file design_list.

Indicates user input—text you type verbatim—in
examples, such as

prompt> write_file top

Denotes optional arguments in syntax, such as
write_file [-format fmt]

Indicates that arguments can be repeated as many
times as needed, such as pinl pin2 ... pinN

Indicates a choice among alternatives, such as
low | medium | high

Indicates a keyboard combination, such as holding
down the Ctrl key and pressing C.

Indicates a continuation of a command line.
Indicates levels of directory structure.

Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.

Preface
About This User Guide

XXVii

Power Compiler™ User Guide Version L-2016.03-SP4

Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

The SolvNet site includes a knowledge base of technical articles and answers to frequently
asked questions about Synopsys tools. SolvNet also gives you access to a wide range of
Synopsys online services including software downloads, documentation, and technical
support.

To access the SolvNet site, go to the following address:
https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

« Open a support case to your local support center online by signing in to the SolvNet site
at https://solvnet.synopsys.com, clicking Support, and then clicking “Open A Support
Case.”

« Send an e-mail message to your local support center.
o E-mail support_center@synopsys.com from within North America.

o Find other local support center e-mail addresses at

http://www.synopsys.com/Support/GlobalSupportCenters/Pages
» Telephone your local support center.
o Call (800) 245-8005 from within North America.

o Find other local support center telephone numbers at

http://www.synopsys.com/Support/GlobalSupportCenters/Pages

Preface
Customer Support XXVili

https://solvnet.synopsys.com
https://solvnet.synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

Part 1: Power Compiler Concepts

Power Compiler™ User Guide Version L-2016.03-SP4

1

Introduction to Power Compiler

This chapter describes the Power Compiler methodology and describes power library
models and power analysis technology. In addition, it provides library and license
requirements.

Power Compiler is part of Synopsys Design Compiler synthesis family. It performs both RTL
and gate-level power optimization and gate-level power analysis. By applying Power
Compiler's various power reduction techniques, including clock-gating, multivoltage leakage
power optimization, and gate-level power optimization, you can achieve power savings, and
area and timing optimization in the front-end synthesis domain.

This chapter contains the following sections:
e Power Compiler Methodology

e Power Library Models

* Power Analysis Technology

e Power Optimization Technology

« Getting Started With Power Compiler

1-1

Power Compiler™ User Guide Version L-2016.03-SP4

Power Compiler Methodology

With the increasing popularity of portable-oriented applications, low-power designs have
become crucial elements for product success. Most especially, the static power (leakage
power) consumption concern is more pronounced as the technology becomes more smaller
and faster.

Power Compiler tool provides a complete methodology for low-power designs, which consist
of the following:

¢ Power analysis

The tool analyzes the design and computes average power consumption based on the
switching activity of the nets.

You can perform power analysis at the following levels:
o Register transfer level using RTL simulation
o Gate level using RTL or gate-level simulation

* Power optimization

The power optimization technology optimizes your design for power consumption. It
computes average power consumption based on the activity of the nets in your design.

The tool performs the following types of power optimization:
o Leakage power or static power optimization

= Multivoltage threshold power optimization

m Power switching
o Dynamic power optimization

m Clock-gating

m XOR self-gating

= Low power placement

o Multivoltage and multicorner-multimode support

Power Library Models
The power library model analyzes leakage, switching, and internal power.

For more information about library modeling and characterization for power, see the Library
Compiler documentation.

Chapter 1: Introduction to Power Compiler
Power Compiler Methodology 1-2

Power Compiler™ User Guide Version L-2016.03-SP4

The Power Compiler gate-level power model supports the following features:

e Composite Current Source (CCS) library support

« Lookup tables based on output pin capacitance and input transition time

¢ Cells with multiple output pins

« State-dependent and path-dependent internal power

« Leakage power, including state-dependent and path-dependent internal power
« Separate specification of rise and fall power in the internal power group

In addition, you can use the CCS power model. CCS models represent the physical circuit
properties more closely than other models to the simulated data obtained during
characterization with SPICE. It is a current-based power model that contains the following
features:

« One library format suitable for a wide range of applications, including power analysis and
optimization.

« Power analysis with much higher time resolution compared to NLPM.

» Dynamic power characterized by current waveforms stored in the library. The charge can
be derived from the current waveform.

« Leakage power modeled as the actual leakage current. The leakage current does not
artificially depend on the reference voltage, as is the case with leakage power. This
facilitates voltage scaling.

» Standard-cell and macro modeling.

Power Analysis Technology

Power Compiler analyzes your design for net switching power, cell internal power, and
leakage power. Power Compiler also enables you to perform power analysis of your
gate-level design using switching activity from RTL or gate-level simulation or
user-annotation.

When analyzing a gate-level design, Power Compiler requires a gate-level netlist and
switching activity for the netlist. Using steps described in this book, Power Compiler enables
you to capture the switching activity of primary inputs, primary outputs, and outputs of
sequential elements during RTL simulation. After you annotate the captured activity on
design elements, Power Compiler propagates switching activity through the nonannotated
portions of your design.

Using power analysis by way of switching activity from RTL simulation provides a much
faster turnaround than analysis using switching activity by way of gate-level simulation.

Chapter 1: Introduction to Power Compiler
Power Analysis Technology 1-3

Power Compiler™ User Guide Version L-2016.03-SP4

If you require more accuracy during the later stages of design development, you can
annotate some or all of the nets of your design with switching activity from full-timing
gate-level simulation.

Power Compiler supports the following power analysis features:
« Performs gate-level power analysis.
* Analyzes net switching power, cell internal power, and leakage power.

« Accepts input as either user-defined switching activity, switching activity from RTL or
gate-level simulation, or a combination of both. The default is vector-free.

* Propagates switching activity during power analysis to nonannotated nets.
e Supports sequential, hierarchical, gated clock, and multiple-clock designs.

e Supports RAM and I/0 modeling using a detailed state-dependent and path-dependent
power model.

» Performs power analysis in a single, integrated environment at multiple phases of the
design process.

« Reports power at any level of hierarchy to enable quick debugging.
* Reports capability to validate your testbench.

e Supports interfaces to NC-Sim, MTI, VCS-MX, and Verilog-XL simulators for toggle data.

Synopsys also provides another gate level detail power analysis tool called PrimeTime PX.
PrimeTime PX can analyze peak power, glitch power and X-state power. It also has time
based power waveform and supports special modes of operation.

For more information, see the PrimeTime PX User Guide.

Power Optimization Technology

You can optimize your design for power using the following capabilities:
* RTL clock gating

« Gate-level multivoltage and dynamic power optimization

RTL clock gating is the most effective power optimization feature provided by Power
Compiler. This is a high-level optimization technique that can save a significant amount of
power by adding clock gates to registers that are not always enabled and with synchronous
load-enable or explicit feedback loops. This greatly reduces the power consumption of the
design by reducing switching activity on the clock inputs to registers and eliminating the
multiplexers. It also results in a lower area consumption for your design.

Chapter 1: Introduction to Power Compiler
Power Optimization Technology 1-4

Power Compiler™ User Guide Version L-2016.03-SP4

RTL clock gating optimizes for dynamic power and can be applied simultaneously on a
design.

When a gate-level power optimization constraint is set in the design, by default, Power
Compiler performs optimization to meet the constraints for design rule checking, timing,
power and area in that order of priority.

The Power Compiler gate-level power optimization solution offers the following features:
» Push-button user interface to reduce power consumption

« Multivoltage libraries for leakage optimization with short turnaround time

e Simultaneous optimization for timing, power, and area

« Optimization based on circuit activity, capacitance, and transition times

« Power analysis capability; optimizes with the same detailed power library model used in
analysis

* Operates within Galaxy platform and is compatible with other Synopsys tools (Design
Compiler, Floorplan Manager, Module Compiler, DFT Compiler, and Formality)

Getting Started With Power Compiler

This section provides information about the basic requirements to analyze and optimize for
power.

Library Requirements

Power Compiler uses technology libraries characterized for power. You can characterize
your library with the following power features:

Internal Power

To optimize for dynamic power, Power Compiler requires libraries characterized for
internal power. This is the minimum library requirement to characterize for power. This
characteristic accounts for short-circuit power consumed internal to gates.

Leakage Power

To optimize for static power, Power Compiler requires libraries characterized for leakage
power. This characteristic accounts for the power dissipated while the device is not in
use. Power Compiler also supports multivoltage libraries.

Chapter 1: Introduction to Power Compiler
Getting Started With Power Compiler 1-5

Power Compiler™ User Guide Version L-2016.03-SP4

State and Path Dependency

To optimize for varying modes of operation, Power Compiler requires libraries
characterized for state-dependency. To optimize for varying power consumption based
on various input to output paths, Power Compiler requires libraries characterized for
path-dependency.

To capture state-dependent and path-dependent switching activity from simulation,
library cells must have state- and path- dependent information in the lookup tables for
internal power and pin capacitance. Synopsys Power Compiler uses state-dependent
and path-dependent switching activity to compute state-dependent and path-dependent
switching power.

If you are developing libraries to use with Synopsys power products, see the Library
Compiler documentation. Power Compiler supports non-linear power models, scalable
polynomial equation power models, and composite current source libraries.

Command-Line Interface

Power Compiler is accessible from the Design Compiler command-line interface if you have
an appropriate license. See “License Requirements”.

Using the Design Compiler command-line interface, power optimization takes place during
your dc_shell optimization session. For more information about its command-line interface,
see the Design Compiler documentation.

Power Compiler also works within the Design Compiler topographical domain shell
(dc_shell-topo). Whereas dc_shell uses wide-load models for timing and area power
optimizations, dc_shell-topo uses placement timing values instead. For more information,
see the Design Compiler documentation.

Note:
Unless otherwise noted, all functionality described in this manual pertains to both
dc_shell and dc_shell-topo. Also unless otherwise noted, this manual uses "dc_shell" as
a generic term that applies to the Design Compiler topographical domain also.

Graphical User Interface

Power Compiler is accessible from Design Vision, the graphical user interface (GUI) for the
Synopsys logic synthesis environment. You must have the Design Vision license and other
appropriate licenses to perform power analysis and optimizations. For more details, see
“License Requirements”.

Chapter 1: Introduction to Power Compiler
Getting Started With Power Compiler 1-6

Power Compiler™ User Guide Version L-2016.03-SP4

Design Vision supports menus and dialog boxes for the frequently used synthesis features.
The Power menu in the GUI allows you to specify, modify, and review your power
architecture.

For more details on specifying power intent using the GUI, see Chapter 11, “UPF
Multivoltage Design Implementation. For details about general usage of Design Vision, see
the Design Vision User Guide.

License Requirements

Power analysis and optimization using Power Compiler require either one of the following
two combination of licenses:

e Power-Optimization

e Power-Analysis + Power-Optimization-Upgrade

These licenses also allow you to perform multivoltage power optimization and analysis.

Power Compiler is incorporated within Design Compiler. You need the license for Design
Compiler in addition to the power licenses.

Design Vision License

You can also perform power analysis and power optimizations using the Design Vision GUI.
To use Design Vision, you need the Design-Vision license. To use Design Vision in
topographical mode, you need a Design-Vision license, a DesignWare license and the DC
Ultra package.

How the Licenses Work

When you invoke dc_shell, no power license is checked out until you use a Power Compiler
feature. When the Power Compiler feature is completed, your power license is released.

Synopsys licensing software and the documentation describing it are separate from the tools
that use it. You install, configure, and use a single copy of Synopsys Common Licensing
(SCL) for all Synopsys tools. Because SCL provides a single, common licensing base for all
Synopsys tools, it reduces licensing administration complexity, minimizing the effort you
expend in installing, maintaining, and managing licensing software for Synopsys tools.

For complete Synopsys licensing information, see the Synopsys Common Licensing
Administration Guide. This guide provides detailed information about SCL installation and
configuration, including examples of license key files and troubleshooting guidelines.

Chapter 1: Introduction to Power Compiler
Getting Started With Power Compiler 1-7

Power Compiler™ User Guide

Version L-2016.03-SP4

Reading and Writing Designs

When using dc_shell, you read designs from disk before working on them, make changes to
them, and write them back to the disk.

Power Compiler can read or write a gate-level netlist in any of the formats shown in

Table 1-1.

Table 1-1 File Formats and Extensions

Format Default File type Special
extension license key
required?
db .db Synopsys internal database format No
ddc .ddc Synopsys Design Compiler database No
format (the default)
equation .egn Synopsys equation format No
LSI .NET LSI Logic Corporation netlist format Yes
MENTOR .neted Mentor intermediate netlist format (see Yes
Synopsys Mentor Interface Application
Note)
PLA .pla Berkeley (Espresso) PLA format No
ST .st Synopsys state table format No
TDL Adl Tegas Design Language (TDL) netlist Yes
format
Verilog v Hardware Description Language Yes
VHDL .vhd VHSIC Hardware Description Yes
Note:

NLPM and CCS are the supported power models in the library.

Chapter 1: Introduction to Power Compiler

Getting Started With Power Compiler

1-8

2

Power Compiler Design Flow

As you create a design, it moves from a high level of abstraction to its final implementation
at the gate level. Power Compiler offers analysis and optimization throughout the design
cycle, from RTL to the gate level.

This chapter contains the following sections:
* Power in the Design Cycle

e Power Optimization and Analysis Flow

2-1

Power Compiler™ User Guide Version L-2016.03-SP4

Power in the Design Cycle

At each level of abstraction, use simulation, analysis, and optimization to refine your design
before moving to the next lower level of design abstraction. The relationship of these three
processes is shown in Figure 2-1.

Figure 2-1 Power Flow at Each Abstraction Level

Switching

activity \
Optimization I
l /’

Simulation, analysis, and optimization occur at each level of abstraction. Design refinement
loops occur within each level. Simulation and the resultant switching activity give analysis
and optimization the necessary information to refine the design before going to the next
lower level of abstraction. The entire flow is shown in Figure 2-2.

Design
refinement
loop

Chapter 2: Power Compiler Design Flow
Power in the Design Cycle 2-2

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 2-2 Power Flow From RTL to Gate-Level

Register +
Transfer Analysis

Level Switching
Activity

Optimization

Switching
Activity

Optimization

\J

Using Power Compiler, you can analyze and optimize at the RTL and gate levels. The higher
the level of design abstraction, the greater the power savings you can achieve.

Power Optimization and Analysis Flow

Figure 2-3 shows a high-level power optimization and analysis flow.

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-3

Power Compiler™ User Guide

Figure 2-3 Power Optimization and Analysis Flow

Technology RTL
Library Design
dc_shell i i

Enable
Power
Optimization

Synthesis and

Version L-2016.03-SP4

| Simulation I

SAIF File

Power

Optimization

Power

Analysis and
Reporting

Y

Gate-Level
Power Optimized
Design

Optional
Back-Annotation
Capacitance
File

Gate-Level
Simulation

The power optimization starts with the specified RTL design and logic library and results in

a power-optimized gate-level netlist.

During analysis and optimization, Power Compiler uses information in the logic library. To

optimize or analyze dynamic power and leakage power, the logic library must be

characterized for internal power. To optimize or analyze static power, the logic library must

be characterized for leakage power.

You can use Power Compiler to analyze the gate-level netlist produced by Design Compiler
or the power-optimized netlist produced by Power Compiler.

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow

2-4

Power Compiler™ User Guide Version L-2016.03-SP4

Simulation

Most of the steps in the flow occur within the Design Compiler environment, dc_shell.
However, Figure 2-3 shows that the power flow requires a SAIF file, which is generated by
simulation.

Simulation generates information about the design’s switching activity and creates a
Switching Activity Information Format (SAIF) file, which is used for annotation purposes. For
information, see Chapter 4, “Generating SAIF Files.”

During power analysis, Power Compiler uses annotated switching activity to evaluate the
power consumption of your design. During power optimization, Power Compiler uses
annotated switching activity to make optimization decisions about your design. For
information, see Chapter 5, “Annotating Switching Activity.”

Enable Power Optimization

Power Compiler provides several techniques for optimizing power, such a clock gating and
operand isolation. Power optimization achieved at higher levels of abstraction has an

increasingly important impact on reduction of power in the final gate-level implementation.
You enable power optimizations with Power Compiler commands described in this manual.

Synthesis and Power Optimization

Design Compiler and Power Compiler work together within the dc_shell environment to
synthesize your design to a gate-level netlist optimized for power. Synthesis with power
optimization occurs during Design Compiler’s compile processing.

In the Synopsys physical guidance flow, the tool can perform low-power placement to
reduce the dynamic power consumption of the design. For more details, see “Power
Optimization in the Synopsys Physical Guidance Flow” in Chapter 9.

Power Analysis and Reporting

You can use Power Compiler for analysis of your gate-level design at several points in your
methodology flow. Figure 2-3 shows power analysis after power optimization, which results
in a detailed report of your power-optimized netlist.

You can also analyze power before synthesis and power optimization. For example, after
annotating the switching activity from your SAIF file to verify that the annotation is correct.
Analysis before power optimization provides an optional reference point for comparison with
the power-optimized netlist.

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-5

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-6

3

Power Modeling and Calculation

As you create a design, it moves from a high level of abstraction to its final implementation
at the gate level. Power Compiler supports analysis and optimization throughout the design
cycle, from RTL to the gate level.

This chapter contains the following sections:
* Power Types

e Calculating Power

e Using CCS Power Libraries

« \oltage Scaling

3-1

Power Compiler™ User Guide Version L-2016.03-SP4

Power Types
The power dissipated in a circuit falls into two broad categories:
e Static power

* Dynamic power

Static Power

Static power is the power dissipated by a gate when it is not switching, that is, when it is
inactive or static.

Static power is dissipated in several ways. The largest percentage of static power results
from source-to-drain subthreshold leakage, which is caused by reduced threshold voltages
that prevent the gate from completely turning off. Static power is also dissipated when
current leaks between the diffusion layers and the substrate. For this reason, static power is
often called leakage power.

Dynamic Power

Dynamic power is the power dissipated when the circuit is active. A circuit is active anytime
the voltage on a net changes due to some stimulus applied to the circuit. Because voltage
on an input net can change without necessarily resulting in a logic transition on the output,
dynamic power can be dissipated even when an output net does not change its logic state.

The dynamic power of a circuit is composed of two kinds of power:
e Switching power

e Internal power

Switching Power

The switching power of a driving cell is the power dissipated by the charging and discharging
of the load capacitance at the output of the cell. The total load capacitance at the output of
a driving cell is the sum of the net and gate capacitances on the driving output.

Because such charging and discharging are the result of the logic transitions at the output
of the cell, switching power increases as logic transitions increase. Therefore, the switching
power of a cell is a function of both the total load capacitance at the cell output and the rate
of logic transitions.

Chapter 3: Power Modeling and Calculation
Power Types 3-2

Power Compiler™ User Guide Version L-2016.03-SP4

Internal Power

Internal power is any power dissipated within the boundary of a cell. During switching, a
circuit dissipates internal power by the charging or discharging of any existing capacitances
internal to the cell. Internal power includes power dissipated by a momentary short circuit
between the P and N transistors of a gate, called short-circuit power.

To illustrate the cause of short-circuit power, consider the simple gate shown in Figure 3-1.
Arising signal is applied at IN. As the signal transitions from low to high, the N type transistor
turns on and the P type transistor turns off. However, for a short time during signal transition,
both the P and N type transistors can be on simultaneously. During this time, current Ig¢
flows from V44 to GND, causing the dissipation of short-circuit power (Pg.).

For circuits with fast transition times, short-circuit power can be small. However, for circuits
with slow transition times, short-circuit power can account for 30 percent of the total power
dissipated by the gate. Short-circuit power is affected by the dimensions of the transistors
and the load capacitance at the gate’s output.

In most simple library cells, internal power is due mostly to short-circuit power. For more
complex cells, the charging and discharging of internal capacitance might be the dominant
source of internal power.

Library developers can model internal power by using the internal power library group. For
more information about modeling internal power, see the Library Compiler User Guide.

Figure 3-1 shows a simple gate and illustrates where static and dynamic power are
dissipated.

Figure 3-1 Components of Power Dissipation
Vad

Rising signal Falling signal
P
at IN atoOuT
IN ik ouT
Voltage « | lsc i \
Voltage
ISW
Time N x H Time
—_ CIoad

ik
Ik ~Leakage current
lsc Short-circuit current
lsw Switching current GND

Chapter 3: Power Modeling and Calculation
Power Types 3-3

Power Compiler™ User Guide Version L-2016.03-SP4

Calculating Power

Power analysis calculates and reports power based on the equations that accompany this

chapter. Power Compiler uses these equations and the information modeled in the specified
logic library to evaluate the power of your design. This chapter includes information about

library modeling for power where equations for power types appeatr.

For more information about modeling power in your library, see the Library Compiler User
Guide.

Note:
The power calculations described in this section only apply to NLPM power calculations.

Leakage Power Calculation

Power Compiler analysis computes the total leakage power of a design by summing the
leakage power of the design’s library cells, as shown in the following equation:

I:)LeakageTotaI = Z PCeIILeakagei

veells(i)
Where:

PLeakageTotal = Total leakage power dissipation of the design
PCellLeakagei = Leakage power dissipation of each cell i

Library developers annotate the library cells with appropriate total leakage power dissipated
by each library cell. They can provide a single leakage power for all cells in the library by
using the default_cell_leakage_power attribute or provide leakage power per cell with
the cell _leakage_power attribute.

If the cell_leakage_power attribute is missing or negative, the tool assigns the value of the
default_cell_leakage_power attribute. If this is not available, Power Compiler assumes
default of 0.

To model state-dependent leakage, use the leakage_power attribute. You can also use
Boolean expressions to define the conditions for different cell leakage power values.

To calculate cell leakage, Power Compiler determines the units based on the
leakage_power_unit attribute. It checks for the leakage_power attribute first. The leakage
value for each state is multiplied by the percentage of the total simulation time at that state
and summed to provide the total leakage power per cell.

If the state is not defined in the leakage power attribute, the value of the
cell_leakage_power attribute is used to obtain the contribution of the leakage power at the
undefined state.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-4

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 3-2 shows the leakage power calculation performed on a NAND gate with
state-dependent values.

Figure 3-2 Leakage Power Calculation for a NAND Gate With State Dependent Values

A__]

Z For a total power consumption
B time of 600, the cell is at the
state defined by the condition

A&B for 33% of the time. For the
remaining 67% of the simulation

library _ .
leakage_power_unit : 1nW ; time, the default is
cell (NAND) ... assumed.

cell_leakage_power : 0.5 ;
leakage_power () { '
when : "A&B" value is:

value : 0.2

Therefore, the total cell leakage

(.33 * .2nW) + (.67*.5nW)=.4nW

Multithreshold Voltage Libraries

Static power dissipation has an exponential dependence on the switching threshold of the
transistor’s voltage. In order to address low-power designs IC foundries offer technologies
that enable multiple threshold voltage libraries.

Each type of logic gate is available in two or more different threshold voltage (vth) groups.
The threshold voltage determines the speed and the leakage characteristics of the cell.
Cells with low-threshold transistors switch quickly but have higher leakage and consume
more power. Cells with high threshold transistors have lower leakage and consume less
power but switch more slowly.

For leakage power optimization, Power Compiler supports multiple mechanisms for
swapping high and low-threshold voltage cells appropriately, based on power and timing
requirements.

For more details about using the multithreshold voltage libraries, see Multiple Threshold
Voltage Library Attributes.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-5

Power Compiler™ User Guide Version L-2016.03-SP4

Internal Power Calculation

When computing internal power, power analysis uses information characterized in the logic
library. The internal_power library group and its associated attributes and groups define
scaling factors and a default for internal power. Library developers can use the internal
power table to model internal power on any pin of the library cell.

A cell's internal power is the sum of the internal power of all of the cell’'s inputs and outputs
as modeled in the logic library. Figure 3-3 shows how Synopsys power tools calculate the
internal power for a simple combinational cell, U1 with path-dependent internal power
modeling.

Figure 3-3 Internal Power Model (Combinational)

Cell U1
o . Pint = Sum_{i=A,B} E_{i->Z} x PathWeight;x TR,
7 Efi->z = flC_Load, Transj]
-/ ——B Sum_{i = A,B} PathWeight_i =1
Pint Total internal power of the cellg
E, Internal energy for output Z as a function of input transitions,

output load, and voltage

TR, Toggle rate of output pin Z, transitions per second
TR; Toggle rate of input pin i, transitions per second
Trans; Transition time of input i

WeightAvg rrans) Weighted average transition time for output Z

Power Compiler calculates the input path weights based on the input toggle rates, transition
times, and functionality of the cell. Power Compiler supports NLDM (table-based) models.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-6

Power Compiler™ User Guide Version L-2016.03-SP4

NLDM Models

To compute the internal power consumption of NLDM models, Power Compiler uses the
weighted average transition time as an index to the internal power associated with the
output pin. As an additional index to the power table, Power Compiler uses the output load
capacitance. The two indexes enable Power Compiler to access the two-dimensional lookup

table for the output, as shown in Figure 3-4.

Figure 3-4 Two-Dimensional Lookup Table

zA
Energy/
transition 110.1
Weighted average S;tggitt;?ii
input transition 10.2 30.8 58.7 151.6 ©aP
time y
0.34 0.20
\
0.56
0.72
1.23
X / 99.9

For cells in which output pins have equal or opposite logic values, Power Compiler can use
a three-dimensional lookup table. Power Compiler indexes the three-dimensional table by

using input transition time and both output capacitances of the equal (or opposite) pins. The
three-dimensional table is well suited to describing the flip-flop, which has Q and Q-bar

outputs of opposite value.

Chapter 3: Power Modeling and Calculation
Calculating Power

3-7

Power Compiler™ User Guide Version L-2016.03-SP4

The internal_power library group supports a one-, two-, or three-dimensional lookup table.
Table 3-1 shows the types of lookup tables, whether they are appropriate to inputs or
outputs, and how they are indexed.

Table 3-1 Lookup Tables

Lookup table Defined on Indexed by
One-dimensional Input Input transition
Output Output load capacitance
Two-dimensional Output Input transition and output load
capacitance
Three-dimensional Output Input transition and output load

capacitances of two outputs that
have equal or opposite logic
values

For more information about modeling internal power and library modeling syntax and
methodology, see the Library Compiler User Guide.

For various operating conditions, the table model supports scaling factors for the internal
power calculation. These are,

e k_process_internal_power
e k_temp_internal_power

e k volt_internal_power

These factors however do not accurately model the non-linear effects of the operating
conditions, so most vendors generate separate table-based libraries for different operating
conditions.

State and Path Dependency

Cells often consume different amounts of internal power, depending on which input pin
transitions or depending on the state of the cell. These are state and path dependent.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-8

Power Compiler™ User Guide Version L-2016.03-SP4

To demonstrate path-dependent internal power, consider the following simple library cell,
which has several levels of logic and a number of input pins:

el
—

Input A and input D can each cause an output transition at Z. However, input D affects only
one level of logic, whereas input A affects all three. An output transition at Z consumes more
internal power when it results from an input transition at A than when it results from an input
transition at D. You can specify multiple lookup tables for outputs, depending on the input
transitions.

Power Compiler chooses the appropriate path dependent internal power table for an output
by checking the related_pin attribute in the library. Based on the percentage of toggles on
each input pin, the total power due to transitions on the output pin is calculated by accessing
the correct table or equation for each related pin and applying the percentage contribution
per input pin.

An example of a cell with state-dependent internal power is a RAM cell. It consumes a
different amount of internal power depending on whether it is in read or write model You can
specify separate tables or equations depending on the state or mode of the cell.

If the toggle rate information is provided for each state defined in the power model, Power
Compiler accesses the appropriate information. If only the input or output toggle information
is available, Power Compiler averages the tables for the different states to compute the
internal power of the cell.

For more information about how the toggle information affects the internal power analysis,
see Performing Power Analysis.

Rise and Fall Power

When a signal transitions, the internal power related to the rising transition is different from
the internal power related to the falling transition. Power Compiler supports a library model
that enables you to designate a separate rising and falling power value, depending on the
transition.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-9

Power Compiler™ User Guide Version L-2016.03-SP4

Switching Power Calculation

Power Compiler analysis calculates switching power (P;) in the following way:

Vi
Pe == > _ (CLoadi XTRi)
vnets(i)
Where:
Pc Switching power of the design
TRi Toggle rate of net i, transitions per second

vdd Supply voltage

Cloagl is the total capacitive load of net i, including parasitic capacitance, gate capacitance,
and drain capacitance of all the pins connected to the net i.

Power Compiler software obtains C| ,,4i from the wire load model for the net and from the
logic library information for the gates connected to the net. You can also back-annotate
capacitance information after physical design.

Dynamic Power Calculation

Because dynamic power is the power dissipated when a circuit is active, the equations for
switching power and internal power provide the dynamic power of the design.

Dynamic power = Switching power + Internal power

For more information about the library models, see the Library Compiler User Guide.

Dynamic Power Unit Derivation

The unit for switching power and the values in the internal_power table is a derived unit.
It is derived from the following function:

(capacitive_load_unit * voltage_unitz)/time_unit

The function’s parameters are defined in the library. The result is scaled to the closest MKS
unit: micro, nano, femto, or pico. This dynamic power unit scaling effect needs to be taken
into account by library developers when generating energy values for the internal power
table.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-10

Power Compiler™ User Guide Version L-2016.03-SP4

The following is an example of how Power Compiler derives dynamic power units (if the
library has the following attributes):

capacitive_load _unit (0.35, ff);

voltage unit: "1Vv"”

time_unit: "1lns";

To obtain the dynamic power unit, complete the following steps:

1. Find the starting value.

starting value
time_unit

starting value
starting value

capacitive_load_unit*voltage_unit2/

.35e-15*(1~2)/1e-9
3.5e-7W

The starting value consists of a base unit (1e-7W) and a multiplier (3.5).

2. Select an MKS base unit that converts the multiplier of the starting value found in step 1
to an integer number. For example, select an MKS unit between the range of att [1e-18]
and giga [1e+12] watts, which converts the starting value’s multiplier into an integer
value.

The MKS base unit that meets this requirement in this example is nano [1e-9]. This is
because the starting value of 3.5e-7W expressed in nW becomes 350nW. The original
multiplier of 3.5 is converted to an integer value (350) by selecting the nW MKS base
unit.

converted value = 350e-9W
converted value multiplier = 350
base unit = 1e9W = 1nW

3. Determine the base unit multiplier by selecting a power of 10 integer (for example, 1, 10,
100, ...) closest in magnitude to the converted value multiplier found in step 2.

converted value multiplier = 350 (from step 2)
base unit multiplier = 100

4. Combine the base unit multiplier obtained in step 3 and the base unit obtained in step 2
to obtain the dynamic power unit.

base unit = 1nW (from step 2)
base unit multiplier = 100 (from step 3)
dynamic power unit = (100) 1nW = 100nW

In this example, each cell’'s dynamic power calculated by Power Compiler is multiplied by
100nW.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-11

Power Compiler™ User Guide Version L-2016.03-SP4

Power Calculation for Multirail Cells

Power Compiler supports the power analysis of libraries which contain cells with multiple
rails for which power values are defined per voltage rail.

For multivoltage cells which contain separate power tables for each power level, Power
Compiler determines the internal and leakage power contribution for each power rail and
sums it to report the total power consumption.

For more information about defining per-rail power tables, see the Library Compiler User
Guide.

Chapter 3: Power Modeling and Calculation
Calculating Power 3-12

Power Compiler™

User Guide

Version L-2016.03-SP4

The following example shows example cells that contain power tables per rail.

cell (AND2 1) {
area :© 1.0000;
cell_footprint : MV12AND2;
rail_connection (PV1l, VDD1l);
rail_connection (PV2, VDD2);

pin

@ {

direction : input;
capacitance : 0.1;
input_signal_level : VDD1;
internal_power () {

}

power_level : VDD1;
power (scalar) { values ("1.0"); }

)
pin (b) {
direction : input;
capacitance : 0.1;
input_signal _level : VDD1;
internal_power O {

pin

power_level : VDD1;
power (scalar) { values ("1.0"); }

o {

direction : output;
function : "a & b";
output_signal_level : VDD2;

timing O {

related pin : "a";

timing_sense : positive_unate;
cell_rise (scalar) { values
rise_transition (scalar) { values
cell_fall (scalar) { values
fall_transition (scalar) { values

}
timing O {

related _pin : "b";

cell_rise (scalar) { values
rise_transition (scalar) { values
cell_fall (scalar) { values
fall_transition (scalar) { values

internal_power () {

power_level :- VDD1;
power (scalar) { values ("1.0"); }

internal_power O {

power_level : VDD2;

Chapter 3: Power Modeling and Calculation

Calculating Power

'aYaYala)

laYaYaYe)

"1.
"1.
"1.
1.

"1.
"1.
.0"
1.

"1

o
o
o
o

o
o

On

v/ o/ o/ \/

o/ o/ o/ \/

S e

N e

3-13

Power Compiler™ User Guide Version L-2016.03-SP4

power (scalar) { values ("2.0"); }

}

}
leakage power () {

power_level : VDD1;
value - 1.0;

}

leakage power () {
power_level : VDD2;
value : 2.0;

cell_leakage power : 10;

Using CCS Power Libraries

CCS power libraries contain unified library data for power and rail analysis and optimization,
which ensures consistent analysis and simplification of the analysis flow. By capturing
current waveforms in the library, you can provide more accurate identification of potential
problem areas.

Both CCS and NLPM data can coexist in a cell description in the .lib file. That is, a cell
description can have only NLPM data, only CCS data, or both NLPM and CCS data. Power
Compiler uses either NLPM data or CCS data for the power calculation.

Use the power_model_preference nlpm | ccs variable to specify your power model
preference when the library contains both NLPM and CCS in it. The default is nlpm. Using
CCS or NLPM power libraries does not change the use model.

For more information about CCS power libraries and how to generate them, see the Library
Compiler User Guide.

Voltage Scaling

Power Compiler uses the scaling library groups to implement temperature and voltage
scaling. For voltage scaling, the libraries in the scaling group must contain CCS and NLPM
power models.

To enable the scaling feature and specify the membership of libraries to scaling library
groups, use the define_scaling_lib_group command. You can specify different scaling
library groups for different design objects or subdesigns by using the
set_scaling_lib_group command. To create an intermediate operating condition, use the
create_operating_conditions command. Use the set_operating_conditions
command to set intermediate voltage or temperature conditions. With the specified

Chapter 3: Power Modeling and Calculation
Using CCS Power Libraries 3-14

Power Compiler™ User Guide Version L-2016.03-SP4

operating conditions, the tool performs interpolation between the libraries in the library
groups to obtain accurate delay information.

For more information about defining and setting the scaling library groups, see the related
command man pages.

To perform both voltage and temperature scaling at the same time, use four libraries in the
scaling group rather than two, representing the four possible combinations of voltage and
temperature extremes: high voltage and high temperature, high voltage and low
temperature, low voltage and high temperature, and low voltage and low temperature.

Power Compiler supports power scaling on both single-rail and multirail cells.

Script Examples for Voltage Scaling

Example 3-1 shows an example script to perform voltage scaling in a multivoltage design.

Example 3-1 Voltage Scaling in Multivoltage Designs

read_verilog rtl._v

current_design top

link

define_scaling_lib_group -name groupl{slow Op8lv.db slow_1p2v.db}

set_scaling_lib_group -min groupl -max groupl

create_operating_conditions -name scaled_pvt -library slow Op8l.v \
-process 1 -voltage 1.0 -temperature -40

set_operating_conditions -help

Example 3-2 shows an example script to perform voltage scaling in a
multicorner-multimode design.

Example 3-2 Voltage Scaling in Multicorner-Multimode Designs

read_verilog rtl._v

current_design top

link

define_scaling_lib_group -name groupl{slow Op8lv.db slow_1p2v.db}

set_scaling_lib_group -min groupl -max groupl

create_operating_conditions -name scaled_pvt -library slow Op8l.v \
-process 1 -voltage 1.0 -temperature -40

create_scenario sl

read_sdc sl.sdc

set_operating_conditions scaled_pvt

set_tlu_plus_files -max_tluplus tlu_filel -tech2itf _map map_filel
set_scaling_lib_group {groupl}

Chapter 3: Power Modeling and Calculation
Voltage Scaling 3-15

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 3: Power Modeling and Calculation
Voltage Scaling 3-16

Part 2: Power Analysis

Power Compiler™ User Guide Version L-2016.03-SP4

A

Generating SAIF Files

Power Compiler requires information about the switching activity of your design to perform
power analysis and power optimization. You can use simulation tools such as VCS to
generate switching activity information for your design in Switching Activity Interchange
Format (SAIF). This chapter describes how to generate switching activity in SAIF.

This chapter contains the following sections:
e About Switching Activity

* Introduction to SAIF Files

e Generating SAIF Files

« Verilog Switching Activity Examples

» VHDL Switching Activity Example

4-1

Power Compiler™ User Guide Version L-2016.03-SP4

About Switching Activity

The dynamic power component usually accounts for a large percentage of the total power
consumption in a combinational circuit. Dynamic power is the sum of the internal power of
cells and the switching power. Switching power is the rate of energy usage resulting from the
charging and discharging of capacitive loads during transitions between the two logic states,
0 and 1. Switching power depends on the clock rate and also the rate at which toggling
occurs between logic states on each net. The toggle rate depends on the data being
processed during typical usage of the logic circuit.

Power Compiler models switching activity based on the following:
« Static Probability

The fraction of time that a signal is at the logic 1 state. For example, a static probability
of 0.8 means that the signal is in the logic 1 state 80 percent of the time and the logic O
state 20 percent of the time.

« Toggle Rate
The rate at which a signal changes from 0 to 1 and from 1 to O, in number of transitions
per time unit.

When the switching activity information is available, you should annotate this information on
the design objects so the tool can use the switching activity information during power
optimization and analysis.

For more information about annotating switching activity, see Annotating Switching Activity.

Introduction to SAIF Files

The accuracy of power calculations depends on the accuracy of the switching activity data.
This data is generated using RTL simulation or gate-level simulation and is stored in a SAIF
file. You should use the SAIF file to annotate switching activity information on the design
objects before you perform power optimization and analysis.

SAIF is an ASCII format supported by Synopsys to facilitate the interchange of information
between various Synopsys tools (see the IEEE 1801 Standard, Annex J). Use the
read_saif command to read the SAIF file and the write_saif command to write out the
SAIF file.

For more information, see the read_saif and the write_saif command man pages.

Early in the design cycle, you can use RTL simulation to determine the high-level switching
and power characteristics of the design. Later in the design cycle, you can use gate-level

Chapter 4: Generating SAIF Files
About Switching Activity 4-2

Power Compiler™ User Guide

Version L-2016.03-SP4

simulation to get more detailed switching data to annotate your design. The detailed
switching data increases the accuracy of the power optimization and power analysis.

Table 4-1 summarizes the various methods of generating SAIF files and their accuracies.

Table 4-1 Comparing Methods of Capturing Switching Activity

Simulation Captured Not captured Trade-offs
RTL Synthesis-invariant 1. Internal nodes Fast runtime
elements 2. Correlation of non- at expense of
synthesis-invariant some
elements accuracy
3. Glitching
4. State and path
dependencies
Zero-delay 1. Synthesis-invariant 1. Some path More
and elements dependencies accuratethan
unit-delay 2. Internal nodes 2. Glitching RTL
gate-level 3. Correlation simulation,
4. State dependencies but
5. Some path significantly
dependencies higher
runtime
Full-timing 1. All elements of design Highest accuracy, but Correlation
gate-level 2. Correlation runtime can be very long between
3. State and path primary
dependencies inputs

Generating SAIF Files

You can generate a SAIF file either from RTL simulation or gate-level simulation. This
section discusses both RTL and gate-level simulation using Synopsys VCS. VCS supports

Verilog, SystemVerilog, and VHDL formats.

Chapter 4: Generating SAIF Files

Generating SAIF Files

4-3

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 4-1 shows two ways of generating a SAIF file. The solid lines indicate the suggested
SAIF flow while the dotted lines indicate the alternative method of SAIF flow using various
Synopsys tools.

Figure 4-1 SAIF File Generation and its Usage With Various Synopsys Tools

Design Compiler/

RTL Design |———————— : Power Compiler
| A

I

VCS MX |- Design VCD/FSDB :
I
|

Y

vcd2saif/fsdb2saif

Name-mapping file
(output of
saif_map -type)

Design SAIF —| PrimeTime PX

i

Design SAIF
(direct)

The following sections describe ways of generating SAIF files:
* Generating SAIF Files From Simulation

e Generating SAIF Files From VCD Files

e Generating SAIF Files from FSDB Output Files

You can read the SAIF file into Power Compiler and generate a mapping file for all the name
changes of the nodes. You then read the name-mapping file and the synthesized gate-level
netlist in PrimeTime PX to perform averaged power analysis

Generating SAIF Files From Simulation

VCS MX can generate the SAIF file directly from simulation. This direct SAIF file is smaller
than VCD or FSDB files. Your input design for simulation can be an RTL or gate-level
design. The design can be in Verilog, SystemVerilog, VHDL, or mixed HDL formats. When
your design is in Verilog or SystemVerilog formats, you must specify system tasks to VCS
MX using toggle commands. If your design is in VHDL format, use the power command as
described in Generating SAIF Files From VHDL Simulation.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-4

Power Compiler™ User Guide Version L-2016.03-SP4

For more information about the various supported formats and mixed language formats, see
the VCS MX User Guide.

When generating the SAIF file during simulation, use the default monitoring policy (see the
VCS MX User Guide for more information). This monitoring captures the switching activity
of only the synthesis-invariant objects such as ports, tristate cells, black box cells, flip-flops,
latches, retention registers, and hierarchical cells other than clock-gating cells. Integrated
clock-gating cells and latch-based isolation cells are synthesis-dependent objects and
therefore not captured.

If the library forward SAIF file contains details of state and path dependencies, the backward
SAIF file generated also contains these details. For more information, see Capturing State-
and Path-Dependent Switching Activity.

The steps to generate SAIF files from simulation are discussed in the following sections:
¢ Generating SAIF Files From SystemVerilog or Verilog Simulations

e Generating SAIF Files From VHDL Simulation

Generating SAIF Files From SystemVerilog or Verilog Simulations

Using VCS MX, you can generate SAIF files from both RTL and gate-level Verilog designs.
When your design is in Verilog format, you must specify system tasks to VCS MX. These
system tasks are also known as toggle commands. The system tasks specify the module for
which switching activity is to be recorded and reported in the SAIF file. They also control the
toggle monitoring during simulation.

For details about the toggle commands, see VCS MX Toggle Commands.

Generating SAIF Files From RTL Simulation

Figure 4-2 presents the methodology to capture switching activity using RTL simulation.
RTL simulation captures the switching activity of primary inputs, primary outputs, and other
synthesis-invariant elements.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-5

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 4-2 RTL Simulation Using VCS MX

Testbench
RTL Design

'y

RTL
Simulation
Using VCS MX

!

SAIF File

" O

To capture the switching activity using RTL simulation, specify the appropriate testbench
and run the simulation.

The SAIF file contains the switching activity information of the synthesis-invariant elements
in your design. To use the SAIF file for synthesis in the Power Compiler tool, annotate the
switching activity, as described in Annotating Switching Activity.

Generating SAIF Files From Gate-Level Simulation

Figure 4-3 presents the methodology to capture switching activity using gate-level
simulation. Gate-level simulation captures switching activity of pins, ports, and nets in your
design.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-6

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 4-3 Gate-Level Simulation Using VCS MX

Testbench
Technology Gate-level
Library Design Design
v
> Gate-level -

Simulation
/

SAIF File

\/\

To capture switching activity using gate-level simulation, specify the appropriate toggle
commands in the testbench and run the simulation.

The SAIF file contains information about the switching activity of the pins, ports, and nets in
your design. It can represent the pin-switching activity, based on rise and fall values, if your
logic library has separate rise and fall power tables.

To use the SAIF file for synthesis in the Power Compiler tool, annotate the switching activity
as described in Annotating Switching Activity.

VCS MX Toggle Commands

To generate the SAIF file from RTL or gate-level Verilog of SystemVerilog, use toggle
commands to specify system tasks to VCS MX. Using the toggle commands, you can
specify the subblock for toggle counting and define specific periods for toggle counting
during simulation. You can also control the start and stop of toggle counting.

Figure 4-4 presents an overview of the toggle commands in your testbench file. Each toggle
command starts with the $ symbol. For simplicity, the figure does not show optional
commands.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-7

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 4-4 Toggle Command Flow

$set_toggle_region Set toggle region

/

$toggle_start Start monitoring
/

$toggle_stop Stop monitoring
/

Report toggle
$toggle_report information

The system tasks that you specify to VCS MX using the toggle commands are
1. Define the toggle region.

The $set_toggle_region command specifies the module instance for which the
simulator records the switching activity in the generated SAIF file. The syntax of this
command is as follows:

$set_toggle_region(instance [, instance]);
When you explicitly mention one or more module instances as the toggle region, the
simulator registers these objects and monitors them during simulation.

Note:
For gate-level simulation, if the logic library cell pins have rise and fall power values,
their switching activity is monitored and reported for rise and fall separately.

2. Begin toggle monitoring.

Use the $toggle_start command to instruct the simulator to start monitoring the
switching activity. The syntax of this command is as follows:

$toggle_start();

During simulation, the tool starts monitoring the switching activity of the module
instances that are defined in the toggle region.

3. End toggle monitoring.

Use the $toggle_stop command to instruct the simulator to stop monitoring the
switching activity.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-8

Power Compiler™ User Guide Version L-2016.03-SP4

4. Report toggle information in an output file.

Use the $toggle_report command to write monitored gate and net switching activity to
an output file. You can invoke $toggle_report any number of times using different
parameters. For more details and examples of SAIF files, see RTL SAIF File.

The syntax for the $toggle_report command is as follows:

$toggle_report (filename,[synthesis_time_unit],instance_name_string);
The values for the various options and parameters are as follows:
o filename
This is the name of the switching activity output file.
o synthesis_time_unit

This optional parameter is the time unit of your synthesis library, in seconds. For
example, if the time unit in your synthesis library is 10 picoseconds, specify 1.0e-11.

The $toggle_report command uses this number to convert simulation time units to
synthesis time units. Power Compiler obtains the simulation time unit from simulation.
If you don’t specify the synthesis time unit parameter, the default is 1 ns (1.0e-9).

o instance_name_string

This required parameter is the full instance path name of the block from the top of
your simulation environment down to the name of the block instance to be reported.

Example
$toggle_report ("fFile_.saif", 1.0e-11, "test.DUT");

In this example, the file written out is file.saif, the synthesis time unit is 10 picoseconds, and
the name of the monitored instance is test.DUT. The output file format is SAIF, which is the
default.

Resetting the Toggle Counter

Use the $toggle_reset command to set the toggle counter to O for all the nets in the
current toggle region. This command starts a new toggle monitoring period in a simulation
session.

For example, when using $toggle_start, $toggle_stop or $toggle_reset with
$toggle_report, you can create SAIF output files for specific periods during simulation.
The syntax of this command is as follows:

$toggle_reset();

Use the $toggle_reset command only after you have written out the previous results with
the $toggle_report command.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-9

Power Compiler™ User Guide Version L-2016.03-SP4

Capturing State- and Path-Dependent Switching Activity

By default, Power Compiler estimates the state- and path-dependent power information that
is required for power calculations. However, if you want to obtain this information through
simulation, you can use the lib2saif command before simulation. In this case, given a
logic library, you can run the utility to obtain a library SAIF file that contains the directives for
generating state- and path-dependent switching information. This file is called the library
forward SAIF file. This file becomes an input to gate-level simulation.

The library forward SAIF file contains information from the logic library about cells that have
state and path dependencies. It can have rise and fall information if the library has separate
rise and fall power tables.

To read the library forward SAIF file into the simulator, use the $read_lib_saif command.
This command registers the state- and path-dependent information for monitoring during
simulation.

The syntax of the $read_lib_saif command is as follows:
$read_lib_saif(input_file);

For gate-level simulation, you must use the $read_lib_saif command to register state-
and path-dependent cells and, by default, all internal nets in the design. The command
registers state-dependent and path-dependent cells by reading the library forward SAIF file.
In addition, you must also set the toggle region for monitoring. If you do not use the
$read_lib_saif command, the simulator registers all internal nets for monitoring by
default.

You can use the $read_lib_saif command as often as you require during simulation;
however, you must use this command before defining the toggle region using the
$set_toggle_region command. When you define the toggle region, the
$set_toggle_region command checks for the presence or absence of a previous
$read_lib_saif command and registers internal nets accordingly.

Example 4-1 shows an example of a SAIF file generated by the lib2saif command.

Example 4-1 File Generated by lib2saif

(SAIFILE
(SAIFVERSION *2.0"™ "1ib™)
(DIRECTION *"*forward™™)
(DESIGN)
(DATE ...)
(VENDOR "'Synopsys, Inc')
(PROGRAM_NAME *‘Power Compiler lib2saif) (VERSION ...) (DIVIDER 7)
(LIBRARY "example"
(MODULE ""AND2'"
(PORT
z
(IOPATH A I10PATH B)
)

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-10

Power Compiler™ User Guide

)

)
(MODULE "'DFF1"
(LEAKAGE
(COND Q
COND 1Q
COND_DEFAULT)

)

)
(MODULE "EXOR3"
(PORT
@
(COND (('B
COND ((!B
COND ((IC
COND ((!IC
COND ((!IC

% % X %

1A) 1 (B > A))
A | (B * 1A))
1A) 1 (C > A))
A) 1 (€ > 1A))
'B) | (C * B))
COND ((!C * B) | (C * !B))

RISE_FALL
RISE_FALL
RISE_FALL
RISE_FALL
RISE_FALL
RISE_FALL

(10PATH
(10PATH
(10PATH
(10PATH
(10PATH
(10PATH

Version L-2016.03-SP4

COND_DEFAULT RISE_FALL (IOPATH A 10PATH B I10PATH C))

)
)

)
(MODULE "'MUX21"
(PORT
(e

(COND (B * 1A) RISE_FALL (IOPATH S)
COND (1B * A) RISE_FALL (IOPATH S)
COND_DEFAULT RISE_FALL (IOPATH A IOPATH B IOPATH S))

)

)

(LEAKAGE
(COND (B * S * A)
COND (IB * S * A)
COND (1B * IS * A)
COND ('A * S * B)
COND (A * IS * B)
COND_DEFAULT)

)

)
(MODULE "NAND2'
(PORT
(4
(IOPATH A I0PATH B)
)
)

)
(MODULE '"OR2"
(PORT
(4
(IOPATH A I0PATH B)
)
)
)

Chapter 4: Generating SAIF Files
Generating SAIF Files

4-11

Power Compiler™ User Guide Version L-2016.03-SP4

(MODULE "‘iopad6™
(PORT
(PAD
(COND TS RISE_FALL (IOPATH DI)
COND_DEFAULT RISE_FALL)

)

o]
(COND TS RISE_FALL
COND_DEFAULT RISE_FALL)

)
(DO
(10PATH PAD 10PATH_DEFAULT)

)
)
)
)

Overriding Default Registration of Internal Nets

After you have run the read_lib_saif command in the testbench, you can override the
default net monitoring behavior using the $set_gate_level _monitoring command. This
command turns on or turns off the registration of internal nets.

The following is the syntax of the $set_gate_level_monitoring command:

$set_gate_level _monitoring (on™ | "rtl_on", "mda"™ | "sv');

on
This string explicitly registers all internal nets for simulation. Thus, simulation monitors
any internal net in the region defined by the $set_toggle_region command.
"rtl_on"

The registers in the toggle region are monitored and the nets in the toggle region are not
monitored during simulation.

mda

Use this argument for Verilog memories and multidimensional arrays.

Sv

Use this argument for SystemVerilog data objects.

The $set_gate_level _monitoring command is optional. If you use it, you must do so
before invoking the $set_toggle_region command.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-12

Power Compiler™ User Guide Version L-2016.03-SP4

Generating SAIF Files From VHDL Simulation

You can use VCS MX to generate SAIF files from RTL or gate-level simulation of VHDL
designs. The methodology to generate the SAIF file is similar to the methodology used for
Verilog designs, shown in Figure 4-2 and Figure 4-3. However, you cannot use the toggle
commands to specify the system tasks to the simulator.

For RTL-level VHDL files, variables are not supported by the simulator for monitoring.
However, VHDL constructs such as generates, enumerated types, records, and arrays of
arrays are supported by VCS MX for simulation.

The use model to generate a SAIF file from VHDL simulation consists of using the power
command at the VCS MX command line interface, simv. The syntax of the power command
is as follows:

power

-enable

-disable

-reset

-report file_name synthesis_time_unit scope
-rtl_saif file_name

[test_bench_path_name]

-gate_level on] off | rtl_on
region_signal_variable

« The -enable option enables the monitoring of the switching activity.

* The -disable option disables the monitoring of the switching activity.

« The -reset option resets the toggle counter.

* The -report option reports the switching activity to an output SAIF file.

e The -rtl_saif option reads the RTL forward-SAIF file.

* You can use on, off, or rtl_on with the -gate_level option. Table 4-2 summarizes the
monitoring policy for VHDL simulation.

Table 4-2 Monitoring Policy for VHDL Simulation

Monitoring policy Ports Signhals Variables
on Yes Yes No
off No No No
rtl_on Yes Yes No

* You can specify either the hierarchical path to the signal name or the toggle region and
its children to be considered for monitoring.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-13

Power Compiler™ User Guide Version L-2016.03-SP4

System Task List for SAIF File Generation From VHDL Simulation

The following example script shows a task list that you specify to the simulator to generate
a SAIF file. The design name in the example is testl. You can either specify each of these
commands at the VCS MX command prompt or run the file that contains these commands.

power testl

power -enable

run 10000

power -disable

power -report vhdl.saif 1e-09 test
quit

Generating SAIF Files From VCD Files

You can generate SAIF files from VCD files. To generate a SAIF from a VCD file generated
by the VCS tool, use the vcd2sai f utility. Follow these steps to generate the SAIF file and
to annotate the switching activity:

1. Run the simulation to generate VCD file.
2. Use the vcd2sai T utility to convert the VCD file to a SAIF file.

3. Annotate the switching activity within the SAIF file as described in Annotating Switching
Activity.

The disadvantage of using this method is that VCD files can be very large, especially for
gate-level simulation, requiring more time for processing. Also, the SAIF file generated by
the vcd2sai f utility lacks state-dependent and path-dependent information.

Converting a VCD File to a SAIF File

The vcd2sai f utility converts the RTL or gate-level VCD file generated by VCS into a SAIF
file. This utility has limited capability when the VCD is generated from the SystemVerilog
simulation as described in Limited SystemVerilog Support in the vcd2saif Utility.

The vcd2sai T utility is platform-specific and is located in install_dir/fSARCH/syn/bin. The
$ARCH environment variable represents the specific platform (architecture) of your
Synopsys software installation, such as linux or AMD.

You can use compressed VCD files (.Z) and gzipped VCD files (.gz). In addition, for VPD
files, you can use the utility located at $VCS_HOME/bin/vpd2vcd, and for FSDB files, you
can use the utility located at $SYNOPSY S/bin/fsdb2vcd.

The vcd2sai T utility does not support state-dependent and path-dependent switching
activity. For information about each option, use the vcd2saif -help command.

Chapter 4: Generating SAIF Files
Generating SAIF Files 4-14

Power Compiler™ User Guide Version L-2016.03-SP4

Limited SystemVerilog Support in the vcd2saif Utility

The vcd2sai T utility supports only a limited set of SystemVerilog constructs for VCD files
generated from SystemVerilog simulation. Table 4-3 shows the list of SystemVerilog
constructs that are supported by the vcd2saif utility.

Table 4-3 SystemVerilog Constructs Supported by the vcd2saif Utility

char int shortint longint bit byte logic

shortreal void enum typedef struct union arrays
(packed and
unpacked)

Generating SAIF Files from FSDB Output Files
There are two ways to generate a SAIF file from an FSDB file:

1. Using the fsdb2saif utility

2. Using the fsdb2vcd utility and then using the ved2saif utility.

For more information about the FSDB utilities, see the Verdi3 and Siloti Command
Reference Manual. After generating the SAIF file, annotate the switching activity from the
SAIF file as described in Annotating Switching Activity.

Verilog Switching Activity Examples

The following examples demonstrate RTL and gate-level descriptions with
Verilog-generated switching activity data.

RTL Example

This Verilog RTL example includes the following elements:
« RTL design description

* RTL testbench

e SAIF output file from simulation

Verilog Design Description

Example 4-2 shows the description for a state machine called test.

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-15

Power Compiler™ User Guide Version L-2016.03-SP4

Example 4-2 RTL Verilog Design Description

“timescale 1 ns / 1 ns
module test (data, clock, reset, dummy);

input [1:0] data;
input clock;
input reset;
output dummy;

wire dummy;

wire [1:0] NEXT_STATE;
reg [1:0] PRES_STATE;

parameter sO = 2"b00;
parameter s5 = 2"b01;
parameter s10 = 2"b10;
parameter s15 = 2"b11;

function [2:0] fsm;
input [1:0] fsm_data;
input [1:0] fsm_PRES STATE;

reg fsm_dummy;
reg [1:0] fsm NEXT_STATE;

begin
case (fsm_PRES STATE)
s0: //state = sO
begin
if (fsm_data == 2"b10)
begin
fsm_dummy = 1"bO;
fsm_NEXT_STATE = s10;
end
else if (fsm_data == 2"b01)
//. ...
end

sb: //state = s5
begin

// ...
end

s10: //state = s10
begin

// ...
end

s15: //state 15
begin

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-16

Power Compiler™ User Guide Version L-2016.03-SP4

// ...
end
endcase

fsm = {Fsm_dummy, Fsm_NEXT_STATE};
end

endfunction
assign {dummy, NEXT_STATE} = fsm(data, PRES_STATE);

always @(posedge clock)
begin
if (reset == 1"bl)
begin
PRES_STATE = sO0;
end
else
begin
PRES_STATE= NEXT_STATE;
end
end
endmodule

RTL Testbench

The Verilog testbench in Example 4-3 simulates the design test described in Example 4-2.
The testbench instantiates the design test as Ul.

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-17

Power Compiler™ User Guide Version L-2016.03-SP4

Example 4-3 RTL Testbench

“timescale 1 ns /7 1 ns
module stimulus;

reg clock;

reg [1:0] data;

reg reset;

wire dummy;

test Ul (data,clock, reset, dummy);

always
begin
#10 clock = ~clock;
end

initial

begin
$set_toggle_region(stimulus.Ul);
$toggle_start();

clock = 1°b0;

data = 27b00;

reset = 17bl;

#50 reset = O;

#25 data = 3; #20 data = O;
#20 data = 1; #20 data = 2;
// ...

$toggle_stop();

$toggle_report("my_rtl_saif", 1.0e-12, "stimulus');
#80 $finish;

end

RTL SAIF File

The RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The $toggle_report command creates
this file.

Example 4-4 is a SAIF file created for the RTL Verilog description that is also shown in
Example 4-2 and for the testbench shown in Example 4-3.

Example 4-4 RTL SAIF File

/** There is no explicit set_gate_ level _monitoring command, **/
/** and the default behavior is to monitor internal nets **/
(SAIFILE

(SAIFVERSION *"2.0")

(DIRECTION "backward')

(DESIGN)

(DATE "Fri Feb 6 14:21:20 2015")

(VENDOR *'Synopsys, Inc')

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-18

Power Compiler™ User Guide Version L-2016.03-SP4

(PROGRAM_NAME "'VCS 1-2014.03-SP1'")
(VERSION "1.0")
(DIVIDER 7/)
(TIMESCALE 1 ps)
(DURATION 135000.00)
(INSTANCE stimulus
(INSTANCE U1
(NET
(data\[1\]
(TO 115000) (T1 20000) (TX 0)
(TC 2) (IG 0)

)

(data\[0\]
(TO 95000) (T1 40000) (TX 0)
(TC 3) (I1G 0)

)

(clock
(TO 70000) (T1 65000) (TX 0)
(TC 13) (I1G 0)

)

(reset
(TO 85000) (T1 50000) (TX 0)
(TC 1) (IG 0)

)

(dummy
(TO 0) (T1 0) (TX 135000)
(TC 0) (IG 0)

)

(NEXT_STATE\[1\]
(TO 0) (T1 0) (TX 135000)
(TC 0) (I1G 0)

)

(NEXT_STATE\[O\]
(TO 0) (T1 0) (TX 135000)
(TC 0) (I1G 0)

Understanding the SAIF File
Table 4-4 summarizes the definitions for various SAIF file terminology:
Table 4-4 Definitions of SAIF File Terminology

TO Duration of time found in logic 0O state.
T1 Duration of time found in logic 1 state.
TX Duration of time found in unknown “X” state.

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

4-19

Power Compiler™ User Guide Version L-2016.03-SP4

Table 4-4 Definitions of SAIF File Terminology (Continued)

TC The sum of the rise (0-to-1) and fall (1-to-0)
transitions that are captured during monitoring.

IG Number of 0 - X -0 and 1 - X - 1 glitches captured
during monitoring.

RISE Rise transitions in a given state.

FALL Fall transitions in a given state.

Duration refers to the time span between $toggle_start and $toggle_stop commands in
the testbench during simulation. During this time span, ports, pins, and nets are monitored
for toggle activity. For more information on the terminology of the SAIF file, see the IEEE
1801 Standard, Annex J.

Gate-Level Example

This Verilog gate-level example illustrates the following elements:
» Verilog cell description and schematic

» Verilog testbench

» SAIF output file from simulation

Gate-Level Verilog Module
Figure 4-5 shows the schematic for a simple multiplexer.

Figure 4-5 Schematic of Multiplexer Circuit: MUX21

sel c1
c2
inT —
out
c3
in2

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-20

Power Compiler™ User Guide Version L-2016.03-SP4

Example 4-5 is the Verilog module that describes the MUX21 design.

Example 4-5 Verilog Module of Multiplexer Circuit: MUX21

/*“timescale 10ps/ 1ps

*/

module MUX21(out,dl1,d2,sel);

input dl1, d2, sel;

output out;
IV c1(-Z(sel)), -A(sel));
AN2 c2(.z({d1m),.A(dl), .B(sel)));
AN2 c3(.zZ(d2m), .A(d2), .B(sel));
OR2 c4(.Z(out), .A(d1m), .B(d2m));

endmodule

Verilog Testbench

The Verilog testbench in Example 4-6 tests the MUX21 design by simulating it and
monitoring the various signals.

Example 4-6 Verilog Testbench for MUX21

/* Begin test.v */
“timescale 1ns/ 10ps
modulle top;

reg inl, in2, sel;
parameter hazrate
parameter haztime

0.99;
0.23;

MUX21 ml(out,inl,in2,sel);

initial

begin
// start monitoring
$monitor($time,,,"inl=%b in2=%b sel=%b
out=%b*",inl,in2,sel,out);

// read SAIF file of state or path dependent information
$read_lib_saif (cell_saif);

// define the monitoring scope
$set_toggle_region (ml);

$toggle_start;

// test Tirst data line passing O

sel = 0;
inl = 0;
in2 = 0;

// test Ffirst data line passing 1
#10 inl = 1;

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-21

Power Compiler™ User Guide Version L-2016.03-SP4

#10 sel = 1;

// test second data line passing 1
#10 in2 = 1;

$toggle_stop;
$toggle_report("my_1lst", 1.0e-9,"top.ml", hazrate, haztime);

// exit simulation
$finish(2);

end

endmodule

The $set_toggle_region command sets the monitoring scope in module m1 (the
testbench instantiation of MUX21). All subsequent toggle commands affect only registered
design objects and designs instantiated in registered objects. Thus, under m1, simulation
monitors internal nets and state- and path-dependent cells (in this simple example, however,
there are no subdesigns in m1).

The testbench example invokes $toggle_report command before exiting the simulation.
Make sure that you declare any parameters you use for $toggle_report command in your
testbench. These parameters appear at the top of the testbench in Example 4-6.

Gate-Level SAIF File
Example 4-7 shows a SAIF file generated from gate-level simulation of MUX21.

Example 4-7 $toggle_report Output File in SAIF

(SAIFILE
(SAIFVERSION *"2.0")
(DIRECTION "backward')
(DESIGN)
(DATE "Fri Oct 6 18:58:58 2000')
(VENDOR *'Synopsys, Inc')
(PROGRAM_NAME "VCS-MX Power Compiler™)
(VERSION *3.3")
(DIVIDER 7/)
(TIMESCALE 1 ns)
(DURATION 99999.00)
(INSTANCE tb
(INSTANCE dut

(NET
(n12159
(TO 99529) (T1 470) (TX 1)
(TC 46) (1G 0)
)
(n12480

(TO 0) (T1 99998) (TX 0)
(TC 0) (I1G 0)

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples 4-22

Power Compiler™ User Guide

)

(n12117
(TO 61) (T1 99938) (TX 0)
(TC 26) (I1G 0)

)

)
(INSTANCE U12053
(PORT
e
(TO 10) (T1 99989) (TX 0)
(COND A (RISE)
(I0PATH B (TC 0) (IG 0)

)
COND A (FALL)
(10PATH B™ (TC 0) (IG 0)

)
COND B (RISE)
(10PATH A (TC 0) (IG 0)

)
COND B (FALL)
(10PATH A" (TC 1) (IG 0)

)
COND_DEFAULT (TC 1) (IG 0)
)

Version L-2016.03-SP4

VHDL Switching Activity Example

This VHDL RTL example includes the following elements:

* RTL design description
* RTL testbench

» SAIF output file from simulation

VHDL Design Description

Example 4-8 shows the description for a design called dummy.

Example 4-8 RTL VHDL Design Description

library ieee;
use ieee.std logic 1164.all;
entity dummy is

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example

4-23

Power Compiler™ User Guide Version L-2016.03-SP4

architecture beh of dummy is
signal clk: std_logic = "0%;
begin

clk <= not clk after 5 ns;
end beh;

RTL Testbench

The RTL testbench in Example 4-9 simulates the design test described in Example 4-8. The
testbench instantiates the design dummy as dummy_ins.

Example 4-9 RTL Testbench

library ieee;
use ieee.std logic 1164.all;
entity test is
end entity
architecture testbench of test is
component dummy 1is
end component;
begin
dummy_ins: dummy;
end testbench;

RTL SAIF File

This RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The power -report command creates
this file.

Example 4-10 is a SAIF file for the RTL VHDL description that is shown in Example 4-8.

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example 4-24

Power Compiler™ User Guide Version L-2016.03-SP4

Example 4-10 RTL SAIF File

/** There is no explicit set _gate_level_monitoring command, **/
/** and the default behavior is to monitor internal nets **/
(SAIFILE
(SAIFVERSION *"2.0")
(DIRECTION "backward'™)
(DESIGN)
(DATE "Tue May 5 05:56:35 2009')
(VENDOR "'Synopsys, Inc')
(PROGRAM_NAME "VCS-Scirocco-MX Power Compiler'™)
(VERSION "1.0")
(DIVIDER 7)
(TIMESCALE 1 ns)
(DURATION 10000.00)
(INSTANCE TEST
(INSTANCE DUMMY_INS

(NET
(CLK
(TO 5000) (T1 5000) (TX 0)
(TC 1999) (1G 0)
)
)
)
)
)

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example 4-25

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example 4-26

5

Annotating Switching Activity

Switching activity is required for accurate power calculations. This chapter explains the
different types of switching activity information and illustrates how you can annotate
switching activity on gate-level design objects.

This chapter contains the following sections:

« Types of Switching Activity to Annotate

« Annotating Switching Activity Using RTL SAIF Files

* Annotating Switching Activity Using Gate-Level SAIF Files

« Annotating Inferred Switching Activity

* Annotating Switching Activity Using the set_switching_activity Command
¢ Fully Versus Partially Annotating the Design

* Analyzing the Switching Activity Annotation

« Removing the Switching Activity Annotation

» Design Objects Without Annotated Switching Activity

5-1

Power Compiler™ User Guide Version L-2016.03-SP4

Types of Switching Activity to Annotate

The power of a design depends on the switching activity of the nets and cell pins. The
switching activity is used by the report_power command during power calculation.

The following types of switching activity can be annotated on design objects:

» Simple switching activity on design nets, ports, and cell pins. Simple switching activity
consists of the static probability and the toggle rate. The static probability is the fraction
of the time that the object is at logic 1. The toggle rate is the rate at which the design
object switches between logic 0 and logic 1.

« State-dependent toggle rates on input pins of leaf cells. As explained in Power Modeling
and Calculation, the internal power characterization of an input pin of a library cell can be
state dependent. The input pins of instances of such cells can be annotated with state
dependent toggle rates.

« State-dependent and path-dependent toggle rates on output pins of leaf cells. As
explained in Power Modeling and Calculation, the internal power characterization of
output pins can be state dependent and path dependent. Output pins of cells with state-
and path-dependent characterization can be annotated with state- and path-dependent
toggle rates.

« State-dependent static probability on leaf cells. Cell leakage power can be characterized
using state dependent leakage power tables (see Power Modeling and Calculation).
Such cells can be annotated with state-dependent static probability.

Annotating Switching Activity Using RTL SAIF Files

Optimal power analysis and optimization results occur when switching activities reported in
the RTL SAIF file are accurately associated with the correct design objects in the gate-level
netlist. For this to occur, the RTL names must map correctly to their gate-level counterparts.
During synthesis, however, mapping inaccuracies can occur that can affect your annotation.

To ensure proper name mapping and annotation for RTL SAIF files, do the following:

1. Atthe beginning of synthesis, specify the saif_map -start command.

This command causes Power Compiler to create a hame-mapping database during
synthesis optimization that Power Compiler then uses for power analysis and
optimization.

2. Before compiling, specify the read_saif -auto_map_names command to perform RTL
SAIF annotation using the name-mapping database.

Chapter 5: Annotating Switching Activity
Types of Switching Activity to Annotate 5-2

Power Compiler™ User Guide Version L-2016.03-SP4

Using the Name-Mapping Database

You can access the name-mapping database by using the saif_map command, which
allows you to query, report, modify, save, clear, and load the database. If the object names
require modification, use the read_saif -auto_map_names command. You can read a
regular, uncompressed file or a compressed file in gzip format by using the -input option of
the saif_map command. The saif_map command has the following syntax:

saif_map

[-start]

[-end]
-reset]
-report]
-get_name]
-set_name name_list]
-add_name name_list]
-remove_name name_list]
-clear_name]
-get_object_names name_list]
-create_map]
-write_map Ffile_name]
-read_map Ffile_name]
-type type]
-inverted]
-instances objects]
-no_hierarchical]
-columns columns]
-sort columns]
-rtl_summary]
-missing_rtl]
-input SAIF_file]
-review]
-preview]
-source_instance SAIF_instance_nhame]
-target_instance target_instance_name]
-hsep character]
[-nosplit]
[object_list]

L s Y e e W ¥ e s ¥ e e ¥ ¥ e e Y ¥ e e ¥ e e Y ¥ e s ¥ e W s e |

After you run the read_saif -auto_map_names command, review the name-mapping
database using the following commands:

read_saif -auto_map_names -input ../sim/rtl_saif \
-instance_name tb/dut -verbose
report_saif -hier -rtl_saif -missing

You can manually add a mapping entry with the saif_map -add_name command as follows:

reset_switching_activity

saif_map -add_name "Ax_ins" [get_port AX usr_ins]

read_saif -auto_map_names -input _._./sim/rtl_saif \
-instance_name tbh/dut

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files 5-3

Power Compiler™ User Guide Version L-2016.03-SP4

In this example, you manually map the RTL SAIF object “Ax_ins” and the design object
“AX_usr_ins.” When you run the read_saif -auto_map_names command, the Power
Compiler tool performs annotation again using the modified database.

For more information about the command options, see the read_saif and saif_map
command man pages.

Integrating the RTL Annotation With PrimeTime PX

Similar to Power Compiler, PrimeTime PX requires accurate RTL-to-gate name-mapping
correspondence to perform accurate power analysis. Use Power Compiler to output the
name-mapping files that PrimeTime PX can use for RTL-to-gate name mapping.

After using the read_saif command, specify the saif_map command as follows to
generate a name-mapping file that can be read directly into PrimeTime PX:

saif_map -type ptpx -write_map file_name

The name-mapping output file appears as follows:

set_rtl_to _gate name -rtl{clk sn} -gate clk sn
set_rtl_to _gate name -rtl{rx_top/data_i[9]} \
-gate rx_top_data_i_reg<9>

Example 5-1 shows the recommended flow using RTL SAIF file to ensure optimal power
analysis during synthesis and get the proper names for PrimeTime PX.

Example 5-1 Annotating Switching Activity Using RTL SAIF Files Flow

saif_map -start

read_verilog rtl_design.v

link

create_clock clk

read_saif -auto _map_names -input ../sim/rtl.saif \
-instance_name tb/dut

report_saif -hierarchy -rtl_saif

compile_ultra

report_saif -hierarchy -rtl_saif

change_name -rules verilog -hierarchy

write -format verilog -hierarchy -output mapped_design.v

saif_map -type ptpx -write_map saifmap.ptpx.tcl

Annotating Switching Activity Using Gate-Level SAIF Files

You can use either the read_saif or merge_saif command to annotate switching activity.
The read_saif command reads a SAIF file and annotates switching activity information on
the nets, pins, and ports of the design.

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-4

Power Compiler™ User Guide Version L-2016.03-SP4

The merge_saif command reads a list of SAIF files, computes the toggle rates and static
probability, and annotates the switching activity information on the nets, pins, and ports of
the design. This command creates a merged-output SAIF file.

Reading SAIF Files Using the read _saif Command

To annotate gate-level switching activity onto the gate-level netlist, use the read_saif
command. For example,

dc_shell> read_saif -input myfile_.saif -auto _map -instance_name T1/DUT/Ul

In this example, the read_saif command annotates the information in the input file named
myfile.saif onto the current gate-level design, Ul. The -instance_name option identifies
the hierarchical location of the current design in the simulation environment.

The input file specified using the -input option of the read_saif command can be a text
file or a compressed gzip file with a .gzip extension. For example,

dc_shell> read_saif -input myfile.gzip -instance _name T1/DUT/Ul

A SAIF file is usually generated in the HDL simulation flow, where a simulation testbench
instantiates the design being simulated and provides simulation vectors. The generated
SAIF file contains the switching activity information organized in a hierarchical fashion,
where the hierarchy of the SAIF file reflects the hierarchy of the simulation testbench. If a
design is instantiated in the testbench (tb) as the instance i, then the SAIF file contains the
switching activity information for the design under the hierarchy tb/i. In this case, specify the
tbh/i instance name to the -instance_name option when reading the SAIF file as follows:

dc_shell> read_saif -input des.saif -instance_name tb/i

Specifying an invalid instance name results in having all or most of the switching activity
stored in the SAIF file not read properly. An error message is printed if none of the
information stored in the SAIF file is read by the read_saif command.

The SAIF file contains time duration values and specifies a time unit which is usually the
time unit used during simulation. When reading the SAIF file, the read_saif command
automatically converts the SAIF time units to the synthesis time units. The synthesis time
units are obtained from the time units of the target or link library. When the synthesis time
units cannot be obtained, the read_saif command prints a warning message and uses a
default time unit of 1 ns. In such cases, the -scale and -unit options can be used to
specify the intended synthesis time unit. For example, if a target library with the time units
100 ps is used for synthesis and a SAIF file is being read before the library is used (for
linking or synthesis), use the options as follows:

dc_shell> read_saif ... -scale 100 -unit_base ps

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-5

Power Compiler™ User Guide Version L-2016.03-SP4

When reading the SAIF file, the report_lib command gives the time units specified in a
logic library. The report_power command gives the synthesis library time units used during
power calculations.

The read_saif command has the following syntax:

read_saif
—-input File_name
[-instance_name string]
[-target_instance instance]
[-names_file file_name]
[-ignore string]
[-ignhore_absolute string]
[-exclude file name]
[-exclude_absolute Ffile_name]
[-scale scale_value]
[-unit_base time_unit]
[-khrate float]
[-map_names]
[-auto_map_names]
[-verbose]

For information about the command options, see the read_saif command man page.

Reading SAIF Files Using the merge_saif Command

The merge_saif command can be used to read switching activity information from multiple
SAIF files. Input SAIF files are given individual weights, and a weighted sum of the switching
activities is annotated. This command can be used in flows where different SAIF files are
generated for different modes of the same design. The switching activity from all the
different modes can then be used for power calculations and optimization.

The following example shows how to use the merge_saif command. In this example, the
design has three modes: standby, slow, and fast; and the SAIF files are standby.saif,
slow.saif, and fast.saif. Depending on the expected use of the design, specify the following
weight for each SAIF file, with the total weight always equal to 100 percent:

standby.saif: 80%; slow.saif: 5%; fast.saif: 15%

The SAIF files are read as shown in the following example:

dc_shell> merge_saif -input_list \
{ -input standby.saif -weight 80 \
—-input slow.saif -weight 5 \
-input fast.saif -weight 15 } \
-instance _name tb/i

The -output option of the merge_saif command can be used to generate a SAIF file
containing the weighted sum of the switching activities. When the output file is specified with

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-6

Power Compiler™ User Guide Version L-2016.03-SP4

a .gzip extension, then a compressed file is written out in gzip format. If the output file is
specified with a .saif extension, then a uncompressed SAIF format file is written.

After the merge_saif command reads each individual SAIF file, it uses a switching activity
propagation mechanism to estimate the switching activity of design nets that are not
included in the SAIF file. You can therefore use the following command to generate a
gate-level SAIF file with estimated switching activity information from an RTL SAIF file:

dc_shell> merge_saif -input_list { -input rtl_saif -weight 100} \
-instance_name tb/i -output estimate.saif

The -simple_merge option can be used to switch off the switching activity propagation
mechanism when the information in the SAIF files is being merged.

The syntax of the merge_saif command is the same as that of the read_saif command
with the following exceptions:

« A weighted input file list is specified instead of a single input file

* The -simple_merge and -output options can be used with the merge_saif command

The merge_saif command has the following syntax:

merge_saif
input_list weighted filename list
[-simple_merge]
[-output merged_saif_filename]
[-instance_name string]
[-scale scale_value]
[-unit_base time_unit]
[-ignhore string]
[-ighore_absolute string]
[-exclude filename]
[-exclude_absolute filename]
[-map_names]
[-khrate float]

For more information, see the merge_saif command man page.

Annotating Inferred Switching Activity

The infer_switching_activity command detects the drivers of special pins such as
asynchronous set, asynchronous clear, synchronous set, and synchronous clear, and
suggests values for toggle rate and static probability.

Chapter 5: Annotating Switching Activity
Annotating Inferred Switching Activity 5-7

Power Compiler™ User Guide Version L-2016.03-SP4

The infer_switching_activity command reports the current and proposed static
probability and toggle rate, as shown in the following example:

dc_shell> infer_switching_activity
Information: Updating design information... (UID-85)

Created by infer_switching_activity ...

Current Current Proposed Proposed

Static Toggle Static Toggle
Objects Type Probability Rate Probability Rate
ue46/z driver None None 1.0 0.0
u645/zN driver None None 1.0 0.0

When you specify the -apply option, the proposed switching activity is annotated on the
drivers listed in the output. After applying the switching activity, Power Compiler uses the
applied values to report the power consumption.

For more information, see the infer_switching_activity command man page.

Annotating Switching Activity Using the set_switching_activity
Command

The set_switching_activity command annotates switching activity on design objects
such as pins, ports, nets, and cells. The types of activity that you can annotate include state-
and path-dependent toggle rates and state-dependent static probabilities.

The set_switching_activity command has the following syntax:

set_switching_activity
[-static_probability static _probability value]
[-toggle_rate toggle_rate]
[-state_condition boolean_equation_of pins]
[-path_sources pins_of _the source_of_ this_path]
[-rise_ratio rise _or_total toggle ratio]
[-period period value | -base_clock clock]
[-type list _of object type]
[-hierarchy]
[-verbose]
[object list]

Use the -static_probabi lity option to specify the static probability value, which is a
floating-point number between 0.0 and 1.0. Static probability is the fraction of time that the
signal is at logic 1.

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using the set_switching_activity Command 5-8

Power Compiler™ User Guide Version L-2016.03-SP4

Use the -toggle_rate option to specify the toggle rate value, which is a floating point
number. Toggle rate is the number of low-to-high or high-to-low transitions made by the
signal during a period of time.

The -toggle_rate option differs from the toggle rate used for modeling switching activity.
The -toggle_rate option expresses the sum of the rise and fall transitions that the signal
makes during an entire simulation, clock period, or other period you specify. Power Compiler
uses the -toggle_rate and -period (or -clock) options to determine the actual toggle
rate per unit of time.

The following example specifies that the net netl is at logic 1 for 20 percent of the time, and
that it transitions between logic values 0 and 1 an average of 10 times in 1000 time units.
The time unit used for the toggle rate is the time unit defined in the target library. The
-period option is optional and defaults to a value of 1, when it is not specified.

dc_shell> set_switching_activity [get nets netl] \
-static_probability 0.2 -toggle _rate 10 -period 1000

Use the -state_condition option to annotate state-dependent toggle rates on pins or
state-dependent static probabilities on cells. The state-dependent toggle rates can be
annotated only if the library is characterized with state-dependent power tables for internal
power, for the pins of the library cell. Similarly, state-dependent static probabilities can be
annotated only if the library is characterized with state-dependent power tables for leakage
power, for the library cells.

The following example shows how to use the -state_condition option to annotate the
state-dependent toggle rates on pins. It specifies that the pin ff1/Q toggles 0.01 times when
the pin D is at logic 1, and 0.03 times when the pin D is at logic 0.

dc_shell> set_switching activity [get pins ff1/Q] -toggle rate 0.01 \
-state_condition "D"

dc_shell> set_switching_activity [get pins ff1/Q] -toggle _rate 0.03 \
-state_condition "ID"

Use the -rise_ratio option to specify the ratio of rise transitions to the total transitions for
the specified toggle rate. You can also use this option with state-dependent toggle rates to
specify the ratio of rise transitions to fall transitions for the specified state. The following
example specifies that the xor1/Y pin toggles 0.01 times when the cell is in A state, and that
90 percent of these toggles are rise toggles.

dc_shell> set_switching activity [get pins xorl/Y] -toggle rate 0.01 \
-state_condition "A" -rise_ratio 0.9

Use the -path_sources option to specify the path-dependent toggle rates. The following
example specifies that the and1/Y pin toggles 0.02 times because of a toggle on the input
pin A, but never toggles because of a toggle on the B pin. Toggle rates that are both state-

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using the set_switching_activity Command 5-9

Power Compiler™ User Guide Version L-2016.03-SP4

and path-dependent are specified by using the -state_condition and -path_sources
options together.

dc_shell> set_switching_activity [get pins andl/Y] -toggle rate 0.02 \
-path_sources A"

dc_shell> set_switching activity [get pins andl/Y] -toggle rate 0.00 \
-path_sources "''B"

The state-dependent static probabilities can be annotated using the -state_condition
option. The following example specifies that the cell named AND1 is at the A & B state for
10 percent of the time, at the A & !B state for 70 percent of the time, and at the !A state for
20 percent of the time.

dc_shell> set_switching_activity [get cells AND1] \
-static_probability 0.1 -state condition "A & B"

dc_shell> set_switching _activity [get cells AND1] \
-static_probability 0.7 -state_condition "A & !B"

dc_shell> set_switching_activity [get _cells AND1] \
-static_probability 0.2 -state _condition "IA"

To implicitly select outputs or cells to annotate, use the -type option and specify a list of
following types of objects:

* Input, output, inout ports of design or input, output, inout pin of hierarchical cells
e Output of registers, output of sequential cells

* Output of black box cells

e Output of tristate cells

» Output of flip-flops clocked by the specified clocks

e Output of clock-gating cells

* Output of memory cells

* Nets

When you use the set_switching_activity command to annotate switching activity on alll
inputs, this includes the clock inputs as well. This results in overriding the switching activity
on the clock inputs. To avoid overriding the switching activity on clock inputs, specify all
inputs except the clock inputs, as shown in the following example:

dc_shell> set_switching_activity [remove from_collection \
[all_inputs] clk] \
-static_probability sp value -toggle rate tr_value \
-period period_value

For more information, see the set_switching_activity command man page.

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using the set_switching_activity Command 5-10

Power Compiler™ User Guide Version L-2016.03-SP4

Fully Versus Partially Annotating the Design

For the highest accuracy of power analysis, annotate all the elements in your design. To
annotate all design elements, you must use gate-level simulation to monitor all the nodes of
the design.

Using gate-level simulation, you can perform the following activities:
« Capture state- and path-dependent switching activity

« Capture switching activity that considers glitching (full-timing gate-level simulation only)

After layout, you can increase accuracy further by annotating wire loads with more accurate
net capacitance values. However, if the design layout is performed at the foundry, you might
not have access to the post-layout information.

If you annotate some design elements, Power Compiler uses an internal zero-delay
simulation to propagate switching activity through nonannotated nets in your design. Power
Compiler uses internal simulation anytime it encounters nonannotated nets during power
analysis.

During switching activity propagation, Power Compiler tracks which design elements are
user-annotated with the set_switching_activity command and which are not. In
calculating power, Power Compiler does not overwrite user-annotated switching activity with
propagated switching activity.

Power analysis and optimization require that you annotate at least the following:
e Primary inputs

* Outputs of synthesis-invariant elements such as black box cells

* Three-state devices

* Sequential elements

» Hierarchical ports

Note:
When performing power analysis on a partially annotated design, it is recommended that
you specify a clock before running the report_power command. The internal zero-delay
simulation requires a real or virtual clock to properly compute and propagate switching
activity through the design. Use the create_clock command to create a clock. If no
clock is available, you get a PWR-80 warning message. This does not stop propagation
but the estimated switching activity might not be accurate.

Chapter 5: Annotating Switching Activity
Fully Versus Partially Annotating the Design 5-11

Power Compiler™ User Guide Version L-2016.03-SP4

Analyzing the Switching Activity Annotation

The report_saif command can be used to display information about the annotated
switching activity. The report generated by this command shows the number and
percentage of nets, ports, and pins annotated with user-annotated switching activity, default
switching activity, and propagated switching activity, respectively. The command does not
consider clock-gating cells as synthesis-invariant because these cells can be deleted or
inserted during the optimization step. The following example shows the report generated by
the command:

dc_shell> report_saif -hierarchy

AEAAXAKXAAAAAAXAAAXAXAAAXAAAAAAAAAAXAAAXAAAXAAAAXX

Report : saif

-hier

Design : des

Version:

Date S

R R R R R R R R R B e R R R R R R R R R e e e e

User Default Propagated

Object type Annotated (%) Annotated (%) Activity (%) Total
Nets 251(99.21%) 1(0.40%) 1(0.40%) 253
Ports 59(98.33%) 1(1.67%) 0(0.00%) 60
Pins 251(99.60%) 0(0.00%) 1(0.40%) 252

If the -hier option is used, the switching activity information is generated for all design
objects in the design hierarchy starting from the current instance. If this option is missing,
then only design objects in the hierarchical level of the current instance are considered.

If the -rtl_saif option is used, switching activity information for RTL-invariant objects is
reported. Otherwise switching activity information for all design nets, ports, and pins are
reported. You can use the -rtl_saif option after reading an RTL SAIF file.

The -missing option can be used to display the design objects that do not have
user-annotated switching activity information.

Removing the Switching Activity Annotation

Switching activity annotation can be removed from all current design objects using the
reset_switching_activity command. This command removes all the simple and state-
and path-dependent switching activity information.

Chapter 5: Annotating Switching Activity
Analyzing the Switching Activity Annotation 5-12

Power Compiler™ User Guide Version L-2016.03-SP4

In the following example, an RTL SAIF file is read before a design is compiled with power
constraints and then a more accurate gate-level SAIF file is used to generate power reports:

read_saif -map_names -input rtl_back.saif -instance_name tb_rtl/i
compile_ultra

reset_switching_activity
read_saif -input gate.back.saif -instance_name tb_gate/i
report_power

Note that in this example, the SAIF map is already initialized.

You can selectively remove the switching activity information from individual design objects
using the following command:

dc_shell> set_switching activity objects

Design Objects Without Annotated Switching Activity

Power Compiler needs switching activity information for all design nets and state- and
path-dependent information for all design cells and pins to calculate power. Switching
activity that is not user annotated is estimated automatically before power is calculated. This
is performed in the following stages:

« The user-annotated and default-annotated switching activities are used to derive the
simple static probability and toggle rate information for the rest of the design nets.

* The simple switching activity information (user-annotated or estimated) is used to derive
the non-annotated state- and path-dependent switching activity.

Default Switching Activity Values

The following types of nets are automatically annotated with switching activity based on the
logic of the design:

* Nets driven by constants: A toggle rate value of 0.0 is used. A static probability value of
0.0 is used for logic 0 constants, while a value of 1.0 is used for logic 1 constants.

« Nets driven by clocks: The toggle rate and static probability are derived from the clock
waveform.

« Nets driving or driven by buffers: The switching activity of a nonannotated buffer input or
output is set to match the switching activity already determined for the other side of the
buffer.

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity 5-13

Power Compiler™ User Guide Version L-2016.03-SP4

« Nets driving or driven by inverters: The switching activity of the inverter input or output is
based on the sw tic hi ng activity already determined for the other side of the inverter. The
toggle rate is the same and the static probability is complementary.

* Flip-flop outputs: If a flip-flop cell has both Q and QN output ports and only one of the
outputs is annotated, then the other output is assigned the same toggle rate and the
complementary static probability.

* Inputs and outputs of black box cells: The switching activity cannot be propagated
through a black box. Therefore, the default switching activity is annotated on the outputs
of a black box.

The default switching activity depends on the value of the
power_default_static_probability and power_default_toggle rate variables. The
default static probability is 0.5. To specify a different value, set the
power_default_static_probability variable to the desired value.

The default toggle rate is 0.1 multiplied by the related clock frequency specified by the
-clock option of the set_switching_activity command. In other words, the net is
assumed to toggle once every 10 clock periods on average. If no related clock is specified
for a net, the clock with the highest frequency is used. To specify a different toggle rate
multiplier, set the power_default_toggle_rate variable to the desired multiplier value
(default 0.1).

Propagating the Switching Activity

For nets that are not user-annotated and not assigned switching activity information by
default, the tool users a zero-delay simulator to propagate switching activity from known
nets. Random simulation vectors are generated for the user and default annotated nets
depending on the annotated toggle rate and static probability values. The zero-delay
simulator uses the functionality of the design cells and the random vectors to obtain the
switching activity on nonannotated cell outputs.

The number of simulation steps performed by this mechanism depends on the analysis
effort option applied to the report_power command. User and default annotated switching
activity values are never overwritten by values derived by the propagation mechanism.

However, if a design net is not annotated with both toggle rate and static probability values,
then the switching activity on this net cannot be used by the propagation mechanism. For
such nets, the nonannotated value is estimated by the propagation mechanism.

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity 5-14

Power Compiler™ User Guide Version L-2016.03-SP4

Deriving the State- and Path-Dependent Switching Activity

If an RTL SAIF file or a gate-level SAIF file without state- and path-dependent switching
information is used to annotate the design switching activity, Power Compiler needs to
estimate the required state- and path-dependent switching activity information. After
obtaining the simple switching activity (from user annotation, or by switching activity
propagation), Power Compiler estimates the state-dependent static probability information
for every cell, and the state- and path-dependent toggle rate information for every cell pin.
This information is obtained from the switching activities of each cell input and output pins.
Although the state- and path-dependent estimation mechanism produces accurate power
calculations, for best power results, use the gate-level SAIF files with state- and
path-dependent information.

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity 5-15

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity 5-16

&

Performing Power Analysis

The information in this chapter describes the Power Compiler power analysis engine and
how to perform power analysis.

This chapter contains the following sections:

Overview

Identifying Power and Accuracy

Performing Gate-Level Power Analysis

Analyzing Power With Partially Annotated Designs
Power Correlation

Analyzing the Design For Power Analysis
Characterizing a Design for Power

Reporting the Power Attributes of Library Cells

Power Reports

6-1

Power Compiler™ User Guide Version L-2016.03-SP4

Overview

After capturing switching activity, mapping your design to gates, and annotating your design,
run the report_power command to report the power consumption of the various elements
of the design.

The tool creates power reports for

e Design
* Modules
e Nets

» Cells or groups of cells of specific type

e Scenarios, in case of multicorner-multimode designs

The report_power command uses a Power Compiler license. When the command is
completed, the license is released. If a license is not available, the command terminates with
an error message.

To keep the license after completing the report_power command, set the following
variable:

dc_shell> set_app_var power_keep_ license_after_power_commands true

For more information see the command man page.

Identifying Power and Accuracy

Power Compiler uses different methods to compute the power of your design. The tool
considers the type and amount of switching activity annotated on your design and chooses
the most accurate method to compute your design’s power. The method used depends on
whether you annotate some or all of the elements in your design.

To analyze your gate-level design, the following inputs are required:
e Switching activity
* Logic library

* Gate-level netlist

Figure 6-1 shows the inputs to Power Compiler.

Chapter 6: Performing Power Analysis
Overview 6-2

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 6-1 Inputs to Power Compiler

Gate-Level or RTL
Simulation Simulation

Technology ¢ ¢

Library

. Power Report
Power Compiler P

Gate-Level ——P»
Netlist

For best results, use the logic libraries characterized with power information. If the library
has only pin capacitance and voltage, but no power information, only the switching power of
the net is reported. The switching power is a function of the pin capacitance, voltage, and
toggle frequency. You can generate the report by using the report_power command. The
power number reported corresponds to the switching power of the net, which is a function of
the pin capacitance, voltage, and toggle frequency.

Factors Affecting the Accuracy of Power Analysis
The following factors can affect the accuracy of power analysis:

e Switching activity annotation

* Delay model

» Correlation

» Clock tree buffers

e Complex cells

Switching Activity Annotation

Annotating switching activity relies on the ability to map the names of the synthesis invariant
objects in the RTL source to the equivalent object names in the gate-level netlist. Mapping
inconsistencies can cause the SAIF file to be incorrectly or incompletely annotated, which

Chapter 6: Performing Power Analysis
Identifying Power and Accuracy 6-3

Power Compiler™ User Guide Version L-2016.03-SP4

can affect the power analysis results. In turn, the quality of these results affects the results
of power optimizations that rely on the annotation. For more information, see Annotating
Switching Activity Using RTL SAIF Files.

Clock Frequency Scaling

If a design is synthesized at a frequency that is different from the frequency the simulation
is run, the SAIF file generated from the simulation reflects this difference. This causes a
mismatch in timing and affects dynamic power analysis.

To correct this problem, the Power Compiler tool allows you to scale the clock frequency,
resulting in a more accurate dynamic power analysis.

To enable clock frequency scaling, set the power_enable_clock_scal ing variable to true.
Then, run the set_power_clock_scaling command to specify clock scaling for power
analysis. The command accepts either a —period option which specifies the clock period to
which the clock is to be scaled, or a -ratio option which specifies a scaling value to be
applied to the toggle rates of pins and nets.

When you use the set_power_clock_scal ing command, the tool scales only the switching
activity applied with the read_saif command. The tool does not scale the following
switching activity applied with the set_switching_activity command.

For more details about this command, see the set_power_clock_scal ing man page.

Delay Model

Power Compiler uses a zero-delay model for internal simulation and for propagation of
switching activity during power analysis. This zero-delay model assumes that the signal
propagates instantly through a gate with no elapsed time.

The zero-delay model has the advantage of enabling fast and relatively accurate estimation
of power dissipation. The zero-delay model does not include the power dissipated due to
glitching. If your power analysis must consider glitching, use power analysis after annotating
switching activity from full-timing gate-level simulation. As mentioned previously, the internal
simulation is used only for nodes that do not have user-annotated switching activity.

Switching Activity Propagation and Accuracy

While propagating switching activity through the design, the logic states of inputs of the
gates’ can have interdependencies that affect the accuracy of any statistical model. Such
interdependency of inputs is called correlation. Correlation affects the accuracy of
propagation of toggle rates. Because accurate analysis depends on accurate toggle rates,
correlation also affects the accuracy of power analysis.

Power Compiler considers correlation within combinational and sequential logic, resulting in
more accurate analysis of switching activity for many types of designs. The types of circuits

Chapter 6: Performing Power Analysis
Identifying Power and Accuracy 6-4

Power Compiler™ User Guide Version L-2016.03-SP4

that exhibit high internal correlation are designs with reconvergent fanouts, multipliers, and
parity trees. However, Power Compiler has no access to information about correlation
external to the design. If correlation exists between the primary inputs of the design, Power
Compiler does not recognize the correlation.

Power Compiler considers correlation only within certain memory and CPU thresholds,
beyond which correlation is ignored. As the design size increases, Power Compiler reaches
its memory limit and is not able to fully consider all internal correlation.

As an example of correlation, consider a 4-bit arithmetic logic unit (ALU) that performs five
instructions. The data bus is 4-bits wide, and the instruction opcode lines are 3-bits wide.
The assumption of uncorrelated inputs holds up well for the data bus lines inputs but fails for
the opcode inputs if some instructions are used more often.

If your design has black boxes, such as complex cells, RAM, ROM, or macro cells you can
annotate switching activity at the outputs of these elements.

Overriding Library Power Characterization

The set_cell_internal_power command sets or removes the power_value attribute on
or from specified pins. The power_value attribute represents the power consumption for a
single toggle of the pin. If a cell has at least one such annotated pin, its internal power is
calculated by summing the annotated power values times the pin toggle rates. If the
command is issued without setting the power_value attribute, the existing power_value
attributes are removed from the specified pins. If the power_value attribute is specified
without unit, the power unit of the library is used. If the library does not have a defined unit,
an error message is issued.

Use the set_cell_internal_power command to override a cell's library power
characterization in situations where that characterization does not apply; most commonly,
when you manually replace a logic with a single cell and want the single cell's power
consumption to represent the replaced logic. For example, if you replace a clock tree by a
single buffer cell, you can set the power_value attribute on the output pin of the buffer cell
with the value of the power consumption for one clock toggle of the entire clock tree.
Although the library cell is characterized, its power consumption is calculated using the
value of the power_value attribute set by the set_cell_internal_power command.

For more information, see the command man page.

Performing Gate-Level Power Analysis

After annotating your design with switching activity, use the report_power command to
report the power of your gate-level design.

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-5

Power Compiler™ User Guide Version L-2016.03-SP4

To perform power analysis on a partially annotated design, specify a clock before invoking
the report_power command. The internal zero-delay simulation requires a real or virtual
clock to properly compute switching activity. Use the create_clock command to create the
clock.

Using the report_power Command
The report_power command calculates and reports power for a design.

When you do not annotate switching activity on the nets, the command performs zero-delay
simulation to propagate switching activity for the nets. To compute the switching activity for
internal nets, the command uses the switching activity for startpoint nets (if available). The
nets that are annotated using the set_switching_activity or the read_saif command

are not overwritten during the switching activity propagation.

If you annotate switching activity on all the elements of the design, Power Compiler does not
propagate any switching activity through the design. Instead, power analysis uses the
annotated gate-level switching activity.

Command options enable you to print with different sorting modes and with verbose and
cumulative options. The default operation is to print a power summary for the instance’s
subdesign (in the context of the higher-level design).

Power analysis uses any net loads during the power calculation. For nets that do not have
back-annotated capacitance, Power Compiler estimates the net load from the appropriate
wire load model from the logic library. If you have annotated any cluster information about
the design using Synopsys Floorplan Manager, Power Compiler uses the improved
capacitance estimates from the cluster’s wire loads.

In the topographical mode the report_power command reports the correlated power of the
design as a sum of estimated clock tree power and netlist power. For more details see
Power Reports.

The report_power command has the following syntax:

report_power

[-net]
cell]
groups list_of _cell_group]
only cell_or_net_list]
cumulative]
flat]
exclude_boundary nets]
include_input_nets]
analysis_effort low | medium | high]
verbose]
nworst number]
sort_mode mode]
histogram]

[_
[_
[_
[_
[_
[_
[_
[_
[_
[_
[_
[_

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-6

Power Compiler™ User Guide Version L-2016.03-SP4

[-exclude leq le_val]

[-exclude_geq ge val]

[-nosplit]

[-hierarchy]

[-1evels level value]

[-scenarios {scenario_namel scenario_name 2 ...}]

The report_power command calculates and reports static and dynamic power for the
current design. It uses the user-annotated switching activity to calculate the net switching
power, cell internal power, and cell leakage power. When you do not specify any option, by
default, the report_power command displays the summary of power values only for the
current design. If you specify a cell instance, the command reports the summary power
values for the specified instance. The command supports several options, for you to specify
cells, nets, scenarios, include or exclude boundary nets, and so on. The list of options are:

-sort_mode mode

The report_power -cell command uses cell_internal_power as the default for the
-sort_mode option. If the logic library does not have any internal power modeling for leaf
cells, report_power -cell -nworst 10, for example, retrieves only the first ten cells
(alphabetically).

When you use the report_power -net command, net_switching_power is the default
for the -sort_mode option. If both the -net and -cell options are specified and a sort
mode is explicitly specified, the selected sort mode is used for both the cell and net
reports. Therefore, the selected sort mode is one of the sort modes that applies to both
options. If both the -net and -cell options are specified, by default, the sort mode for
report_power is total dynamic power.

-histogram

This option prints a histogram-style report with the number of nets in each power range.
Use the -exclude_leq and -exclude_geq options, respectively, to exclude data values
less than le_val or greater than ge_val. This option is useful for printing the range and
variation of power in the design, and prints a histogram report only when used with the
-net or -cell options.

-groups list_of_cell_group

This option reports power for the specified power groups. When you do not specify this
option, by default, reports the predefined groups listed in Table 6-1. The -groups option
is mutually exclusive with the -net, -hierarchy, -levels, -only, and -cumulative
options.

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-7

Power Compiler™ User Guide Version L-2016.03-SP4

Table 6-1 lists the power groups and the cell types that belong to the group, in the
descending order of priority.

Table 6-1 Groups and Their Cell Types in the Descending Order of Priority

Group Cell types belonging to the group

io_pad Cells defined in the pad_cell group in the library

memory Cells defined in the memory group in the library

black_box Cells that do not have any functional description in the
library

clock_network Cells in the clock network, excluding the io_pad cells

register Latches and flip-flops driven by the clock network,

excluding the io_pad and black_box cells

sequential Latches and flip-flops clocked by signals that are not in
the clock network

combinational Cells that have a functional description and are not
sequential cells

-nosplit

Most of the design information is listed in fixed-width columns. If the information for a
column exceeds its column width, the next column begins on a new line, starting in the
correct column. This option prevents line splitting and facilitates scripts to extract
information from the report output.

-hierarchy

This option enables you to view internal, switching, and leakage power consumed in your
design hierarchy, on a block-by-block basis. The hierarchical levels of the design are
indicated by indentations.

-levels level value

Use this option only with the -hierarchy option. This option enables you to limit the
depth of the hierarchy tree displayed in the report. The level_value setting should be
an integer number greater than or equal to 1. For example, to see the power results for
all blocks up to 2 levels from the top, use the following command:

dc_shell> report_power -hierarchy -levels 2

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-8

Power Compiler™ User Guide Version L-2016.03-SP4

-scenarios

This option reports the power details for the specified list of scenarios for a multimode
design. Inactive scenarios are not reported. When this option is not used, only the
current scenario is reported.

For more information, see the report_power command man page.

Using the report_power_calculation Command

Power Compiler uses a complex mechanism to calculate dynamic and leakage power. The
dynamic power consists of internal power on pins and switching power on nets. Both internal
and leakage power could be state dependent.

Though the report_power command does provide a comprehensive report, it is often a
mystery how the numbers relate to the power tables in the library.

The report_power_calculation command shows how the reported power numbers are
derived from the various inputs such as library, simulation data, netlist, and parasitics. This
command does not work on the libraries that have built-in security to protect the power table
numbers. This restriction does not apply for switching power.

For more information, see the report_power_calculation command man page.

Analyzing Power With Partially Annotated Designs

If you invoke power analysis without annotating any switching activity, Power Compiler uses
the following defaults for the primary inputs of your design:

* P4 =0.5(the signal is in the 1 state 50 percent of the time)

P is the probability that input P is at logic state 1. For definitions of static probability, P4,
and toggle rate (TR), see Types of Switching Activity to Annotate.

» TR =0.1*f (the signal switches one time, every 10 clock cycles)

fok is the frequency of the input’s related clock in the design, as defined by the
set_switching_activity command. You can specify the related clock explicitly with its
clock name or implicitly as “*". In the latter case, Power Compiler infers a related clock
automatically. If the input port does not have a related clock, Power Compiler uses the
fastest clock in the design.

Using the defaults for static probability and toggle rate can be reasonable for data bus lines.
However, the defaults might be unacceptable for some signals, such as a reset or a
test-enable signal.

Chapter 6: Performing Power Analysis
Analyzing Power With Partially Annotated Designs 6-9

Power Compiler™ User Guide Version L-2016.03-SP4

If you neglect to annotate toggle information about primary inputs, these inputs assume the
default toggle value. If the input or logic connected to this input is heavily loaded, the results
could be significantly different from what you expect.

To change the default for switching activity and static probability, set the following variables:

e power_default_static_probability

This variable sets the default for static probability.

e power_default_toggle rate

This variable sets the default for toggle rate.

¢ power_default_toggle_rate_type

The default is fastest_clock, which causes Power Compiler to calculate the default
toggle rate by multiplying the fastest clock frequency with the default toggle rate. Set this
variable to absolute to determine the behavior when the design object does not have a
specified related clock; the tool uses the value of the power_default_toggle_rate
variable.

The variables remain in effect throughout the dc_shell session in which you set them.
The following example sets the default static probability to 0.3:

dc_shell> set_app_var power_default _static _probability 0.3

The following example sets the default toggle rate to 0.4 of the toggle rate of the
highest-frequency clock:

dc_shell> set_app_var power_default_toggle rate 0.4

Power Correlation

Power correlation refers to the relationship between two power calculations: power after
logic synthesis and power after place and route. Power after place and route is the final
power, and you might want to know this number early in the process so you can take
corrective action if the number exceeds your limits. Power correlation is supported only in
Design Compiler topographical mode.

In dc_shell, the power reported after logic synthesis is often significantly different from the
final power, and is, therefore, not a good predictor for final power. This differential is caused
by three factors:

* Logic synthesis uses wire load models.
< High fanout nets are not synthesized.

* Clock trees do not exist in the design at the time of synthesis.

Chapter 6: Performing Power Analysis
Power Correlation 6-10

Power Compiler™ User Guide Version L-2016.03-SP4

Performing logic synthesis within the Design Compiler topographical domain shell
addresses the first two factors because this shell uses a virtual layout, not wire load models,
and high fanout nets are synthesized automatically.

You specify to perform clock-tree estimation within dc_shell-topo to eliminate the differential
caused by the third factor.

To improve correlation in cases with abnormal floor plans, you should use the physical
constraints extracted from the floor plan.

Performing Power Correlation

Correlated power refers to the design power that is added to the estimated clock-tree power
after logic synthesis in the Design Compiler topographical mode. Correlated power is also
referred as estimated total power.

To calculate the correlated power, enable the power prediction feature by using the
set_power_prediction command.

The syntax of the set_power_prediction command is:

set_power_prediction true | false
[-ct_references list _of buffers_and_inverters]

Specify the clock tree references by using the -ct_references option, to perform clock-tree
estimation which improves the correlation results.

When the power prediction feature is enabled, the report_power command reports the
correlated power after the design has been mapped to technology-specific cells. When the
power prediction feature is disabled, the report_power command reports only the total
power, static power, and dynamic power, without considering the estimated clock-tree
power.

The power prediction setting is also saved with the design, when the design is saved in the
.ddc (Synopsys logical database format) binary file format.

Power Correlation Script

The following example script correlates power after you have setup your design
environment and applied synthesis constraints:

read_verilog

set_power_prediction

compile_ultra

report_power

write -format ddc -output design.ddc

Chapter 6: Performing Power Analysis
Power Correlation 6-11

Power Compiler™ User Guide Version L-2016.03-SP4

In Design Compiler topographical mode, the report_power command reports estimated
total power, which includes the clock-tree contributions for internal, net-switching, and
leakage power.

Analyzing the Design For Power Analysis

Follow these steps to get quick results from gate-level power analysis:

1.

Create a SAIF file.

This step requires RTL simulation. For information, see Generating SAIF Files.
Compile the design to gates, using various suitable options.

Annotate switching activity on primary inputs and other synthesis-invariant elements of
the gate-level design.

For information about using SAIF files from RTL simulation to annotate switching activity,
see Generating SAIF Files.

Use the report_power command to analyze your design’s power.

Power Compiler uses an internal zero-delay simulation to propagate switching activity
through nonannotated elements of the design.

Repeat steps 1 through 4 for other architectures and coding styles.

Quick gate-level power analysis enables you to see the results of changes in your RTL
design.

Figure 6-2 shows the steps that are followed in design exploration using Power Compiler.

Chapter 6: Performing Power Analysis
Analyzing the Design For Power Analysis 6-12

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 6-2 Analyzing the Design for Power Analysis

RTL Design ——

A

Synthesis

Switching

Activity > Analysis

Meets Power
Target?

Higher-Effort
Synthesis

After you refine your RTL design within the iterative loop of design exploration, your design
is ready for a higher-effort synthesis.

Characterizing a Design for Power

The -power option of the characterize command is useful in power analysis and
optimization. This option characterizes annotated or propagated switching activity from the
instance of a subdesign to the nets of the subdesign referenced by the instance. There must
be a one-to-one correspondence between the nets in the instance and the nets in the
referenced subdesign.

As shown in Figure 6-3, consider a design hierarchy in which A is a design instance of
SUB_DESIGN in TOP_DESIGN. Instance A references SUB_DESIGN. When you invoke

Chapter 6: Performing Power Analysis
Characterizing a Design for Power 6-13

Power Compiler™ User Guide Version L-2016.03-SP4

power analysis on TOP_DESIGN, the switching activity propagates throughout any nets that
are not already user-annotated.

dc_shell> report_power top_design

Figure 6-3 Switching Activity for TOP_DESIGN
TOP_DESIGN

SUB_DESIGN

—
—

y q_

8 Switching activity

The switching activity can be propagated from primary inputs and synthesis-invariant
elements. In this example, user-annotated on individual design elements using
set_switching_activity commands, or both.

As shown in Figure 6-4, if you set the current instance to A and characterize for power,
characterize writes the switching activity of instance A onto SUB_DESIGN.

dc_shell> current_design TOP_DESIGN
dc_shell> characterize A -power

Figure 6-4 Switching Activity for SUB_DESIGN
TOP_DESIGN

SUB_DESIGN

Switching activity

After characterizing, you can report the power of SUB_DESIGN by using the newly
characterized switching activity. If you have Power Compiler, you can compile the
SUB_DESIGN by using the newly characterized switching activity.

The -power option of characterize relies on a one-to-one correspondence between the
nets of the referenced SUB_DESIGN and its instance A. If you compile the subdesign
before characterizing instance A or make any changes that alter the nets or names of nets,
the one-to-one net correspondence is lost and characterize fails.

After compiling a subdesign and before reanalyzing or compiling TOP_DESIGN, be sure to
relink the designs.

Before recompiling the subdesign, follow some or all of the following steps:

Chapter 6: Performing Power Analysis
Characterizing a Design for Power 6-14

Power Compiler™ User Guide

Relink the designs using link.
Generate new switching activity for changed designs.
Annotate or propagate new switching activity on designs.

Characterize before reanalyzing or recompiling the subdesign.

For more information about the characterize command, see the Design Compiler
documentation and the online man pages.

Version L-2016.03-SP4

Reporting the Power Attributes of Library Cells

Use the report_lib -power command to report which library cells have power
characterization and what type of characterization exists on each library cell. The
report_lib -power commands reports the following information for each cell:

For more information about the command, see the report_Ilib command man page.

Leakage power attribute

Internal power attribute

Attribute for separate rise and fall power
Attribute for average rise and fall power

Toggling pin specified by the internal power table
Any when conditions (for state-dependent power)

The related_pin or related_input for path-dependent power

Power Reports

This section contains examples of reports generated with the report_power command and
various combinations of report options.

The report_power command in topographical mode reports the correlated power,
consisting of estimated clock tree power and netlist power. If the tool cannot perform clock

Chapter 6: Performing Power Analysis
Reporting the Power Attributes of Library Cells

6-15

Power Compiler™ User Guide

Version L-2016.03-SP4

tree estimation, Power Compiler issues a warning that the clock tree estimation could not be
performed.

Examples of power reports using the various options of the report_power command are
described in the following sections:

Power Report Summary
Net Power Report

Cell Power Report

Group Report

Hierarchical Power Reports

Power Report for Block Abstraction

Chapter 6: Performing Power Analysis
Power Reports

6-16

Power Compiler™ User Guide Version L-2016.03-SP4

Power Report Summary
Example 6-1 shows a power report summary.

Example 6-1 Summary Report of the report_power Command
dc_shell> report_power -analysis_effort high -verbose

AEAAEEAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX
Report : power
—analysis_effort high
-verbose
Design : DESIGN_1
Version: A-2007.12-SP2
Date : Fri Feb 22 01.46:34 2008
Library(s) Used:
slow (File: slow.db)

Operating Conditions:
Wire Loading Model Mode: Inactive

Global Operating Voltage = 1.62
Power-specific unit information :
Voltage Unit = 1V
Capacitance Units = 1.000000pFf
Time Units = 1ns
Dynamic Power Units
Leakage Power Units

ImW (derived from V,C,T units)
1nW

Cell Internal Power Breakdown

Combinational = 3.0975 mW (10%)
Sequential = 22.3222 mW (72%)

Other 0.0000 mw (0%)
Combinational Count = 13470
Sequential Count = 2382
Other Count = 0

Information: Reporting correlated power. (PWR-620)

Cell Internal Power
Net Switching Power

27.2572 nW (76%)
8.6208 mW (24%)

Total Dynamic Power = 35.8779 mW (100%)
Cell Leakage Power = 2.6586 uw

Power Breakdown

Cell Driven Net Tot Dynamic Cell

Internal Switching Power (mW) Leakage
Cell Power (mW) Power (W) (% Cell/Tot) Power (pW)
Netlist Power 25.4197 5.5186 3.094e+01 (82%) 2.649e+03
Estimated Clock Tree Power 1.8375 3.1021 4.9396 (37%) 9.9143

Chapter 6: Performing Power Analysis
Power Reports 6-17

Power Compiler™ User Guide Version L-2016.03-SP4

Net Power Report

Example 6-2 shows a net power report sorted by the net switching power and filtered to
display only the five nets with the worst switching power.

Example 6-2 Net Power Report, Sorting, and Display Options
dc_shell> report_power -net -flat -sort_mode net_switching_power -nworst 5

AEXEAXEAXAXKAAXAAAXAAXAXAALAAAXAAXAXAAXAXAALAAAXAAXhk

Report: power
-net
-nworst 5
-flat
-sort_mode net_switching_power
Design: DESIGN_1
Version: A-2007.12-SP2
Date : Fri Feb 22 01:50:50 2008

AEXEEAXEAXAXEAAXAAAXAAXAXAAAAAXAAXAXAAXAXAALAAAXAAXhx

Library(s) Used:
power_lib.db (File: /remote/libraries/power_lib.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns

Dynamic Power Units Imw (derived from V,C,T units)

Leakage Power Units 1nw
Attributes
a - Switching activity information annotated on net
d - Default switching activity information on net
Total Static Toggle Switching
Net Net Load Prob. Rate Power Attrs
U_TAP_DBG_U_DBG_net5051 0.463 0.374 0.1968 0.1195
U_CORE/U_CONTROL_U_A7S_pencadd_net5225
0.248 0.374 0.1968 0.0641
U_CORE/U_CONTROL_U_A7S_dataio_net5298
0.247 0.374 0.1968 0.0637
U_CORE/U_MUL8_net5450 0.232 0.374 0.1968 0.0599
U_CORE/U_AREG_net5593 0.194 0.374 0.1968 0.0501
Total (5 nets) 357.2614 uWw

Chapter 6: Performing Power Analysis
Power Reports 6-18

Power Compiler™ User Guide

Version L-2016.03-SP4

Cell Power Report

Example 6-3 displays a cell power report containing the cumulative cell power report. The
cells are sorted by cumulative fanout power values, only the top five are reported.

Example 6-3 Cell Power Report Containing Cumulative Cell Power

dc_shell> report_power -cell -analysis_effort low \
-sort_mode cell_internal_power
AEAEXEEXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAKX
Report : power
-cell
-analysis_effort low
-sort_mode cell_internal_power
Design : DESIGN_3
Version: B-2008.09
Date : Fri Aug 08 01:51:28 2008

Library(s) Used:
slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units
Leakage Power Units

1mw (derived from V,C,T units)
1nw

Information: Reporting correlated power. (PWR-620)

Attributes
h - Hierarchical cell

Cell Driven Net Tot Dynamic

Internal Switching Power
Cell Power Power (% Cell/Tot)
CLOCK_TREE_EST 1.8375 3.1021 4.940 (37%)
U_CORE 21.7118 N/ZA N/A (N/A)
U_TAP_DBG_U_DBG_clk_gate_int_en_d_reg

0.0123 N/A NZA (N/A)

0.0112 6.968e-04 1.19e-02 (94%) 0.1458

U_TAP_DBG_U_SCAN1_breakpt_in_d_reg
0.0106 2.472e-04 1.09e-02 (98%)
U_TAP_DBG_U_ID_REG_clk_gate_shift_reg

Totals (2474 cells) 27 .368mwW NZA N/A (N/A)

Chapter 6: Performing Power Analysis
Power Reports

Cell
Leakage
Power Attrs

9.9144
2226.6487 h

1.4392 h

2.658uw

6-19

Power Compiler™ User Guide Version L-2016.03-SP4

Group Report

Example 6-4 shows the report generated by the report_power command when you use the
—-groups option.

Example 6-4 Cell Report for Various Groups
dc_shell> report_power -groups "io_pad memory combinational™

KTAEAXEAAAAEAAXAEAAXAAXAXAAAXAAXAXAAXAXAAXAXAAAXAAXAAXAhLx

Report : power

-analysis_effort low

Design : RISC_CORE

Version: F-2011.09-BETA5

Date : Tue Aug 2 23:20:36 2011

AEAAXAXAAXAXAAAXAAAXAXAAAXAXAAXAAAAXAAAXAAAXAAAAXAAA XX

Library(s) Used:

tcbn65lpwc_ccs (File: tcbn65lpwc _pg-db)
tcbn651pwc0d720d9_ccs (File: tcbn651pwc0d720d9 pg-db)
tcbn651pwc0d72_ccs (File: tcbn651pwc0d72_pg-db)
tcbn651pwc0d90d72_ccs (File: tcbn651pwc0d90d72_pg-db)

Global Operating Voltage = 1.08
Power-specific unit information :
Voltage Units = 1V

Capacitance Units = 1.000000pf
Time Units = 1ns

Dynamic Power Units Imw (derived from V,C,T units)

Leakage Power Units 1nW
Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs
io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)

combinational 6.0868e-02 7.1321e-02 777.9665 0.1330 (100.00%)

Total 6.0868e-02 mW 7.1321e-02 mW 777.9665 nW 0.1330 mwW

Net Switching Power
Cell Internal Power

71.3213 uW (53.95%)
60.8676 uW (46.05%)

132.1889 uW (100%)

Total Dynamic Power

Cell Leakage Power 777.9665 nW

1

Chapter 6: Performing Power Analysis
Power Reports 6-20

Power Compiler™ User Guide Version L-2016.03-SP4

Hierarchical Power Reports

Example 6-5 shows the results of the report_power command using the -hierarchy
option. This option shows the internal, switching, and leakage power consumed in your
design hierarchy, on a block-by-block basis.

Example 6-5 Hierarchical Power Report
dc_shell> report_power -hierarchy

AEXEAXEAXAXAEAAXAAAXAAXAXAAXAXAAXAAXAAAXAXALAAAXAhAXhk

Report : power
-hierarchy
-analysis_effort low
Design : DESIGN_4
Version: A-2007.12-SP2
Date : Fri Feb 22 01:51:42 2008

AR R S S e S *hKhkxk

Library(s) Used:
slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units
Leakage Power Units

Imw (derived from V,C,T units)
1nw

Information: Reporting correlated power. (PWR-620)

Switch Int Leak Total
Hierarchy Power Power Power Power %
A7S_top 8.683 27.368 2.66e+03 36.054 100.0
CLOCK_TREE_EST 3.102 1.837 9.914 4.940 13.7
U_CORE (A7S_core) 4.318 21.712 2.23e+03 26.032 72.2

Example 6-6 shows the results of the report_power command using the -hierarchy and
-levels options. The -hierarchy option shows the internal, switching, and leakage power

Chapter 6: Performing Power Analysis
Power Reports 6-21

Power Compiler™ User Guide Version L-2016.03-SP4

consumed in your design hierarchy, on a block-by-block basis. The -levels option limits the
depth of the hierarchy level displayed in the report.

Example 6-6 Hierarchical Power Report With Specified Level of Hierarchy

dc_shell> report_power -hierarchy -levels 1

*hKhkkk

Report : power
-hierarchy
-analysis_effort low
-levels 2

Design : A7S_top

Version: A-2007.12-SP2

Date : Fri Feb 22 01:51:42 2008

AEXEAXEAXAXAAXAAAXAAXAXAAXAAAXAAAXAAXAXAALAA AKX AAXh*x

Library(s) Used:
slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units
Leakage Power Units

Imw (derived from V,C,T units)
1nw

Information: Reporting correlated power. (PWR-620)

Switch Int Leak Total
Hierarchy Power Power Power Power %
A7S_top 8.683 27.368 2.66e+03 36.054 100.0
CLOCK_TREE_EST 3.102 1.837 9.914 4.940 13.7
U_CORE (A7S_core) 4.318 21.712 2.23e+03 26.032 72.2

Chapter 6: Performing Power Analysis
Power Reports 6-22

Power Compiler™ User Guide

Version L-2016.03-SP4

Power Report for Block Abstraction

When you use the create_block_abstraction command, the power information is saved
as attributes on the block abstractions. If you annotate the switching activity, either by using

the SAIF file or the set_switching_activity command, the switching activity is used to
calculate the power information of the block abstractions, as shown in the following
example:

Current design is "testll O
create block abstraction

internal power = 62.508907

leakage power = 227754.921875

net switching power = 17.909983, dyn_unit = 1mW,

leak_unit = 1nW

By default, the report_power command reports the total power of the block, using the
power information saved as attributes on the model, as shown in the following example:

Information:

u_testll 3 testll 3 is block, internal power = 61.429829 mW
Information: u_testll 2 testll 2 is block, internal power = 60.608749 mW
Information: u_testll 1 testll 1 is block, internal power = 63.291779 mW
Information: u_testll O testll O is block, internal power = 62.508907 mW
Information: u_testll _core is block, leakage power = 122.281441 uW
Information: u_testll 3 testll 3 is block, leakage power = 222.416214 uW
Information: u_testll 2 testll 2 is block, leakage power = 224.137466 uW
Information: u_testll 1 testll 1 is block, leakage power = 228.666733 uW
Information: u_testll O testll O is block, leakage power = 227.754929 uW
Information: u_testll 3 testll 3 is block, net switching power =
17.291439mW
Information: u_testll 2 testll 2 is block, net switching power =
17.869442 mW
Information: u_testll 1 testll 1 is block, net switching power =
18.588411 mw
Information: u_testll O testll O is block, net switching power =
17.909983 mw

Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs
io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 271.0595 85.7838 1.0253e+06 357.8686 (18.53%)
clock_network 0.9882 1.5616e+03 117.9128 1.5625e+03 (80.89%)
register 3.9093 0.3665 2.3101e+04 4.2989 (0.22%)
sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)
combinational 1.2514 5.6117 5.5759e+04 6.9189 (0.36%)
Total 277.2083 mW 1.6533e+03 mW 1.1042e+06 nW 1.9316e+03 mW
1
For more information about block abstractions, see the Design Compiler User Guide.

Chapter 6: Performing Power Analysis
Power Reports 6-23

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 6: Performing Power Analysis
Power Reports 6-24

Part 3: Power Reduction

Power Compiler™ User Guide Version L-2016.03-SP4

v

Clock Gating

Power optimization at higher levels of abstraction has a significant impact on reduction of
power in the final gate-level design. Clock gating is an important technique for reducing the
power consumption of a design.

This chapter includes the following sections:

Introduction to Clock Gating

Using Clock-Gating Conditions

Inserting Clock Gates

Clock Gating Flows

Ensuring Accuracy When Using Ideal Clocks
Specifying Clock-Gate Latency

Calculating the Clock Tree Delay From Clock-Gating Cell to Registers
Specifying Setup and Hold

Clock-Gating Styles

Modifying the Clock-Gating Structure
Integrated Clock-Gating Cells

Clock-Gating Naming Conventions

7-1

Power Compiler™ User Guide Version L-2016.03-SP4

» Keeping Clock-Gating Information in a Structural Netlist
* Replacing Clock-Gating Cells

* Clock-Gate Optimization Performed During Compilation
« Performing Clock-Gating on DesignWare Components

* Reporting Command for Clock Gates

Chapter 7: Clock Gating
7-2

Power Compiler™ User Guide Version L-2016.03-SP4

Introduction to Clock Gating

Clock gating applies to synchronous load-enable registers, which are flip-flops that share
the same clock and synchronous control signals. Synchronous control signals include
synchronous load-enable, synchronous set, synchronous reset, and synchronous toggle.

Synchronous load-enable registers are represented by a register with feedback loop which
maintains the same logic value through multiple cycles. Clock gating applied to synchronous
load enable registers reduces the power needed when reloading the register banks.

Figure 7-1 shows a simple register bank implementation using a multiplexer with feedback
loop.

Figure 7-1 Synchronous Load-Enable Register With Multiplexer

/
/

Multiplexer
0

/

DATA IN 74

Flip- Control

CLK Logic

o

When the synchronous load enable signal (EN) is at logic state 0, the register bank is
disabled. In this state, the circuit uses the multiplexer to feed the Q output of each storage
element in the register bank back to the D input. When the EN signal is at logic state 1, the
register is enabled, allowing new values to load at the D input.

Such feedback loops can unnecessarily use power. For example, if the same value is
reloaded in the register throughout multiple clock cycles (EN equals 0), the register bank
and its clock net consume power while values in the register bank do not change. The
multiplexer also consumes power.

Clock gating eliminates the feedback net and multiplexer shown in Figure 7-1 by inserting a
gate in the clock net of the register.

Chapter 7: Clock Gating
Introduction to Clock Gating 7-3

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
While applying the clock-gating techniques, the tool considers generated clocks similar
to defined clocks.

The clock-gating cell selectively prevents clock edges, thus preventing the gated-clock
signal from clocking the gated register.

Figure 7-2 shows a latch-based clock-gating cell and the waveforms of the signals are
shown with respect to the clock signal, CLK.

Figure 7-2 Latch-Based Clock Gating

DATA DATA
LATCH IN

LD LQ e

l_o LG ENL

_/
CLK ENCLK

Control
logic

CLK —— I

CLK

EN

ENL

ENCLK

The clock input to the register bank, ENCLK, is gated on or off by the AND gate. ENL is the
enabling signal that controls the gating; it derives from the EN signal on the multiplexer
shown in Figure 7-1 on page 7-3. The register bank is triggered by the rising edge of the
ENCLK signal.

The latch prevents glitches on the EN signal from propagating to the register’s clock pin.
When the CLK input of the 2-input AND gate is at logic state 1, any glitching of the EN signal
could, without the latch, propagate and corrupt the register clock signal. The latch eliminates
this possibility because it blocks signal changes when the clock is at logic state 1.

In latch-based clock gating, the AND gate blocks unnecessary clock pulses by maintaining
the clock signal’s value after the trailing edge. For example, for flip-flops inferred by HDL

Chapter 7: Clock Gating
Introduction to Clock Gating 7-4

Power Compiler™ User Guide Version L-2016.03-SP4

constructs of rising-edge clocks, the clock gate forces the gated clock to 0 after the falling
edge of the clock.

By controlling the clock signal for the register bank, you can eliminate the need for reloading
the same value in the register through multiple clock cycles. Clock gating inserts
clock-gating circuitry into the register bank’s clock network, creating the control to eliminate
unnecessary register activity.

Clock gating reduces clock network power dissipation, relaxes datapath timing, and reduces
routing congestion by eliminating feedback multiplexer loops. For designs that have large
register banks, clock gating can save power and area by reducing the number of gates in the
design. However, for smaller register banks, the overhead of adding logic to the clock tree
might not compare favorably to the power saved by eliminating a few feedback nets and
multiplexers.

Using Clock-Gating Conditions

Before gating the clock signal of a register, Power Compiler checks to see if certain
clock-gating conditions are satisfied. Power Compiler inserts a clock gate only if all the
clock-gating conditions are satisfied:

« The circuit demonstrates synchronous load-enable functionality.
« The circuit satisfies the setup condition.

* The register bank or group of register banks satisfies the minimum number of bits you
specify with the set_clock_gating_style -minimum_bitwidth command. The default
minimum bitwidth is 3.

After clock gating is complete, the status of clock-gating conditions for gated and ungated
register banks appears in the clock-gating report. For information about the clock-gating
report, see “Reporting Command for Clock Gates” on page 7-78.

Clock-Gating Conditions

The register must satisfy the following conditions for Power Compiler to gate the clock signal
of the registers:

+ Enable condition

If the register bank’s synchronous load-enable signal is a constant logic 1, reducible to
logic 1, or logic 0, the condition is false and the circuit is not gated. If the synchronous
load-enable signal is not a constant logic 1 or 0, the condition is true and the setup
condition is checked. The enable condition is the first condition that the tool checks.

Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-5

Power Compiler™ User Guide Version L-2016.03-SP4

e Setup condition

This condition applies to latch-free clock gating only. The enable signal must come from
a register that uses the same clock as the register being gated. The setup condition is
checked only if the register satisfies the enable condition.

* Width condition

The width condition is the minimum number of bits for gating registers or groups of
registers with equivalent enable signals. The default is 3. You can set the width condition
by using the -minimum_bitwidth option of the set_clock_gating_style command.
The width condition is checked only if the register satisfies the enable condition and the
setup condition.

Enable Condition

The enable condition of a register or clock gate is a combinational function of nets in the
design. The enable condition of a register represents the states for which a clock signal must
be passed to the register. The enable condition of a clock gate corresponds to the states for
which a clock is passed to the registers in the fanout of the clock gate. Power Compiler uses
the enable condition of the registers for clock-gate insertion.

Enable conditions are represented by Boolean expressions for nets. For example:

module TEST (enl, en2, en3, in, clk, dataout);
input enl, en2, en3, clk;
input [5:0] in;
output [5.0] dataout;
reg [5-0] dataout;

wire enable;
assign enable = (enl | en3) & en2;

always @(posedge clk) begin
if(enable)
dataout <= in;
else
dataout <= dataout;
end

endmodule

In this example, the enable condition for the register bank dataout_reg* can be expressed
as enl en2 + en3 en2.

Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-6

Power Compiler™ User Guide Version L-2016.03-SP4

Excluding Specific Signals From the Enable Condition

You can specify signals to be excluded from the enable condition of clock gating. For
example, you can specify a late arriving signal to be excluded from the enable condition, to
prevent it from becoming a critical path.

The exclusion of a signal from the enable condition depends on the Boolean expression of
the enable condition. In Figure 7-3, the enable signal of the register is an AND function of
inputs A and B. To exclude the signal A from the computation of the enable condition of the
clock gate, the tool connects input A to the enable pin of the register and input B to the
enable pin of the clock-gating cell.

Figure 7-3 Excluding Signal A from Clock Gating

| Before Clock-Gating the Register | [_After Clock-Gating the Register |
Register
Register — 1D Q (——
—D Q A EN
EN B ——EN

1)
® — CLK CLK —) L

clock-gating cell

In Figure 7-4, the enable signal of the register is an OR function of inputs A and B. The tool
does not exclude input A from clock-gating because it is not feasible to gate the register
when one of the inputs is at logic 1.

Figure 7-4 Cannot Exclude Signal A. Clock-Gating is not Performed for the Register

| Cannot exclude signal A.

| Before Clock-Gating the Register Clock-gating is not performed

Register Register
— 1D Q (—— _ I Q —
B
CLK CLK

You can exclude a signal from the enable expression of a register, if removing the signal
from the enable expression does not result in a constant O or a constant 1.

Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-7

Power Compiler™ User Guide Version L-2016.03-SP4

Use the set_clock_gating_enable -exclude command to specify the objects whose
signals are to be excluded from the enable condition. You can specify objects such as
primary input ports, output pins of sequential cells, sequential cells, black box cells, and
macro cells to be excluded from the enable condition.

The specified signal is excluded from clock-gating when you run the compile_ultra
-gate_clock command or any subsequent compile_ultra -incremental -gate_clock
command. Using the exclusion criteria, the compi le_ultra command checks the feasibility
of excluding the specified signals from clock gating. If exclusion is feasible, the command
modifies the enable expression of the clock-gating signal and the enable signal of the
register.

If it is not feasible to exclude the specified signal from clock-gating, the tool does not
clock-gate the register. If the register is already clock-gated using the signal that is specified
for exclusion, the tool removes the clock-gating cell. The set_clock_gating_objects
—-force_include command or the power_cg_all_registers variable setting does not
prevent the tool from removing the clock-gating cell.

Use the set_clock gating_enable -undo command to remove the exclusion constraint.

The report_clock_gating -ungated command reports the details of registers that are not
clock-gated, reason for not gating, and so on, as shown in Example 7-8 on page 7-82.

The write_script command writes out the exclusion constraint that you specify. You can
source the file written by the write_script command, in the Design Compiler tool to
support ASCII flow or in third-party tools.

For more details, see the set_clock_gating_enable command man page.

Setup Condition

To perform clock gating, Power Compiler requires that the enable signal of the register bank
is synchronous with its clock. This is the setup condition.

For latch-based or integrated clock gating, Power Compiler can insert clock gating
irrespective of the enable signal’s and the clock’s clock domains. If the enable signal and the
register bank reside in different clock domains, you must ensure that the two clock domains
are synchronous and that the setup and hold times for the clock-gating cell meet the timing
requirements.

For latch-free clock gating, if any of the following characteristics exist, the setup condition is
false and the register bank is not gated:

« If the register bank and its controlling logic (including flip-flops) belong to different clock
domains, the setup condition is false.

» If the register bank and its controlling logic (including flip-flops) are driven by different
edges of the same clock signals, the setup condition is false.

Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-8

Power Compiler™ User Guide Version L-2016.03-SP4

« If the controlling logic is driven by a combinational path from the input port, the setup
condition is false, unless:

o For primary input ports, you specified a clock with the set_input_delay command.

o You specified power_cg_derive_related_clock true, which enables clock
propagation of the related clocks from parent hierarchies for inputs on subdesigns.
The default is false.

These two special cases specify that an input port is synchronous with a given clock;
therefore, the setup condition is true.

Specify power_cg_ignore_setup_condition true for Power Compiler to ignore the setup
condition for latch-free clock gating.

Enabling or Disabling Clock Gating on Design Objects

You can enable or disable clock gating on certain design objects by overriding all necessary
conditions set by the clock-gating style. The set_clock_gating_objects command
specifies the design objects on which clock gating should be enabled or disabled during the
compile_ultra -gate_clock command. If you use the insert_clock_gating command,
you must run the uniquify command before inserting the clock gates.

The following example includes and excludes the specified registers from clock gating:

dc_shell> set_clock _gating objects \
-force_include ADDER/outl_reg[*] \
-exclude ADDER/out2_reg[*]

The following example excludes all registers in the subdesign ADDER, except the outl_reg
bank. The outl_reg bank is clock gated according to the specified clock-gating style:

dc_shell> set _clock gating objects \
-exclude ADDER \
—-include ADDER/outl_reg[*]

The following example sets and then removes the inclusion and exclusion criteria specified
by the -include and -exclude options:

dc_shell> set _clock gating objects \
—-include ADDER/outl_reg[*] \
-exclude ADDER/out2_reg[*]

dc_shell> set _clock gating objects \
-undo {ADDER/outl reg[*] ADDER/out2_reg[*]}

For more information, see the man page.

Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-9

Power Compiler™ User Guide Version L-2016.03-SP4

Inserting Clock Gates

Power Compiler inserts clock-gating cells to your design if you compile your design using
the -gate_clock option of the compile or compile_ultra command. You can also insert
clock gates to your design using the insert_clock_gating command. The following
sections discuss in detail these two ways of clock-gate insertion.

Using the compile_ultra -gate_clock Command

During the compilation process, Power Compiler can insert clock-gates to your design if you
use the -gate_clock option of the compi le_ultra command. With the -gate_clock
option, the compi le_ultra command can perform clock-gate insertion on the gate-level
netlist, RTL netlist, as well as GTECH netlist. By default, when you use the -gate_clock
option, the tool inserts clock gates only in the same level of hierarchy as the registers gated
by the clock gate. For the tool to perform clock gating across the design hierarchy, set the
compile_clock_gating_through_hierarchy variable to true. For more details about
hierarchical clock gating, see “Hierarchical Clock Gating” on page 7-66.

The compile_ultra -gate_clock command can also perform clock gating on DesignWare
components. For more details, see “Performing Clock-Gating on DesignWare Components”
on page 7-77.

In Design Compiler topographical mode, when you perform clock gating by using the
compile_ultra -incremental -gate_clock command, the tool performs incremental
placement and gate-level clock gating.

Using the insert_clock _gating Command

The insert_clock_gating command can be used to perform clock gating on the GTECH
netlist. You cannot use this command to perform clock gating on gate-level netlist. To
perform clock gating on a gate-level netlist use the compile_ultra -gate_clock
command. This command identifies clock-gating opportunities by combining different
register banks that share common enable signal.

The insert_clock_gating command performs clock gating on all the subdesigns in the
design hierarchy by processing each subdesign independently. Use the -no_hier option to
limit the clock-gate insertion to the top level of the design hierarchy. Use the -global option
to perform hierarchical clock gating, that is, to insert clock gates on all levels of design
hierarchy, considering the design as a whole and not considering each subdesign
independently.

Chapter 7: Clock Gating
Inserting Clock Gates 7-10

Power Compiler™ User Guide Version L-2016.03-SP4

For more information about hierarchical clock gating, see “Hierarchical Clock Gating” on
page 7-66. For more information about the insert_clock_gating command, see the man

page.

Clock-Gate Insertion in Multivoltage Designs

In a multivoltage design, the different hierarchies of the design can have different operating
condition definition and use different target library subsets. While inserting clock-gating cells
in a multivoltage design, Power Compiler chooses the appropriate library cells based on the
specified clock-gating style as well as the operating conditions that match the operating
conditions of the hierarchical cell of the design. If you do not specify a clock-gating style, the
tool chooses a suitable clock-gating style. If the tool does not find a library cell that suites the
clock-gating style and the operating conditions, a clock-gating cell is not inserted and a
warning message is issued.

For more information about clock-gating style, see “Selecting Clock-Gating Style” on
page 7-26.

Clock Gating Flows

The various clock-gating flows supported by the tool are discussed in detail in the following
sections.

Inserting Clock Gates in the RTL Design

To insert clock gating logic in your RTL design and to synthesize the design with the
clock-gating logic, follow these steps:

1. Read the RTL design.

2. Use the compile_ultra -gate_clock command to compile your design.

During the compilation process the clock gate is inserted on the registers qualified for
clock-gating. By default, during clock-gate insertion, the compi le_ultra command uses
the default settings of the set_clock_gating_style command, and also honors the
setup, hold, and other constraints specified in the technology libraries. To override the
setup and hold values specified in the library, use the set_clock_gating_style
command before compiling your design.

You can also use the insert_clock _gating command to insert the clock-gating cells.

The compile_ultraand insert_clock _gating commands use the default settings of
the set_clock_gating_style command during clock-gate insertion. The default
settings of the set_clock_gating_style command is suitable for most designs. For

Chapter 7: Clock Gating
Clock Gating Flows 7-11

Power Compiler™ User Guide Version L-2016.03-SP4

more information about the default clock-gating style, see “Default Clock-Gating Style”
on page 7-24.

3. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and the test_mode ports or pins of the integrated clock-gating cells.

4. Use the report_clock_gating command to report the registers and the clock-gating
cells in the design. Use the report_power command to get information of the dynamic
power used by the design after the clock-gate insertion.

In the following example, clock gating is performed during the compilation process. The
default settings of the set_clock_gating_style command are used during the clock-gate
insertion. The -scan option of the compile_ultra command enables the examination of
your design for scan insertion.

dc_shell> read_verilog design.v

dc_shell> create _clock -period 10 -name CLK
dc_shell> compile_ultra -gate_clock -scan
dc_shell> insert_dft

dc_shell> report_clock _gating

dc_shell> report_power

Inserting Clock Gates in Gate-Level Design

To insert clock gating logic in your gate-level netlist and to resynthesize the design with the
clock gating logic, follow these steps:

1. Read the gate-level netlist.

2. Use the compile_ultra -gate_clock -incremental command to compile your
design.

3. During the compilation process, clock-gating cells are inserted on the registers qualified
for clock gating. During this process, by default, the compile_ultra command

o Reads the setup and hold constraints that are specified in the technology libraries.

o Propagates these constraints up the hierarchy.

To override the setup and hold values specified in the library, use the
set_clock_gating_style command before compiling your design. Use the
compile_ultra -gate_clock command to perform clock-gate insertion on
DesignWare components. For more information about clock-gate insertion on
DesignWare components, see “Performing Clock-Gating on DesignWare Components”
on page 7-77.

The compile_ultra -gate_clock command uses the default settings of the
set_clock_gating_style command, during the clock-gate insertion. The default
settings of the set_clock_gating_style command are suitable for most designs. For

Chapter 7: Clock Gating
Clock Gating Flows 7-12

Power Compiler™ User Guide Version L-2016.03-SP4

more information about the default clock-gating style, see “Default Clock-Gating Style”
on page 7-24.

4. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and test_mode ports or pins of the integrated clock-gating cells.

5. Use the report_clock_gating command to report the registers and the clock gating
cells in the design. Use the report_power command to get details of the dynamic power
used by the design after the clock-gate insertion.

In the following example, clock gating is implemented in the design during the compilation
process. The default settings of the set_clock_gating_style command are used during
the clock-gate insertion.

dc_shell> read_ddc design.ddc

dc_shell> compile_ultra -incremental -gate _clock -scan
dc_shell> insert_dft

dc_shell> report_clock _gating

dc_shell> report_power

Ensuring Accuracy When Using Ideal Clocks

When using ideal clocks, set the clock transition time to 0 before analyzing the power of your
design. To set the clock transition time to 0, use the set_clock_transition command.

The presence of clock-gating circuitry leads to a nonzero transition time on the gated clock
signal. This increases with the number of flip-flops being gated by the signal. A large
transition time at the clock pin of the gated flip-flop leads to a very high internal power usage.
However, this is not realistic because the clock tree synthesis tool inserts buffers to reduce
clock edge transition time. Setting the clock transition to 0 ensures the most accurate
analysis of timing and power after insertion of clock-gating circuitry and before clock tree
synthesis.

Specifying Clock-Gate Latency

During synthesis, Design Compiler assumes that the clocks are ideal. An ideal clock incurs
no delay through the clock network. This assumption is made because real clock-network
delays are not known until after clock tree synthesis. In reality clocks are not ideal and there
is a non-zero delay through the clock network. For designs with clock gating, the
clock-network delay at the registers is different from the clock-network delay at the
clock-gating cell. This difference in the clock-network delay at the registers and at the
clock-gating cell results in tighter constraints for the setup condition at the enable input of the
clock-gating cell.

Chapter 7: Clock Gating
Ensuring Accuracy When Using Ideal Clocks 7-13

Power Compiler™ User Guide Version L-2016.03-SP4

For Design Compiler to account for the clock network delays during the timing calculation,
specify the clock network latency using either the set_clock_latency or the
set_clock gate_ latency command. The set_clock_gate latency command can be
used for both, gate-level and RTL designs.

More details of these commands are described in the following sections.

The set_clock_latency Command

Use the set_clock_latency command to specify clock network latency for specific
clock-gating cells.

In Figure 7-5,

« lat_cgtoreg is the estimated delay from the clock pin of the clock-gating cell to the
clock pin of the gated register.

* lat_regis the estimated clock-network latency to the clock pins of the registers without
clock gating.

Figure 7-5 Clock Latency With Clock-Gating Design

- »‘ (lat_reg)
- »‘ (lat_cgtoreq)
Clock e r—a
port L — J L 4
Clock Clock
tree tree
delay clock-gating delay Register
cell

For all clock pins of registers (gated or ungated) in the design that are driven by a specific
clock, use the lat_reg value for the set_clock_latency command. For clock pins of all
the clock-gating cells, use the value of lat_reg-lat_cgtoreg for the set_clock_latency
command. Because the purpose of setting the latency values is to account for the different
clock-network delays between the registers and the clock-gating cell it is important to get a
reasonably accurate value of the difference (lat_cgtoreg). The absolute values used are
relatively less important, unless you are using these values to account for clock-network
delay issues not related to clock gating.

For more details, see the command man page.

Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-14

Power Compiler™ User Guide Version L-2016.03-SP4

The set_clock_gate latency Command

When you use the compile_ultra -gate_clock command, clock gates are inserted
during the compilation process. To specify the clock network latency before the clock-gating
cells are inserted by the tool, use the set_clock_gate_latency command. This command
lets you specify the clock network latency for the clock-gating cells as a function of the clock
domain, clock-gating stage, and the fanout of the clock-gating cell. The latency that you
specify is annotated on the clock-gating cells when they are inserted by the compile_ultra
-gate_clock command. You can manually annotate the latency values on the existing
clock-gating cells in your design using the apply_clock_gate_latency command. For
more details, see “Applying Clock-Gate Latency” on page 7-17.

Figure 7-6 shows the definitions for the clock-gate stages and the fanouts.

The clock-gating cell C drives 200 registers. So the fanout of the cell C is 200. Because C
drives registers, and not other clock gating cells, the clock gating stage for the cell C is 1.

The clock-gating cell B drives a set of 75 registers and a clock gating cell C. So the fanout
of the clock-gating cells B is 76. The clock-gating stage for the cell B is 2; clock gating stage
of cell C plus 1.

Similarly, the clock-gating stage of cell A is 3 and the fanout is 1. The clock-gating stage of
all the registers is stage 0.

Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-15

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-6 Clock-Gating Stages and Fanouts

Stage 0
Stage 3 Stage 2 Stage 1 I—I:
Fanout 1 Fanout 76 Fanout 200 —D Register
bank 1
CLK
0.28 04 1.1 2.0 200
A B
—D Register
bank 2
2.0 S 1RE.
! .
—Ip Register
bank 3
2.0 S (3)

The following example script shows how to specify the latency values for the various clock
gate stages and fanouts using the set_clock_gate_latency command for the design
shown in Figure 7-6.

set _clock _gate latency -clock CLK -stage O \

-fanout_latency {1-inf 2.0}
set_clock _gate latency -clock CLK -stage 1 \

-fanout_latency {1-30 1.8, 31-100 1.5, 101-inf 1.1}
set_clock_gate latency -clock CLK -stage 2 \

-fanout_latency {1-5 0.9, 6-20 0.5, 21-100 0.4, 101-inf 0.3}
set_clock _gate latency -clock CLK -stage 3 \

-fanout_latency {1-10 0.28, 11-inf 0.11}

To specify clock latency value for the clock-gated registers, use the -stage option with a
value 0. Because you are specifying the latency value for the clock gated registers, the value
for the -fanout_latency option should be 1-infinity, as shown in the following example:

set_clock _gate latency -clock CLK -stage O\
-fanout_latency {1-inf 1.0}

For more information, see the command man page.

Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-16

Power Compiler™ User Guide Version L-2016.03-SP4

Applying Clock-Gate Latency

The clock latency specified using the set_clock _gate_latency command is annotated on
the registers during the compile_ultra -gate_clock command when the clock-gating
cells are inserted. However, if you modify the latency values on the clock gates after the
compilation, you must manually apply the latency values on the existing clock-gating cells
using the apply_clock_gate_latency command.

Note:
After you modify the clock-gate latency using the set_clock_gate_latency command,
if you compile your design using the compile_ultraor compile_ultra -incremental
command, it is not necessary to use the apply_clock_gate_latency command to
apply the latency values. The tool annotates the specified value during compilation.

For more details, see the command man pages.

Resetting Clock-Gate Latency

To remove the clock latency information specified on the clock-gating cells, use the
reset_clock _gate_latency command. This command removes the clock latency values
on the specified clocks. If you do not specify the clock, the clock latency values on all the
clock-gating cells are removed. This command removes the clock latency on the specified
clocks, irrespective of whether the latency values were specified using the

set_clock latency or set_clock _gate latency command.

For more details, see the command man page.

Comparison of the Clock-Gate Latency Specification Commands

Table 7-1 compares various commands that you can use to specify the clock-gate latency.
Table 7-1 Comparison of Clock-Gating Latency Specification Commands

set_clock_gate set_clock_gating_ set_clock_gating_ set_clock
latency style -setup -hold check latency
Recommended for use Default settings are To specify the To modify
with the recommended for most clock-gate latency on clock-gate
compile_ultra designs. Use this existing clock-gating latency on
-gate_clock command only if the cells. existing
command default settings are not clock-gating
suitable for your design cells.

Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-17

Power Compiler™ User Guide

Version L-2016.03-SP4

Table 7-1 Comparison of Clock-Gating Latency Specification Commands (Continued)

set_clock_gate
latency

set_clock_gating_
style -setup -hold

set_clock_gating_
check

set_clock_
latency

To specify clock-gate
latency before the
clock gates are
inserted by the
compile_ultra
-gate_clock
command

To modify the
clock-gate latency
settings on existing
clock-gating cells

The latency setting
specifies the clock
arrival time at the
clock-gating cell

Specification is based
on clock domain,
clock-gating state and
fanout

To specify the setup and
hold values before the
clock gates are inserted

The specification
overrides the setup and
hold values defined in
the library

Generic settings for all
the clock gates in the
design

Specification is on the
instance. So, specify on
each clock-gating cell.

Specification overrides
the setup and hold
values in the library

Specification is
on the instance.
So, specify on
each
clock-gating cell

The latency
setting specifies
the clock arrival
time at the
clock-gating cell

Calculating the Clock Tree Delay From Clock-Gating Cell to
Registers

If your clock tree synthesis tool does not insert buffers after the clock-gating cell, then the
total delay between the clock-gating cell and the registers is equal to the delay of the

clock-gating cell (clock pin to clock out signal) plus the wire delay between the clock-gating
cell and the registers. If your clock tree synthesis tool inserts buffers after the clock-gating
cell, add an estimate of the clock-network delay to the total delay between the clock-gating
cell and the registers. You can use an estimate based on the fanout of the clock-gating cell
and the driving capacity of typical clock tree buffers or use data from earlier designs.

For most designs, the enable signal arrives early and is not affected by clock-network delay
issues. For late arriving enable signals, it is advised to be conservative (high value) in the
selection of the delay from the clock-gating cell to the registers. A low value might mean an
enable signal which is unable to meet arrival time constraints at the clock-gating cell after
the clock tree is inserted. However, a high value might over constrain the enable signal

Chapter 7: Clock Gating
Calculating the Clock Tree Delay From Clock-Gating Cell to Registers 7-18

Power Compiler™ User Guide Version L-2016.03-SP4

leading to higher area or power and ensures that the enable signal arrives in time at the
clock-gating cell.

After placement and clock tree synthesis, you can back-annotate delay information by using
the set_propagated_clock command for Design Compiler to use real delay data for the
clock-network delay. For more information, see the Design Compiler User Guide.

Specifying Setup and Hold

During insertion of clock gates, the setup and hold time that you specify defines the margins
within which the enable signal (EN) must operate to maintain the integrity of the gated-clock
signal.

The setup and hold values for the integrated clock-gating cell are specified in the logic
library. The values specified in the logic library are honored by the compile_ultra
-gate_clock command during the clock-gate insertion. However, you can override these
values in the following ways:

« Specifying the -setup and -hold options of the set_clock_gating_style command.
By doing so, all the clock gates in the design should have the setup and hold time that

you specify.

« For the clock-gating cells already existing in your design, use the
set_clock_gating_check command to specify a desired setup and hold time.

You use the report_timing -to command to the enable pin of the clock-gating cell to
verify that the new values are correct.

The following example uses the set_clock_gating_style command to specify the setup
and hold values:

set_clock _gating_style \
-max_Ffanout 16 -positive_edge_logic integrated \
-setup 6 -hold 2

compile_ultra -gate_clock

to validate the user-specified setup or hold time for

integrated clock gating

report_timing -to clk gate out_top_ reg/EN

report_timing -to clk gate out_top_ reg_1/EN

The clock gate must not alter the waveform of the clock, other than turning the clock signal
on and off. If the enable signal operates outside the chosen margins specified by the -setup
and -hold options, the resulting gated signal might be clipped or corrupted.

Figure 7-7 and Figure 7-8 on page 7-21 show the relationship of setup and hold time to a
clock waveform. Figure 7-7 shows the relationship with an AND gate as the clock-gating
element. Figure 7-8 on page 7-21 shows the relationship with an OR gate as the
clock-gating element.

Chapter 7: Clock Gating
Specifying Setup and Hold 7-19

Power Compiler™ User Guide

Figure 7-7 Setup and Hold Time for an AND Clock Gate

ENL
> ENCLK

EN
—
Latch AND
Clock
Gate
CLK CLK
—® No Change Interval=—
ENL

CLK / \

Version L-2016.03-SP4

Register
Bank

A

> - > |

Setup Time

Hold Time

Noncontrolling
Value

0

Controlling
Value

Enable after latch (ENL) signal must be stable before the clock input (CLK) makes a
transition to a non-controlling value. The hold time ensures that the ENL is stable for the time
you specify after the CLK returns to a controlling value. The setup and hold time ensures
that the ENL signal is stable for the entire time that the CLK signal has a non-controlling

value, which prevents clipping or glitching of the ENCLK clock signal.

You might need to add latency by using the set_clock_latency command. Use this
command for non-clock-gating registers. For more information, see “Specifying Clock-Gate

Latency” on page 7-13 and the Design Compiler documentation.

Chapter 7: Clock Gating
Specifying Setup and Hold

7-20

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-8 Setup and Hold Time for an OR Clock Gate

EN R D Q
Latch Clock
CLK —O Gate

ENL
ENCLK
CLK)

No Change Interval

ENL

Controlling

L] 1
CLK \ / \ / Value
S 0 Non

controlling
value

> - > |-

Setup Time Hold Time

Note:
When using PrimeTime for static timing analysis, use the -setup and -hold options of
the set_clock_gating_check command to change the setup and hold values for the
gating check. PrimeTime performs clock-gating checks on all gated clocks using 0.0 as
the default for setup and hold.

Predicting the Impact of Clock Tree Synthesis

Clock tree synthesis can affect your choice of setup and hold time. However, during clock
gating, the clock tree does not exist yet: clock tree synthesis normally occurs much later in
the design process than clock gating. Without the clock tree, it can be difficult to precisely
predict the impact of clock tree synthesis on the delay of the design. For this reason, you
might find it necessary to alter your setup and hold time after clock tree synthesis.

Chapter 7: Clock Gating
Specifying Setup and Hold 7-21

Power Compiler™ User Guide

Version L-2016.03-SP4

Choosing a Value for Setup

Choose a value for the setup time that estimates the impact of the delay of the clock tree
from the clock gate to the gated register bank. In latch-based clock gating, the value for
setup mimics the delay of the clock tree from the clock gate to the register bank.

Figure 7-9 Setup and Hold Time for Clock Tree Synthesis

i Combo p—-—-—-————————— — q
Flip- —~ Cloud |
Flop
CLK;- | | |
L |
\ Latch
lock Tree I |
Synthesis | ENL |
Delay — 9 - ENCLK Register
| Main | Bank
"~ | CLK | Gate e
. < Clock Tree| | D setup

\iynthesis/ |
Layout Delay

Your setup time constrains the ENL signal so that after gate-level synthesis, there is still
enough timing slack for the addition of the clock tree during clock tree synthesis.

In latch-free clock gating, the value for setup must consider the clock signal duty cycle. For
example, in a design using a latch-free clock gate:

1. Estimate the delay of the clock tree between the clock gate and the gated register (as
you would for the latch-based clock gate).

2. From the value you estimate in step 1, add the worst-case (largest possible) clock low
time (typically half of the clock-cycle time).

This is appropriate for flip-flops triggered on the clock’s rising edge. For flip-flops
triggered on the clock’s falling edge, add the worst-case (largest possible) clock high

time.

If the setup time is too small, the ENL signal must be reoptimized after back-annotation from
layout to fit the tighter timing constraints. If the value of -setup is too large, the ENL signal
is too constrained and optimization of combinational control logic results in larger area and
power to satisfy the tighter timing constraints.

Chapter 7: Clock Gating
Specifying Setup and Hold

7-22

Power Compiler™ User Guide Version L-2016.03-SP4

Choosing a Value for Hold

Latch-based clock gating has the timing requirement that the transition of the ENL signal
occur at the 2-input clock gate after the trailing edge (rising edge for falling-edge flip-flop) of
the clock signal. This timing requirement is usually satisfied because the addition of a latch
because of clock gating, increases the delay on the ENL signal. In rare cases, however, after
clock tree synthesis and physical design, additional delay in the clock signal might cause the
CLK signal to arrive after the ENL signal. This is due to clock skew between the clock signal
driving the clock-gating latch and the clock signal driving the 2-input gate.

If you expect this timing violation, you can set the -hold value during clock gating to
artificially define a hold constraint on the ENL signal. Gate-level synthesis adds buffers in
the ENL signal if they are necessary to satisfy your hold constraint.

If the value of -hold is too small, you might have to reoptimize the ENL signal after
back-annotation from layout to ensure the integrity of the gated clock signal. If the value of
-hold is too large, you might find a chain of buffers delaying the ENL signal before the clock
gate.

Clock-Gating Styles

Power Compiler inserts the clock-gating cells in the design based on the styles that you
specify. When you do not specify a clock-gating style, the tool uses a set of predefined styles
for the clock gates. The default settings of the set_clock_gating_style command are
suitable for most designs.

The following sections discuss in detail, the default clock-gating style and using specific
clock-gating styles:

¢ Default Clock-Gating Style
» Selecting Clock-Gating Style

The compile_ultra -gate_clock command prevents clock-gate insertion when the target
library does not contain cells for the defined clock-gating style and operating condition and
issues the PWR-763 information message. You must redefine the clock-gating style or the
operating conditions, based on the clock-gating cells available in the target library.

Chapter 7: Clock Gating
Clock-Gating Styles 7-23

Power Compiler™ User Guide Version L-2016.03-SP4

Default Clock-Gating Style

When you specify the set_clock _gating_style command, the default style used by the
tool is different from the default style used when you do not specify the command.

When you specify the set_clock_gating_style command with only a few options, the tool
uses the default specified in Table 7-2 for the unspecified option.

Table 7-2 Defaults for Clock-Gating Style

Parameter Default values used when the
set_clock_gating_style
command is specified without

any option
Sequential cell Latch
Minimum bit-width 3
Setup constraint 0
Hold constraint 0
Positive edge logic and
Negative edge logic or
Control point none
Control signal scan_enable
Observation point false

Observation logic depth 5

Maximum fanout infinite
Number of stages 1
No sharing false

When you specify the set_clock_gating_style command multiple times, the last setting
overrides the previous settings.

Chapter 7: Clock Gating
Clock-Gating Styles 7-24

Power Compiler™ User Guide Version L-2016.03-SP4

When you do not specify a clock-gating style, Power Compiler derives a default clock-gating
style based on the specified libraries. The cells are chosen from the library in the following

decreasing order of priority:

e set _clock gating_style -positive_edge logic integrated \
-negative_edge_ logic integrated \
-control_point before -control_signal scan_enable

* set _clock gating style -positive edge logic integrated \
-negative_edge logic integrated -control_point after \
-control_signal scan_enable

e set _clock gating_style -positive _edge logic integrated \
-negative_edge_ logic integrated -control_point before \
-control_signal test mode -observation_point true

* set _clock gating _style -positive edge logic integrated \
-negative_edge logic integrated -control_point after \
-control_signal test mode -observation_point true

e set _clock gating_style -positive_edge logic integrated \
-negative_edge_ logic integrated

* set _clock gating style -positive _edge logic integrated \
-negative_edge logic or -control_point after \
-control_signal scan_enable

e set _clock _gating_style -positive _edge logic integrated \
-negative_edge logic or -control_point before \
-control_signal test mode -observation_point true

* set _clock gating style -positive _edge logic integrated \
-negative_edge logic or -control_point after \
-control_signal test mode

e set _clock _gating_style -positive _edge logic integrated \
-negative_edge logic or -control_point after \
-control_signal test mode -observation_point true

. set_clock gating_style -positive _edge logic integrated \
-negative_edge_ logic or

. set_clock gating_style -positive _edge logic and \
-negative_edge logic integrated -control _point before \
-control_signal scan_enable

. set_clock_gating_style -positive_edge logic and \
-negative_edge_ logic integrated -control_point after \
-control_signal scan_enable

. set_clock gating_style -positive _edge logic and \

Chapter 7: Clock Gating
Clock-Gating Styles

7-25

Power Compiler™ User Guide Version L-2016.03-SP4

-negative_edge logic integrated -control_point before \
-control_signal test mode -observation_point true\

. set_clock_gating_style -positive_edge logic and \
-negative_edge_ logic integrated -control_point after \
-control_signal test _mode -observation_point true

. set_clock gating_style -positive _edge logic and \
-negative_edge logic integrated

. set_clock _gating_style -positive_edge logic and \
-negative_edge logic or

The following example inserts clock-gating cells by choosing a suitable default style:

read_verilog low.v

compile_ultra -gate clock
report_clock gating -style
compile_ultra -incremental

Selecting Clock-Gating Style

Use the set_clock_gating_style command to select the clock-gating style. The
compile_ultra -gate_clock and the insert_clock_gating commands use the
specified clock-gating style to insert the clock-gating cells. The default settings of the
set_clock_gating_style command is suitable for most designs. If the default setting does
not suit your design, use the set_clock_gating_style command to change the default
setting.

The clock-gating style that you specify is applied to the entire design. You can also apply the
clock-gating style only to specific power domains or hierarchical cells of the design. For
more information about specifying clock-gating styles on specific instances, see “Using
Instance-Specific Clock-Gating Style” on page 7-43.

The set_clock_gating_style command has the following syntax:

set_clock _gating_style

[-sequential_cell none | latch]
[-minimum_bitwidth int]
[-setup sh_value]
[-hold sh_value]
[-positive_edge logic {cell _list | \

integrated [active low_enable][invert_gclk]}]
[-negative_edge logic {cell _list | \

integrated [active_low_enable][invert_gclk]}]
[-control_point before | after]
[-control_signal scan_enable | test mode]
[-observation_point true | false]
[-observation_logic _depth int]
[-max_fanout int]

Chapter 7: Clock Gating
Clock-Gating Styles 7-26

Power Compiler™ User Guide Version L-2016.03-SP4

[-num_stages int]
[-no_sharing]

[-instances instances]
[-power_domains power_domains]

The following sections describe how to use the set_clock_gating_style command:
e Choosing Gating Logic

e Choosing an Integrated Clock-Gating Cell

e Choosing a Configuration for Discrete Gating Logic

* Choosing a Simple Gating Cell by Name

e Choosing a Simple Gating Cell and Library by Name
« Designating Simple Cells Exclusively for Clock Gating
e Choosing a Specific Latch and Library

e Choosing a Latch-Free Style

¢ Improving Testability

« Connecting the Test Ports Throughout the Hierarchy

e Using Instance-Specific Clock-Gating Style

Choosing Gating Logic

The following options of the set_clock_gating_style command specify the type of
clock-gating logic or clock-gating cell used for implementing clock gating:

-positive_edge logic [gate list]
-negative_edge logic [gate_ list]

You can specify a configuration of 1-input and 2-input gates (simple gating cells) to use for
clock gating, or an integrated clock-gating cell already defined in the target library. An
integrated cell is a dedicated clock-gating cell that combines all of the simple gating logic of
a clock gate into one fully characterized cell, possibly with additional logic such as multiple
enable inputs, active-low enabling logic, or an inverted gated clock output.

Choosing an Integrated Clock-Gating Cell

You can use the -positive_edge_logic and -negative_edge_logic options of the
set_clock_gating_style command to specify the integrated clock-gating cell for clock
gating:

-positive_edge_logic [gate_list]
-negative_edge logic [gate_ list]

Chapter 7: Clock Gating
Clock-Gating Styles 7-27

Power Compiler™ User Guide Version L-2016.03-SP4

The first cell found that meets the clock-gating requirements is used and possibly sized up
or down to meet the design rule violations if the library has integrated cells of different sizes.
Use the power_do_not_size_icg_cells variable to prevent this behavior.

Choosing an Integrated Cell by Functionality

When selecting an integrated cell by functionality, clock gating searches your library for
integrated cells having the correct value of the clock_gating_integrated_cell attribute.

Use the set_clock_gating_style command to specify the functionality of the integrated
cell you want clock gating to look for.

Power Compiler uses the first integrated cell it finds in your library that matches the
requirements you specify with the set_clock_gating_style command. For example, if
you enter

set_clock _gating_style -negative_edge logic {integrated}

Power Compiler uses the first integrated cell it finds in your logic library that has the
clock _gating_integrated_cell attribute, as follows:

clock_gating_integrated_cell : "latch_negedge';

When you do not specify the sequential option, the tool uses the default latch-based gating.
For more information about attributes for integrated cells and library syntax, see the Library
Compiler documentation.

Choosing an Integrated Cell by Name

Choose an integrated cell by name when you require a specific integrated cell or if you have
more than one integrated cell with the same clock_gating_integrated_cell attribute.
For example,

set_clock _gating_style -positive edge logic {integrated:my cell}

In this example, clock gating chooses an integrated cell called my_cell from the logic library.
For more information about attributes for integrated cells and Library syntax, see the Library
Compiler documentation.

Specifying a Subset of Integrated Clock Gates

Use the set_dont_use -power command to limit clock gate insertion to a specific set of
integrated clock gate cells from one or more libraries. This command guarantees that the
specified cells is not used for power optimization. For example,

set_dont_use -power [get_lib_cell al.db/icg_al *]
set_dont_use -power [get lib _cell b2.db/icg b2 *]
set_dont _use -power [get lib cell c3.db/icg c3 *]
set_clock _gating_style -positive edge logic {integrated}
compile_ultra -gate clock

Chapter 7: Clock Gating
Clock-Gating Styles 7-28

Power Compiler™ User Guide Version L-2016.03-SP4

In this example, the set_clock_gating_style command directs the compile_ultra
-gate_clock command to use all integrated cells except the cells that have the dont_use
attribute.

Using Setup and Hold for Integrated Cells

Setup and hold constraints are built into the integrated cell when you create it with Library
Compiler, but you can override the values by using either the set_clock_gating_style
command or the set_clock_gating_check command.

If you provide -setup and -hold values on the command line when using an integrated cell,
the values are overridden.

The following example uses an integrated cell to gate rising-edge-triggered registers and
uses simple cells to gate falling-edge-triggered registers using latch-free style.

set_clock _gating_style -sequential_cell none
-setup setup_value

-hold hold_value

-positive_edge logic {integrated}
-negative_edge logic {inv nor buf}

The setup_value and hold_value apply not only to the integrated cell, but also to the clock
gate built for falling-edge-triggered registers using simple cells (INV, NOR, and BUF gates
in this example). For more information about integrated clock-gating cells and timing, see
the Library Compiler User Guide.

Choosing a Configuration for Discrete Gating Logic

The -positive_edge_logic and -negative_edge_logic options can have up to three
string parameters that specify the type of clock gating logic:

« The type of 2-input clock gate (AND, NAND, OR, NOR)
* An inverter or buffer on the clock network before the 2-input clock gate

« An inverter or buffer on the clock network after the 2-input clock gate

The positions of the string parameters determine whether clock gating places a buffer or
inverter before or after the 2-input clock gate. For example, if the value of
-positive_edge_logic is {and buf}, clock gating uses an AND gate and places a buffer
in the fanout from the AND gate. If the value is {inv nor}, clock gating uses a NOR gate
and places an inverter in the fanin of the NOR gate. Both of these examples result in AND
functionality of the clock gate.

Chapter 7: Clock Gating
Clock-Gating Styles 7-29

Power Compiler™ User Guide Version L-2016.03-SP4

The type of logic that is appropriate for gating your circuit depends on,

« Whether the gated register banks are inferred by rising- or falling-edge clock constructs
in your HDL code

and

* Whether you use latch-based or latch-free clock gating

When using latch-free clock gating, you must specify both the -positive_edge_logic and
-negative_edge_logic options.

For proper operation of the gated design, use the -positive_edge_logic and
-negative_edge_logic options of the set_clock_gating_style command to choose
any combination of gates that provide the appropriate functionality shown in Table 7-3 and
Table 7-4 on page 7-32. Table 7-3 provides information for the latch-based clock-gating

style.
Table 7-3 Gating Functionality for Latch-Based Clock Gating
Latch-based clock gating
Rising-edge-triggered registersl Falling-edge-triggered registers2

Gating logic Valid? Remarks Valid? Remarks

-pos{} or -neg{}

{and} Yes

{or} Yes (3)

{nand} Yes Clock gating adds an

inverter to the clock line
to the register.

{nor} Yes Clock gating removes the
inverter from the clock
line to the register.

{and inv} Yes Clock gating adds an

inverter to the clock line
to the register.

{or inv} Yes Clock gating removes the
inverter from the clock
line to the register.

{nand inv} Yes

Chapter 7: Clock Gating
Clock-Gating Styles 7-30

Power Compiler™ User Guide Version L-2016.03-SP4

Table 7-3 Gating Functionality for Latch-Based Clock Gating (Continued)

Latch-based clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2
Gating logic Valid? Remarks Valid? Remarks
-pos{} or -neg{}
{nor inv} Yes
{inv and} Yes Clock gating removes the

inverter from the clock
line to the register.

{inv or} Yes Clock gating adds an
inverter to the clock line
to the register.

{inv nand} Yes (4)

{inv nor} Yes

{inv and inv} Yes (4)

{inv or inv} Yes

{inv nand inv} Yes Clock gating removes the

inverter from the clock
line to the register.

{inv nor inv} Yes Clock gating adds an
inverter to the clock line
to the register.

1. If Power Compiler adds an inverter on the clock line to a rising-edge-triggered register, Design Compiler might infer
a falling-edge-triggered register during later synthesis if one is available in your library. This is normal.

2. If Power Compiler removes an inverter from the clock line to a falling-edge-triggered register, Design Compiler
might infer a rising-edge-triggered register if one is available in your library. This is normal.

3. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating.

4. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating. This
cancels the effect of the additional inverter on the enable input signal. Therefore only the clock pin of the main gate is
inverted.

Chapter 7: Clock Gating
Clock-Gating Styles 7-31

Power Compiler™ User Guide

Table 7-4 provides information for the latch-free clock-gating style.

Table 7-4 Gating Functionality for Latch-Free Clock Gating

Version L-2016.03-SP4

Chapter 7: Clock Gating
Clock-Gating Styles

Latch-free clock gating
Rising-edge-triggered registers1 Falling-edge-triggered registers2

Gating logic Valid? Remarks Valid? Remarks

-pos{} or -neg{}

{and} Yes

{or} Yes (3)

{nand} Yes Clock gating removes the
inverter from the clock
line to the register.

{nor} Yes Clock gating adds an

inverter to the clock line
to the register.

{and inv} Yes Clock gating removes the
inverter from the clock
line to the register.

{or inv} Yes Clock gating adds an

inverter to the clock line
to the register.

{nand inv} Yes

{nor inv} Yes (3)

{inv and} Yes Clock gating adds an

inverter to the clock line
to the register.

{inv or} Yes Clock gating removes the
inverter from the clock
line to the register.

{inv nand} Yes (4)

{inv nor} Yes

7-32

Power Compiler™ User Guide Version L-2016.03-SP4

Table 7-4 Gating Functionality for Latch-Free Clock Gating (Continued)

Latch-free clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2
Gating logic Valid? Remarks Valid? Remarks
-pos{} or -neg{}
{inv and inv} Yes (4)
{inv or inv} Yes
{inv nand inv} Yes Clock gating adds an

inverter to the clock line
to the register.

{inv nor inv} Yes Clock gating removes the
inverter from the clock
line to the register.

1. If Power Compiler adds an inverter on the clock line to a rising-edge-triggered register, Design Compiler might infer
a falling-edge-triggered register during later synthesis if one is available in your logic library. This is normal.

2. If Power Compiler removes an inverter from the clock line to a falling-edge-triggered register, Design Compiler
might infer a rising-edge-triggered register if one is available in your library. This is normal.

3. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating.

4. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating. This
cancels the effect of the additional inverter on the enable input signal. Therefore only the clock pin of the main gate is
inverted.

For example, to achieve AND functionality, you can simply use an AND gate. However, AND
functionality also results from the combination of an INV and a NOR gate. Any combination
of individual gates is allowable if the combination results in the appropriate functionality
shown in Table 7-3 on page 7-30 and Table 7-4.

In the following example, latch-based clock gating uses an AND gate for gating clocks of
rising-edge-triggered register banks and an OR gate for gating clocks of
falling-edge-triggered register banks. The enable input of the OR gate has an inverter to
ensure correct functionality when using clock gating.

-positive_edge logic {and} -negative edge logic {or}

In the following example, latch-based clock gating chooses a NOR gate for gating clocks of
rising-edge-triggered register banks. Clock gating inserts an inverter in the fanin to the

Chapter 7: Clock Gating
Clock-Gating Styles 7-33

Power Compiler™ User Guide Version L-2016.03-SP4

2-input clock gate and a buffer in the fanout from the 2-input clock gate. This combination
results in AND functionality.

-positive_edge logic {inv nor buf} -negative_edge logic {inv and inv}

For falling-edge-triggered register banks in this example, clock gating uses an AND gate to
gate the clock. Clock gating inserts inverters in the fanin and fanout of the 2-input clock gate.
This combination results in OR functionality. The enable input of the OR gate already has an
inverter. This cancels the effect of the additional inverter on the enable input signal.
Therefore, only the clock pin of the main gate is inverted.

Choosing a Simple Gating Cell by Name

The syntax of the -positive_edge_ logic and -negative_edge_logic options allows you
to use a specific clock-gating cell during clock gating. To use a specific gating cell from the
target library, specify the cell name after the element type, separated by a colon.

In the following example for rising-edge-triggered register banks, latch-based clock gating
chooses the specific AND gate, MYANDZ2, from the target library. In this example, clock
gating inserts a buffer in the fanout of the clock gate.

-positive_edge logic {and:MYAND2 buf}

Choosing a Simple Gating Cell and Library by Name

In some cases, you might have more than one target library with cell names that are the
same. In such cases, you can use a specific cell from a specific library for clock gating. The
syntax of -positive_edge_ logic and -negative_edge_logic allows you to indicate a
specific library and cell for clock gating, as follows.

target_library = { ""CMOS8_MAX.db" "tech_libl.db"™ "tech_lib2.db" }

-positive_edge logic {and:tech_libl1/MYAND2 buf:tech_lib2/ MYBUF2}

In this example, clock gating uses a particular AND cell and BUF cell from different
technology libraries. The AND cell is MYAND2 from the tech_lib1 library, and the buffer is
MYBUF2 from the tech_lib2 library. You must have previously specified these technology
libraries as target libraries by setting the Design Compiler target_library variable.

Designating Simple Cells Exclusively for Clock Gating

During technology mapping, Design Compiler builds clock-gating logic, using the generic
representation created by Power Compiler and cells from your library.

Unless you are using an integrated cell for gating, there is nothing to prevent Design
Compiler from using the same cells for mapping other parts of the design.

Chapter 7: Clock Gating
Clock-Gating Styles 7-34

Power Compiler™ User Guide Version L-2016.03-SP4

You can designate certain cells to be used exclusively or preferentially for gating clocks.
Such cells can be the 2-input clock gate, inverters, buffers, or latches used in the
latch-based style of clock gating.

To use a specific cell for clock gating and preclude its use in other areas of the design, set
the following Library Compiler attributes to true in the library description of the cell:

e dont_use

When set to true, this attribute prevents Design Compiler from choosing the cell when
mapping the design to technology.

e is_clock gating_cell

This is an attribute of type Boolean for the cell group. When set to true, this attribute
identifies the cell for use in clock gating. If dont_use and is_clock_gating_cell are
both set to true, the cell is used only in clock-gating circuitry.

You can set dont_use and is_clock_gating_cell on
e 2-input clock gates

Examples of 2 clock gates are AND, NAND, OR, and NOR library cells that are used to
gate clocks.

e 1-input clock gates

Examples of 1 clock gates are buffer and inverter library cells that are used in the fanin
and fanout of the 2 clock gate.

e 2-input D latches

These latches can be active high or low and must have a noninverting output.

To use a cell preferentially in clock gating, set only the is_clock_gating_cell attribute to
true. Clock gating uses such cells preferentially when inserting clock-gating circuitry. Later,
Design Compiler can use them as well when mapping other parts of the design to the target
technology.

For more information about the syntax and use of Library Compiler attributes, see the
Library Compiler documentation.

The 2-input clock gate has an enabling input and a clock input that is connected to ENL and
CLK signals in Figure 7-2 on page 7-4. If the clock attribute is set on one of the pins of the
2-input clock gate, Power Compiler recognizes the remaining input pin as the enable pin.
However, library cell syntax allows you to explicitly designate an input pin as the enabling
input. In the pin group of the library description for the cell, set the clock_gate_enable_pin
attribute to true. This is an attribute of type Boolean for the pin group.

Chapter 7: Clock Gating
Clock-Gating Styles 7-35

Power Compiler™ User Guide Version L-2016.03-SP4

Example
clock_gate_enable_pin : true;

If Power Compiler finds neither a clock attribute nor a clock_gate_enable_pin attribute,
the software checks for the existence of setup and hold time on the pins. If setup and hold
time are found on a pin, the software uses that pin as the enable pin. For more information
about Library Compiler syntax and cell descriptions, see the Library Compiler
documentation.

Choosing a Specific Latch and Library

The -sequential_cell option of set_clock_gating_style command allows you to
select a clock-gating style that uses latches or avoids the use of latches. Figure 7-2 on
page 7-4, earlier in this chapter, shows an example of the latch-based clock-gating style. An
example of a circuit with the latch-free clock-gating style is shown in Figure 7-10.

The -sequential_cell option allows you to use a specific latch when inserting
clock-gating circuitry. To use a specific latch from the target library, specify the name of the
latch after the element type, separating the two with a colon (:). For example:

-sequential_cell latch:LAH10

To designate a specific latch from a specific target library, insert the name of the library as
shown in the following example. Clock gating uses a latch called LAH10 from the target
library.

In the following example, clock gating uses the LAH10 latch from the SPECIFIC_TECHLIB
library.

-sequential_cell latch:SPECIFIC_TECHLIB/LAH10

Choosing a Latch-Free Style

To specify a latch free clock gating style, use the -sequential_cell none option of the
set_clock _gating_style command. For example, in the latch-free style in Figure 7-10,
clock pulses to the register bank are gated by the OR gate and it prevents the trailing clock
edge. A latch-free clock gate for rising-edge-triggered logic prevents the falling clock edge.

Eliminating the latch can reduce power dissipation and area slightly. However, the latch-free
method has a significant drawback: The EN signal must be stable at its new value before the
falling clock edge. If the EN signal is not stable before the falling clock edge, glitches on the
EN signal can corrupt the clock signal to the register. Any glitches on the EN signal after the
trailing edge of the clock lead to glitching and corruption of the gated clock signal. See
Figure 7-10 on page 7-37 for an example of latch-free clock gating.

Chapter 7: Clock Gating
Clock-Gating Styles 7-36

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-10 Latch-Free Clock Gating

DATA DATA

Control
Logic

CLK

CLK — I

EN

EN
ENCLK

Glitch

Improving Testability

Clock gating introduces multiple clock domains in the design. Introducing multiple clock
domains can affect the testability of your design unless you add logic to enhance testability.

In certain scan register styles, a gated register cannot be included in a scan chain, because
gating the register’s clock makes it uncontrollable for test (assuming there is no dedicated
scan clock). Without the register in the scan chain, test controllability is reduced at the
register output and test observability is reduced at the register input. If you have many gated
registers, this can significantly reduce the fault coverage in your design.

Chapter 7: Clock Gating
Clock-Gating Styles 7-37

Power Compiler™ User Guide Version L-2016.03-SP4

You can improve the testability of your circuit by using the options of the
set_clock_gating_style command to determine the amount and type of testability logic
added during clock gating. Follow these steps to improve testability:

* Add a control point for testing
e Choose test_mode or scan_enable

* Add observability logic

Inserting a Control Point for Testability

A control point increases the testability of your design by restoring the clock signal to its
ungated form during test. The control point is an OR gate that eliminates the function of the
clock gate during test, which restores the controllability of the clock signal.

Figure 7-11 shows a control point (OR gate) connected to the scan_enable port. The control
point is before the latch in this example.

Figure 7-11 Control Point in Gated Clock Circuitry

E Levels ofi
: Design:
1 Hierarchyi

SCAN_ENABLE

Control

CLK Logic

CLK

SCAN_ENABLE

_

ENCLK

When the scan_enable signal is high, the test signal overrides clock gating, thus making the
ENCLK and CLK signals identical during shift mode. The test solution in Figure 7-11 has the

Chapter 7: Clock Gating
Clock-Gating Styles 7-38

Power Compiler™ User Guide Version L-2016.03-SP4

advantage of achieving testability with the addition of only one OR gate. This configuration
has fault coverage comparable to that of a design without clock gating.

The set_clock_gating_style command has two options to determine the location and
type of the control point for test:

e -—control_point none | before | after

The defaultis none. The -control_point option inserts your control point before or after
the clock-gating latch. When using the latch-free clock-gating style, before and after are
equivalent.

e -—control_signal test _mode | scan_enable

The default is scan_enable. This option creates a scan_enable or test_mode test port
and connects the port to the control-point OR gate. DFT Compiler interprets test_mode
and scan_enable in a specific manner. The -control_signal option also applies to
any observability logic inserted by the -observation_point option. You can use the
control_signal option only if you have used the -control_point option.

When creating the control point, Power Compiler creates and names a new test port and
assigns appropriate attributes to the port. Table 7-5 shows variables that Power Compiler
checks when naming the new port and when setting attributes on it.

Table 7-5 Test Port Naming and Attribute Assignment

Setting of
-control_signal

Variable that determines test port name

Attributes on test port are
the same as those set by

scan_enable

test_ mode

test_scan_enable_port_naming_style

test_mode_port_naming_style

set_dft_signal -type
ScanEnable

set_attribute
test_port_clock gating
set_dft_signal -type
TestMode

To connect the test port of the clock-gating design to the test port of your design, use the

insert_dft command. For more information, see “Connecting the Test Ports Throughout
the Hierarchy” on page 7-42.

Latch-based clock gating requires that the enable signal always arrive after the trailing edge
(rising edge for falling-edge signal) of the clock. If you insert the control point before the
latch, it is impossible for the control point to violate this requirement. However, your test tool
might not support positioning the control point before the clock-gating latch. In such cases,
use -control_point after to insert the control point after the clock-gating latch.

Chapter 7: Clock Gating
Clock-Gating Styles 7-39

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
If you insert the control point after the latch, the scan_enable signal or test._ mode signal
must transition after the trailing edge (rising edge for falling-edge signal) of the clock
signal during test at the foundry; otherwise glitches in their resulting signal corrupts the
clock output.

Scan Enable Versus Test Mode

Scan enable and test mode differ in the following way:
e Scan enable is active only during the scan mode.

« Test mode is active during the entire test (scan mode and parallel mode).

Scan enable typically provides higher fault coverage than test mode. Fault coverage with
scan enable is comparable to a circuit without clock gating. However, there can be situations
in which you must use test mode. For example, you might need to use test mode if you place
the control point before the latch and your test tool does not support this position of the
control point with scan enable.

Improving Observability With Test Mode

When using test mode, the EN signal and other signals in the control logic are untestable. If
your test methodology requires that you use test_mode, you might need to increase your
fault coverage. You can increase fault coverage with test mode by adding observability logic
during clock gating.

Note:
When using the -control_signal scan_enable option, increasing observability with
observability logic is not necessary.

The set_clock_gating_style command has two options for increasing observability
when using the -control_signal test_mode option:

e -observation_point true | false

The default is false. When you set this option to true, clock gating adds a cell that
contains at least one observability register and an appropriate number of XOR trees (if
there is only one signal to be observed, an XOR tree is unnecessary). The scan chain
includes the observability register, but the observability register’s output is not
functionally connected to the circuit.

e -observation_logic_depth depth_value

The default is 5. The value of this option determines the depth of logic of the XOR tree
that -observation_point option builds during clock gating. If this value is set to 0, each
ENL signal is latched separately and no XOR tree is built. The XOR tree reduces the
number of observability registers needed to capture the test signature.

Chapter 7: Clock Gating
Clock-Gating Styles 7-40

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-12 shows a gated clock, including an observability register and an XOR tree.

Figure 7-12 Gated Clock With High Observability
Observability Circuitry

ENL3 I 3)_ XOR Obseryability
' Tree Register

ENL

TEST_MODE B S

Control

CLK Logic

CLK N I

TEST_MODE |

ENCLK

During test, observability circuitry allows observation of the ENL signal. During normal
operation of the circuit, the XOR tree does not consume power, because the NAND gate
blocks all ENL signal transitions. This test solution has high testability and is power-efficient,
because the XOR tree consumes power only during test and the clock of the observability
register is gated.

To connect the test port of the clock-gating design to the test port of your design, see
“Connecting the Test Ports Throughout the Hierarchy” on page 7-42.

Chapter 7: Clock Gating
Clock-Gating Styles 7-41

Power Compiler™ User Guide Version L-2016.03-SP4

Choosing a Depth for Observability Logic

Use the -observation_logic_depth option of the set_clock_gating_style command
to set the logic depth of the XOR tree in the observability cell. The default for this option is 5.

Power Compiler builds one observability cell for each clock-gated design. Each gated
register in the design provides a gated enable signal (OBS_EN in Figure 7-12 on page 7-41)
as input to the XOR tree in the observability cell.

If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees
(and associated registers) to provide enough XOR inputs to accommodate signals from all
the gated registers. Each additional XOR tree adds some overhead for area and power.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree
with plenty of inputs. However, too large a tree can cause the delay in the observability
circuitry to become critical.

Use the following guidelines in choosing or changing the logic depth of your XOR tree.
Choose a value that is

» High enough to cause the construction of as few XOR trees as possible

« Low enough to keep the delay in the observability circuitry from becoming critical

Connecting the Test Ports Throughout the Hierarchy

You use the insert_dft command to connect the test ports through various level of the
design hierarchy.

If you have used the clock-gating feature of Power Compiler with the testability options, you
must connect the test ports using the insert_dft command. After you have compiled all
the lower level hierarchies of the design, use the command on the top level of the design.

There are two types of test ports: the test_mode port and the scan_enable port. A port can
be recognized as a test port if it is designated as a scan_enable or a test_mode port using
the set_dft_signal command. Alternatively, a port can be designated as a test port by
setting the test_port_clock_gating attribute on it.

A scan_enable (test_mode) port is only connected to other scan_enable (test_mode)
ports in the design hierarchy. If a scan_enable (test_mode) port exists at a particular level
of the hierarchy, it is connected to scan_enable (test_mode) ports at all higher levels of the
hierarchy. If a scan_enable (test_mode) port does not exist at a higher level of hierarchy,
the scan_enable (test_mode) port is created.

The insert_dft command connects the test ports on all levels of the design hierarchy to
the test_mode or scan_enable pins of the OR gate in the clock gating logic and the XOR
gates in the clock-gating observability logic. If the design does not have a test port at any
level of hierarchy, a test port is created. If a test port exists, it is used.

Chapter 7: Clock Gating
Clock-Gating Styles 7-42

Power Compiler™ User Guide Version L-2016.03-SP4

Using the insert_dft Command

You use the insert_dft command to connect the top-level test ports to the test pins of the
clock-gating cells through the design hierarchy. A test port is created if the design does not
have a test port at any level of the hierarchy. To identify the test ports, the tool uses the
options you specified using the set_dft_signal command. The following example shows
the usage of the insert_dft command to connect to the clock-gating cells. When you
specify the value clock_gating to the ~usage option of the set_dft_signal command,
during the execution of the insert_dft command, the tool connects the specified signal to
the test pin of the clock-gating cells.

dc_shell> read_ddc design.ddc

dc_shell> set_clock _gating style -control_signal scan_enable \
-control_point before

dc_shell> compile_ultra -scan -gate_clock

dc_shell> set _dft_signal -type ScanEnable -port test se 1

dc_shell> set_dft_signal -type ScankEnable -port test se 2 \
-usage clock _gating

dc_shell> create_test protocol

dc_shell> dft_drc -verbose

dc_shell> preview_dft

dc_shell> insert_dft

For more information, see DFT Compiler User Guide.

Using Instance-Specific Clock-Gating Style

Power Compiler supports setting and removing clock-gating styles on specific design
instances and on power domains. You can also enable and disable clock gating by
overriding the specified styles. These instance-specific clock-gating styles are honored only
by the compile_ultra -gate_clock command, as described in the following sections:

« Specifying Clock-Gating Style on Design Objects
* Instance-Specific Clock-Gating Style Example

« Removing the Instance-Specific Clock-Gating Style on Design Objects

Chapter 7: Clock Gating
Clock-Gating Styles 7-43

Power Compiler™ User Guide Version L-2016.03-SP4

Specifying Clock-Gating Style on Design Objects

The clock-gating style specified using the set_clock_gating_style command are applied
to the entire design by default. To restrict the clock-gating style to specific objects of the
design, follow these steps:

1. Setthe power_cg_iscgs_enable variable to true. The default is false.

2. Use the -instances or the -power_domains option of the set_clock_gating_style
command to restrict the clock-gating styles to be applied to the specified instances or
power domains, respectively.

The clock-gating cells are inserted, based on the clock-gating style that you specified.

When you set the power_cg_iscgs_enable variable set to true, and a specific instance
does not have a specified clock-gating style, the tool chooses a clock-gating style in the
following decreasing order of priority:

* The style specified on the power domain containing the instance
« The style of the hierarchical cell containing the instance
» The style of the higher level hierarchical cell contains the instance

¢ When you do not specify the clock-gating style, Power Compiler derives a default
clock-gating style based on the specified libraries. For more information, see “Default
Clock-Gating Style” on page 7-24.

Note:
If you set the power_cg_iscgs_enable variable to true, and do not use the
-instances or the -power_domains option, the clock-gating style is applied only to the
current design.

If you use the -instances or the -power_domains option of the
set_clock_gating_style command without setting the power_cg_iscgs_enable
variable to true, Power Compiler issues the PWR-815 error message.

Instance-Specific Clock-Gating Style Example

For the design example in Figure 7-13, the set_clock_gating_style command is
specified as follows:

Specify the clock gating Style

dc_shell> set_clock gating _style -designs {design_A}
dc_shell> set _clock gating style -instances {Y2}
dc_shell> set _clock gating style -instances {Ul}
dc_shell> set_clock_gating_style -power_domains {PD_A}

Chapter 7: Clock Gating
Clock-Gating Styles 7-44

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-13 Instance Specific Clock-Gating Style Example

s N
PD_TOP
4 N\
TOP: design_TOP
- ~N N\ N
Ua: design_A U2: design_A Vi: design_B
- S y,
' N\
PD_A p -~
p N Wa: design_C
Y1: design_E
~ = PD_A
s =
Y2: ign_E
2: design_ [X1: design_D]
\g J
\ Y
\§ O\ J . y
o v
g /

The priority rules defined is applied from the bottom of the hierarchy to the top. Also, Power
Compiler considers power domains to be more specific than design instances. In the design
example of Figure 7-13,

« The clock-gating style specified for Y2 instance is applied to the Y2 instance.

If a clock-gating style is defined for a hierarchical cell inside the instance Y2, the
clock-gating style of the hierarchical cell is applied to Y2. This is because, the
precedence rule is applied from the bottom of the hierarchy to the top.

The clock-gating style specified for Y2 instance has higher precedence than clock-gating
style defined for PD_A power domain.

* The clock-gating style specified for U1 instance is applied to U1 instance, design
design_A design, and PD_A power domain.

« The clock-gating style specified for the TOP design is applied to W1 and V1 instances.

Chapter 7: Clock Gating
Clock-Gating Styles 7-45

Power Compiler™ User Guide Version L-2016.03-SP4

Removing the Instance-Specific Clock-Gating Style on Design Objects

Use the remove_clock_gating_style command to remove the instance-specific
clock-gating style that you specified on the design objects. However, this command can be
used only when you set the power_cg_iscgs_enable variable to true.

Modifying the Clock-Gating Structure

While performing RTL clock gating, you can specify the set_clock_gating_style
-max_fanout command to limit the number of registers that are gated by a single
clock-gating element. The results can be multiple clock-gating elements that have the same
enable signal and, logically, the same gated-clock signal. All clock-gating cells with the same
enable signal belong to the same clock-gating group. All registers gated by a single
clock-gating element belong to the same clock-gating subgroup.

The gated registers inserted by the compi le_ultra -gate_clock command are partitioned
into subgroups. These partitions are not based on timing or placement constraints. So the
placement tool tries to place the clock-gated registers close to the clock-gating cell, but this
might not happen because of other design constraints. The result is a suboptimal partition of
gated registers into subgroups.

You can correct this problem by moving clock-gated registers between the clock-gating cells
belonging to the same clock-gating group. Because these clock-gating cells are logically
equivalent, the rewired circuit is functionally valid.

To rewire or remove clock gating in your design, use the rewire_clock_gating or
remove_clock _gating command.

Changing a Clock-Gated Register to Another Clock-Gating Cell

To selectively rewire a clock-gated register from one clock-gating cell to another logically
equivalent clock-gating cell, use the rewire_clock_gating command.

However, if a dont_touch attribute is set on a clock-gating cell or any of its parent in the
hierarchy, the tool does not perform rewiring of such clock-gating cells.

You can use the -undo option to remove any rewiring you specified with the
rewire_clock_gating command. Based on the options specified, the ~undo option deletes
the directives specified by the previously specified rewire_clock_gating command. Use
the -undo option before you use the compile -incremental command. The compile
command modifies the netlist to rewire the gated registers.

Because rewiring the gated registers alters the clock-gating cell that gates the registers, any
path-based timing exception that goes through the old clock-gating cell to a gated register is
no longer relevant and is lost.

Chapter 7: Clock Gating
Modifying the Clock-Gating Structure 7-46

Power Compiler™ User Guide Version L-2016.03-SP4

Removing Clock-Gating Cells From the Design

Power Compiler performs clock gating at the RTL level during the compilation process when
you use the compile_ultra -gate_clock command. The remove_clock _gating
command lets you selectively remove the clock gates without having to start at RTL again.
The subsequent compi le_ultra command removes the selected clock-gating cells. As a
result you have the ability to use aggressive clock-gating strategies initially and selectively
remove clock-gating cells, if needed.

This command removes redundant clock-gating cells that are no longer connected to any
clock-gating cells. Any associated test observation logic is also optimized. However, if a
dont_touch attribute is set on a clock-gating cell or any of its parent in the hierarchy, the tool
does not remove such cells.

All the registers that are not driven by the clock-gated signals are remapped to new
sequential cells. This might result in new pin names for the registers. If there are pin-based
timing exceptions set on the original register, these exceptions might not transfer properly
during the transformation, if the new and the original pin names do not match. Pin-based
timing exceptions are specified by using the set_max_delay, set_min_delay,
set_multicycle path, and set_false_path commands.

The remove_clock_gating command displays a warning if there are pin-based timing
exceptions on the register to be ungated. Cell based timing exceptions are not affected
because the ungated registers retain their name. It is advisable to use the cell-based timing
exceptions with clock-gating registers.

For information, see the Design Compiler documentation.

Rewiring Clock Gating After Retiming

Power Compiler supports the -balance_fanout option to the rewire_clock gating
command.

This command is used to rebalance the fanout of the clock gates within the design after
modifications have been made during retiming. During optimization, Power Compiler
automatically balances the register banks based on the minimum and maximum fanout
requirements. However, when you run the compile -ungroup or optimize_registers
commands that perform retiming, unconnected registers are removed to improve timing. For
clock tree synthesis, ensure that the clock gates have equivalent fanout loads by using the
-balance_fanout option.

Use the rewire_clock _gating -balance_fanout command either after retiming or after
compilation to restore a balanced fanout. When you use this command, Power Compiler
compares the changed fanout of each equivalent clock-gating cell. The registers are moved
around so that each equivalent clock-gating cell now has a balanced set of registers and

Chapter 7: Clock Gating
Modifying the Clock-Gating Structure 7-47

Power Compiler™ User Guide Version L-2016.03-SP4

honors the -max_fanout option that you specified originally. Any register banks not meeting
the minimum_bitwidth requirement are ungated. However, if a dont_touch attribute is set
on a clock-gating cell or any of its parent in the hierarchy, the tool does not perform fanout
balancing on such cells.

Note:
The command is not intended for use after the balance_registers command.

Integrated Clock-Gating Cells

An integrated clock-gating cell integrates the various combinational and sequential
elements of a clock gate into a single cell located in the logic library. An integrated
clock-gating cell is a cell that you or your library developer creates to use especially for clock
gating.

Consider using an integrated clock-gating cell if you are experiencing timing problems, such
as clock skew, caused by the placement of clock-gating cells on your clock line.

Use Library Compiler to create an integrated cell for clock gating. For detailed information,
see the Library Compiler documentation.

Library Compiler assigns a black box attribute to the complex sequential cells such as
integrated clock-gating cells. Design Compiler does not use the integrated cells for the
general logic synthesis. Power Compiler uses these integrated clock-gating cell for
clock-gating. The selection of the clock-gating cell is determined either by the default or the
values specified with the set_clock_gating_style command. Each integrated
clock-gating cell in the library must contain the Library Compiler attribute called
clock_gating_integrated_cell. This attribute can be set to either the string generic or
to one of 26 strings that represent specific clock-gating types. The string generic causes
Library Compiler to infer the clock_gating_integrated_cell attribute from the
functionality of the clock-gating cell. Using one of the 26 standard strings specifies the
functionality explicitly according to established conventions. For more details, see Appendix
B, “Integrated Clock-Gating Cell Example.”

Integrated Clock-Gating Cell Attributes

The clock_gating_integrated_cell attribute should be set to one of 26 function-specific
strings, such as latch_posedge_postcontrol. Each string is a concatenation of up to four
strings that describe the cell's functionality. The library developer specifies the attribute
when the integrated cell is created. When you set the clock_gating_integrated_cell
attribute to generic, Power Compiler infers the value from Library Compiler.

For more information, see the Library Compiler User Guide.

Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-48

Power Compiler™ User Guide Version L-2016.03-SP4

The clock_gating_integrated_cell attribute can have any one of 26 different values.
Table 7-6 contains a short list of example values and their meanings.

Table 7-6 Examples of Values for Integrated Clock-Gating Cell

Value of Integrated cell must contain
clock_gating_integrated_cell

latch_negedge Latch-based gating logic
Logic appropriate for gating falling-edge-triggered
registers

latch_posedge_postcontrol Latch-based gating logic

Logic appropriate for gating rising-edge-triggered
registers

Test control logic located after the latch

latch_negedge_precontrol Latch-based gating logic

Logic appropriate for gating falling-edge-triggered
registers

Test control logic located before the latch

none_posedge_control_obs Latch-free gating logic

Logic appropriate for gating rising-edge-triggered
registers

Test control logic (no latch)
Observability port

For more examples, see Appendix B, “Integrated Clock-Gating Cell Example.”

The set_clock_gating_style command determines the integrated cell that Power
Compiler uses for clock gating. Power Compiler searches the library for the integrated cell
having the attribute value corresponding to the options you specify with the

set_clock gating_style command.

When you set the clock-gating style as

set_clock_gating_style
-sequential_cell latch
-positive_edge logic {integrated}
-control_point before
-control_signal test _mode]
-observation_point true

Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-49

Power Compiler™ User Guide Version L-2016.03-SP4

The -sequential_cell latch and -control_point before result in a latch-based style, and
the tool searches for an integrated clock-gating cell with control as the third string
parameter of the clock_gating_integrated_cell attribute.

The tool selects a latch-based posedge integrated clock-gating cell with control point before,
with observability pin because you specified -positive_edge_logic {integrated} .

If more than one integrated cell has the correct attribute value, Power Compiler chooses the
first integrated cell that it finds in the target library. If you have a preference, specify the
integrated cell by name.

Power Compiler does not check the function of the integrated cell to ensure that it complies
with the value of the clock_gating_integrated_cell attribute. The correct functionality is
checked by Library Compiler when the integrated cell is initially created. Power Compiler
searches for an integrated clock-gating cell that contains the specified attribute value.

Pin Attributes

Power Compiler requires certain Library Compiler attributes on the pins of your integrated
clock-gating cell. Table 7-7 lists the required pin attributes for pin names that pertain to clock
gating. Some pins, such as the pins for test and observability are optional; however, if a pin
is present, it must have the corresponding attribute listed in Table 7-7.

Table 7-7 Pin Attributes for Integrated Clock-Gating Cells

Integrated cell pin Input or output Required Library Compiler
name attribute

clock Input clock_gate_clock_pin
enable Input clock_gate_enable_pin
test_mode or Input clock_gate_test_pin
scan_enable

enable_clock Output clock_gate_out_pin
observability Output clock_gate_obs_pin

Other tools used in your synthesis and verification flow might require additional pin attributes
that are not specific to clock gating and are not listed in Table 7-7.

For more information about Library Compiler attributes and library syntax, see the Library
Compiler documentation.

Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-50

Power Compiler™ User Guide Version L-2016.03-SP4

Timing Considerations
Clock gating requires certain timing arcs on your integrated clock-gating cell.
For latch-based clock gating,

« Define setup and hold arcs on the enable pin with respect to the clock pin.

For the latch-based gating style, these arcs are defined with respect to the controlling
edge of the clock that is driving the latch.

« Define combinational arcs from the clock and enable inputs to the output.

For latch-free clock gating,

» Define no-change arcs on the enable pin with respect to the clock pin.

For the integrated latch-free gating style, these arcs must be no-change arcs, because
they are defined with respect to different clock edges.

» Define combinational arcs from the clock and enable inputs to the output.

For more detailed information about timing your integrated cell, see the Library Compiler
documentation.

Clock-Gating Naming Conventions

Clock-gating creates subdesigns containing clock-gating logic. Default naming conventions
are shown in Figure 7-14.

Figure 7-14 Default Naming Conventions

Latch
Main Gate
EN —
\\\
L7 \ \net62
(not netb52 see
CLK Q netlist below)
The name of this net is randomly
generated. Ex: netb2 in the
Verilog netlist
Module Name: SNPS_CLOCK_GATE_HIGH_design_name
Reference Cell Name: clk_gate_register

Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-51

Power Compiler™ User Guide Version L-2016.03-SP4

The Verilog netlist looks as follows:

module SNPS CLOCK_GATE_HIGH ff 03 (CLK, EN, ENCLK);
input CLK, EN;
wire net50, net52, net53, net56;

assign net50 = CLK;
assign net50 = CLK;
assign ENCLK = netb2;
assign netb53 = EN;

L_CSLDPINQW latch (.D(net53), .ENN(net50),
-Q(net56));

L_CSAN2 main_gate (-A(net56), .B(nhet50), -Z(net52));
endmodule
modulle fF 03 (q, d, clk, e, clr);

output [2:0] q;

output [2:0] q;

input [2:0] d;

input clk, e, clr;

wire NO, net62;

L_CSFD2QP \g_reg[2] (-D(d[2]1)., -CP(net62), -RN(clr),
Q2D):

L _CSFD2QP \g_reg[1] (-D{[1]), -CP(net62), -RN(clr),
Q1D):;
L_CSFD2QP \g_reg[0] (-D{[O]), -CP(net62), -RN(clr),
-Q(qloD);

SNPS_CLOCK_GATE_HIGH_ff 03 clk _gate q_reg (-CLK(clk),
-EN(NO),
-ENCLK(net62));

L_CSIV1 U5 (-A(e), -Z(NO));
endmodule

The module_name (SNPS_CLOCK_GATE_ . .), reference cell_name(clk_gate..) and the
gated_clock enable net name(net62) could be changed according to your preferences.

Set the power_cg_module_naming_style, power_cg_cell_naming_style, and
power_cg_gated_clock_net_naming_style variables before running the
insert_clock_gating command.

Use the variables either in _.synopsys_setup.dc file or before clock-gate insertion. The
details of the implementation are as follows:

Usage: set power_cg _module_naming_style
“prefix_%e_%l_midfix_%p_%t %d_suffix”
where,

prefix/midfix/suffix are just examples of any constant
strings that can
be specified.

%e - edge type (HIGH/LOW)

%1 - library name of integrated clock gating cell library
or concatenated target_library names

%p - Immediate parent module name

Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-52

Power Compiler™ User Guide Version L-2016.03-SP4

%t - top module (current design) name
%d - Index added if there is a name clash

Usage: set power_cg_cell_naming_style

"prefix_%c_%n_midFix_%r_%R_%d_suffix"
where,

%c - clock

%n - Immediate enable signal name

%r - first gated reg bank name

%R - all gated reg banks sorted alphabetically
%d - iIndex for splitting or name clash resolution

Usage: set power_cg_gated clock net _naming_style
"prefix_%c_%e %g %d_sufFix”

%c - original clock

%e - Immediate enable signal name

%g - clock gate (instance) name

%d - index for splitting or name clash resolution

Note:
If %d is not specified, Power Compiler assumes a %d at the end.

Example Script for Naming Style

set power_cg _module naming_style Synopsys_%e mid_%t
set power_cg_cell_naming_style cg _%c_%n_mid_%R
set power_cg_gated_clock net_naming_style gclk_%c_%n

define_design_lib WORK -path ./work writable
set target library cstarlib_lvt.db
set link library { cstarlib _Ivt.db }

set_clock_gating_style -sequential_cell latch -max_fanout 3 \
-minimum_bitwidth 1
analyze -format verilog -library WORK ff _03.v
elaborate ff 03
insert_clock gating
uniquify
create _clock -name "clk™ -period 5 \
-waveform {0 "2.5" } { "clk™ }
compile_ultra
current_design ff_03
write -format verilog -output 3.Ff 03.vg —hierarchy

Example Script of Output Netlist

modulle Synopsys_ HIGH mid_ff 03 0 (CLK, EN, ENCLK);
input CLK;
input EN;

Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-53

Power Compiler™ User Guide Version L-2016.03-SP4

output ENCLK;

wire netl5, netl2, netll, net9;
assign netl2 EN;

assign ENCLK netll;

assign net9 = CLK;

L _CSAN2 main_gate (.A(netl5), .B(net9), .Z(netll));
L_CSLDPINQW latch (-D(netl2), .ENN(net9), .Q(netl5));
endmodule

module ff 03 (q, d, clk, e, clr);
output [2:0] q;
input [2:0] d;
input clk;
input e;
input clr;
wire N1, gclk clk N1 _O;

Synopsys_HIGH _mid_fFf 03 0 cg clk N1 mid q reg 0 (
.CLK(clk), -EN(N1),
-ENCLK(gclk_clk_N1_0));
L_CSFD2QP \g_reg[2] (-D(d[2])., -CP(gclk_clk _N1_0),
SRN(Clr), -Q@lzD

" L_CSFD2QP \g_reg[1] (.D(d[L1]), -CP(gclk_clk_N1_0),
-BN(clr), Qa1

" L_CSFD2QP \g_reg[0] (.D(d[01), -CP(gclk_clk N1_0),
-BN(C|F), QoD

" L.CSIVL U3 (.A(e), .Z(ND));
endmodule

Keeping Clock-Gating Information in a Structural Netlist

Power Compiler applies several clock-gating attributes to the design and to the clock-gating
cells and gated registers in the design. Commands such as report_clock_gating,
rewire_clock _gating, remove_clock _gating and several placement optimization
algorithms depend on these attributes for proper operation.

The power_cg_flatten variable specifies whether to flatten the clock-gating cells when you
use commands that perform ungrouping, such as ungroup, compile -ungroup_all, or
balance_registers. By default, the variable is set to false and the clock-gating cells are
not flattened. This is recommended for most situations because ungrouping the discrete
clock gates could cause problems.

You can write a clock-gated structural netlist in ASCII format after synthesis. Reading back
the structural netlist in ASCII format causes the clock-gating attributes to be lost, possibly
preventing clock-gating and optimization from operating properly.

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-54

Power Compiler™ User Guide Version L-2016.03-SP4

Power Compiler can automatically retrieve the clock-gating attributes and identify the
clock-gating cells when you read the ASCII netlist. For more information, see “Identifying
and Preserving Clock-Gating Cells” on page 7-55.

Identifying and Preserving Clock-Gating Cells

The clock-gate identification feature helps the tool to recognize the clock-gating cells that it
inserted in the netlist in the previous run or the clock-gating cells that you instantiated in the
ASCII netlist.

Identification of Clock-Gating Cells

Power Compiler identifies clock-gating cells, including the hierarchical integrated
clock-gating cells that exist in an ASCII netlist or the discrete hierarchical clock-gating cells
inserted in the previous run of the tool.

For Power Compiler to identify the clock-gating cells inserted by the tool and annotate the
related attributes, either set the power_cg_auto_identify variable to true or use the
identify_clock_gating command without specifying any option.

The following example shows how to use the power_cg_auto_identify variable to identify
and report the identified clock-gating cells.

set power_cg_auto_identify true
read_verilog my design.v
current_design my design_top
report_clock gating

For more details, see the power_cg_auto_identify variable man page and the
identify_clock_gating command man pages.

Explicit Identification of Clock-Gating Cells

When using the identify_clock _gating command without options cannot identify
clock-gating cells, specify the —gating_elements option with the command to explicitly
identify clock-gating cells. The tool sets the pwr_cg_preservation_type attribute on the
specified cell.

To explicitly identify a clock-gating cell, the cell must have at the least two input pins and one
output pin; one of the input pins must be a clock pin.

Explicit identification provides you the flexibility to identify the clock-gating cells that differ
from the configuration expected by the Power Compiler tools for automatic identification.
However the explicitly identified clock-gating cells have additional optimization restrictions.

When a cell could be automatically identified but was explicitly identified, the Power
Compiler tool sets the pwr_cg_preservation_type attribute to preserve on the cell, and

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-55

Power Compiler™ User Guide Version L-2016.03-SP4

you can remove the attribute. When a cell is identified explicitly and could not be
automatically identified, the tool sets the pwr_cg_preservation_type attribute to
unmodifiable_read_only and you cannot remove the attribute.

For more information on the pwr_cg_preservation_type attribute, see “Preserving the
Identified Clock-Gating Cells” on page 7-56.

The following example shows how to identify a specific clock-gating element using the
-gating_elements option of the identify_clock gating command.

dc_shell> read_verilog design.v

dc_shell> current_design top

dc_shell> link

Defining the clock is not a prerequisite for clock-gate identification
ldentifies all the clock-gating cells inserted by the tool

dc_shell> identify clock gating

ldentifies the specified clock-gating cell
dc_shell> identify clock gating -gating_elements CG_1
dc_shell> report_clock_gating

For more details, see “Usage Flow With the identify_clock_gating Command” on page 7-61.

Preserving the Identified Clock-Gating Cells

To preserve the identified clock-gating cells, use the set_preserve_clock_gate
command. The command sets the pwr_cg_preservation_type attribute to one of the
following values on the specified clock-gating cells:

* preserve
¢ dont_modify_fanout
e dont_modify_enable

e unmodifiable

Note:
When you specify a non clock-gating cell with the set_preserve_clock_gate
command, the Power Compiler tool ignores the command without any warning message.

The following example and Figure 7-15 illustrate clock-gating optimization when the
pwr_cg_preservation_type attribute is set to preserve:

set power_cg_reconfig_stages true
set_clock_gating_style -num_stages 1
identify_clock gating

set _preserve_clock gate [get_cell UICG 1]

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-56

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-15 Optimization When pwr_cg_preservation_type Is Set to preserve

Out1_reg ~EN1= Out1_reg
“EN2-

EN2 EN1
> . >
UICG 1 UICG 2 compile ultra UICG_1
- - -gate_clock EN2
> >
Out2_reg Out2_reg

clk_gate_Out2_reg

The following table details the expected behavior between the option settings of the
set_preserve_clock _gate command and the pwr_cg_preservation_type attribute
values.

Table 7-8 Behavior of the set_preserve_clock_gate Command and the
pwr_cg_preservation_type Attribute

set_preserve_clock_gate pwr_cg_preservation_type Behavior

No options given preserve Preserve the specified clock-gating
cell; allow all clock-gating
optimizations if the cell and its name
are conserved after compile_ultra
—gate_clock command.

-dont_modify_fanout dont_modify_fanout Preserve the specified clock-gating
cell and prevent any clock-gating
optimization in the direct fanout of
the specified clock-gating cell.

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-57

Power Compiler™ User Guide

Version L-2016.03-SP4

Table 7-8 Behavior of the set_preserve_clock_gate Command and the
pwr_cg_preservation_type Attribute (Continued)

set_preserve_clock_gate

pwr_cg_preservation_type

Behavior

-dont_modify_enable

dont_modify_enable

Preserve the specified clock-gating
cell and prevent any clock-gating
optimization in the clock-gating
enable logic.

-dont_modify_fanout
-dont_modify_enable

unmodifiable

Prevent any further clock-gating
optimization on the clock-gating
fanout and clock-gating enable logic
of the specified clock-gating cell.

Note:

The —dont_modify_fanout and the —dont_modify_enable options restrict only
clock-gating optimizations. Any other compile optimization is still allowed, such as

remapping, buffering, boundary retiming, and so on.

When you use the set_preserve_clock_gate command for a clock-gating cell,

e Ifthe -dont_modify_fanout option is not used, the tool optimizes the cell if it does not
drive any load or does not meet the minimum bitwidth.

« The remove_clock_gating command does not remove these cells

During clock-gate merging, the Power Compiler tool preserves the cell that has the
pwr_cg_preservation_type attribute set as shown in Figure 7-25 on page 7-75.

To remove the pwr_cg_preservation_type attribute, use the remove_attribute
command. However, you cannot remove it if the pwr_cg_preservation_type attribute is
set to unmodifiable_read_only during explicit clock-gating identification.

For more details about the pwr_cg_preservation_type attribute, see the
set_preserve_clock_gate command man page

Identified Clock-Gating Cells and dont_touch

When you use the set_dont_touch command on identified clock-gating cells, the cells are
affected in the following ways:

* No rewiring of the clock gate

* No removal of the clock gate

* No merging or splitting of the clock gates

Chapter 7: Clock Gating

Keeping Clock-Gating Information in a Structural Netlist

7-58

Power Compiler™ User Guide Version L-2016.03-SP4

The dont_touch setting also affects the fanout of the clock-gating cells in the following
ways:

* No further addition of clock-gating cells
« No fanout balancing of flip-flops that were gated

» No addition or removal of loads on the fanout of the clock-gating cell

Handling Clock-Gating Edge Conflicts

Instantiated clock-gating cells that drive registers with a different activation edge are
identified and optimized like any other clock-gating cell. The clock gating style for these cells
are honored if they do not invert the clock signal. For example, suppose you have the
following code:

set_clock _gating_style -minimum_bitwidth 3
identify_clock gating
compile_ultra -gate clock

With the example shown in Figure 7-16, the tool removes the clock-gating cell named CG1
because its activation edge is the same as the register it gates. However, it does not remove
the positive-edge clock-gating cell named CG2 because it gates a register with a
negative-edge activation edge.

Figure 7-16 Optimization of Same-Edge Activation Clock-Gating Cell

A——D Q D Q
CG1 T A E T
4®7> >
—>
CLK — CLK —
D Q D Q
A A
CG2 ¢ CG2 ¢
> >

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-59

Power Compiler™ User Guide Version L-2016.03-SP4

Comparison of Clock-Gate Identification Methods

The advantages and disadvantages of the various methods of clock-gate identification are
summarized in Table 7-9.

Table 7-9 Identifying Clock-Gated Designs

Command Used

Advantages

Disadvantages

write_script

Clock-gating attributes are
written using the
set_attribute and
set_preserve_clock _gate
commands to save the current
settings. This method uses
familiar commands and
procedure.

Netlist changes are not
supported.

identify_clock_gating

Netlist changes performed
outside of Design Compiler are
supported.

You must run this command at
the right place. Some attributes
such as max_fanout might be

lost unless the
set_clock_gating_style
command is used.

Usage Flow With the write_script Command

Follow these steps to retrieve the clock-gating information in the ASCII netlist using the
write_script command.

1. Setup environment. Read in the RTL design. Insert the clock-gating logic.
2. Compile the design with the required constraints.

3. Runthe change_names command to conform to the specified rules.

4. Write out the netlist.
5

. Save current attributes and settings by using write_script —hierarchy command.
Use the -output option of the command to write the output to a file. This command
writes out all the attributes set by the set_attribute command.

6. Quitthe Design Compiler session. Make sure you do not make any changes to the netlist
before quitting.

7. Read in the design netlist.

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-60

Power Compiler™ User Guide Version L-2016.03-SP4

8. Source the file written by the write_script command. This sets all the required
attributes on the design, including the clock-gating cells, for proper execution throughout
the flow.

If you do not need clock-gating information, you can use the -no_cg option of the
write_script command. This results in a smaller script file.

To report the identified clock gates, use the report_clock_gating command.

The following example script shows the output file created by the write_script command.
HHHHHHHH R R R R R R R AR

Created by write script -format dctcl on August 26, 2016 11:16 am

B
Set the current_design
current_design module4

set_local_link_library {CORELIB8DLL.db}

set_attribute -type int [current_design] power_cg_max_fanout
2048

set_attribute -type boolean [get _cells clk gate outl reg] \
clock _gating_logic true

set_attribute -type boolean [get _cells clk gate outl reg] \
hpower_inv_cg_cell false

set_attribute -type integer [get _cells {outl reg[O]}] \
power_cg_gating_group O

set_attribute -type integer [get _cells {outl reg[1]}] \
power_cg_gating_group O

set_attribute -type integer [get _cells {outl reg[2]}] \
power_cg_gating_group O

set_attribute -type integer [get_cells {outl reg[3]}] \
power_cg_gating_group O

set_attribute -type integer [get _cells {outl reg[4]}] \
power_cg_gating_group O

set_attribute -type integer [get _cells {outl reg[5]}] \
power_cg_gating_group O

set_attribute -type integer [get _cells clk gate outl_reg] \
power_cg_gating_group O

set_size only [get _cells latch] true

Usage Flow With the identify_clock _gating Command

This section describes the steps you follow to retrieve the clock-gating information using the
identify_clock_gating command.

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-61

Power Compiler™ User Guide Version L-2016.03-SP4

After you have saved the design that has the clock-gating information, follow these steps to
retrieve the clock-gating information:

1. Read in the structural netlist that already has clock-gating cells inserted.

2. Setthe set_clock_gating_style command. This ensures that the settings are the
same as before saving the design. Otherwise, a few attributes such as max_fanout are
not retained.

3. Use the identify_clock _gating command without any options to identify all
clock-gating elements. This step traverses the design, searches appropriately for the
clock-gating structure recognized by the power Compiler tool, and annotates the
attributes needed for later operations.

Your design now contains all the clock-gating information. You can verify this using the
report_clock gating command.

Note:
Identify the clock-gating elements before optimizing the design so that the enable logic
of the clock-gating elements can be optimized by the compile_ultra -gate_clock
command.

Replacing Clock-Gating Cells

The Power Compiler tool detects clock-gating circuitry at the block or module level. At the
module level, the clock-gating circuit can be either an instantiated or inferred logic. The tool
replaces this logic with an integrated clock-gating cell or discrete cells according to the
attributes that the set_clock_gating_style command specified. This cell replacement is
performed using the replace_clock_gates command. This feature allows you to use the
integrated clock-gating cell that is recognized by the report_clock_gating,
remove_clock_gating, and rewire_clock_gating commands, for further operations.

Follow these steps to perform module-level replacement of clock-gating cells:

1. Set clock-gating directives and styles (optional).

The default settings of the set_clock_gating_style command is suitable for most
designs. You can choose a value for the clock-gating conditions and a clock-gating style
that is compatible with the clock-gating cell that is being replaced using the

set_clock gating_style command. Note that the replace_clock gates command
only operates on clock gate composition when using the style settings. It does not use
the -num_stages option.

2. Read the RTL design.

3. Define the clock ports.

Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-62

Power Compiler™ User Guide Version L-2016.03-SP4

The clock port must be identified using the create_clock command before performing
the replacement operation.

4. Replace manually-instantiated clock-gating cells.

To replace manually-inserted clock gates with tool-inserted clock gates, use the
replace_clock_gates command. To perform the replacement hierarchically, use the
-global option. If you have not specified a clock-gating styles, the tool uses the default
clock-gating style.

Note:
This command replaces only combinational logic. It does not replace observability
logic.

5. Compile the design.

The replaced clock-gating logic is unmapped. Use the compile_ultra command to
compile your design.

6. Report the gate elements registers.

Use the report_clock_gating command to get the list of cells as shown in the
following example:

dc_shell> read_verilog design.v

dc_shell> create_clock -period 10 -name clk
dc_shell> replace_clock_gates

dc_shell> compile_ultra -gate_clock
dc_shell> report _clock gating

dc_shell> report_power

In the following example, replacement is performed on a gating cell that is driving
registers in a black box cell:

dc_shell> read_verilog design.v

dc_shell> create _clock -period 10 -name clk

dc_shell> set_replace_clock gates -rising_edge_clock RAM/clk
dc_shell> replace_clock_gates

dc_shell> compile_ultra -gate_clock

dc_shell> report_clock gating

In the following example, replacement is performed only on selected gating cells:

dc_shell> read_verilog design.v

dc_shell> create _clock -period 10 -name clk

dc_shell> set_replace_clock gates -exclude_cells {SUB/C10}
dc_shell> replace_clock_gates

dc_shell> compile_ultra -gate_clock

dc_shell> report _clock gating

Example 7-1 shows a clock-gate replacement report.

Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-63

Power Compiler™ User Guide

Example 7-1 Clock-Gate Replacement Report

Current clock gating style....

Sequential cell: none

Minimum register bank size: 3

Minimum bank size for enhanced clock gating: 6

Maximum fanout: 2048

Setup time for clock gate: 1.300000

Hold time for clock gate: 0.000000

Clock gating circuitry (positive edge): or

Clock gating circuitry (nhegative edge): and
Note: inverter between clock gating circuitry

and (negative edge) register clock pin.

Control point insertion: none

Control signal for control point: scan_enable

Observation point insertion: false

Observation logic depth: 5

Maximum number of stages: 5

1

replace_clock_gates -global
Loading target library "ssc_core_typ*
Loading design "regs”

Information: Performing clock-gating on design regs

Clock Gate Replacement Report

Version L-2016.03-SP4

Clock		Include	Clock	Edge		Setup	Gate
Root	Cell Name	Exclude	Fanin	Type	Func.	Cond.	Repl.
cik			I				
	C7	-	1	fall	and	vyes	vyes
Summary:
number percentage

Replaced cells (total): 1 100
Cell not replaced because

Cell was excluded: 0] 0

Multiple clock inputs: 0 0

Mixed or unknown clock edge type: 0 0

No compatible clock gate available: 0 0

Setup condition violated: 0 0
Total : 1 100
Clock Gate Insertion Report
Gated		Include		Enable	Setup	Width	Clock
Group	Flip-Flop Name	Exclude	Bits	Cond.	Cond.	Cond.	Gated
	GATED REGISTERS						
cg0			4	yes	yes	yes	yes
	q2_reg[3] I - I 1						
	q2_reg[2]	- 11 1					

Chapter 7: Clock Gating
Replacing Clock-Gating Cells

7-64

Power Compiler™ User Guide Version L-2016.03-SP4

	q2_reg[1]	- I 1 1					
	q2_reg[0]	- 11 1					
cgl		I 4	yes	yes	yes	yes	
	q3_reg[3]	- I 1 1					
			I				
	UNGATED REGISTERS						
	si_reg	-	1	no	22	??	no
	ti_reg	-	1	no	??	7?7	no
	a4_reg[0]	- I+	no	?2	2?2	no	
Summary:
Flip-Flops Banks Bit-Width
number percentage number percentage

Clock gated (total): 3 30 12 54
Clock not gated because

Bank was excluded: 0 0 0 0

Bank width too small: 0] 0] 0] 0]

Enable condition not met: 7 70 10 45

Setup condition violated: 0 0 0 0
Total: 10 100 22 100
Clock gates in design number percentage

Replaced clock gates: 1 16

Inserted clock gates: 3 50

Factored clock gates: 2 33
Total: 6 100
Multistage clock gating information

Number of multistage clock gates: 2

Average multistage fanout: 2.0

Number of gated cells: 16

Maximum number of clock gate stages: 3

Average number of clock gate stages: 2.2

Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-65

Power Compiler™ User Guide Version L-2016.03-SP4

Clock-Gate Optimization Performed During Compilation

To further increase the power saving of your design, Power Compiler uses certain
techniques during compilation to reduce the number of clock-gating cells in the design.
These techniques are described in detail in the following sections:

e Hierarchical Clock Gating

« Enhanced Register-Based Clock Gating
« Multistage Clock Gating

* Clock Gate Merging

¢ Clock Gating Multibit Registers

« Placement-Aware Clock Gating in Design Compiler Graphical

Hierarchical Clock Gating

Generally, clock-gating techniques in Power Compiler extract common enable conditions
that are shared across the registers within the same block.

In hierarchical clock gating, during the clock-gate insertion, Power Compiler extracts the
common enables shared across registers in different levels of hierarchy in the design. This
technique looks for globally shared enables while inserting clock-gating cells. This increases
the clock-gating opportunities and also reduces the number of clock gates inserted. This
technique, combined with proper placement, improves the power savings.

Note:
During hierarchical clock gating, Power Compiler honors the boundary optimization
settings. If you disable boundary optimization, Power Compiler does not perform
hierarchical clock-gate insertion.

Power Compiler inserts hierarchical clock-gating cells at various levels of design hierarchy.
As a result, additional ports are created for the clock-gated enable signal as shown in
Figure 7-17. These additional ports are added to the subdesigns. Formality verifies the
designs successfully when the designs being compared have the same number of primary
ports.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-66

Power Compiler™ User Guide

Version L-2016.03-SP4

Figure 7-17 Ports Added During Hierarchical Clock Gating

EN Register-level
' clock gate
I
| Clock : Clock
| G;[Z {] I Register —[>— Gi'fl)t(; —|Register
I Bank Bank

CLK |
I
| Register
I | > Bank
I
I
I
I
I
I
I Register gI;[Cek Register
| Bank Bank
I
I Register
| Bank
I
R Y ke B R . I

I
Register
- I
o I\\\ | Bank
Extra port
I
|

Power Compiler can perform hierarchical clock gating on RTL netlists as well as gate-level
netlists. To perform hierarchical clock gating by using the compile_ultra -gate_clock

command, you must set the compile_clock_gating_through_hierarchy variable to

true before compiling your design. If you use the insert_clock_gating command, you
must use the -global option.

The following example shows hierarchical clock gating using the compi le_ultra command:

Set your target library and link library
set the clock-gating style (optional)

Following command is optional. Use for global clock gating
dc_shell> set compile_clock gating_through _hierarchy true

Chapter 7: Clock Gating

Clock-Gate Optimization Performed During Compilation

7-67

Power Compiler™ User Guide Version L-2016.03-SP4

Read your design

dc_shell> create _clock -name clk -period 10

dc_shell> compile_ultra -gate clock

dc_shell> report_clock_gating -verbose -gating_elements -gated
dc_shell> report_power

Enhanced Register-Based Clock Gating

The regular register-based clock gating requires certain conditions in order for successful
implementation. One of these conditions is the minimum bit-width of the register bank to be
gated. If the minimum bit-width is less than 3, which is the default, there is no clock-gating
opportunity. This width constraint ensures that the overhead of using the clock-gating cell
does not overcome the power savings.

Power Compiler can factor out the common enable signal EN shared between three register
banks and insert one clock-gating cell for these register banks, which would normally not be
clock gated due to the width condition. The result is shown in Figure 7-18.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-68

Power Compiler™ User Guide

Figure 7-18 Design With Common Enable Signal

Width Condition Violation (W=2):
No Clock Gating

Version L-2016.03-SP4

Common Enable Factoring

Register
Bank
A

1

Register
Bank
A

Register
Bank
A

5l
1
o

1 Register
Bank
A
EN
CLK
EN—— Clock | |
Gate
: J CLK—
| Register
] Bank
GCLK
B
EN
Register J
—Bank
C
EN

The default total minimum bit-width of registers for enhanced clock gating to be
implemented is twice that of regular clock gating. Since the default value for regular register
clock gating is 3, for the enhanced clock gating the register width should be at least 2 * 3,

which is 6.

Enhanced clock gating is the default behavior when you use the insert_clock gating
command. To disable enhanced clock gating, use the -regular_only option of the

insert_clock_gating command.

In the following example, automated clock gating, with enhanced clock gating is

implemented if the clock-gating conditions are met.

dc_shell> read_verilog design.v
dc_shell> create _clock -period 10 -name clk

dc_shell> insert_clock_gating
dc_shell> report_clock_gating

Chapter 7: Clock Gating

Clock-Gate Optimization Performed During Compilation

7-69

Power Compiler™ User Guide

In the following example, enhanced clock gating is disabled:

dc_shell>
dc_shell>
dc_shell>
dc_shell

read_verilog design.v
create_clock -period 10 -name clk
insert_clock gating -regular_only

> report_clock_gating

Version L-2016.03-SP4

Multistage Clock Gating

When a clock-gating cell drives another or a row of clock-gating cells, it is called multistage
clock gating. For additional power savings, the tool identifies common enables and factoring
using another clock-gating cell as shown in Figure 7-19.

Figure 7-19 Multistage Clock Gating With set_clock _gating_style -num_stages 2

CLK

Stage 1

clock gate I

Register

Bank

clock gate I

Stage 1

Register

Bank

Bl

Stage 1

clock gate I

Register

Bank

To perform multistage clock gating, you should set the maximum number of stages for

.

Stage 1

clock gate I

Register

Bank

Stage 1

clock gate I

Register

Bank

EN

CLK

Stage 2

clock gate

Stage 1

lclock gate I

Register

Bank

multistage clock gating by using the -num_stages option of the set_clock_gating_style
command. The default value of the -num_stages option is 1. After setting the maximum

number of stages, use either the compile_ultra -gate_clock or insert_clock_gating
command to perform multistage clock gating.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

7-70

Power Compiler™ User Guide

Version L-2016.03-SP4

However, the compile_ultra command performs the following additional clock-gate
optimization steps during multistage clock gating:

* Reconfiguring the number of clock-gating stages

If you set the power_cg_reconfig_stages variable to true, the tool reconfigures the
number of clock-gating stages. The reconfiguration complies with the value of the
-num_stages option of the set_clock_gating_style command. This is done only on
the clock gates inserted by the tool or identified by the tool.

« Balancing the number of clock-gating stages

If you set the power_cg_balance_stages variable to true, the tool balances the
number of the existing clock-gating stages across various register banks. Balanced
clock-gate stages ensure uniform clock latency across register banks. Figure 7-20
shows the transformation for balancing the clock-gating stages.

Figure 7-20 Balancing the Number of Stages

STAGE-1

STAGE-2

CG
EN1
CG
EN2
CG
CLK

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

STAGE-1

EN1

EN2

CLK

STAGE-1
EN1
CG
STAGE-1
CG
STAGE-1
EN2
CG |—

7-71

Power Compiler™ User Guide Version L-2016.03-SP4

Multistage Clock-Gating Flow

Follow these steps to build a multistage clock-gating structure for a design that does not
have clock-gating cells:

1. Set clock-gating styles and directives.

Use the set_clock_gating_style command to specify the clock gating stages and
other clock gating conditions. You can set the number of stages for multistage clock
gating as shown in the following example:

set_clock gating_style -num _stages 5

2. Read your design.

Read in the design using a read command.

3. Perform multistage clock gating.

Use the compile_ultra -gate_clock command

4. Report the gate elements registers.

Use the report_clock_gating command to get the list of cells and the report_power
command to see the design power after the multistage clock gating.

The following is an example script to perform multistage clock gating using the
compile_ultra -gate_clock command:

set the target library and the link library

dc_shell> set_clock gating_style -num_stages 5

dc_shell> read_ verilog design.v

dc_shell> create_clock -name clk -period 10

dc_shell> compile_ultra -gate clock

dc_shell> report_clock gating -verbose -gating elements \
-gated -multi_stage

dc_shell> report_power

Clock Gate Merging

When your design has multiple clock-gating cells as shown in Figure 7-21, the Power
Compiler tool can merge two clock-gating cells, into one clock-gating cell.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-72

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-21 Two Integrated Clock-Gating Cells

EN1 EN2 D

User User Register _Q
Instantiated Instantiated Bank
Clock-Gating Clock-Gating
Cell Cell
CLK
ICG1 ICG2

Example 7-2 shows how to insert, identify, and merge ICG1 and ICG2 clock-gating cells
shown in Figure 7-22:

Example 7-2 Example to Insert, Identify, and Merge Clock-Gating Cells

dc_shell> set power_cg_auto_identify true

dc_shell> set power_cg_reconfig_stages true

dc_shell> set_clock gating_style -positive_edge_ logic {integrated}\
-num_stages 1

dc_shell> compile_ultra -gate clock

Figure 7-22 Two Integrated Clock-Gating Cells Merged by AND Operation of the Enable Inputs

EN1 N
EN2 /’— D
| Register Q
CLK Bank
ICG1_ICG2 AN

In Figure 7-23, one of the clock-gating cells in Figure 7-21 is set for preserve.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-73

Power Compiler™ User Guide

Figure 7-23 One Integrated Clock -Gating Cell with Preserve

EN1 EN2 D
User User
Instantiated Instantiated
Clock-Gating Clock-Gating
CLK Cell Cell
— |(preserve)
ICG1 ICG2

Version L-2016.03-SP4

| Register
Bank

AN

O

Example 7-3 shows how to insert, identify, preserve the ICGL1 cell, and merge clock-gating
cells as show in Figure 7-24. The preserved clock gate retains its name.

Example 7-3 Example to Insert, Identify, Preserve, and Merge Clock-Gating Cells

dc_shell> set power_cg_reconfig_stages true

dc_shell> set _clock gating style -positive _edge logic {integrated} \

-num_stages 1
dc_shell> identify clock gating
dc_shell> set_preserve_clock _gate [get_cells ICG1]
dc_shell> compile_ultra -gate_clock

Figure 7-24 Merged Clock-Gating Cells With Preserved Cell Name Remaining

EN1 —

EN2 — / D
(preserved) t Register
CLK Bank
ICG1 ZAN

CLK_G1

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

7-74

Power Compiler™ User Guide Version L-2016.03-SP4

In Figure 7-25, one of the clock gates to be merged has the pwr_cg_preservation_type
attribute set, and the other does not. The Power Compiler tool merges the clock gates by
preserving the cell that has the pwr_cg_preservation_type attribute set.

Figure 7-25 Merging Clock Gates When One of the Identified Clock-Gating Cell Does Not Have

the pwr_cg_preservation_type Attribute Set

Before Clock-Gate Merging After Clock-Gate Merging
ENL [User Q Q
Instantiated Register Register
CLK Clock-Gating Bank EN1 [User Bank
Cell Instantiated
(preserve) Clock-Gating—
CLK Cell
ICG1 [(preserved)
Q
EN1 i
User) Q ICG1 gggll(ster
Instantiated SeglI(Ster
CLK Clock-Gating an
Cell
ICG2

Placement-Aware Clock Gating in Design Compiler Graphical

In the Synopsys physical guidance flow, the Design Compiler Graphical tool can restructure
the connection between the integrated clock-gating cell and the registers that it drives so
that the clock-gating cell and the registers can be placed close to each other. This
restructuring is used by the IC Compiler tool during placement optimization, which improves
the overall timing and area of the design.

To enable the restructuring of the integrated clock-gating cell and the registers, set the
power_cg_physically_aware_cg variable to true. The default is false. When the
power_cg_physically_aware_cg variable is set to true, the annotation of clock-gate
latency values is disabled during compile. Any new, tool-inserted clock gates do not have
any latency annotation. This also means any latency values set using the

set_clock latency command are unused, and the apply_clock_gate latency
command has no effect. However, any previously annotated clock-gate latency values on
clock-gating cells are left unchanged.

Figure 7-26 shows the Synopsys physical guidance flow for placement-aware clock-gating
in the Design Compiler Graphical and IC Compiler tools.

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-75

Power Compiler™ User Guide

Note:

Version L-2016.03-SP4

When placement-aware clock gating is enabled, clock-gating identification is performed
during the compile_ultra command to obtain a better correlation with the IC Compiler

tool. This is independent of the value of the power_cg_auto_identify variable.

Figure 7-26 Synopsys Physical Guidance Flow for Placement-Aware Clock Gating in Design

Synopsys Physical Guidance

Flow in Design Compiler
Graphical

Read RTL design

v

Specify physical and logical
constraints

4

Set
power_cg_physically_aware_cg
true

insert_dft

A

compile_ultra
-incremental -gate_clock -spg
-scan

Compiler Graphical and IC Compiler

IC Compiler Flow

Read design

A

Specify physical and logical
constraints

A

place_opt -spg
-optimize_icgs

A

Continue with the flow (clock_opt
and route_opt)

Clock Gating Multibit Registers

The Power Compiler tool supports insertion of clock-gating cells on multibit registers. The

enable pins for all the registers must be the same for clock gating to occur. All the

clock-gating commands are supported for multibit registers.

Chapter 7: Clock Gating

Clock-Gate Optimization Performed During Compilation

7-76

Power Compiler™ User Guide Version L-2016.03-SP4

To enable clock gating on multibit registers, set the hdlin_infer_multibit variable to
default_all. For further details on the multibit flow, see the Multibit Register Synthesis and
Physical Implementation Application Note.

To set the maximum fanout value for the clock-gating cells, use the
set_clock_gating_style -max_fanout command. When calculating the max_fanout
value for multibit registers, use the desired register count as the fanout value.

For example, if you specify set_clock_gating_style -max_fanout 4, the
compile_ultra -gate_clock command inserts a clock-gating cell that can drive up to 4
registers whether they are 4 single-bit or 4 multibit registers or a combination of the two
types of registers.

It is important to note that while max_fanout is calculated as the actual load on the
clock-gating cell, the min_bitwidth value is the minimum number of bits to either gate or
ungate whether it is a multibit register or not. For example, if you set the min_bitwidth
value to 3, you can clock gate four single-bit registers if they share the same clock and
enable lines. The multibit mapping feature converts the four single-bit registers into a single
4-bit multibit register. Both configurations—the four single bit registers or the single 4-bit
multibit register—satisfy the minimum bitwidth setting of three.

The report_clock_gating command generates a report that includes details of the
decomposition of multibit registers, as shown in Example 7-12 on page 7-86.

Note:
Power Compiler does not support XOR self-gating on multibit registers.

For more information about multibit optimization, see the Multibit Register Synthesis and
Physical Implementation Application Note.

Performing Clock-Gating on DesignWare Components

Power Compiler provides the ability to perform clock gating on DesignWare components
instead of treating them as black box cells. The compile_ultra -gate_clock command
performs clock gating on DesignWare components, by default.

You can use the insert_clock_gating command to insert clock gates on DesignWare
components by setting the power_cg_designware variable to true. The default is false.

The following example script performs clock gating on DesignWare components:

set power_cg_designware true

set target_library [list my lib.db cg_integ_pos.db]

set synthetic_library dw_foundation.sldb

set Llink _library [list "*" my_lib.db

dw_foundation.sldb cg_ integ_pos.db]

set_clock _gating_style -minimum_bitwidth 1 -sequential_cell latch \
-positive_edge logic {integrated:CGLP} # Optional

Chapter 7: Clock Gating
Performing Clock-Gating on DesignWare Components 7-77

Power Compiler™ User Guide Version L-2016.03-SP4

read_verilog cpurd_fifo.v

write -format verilog -hierarchy -output elab.v
compile_ultra -gate clock

insert_dft

write -format verilog -hierarchy -output comp.v

You can view the DesignWare clock-gated registers using the report_clock_gating
-gated command. The DesignWare clock gates are designated by a (*) in the report.

Reporting Command for Clock Gates

The report_clock_gating command reports the clock-gating cells and the registers with
and without clock-gating signals, in the current design. To see the dynamic power savings
because of clock-gate insertion, use the report_power command.

The report_clock_gating Command

The following examples are the output of the report_clock_gating command. If you use
the report_clock_gating command without any option, the summary of the clock-gating
elements in the current design is printed, as shown in Example 7-4.

Example 7-4 Clock-Gating Report Using Default Settings
dc_shell> report_clock_gating

AEAAXAXXAAXAAAAXAXAAXAXAAAXAXAAXAAAAXAAAXAXAAXAAAAXAAAXX
Report : clock gating

Design : low_design

Version:

Date

AEAAAXAAAKAAAXAAAAXAAAXAAAAAAAXAAAAAAXAAAKXAAAXKX

Clock-Gating Summary

| Number of Clock gating elements | 1 |
I Number of Gated registers I 4 (66.67%) I
I Number of Ungated registers I 2 (33.33%) I
I Total number of registers I 6 I

Example 7-5 shows an example report using the -gating_elements option.

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-78

Power Compiler™ User Guide Version L-2016.03-SP4

Example 7-5 Clock-Gating Report Using the -gating_elements Option
dc_shell> report_clock gating -gating_elements

KTEAAEAAAAEAAXAEAAXAAXAXAAAXAAXAXAAXAXAAXAXAAAXAAXAAXhx*x

Report : clock gating
-gating_elements

Design : low_design

Version: ...

Date I

KTAAEAAAAEAAXAEAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAAXAAXAAXAhxx

STYLE = latch, MIN = 2, MAX = unlimited, HOLD = 0.00, OBS_DEPTH = 5

INPUTS :
clk_gate outl reg/CLK = clk
clk_gate outl_reg/EN N6
clk_gate outl reg/TE test_se

OUTPUTS :
clk _gate outl reg/ENCLK = netl07

Clock Gating Bank : sub/clk_gate out_reg (ss_hvt_1v08 125c: 1.08)

STYLE = latch, MIN = 2, MAX = unlimited, HOLD = 0.00,
OBS_DEPTH = 5
INPUTS :
sub/clk_gate out _reg/CLK = n22
sub/clk_gate _out reg/EN = N6
sub/clk_gate out reg/TE = test_se

OUTPUTS :
sub/clk_gate_out_reg/ENCLK = net95

Example 7-6 shows an example report using the -ungated, -gated, -gating_elements,
and -verbose options. A table is created to display all the ungated and gated registers in
your current design.

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-79

Power Compiler™ User Guide Version L-2016.03-SP4

Example 7-6 Clock-Gating Report Using Gated and Ungated Elements

AEAAXAXAAAKAAAXAAAAAAAAAAXAAAAAAAAAAXAAAKXXAAAXKX

Report : clock _gating
-gating_elements
-gated
-ungated
-verbose

Design : regs

Version: ...

Date Too..

KTAAXEAAAAXEAAXAAAXAAAXAAXAXAAXAXAAXAXAAXAXAAAXAAXAAXAhx*x

STYLE = none, MIN = 3, MAX = 2048, HOLD = 0.00, SETUP = 1.30,
OBS_DEPTH = 5
TEST INFORMATION :
OBS_POINT = NO, CTRL_SIGNAL = scan_enable, CTRL_POINT = none
INPUTS :
clk_gate C7/CLK = clk
clk_gate C7/EN = xi
OUTPUTS :
clk gate C7/ENCLK = xclk
RELATED REGISTERS :

q4_reg[3]
q4_reg[2]
q4_reg[1]
q4_reg[0]
Gated Register Report
Clock Gating Bank | Gated Register
|
clk _gate C7 | qg4_reg[O]
| 94_reg[l]
| 94_reg[2]
I q4_reg[3]
clk_gate g3_reg | 93_reg[O]
| 93_reg[1]
| a3_reg[2]
I q3_reg[3]

ql_reg | Min bitwidth not met |

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-80

Power Compiler™ User Guide Version L-2016.03-SP4

q2_reg | Min bitwidth not met |
q5_reg | Min bitwidth not met |

Number of Clock gating elements

Number of Gated registers 16 (72.73%)

Number of Ungated registers 6 (27.27%)

Total number of registers

Example 7-7 Clock-Gating Report Using the -ungated Option

ETEAAEAAAAEAAXAEAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAAXAAXALAXAhxx

Report : clock gating

-ungated
Design : rtl
Version: ...
Date I

KTAAEAAAXAEAAXAEAAXAAXAXAAXAXAAAXAAXAXAAXAXAAAXAAXAAXhxx

ql_reg[1] | Always enabled register | -
ql_reg[O] | Always enabled register | -
| |

Number of Clock gating elements
Number of Gated registers 0 (0.00%)
Number of Ungated registers 4 (100.00%)

Total number of registers

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-81

Power Compiler™ User Guide Version L-2016.03-SP4

Example 7-8 shows the report generated when you use the -ungated option. The report
shows the specific registers that are not clock-gated and the reason for not gating them, and
the steps to follow to clock-gate the registers.

Example 7-8 Clock-Gating Report Using the -ungated and -nosplit Options

AEAAAXAAAAAAXAAAAXAAAXAAAAAAAAAAXAAAXAAAKXAAAXX

Report : clock gating

-ungated

-nosplit
Design : my design
Version: 1-2013.12
Date : Tue Nov 5 09:05:54 2013
AAAXEAAAAAAAA A A AEAAAAAAXAAAAAAAAARALAAXAAXAXAXK

Ungated Register Report

Ungated | Reason | What Next?
Register

y_reg[5] |Suitable enable signal has been excluded
|Check your CG enable exclusion
constraints
y_reg[1l] [Min bitwidth not met | -
y_reg[0] |JUser excluded register | -
y_reg[9] |Suitable enable signal has been excluded
Check your CG enable exclusion
constraints
y reg[2] | Min bitwidth not met | -
|

Number of Clock gating elements

Number of Gated registers 0 (0.00%)

Number of Ungated registers 10 (100.00%)

Total number of registers

Example 7-9 shows a report generated with the -multi_stage and -no_hier options for
a hierarchical multistage clock gated design. A multistage clock gate is a clock-gating cell
that is driving another clock-gating cell. The report shows three clock-gating elements, eight
gated and no ungated registers at the top level. Two of the three clock gates are multistage,
and their average fanout is 1.0, indicating that the clock path consists of a chain of three

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-82

Power Compiler™ User Guide Version L-2016.03-SP4

clock gates. There is one gated module in addition to the eight gated registers. The eight
registers have three stages on their clock path, but the module has only two, bringing the
average number of stages to 2.9 = ((8*3 + 2*1)/9).

Example 7-9 Clock-Gating Report Using the -no_hierarchy and -multi_stage Options

AEAAAXAAAAAAXAAAAXAAAXAAAAAAAAAAXAAAXAAAKXAAAXX

Report : clock gating
-no_hier
-multi_stage
Design : regs
Version: X-2005.09
Date : August 26, 2016 11:16 am

KTAAEAAAAEAAXAAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAAXAAXAAXhx*x

Clock Gating Summary

Number of Clock gating elements

Number of Gated registers 16 (72.73%)

]	
Number of Ungated registers	6 (27.27%)
Total number of registers	22
Number of multi-stage clock gates	2
Average multi-stage fanout	2.0
Number of gated cells	16
Maximum number of stages	3
Average number of stages	2.2

sequential_cell latch

minimum_bitwidth 2

enhanced_min_bitwidth 4

positive_edge logic integrated: TLATNTSCAX12MTH
negative_edge_logic or

control_point before

control_signal scan_enable

observation_point false

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-83

Power Compiler™ User Guide

num_stages 2

CLOCK GATES
clk_gate outl_reg
sub/clk_gate out_reg
sub/r0/clk_gate out_reg

Number of Clock gating elements
Number of Gated registers
Number of Ungated registers

Total number of registers

Version L-2016.03-SP4

16 (100.00%)

0 (0.00%)

Use the report_clock_gating -structure command to get the details and a summary of

the clock-gating structure.
Note:

You cannot use the -structure option with any other option.

Example 7-11 shows the clock-gating report when you specify the -structure option.

Example 7-11 Clock-Gating Report Using the -structure Option

AEXEAXEAXAXEAAXAAAXAAXAXAAAAAXAAXAAAXAXAALAA AKX AAXhx

Report : clock_gating
-structure
Design : test
Version: G-2012.06
Date : Mon April 16 15:01:12 2012

AEXEAXEAXAXEAAXAAAXAAXAXAALAAAXAAXAAAXAXAALAAAXAAXhx

Clock | Total | CG Stage | # of Clock | # of Gated
| Registers | | Gates] Cells
clka | 284 | 1 | 9 | 285

macro_inst

Clock | CG | Gating | Fanout | Latency |
| Stage | Element |
clka 1 cg 1 2
clk _gate_ vy reg 132

Chapter 7: Clock Gating
Reporting Command for Clock Gates

S4/y _reg[0]
S4/y _reg[1]
S4/y regl[2]
S4/y _reg[22]

7-84

Power Compiler™ User Guide

	S7/clk_gate_y_reg	4	0.000
	S8/clk_gate_y_reg	4] 0.000	
	S9/clk_gate_y_reg	4] 0.000	
Clock Gating Summary
Number of Clock gating elements 9

Number of Gated registers

Number of Ungated registers 0 (0-00%)
Maximum number of stages 1
Total number of registers 285

285 (100.00%)

Version L-2016.03-SP4

S4/y reg[23]
S7/y_reg[0]
S7/y_reg[1]
S7/y_regl[2]
S7/y_reg[3]

S8/y_reg[0]
S8/y_reg[1]
S8/y_regl[2]
S8/y_regl[3]

S9/y _reg[0]
S9/y regl[3]

S9/y _reg[1]
S9/y _regl[2]

Example 7-12 shows the report example for a design with multibit registers, when you use
the report_clock_gating command without any option. The report includes details about
the decomposition of the clock-gated multibit registers into single-bit registers. The Actual

Count column represents the count of the cells in the design. The Single-bit Equivalent

column represents the register count if every multibit register is converted to its equivalent

single-bit registers.
Note:

The register count in the Clock Gating Summary is based on the count of the cells in the

design that is also mentioned in the Actual Count column.

Chapter 7: Clock Gating
Reporting Command for Clock Gates

7-85

Power Compiler™ User Guide Version L-2016.03-SP4

Example 7-12 Clock-Gating Report for a Design With Clock-Gated Multibit Registers

AEAAXAXAAAKAAAXAAAAAAAAAAXAAAAAAAAAAXAAAKXXAAAXKX

Report : clock _gating
Design : test
Version: ...

Date Do

AEAIXAXAXAAAXAAAXAAAXAIAAAXAXAAAIAAAAIAAAIAAAAAXAhdhdx

Clock Gating Summary

Number of Clock gating elements	1
Number of Gated registers	1 (50.00%)
Number of Ungated registers	1 (50.00%)
Total number of registers	2
- e +
Clock Gating Multibit Decomposition
o R R +
| | Actual | Single-bit |
| | Count | Equivalent |
e Fem Fmm +
| Number of Gated Registers | | |
| 1-bit | 0 | 0 |
| 4-bit | 1 | 4 |
| Total | 1 | 4 |
| Number of Ungated Registers | | |
| 1-bit | 1 | 1 |
| 4-bit | 0 | 0 |
| Total | 1 | 1 |
| Total Number of Registers | | |
| 1-bit | 1 | 1 |
| 4-bit | 1 | 4 |
| Total | 2 | 5 |
e Fem Fmm +

Figure 7-27 shows the enable conditions of a clock-gating cell. The enable condition for the
clock-gating cell, clk_gate_q_reg, is represented by the RTL invariant object names during
synthesis. In this example, these objects are the sequential output pins (the Q pin coming
from the m_reg register) and hierarchical input pins (the h_enl pin). These objects are put
into one basic logical expression representing when the clock signal is disabled.

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-86

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 7-27 Example of Enable Conditions for Clock-Gating Cells

TOP
MID

m_reg

q_reg[]

CLK >

clk_gate_q_reg

The report_clock _gating -enable_conditions command prints a report, as shown in
Example 7-13.

Example 7-13 Example of Clock Gating Report for Enable Conditions
R R R R o e R e R S e R e e S R R R R B e e e e e e e e e e
Report : clock gating
-enable_conditions
Design : top
Version: ...
Date To..

AEAIAXAXAAAXAAAXAAAAIAAAXAAAAIAAAIAAAIAAAAAdAhdhdx

MID/clk_gate _g_reg | MID/q_reg

Enable condition:
MID/h_en & MID/m_reg/Q

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-87

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 7: Clock Gating
Reporting Command for Clock Gates 7-88

8

XOR Self-Gating

XOR self-gating is an advanced clock-gating technique that reduces dynamic power
consumption. XOR self-gating turns off the clock signal during specific clock cycles when
the data in the register is unchanged.

This chapter includes the following sections:

¢ XOR Self-Gating Concepts

¢ Using XOR Self-Gating in Power Compiler
* Sharing XOR Self-Gates

¢ Inserting XOR Self-Gates

¢ Querying the XOR Self-Gates

¢ Reporting the XOR Self-Gates

8-1

Power Compiler™ User Guide Version L-2016.03-SP4

XOR Self-Gating Concepts

The XOR self-gating technique reduces the dynamic power of your design by turning off the
clock signal of certain registers during specific clock cycles when the data in the register
remains unchanged. With this technique, an XOR gate compares the data stored in the
register with the data arriving at the data pin of the register. The XOR output controls the
enable condition for gating. If the data is unchanged, the unnecessary clock cycles are
gated by the output of the XOR gate. Figure 8-1 shows the XOR self-gate insertion and the
XOR gate that generates the enable signal.

Figure 8-1 XOR Self-Gating Cell

CLK >

By default, the tool supports XOR self-gating only on registers that are not gated. The
following are the advantages of XOR self-gating:

* You can gate registers with an enable condition that cannot be inferred from the existing
logic. Therefore, these registers cannot be gated using traditional clock-gating.

« For registers that are already gated, you can use the set_self _gating_options
-interaction_with_clock_gating insert command to allow self-gating on these
registers. For these registers, the time duration that the clock signal is turned off might
increase.

To minimize the area and power overhead, an XOR self-gating cell can be shared across a
few registers by creating a combined enable condition with a tree of XOR gates. If the
self-gated registers are driven by synchronous set or synchronous clear signals, these
signals are also included in the construction of the enable signal so that the circuit remains
functionally unchanged. Figure 8-2 is an example of a self-gating cell that is shared across
two registers (4 bits). Note that one of the self-gated registers is a multibit register and the
other register is a single-bit register. The tool can also self-gate a group of multibit registers
or a group of single-bit registers.

Chapter 8: XOR Self-Gating
XOR Self-Gating Concepts 8-2

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 8-2 XOR Self-Gating Tree

D1
D2

EN

Qo
Q1
Q2

Using XOR Self-Gating in Power Compiler

In the Power Compiler tool, the XOR self-gating feature identifies those registers where the
XOR self-gate insertion can potentially save dynamic power, without degrading the timing.

Dynamic power is calculated using the switching activity annotated on the design. If the

switching activity is not specified, the tool uses the default activity. By default, registers are
grouped to create XOR self-gating banks with a minimum size of four bits and a maximum

size of eight bits. The XOR self-gating cells are inserted without a hierarchical wrapper

around them.

XOR Self-Gating Flows

Figure 8-3 illustrates the general flow for XOR self-gating. The general flow uses a SAIF,

RTL, or .ddc file, and logic libraries.

Chapter 8: XOR Self-Gating
Using XOR Self-Gating in Power Compiler

8-3

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 8-3 General XOR Self-Gating Flow

SAIF RTL/.ddc file

Design Compiler Topographical

read saif -input in.saif
or
set switching activity

compile ultra -self gating [-gate clock] [..]

'

write script -hierarchy -output
write script.out

write_script.out
.ddc file, netlist

Reports

When an ASCII netlist with XOR self-gating cells is read back into the Power Compiler tool,
all attribute information is lost and the tool does not recognize the self-gating cells for
reporting or optimization. The Power Compiler tool supports the XOR self-gating ASCII flow
using the write_script command. As shown in Figure 8-4, use the write_script
-hierarchy -output file_name command for saving the current attributes of the design.
When the design is read back into the tool, use the source command to source the file
written by the write_script command. This sets all the required attributes on the design,
including the self-gating cells for reporting and optimization purposes.

Chapter 8: XOR Self-Gating
Using XOR Self-Gating in Power Compiler 8-4

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 8-4 XOR Self-Gating ASCII Flow

write_script.out Verilog netlist

Design Compiler Topographical

source write script.out

compile ultra -self gating -incremental
[-gate clock] [..]

write script -hierarchy -output
write script.out

Y

L—R;orm\‘

Library Requirements for XOR Self-Gating

To perform XOR self-gating, the logic library should contain XOR, OR, and AND gates for
the corresponding operating conditions. The integrated clock-gating cells in the library that

have the following configurations are used as self-gating cells.
¢ Sequential cell: latch

e Control point: before

« Control signal: scan_enable

* Observation point: none

Chapter 8: XOR Self-Gating
Using XOR Self-Gating in Power Compiler

8-5

Power Compiler™ User Guide Version L-2016.03-SP4

When the library does not contain cells with these configurations for the corresponding
operating conditions, the tool does not insert XOR self-gating cells. If an integrated clock
gate compatible with self-gating is specified through the set_clock_gating_style
command, XOR self-gating uses the same integrated clock gate or the clock gate that is
most similar to the one specified.

Unsupported Registers for XOR Self-Gating

The Power Compiler tool does not support the following types of sequential cells for XOR
self-gate insertion:

« Level-sensitive sequential cells

* Level-sensitive scan design registers

* Master-slave flip-flops

* Retention registers

« Single-bit and multibit registers that belong to shift registers

* Multibit registers with multiple clock pins

Sharing XOR Self-Gates

If the following conditions are met, two or more registers can be gated by the same XOR
self-gating cell:

« The registers belong to the same hierarchy
« The registers belong to the same clock domain

» Ifthe synchronous global signals exist, the registers are driven by the same synchronous
signals: synchronous set and synchronous clear

« If the asynchronous global signals exist, the registers are driven by the same
asynchronous signals: asynchronous set and asynchronous clear

Inserting XOR Self-Gates

The XOR self-gating feature is supported only in the Design Compiler topographical mode.
Use the compile_ultra -self_gating command to insert the XOR self-gates. The XOR
self-gates are inserted using the objects specified by the set_self_gating_objects
command and the options specified by the set_self _gating_options command.

Chapter 8: XOR Self-Gating
Sharing XOR Self-Gates 8-6

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
Clock gate latency cannot be annotated on a self-gating cell by using the
set_clock gate_latency command

For more details, see the compile_ultra command man page.

Specifying Objects for XOR Self-Gating

To specify objects for XOR self-gating, use the set_self_gating_objects command. You
can specify registers, hierarchical cells, power domains, or designs for self-gating.
Self-gating is performed when you run the compile_ultra -self_gating command.

The following command excludes the XOR self-gate to the D_OUT _reg register bank of the
MID subdesign.

dc_shell-topo> set_self _gating objects -exclude MID/D_OUT reg[*]
dc_shell-topo> compile_ultra -self _gating

For more details see the set_self_gating_objects command man page.

XOR Self-Gating the Clock-Gated Registers

By default, the Power Compiler tool does not perform XOR self-gating on clock-gated
registers. If you want to perform self-gating on registers that are clock-gated, use the
following command:

dc_shell-topo> set_self _gating_options -interaction_with_clock gating \
insert

Specifying Options for XOR Self-Gating

To specify conditions for XOR self-gating and define the interaction with clock gating, use
the set_self_gating_options command. The compile_ultra -self_gating command
uses these values when inserting the XOR self-gates.

The following example shows how to use the set_self_gating_options command to
insert XOR self-gate for a minimum of two bits and a maximum of nine bits.

dc_shell-topo> set_self _gating options -min_bitwidth 2 -max_bitwidth 9
dc_shell-topo> compile _ultra -self _gating

When you specify the set_self_gating_options command with the
-interaction_with_clock_gating option as none, the tools excludes the registers that
are already clock gated, from XOR self-gate insertion.

For more details see the set_self_gating_options command man page.

Chapter 8: XOR Self-Gating
Inserting XOR Self-Gates 8-7

Power Compiler™ User Guide Version L-2016.03-SP4

Querying the XOR Self-Gates

In the current design, use the all_self_gates command to get a collection of self-gating
cells or pins of self-gating cells.

For example, the following command returns the self-gating cells that gate registers clocked
by CLK:

dc_shell-topo> all_self _gates -clock CLK

For more details, see the all_self _gates command man page.

Reporting the XOR Self-Gates

In the Design Compiler topographical mode, use the report_self_gating command to
report the XOR self-gating cells. The command reports the number of registers with XOR
self-gates, and optionally, information about registers without XOR self-gates in the current

design.
For more details, see the report_self_gating command man page.

Example 8-1 shows the report generated by the report_self_gating command when no
option is specified.

Chapter 8: XOR Self-Gating
Querying the XOR Self-Gates 8-8

Power Compiler™ User Guide Version L-2016.03-SP4

Example 8-1 Report Generated by the report_self_gating Command

dc_shell> report_self _gating

R o kAR R R b o SR R R SR R R AR R R S

Report : self_gating
Design : my design
Version: ...

Date I

KTAAEAAAAEAAXAAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAAXAAXAAXhxx

Self-Gating Summary

Number of self gating cells
Number of self gated registers 50 (50.00%)
Number of registers not self-gated 50 (50.00%)

Total number of registers

Ry o o +
| | Actual | Single-bit |
| | Count | Equivalent |
Sy R R +
Number of Self Gated Registers		
1-bit	3	3
4-bit	3	12
Total	6	15
Number of Registers not Self-Gated		
1-bit	0	0
4-bit	0	0
Total	0	0
Total Number of Registers		
1-bit	3	3
4-bit	3	12
Total	6	15
e Fomm e e +

Example 8-2 shows the report generated by the report_self_gating -ungated
command. The report shows why self-gating did not occur and suggests how to get
self-gating to occur on these registers.

Example 8-2 Report Generated by the report_self gating -ungated

dc_shell> report_self _gating -ungated

KTEAAAAAAEAAXAAAXAAXAXAAAXAAXAXAAXAXAAXAXAAAXAAAXAAXhx*x

Report : self_gating
-ungated

Chapter 8: XOR Self-Gating
Reporting the XOR Self-Gates 8-9

Power Compiler™ User Guide Version L-2016.03-SP4

Design : my design
Version: ...
Date I

KTEAAEAAAAEAAXAEAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAAXAAXAA LA hxx

Ungated Register]| Reason | What Next?

y_reg[9] | Self gating creates negative slack on path

| Relax timing constraints on this path
y _reg[8] | Self gating creates negative slack on path

| Relax timing constraints on this path
y_reg[7] | Self gating creates negative slack on path

| Relax timing constraints on this path
y_reg[6] | Self gating creates negative slack on path

| Relax timing constraints on this path
y _reg[5] | Self gating creates negative slack on path

| Relax timing constraints on this path

Number of self-gating cells
Number of self gated registers 0 (0.00%)
Number of registers not self-gated 5 (100.00%)

Total number of registers

Chapter 8: XOR Self-Gating
Reporting the XOR Self-Gates 8-10

9

Power Optimization

Power Compiler performs additional steps to optimize your design for dynamic and leakage
power.

This chapter contains the following sections:

Overview

General Gate-Level Power Optimization
Leakage Power Optimization

Dynamic Power Optimization

Enabling Power Optimization

Performing Power Optimization

9-1

Power Compiler™ User Guide Version L-2016.03-SP4

Overview

The speed of the transistor continues to improve. The most common technique used to
achieve the high performance is to reduce the geometry of the transistor as well as the
voltage to operate it. To maintain the speed and noise margin of the smaller transistor, the
threshold voltage needs to be lowered too. Since the threshold voltage has exponential
impact on the transistor leakage power, low threshold voltage transistors have high leakage
power. Minimizing the leakage power is one of the major challenges to be resolved,
especially in lower geometries.

In any design, there are critical and non-critical timing paths. Using a lower speed cell on
non-critical path does not affect the performance of a design. A slower cell allows higher
threshold voltage, which reduces leakage power dramatically. Optimizing the high speed
and low speed cells on different timing paths leads to a balanced design with high
performance and low leakage power.

Input and Output of Power Optimization
Figure 9-1 illustrates the flow for gate-level power optimization.

Figure 9-1 1/O Flow for Power Optimization

Power Options

Libraries
RTL or P
Gate-Level > ower -
: e Power Optimized
Netlist Optimization in Gate-Level Netlist
Logical
Synthesis
r— — — — "
I
: Switching |
Activity |
| o
! -

—

Chapter 9: Power Optimization
Overview 9-2

Power Compiler™ User Guide Version L-2016.03-SP4

The inputs for gate-level power optimization are:

* RTL or gate-level netlist and floor plan (optional)

This netlist is not power optimized.
e Power options

Power options enable the power optimization.
e Libraries

Power Compiler selects different library cells to rebuild the netlist with the optimized
power. Multivoltage threshold libraries are highly recommended for leakage optimization.

* Switching activity

This is required for dynamic and total power optimization, and is used for high accuracy
in leakage optimization.

The output of gate-level power optimization is a new gate-level netlist that has optimized
power. The optimization is implemented with the compi le or compile_ultra commands.

Chapter 9: Power Optimization
Overview 9-3

Power Compiler™ User Guide

Version L-2016.03-SP4

Power Optimization in Synthesis Flow

Figure 9-2 shows the steps involved in power optimization in the synthesis flow.

Figure 9-2 Flow for Synthesis Power Optimization

Develop HDL files

¢

Specify libraries

link_ library
target_library
physical_library
symbol_library
synthetic_library

Read design

read_file

Define
design environment

set_operating conditions
set_drive

set_driving cell
set_load
set_fanout_load
set_min_library

Chapter 9: Power Optimization
Overview

Set

design constraints

Y

set_max_transitions
set_max fanout

set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock

set_clock_uncertainty
set_clock_transition

set_input_delay
set_output_delay
set_clock_gate_latency

set_leakage_optimization
set_dynamic_optimization

Optimize the design

:

compile_ultra

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_power

Save the
design database

write_file

9-4

Power Compiler™ User Guide Version L-2016.03-SP4

General Gate-Level Power Optimization

To perform power optimization, Power Compiler reduces power consumption on paths with
positive timing slack. The more paths in the design with positive slack, more opportunity for
Power Compiler to reduce power consumption by using low-power cells. Designs with
excessively restrictive timing constraints have little or no positive slack to trade for power
reductions.

Designs that have black box cells, such as RAM and ROM, and customized subdesigns that
have the dont_touch attribute, benefit from power optimization.

In Design Compiler topographical, to set the positive timing slack limit, use the
physopt_power_critical_range variable. In the following example, Power Compiler
optimizes only the timing paths with positive slack of 0.2 or more.

set physopt_power_critical_range 0.2

For more information, see the variable man page.

Leakage Power Optimization

Leakage power optimization is an additional step to timing optimization. During leakage
power optimization, the tool tries to reduce the leakage power of your design without
affecting the performance. To reduce the overall leakage power of the design, leakage
power optimization is performed on paths that are not timing-critical. When the target
libraries are characterized for leakage power and contain cells characterized for multiple
threshold voltages, Power Compiler uses the library cells with appropriate threshold
voltages to reduce the leakage power of the design.

Dynamic Power Optimization

Dynamic power optimization is an additional step to the timing optimization. After the
optimization, your design consumes less dynamic power without affecting the performance.
Dynamic power optimization requires switching activity information. Optimizing dynamic
power incrementally provides better QoR and take less runtime.

Chapter 9: Power Optimization
General Gate-Level Power Optimization 9-5

Power Compiler™ User Guide Version L-2016.03-SP4

Annotating the correct switching activity information, by using a SAIF file, affects the
dynamic power optimization. You can annotate switching activity in the following two ways:

* Read the SAIF file

Use the read_saif command to read a SAIF file to annotate the switching activity
information on nets, pins, ports, and cells in the current design.

¢ Use the set_switching_activity command

You can also use the set_switching_activity command to annotate the switching
activity information.

If switching activity is not annotated, the default toggle rate is applied to the primary inputs
and outputs of the black box cells. Power Compiler propagates the default toggle rate
throughout the design. The propagated toggle rates are used for dynamic power
optimization.

Enabling Power Optimization

Leakage power optimization is automatically enabled for all Design Compiler tools except
DC Expert. When using the DC Expert tool, use the following command to enable leakage
optimization:

set_leakage optimization true
To enable dynamic optimization in all tools, use the following command:
set_dynamic_optimization true

When both leakage and dynamic power options are enabled in the DC Expert tool, the tool
performs leakage power optimization.

The following example script shows the default usage model for power optimization.

Specify all multivoltage threshold libraries
set_app_var target_library “hvt.db nvt.db Ivt.db”
set_app_var link_library “* $target_library”

read_verilog rtl.v
link

compile_ultra
report_power

Note:
The report_power and report_constraint commands use state-dependent
information to calculate leakage power.

Chapter 9: Power Optimization
Enabling Power Optimization 9-6

Power Compiler™ User Guide Version L-2016.03-SP4

Leakage Power Optimization Based on Threshold Voltage

Leakage power optimization can use single threshold voltage or multithreshold voltage
libraries. However, multithreshold voltage libraries can save more leakage power.

Leakage power is very sensitive to threshold voltage. The leakage power varies from 4 to 50
times for different threshold voltages. The higher the threshold voltage, the lower the
leakage power. On the other hand, timing varies from 5 to 30 percent. The lower the
threshold voltage, the faster the timing. For the single-voltage library, the variance of
threshold voltage and timing is of a similar magnitude.

For designs that have strict timing constraints to be met, you optimize for leakage power
only on the non timing-critical paths, using the higher threshold-voltage cells from the
multithreshold voltage libraries. When your design has a relatively easy-to-meet timing
constraint, you might have a large number of low threshold-voltage cells in your design,
resulting in higher leakage power consumption. One way to avoid this situation without
having to change your target library settings is to use the set_multi_vth_constraint
command to specify a very low percentage value for the lower threshold-voltage cells. For
optimum results you should start with 1 to 5 percent of the number of cells in the design for
the low threshold-voltage cells and gradually increase the percentage until the timing
constraint is met. With this technique, your design meets the timing constraint with minimal
leakage power consumption.

Multiple Threshold Voltage Library Attributes

To define threshold voltage groups in the libraries, use the set_attribute command and
add the following attributes:

e Library-level attribute:

default_threshold_voltage_group :string;

e Library-cell-level attribute:

threshold_voltage_group :string;

With these attributes, the threshold voltages are differentiated by the string you specify.
When the library has at least two threshold voltage groups or if you have defined threshold
voltage groups for your library cells using the set_attribute command, the library cells are
grouped by the threshold voltage. For accurate multiple threshold voltage optimization,
define the threshold voltage group attributes.

Chapter 9: Power Optimization
Enabling Power Optimization 9-7

Power Compiler™ User Guide Version L-2016.03-SP4

The set_multi_vth_constraint Command

Use the set_multi_vth_constraint command to set the multithreshold voltage
constraint. This command has options to specify the constraint in terms of area or number
of cells of the low threshold voltage group. You can also specify whether this constraint
should have higher or lower priority than the timing constraint.

The set_multi_vth_constraint command supports the -type option to specify the type
of the constraint. When you specify -type hard, Power Compiler tries to meet this
constraint, even if this results in timing degradation. When you specify -type soft, Power
Compiler tries to meet this constraint without degrading the timing.

Note:
The -type soft option is supported only in Design Compiler topographical mode.

While calculating the percentage of low threshold voltage cells in the design, the tool does
not consider the black box cells. To consider the black box cells in the percentage
calculation, specify the -include_blackboxes option.

After synthesis, use the report_threshold_voltage_group command to see the
percentage of the total design, by cell count and by area, that is occupied by the
low-threshold voltage cells.

In the following example, the maximum percentage of low-threshold voltage cells in the
design is setto 15 percent. When the Power Compiler tries to meet this constraint, the timing
constraint is not compromised.

dc_shell-topo> set_multi_vth_constraint \
-Ivth_groups {lvt svt} -lvth_percentage percentage \
-type soft -include_blackboxes

Note:
If the set_multi_vth_constraint command is used, it takes precedence over leakage
optimization.

Analyzing the Multiple Threshold Voltage Library Cells

The Power Compiler tool supports the analyze_library -multi_vth command to
compare the leakage power with respect to the timing characteristics of the target library
cells belonging to each threshold voltage group. Example 9-1 shows the report generated
by the command.

Chapter 9: Power Optimization
Enabling Power Optimization 9-8

Power Compiler™ User Guide Version L-2016.03-SP4

Example 9-1 Report Generated by the analyze_library -multi_vth Command

AAAAKAAAA A AAAAAA A AAA A AKX A AAAAAAAAXALAAXAAAAAAAAXAAAXAAAAAAXAAAAAAAXAAAAAAX

Multi-VT Library Analysis Report

Vth Group/Library Name Avg. Avg.

(don"t use cells/total cells) Leakage Timing

SVT (0/998) 1.00 1.00 (Baseline)
LVT (0/793) 1.80 1.59

ULVT (0/998) 4.88 3.75

EAEAAEAAAAAXAAAAAAXAAAXAAXAXAAXAXAAXAXAAXAXAAXTXAAXTAAXTXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAX)K

You can also generate a graphical representation of the information using the -graph option
as shown in Figure 9-3. The results of the analyze_library command are shown relative
to a baseline library. In this figure, the baseline library is the SVT voltage threshold group.
This is the library that the tool considers to have the least leakage; it is also known as an HVt
(high voltage threshold group). The timing and leakage values are measured relative to this
baseline. For instance, in Figure 9-3, the ULVT voltage threshold group has 4.88 times
more leakage than the baseline SVT group. The ULVT voltage threshold group is also 3.75
times faster in terms of delay than the SVT group. This information is provided so you can
see how the tool views the performance and leakage of your voltage threshold groups
relative to each other. This information is presented in a design-independent way and does
not rely on any design-specific constraints.

The graph in Figure 9-3 can help you determine which library to use for your optimization
goals. If your design is power sensitive, you might avoid using the ULVT voltage threshold
group to save power. If your design has high-performance targets, you might want to
exclude the SVT group to achieve your performance goals. In this case, you sacrifice power
for performance.

Chapter 9: Power Optimization
Enabling Power Optimization 9-9

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 9-3 Graphical Output Generated by analyze_library -graph Command

6.0
a9,
o
Lo
T 40 |
o
8
o
@
2.7
k-
o
&
-l
@ 2.2
o
e
&
1. s |
Fi
3 s
E £
1S
S 128
g
0" 0
0.8 slower cells faster cells
0.8 1.0 1.2 1.5 1.7 1.9 2.1 2.4 2.6 2.8 3.1 3.3 3.5 3.8 4.0
Normalized Average Timing
A SNT
B VT
C ULVT

Leakage Optimization for Multicorner-Multimode Designs

For multicorner-multimode designs, you can specify the leakage power optimization for
specific scenarios, using the set_scenario_options command.

For more information about leakage power optimization for multicorner-multimode design,
see Power Optimization in Multicorner-Multimode Designs.

Chapter 9: Power Optimization
Enabling Power Optimization 9-10

Power Compiler™ User Guide Version L-2016.03-SP4

Performing Power Optimization

The compi le_ultra command performs power optimizations, by default, along with the
timing and area optimizations.

An incremental compile uses the existing netlist as a starting point for continued
optimization. Usually, this ensures improvement for timing, power, and area (or for other
active constraints you define). If you have a design goal that is not met (a violated
constraint), a subsequent optimization session attempts to meet the violated constraint by
sacrificing lower-priority design goals.

Settings for Power Optimization

The power optimization and prediction settings are used when you run the compile_ultra
or compile_ultra -incremental command to perform accurate power estimation. The
tool also uses these settings to get accurate post-synthesis power numbers comparable
with the place-and-route numbers. Design Compiler Graphical supports IEEE 1801, also
known as Unified Power Format (UPF), in the Synopsys physical guidance flow. For more
details on UPF, see UPF Multivoltage Design Implementation.

To enable clock-gate optimization, use the -gate_clock option and the -spg option of the
compile_ultra command. Power Compiler inserts, modifies, or deletes clock-gating cells,
except where you have set the dont_touch attribute on a clock-gating cell or its parent
hierarchical cell.

When you enable the power prediction feature by using the set_power_prediction
command, the Power Compiler tool performs clock tree estimation during the last phase of
the compile_ultra command.

The report_power command reports the correlated power when the design is mapped to
technology-specific cells. When the power prediction feature is disabled, the report_power
command reports only the total power, static power, and dynamic power used by the design
without accounting for the estimated clock-tree power.

For more details about using the low-power placement feature in multicorner-multimode
designs, see Optimizing for Dynamic Power Using Low-Power Placement.

Power Optimization in the Synopsys Physical Guidance Flow

The Synopsys physical guidance feature enables Design Compiler Graphical to save the
physical guidance information and pass this information to IC Compiler. This section
discusses the settings required for the low-power placement feature. For general details of
the Synopsys physical guidance flow, see the Design Compiler User Guide.

Chapter 9: Power Optimization
Performing Power Optimization 9-11

Power Compiler™ User Guide Version L-2016.03-SP4

Settings for Low-Power Placement
Use the following command and variable settings to enable low-power placement:
e set_dynamic_optimization true

e power_low_power_placement true

When you enable the low-power placement feature, the tool optimizes the dynamic power
by shortening the net lengths of high-switching activity nets. Since the dynamic power
saving is based on the switching activity of the nets, annotate the switching activity by using
the read_saif command. Then, synthesize the design using the compile_ultra -spg
command. Example 9-2 shows how to enable and use the low-power placement feature.

Example 9-2 Enabling and Using the Low-Power Placement Feature

set_dynamic_optimization true

set_app_var power_low_power_placement true
read_saif -input sl.saif -instance_name iInst_1
compile_ultra -spg

report_power

It is recommended, but not required, to read in the RTL SAIF file before optimization. If the
RTL SAIF file is not available, the tool uses the defaults, a static probability of 0.5 and a
toggle rate of 0.1. If you want to annotate your own values, use the
set_switching_activity command

Chapter 9: Power Optimization
Performing Power Optimization 9-12

10

Multivoltage Design Concepts

In multivoltage designs, the subdesign instances operate at different voltages. In multisupply
designs, the voltages of the various subdesigns are the same, but the blocks can be
powered on and off independently. In this user guide, unless otherwise noted, the term
multivoltage includes multisupply and mixed multisupply-multivoltage designs.

This chapter contains the following sections:

« Multivoltage and Multisupply Designs

e Library Requirements for Multivoltage Designs
e Power Domains

¢ \oltage Areas

10-1

Power Compiler™ User Guide Version L-2016.03-SP4

Multivoltage and Multisupply Designs
The logic synthesis tools support the following types of low-power designs:
« Multivoltage
e Multisupply

« Mixed multivoltage and multisupply

To reduce power consumption, multivoltage designs typically make use of power domains.
The blocks of a power domain can be powered up and down, independent of the power state
of other power domains (except where a relative always-on relationship exists between two
power domains).

Multivoltage designs have nets that cross power domains to connect cells operating at
different voltages. Some power domains can be always-on, that is, they are never powered
down, while others might be always-on relative to some specific power domain. Some power
domains shut down and power up independently, but might require isolation and other
special cells. In general, voltage differences are handled by level shifters, which step the
voltage up or down from the input side of the cell to the output side. The isolation cells isolate
the power domain. Note that an enable-type level shifter can be used as isolation cells.

Library Requirements for Multivoltage Designs

To synthesize your multivoltage design using Power Compiler, the technology libraries used
must conform to the Liberty syntax. It should also contain special cells such as clock-gating
cells, level-shifters, isolation cells, retention registers, and always-on buffers and inverters.
To support synthesis of multivoltage designs, the tool also supports multiple libraries
characterized at different voltages. The following sections describe the types of cells that
support multivoltage or low-power designs:

e Liberty PG Pin Syntax

e Level-Shifter Cells

* Isolation Cells

* Requirements of Level-Shifter and Isolation Cells
« Retention Register Cells

« Power-Switch Cells

¢ Always-On Logic Cells

Chapter 10: Multivoltage Design Concepts
Multivoltage and Multisupply Designs 10-2

Power Compiler™ User Guide Version L-2016.03-SP4

Liberty PG Pin Syntax

In the traditional, non-multivoltage designs, all components of the designs are connected to
a single power supply at all times. So, the technology libraries used for synthesizing such
designs do not contain details of power supply and ground connections of cells because all
the cells are connected to the same type of VDD and VSS.

For the synthesis of multivoltage designs, it is necessary to specify the power supplies that
can be connected to specific power pins of a cell. The Liberty syntax supports the
specification of power rail connection to the power supply pins of the cells. This power and
ground (PG) pin information allows synthesis tool to optimize the design for power and to
analyze the design behavior where multiple supply voltages are being used. For specific
information about the PG pin syntax and the modeling of power supply pin connections, see
the Advanced Low Power Modeling chapter in the Library Compiler User Guide.

For an older library that does not contain PG pins, you can convert the library into PG pin
library format in Design Compiler. For more details, see Converting Libraries to PG Pin
Library Format.

Level-Shifter Cells

In a multivoltage design, a level shifter is required where a signal crosses from one power
domain to another. The level shifter operates as a buffer with one supply voltage at the input
and a different supply voltage at the output. Thus, a level shifter converts a logic signal from
one voltage level to another, with a goal of having smallest possible delay from input to
output.

Level-shifter cells are of three types:
« Level shifters that convert from high voltage to low voltage (H2L)
« Level shifters that convert from low voltage to high voltage (L2H)

» Level shifter that can do both, high to low and low to high conversion

PG Pin Configuration Support

In addition to the different types of voltage conversions, the Power Compiler tool supports
level-shifter cells with different PG pin configurations as specified by the Library Compiler
models:

e Single-rail level shifter

e Dual-rail level shifter which has two PG pins. One pin is designated as the main rail and
connected to the primary power supply while the other pin is connected to a secondary
rail.

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-3

Power Compiler™ User Guide Version L-2016.03-SP4

* Level shifter with a feedthrough standard cell main rail (SCMR) PG pin enables shifting
of always-on signals between shutdown power domains. The feedthrough SCMR PG
pin is connected to the domain’s primary supply, which is not part of either the power
domains involved in the level shifting.

« Level shifter inside a macro cell, which is connected directly to the macro cell’s input
pins. This model eliminates the need to insert external level shifters.

« Enable level shifter, which performs both level shifting and isolation functions. There are
two types of enable level shifters. In all the following cases, the enable pin's PG pin is
connected to the isolation supply.

o A cell that is modeled as a level shifter followed by an isolation cell. For this cell, the
input data pin is powered by one supply while the enable and output pins are powered
by another supply.

o Acell that is modeled as an isolation cell followed by a level shifter cell. This cell has
four terminal pins, and it can be modeled as follows:

m input, enable, and output pins are each powered by a different supply

m input and enable pins are powered by one supply, and the output pin is powered
by another supply

For more information modeling level shifters, see the Library Compiler User Guide.

Isolation Cells

Isolation cells are required when a logic signal crosses from a power domain that can be
powered down to a domain that is not powered down. The cell operates as a buffer when the
input and output sides of the cell are both powered up, but provides a constant output signal
when the input side is powered down.

A cell that can perform both level-shifting and isolation functions is called an enable
level-shifter cell. This type of cell is used where a signal crosses from one power domain to
another, where the two voltage levels are different and the first domain can be powered
down.

For more information about creating and using isolation cells and enable level-shifter cells,
see the Library Compiler User Guide.

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-4

Power Compiler™ User Guide Version L-2016.03-SP4

Using Standard Cells as Isolation Cells

When your target library does not contain a complete set of isolation cells, you can use the
basic 2-input AND, OR, NAND, and NOR gates as isolation cells. This flexibility allows you
to use these basic cells for their usual logic as well as for isolation logic. Only the following
types of basic gates can be used as isolation cells:

e 2-input AND, OR, NAND, and NOR gates
e 2-input AND, OR, NAND, and NOR gates with one of the inputs inverted

To enable this feature, you must set the mv_use_std_cell_for_isolation variable to
true. You must then set the following attributes using the set_attribute command:

e Setthe library cell-level attribute ok_for_isolation to true on the library cell.

This attribute denotes that the library cell can be used as a standard logic cell as well as
an isolation cell. The following example shows how to set the ok_for_isolation
attribute on the library cell A:

set_attribute [get lib_cells lib_name/A] ok for_isolation true

e Setthe isolation_cell_enable_pin attribute to true on the library cell pin. This
attribute specifies the pin to be used as the control pin of the isolation cell.

The following example script shows how to set the isolation_cell_enable_pin
attribute to true on the in pin of the library cell A:

set_attribute [get _lib _pins lib_name/A/in] \
isolation_cell_enable_pin true

Single-Rail and Dual-Rail Isolation Cells

When selecting an isolation cell for mapping, the tool automatically selects single-rail or
dual-rail cells based on the isolation cell’s rail information and location.

Typically, you use a single-rail isolation cell if the cell is inserted in a domain where the
primary rail remains on during shutdown mode. Use a dual-rail isolation cell when the
isolation cell needs to be inserted in the shutdown domain and requires a secondary rail
connection, so the cell continues to be powered during shutdown mode by a backup supply.

You can create exceptions to this rule by using the map_isolation_cell command to
restrict the availability of cells. The tool can insert a conflicting cell if the proper cell is not
available. For example, if only single-rail cells are available, the tool inserts them even in a
shutdown region. However, the tool does issue a warning message.

The tool checks and reports warnings for rail violations, for example, a single-rail isolation
cell used in a shutdown domain or a dual-rail isolation cell used in a domain that is powered
on more than the shutdown domain.

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-5

Power Compiler™ User Guide Version L-2016.03-SP4

NOR-Style Isolation Cells

The Power Compiler tool automatically selects and inserts NOR-style (or clamp-to-zero)
isolation cells in the shutdown domain. This isolation cell is a single-rail cell that clamps its
output to ground (zero) when the domain’s primary supply is turned off. The tool can also
optimize dual-rail isolation cells to a single NOR-style isolation cells to reduce the power and
area used.

To specify a NOR-style isolation cell, specify the isolation strategy with the set_isolation
command and the -isolation_supply_set option. The -clamp_value option must be set
to zero. For example,

dc_shell> set_isolation 1SO1 -domain PD_BLK -isolation_supply set {} \
-clamp_value 0 -applies_to outputs

Note:
Since the empty isolation supply set {} indicates that the isolation cell has no power
supply when operating in isolation mode, the tool uses a clamp-to-zero isolation cell (or
a NOR-type isolation cell).

The tool optimizes the design using NOR-type isolation cells when it can. For example,

dc_shell> set_isolation IS0l -domain PD _BLK \
—-isolation_supply _set {TOP_AO_SS} -clamp_value 0 \
-applies_to outputs

The tool optimizes the implemented isolation cell to use the domain’s primary supply,
PD_BLK.primary, by using a NOR-type isolation cell.

For more details on modeling and using NOR-style isolation cells, see SolvNet article
2370685, “Single-Rail Clamp-to-0 Nor-Type Isolation Cells.”

Requirements of Level-Shifter and Isolation Cells
The following are the requirements of level-shifter and isolation cells:
« Two power supplies.

« Buffer-type and enable-type level-shifter library cells must have the is_level_shifter
library attribute set to true.

* Enable-type level shifters must also have the level_shifter_enable_pin library
attribute set on the enable pin.

« Isolation library cells must have the is_isolation_cell library attribute set to true.

« Isolation cells must have the isolation_cell_enable_pin library attribute set on the
enable pin.

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-6

https://solvnet.synopsys.com/retrieve/2370685.html
https://solvnet.synopsys.com/retrieve/2370685.html

Power Compiler™ User Guide Version L-2016.03-SP4

« Level shifters and isolation cells are selected by the logic synthesis tool from the target
libraries. Therefore, at least one of the libraries must contain these required cells.

« Level-shifter and isolation cells can only be inserted on unidirectional ports.

Retention Register Cells

In a design with power switching, one of the ways to save register states before power-down
and restore them upon power-up is to use retention registers. These registers can maintain
their state during power-down by means of a low-leakage register network and an always-on
power supply. Retention cells occupy more area than regular flip-flops. These cells continue
to consume power when the power domain is powered down.

Multithreshold-CMOS Retention Registers

Retention cells are sequential cells that can hold their internal state when the primary power
supply is shut down and that can restore the state when the power is brought up. So the
retention registers are used to save leakage power in power-down applications. During
normal operation, there is no loss in performance and during power-down mode, the register
state is saved. These features are possible with the addition of a state-saving latch, which
holds the data from the active register. Figure 10-1 shows the basic elements of the
retention register.

Figure 10-1 Retention Register Components
‘ VDD

Regular Flip-Flop

A VDDgleep

State-Saving

D | |orLatch (low voltage) Latch (high voltage) Q

CLK SLEEP WAKE

The retention register consists of two separate elements:

¢ Regular Flip-Flop or Latch

The regular flip-flop or latch consists of low-threshold voltage MOS transistors for high
performance

» State-Saving latch

The state-saving latch consists of a balloon circuit modeled with high-threshold voltage
MOS transistors. It is has a different power supply: VDDSLEEP

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-7

Power Compiler™ User Guide Version L-2016.03-SP4

The behavior of these elements depends on the circuit mode. During active mode, the
regular register operates at speed and the retention latch does not add to the load at the
output. During sleep mode, the Q data is transferred to the state-saving latch, and the power
supply to the flip-flop is shut off, thus eliminating the high-leakage standby power. When the
circuit is activated with the wake-up signal, the data in the retention latch is transferred to the
regular register for continuous operation.

Along with the separate power supplies, additional signals such as SLEEP and WAKE are
required to enable the data transfer from the regular register to the state-saving latch and
back again, based on the mode of operation.

Based on the application, different retention register types are available to address the
clocking of the data from the register to the latch and back again. Library Compiler supports
modeling of retention registers with two control pins as well as only one control pin.

Figure 10-2 shows a retention register that has two control signals, save and restore, to
save and restore the data. In this figure, triggering the Save pin puts the register in the active
mode meaning the register works as a regular D flip-flop. Triggering the Restore pin puts it
in sleep mode meaning the register works as a state-saving latch.

Figure 10-2 Two-Pin Retention Register

VDDG VSSG
——RESTORE Balloon
SAVE Logic
D Q
D

Flip-Flop

——CLOCK: >
vDD VSS

The Library Compiler tool also supports single-pin retention registers. For single-pin
retention registers, the control pin, called a save_restore pin, saves and restores the state
of the cell depending on the voltage state of the pin. Single-pin retention registers behave
like the two-pin control retention register in Figure 10-2. The only difference is that the
control pin is a single pin instead of two pins. For a single-pin retention register to work like
a regular latch (D flip-flop, in this case), the save_restore pin needs to be put into "save"
mode. When the retention register is put into "restore” mode, it works like a retention cell.
That is, the D-input of the register is not passed to the balloon logic. Thus, the balloon logic

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-8

Power Compiler™ User Guide Version L-2016.03-SP4

of the retention register has the last known value saved in it. This value is fed to the Q-output
when restore mode is enabled.

An example of a retention library cell might be defined as follows:
RETENTION_PIN: (save_restore, 1)
The disable value is 1, which means the retention cell is working in normal save mode when

the save_restore pin is driven to 1 (high) and working in restore mode when the
save_restore pin is driven to O (low).

For a UPF file specification, you need to define the retention register control in the UPF file
as follows to make this work correctly:

set_retention_control PD1_RFF -domain PD1 -save_signal {SRPG1 high} \
-restore_signal {SRPG1 low}

Power-Switch Cells

In a design with power switching, the power-switch cells provide the supply power for cells
that can be powered down. The library description of a power-switch cell specifies the input
signal that controls power switching, the pin or pins connected to the power rail, and the pin
or pins that provide the virtual or switchable power.

There are two types of power-switch cells, the header type and the footer type. A header
type power switch connects the power rail to the power supply pins of the cells in the
power-down domain. A footer type power switch connects the ground rail to the ground
supply pins of the cells in the power-down domain.

For more information about creating power-switch cells, see the Library Compiler User
Guide.

Always-On Logic Cells

Multivoltage designs can contain some power domains that can be shut down during the
operation of the design. These are also called power-down domains. In some of the
power-down domains, logic cells need to remain powered on even when the power domain
is shut down. Such cells are called always-on cells. The control signals of the always-on
cells should also be powered on when the power domain is shut down. These control signal
paths are called always-on paths.

The always-on cells can be of two types:

» Single Power Standard Cell

Buffers and inverters from the standard cell libraries can be used as always-on cells. For
Power Compiler to use the standard cells as always-on cells, you must

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 10-9

Power Compiler™ User Guide Version L-2016.03-SP4

o Define the power domain as a shutdown domain.

For more details on always-on logic, see Shut-Down Blocks.
o Setthe always_on_strategy attribute to cell_type and single_power.

e Dual Power Special Cell

Special cells in the target library, such as buffers and inverters with dual power, can be
used for always-on logic. Power Compiler automatically infers the backup power supply
for these cells based on the supply load on these cells. For more details, see Always-On
Logic.

For more information about always-on logic, see Shut-Down Blocks.

Power Domains

Multivoltage designs contain design partitions which have specific power behavior
compared to the rest of the design. A power domain is a basic concept in the Synopsys
low-power infrastructure, and it drives many important low-power features across the flow.

By definition, a power domain is a logical grouping of one or more logic hierarchies in a
design that share the same power characteristics, including:

« Primary voltage states or voltage range (that is, the same operating voltage)

* Process, voltage, and temperature (PVT) operating condition values (all cells of the
power domain except level shifters)

« Power net hookup requirements
» Power down control and acknowledge signals, if any
* Power switching style

e Same set or subset of nonlinear delay model (NLDM) target libraries

Thus, a power domain describes a design partition, bounded within logic hierarchies, that
has a specific power behavior with respect to the rest of the design.

Each power domain has a supply network consisting of supply nets and supply ports and
might contain power switches. The supply network is used to specify the power and ground
net connections for a power domain. A supply net is a conductor that carries a supply
voltage or ground. A supply port is a power supply connection point between the inside and
outside of the power domain. Supply ports serve as the connection points between supply
nets. A supply net can carry a voltage supply from one supply port to another.

When used together, the power domain and supply network objects allow you to specify the
power management intentions of the design.

Chapter 10: Multivoltage Design Concepts
Power Domains 10-10

Power Compiler™ User Guide Version L-2016.03-SP4

Every power domain must have one primary power supply and one primary ground. In
addition to the primary power and ground nets, a power domain can have any number of
additional power supply and ground nets.

A power domain has the following characteristics:

* Name

* Level of hierarchy or scope where the power domain is defined or created

* The set of design elements that comprise the power domain

« Associated set of supply nets that are allowed to be used within the power domain
* Primary power supply and ground nets

« Synthesis strategies for isolation, level-shifters, always-on cells, and retention registers

Note:
A power domain is strictly a synthesis construct, not a netlist object. For more information
about the concept of Power Domain, see the Synopsys Multivoltage Flow User Guide.

Shut-Down Blocks

Multivoltage designs typically have some power domains that are shut down and powered
up during the operation of the chip while other power domains are always powered up. The
always-on paths starting from an always-on block must connect to the specific pins of
always-on cells in the power-down block. These cells can be special, dual power cells
(isolation cells, enable-type level shifters, retention registers, special RAMs, and so on) or
standard cells that when placed are confined to special always-on site rows within the
power-down block.

Specific commands are supported by the tool can be used to specify the always-on
methodology to be applied to a particular power-down block. If special cells are used, they
need to be marked appropriately so that the tool can determine the always-on paths and
correctly optimize these paths.

Only buffers and inverters can be used as dual-power, always-on cells. They must have two
rails connections: a primary rail that is connected to a shut-down power supply, and a
secondary rail that is connected to an always-on power supply.

Marking Pass-Gate Library Pins

In the currentimplementation, the tool has the ability to stop always-on cells from connecting
to cells with pass gate inputs. An always-on buffer should not drive a gate that has pass
transistors at the inputs (pass-gate). Pass-gate input cells should be driven by a standard
cell in a shut-down power domain. Therefore, if your library contains any of these cells, you
must mark them as pass-gates in each session.

Chapter 10: Multivoltage Design Concepts
Power Domains 10-11

Power Compiler™ User Guide Version L-2016.03-SP4

For example, to mark the pin A of the mux cell MUX1, run the following command as part of
a Design Compiler script:

set_attribute [get _lib_pins lib_name/MUX1/A] pass_gate true

Voltage Areas

Corresponding to the power domains of logic synthesis, you define voltage areas in physical
synthesis as placement areas for the cells of the power domains. Except for level shifter
cells, all cells in a voltage area operate at the same voltage.

There must be an exact one-to-one relationship between logical power domains and
physical voltage areas. The Design Compiler and IC Compiler tools can align the logic
hierarchies of the power domains with their voltage areas with appropriate specifications.
The power domain name and the voltage area name should be identical.

If you do not make these specifications, you are responsible for ensuring that the logic
hierarchies are correctly aligned, as well as being correctly associated with the appropriate
operating conditions.

A voltage area is the physical implementation of a power domain. A voltage area is
associated with a power domain in a unique, tightly bound, one-to-one relationship. A
voltage area is the area in which the cells of specific logic hierarchies are to be placed. A
single voltage area must correspond to another single power domain, and vice versa. The
power domains of a design are defined first in the logical synthesis phase and then the
voltage areas are created in the physical implementation phase, in Design Compiler
topographical mode or in IC Compiler. The information that pertains to logic hierarchies,
which belongs to a voltage area boundary is derived from a corresponding power domain.
Also, all the cells that belong to a given voltage area have the power behavior described by
the power domain characteristics.

For more information, see the command man page.

Chapter 10: Multivoltage Design Concepts
Voltage Areas 10-12

11

UPF Multivoltage Design Implementation

This chapter describes multivoltage design concepts and the use of the IEEE 1801 also

known as Unified Power Format (UPF), to synthesize your multivoltage designs in Power
Compiler. This chapter describes specifying your power intent in the UPF file, reading the
UPF file in Power Compiler, and using commands supported in UPF mode in the following
sections:

Multivoltage Design Flow Using UPF

Power Intent Concepts

Defining Power Intent in UPF
Creating Power Domains
Creating Supply Ports

Creating Supply Nets

Connecting Supply Nets
Specifying Supply Sets

Refining Supply Sets

Always-On Logic

Specifying Level-Shifter Strategies

Specifying Isolation Strategies

11-1

Power Compiler™ User Guide Version L-2016.03-SP4

« Setting UPF Attributes on Ports and Hierarchical Cells

« Specifying Retention Strategies

e Creating Power Switches

* Power State Tables

» Support for Well Bias

¢ Inserting Power Management Cells

* Reviewing the UPF Specifications

« Examining and Debugging UPF Specifications

* Writing the Power Information

¢ Writing and Reading Verilog Netlists With Power and Ground Information
* Golden UPF Flow

¢ Reporting Commands for the UPF Flow

« UPF-Based Hierarchical Multivoltage Flow Methodology

Chapter 11: UPF Multivoltage Design Implementation
11-2

Power Compiler™ User Guide Version L-2016.03-SP4

Multivoltage Design Flow Using UPF

The Unified Power Format (UPF) is a standard set of Tcl-like commands used to specify the
low-power design intent for electronic systems. UPF provides the ability to specify the power
intent early in the design process. Also, UPF supports the entire design flow. For more
information about the low-power flow and the various Synopsys tools that support UPF, see
the Synopsys Multivoltage Flow User Guide.

To synthesize the multivoltage design, the recommended method is to use the top-down
approach. With your power intent defined in the UPF file, follow these steps to synthesize
your multivoltage design:

1. Read your RTL file.

2. Read the power definitions for your multivoltage design using the load_upf command.

In the UPF flow, the RTL file cannot have power definitions. Power Compiler issues an
error message if it encounters power definitions in the RTL file. All the power definitions
must be specified in the UPF file. The UPF file can be used for synthesis, simulation,
equivalence checking, and sign off.

By default, the load_upf command executes the commands in the associated UPF file
in the current level of hierarchy. If the identifiers do not adhere to the naming rules
specified in the UPF standard, the following error message is issued.

Error:Symbol symbol_name violates the UPF naming conventions (UPF-200.

The Design Compiler commands and variables, and the UPF commands and variables,
defined in the UPF file, share the same namespace. While executing the load_upf
command, the tool checks for namespace conflicts for the commands and variables
already defined, and those in the UPF file being read.

For more information, see Name Spacing Rules for UPF Objects and Attributes.

If you have modified the UPF file after reading it, you can use the remove_upf command
to remove the UPF constraints. However, you cannot use the remove_upf command
after synthesizing the design or if you read a synthesized design.

After updating or removing a UPF file, use the load_upf command to reload the file.

Note:
The Design Vision GUI supports the Visual UPF dialog box, which is accessible from
the Power menu. Using the Visual UPF dialog box, you can define the power
domains, their supply network, connections with other power domains, and
relationships with elements in the design hierarchy.

For more information see Defining the Power Intent in the GUI.

Chapter 11: UPF Multivoltage Design Implementation
Multivoltage Design Flow Using UPF 11-3

Power Compiler™ User Guide Version L-2016.03-SP4

3. Specify the set of target libraries to be used.

Your target library must comply with the power and ground pin Liberty library syntax. The
target library should also support special cells such as isolation cells and retention
registers.

For more details on the target library requirement for multivoltage implementation see
Library Setup for Power Optimization. For additional information about the PG pin Liberty
library syntax, see the Advanced Low-Power Modeling chapter in the Library Compiler
User Guide.

4. Use the set_operating_conditions command to set the operating condition on the
top level of the design hierarchy, and to derive the process and temperature conditions
for the design.

Use the set_voltage command to set the current operating voltage value for the power
and the ground supply nets.

5. Specify your power optimization requirements.

When you use any of the power optimization constraints in the Design Compiler
topographical technology, the tool also enables power prediction using the clock tree
estimation. For more details about power prediction, see Performing Power Correlation.

6. Compile your multivoltage design using the compile_ultra command.

Note:
When your synthesize your design for the first time using Design Compiler
topographical mode, use the compile_ultra -check_only command. The
-check_only option checks your design and the libraries for all the data that is
required by the compile_ultra command to successfully synthesize your design.
For more details, see the Design Compiler User Guide.

7. Use the check_mv_design command to check for multivoltage violations in your design.

The command checks your design for inconsistencies in your design and the target

libraries, and violations related to power management cells and their strategies. Use the
-verbose option to get the details of the violations. The -max_messages option controls
the number of violations being reported. For more details, see the command man page.

To identify the multivoltage inconsistencies, use the MV Advisor feature of the Design
Vision GUI. For more information, see Examining and Debugging UPF Specifications.

8. Write the synthesized design using the write -format command. When you write the
design in the ASCII format, use the change_names command before you write out the
design.

To generate the multivoltage reports, use the various reporting commands such as
report_power_domain. For more details on multivoltage reporting commands, see
Reporting Commands for the UPF Flow.

Chapter 11: UPF Multivoltage Design Implementation
Multivoltage Design Flow Using UPF 11-4

Power Compiler™ User Guide Version L-2016.03-SP4

9. Use the save_upf command to save the updated power constraints in another UPF file.

After completing the synthesis process, the UPF file written by Design Compiler is used
as input to the downstream tools, such as IC Compiler, PrimeTime or PrimeTime PX, and
Formality. This file is similar to the one read into Design Compiler but with the following
additions:

o Acomment on the first line of the UPF file generated by Design Compiler. An example
is as follows:

#Generated by Design Compiler(H-2013.03) on Wed Feb 20 14:26:58 2011

o Explicit power connections to special cells such as level-shifter cells and dual supply
cells.

o Any additional UPF commands that were specified at the command prompt in the
Design Compiler session.

If you have specified UPF commands at the Design Compiler command prompt
during synthesis, update the UPF file along with your RTL design with these
commands. Without this update to the UPF file, Formality does not verify the design
successfully.

An alternative method to maintain the UPF power intent of the design is called the golden
UPF flow. In this method, the original UPF file that you specify is used throughout the
synthesis, physical implementation, and verification steps along with supplemental UPF
files generated by the tools. For more information, see Golden UPF Flow.

Power Intent Concepts

The UPF language provides a way to specify the power requirements of a design, but
without specifying explicitly how those requirements are implemented. The language
specifies how to create a power supply network to each design element, the behavior of
supply nets with respect to each other, and how the logic functionality is extended to support
dynamic power switching to design elements. It does not contain any placement or routing
information. The UPF specification is separate from the RTL description of the design.

In the UPF language, a power domain is a group of elements in the design that share a
common set of power supply needs. By default, all logic elements in a power domain use the
same primary supply and primary ground. Other power supplies can be defined for a power
domain as well. A power domain is typically implemented as a contiguous voltage area in
the physical chip layout, although this is not a requirement of the language.

Each power domain has a scope and an extent. The scope is the level of logic hierarchy
designated as the root of the domain. The extent is the set of logic elements that belong to
the power domain and share the same power supply needs. The scope is the hierarchical
level at which the domain is defined and is an ancestor of the elements belonging to the

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts 11-5

Power Compiler™ User Guide Version L-2016.03-SP4

power domain, whereas the extent is the actual set of elements belonging to the power
domain.

Each scope in the design has supply nets and supply ports at the defined hierarchical level
of the scope. A supply net is a conductor that carries a supply voltage or ground throughout
a given power domain. A supply net that spans more than one power domain is said to be
“reused” in multiple domains. A supply port is a power supply connection point between two
adjacent levels of the design hierarchy, between the parent and child blocks of the hierarchy.
A supply net that crosses from one level of the design hierarchy to the next passes through

a supply port.

A supply set is an abstract collection of supply nets, consisting of two supply functions,
power and ground. A supply set is domain-independent, which means that the power and
ground in the supply set are available to be used by any power domain defined within the
scope where the supply set was created. However, each power domain can be restricted to
limit its usage of supply sets within that power domain.

You can use supply sets to define power intent at the RTL level, so you can synthesize a
design even before you know the names of the actual supply nets. A supply set is an
abstraction of the supply nets and supply ports needed to power a design. Before such a
design can physically implemented (placed and routed), its supply sets must be refined, or
associated with actual supply nets.

A supply set handle is an abstract supply set created for a power domain. By default, a
power domain has supply set handles for the domain’s primary supply set, a default isolation
supply set, and a default retention supply set. These supply set handles let you synthesize
a design even before you create any supply sets, supply nets, and supply ports for the
power domain. Before such a design can be physically implemented, its supply set handles
must be refined, or associated with actual supply sets; and those supply sets must be
refined so that they are associated with actual supply nets.

A power switch (or simply switch) is a device that turns on and turns off power for a supply
net. A switch has an input supply net, an output supply net that can be switched on or off,
and at least one input signal to control switching. The switch can optionally have multiple
input control signals and one or more output acknowledge signals. A power state table lists
the allowed combinations of voltage values and states of the power switches for all power
domains in the design.

A level shifter must be present where a logic signal leaves one power domain and enters
another at a substantially different supply voltage. The level shifter converts a signal from
the voltage swing of the first domain to that of the second domain.

An isolation cell must be present where a logic signal leaves a switchable power domain and
enters a different power domain. The level shifter generates a known logic value during
shutdown of the domain. If the voltage levels of the two domains are substantially different,
the interface cell must be able to perform both level shifting (when the domain is powered

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts 11-6

Power Compiler™ User Guide Version L-2016.03-SP4

up) and isolation (when the domain is powered down). A cell that can perform both functions
is called an enable level shifter.

In a power domain that has power switching, any registers that must retain data during
shutdown must be implemented as retention registers. A retention register has a separate,
always-on supply net, sometimes called the backup supply, which keeps the data stable in
the retention register while the primary supply of the domain is shut down.

Figure 11-1 Power Intent Specification Example

External Multivoltage Power Supply

VDD1 VDD2 VDD3 GND
N T T T
I PD_TOP Top level (chip I
| Always-on level) |

power
| domain
| Block1 Block2 Block3 :
| PD2 Always- PD3 Always- I
| PD1 Switched on power on power
(power-down) Enable level domain level shifter domain [
I domain shifter |
I
I save I
Retention I
I Power- t Register —— |
I domain restore |
I cot:tro:(ler Enable level I
| oC shifter I
I I
[|
L - e e e e —— J

The power network example shown in Figure 11-1 demonstrates some of the power intent
concepts. This chip is designed to operate with three power supplies that are always on
(although the UPF syntax also supports externally switchable power supplies), at three
different voltage levels. The top-level chip occupies the top-level power domain, PD_TOP.
The domain PD_TOP is defined to have four supply ports: VDD1, VDD2, VDD3, and GND.
The black squares along the border of the power domain represent the supply ports of that
domain. Note that this diagram shows the connections between power domains and is not
meant to represent the physical layout of the chip.

In addition to the top-level power domain, PD_TOP, there are three more power domains
defined, called PD1, PD2, and PD3, created at the levels of three hierarchical blocks,
Block1, Block2, and Block3, respectively. Each block has supply ports (shown as black

Chapter 11: UPF Multivoltage Design Implementation

Power Intent Concepts 11-7

Power Compiler™ User Guide Version L-2016.03-SP4

squares in the diagram) to allow supply nets to cross from the top level down into the block
level.

In this example, PD_TOP, PD2, and PD3 are always-on power domains that operate at
different supply voltages, VDD1, VDD2, and VDD3, respectively. PD1 is a power domain
that has two supplies: a switchable supply called VDD1g and an always-on supply from
VDD1. The always-on power supply maintains the domain’s retention registers while VDD1g
is powered down.

A power switch shuts off and turns on the power net VDD1g, either by connecting or
disconnecting VDD1 and VDD1g. A power-down controller logic block at the top level
generates the control signal for the switch. It also generates the save and restore signals for
the retention registers in domain PD1 and the control signals for the isolation cells between
domain PD1 and the always-on domains PD2 and PD3. These isolation cells generate
known signals during times that VDD1g is powered down.

Because domains PD1, PD2, and PD3 operate at different supply voltages, a level shifter
must be present where a signal leaves one of these domains and enters another. In the case
of the signals leaving PD1 and entering PD2 or PD3, the interface cells must be able to
perform both level shifting and isolation functions, because PD1 can be powered down.

For additional background information on UPF terminology and concepts, see the chapter
called “Power Intent Specification” in the Synopsys Multivoltage Flow User Guide.

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts 11-8

Power Compiler™ User Guide Version L-2016.03-SP4

UPF Script Example
Example 11-1 shows the UPF script that defines the various concepts supported by UPF.

Example 11-1 UPF Script to Define the Power Intent

CREATE POWER DOMAINS

create_power_domain TOP

create_power_domain PD_ALU -elements {l_ALU} -scope 1_ALU
create_power_domain PD_STACK TOP -elements {1_STACK TOP} \

-scope |I_STACK_TOP

create_power_domain PD_REG_FILE -elements {lI_REG FILE} -scope | _REG FILE

SUPPLY NETWORK - PD_ALU
create_supply_net VDD -domain I_ALU/PD_ALU
create_supply_net VSS -domain 1_ALU/PD_ALU

create_supply port VDD -domain 1_ALU/PD_ALU
create_supply port VSS -domain 1_ALU/PD ALU

connect_supply net 1_ALU/VDD -ports {1_ALU/VDD}
connect_supply _net 1_ALU/VSS -ports {lI_ALU/VSS}

set_domain_supply_net 1_ALU/PD_ALU -primary_power_net 1_ALU/VDD
-primary_ground_net 1_ALU/VSS

SUPPLY NETWORK - PD_STACK TOP
create_supply_net VDDT -domain 1_STACK_TOP/PD_STACK TOP
create_supply net VSS -domain 1_STACK TOP/PD_STACK TOP

create_supply_port VDDT -domain 1_STACK TOP/PD_STACK_TOP
create_supply _port VSS -domain 1_STACK_TOP/PD_STACK_TOP
connect_supply net 1_STACK_TOP/VDDT -ports {l_STACK TOP/VDDT}
connect_supply net 1_STACK TOP/VSS -ports {lI_STACK_TOP/VSS}

set_domain_supply_net 1_STACK TOP/PD_STACK TOP
-primary_power_net I_STACK_TOP/VDDT -primary_ground_net I_STACK_TOP/VSS

SUPPLY NETWORK - PD_REG_FILE
create_supply_net VDDT -domain 1 _REG _FILE/PD_REG_FILE
create_supply net VSS -domain 1 _REG_FILE/PD_REG FILE

create_supply_port VDDT -domain 1_REG_FILE/PD_REG_FILE
create_supply port VSS -domain 1_REG_FILE/PD REG FILE

connect_supply net 1 _REG FILE/VDDT -ports {lI_REG_FILE/VDDT}
connect_supply net I _REG FILE/VSS -ports {1l _REG_FILE/VSS}

set_domain_supply_net 1_REG_FILE/PD_REG_FILE
-primary_power_net 1_REG_FILE/VDDT -primary_ground_net I_REG FILE/VSS

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts 11-9

Power Compiler™ User Guide Version L-2016.03-SP4

SUPPLY NETWORK - TOP
create_supply_port VDD
create_supply_port VSS
create_supply_port VDDT

create_supply_net VDD -domain TOP
create_supply net VSS -domain TOP
create_supply net VDDT -domain TOP

set_domain_supply_net TOP -primary_power_net VDD -primary_ground_net VSS

connect_supply_net VDDT -ports {VDDT I_STACK_ TOP/VDDT 1_REG_FILE/VDDT}
connect_supply net VSS

-ports {VSS I_ALU/VSS 1_STACK_TOP/VSS 1_REG_FILE/VSS}
connect_supply_net VDD -ports {VDD I_ALU/VDD}

LEVEL-SHIFTER STRATEGY

set_level _shifter Is_alu -domain I_ALU/PD_ALU -applies_to inputs \
-rule both -location self

set_level _shifter Is_stack top -domain 1_STACK TOP/PD_STACK_ _TOP \
-applies_to inputs -rule both -location self

set_level_shifter Is_reg_file -domain 1_REG_FILE/PD_REG_FILE \
-applies_to inputs -rule both -location self

set_level_shifter Isl_alu -domain 1_ALU/PD_ALU -applies_to outputs \
-rule both -location self

set_level _shifter Isl _stack top -domain I_STACK TOP/PD_STACK TOP \
-applies_to outputs -rule both -location parent

set_level_shifter Isl _reg file -domain 1_REG_FILE/PD REG FILE \
-applies_to outputs -rule both -location parent

ISOLATION STRATEGY

set_isolation iso_stack top -domain 1_STACK TOP/PD_STACK TOP
-isolation_power_net VDD -isolation_ground net VSS -clamp_value 1 \
-applies_to outputs -diff_supply_only TRUE

set_isolation iso_reg_file -domain I_REG FILE/PD_REG_FILE \
-isolation_power_net VDD -isolation_ground_net VSS -clamp_value 1 \
-applies_to outputs -diff _supply only TRUE

POWER STATE TABLE

CREATE PORT STATES

add_port_state VDD -state {TOP 1.08}

add_port_state VDDT -state {BLOCK 0.864} -state {BLOCK_ off off}

OPERATING VOLTAGES

create pst risc_core_pst -supplies {vDD VDDT}
add_pst_state sO -pst risc_core_pst -state {TOP BLOCK}
add_pst_state sl -pst risc_core_pst -state {TOP BLOCK off}

set_port_attributes -elements {l_ALU} -applies_to outputs \
-attribute repeater_power_net 1_ALU/VDD \

-attribute repeater_ground _net I_ALU/VSS

set_port_attributes -elements {l1_STACK TOP} -applies_to inputs \
-attribute repeater_power_net VDD -attribute repeater_ground_net VSS

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts 11-10

Power Compiler™ User Guide Version L-2016.03-SP4

set_port_attributes -elements {1 _REG_FILE} -applies _to inputs \
-attribute repeater_power_net VDD -attribute repeater_ground_net VSS

Figure 11-2 shows the UPF Diagram in the Design Vision GUI, for the UPF specification in
Example 11-1.
Figure 11-2 UPF Diagram in the GUI for the Specified UPF
] fh = Tap iR s X
e Edit Miew Select Highlight List Hierarchy Design Attributes Schematic

H »l@ »|| * »[|& »|[~=c core |& & | 8

F

T Hierl E UPFDiagram.1 |
¥ K =L

| UPF Diagram Tab |

Defining Power Intent in UPF

Power Compiler supports the UPF commands to define, review, and examine the power
intent specification. Alternatively, you can use the Design Vision GUI to define and examine
the power intent specification.

This section discusses in detail, how to use the UPF commands and the GUI to specify the
power intent.

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent in UPF 11-11

Power Compiler™ User Guide Version L-2016.03-SP4

Name Spacing Rules for UPF Objects and Attributes

The Power Compiler tool verifies the object names created by the UPF commands, so that
the names do not conflict with the names of existing objects in the same logic hierarchy. The
tool checks the names of ports, power domains, power state tables, power switches, supply
sets and nets, or signal nets. Table 11-1 shows the name spacing rules applied by the tool
for the various UPF commands:

Table 11-1 Name Spacing Rules Applied for Various UPF Commands

UPF command names

Name spacing rule

create_power_domain,
create_power_switch,
create_pst,
create_supply_set

create_logic_net,

create_supply_net

create_logic_port,
create_supply_port

set_isolation,
set_level_shifter,
set_retention

add_port_state

add_power_state

add_pst_state

Within a logic hierarchy, a power domain cannot have the same name as
an existing cell, instance, logic port, supply port, logic net, supply net,
power switch, power domain, supply set, or power state table.

Within a logic hierarchy, a net cannot have the same name as an existing
cell, instance, logic net, supply net, power switch, power domain, supply
set, or power state table.

Within a logic hierarchy, a port cannot have the same name as an existing
cell, instance, logic port, supply port, power switch, power domain, supply
set, or power state table.

The isolation, level-shifter, and retention strategies in a power domain
must have unique names.

One or more connected ports cannot have the same port-state names.
However, two ports of a mutually connected network can have the same
port state (the name and value are same).

A supply set cannot have power states with the same name. However,
two ports of a mutually connected network can have the same power
state (both name and value are same).

The power state table cannot have states with the same name as the
already existing states.

Defining the Power Intent in the GUI

The Power menu in the GUI allows you to specify, modify, and review your power

architecture. It also lets you view the UPF diagram to examine the UPF specification defined
in your design.

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent in UPF 11-12

Power Compiler™ User Guide Version L-2016.03-SP4

The Visual UPF dialog box in the GUI allows you to define, edit, and review your power
intent. You can also generate a UPF script for your power intent.

To open the Visual UPF dialog box,

* Choose Power > Visual UPF

When you open the Visual UPF dialog box, it appears as shown in Figure 11-3.

Figure 11-3 Logic Hierarchy View of the Visual UPF

WVigwm Saclion Powasr Diomain
(Lol His e by e P i D i v Becion Pmparies Secion

m

e Power Domains] Supply Sets |
= :D_ﬁ.j:. ChipTap c“.n;_l Delet J
T GPRs TOP ﬂ
- [ENEEE || et
GPRS
-
Fower Domain Properties
Create: = | Delete I
teiealtnonek b S P
B 3 l*IP r'cnm;pulurmm
Resst Save swu...l oK Cantal | Help |
Wiaw Tabs Povsssr Slate Tabls Section

If you have not yet defined the power intent for your design, use the Power Domains and
Power Domain Properties sections to create the power domains and various other
components, such as power-switches, level-shifters and so on. For the first power domain
that you create, the tool assigns the name TOP by default.

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent in UPF 11-13

Power Compiler™ User Guide Version L-2016.03-SP4

If you have already defined the power intent for your design, the Visual UPF displays the
details of your power specification. Using the Power Domains and Power Domain Properties
sections, you can edit the power definitions: add new components, redefine the association
of the hierarchical cells with the power domains, delete a power domain, and so on.

For more details about how to review the UPF intent in the GUI, see Reviewing the Power
Intent Using the Design Vision GUI.

UPF Diagram View

The UPF diagram view displays the UPF power intent as it is defined in the design database.
When you change the database, for example, by entering a UPF command, the tool reflects
the updates in the UPF diagram immediately. You can view the UPF diagram at any point in
the design flow.

To open the UPF diagram view

e Choose Power > UPF Diagram > New UPF Diagram View.

When the UPF diagram view appears, Design Vision displays a tab at the bottom of the
workspace area, as shown in Figure 11-3. You can use this tab to return to the UPF diagram
view after working with other views.

The UPF diagram view represents each power object with a unique symbol (for more
information about these symbols, see the “UPF Diagram Symbols and Standards” topic in
Design Vision Help). It uses default colors to differentiate the various types of power objects.
You can customize the diagram by using the View Settings panel, to change object colors or
apply a color theme.

For more information, see the “Changing UPF Diagram Display Properties” topic in Design
Vision Help.

Creating Power Domains
To create a power domain, use the create_power_domain command.

The -elements option specifies the list of hierarchical, macro and pad cells that are added
to the extent of the power domain. If the required scope is at a lower level than the current
scope, use the -scope option to specify the name of the instance where the power domain
is to be defined.

The UPF standard requires a simple name for the domain_name argument. By default,
Power Compiler does not check for this requirement. To check that this requirement is met,
set the mv_input_enforce_simple_names variable to true.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains 11-14

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-4 shows the usage of the create_power_domain command.

Figure 11-4 Defining a Power Domain and Scope
chipA

VAN

Block1 Block2
PD1 PD2 PD3
r - r -
LM U4 r———nm
U7
Power domain PD1 —»
| I
Scope: Block1 uz2 us | us [
Extent: U1, U2, U3 | |
| I:’ I
u3 us | U9
| [
L
L Jd L o L o o o

To create the PD1 and PD2 power domains, use the following commands:

create_power_domain -elements {Ul U2 U3} -scope Blockl PD1
create_power_domain -elements {U4 U5 U6} -scope Blockl PD2

Alternatively, you can use the set_scope command to first set to the desired scope and
then to create the power domain, as mentioned in the following example:

set_scope Blockl
create_power_domain -elements {Ul1 U2 U3} PD1
create_power_domain -elements {U4 U5 U6} PD2

You can use the -include_scope option to include all the elements in the specified scope
to share the supply of the power domain.
create_power_domain -elements {U7 U8} -include_scope Block2 PD3

In this case, the element U9 shares the supply of power domain PD3, though U9 is not
explicitly specified as part of the power domain PD3.

To add new elements to any hierarchy, except those that are already specified as an
element of another power domain, use the -update option. You cannot re-specify an
existing element. You can only add new elements.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains 11-15

Power Compiler™ User Guide Version L-2016.03-SP4

Representation of Power Domain in the UPF Diagram View

The UPF diagram view displays all power domains that are defined in the current design and
its subdesigns. The power domains are organized hierarchically, such that each power
domain is located inside its parent power domain.

A power domain is represented by a green colored rectangular bounding box. The name of
the power domain is displayed inside the bounding box. Figure 11-5 shows the INST power
domain and all the UPF objects contained in the power domain.

The size of the power domain symbol varies according to the number and size of the objects
that reside within the power domain. The symbol is big enough to display all the UPF objects
that are contained in it.

Figure 11-5 An Example of a Power Domain Representation in the UPF Diagram

et oo |n pamak

Scope

In the UPF diagram view, scope is represented by a blue colored rectangular bounding box.
The scope appears within the hierarchy of the power domains. The bounding box of the
scope surrounds the top-most child domain in the scope. Figure 11-6 shows an example of
how power domains and scopes appear within the UPF diagram.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains 11-16

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-6 Representation of Power Domains and Scopes in the UPF Diagram

Expanding and Collapsing Power Domains in the GUI

In the UPF diagram view, you can collapse or expand a selected power domain or scope.
This is useful when you have large designs with several power domains. When you open the
UPF diagram view, by default the power domains are expanded, as shown in Figure 11-2.
When you collapse a power domain, all its internal details disappear from the view, and only
its name is displayed, as shown in Figure 11-7. When you expand a power domain, all its
internal details are displayed in the view.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains 11-17

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-7 UPF Diagram With Collapsed Power Domains

DE.I.I Wrigicn - I:-pl,mi?t!,‘_hrpl'u:} {UPFDM ram.1]
E‘l.rJ" EdR Yiew Gelect [Huhlighit Lpf Herachy Deagn -

ZH= /G- "~ B~

Collapsed
Poiwer Diomain

-
3
| B Harl | Ok AssyssMVDsmend Ty UFPDisgramt |

I LETE i | wepedn WrtAdrX] 1) i]

You can use either of the following methods to expand or collapse a power domain.

After selecting one or more power domains that you want to expand,
* Choose Power > UPF Diagram > Expand Selected Domains.

« Right-click the diagram and choose Expand Selected Domains.

After selecting one or more power domains that you want to collapse,
e Choose Power > UPF Diagram > Collapse Selected Domains.

* Right-click the diagram and choose Collapse Selected Domains.

L Expancked Power Domain

Viewing Hierarchical Cell and Power Domain Boundaries

By default, the schematic view displays timing paths and design logic in a flat, single-sheet
schematic that can span multiple hierarchy levels. Hierarchy crossings are represented by

diamond shapes and indicate where the nets traverse a level of hierarchy.

You can improve your view of the hierarchical structures in the design by arranging the
schematic to display objects hierarchically. Rectangular boundaries appear around objects
that share the same hierarchical parent bock. Hierarchical cell boundaries appear orange

and power domain boundaries appear yellow as shown in Figure 11-8.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

11-18

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-8 Hierarchical and Power Domain Boundaries

To display or hide hierarchical boundaries in the active schematic view,

* Choose Schematic > Show Logic/Power Hierarchy.
A check mark beside the command on the Schematic menu indicates that the
boundaries are visible.

You can color the objects in a schematic based on the hierarchical power relationships of the
design.

To display or hide boundary coloring based on their power domains,

e Choose Schematic > Color by Power Hierarchy.

A check mark beside the command on the Schematic menu indicates that the boundary
coloring is visible. The tool displays the objects for each power domain with a unique
color.

In Figure 11-9, PD_TOP power domain and its elements appear green. PDA power
domain and its elements appear orange and PDB power domain and its elements appear
blue.

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains 11-19

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-9 Hierarchical and Power Domain Boundaries Colored by Power Hierarchy

For more information, see the “Viewing Cell and Power Domain Hierarchies” topic in Design
Vision Help.

Creating Supply Ports
To create the power supply and ground ports, use the create_supply_port command.

The name of the supply port should be a simple (non-hierarchical) name and unique at the
level of hierarchy it is defined. Unless the -domain option is specified, the port is created in
the current scope or level of hierarchy and all power domains in the current scope can use
the created port. By default, the direction of the port is in (or input port).

The UPF standard requires a simple name for the port_name argument of the command. By
default, Power Compiler does not check for this requirement. To check that this requirement
is met, set the mv_input_enforce_simple_names variable to true

The following example shows how to create the ports shown in Figure 11-1.

To create the supply ports VDD1, VDD2 and VDD3 and GND at the top level of design
hierarchy or power domain PD_TOP use the command as follows:

create_supply_port VDD1
create_supply_port VDD2
create_supply_port VDD3
create_supply_port GND

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Ports 11-20

Power Compiler™ User Guide Version L-2016.03-SP4

To create the supply ports VDD1, VDD1g and GND in the power domain PD1, use the
create_supply_port command as follows:

create_supply_port VDD1 -domain PD1
create_supply_port VDD1lg -domain PD1
create_supply port GND -domain PD1

To create the supply ports VDD2 and GND in the power domain PD2 and VDD3 and GND
in power domain PD3, use the create_supply_port command as follows:

create_supply_port VDD2 -domain PD2
create_supply port GND -domain PD2
create_supply_port VDD3 -domain PD3
create_supply _port GND -domain PD3

Note:
Connectivity is not defined when the supply port is created. To define connectivity use
the connect_supply_net command

Adding Port State Information to Supply Ports

The add_port_state command adds state information to a supply port. This command
specifies the name of the supply port and the possible states of the port. The first state
specified is the default state of the supply port. The port name can be a hierarchical name.
Each state is specified as a state name and the voltage level for that state. The voltage level
can be specified as a single nominal value, set of three values (minimum, nominal, and
maximum), or 0.0, or the keyword off to indicate the off state. The state names are also used
to define all possible operating states in the Power State Table.

Note that supply states specified at different supply ports are shared within a group of supply
nets and supply ports directly connected together. However, this sharing does not happen
across a power switch.

Example 11-2 shows the definition of states for the power nets:

Example 11-2 Defining the States of the Power Nets

dc_shell> add_port_state header_sw/VDD -state {HV 0.99} -state {LV 0.792}
-state {OFF off}

Example 11-3 shows the definition of states for the ground nets:

Example 11-3 Defining the States of the Ground Nets
dc_shell> add_port_state footer_sw/VSS -state {LV 0.0} -state {OFF off}

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Ports 11-21

Power Compiler™ User Guide Version L-2016.03-SP4

Example 11-4 has the HV1_1 and HV2_1 states with the same voltage value, 1.2, on the
VDD1 supply port. The duplicate port states are useful in hierarchical flow, where the top
level and block-level ports have different state names but the same voltage value.

Example 11-4 Defining Duplicate Port States
dc_shell> add_port_state VDD1 -state {HV1 1 1.2} -state {Hv2_1 1.2}

Representation of Supply Ports in the UPF Diagram View

In the UPF diagram view, a supply port is represented by a bounding box. A letter in the
bounding box indicates the direction of the port, as shown in Figure 11-10.

Figure 11-10 Representation of Power Supply Port in the UPF Diagram

L] (o]

Input Supply Port Qutput Supply Port

The UPF diagram displays all the supply ports in the current design and its subdesigns. It
also shows the connectivity of the supply ports with the supply nets, their locations, and the
power domains where they belong.

Supply ports are located on the border of the power domain where they belong. They are
located at the top or at the bottom boundary of the power domain, depending on the supply
net connected to the supply ports. In addition, input ports are located on the left side, and
the output ports are located on the right side.

Creating Supply Nets

A supply net connects supply ports or supply pins. To create a supply net, use the
create_supply_net command.

The supply net is created in the same scope or logic hierarchy as the specified power
domain. When you use the -reuse option, the specified supply net is not created; instead
an existing supply net with the specified name is reused.

create_supply _net GND_NET -domain PD1
create_supply _net GND_NET -domain PD2 -reuse

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets 11-22

Power Compiler™ User Guide Version L-2016.03-SP4

When a supply net is created, it is not considered a primary power supply or ground net. To
make a specific power supply or ground net of a power domain, the primary supply or
ground net, use the set_domain_supply_net command.

The UPF standard requires a simple name for the net_name argument. By default, Power
Compiler does not check for this requirement. To check that this requirement is met, set the
mv_input_enforce_simple_names variable to true.

All supply nets including the ground, must be assigned an operating voltage value. If any
supply net does not have an assigned operating voltage, Power Compiler issues UPF-057
error message during the execution of the compi le_ultra command. Before compiling the
design, use the check_mv_design -power_nets command to ensure that operating
voltages are defined for all the supply nets. For more details, see Examining and Debugging
UPF Specifications.

The operating voltage that you have already set cannot be removed. However, you can
override the existing settings by using the set_voltage command again.

Specifying Primary Supply Nets for a Power Domain

To define the primary power supply net and primary ground net for a power domain, use the
set_domain_supply_net command.

Every power domain must have one primary power and one ground connection. When a
supply net is created it is not a primary supply net. You must use the
set_domain_supply_net command to designate the specific supply net as the primary
supply net for the power domain. All cells in a power domain are assumed to be connected
to the primary power and ground net of the power domain. If the power or ground pins of a
cell in a power domain, is not explicitly connected to any supply net, the power or ground pin
of the cell is assumed to be connected to the primary power or ground net of the power
domain to which the cell belongs.

The following example shows the commands to specify VDD and GND nets as the primary
power and ground net, respectively, of the PD_TOP power domain.

dc_shell> set_domain_supply net -primary_power_net VDD \
-primary_ground_net GND PD_TOP

Note:
If you use supply sets to define the primary supply and ground, the supply nets that you
specify must belong to the same supply set. Otherwise Power Compiler issues an error
message. For more details see, Specifying Supply Sets.

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets 11-23

Power Compiler™ User Guide Version L-2016.03-SP4

Representing Supply Nets in the UPF Diagram View

In the UPF diagram view, a supply net is represented by a line or a line segment. Different
colors are used to differentiate the type of the net, as shown in Table 11-2.

Table 11-2 Colors Used to Represent Types of Net Segments

Color Net segment

Red Primary power net
Blue Primary ground net
Yellow All other net segments

As shown in Figure 11-11, the UPF diagram view displays all the supply nets in the current
design and the current design’s subdesigns, and their supply net connections.

Figure 11-11 Representation of Types of Power Supply Nets in the UPF Diagram

The location of the supply nets in the diagram is based on the location of the power domains
where they belong and also on the type of the supply net. Each power domain that a supply
net belongs to contains a line segment indicating the supply net.

Horizontal segments represent supply nets inside the power domain. Vertical segments
represent nets that are reused in multiple power domains and that are connected to another
object, such as a supply port or a power switch.

Power supplies extend down from the top of the power domain, and ground nets extend up
from the bottom of the power domain.

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets 11-24

Power Compiler™ User Guide Version L-2016.03-SP4

In Figure 11-11, the VDD_1 net is the primary supply net of PD1 power domain. However, it
is not the primary supply net of the power domain TOP. Similarly, VSS is the primary ground
net of power domain PD1.

Connecting Supply Nets

The connect_supply_net command connects the supply net to the specified supply ports
or pins. The connection can be within the same level of hierarchy or to ports or pins down
the hierarchy.

You can also use the connect_supply_net command to connect to the internal PG pins of
macro cells containing fine-grained switches. For more information about macro cells with
fine-grained switches, see Macro Cells with Fine-Grained Switches.

The UPF standard requires a simple name for the supply_net_name argument. By default,
Power Compiler does not check for this requirement. To check that this requirement is met,
set the mv_input_enforce_simple_names variable to true.

The following example shows the use of the connect_supply_net command to connect
supply nets to various supply ports at different levels of hierarchy or power domains.

connect_supply net GND_NET -ports GND
connect_supply net GND_NET -ports {B1/GND B2/GND B3/GND} GND

You can also use the function of a supply set with the connect_supply_net command, as
shown in the following example:

create_supply_set ss
connect_supply net ss.ground -ports {B1/GND}

Use the create_supply_net -resolve parallel command when

* A supply net connects to the internal PG pins of more than one macro cell with a
fine-grained switch.

« Asupply net is associated with a supply set group that has multiple drivers at the scope
of the supply net; the net should be created using the create_supply_net -resolve
parallel option. For more information about associating supply sets, see Assaociating
Supply Sets With Supply Set Handles.

Note:

The connect_supply_net command ignores connections to the pins of physical-only
cells.

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets 11-25

Power Compiler™ User Guide Version L-2016.03-SP4

Converting the PG Information in RTL to UPF

When your RTL design contains PG nets and pin connections to macro, I/O, and power
management cells, Power Compiler can convert these details into UPF constraints. Follow
these steps to convert the PG information in RTL into UPF constraints and use these
constraints during synthesis:

1. Setthe dc_allow_rtl_pg variable to true.

2. Read the RTL design.

3. Link the design.

4. Load the UPF file.

5. Run the convert_pg command.

6. Run the compile_ultra command to optimize the design.

When the RTL design has PG connection details and the power constraints are specified in
UPF, you must specify the convert_pg command before you run the following commands:

e compile ultra

e insert_mv_cells

e insert_dft

e dft_drc

* analyze_mv_design
e check _mv_design

e save upf

For more details, see the dc_allow_rtl_pg variable man page and convert_pg command
man page.

Specifying Supply Sets

A supply set is an abstract collection of supply nets consisting of two supply functions: power
and ground. A supply set is domain-independent, which means that the power and ground
in the supply set are available to be used by any power domain defined within the scope
where the supply set was created. However, each power domain can be restricted to limit its
usage of supply sets within that power domain.

You can use supply sets to define power intent at the RTL level, so you can synthesize a
design even before you know the names of the actual supply nets. A supply set is an

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets 11-26

Power Compiler™ User Guide Version L-2016.03-SP4

abstraction of the supply nets and supply ports needed to power a design. Before such a
design can physically implemented (placed and routed), its supply sets must be refined, or
associated with actual supply nets.

A supply set consists of the following two functions:
* Power

« Ground

You can access the functions of the supply set by using the name of the supply set and the
name of the function. To access the power function of the supply set SS, specify SS.power.
To access the ground function of the supply set SS, specify SS.ground.

Creating Supply Sets

To create a supply set, use the create_supply_set command. The supply set is created in
the current logic hierarchy or the scope.

The UPF standard requires a simple name for the supply_set_name argument. By default,
Power Compiler does not check for this requirement. To check that this requirement is met,
set the mv_input_enforce_simple_names variable to true.

The following example shows how to create a supply set and associate it with the primary
power supply of a power domain:

create_supply_set primary_supply_set

create_power_domain PD_TOP

set_domain_supply_net PD_TOP \
-primary_power_net primary_supply set.power \
-primary_ground_net primary_supply_set.ground

Note:
When you specify a supply set as the primary power and ground supply of the power
domain, both the primary and the ground supply must belong to the same supply set.

In the UPF Diagram view, a supply set does not appear visually in the diagram. Only the
supply nets of a supply set appear in the diagram. Supply nets of a supply set and
domain-independent supply nets are implicitly available anywhere from their scope
downward in the design.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets 11-27

Power Compiler™ User Guide Version L-2016.03-SP4

Creating Supply Set Handles

When you create a power domain, the following supply set handles are created by default:
* primary

e default_isolation

e default_retention

In addition to these predefined supply set handles, you can define supply set handles by
using the -supply option of the create_power_domain command. To associate multiple
supply sets with a power domain, use the -supply option multiple times.

Supply set handles are created at the scope of the power domain and are available for use
in the power domains that are at the same or lower scope than the power domains where
they are created. Use the following naming convention to refer to a supply set handle:
power_domain_name.supply_set handle. When a power domain is deleted, its supply set
handles are also deleted.

To disable the creation of supply set handles while creating the power domain, set the
upf_create_implicit_supply_sets variable to false before you load the UPF file.

Note:
After loading the UPF file, the upf_create_implicit_supply_sets variable becomes
a read-only variable and you can no longer change its value.

You can also specify the extra_supplies_# keyword with the —supply option of the
create_power_domain command to restrict the availability of the supplies in the power
domain. For more information about using the extra_supplies_# keyword, see Restricting
Supply Sets Available to a Power Domain.

The following example shows how to create a power domain and associate a supply set with
the power domain:

Create the supply sets
create_supply_set primary_supply_set

Create power domain and associate it with the supply set
create_power_domain PD1 -supply {primary primary_supply_set}

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets 11-28

Power Compiler™ User Guide Version L-2016.03-SP4

Restricting Supply Sets Available to a Power Domain

Supply sets are domain-independent and can only be updated with domain-independent
nets. To restrict the supply sets available to a power domain, use the extra_supplies_#
keyword with the -supply option of the create_power_domain command, as shown in the
following example:

dc_shell> create_power_domain SUB_DOMAIN \
-supply {extra_supplies_1 supply_setl} \
-supply {extra_supplies 2 supply_set2} -elements midl/PD_MID

Alternatively, if you do not want the power domain to use extra supply nets other than those
that are already defined in other strategies, specify the extra_supplies " keyword
(without the index) with the -supply option of the create_power_domain command, as
shown in the following example:

dc_shell> create_power_domain PD_MID -scope midl \
-supply {extra_supplies """}

It is an error to use both the extra_supplies_# and extra_supplies " keywords
simultaneously.

By default, a power domain can use domain-independent supply nets and supply nets
defined in the power domain. However, when you define supply sets with the
extra_supplies_# keyword, the power domain is restricted to use

* The primary supply of the power domain

e The supplies listed as extra_supplies_#

« The supplies specified by the isolation strategy of the power domain
« The supplies specified by the retention strategy of the power domain

« The supplies defined or reused as domain-dependent supplies in the power domain

Refining Supply Sets

To redefine the functions of a supply set, use the -update option of the create_supply_set
command. You must use the -update and the -function options together, to associate the
function names with the supply nets or ports.

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets 11-29

Power Compiler™ User Guide Version L-2016.03-SP4

The following example shows how you use the -update option to associate supply nets to
the functions of the supply set:

create_power_domain PD_TOP

create_supply_net TOP_VDD

create_supply _net TOP_VSS

create_supply_set supply _set \
-function {power TOP_VDD} \
-function {ground TOP_VSS} \
-update

The following rules apply, when you update a supply set with a supply net:

« \oltage rule

The voltage of the supply set handle must match with the voltage of the supply net with
which the supply set is updated.

If voltage is not specified for the supply net, then after the update, the voltage on the
supply set handle is inferred as the voltage of the supply net.

* Function rule

The supply set function must match with the function of the supply net with which the
supply set is updated.

Power Compiler issues an error message when,

o The ground handle of a supply set is used to update power handle of another supply
set and vice versa.

o The supply net updated with the ground handle of a supply set is connected to a
power supply port or pin of a power object, such as a power domain, and vice versa.

e Scope rule

The scope of supply set must match with the scope of the explicit supply net with which
the supply set is updated.

e Availability rule

The explicit supply net with which the supply set is updated, must be domain-
independent.

* Connection rule

The explicit supply net with which the supply set is updated, should not be connected to
a driver port when the supply set handle is connected to a driver port unless a resolution
function is defined for the explicit supply net.

» Conflicting supply state names rule

A supply set handle cannot be updated with a supply net or supply set if their power
states are not identical.

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets 11-30

Power Compiler™ User Guide Version L-2016.03-SP4

* Valid power-state-table rule

When a number of supply sets are updated to the same supply net, only one supply set
can be present in the power state table.

Associating Supply Sets With Supply Set Handles

A predefined supply set can be referenced through a supply set handle. Additional supply

net functions can also be defined for a predefined supply set. A supply set handle is created
at the scope of the power domain, and is available for use in all domains at and above the
scope where itis created. The tool issues an error message if you use the supply set handle
outside the scope where it is created.

When a supply set handle is associated with a supply set, the tool considers the two supply
sets to be connected, and their functions resolve to the same supply nets. To associate a
supply set handle to another supply set, use the associate_supply_set command.

The following command

create_supply_set PDl1.primary -function {power VDD} \
-function {ground VSS}

is equivalent to the following set of commands

create_supply_set my_sset -function {power VDD} \
-function {ground VSS}
associate_supply_set my sset -handle PD1.primary

Rules for Associating Supply Sets

The following rules apply, when you associate a supply set with a supply set handle.

e Associating a supply set handle to a supply set can be done only one time.

» Associating a supply set handle to a supply set should not cause circular associations.

* User-defined supply sets cannot be specified with the -handle option of the
associate_supply_set command.

« The supply set handle specified with the —~handle option of the associate_supply_set
command must be at the same or below the scope of the specified supply set.

* While associating a supply set handle to supply set, the supply set must be available in
the power domain where the supply set handle is available.

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets 11-31

Power Compiler™ User Guide Version L-2016.03-SP4

Defining Power States for the Components of a Supply Set

Power states are attributes of a supply set. The supply nets of a supply set can be at
different power states at different times. Using the add_power_state command, you can
define one power state for all those supply nets of the supply set that always occur together.
For each power state of the supply set, you must use one add_power_state command. By
default, the undefined power states are considered illegal states.

Use the -state option to specify the name of the power state of the supply set.

Use the -supply_expr option to specify the power state and the voltage value for the
various supply net components of the supply set as shown in the following example:

add_power_state supply_set_name \
-state state_name \
-supply_expr { supply_net_function ==
{legal_state, [voltage 1, \
[voltage 2, \
[voltage 3]]11}}

The expression specified with the -supply_expr option is used to determine the legal
states of the supply nets of the supply set during the synthesis of the design. You can specify
only the following allowed states:

e FULL_ON
« OFF

For each state of the supply net component you can specify up to three voltage values using
floating point numbers. You can defer specifying the voltage value and specify it later using
the add_power_state -update option.

The voltage values that you specify with a power state are interpreted by the tool as follows:

« When you specify no voltage value, the tool assumes that the value will be specified at a
later time with the add_power_state -update option.

* When you specify a single voltage value, this value is considered the nominal voltage of
the associated state.

* When you specify two voltage values, the first value is considered the minimum voltage
and the second as the maximum voltage. The average of the two values is considered
as the nominal voltage of the power state.

* When you specify three voltage values, the first value is considered as the minimum
voltage, the second as the nominal and the third as the maximum voltage of the power
state.

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets 11-32

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
The tool issues an error message if the second value is less than the first and the third
value is less than the second.

To incrementally specify a power state definition, you can issue multiple add_power_state
-supply_expr commands. To do this, use the -update option on subsequent commands to
incrementally update the power state definition. For example,

add_power_state SS1 -state ON {-supply_expr {power == {FULL ON 0.8}}}
add_power_state SS1 -state ON \
{-supply_expr {ground == {FULL_ON 0.0}}} -update

When you define a power state with two add_power_state -supply_expr commands, the
supply expression becomes a logical AND of the two definitions. Therefore, the previous two
add_power_state commands for the ON state are equivalent to the following:

add_power_state SS1 -state ON \
{-supply_expr {power == {FULL ON 0.8} && ground == {FULL _ON 0.0}}}

The add_power_state command supports the -logic_expr option which is parsed but
ignored by Power Compiler.

The UPF standard requires a simple name for the object_name argument. By default, Power
Compiler does not check for this requirement. To check that this requirement is met, set the
mv_input_enforce_simple names variable to true.

The following example shows the use of the add_power_state command to define the
power states HVp and HVg for the components of the supply set, PD1_primary_supply_set:

dc_shell> add_power_state PD1 primary_supply_set -state HVp \
{ -supply_expr {power == {FULL_ON, 1.08, 2.05, 3.0}}}

dc_shell> add_power_state PD1 primary supply set -state HvVg \
{ -supply_expr {ground == {FULL_ON, 0.0}}}

For more information about the add_power_state command, see the Synopsys
Multivoltage Flow User Guide.

Correlated Grouping of Supply Voltage Triplets

If the voltage variation for each supply is correlated with, not independent of, the other
supplies, you can define the supplies as correlated, so that the tool considers only the
minimum with minimum voltages, only nominal with nominal voltages, and only maximum
with maximum voltages, without mixing between minimum, nominal, and maximum. This
method of analysis is called correlated grouping of voltage triplets.

Power Compiler supports correlated grouping of the minimum, nominal, and maximum
voltages specified as triplets in the add_port_state and add_power_state commands. To
define one or more groups of correlated supply nets, use the correlated_supply_group

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets 11-33

Power Compiler™ User Guide Version L-2016.03-SP4

attribute with the set_design_attributes command. For example, the following command
groups VDD1 and VDD2 supply nets into a correlated supply group and sets the supply
voltages as correlated triplets:

set_design_attributes —elements {.} \
—attribute correlated_supply group *{VvDD1l VDD2}"

You can define the port state and power state table as follows:

add_port_state VDDl -state {HV 0.9 1.0 1.1}
add_port_state VDD2 -state {HV 1.0 1.1 1.1}
add_port_state VSS -state {ON 0.0}

create pst PST -supplies {VDD1 VDD2 VSS}
add_pst_state HV_STATE -pst PST -state {HV HV ON}

The tool analyzes the design behavior with correlated VDD1 and VDD2 supplies, without
mixing between minimum, nominal, and maximum voltages.

For more information about using the set_design_attributes command, see “Setting
Attributes on Hierarchical Cells” on page 11-59.

Always-On Logic

Generally, multivoltage designs have power domains that are shut down and powered up
during the operation of the chip while other power domains remain powered up. The control
nets that connect cells in an always-on power domain to cells within the shut-down power
domain must remain on during shutdown. These paths are referred to as always-on paths.

Marking Library Cells as Always-On

Power Compiler performs always-on optimization, only when the target library contains
always-on inverters and always-on buffers. To use a specific library cell in the optimization
of always-on paths within the shut-down power domains, mark the cell with the always_on
attribute. The tool uses only the always-on cells to optimize the always-on paths within the
shut-down power domains. The cells that are not marked as always-on are used outside the
shut-down power domains.

Note:
When you set the always-on attribute on a library cell, the tool does not use the library
cell for optimization of other types of paths. To use a library cell in both always-on paths
and shut-down paths, set the always-on attribute only on the instances of the library cell
that are present in the shut-down power domains.

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic 11-34

Power Compiler™ User Guide Version L-2016.03-SP4

Marking Pass-Gate Library Pins

Power Compiler can prevent connecting always-on cells to cells with pass-gate inputs. An
always-on cell should not drive a gate that has pass transistors at the inputs (pass-gate).
Pass-gate input cells should be driven by a standard cell in a shut-down power domain.
Therefore, if your library contains any of these cells, you must mark them as pass-gates in
each session.

The following example shows how to mark pin A of the MUX1 cell, with the pass_gate
attribute.

dc_shell> set_attribute [get_lib pins lib_name/MUX1/A] pass_gate true

Always-On Optimization

The Power Compiler tool constrains, marks, and optimizes always-on nets, including
feedthrough nets. The tool considers the
mv_make_primary_supply_available_for_always_on variable when selecting which
power supply to use for inserted buffers. By default, the variable is true and the tool uses
the domain’s primary supply, the related supply net of the load, or the driver pin as the
supply net for the inserted buffers. When the variable is set to true, the tool inserts regular
buffers instead of always-on buffers on feedthrough nets when the primary power supply
can be used to power the buffers without introducing electrical violations. To give preference
to load and driver supplies, do the following:

set_app_var mv_make primary_supply available_ for_always on false

The tool also ensures that no additional isolation or level-shifting violations are introduced
by the automatic always-on synthesis. If the isolation strategy is specified with the -source
and -sink options, the tool preserves the original source and sink relationship on these
paths.

To determine the supply nets used for the buffers and inverters inserted during always-on
synthesis when the variable is set to true, the tool applies the following rules, in the
specified order:

1. Highest precedence is given to the domain’s primary supply.

2. For aload net, when the related supply net of the load is in the same power domain as
the net, the related supply net of the load is used.

3. For a driver net, when the related supply net of the driver is in the same power domain
as the net, the related supply net of the driver is used.

4. For a feedthrough net with multiple choices of nets, highest precedence is given to the
domain’s primary supply. The related supply net of the load takes precedence over the
related supply net of the driver.

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic 11-35

Power Compiler™ User Guide Version L-2016.03-SP4

When the mv_make_primary_supply_available_for_always_on variable is setto false,
the tool does not use the domain’s primary supply, and instead uses the related supply net
of the load or the driver pin as the supply net for the inserted buffers. Otherwise, the
determination of the supplies for the inserted buffers is the same. With the variable set to
false, the tool gives preference to the load and driver supplies and as a result, more
always-on buffers might appear in the netlist.

Regardless of how the mv_make_primary_supply_available_for_always_on variable is
set, the tool marks the selected nets based on the following rules:

* When the related supply net is in the same power domain as the net and it is not the
primary power net of the power domain, the tool marks the net as always_on.

* When the related supply net is not in the same power domain as the net, the tool marks
the net as dont_touch.

« When the related supply net is in the same power domain as the net, and it is the primary
power net of the power domain, the tool inserts a regular buffer or inverter, and the net is
not marked.

Voltage-Aware Always-On Synthesis

When running the Design Compiler tool in topographical mode, you can enable
voltage-aware always-on synthesis on certain physical feedthrough paths. This enables
buffer insertion in a physical feedthrough path when there is a disjoint voltage area even
though, logically, the voltage areas belong to the same hierarchy. To enable this feature, set
the dct_enable_va_aware_ao_synthesis variable to true.

For more information, see the IC Compiler Implementation User Guide.

Always-On Optimization on Top-Level Feedthrough Nets

To perform always-on optimization on top-level feedthrough nets, you must specify the
related supply net information on the output port that is driven by the feedthrough net. The
Power Compiler tool derives the power and ground net information for the always-on buffers
based on the domain’s primary supply and related supply net that you specify for the output
port driven by the feedthrough net. If the tool detects a level-shifter violation or an isolation
violation on a feedthrough net, it sets a dont_touch attribute on the feedthrough net. This is
done to prevent the shifting of the violation from one power domain to another.

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic 11-36

Power Compiler™ User Guide

Version L-2016.03-SP4

Always-On Optimization on Disjoint Voltage Area

Power Compiler can insert always-on buffers on long nets that span physically distant

voltage areas. Consider a long net as shown in Figure 11-12. Logically, the net and the
buffer are in the same hierarchy Mid, which is an always-on domain. However, physically,
the net and the buffer are in two disjoint voltage areas.

If the library supports dual rail always-on cells, and the primary supply defined in the power
domain for subdesign Mid is available in the power domain for Top, Power Compiler inserts
dual rail always-on cells in the subdesign Mid that physically belongs to the Top design.

Figure 11-12 Always-On Buffer Insertion in Disjoint Voltage Areas

Top

[— i

D

VA2

D

Logical View

VA1

VA3

B

Physical View

Power Compiler follows these steps to support always-on synthesis across disjoint voltage

areas:

1. Create a dummy logic hierarchy inside the existing hierarchy Mid as shown in

Figure 11-13.

2. Create two hierarchical ports P1 and P2 on the dummy hierarchy and connect the buffer

inside the dummy hierarchy to these ports.

3. Associate the dummy hierarchy to the already existing voltage area, to which the buffer

belongs.

Chapter 11: UPF Multivoltage Design Implementation

Always-On Logic

11-37

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-13 Creating Dummy Hierarchy to Support Always-On Buffer Insertion in Disjoint
Voltage Areas

Top

VA2 VA1

Mid
e B

Dummy

P2 VA3

B

Logical View Physical View

The creation of the dummy logic hierarchy and port punching on the dummy hierarchy
allows the tool to perform always-on synthesis and legalization of always-on synthesis. The
tool also supports associating the dummy hierarchy to the default voltage area, if the buffer
belongs to the default voltage area.

Always-On Tie Cells

The Power Compiler tool appropriately chooses a normal tie cell, an always-on tie cell, or a
combination of a single-power tie cell and a power management cell (isolation, level-shifter,
or enable level shifter) to implement each tie-high and tie-low logic value specified in the
design. This results in a more efficient implementation of tie-high and tie-low logic values at
power domain boundaries.

Basic Always-On Tie Cell Mapping

In general, all constants are assumed to be powered by the primary power supply of the
domain where they reside. Therefore, each constant is mapped to a normal tie cell powered
by its domain’s primary power. However, if a constant is not driven by its primary supply
during RTL simulation, it is mapped to an always-on (AO) tie cell. This enables the tool to
insert tie cells on a constant path with logic using non-primary supplies.

However, in the case of constants driving macro cells that are powered by a supply different
from its primary supply, these cells are assumed to be powered by the sink’s related supply.
If the sink’s related supply is not available, for example, a macro cell’s internal supply, an
available supply that can drive the sink is selected. An AO or normal tie cell is used to map
the constant powered by the selected supply.

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic 11-38

Power Compiler™ User Guide Version L-2016.03-SP4

In Figure 11-14, the primary supply is VDD1, and VDD2 is an available supply. Pins A and B
are related to an internal supply that is not available, so the tool finds another supply to drive
those pins. Pins A and B are mapped to AO tie cells powered by a non-primary supply,
VDD2, and pin C is left as a literal constant because VDD3 is not available in the power
domain PD_TOP and VDD1 cannot drive it.

Figure 11-14 Macro Cells Using Non-Primary Supply

PD_TOP PD_TOP
Primary: VDD1; VDD2 Primary: VDD1; VDD2
VDD1 VDD1
VDD3 VDD3
VDD2 VDD2
1'bl A AOTie‘ |
b1 A AOTie‘ |
B B
1b1 A 1b1 A
C C
Macro Macro

Enhanced Constant Propagation

Using an always-on (AO) tie cell for cell mapping increases the amount of instances that the
constant can be propagated since these cells can be powered by a non-primary power
supply. The example shown in Figure 11-15 illustrates this point. The constant can be
moved from PD_TOP to PD1 because VDD?2 is an available supply. The constant cannot be
moved to PD2 because boundary optimization and constant propagation are disabled on
this domain. This example assumes that supply VDD2 is more on than VDD1 which is more

on than VDD_TOP.

Chapter 11: UPF Multivoltage Design Implementation

Always-On Logic 11-39

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-15 Enhanced Constant Propagation

/ PD_TOP I / PD_TOP I

Primary: VDD_TOP Primary: VDD_TOP
/PD1 \ /~ pp1 \
Primary: VDD1; VDD2 Primary: VDD1; VDD2
, PD2 - a0/ PD2
1'bl Primary: VDD2 Tie Primary: VDD2

- J/K\ J/

Enhanced Always-On Tie Cell Mapping

The enhanced always-on tie cell mapping maps a literal constant according to the following
rules:

1. If there is no load, a normal tie cell is mapped
2. If the primary supply can drive the load, a normal tie cell is mapped

3. If a non-primary supply is available that can drive the load, an always-on tie cell is
mapped

4. Otherwise, the constant is left as a literal constant

Specifying Level-Shifter Strategies

Use the set_level_shifter command to specify the strategy for inserting level-shifter
cells between power domains that operate at different voltages. Level shifters are inserted
by the tool during execution of the compile_ultra command. The level-shifter cells are
inserted only on the power domain boundaries that operate at different voltages.

If a voltage violation exists at the domain boundary, the tool inserts level shifters at the
domain boundary by default, even when a level-shifter strategy is not defined. This flexibility
allows the tool to use the strategy that gets the best possible results. You can optionally
restrict the insertion of level shifters to domain boundaries where the set_level _shifter
command is used by setting the upf_levshi_on_constraint_only variable to true.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies 11-40

Power Compiler™ User Guide

Version L-2016.03-SP4

Specifying a strategy does not force a level-shifter cell to be inserted unconditionally. Power
Compiler uses the power state table and the specified rules, such as threshold, to determine
where level shifters are needed. When the tool identifies a potential voltage violation, it tries
to resolve the violation by inserting multiple level-shifters or a combination of level-shifter
and isolation cells. As shown in Figure 11-16, when the tool finds a global net that has an
isolation constraint, it inserts a level-shifter and an enable level-shifter cell, based on the
voltage difference implied by the isolation power and isolation ground. The tool issues a
warning message if it determines that a level shifter is not required.

Figure 11-16 Level-Shifter Insertion on Power Domain Boundaries

Level-zhifterzell Enable levebzhiftercell

ﬂ;_—z P \, PD_TOP \

PD1

sat_lavel chifter
-location s=1f

O
PD2 FDz

PD1

.

AN /

Use the -elements option to specify a list of ports and pins in the domain to which the
strategy applies, overriding any -threshold or -rule settings. The -no_shift option
prevents the insertion of level-shifter cells on the ports, pins, and nets specified by the
-elements option. See Specifying Design Instances Using Wildcard Characters for
information about the -elements option.

Use the -name_prefix or -name_suffix option of the set_level_shifter command to
specify the naming of the level-shifter cell instances added during the implementation of a
specific level-shifter strategy.

The following strategies have decreasing order of precedence, irrespective of the order in
which they are executed:

set_level _shifter -domain domain_name -elements
set_level_shifter -domain domain_name -applies_to input/output
set_level _shifter -domain domain_name (with optional -applies_to both)

Use the -update option to add information to a level shifter strategy. You must use either the
-elements or -exclude_elements option with the —update option.

Chapter 11: UPF Multivoltage Design Implementation

Specifying Level-Shifter Strategies

11-41

Power Compiler™ User Guide Version L-2016.03-SP4

Using Specific Library Cells With the Level-Shifter Strategy

When you specify a level-shifter strategy, by default the tool maps the level-shifter cells to a
suitable level-shifter cell in the library. Use the map_level_shifter_cell command to limit
the set of library cells to be used for the specified level-shifter strategy. This command does
not force the insertion of the level-shifter cells. Instead, when the tool inserts the level-shifter
cell, it chooses the library cells that are specified with the -1ib_cel s argument of the
map_level _shifter_cell command. This command has no effect on instantiated
level-shifter cells that have a dont_touch attribute set on them.

For more details, see the map_level_shifter_cell command man page.

Allowing Insertion of Level-Shifters on Clock Nets and ldeal Nets

The Power Compiler tool does not insert level-shifter cells on clock nets, by default. Set the
auto_insert_level_shifters_on_clocks variable to specific clock nets, for the tool to
insert the level-shifter cells. Set this variable to al I, for the tool to insert level-shifter cells on
all clock nets that need level shifters.

Similarly, the Power Compiler tool does not insert level-shifter cells on ideal nets, by default.
Setthe mv_insert_level _shifters_on_ideal nets variable to all for the tool to insert
level-shifters on ideal nets. The default is an empty string ().

Representing Level-Shifter Strategies in the UPF Diagram View

In the UPF diagram view, the level-shifter symbol is similar to a buffer symbol and includes
a line segment representing the inputs that are shifted, as shown in Figure 11-17. The
location-fanout symbol looks similar to several buffers bundled together and indicates that
the level-shifter cells occur on all fanout locations (sink) of the port that they are shifting. The
no-shift symbol is represented by a line that shows the continuation of the inputs.

Figure 11-17 Representation of Level-Shifter Cells in the UPF Diagram
Regular Level Shifter Location fanout no shift

The symbol for each level-shifter strategy is located adjacent to the boundary of its parent
power domain. The location depends on whether it shifts inputs or outputs.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies 11-42

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-18 shows the possible combinations of level-shifter symbols and locations, based
on the values specified with the -applies_to and -location options of the
set_level shifter command.

The symbol appears at the left edge of the boundary if the strategy applies to input ports.
The symbol appears to the right edge of the boundary if the strategy applies to the output
ports. If the strategy applies to both inputs and outputs, symbols appear at both left and right
edges of the boundary.

Figure 11-18 Representation of Various Level-Shifter Strategies in the UPF Diagram

Inputs and Seif

Inputs anc Parant

Inputs and Fanout

Inputs and Automatic

Cutputs and Self

Cutputs and Parent

Crtputs and Fanout

Cutputs and Automatic

Baith ancl Self

Boith and Parent

Boith and Fanout

Both and Automatic

—— Mo Shift

While defining the level-shifter strategy, if you specify the location as sel ¥, the symbol
appears inside the power domain boundary. If you specify the location as parent, the
symbol appears outside the power domain boundary.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies 11-43

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
When you specify a list of elements to the level-shifter strategy using the
set_level_shifter -elements -applies_to command, the UPF diagram positions
the symbol relative to the left or right edge of the power domain boundary, based on
whether the list contains input elements, output elements, or both.

Specifying Isolation Strategies

Use the set_isolation command to define the isolation strategy for a power domain and
the elements in the power domain where the strategy is applied. The definition of an
isolation strategy contains specification of the enable signal net, the clamp value, and the
design elements where the strategy is applied.

The isolation power and ground nets must operate at the same voltage as the primary power
and ground nets of the power domain where the isolation cells is located.

When you specify only the -isolation_power_net argument, the primary ground net is
used as the isolation ground supply. Similarly, when you specify only the
-isolation_ground_net argument, the primary supply net is used as the isolation power

supply.

The -isolation_supply_set option specifies the power and ground functions of the same
supply set to be used as the isolation power and isolation ground nets respectively. The
-isolation_supply_set option is mutually exclusive with the -isolation_power_net
and the -isolation_ground_net options.

The -source option filters the ports connected to a net that is driven by the specified supply
set. When you use this option, the supply sets that are associated with each other are
considered as connected.

The -sink option filters the ports driving a net that fans out to the logic driven by the
specified supply set. Supply sets that are associated with each other are considered as
connected.

When you specify both the -source and -sink options, isolation is applied to only those
ports that have the specified source and sink.

The -diff_supply_only option determines the isolation behavior between the driver and
the receiver supply sets or supply nets.

When the -diff_supply_only option is set to true, and the same supply set connects the
driver and the receiver of a port on the interface of the reference power domain, the isolation
cell is not added in the path from the driver to the receiver.

Note:
With the -diff_supply_only option, you can use the -source or the -sink option. You
cannot use the -source, -sink, and -diff_supply_only options simultaneously.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-44

Power Compiler™ User Guide Version L-2016.03-SP4

The -clamp_value specifies the constant value in the isolation output: 0, 1, latch. The latch
setting causes the value of the non-isolated port to be latched when the isolation signal
becomes active.

Note:
Power Compiler does not support the value z for the -clamp_value option. The only
supported values are 0,1, and latch.

The -elements option specifies the elements for isolation, in cases where there are multiple
isolation strategies within a given power domain. The specified elements can be input or
output ports on the domain boundary, and design instances. The design instances must be
the root cells of the power domain. The tool applies the isolation strategy only on domain
boundaries and ignores the leaf cell instances.

When you specify the wildcard characters (* or ?) with the -elements option, the tool
searches for matching ports, pins, or design instances in the current level of hierarchy and
applies the isolation strategy to the elements identified as the boundaries of the specified
power domain. For details on the -elements option, see Specifying Design Instances Using
Wildcard Characters. To restrict the application of the isolation strategy on design instances,
set the upf_isols_allow_instances_in_elements variable to false.

The tool filters the design elements, such as ports, pins, and design instances, when you
specify the —-applies_to option with the —elements option. To control the filtering behavior,
set the upf_iso_filter_elements_with_applies_to variable. The valid values are
ERROR, ENABLE, and DISABLE.

¢ ERROR

Generates an error message when you specify the —applies_to option with the
-elements option.

e ENABLE (the default)

Filters the elements (pins, ports, and design instances) based on the value that you
specify with the -applies_to option.

e DISABLE

Ignores the —applies_to option and applies the isolation strategy to all the elements
specified with the -elements option. For the design instance specified with the
-elements option, the isolation strategy is applied to all the pins of the specified
instance.

When you do not specify any of the -elements, -source, and -sink options, the isolation
strategy is applied to all the output ports of the power domain.

The -no_isolation option specifies that the elements in the -elements list should not be
isolated. At least one of the -isolation_power_net or -isolation_ground_net or
-isolation_supply_set arguments must be specified unless -no_isolation option is
used.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-45

Power Compiler™ User Guide Version L-2016.03-SP4

Although the power state table can potentially reduce the number of isolation cells required,
isolation synthesis is entirely based on directives set using the set_isolation and
set_isolation_control commands.

The tool performs certain optimizations on isolation circuits, that do not affect the
functionality. For example, if you have signals going from block A to block B, you specify
output isolation on block A (in the parent) and input isolation on block B (in the parent). If the
strategy results in two back-to-back isolation cells with no fan out in between, Power
Compiler merges the isolation cells. It can merge the isolation cells based on the enable
signal, power, or ground signals.

Use the -name_prefix or -name_suffix options of the set_isolation command to
specify the naming of the isolation cell instances added during the implementation of a
specific isolation strategy.

Use the -update option to add information to an existing isolation strategy. You must use
this option with either the -elements or -exclude_elements option.

Every isolation strategy defined by a set_isolation command must have a corresponding
set_isolation_control command, unless the strategy is defined with the
-no_isolation option.

Using the set_isolation_control Command

The set_isolation_control command specifies the isolation control signal and isolation
sense separately. The command identifies an existing isolation strategy and specifies the
isolation control signal for that strategy.

Using the location value you specify with the -location option of the
set_isolation_control command, Power Compiler identifies isolation cells in the power
domain across the design hierarchy and associate them with UPF strategies. When the
value you specify is sel ¥, the tool starts the search from the port on the boundary of the
power domain, and traverses inside the power domain until it encounters either a cell, a
multiple fanout net, or the boundary of another power domain. When the location you specify
is parent, the tool starts the search from the port on the boundary of the power domain, and
traverses outside the power domain until it encounters a cell, a multiple fanout net, or the
boundary of another power domain. When the value you specify is fanout, the isolation
cells are inserted at all fanout locations of the port being isolated, and inside the power
domain of respective loads. For more information about the rules that apply when you use
the -location fanout option, see Rules Applicable for Location Fanout.

When the tool encounters an isolation cell that is not already associated with an isolation
strategy, it associates the cell with an appropriate isolation strategy. This association is
based on the values you specified with the -clamp_value option of the set_isolation
command, and the -isolation_sense option of the set_isolation_control command.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-46

Power Compiler™ User Guide Version L-2016.03-SP4

If the cell encountered is not an isolation cell, the tool does not treat the port as an isolation
port, and during the next optimization step, the tool inserts an isolation cell.

The -isolation_sense option specifies the logic state of the isolation control signal that
places isolation cells in the isolation mode. The possible values for this option are 0 or 1. The
default is 1. The isolation signal specified by the -isolation_signal option can be for a
port or pin or a net, with the port/pin having higher precedence. The isolation signal need not
exist in the logic hierarchy where the isolation cells are to be inserted; the synthesis or
implementation tool can perform port-punching as needed to make the connection.
Port-punching means automatically creating a port to make a connection from one
hierarchical level to the next. These punched ports are not considered for isolation or
level-shifting, even though after the port creation, these ports reside within the coverage of
an isolation or level-shifter strategy.

Existing ports are isolated and level-shifted according to the applicable isolation and
level-shifter strategy, even if they reside on an always-on path.

Rules Applicable for Location Fanout

Follow these rules while using the set_isolation and set_isolation_control
command, when you use the -location fanout option:

¢ Do not use the -isolation_power_net option of the set_isolation command, when
you use the -location fanout. However, when you use the -location option with the
value parent or self, you can use the -isolation_power_net option of the
set_isolation command.

e« The -location fanout option can be used only when you use one of the -source,
-sink, or -diff_supply_only option of the set_isolation command. Similarly, when
you use the -elements and one of -source, -sink, or -diff_supply_only option, you
can only specify fanout with the -location option.

« The -no_isolation option cannot be used when you use -elements and one of
-source, -sink, or -diff_supply_only option of the set_isolation command.

« Setthe derived_iso_strategy attribute, using the set_design_attributes
command, before specifying -elements and one of -source, -sink, or
-diff_supply_only option of the set_isolation command. After setting the
derived_iso_strategy, if you do not specify -elements and one of -source, -sink,
or -diff_supply_only option of the set_isolation command, the tool issues an error.

« Ifyou set the derived_iso_strategy attribute, the only value that you can specify with
the -location option is fanout.

For more details about setting the UPF attributes on ports and hierarchical cells, see Setting
UPF Attributes on Ports and Hierarchical Cells

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-47

Power Compiler™ User Guide Version L-2016.03-SP4

Order of Precedence of Isolation Strategies

The isolation strategies have the following decreasing order of precedence, irrespective of
the order of execution. The tool uses this order of precedence while querying the isolation
strategy on a pin.

1. Pin or port-level strategy matching the -no_isolation option.
2. Pin or port-level strategy matching the -source and -sink options.

3. Pin or port-level strategy matching the -source and -diff_supply_only options on an
input pin or matching the -sink and -diff_supply_only options on an output pin.

4. Pin or port-level strategy matching the -sink and -diff_supply_only options on an
input pin or matching the -source and -diff_supply_only options on an output pin.

5. Pin or port-level strategy matching the -source option on an input pin or matching the
-sink option on an output pin.

6. Pin or port level strategy matching the -sink option on an input pin or matching the
-source option on an output pin.

7. Pin or port-level strategy matching the -diff_supply_only option and without the
-source and -sink options.

8. Pin or ports specified with the -elements option, without specifying the -source, -sink,
or -diff_supply_only option.

9. Cell-level strategy with the -no_isolation option.
10.Cell-level strategy matching the -source and -sink options.

11. Cell-level strategy matching the -source and -diff_supply_only options on an input
pin, or matching the -sink and -diff_supply_only options on an output pin.

12.Cell-level strategy matching the -sink and -diff_supply_only options on an input pin,
or matching the -source and -diff_supply_only options on an output pin.

13.Cell-level strategy matching the -source option on an input pin, or matching the -sink
option on an output pin.

14.Cell-level strategy matching the -sink option on an input pin, or matching the -source
option on an output pin.

15.Cell-level strategy specified with the -di ff_supply_only option and without specifying
the -source or -sink options.

16.Cell-level strategy specified without using the -source, -sink, or -diff_supply_only
options.

17.Domain-level strategy with the -no_isolation option.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-48

Power Compiler™ User Guide Version L-2016.03-SP4

18.Domain-level strategy matching the -source and -sink options.

19.Domain-level strategy matching the -source and -diff_supply_only options on an
input pin, or matching the -sink and -diff_supply_only options on an output pin.

20.Domain-level strategy matching the -sink and -diff_supply_only options on an input
pin, or matching the -sink and -diff_supply_only options on an output pin.

21.Domain-level strategy matching the -source option on an input pin or matching the
-sink option on an output pin.

22.Domain-level strategy matching the -sink option on an input pin or matching the
-source option on an output pin.

23.Domain-level strategy specified with —-diff_supply_only option and without the
-source or -sink options.

24.Domain-level strategy specified without the -source, -sink, and -diff_supply_only
options.

Using Specific Library Cells With Isolation Strategies

When you define an isolation strategy, by default the tool associates the isolation strategy
with any suitable isolation cell in the library. When the library does not contain a complete
set of isolation cells, you can use some of the basic gates as isolation cells. For more
information, see Multivoltage Design Concepts.

To associate a specific set of library cells with the isolation strategy, use the
map_isolation_cell command. The map_isolation_cell command can also be used to
associate standard cells used as isolation cells with the isolation strategy.

When designs contain instantiated isolation cells that are associated with an isolation
strategy, the map_isolation_cell command remaps these library cells to the cells
specified with the -1ib_cel Is argument of the command. If the instantiated isolation cells
have dont_touch attribute set on them, the command does not remap these cells. The
command has no impact on the instantiated isolation cells that are not, or cannot be
associated with an isolation strategy.

For more information, see the command man page.

Aligning Isolation Strategies to Constant Drivers

Consider a situation where a driver forces a port to a constant value, either a logic 0 or 1, at
a power domain boundary, but the isolation clamp value defined for that port in the UPF file
is the opposite value, as shown in the example in Figure 11-19.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-49

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-19 Constant Driver and Conflicting Isolation Strategy

domain TOP

domain CRRY

[

f
Io@coig7

set_isolation isol -domain CRRY -isolation_power_net VDD \
-isolation_ground_net GND -clamp_value 1 -applies_to inputs

This situation can arise during logic optimization when Power Compiler moves or splits a
constant value that crosses domain boundaries. The tool might need to insert an isolation
cell to prevent a formal verification error. In such a situation, you might want to modify the
isolation strategy to match the constant value so that the isolation cell can be removed
during optimization.

To automatically generate new UPF isolation commands that are consistent with the
constant driver values, you can use the generate_mv_constraints command, as shown in
the following example. Suppose that the original UPF commands define an isolation
strategy named isol, which applies to the inputs of the CRRY power domain and sets a
clamp value of 1 as follows:

dc_shell> set_isolation isol -domain CRRY -isolation_power_net VDD \
—-isolation_ground_net GND -clamp_value 1 -applies_to inputs
dc_shell> set_isolation_control isol -domain CRRY \
-isolation_signal ctrl -isolation_sense low -location self

However, the design has a constant driver element driving the ul/cin pin with a value of O at
the boundary of CRRY power domain, which is a conflict with the isolation strategy. To
generate a hew isolation strategy to match the constant driver, use this command:

dc_shell> generate _mv_constraints -align_isolation_clamp_value \
-output align.upf

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-50

Power Compiler™ User Guide Version L-2016.03-SP4

The command detects the conflict between the isolation strategy and the constant driver and
generates the following new isolation strategy commands to resolve the conflict:

Created by DC Utility for non-matching isolation clamp and driving
constant value.
List of new strategies created with clamp value matching the constant
isolating it, for strategies with no user specified element list
set_isolation isol_clamp0 -domain CRRY \

-isolation_power_net VDD -isolation_ground_net GND \

-elements ul/cin -clamp_value 0 -applies_to inputs
set_isolation_control isol _clamp0 -domain CRRY \

-isolation_signal ctrl -isolation_sense low -location self

The generate_mv_constraints command writes comments and the two new isolation
strategy commands to the align.upf file. It creates the name of the new isolation strategy by
appending the _clampO suffix to the original strategy name. The new set_isolation
command always uses the -elements option to identify the pins to which the strategy
applies. The new strategy is more specific than the original strategy, so it has higher priority.

When using the generate_mv_constraints command, specify the -output option to write
the commands into a file, the -apply option to execute the new commands, or both options
to perform both actions. If you use the -apply option, the newly created and modified
strategies are applied to the design in memory, and any subsequent usage of the save_upf
command writes the new isolation commands along with the original UPF commands.

By default, the generate_mv_constraints -align_isolation_clamp_value command
checks only for conflicts involving general set_isolation strategies specified without the
-elements option, for example, using -applies_to inputs. To also fix conflicts with
isolation strategies specified with the -elements option of the set_isolation command,
use the -include_elements option of the generate_mv_constraints command

For example, suppose that the original UPF commands define an isolation strategy named
is02, which applies to the ul/cin input and ul/carry input pins of CRRZ power domain and
sets a clamp value of 1 for these pins, as follows:

dc_shell> set_isolation iso2 -domain CRRZ -isolation_power_net VDD \
—-isolation_ground_net GND -elements {ul/cin ul/carry} \
-clamp_value 1 -applies_to inputs

dc_shell> set_isolation_control iso2 -domain CRRZ \
—-isolation_signal ctrl -isolation_sense low -location self

However, the design has a constant driver element driving the ul/cin pin with a value of O at
the boundary of the CRRZ power domain, which is a conflict with the isolation strategy. To
fix the element-level strategy for conflicts with constant drivers, use the
generate_mv_constraints command with the -include_elements option as follows:

dc_shell> generate_mv_constraints -align_isolation_clamp_value \
-include_elements -output align.upf -apply

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-51

Power Compiler™ User Guide Version L-2016.03-SP4

The command detects the element-level conflict and generates the following new strategies
to resolve the conflict:

Created by DC Utility for non-matching isolation clamp and driving

constant value.

List of user strategies modified

set_isolation iso2_modified -domain CRRZ -isolation_power_net VDD \
—-isolation_ground_net GND -elements ul/carry -clamp_value 1 \
-applies_to inputs

set_isolation_control iso2_modified -domain CRRZ -isolation_signal ctrl \
-isolation_sense low -location self

List of new strategies created with clamp value matching the constant

isolating it, for strategies with user specified element list

set_isolation iso2_clamp0 -domain CRRZ -isolation_power_net VDD \
-isolation_ground_net GND -elements ul/cin -clamp_value 0 \
-applies_to inputs

set_isolation_control iso2_clamp0 -domain CRRZ -isolation_signal ctrl \
-isolation_sense low -location self

The generate_mv_constraints command generates two new strategies: one named
iso2_modified for the input without a conflict and another one named iso2_clampO for the
input that has a conflict. When you use the -apply option, the new strategies are applied to
the design in memory and the original isolation strategies are updated to remove the
elements that are listed in the new isolation strategy; any subsequent usage of the
save_upf command writes out the new isolation commands.

If you use the generate_mv_constraints command, you must do so before you compile
the design. If the netlist already contains isolation cells, using the
generate_mv_constraints command might result in back-to-back isolation cells or loss of
association between existing isolation cells and the isolation strategy.

For more information, see the generate_mv_constraints command man page.

Isolation and Level-Shifter Cells Connected Back-to-Back

Power Compiler supports eight different combinations of isolation and level-shifter cells
connected back to back, on the same side of the power domain boundary. It is required that
the source power is more or equally always-on than the destination power. When an enable

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-52

Power Compiler™ User Guide

Version L-2016.03-SP4

level-shifter cell is available in the library, the tool replaces the level-shifter and isolation cell
combination with an enable level-shifter cell. Table 11-3 shows each of the combinations of

the isolation and level-shifter locations supported by Power Compiler.

Table 11-3 Combination of Isolation and Level-Shifter Cells Connected Back-to-Back

Target power Isolation Level-shifter Isolation Replaced by an enable
domain location location power level-shifter cell?
source self self source no

source self self destination yes

source parent parent source no

source parent parent destination yes

destination parent parent source no

destination parent parent destination yes

destination self self source no

destination self self destination yes

Representing Isolation Strategies in the UPF Diagram View

Figure 11-20 shows the symbols used to represent an isolation strategy in the UPF diagram
view. The symbol used is similar to an AND gate and the clamp value is shown inside the
symbol. The symbol also includes pins for power and ground, a segment representing the
isolation signal, and a line segment representing the inputs or outputs that the strategy
isolates. When the -no_isolation option is specified, a straight line is used to show the

continuation of the inputs.

Figure 11-20 Representation of Various Types of Isolation Cells in the UPF Diagram

Powar Supphy

Ground

Chapter 11: UPF Multivoltage Design Implementation

Clamp O

Specifying Isolation Strategies

Clamp 1

Clamp Latch

M isclation

11-53

Power Compiler™ User Guide Version L-2016.03-SP4

The symbol is located adjacent to the boundary of its parent power domain. The location
also depends on whether the strategy isolates inputs or outputs.

Figure 11-21 shows all possible combinations of isolation strategy symbols and locations,
based on the value of the —-applies_to option of the set_isolation command and the
value of the -location option of the set_isolation_control command used in defining
isolation strategy.

Figure 11-21 Representation of Various Types of Isolation Strategies in the UPF Diagram

Inputs and Parent

Inputs and Self

Crutputs and Parent

Cutputs and Self

Both and Parent

Both and Sailf

Mo [solation

The symbol appears to the left edge of the power domain boundary if the strategy applies to
the input ports. The symbol appears to the right edge of the boundary if the strategy applies
to the output ports.

If the strategy applies to both input and output ports, the symbol appears at both left and
right edges of the boundary.

While defining the isolation strategy, if you specify the location as self, the symbol appears
inside the power domain boundary. If you specify the location as parent, the symbol
appears outside the power domain boundary.

Note:
If you specify a list of elements using the set_isolation -elements command, the
UPF diagram ignores the -applies_to option and positions the isolation symbol relative

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies 11-54

Power Compiler™ User Guide

Version L-2016.03-SP4

to the left or right edge of the power domain boundary, based on whether the list contains

input elements or output elements or both.

Setting UPF Attributes on Ports and Hierarchical Cells

You can set attributes on specific ports and hierarchical cells of a power domain to specify

additional requirements.

Setting Attributes on Ports

To set attributes and their values on the specified ports, use the set_port_attributes
command. Table 11-4 shows the list of attributes and their values that can be specified on
the ports using the set_port_attributes command.

Table 11-4 The UPF Port Attributes

Attribute name Attribute value Ports where Use of the attribute
the attribute
can be
specified
model Name of the object Specifies a module or library
cell to whose ports the attribute
is to be applied.
iso_sink Name of the supply set, Output Identify the actual off chip load
DERIVED_DIFF_ONLY, of a primary output port.
DERIVED_DIVERSE
iso_source Name of the supply set Input Identify the actual off chip driver

DERIVED_DIFF_ONLY,
DERIVED_DIVERSE

related_supply_defa Boolean
ult_primary

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Top level input
and output ports

of a primary input port.

Indicates that, when the related
supply net is not specified, the
primary supply of TOP domain
is assumed as the related
supply.

Used by the verification tools so
that no assumption is made
about the default power supply.

11-55

Power Compiler™ User Guide

Table 11-4 The UPF Port Attributes (Continued)

Version L-2016.03-SP4

Attribute name Attribute value Ports where Use of the attribute
the attribute
can be
specified

snps_derived Boolean Input and Indicates that the specified
output supply ports have been created by
ports Synopsys tools. You can

repeater_power_net Name of the supply net Input and

repeater_ground_net output ports and
pins. Cannot be
specified on
bidirectional
ports

feedthrough Input and
output ports and
pins.

unconnected Input and
output ports and
pins.

clamp_value 1, 0, or latch Input and
output ports and
domain
boundary pins.

specify this attribute in the
bottom-up flow as well.

Tool inserts a repeater (buffer)
to drive the specified port. The
inserted buffer is powered by
the specified supply net.

Indicates that the specified
ports are connected together
internally to form a feedthrough.
You must use this option with
the -model and -ports options.
This option is mutually
exclusive to the —unconnected
option.

Indicates that the specified
ports are not internally
connected. You must use this
option with the -model and
-ports options. It is mutually
exclusive to the -feedthrough
option.

Specifies the clamp value if the
port has an isolation strategy
associated with it. This option
sets the UPF_clamp_value
attribute.

Note:

When you specify the set_port_attributes command multiple times on the same

object, the last setting overrides the previous settings.

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

11-56

Power Compiler™ User Guide Version L-2016.03-SP4

The following example shows how to set the iso_source and iso_sink attributes on the
input and output ports, respectively.

dc_shell> set_port_attributes -ports {inl in2} -attribute 1so_source SS1
dc_shell> set_port_attributes -ports {outl out2} -attribute iso_sink SS2

Specifying Supplies for Repeaters

Repeaters are buffers inserted at regular intervals along the length of a long net to maintain
sufficient drive strength along the full length of the net. In Design Compiler, the
insert_buffer command lets you specify the number of such buffers to insert into a net by
using the -no_of _cells option.

If a long net crosses a power domain boundary, such as in the case of a feedthrough net
crossing through a power domain, repeater buffers inserted inside the power domain must,
by default, maintain the always-on characteristics of the sink domain. For example, in
Figure 11-22, PDTop power domain is more always-on than PD2 power domain, and PD2
power domain is more always-on than PD1 power domain. The feedthrough path through
PD1 power domain must be always-on with respect to PD2 power domain.

Figure 11-22 Feedthrough Path in PD1 Power Domain Before Buffer Insertion

PDTop
PD1 PD2
SSTop ff’;;zfyﬁ\l
SS1 w
Ul u2

However, the always-on requirement might not be needed in certain cases. For example, if
the feedthrough net is a DFT scan signal that is used only when all power domains are
active, the inserted buffers can use the PD1 power supply, thereby using less resources. In
other cases, depending on the floorplan, the power supplies of the sink domain might not be
easily available where the buffer needs to be inserted.

To enforce the insertion of a buffer with a specific power supply on the feedthrough path, use
the -repeater_supply argument of the set_port_attributes command. For example,

dc_shell> set_port_attributes -elements {U1} \
-applies_to outputs -repeater_supply SS1

The tool inserts repeater buffers that drive the output port of elements Ul and uses the
supply set SS1 to power these buffers. This results in the buffering shown in Figure 11-23.

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells 11-57

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-23 Feedthrough Path in PD1 Power Domain With a Buffer Inserted

PDTop
PD1 PD2
BUF1
SSTop '|> SS2
Ss1
U1 u2

Insertion of the repeater buffers might cause the need for additional level shifter and
isolation cells on the feedthrough path.

When you specify the insertion of a repeater buffer to drive a specified port, you must also
specify the power supply for the buffer. The supply specified with the repeater_supply
attribute must be available in the scope of the power domain where the buffer is inserted.

You can specify either a supply set using the -repeater_supply option as shown in the
previous example, or a pair of supply nets (power and ground) using the -attribute option,
as shown in the following example:

dc_shell> set_port_attributes -elements {Ul} -applies_to outputs \
-attribute repeater_power_net VDD \
-attribute repeater_ground _net VSS

You must specify the -attribute option two times in the same command, to specify the
power and ground nets for the inserted repeater buffers. Multiple occurrences of the
-attribute option are allowed only for the repeater_power_net and
repeater_ground_net attributes.

The repeater insertion is performed by the compile_ultra, insert_mv_cells or the
insert_dft command, before inserting other power management cells. The tool inserts
either a single non-inverting repeater (buffer) or a pair of inverters. You cannot specify the
type of the repeater to be inserted.

After inserting the repeater, during level-shifter and isolation cell insertion, the tool ensures
that the repeater insertions do not cause electrical violations and inserts a level-shifter or an
isolation cell to fix the violation. However, you must have defined an isolation strategy for the
tool to insert the isolation cell. The check_mv_design checks and reports any violation
introduced and not fixed by the repeater insertion.

If the repeater does not use the primary supply of the domain as the supply, the save_upf
command writes the connect_supply_net command for the PG pins of the repeater.

For more information, see the set_port_attributes command man page.

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells 11-58

Power Compiler™ User Guide

Version L-2016.03-SP4

Setting Attributes on Hierarchical Cells

To set attributes on a collection of cells, use the set_design_attributes command.
Table 11-5 shows the list of attributes and their values that can be specified on hierarchical
cells using the set_design_attributes command.

Table 11-5 The UPF Design Attributes

Attribute name Attribute Location ofthe Use of the attribute
value attribute
derived_external and Name ofthe Hierarchical cell Indicates that the supply sets are
external_supply_map supply set reference-only supply sets. These are
used with ports with the iso_source
and iso_sink attributes. These
attributes establish a one-to-one order
dependent mapping of the supply sets.
derived_iso_strategy Name of the Hierarchical cell To ensure unigue strategy name for the
isolation derived strategies in the power domain.
strategy Used in hierarchical flow to support
location fanout
enable_bias Boolean Top-level When set to true, turns on the well
design bias feature.
merge_domain Boolean Hierarchical cell Indicates that the two blocks belonging
thatis notthe to the same power domain can be
root cell of the merged
power domain
lower_domain_boundary Boolean Top scope of When set to true, the boundary of the
the design and power domain extends up to the
any hierarchical boundary of the power domain below it.
cell
suppress_iss Power Current design Indicates that supply set handles
domain cannot be created in the power domain
upf_chip_design Boolean Top-level Indicates that the design is the TOP
design block. When the isolation strategy

Chapter 11: UPF Multivoltage Design Implementation

Setting UPF Attributes on Ports and Hierarchical Cells

definition contains -location
fanout, this attribute causes the
primary output ports to be considered
as the loads

11-59

Power Compiler™ User Guide Version L-2016.03-SP4

Table 11-5 The UPF Design Attributes (Continued)

Attribute name Attribute Location ofthe Use of the attribute
value attribute

correlated_supply_group Supply net Top scope of Indicates that the supply nets of the

names or the design port state or power state triplets should
wildcard (*) be considered as correlated voltage
character range

legacy block Boolean Hierarchical cell When set to true, indicates that the

block is a legacy block. This is useful
while combining two blocks; one
defined using domain-dependent
supply nets and the other defined using
domain-independent supply nets and
supply sets. The block defined using
domain-dependent supply nets is
marked as a legacy block.

Extending the Power Domain Boundary

The Power Compiler tool considers the logic boundary of the root cells of the power domain
as the boundary of the power domain. However, to comply with the IEEE 1801-2009
standard, the tool can extend the power domain boundary to include the boundary of
another power domain contained in it. The strategies defined for a power domain apply to
the pins and other objects on the lower domain boundary.

To extend the power domain boundary to the boundary of another power domain contained
in it, set the lower_domain_boundary attribute on the design, as shown in the following
example:

set_design_attributes -elements {.} -attribute lower_domain_boundary true

You must enable or disable this feature for the entire design. If you selectively enable or
disable the feature for a few blocks, the tool issues error messages.

For more details about the lower domain boundary feature, see Appendix A, “Lower Domain
Boundary Support.”

Setting Terminal Boundaries

When you set the design attribute terminal_boundary to true on an instance, the
boundary ports of this instance become a terminal boundary. For example, to set a terminal
boundary on an instance named U1, do the following:

set _design_attributes -elements Ul -attribute terminal_boundary true

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells 11-60

Power Compiler™ User Guide Version L-2016.03-SP4

When you use the terminal_boundary attribute, only the root cells of a power domain are
allowed in the element list. These cells can be macro cells, block abstracts, black boxes, and
other hierarchies.

If you specify a cell that is not a root cell, the tool issues a UPF-210 error message.

When you set the terminal_boundary attribute to true on a particular block, the tool
considers its boundary constraints for performing supply consistency checks. There is no
other functional implication of this attribute. The terminal_boundary option is used in a
bottom-up hierarchical implementation flow. In a flat design, the tool ignores any
terminal_boundary attribute specified on a nested domain’s root cells.

For example, assume you use the following command on the block named U1 shown in
Figure 11-24:

set _design_attributes -elements Ul -attribute terminal_boundary true
The tool behaves as follows:

« Ifthe block Ul is a .ddc file or a block abstract, during top synthesis, the tool ignores the
terminal_boundary specified on U1.

« Ifthe block Ul is an ETM or macro, the tool retains the terminal_boundary attribute
setting on block U1 in the top-level integrated UPF.

« If the block U1, is a black box, the tool retains the terminal_boundary attribute setting
in the top-level integrated UPF, and it performs a consistency check between the
boundary constraint at U1’s port and the external driver or load cell supply.

Figure 11-24 Example of Hierarchical Terminal Boundary

PD_TOP (supply: VA)

PD _BLK
U1

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells 11-61

Power Compiler™ User Guide Version L-2016.03-SP4

Specifying Retention Strategies

The set_retention and set_retention_control commands specify the strategy for
inserting retention cells inside the power-down domains.

The set_retention command specifies which registers in the power-down domain are to
be implemented as retention registers and identifies the save and restore signals for the
retention functionality.

When you do not specify the -elements option, the retention strategy is applied to all
sequential cells in the power domain, unless you specify the -no_retention option. For
details on the -elements option, see Specifying Design Instances Using Wildcard
Characters. Note that DesignWare instances are supported when using the -elements
option with the set_retention command. Power Compiler applies the size_only attribute
on all the elements on which it applies the retention strategy.

The -retention_power_net and -retention_ground_net options specify the supply
nets to be used as the retention power and ground nets. The retention power and ground
nets are automatically connected to the implicit save and restore processes and shadow
register. If you specify only the -retention_power_net option, the primary ground net is
used as the retention ground supply. If you specify only the -retention_ground_net
option, the primary supply net is used as the retention power supply.

The -retention_supply_set option specifies the supply set whose power and ground
functions have to be associated as the retention power and retention ground nets
respectively. If you specify the -retention_supply_set option, the power and ground
functions of the same supply set should be used as the retention power and retention
ground nets respectively.

When specific objects in the power domain do not require retention capabilities, you can
specify them with the -no_retention option. Power Compiler maps these objects to library
cells that do not have retention capability or functionality.

The -save_condition, -restore_condition, and -retention_condition options are
intended to capture the clock-dependent retention behavior during simulation. These
options are parsed and ignored by Power Compiler, but they are preserved and written out
by the save_upf command if the netlist is not synthesized.

The following strategies have decreasing order of precedence, irrespective of the order in
which they are executed:

set_retention -domain -elements
set_retention -domain

The power and ground nets of the retention registers can operate at voltage levels different
from the primary and ground supply voltage levels of the power domain where the retention
cell is located.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies 11-62

Power Compiler™ User Guide Version L-2016.03-SP4

Every retention strategy defined without the -no_retention option, must have a
corresponding set_retention_control command. The set_retention_control
command specifies the retention control signal and retention sense. The command
identifies an existing retention strategy and specifies the save and restore signals and
senses for that strategy.

Each control signal can be a port, pin or a net, with a port or pin having higher precedence.
The retention signal does not need to exist in the logic hierarchy where the retention cells
are to be inserted. The synthesis or implementation tools perform port-punching, as needed,
to make the connection. Port-punching automatically creates a port to make a connection
from one hierarchical level to the next. These punched ports are not considered for isolation,
even though after the port creation, these ports reside within the coverage of an isolation
strategy.

The -update option allows you to refine the element list of a previously defined retention
strategy. When used with the -elements option, the set of elements is the union of all
elements specified for a strategy. You cannot refine a domain-based retention strategy to an
element-based retention strategy with the —~update option. Example 11-5 illustrates this
case. The second set_retention command (highlighted) results in an error.

Example 11-5 Refining Domain-Based Retention Strategy to Element-Based Strategy

create_power_domain MID —elements {midl mid2}
set_retention RET1 —domain MID

set_retention_control RET1 ..

map_retention_cell RET1 ..

set_retention RET1 —domain MID —elements {midl} —update

The -assert_r_mutex, -assert_s_mutex , and -assert_rs_mutex options are intended
to capture the clock-dependent retention behavior during simulation. These options are
parsed and ignored by Power Compiler.

The set_retention_elements command defines a list of critical elements that can later be
used in a set_retention command. The list of elements applies to the scope where the
set_retention_elements is defined. The list of elements must either all be retained or
none of them are retained. It is an error to have a partially retained list of elements.

Choosing Specific Library Cells With Retention Strategies

The map_retention_cell command provides a mechanism for constraining the
implementation choices for retention registers. The command must specify the name of an
existing retention strategy and power domain.

The -lib_cell_type option directs the tool to select a retention cell that has the specified
cell type. However, the value specified with this option does not change the simulation
semantics specified by the set_retention command.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies 11-63

Power Compiler™ User Guide Version L-2016.03-SP4

The -1ib_model_name option specifies the retention register verification model in the input
UPF file, which is parsed for syntax. The model information is primarily used by the
Formality tool. The model information is not captured in the compiled database, .ddc file or
in the UPF file written after synthesis.

The retention_cell attribute on the library cells in the target library defines the retention
styles of the library cells.

Retention Strategy and Clock-Gating Cells

When you define retention strategy for a power domain, by default, Power Compiler does
not apply the retention strategy to the clock-gating cells in the power domain. The tool does
not issue warning or information message. However, if you set the

upf _use_additional _db_attributes variable to false, the tool issues a UPF-117
warning message for every power domain defined with a retention strategy and contains
clock-gating cells. Formal verification also flags a failure in this situation.

Representing Retention Strategies in the UPF Diagram View

In the UPF diagram view, the retention cell is represented by a green bounding box as
shown in Figure 11-25. The symbol includes pins for power and ground and segments for
save and restore signals. The no-retention symbol contains a “X” inside the bounding box.

Figure 11-25 Representation of Retention Cells in the UPF Diagram

Save Signal PowarSupply

Reasto e Gmunc Mo Retention

Signal
All retention symbols are located at the center of their parent power domains. The diagram
displays the supply nets connected to the retention strategy, the domains to which the
strategy belongs and their save and restore signals.

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies 11-64

Power Compiler™ User Guide Version L-2016.03-SP4

Creating Power Switches

The create_power_switch command creates a virtual instance of power switch in the
scope of the specified power domain. The power switch has at least one input supply port
and one output supply port. When the switch is off, the output supply port is shut down and
has no power.

The create_power_switch command lets the tool know that a generic power switch
resides in the design at a specific scope or level of hierarchy. The off state of the power
switch output is used in the power state table. Power Compiler does not perform power
switch insertion, but the information is passed to IC Compiler for implementation.

The following power switch definition is for the power switch in Figure 11-1.

create_power_switch SW1 \
-domain PD_TOP \
-output_supply port {SWOUT VvDD1g} \
—-input_supply_port {SWIN1 VDD1} \
-control_port {CTRL swctl} \
-on_state {ON VDDl {!'swctl}}

The UPF standard requires a simple name for the switch_name argument. By default,
Power Compiler does not check for this requirement. To check that this requirement is met,
set the mv_input_enforce_simple_names variable to true.

For more information, see the create_power_switch command man page and the
Synopsys Multivoltage Flow User Guide.

Representation of Power Switches in the UPF Diagram View

In the UPF diagram view, a power switch is represented by a green colored circle with a “X”
inside it, as shown in Figure 11-26.

Figure 11-26 Representation of a Power Switch

g

Fovear Supplies

Powear Supply

Contmel Signal PowarSupplies Contol Signaks Acknowledg
Signak

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Switches 11-65

Power Compiler™ User Guide Version L-2016.03-SP4

The symbol indicates the input and output supply ports, the control ports, and the control
signals. The arrows represent the direction of the ports.

As shown in Figure 11-26, a power switch can have single or multiple control signals. The
power switches are located within the boundaries of their parent power domain. Because
power switches have supply nets as input and output, they are located between the power
supply nets as shown in Figure 11-27.

Figure 11-27 Location of the Power Switches in the Power Domain

PD1

VDD_2

ctrl_signal [

Power State Tables

A power state table defines the legal combination of states that can exist simultaneously
during the operation of the design. A power state table is a set of power states of a design
in which each power state is represented as an assignment of power states to individual
power nets. A power state table of a design captures all the possible operational modes of
the design in terms of power supply levels. Given a power state table, a power state
relationship (including voltage and relative always-on relations) can be inferred between any
two power nets. The power state table is used by the synthesis tool for analysis, synthesis,
and optimization of the multivoltage design.

Creating Power State Tables

The create_pst command creates a power state table and assigns a name to the table.
The command lists the supply ports or supply nets in a particular order. The
add_port_state defines the name of the possible states for each supply port.

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables 11-66

Power Compiler™ User Guide Version L-2016.03-SP4

The UPF standard requires a simple name for the table_name argument. By default, Power
Compiler does not check for this requirement. To check that this requirement is met, set the
mv_input_enforce_simple names variable to true.

A supply port and a supply net can have the same name, even when they are unconnected.
If such a name is listed in the create_pst command, it is assumed to represent the supply
port and not the supply net.

The power switch supply ports and internal PG pins of macro cells with fine-grained switch,
are considered supply ports because they are connected by supply nets, so they can be
listed as supply nets in create_pst command.

You can use the component supply nets of a supply set to define a Power State Table. This
is because, the state of every component of a supply set can be unambiguously determined,
when you define a supply expression for the supply set.

For more details, see the create_pst and add_port_state command man pages.

Defining the States of Supply Nets

The add_pst_state command defines the states of each of the supply nets for one possible
state of the design. The command must specify the name of the state, the name of the
power state table already created, and the states of the supply ports in the same order as
listed in the create_pst command.

The listed states must match the supply ports or nets listed in the create_pst command in
the corresponding order. For a group of supply ports and supply nets directly connected
together, the allowable supply states are derived from the shared pool of supply states
commonly owned by the members of the group.

The UPF standard requires a simple name for the state_name argument. By default, Power
Compiler does not check for this requirement. To check that this requirement is met, set the
mv_input_enforce_simple_names variable to true.

The following example creates a power state table, defines the states of the supply ports,
and lists the allowed power states for the design.

create pst pt -supplies { PN1 PN2 SOC/OTC/PN3, FSW/PN4 }
add_port_state PN1 -state { s88 0.88 }

add_port_state PN2 -state { s88 0.88 } -state { s99 0.99 }
add_port_state SOC/0OTC/PN3 -state { s88 0.88 } -state { pdown off }
add_port_state FSW/PN4 -state { sO, 0.0 } -state {pdown off }
add_pst_state sl -pst pt -state { s88 s88 s88 sO }

add_pst_state s2 -pst pt -state { s88 s88 pdown sO }

add_pst_state s3 -pst pt -state { s88 s99 pdown sO}

add_pst_state s4 -pst pt -state { s88 s99 s88 pdown }

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables 11-67

Power Compiler™ User Guide

Note:

Version L-2016.03-SP4

It is an error to define conflicting states on the components of a group of supply sets that
you have associated with each other using the associate_supply_set command. Also,
it is an error to have two conflicting states in the power state table for identical functions
of the supply set group that are associated with each other.

Visually Analyzing Power State Tables in the UPF Diagram View

To analyze and debug the isolation and the level-shifter strategies in a UPF design, use the
UPF diagram view with the Power State Table panel. You can view the power states for each
supply in a power state table and examine their relationships in the UPF diagram.

Figure 11-28 shows an example of the UPF diagram view and Power State Table panel

during always-on analysis.

Figure 11-28 Always-On Analysis Using the Power State Table Panel

EALPFDIagram.2

PST view for: UPFDiagram.2

I pst_2

Analysis :|A|way5 on 'i

—Highlight UPFDiagram By

Reference . |VBB Compars ; |

PST : pst_1

Unrelated AC

vaa| ves | vee| vop | vss |
statel |ON ON |ON |OFF |GND
state2 |OFF ON |ON |ON |GND
state3 |OFF ON |[ON |ON |GND
stated |OFF OFF |ON |ON |GND
state5 |OFF OFF [ON |ON |GND
state6 |OFF OFF |OFF |ON |GND

The Power State Table panel appears automatically when you open the UPF diagram view.
You can hide or display this panel by choosing View > Toolbars > Power State Table.

The Power State Table panel provides the following types of analysis:

* Always-on analysis compares the on-off states between any two supplies, including both

power and ground supplies

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

11-68

Power Compiler™ User Guide Version L-2016.03-SP4

« Multivoltage level-shifter analysis compares the voltage relationships between supplies

During always-on analysis, you can compare the power and ground supplies in the power
state table because the combination of the power and ground supplies defines the
always-on relationships between the power domains.

For more details, see, Analyzing Multivoltage Design Connections in the GUI.

During multivoltage level-shifter analysis, to decide if a level shifter is needed between a
driver and a load supply, only the power supplies of the power domains need to be
compared; the tool supports 0 volts or the off state for the ground supply.

Figure 11-29 shows an example of the UPF diagram view and Power State Table panel
during multivoltage level-shifter analysis.

Figure 11-29 Multivoltage Level-Shifter Analysis Using the Power State Table Panel

B UPFDIagram. 1 =
PST view for: UPFDiagram.l

pst_2

Analysis :IIVI‘\\.r Level 5l 'I PST:pst 1
—Highlight UPFDiagram By

supply : [WCC state: [amn e
vas| ves|vec voD|
state1/on on [N orr ono
statez|OFF ON [oMMCN GND
. rettop state3|ofF oN [N CN | GND
stated|OFF OFF [oMMCN GND
state5|OfF OFF [oMM CN |GND
state6|OFF OFF [olidl ON GND

Bl 2

For more information, see the “Visualizing Power State Tables” topic in Design Vision Help.

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables 11-69

Power Compiler™ User Guide Version L-2016.03-SP4

Support for Well Bias

Some process technologies allow dedicated voltage supplies, instead of normal rail
voltages, to be applied to n-well and p-well regions of the chip. Applying a bias voltage to a
well changes the threshold voltage for transistors in the well, affecting the performance and
leakage current.

The Power Compiler tool offers an optional mode to specify the n-well and p-well bias supply
infrastructure using UPF commands. In this mode, the tool automatically makes supply
connections to the well bias pins.

To enable the UPF-based well bias mode, set the enable_bias design attribute to true in
the UPF command file as follows:

set_design_attributes -elements {.} -attribute enable _bias true

With the enable_bias design attribute set to true, supply sets and supply set handles can
be used to specify the bias supply connections. The well bias pins, along with the power
supply and ground pins, are connected automatically for standard cells, macros, and other
types of cells.

For more information about using this mode, see “N-Well and P-Well Bias” in the Synopsys
Multivoltage Flow User Guide.

For more information about well bias modeling, see the Library Compiler User Guide.

Inserting Power Management Cells

Power management cells such as level shifters and isolation cells are not usually part of the
original design description. They are inserted during the logic synthesis flow. Buffer-type
level shifters can be inserted by the tool as part of compilation or manually by instantiating
the cells in RTL, or using specific commands that insert level shifters. Similarly isolation cells
and enable-type level shifters can be instantiated at the RTL level of the design description
or inserted by using commands that insert isolation cells.

You can also insert these cells by using the insert_mv_cells command. This command
use the strategies defined in the UPF file, when inserting these cells. Using the various
options of the insert_mv_cells command, you can choose to insert only the isolation cells
or only the level shifter cells, or both. By default, the command inserts both isolation and
level-shifter cells. You can use this command on both RTL and gate-level designs.

When inserting isolation and enable level-shifter cells, the naming convention of the inserted
cells is specified as follows:

<name_prefix>_snps_<power_domain_name> <isolation_strategy name>_ snps_
<pin_name>_<instance_index>_<name_suffix>

Chapter 11: UPF Multivoltage Design Implementation
Support for Well Bias 11-70

Power Compiler™ User Guide Version L-2016.03-SP4

For enable level-shifter cells with both a related isolation strategy and a level-shifter strategy,
the isolation and level-shifter prefix and suffix are added to the new name. The new naming
convention for these enable level-shifter cells is as follows:

<levelshift_prefix><isolation_prefix>_snps_<power_domain_name> <isolation
_strategy name>_snps_<pin_name>_<instance_index> <isolation_suffix><level
shift_suffix>

There is no change in the naming of level-shifter and retention cell instances.

The insert_mv_cells command inserts the power management cells in the following
order:

1. Repeaters or buffers
2. Isolation cells

3. Level-shifter cells

4

Enable level-shifter cells. Based on the requirement, replace the isolation cells by enable
level-shifter cells.

Table 11-6 summarizes the command option and command sequences that can result in the
insertion of enable level-shifter cells.

Table 11-6 Command Sequences and Enable Level-Shifter Cell Insertion

Command option and sequence Enable level-shifter cell inserted?

insert_mv_cells -all yes
insert_mv_cells -isolation -level_shifter yes

insert_mv_cells -isolation yes
insert_mv_cells -level_shifter

insert_mv_cells -level_shifter yes
insert_mv_cells -isolation
insert_mv_cells -level_shifter

insert_mv_cells -level_shifter no
insert_mv_cells -isolation no
insert_mv_cells -level_shifter no

insert_mv_cells -isolation

Note:
You must uniquify your design by using the uniquify command before inserting the
power management cells. Otherwise, Power Compiler issues an error message.

Chapter 11: UPF Multivoltage Design Implementation
Inserting Power Management Cells 11-71

Power Compiler™ User Guide Version L-2016.03-SP4

Reviewing the UPF Specifications

After specifying the power constraints using UPF, you can review the design using the
commands or using the GUI.

Commands to Query and Edit Design Objects

To query and edit design objects, use the following commands:

e find_objects

The command finds logical hierarchy objects within the specified scope and returns the
hierarchical names that match the specified criteria. The command returns a null string
when nothing matches the specified search pattern.

¢ Query commands

To query the UPF objects, use the following commands. The query is resolved when the
command is executed, and the result of the query is used by Power Compiler.

query_cell_instances

Returns a list of instance names for all instances of a given reference cell in the
current scope of the design.

query_cell_mapped

Returns the reference cell name of a given cell instance.

query_net_ports

Returns a list of ports logically connected to a specified net. By default, the command
returns only the ports present at the level of the current scope.

guery_port_net

Returns the name of the net logically connected to a specified port, if any such net
exists.

guery_port_state

Returns information about the port states that have been previously defined using the
add_port_state command

query_pst

Returns information about the power state tables previously defined with the
create_pst command

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications 11-72

Power Compiler™ User Guide Version L-2016.03-SP4

e query_pst_state

Returns information about the states that have been previously defined with the
add_pst_state command

* query_power_switch

Returns information about the power switches previously defined with the
create_power_switch command

* guery_map_power_switch

Returns information about the power switch library cells previously mapped to the
UPF power switches with the map_power_switch command

» Editing commands

The editing commands are not written in the UPF file written by the save_upf command.
However, the changes to the netlist are available in the Verilog and VHDL netlist written
by Power Compiler.

e connect_logic_net
e create_logic_net
* create_logic _port

For more details, see the command man pages.

Reviewing the Power Intent Using the Design Vision GUI

The Power menu in the GUI allows you to specify, modify, and review your power
architecture. It also lets you view the UPF diagram and examine the UPF specification
defined in your design.

If you have not defined the power intent for your design, see Defining Power Intent in UPF.

If you have already defined the power intent for your design, the Visual UPF dialog box
displays the details of your power specification. Using the Power Domains and Power
Domain Properties sections, you can edit the power definitions: add new components,
redefine the association of the hierarchical cells with the power domains, delete a power
domain, and so on.

To open the Visual UPF dialog box,

¢ Choose Power > Visual UPF

When you open the Visual UPF dialog box, the Visual UPF appears, as shown in the
example in Figure 11-3.

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications 11-73

Power Compiler™ User Guide Version L-2016.03-SP4

The Visual UPF views that show your power intent are
e Design or Logic Hierarchy View

Select the Design Hierarchy tab to view the logic hierarchy of your design, as shown in
Figure 11-3.

e UPF Diagram view

Select the UPF Diagram tab to view the pictorial representation of your power definitions
as shown in Figure 11-30.

Figure 11-30 UPF Diagram View in the Visual UPF Dialog Box

Design Vision - TopLevel.1 (ChipTop) - [UPFDiagram.1]
% File Edit Wiew Select Highlight List Hisrarchy Design Attrbutes Schematic Timing

_,J;"Hg J@@@ 3 i | »;_Bn._HE]ﬂpTa].'l || RE3] 4_@

%

| T Hisrl

de_shel 1 qui
Current desion iz "ChipTop'.
Current desion iz "ChipTop'.

Log | History Options: ¥|
- de_shell= ||

R:n;iy [| m»

UFFDdagram. 1 E
A
—

UPF Diagram Tab

Chapter 11: UPF Multivoltage Design Implementation

Reviewing the UPF Specifications 11-74

Power Compiler™ User Guide Version L-2016.03-SP4

* Power Hierarchy view

Select the Power Hierarchy tab to see the power hierarchy of your design. Figure 11-31
shows the Power Hierarchy view of a design.

The Power Hierarchy view has two sections. The section on the top shows the hierarchy
tree with the connections between different power objects. The section at the bottom
shows more details and properties of the object that you select in the top section.

Figure 11-31 Power Hierarchy View in the Visual UPF Dialog Box

Power Domains I Supply Sets I
Mame S l Type L
=- EI ChipTop Scope Create I Delete
- TOP Power Domam
E-| B muwtipuer Scope
S8 3] nMULT Power Domamn L2ty
e it s Power Switch GFRS =
(8] mult iso_out Izolation Strategy -
=M wes Supply Met
Fa D i ert
--'@'UEE Supply wer Domain Properties
~[N vDDMs Supply Net Creats: 7| Delete I
~In vDDM Supply Met
- -@- VDDM Supply Port Froperty I\r.:ﬂue
= VDD [Port Mame TOP
~Br upply —Top o
) D huinpler Element Scope ChipTap
E GEMFE_PD Power Domam Elements
Frimary Supply Set
= A=+l mult_le bath Lewel Shifter EII‘itl‘:I £ Primary Power YLD
ii ITTETTRTTRTT] I b E mar? Grm-mlj- VSS
= [Secondary Fower VDDI
Secondary Power VDDM
i t Pa Do air
| Rt wer o :I ¥ Secondary Power VDDIS
[Socondary Power WVDDG
! Name MULT = Switch nst sw
T
| Scope Mulbplier
i | »
! Element Mulbiplier _I
[
i Frimary supply set Power State Table
Creata tate table
Deslgn Hierarchy] Dilagram Power Hisrarchy E 1 Ilr L
Reset | Save Script As. I | oK I Cancel I Help

Chapter 11: UPF Multivoltage Design Implementation

Reviewing the UPF Specifications 11-75

Power Compiler™ User Guide

UPF Script view

Version L-2016.03-SP4

Use the UPF script tab to view the UPF script for your power definitions. Figure 11-32
shows the UPF Script view. The various colors used in the script help in differentiating
the UPF commands and the power objects.

Figure 11-32 UPF Script View of the Visual UPF

Visual LIPF

25

26

27

28

23

L]

31

iz

33

34

33

kL]

37

k1]

ig
40

HDomain: INST
create power_domain INST
slements [InstDecods]

create spupply net VODI -domain

INET -reuse

create supply net VE5 -domain INST
"EEALES

creates supply net VDDIE -domain

INET
set_domain_ egupply net INET -
primary poldser net YDDIS -
groumd net V88
set_isolation inst_iso out
INST

= b=l]

BE LMATY" |

domain

-ipolation_power net VDD
-i@olation ground net VS8 Y
-olamp valus 1Y
appliss to outpute
get_ilsclation_control inet_lso_out
INST Y,
-igolation aignal

-domain

inzt igo out Y
igolation sense loW "|,'
location parent
get_isoclation inet_isg_in -domain
INST

=

irmﬂl Mwl Power Hierarchy = UPF Script I'l »

Reset I

Power Domains | Supply Sets |

Cl.'ﬂml

Delete |

INST
GPRE

.

Power Diomain Properties

Create:; :! Delete |
Fropearty IV-u]J.lu
- MName TOP
- Tep e
Scope ChipTep
Elements
- Frimary Supply Set
= Primary Power VoD
F Primary Ground vas
[# Secondary Power VDDI
*# Secondary Power VDDM
= Sacondary Power VDDIS
= Secondary Power VDDG
B Switch inst sw

|

Power Stake Table

Save Seripk As I OK I

cancel |

[T Create power state table

Help

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

11-76

Power Compiler™ User Guide Version L-2016.03-SP4

e Error and Warning view

The Error/Warning tab in the Visual UPF view becomes active when your modifications
cause errors or warnings as shown in Figure 11-33. When there are no errors or
warnings, this tab is disabled. You can see the details of the error and warning messages
in this view.

Figure 11-33 Error and Warning View in the Visual UPFDialog Box
U

Power Domans

Tyvpe | Cheseription |
Inpui supply pori "n” of power swich ANST_sw” n doman AAST® is no connected 10 Craans Dalmg
[
any =upphy nei
O slame “en_slale® of powsr swich “IMST_sw® in demain “INST® does nm spacdfy & TOF ™

bookean Tunclian
Isclmiion =raiegy “TOP_io® of Domain "TOF define= olton wihon specfvng coniral

Warnng signal GPRE
Warnng Supply port VODI" n Doman “TOP® does not have any simes defned Mukipha dGENPF_PD
Warnng Supply port VOOKM® n Doman “TCOP® does no have any sigies deined Muliphar®LLT

Power Doman Fropemes

Craata: =] Delate
Pragerly Valig 1:
Mama IMET
Teg Takie
Seape ChisTap
Rlamenis InuDes o
B Primiary P VOOIS
B Primary Ground VS
B Gecnndary Power Woo
B Swaich IMST_swg
B Dulpul Supply
Pari aul
Mui WO
B Inpul Supphy
Pari n
Hei
B Cifl Signal -
Fer| cirl
1] nEi_on
E-On Stabe
Hame on_state
Fari n =l

Poaar Srare TaMa

[Creala powar siae rabla

Dasign Higrarchy | Ciagiam i Poavas Higrarchy | UPF Seripn Eron®aming [2"3:1!

Resei Save Scopl As || aK ; Cancel | Help i
1

Applying the Power Intent Changes
After defining or modifying the power intent, you can do one of the following:

« Save the power intent as a UPF script

Click the Save Script As button to save the power intent script in a file. The file is saved
in ASCII format, as a UPF file, but the power intent is not applied to the design database

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications 11-77

Power Compiler™ User Guide Version L-2016.03-SP4

of the tool. You can run this script either in the batch mode or interactively, to apply the
power intent.

This feature can be useful when your changes are not yet complete, and you have to
save it for a later use. It can also be useful when you have to edit the file before running
it. For example, when you create a power state table, all the possible power states are
populated in the table. Before running the script, you must edit the script to remove or
comment the states that are not required.

« Apply the power intent to the design database

Click OK to apply the power intent in the Power Compiler design database. Until you click
OK, power intent specifications are only contained in the Visual UPF dialog box and do
not affect the design database.

Examining and Debugging UPF Specifications

To perform multivoltage-specific checks at various stages of synthesis of your multivoltage
designs, use the check_mv_design and the analyze_mv_design commands:

In addition, the check_library command in Library Compiler supports specific checks that
are useful in the UPF Flow. For more details, see the Library Checking chapter in the Library
Quality Assurance System User Guide.

The check_mv_design Command

To check for design errors, including multivoltage constraint violations, electrical isolation
violations, connection rules violations, and operating condition mismatches, use the
check_mv_design command.

MV Advisor GUI

The MV Advisor violation browser provides a visual analysis and debugging environment for
multivoltage design violations. You can check the design for issues such as multivoltage
constraint violations, electrical isolation violations, connection rule violations, and operating
condition mismatches. After checking a design, you can use the violation browser to
examine the violation report.

To open the MV Advisor violation browser,

¢ Choose Power > MV Advisor.

The violation browser automatically loads the current violation report if a valid report is
available for the current state of the design. If a valid report does not exist, the violation

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-78

Power Compiler™ User Guide Version L-2016.03-SP4

browser provides links that you can use to load a saved report or generate a new report,
as shown in Figure 11-34.

Figure 11-34 Violation Report When a Valid Report is Not Available

EAnyviolationsBrowser 1

FH<s @

There is no current report.

Flease open a repott or open
check my design dialog

The violation browser groups the violations based on specific properties, displays detailed
information about the violations, and guidance for investigating and fixing them. When you
select a violation, the violation browser displays details such as an explanation of the
warning or error message and suggestions for fixing the violation.

The violation browser also provides access to context-aware reports and other analysis
tools. You can

» Select pin names and view information about the pins
« Display man pages (in the man page viewer) for warning and error messages

* Visually inspect a violation by displaying it in a schematic view

You can display the report for an individual violation in a new instance of the Design Vision
window that serves as a debugging work environment.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-79

Power Compiler™ User Guide Version L-2016.03-SP4

You can check the design for violations before or after you open the violation browser. To
check the design before opening the violation browser, use the check_mv_design
command. When the violation browser is open, you can use the Check MV Design dialog
box to check the design.

Checking for Design Violations

You can analyze multivoltage design problems by checking the design for errors and
generating a violation report that you can view in the console log view and save in a file. You
can check the design at any time by using the check_mv_design command. For more
information, see the man page. When the MV Advisor violation browser is open, you can
check the design by using the Check MV Design dialog box.

When you check the design, the tool creates or updates the current violation report by
default. If you do not specify a file name, the tool stores the current report information in a
temporary file until the end of the current session. If you specify a file name, the tool saves
the report in an XML file and also creates an XSLT file with the same name with a .xslt
extension. The XSLT file contains auxiliary information that is required when you view the
violation report in a Web browser.

The MV Advisor violation browser supports the violations listed in Table 11-7. The
check_mv_design -output command identifies and reports several other issues and these
are not supported by the GUI for reporting and fixing details.

Table 11-7 Violations Supported by MV Advisor

LIBSETUP-001 LIBSETUP-00la LIBSETUP-001b MV-038 MV-044 MV-076 MV-078

MV-166 MV-168 MV-168b MV-231 MV-23la MV-231b MV-232c
MV-232| MV-237 MV-252 MV-513 MV-514 MV-514a MV-514b
MV-516 MV-529 MV-534 MV-545 UPF-067 UPF-103

Violation Groups

The violation browser groups the messages based on the source domain-sink domain pair
in the first level and the driver pin in the next level, as shown in Table 11-8.

Table 11-8 Messages Grouped by Source Domain and Sink Domain Pair

Message ID Description

MV-231 Level-shifter violations
MV-231a
MV-231b

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-80

Power Compiler™ User Guide

Table 11-8 Messages Grouped by Source Domain and Sink Domain Pair (Continued)

Message ID Description

MV-237
MV-252
MV-513
MV-514
MV-514a
MV-514b

MV-545

Paths with voltage violations
Missing level-shifting violations specified with the -no_shift option
Redundant isolation

Missing isolation violations

Missing isolation violations with the -no_isolation option

The violation browser groups the messages shown in Table 11-9 based on the power
domains where the cells or nets are located.

Table 11-9 Messages Grouped by Power Domain of the Violating Cells or Nets

Message ID

Description

LIBSETUP-001 Cells with mismatched operating conditions
LIBSETUP-001a
LIBSETUP-001b

MV-044
MV-076
MV-078
MV-166

MV-168,
MV-168b

MV-232c
MV-232|

MV-516
MV-529

UPF-067

Isolation cells used as a core cell
Always-on nets driven by a normal cell
Always-on cells driving a normal net
Retention cells without a strategy

Isolation cells without a strategy

Level-shifter with violations

Back-to-back isolation cells violation
Unused power management cells

Undetermined PG pin connection

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Version L-2016.03-SP4

11-81

Power Compiler™ User Guide Version L-2016.03-SP4

In addition, the violation browser groups
« MV-038 warning messages under one title and without multiple levels of groups

* MV-534 messages based on the driver pins

MV-232c messages based on the power domains in the first level and the power supplies
in the next level

MV-516 messages under one title and without multiple levels of groups

UPF-103 messages based on the ignored strategy

To generate or update the current violation report,

1. Click the =7 | button to run the check_mv_design command and load the report in the

MV Advisor violation browser. The Check MV Design dialog box appears as shown in
Figure 11-35.

2. Select or deselect the check type options as needed, to perform the required checks.
The tool performs all the checks by default.

3. Select the “To file” option.
4. (Optional) Specify a file name, to save the report in a file.

5. Click OK or Apply.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-82

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-35 Check MV Design Dialog Box

B mvviolationsBrowser.1

Check MW Design

—Check types
¥ isolation W opcond mismatches W target library subset
¥ connection rules V¥ power nets W level shifters

W clock gating style

™ Tofile: | Erowse..

| __peply |j

The Web browser report groups the violations in the same way that the MV Advisor violation
browser groups them. However, the Web browser displays only the violation list, the
information in the violation category tree in the violation browser. It does not display the
detailed report information for each violation that the violation browser displays.

To open a violation report in your Web browser,

¢ Open the XML file in a Web browser window.

The XSLT file must be present in the same directory.

Examining Design Violations in the MV Advisor Violation Browser

The MV Advisor violation browser provides a visual analysis and debugging environment for
design violations in a multivoltage design. You can search for and view information about
several types of multivoltage design violations. When you select a violation, the violation
browser displays details about the violation and guidance about how to proceed in
investigating the violation.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-83

Power Compiler™ User Guide

The violation browser view window consists of a button bar at the top and two panes: a

Version L-2016.03-SP4

violation category tree on the left and a report view on the right.

* The violation category tree groups the violations into types, categories. and

subcategories.

You can use the expansion buttons in the category tree to expand or collapse individual

types, categories, and subcategories.

* The report view displays information about the type, category, or violation that you select

in the category tree.

Figure 11-36 shows an example of the MV Advisor Violation Browser with a violation
selected in the category tree and the violation report in the report view.

Figure 11-36 The MV Advisor Violation Browser

Buttan bar Category tree Wialation report
B /remotefus0lhome28/pbon:
2A< @
Title Count |[escription analyze mv desian fl
B & MV-231 1827 Level shif.., . libr d I
a4 816 ”!@'ﬂmnﬁ--- schematic report pst
;- 64 Violations,., eport_supply net PF
;A 512 Violations... :
diagram Wisual UPF

= 5
& S
= 5
Bk S
B NS
3 5
5

Sl |

i B Violations...
B- i 1 Vidlations...
= 1 Viplations..,

208 violations.., :
128 Violations.., :

Bk S, 32 Viplations..,

MV-231 (warning) Pin

alid_reg/Q'(VDDIS[HV,H
VB,LV,LVB,OFF]) cannot .
o

J| |

Expansion buttons Selected violation

The buttons on the button bar at the top of the view window allow you to

e Open another violation report

» Save the violation report you are viewing

« Generate or update the current violation report

» Display the report for the selected violation in a new Design Vision window, where you
can use other analysis tools to debug the violation

Chapter 11: UPF Multivoltage Design Implementation

Examining and Debugging UPF Specifications

11-84

Power Compiler™ User Guide Version L-2016.03-SP4

To help you to evaluate the status of violations through the design flow or to compare the
reports from different design checks, you can open more than one report at the same time.
When you open a report file, the violation browser compares the design name and the
number of cells with the netlist in the current design, and displays a message if it finds any
inconsistencies.

Note:
The Design Vision GUI supports detailed reporting of how to debug and fix violations for
a subset of the issues identified and reported by the check_mv_design -output
command. For information about the checks supported in the MV Advisor violation
browser, see Checking for Design Violations.

Exploring the Violations

To analyze and debug a violation, you can open the report on the Browser panel in a new
Design Vision window. By default, the Browser panel is attached to the left side of the
window. You can use the workspace area in this window to debug the violation by clicking
links at the top of the violation report to generate and display other reports and open analysis
views such as a schematic or UPF diagram view.

To explore the violation categories and view the violations within each category, do the
following:

1. Expand violation categories, showing the subcategories or violations at the next level in
the category tree.

To expand or collapse a violation category, double-click its line in the category tree or
click its expansion button in the Type column.

As shown in Figure 11-37, a plus sign on the expansion button means the category is
collapsed. A minus sign on the expansion button means the category is expanded.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-85

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-37 Detailed Report in the Report View

%Eile Edit View Select Highlight List Hierarchy Design Attribute=s Schematic Timing » —IEIEI

Hﬁ'l:l%| H@@@ U@ J_| |m | }}“}}ulsimple TI“@}}

—
'}
| =&
g e
Title Count De=cription
@ E} m gnalyze mv design report mv library cells A
L i U EEE] Sikos schematic repod pst report supply net FE
{'E'\ E} -"!" So.. 1 Wiolation... diadgram Mizual UPF
= (S .| Viglation...
* _ IH- 1 fwarning: ... MV-231 {warning)} Pin
B Se. s T ‘uljoutl UPF_IS0/Z'(VDD[1.03v]} cannot
L i SR drive "u2/U4,/B'(VGG[0.84v]} due to volage
B b mesiz 1 e dunda. differences {effective strategy is [rule =
/ - sdunda... undefined, threshold = 0.00]).
E This message is printed when the driver pin cannot drive
S |the load pin due to a woltage wiolation. This means that
S | driver and load pins operate at differentvoltages. & cell
with an undefined power state is considered different to
all supplies.
Debunging Help
Library Check
Path Check
UPE Check =
4”I T | >
IE Hier.l % MyWiolationsErowser.2 |
Feady | I I Elr <5

2. Select a violation type, category, or subcategory tree to display information about it in the
report view.

When you select a violation type, the report view displays the generic violation message
and the number of violations of that type found in the design as shown in Figure 11-37.

When you select a violation category or subcategory, the report view displays the generic
violation message, the number of violations in the category, and the location of the
violations.

3. Select a violation in the category tree to display a detailed report about it in report view,
a shown in Figure 11-37.

When you select a violation, the report view displays the warning or error message, a
brief explanation of the message, and a detailed description of the violation that includes
debugging information and suggestions for fixing the violation.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-86

Power Compiler™ User Guide Version L-2016.03-SP4

The links at the top of the report view allow you to run various report commands and
other features of the tool.

O

®)

®)

To run the analyze_mv_design command and display the level shifter report in a
report view, click the analyze_mv_design link

To run the report_mv_library_cells command and display the library cells report
in a report view, click the report_mv_library_cells link

To run the report_pst command and display the power state table report in a report
view, click the report_pst link

To run the report_supply_net command and display the supply net report in a
report view, click the report_supply_net link

To view the violation in a schematic, click the schematic link
To open a UPF diagram view, click the UPF Diagram link

To open the Visual UPF dialog box, click the Visual UPF link

In the warning or error message, click the pin name to select the pin. In the detailed
report, you can click the links to run commands and access useful features of the tool.

You can use the arrow keys on the keyboard to scroll through the report view. To scroll
up or down, press the Up Arrow key or the Down Arrow key. To move to the top or bottom
of the view, press the Page Up key or the Page Down key.

Figure 11-38 shows an example of the debugging environment provided by the Browser
panel in a new Design Vision window. For example, after displaying the violation report on
the Browser panel, you can click links at the top of the report to display the violation in a
schematic, open the UPF diagram view, and see the reports in report views.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-87

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-38 Violation Report on Browser Panel in a New Window
Browser panel Path schematic UPF diagram

W - U evel J 0T B o
Ba Edt \ew Salact o
- H 3

: Iming Test Power |Window g

¥ T

& EiyIE_MY_Oshig
[EC-of_me DOy =)
g1y [i
ERRIS LR R,
=g 3m] ESEL R

MY.23]1 (warning) Pin
‘InstDecoda/MemWrn
e¥alld_reg/D (VDDIS]
HV.HVE,LV.LVB.OFF])
cannol drive
‘MemiiriteValid (vDD[
HV.HVR]) dua to PST
voltage range
differences {effective
sirategy iz [rule =
undefined, threshold

i PGS SR 1B DOMEED WhE
i i il o dhi o ;
adprdielcavolage Hlsevsssremarasnssamansrsnnsrsnisrevnaees _J
VIOHIDON Th :" x iln‘-' SanTe = _desien level skitex L
¥ "'__ md b e 1. redioy F 0% - BETL
- .- . A G % -t = Pri 31 -
W B LA By BT
e pailarad AR i oivimonasvistivstivmmaneitrobieds
DL, el Enitver Aralysls 1
j fzam ar L= 3 11,1 Wt Dot Sikd MEEwT el jd ey e load pin AEENTITEVA,
| | | e Ll s AL TP
Erary Check Lirter M -ls t kinge _]:|
Bach b v} " J L
L —"_. AT Chip T _'I' ¥ LFaaram] - Bano 1 J"
e] Lb
Tabhs analyze_mv_deasign report

The tool maintains a single, current repository for the multivoltage design violations that you
can view in the MV Advisor violation browser. If you update the violation report that you are
viewing, the tool automatically refreshes the report information in the violation browser.

If you view an out-of-date report in the violation browser, or if a change that you make in the
design invalidates the report that you have open in a violation browser window, the term
“Out-of-date” appears in the window title bar. In addition, the violation browser restricts
hyperlinks in an out-of-date report when a link action might update the design or manipulate
design objects. If you click a restricted hyperlink, the tool displays a warning and prompts
you to continue or cancel the link action, as shown in Figure 11-39.

Reports, schematics, the UPF diagram, and the Visual UPF dialog box all work with the
up-to-date design. Commands that operate directly on an element reported in a violation,
such as the report_net command, can cause an error if the element no longer exists in the
design due to a previous action. Hyperlinks that are not restricted include internal HTML
jumps, man page links, and links to preview commands.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-88

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-39 Out-Of-Date Violation Report Warning

= Hs @
Title Count Descr ; f’
[:.s'- MV-231 1827 Lev...

B A S.. 32 viol...

"“: 5. gg ‘J!o:... report_supply net UPF

E:'- g ; $|3I diagram Visual UPF

L d Out-of-date violation report

This hyperlink may not work correctly because the

designfpower state has changed since this report was
generated.

Do you want to continue ?

Yes

L 2

The analyze_mv_design Command

The analyze_mv_design command reports path-based design details of a multivoltage
design that can be useful in debugging multivoltage design issues. The report contains
details of the variable settings for level-shifter insertion and always-on buffering, relevant
power state tables, the driver-to-load pin connections, the pin-to-pin information on specified
paths, the target libraries used for insertion of power management cells, and other useful
debugging information. You can also run this command in the GUI and see the issues
identified, in the schematic. For more details, see Analyzing Multivoltage Design
Connections in the GUI.

For more information, see the analyze_mv_design command man page.

Analyzing Multivoltage Design Connections in the GUI

You can use the Analyze MV Design dialog box to analyze your design for
multivoltage-specific connectivity issues. The analyze_mv_design command runs
internally and displays the result in a new view.

To open the Analyze MV Design view, choose Power > Debugging > Analyze MV Design.
The Analyze MV Design dialog box appears as shown in Figure 11-40.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications 11-89

Power Compiler™ User Guide

Figure 11-40 Analyze MV Design Window

Version L-2016.03-SP4

_‘4----' . = .: - Ve 1 - TR . | iz J

kﬁm%immeWﬂ'@mwmmmw e L
Eﬂn9| |J CEOROE R IJ" - |n|”l-u|'&1‘mﬂh€1‘c? H."‘ @

r,l.. Lomical Misr |C=Ds | Hierarchical) =l
- --:Dn:r Coll Mame | er Hame | cen pam | Dont Touch _i
4’ D HDI STACK F_ SMPS CLOCK [STACK FSM _undefmed
o o Ty T
& B Do s
al| 9 [pig] [ANsmsbwe
g (D1 D13s| | F Level Shifter © Always On

L. B s '
=B, B s

DL ﬁ”:ﬁ From Pin [U300/Z EI
D ghns

D EI.’I_‘!: Ts P |1_|'293.'.!|.2 EI

Tarpet Mt | EI

ox; I cancel |

R Hier 1 [= Analyze MVDesign 1 |
Repopulating Est. [| | =» 4

Use the dialog box to choose the type of analysis to perform, either level shifter or always
on. You can also specify the From Pin and the To Pin, where the checks have to be
performed. When you click OK, the tool runs the analyze_mv_design command.

The report of the analyze_mv_design command is displayed in a new view, as shown in
Figure 11-41. The report contains details of level-shifter violations.

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

11-90

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-41 Report View of the Analyze MV Design Window

i_' |Design Vision — TopLevel.l (STACK_TOP) — [analyze_mv_desian —level_shifter —from_pin iU] L
%% Flle Edit Wiew Select Highlight List Hierarchy Design Abiributes Schematic Timing Test Power Window » =|&| [}
@& ||® @@ a@E|* * | » |l s lfsmckTor & e @
[, -
7 .
e
]
i Report @ analyze_my_design -lavel_shifter
Verzion: E-2010.12
Date :FnNov 12 05:03:48 2010
Level shifter analysis (171)
from drver pin 'U305/2', to load pin 'U253/42"
Laval shifter Analysis - sattings
Lewvel Shifters on clock nets: all
Lavel shifters on constants: TRLE
Lewvel Shifters on top nats: TRLE
Lewvel Shifters ignore woltage range: FALSE
| ewel Shiffers ionore IRT: Fal SF ;I
_i. Hierl Ié AnalyzeMVDesign 1 & AnalyzeMVDesign.3 I
Feady | |—J = e

The report also contains a hyperlink to the schematic; when you follow the link, the

schematic shows design objects that are specific to the reported issue, as shown in
Figure 11-42. In the schematic, you can

Create a collection of the power supply nets connected to one or more pins
View a list of the ground supply net connections for one or more pins
* View a report of power pin information for one or more cells

* View a report of PG pin library information for one or more cells

Chapter 11: UPF Multivoltage Design Implementation

Examining and Debugging UPF Specifications 11-91

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-42 Schematic View of Analyze MV Design Window

= Design Vision — TopLevel, 1 (STACK_TOP) — [Schematic.2 STACK_TOP] -]

File Edit Yiew Select Highlight 'L.;i.'.-t_ Hierarchy J_ll::-i.un _E.th‘i.]:lutcs Schematic Timing Test Power Window » -_3'
<HS |la@aa - » || i »| [sTack Top | & &) @
|
&
@
&
S
|"'_]
U293
200 \2 NR2DO
U500 -
PTINVDAHW
| T Hierl | 24 anayzeMvDesigm1 | & analyzeMvDesign 3 Schematic 2 STACK_TOP |
Zlick objects or drag a box te selact (Held Cirl to add, Shift to remowe) |

Writing the Power Information

The power information updated by Power Compiler during synthesis can be written out with
the save_upf command. This UPF file written by Design Compiler is referred to as the UPF’
file to distinguish it from the UPF file that you use to synthesize the design. The UPF’ file is
used as input to the downstream tools, such as IC Compiler, PrimeTime, PrimeTime PX, and
Formality.

The additional information in the UPF’ file are
* A comment on the first line, as shown in the following example:

#Generated by Design Compiler(E-2010.12) on Thu Oct 28 14:26:58 2010

« Explicit power connections to special cells such as level shifters and dual supply cells

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information 11-92

Power Compiler™ User Guide Version L-2016.03-SP4

» Additional UPF commands specified at the command prompt in the Design Compiler
session

If you specify UPF commands at the command prompt, along with the RTL file, update
the UPF file with these commands. This update is required for Formality to verify the
design successfully.

The UPF standard requires a simple name for the argument of certain UPF commands. By
default, Power Compiler does not check for this requirement. To check that this requirement
is met in the UPF file written by the save_upf command, set the
mv_output_enforce_simple names variable to true.

Preserving the Command Order in the UPF’ File
To improve the clarity of the UPF’ file, the tool

* Writes the user-specified UPF commands and tool inserted UPF commands in separate
sections

e Lists the commands in the user-specified section in the order they were specified

To distinguish the user-specified UPF command section from the tool-generated UPF
command section, the sections are separated by the derived_upf variable setting.

The beginning of the tool-generated section is marked by the following setting:

set derived_upf true
#Design Compiler added commands

The end of the tool-generated section is marked by the following variable setting:

set derived_upf false

Do not explicitly set the derived_upf variable to either true or false. Use of this variable
is restricted to the tool.

If the RTL design contains PG information, the UPF commands generated by the
convert_pg command are listed in a separate section, marked by the following comments:

Commands created by “convert_pg”

End of commands created by "‘convert _pg"

When a UPF’ file is read into Power Compiler and another UPF’ file is written, the command
order is preserved in the newer UPF’ file. The file contains the user-specified UPF command
and the tool generated UPF commands in separate sections.

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information 11-93

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
This feature is not supported in a hierarchical flow. If you use this feature in the
hierarchical flow, Power Compiler issues the UPF-401 information message.

Example 11-6 shows the UPF’ file written out by Power Compiler.

Example 11-6 UPF’ File Generated by Power Compiler
#Generated by Design Compiler

create_power_domain PDT
create_supply _net SN1 —domain PDT
create_supply_net SN2 —domain PDT

create_power_domain PDC —elements {ABC}
create_supply _net SN3 —domain PDC

set derived_upf true

#Design Compiler added commands
connect_supply net SN1 —ports {PORT1}
connect_supply _net SN3 -ports {PORT2}
set derived_upf false

Controlling the Line Width in the UPF’ File

When the save_upf command writes the commands into an output file, by default,
commands with several arguments are not split into multiple lines. To simplify the format of
the output file for ease of use, you can control the line width of the file by using the following
variables:

e mv_output _upf_line_width

Use this variable to control the line width in the UPF file written by the save_upf
command. The default of this variable is 0, indicating that the save_upf command does
not split long lines over multiple lines.

Set this variable to a positive integer to specify the width of each line. Lines that are
longer than the specified value are split and written on multiple lines. When a line is split
over multiple lines, the end of each incomplete line that continues on the next line is
marked with a backslash character (\), as shown in Example 11-7.

When the line to be split does not have a space up to the specified limit, the tool allows
the line to exceed the limit; the line is split at the first space after the specified limit.

e mv_output _upf_line_indent

Use this variable to specify the number of spaces to indent at the beginning of each line
continuation. The default of this variable is 2 which means, the save_upf command
indents 2 spaces at the beginning of each continuing line.

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information 11-94

Power Compiler™ User Guide Version L-2016.03-SP4

Example 11-7 shows the UPF file written by the save_upf command, when the
mv_output_upf_line_width variable is set to 30 and the mv_output_upf_line_indent
variable is set to 3.

Example 11-7 UPF’ File Written With Line-Splitting Enabled

set mv_output_upf line_width 30

set mv_output_upf_line_indent 3

set_port_attributes -ports \
{instA/power_port} \
-attribute snps_derived

Note:
Power Compiler issues error messages if you set any of these variables to a value less
than 0.

Writing and Reading Verilog Netlists With Power and Ground
Information

The Power Compiler tool supports the writing and reading of Verilog netlists containing the
complete power and ground (PG) supply connection information, including supply
connections to the leaf-level library cells.

To write out a Verilog netlist with the completePG supply connection information, use the
-pg option of the write_file command. For example,

dc_shell> write_file -format verilog -pg output top_with _pg.v

When you read in a Verilog netlist with the complete PG supply connection information using
the read_verilog -netlist command, the tool automatically recognizes and restores the
PG supply connection information stored in the netlist. If there are any conflicts between the
Verilog netlist and the connect_supply_net commands in the UPF file, the tool reports the
differences as errors.

Power and Ground Supply Connection Syntax

When you specify the power and ground connections in a Verilog module, the Verilog netlist,
PG supply connections use the same syntax as the logic signal connections. For example,

module test (A, Z, VDD, VSS);
input A, Z;
input VDD;
input VSS;

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information 11-95

Power Compiler™ User Guide Version L-2016.03-SP4

When power and ground nets need to cross over levels of the Verilog hierarchy that do not
have corresponding crossovers in the UPF hierarchy, the tool punches ports to carry the PG
nets into the lower levels of the hierarchy, as in the following example.

// VDDINT is not used in any leaf cells in “top”
module top (A, Z, VDD, VSS, VDDINT);

input A;

input VDD;

input VSS;

input VDDINT;

output Z;

mid M1 (.ACA), .Z(Z), .VDDINT(VDDINT), .VSS(VSS)):

module mid (A, Z, VDDINT, VSS);

The tool does not punch ports at the top level. If a supply net drives a cell at the top level,
but the net is not explicitly connected to a supply port or a supply set function defined in the
UPF file, the supply inputs to those cells are undriven wires.

Each module net has the same name as the UPF supply net corresponding to the PG supply
net. Because the names of the supply net does not need to match the name of the supply
port, the tool uses the following syntax for the supply net:

// corresponds to UPF statement:
// connect_supply_net VDDINT —ports VDD
module test (A, Z, .VDD(VDDINT), VSS);

Each instance of a cell with PG pins shows the PG connections for the instance, including
the pin name and the name of the supply net connected to the pin. The supply pins appear
last, after the signal pins, as shown in the following example.

SIMPLE_PG_CELL Ul (.a(A), .z(Z), .VDD(VDDO), .VSS(VSS)):

COMPLEX_PG_CELL U1 (.a(A), -z(2), -vDD(VvDDO),
-VDDBACKUP(SNPS_ss_SS_Pi1$primary$power),
-VSSC VSS));

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information 11-96

Power Compiler™ User Guide Version L-2016.03-SP4

Supply Sets

If the UPF file uses supply sets or supply set handles, and these supplies are not resolved
to supply nets, the tool writes out the supply set definitions in the Verilog netlist. The supply
set definitions contain the SNPS_ss_ prefix and use the dollar character $ in place of each
period character that delimits the fields within a supply set identifier. For example,

module test (A, Z, .VDD1(SNPS_ss ssil$power),
-VDD2(SNPS_ss_pdl$primary$power),
-VSS(SNPS_ss_pdils$primary$ground));
input A, SNPS_ss_ssl$power,
SNPS_ss_pdi$primary$power,
SNPS_ss_pdi$primary$ground;
output Z;
wire VDDS;// switched supply

Power Switches

The Power Compiler tool does not instantiate power switch cells. However, power switches
have output supply nets that can power other cells. The tool writes out these supply nets

without drivers. For example,

module top(a, z, VDDA, VDDB, VSS);
input a;

input VDDA;

input VDDB;

input VSS;

output z;

mid M1(.aa), -z(z), -VDDA(VDDA), .VDDB(VDDB), .VSS(VSS)):

Module mid(a, z, VDDA, VDDB, VSS);
input a;
input VDDA;
input VDDB;
input VSS;
wire VDD_SW;
wire al;

SIMPLE_PG _CELL U1 (.a(a), -z(al), .vDD(VDD_SW), .VSSC VSS));
// The ports in the bot design are punched as follows:
bot B1 (.a(al), -z(z), -VDDA(VDDA), .VDDB(VDDB), .VSS(VSS),\
.vDD_SW(VDD_SW));

Chapter 11: UPF Multivoltage Design Implementation

Writing and Reading Verilog Netlists With Power and Ground Information 11-97

Power Compiler™ User Guide Version L-2016.03-SP4

The Power Compiler tool does not write out the PG nets and ports that do not drive any PG
pins of leaf-level cells. The power switch behavior is derived from the UPF description
provided with the PG netlist.

Reading Verilog Netlists With Power and Ground Supply
Connections

The Power Compiler tool requires PG connections to be represented in UPF format before
they can process the design. When the tool reads in a Verilog netlist containing power and
ground information, it matches the PG supply connections in the netlist to the UPF supplies
and convert these connections into UPF commands. If the tool finds any conflicts, error
messages are reported.

The Verilog netlist with PG supply connections must satisfy the following requirements:

« The netlist must contain a complete set of PG connections for all cells in the design,
including standard cells.

« The netlist must be created by a Galaxy tool with a valid UPF infrastructure.

« The PG connections must be intact as written by the tool, and not modified by the user.

Meeting these requirements ensures that every PG connection in the input netlist
corresponds to a UPF supply net as specified in the UPF files, and no new supply nets,
supply ports, or supply connections are needed.

The Formality and Verdi NLP tools use the PG Verilog netlist alone to represent the PG
connections of the design. These tools do not need to match the PG netlist to UPF supplies,
although they might extract other power infrastructure information from the UPF files.

Golden UPF Flow

The golden UPF flow is an optional method of maintaining the UPF multivoltage power intent
of the design. It uses the original “golden” UPF file throughout the synthesis, physical
implementation, and verification steps, along with supplemental UPF files generated by the
Design Compiler and IC Compiler tools. Figure 11-43 compares the traditional UPF flow with
the golden UPF flow.

Chapter 11: UPF Multivoltage Design Implementation
Golden UPF Flow 11-98

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 11-43 UPF-Prime (Traditional) and Golden UPF Flows

UPF-prime (traditional) flow Golden UPF flow
Golden UPF
RTL UPF RTL
Design Compiler Design Compiler
Power Compiler Power Compiler
| —m] h
4 4 4 v\
Gate-level UPF Gate-level Supplemental
netlist netlist UPF
IC Compiler IC Compiler
y y y A 4
Gate-level UPE" Gate-level Supplemental
netlist netlist UPF
v v v v
Verification tools Verification tools

The golden UPF flow maintains and uses the original “golden” UPF file unchanged
throughout the flow. The Design Compiler and IC Compiler tools write power intent changes
into a separate “supplemental” UPF file. Downstream tools and verification tools use a

combination of the golden UPF file and the supplemental UPF file, instead of a single UPF’
or UPF” file.

The golden UPF flow offers the following advantages:

e The golden UPF file remains unchanged throughout the flow, which keeps the form,
structure, comment lines, and wildcard naming used in the UPF file as originally written.

* You can use tool-specific conditional statements to perform different tasks in different
tools. Such statements are lost in the traditional UPF-prime flow.

« Changes to the power intent are easily tracked in the supplemental UPF file.

Chapter 11: UPF Multivoltage Design Implementation

Golden UPF Flow 11-99

Power Compiler™ User Guide Version L-2016.03-SP4

* You can optionally use the Verilog netlist to store all the PG connectivity information,
making connect_supply_net commands unnecessary in the UPF files. This can
significantly simplify and reduce the overall size of the UPF files.

To use the golden UPF flow, you must enable it by setting the following variable:

dc_shell> set_app_var enable_golden_upf true

After you enable this mode, to execute any UPF commands other than query commands,
you must put the commands into a script and execute them using the load_upf command.
You cannot run the commands individually on the command line or by using the source
command.

For more information about using the golden UPF mode, see SolvNet article 1412864,
“Golden UPF Flow Application Note.”

Reporting Commands for the UPF Flow

The following reporting commands are supported in Power Compiler. These are not UPF
standard specified commands.

* report_dont_touch

* report_power_domain

* report_level _shifter

* report_power_switch

* report_pst

* report_isolation_cell

e report_retention_cell

* report_supply_net

* report_supply port

* report_target library_subset

e report_mv_library cells

For more details, see the command man pages.

Chapter 11: UPF Multivoltage Design Implementation
Reporting Commands for the UPF Flow 11-100

https://solvnet.synopsys.com/retrieve/1412864.html
https://solvnet.synopsys.com/retrieve/1412864.html

Power Compiler™ User Guide Version L-2016.03-SP4

UPF-Based Hierarchical Multivoltage Flow Methodology

Design Compiler topographical mode supports flat, top-down, and bottom-up hierarchical
UPF design flows. These flows are also supported by Synopsys tools such as IC Compiler,
PrimeTime, and Formality. This section describes the UPF portion of the hierarchical design
methodology. For basic information about the hierarchical design methodology, see the
Design Compiler User Guide.

When you synthesize your design using the UPF-based hierarchical flow, specify the
voltage for each supply net. Also specify the timing constraints as recommended in the
SolvNet article 026172, “IEEE (1801) UPF Based Design Compiler Topographical
Technology and IC Compiler Hierarchical Design Methodology.*”

In the hierarchical implementation of a design, you first determine the physical partition.
Follow these guidelines while partitioning your design:

* The scopes of all power domains within a partition must be contained inside the partition.

« For all supply connections inside a partition, supply nets must be specified within the
partition.

* The partitions should not be nested.

Steps in the Hierarchical UPF Designh Methodology

To implement your design using the Design Compiler hierarchical UPF design methodology,
follow these two steps:

1. Block-Level Implementation

2. Top-Level Implementation

Each of these steps is described in detail in the following sections:

Block-Level Implementation

Creating the Blocks

Create the block-level and top-level UPF files for the design. To create the blocks, you can
use either the top-down approach or the bottom-up approach. The bottom-up approach is
preferable because this determines the smallest block that can be compiled independently.

When the individual blocks and the top are synthesized, you can assemble the design either
in Design Compiler or in IC Compiler. To assemble the design using IC Compiler, the tool
requires the complete design database for the design planning stage. For more details, see
Assembling Your Design.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-101

https://solvnet.synopsys.com/retrieve/026172.html
https://solvnet.synopsys.com/retrieve/026172.html

Power Compiler™ User Guide Version L-2016.03-SP4

Generating the Block-Level UPF Constraints

To use the hierarchical UPF methodology, your constraint specification in the UPF file must
also be hierarchical. You can choose one of the following two ways to create the block-level
and top-level UPF files.

* Write the power intent manually in the UPF file for all the blocks, including the top. If
required, write the boundary constraints for the blocks.

* Use the characterize command to create the block-level UPF constraints as well as
the boundary constraints from the full chip UPF description. It is important to remember
the following points when you use the characterize command to generate the
block-level UPF constraints:

o If your design does not have the control signals at the block-level interfaces and you
cannot modify your block level interfaces, you must use the characterize command
to generate the block-level UPF constraints.

o By default, the characterize command propagates the UPF constraints in the top
design to the subblock.

However, if you use this approach, you can perform equivalence checking only on the
entire design and not on each hierarchical block.

Note:
All necessary power management control signals should be created manually. They also
have to be manually brought into the appropriate block-level interfaces. This is the
recommended approach.

Using Manually Created Block-Level UPF Files

When you create the blocks manually, each block and its power intent in the UPF file must
be written such that each block can be simulated and synthesized independently. You might
have to write the boundary constraints for the blocks to capture any port that does not
operate at the same voltage as the rest of the block. If a block contains a power domain, the
UPF constraints refer to objects and power supplies only within the block.

Using ETMs and Macros for Block-Level UPF Files

An ETM (Extracted Timing Model) is the Liberty model representation of a design. An ETM
captures the UPF information using relevant Liberty attributes. A macro design might be
represented using the Liberty model or it might be an IP provided by a vendor. The tool
treats macros and ETMs in the same way and does not distinguish between the two types
of implementation.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-102

Power Compiler™ User Guide Version L-2016.03-SP4

The tool supports ETMs and macros in the UPF hierarchical flow as follows:
« Only the UPF of the interface logic is required for the hierarchical UPF implementation

* You can also provide the full block UPF of the macro or ETM for the tool to automatically
extract the interface power intent

* The UPF intent of the macro or ETM design’s top power domain is used for design
integration

The UPF constructs can be created and referenced at the top-most scope of a macro or
ETM. Set the upf_suppress_etm_model_checking variable to true (default is false) if
you want to bypass ETM and macro checking when loading a UPF file. For example, if
ublock is modeled as an ETM, you would do the following:

set_app_var upf_suppress_etm_model checking true
load_upf block.upf -scope ublock

Note that UPF constructs defined at the scope of nested logic within a macro or ETM are
read and ignored.

Using Design Compiler Generated Block-Level UPF Files

If you use the top-down approach to write your design or if your UPF file is nonmodular,
Design Compiler can generate the block-level UPF using the characterize command. For
the tool to correctly generate the block-level UPF file, your power domain definition and
partitioning should comply with the guidelines mentioned in UPF-Based Hierarchical
Multivoltage Flow Methodology. The UPF objects in the block should not refer to any object
that is above the block in the hierarchy. You should follow these steps to synthesize your
design using the hierarchical UPF design methodology:

1. Read the design and the UPF constraints for the entire design.
2. Specify the operating voltages for the supply nets and specify the timing constraints.
3. For each subblock in the design, perform the following tasks:

a. Run the characterize command.

This command pushes the appropriate timing and power constraints from the
top-level to the specified block. The block-level power constraints and the boundary
constraints that are specified by the set_related_supply_net command are set on
the specified block. For more details, see Characterization of Supply Sets and Supply
Nets.

The characterize command can also automatically set the related supply net on the
ports of the block-partition. To avoid voltage violations at the boundary, that can be
caused by the automatic setting of related supply net, you must define level-shifter
strategies at the block-partition boundary. If you do not want certain ports to be level

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-103

Power Compiler™ User Guide Version L-2016.03-SP4

shifted, use the set_level_shifter -no_shift command. For more details see
Automatic Inference of Related Supply Net.

While setting the related supply net, additional checks are performed for voltage
violations, availability of the supply net, and so on, and appropriate error and warning
messages are issued.

b. Save the characterized block and the design data.

Set the characterized block as the current instance and use the write command to
save the characterized block. The command sequence is shown in the following
example.

characterize BlockA
set current_instance BlockA
write -format ddc -hierarchy -output BlockA.characterized.ddc

c. Remove the block from the top level using the remove_design -hierarchy
command. When you remove the block, the UPF constraints associated with the
block are also removed.

4. When all the subblocks have been characterized, saved in .ddc format, and removed,
save the top-level design in .ddc format.

Synthesizing the Blocks

To synthesize each subblock of the hierarchical design, you can read the design in one of
the following two methods:

* The RTL file and the manually written UPF file for each block.

« GTECH netlist in the .ddc file for each block, written after the characterization step.

The difference between the two is the clarity of the block-level UPF and the automatic
inclusion of boundary constraints when you use the .ddc file generated after the
characterization step and the ability to perform hierarchical verification using Formality. The
power intent created by the characterize command is the same as the manually created
UPF file. If you use the RTL design and the manually written UPF file, you should create
appropriate boundary constraints.

You then use either the top-down or bottom-up synthesis flow options supported in Design
Compiler topographical mode to perform block-level synthesis. For more information, see
SolvNet article 021034, “Hierarchical Flow Support in Design Compiler Topographical
Mode.”

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-104

https://solvnet.synopsys.com/retrieve/021034.html
https://solvnet.synopsys.com/retrieve/021034.html

Power Compiler™ User Guide Version L-2016.03-SP4

Top-Level Implementation
Follow these steps to perform the top-level synthesis:

1. Read the block-level designs.

The block-level design can be any one of the following types:
o A synthesized block-level design

o A block abstraction created either in Design Compiler or in IC Compiler

Specify the blocks using the set_top_implementation_options command.
2. Read the top-level design in either of the following formats:
o RTL design and UPF files; use the load_upf command to read the UPF file

o GTECH netlist in .ddc file format, obtained after removing all the characterized
subblocks

Note: When reading the top-level UPF file before the block-level UPF file, you must set
the upf_allow_refer_before_define variable to true to allow loading a top-only UPF
file with references to unlinked subblocks within the design. By default, this variable is set
to false.

3. Run the propagate_constraints -power_supply data command.

This command propagates all the block-level constraints to the top-level, including the
block abstractions created in Design Compiler or IC Compiler, that contain UPF data.

4. Synthesize the top-level design.

For the block abstractions created in Design Compiler topographical mode, the tool
performs size-only optimization on the block interface logic, including the power
management cells.

5. Save the synthesized design and the UPF constraints.

When you save the design in .ddc file format, the UPF constraints are also saved in the
file. To save the UPF constraints separately, use the save_upf command. To save the
complete UPF information, use the save_upf -full_upf command. To save only the
top-only UPF, use the save_upf command. You can also set the upf_block_partition
variable to specify the name of a block or a list of blocks whose UPF information you do
not want to save. For instance, if you have a subblock named blockl and you want to
save the top UPF without blockl, do the following:

set_app_var upf_block partition blockl
save_upf

Note that if blockl is an ETM, macro, or any other black box, you do not need to specify
it in the upf_block_partition list since the save_upf command automatically skips
these blocks.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-105

Power Compiler™ User Guide Version L-2016.03-SP4

Completing these steps completes the synthesis of your design using the Design Compiler
hierarchical UPF flow. Using the synthesized design, you can continue the flow in IC
Compiler. For more details on assembling your design for the subsequent steps in IC
Compiler, see Assembling Your Design.

Assembling Your Design

To continue with the hierarchical flow in IC Compiler, you can assemble your design either
in Design Compiler or in IC Compiler. Note that you must explicitly ensure that the
block-level UPF constraints are available in the top-level design during the optimization step
of the top-level. You do this using the propagate_constraints -power_supply_data
command. Use the following steps to assemble your design in Design Compiler for use in
the further flow in IC Compiler:

1. Read all the synthesized subblocks.
2. Set the top-level design as the current design.
3. Link the design using the 1ink command.

4. Use the propagate constraints -power_supply data command for all the
block-level UPF constraints to be available at the top-level.

5. Save the design. This saved design is the full chip design database that you can use to
start the design planning step in IC Compiler.

For more information, see SolvNet article 026172, “IEEE 1801 (UPF) Based Design
Compiler Topographical Technology and IC Compiler Hierarchical Design Methodology.”

Characterization of Supply Sets and Supply Nets

The following sections describe criteria for characterization of the supply sets and
domain-independent supply nets and how they are characterized during the hierarchical
UPF flow.

Criteria for Characterization
A supply set or a domain-independent supply net of a block is characterized when it is,
« The primary, default retention, default isolation supply of the power domain of the block

« The supplies specified in the retention or isolation strategies of the power domain of the
block

« A supply that is specified for the power switch of the power domain of the block

* An exception supply that is connected to the cells in the power domain of the block

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-106

https://solvnet.synopsys.com/retrieve/026172.html
https://solvnet.synopsys.com/retrieve/026172.html

Power Compiler™ User Guide Version L-2016.03-SP4

* An extra supply of the power domain, defined by using the extra_supplies_# keyword
« A supply set that is connected to the supply ports that are defined inside the block

* A supply set that is the related supply for the ports of the block

Note:
In this case, the supplies are characterized even if they are the restricted supplies in
the top-level power domain of the block being characterized. This is because, the
block can contain an unrestricted feedthrough supply that passes through power
domains.

Characterization of Supply Sets

While partitioning a block, the supply sets defined in the block and in lower levels of
hierarchy are moved to the block. The supply sets and domain-independent supply nets are
handled similarly because supply sets are also inherently domain-independent.

When a repeater_supply attribute is specified in the path of an isolation strategy defined
using the -source, -sink, or -diff_supply_only option, the value of the
repeater_supply attribute is used to derive the value of the iso_source and iso_sink
attributes at the boundary of the block.

Updates at the Block Level

During characterization, at the block level,

« Two supply ports and a supply set are created. The supply ports are connected to the
power and ground functions of the supply set.

« To distinguish the supply ports created by the characterize command, the
newly-created supply ports are marked with the snps_derived UPF attribute. So, each
supply port created by the characterize command has an associated
set_port_attributes command in the block-level UPF file.

« If you have defined power states for the supply sets for the block-level, using the
add_power_state command, during characterization, the tool writes the
add_port_state command for the created port.

Updates at the Top Level

At the top level, and in the UPF file for the top level, two ports are created, which are
connected to the power and ground functions of the supply set.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-107

Power Compiler™ User Guide Version L-2016.03-SP4

Automatic Inference of Related Supply Net

In the top-down hierarchical flow, when you characterize a block, the block-level power
constraints as well as the boundary constraints that are specified by the
set_related_supply_net command are set on the specified block.

The characterize command can also automatically set the related supply net on the ports
of the block-partition, using the following criteria:

« The direction of the port.
« The location constraint of the isolation and level-shifter strategies.
* Related supply net of the driver or the load cells.

* The -driver_supply and -receiver_supply options specified with the
set_port_attributes command.

The characterize command can also infer the driver or load to be inserted at the
boundaries.

Note:
For the characterize command to appropriately infer and set the related supply net,
you must explicitly define the level-shifter and isolation strategies before running the
characterize command, if you have voltage violations.

Table 11-10 shows the related supply net inferred by the Power Compiler tool when you
define only the level-shifter strategy, and not the isolation strategy, to overcome the voltage
violations at the boundary pins.

Table 11-10 Related Supply Net With Level-Shifter Only Strategy

Port Level-shifter Related supply net inferred by Power Compiler
direction strategy

Input self Outside or driver supply net. If supply net is not available, related supply
net is not set and UPF-208 error message is issued.

Input parent Inside or load supply net.

Output self Outside or load supply net. If supply is not available, related supply net
is not set and UPF-208 error message is issued.

Output parent Inside or driver supply net.

Input or none or auto Not supported. UPF-206 error message is issued.
Output

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-108

Power Compiler™ User Guide

Version L-2016.03-SP4

Table 11-11 shows the related supply net inferred by the Power Compiler tool when you
define both level-shifter and isolation strategies.

Table 11-11 Related Supply Net With Level-Shifter and Isolation Strategies

Port Level-shifter Isolation Related supply netinferred by Power Compiler
direction strategy strategy
Input self self Outside or driver supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.
Input self parent Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.
Input parent self Related supply net is not set and UPF-207 error message is
issued.
Input parent parent Inside or load supply net.
Input none or auto self or Not supported. UPF-206 error message is issued.
parent
Output self self Outside or load supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.
Output self parent Related supply net is not set and UPF-207 error message is
issued
Output parent self Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.
Output parent parent Inside or driver supply.
Output none/auto self or Not supported. UPF-206 error message is issued.
parent

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-109

Power Compiler™ User Guide

Version L-2016.03-SP4

Table 11-12 shows the related supply net inferred by the Power Compiler tool when there
are no voltage violations at the boundary pins.

Table 11-12 Related Supply Net With No Voltage Violations at the Boundary Pins

Port Isolation Related supply net inferred by Power Compiler

direction strategy

Input self Outside or driver supply. If supply net is not available, related supply net is
not set and UPF-208 error message is issued.

Input parent Isolation power supply. If supply net is not available, use the inside or load
supply.

Input none Outside or driver supply. If supply net is not available, use the inside or load
supply.

Output self Isolation power supply. If supply net is not available, related supply netis not
set and UPF-208 error message is issued.

Output parent Inside or driver supply.

Output none Outside or load supply. If supply net is not available, use the inside or load
supply.

Note:

If voltage violations are across two blocks that have to be characterized, define the
level-shifter strategies for both the blocks. To avoid level-shifter redundancy, use the
-no_shift option of the set_level_shifter command. If the violations are across
multiple blocks, specify the list of pins while defining the level shifter strategy with the
-no_shift option.

Top-Level Design Integration

After the blocks are characterized, these blocks can be integrated into the top-level designs,
multiple times. Use the propagate_constraints command to integrate the characterized
blocks to the top level.

Power Domain Merging

While merging the power domain to the top level, the propagate_constraints command
ensures that equivalent supply sets, nets, and ports are present at the top level. In addition,
their connectivity should be equivalent at the top level. The tool issues the UPF-168 error
message when equivalence is not found.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-110

Power Compiler™ User Guide Version L-2016.03-SP4

During integration, the block-level ports that have the snps_derived UPF attributes are
substituted by their equivalent top-level ports and supply nets or supply sets.

Switch Cell Matching

When a power switch cell exists in the blocks, a matching switch cell must exist at the top
level for the domains to be merged. It is an error to match a switch cell from the block to a
switch cell in the top level, that is already matched.

When Power Compiler merges domains that contain switch cells, the following rules apply:

« A switch cell in the top level should have a unigue switch cell in the domain being
merged. The switch cells being merged should also have equivalent

o Input supply nets
o Control and acknowledge signals separated by buffer or inverter pairs
o Voltage setting on the output supply nets

o Port states, including the state names, state value, primary domain, and so on

Also, the output supply nets must have similar connectivity with the other supply nets
in the design.

* When the domain has multiple equivalent switch cells, the first matching switch cell is
used.

Legacy Blocks

A conflict can arise when a legacy block is used in a design with domain-independent supply
nets. To prevent such a conflict, you can set the legacy block’s legacy_block design
attribute to true. This converts all power domains of the legacy block to be fully restricted,
so that the legacy block can no longer use any domain-independent supply nets declared in
the scopes above the block.

A domain-independent supply net is a supply net that is available to any power domain
defined at or below the scope of the supply net, as long such domains are not restricted. In
other words, the supply net was created by a create_supply_net command without the
-domain option. For example,

dc_shell> create_supply_net SN1
Conversely, a domain-dependent supply net is a supply net that is available only to the

domain for which it is defined. In other words, the supply net was created by a
create_supply_net command with the -domain option. For example,

dc_shell> create_supply_net SN2 -domain PD2

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-111

Power Compiler™ User Guide Version L-2016.03-SP4

The supply net is created in domain PD2 and cannot be used in other domains.

A restricted power domain is a power domain that is restricted to use only certain supply
sets. This restriction results from usage of the extra_supplies keyword with the -supply
option of the create_power_domain command. For example,

dc_shell> create_power_domain PD3 -elements U3 \
-supply {extra_supplies 0 SS1}
The power domain PD3 is restricted to using only the SS1 supply set.

A legacy block is a block designed before the introduction of supply sets, using only
domain-dependent supply nets, when there was no consideration of possible usage of
domain-independent supply nets from a higher level of the design hierarchy. A legacy block
does not use or define any domain-independent supply nets or supply sets.

When a legacy block is used in a newer design containing supply sets, a conflict can arise
with a situation like the one shown in Figure 11-44.

Figure 11-44 Legacy Block Used in a Top-Level Design

TOP

SN1

Ul

%

u2

In this diagram, U1 is a legacy block with domain-dependent supply net SN2. An instance of
this block is used in the top-level design, TOP, which has domain-independent supply net
SN1. U1 contains a lower-level block, U2. Because supply net SN1 is domain-independent,
it is available for use in the gray, yellow, and green domains. On the other hand, because
supply net SN2 is domain-dependent, it is available for use only in the yellow domain.

If the two supply nets are connected together through a supply port on U1, the availability of
the combined net in U2 is undefined. It could lead to the usage of the supply netin U2, which
would be incorrect.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-112

Power Compiler™ User Guide Version L-2016.03-SP4

To clearly specify that this type of connection is not allowed, you can declare U2 to be a
legacy block by using the following command:

dc_shell> set_design_attributes -elements Ul \
-attribute legacy block true

This converts all power domains of block U1 to fully restricted domains so that those
domains can no longer use the domain-independent supply nets declared in scopes above
the block. The tool achieves this effect by using the -supply option of the
create_power_domain command when the block is read in.

For example, the tool changes this command:

create_power_domain PD -elements U2

to this command:

create_power_domain PD -elements U2 -supply {extra_supplies """}

Because there are no supply sets listed between the quotation marks in the -supply option,
the domain becomes fully restricted and does not allow the usage of any supply sets defined
at higher levels of the design, thereby preventing any supply set availability conflict from
arising.

No domain-independent supply nets or supply sets can be defined or used inside a legacy
block or any of its lower-level blocks, and no supply set handles can be used. Any
lower-level blocks below a legacy block must also be legacy blocks.

The propagate_constraints command supports the usage of legacy blocks. The
following script shows an example of the flow.

read_verilog top_only.verilog

load_upf top_only.upf

read_verilog my_ legacy_ block.verilog

load_upf my legacy block.upf

current_design top

#Mark the block as legacy block

set_design_attributes -elements {U2} -attribute legacy block TRUE
#propagate_constraints makes all the domains in the block restricted
propagate_constraints -design my_ legacy_ block

Note:
The characterize command is not supported for legacy blocks.

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-113

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology 11-114

12

Library Setup for Power Optimization

This chapter describes library setup required for performing power optimization:
* Basic Library Requirements for Multivoltage Designs
e Library Usage in Multicorner-Multimode Designs

e Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

12-1

Power Compiler™ User Guide Version L-2016.03-SP4

Basic Library Requirements for Multivoltage Designs

To synthesize your multivoltage design using Power Compiler, the target libraries you use
must conform to the Liberty open library rules. The target libraries should also support
special cells such as clock-gating cells, level-shifters, isolation cells, retention registers, and
always-on buffers and inverters. To support synthesis of multivoltage designs, the tool also
supports multiple libraries characterized at different voltages.

Power and Ground Pin Syntax

If the target library that you specify complies with the power and ground (PG) pin Liberty
library syntax, Power Compiler uses this information during the synthesis process. However,
if your target library does not contain PG pin information, you can convert it into PG pin
library format. For more information, see Converting Libraries to PG Pin Library Format.

Converting Libraries to PG Pin Library Format

If the libraries that you specify do not contain PG pin information, you can define them in the
library to conform to PG pin Liberty syntax. These are discussed in detail in the following
sections:

¢ Using FRAM View
e Using Tcl Commands

e Tcl Commands for Low-Power Library Specification

For more information, you can also see SolvNet article 029641, “On-the-Fly Low-Power
Library Specification.”

Using FRAM View

In the Design Compiler topographical mode, you can use the FRAM view as the reference
for converting your library to the PG pin library format. You must set the
mw_reference_library variable to the location of the Milkyway reference libraries. Use the
update_lib_model command to convert your library to the PG pin library format. The tool
uses the PG pin definitions available in the FRAM view of the Milkyway library for the
conversion. This is the default behavior. Figure 12-1 shows the steps involved in converting
non-PG pin library to a PG pin library.

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs 12-2

https://solvnet.synopsys.com/retrieve/029641.html
https://solvnet.synopsys.com/retrieve/029641.html

Power Compiler™ User Guide

Version L-2016.03-SP4

Figure 12-1 Conversion of a non-PG Pin Library to a PG Pin Library Using FRAM View

Non-PG pin library

r

update_lib_model
-reference_mode FRAM

Fail

/

Use Tcl
commands to
update the
specification

check_library

Pass

Write out Tcl script

To ensure that the PG pin library that is created is complete, use the check_library and

report_mv_library_cellscommands. If the PG pin library is not complete, run the library
specification Tcl commands to complete the library creation. For more information, see Tcl
Commands for Low-Power Library Specification.

Using Tcl Commands

When your library files are not in the PG pin library syntax and you do not have the FRAM
view of Milkyway library, you can use the following Tcl commands to specify the necessary
information required for deriving the PG pin details, as shown in Conversion of Non-PG Pin
Library to PG Pin Library Using Tcl Commands.

e update_lib_voltage model

This command sets the voltage map for the specified library.

e update_lib_pg pin_model

This command sets the PG pin map for the specified library cell.

e update_lib_pin_model

This command sets the pin map for the specified library cell.

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs

12-3

Power Compiler™ User Guide Version L-2016.03-SP4

Figure 12-2 Conversion of Non-PG Pin Library to PG Pin Library Using Tcl Commands

Non-PG pin library

update_lib_pg_pin_model

Y

update_lib_pin_model

Y

update_lib_model
-reference_mode TCL

Fail Pass

check_library

Use Tcl
commands to
update the
specification

Write out Tcl script

These Tcl commands specify the library requirements that are used while converting the
libraries to PG pin format.

Run the update_lib_model -reference_mode TCL command to convert your libraries to
PG pin library format. To check if your newly created PG pin library is complete, run the
check_library command. If your newly created PG pin library contains conflicts or is
incomplete, you can run the library specification Tcl commands to complete the library
specification. For more details, see Tcl Commands for Low-Power Library Specification.

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs 12-4

Power Compiler™ User Guide Version L-2016.03-SP4

Tcl Commands for Low-Power Library Specification

When you convert your library to PG pin format, if the newly created library file is complete,
you can start using the library for the low-power implementation of your design. However, if
your library contains power management cells and the modeling is not complete, you can
use the following Tcl commands to complete your library specifications. These commands
specify the library voltage and PG pin characteristics.

e set _voltage model

This command sets the voltage model on the specified library by updating the voltage
map in the library.

e set_pg_pin_model
This command defines the PG pins for the specified cell.
e set _pin_model
This command defines the related power, ground, or bias pins of the specified pin of the

library.

For more details, see the command man page and the Library Checking Chapter in the
Library Quality Assurance System User Guide.

Macro Cells with Fine-Grained Switches

Power Compiler supports macro cells with fine-grained switches, which have the following
attribute settings in the PG pin definition in the library:

e The direction attribute is internal.

e The pg_type attribute is either internal_power or internal_ground.
¢ The pg_function attribute is defined.

e The switch_function attribute is defined.

e The switch_cell_type attribute of the macro is fine_grain.

« The switch_pin attribute is set to true for the control port.

Use the connect_supply_net command to connect to the internal PG pins of these macro
cells. However, supply nets connected only to the internal PG pins of these macro cells
cannot be used for level-shifter insertion and always-on synthesis, unless the following
conditions are true:

e The supply net is the primary supply of the power domain.

« The supply net is specified by the isolation strategy of the power domain.

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs 12-5

Power Compiler™ User Guide Version L-2016.03-SP4

« The supply net is specified by the retention strategy of the power domain.

« The supply net is defined or reused as a domain-dependent supply net of the power
domain.

e The supply net is defined with the extra_supplies_# keyword.

You can use the set_voltage command to set the operating voltage on the internal PG pins
of the macro cells with fine-grained switches. If you do not set the voltage on the internal PG
pin of the macro cell, the value of the voltage_name attribute of the PG pin is used as the
operating voltage.

For more details, see the set_voltage command man page.

Library Usage in Multicorner-Multimode Designs

The following sections discuss how to handle libraries properly in multicorner-multimode
designs:

e Link Libraries With Equal Nominal PVT Values

« Distinct PVT Requirements

< Automatic Detection of Driving Cell Library

* Relating the Minimum Library to the Maximum Library

< Unique ldentification of Libraries Based on File Names

Link Libraries With Equal Nominal PVT Values

The link library lists all of the libraries that are to be used for linking the design for all
scenarios. Furthermore, because several libraries are often intended for use with a
particular scenario, such as a standard cell library and a macro library, Design Compiler
automatically groups the libraries in the link library list into sets and identifies which set must
be linked with each scenario.

Library grouping is based on their PVT values. Libraries with the same PVT values are
grouped into the same set. The tool uses the PVT value of a scenario’s maximum operating
condition to select the appropriate set for the scenario.

If the tool finds no suitable cell in any of the specified libraries, an error is reported as shown
in the following example,

Error: cell TEST_BUF2En_BUF1/Z (inx4) is not characterized
for 0.950000V, process 1.000000, temperature -40.000000. (LIBSETUP-001)

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-6

Power Compiler™ User Guide Version L-2016.03-SP4

You should verify the operating conditions and library setup. If you do not correct this error,
optimization is not performed.

Link Library Example

Table 12-1 shows the libraries in the link library list, their nominal PVT values, and the
operating condition (if any) specified in each library. The design has instances of
combinational, sequential, and macro cells.

Table 12-1 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions in
library (PVT)

Combo_cells_slow.db 1/0.85/130 WORST (1/0.85/130)
Sequentials_fast.db 1/1.30/100 None
Macros_fast.db 1/1.30/100 None
Macros_slow.db 1/0.85/130 None
Combo_cells_fast.db 1/1.30/100 BEST (1/1.3/100)
Sequentials_slow.db 1/0.85/130 None

To create a scenario s1 with the cell instances linked to the Combo_cells_slow,
Macros_slow, and Sequential_slow libraries, you run:

dc_shell-topo> create_scenario sl
dc_shell-topo> set_operating _conditions -max WORST -library slow.db:slow

Note:
Specifying the -library option with the set_operating_conditions command helps
the tool identify the correct PVT for the operating conditions. The PVT of the maximum
operating condition is used to find the correct matches in the link library list during linking.

Using this linking scheme, you can link libraries that do not have operating condition
definitions. The scheme also provides the flexibility of having multiple library files (for
example, one for standard cells, another for macros).

Inconsistent Libraries Warning

When you use multiple libraries, if the library cells with the same name are not functionally
identical or do not have identical sets of library pins (same name and order), a warning is
issued, stating that the libraries are inconsistent.

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-7

Power Compiler™ User Guide Version L-2016.03-SP4

You should run the check_library command before running a multicorner-multimode flow,
as shown in the following example:

set_check_library_options -mcmm
check_library -logic_library name {a.db b.db}

When you use the -mecmm option with the set_check_library_options command, the
check_library command performs multicorner-multimode specific checks such as the
operating condition or power-down consistencies. When inconsistencies are detected, the
tool generates a report. In addition, the tool also issues the following summary information
message:

Information: Logic library consistency check FAILED for MCMM.
(LIBCHK-360)

To overcome the LIBCHK-360 messages, you must check the libraries and the report to
identify the cause for the inconsistency. The man page of the LIBCHK-360 information
message describes possible causes for the various library inconsistencies.

Setting the dont_use Attribute on Library Cells

When you set the dont_use attribute on a library cell, the multicorner-multimode feature
requires that all characterizations of this cell have the dont_use attribute. Otherwise, the
tool might consider the libraries as inconsistent. You can use the wildcard character to set
the dont_use attribute as follows:

set_dont_use */AN2

When library cells with a dont_use attribute, have a pin order that does not match exactly in
the libraries of various corners, Power Compiler continues with the flow, without issuing any
error or warning messages. If you remove the dont_use attribute of these cells, the tool
issues the MV-087 error messages.

Note:
You do not have to issue the command multiple times to set the dont_use attribute on all
characterizations of a library cell.

Distinct PVT Requirements

If the maximum libraries associated with each corner (scenario) do not have distinct PVT
values, the cell instances are linked incorrectly, which results in incorrect timing values. This
happens because the nominal PVT values that are used to group the link libraries into sets,
group the maximum libraries of different corners into one set. Consequently, the cell
instances are linked to the first cell with a matching type in that set (for example, the first

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-8

Power Compiler™ User Guide Version L-2016.03-SP4

ANDZ2_4), even though the -library option is specified for each of the scenario-specific
set_operating_conditions commands. That is, the -library option locates the
operating condition and its PVT values but not the library to link.

The following two tables and the following script demonstrate the problem:

Table 12-2 shows the libraries in the link library, listed in order; their nominal PVT values;
and the operating condition that is specified in each library.

Table 12-2 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions in
library (PVT)

Ftyp.db 1/1.30/100 WORST (1/1.30/100)

Typ.db 1/0.85/100 WORST (1/0.85/100)

TypHV.db 1/1.30/100 WORST (1/1.30/100)

Holdtyp.db 1/0.85/100 BEST (1/0.85/100)

Table 12-3 and the script commands that follow show the operating condition specification
for each of the scenarios.

Table 12-3 Scenarios and Their Operating Conditions

Scenarios

sl s2 s3 s4
Maximum WORST WORST WORST WORST
Operating (Typ.db) (TypHV.db) (Ftyp.db) (Typ.db)
Condition
(Library)
Minimum None None None BEST
Operating (HoldTyp.db)
Condition
(Library)

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-9

Power Compiler™ User Guide Version L-2016.03-SP4

create_scenario sl
set_operating_conditions WORST -library Typ.db:Typ
create_scenario s2
set_operating_conditions WORST -library TypHV.db:TypHV
create_scenario s3
set_operating_conditions WORST -library Ftyp.db:Ftyp
create_scenario s4
set_operating_conditions \

-max WORST -max_library Typ.db:Typ \

-min BEST -min_library HoldTyp.db:HoldTyp

The tool groups the Ftyp.db, and TypHV.db libraries into a set with Ftyp.db as the first library
in the set. Therefore, the cell instances in scenario s2 are not linked to the library cells in
TypHV.db, as intended. Instead, they are linked to the library cells in the Ftyp.db library,
assuming that all the libraries include the library cells required to link the design.

Ambiguous Libraries Warning

When you use multiple libraries, if any of the libraries with same-name cells have the same
nominal PVT, a warning is issued, stating that the libraries are ambiguous. The warning also
states which libraries are being used and which are being ignored.

Automatic Detection of Driving Cell Library

In multicorner-multimode flow, the operating condition setting is different for different
scenarios. To build the timing arc for the driving cell, different technology libraries are used
for different scenarios. You can specify the library using the -library option of the
set_driving_cell command. But specifying the library is optional because the tool can
automatically detect the driving cell library.

When you specify the library using the -library option of the set_driving_cell
command, the tool searches for the specified library in the link library set. If the specified
library exists, it is used. If the specified library does not exist in the link library, the tool issues
the UID-993 error message as follows:

Error: Cannot find the specified driving cell in memory.(UID-993)

When you do not use the -library option of the set_driving_cell command, the tool
searches all the libraries for the matching operating conditions. The first library in the link
library set, that matches the operating condition is used. If no library in the link library set
matches the operating condition, the first library in the link library set, that contains the
matching library cell is used. If no library in the link library set contains the matching library
cell, the tool issues the UID-993 error message.

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-10

Power Compiler™ User Guide Version L-2016.03-SP4

Relating the Minimum Library to the Maximum Library

The set_min_library command is not scenario-specific. This implies that if you use this
command to relate a minimum library to a particular maximum library, that relationship
applies to all scenarios.

Table 12-4 Unsupported Multiple Minimum Library Configuration

Scenarios

sl s2
Maximum library Slow.db Slow.db
Minimum library Fast_Oyr.db Fast_10yr.db

For example, you could not relate two different minimum libraries—for example, Fast_Oyr.db
and Fast_10yr.db — with the maximum library, Slow.db, in two separate scenarios. The first
minimum library that you specify would apply to both scenarios. Table 12-4 shows the
unsupported configuration.

Note, however, that a minimum library can be associated with multiple maximum libraries.
As shown in the example in Table 12-5, the minimum library Fast_Oyr.db is paired with both
the maximum library Slow.db of scenario 1 and the maximum library SlowHV.db

of scenario 2.

Table 12-5 Supported Minimum-Maximum Library Configuration

Scenarios

sl s2
Maximum Library Slow.db SlowHV.db
Minimum Library Fast_Oyr.db Fast_Oyr.db

Unique Identification of Libraries Based on File Names

Two libraries with the same name can be uniquely identified if their file names, which
precede the library names, which are colon-separated, are unique. For example, the library
ABC.db:stdcell (where ABC.db is the library file name and stdcell is the library name) is
identifiable with respect to the library DEF.db:stdcell.

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs 12-11

Power Compiler™ User Guide Version L-2016.03-SP4

However, two libraries that have the same file name and library name but reside in different
directories are not uniquely distinguishable. The following two libraries are not uniquely
distinguishable:

/remote/snps/testcase/LIB/fast/ABC.db

/remote/snps/testcase/LIB/slow/ABC.db

Automatic Inference of Operating Conditions for Macro, Pad, and
Switch Cells

In multivoltage and multicorner-multimode designs, as designs increase in size and
complexity, manually specifying the operating conditions and linking them with the
appropriate library cells with matching operating conditions becomes difficult. For these
types of designs, it is useful to automatically infer the operating conditions, especially for
special cells such as multirail pad cells, macro cells and switch cells. When the operating
condition set on the design does not match the operating condition of the cell rails or when
the design operating condition does not have rails, Power Compiler issues a LIBSETUP-001
error message.

You can disable the automatic operating conditions inference by explicitly setting the
operating conditions.

Note:
Power Compiler does not perform automatic operating condition inference for standard
cells. The operating conditions of the standard cells should match exactly with the
operating conditions of the design.

Using the set_opcond_inference Command
Use the set_opcond_inference command to specify the operating condition.

Use the -l1evel option specifies the degree to which the inferred operating condition can
deviate from the operating condition of the design. The value that you can specify with this
option are EXACT, UNIQUE_RESOLVED, CLOSEST_RESOLVED, or
CLOSEST_UNRESOLVED. When you do not specify this option, the default is
CLOSEST_RESOLVED. For more information, see Deviating from the Inferred Operating
Condition and Its Impact.

You must use one of -level and -match_process_temperature options. The tool issues
a LIBSETUP-751 information message when the operating conditions are successfully
inferred on a cell instance.

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells 12-12

Power Compiler™ User Guide Version L-2016.03-SP4

For multicorner-multimode designs, the set_opcond_inference command applies to all
corners and scenarios of the design. To report the settings specified for the operating
condition inference, use the report_opcond_inference command.

Deviating from the Inferred Operating Condition and Its Impact

The level value you specify with the -level option of the set_opcond_inference
command determines how much the inferred operating condition can deviate from the
operating condition of the design. When you set a higher deviation, the probability of
automatic operating condition inference is higher, resulting in a smaller number of
LIBSETUP-001 error messages. This also implies less accurate timing and power results.
The following table summarizes the level values that you can specify with the -1evel option
and its impact on the automatic operating condition inference:

Level value specified with the Degree of deviation in the inferred operating condition
-level option and its impact

EXACT Operating condition inferred is exact. This results in no
inference at all. Timing is exact.

UNIQUE_RESOLVED Operating condition is inferred for the library cell whose
name matches exactly with the cell reference name in the
design. You cannot choose a different library cell. Timing
can be incorrect. You do not encounter LIBSETUP-001
error messages.

CLOSEST_RESOLVED This is the default. If multiple library cells are available,
library cell with a matching reference name whose
operating condition is closest to the design is chosen.
Choosing this operating condition can cause inaccurate
timing.

CLOSEST_UNRESOLVED The library cell whose operating condition is closest to the
design is chosen. The library cell name need not match
exactly with the cell reference name in the design.

The details of the behavior of the tool when you set a specific level value with the -level
option of the set_opcond_inference command are described in this section:

« EXACT

When you set the level value to EXACT, the automatic operating condition inference is
not performed.

* UNIQUE_RESOLVED

The tool performs a name based search in the target libraries. If multiple library cells
match with the cell name, the tool does not perform the inference. However, if the cell is

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells 12-13

Power Compiler™ User Guide Version L-2016.03-SP4

present in a unique library file and no other library contains the cell, the operating
condition is inferred. Otherwise, operating condition is not inferred on the cell and a
LIBSETUP-001 error message is issued.

* CLOSEST_RESOLVED

This is the default, when you do not specify the -l1evel option of the
set_opcond_inference command.

For each macro cell, pad cell, or switch cell instance, the tool finds the set of library cells
with the same name. If multiple library cells with the same name are found, the tool
chooses a single library cell based on the matching PVT values. The cells with exception
connections, whose supply net voltage does not match the rail voltages in the library, are
also also considered for operating conditions inference.

For cells with exception connections, the tool chooses the library cell with maximum

number of rail voltages that match the supply net voltage of the instance. If there are
multiple library cells with maximum number of rail voltages that match the supply net
voltage of the instance, the inference fails and the tool issues a LIBSETUP-001 error
message.

The pad cells in the library whose rail voltages do not match the supply voltage on the
port because of the settings of the set_port_attributes or the
set_related_supply_net command are eliminated from operating conditions
inference. However, when the tool finds that such eliminations can cause potential
LIBSETUP-001 errors, it reconsiders the eliminated cells for operating conditions
inference.

Within this set of library cells that are considered for inference, the tool groups the library
cells in the following order of priority:

1. The PVT values of the library cell match the PVT values of the design.

2. The process, temperature, and voltage values from one of the rail voltages match the
PVT values of the design.

3. The temperature and voltage values of the library cell match the temperature and
voltage values of the design.

4. The temperature and voltage from one of the rail voltages match the PVT values of
the design.

5. The process and voltage values of the library cell match the process and voltage
values of the design.

6. The process and voltage from one of the rail voltages match the PVT values of the
design.

7. The voltage value of the library cell matches the voltage value of the design.

8. The voltage value from one of the rail voltages match the voltage value of the design.

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells 12-14

Power Compiler™ User Guide Version L-2016.03-SP4

9. The process and temperature values of the library cell matches the process and
temperature values of the design.

10. None of the process, voltage, and temperature values of the library cell match the
process, voltage, and temperature values of the design.

After the library cells are grouped, the tool inspects each group in the order mentioned
above. The inference is terminated for the following situations:

o None of the groups contain exactly one cell.

o None of the groups contain any library cell.

When Power Compiler finds a group that contains exactly one cell, the tool chooses the
library cell and uses the PVT values of that cell as the operating condition of the
associated macro, pad, or switch cell.

* CLOSEST_UNRESOLVED

The tool groups the library cells based on the matching names, as in
CLOSEST_RESOLVED. The tool then picks the first library cell from the first non-empty
group of library cells. It then sets the operating condition of the library cell on the specific
cell instance and links the cell instance to the library cell.

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells 12-15

Power Compiler™ User Guide Version L-2016.03-SP4

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells 12-16

13

Power Optimization in Multicorner-Multimode
Designs

This chapter describes the support for multicorner-multimode technology in Design
Compiler Graphical, in the following sections:

e Optimizing Multicorner-Multimode Designs
* Reporting Commands

e Script Example for Multicorner-Multimode Flow

13-1

Power Compiler™ User Guide Version L-2016.03-SP4

Optimizing Multicorner-Multimode Designs

Designs that can be synthesized using multiple operating conditions and in multiple modes
are called multicorner-multimode designs. Design Compiler Graphical extends the
topographical technology to analyze and optimize these designs The multicorner-multimode
feature also provides ease-of-use and compatibility between flows in Design Compiler and
IC Compiler.

For more information about multicorner-multimode concepts and features, see the Design
Compiler User Guide and IC Compiler Implementation User Guide.

Optimizing for Leakage Power

Figure 13-1 shows how to set various constraints on different scenarios of a
multicorner-multimode design.

Figure 13-1 Setting Different Constraints on Different Scenarios

‘ Operating Condition,: Timing H SDC, ‘

‘Operating Condition,: Leakage HSDCl: Leakage-Only Scenario ‘
Scenario;

'

WC Leakage: Operating Condition,
WC Timing: Operating Condition,

Design Compiler Graphical

'

Single Report
Timing, Power

Typically, in a multicorner-multimode design, leakage power optimization and timing
optimization are done on different corners. Therefore, the worst case leakage corner can be
different from the worst case timing corner. To perform leakage power optimization on
specific corners, set the leakage power option on specific scenarios of the
multicorner-multimode design by using the set_scenario_options command as follows:

set_scenario_options -scenarios S1 \
-setup false \
-hold false \
-leakage_power true

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Optimizing Multicorner-Multimode Designs 13-2

Power Compiler™ User Guide Version L-2016.03-SP4

Note:
The get_dominant_scenarios command is not supported in Design Compiler
Graphical.

When you optimize for leakage power in multicorner-multimode designs,

« Define the leakage power option on specific scenarios targeted for leakage power
optimization.

« Leakage and timing optimizations can be performed concurrently across multiple
scenarios.

* The worst case leakage corner is different from the worst case timing corner.

* Do not use the set_leakage optimization command inside a scenario. This
command is supported only for non multicorner-multimode designs.

If no leakage scenario is defined, the average leakage value of all the scenarios is used for
leakage optimization.

When you use the set_multi_vth_constraint command, you must specify a leakage
corner using the set_scenario_options -scenarios command.

The following example shows how leakage power is specified on a multicorner-multimode
design. In this example, leakage power optimization is performed only for scenario_1 and
scenario_3 because the -leakage_power option is true:

set_scenario_options -scenarios {scenarios_1, scenarios_3} \
-leakage_power true

set_scenario_options -scenarios {scenarios_2, scenarios 4} \
-leakage_power false

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Optimizing Multicorner-Multimode Designs 13-3

Power Compiler™ User Guide Version L-2016.03-SP4

Example 13-1 shows how to create a scenario and set the leakage power option on the
scenario:

Example 13-1 Leakage Power Optimization in a Multicorner-Multimode Design

read_verilog top.v
current_design top
link
create_scenario sl
set_operating_conditions WCCOM -library slow.db:slow
set_tlu _plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./sl.sdc
set_switching_activity -toggle rate 0.25 \
-base_clock p_Clk -static_probability 0.015 -type inputs
set_scenario_options -scenarios sl -setup false -hold false \
-leakage_power true

create_scenario s2

set_operating_conditions BCCOM -library fast.db:fast

set_tlu plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read _sdc ./s2.sdc

create_scenario s3

set_operating_conditions TCCOM -library typ.db:typ

set_tlu _plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s3.sdc

create_scenario s4

set_operating_conditions NCCOM -library typ2.db:typ2

set_tlu _plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s4.sdc

set_scenario_options -scenarios s4 -setup false -hold false \
-leakage_power true

report_scenarios

compile_ultra -scan -gate_clock
report_power —scenarios [all_scenarios]
report_timing -scenarios [all_scenarios]
report_scenarios

report_qgor

report_saif

Optimizing for Dynamic Power Using Low-Power Placement

To perform dynamic power optimization in a multicorner-multimode design, use the
set_scenario_options -dynamic_power true -setup true command. This command
performs scenario-specific dynamic power optimization in a multicorner-multimode design.
For multiple dynamic power scenarios, the tool uses the average switching activity
calculated from data in the SAIF files when performing optimization.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Optimizing Multicorner-Multimode Designs 13-4

Power Compiler™ User Guide Version L-2016.03-SP4

In the Synopsys physical guidance flow, when you enable the low-power placement feature,
the tool performs dynamic power optimization for multicorner-multimode designs. To enable
this feature, set the power_low_power_placement variable to true and specify the
dynamic power and setup constraints for the scenario. Example 13-2 shows a script to
perform dynamic power optimization in multicorner-multimode designs in the Synopsys
physical guidance flow.

Example 13-2 Dynamic Power Optimization in a Multicorner-multimode Design

set power_low_power_placement true

current_scenario S1

read_saif -input Sl.saif

set_scenario_options -dynamic_power true -setup true
compile_ultra -spg

For more information about dynamic power optimization see Dynamic Power Optimization.

Reporting Commands

This section describes the commands that you can use for reporting multicorner-multimode
designs.

report_scenarios Command

The report_scenarios command reports the scenario setup information for
multicorner-multimode designs. The scenario specific information includes the logic library
used, the operating condition, and TLUPIus files.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands 13-5

Power Compiler™ User Guide

Version L-2016.03-SP4

The following example shows a report generated by the report_scenarios command:

B ok R o AR R AR R R R AR R R R AR AR R R R R AR AR R R AR AR R X R

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: ...

Date To..

B ok o o AR R R R R R AR AR R R S S R AR R

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4

All Active scenarios (Total=1): SCN1
Current scenario - SCN1

Scenario #0: SCN1 is active.
Scenario options:

Has timing derate: No
Library(s) Used:

technology library name (File: library.db)

Operating condition(s) Used:

Analysis Type : bc_wc

Max Operating Condition: library:WCCOM
Max Process :1.00

Max Voltage :1.08

Max Temperature: 125.00

Min Operating Condition: library:BCCOM
Min Process :1.00

Min Voltage 1 1.32

Min Temperature: 0.00

Tlu Plus Files Used:
Max TLU+ File: tlu_plus_file.tf
Tech2ITF mapping file: tF2itf.map

Reporting Examples for Multicorner-Multimode Designs

This section contains report examples for some of the report commands used in

multicorner-multimode designs.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands

13-6

Power Compiler™ User Guide Version L-2016.03-SP4

report_scenarios

The report_scenarios command reports the scenario setup information for
multicorner-multimode designs. This command reports all the defined scenarios. The
scenario-specific information includes the logic library used, the operating condition, and the
TLUPIus files.

The following example shows a report generated by the report_scenarios command:
R R R R R R R R R e S R R R R R R e e R R e e b

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: ...

Date T

AEAEXAXAAAAAAXAAAAAAAXAAAAAAAAAAAAAXAXA AKX AXKX

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario - SCN1

Scenario #0: SCN1 is active.

Scenario options:

Has timing derate: No

Library(s) Used:

technology library name (File: library.db)

Operating condition(s) Used:

Analysis Type : bc_wc

Max Operating Condition: library:WCCOM
Max Process :1.00

Max Voltage - 1.08

Max Temperature: 125.00

Min Operating Condition: library:BCCOM
Min Process :1.00

Min Voltage ©1.32

Min Temperature: 0.00

Tlu Plus Files Used:
Max TLU+ Ffile: tlu_plus_Tfile.tf
Tech2ITF mapping file: tf2itf_map

report_power

The report_power command supports the -scenarios option. Without the -scenarios
option, only the current scenario is reported. To report power information for all scenarios,
use the report_power -scenarios [all_scenarios] command.

Note:
In the multicorner-multimode flow, the report_power command does not perform clock
tree estimation. The command reports only the netlist power in this flow.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands 13-7

Power Compiler™ User Guide

Version L-2016.03-SP4

The following example shows the report generated by the report_power -scenarios

command.
KAAIXAIAAAAXAAXAAXAAXAIAAIAAIAAXAAAAXAAXAAAATAITAIAIdK K

Report : power
Design : Design_1
Scenario(s): sl
Version: ...

Date T

KTEAEAEAAAAEAAXEAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAAXhx*x

Library(s) Used: slow (File: slow.db)

Global Operating Voltage = 1.08
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns

Dynamic Power Units = 1mW (derived from V,C,T units)

Leakage Power Units = Unitless
Warning: Could not find correlated power. (PWR-725)

Power Breakdown

Cell Driven Net Tot Dynamic Cell

Internal Switching Power (mW) Leakage
Cell Power (mW) Power (mW) (% Cell/Tot) Power(nW)
Netlist Power 4.8709 1.2889 6.160e+00 (79%) 1.351e+05
Estimated Clock Tree Power N/A NZA N/ZA

Script Example for Multicorner-Multimode Flow

Example 13-3 shows a basic script example for the multicorner-multimode flow.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow

13-8

Power Compiler™ User Guide Version L-2016.03-SP4

Example 13-3 Basic Script to Run a Multicorner-Multimode Flow

#oo.o path settings......

set search_path *. $DESIGN_ROOT $lib_path/dbs \
$lib_path/mwlibs/macros/LM"

set target library "stdcell.setup.ftyp.db \
stdcell.setup.typ.db stdcell._setup.typhv.db"

set link_library [concat * $target_library \
setup.ftyp.130v.100c.db setup.typhv.130v.100c.db \
setup.typ-130v.100c.db]

set_min_library stdcell._setup.typ.db -min_version stdcell_hold.typ.db

Heoeaon MW setup......

create_scenario sl

set_operating_conditions WORST -library stdcell._setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf _map layermap.txt
read_sdc sl.sdc

set_scenario_options -scenarios sl-setup false -hold false \
-leakage_power true

create_scenario s2

set_operating_conditions BEST -library stdcell_setup.ftyp.db:stdcell_ftyp
set_tlu plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s2.sdc

create_scenario s3

set_operating_conditions NOM -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf _map layermap.txt
read_sdc s3.sdc

set_active_scenarios {sl s2}
report_scenarios

compile_ultra -scan -gate_clock
report_qor

report_constraint

report_timing -scenarios [all_scenarios]

insert_dft
compile_ultra —incremental

The multicorner-multimode design in Figure 13-2 and the subsequent example scripts in
Example 13-4 and Example 13-5 show how you define your power intent in the UPF file and
define the scenarios for a multicorner-multimode multivoltage design.

Multicorner-multimode multivoltage designs are useful in applications such as dynamic
voltage and frequency scaling (DVFS). In hierarchical designs, the top-level design is

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow 13-9

Power Compiler™ User Guide Version L-2016.03-SP4

generally optimized at a different voltage and in a different corner than the subdesigns of the
hierarchy. The power intent specification can be for the entire design in a single UPF
(Unified Power Format) file.

Standard cell and special cell libraries should be available to satisfy all voltages defined
across multiple corners.

The design in Figure 13-2 has two scenarios of operation, S1 and S2. In the scenario S1,
the power domain PDT operates at 1.0V, while the power domain PDA operates at 0.8V or
OFF and power domain PDB operates at 0.6V or OFF. In scenario S2, the power domain
PDT operates at 1.1V, while the power domain PDA operates at 0.6V or OFF and power
domain PDB operates at 0.7V or OFF.

Although the various subdesigns operate at different voltages, you need only a single UPF
file to specify your power intent for the entire design and all its subdesigns. The specific
voltages set on the supply nets are scenario-specific and are set by using the set_voltage
command in each scenario.

Figure 13-2 Multicorner-Multimode Design With Multivoltage

VDD VDD
PDT PDT
1.0v 1.1v
VDDA VDDB VDDA VDDB
PDA PDB PDA PDB
0.8y, off 0.6v, off 0.6v, off 0.7v, off
Scenario S1 Scenario S2

Example 13-4 and Example 13-5 show example scripts using the UPF flow for the
multivoltage, multicorner-multimode design in Figure 13-2.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow 13-10

Power Compiler™ User Guide Version L-2016.03-SP4

Example 13-4 UPF File Describing Design Intent

Example UPF File

Create Power Domains
create_power_domain PDT -include_scope
create_power_domain PDA -elements PD_PDA
create_power_domain PDB -elements PD_PDB

Create Supply Nets

create_supply_net VDD -domain PDT
create_supply_net VDDA -domain PDA
create_supply_net VDDB -domain PDB
create_supply _net VSS -domain PDT
create_supply net VSS -domain PDA -reuse
create_supply net VSS -domain PDB -reuse

Create Supply Ports
create_supply_port VDD
create_supply_port VDDA
create_supply_port VDDB
create_supply_port VSS

Connect supply nets
connect_supply _net VDD -ports VDD
connect_supply net VDDA -ports VDDA
connect_supply net VDDB -ports VDDB
connect_supply_net VSS -ports VSS

Adding port states

add_port_state VDD -state {HV1 1} -state {HV2 1.1}

add_port_state VDDA -state {LV1 0.8} -state {LV3 0.6} -state {OFF off}
add_port_state VDDB -state {LV2 0.9} -state {LV4 0.7} -state {OFF off}
create pst top pst -supplies “VDD VDDA VDDB”

add_pst_state PM1 -pst top_pst —state { HV1 LV1 LV3 }
add_pst_state PM2 -pst top_pst -state { HV1 LV1 OFF }
add_pst_state PM3 -pst top_pst -state { HV1 OFF LV3 }
add_pst_state PM4 -pst top pst -state { HV1 OFF OFF }
add_pst_state PM5 -pst top pst -state { HV2 LV2 LV4 }
add_pst_state PM6 -pst top pst -state { HV2 LV2 OFF }
add_pst_state PM7 -pst top_pst -state { HV2 OFF LV4 }
add_pst_state PM8 -pst top_pst -state { HV2 OFF OFF }

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow 13-11

Power Compiler™ User Guide Version L-2016.03-SP4

Example 13-5 Tcl Script Example

load_upf example_.upf ## UPF file defined above

create_scenario sl

read_sdc sl.sdc

set_operating _conditions WCCOM libl.0V

set_voltage -object list VDD 1.0

set_voltage -object list VDDA 0.8

set_voltage -object list VDDB 0.9

set_scenario_options -scenarios sl -setup false -hold false \
-leakage_power true

create_scenario s2

read_sdc s2.sdc

set_operating_conditions BCCOM libl.1V

set_voltage -object list VDD 1.1

set_voltage -object list VDDA 0.6

set_voltage -object list VDDB 0.7

set_scenario_options -scenarios s2 -setup false -hold false \
-leakage_power true

compile_ultra —scan —gate_clock

Note:
The UPF file is not scenario-specific. As a result, the UPF file must contain port state
definitions and power state tables for all the scenarios.

You use the load_upf command to read the UPF script shown in Example 13-4.

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow 13-12

A

Lower Domain Boundary Support

This appendix describes the lower domain boundary feature in detail. This appendix
contains the following sections:

* Introduction
e Enabling the Lower Domain Boundary Feature
» Changes to the Application of the Isolation and Level-Shifter Strategies

¢ Impact on Hierarchical Flow

A-1

Power Compiler™ User Guide Version L-2016.03-SP4

Introduction

By default, the Power Compiler tool considers the logical boundary of the root cells of the
power domain as the boundary of the power domain. However, to comply with the IEEE
1801-2009 (UPF) standard, the tool can consider a power domain boundary to include the
boundary of another domain contained in it. This feature enables you to specify the
elements on the lower domain boundary for level-shifter and isolation strategy definition,
which gives you additional flexibility in selecting the location of the power management cells.

Enabling the Lower Domain Boundary Feature

For the Power Compiler tool to extend the definition of the power domain boundary to the
boundary of another power domain contained in it, set the lower_domain_boundary
attribute to true, as shown in the following example:

set_design_attributes -elements {.} -attribute lower_domain_boundary true

Figure A-1 Definition of Power Domain Boundaries Using the lower_domain_boundary Attribute

Power domain boundar PD_TOP
when \

lower_domain_boundary il a PD_MID
®inl [pD_BOT
in2 . minl outl m
Power domain boundary ®in2
when in3

| |
lower_domai n_boundaer“»

In Figure A-1, by default, the tool considers only in1, in2, and in3 ports of the PD_TOP
domain as the domain boundary.

When the lower_domain_boundary attribute is set to true, the tool considers the inl, in2,
in3 , MID/in1, and MID/in2 ports as the power domain boundary. However, the boundary
does not extend to the interface of the BOT design or the PD_BOT power domain.

You must specify the lower_domain_boundary attribute on a scope before creating any
power domain at the scope or below the scope.

Note that you cannot enable the lower-domain boundary feature at any level below a design
in which the feature is disabled.

Appendix A: Lower Domain Boundary Support
Introduction A-2

Power Compiler™ User Guide Version L-2016.03-SP4

Changes to the Application of the Isolation and Level-Shifter
Strategies

When you set the lower_domain_boundary attribute to true, the elements considered by
the tool for isolation and level-shifting, and the options supported for defining the strategy
are as follows:

« The isolation and the level-shifter strategy that you specify applies to the pins of the
lower domain boundary.

« The tool does not support the set_level_shifter -location parent command.

* The tool does not support the set_isolation_control -location parent and
set_isolation_control -location fanout commands.

When you define the isolation and level-shifter strategies using the -applies_to option with
the set_isolation and set_level_shifter commands, the strategies apply to the pins
on the lower domain boundary of the power domain. For example, in the nested power
domain shown in Figure A-2, the outl and out2 output pins of the PD_BOT power domain
are input pins for the strategies defined in the PD_TOP power domain. Similarly, inl1, in2,
and in3 input pins of the PD_BOT power domain are the output pins for the strategies
defined in the PD_TOP power domain.

So, the isolation and level-shifter strategies that apply to the input pins of the power domain
also apply to the output pins of the root cell of the power domain nested inside the power
domain. Similarly, the isolation and level-shifter strategies that apply to the output pins of the
power domain also apply to the input pins of the root cells of the power domains nested
inside the domain.

Figure A-2 Pins Considered for Isolation in Nested Power Domains

PD_TOP loutl

T out2

Appendix A: Lower Domain Boundary Support
Changes to the Application of the Isolation and Level-Shifter Strategies A-3

Power Compiler™ User Guide Version L-2016.03-SP4

In the following example, the out_iso strategy defined for the PD_TOP power domain
applies to the BOT/in1, BOT/in2, and BOT/in3 pins, which are the lower domain boundary
pins of the PD_TOP power domain.

dc_shell> set_scope /
dc_shell> create_power_domain PD_TOP -include_scope
dc_shell> set_design_attributes -elements {.} \
-attribute lower_domain_boundary true
dc_shell> set_isolation out_iso -domain PD_TOP -applies_to outputs

When you enable the lower domain boundary feature, the tool does not support specifying
the -location parent option for the isolation and the level-shifter strategies. If you require
the isolation or level-shifter cell in the parent domain, define the isolation or level-shifter
strategy in the parent power domain, as the domain boundary includes the boundary of a
lower domain. This eliminates the need to specify -location parent option.

The example in Figure A-3 defines an isolation strategy in the PD_TOP power domain to
isolate the BOT/in1 pin. When you enable the lower domain boundary feature, you can put
the isolation cell in the parent domain by defining the isolation strategy on the PD_TOP
power domain by using the -location selT option.

Figure A-3 Isolation Strategy After Enabling Lower Domain Boundary Support

PD_TOP Loutl
. PD_BOT
- inl Ioutl
!n2 out?2
in3
T out2
Lower Domain Boundary Feature Enabled

set_isolation iso -domain PD_TOP \
-elements BOT/inl

set_isolation_control iso \

-domain PD_TOP -location self

Specifying Design Instances Using Wildcard Characters

When you use the wildcard characters (* or ?) with the -elements option, the tool searches
for matching ports, pins, or design instances in the current level of hierarchy and applies the
isolation strategy to the elements identified as the boundaries of the specified power
domain.

Appendix A: Lower Domain Boundary Support
Changes to the Application of the Isolation and Level-Shifter Strategies A-4

Power Compiler™ User Guide Version L-2016.03-SP4

In Example A-1, the asterisk (*) wildcard character is specified in the -elements option of
the set_isolation command for the tiso isolation strategy. The tool applies the tiso
isolation strategy to the LowConn (hierarchically lower) side of the ports and pins of the
PD_TOP power domain and HighConn (hierarchically higher) side of the ports and pins of
the PD_MID power domain in Figure A-4.

Example A-1 Instance Support Using Asterisk (*) Wildcard Character

dc_shell> set_scope /
dc_shell> set _design_attributes -elements {.} \
-attribute lower_domain_boundary true
dc_shell> create_power_domain PD_TOP
dc_shell> create power_domain PD_MID -elements {MID}
dc_shell> create_power_domain PD_BOT -elements {MID/BOT1}
dc_shell> set _isolation tiso -domain PD_TOP -elements {*} \
-applies_to outputs

Figure A-4 Design With Nested Power Domains

PD_TOP
. PD_MID MID
inl = s outl
®inl |PD_BOT
in2 m minl outlm outlw wmout2
% in2 BOT1
in3 4 m Out3

Specifying Design Instances Using SystemVerilog Elements

When using the -elements option with certain UPF commands, you can reference
SystemVerilog vector and structure elements using their RTL vector or structure name. To
enable this feature, run the following command:

set_upf_query options -bus_struct_mode true

Setting the -bus_struct_mode option affects the set_retention, set_isolation, and
map_retention_cell commands. To use this feature, you must have the following set
before reading the UPF:

e bus_naming_style = "%s[%d]" (default)
* bus_dimension_separator_style = "][" (default)

e hdlin_enable_upf_compatible_naming true

Appendix A: Lower Domain Boundary Support
Changes to the Application of the Isolation and Level-Shifter Strategies A-5

Power Compiler™ User Guide Version L-2016.03-SP4

This option should only be enabled when loading the initial RTL UPF and then should be
disabled after reading the RTL, as shown:

set_upf_query_options -bus_struct_mode true
load_upf blockl.upf
set_upf _query options -bus_struct_mode false

Note that the -bus_struct_mode option should be false (the default) except when reading
in the RTL UPF before any netlist editing happens. Otherwise, any vector or structure
references might return incorrect results.

Filtering the Design Elements Using the -applies_to Option

When you specify the -applies_to option with the -elements option of the
set_isolation command, the tool filters the elements using the following guidelines:

« The -applies_to option is applied relative to the power domain where the isolation
strategy is defined.

« If you enable the lower domain boundary feature,

o For the LowConn side of the port or pin on the interface of the power domain, the tool
selects the ports or pins whose direction matches the direction specified with the
-applies_to option.

o Forthe HighConn side of the port or pin on the interface of the power domain, the tool
selects the port or pin whose direction is opposite to the direction specified with the
-applies_to option.

Insertion of Back-to-Back Isolation and Level-Shifter Cells

The lower domain boundary feature enables the insertion of similar power-management
cells on either side of the power-domain boundary. For example, insertion of two isolation or
level-shifter cells on the same power domain boundary; one cell inside the power domain
and the other in the surrounding power domain, as shown in Figure A-5.

Appendix A: Lower Domain Boundary Support
Changes to the Application of the Isolation and Level-Shifter Strategies A-6

Power Compiler™ User Guide Version L-2016.03-SP4

Figure A-5 Back-to-Back Isolation Cells

PD_TOP l
outl
inl PD_BOT
s Outl
top_iso bot_iso u Out2
in3
m out2

The following example script defines the top_iso and bot_iso isolation strategies for the
isolation cells shown in Figure A-5. The top_iso strategy is applicable to BOT/inl pin,
because the pin is on the lower domain boundary of the PD_TOP power domain.

dc_shell> set_isolation top_iso -domain PD_TOP -elements BOT/inl
dc_shell> set_isolation_control top_iso -domain PD _TOP -location self

dc_shell> set_isolation bot _iso -domain PD_BOT -elements BOT/inl
dc_shell> set_isolation_control bot _iso -domain PD_BOT -location self

Impact on Hierarchical Flow

When you enable the lower domain boundary feature, the hierarchical flow is simplified in
both the top-down and bottom-up flows. You do not need to define the isolation strategies
using the -location parent option in the block-level design because the equivalent
strategies can be defined in the parent domain by including the lower domain boundary
elements.

When you specify design instances with the isolation strategy, during characterization of the
design instances, the tool characterizes the applicable instance-specific strategies. If the
design of the characterized design instance is removed, the upper-domain strategies
applied on the design instance is retained in the UPF design of the top-level block.

During integration of the implemented blocks, the tool matches the instance-based
strategies with their corresponding strategies that are present in the top-level design and
performs domain merging.

Appendix A: Lower Domain Boundary Support
Impact on Hierarchical Flow A-7

Power Compiler™ User Guide Version L-2016.03-SP4

Bottom-Up Flow

When the lower domain boundary is not enabled, to optimize the top-level design, you follow
these steps:

1.
2.
3.

4,

Load the netlist and the UPF file for the top-level design
Load the block-level design and the UPF file for the block-level design

Load the UPF file for block-level design, that contains only the isolation and level-shifter
strategies defined using the -location parent option

Optimize the top-level design

During design integration, when you replace the block-level design by the optimized
block-level design, the strategies defined using -location parent option are removed.
You must reload the UPF file for the block-level design that contains only the strategies that
are defined using -location parent option.

Appendix A: Lower Domain Boundary Support
Impact on Hierarchical Flow A-8

Power Compiler™ User Guide

Figure A-6 Bottom-Up Flow

Lower Domain Boundary Feature Disabled

Version L-2016.03-SP4

Lower Domain Boundary Feature Enabled

Top-Level Design Optimization

Set_scope/

set_design_attributes -elements {.}\
-attribute lower_domain_boundary false
read_verilog BOT_black_box.v
read_verilog top_only.v

current_design TOP

load_upf -scope BOT BOT.upf

load_upf top_only.upf

load_upf BOT_parent_strategies.upf
compile_ultra

Set_scope/

set_design_attributes -elements {.} \
-attribute lower_domain_boundary true
read_verilog BOT_black_box.v
read_verilog top_only.v

current_design TOP

load_upf -scope BOT BOT.upf
load_upf top_only.upf

compile_ultra

Design Integration

set_scope /

set_design_attributes -elements {.} \
-attribute lower_domain_boundary false
remove_design -hierarchy BOT
read_verilog BOT_optimized.v
current_design TOP

load_upf -scope BOT BOT.upf
load_upf BOT_parent_strategies.upf
compile_ultra

write_file TOP -hierarchy -format ddc \
~output TOP_integrated.ddc

set_scope /

set_design_attributes -elements { .} \
-attribute lower_domain_boundary true
remove_design -hierarchy BOT
read_verilog BOT_optimized.v
current_design TOP

load_upf -scope BOT BOT.upf

compile_ultra
write_file TOP -hierarchy -format ddc \

~output TOP_integrated.ddc

As shown in Figure A-6, when you enable the lower domain boundary feature, during

top-level design optimization and design integration, you do not need to load a separate

UPF file that contains only the strategies defined using the -location parent option.

Top-Down Flow

When you enable the lower domain boundary feature, you can define the isolation strategy
on the lower boundary of the top domain. In Figure A-7, the top_iso isolation strategy is
characterized to the mid block because the PD_BLUE and PD_RED power domains are
lower domain boundaries of the PD_TOP power domain. The top_iso isolation strategy
applies to the PD_BLUE and PD_RED power domains after characterization. Also, the tool

creates an additional isolation strategy with the -no_isolation option in the mid power

domain to avoid isolating the top-level ports of the mid power domain.

Appendix A: Lower Domain Boundary Support
Impact on Hierarchical Flow

A-9

Power Compiler™ User Guide

Version L-2016.03-SP4

Figure A-7 Top-Down Hierarchical Flow When Lower Domain Boundary is Enabled

PD_TOP top
i1 L mid
goutl
in2 T
g out2
in3
T

loutl

® out?2

create_power_domain PD_TOP
create_power_domain PD_BLUE\
-elements mid/blue -scope mid
create_power_domain PD_RED \
-elements mid/red -scope mid

set_isolation top_iso \
-domain PD_TOP \

-applies_to outputs

characterize mid

Characterization of the Related Supply

In the top-down flow, the characterization of the related supply of a pin is based on the
strategy that applies to the pin from the lower-boundary as well as the upper-boundary of the

power domain.

* When multiple strategies apply to a pin, from the lower and upper-domain boundaries,
the tool derives the related supply for the pin based on the strategies applicable from the

upper-domain boundary.

« When an input or output pin drives the data-pin of an isolation cell, the supply of the
driver is the related supply of the input or output pin.

Appendix A: Lower Domain Boundary Support
Impact on Hierarchical Flow

A-10

B

Integrated Clock-Gating Cell Example

This appendix contains an example .lib description of an integrated clock-gating cell and
some schematic examples of rising (positive) and falling (negative) edge integrated
clock-gating cells.

This appendix contains the following sections:
» Library Description

* Example Schematics

B-1

Power Compiler™ User Guide Version L-2016.03-SP4

Library Description

Example B-1 is a description of an integrated clock-gating cell that demonstrates the
following features:

 The clock_gating_integrated_cell attribute

» Appropriate clock-gating attributes on three pins

e Setup and hold arc on enable pin (EN) with respect to the clock pin (CP)

» Combinational arcs from enable pin (EN) and clock pin (CP) to the output pin (Z)
« State table and state function on the output pin (Z)

* Internal power table

Example B-1 HDL Description, Integrated Clock-Gating Cell

cell (CGLP) {
area - 1;
clock _gating_integrated cell : "latch_posedge";
dont_use : true;
statetable(" CP EN ", "I1Q ") {
L - - -

table : " L : L ,\
L H - -:H,
H - - N *;
¥
pin(1Q) {
direction : internal;
internal_node : "I1Q";
}
pin(EN) {

direction : input;
capacitance : 0.017997;
clock _gate_enable pin : true;
timing(Q {
timing_type : setup_rising;
intrinsic_rise : 0.4;
intrinsic_fall : 0.4;
related pin : "CP";

by

timing(Q {
timing_type : hold_rising;
intrinsic_rise : 0.4;
intrinsic_fall : 0.4;
related pin : "CP";

}

}

pin(CP) {
direction : input;
capacitance : 0.031419;

Appendix B: Integrated Clock-Gating Cell Example
Library Description B-2

Power Compiler™ User Guide Version L-2016.03-SP4

clock _gate_clock pin
min_pulse_width_low

¥
pin(2) {
direction : output;
state_function : "CP * 1Q";
max_capacitance : 0.500;
max_fanout : 8
clock _gate_out pin : true;
timing(Q {
timing_sense : positive_unate;
intrinsic_rise : 0.48;
intrinsic_fall : 0.77;

true;
0.319;

rise_resistance : 0.1443;
fall_resistance : 0.0523;
rise_resistance : 0.1443;
fall _resistance : 0.0523;

slope_rise : 0.0
slope_fall : 0.0;
related pin : "CP";

}

timing(Q {
timing_sense : positive_unate;
intrinsic_rise : 0.22;
intrinsic_fall : 0.42;
rise_resistance : 0.1443;
fall_resistance : 0.0523;
slope_rise : 0.0;
slope_fall : 0.0;
related_pin : "EN";

L v

nternal_power (OQ{
rise_power(1i14X3){
index_1("0.0150, 0.0400, 0.1050, 0.3550");
index_2("'0.050, 0.451, 1.501");
values(''0.141, 0.148, 0.256",\
"0.162, 0.145, 0.234",\
'"0.192, 0.200, 0.284",\
"0.199, 0.219, 0.297');
by
fall_power(1i4X3){
index_1("0.0150, 0.0400, 0.1050, 0.3550");
index 2("0.050, 0.451, 1.500");
values(''0.117, 0.144, 0.246",\
"0.133, 0.151, 0.238",\
"0.151, 0.186, 0.279",\
"0.160, 0.190, 0.217'");
}
related_pin : "CP EN" ;
}
s
}

Appendix B: Integrated Clock-Gating Cell Example
Library Description B-3

Power Compiler™ User Guide Version L-2016.03-SP4

When creating your model, examine whether it includes all the clock_gate attributes on
both the cell and on the pins. Some of the Power Compiler commands require these
attributes to recognize the functionality of the cell. DFT Compiler does not recognize this
cell. If these attributes are not included, an error message displays. Include the following
attributes in your model:

e clock gating_ integrated_cell
e clock gate test pin

e clock gate enable pin

e clock _gate out_pin

e clock gate clock pin

Library Compiler can interpret the functionality of the integrated clock-gating cell directly
from the state table and state function. The following example shows the
clock_gating_integrated_cell attribute with a generic value:

cell (CGLP) {
area - 1;
clock_gating_integrated_cell : 'generic';
dont_use : true;
statetable(” CP EN ™, "1Q ™) {
\

table - "L L :--:-1L,
LH:-:H,\
H-:--:>N";
I8
pin(1Q) {
direction : internal;
internal_node : "IQ";
}
pin(2) {
direction : output;

state_function : "CP * 1Q";
max_capacitance : 0.500;
max_fanout : 8

clock _gate_out pin : true;
timing(Q {

Example Schematics

This section contains example schematics of latch-based and latch-free clock-gating styles
for rising- and falling-edge-triggered logic. These are a subset of integrated clock-gating
cells supported by Power Compiler.

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics B-4

Power Compiler™ User Guide Version L-2016.03-SP4

Rising-Edge Latch-Based Integrated Cells

The following integrated cells are latch-based. The rising-edge latch-free integrated cells are
described in the following section.

Figure B-1 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure B-1 Rising-Edge Latch-Based Integrated Cell (latch_posedge)

en
— e »
e
o
—>J ©
enl S
oIk > - gelk

». »
e

_/
Figure B-2 displays an integrated cell using a latch-based gating style, appropriate for

registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-2 Rising-Edge Latch-Based Integrated Cell With Pre-Control
(latch_posedge_precontrol)

— > <
o
—»0| & |
enl —
clk o\ |9k
> > //

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

B-5

Power Compiler™ User Guide

Version L-2016.03-SP4

Figure B-3 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-3 Rising-Edge Latch-Based Integrated Cell With Post-Control
(latch_posedge_postcontrol)

E
en

Icg

latch

—»C

enl
clk ~ gclk

Figure B-4 Rising Edge Latch Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol)

sSen

en [

latch

enl

clk

N gclk
- T

IQN

Figure B-5 displays an integrated cell using a latch-based gating style, appropriate for

registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure B-5 Rising-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_posedge_precontrol_obs)

clk
\.—g>

lobs_pin

Figure B-6 displays an integrated cell using a latch-based gating style, appropriate for

registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

B-6

Power Compiler™ User Guide Version L-2016.03-SP4

Figure B-6 Rising-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol_obs)

en

latch

clk

Y obs_pin

Rising-Edge Latch-Free Integrated Cells

The following integrated cells are latch-free. The rising-edge latch-based integrated cells
were described in the previous section.

Figure B-7 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure B-7 Rising-Edge Latch-Free Integrated Cell (none_posedge)

en
enl
\ clk
clk ——0 \/,g_.
Labd »/ o

Figure B-8 displays an integrated cell using a latch-free gating style, appropriate for

registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-8 Rising-Edge Latch-Free Integrated Cell With Control (none_posedge_control)

olk »o . gclk

|
>/

Appendix B: Integrated Clock-Gating Cell Example

Example Schematics B-7

Power Compiler™ User Guide Version L-2016.03-SP4

Figure B-9 displays an integrated cell using a latch-free gating style, appropriate for

registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure B-9 Rising-Edge Latch-Free Integrated Cell With Control Observable Point
(none_posedge_control_obs)

se
L// |
enl
\ clk
clk —0 >ﬂ9_,
Pe >/ /
Y cgobs

Falling Edge Latch-Based Integrated Cells

The following integrated cells are latch-based. The falling-edge latch-free integrated cells
are described in the following section.

Figure B-10 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure B-10 Falling-Edge Latch-Based Integrated Cell (latch_negedge)

en

v

latch

v

clk Ol ook

y T

A 4

Appendix B: Integrated Clock-Gating Cell Example

Example Schematics B-8

Power Compiler™ User Guide

Version L-2016.03-SP4

Figure B-11 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-11 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol)

Ej:
en >
—

latch

—>
enl -
clk

' clk
| 9

Figure B-12 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-12 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol)

se
en :
5 |ia
» T
clk

y

h gclk

»

Figure B-13 displays an integrated cell using a latch-based gating style, appropriate for

registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure B-13 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol_obs)

se
en

)
—>

-

/-

latch

enl
clk

2 clk

A 4

" cgobs

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

B-9

Power Compiler™ User Guide Version L-2016.03-SP4

Figure B-14 displays an integrated cell using a latch-based gating style, appropriate for

registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure B-14 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol_obs)

se
en >
en| | >=>
N 4
=
y ©
enl
clk | | gclk
> >
v cgobs

Falling-Edge Latch-Free Integrated Cells

The following integrated cells are latch-free. The falling-edge latch-based integrated cells
were described in the previous section.

Figure B-15 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure B-15 Falling-Edge Latch-Free Integrated Cell (none_negedge)

en
—
enl - gck
clk >)H_g,
> > y

Figure B-16 displays an integrated cell using a latch-free gating style, appropriate for

registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure B-16 Falling-Edge Latch-Free Integrated Cell With Control (none_negedge_control)

E
en > —»
—>

clk

enl _

> L/

v v

Appendix B: Integrated Clock-Gating Cell Example

Example Schematics B-10

Power Compiler™ User Guide Version L-2016.03-SP4

Figure B-17 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure B-17 Falling-Edge Latch-Free Integrated Cell With Control Observable Point
(none_negedge_control_obs)

se
en ﬁﬁ»__,
[enl
7* clk
clk — 9
> >
¥ cgobs

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics B-11

Power Compiler™ User Guide Version L-2016.03-SP4

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics B-12

C

Attributes for Querying and Filtering

This appendix describes derived Power Compiler attributes that you can use in scripts to
view and filter design objects related to clock gating for power optimization.

The derived attributes described in this appendix are read-only properties that Power
Compiler automatically assigns to designs, cell, and pins based on other attributes or the
netlist configuration.

At times, you might want to view and use design objects according to their attributes. For
example, you might want to filter for cells that are integrated clock gates (the is_icg
attribute). Or, your queries might be required for back end processes such as clock tree
synthesis in which fanout considerations have priority.

This appendix contains the following sections:
» Derived Attribute Lists

e Usage Examples

C-1

Power Compiler™ User Guide

Version L-2016.03-SP4

Derived Attribute Lists

You can query for the following derived attributes assigned by Power Compiler. Specify man
power_attributes in dc_shell to view a list of these attributes. Table C-1 and Table C-2
show the derived attributes for designs and cells, respectively.

Table C-1 Derived Attributes for Designs

Name Type Description
is_clock_gating_design Boolean true if the design is a clock-gating design
is_clock_gating_ Boolean true if the design is a clock-gating observable design

observability_design

Table C-2 Derived Attributes for Cells

Name Type Description

is_clock_gate Boolean true if the cell is a clock gate

is icg Boolean true if the cell is an integrated clock gate

is gicg Boolean true if the cell is a generic integrated clock gate
is_latch_based clock_ Boolean true if the cell is a latch-based clock-gating cell
gate

is_latch_free clock_ Boolean true if the cell is a latch-free clock-gating cell
gate

is_positive_edge clock_ Boolean
gate

is_negative_edge clock_ Boolean

gate

clock gate_has_ Boolean
precontrol

clock gate_has_ Boolean
postcontrol

clock gate_has_ Boolean
observation

is_clock_gated Boolean

Appendix C: Attributes for Querying and Filtering
Derived Attribute Lists

true if the cell is a positive edge clock gate
true if the cell is a negative edge clock gate
true if the cell is a clock gate with (pre-latch) control

point

true if the cell is a clock gate with (post-latch) control
point

true if the cell is a clock gate with observation point

true if the cell is a clock-gated register or clock gate

C-2

Power Compiler™ User Guide Version L-2016.03-SP4

Table C-2 Derived Attributes for Cells (Continued)

Name Type Description

clock _gating_depth integer number of clock gates on the clock path to this cell; -1
if not a clock gate or register

clock_gate_level integer position in a multistage clock tree: number of clock
gates on the longest branch in the fan out of this cell;
-1 if not a clock gate

clock_gate_fanout integer number of registers and clock gates in the direct fan
out of the clock gate; -1 if not a clock gate

clock gate register_ integer number of registers in the direct fan out of the clock
fanout gate; -1 if not a clock gate

clock_gate multi_stage integer number of clock gates in the direct fan out of the clock
fanout gate; -1 if not a clock gate

clock gate_transitive_ integer number of registers in the transitive fan out of the
register_fanout clock gate; -1 if not a clock gate

clock _gate module_ integer number of modules in the local fan out of the clock
fanout gate; -1 if not a clock gate

For hierarchical clock-gating cells, the derived clock-gating attributes only work when
applied to the hierarchical clock-gate wrapper. If you apply an attribute to the leaf cell of a
discrete clock gate or a leaf integrated clock gate, the attribute returns false for Boolean
attributes, -1 for integer attributes, or an empty string for string attributes. The only exception
to this rule is the is_icg attribute; this attribute is true when applied to a leaf integrated clock
gate contained within a hierarchical clock gate wrapper but false when applied to that
wrapper. This behavior allows you to recognize the actual integrated clock-gating cell, not
the hierarchical wrapper.

Table C-3 Derived Attributes for Pins

Name Type Description

is_clock _gate enable pin Boolean true if the pin is a clock-gate enable input
is_clock _gate clock pin Boolean true if the pin is a clock-gate clock input
is_clock _gate output _pin Boolean true if the pin is a clock-gate gated-clock output

is_clock_gate_test pin Boolean true if the pin is a clock-gate scan-enable or
test-mode input

Appendix C: Attributes for Querying and Filtering
Derived Attribute Lists C-3

Power Compiler™ User Guide Version L-2016.03-SP4

Table C-3 Derived Attributes for Pins (Continued)

Name Type Description

is_clock_gate Boolean true if the pin is a clock-gate observation point
observation_pin

Usage Examples

You can query the attributes described in the previous section using the get_attribute,
get_designs, get_cells, get_pins, and all_clock _gates commands. You can also
use these commands with the -fi I ter option.

The following examples show how the attributes might appear in scripts.

To gather all the clock gates specific to a clock “clk”:

all_clock_gates —clock [get_clocks clk]

The all_clock_gates command creates a collection of clock-gating cells or pins that
satisfy the parameters you set. Additional options allow you to filter for enable, clock, and

gated-clock pins; scan_enable or test_mode pins; and observation pins. For more
information, see the man page.

To filter out the multistage clock-gating cell associated with the clock “clk”:

set multi_stage cg [filter [all_clock gates -clock \
[get _clocks clk]] \ "@clock _gate level >0"]

To retrieve the number of fan outs of a clock-gating cell:

get _attribute [get cells top/clk gate 1] \
clock _gate_ fanout

To gather a collection of clock-gating cells with pre-latch control point and a fanout greater
than four:

set CG_collection [Filter [all_clock gates] \
"@clock_gate has_precontrol==
true && @clock_gate fanout > 4]

To gather a collection of clock-gating designs (the wrapper design where the clock-gating
cells reside):

set CG_designs [get_designs -filter \
"@is_clock _gating_design==true']

Appendix C: Attributes for Querying and Filtering
Usage Examples C-4

D

Power Compiler Command and Variable
Reference

This appendix lists the Power Compiler tool commands and variables.

D-1

Power Compiler™ User Guide Version L-2016.03-SP4

Getting Help
Power Compiler provides various forms of online help.
e The help command provides quick help for one or more commands or procedures.
e The man command displays the man page.

You can use a wildcard pattern as the argument for the help command. The wildcard
characters are

* *matches n characters.

e 7?7 matches exactly one character.

Accessing Help
Use this command to list all commands by the function group:

dc_shell> help

Use this command to display all commands that end with the word clock:

dc_shell> help *clock

Use this command to get syntax help for one or more commands:

dc_shell> help -verbose command_name_pattern

Use this command to get syntax help for a specific command:

dc_shell> command_name -help

Man Page Viewing Instructions

The following sections describe how to set up your environment and the syntax required to
view man pages.

Viewing Man Pages in SolvNet

You can view the man pages in HTML or PDF format on the Synopsys SolvNet® online
support site. To view the man pages, go to:

https://solvnet.synopsys.com/DocsOnWeb

Click Man Pages and Error Messages on the right side of the page.

Appendix D: Power Compiler Command and Variable Reference
Getting Help D-2

https://solvnet.synopsys.com/DocsOnWeb

Power Compiler™ User Guide Version L-2016.03-SP4

Setting Up the UNIX Environment

Edit your .cshrc file to contain these lines:

setenv SYN_MAN_DIR synopsys_root/doc/syn/man
setenv MANPATH ${MANPATH}:${SYN_MAN_DIR}

SYN_MAN_DIR is a variable that contains the path to the man page directories, and
synopsys_root represents the specific path to the Synopsys software directory at your site.

Viewing Man Pages From UNIX
To view command or variable man pages from UNIX, enter the following command:

% man command_or_variable_name

It is not possible to view the man pages for error, warning, and information messages from
UNIX.

Viewing Man Pages From dc_shell
Command:

dc_shell> man command_name

Variable:

dc_shell> man variable_name

Error, warning, or information message:

dc_shell> man message_id

Power Compiler Commands

Invoke these commands from within the Power Compiler tool. For more information about
these commands, see the man pages.

add_power_state

Adds state information to a supply set.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-3

Power Compiler™ User Guide Version L-2016.03-SP4

status add_power_state
[-supply | -group] object name
[-simstate NORMAL | CORRUPT_ON_ACTIVITY | CORRUPT | NOT_NORMAL]
[-update]
[-state {state name [-supply_expr {boolean_function}]
[-1ogic_expr {boolean_function}]}
[-simstate NORMAL | CORRUPT_ON_ACTIVITY | CORRUPT |
NOT NORMAL]

[-illegal]}]*

add_pst_state

Defines the states of each of the supply nets for one possible state of the design.

status add_pst_state
state_name

-pst table_name
-state supply_states

all_clock_gates

Returns a collection of clock-gating cells or pins in the current design.

collection all_clock gates
[-no_hierarchy]

[-clock clock _name]
[-cells]
[-enable_pins]
[-clock pins]
[-output_pins]
[-test pins]
[-observation_pins]

all_isolation_cells

Returns a collection of isolation cells available in the design.

collection all _isolation_cells

all_level shifters
Returns a collection of level-shifter cells available in the design.

collection all_level_shifters [-type els | simple]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-4

Power Compiler™ User Guide Version L-2016.03-SP4

all_self _gates

Returns a collection of self-gating cells or pins in the current design. The command is
supported only in topographical mode.

collection all_self _gates
[-no_hierarchy]

[-clock clock_name]
[-cells]

[-enable_pins]

[-clock _pins]
[-output_pins]

[-test _pins]

all_upf _repeater_cells

Returns a collection of repeater cells available in the design that have the UPF
repeater-supply port attribute.

collection all_upf _repeater_cells

analyze_library

Provides a library cell analysis based on the specified parameters

status analyze_ library
[-multi_vth]
[-ighore_dont_use_attribute]
[-graph file_name]

[list of libraries]

analyze _dw_power

Reports the DesignWare delay and power contribution.

integer analyze dw_power
[-nosplit]

[-hierarchy]

[-sort slack | dyn_pwr | Ikg_pwr]
[-sort_ascending]

analyze _mv_design
Analyzes multivoltage design connections.

status analyze mv_design

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-5

Power Compiler™ User Guide Version L-2016.03-SP4

level _shifter | -always _on]
from_pin from_pin_list]
[-to_pin to_pin_list]

[-net target_net]

[-verbose]

[_
[_

apply_clock _gate latency

Annotates the clock latencies on the existing clock-gating cells based on the settings
previously specified using the set_clock_gate_latency command.

status apply_clock gate latency

associate_supply_set

Associates a supply set handle to another supply set handle or supply set reference.

status associate_supply_set
supply_set_name
-handle supply_set _handle

characterize

Captures information about the environment of specific cell instances and assigns the
information as attributes on the design to which the cells are linked.

status characterize
cell_list
[-no_timing]
[-constraints]
[-connections]
[-power]
[-

verbose]

check_level_shifters

Checks the design for all existing level shifters and nets against the specified level-shifter
strategy and threshold.

status check_level_shifters [-verbose]

check_mv_design

Checks for violations in a multivoltage design.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-6

Power Compiler™ User Guide Version L-2016.03-SP4

status check _mv_design
[-verbose]

[-isolation]
[-target_library_subset]
[-opcond_mismatches]
[-connection_rules]
[-1evel _shifters]
[-power_nets]

[-clock _gating_style]
[-max_messages message count]
[-output output_file_name]

compile
Performs logic-level and gate-level synthesis and optimization on the current design.

status compile

[-no_map]

[-map_effort medium | high]

[-area_effort none | low | medium | high]
incremental_mapping]

exact_map]

ungroup_all]

boundary_optimization]

auto_ungroup area | delay]
no_design_rule | -only design_rule | -only_hold_time]
scan]

top]

power_effort none | low | medium | high]

[_
[_
[_
[_
[_
[_
[_
[_
[_
[-gate clock]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-7

Power Compiler™ User Guide Version L-2016.03-SP4

compile_ultra

Performs a high-effort compile on the current design for better quality of results (QoR).

status compile_ultra
[-incremental]

[-scan]

[-exact_map]
[-no_autoungroup]
[-no_seq_output_inversion]
[-no_boundary_optimization]
[-no_design_rule]

[-only _design_rule]
[-timing_high_effort_script]
[-area _high_effort_script]
[-top]
[-retime]
[-gate_clock]
[-self_gating]
[-check_only]
[-congestion]
[-
[-

spgl o
no_auto_layer_optimization]

connect_logic_net

Connects a logic net to logic ports. Returns the status of the command: 1 if successful and
0 when unsuccessful.

status connect_logic_net net_name [-ports port_list]

connect_supply_net

Connects the supply net to the specified supply ports and pins.

status connect_supply_net supply_net_name
-ports list
[-vct vct_name]

convert_pg

Converts RTL power and ground information extracted from the RTL into the UPF format.

status convert_pg
[-net_creation_style domain_dependent | domain_independent]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-8

Power Compiler™ User Guide Version L-2016.03-SP4

create _logic_net
Defines a logic net.

status create_logic_net net_name

create_logic_port
Defines a logic port.

string create logic _port port _name [-direction in | out | inout]

create_power_domain

Creates a power domain, which provides a power supply distribution network.

string create_power_domain

domain_name

[-elements cells]

[-include_scope]

[-scope instance_name]

[-supply {supply_set _handle_name supply_set name}*]
[-update]

create_power_state_group

Creates a name for a group of related power states.

string create_power_state_group group_name

create_power_switch

Creates a power switch in the specified power domain.

string create_power_switch

switch_name

-domain domain_name

-output_supply_port {port _name supply_net name}
—-input_supply_port {port_name supply net _name}
-control_port {port_name net_name}

[-ack_port {port_name net _name [{boolean_function}]}]
[-ack_delay {port_name delay}]

-on_state {state_name input_supply port {boolean_function}}
[-off _state {state_name {boolean_ function}}]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-9

Power Compiler™ User Guide Version L-2016.03-SP4

create_pst

Creates a power state table using a specific order of supply nets.

string create pst table_name -supplies list

create_supply_net

Creates a supply net for the specified power domain. The supply net is created in the logic
hierarchy at the same scope as the specified power domain.

string create_supply_net
supply_net_name

[-domain domain_name]

[-reuse]

[-resolve unresolved | parallel]

create_supply_port

Creates a supply port in the specified power domain. If a power domain is not specified,
creates the port in the current scope.

string create_supply_port
supply_port_name

[-domain domain_name]
[-direction in | out]

create_supply_set

Creates a set of supplies that can be used to define the power network. A supply set is
created in the current logic hierarchy.

string create_supply_set

supply_set _name

[-Ffunction {function_name supply net_name}]*
[-update]

find_objects

Finds logical hierarchy objects within a scope. Returns a list of the found hierarchical names
(relative to the active scope); when nothing is found, a null string is returned. This is a UPF
query command.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-10

Power Compiler™ User Guide Version L-2016.03-SP4

list find _objects

scope

-pattern pattern_string
-object_type type_name
[-direction direction_name]
[-transitive transitive_string]
[-non_leaf]

-leaf_only]

-exact]

==

get power_domains
Creates a collection of power domains that match the specified criteria.

collection get _power_domains

[-quiet]

[-regexp]

[-nocase]

[-Filter expression]
[-hierarchical]

[patterns | -of_objects objects]

get_power_switches

Creates a collection of power switches that match the specified criteria.

collection get _power_switches
[-quiet]

[-regexp]

-nocase]

-Filter expression]
-hierarchical]

L
L
L
[patterns]

get_related_supply_net

Creates a collection of related supply nets of pins.

collection get_related_supply _net [pins] [-ground]

get_supply_nets

Creates a collection of supply nets that match the specified criteria.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-11

Power Compiler™ User Guide Version L-2016.03-SP4

collection get supply nets
[-quiet]

[-regexp]

[-nocase]

[-Filter expression]
[-hierarchical]

[patterns]

get_supply ports
Creates a collection of supply ports that match the specified criteria.

collection get_supply_ports
[-quiet]

[-regexp]

-nocase]

-Filter expression]
-hierarchical]

patterns]

|y L e |

generate_mv_constraints

Derives new isolation strategies for the elements whose driving constant value does not
match with the isolation clamp value.

status generate_mv_constraints
-align_isolation_clamp_value
[-output output_file_name]
[-include_elements]

[-apply]

identify_clock_gating

Identifies clock-gating circuitry inserted by Power Compiler in a structural netlist.

status identify _clock gating
[-gating_elements cell_collection]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-12

Power Compiler™ User Guide Version L-2016.03-SP4

infer_switching_activity

Propose and set the switching activity annotation on drivers of special pins of the current
design.

int infer_switching activity
[-apply]

[-output file_name]
[-nosplit]

[-verbose]

insert_clock_gating

Performs clock gating on an appropriately-prepared GTECH netlist.

status insert_clock gating
[-regular_only]

[-global]

[-no_hier]

insert_isolation_cell

Inserts isolation cells on the specified nets, pins, or ports. Isolation cell is a general term that
applies to isolation cells and enabled level-shifter cells.

status insert_isolation_cell
[-force]

[-verbose]

-enable enable_signal
-object list objects
-reference lib_cell_name

insert_mv_cells

Inserts isolation and level-shifter cells in the design.

status insert _mv_cells
[-isolation]
[-level_shifter]
[-all]

[-verbose]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-13

Power Compiler™ User Guide Version L-2016.03-SP4

lib2saif

Creates a forward-annotation SAIF file for a specified technology library.

status lib2saif

[-output File_name]

library

[-1ib_pathname lib_path_name]

load _upf
Reads a script in the IEEE 1801 Unified Power Format (UPF).

status load_upf
gupf_file_name

[-scope instance_name]
[-noecho]

[-simulation_only]
[-strict_check true | false]
[-supplemental supf_file_name]

map _isolation_cell

Specifies how to map or remap the isolation and enable level-shifter cells belonging to the
specified isolation strategy.

status map_isolation_cell
isolation_strategy
-domain power_domain
-lib_cells lib_cells

map_level_shifter_cell

Specifies that the level-shifter cells belonging to the specified strategy can only be mapped
to a subset of the library cells.

status map_level_shifter_cell
level _shifter_strategy
-domain power_domain
-lib_cells lib_cells

map_power_switch

Defines which power switch library cells to use for the mapping of the given UPF power
switch.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-14

Power Compiler™ User Guide Version L-2016.03-SP4

status map_power_switch
switch_name

-domain domain_name
-lib_cells name_list

map_retention_cell

Defines how to map the unmapped sequential cells to retention cells for the specified UPF
retention strategy of the power domain.

status map_retention_cell

retention_strategy

-domain power_domain

[-lib_cells lib_cells]

[-1ib_cell_type lib_cell_type]

[-elements objects]

[-1ib_model _name name {-port port_name net_ref}*]

merge_saif

Reads a list of SAIF files with their corresponding weights, computes the merged toggle rate
and static probability, and annotates the switching activity for the nets, pins, and ports in the
current design. The command then generates a merged output SAIF file.

status merge_saif

—-input_list saif _file_and weight_list
[-instance_name inst_name]

[-output merged_saif_name]
[-simple_merge]

[-ignore ignore_name]
[-ignore_absolute ig_absolute name]
[-exclude exclude_ file_name]
[-exclude_absolute ex_absolute_file_name]
[-unit_base unit_value]

[-scale scale_value]

[-khrate khrate_value]

[-map_names]

propagate_constraints

Propagates timing constraints from lower levels of the design hierarchy to the current
design.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-15

Power Compiler™ User Guide Version L-2016.03-SP4

status propagate_constraints
[-design design_list]

[-all]

[-clocks]

[-disable_timing]
[-dont_apply]

[-false_path]

[-gate _clock]
[-ideal_network]
[-ignhore_from_or_to_port_exceptions]
[-ignhore_through_port_exceptions]
[-max_delay]

[-min_delay]
[-multicycle_path]
[-operating_conditions]
[-power_supply_data]
[-output file_name]
[-port_isolation]

[-verbose]

[-case_analysis]
[-target_library_ subset]
[-opcond_inference]

propagate switching_activity
Forces the propagation of power-switching activity information.

status propagate_switching activity
[-effort low | medium | high]
[-verbose]

[-infer_related_clocks]

qguery_cell_instances

Queries the instances of a cell or module within the active scope. Returns a list of the
instances. This is a UPF query command.

list query_cell_instances cell_name [-domain domain_name]

query_cell_mapped

Queries which cell is mapped to this instance. Returns a cell name. This is a UPF query
command.

string query_cell_mapped instance_name

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-16

Power Compiler™ User Guide Version L-2016.03-SP4

guery_map_power_switch

Returns information about the previous mapping of a library cell to a power switch in the
active scope. This is a UPF query command.

list query_map_power_switch switch _name [-detailed]

query_net_ports

Queries a list of port names that are logically connected to the specified net. If no ports are
connected, a null string is returned. This is a UPF query command.

list query net_ports
net_name
[-transitive transitive_option]

[-1eaf]

query_port_net

Queries the net logically connected to a port. Returns the name of the net connected to the
specified port name. If no net is connected, a null string is returned. This is a UPF query
command.

string query_port_net port_name [-conn connection_option_string]

query_port_state

Returns information about the port states that have been previously defined for a specified
supply port in the active scope. This is a UPF query command.

list query_port_state port_name [-state state_name] [-detailed]

guery_power_switch

Returns information about a power switch that was previously created in the active scope.
This is a UPF query command.

list query_port_switch switch _name [-detailed]

query_pst

Returns information about the power state tables that have been previously created in the
active scope. This is a UPF query command.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-17

Power Compiler™ User Guide Version L-2016.03-SP4

list query pst table name [-detailed]

query_pst_state

Returns information about a state in a power state table that was previously created in the
active scope. This is a UPF query command.

list query pst name state name -pst table name [-detailed]

read_saif

Reads a SAIF file and annotates switching activity information on nets, pins, ports, and cells
in the current design.

status read_saif

-input file_name
[-instance_name name]
[-target_instance instance]
[-ignore ignore_name]

[-ighore_absolute ig_absolute_name]
[-exclude exclude_file_name]
[-exclude_absolute ex_absolute_file_name]
[-names_file name_changes log File]
[-scale scale_value]

[-unit_base unit_value]

[-khrate khrate_value]

[-map_names]

[-auto_map_names]

[-verbose]

remove_clock_gating

Directs the compile -incremental_mapping and compile_ultra -incremental
commands to remove clock gating from objects clock-gated by Power Compiler.

status remove_clock_gating
[-gated_registers gated_register_list]
[-min_bitwidth minsize value]
[-gating_cells clock _gating _cells_list]
[-all]

[-no_hier]

[-verbose]

[-undo]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-18

Power Compiler™ User Guide Version L-2016.03-SP4

remove_clock gating_style

Removes the clock gating style applied on a given set of hierarchical cells or power
domains.

status remove_clock gating_style
[-instances {cell_list}]
[-power_domains {power_domain_list}]
[-designs designs]

remove_dft_clock _gating_pin
Removes all DFT clock-gating pin specifications for the current design.

status remove_dft_clock_gating_pin

remove_isolation_cell
Removes the specified isolation cells from the design.

status remove_isolation_cell
[-force]
-object_list cells

remove_level_shifters

Removes all of the level shifters from the design.

status remove_level_shifters [-force]

remove_power_domain

Removes the specified power domains.

status remove_power_domain power_domains | -all

remove_upf
Removes the UPF constraints from the design. This command is only supported in dc_shell.

status remove_upf

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-19

Power Compiler™ User Guide Version L-2016.03-SP4

replace _clock gates

Replaces manually-inserted clock gates with Power Compiler clock gates.

status replace_clock_gates
[-global]
[-no_hier]

report_clock_gating

Reports the details of clock gating performed by Power Compiler.

status report_clock gating
[-no_hier]

[-verbose]

[-gated]

[-ungated]
[-gating_elements]

[-only cell_list]
[-nosplit]

[-physical]

[-multi_stage]

[-style]

[-structure]
[-enable_conditions]
[-scenarios scenario_list]

report_dft clock gating_configuration

Displays the options specified by the set_dft_clock_gating_configuration command.

status report_dft _clock gating _configuration

report_dft_clock_gating_pin
Displays the specification specified by the set_dft_clock _gating_pin command.

integer report_dft _clock _gating_pin

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-20

Power Compiler™ User Guide Version L-2016.03-SP4

report_isolation_cell

Displays information about isolation cells in the current scope.

status report_isolation_cell

[isolation_cells]

[-domain power_domains]

[-isolation_strategy isolation_strategy names]
[-ports pins_ports]

[-verbose]

[-nosplit]

report_level shifter

Displays information about level-shifter cells in the current scope.

status report_level shifter
[level shifter_cells]
[-domain power_domains]
[-verbose]

[-nosplit]

report_lib
Displays information about the specified logic library, physical library, or symbol library.

status report_lib
[-all]
[-ccs_recv]

-em]

-fpga]
-k_factors]
-power]
-power_label]
-table]
-full_table]
-timing]
-timing_arcs]
-timing_label]
-noise]
[-vhdl_name]
-yield]

-switch]
[-pg_pin]

[-char]
[-operating_condition]
[-op_cond_name op_cond_name]
[-

[_

| e s Y e s s ¥ e s e o s |

=

routing_rule]
rwm]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-21

Power Compiler™ User Guide Version L-2016.03-SP4

[-user_defined_data]
[-noise_arcs]

[-jcr]

library name
[cell_list]

report_mv_library_cells

Displays power management cells available in the target libraries.

status report_mv_library cells
[-level_shifters]
[-isolation_cells]
[-retention_cells]
[-switch_cells]
[-always_on_cells]

[-cell _name master_cell_name]
[-verbose]

report_power

Calculates and reports dynamic and static power for the design or instance.

status report_power
[-net]

[-cell]

[-only cell_or_net_list]
[-hierarchy]

[-1evels level value]
[-verbose]
[-cumulative]

[-flat]
[-exclude_boundary_nets]

[-include_input_nets]

[-analysis_effort low | medium | high]

[-nworst number]

[-sort_mode mode]

[-histogram [-exclude leq le _val | -exclude _geq ge val]]
[-nosplit]

[-scenarios scenario_list]

[-groups group_list]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-22

Power Compiler™ User Guide Version L-2016.03-SP4

report_power_calculation

Displays the calculation of the internal power for a pin, the leakage power for a cell, or the
switching power for a net.

status report_power_calculation

pin_cell_or_net_list

[-state_condition boolean_eq_of pins | default | all]
[-path_sources pin_name | default | all]
[-rise]

[-fall]

[-verbose]

[-nosplit]

report_power_domain

Reports information about the specified power domain.

status report_power_domain
[-hierarchy]

[-verbose]

[power_domains]

report_power_gating

Reports the power-gating style of retention registers in the design.

status report_power_gating
[cell _or_design_list]
[-missing]

[-unconnected]

report_power_pin_info

Reports the power pin information for technology library cells or leaf cells. The command
reports power pin information only for instantiated cells and not the library cells.

status report_power_pin_info object list

report_power_switch

Reports all of the specified power switches.

status report_power_switch
[power_switch_name]
[-verbose]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-23

Power Compiler™ User Guide Version L-2016.03-SP4

report_pst

Reports the power states in the current design.

status report_pst
[-supplies supply_list]
[-verbose]

[-scope instance_name]
[-derived]

report_retention_cell

Displays information about retention cells in the current scope.

status report_retention_cell

[retention_cells]

[-domain power_domains]

[-retention_strategy retention_strategy names]
[-verbose]

report_saif
Reports the statistics of switching activity annotation on the current design or instance.

status report_saif
[-only cell _or_net_list]
[-hier]

[-missing]
[-annotated_flag]
[-rtl_saif]

report_self _gating

Reports information about XOR self-gating performed by Power Compiler. This command is
supported only in topographical mode.

status report_self _gating
[-ungated]
[-nosplit]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-24

Power Compiler™ User Guide Version L-2016.03-SP4

report_supply_net
Reports all supply nets in the current scope.

status report_supply_net
[supply_net_name]
[-include_exception]

report_supply_port
Reports information about the supply ports in the current scope.

status report_supply port [supply_port_name]

reset_clock gate latency

Resets all clock-latency values previously specified for or applied to clock-gating cells.

status reset_clock gate latency [-clock clock list]

reset_dft_clock _gating_configuration

Resets the DFT clock-gating configuration for the current design.

status reset_dft_clock _gating_configuration

reset_switching_activity

Removes the toggle rate and static probability attributes, from nets, pins, cells, and ports of
the current design.

status reset_switching_activity
[-verbose]
[object list]

rewire_clock_gating

Changes the clock-gating cell implemented by the tool for a particular gated cell.

status rewire_clock gating

[-gating_cell new_clock_gating_cell]
[-gated objects gated_objects_list]
[-balance_fanout]
[-undo]
[-

verbose]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-25

Power Compiler™ User Guide Version L-2016.03-SP4

saif_map
Manages the SAIF name-mapping mechanism for reading SAIF files.

string saif_map

[-start]

[-end]

[-reset]

[-report]
[-get_name]
[-set_name names]
[-add_name names]
[-remove_name names]
[-clear_name]

[-get _object names name]
[-create_map]
[-write_map Filename]
[-read_map filename]
[-type type]
[-inverted]
[-instances objects]
[-no_hierarchical]
[-columns columns]
[-sort columns]
[-rt]l_summary]
[-missing_rtl]
[-input SAIF_file]
[-source_instance SAIF_instance_name]
[-target_instance target_instance_name]
[-review]

[-preview]

[-hsep character]

[object list]

[-nosplit]

save_upf
Writes out the UPF commands in the specified file.

collection save_upf
upf_Ffile_name

[-supplemental supf _file_name]
[-include_supply_exceptions]
[-full_upf]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-26

Power Compiler™ User Guide Version L-2016.03-SP4

set_cell _internal_power

Sets or removes the power_value attribute on the specified pins. The value represents the
power consumption for a single toggle of each pin.

status set_cell_internal_power
pin_list [power_value [unit]] | -delete_all

set_clock_gate_latency

Specifies clock network latency values to be used for clock-gating cells, as a function of
clock domain, clock-gating stage, and fanout.

status set_clock gate_ latency
[-clock clock list]
[-overwrite]

-stage cg_stage
-fanout_latency cg_fanout_list

set_clock_gating_objects

Forces the enabling or disabling of clock gating for specified objects in the current design,
overriding all conditions necessary for automatic RTL clock gating, by the compile_ultra
-gate_clock command. Object types can be register, hierarchical cell, power domain or
design.

status set_clock gating _objects
[-force_include object list]
[-exclude object list]

include object list]

[_
[-undo object list]

set_clock _gating_registers

Forces the enabling or disabling of clock gating for the specified registers in the current
design, overriding all conditions necessary for automatic RTL clock gating, performed by the
compile_ultra -gate_clock command.

status set_clock gating registers
[-include_instances register_list]
[-exclude_instances register_list]
[-undo register_list]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-27

Power Compiler™ User Guide Version L-2016.03-SP4

set_clock_gating_enable

Controls the signals used as clock gating enable in the execution of compile_ultra
-gate_clock command.

status set_clock gating enable
[-exclude objects to_exclude]
[-undo objects to_remove_exclusion]

set_clock_gating_style

Sets the clock-gating style for the clock-gate insertion and replacement.

status set_clock gating _style

[-sequential_cell none | latch]

[-minimum_bitwidth minsize_value]

[-setup setup_value]

[-hold hold_value]

[-positive_edge logic {cell _list | integrated [active low_enable]
[invert gclk]}]

[-negative_edge_ logic {cell_list | integrated [active low_enable]
[invert_gclk]}]

[-control_point none | before | after]

[-control_signal scan_enable | test mode]

[-observation_point true | false]

[-observation_logic_depth depth_value]

[-max_fanout max_fanout_count]

[-num_stages num_stages_count]

[-no_sharing]

[-instances {instances_list}]

[-power_domains {power_domain_list}]

[-designs {designs_list}]

set_cost_priority
Sets the cost_priority attribute to a specified value on the current design.

status set_cost_priority
[-default]

[-delay]

cost_list
[-design_rules]
[-min_delay]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-28

Power Compiler™ User Guide Version L-2016.03-SP4

set_design_attributes

Sets the specified attributes and their value on required cells.

string set_design_attributes
[-elements list]

[-models list]

[-attribute name_ value pair]*

set_dft_clock gating_configuration

Specifies the clock-gating configuration for a design.

status set_dft_clock_gating_configuration
[-exclude_elements object_ list]
[-dont_connect_cgs_of cell_list]

set_dft_clock_gating_pin

Specifies the test pin of a clock-gating cell in a design. The main purpose of this command
is to identify the unconnected test pins of the clock-gating cells that were not inserted by
Power Compiler. These pins are connected to test ports when you run the insert_dft
command.

status set_dft_clock _gating_pin

object list

-pin_name instance_pin_name

[-control_signal ScanEnable | TestMode | scan_enable | test _mode]
[-active_state 1 | 0]

set_dft_power_control

Specifies the power controller block instance in a design.

status set_dft_power_control power_controller_hierarchical_instance_name

set_domain_supply_net

Sets the primary power net and primary ground net of an already existing power domain.

status set_domain_supply net
domain_name

-primary_power_net supply_net_name
-primary_ground_net supply_net_name

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-29

Power Compiler™ User Guide Version L-2016.03-SP4

set_dont_use

Sets the dont_use attribute on library cells to exclude them from the target library during
optimization.

int set _dont _use [-power] object list

set_equivalent

Specifies power supplies as functionally or electrically equivalent.

status set_equivalent
[-function_only]

[-nets supply _net _name_ list]
[-sets supply_set name_ list]

set_isolation

Defines the UPF isolation strategy for the power domains in the design. Does not apply to
bidirectional ports.

status set _isolation

isolation_strategy nhame

-domain power_domain

[-isolation_power_net isolation_power_net]
[-isolation_ground_net isolation_ground_net]
[-isolation_supply_set isolation_supply_set]
[-clamp_value 0 | 1 | latch]
[-applies_to inputs | outputs | both]
[-source source_supply_set _name]
[-sink sink _supply_set name]
[-diff_supply only true | false]
[-elements objects]
[-exclude_elements element_list]
[-no_isolation]
[-Force_isolation]

[-name_prefix prefix_string]
[-name_suffix suffix_string]
[-update]

set_isolation_cell

Sets the specification of an isolation cell in the library.

status set_isolation_cell
cell_name

[-data_pin {data_pin_name}]
[-enable_pin {enable_pin_name}]

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-30

Power Compiler™ User Guide Version L-2016.03-SP4

set_isolation_control

Provides additional options needed for creating isolation cells. This command is needed
with most set_isolation commands.

status set_isolation_control
isolation_strategy

-domain power_domain
-isolation_signal isolation_signal
[-isolation_sense low | high]
[-location self | parent | fanout]

set_leakage power_model

Specifies the model to be optimized by leakage optimizations.

status set_leakage power_model
[-type model name]
[-mvth_weights weights]
[-reset]

set_level_shifter

Sets a strategy for level shifting during implementation. This command does not apply to
bidirectional ports.

status set_level shifter

level _shifter_name

-domain domain_name

[-elements list]

[-exclude_elements element_list]
[-applies_to inputs | outputs | both]
[-threshold value]

[-rule low_to_high | high_to_low | both]
[-location self | parent | automatic]
[-no_shift]
[-force_shift]
[-update]

set_level_shifter_cell

Sets on-the-fly specification of a library level-shifter cell.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-31

Power Compiler™ User Guide Version L-2016.03-SP4

status set_level _shifter_cell

cell_name

[-cell_type cell_type]

[-cell_input_voltage range {lower_range upper_range}]
[-cell_output_voltage_range {lower_range upper_range}]
[-std_cell_main_rail_pg _pin pg_pin_name]

[-data pin data_pin_name]

[-input_voltage range {lower_range upper_range}]
[-output_voltage range {lower_range upper_range}]
[-input_signal_level signal_level]
[-enable_pin enable_pin_name]
[-enable_signal_level signal_level]
[-output_signal_level signal level]

set_multi_vth_constraint

Sets the maximum percentage of cells, by count or by area, that the design can contain,
from the specified low-threshold-voltage groups.

status set _multi_vth_constraint
[-1vth_groups groups]
[-1vth_percentage percent_value]
[-cost cost]

[-type type]
[-include_blackboxes]

[-reset]

set_port_attributes

Sets the specified attributes and their value on the ports.

status set _port_attributes
[-model model name]

[-ports portlist]

[-elements elementlist]
[-applies_to inputs | outputs | both]
[-attribute atname_atvalue]
[-clamp_value 0 | 1 | latch]
[-receiver_supply supply_set ref]
[-driver_supply supply_set ref]
[-repeater_supply supply_set ref]
[-feedthrough]

[-unconnected]

set_power_clock_scaling

Sets clock frequency scaling so that the SAIF and synthesis power analysis numbers match.
If no clock_objects are specified in the command, then only the -ratio option is allowed.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-32

Power Compiler™ User Guide Version L-2016.03-SP4

status set_power_clock_scaling
[-period period_value | -ratio ratio_value]
[clock objects]

set_power_guide

Sets an existing exclusive move bound as a power guide or power well. This power guide is
used as an always-on power guide.

status set_power_guide

-name exclusive__name

[-guard_band_x horizontal _guard_band width]
[-guard band_y vertical _guard band_width]

set_power_prediction

Sets the power prediction mode for compile_ultra or compile_ultra -incremental.
This command is supported only in topographical mode.

int set_power_prediction [true | false] [-ct_references lib_cell_list]

set_power_switch_cell

Sets the specification of a library power-switch cell.

status set_power_switch_cell

cell_name

[-cell_type coarse_grain | fine_grain]
[-is_macro]

[-switch_pin {pin_name}]

[-pg_pin {pin_name switch_function pg_function}]

set_query_rules

Defines rules for rule-based query.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-33

Power Compiler™ User Guide Version L-2016.03-SP4

status set_query rules
[-hierarchical_separators separator_list]
[-bus_name_notations bus name_list]
[-class class_list]

[-regsub regsub]
[-regsub_cumulative]

[-wildcard]

[-suffix suffix_list]

[-verbose]

[-nocase]

[-reset]

[-show]

set_related_supply_net

Assaociates a supply net to the port of the design or the pin of a cell.

status set_related_supply_net
[-power power_net_name]
[-ground ground_net_name]
[-object_list objects]
[-reset]

[supply_net_name]

set_replace _clock _gates

Sets directives for clock gate replacement. Forces the enabling or disabling of clock gate
replacement for specified combinational cells in the current design. Also sets the edge type
for modules or black-box cells that otherwise could not be replaced. The cells are replaced
by executing the replace_clock_gates command.

int set_replace _clock gates
[-include_cells cell_list]
[-exclude_cells cell_list]
[-rising_edge_clock pin_list]
[-falling_edge clock pin_list]
[-undo object list]

set_retention

Defines the UPF retention strategy for the power domains in the design.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-34

Power Compiler™ User Guide Version L-2016.03-SP4

status set_retention

retention_strategy

-domain power_domain

[-retention_power_net retention_power_net]
[-retention_ground_net retention_ground_net]
[-retention_supply_set retention_supply_set]
[-no_retention]

[-elements objects]

[-save_condition {boolean_function}]
[-restore_condition {boolean_function}]
[-retention_condition {boolean_function}]
[-update]

set_retention_cell

Sets the specification of a library retention cell.

Boolean set_retention_cell

cell _name

[-cell_type retention_type]

[-retention_pin {pin_name pin_type disable_value}]

set_retention_control

Defines the UPF retention control signals for the defined UPF retention strategy.

status set_retention_control
retention_strategy

-domain power_domain

-save_signal {save_signal save_sense}
-restore_signal {restore_signal restore_sense}
[-assert_r_mutex {net_name sense}]

[-assert_s _mutex {net_name sense}]
[-assert_rs_mutex [{net_name sense}]

set_retention_control_pins

Converts the retention register library cell attributes in the old library format to the ones that
can be used in the $retain flow. The $retain flow requires retention register library cells to
have new retention cell attributes, which is different from the original power-gating flow.

status set_retention_control_pins

[-type style]

[-power_pin_index power_pin | -library pin library_ pin_name]
[-is_save pin | -is_restore pin | -is_save _restore pin]
lib_or_lib_cell_list

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-35

Power Compiler™ User Guide Version L-2016.03-SP4

set_retention_elements

Specifies a list of elements that can be used later with the set_retention command. The
specified list is tied to the scope where the set_retention_elements command is defined.

status set_retention_elements retention_list_name
-elements element list

set_scenario_options

Sets the scenario options for one or more scenarios.

status set_scenario_options

[-scenarios scenario_list]

[-setup true | false]

[-hold true | false]

[-1eakage power true | false]
[-dynamic_power true | false]

[-cts_mode true | False]

[-cts_corner min | max | min_max | none]
[-reset_all true | false]

set_scope
Specifies the current scope.

string set_scope [instance]

set_self _gating_objects

Forces the enabling or disabling of self-gating for specified objects in the current design,
overriding all conditions necessary for automatic self-gating, by the compile_ultra
-self_gating command. Objects types can be register, hierarchical cell, power domain, or
design.

status set_self _gating objects
[-Force_include object list]
[-exclude object list]
[-include object list]

[-undo object_ list]

set_self _gating_options

Sets the self-gating options for the self-gate insertion. This command is supported only in
topographical mode.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-36

Power Compiler™ User Guide Version L-2016.03-SP4

string set_self _gating _options

[-min_bitwidth min_bitwidth_count]

[-max_bitwidth max_bitwidth_count]
[-interaction_with_clock gating none | insert | merge]

set_switching_activity
Sets the switching activity annotation on nets, pins, ports, and cells in the current design.

status set_switching activity
[-static_probability static _probability]
[-toggle_rate toggle_ rate]
[-state_condition state_condition]
[-path_sources path_sources]
[-rise_ratio rise_ratio]

[-period period value | -base_clock clock]
[-type object type_ list]

[-hierarchy]

[object_list]

[-verbose]

set_switching_activity profile

Generates switching activity profiles and sets the profiles on the input bused ports in the
current design.

status set_switching_activity profile

[-uniform {static_probability toggle_rate}]

[-linear {{breakpoint O static probability 0 toggle rate 0}
{breakpoint_1 static_probability 1 toggle_rate_1}}]
[-normal_dist {std_dev temp_corr sample_rate is_signed}]
[-period period_value | -base_clock clock]

[object list]

[-all_buses]

[-verbose]

set_upf_query_options

Enables or disables bus and structure querying support for the —-elements option for the
set_retention, set_isolation, and map_retention_cell commands.

status set_upf_query_options
-bus_struct_mode true | false

unset_power_guide

Unsets an existing power guide to be similar to an exclusive move bound.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Commands D-37

Power Compiler™ User Guide Version L-2016.03-SP4

unset_power_guide
[power_guide_ list]

upf_version
Displays the version of UPF currently used to interpret the UPF commands

string upf_version
[version]

write_saif
Writes a backward Switching Activity Interchange Format (SAIF) file.

status write_saif
-output file_name
[-instances instances]
[-no_hierarchy]

[-rel]

[-propagated]
[-exclude_sdpd]

write_script
Writes shell commands to save the current settings.

int write_script
[-hierarchy]
[-no_annotated_check]
[-no_annotated_delay]
[-no_cg]
[-full_path_lib_names]
[-nosplit]

[-format dctcl | dcsh]
[-include loop_ breaking]
[-output Ffile_name]

Power Compiler Variables

Power Compiler defines a set of variables that are used to control its behavior.

abstraction_enable _power_calculation

Performs power calculations on a design that is to be used as a block abstraction.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-38

Power Compiler™ User Guide Version L-2016.03-SP4

The default for this variable is true.

compile_power_domain_boundary_optimization
Disables boundary optimization across power domain boundaries when set to false.

The default for this variable is true.

enable_golden_upf
Enables the golden UPF mode when set to true.

The default for this variable is false.

enable _rule_based query
Enables or disables rule-based matching.

The default for this variable is false.

golden_upf _report_missing_objects
Enables reporting of missing objects during Golden UPF reapplication.

The default for this variable is false.

hdlin_enable upf_compatible _naming

Controls HDL Compiler naming style settings to make it easier to apply the same UPF file
across multiple tools at the RTL level.

The default for this variable is false.

link_allow_upf_design_mismatch

This variable controls the dirty data handling features, which include the
mv_no_main_power_violations and mv_use_std_cell_for_isolation variables and
link library cells with PVT violations.

The default for this variable is true.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-39

Power Compiler™ User Guide Version L-2016.03-SP4

mv_allow_Is_on_leaf pin_boundary
Allows level-shifter insertion on leaf pin (such as macro cell pin) boundaries.

The default for this variable is false.

mv_allow_va beyond_core_area

Allows voltage area to be created even if the voltage area is not fully enclosed inside the
core area.

The default for this variable is false.

mv_input_enforce_simple_names

Enforces the use of simple names for restricted commands according to the IEEE 1801
(UPF) standard.

The default for this variable is false.

mv_insert_level shifters_on_ideal nets
Directs automatic level-shifter insertion to insert level shifters on ideal nets.

nn

The default for this variable is "".

mv_make_primary_supply_available for_always_on

Gives preference to load and driver supplies when set to false. This might result in seeing
more always-on buffers in the netlist.

The default for this variable is true, which results in regular buffer insertion on feedthrough
nets when the primary power supply is used.

mv_no_always_on_buffer _for_redundant_isolation
Allows normal buffers to be used at nets driving the data input of redundant isolation cells.

The default for this variable is false.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-40

Power Compiler™ User Guide Version L-2016.03-SP4

mv_no_cells_at_default_va
Controls whether the tool can place new buffers at the default voltage area.

The default for this variable is false.

mv_no_main_power_violations
Selects Standard Cell Main Rail (SCMR) as the main power supply for level shifters.

The default for this variable is true.

mv_output_enforce_simple_names

Enforces the use of simple names for restricted commands as per the IEEE 1801 (UPF)
standard.

The default for this variable is false.

mv_output_upf_line_indent

Sets the amount of indentation spaces added to lines when the save_upf command is
splitting long commands onto multiple lines.

The default for this variable is 2.

mv_output_upf_line_width

Controls whether the save_upf command outputs long commands onto multiple lines. Also
sets the threshold for splitting lines.

The default for this variable is 0.

mv_skip_opcond_checking_for_unloaded_level shifter
Skips operating condition checking for level shifters with unconnected output pins.

The default for this variable is false.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-41

Power Compiler™ User Guide Version L-2016.03-SP4

mv_upf_tracking
Controls whether the UPF tracking feature is enabled in the current session.

The default for this variable is true.

mv_use_std _cell for_isolation
Allows the tool to insert standard cells as isolation cells.

The default for this variable is false.

physopt_power_critical_range

Specifies a margin of slack for cells during leakage power optimization. If a cell has a slack
less than the power critical range, power optimization is not done for the cell.

The default for this variable is -1.04858e+06.

power_cg_all _registers

Specifies to the insert_clock_gating command whether to clock gate all registers,
including those that do not meet the necessary requirements.

The default for this variable is false.

power_cg_auto_identify

Activates automatic identification of Power Compiler inserted clock-gating circuitry from a
structural netlist.

The default for this variable is false.

power_cg_balance_ stages

Controls whether gate stage balancing is on or off when you run the compile
[-incremental_mapping] -gate_clock or compile ultra [-incremental]
-gate_clock command.

The default for this variable is false.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-42

Power Compiler™ User Guide Version L-2016.03-SP4

power_cg_cell naming_style

Specifies the naming style for clock-gating cells created by the insert_clock_gating
command.

nn

The default for this variable is ™.

power_cg_derive _related clock
Derives the clock domain relationship between registers from the hierarchical context.

The default for this variable is false.

power_cg_designware
Performs clock gating on DesignWare sequential components in the design.

The power_cg_designware variable will be obsolete in a future release. Clock gating
insertion with compile_ultra -gate_clock automatically inserts clock gates in
DesignWare modules.

The default for this variable is false.

power_cg_enable alternative _algorithm

Controls whether the insert_clock _gating, compile -gate_clock, and compile_ultra
-gate_clock commands use an alternative algorithm to find registers to gate.

The default for this variable is false.

power_cg_ext feedback loop

Controls whether external feedback loops should be used to generate the enable condition
for a register with its enable pin tied to logic 1.

The default for this variable is true.

power_cg_flatten

Specifies to different ungroup commands whether or not to flatten Synopsys clock-gating
cells.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-43

Power Compiler™ User Guide Version L-2016.03-SP4

The default for this variable is false.

power_cg gated clock _net _naming_style

Specifies the naming style for gated clock nets created by the insert_clock_gating
command.

The default for this variable is ™.

power_cg_ignore_setup_condition
Ignores the setup condition for latch-free clock gating.

The default for this variable is false.

power_cg_inherit_timing_exceptions

Controls whether the compile -gate_clock and compile_ultra -incremental
-gate_clock commands automatically infer the timing exceptions defined on registers onto
the enable pin of the clock gate that is gating these registers.

The default for this variable is false.

power_cg_iscgs_enable

Controls whether the set_clock_gating_style, remove_clock _gating style, compile,
and compi le_ultra commands use the instance-specific clock-gating style.

The default for this variable is false.

power_cg_module_naming_style

Specifies the naming style for clock gating modules created by the insert_clock_gating
command.

The default for this variable is ™.

power_cg_physically _aware cg

Enables a clock-gating insertion and optimization flow that considers the physical
information.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-44

Power Compiler™ User Guide Version L-2016.03-SP4

The default for this variable is false.

power_cg_print_enable_conditions
Reports the enable conditions of registers and clock gates during clock-gate insertion.

The default for this variable is false.

power_cg_print_enable_conditions_max_terms

Specifies the maximum number of product terms to be reported in the sum of product
expansion of the enable condition.

The default for this variable is 10.

power_cg_reconfig_stages

Controls the reconfiguration of multistage clock gates during the compile
[-incremental_mapping] -gate_clock and compile_ultra [-incremental]
-gate_clock commands.

The default for this variable is false.

power_cg_sequential _clock gating
Enables the execution of sequential clock gating.

The default for this variable is false.

power_default_static_probability
Specifies the default static probability value.

The default for this variable is 0.5.

power_default _toggle rate
Specifies the default toggle rate value.

The default for this variable is 0.1.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-45

Power Compiler™ User Guide Version L-2016.03-SP4

power_default_toggle rate type
Specifies the default toggle rate type.

The default for this variable is fastest_clock.

power_do_not_size_icg_cells

Controls whether compile does not size the integrated clock-gating cells in a design to
correct DRC violations because doing so might result in lower area and power.

The default for this variable is true.

power_enable clock scaling
Enables clock frequency scaling when set to true.

The default for this variable is false.

power_enable_datapath_gating

Enables or disables datapath gating which is a dynamic power optimization technique for a
design.

The default for this variable is false.

power_enable_one_pass_power_gating
Enables one-pass flow power gating. This variable is for use only in non-UPF mode.

The default for this variable is false.

power_enable_power_gating

Enables the power-gating flow that allows the selected retention registers from the target
library to be used to map sequential elements. This variable can be used only in non-UPF
mode. In UPF mode, use UPF commands to enable the power-gating flow.

The default for this variable is false.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-46

Power Compiler™ User Guide Version L-2016.03-SP4

power_fix_sdpd_annotation

Specifies whether user-annotated state-dependent or path-dependent switching activity
annotation is corrected before it is used.

The default for this variable is true.

power_ fix_sdpd_annotation_verbose

Specifies whether verbose messages are reported during the fixing of user-annotated
state-dependent or path-dependent switching activity.

The default for this variable is false.

power_hdlc_do _not_split_cg cells

Specifies that the insert_clock_gating command will not split clock-gating cells to limit
their fanout.

The default for this variable is false.

power_ keep license_after_power_commands

Affects the amount of time a Power Compiler license is checked out during a shell session.

The default for this variable is false.

power_lib2saif _rise_fall _pd

Specifies whether the 1ib2saif command generates forward SAIF files with directives to
generate rise and fall dependent and path-dependent toggle counts.

The default for this variable is false.

power low_power_placement

This variable controls the power-aware placement during the compile_ultra command in
the Synopsys physical guidance flow.

The default for this variable is false.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-47

Power Compiler™ User Guide Version L-2016.03-SP4

power_min_internal_power_threshold

Specifies the minimum cell internal power value that can be used in power calculations.

nn

The default for this variable is ™.

power_model_preference

Specifies the preference between the CCS power and the NLPM models in library cells that
have power specified in both models.

The default for this variable is nlpm.

power_opto_extra_high_dynamic_power_effort

Instructs the compi le and compi le_ultra commands to invoke more dynamic power
optimization algorithms.

The default for this variable is false.

power_preserve_rtl_hier_names
Preserves the hierarchy information of the RTL objects in the RTL design.

The default for this variable is false.

power_rclock _inputs_use clocks fanout

Specifies whether clock network objects in an input port fanout are used to infer the input
port’s related clock.

The default for this variable is true.

power_rclock _unrelated use_fastest

Specifies whether the fastest clock is set as the related clock of a design object when a
related clock is not inferred by the related clock inference mechanism.

The default for this variable is true.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-48

Power Compiler™ User Guide Version L-2016.03-SP4

power_rclock _use asynch_inputs

Specifies whether the inferred related clock on an asynchronous pin of a flip-flop is used to
determine the inferred related clock on the cell's outputs.

The default for this variable is false.

power_remove_redundant_clock gates

Specifies to the compile -incremental and physopt -incremental commands to
remove redundant clock-gating cells.

The default for this variable is true.

power_rtl_saif file

Defines for the rtl2saif command where to store the forward-annotation SAIF file, if you
do not specify the -output option.

The default for this variable is power_rtl_saif.

power_sa_propagation_verbose
Specifies the default verbose mode used when propagating switching activity.

The default for this variable is false.

power_same_switching_activity_on_connected objects

Forces the tool to use the last user-annotated switching activity data on all connected tool
objects.

The default for this variable is false.

power_sdpd_message tolerance

Specifies the tolerance value for issuing warning and information messages during fixing of
user-annotated state-dependent and path-dependent switching activity.

The default for this variable is 1e-05.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-49

Power Compiler™ User Guide Version L-2016.03-SP4

synlib_enable_analyze dw_power
Records the power information of ungrouped DesignWare designs.

The default for this variable is 0.

upf_allow_DD_primary_with_supply_sets

Controls the use of domain-dependent supply nets in the design as the primary supply of the
power domain when supply sets are used in the design.

The default for this variable is false.

upf_allow refer_before define

Allows UPF commands to refer to block-level UPF objects that are not defined in the
top-only UPF. Set this variable to true to allow references to objects not defined in the
top-only UPF.

The default is false.

upf_auto_iso_clamp_value
Sets the clamp value for the inferred isolation strategy.

The default for this variable is 0.

upf_auto_iso_enable_source
Sets the isolation signal for the inferred isolation strategy.

The default for this variable is root_cell.

upf_auto_iso_isolation_sense
Sets the isolation sense for the inferred isolation strategy.

The default for this variable is Tow.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-50

Power Compiler™ User Guide Version L-2016.03-SP4

upf_block_partition

Allows the subsequent save_upf command to skip saving the UPF data for the specified
blocks within a top-level design. A list of blocks follows this variable. This variable is tied to
the current design.

There is no default for this variable.

upf_charz_allow_port_punch

Allows UPF-related port punching to occur within the characterize command on the
blocks being characterized.

The default for this variable is true.

upf_charz_enable _supply_port_punching

Allows UPF-related supply port punching to occur within the characterize command on
the blocks being characterized.

The default for this variable is true.

upf_charz_max_srsn_messages

Sets the maximum number of error and warning messages from the
set_related_supply_net command that can be printed when characterizing a block.

The default for this variable is 10.

upf_create_implicit_supply_sets
Allows supply handles of the power domains to be created.

The default for this variable is false.

upf_enable_legacy block
Allows UPF 1.0-style design blocks to be integrated into a UPF 2.0-style design.

The default for this variable is true.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-51

Power Compiler™ User Guide Version L-2016.03-SP4

upf_enable relaxed charz

Allows flexible partitioning of power domains and supports -location parent for isolation
cells in a hierarchical flow.

The default for this variable is true.

upf_extension

Disables the writing of UPF extension commands in the save_upf command.

The default for this variable is true.

upf_isols_allow_instances_in_elements

Controls the specification of instances with the -elements option of the set_isolation
command.

The default for this variable is true.

upf_iso_filter_elements_with_applies_to

Controls the filtering of design elements specified with the -elements option and the
-applies_to option of the set_isolation command.

The default for this variable is ENABLE.

upf_levshi_on_constraint_only
Inserts level shifters only at the domain boundaries with a level shifter strategy.

The default for this variable is false.

upf_name_map
Specifies the name map files used during the reapplication of golden UPF file to designs.

The default for this variable is ™.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-52

Power Compiler™ User Guide Version L-2016.03-SP4

upf_report_isolation_matching
Allows reporting of isolation strategies matching (UPF-073).

The default for this variable is false.

upf_skip_ao_check for_els_input

Directs automatic level-shifter insertion to ignore always-on checking when choosing the
input supplies for an enabled level shifter.

The default for this variable is true.

upf_suppress_etm_model checking

Controls ETM model checking for a UPF file. Set to true to disable ETM model checking in
the UPF for a macro cell.

The default for this variable is false.

upf_suppress_message in_black_box

Suppresses the messages due to missing objects when UPF commands are loaded at the
black box scope.

The default for this variable is true.

upf_suppress_message in_etm
Suppresses the messages for commands that are not allowed on ETM scope.

The default for this variable is true.

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-53

Power Compiler™ User Guide Version L-2016.03-SP4

Appendix D: Power Compiler Command and Variable Reference
Power Compiler Variables D-54

	Preface
	Part 1: Power Compiler Concepts
	Introduction to Power Compiler
	Power Compiler Methodology
	Power Library Models
	Power Analysis Technology
	Power Optimization Technology
	Getting Started With Power Compiler
	Library Requirements
	Command-Line Interface
	Graphical User Interface
	License Requirements
	Reading and Writing Designs

	Power Compiler Design Flow
	Power in the Design Cycle
	Power Optimization and Analysis Flow
	Simulation
	Enable Power Optimization
	Synthesis and Power Optimization
	Power Analysis and Reporting

	Power Modeling and Calculation
	Power Types
	Static Power
	Dynamic Power
	Switching Power
	Internal Power

	Calculating Power
	Leakage Power Calculation
	Multithreshold Voltage Libraries

	Internal Power Calculation
	NLDM Models
	State and Path Dependency
	Rise and Fall Power
	Switching Power Calculation

	Dynamic Power Calculation
	Dynamic Power Unit Derivation

	Power Calculation for Multirail Cells

	Using CCS Power Libraries
	Voltage Scaling
	Script Examples for Voltage Scaling

	Part 2: Power Analysis
	Generating SAIF Files
	About Switching Activity
	Introduction to SAIF Files
	Generating SAIF Files
	Generating SAIF Files From Simulation
	Generating SAIF Files From SystemVerilog or Verilog Simulations
	Generating SAIF Files From VHDL Simulation

	Generating SAIF Files From VCD Files
	Converting a VCD File to a SAIF File

	Generating SAIF Files from FSDB Output Files

	Verilog Switching Activity Examples
	RTL Example
	Verilog Design Description
	RTL Testbench
	RTL SAIF File

	Gate-Level Example
	Gate-Level Verilog Module
	Verilog Testbench
	Gate-Level SAIF File

	VHDL Switching Activity Example
	VHDL Design Description
	RTL Testbench
	RTL SAIF File

	Annotating Switching Activity
	Types of Switching Activity to Annotate
	Annotating Switching Activity Using RTL SAIF Files
	Using the Name-Mapping Database
	Integrating the RTL Annotation With PrimeTime PX

	Annotating Switching Activity Using Gate-Level SAIF Files
	Reading SAIF Files Using the read_saif Command
	Reading SAIF Files Using the merge_saif Command

	Annotating Inferred Switching Activity
	Annotating Switching Activity Using the set_switching_activity Command
	Fully Versus Partially Annotating the Design
	Analyzing the Switching Activity Annotation
	Removing the Switching Activity Annotation
	Design Objects Without Annotated Switching Activity
	Default Switching Activity Values
	Propagating the Switching Activity
	Deriving the State- and Path-Dependent Switching Activity

	Performing Power Analysis
	Overview
	Identifying Power and Accuracy
	Factors Affecting the Accuracy of Power Analysis
	Switching Activity Annotation
	Delay Model
	Switching Activity Propagation and Accuracy
	Overriding Library Power Characterization

	Performing Gate-Level Power Analysis
	Using the report_power Command
	Using the report_power_calculation Command

	Analyzing Power With Partially Annotated Designs
	Power Correlation
	Performing Power Correlation
	Power Correlation Script

	Analyzing the Design For Power Analysis
	Characterizing a Design for Power
	Reporting the Power Attributes of Library Cells
	Power Reports
	Power Report Summary
	Net Power Report
	Cell Power Report
	Group Report
	Hierarchical Power Reports
	Power Report for Block Abstraction

	Part 3: Power Reduction
	Clock Gating
	Introduction to Clock Gating
	Using Clock-Gating Conditions
	Clock-Gating Conditions
	Enable Condition
	Setup Condition

	Enabling or Disabling Clock Gating on Design Objects

	Inserting Clock Gates
	Using the compile_ultra -gate_clock Command
	Using the insert_clock_gating Command
	Clock-Gate Insertion in Multivoltage Designs

	Clock Gating Flows
	Inserting Clock Gates in the RTL Design
	Inserting Clock Gates in Gate-Level Design

	Ensuring Accuracy When Using Ideal Clocks
	Specifying Clock-Gate Latency
	The set_clock_latency Command
	The set_clock_gate_latency Command
	Applying Clock-Gate Latency
	Resetting Clock-Gate Latency
	Comparison of the Clock-Gate Latency Specification Commands

	Calculating the Clock Tree Delay From Clock-Gating Cell to Registers
	Specifying Setup and Hold
	Predicting the Impact of Clock Tree Synthesis
	Choosing a Value for Setup
	Choosing a Value for Hold

	Clock-Gating Styles
	Default Clock-Gating Style
	Selecting Clock-Gating Style
	Choosing Gating Logic
	Choosing an Integrated Clock-Gating Cell
	Choosing a Configuration for Discrete Gating Logic
	Choosing a Simple Gating Cell by Name
	Choosing a Simple Gating Cell and Library by Name
	Designating Simple Cells Exclusively for Clock Gating
	Choosing a Specific Latch and Library
	Choosing a Latch-Free Style
	Improving Testability
	Connecting the Test Ports Throughout the Hierarchy
	Using Instance-Specific Clock-Gating Style

	Modifying the Clock-Gating Structure
	Changing a Clock-Gated Register to Another Clock-Gating Cell
	Removing Clock-Gating Cells From the Design
	Rewiring Clock Gating After Retiming

	Integrated Clock-Gating Cells
	Integrated Clock-Gating Cell Attributes
	Pin Attributes
	Timing Considerations

	Clock-Gating Naming Conventions
	Example Script for Naming Style
	Example Script of Output Netlist

	Keeping Clock-Gating Information in a Structural Netlist
	Identifying and Preserving Clock-Gating Cells
	Identification of Clock-Gating Cells
	Explicit Identification of Clock-Gating Cells
	Preserving the Identified Clock-Gating Cells
	Identified Clock-Gating Cells and dont_touch
	Handling Clock-Gating Edge Conflicts

	Comparison of Clock-Gate Identification Methods
	Usage Flow With the write_script Command
	Usage Flow With the identify_clock_gating Command

	Replacing Clock-Gating Cells
	Clock-Gate Optimization Performed During Compilation
	Hierarchical Clock Gating
	Enhanced Register-Based Clock Gating
	Multistage Clock Gating
	Multistage Clock-Gating Flow

	Clock Gate Merging
	Placement-Aware Clock Gating in Design Compiler Graphical
	Clock Gating Multibit Registers

	Performing Clock-Gating on DesignWare Components
	Reporting Command for Clock Gates
	The report_clock_gating Command

	XOR Self-Gating
	XOR Self-Gating Concepts
	Using XOR Self-Gating in Power Compiler
	XOR Self-Gating Flows
	Library Requirements for XOR Self-Gating
	Unsupported Registers for XOR Self-Gating

	Sharing XOR Self-Gates
	Inserting XOR Self-Gates
	Specifying Objects for XOR Self-Gating
	XOR Self-Gating the Clock-Gated Registers

	Specifying Options for XOR Self-Gating

	Querying the XOR Self-Gates
	Reporting the XOR Self-Gates

	Power Optimization
	Overview
	Input and Output of Power Optimization
	Power Optimization in Synthesis Flow

	General Gate-Level Power Optimization
	Leakage Power Optimization
	Dynamic Power Optimization
	Enabling Power Optimization
	Leakage Power Optimization Based on Threshold Voltage
	Multiple Threshold Voltage Library Attributes
	The set_multi_vth_constraint Command
	Analyzing the Multiple Threshold Voltage Library Cells

	Leakage Optimization for Multicorner-Multimode Designs

	Performing Power Optimization
	Settings for Power Optimization
	Power Optimization in the Synopsys Physical Guidance Flow
	Settings for Low-Power Placement

	Multivoltage Design Concepts
	Multivoltage and Multisupply Designs
	Library Requirements for Multivoltage Designs
	Liberty PG Pin Syntax
	Level-Shifter Cells
	PG Pin Configuration Support

	Isolation Cells
	Using Standard Cells as Isolation Cells
	Single-Rail and Dual-Rail Isolation Cells
	NOR-Style Isolation Cells

	Requirements of Level-Shifter and Isolation Cells
	Retention Register Cells
	Multithreshold-CMOS Retention Registers

	Power-Switch Cells
	Always-On Logic Cells

	Power Domains
	Shut-Down Blocks
	Marking Pass-Gate Library Pins

	Voltage Areas

	UPF Multivoltage Design Implementation
	Multivoltage Design Flow Using UPF
	Power Intent Concepts
	UPF Script Example

	Defining Power Intent in UPF
	Name Spacing Rules for UPF Objects and Attributes
	Defining the Power Intent in the GUI
	UPF Diagram View

	Creating Power Domains
	Representation of Power Domain in the UPF Diagram View
	Scope

	Expanding and Collapsing Power Domains in the GUI
	Viewing Hierarchical Cell and Power Domain Boundaries

	Creating Supply Ports
	Adding Port State Information to Supply Ports
	Representation of Supply Ports in the UPF Diagram View

	Creating Supply Nets
	Specifying Primary Supply Nets for a Power Domain
	Representing Supply Nets in the UPF Diagram View

	Connecting Supply Nets
	Converting the PG Information in RTL to UPF

	Specifying Supply Sets
	Creating Supply Sets
	Creating Supply Set Handles
	Restricting Supply Sets Available to a Power Domain

	Refining Supply Sets
	Associating Supply Sets With Supply Set Handles
	Rules for Associating Supply Sets
	Defining Power States for the Components of a Supply Set
	Correlated Grouping of Supply Voltage Triplets

	Always-On Logic
	Marking Library Cells as Always-On
	Marking Pass-Gate Library Pins
	Always-On Optimization
	Voltage-Aware Always-On Synthesis
	Always-On Optimization on Top-Level Feedthrough Nets
	Always-On Optimization on Disjoint Voltage Area
	Always-On Tie Cells
	Basic Always-On Tie Cell Mapping
	Enhanced Constant Propagation
	Enhanced Always-On Tie Cell Mapping

	Specifying Level-Shifter Strategies
	Using Specific Library Cells With the Level-Shifter Strategy
	Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets
	Representing Level-Shifter Strategies in the UPF Diagram View

	Specifying Isolation Strategies
	Using the set_isolation_control Command
	Rules Applicable for Location Fanout
	Order of Precedence of Isolation Strategies
	Using Specific Library Cells With Isolation Strategies
	Aligning Isolation Strategies to Constant Drivers
	Isolation and Level-Shifter Cells Connected Back-to-Back
	Representing Isolation Strategies in the UPF Diagram View

	Setting UPF Attributes on Ports and Hierarchical Cells
	Setting Attributes on Ports
	Specifying Supplies for Repeaters

	Setting Attributes on Hierarchical Cells
	Extending the Power Domain Boundary
	Setting Terminal Boundaries

	Specifying Retention Strategies
	Choosing Specific Library Cells With Retention Strategies
	Retention Strategy and Clock-Gating Cells
	Representing Retention Strategies in the UPF Diagram View

	Creating Power Switches
	Representation of Power Switches in the UPF Diagram View

	Power State Tables
	Creating Power State Tables
	Defining the States of Supply Nets
	Visually Analyzing Power State Tables in the UPF Diagram View

	Support for Well Bias
	Inserting Power Management Cells
	Reviewing the UPF Specifications
	Commands to Query and Edit Design Objects
	Reviewing the Power Intent Using the Design Vision GUI
	Applying the Power Intent Changes

	Examining and Debugging UPF Specifications
	The check_mv_design Command
	MV Advisor GUI
	Checking for Design Violations
	Examining Design Violations in the MV Advisor Violation Browser
	Exploring the Violations

	The analyze_mv_design Command
	Analyzing Multivoltage Design Connections in the GUI

	Writing the Power Information
	Preserving the Command Order in the UPF’ File
	Controlling the Line Width in the UPF’ File

	Writing and Reading Verilog Netlists With Power and Ground Information
	Power and Ground Supply Connection Syntax
	Supply Sets
	Power Switches
	Reading Verilog Netlists With Power and Ground Supply Connections

	Golden UPF Flow
	Reporting Commands for the UPF Flow
	UPF-Based Hierarchical Multivoltage Flow Methodology
	Steps in the Hierarchical UPF Design Methodology
	Block-Level Implementation
	Top-Level Implementation
	Assembling Your Design

	Characterization of Supply Sets and Supply Nets
	Criteria for Characterization
	Characterization of Supply Sets

	Automatic Inference of Related Supply Net
	Top-Level Design Integration
	Power Domain Merging

	Legacy Blocks

	Library Setup for Power Optimization
	Basic Library Requirements for Multivoltage Designs
	Power and Ground Pin Syntax
	Converting Libraries to PG Pin Library Format
	Using FRAM View
	Using Tcl Commands
	Tcl Commands for Low-Power Library Specification

	Macro Cells with Fine-Grained Switches

	Library Usage in Multicorner-Multimode Designs
	Link Libraries With Equal Nominal PVT Values
	Setting the dont_use Attribute on Library Cells

	Distinct PVT Requirements
	Automatic Detection of Driving Cell Library
	Relating the Minimum Library to the Maximum Library
	Unique Identification of Libraries Based on File Names

	Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells
	Using the set_opcond_inference Command
	Deviating from the Inferred Operating Condition and Its Impact

	Power Optimization in Multicorner-Multimode Designs
	Optimizing Multicorner-Multimode Designs
	Optimizing for Leakage Power
	Optimizing for Dynamic Power Using Low-Power Placement

	Reporting Commands
	report_scenarios Command
	Reporting Examples for Multicorner-Multimode Designs

	Script Example for Multicorner-Multimode Flow

	Lower Domain Boundary Support
	Introduction
	Enabling the Lower Domain Boundary Feature
	Changes to the Application of the Isolation and Level-Shifter Strategies
	Specifying Design Instances Using Wildcard Characters
	Specifying Design Instances Using SystemVerilog Elements

	Filtering the Design Elements Using the -applies_to Option
	Insertion of Back-to-Back Isolation and Level-Shifter Cells

	Impact on Hierarchical Flow
	Bottom-Up Flow
	Top-Down Flow
	Characterization of the Related Supply

	Integrated Clock-Gating Cell Example
	Library Description
	Example Schematics
	Rising-Edge Latch-Based Integrated Cells
	Rising-Edge Latch-Free Integrated Cells
	Falling Edge Latch-Based Integrated Cells
	Falling-Edge Latch-Free Integrated Cells

	Attributes for Querying and Filtering
	Derived Attribute Lists
	Usage Examples

	Power Compiler Command and Variable Reference
	Getting Help
	Accessing Help

	Man Page Viewing Instructions
	Viewing Man Pages in SolvNet
	Setting Up the UNIX Environment
	Viewing Man Pages From UNIX
	Viewing Man Pages From dc_shell

	Power Compiler Commands
	add_power_state
	add_pst_state
	all_clock_gates
	all_isolation_cells
	all_level_shifters
	all_self_gates
	all_upf_repeater_cells
	analyze_library
	analyze_dw_power
	analyze_mv_design
	apply_clock_gate_latency
	associate_supply_set
	characterize
	check_level_shifters
	check_mv_design
	compile
	compile_ultra
	connect_logic_net
	connect_supply_net
	convert_pg
	create_logic_net
	create_logic_port
	create_power_domain
	create_power_state_group
	create_power_switch
	create_pst
	create_supply_net
	create_supply_port
	create_supply_set
	find_objects
	get_power_domains
	get_power_switches
	get_related_supply_net
	get_supply_nets
	get_supply_ports
	generate_mv_constraints
	identify_clock_gating
	infer_switching_activity
	insert_clock_gating
	insert_isolation_cell
	insert_mv_cells
	lib2saif
	load_upf
	map_isolation_cell
	map_level_shifter_cell
	map_power_switch
	map_retention_cell
	merge_saif
	propagate_constraints
	propagate_switching_activity
	query_cell_instances
	query_cell_mapped
	query_map_power_switch
	query_net_ports
	query_port_net
	query_port_state
	query_power_switch
	query_pst
	query_pst_state
	read_saif
	remove_clock_gating
	remove_clock_gating_style
	remove_dft_clock_gating_pin
	remove_isolation_cell
	remove_level_shifters
	remove_power_domain
	remove_upf
	replace_clock_gates
	report_clock_gating
	report_dft_clock_gating_configuration
	report_dft_clock_gating_pin
	report_isolation_cell
	report_level_shifter
	report_lib
	report_mv_library_cells
	report_power
	report_power_calculation
	report_power_domain
	report_power_gating
	report_power_pin_info
	report_power_switch
	report_pst
	report_retention_cell
	report_saif
	report_self_gating
	report_supply_net
	report_supply_port
	reset_clock_gate_latency
	reset_dft_clock_gating_configuration
	reset_switching_activity
	rewire_clock_gating
	saif_map
	save_upf
	set_cell_internal_power
	set_clock_gate_latency
	set_clock_gating_objects
	set_clock_gating_registers
	set_clock_gating_enable
	set_clock_gating_style
	set_cost_priority
	set_design_attributes
	set_dft_clock_gating_configuration
	set_dft_clock_gating_pin
	set_dft_power_control
	set_domain_supply_net
	set_dont_use
	set_equivalent
	set_isolation
	set_isolation_cell
	set_isolation_control
	set_leakage_power_model
	set_level_shifter
	set_level_shifter_cell
	set_multi_vth_constraint
	set_port_attributes
	set_power_clock_scaling
	set_power_guide
	set_power_prediction
	set_power_switch_cell
	set_query_rules
	set_related_supply_net
	set_replace_clock_gates
	set_retention
	set_retention_cell
	set_retention_control
	set_retention_control_pins
	set_retention_elements
	set_scenario_options
	set_scope
	set_self_gating_objects
	set_self_gating_options
	set_switching_activity
	set_switching_activity_profile
	set_upf_query_options
	unset_power_guide
	upf_version
	write_saif
	write_script

	Power Compiler Variables
	abstraction_enable_power_calculation
	compile_power_domain_boundary_optimization
	enable_golden_upf
	enable_rule_based_query
	golden_upf_report_missing_objects
	hdlin_enable_upf_compatible_naming
	link_allow_upf_design_mismatch
	mv_allow_ls_on_leaf_pin_boundary
	mv_allow_va_beyond_core_area
	mv_input_enforce_simple_names
	mv_insert_level_shifters_on_ideal_nets
	mv_make_primary_supply_available_for_always_on
	mv_no_always_on_buffer_for_redundant_isolation
	mv_no_cells_at_default_va
	mv_no_main_power_violations
	mv_output_enforce_simple_names
	mv_output_upf_line_indent
	mv_output_upf_line_width
	mv_skip_opcond_checking_for_unloaded_level_shifter
	mv_upf_tracking
	mv_use_std_cell_for_isolation
	physopt_power_critical_range
	power_cg_all_registers
	power_cg_auto_identify
	power_cg_balance_stages
	power_cg_cell_naming_style
	power_cg_derive_related_clock
	power_cg_designware
	power_cg_enable_alternative_algorithm
	power_cg_ext_feedback_loop
	power_cg_flatten
	power_cg_gated_clock_net_naming_style
	power_cg_ignore_setup_condition
	power_cg_inherit_timing_exceptions
	power_cg_iscgs_enable
	power_cg_module_naming_style
	power_cg_physically_aware_cg
	power_cg_print_enable_conditions
	power_cg_print_enable_conditions_max_terms
	power_cg_reconfig_stages
	power_cg_sequential_clock_gating
	power_default_static_probability
	power_default_toggle_rate
	power_default_toggle_rate_type
	power_do_not_size_icg_cells
	power_enable_clock_scaling
	power_enable_datapath_gating
	power_enable_one_pass_power_gating
	power_enable_power_gating
	power_fix_sdpd_annotation
	power_fix_sdpd_annotation_verbose
	power_hdlc_do_not_split_cg_cells
	power_keep_license_after_power_commands
	power_lib2saif_rise_fall_pd
	power_low_power_placement
	power_min_internal_power_threshold
	power_model_preference
	power_opto_extra_high_dynamic_power_effort
	power_preserve_rtl_hier_names
	power_rclock_inputs_use_clocks_fanout
	power_rclock_unrelated_use_fastest
	power_rclock_use_asynch_inputs
	power_remove_redundant_clock_gates
	power_rtl_saif_file
	power_sa_propagation_verbose
	power_same_switching_activity_on_connected_objects
	power_sdpd_message_tolerance
	synlib_enable_analyze_dw_power
	upf_allow_DD_primary_with_supply_sets
	upf_allow_refer_before_define
	upf_auto_iso_clamp_value
	upf_auto_iso_enable_source
	upf_auto_iso_isolation_sense
	upf_block_partition
	upf_charz_allow_port_punch
	upf_charz_enable_supply_port_punching
	upf_charz_max_srsn_messages
	upf_create_implicit_supply_sets
	upf_enable_legacy_block
	upf_enable_relaxed_charz
	upf_extension
	upf_isols_allow_instances_in_elements
	upf_iso_filter_elements_with_applies_to
	upf_levshi_on_constraint_only
	upf_name_map
	upf_report_isolation_matching
	upf_skip_ao_check_for_els_input
	upf_suppress_etm_model_checking
	upf_suppress_message_in_black_box
	upf_suppress_message_in_etm

