$\int \frac{Integrand}{Software, Inc.}$

EMX ®

A Large-Scale Full-Wave Simulator for RF Designs

Integrand Software, Inc. www.integrandsoftware.com

Integrand Software

- Integrand Software founded in 2003
- Founders from Bell Labs
- Formed company to target RF and RF IC design
- Focus on accuracy, speed and ease of use
- Successful company!
- Many of the world's major foundries and design houses now use the Integrand's products

EMX modeling of passives

Inductor

Shielding

Transformer

Diplexer

EMX (ElectroMagnetic EXtraction)

- Large scale full-wave, planar 3D electromagnetic simulator for verification and design of integrated circuits
- A powerful engine handles all electromagnetic effects in an unified manner
- Fast and very accurate
- Simulate full component ensembles with all couplings to avoid various sources of error
- Very easy to use
 - Mask Layout to S-parameters or spice models
 - Eliminates layers of intermediate steps and potential errors
 - Integrated into the Cadence Virtuoso® environment

EMX Customers

Foundry Relationships

- The world's major foundries have chosen EMX for characterization and models for passives.
- We have a very close relationship with the foundries
- Foundry qualifies technology files with measurements provides customers with technology files
- High accuracy can be guaranteed for the customers using the EMX design flow.
 - **TSMC** (180nm, 130nm, 90nm, 65/55nm, 45/40nm, 32/28nm CMOS, 20nm, 16nm, 10nm)
 - **UMC** (130nm, 90nm, 65nm, 45nm, 28nm CMOS)
 - **IBM** (180nm SiGe, 5PAE, 7WL, 9RF, 45nm CMOS)
 - Global Foundries (130nm to 14nm)
 - TowerJazz CA 18HR, SBC18HX, SBC18PTH
 - **ST** B9MW, H9SOIFEM, 14FDSOI, 28FDSOI

Difficulties with other EM tools

- Low Efficiency
 - Tradeoff between Accuracy and Computation Time/Expense. Traditional full-wave EM simulation is too long.
- Low Accuracy
 - Approximations are made to overcome inefficiency (2.5D methods), insufficient meshing or inaccurate matrix solution
 - Cannot handle true dielectric profiles with 10s of layers;
 often need to be approximated
- Not user-friendly
 - Cannot handle true mask GDSII layout with vias, slotting rules, dummy fill, etc.
 - Demand lots of human effort to "massage" layout, such as, merging vias, removing fill, simplifying the geometry so that the simulator can accept the input.
 - Simple user interface to Cadence Virtuoso®

$\int \frac{Integrand}{Software, Inc.}$

EMX Design Flow

Models

- The results of EMX can be used in higher level Spice simulators like Spectre
- EMX can generate three kinds of models
 - 1. S-parameters
 - 2. RLCK models for basic passive s (inductors, baluns, caps)
 - Used by major foundry PDKS (TSMC, GF, UMC, IBM).
 - Physical topology
 - 3. RCLK + Control sources (pole zero models): VCOs, LNAs
 - Non-physical topology
- S-parameters are the most accurate result
- RLCK template models are used for transient analysis when Sparameters result in non-convergence in the time domain
- PZ models are used when the lumped models don't suffice (multiport circuits, e.g., 20 ports)

Spice Models

Lumped models

Pole Zero models

Distinguishing features of EMX

- Accuracy
 - Uncompromised accuracy in solving Maxwell's equations
- 2. Speed
 - The fastest EM simulator, based on the Fast Multipole Method
- 3. Easy to use
 - Easy to use from within Cadence or from command line scripting

Accuracy (Electromagnetics)

- All physical effects included
 - R, L, C, substrate in a fully coupled manner
- Inductance
 - Distributed 3D volume currents
- Resistance
 - Skin effect and volume loss
- Capacitance
 - Accurate side-wall capacitance
 - MIM and thin-film capacitors
- Substrate
 - Multi layered lossy substrates
 - Substrate doping and bias
- Vias
 - Via inductance and capacitance

$$E_s(r) = \frac{1}{\sigma}J(r) + j\omega A(r) + \nabla\phi(r)$$

Speed (Numerics)

- Integral Equation-based
- 3D EM Field Solver
 - Preconditioned iterative methods
 - New "Full-Wave" FMM
 - Layout-regularity exploited
 - Adaptive Fast Frequency Sweep using Krylov subspace techniques
- Speed
 - 2 orders of magnitude faster than finite-element tools
 - 1 order faster than BEM
 - Even faster with multithreading

9244 basis functions13692 vector potential elements4877 scalar potential elements

Freq. Range	Simulation	Time	Memory
5 GHz	1	40 sec	7 MB
0.1 to 20 GHz	Sweep (201)	90 sec	22 MB

AMD Athlon XP 3200 2.2 GHz, 1GB RAM

Foundation of EMX

- Uses the hierarchical Fast Multipole Method for rapid solution
 - Nearby regions are handled directly
 - Far regions are approximated to fixed precision
- Solution time is O(N) in time and memory, i.e. double the problem size, double the time
 - as opposed to N^2 or N^3
- Can solve very large problems with minimal computer resources

Time and Memory scaling

- 1 inductor
- 64 inductors
- Single frequency simulation (including iterative solve)
- Compare speed and memory for 1, 2, 4, 8, ..., 64 inductors

Easy to Use

- EMX accepts true mask layout and will automatically simplify the layout for meshing and EM simulation
 - Via arrays, slotting rules, metal fill simplified
 - Boolean masking operations can be performed
 - Can apply grows and shrinks to the geometry including half-node scaling and metal bias
- What goes to mask goes to simulator!

Vias merged Fill removed Metal bias applied MiM cap bank handled

Easy to Use

- Accepts true dielectric profile with no approximation to inter-layer dielectrics
 - Foundry provided tech file
 - 10s of dielectrics
 - Array and bar vias
 - Thin film MiM capacitors
 - Variable sheet resistance and metal width as a function of proximity
 - Context dependent vias (e.g. same via used for metal-poly or metal-diffusion)
 - True lossy layered substrates
 - Thru-silicon vias

h=250 μ m, ε=11.9, 12.5 Ω -cm, 8 S/m

0.000

metal9: h=3 μm, 6 m Ω /sq metal8: h=1 μm, 20 m Ω /sq ctm: h=0.1 μm, 20 Ω /sq ctm: h=0.2 μm, 0.5 Ω /sq metal7: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal6: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal5: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal4: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal3: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal2: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal2: h=0.25 μm, 0.18 Ω /sq, bias 10 nm metal1: h=0.18 μm, 0.2 Ω /sq, bias 5 nm poly: h=0.1 μm, 14.9 Ω /sq, bias -0.5 nm diff: h=0.086 μm, 16.9 Ω /sq

via7ctm: h=0.0273 μm, 0.5 Ω /via via7cbm: h=0.145 μm, 0.5 Ω /via via8: h=0.91 μm, 0.4 Ω /via via7: h=0.495 μm, 0.2 Ω /via via6: h=0.18 μm, 2 Ω /via via5: h=0.18 μm, 2 Ω /via via4: h=0.18 μm, 2 Ω /via via3: h=0.18 μm, 2 Ω /via via2: h=0.18 μm, 2 Ω /via via1: h=0.18 μm, 2 Ω /via via1: h=0.18 μm, 2 Ω /via via1: h=0.18 μm, 2 Ω /via diffcont: h=0.17 μm, 20 Ω /via diffcont: h=0.504 μm, 26 Ω /via

TSMC iRCX technology files

- Accurate process parameters are critical for EM simulation
- TSMC iRCX file provides a detailed process information
 - Metal, dielectric properties
 - Temperature dependence
 - Statistics and corner cases
 - Width-spacing dependent properties
 - Designer does not have to enter information from design manual
 - Removes sources of error
- Width and spacing properties (paper at RFIC 09 with TSMC)
 - Mimics fabrication process
 - shows that this <u>significantly improves simulation accuracy</u> for passive components like inductors and MOM capacitors.

Mimicking the TSMC fabrication in EMX

- EMX uses Voronoi diagrams to capture the width-and-spacing dependent parameters in the iRCX files
- These Voronoi diagrams are used to alter the drawn layout to mimic the fabrication process
- The shaded region shows the "drawn" layout and the "line" shows the modified layout according to the iRCX rules

Integrand

Typical TSMC MOM capacitor and EMX mesh

gdsview

EMX 3D Mesh

EMX simulation of MOM capacitors

The iRCX width-and-spacing dependence is more critical for structures that are not at minimum dimensions. The accuracy of EMX using iRCX is increased since the fabrication process is mimicked more closely.

Easy to use: Virtuoso interface

Create model Start Status Stop

Form state Save Load

Create symbol and schematic

Seamless interface to Virtuoso

Easy to use: Running EMX using a script

 Some customers use EMX using simple shell scripts or the command line

```
gdsfile=testind.gds
process=RC_IRCX_CRN65LP_1P8M+ALRDL_6X1U_typ.proc
freqs="--sweep 2e8 20e9 --sweep-stepsize 2e8"
opts="--verbose=3 -e 1 -t 1 --3d=* -v 0"
emx $gdsfile.gds testind $process.proc --touchstone -s $gdsfile.s2p $opts
```

- Jobs can be submitted in queues to do extensive analysis
- Fast and easy to use

Benchmarks: Spiral Inductor

Example	Ports	Freq Range	Size	1 CPU		8 CP	Us
				Mem. Time		Mem.	Time
Planar Inductor	2	0.2GHz-30GHz	13,181	193MB	3 m 29 s	790MB	1 m48 s

Courtesy: TSMC. 65nm RFCMOS, 9LM thick metal technology. Published at RFIC 2009
"Including Pattern-Dependent Effects in Electromagnetic Simulations of On-Chip Passive Components", Integrand and TSMC

Stacked Inductor

Stacked inductor Q **돋** 4 3D mesh 2 10 15 20 5 10 15 20 0 5 0 R Z 1000 1000 **EMX** Meas Ohms 500 500 Current 10 15 20 10 15 20 0 5 GHz GHz

Example	Ports	Freq Range	Size	1 CPU		8 CP	Us
				Mem.	Time	Mem.	Time
Stacked Inductor	2	0.2GHz-20GHz	10,407	453MB	$6 \mathrm{m} 58 \mathrm{s}$	688MB	4m42s

MOM (finger)Capacitor

Example	Ports	Freq Range	Freq Range Size 1 CPU		1 CPU		Us
				Mem. Time		Mem.	Time
MoM capacitor	2	0.2GHz-20GHz	48,997	1140MB	19 m12 s	2591MB	$5\mathrm{m}59\mathrm{s}$

Courtesy: TSMC. 65nm RFCMOS, 9LM thick metal technology. Published at RFIC 2009 "Including Pattern-Dependent Effects in Electromagnetic Simulations of On-Chip Passive Components", Integrand and TSMC

Transformer

Example	Ports	Freq Range	Size	1 CPU		8 CP	Us
				Mem.	Time	Mem.	Time
Transformer	4	0.1GHz-10GHz	81,405	1234MB	28 m 48 s	2016MB	6m01s

Courtesy: UMC. 90nm RFCMOS, 8LM thick metal technology. Published at CICC 2007 "Synthesis of Optimal On-Chip Baluns", Integrand and UMC

Balun (with MiM caps)

Example	Ports	Freq Range	Size	1 CPU		8 CF	'Us
				Mem.	Time	Mem.	Time
Balun	5	$0.1 \mathrm{GHz} \text{-} 10 \mathrm{GHz}$	89,174	1449MB	38 m 48 s	2584MB	8m43s

Courtesy: UMC. 90nm RFCMOS, 8LM thick metal technology. Published at CICC 2007 "Synthesis of Optimal On-Chip Baluns", Integrand and UMC

BiCMOS Diplexer (with Thru Silicon Vias)

Example	Ports	Freq Range	Size	1 CPU		8 CF	Us
				Mem.	Time	Mem.	Time
CMOS Diplexer	3	0.1GHz-10GHz	195,009	4778MB	374 m18 s	8062MB	$65 \mathrm{m} 41 \mathrm{s}$

Courtesy: Skyworks. IBM BiCMOS 5PAE. Published at CICC 2010, 2010

IPD Diplexer

Example	Ports	Freq Range	Freq Range Size		1 CPU		1 CPU		8 CPUs	
				Mem.	Time	Mem.	Time			
IPD Diplexer	12	0.1GHz-10GHz	238,849	1932MB	414m 21 s	5449MB	$89 \mathrm{m} 18 \mathrm{s}$			

Courtesy: STATSChipPAC, IPD technology (8um Cu on high resistivity Si substrate)

$\int \frac{Integrand}{Software, Inc.}$

CMOS VCO

Example	Ports	Freq Range	Range Size 1 CPU		1 CPU		Us
				Mem. Time		Mem.	Time
CMOS VCO	20	$0.1 \mathrm{GHz} \text{-} 20 \mathrm{GHz}$	137,694	5216MB	399 m 41 s	18878MB	98m19s

Courtesy: Wipro, TSMC90nm, 1P5M

Benchmark Summary

Example	Ports	Freq Range	Size	1 CPU		8 CP	Us
				Mem.	Time	Mem.	Time
Planar Inductor	2	0.2GHz-30GHz	13,181	193MB	3 m 29 s	790MB	$1 \mathrm{m} 48 \mathrm{s}$
Stacked Inductor	2	0.2GHz-20GHz	10,407	453MB	$6 \mathrm{m} 58 \mathrm{s}$	688MB	4m42s
MoM capacitor	2	0.2GHz-20GHz	48,997	1140MB	19 m12 s	$2591 \mathrm{MB}$	$5\mathrm{m}59\mathrm{s}$
Transformer	4	$0.1 \mathrm{GHz} \text{-} 10 \mathrm{GHz}$	81,405	1234MB	28 m 48 s	2016MB	6 m01 s
Balun	5	$0.1 \mathrm{GHz} \text{-} 10 \mathrm{GHz}$	89,174	1449MB	38 m 48 s	2584MB	8m43s
CMOS Diplexer	3	$0.1 \mathrm{GHz} \text{-} 10 \mathrm{GHz}$	195,009	4778MB	374 m18 s	$8062 \mathrm{MB}$	65m41s
IPD Diplexer	12	$0.1 \mathrm{GHz} \text{-} 10 \mathrm{GHz}$	238,849	1932MB	414m 21 s	5449MB	89m18s
CMOS VCO	20	0.1GHz-20GHz	137,694	5216MB	$399 \mathrm{m} 41 \mathrm{s}$	18878MB	98m19s

- The new multi-threaded EMX is 2-3X faster for small examples and 5-6X faster for larger examples on an 8 CPU machine.
- The memory for the multi-threaded version goes up at a slower rate than the speedup.

$\int \frac{Integrand}{Software, Inc.}$

Metal Fill

The effect of Metal Fill inside inductor was studied using EMX by Columbia University. (CICC 2005)

$\int \frac{Integrand}{Software, Inc.}$

VCO in Coil

Inductor with Varactor/MOM
Capacitor acting as a substrate
shield

 Equal performance in phase noise and output power as compared to a traditional VCO while <u>reducing</u> <u>design area by 47%.</u>

(Columbia University, CICC 2005)

Dummy fill simulation

EMX used to model circulating currents in dummy fill

60-GHz DCO Test Chips

[published at RFIC 2012/ ISSCC 2013]: TU Delft, J.R. Long's group

T-DCO 60 GHz output

Div. 64 output

Transmission line testchip

Complete L-DCO tank EM simulation

Including:

- Coarse, mid-coarse tuning bank
- Fine tuning bank
- Interconnection to divider and buffer
- Mimcap for AC coupling
- Ground ring
- 100+ port EMX simulation

T-line and inductor tuning

- Passive structures with tuned by capacitive loading
 - Transmission line with fine

Full DCO tank simulation in EMX

- EMX simulation of 60GHz DCO
 - TL-based coarse and mid-coarse tuning bank, transformer based interconnect, ground plane
 - Ports: 175
 - Layout size 400x200μm²
 - Computational resources
 - 3GB memory
 - 8 CPU (2.2GHz)
 - 3 hours of sim time

180GHz Amplifier

- D-band amplifier
- 6dB coupler
- 180GHz H2O attenuation window
- Atmosphere monitoring

University of Toronto

IMS 2012 (private communication)

Ionnis Sarkas, Sorin Voinigescu

Measured results

W-band chip

- All passive traces modeled with EMX
- Wilkinson Divider
- Transformer Hybrid architecture
- MM wave passive circuits. Not easy to construct a discrete component equivalent
- Need full S-parameter
 EM simulation
- All simulations in the 70GHz to 200GHz range

Measured results

Single Slice Phase/Mag Accuracy

6dB coupler and amplifier

• S-parameter measurements of 6dB coupler up to 180GHz

EMX interface to Virtuoso

Simulation, modeling and plotting

Single-ended inductor

Plot Waveform viewer

Create symbol and schematic

Plotting and model creation

Form state

Create model Start Status Stop

 $\int \frac{Integrand}{Software, Inc.}$

Generate/compare model vs EMX simulation

The devices

Single-ended inductor Differential inductor Single-ended shield inductor Differential shield inductor Center-tapped inductor Center-tapped inductor (common mode) Center-tapped shield inductor Single-ended finger capacitor Differential finger capacitor MiM capacitor Transformer, no taps Transformer, tapped primary Transformer, tapped secondary Transformer, both tapped Tcoil N-port

This is the list of currently supported models that can be generated by EMX and Modelgen.

PCELLS

- PCELLS for various components
- Inductors
 - Spiral, Stacked,
 Symmetric, Peaked
- Transformers
 - 4,5,6 port
- MOM capacitors
- Shields
- DRC clean

Scalable models

- EMX-Continuum used to generate scalable component models
- 100s of EMX simulations
- Single scalable model is constructed
- Model topology is physics based
- Within a few percent of the EMX simulation
- Models used by TSMC, UMC, GF and IBM

Scalable Model

Optimum component synthesis

- With scalable models it is possible to do a gradient based optimization
- Exploration of design space
 - Maximize Q of inductors
 - Minimize insertion loss of Baluns
- Optimum component in seconds

Optimum inductor

Using EMX

- Operating Systems
 - 64-bit or 32-bit Linux OS
- Memory
 - 2GB RAM for 32-bit machines
 - As much as you can have for 64-bit machines
 8G, 16G, 32G are commonly used by our customers
- Multi-threading feature available
 - 2X-6X faster on an 8CPU machine
- Platform LSF support
 - Bsub for cloud based compute farms
- Auxillary programs in Matlab
 - Plotting and circuit extraction toolkit, EMX meshes, Current Plots, Charge Plots

Conclusions

EMX

- Full Wave, 3D simulation, accurate and very fast
- What goes to mask goes to simulator (vias, slotting, fill)
- Very easy to learn and use
- Used for component-level to circuit level simulations
- Can be used from command line or within Cadence Virtuoso
- Dramatically reduces design cycle time and enhances productivity
- Has been adopted by the world's major foundries for all scalable model generation and modeling