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Abstract— A 56-Gb/s PAM4 wireline transceiver testchip is
implemented in 16-nm FinFET. The current mode logic trans-
mitter incorporates an auxiliary current injection at the output
nodes to maintain PAM4 amplitude linearity. The ADC-based
receiver incorporates hybrid analog and digital equalizations.
The analog equalization is performed using two identical stages
of continuous time linear equalizer, each having a constant
of ∼0-dB dc-gain and a maximum peaking of ∼7 dB peaking
at 14 GHz. A 28-GSample/s 32-way time-interleaved SAR ADC
converts the equalized analog signal into digital domain for fur-
ther equalization using digital signal processing. The transceiver
achieves <1e-8 bit error rate over a backplane channel with
31-dB loss at 14-GHz and 3.5-mVrms additional crosstalk, using
a fixed ∼10-dB TX equalization and an adaptive hybrid RX
equalization, with the DSP configured to have a 24-tap feed
forward equalizer and a 1-tap decision feedback equalizer. The
transceiver consumes 550-mW power at 56 Gb/s, excluding the
power of the on-chip configurable DSP that cannot be accurately
measured as it is implemented as part of a larger test structure.

Index Terms— 56 Gb/s, ADC, PAM4, transceiver, wireline.

I. INTRODUCTION

THE emergence of Internet of Things and cloud computing
has triggered rapid increase in bandwidth demand in data

centers and telecommunication infrastructures. The increasing
bandwidth demand had recently prompted the industry to pro-
pose a new electrical interface standard capable of operating up
to 56 Gb/s per lane [1]. In order to avoid costly infrastructure
upgrades, the interface needs to support legacy channels (i.e.,
backplane) designed for current generation electrical inter-
face (e.g., up to 28 Gb/s in traditional non return to zero (NRZ)
signaling). These legacy channels often have a very large
insertion loss (IL) beyond 14 GHz with significant reflections.
Fig. 1 shows an example of such backplane channel. If the
NRZ signaling was used to operate the link at 56 Gb/s, the IL
at Nyquist frequency (28 GHz) would be ∼60 dB, and the
IL-to-crosstalk ratio (ICR) from one aggressor at 28 GHz
would be ∼0 dB. These constraints make it very difficult
to implement the NRZ signaling at 56 Gb/s with reasonable
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Fig. 1. IL and crosstalk profile of legacy backplane designed for 28-Gb/s
NRZ signaling.

power efficiency. The PAM4 signaling [2] is a better choice for
these legacy channels, since the signal frequency content can
be limited to 14 GHz. For the channel shown in Fig. 1, the IL
is ∼31 dB and the ICR is ∼30 dB at 14 GHz. Even though
many of the PAM4 signaling challenges (e.g., smaller signal
power due to transmitter’s peak power constraint, sensitivity
to residual ISI) still need to be addressed, these IL and ICR
numbers fall within the equalization capability of the state-of-
the-art transceivers.

In order to relax the raw bit-error-rate (BER) requirement,
the proposed standard allows the use of forward error cor-
rection (FEC) mechanism in the targeted links/systems. Error-
correcting block codes such as Reed–Solomon code (Fig. 2)
is used to encode/decode the data, such that low BER
(e.g., <1e-18) can still be achieved even when the raw
(pre-FEC) BER is relatively high (e.g., 1e-4 to 1e-6) [3], at the
expense of higher total latency in the links/systems. A raw
BER of <1e-4 is currently proposed as standard [1].

This paper presents the design of a 56-Gb/s
ADC-based PAM4 transceiver with a moderate target
BER (e.g., 1e-6 to 1e-8) over legacy channels to be used
with FEC. Section II covers the PAM4 transmitter design.
The ADC-based receiver is described in Section III. The
experimental results are summarized in Section IV.

0018-9200 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. BER improvement using block codes.

Fig. 3. PAM4 transmitter output levels and linearity definition.

II. TRANSMITTER

There are two new challenges in designing a PAM4 trans-
mitter [4] when compared with designing an NRZ transmitter.
First, in general, a transmitter designed for PAM4 signaling
must be able to deliver a higher swing, because the cor-
responding receiver effectively needs to be able to resolve
smaller amplitude compared with NRZ signaling (in an ideal
case, the receiver needs to be able to resolve one third of
the transmitted swing, as shown in Fig. 3). Second, the trans-
mitter must maintain good linearity when transmitting the
four PAM4 signaling levels. The dc-level distortions due to
transmitter nonlinearity directly translate into smaller effective
eye height seen by the receiver. The proposed standard [1]
specifies transmitter linearity requirement in terms of ratio of
level mismatch (RLM), as shown in Fig. 3.

Fig. 4 shows the block diagram of the three-tap (one
main-tap, one pretap, and one posttap) transmitter used in
this design. A pattern generator generates either a Pseudo
random bit sequence (PRBS) data sequence (PRBS-7, PRBS-
15, or PRBS-31) or a programmable 128-b data pattern. The
128-b output of the pattern generator is serialized to a 16-
b data that feeds a finite impulse response (FIR) generator
block. The FIR generator block generates three streams of 4-
b data—one data stream for each FIR tap. A transmitter

Fig. 4. Transmitter block diagram.

Fig. 5. Transmitter front end.

front-end block receives these 4-b data streams and generates
FIR-equalized PAM4 signals. A 14-GHz differential current
mode logic (CML) input clock generated by a phase-locked
loop (PLL) is converted into a regulated-CMOS level and
sent to the transmitter front-end block. A duty cycle detec-
tion/correction loop detects duty cycle distortion at the input
of the transmitter front end and corrects the distortion in
regulated-CMOS domain [5].

The transmitter front end (Fig. 5) consists of three
segments (one segment for each transmitter tap) whose
outputs share a common T-coil-enhanced termination network.
The size of the main-tap segment is two times larger than the
size of the pretap and posttap segments. Each transmitter tap
segment consists of two stages: a 4-to-2 MUX/predriver stage
and a final CML driver stage. The 4-to-2 MUX/pre-driver
serializes a 4-b data input (the output of FIR generator) into
a 2-b data (one MSB and one LSB). The final CML driver
stage converts the 2-b data into PAM4 signals. The driver
current of each segment can be controlled using a 5-b digital
control to enable fine adjustments of the transmitter swing
and/or transmitter equalizations.

Each tap of the PAM4 final CML driver (Fig. 6) is realized
by the current summing of two times driver (MSB) and one
time driver (LSB). The transmitter must maintain linearity
between the four output levels while delivering up to 1.2 V
diff-pp swing. Since the main power supply level of the
driver (AVTT) is only 1.2 V, the output common mode will be
too low to keep the differential pairs N0 and N1 and N2 and
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Fig. 6. CML driver.

Fig. 7. 4:2 MUX/predriver circuit.

N3 in saturation when the driver delivers high current, hence
distorting the output linearity. In order to raise the output
common mode, some (about 25% typically) of the driver
current is sourced using current sources from an auxiliary
supply (1.8 V). Since only ∼25% of the driver current is
sourced from 1.8 V auxiliary supply, the power penalty is
only 12.5% of the total driver power. Open-loop compensation
using a replica (Nrep) of driver input differential pair helps
maintain optimum output common mode over process voltage
temperature (PVT). As an example, at FF process corner
and high temperature, Nrep provides additional current that
further increase the output common mode and increase Vds of
N0 and N1 and N2 and N3 differential pairs to improve their
saturation margins. Small cascode devices (Ncas0, NCas1) are
placed above the tail current sources to increase their output
impedance, which further improves dc linearity and reduces
ac distortion.

The combined 4-to-2-MUX/predriver circuit (Fig. 7) incor-
porates a pseudo-H-bridge scheme with positive feedback.
Pseudodifferential regulated-CMOS clocks (clk and clkb) are
used to select the multiplexer output between pseudodifferen-
tial CMOS data d0/d0b and d1/db. The load structure of this
circuit consists of cross-coupled PMOS devices (P0 and P1) in
parallel with passive resistors R0 and R1. In order to extend
the bandwidth, a small T-coil network is used. The circuit
has a high gain at zero crossing, which improves rise/fall

Fig. 8. Receiver block diagram.

times and helps suppress clock switching noise at the driver
output.

III. RECEIVER

One of the main challenges in PAM4 signaling is its
sensitivity to residual ISI. Since there are four possible lev-
els, the worst case impact occurs when residual ISI from
major transitions (i.e., from the lowest level to the highest
level or vice versa) is superimposed on the main signal (which
even in an ideal case is only one third of the major transition).
In order to minimize the residual ISI, a large number of
equalization taps (covering both precursor taps and post-cursor
taps) are needed. However, implementing a large number of
equalization taps in analog domain (at the receiver front-
end) requires multistage feed forward equalizer (FFE) and/or
decision feedback equalizer (DFE) summing circuits with
enough gain to overcome slicer sensitivity and with good
linearity over the range of PAM4 signaling levels. The design
of this multistage analog front end can be very challenging at
a higher line rate such as 56 Gb/s. In the proposed receiver,
the large number of equalization taps is implemented in the
digital domain using digital signal processing (DSP), thus
avoiding linearity issues associated with the analog solution.

Fig. 8 shows the receiver block diagram. The on-die-
termination (ODT) includes a T-coil structure that compen-
sates for parasitic capacitances from the pad, ESD protection
devices, and analog front-end input gates. The receiver analog
front end [two stages of automatic gain control (AGC) and two
identical stages of continuous time linear equalizer (CTLE)]
provides signal equalization and conditioning, which reduces
the resolution and full-scale-range requirements of the ADC
[6], [7]. The 28-GSample/s 32-way time-interleaved (TI) ADC
converts the differential analog input into 8-b digital values.
The ADC outputs are then retimed to a single 875-MHz
clock domain. One set of these retimed outputs is sent to
an on-chip configurable DSP and error-checker block. For
the testing and debug purpose, another set of the retimed
outputs is sampled periodically and stored in a 64 kb (8k
symbols) buffer. A replica of the on-chip DSP block (imple-
mented in an off-chip FPGA) periodically samples these 8k
symbols and generates equalized PAM4 symbols. The off-
chip FPGA also performs equalization adaptation, clock and
data recovery (CDR), and ADC offset/gain/skew calibrations
based on the sampled ADC outputs. The FPGA adaptation
logic concurrently adapts the analog front end (CTLE and
AGC settings) and the DSP coefficients. The FPGA CDR logic
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Fig. 9. Constant dc-gain and constant peaking frequency CTLE.

Fig. 10. 32-way TI ADC block diagram.

Fig. 11. 7-GHz clock skew correction circuit.

implements a second-order baud-rate CDR using the Mueller–
Muller algorithm.

The T-coil-enhanced ODT provides ∼27-GHz bandwidth
and less than −8 dB return loss at 14 GHz (meeting the return
loss requirement defined in [1]). Each one of the AGC stages
provides up to 10 dB of programmable dc gain range. Each
one of the two identical CTLE stages is designed to have a
constant-dc gain (∼0 dB) and programmable high-frequency
gain peaking (up to 7 dB) with constant peaking frequency
at ∼14 GHz. The offset from AGC and CTLE random device
mismatches is corrected at these analog front-end stages so
that the effective ADC full-scale range is not compromised.
Compared with a constant high-frequency gain CTLE (with
programmable dc gain), the constant-dc gain CTLE can either
reduce the required AGC’s gain at high-loss channels and/or
improve the linearity of subsequent stage at low-loss channels.
Furthermore, this approach minimizes the interaction between
AGC adaptation loop and CTLE adaptation loop. Constant
peaking frequency around Nyquist (∼14 GHz) is chosen to
suppress early post-cursor ISI as much as possible to help

Fig. 12. (a) 7-GHz clock skew correction range and (b) correction step.

Fig. 13. ADC timing diagram.

reduce ADC dynamic range requirement, while minimiz-
ing crosstalk and thermal noise beyond Nyquist frequency.
As shown in Fig. 9, the CTLE uses an RC source-degeneration
topology. In order to obtain constant dc gain and constant
peaking frequency, the values of the source-degeneration
capacitance Cs and the values of the output load capacitance
Cd are set for every gain-peaking setting. Higher gain peaking
is obtained by increasing the value of Cs and decreasing the
value of Cd .

Fig. 10 shows the block diagram of the 8-b 28 GSample/s,
600 mV diff-pp full-scale range, 32-way TI SAR ADC used
in the receiver. There are two stages of time interleavers.
The first stage is a four-way time interleaver, where the
input is buffered by B0/B1 buffers and sampled and held
using four-phase 7-GHz sampling pulses. The sampling pulses
sharing the same buffer (CLK7G_0 and CLK7G_2 sharing
B0 buffer and CLK7G_1 and CLK7G_3 sharing B1 buffer)
are designed to be nonoverlapping to avoid charge sharing.
The second stage is an eight-way time interleaver, where
each of the signals sampled by the 7-GHz sampling pulses is
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Fig. 14. ADC clocking diagram.

Fig. 15. 875-MHz SAR sub-ADC circuit.

further sampled and held using eight-phase 875-MHz sampling
pulses and converted into digital values using eight instances
of 875-MHz SAR sub-ADC. The output of the 32 instances
of SAR sub-ADCs is then retimed to a single 875-MHz clock
domain and sent to a 64-kb storage.

The timing skew calibration [8]–[10] of the 7-GHz
clocks and the gain/offset calibration of the 875-MHz
sub-ADC instances are performed using the pseudorandom
data input [9], in contrast to the use of sinusoidal tones for
calibration in [8]. This approach allows live data calibration
where scrambled pseudorandom data are common in most
high-speed interfaces. In order to keep the area of the sub-
ADC circuit small, the gain and offset corrections of the sub-
ADCs are performed in the digital domain at the expense of
∼10% reduction of the ADC full-scale range. Fig. 11 shows
the circuit diagram of the 7-GHz clock skew correction
block (only one clock phase is shown). The main path is

composed of two stages of inverters, having a controlled RC-
network in between them. NMOS M1 controls the charging
and discharging current of the capacitor C1 (60 fF). The gate
voltage of NMOS M1 (Vctrl) is controlled by a digital skew
correction code through the resistor-ladder (R2R) DAC. Since
the R2R DAC has a high output impedance (4 k�, a bypass
capacitor C2 (3 pF) is added to reduce noise coupling to the
control voltage Vctrl. The worst case differential non linearity
of the R2R DAC with three-sigma over PVT variations is
0.46 LSB, so the skew correction step is always positive.
Fig. 12 shows the simulation results of the skew correction
knob characteristics over PVT corners. The skew correction
range is more than −5.5 to 5.5 ps without any mismatch (ran-
dom and systematic). When random and systematic mismatch
is considered, the skew correction range shrinks down to
−3.7 to 3.7 ps—still wide enough to cover clock distribution
mismatches up to the first stage sample-and-holds (S/Hs). The
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skew correction step is designed to be less than 100 fs to target
38-dB signal to noise and distortion ratio (6-b ENOB) with
margin for the Nyquist frequency of 14 GHz.

Fig. 13 shows the timing diagram of the TI ADC.
The top four signals are front-end four-phase 7-GHz
sampling pulses (CLK7G_0, CLK7G_1, CLK7G_2, and
CLK7G_3). Each of the 7-GHz sampling pulse has an
approximately 40% duty cycle that ensures there is no
overlap between CLK7G_0 and CLK7G_2 (and similarly
between CLK7G_1 and CLK7G_3). One group of 875-
MHz sampling pulses (consisting of eight different phases)
is generated from each phase of the four-phase 7-GHz
sampling pulses (as shown in Fig. 13, CLK875M_0_0 to
CLK875M_0_7 are derived from CLK7G_0). Hence, there
are 32 different phases (four groups and eight phases per
group) of 875-MHz pulses in total—each one corresponds to
one instance of an 875-MHz SAR sub-ADC. The 875 MHz
sampling pulses have a ∼3UI pulsewidth in order to avoid
overlaps between them. This gives ∼29UI period for the
sub-ADC to perform conversion. The rising edges of the
875-MHz sampling pulses are aligned with the rising edge of
corresponding 7-GHz sampling pulse. If they are not aligned
well, the falling edge of the previous 875-MHz sampling
may occur after the rising edge of 7-GHz clock. In this
case, the previously sampled signal is mixed with the current
sampled signal, significantly increases signal distortion.

The block diagram of TI ADC clock generation and timing
circuit is shown in Fig. 14. It generates four-phase 7-GHz
sampling pulses for front-end S/H and 32-phase 875-MHz
sampling pulses for the SAR sub-ADCs. A quadrature phase
interpolator generates four phases of 7-GHz clocks with
50% duty cycle. The phase interpolator delay is controlled
by the CDR loop. Each of the 7-GHz clock phase has a
dedicated path to the front-end S/H. Skew correction block
adjusts the delay of each phase of the 7-GHz clocks based
on the ADC timing-skew calibration loop. The outputs of
the skew correction block are split into two paths: front-end
S/H path and sub-ADC path. In the front-end S/H path,
a 7-GHz clock generation block generates 40%-duty-cycle
sampling pulses from the four-phase clocks using AND gates.
The 7-GHz clock generation block also inserts some delay
in order to control timing (rising-edge alignment) between
the front-end 7-GHz sampling pulses and the corresponding
back-end sub-ADC sampling pulses over PVT variations.
After the delay chain, the 40%-duty-cycle sampling pulses are
converted into CMOS-level pseudodifferential signals to drive
the front-end S/Hs. The generation of 32-phase, 3UI-wide
875-MHz sub-ADC sampling pulses starts by changing the
duty cycle of the 7-GHz clocks from 50% to 25%. Two
adjacent phases of 7-GHz clocks with 50% duty cycle are
used to generate one phase of 7-GHz clock with 25%
duty cycle. These 25%-duty-cycle clocks are then converted
into CMOS-level pseudodifferential signals and sent to an
875-MHz clock generation block, which is composed of
four groups of synchronous divide-by-eight block and eight
NOR gates.

Fig. 15 shows the block diagram of the 875-MSa/s 8-b
asynchronous SAR sub-ADC. It consists of 127 units of

Fig. 16. Sub-ADC comparator.

Fig. 17. Die micrograph.

capacitors, one comparator, an SAR logic block, and a retimer.
A differential capacitor DAC (CDAC) structure is adopted
to keep the common mode at the comparator input constant
during conversion. In order to achieve high sampling rate with
minimum power consumption, the size of the CDAC and any
parasitic capacitors needs to be minimized. Top-plate sampling
scheme [11] is adopted to reduce the CDAC requirement
from 8 to 7 b, therefore reducing CDAC size by half. The
CDAC unit capacitor is also sized just enough (∼0.4 fF)
to meet the matching requirement. Since the sub-ADC only
needs to have moderate resolution (8 b), the CDAC matching
requirement is not very stringent. Instead of using one of the
available power supplies, a low-voltage, low-impedance refer-
ence voltage (Vref) is used in the CDAC to achieve the same
full-scale range without increasing the total capacitor size. The
relationship between full-scale range voltage (Vfs) and Vref is
shown as follows:

V f s = 27Cu

Ctot
2Vref

Ctot = 27Cu + Cpar (1)

where Cu is the CDAC unit capacitance, Ctot is the total
capacitor size, and Cpar is the parasitic scaling capacitor.
From (1), for a given full-scale range and CDAC unit capacitor,
lower Vref value allows for lower parasitic scaling capacitor.
A single programmable CDAC reference voltage (Vref) is gen-
erated on-chip to drive all 32 sub-ADCs for better matching.
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Fig. 18. Transmitter output eye diagram.

Fig. 19. Measured ADC performance with 181.5-MHz and 13.99-GHz sinusoidal inputs.

The Vref output impedance is designed to be low in order to
avoid disturbance from 32 DACs switching.

The comparator is composed of a preamplifier followed
by a StrongArm (SA) latch (Fig. 16). The preamplifier is
added to reduce the input-referred noise of the comparator
to below 0.5 LSB. A reset switch is added to the preamplifier
to implement overdrive recovery, which clears the memory
effect from previous bit. The preamplifier is enabled earlier
than the SA latch to allow the output to settle before SA latch
starts. A pair of dummy NMOS with its drain and source
shorted together is connected to the input and output of the
preamplifier to reduce kick back from the preamplifier output
to the CDAC. Together with SAR logic delay and the CDAC
settling time, the comparator regeneration time constant (τ )
determines the metastability error rate of the SAR ADC [12].
τ is designed to be ∼4 ps to achieve <1e-15 metastability
error rate (significantly lower than the raw BER target of the
link) assuming uniform distribution of the input signal.

In order to avoid distributing high frequency clock and to
increase the SAR conversion speed, asynchronous SAR logic

with programmable delays is implemented. To increase speed
further, the SAR logic is implemented using custom-built
digital circuits.

IV. EXPERIMENTAL RESULTS

Fig. 17 shows the die micrograph of the testchip fabricated
in 16-nm FinFET. There are two TX/RX lanes sharing a com-
mon PLL, clock distribution, and bias block. The first RX lane
has full receiver functionalities. The CTLE in the second
RX lane is bypassed to facilitate direct measurements of the
ADC performance.

Fig. 18 shows the transmitter output eye diagram over
∼5-dB channel. The transmitter is configured to transmit
PRBS7 and PRBS31 patterns with ∼4.5-dB posttap equal-
ization. The measured random jitter is 200 fs-rms. The
transmitter linearity measurement is performed by mea-
suring average dc voltage of the four PAM4 levels and
calculating RLM using the equation shown in Fig. 3.
The transmitter achieves the RLM of 0.97 at 1.2 V
diff-pp swing.
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Fig. 20. Pre-DSP received eye diagram at (a) ADC Input for 6-dB channel
and (b) 32-dB channel.

The stand-alone ADC performance is measured on the
second RX lane with CTLE bypassed. The ADC gain, offset,
and timing skew calibrations are first performed by passing
PAM4 PRBS31 data sequence through the ADC. Once the
calibrations are completed, the ADC inputs are connected to a
differential sinusoidal signal at various frequencies—generated
using an RF signal generator and a single-ended-to-differential
phase splitter. FFT is performed on the ADC outputs captured
in the 64-kb storage. The ADC achieves the ENOB of 6.3
at 180 MHz and 4.9 at 14 GHz, as shown in Fig. 19. The ADC
performance at 180 MHz is limited by the thermal noise of
the single-slice SAR ADC comparator. The ADC performance
at 14 GHz is limited by residual timing skew of the four-phase
7-GHz sampling pulses.

The link functionality is tested by connecting the transmitter
output to the receiver through different kinds of backplane
channels. The off-chip FPGA periodically reads reading the
ADC outputs stored in of the 64-kb buffers and performs
ADC calibration, CDR, equalization adaptation, and DSP.
Fig. 20 shows eye diagrams at the CTLE/AGC outputs
(captured using the ADC as a digital oscilloscope) and the
post-DSP histograms of the four PAM4 levels (sampled at the
CDR lock point) over 200k symbols. The CTLE/AGC outputs
show open eye with ∼6-dB channel [Fig. 8(a)] and closed eye
with 25-dB channel (8b). In both cases, the DSP opens the eye
in the post-DSP PAM4-level histograms. The estimated BER
is <1e-8 based on extrapolation of the histograms.

In order to measure the link performance at full 56-Gb/s
throughput (without data subsampling), the on-chip DSP and
the on-chip error checker are used. The off-chip FPGA still
performs ADC calibrations, CDR, and equalization adaptation.

Fig. 21. BER bath-tub curve for 31-dB channels at various crosstalk levels.

TABLE I

PERFORMANCE SUMMARY

The resulting ADC calibration and equalization coefficients
are used to set the corresponding coefficients in the on-chip
DSP. The link performance measurement results are described
in the form of BER bath-tub curve around the CDR lock
point (Fig. 21). In this case, the ball grid array (BGA)-to-BGA
channel loss is ∼31 dB at 14 GHz. The transmitter FIR settings
are fixed and the receiver analog and digital equalizations
are adapted. The DSP is configured to have 24-tap FFE and
1-tap DFE. Additional crosstalk is generated by sending a
PRBS aggressor signal through a backplane channel next to
the channel under test, measuring the rms of the crosstalk-
induced voltage near the receiver, and adjusting the amplitude
of the aggressor signal until the desired crosstalk rms voltage is
obtained. The link BER is <1e-15 without additional crosstalk
at the receiver and <1e-8 with 3.5 mVrms additional crosstalk
at the receiver. The timing window at 1e-4 BER (specified by
the proposed standard) is >0.2UI.

Table I shows the performance summary. The transceiver
consumes 550-mW total power (excluding the on-chip con-
figurable DSP power which cannot be accurately measured
as it is implemented as part of a larger test structure and
not optimized in this design). The TX consumes 140 mW,
the RX consumes 370 mW (of which 280 mW is consumed by
the ADC), and the PLL/clock distribution/bias block consumes
40 mW.
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V. CONCLUSION

The transceiver described in this paper is able to achieve
<1e-8 raw BER (significantly better than 1e-4 raw BER
targeted by the standard [1]) over a legacy backplane channel
with 31-dB loss and 3.5-mV additional crosstalk. Given the
significant BER margin achieved in this design relative to the
standard requirement, we will look for opportunities to further
optimize power and performance in the future. Specific to the
ADC-based receiver design, this will include analyzing the
impact of ADC resolution to the link BER and analyzing
the partition between the analog and digital portions of the
equalizations.
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