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Abstract: General methods for the synthesis of complex band-pass and band-stop analogue filters
are developed for implementation by active-RC, gm-C, switched-capacitor (SC) and switched-
current (SI) techniques. These principles are extended to synthesis procedures for log-domain
complex realisations. Circuits for filters and group delay equalisers are presented for both ladder
and cascade-biquad realisations. These have been incorporated into the filter design software
XFILTER. Various designs are compared, noise and sensitivity responses being shown.

1 Introduction

Complex (polyphase) filters are finding many applications
today [1–7], especially in the communications area. They are
essentially integrated circuit filters and, in order to cover the
different frequency ranges of application, it is necessary to
encompass different implementation techniques, such as
active-RC, gm-C, switched-capacitor (SC), switched-current
(SI) and log-domain. It is also important to develop a
general synthesis method without undue restrictions on
order and filter characteristic.

A complex band-pass transfer function HC(s) is derived
from a low-pass transfer function H(s) by the frequency
shift method using the substitution (s-s�josh) giving
HC(s)¼H(s�josh), where osh is the shift frequency. In
general the coefficients of HC(s) are complex [5], therefore
HC(s) can be represented as HC(s)¼HRe(s)+jHIm(s), where
both real HRe(s) and imaginary HIm(s) parts are real
transfer functions.

The input and the output signals are complex

X ðsÞ ¼XReðsÞ þ jX ImðsÞ
Y ðsÞ ¼Y ReðsÞ þ jY ImðsÞ

The relationships between the input and output signals are

Y ReðsÞ ¼HReðsÞXReðsÞ � H ImðsÞX ImðsÞ
Y ImðsÞ ¼HReðsÞX ImðsÞ þ H ImðsÞXReðsÞ

and represented in Fig. 1.
The frequency shift method, which leads to two identical

low-pass filters connected by a cross-coupling network, has
been used successfully [6, 7]. This is now formalised for
ladder-derived filters in all the above realisation techniques.
Extension to the design of band-stop filters follows easily
and essentially comprises two identical high-pass networks
with cross-coupling elements. Cascade biquad designs are
also produced and have some value as practical realisations,
mainly because of their simplicity. Equalisation of group
delay in these complex realisations is often required and the

techniques have been extended to include this with both
ladder and biquad implementations. General implementa-
tion of all these procedures in the XFILTER software is
available and provides a useful design tool. Comparison of
designs is shown in numerous examples.

2 Ladder-derived continuous-time complex band-
pass filters

The nodal equation of a passive ladder is described by

ðsC þ s�1Cþ GÞV ¼ J ð1Þ
where C, C and G are admittance matrices of capacitors,
inverse inductors and resistors, respectively. V and J are
vectors representing the nodal voltages and input current
sources. The system is decomposed into two related first-
order systems, which can be implemented, directly by
active-RC or gm-C circuits. The decomposition [8] is
performed on the left matrix C or the right matrix C.

For a left matrix decomposition C¼ClCr then

C lW ¼� 1

s
GV � GV � ð�JÞ

C rV ¼
1

s
W

For a right matrix decomposition C¼ClCr then

C lV ¼�
1

s
ðClW þ GV � JÞ

IDW ¼ 1

s
CrV

H Re(s)

Y Re(s)

H Re(s)

X Re(s)
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Fig. 1 Schematic representation of a complex analogue filter
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where W is an auxiliary vector of intermediate variables and
ID is the identity matrix.

Using the frequency shift transformation (s-s�josh), the
left matrix decomposition becomes

C lW ¼� 1

s
ðCV � joshC lW

� joshGV þ joshJÞ � GV þ J

C rV ¼
1

s
ðW þ joshC rVÞ

and the right matrix decomposition

CV ¼�1
s
ðClW þ GV � J � joshCVÞ

IDW ¼ 1

s
ðCrV þ joshWÞ

The complex transfer functions are available from two sets
of equations.
Left matrix decompositions
For real transfer functions:

C lW
Re ¼� 1

s
ðCVRe þ oshC lW

Im

þ oshGV Im � oshJ ImÞ � GVRe þ JRe

C rV
Re ¼ 1

s
ðWRe � oshC rV

ImÞ

For imaginary transfer functions

C lW
Im ¼� 1

s
ðCV Im � oshC lW

Re

� oshGVRe þ oshJReÞ � GV Im þ J Im

C rV
Im ¼ 1

s
ðW Im � oshC rV

ReÞ

Right matrix decompositions
For real transfer functions:

CVRe ¼� 1

s
ðClW

Re þ GVRe � JRe þ oshCVImÞ

IDWRe ¼ 1

s
ðCrV

Re � oshW ImÞ

For imaginary transfer functions:

CV Im ¼� 1

s
ðClW

Im þ GV Im � J Im � oshCVReÞ

IDW Im ¼ 1

s
ðCrV

Im � oshWReÞ

The complex band-pass filter realisation therefore consists
of two identical real low-pass filters cross-coupled via
resistances (terms in osh). A range of active-RC implemen-
tations is available from a number of decompositions [8].

A number of gm-C ladder decompositions are aimed at
producing equal transconductance values, one of these, the
TC topological decomposition [9], is used to produce a
complex band-pass filter. With C¼ADAT, where D is a
diagonal matrix of inverse inductance values and A is an
incidence matrix, the following pair of equations is
equivalent to (1), (g is a scaling conductance and

CL ¼ g2D�1):

CV ¼ 1

s
ðJ � GV � gAWÞ

CLW ¼ 1

s
ðgAT VÞ

Applying the shift frequency transformation gives

CV ¼ 1

s
ðJ � GV � gAW þ joshCVÞ

CLW ¼ 1

s
ðgAT V þ joshCLWÞ

Which leads to gm-C complex band-pass filter implementa-
tions utilising two cross-coupled low-pass ladder realisa-
tions, though the single value of transconductance is
sacrificed in the cross-coupling terms.

3 Ladder-derived sampled-data complex band-
pass filters

For switched networks (SC and SI), the frequency shifting
mechanism [4] is expressed as HC(z)¼Hlp(ze�jy), where
y¼osh T, with osh the shift frequency and T the sampling
time. Equation (1), after bilinear transformation and some
manipulation, gives

1

c
Aþ FB þD

� �
V ¼ J 00

where

A ¼ 2

T
C þ T

2
Cþ G ; B ¼ 2TG; D ¼ 2G and

J 00 ¼ð1þ zÞJ:

C ¼ z�1

1� z�1
andF ¼ 1

1� z�1

represent forward and backward Euler integrators, respec-
tively [8].

A left matrix decomposition is

AlW ¼� ðFB þDÞV � 2ð�JÞ
ArV ¼WW � A�1l ð�JÞ

In general A¼LU, A¼UL, A¼ IA, A¼AI are the various
decompositions.

Substituting LDI integrator operators into the above
equations

AlW ¼� 1

1� z�1
BV �DV � 2ð�JÞ

ArV ¼
z�1

1� z�1
W � A�1l ð�JÞ

Applying a frequency shift (z-ze�jy) to obtain the complex
transfer functions gives

AlW ¼AlWz�1ejy � BV �DV

þDVz�1ejy � 2ð�JÞ þ 2ð�JÞz�1ejy

ArV ¼ArVz�1ejy þWz�1ejy � A�1l ð�JÞ
þ A�1l ð�JÞz�1ejy

Substituting ejy¼ cosy+jsiny will lead to two low-pass
filters with cross-coupling and modified internal topologies,
which increase the complexity of circuit design. However,
for a sufficiently high clock rate (oclk/osh440), cosyD1
then

AlW ¼ðFB �DÞV � 2ð�JÞ þ j 2ð�JÞC sin y

þ jAlWC sin yþ jDVC sin y

ArV ¼WC� A�1l ð�JÞ þ jA�1l ð�JÞC sin y

þ jArVC sin yþ jWC sin y

Complex transfer functions are described by two sets of
equations:
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For real transfer functions

AlW
Re ¼ �ðFB �Dð1� z�1ÞÞVRe � 2ð�JÞ

� 2ð�JImÞF sin y� AlW
ImF sin y�DV ImF sin y

ArV
Re ¼WReC� A�1l ð�JReÞ � A�1l ð�J ImÞF sin y

� ArV
ImF sin y�W ImF sin y

For imaginary transfer functions:

AlW
Im ¼ �ðFB �Dð1� z�1ÞÞV Im � 2ð�JÞ

þ 2ð�JReÞC sin yþ AlW
ReC sin yþDVReC sin y

ArV
Im ¼W ImC� A�1l ð�JImÞ þ A�1l ð�JReÞC sin y

þ ArV
ReC sin yCþWReC sin y

Now a complex SC band-pass circuit can be obtained from
two identical low-pass circuits with cross-couplings.

A right matrix decomposition is

AV ¼� FðBlW þDVÞ þ J

W ¼CBrV � 2B�1l J

where Bl and Br are the factors of the right-hand matrix B.
In general B is decomposed as LU, UL, IA and AI.

Applying the frequency-shift transformation and some
manipulation gives two sets of equations, which yield the
complex transfer functions.

For real transfer functions:

AVRe ¼� FðBlW
Re þDVReÞ þ JRe

� J ImF sin y� AV ImF sin y

WRe ¼BrV
ReC� 2B�1l JRe � 2B�1l JImF sin y

� BrV
ImF sin y�W ImF sin y

For imaginary transfer functions

AV Im ¼� FðBlW
Im þDV ImÞ þ J Im

þ JReC sin yþ AVReC sin y

W Im ¼BrV
ImC� 2B�1l JIm þ 2B�1l JReC sin y

þ BrV
ReC sin yþWReC sin y

Which again yield complex SC band-pass realisations
utilising two cross-coupled low-pass circuits.

For SI circuits (1) is modified by scaling the voltage
vector by 1O to give

ðsC þ s�1Cþ GÞI ¼ J

After bilinear transformation and some manipulation, the
left matrix decompositions follow exactly as the SC left
decompositions and yield the same design equations. These
lead to two identical SI low-pass filters with cross-couplings.

The right decompositions for SI implementations are
modified to overcome dynamic-range scaling problems and
commence with the equations [10]:

AI ¼� f½BlW þDI � þ 1þ z�1

1� z�1

� �
J

IDW ¼cBrI

Substituting the integrator operators gives

AI ¼ � 1

1� z�1
½BlW þDI � þ 1þ z�1

1� z�1

� �
J

IDW ¼ z�1

1 � z�1
BrI

Applying the frequency shift operator and approximating
cosyD1 leads to the system equations

AI ¼� f½BlW þDI � þ 1þ z�1

1� z�1
J

þ jJc sin yþ jAIc sin y

IDW ¼ cBrI þ jIDWc sin yþ jBrIc sin y

Which again yield two identical cross-coupled low-pass
networks.

The same theory applies equally to the design of complex
analogue band-stop filters, with the result that two identical
high-pass networks with cross-connecting elements are
required. It is also possible to derive complex biquad
sections for all four techniques. These have been produced
and hence cascade realisations for high order complex filters
can be utilised.

4 Complex filter designs

The above complex filter design strategies have been
implemented in XFILTER [11] and the software has been
used to produce a range of designs to illustrate the wide
variety of realisations that are viable by various IC
techniques.

One of the basic criteria in deciding the feasibility of
integrated realisations of analogue circuits is component
spread. Table 1 gives typical spread figures for active-RC
realisations of complex band-pass elliptic filters of high
order; these are all right-LU decompositions. The resistance
spread of the 26th order active-RC is well beyond the
realistic range for IC implementation.

Tenth order complex elliptic band-pass filters will be used
as examples in the following designs. Table 2 summarises
the performances of active-RC tenth order complex band-
pass and conventional direct band-pass (two normally
required in quadrature signal applications) ladder-derived
filters. More components are required to realise the direct
band-pass circuits, otherwise performance parameters are
similar, though the complex case has slightly better noise
behaviour. Of course the inherent advantage of the complex

Table 1: Component spreads of active-RC complex elliptic
band-pass filters

Order of
filter

Capacitance
spread

Resistance
spread

10 24 131

14 44 252

18 72 409

26 145 906

Table 2: Performance parameters for 10th order active-RC
right-LU complex and direct elliptic band-pass filters

Complex
band-pass

Direct band-
pass

No. of components 78 116

No. of amps 20 38

C spread 24 10.3

R spread 131 79.5

Max pass-band noise nV/(Hz)1/2 58.5 212.2
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filter is the ability to reject image frequencies in receiver
applications. Table 3 shows a similar pattern for gm-C
realisations. However the transconductance spread in the
complex case will necessitate many different control loops
to define the various gm values, at the cost of extra circuitry.

Figure 2 gives the frequency response of an SC
implementation of the complex band-pass filter, using a
clock frequency of 660kHz. The constituent circuits are
shown in Figs. 3 and 4. The switches associated with each
cross-coupling capacitor may be dispensed with when
clocked with the same waveforms as the two low-pass
circuits (as in this realisation). They are shown because
situations arise when it is necessary to utilise an alternative
clocking scheme in order to reduce overall component
spread. Figure 5 shows the sum sensitivity of complex and
direct SC implementations. A switched-current implemen-
tation of the same complex filter shows almost identical sum
sensitivity performance. Figure 6 gives typical noise
performances of complex and direct SC implementations.

Figure 7 shows a complex band-stop response for a
transconductance-C realisation.

Using XFILTER it is possible to examine many
alternative circuit solutions and compare relative perfor-
mance parameters, such as component spreads, sensitivity
and noise behaviour.

5 General complex log-domain ladder synthesis

The design of complex log-domain filters offers a rather
exciting extension of boundaries in analogue signal proces-
sing. The low-voltage, wide-dynamic-range, high-frequency
nature of the log-domain approach embedded in the
complex filter common to many quadrature receiver
architectures should provide an efficient topology for
front-end RF receivers. Direct log-domain ladder-filter

synthesis is well developed [12] and the complex log-domain
filter synthesis method applies a linear transformation to the
existing method.

Rewriting (1)

C _VV þ C

Z
V þ GV ¼ UVIN

where U is a column vector of input connections.
Applying the linear frequency shift (s-s�josh) gives

C _VV þ C

Z
V þ GV � joshCV � joshCV ¼ UVIN ð2Þ

Only the right matrix decomposition yields useful circuits in
the log-domain [8], so C is factorised as

C ¼ CLCR ð3Þ
After introducing an intermediate variable

X ¼ CR

Z
V ð4Þ

equation (2) can be rewritten as

C _VV þ CLX þ GV � joshCV � joshCLCRV ¼ UV IN ð5Þ
Equations (4) and (5) describe the linear system, which can
be rewritten as

C _VV ¼ UVIN � CLX � GV

� �joshC½ �V � joshCLCRV

ID
_XX ¼ CRV

8>>><
>>>:

ð6Þ

where ID is the identity matrix.
The externally linear vectors of V and X can be

exponentially mapped to nonlinear internal vectors [13]
using

Yi ) eYi=k ¼ W Yi and _WWYi ¼
1

k
eYi=k _YYi ð7Þ

where k¼VT for bipolar and k¼ nVT for CMOS weak-
inversion implementation. Applying (7) to (6) results in a
system of equations

Cii

k
eVi=k _VVi ¼ UieVin=k �

X
j

GLij e
Xi=k � GiieVi=k

�joshCijeVi=k � joshGLijGRij e
Vi=k

IDij

k e
Xi
k _XXi ¼

P
j
GRij e

Vj=k

8>>>>>><
>>>>>>:

ð8Þ

Setting V̂Vin ¼ eVin=kand rewriting in log-domain W variables
(8) becomes

Cii _WWVi ¼ UiV̂Vin �
P

j
GLij WXj � GiiWVi

�joshCijWVi � joshGLijGRij GiiWVi

IDij
_WWXi ¼

P
j
GRij WVj

8>>><
>>>:

ð9Þ

After ‘real’ and ‘imaginary’ part extraction, (9) becomes

Cii _WW Re
Vi
¼ UiV̂V Re

in �
P

j
GLij W

Re
Xj
� GiiW Re

Vi

þoshCijW Im
Vi
þ oshGLijGRij GiiW Im

Vi

IDij
_WW Re

Xi
¼
P

j
GRij W

Re
Vj

Cii _WW Im
Vi
¼ UiV̂V Im

in �
P

j
GLij W

Im
Xj
� GiiW Im

Vi

�oshCijW Re
Vi
� oshGLijGRij GiiW Re

Vi

IDij
_WW Im

Xi
¼
P

j
GRij W

Im
Vj

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ

Table 3: Comparison of complex and direct gm-C 10th
order elliptic band-pass filters

Complex
band-pass

Direct band-
pass

No. of components 82 118

No. of gm 54 44

C spread 5.9 185.8

gm spread 9.8 1

Max pass-band noise nV/sqrt(Hz)1/2 46 268
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Fig. 2 Response of 10th-order SC complex band-pass filter
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The system (10) presents a general form of a complex log-
domain ladder filter. This can be easily extended [12] to
include zero-producing sections and, hence, more general
log-domain ladder-derived filters. These equations represent
two identical low-pass filters with cross-coupling to produce
a log-domain complex band-pass filter or two identical
high-pass filters with cross-coupling to produce an equiva-
lent band-stop filter.

5.1 First-order complex log-domain
integrator block
An integrator is a necessary building block and in the
frequency domain the transfer function of a first-order
complex coefficient system can be expressed as [6]

H sð Þ ¼ Y
X
¼ A

1þ Bs� josh
ð11Þ

o 
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Fig. 3 Low-pass right-LU circuit (real and imaginary) for 10th order complex SC band-pass filter
a Real
b Imaginary
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In the time domain this becomes

B _YY þ Y � joshY ¼ AX ð12Þ
Nonlinear mapping of (12) leads to

B
k

_YY eY =k þ eY =k � josheY =k ¼ AeY =k ð13Þ

or in log-domain W variables

B _WWY þ WY � joshWY ¼ AX̂X ð14Þ
The ‘real’ part of the system is

B _WW Re
Y ¼ AX̂XRe � W Re

Y þ oshW Im
Y ð15Þ

The ‘imaginary’ part of the system is

B _WW Im
Y ¼ AX̂X Im � W Im

Y þ oshW Re
Y ð16Þ

and this can be shown diagrammatically, Fig. 8, which
indicates two identical subsystems with cross connections
between the integrator blocks. Comparison of (15) and (16)
with (10) shows a similar structure and these complex log-
domain integrators can be used in the realisation of general
complex log-domain filters. A variety of complex integrator
types can be utilised in synthesis. One design based on a well
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Fig. 4 Cross-couplings for 10th-order complex SC band-pass filter
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known fully differential integrator [12] is shown in Fig. 9.
This fully differential structure is incorporated into
XFILTER software to provide fully differential in-phase
and quadrature signals throughout.

6 Complex log-domain cascade-biquadratic filters

The alternative approach to realising a transfer function of
any order is by cascading second- and first-(if odd order)
order blocks. A complex log-domain biquadratic section is
shown in Fig. 10 and a first-order complex log-domain
section is given in Fig. 11. These are derived from standard
log-domain sections [9]. The value of cross-connection
current is expressed as Iosh¼oshCVT where C is capacitor
value, VT is thermal voltage and ost is shifting frequency.

7 Complex group-delay equalisers

Applying the frequency-shift technique to the ladder-
derived all-pass method [14] again leads to cross-coupled
structures in all the realisation techniques discussed. A log-
domain version is shown in Fig. 12. Y(s) is a singly
terminated ladder which can be synthesised by the log-
domain technique. Cross-coupled all-pass biquadratic

0 2 4 6 8 10
−100

−80

−60

−40

−20

0

m
ag

ni
tu

de
, d

B

frequency, kHz

Fig. 7 Frequency response of 12th-order gm-C biquad complex
band-stop filter
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sections can similarly be derived and typical log-domain
versions are shown in Figs. 13 and 14.

8 Log-domain design example

The synthesis procedures for both ladder and biquad
complex log-domain filters and equalisers have been
implemented in XFILTER. The frequency responses of a
typical tenth order 0.5dB ripple Chebyshev band-pass filter

for log-domain direct and complex realisations are shown in
Fig. 15. These were computed by Spectre using real
transistor models (typical BSim3v3 model for a targeted
0.6mm complementary bipolar process). They illustrate the
inherent difference between direct and complex realisations,
due to the application of a low-pass/band-pass transforma-
tion in the former and the linear frequency shift in the latter.
Table 4 shows typical circuit parameters, and the overall
low noise performance of log-domain realisations is notice-
able. The noise responses in Fig. 16 were computed with
SpectreRF. The noise performance for the complex
realisation is higher, possibly due to the larger number of
transistors in each signal path. This behaviour varies with
filter type. The group delay responses in Fig. 17 show the
effective equalisation of group delay on the complex filter
using two identical cross-coupled sixth-order log-domain
all-pass equaliser networks.
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Fig. 15 Tenth-order Chebyshev filter frequency responses

Table 4: Comparison of complex and direct log-domain
10th order Chebyshev band-pass filters

Complex
band-pass

Direct
band-pass

No. of Transistors 440 840

No. of Capacitors 20 40

C spread 2.02 1.3

Total I 379.9mA 1.642mA

I spread 36.9 12.1

Max pass-band noise pA/sqrt(Hz)1/2 83 70
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9 Conclusions

Methods for the synthesis of complex analogue filters as
both ladder and cascade-biquad realisations have been
described. These general routines have been implemented in
the XFILTER software. They have been used to design a
variety of complex band-pass and band-stop filters. Typical
examples are shown and performance results are presented.
The spread in component values of complex filter realisa-

tions of all types is dominated by values of the cross-
coupling elements, and the spread in the low-pass or high-
pass constituent filters is usually well conditioned. Many
solutions can be examined in the design process and an
optimum realisation can be selected. In particular, complex
log-domain filters have many interesting properties and
further work is continuing to evaluate these and improve
practical designs.
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