®| o o [®] i] .
]

e @ @ @]

i

COMPREHENSIVE THE
FUNCTIONAL IS

INDUSTRY

VERIFICATION CYCLE

BRUCE WILE JOHN C. GOSS WOLFGANG ROESNER

/

In Praise of Comprehensive Functional Verification:

The Complete Industry Cycle

As chip design complexity continues to
increase, functional verification is becoming
the dominant task in the development
process. The book does an excellent job of
describing the fundamentals of functional
verification. The reader of this book will
learn the details of the verification cycle

and the methods employed by verification
engineers to ensure a bug-free design release.

Fadi A. Aloul, American University of
Sharjah, UAE

This book provides the most comprehensive
treatment of functional verification to date.
The authors have used their extensive
experience to provide an industrial
perspective on issues and challenges that
verification engineers could face. The book
is valuable to both novice and experienced
verification engineers.

Baback Izadi, State University of New
York—New Paltz

This book is a comprehensive tour of the
industrial verification cycle. The authors
have paid particular attention to the
coverage of recent advances in the field, and
introduced them gradually in a chain of
well-organized chapters. This, along with
the abundance of illustrative examples and
case studies, make it an ideal text for a
university course on functional verification.

Nazanin Mansouri, Syracuse University

This book provides a comprehensive
overview of verification principles and
techniques. The extensive use of examples
and insightful perspective on practical
verification challenges make this book
ideal for introducing hardware
verification concepts to undergraduate
computer engineering students.

Vijaykrishnan Narayanan and Mary
Jane Irwin, The Pennsylvania State
University

Verification now dominates digital design
flows, as teams struggle to efficiently ensure
their systems work correctly. Despite the
tremendous importance of verification, no
book has adequately covered the material
needed to guarantee the quality of complex
electronic systems. Wile, Goss, and Roesner
present an insightful introduction to
functional verification technology, including
theoretical issues and practical techniques.
This excellent text promises to benefit both
the student and practicing engineer in
becoming more effective in addressing
modern verification challenges.

Greg Peterson, University of Tennessee

This is an excellent reference for those
needing an in-depth treatment of functional
verification but also a much needed text for
courses which focus on this complex and
difficult topic. It goes beyond the normal
coverage of functional verification topics

by including two chapters on formal
verification, a topic often skipped or barely
mentioned in other texts. The message
“verification is tough” has been heard often
at recent Design Automation Conferences.
This book is a powerful response to that
very important message.

Hardy J. Pottinger, University of
Missouri—Rolla

COMPREHENSIVE FUNCTIONAL
VERIFICATION
THE COMPLETE INDUSTRY CYCLE

Author Bios

Bruce Wile, IBM Distinguished Engineer, is ASIC Chief Engineer for IBM Systems and Tech-
nology Group. In this position, he leads the development of the current and next generation
server chip set. Mr. Wile worked in functional verification for 18 years, where he started his
career in 1985 after graduating from the Pennsylvania State University. He has worked as a
verification engineer on many chips and systems, starting with IBM’s S/390 ES/9000 series’
cache and storage controller unit, and thereafter working on processors, 10 devices, and
entire systems. Throughout his verification career, he has held both team lead and manage-
ment positions. In 2000, Mr. Wile was named the Verification Lead for all IBM server chips,
where, he was responsible for driving verification technology deployment and execution
across the entire IBM line of server products. Mr. Wile has several patents and published
papers. He is passionately involved with engineering, science, and math educational efforts,
working with all levels of secondary schools as well as universities.

John C. Goss, an Advisory Engineer, is a verification team lead for IBM Systems and Tech-
nology Group. In this position, he leads the system simulation efforts the current and next
generation server processor chips. Mr. Goss has worked in the field of functional verification
his entire career, since 1993. He graduated from Pennsylvania State University with his BS
in Computer Engineering and a minor in Computer Science. Shortly after joining IBM, he
then pursued his Masters degree in Computer Engineering at the North Carolina State
University where he graduated in 1996. He has worked as a verification engineer on many
chips and systems, starting with IBM’s networking division. He worked on a series of ASIC’s
that were used in IBM’s networking gear including a network processor. In 2002, he has
assumed responsibility of system verification in one of IBM’s next generation server proces-
sor chips. In addition to his position at IBM, Mr. Goss also is an adjunct professor at North
Carolina State University where he has been teaching functional verification to graduate
students since 2001.

Wolfgang Roesner is an IBM Distinguished Engineer and the Verification Lead for the IBM
Systems and Technology Group. He currently leads both the verification technology teams
as well as the verification execution teams on IBM’s next generation server chips and systems.
Dr. Roesner started his IBM career in Boeblingen, Germany, developing HDL compilers and
simulators. After a temporary assignment to be part of the development of the first POWER
processor chip, he decided to stay with the Austin, TX based teams and projects. During the
last fifteen years, his verification tools have been used on every CMOS microprocessor system
including the POWER and PowerPC systems and IBM’s large zSeries servers. IBM’s verifi-
cation technologies range from software- and hardware-based simulation engines to test-
bench languages and formal and semi-formal verification tools. Since 2003, Dr. Roesner is
also responsible for the verification teams of the next generation server chips. He has pub-
lished numerous papers and has been an invited speaker to several technical conferences.

COMPREHENSIVE
FUNCTIONAL
VERIFICATION

THE COMPLETE
INDUSTRY CYCLE

Bruce Wile
John C. Goss

Wolfgang Roesner

. AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD e PARIS ¢ SAN DIEGO

£ < SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY ¢ TOKYO MoRGAN KAUFMANN PUBLISHERS
ELSEVIER Morgan Kaufmann is an imprint of Elsevier

Publisher Denise E.M. Penrose

Publishing Services Manager Simon Crump
Project Manager Brandy Lilly

Project Management Graphic World NY
Developmental Editor Nate McFadden

Cover Design Chen Design

Cover Image TBA

Text Design Julio Esperas

Composition TBA

Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Graphic World NY

Proofreader Graphic World NY

Indexer Graphic World NY

Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

ISBN: 0-12-751803-7

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID q,bre Foundation

Throughout this book, we place the verification team at the
forefront of technical performance. Over the years we've been
influenced by many outstanding individuals on our
verification and verification tools teams. The information in
this book is truly a compilation of that which we've learned,
together with these teammates. We wish to acknowledge their
camaraderie, support, and dedication to producing bug-free

designs.

We wish to thank our families for their continued support
throughout this long stretch of time when we stared at our
laptop screens at night and on weekends while the only
words they heard from us were, “yes . .. I think” and “say

again?”

Finally, we must express our gratitude to Nate McFadden,
whose tireless work shepherded this book through the
creative process. His advice, guidance, and enthusiasm kept

us on course.

FOREWORD

Complex electronic designs pervade almost every aspect of modern life.
We take for granted the existence of cell phones, or antilock brakes, or
medical imaging devices, not to mention the ubiquitous PC. As users or
customers, we also take it for granted that these devices will function
correctly. The impact of an undetected functional failure can range from
mild annoyance to major catastrophe, and the cost—to individuals, to
companies, to society as a whole—can likewise be immense.

The danger is compounded by the fact that the relentless march of
semiconductor process technology allows us to produce increasingly
complex designs, which contain an increasing number of bugs. With
shorter design cycles and increased competitive pressure to get prod-
ucts to market, verification is often the critical path to production. The
authors of the 2003 International Technology Roadmap for Semicon-
ductors were moved to describe verification as “a bottleneck that has now
reached crisis proportions”.

For that reason alone, this book would be welcome. But there are
many other reasons. The authors bring to their task a wealth of practi-
cal verification experience and a strong academic background—a rare
combination. Their focus on the verification cycle as a process is partic-
ularly important in placing verification in the proper context—as the
authors state: “results and learning from the current project feed the
verification plans and implementation for the next project”. The only way
to stay on top of the growth in complexity is to continuously learn and
improve, so that verification becomes a systematic and sustainable
process.

A unique feature of this book is that it is designed be used in con-
junction with hands-on functional verification exercises. The authors
have collaborated with major Electronic Design Automation (EDA) com-
panies to create exercises based on RTL design implementations of a
four-operation calculator. These implementations come complete with
functional errors for the student to find, using an industrial-strength
verification environment. As in real life, successive implementations of
the calculator provide increasing complexity and additional verification
challenges. Not only will the student learn how to look for and find bugs
in these designs, he or she will do so using the tools that they will later

Foreword

use to attack real-life verification problems of their own. Unfortunately,
the latter will not come with a handy web-based set of solutions, as these
exercises do!

Part II of the book covers the three pillars of Simulation Based Verifica-
tion: testing, checking and coverage. A good simulation environment, or
“testbench,” provides the mechanisms for stimulating the design with some
mixture of directed and randomized tests; provides a language and tools for
creating checkers at all the appropriate levels of the design; and provides
a means for collecting and analyzing coverage data to tell the verification
engineer what has, and more importantly what has not, been tested.

I particularly commend the discussion of coverage in Section 6.2.
Coverage is an important and much misunderstood part of the verifica-
tion cycle. A colleague of mine with a great deal of experience in this
area once summarized his opinion as follows: “the value of coverage lies
in the act of analyzing it and driving it up.” Coverage analysis often
results in surprises—complex designs, by their very nature, are difficult
to grasp, and our intuition is a poor guide to the interactions that are
occurring as we simulate the design. Coverage analysis, if done properly,
challenges our assumptions and makes us stop and think about what we
might otherwise take for granted. Testing without coverage is like driving
a car with a blindfold—you may think you know where you are going,
but where you end up is not where you intended to be!

The discussion of “Pervasive Function Verification” in Chapter 9 is
another good example of the authors sharing their practical experience
of what it takes to get a product to market. In the real world, it is not
enough just to verify the correctness of mainline functionality, though
this is where most of the focus is applied. A product also needs to be
tested, manufactured, debugged and maintained, and very often this
involves mechanisms that are orthogonal to the rest of the design. After
all, if the part won’t come out of reset, it doesn’t matter that the function
units are logically correct!

I am particularly pleased to see the emphasis that the authors place
on formal verification in Part III. Although it is not always possible to
apply formal methods, when they can be applied they provide a level of
certitude that dynamic simulation (in general) cannot—as the authors
state, “A formal proof is the most desirable verification of a property.” In
the past decade, formal verification has gone from being largely of aca-
demic interest to becoming an indispensable tool for attacking certain
classes of problems. For example, formal verification is the only practi-
cal way of assuring the correctness of an implementation for the huge
data space specified by the IEEE 754 floating point standard. Verifica-
tion engineers should have both formal and dynamic verification tools
in their toolbox, and should know how and when to apply the right tool
to the problem at hand.

The Case Studies in Chapter 15 provide an all-too-rare glimpse
“behind the curtain” at the kinds of problems that are seldom, if ever,

Foreword Xi

discussed in public. Every experienced validator could cite a similar set
of examples, and every novice can learn from these cases. The authors
are to be commended for their willingness to discuss their successes and
their failures for the benefit of the verification community as a whole.

This book is a must-read for the novice validator, but even the most
grizzled veteran will find it an excellent addition to his or her library. It
has my highest recommendation.

Bob Bentley
Intel Corporation

1

CONTENTS

Foreword ix
Preface xxi
Acknowledgements XXV
Part I: Introduction to Verification
Verification in the Chip Design Process 5
1.1 Introduction to Functional Verification 5
1.2 The Verification Challenge 8
1.2.1 The Challenge of State Space Explosion 9
1.2.2 The Challenge of Detecting Incorrect
Behavior 12
1.3 Mission and Goals of Verification 14
1.3.1 Verification Engineer “Musts” 18
1.4 Costof Verification 20
1.4.1 Engineering Costs and the Need for an
Independent Verification Team 20
1.4.2 Design Automation Tools 21
1.4.3 Time 22
1.5 Areas of Verification Beyond the Scope of this Book 23
1.6 The Verification Cycle: A Structured Process 24
1.6.1 Functional Specification 25
1.6.2 Create Verification Plan 26
1.6.3 Develop Environment 27
1.6.4 Debug HDL and Environment 27
1.6.5 Regression 28
1.6.6 Fabricate Hardware 28
1.6.7 Debug Fabricated Hardware (Systems Test) 29
1.6.8 EscapeAnalysis 29
1.6.9 Common Verification Cycle Breakdowns 30

Xiv

2

Contents
1.7 Summary e 31
1.8 ExXercises e 32
Verification Flow 35
2.1 Verification Hierarchy 35
2.1.1 Levels of Verification 36
2.1.2 What Level to Choose? 41
2.2 Strategy of Verification 45
2.2.1 Driving Principles 45
2.2.2 Checking Strategies 50
2.2.3 Checkingthe Black Box 55
2.2.4 Putting It All Together 59
2.2.5 The General Simulation Environment 61
2.2.6 Verification Methodology Evolution 62
2.3 SUMMATY 68
2.5 Exercises e 69
Fundamentals of Simulation Based Verification 73
3.1 Basic Verification Environment: A Test Bench 73
3.1.1 Stimulus Component 74
3.1.2 Monitor e 80
3.1.3 Checker e 82
3.1.4 Scoreboard 83
3.1.5 Design Under Verification 85
3.2 Observation Points: Black-Box, White-Box and
Grey-Box Verificationt 86
3.2.1 Black Box 86
322 White BOXot 87
323 GreyBox ... 88
3.3 Assertion Based Verification—An Overview 89
3.3.1 The Importance of Assertions 90
3.3.2 Assertions Express Design Intent 92
333 Classification of Assertions 94
3.4 Test Benches and Testing Strategies 95
3.4.1 Deterministic Test Benches 95
34.2 Self-Checking Test Benches 97
35 Summary 101
3.6 Exercises e 102
The Verification Plan 103
4.1 The Functional Specification 103
4.2 The Evolution of the Verification Plan 104
4.3 Contents of the Verification Plan 106
4.3.1 Description of Verification Levels 106

Contents XV

432 RequiredTools, 107
4.3.3 Risks and Dependencies 108
4.3.4 Functions to be Verified 109
4.3.5 Specific Tests and Methods: Environment 111
4.3.6 Coverage Requirements 115
4.3.7 Test Case Scenarios: Matrix 116
4.3.8 Resource Requirements 117
4.39 Schedule Details 118
4.4 Verification Example: Calcl 121
4.4.1 Design Description 121
4.42 Creating the Verification Plan for Calcl 125
4.4.3 Deterministic Verification of Calel 131
4.5 SUMMATY . ..ttt e e 136
4.6 EXEICISeSt e 136

Part II: Simulation Based Verification

HDLSs and Simulation Engines 141
5.1 Hardware Description Languages 143
5.1.1 HDL Modeling Levels 143
5.1.2 Verification Aspects of HDLs 153
5.2 Simulation Engines: Introduction 159
521 Speed versus Accuracy e 160
5.2.2 Making the Right Methodology Choices 162
5.3 Event-Driven Simulation 162
5.3.1 Hierarchical Model Network 163
5.3.2 Model Evaluation Over Time 165
5.3.3 Event-Driven Control of Model Evaluation 167
5.3.4 Implementation Sketch of an Event-Driven
Simulation Engine 172
5.4 Improving Simulation Throughput 178
5.5 Cycle-Based Simulation 182
5.5.1 Synchronous Design 183
5.5.2 The Cycle-Based Simulation Algorithm 184
5.5.3 Extensions to Basic Cycle-Based Simulation
Engines 188
5.6 Waveform Viewers, 191
57 Summary 196
5.8 EXeICISeSttt 197
Creating Environments 199
6.1 Test Bench Writing Tools 200
6.1.1 HDL Languages as Test Bench Tool 201

6.1.2 C/C++ Libraries 207

XVi

Contents

6.1.3 High-Level Verification Languages 230
6.1.4 Other Test Bench Tools 241
6.2 Verification Coverageouuiiiiunennnnnn. 243
6.2.1 OVEIVIEW . . oottt e e e e 244
6.2.2 Functional Verification Test Coverage versus
Manufacturing Test Coverage 246
6.2.3 Structural Coverage 247
6.2.4 Functional Coverage 251
6.2.5 Coverage Bulk Data Collection and
Management 254
6.2.6 The Right Coverage Analysis Strategy 255
6.3 SUMMATY . . .ottt e e 256
6.4 EXerciSest 258
Strategies for Simulation-Based Stimulus
Generation 259
7.1 Calc2 OVerview ot 260
7.1.1 Calc2 Verification Plan 263
7.1.2 Calc2 and the Strategies for Stimulus
Generation 269
7.2 Strategies for Stimulus Generation 270
7.2.1 Types of Stimulus Generation 270
7.2.2 General Algorithms for Stimulus
Componentst 275
7.2.3 Applying the Four Types of Stimulus
GenerationtoCalc2 277
7.2.4 Seeding Random Test Cases 294
7.2.5 Constraint Solving in Random
Environments 297
7.2.6 Coverage Techniques in Random
Environments 301
7.2.7 Making Rare Events Occur 303
7.2.8 Stimulus Generation of Deadlocks and
Livelocks 306
7.3 SUMMATY . ..ot 310
7.4 EXErciSest 311
Strategies for Results Checking in Simulation-
Based Verification 313
8.1 Types of Result Checking 313
8.1.1 On-the-Fly Checking versus End-of-Test
Case Checking 314

8.1.2 Pregenerated Test Cases versus On-the-Fly

9

10

Contents Xvii
Generated Test Casesvuneennenn.. 321
8.1.3 Applying the Checking Strategies to Calc2 322
82 Debug ... 334
82.1 DebugProcesscoi ... 336
8.2.2 How Different Types of Test Benches Affect
Debug e 349
8.3 Summary 352
8.4 EXEICISeS i it 353
Pervasive Function Verification 355
9.1 System Reset and Bring-Up 356
9.1.1 Reset Line Initialization 357
9.1.2 Scan Initialization 361
9.1.3 Testability and Built-In Self-Test 363
9.2 Error and Degraded Mode Handling 368
9.2.1 Verifying Error Detection 368
9.2.2 Verifying Self-Healing Hardware 372
9.3 Verifying Hardware Debug Assists 380
9.3.1 Verifying Scan Ring Dumps 381
9.4 Low Power Mode Verification 384
9.4.1 Power Savings Through Disabling Functional
Units o 385
9.4.2 Power Savings Through Cycle Time
Degradation 387
9.5 Summary 389
9.6 EXercises 389
Re-Use Strategies and System Simulation 391
10.1 Re-Use Strategies 392
10.1.1 Guidelines forRe-Use 395
10.1.2 Horizontal Re-Use 403
10.1.3 Vertical Re-Use, 404
10.1.4 Applying Re-Useto Calc2 405
10.1.5 AssertionRe-Use 410
10.2 System Simulation 412
10.2.1 System TestBench 412
10.2.2 Connectivity and Interaction of Units 414
10.2.3 Verification Challenges in a Re-Usable
IPWorld 418
10.3 Beyond General-Purpose Logic Simulation 420
10.3.1 Acceleration, 421
10.3.2 Emulation 427
10.3.3 Hardware/Software Co-verification 428

10.3.4 Co-simulation

Xviii

11

12

Contents

10,4 SUMMATYottt e e 434
10.5 EXEICISES . oo v it e 435

Part III: Formal Verification

Introduction to Formal Verification 439
11.1 Foundations, 440
11.1.1 Design Correctness and Specifications 441
11.1.2 Computational Complexity 443
11.1.3 The Myth of Linear Scaling of Simulation 445
11.1.4 Mathematical Proof Methods in Formal
Verification 446
11.2 Formal Boolean Equivalence Checking 448
11.2.1 The Role of Equivalence Checking in the
VLSI Design Flow 449
11.2.2 Main Elements of an Equivalence Checker
Tool . .. 450
11.2.3 Sequential and Combinational Boolean
Equivalence Checking 451
11.2.4 Core Algorithms for Combinational
Equivalence Checking 454
11.2.5 Blueprint of a Modern Equivalence
Checking Tool 465
11.3 Functional Formal Verification—Property Checking 467
11.3.1 Property Checking vs. Sequential
Equivalence Checking 468
11.3.2 The Myth of Complete Verification with FV 470
11.3.3 Properties for an Example Design 471
11.3.4 DUV Drivers for Formal Verification 476
11.3.5 State Space Traversal and Temporal Logic 479
11.3.6 Functional Formal Verification Tool Flow 483
11,4 Summary e 484
11.5 EXeICISeS . ..o v ittt e et e e 485
Using Formal Verification 487
12.1 Property Specification Using an HDL Library 488
12.1.1 The Open Verification Library (OVL) 489
12.1.2 Using OVL to Specify Properties 495
12.2 The Property Specification Language PSL 499
1221 OVerviewottt 500
12.2.2 The Boolean Layer of PSL 501
12.2.3 The Temporal Layer of PSL 504

12.2.4 The Verification Layer of PSL 508

13

14

Contents Xix
12.2.5 The Modeling Layer of PSL 511
12.2.6 Using PSL to Specify Properties 512
12.2.7 Advanced PSL Topics and Caveats 514
12.3 Property Checking Using Formal Verification 521
12.3.1 Property Re-Use between Simulation and FV 521
12.3.2 Model Compilation 522
12.3.3 Formal Functional Verification Algorithms 523
12.3.4 Solutions to Address the Problem of State
Space Explosion 527
12.3.,5 Semi-Formal Verification 530
12.3.6 EDA Vendors Supplying Formal and
Semi-Formal Verification Tools 532
124 SUmMmaryot e 532
12.5 EXEICISES . ..ot v vttt e e e 533
Part IV: Comprehensive Verification
Completing the Verification Cycle 539
13.1 Regressiont 540
13.1.1 Regression in the Verification Flow 540
13.1.2 Regression Quality 542
13.1.3 Regression Efficiency 543
13.2 Problem Tracking 548
13.3 Tape-Out Readinessiuiineunn... 552
13.3.1 Metricso 552
13.3.2 Completion Criteria 557
134 Escape Analysis i, 559
13.4.1 Individual Bug Analysis 561
1342 EscapeExamples.......................... 569
13.4.3 Escape Analysis Trends 572
135 Summary 575
13.6 EXercisest 577
Advanced Verification Techniques 579
14.1 Save Verification Cycles—Bootstrapping the Verification
Process 580
14.1.1 Separating POR and Mainline Verification 580
14.1.2 Bootstrapping the DUV into High-Potential
States 583
14.1.3 Manipulating the DUV Specification Provoking
States of Resource Conflict 585
14.2 High-Level Modeling—Concepts 586
14.2.1 Applications of the High-Level Model 587

XX

15

Contents

14.2.2 High-Level Modeling Styles 590
14.3 Coverage-Directed Generation 595
14.4 Summaryttt e 598
14.5 EXEICISES . o vt vt ittt e e et e e et e e e 599
Part V: Case Studies
Case Studies 603
15.1 The Line Delete Escapeuuiiiinnea.. 603
15.1.1 The Background 603
15.1.2 The Verification Environments 605
15.1.3 The Escape, 607
15.2 Branch History Table 608
15.2.1 The Background 608
15.2.2 BHT Purpose and Logic Design 609
15.2.3 BHT Verification 614
1524 Results 624
15.3 Network Processor 624
15.3.1 System Overview 625
15.3.2 Verification Effort 627
1533 Results ... 638
154 Summary 639
Glossary 641
References 657
Subject Index 663

PREFACE

Within the chip hardware design process, there are multiple verification
efforts. These efforts include functional verification, timing verification,
test verification, and equivalence checking. The most time consuming
of these is functional verification. Functional verification ensures that
the logic in a chip and system performs operations correctly under all
circumstances as stipulated by the specification of that design. Func-
tional verification engineers perform their work on a software model
of the hardware design prior to fabrication of the chip. They measure
their success based on the functionality of the first pass of fabricated
hardware.

There is no single formula for functional verification success. There is
no golden code to employ consistently on every design. Every hardware
design has unique subtleties. Like a sculptor staring at a block of wood
and visualizing its final form, the verification engineer requires experi-
ence and insight to craft a precise environment essential for exploring
and verifying that design.

While experience is important for a successful verification effort, so
is a core understanding of verification theory, strategy, and available
methods. Over the last 20 years, a strong verification team has become
the keystone to hardware development efforts. Yet hiring engineering (or
programming) college graduates into the verification field remains chal-
lenging. Through the early 1990s, the extent of most engineering gradu-
ates’ exposure to verification came from a few days of simple testbench
writing during their design class labs. In fact, most engineering gradu-
ates never hear about the verification career path until they come to work
on a major hardware design effort.

To combat the gap in base verification knowledge in our new engi-
neers, we developed a two-week class on the fundamentals of functional
verification. The course content included an introduction to verification,
and separate sections on simulation-based verification and formal veri-
fication. The class became a staple for the education of new verification
engineers as well as experienced engineers looking to sharpen their
skills.

It was not long before we took the base verification education package
to our contacts at various universities. Soon, our material had seeded

XXii

Preface

multiple undergraduate level classes on functional verification. We even
found our class lab exercises—Calc1, Calc2, and Calc3—worked well in
the university lab environment. We collaborated with the universities,
providing guest lecturers on specific verification topics, bringing a feel
for the industry challenges to the classrooms. As invigorating as it is to
provide classroom lectures, the most rewarding outcome from the uni-
versity partnerships is watching top engineering talent emerge with the
skills and desire to pursue a career in functional verification.

The same classroom syllabus provided us with the original outline
for Comprehensive Functional Verification: The Complete Industry Cycle.
Much of that foundation remains in this book, including the Calc exer-
cises. However, we have added considerably more depth, including exten-
sive discussions on the development of a verification plan, the anatomy of
a simulation environment, the inner workings of a simulation engine, the
underlying practical usage of formal verification, system-level and perva-
sive verification, and management of a verification project. To provide
an industry perspective on real issues and challenges, we augment verifi-
cation theory with practical examples and real-world case studies. The
result is a comprehensive text on functional verification.

THE VERIFICATION CYCLE

The unifying theme throughout Comprehensive Function Verification:
The Complete Industry Cycle is the concept of the verification cycle. Func-
tional verification is a structured, cyclical process, and this book follows
this concept. The process is a cycle because results and learning from
the current project feed the verification plans and implementation for the
next project. This book follows the cycle from planning to implementa-
tion, through regression and the feedback stage, called escape analysis.
Like the functional verification effort itself, we devote the most attention
to the implementation stage of the cycle.

STRUCTURE OF THE BOOK

This book is organized in five parts. Part I contains an overview of func-
tional verification, including background concepts, verification planning
and strategy, and basic exercises. It also introduces the concept of the
verification cycle as well as hierarchical verification, the practice of
breaking down large designs into verifiable components. Parts II and III
focus on the two main functional verification methods: simulation based
verification and formal verification. Part IV concentrates on latter stages
of the verification cycle, including regression and escape analysis, as well
as advanced verification techniques. The book concludes with Part V, a

Preface XXiii

collection of case studies, which highlight concepts from the verification
cycle and processes.

BASIC KNOWLEDGE NEEDED FOR THIS BOOK

This book’s discussions and exercises assume a basic understanding of
computer engineering concepts. We use the two standard hardware
design languages, Verilog and VHDL, throughout the book, so some
familiarity with these languages is helpful. The reader should also have
an understanding of logic design architecture and system structures.
Finally, a background in programming is important, as major parts of
the verification environment rely on programming constructs.

EXERCISES AND SUPPORTING MATERIALS

Comprehensive Functional Verification: The Complete Industry Cycle
should be used in conjunction with hands-on functional verification exer-
cises. To support this hands-on approach, we have collaborated with the
major Electronic Design Automation (EDA) companies to create exer-
cises based on RTL design implementations of a four-operation calcula-
tor: Calcl and Calc2. Both Calc implementations come complete with
functional errors for you to find using your verification environment. The
Calc2-based exercise extends the first exercise based on Calcl, as Calc2
is a substantially more complex design. This progression follows the stan-
dard industry practice of increasing complexity with each new genera-
tion of the design. Of course, along with complexity comes additional
verification challenges!

Links to the Calcl and Calc2 vendor implementations and a link to a
third, even more challenging Calc3 exercise, are available on-line. Access
to these and other related materials, including exercise solutions and
figures from the book, may be found at www.mkp.com/companions/
0127518037.

ACKNOWLEDGEMENTS

We would like to acknowledge many people who helped create this book.
First and foremost are the reviewers who gave us invaluable feedback,
namely, Hardy J. Pottinger (University of Missouri—Rolla), Nazanin
Mansouri (Syracuse University), Fadi A. Aloul (The American University
of Sharjah, UAE), Vijaykrishnan Narayanan (The Pennsylvania State
University) Baback Izadi (The State University of New York-New Paltz),
Yuval Caspi (Yuval Caspi Consultants), Steven P. Levitan (University of
Pittsburgh), Sean Smith (Denali Software, Inc.), and Scott Taylor (Intel).

We would also like to give additional special thanks to Professor
Nazanin Mansouri and Yuval Caspi for their contributions of exercise
material.

We created the Calc exercises featured in this book over a period of
years. Multiple users have suggested both design and specification
updates based on their experiences. However, in order to meet teaching
deadlines for Calc3, Lance Hehenberger provided invaluable assistance
in creating portions of the original Calc3 designs.

Finally, we want to thank our partners at Mentor Graphics, Synopsys,
and Verisity Design for their work on creating implementations of the
Calcl and Calc2 examples. All were extremely supportive of this project
from the start, and we are deeply grateful for their generous assistance.

dPARTY

______INTRODUCTION TO VERIFICATION |

Functional verification plays a key role in meeting an aggressive chip design schedule
and achieving cost and quality goals. Because functional verification is a critical part
of all complex chip designs, to achieve these lofty targets the functional verification
team must have a deep understanding of the chip design and a robust process. This
process is the Verification Cycle. The process is cyclic, providing feedback from past
projects, allowing the verification team to continually improve their process and
environment.

Part One begins by describing the verification challenges and introducing the
Verification Cycle. Chapters 2 and 3 describe basic verification strategies central to all
techniques and the simulation-based components commonly used throughout the
Verification Cycle. Chapter 4 details the verification plan—the first part of a project

cycle—containing the strategy, methods, and requirements for the project.

CHAPTER 1

VERIFICATION IN THE CHIP
DESIGN PROCESS

Functional verification has become a major challenge in the chip and
system design arena. As engineers place more and more function in
increasingly dense chips, the discipline required for successful chip and
system verification has advanced. As a result, the verification engineer,
little known 10 years ago, has become a treasured member of the chip
design team.

This chapter introduces verification tasks, illustrated with basic exam-
ples; their challenges; and the defined process behind functional verifi-
cation. These challenges require a controlled verification process, with
continuous feedback for improvements. This chapter also introduces the
two fundamental methods, simulation and formal verification, which the
book describes in detail as the foundations of functional verification.

1.1

INTRODUCTION TO FUNCTIONAL VERIFICATION

Silicon chip technology powers many of today’s innovations and newest
products. Rapid technology advancement fuels ever-increasing chip com-
plexity, which in turn enables the latest round of amazing products.
These chips touch many aspects of our everyday life, from the pocket-
sized combination cell phone, pager, and digital camera to the high-end
server that searches an online bookseller’s database, verifies credit
card funds, and sends the order to the warehouse for immediate deliv-
ery. Expectations for these chips grow at an equal rate, despite the addi-
tional complexity. For example, consumers do not expect the chips that
monitor safety processes in our cars to fail during the normal life of the
vehicle. Nor is it acceptable to be denied access to our on-line brokerage
accounts because the server is down. Thus, it has become a major engi-
neering feat to design these silicon chips correctly.

An enormous amount of engineering goes into each of these chips,
whether it is a microprocessor, memory device, or entire system on a
chip (SoC). All types of chips have a set of challenges that the engineers
must solve for the final product to be successful in the marketplace.

6 Chapter 1 = Verification in the Chip Design Process

Customer
requirements

General
specification and
architecture

High level
chip design
Y
- - Y
HDL implementation -
b . »| Functional
(logic design) p verification
. at RTL level Fixes to
i,
Physical circuit design ,b’?g HDL
via synthesis or
g

custom layout
S\F}\

Design sent
to fab

Fabricated chip

= FIGURE 1.1

The chip design process. All silicon design starts with the customer’s requirements, which drive the
general specification and architecture. The chip components then take shapae during the high-level
design stage, followed by the register transfer level (RTL) implementation in a hardware description
language (HDL; usually Verilog or VHDL). Circuit design and timing analysis are based on the HDL,
whereas functional verification explores the state space of the logic design to compare the implemen-
tation against the specification and design intent.

Figure 1.1 shows a chip’s design flow, which starts with the customer’s
requirements. Those requirements include (but are not limited to) func-
tion, chip size, chip power consumption, and processing speed. Require-
ments are compiled and prioritized during the concept and high-level
design phase, in which designers architect the chip’s main internal com-
ponents and goals. As the chip design process progresses, engineers face
challenges to balance goals that often conflict: higher chip performance
may require faster cycle times, but that will raise power consumption;
faster cycle times may require adding more stages in the logic, but that
increases chip complexity and area.

Throughout the chip design process, design automation (DA) tools
accurately predict chip area, timing, and power aid the engineers. After

1.1 Introduction to Functional Verification 7

an engineer creates logic, written in a hardware description language
(HDL), DA tools can synthesize that logic into appropriate gates that
correspond to the original design. Verilog and VHDL are the two most
common HDLs. But two questions remain: (1) what if the HDL did not
express the correct function in the first place, and (2) what if the designer
missed a critical corner condition? Detecting incorrect function has
become one of the trickiest challenges in the entire chip design process.
This is the challenge of functional verification.

Functional verification ensures that the design performs the tasks as
intended by the overall system architecture. It differs from circuit level
validation in multiple ways. First, verification engineers work predomi-
nantly on the register transfer level (RTL) of the design rather than on the
gate level. RTL is a more abstract way to specify the logic design than
are the low-level ANDs and ORs of the gate level. RTL languages (HDLs)
allow the designer to specify the behavior by using higher-level constructs
such as Boolean equations and IF-THEN-ELSE structures. Second,
although the main challenge for the circuit designers is to fit the gates
into the available chip area and ensure that timing goals are met, it is
the verification engineer’s role to ensure that the design is functionally
correct in the first place.

To illustrate the role of functional verification, consider the design of
a simple traffic light controller. After a few minor accidents at the corner
of Elm and Main streets in Eagleton, the town council commissions the
installation of a traffic light. A careful study of the traffic survey leads the
council to specify that the light should stay green for 1 minute in each
direction when the intersection is busy. Workers are to install sensors to
detect traffic on both streets.

The town council grants the contract for design and installation
of the light to a local company, Eagleton Signal Controllers and
Parking Engineering Solutions (ESCAPES). The ESCAPES SoC team
quickly creates the algorithm for the traffic light controller, as shown in
Figure 1.2.

The next step in the design process is to write the HDL. The ESCAPES
team uses VHDL to code the algorithm as defined (Figure 1.3).

The algorithm and VHDL match, but they contain a flaw. Cars that
approach the intersection on Main Street trigger the “Main Street
Traffic?” sensor, and cars that approach on Elm Street trigger the “Elm
Street Traffic?” sensor. The design team maps an exact translation of this
algorithm to a circuit layout. However, the Eagleton council intended the
traffic light to have a concept of fairness for the cars approaching the
intersection from any direction; that is, the traffic light must allow all
cars to proceed through the intersection within a realistic timeframe. In
this flawed design, continued traffic on Main Street would indefinitely
lock out the Elm Street traffic, leading, of course, to a nightmare on Elm
Street. It is the job of the verification engineer to uncover these design
flaws, ensuring that the final product acts as intended.

8 Chapter 1 = Verification in the Chip Design Process
\i
Wait 60
seconds
Main Street
traffic?
Elm Street ;
traffic? Main Street
turns green
Elm Street
turns green
= FIGURE 1.2

Algorithm for a traffic controller as written by the Eagleton Signal Controllers and Parking Engineering
Solutions (ESCAPES) system-on-a-chip (SoC) team.

Despite the flawed HDL, the design team can translate the VHDL to a
circuit design. Figure 1.4 shows the circuit design for the traffic light and
accurately represents the original VHDL. The circuit design meets the
timing, power, and chip area targets; however, without appropriate
verification, the algorithm flaw would go undetected until testing at
the intersection.

1.2

THE VERIFICATION CHALLENGE

Chip designs can easily consist of hundreds of thousands of lines of HDL.
A verification engineer’s job is to seek out problems in the HDL imple-
mentation, flagging flaws or bugs when the HDL does not act according
to specification. A verification engineer exposes these bugs by running
complex simulations on the design. The verification engineer faces two
major challenges: dealing with enormous state space size and detecting
incorrect behavior.

1.2 The Verification Challenge 9

library ieee;
use ieee.std_logic_1164.all;

entity traffic is

port(

clk :in std_ulogic; --Clock

reset :in std_ulogic; --Async Reset

timer_pulse :in std_ulogic; --The timer pulse, 'l' indicates timer expiration
Main_Street :in std_ulogic; --Indicates when traffic is present on Main St.
Elm_Street :in std_ulogic; --Indicates when traffic is present on Elm St.

Light_Direction :out std_ulogic_vector(l downto 0) --"01" Indicates that Main St. should be green
--"10" Indicates that Elm St. should be green

)3

end traffic;

architecture rtl of traffic is
signal current_state_din, current_state_dout : std_ulogic_vector(l downto 0);
begin --rti

--purpose: Determines when the 1light should change
--type : combinational
--inputs : timer_pulse, Main_Street, EIm_Street, current_state_dout
--outputs: current_state_din
dataflow_proc: process(timer_pulse, Main_Street, EIm_Street, current_state_dout)
begin --process change_light
current_state_din <= current_state_dout;
--When the timer expires, evaluate the traffic situation
if timer_pulse = '1' then
if Main_Street = '1' then
current_state_din <= "01";
elsif EIm_Street = ‘1’ then
current_state_din <= "10";
end if;
end if;
end process dataflow_proc;

Light_Direction <= current_state_dout;

--purpose: creates the registers for current state
--type :sequential

--inputs : clk, reset, current_state_din
--outputs: current_state_dout

reg_proc: process(clk, reset)

begin --process register

if reset = '0' then --asynchronous reset (active low)
current_state_dout <= "01";

elsif clk'event and clk = '1' then -- rising clock edge
current_state_dout <= current_state_din;

end if;

end process reg_proc;
end rtl;
= FIGURE 1.3
VHDL for the traffic light algorithm.

1.2.1 The Challenge of State Space Explosion

The scale of the state space is the first verification challenge. Typically,
HDL contains thousands of latches, large arrays (RAM), and combina-
torial logic, all of which control the behavior of the chip. The chip inputs
manipulate the internal logic, causing it to act on the applied stimulus.

10

Main_Street
—_——

timer_pulse
Elm_Street

Chapter 1 = Verification in the Chip Design Process

reg_
proc
latch

Light_Direction(0)

{:>N:Light7Direct10n(l)

= FIGURE 1.4

Circuit design of the flawed traffic signal showing the logic gates translated from the VHDL in Figure

1.3.

These inputs transform the current state of the chip, defined by the stored
values in the latches and arrays, into the next and future states of the
chip. At a given point in time, a chip can be in any one of an enormous
number of possible current states.! Furthermore, the next state of the
chip, determined by the current state and the current inputs, can be any
of the possible states. To verify exhaustively that a chip is functionally
correct, the verification engineer would have the daunting task of check-
ing that each possible current state and each possible input combination
yields the correct next state.

In the case of the traffic light mentioned above, there are just 2 bits of
internal latches, yielding 4 possible current states, and 5 input pins, yield-
ing 32 possible input combinations. Exhaustive verification of the entire
state space of this simple example would yield just 128 combinations (32
input scenarios X 4 current states).

However, even simple computer designs may have huge state space
problems that make the task of checking the combinations of current
state and next state impossible. Consider the video portion of a DVD
player with six possible inputs: “nothing pressed” (remain in current
state), “play,” “pause,” “stop,” “fast forward,” and “reverse.” Internally, the
DVD player uses five states: “stopped,” “playing at normal speed,”
“paused,” “forward at 2x speed,”, and “reverse at 2x speed.” Figure 1.5
shows the effect of the inputs on these five states.

Pressing a button on the DVD remote (corresponding to the inputs)
causes the video to superimpose the name of the button in the top left
corner of the video output. Therefore, one other video state must be con-
sidered: the current state of the screen (video output). The screen is 1024
pixels wide by 768 pixels high and has “true color” (32 bits per pixel), for
a total of (232)1924%76% possible discrete states. To calculate the combina-

! The number of possible states is 2", where n is the total number of bits of latches and

arrays.

1.2 The Verification Challenge 1

= FIGURE 1.5

The DVD state machine transitions. The ellipses represent the five states; the arrows show the effect of
pressing particular buttons on the remote control.

tions of current-screen states to next-screen states, square the number of
screen states: [(232)1924*79]2 However, because each pixel has no effect
on any other pixel, it is only necessary to verify that each pixel can display
all 2% possible colors, limiting the state space and keeping calculations
in the realm of workstation computability.

Therefore, the bounded number of possible current states of the DVD
video design is as follows:

number of pixels x number of possible pixel colors x number
of internal state machines, or
(1024 x 768) x 2** x 5 = 16,888,498,602,639,360

However, to verify exhaustively that the chip is correct, all transitions
from current state to next state must be considered. The number of
possible next states of the DVD video design is based on

number of pixels x number of possible pixel colors x number
of possible inputs, or
(1024 x 768) x 2% x 6 = 20,266,198,323,167,232

12

Chapter 1 = Verification in the Chip Design Process

Therefore, to exhaustively verify the chip, the correctness of all tran-
sitions from all possible current states to all possible next states must be
checked, or

16,888,498,602,639,360 x 20,266,198,323,167,232 = 3.4 x 10*

Even with a simulation engine that could verify 1,000,000
transitions every second, this task would still take more than
10,853,172,947,159,498,300 years. Want to hang around?

In this same example, the DVD video chip illustrates the extreme of
state space explosion. The introduction of array space and a number of
internal states produces too many possible combinations to verify
exhaustively.

To combat state space explosion, verification engineers break the
problem down into smaller pieces. A typical chip may have 100,000
latches, imbedded arrays, and hundreds of input pins. Rather than verify
the entire chip at once, the verification team will carve out sub-
components of the design and verify these pieces separately. Once the
smaller, more manageable pieces are verified, the team stitches the
chip subcomponents back together and ensures that they work.

Furthermore, many of the possible states of the chip and many of the
possible input combinations are defined as illegal based on design spec-
ifications. An illegal state is a state that the design should never enter.
The traffic light example mentioned above has just 64 legal combinations,
as two of the internal states are unused and are therefore invalid. Illegal
states cut down the size of the current states that must be evaluated by
the verification engineer.”

1.2.2 The Challenge of Detecting Incorrect Behavior

The second verification challenge is detecting when the design violates
the expected behavior or specification. With all of the possible transitions
from one state to the next, the verification engineer must be able to iden-
tify whether or not the design acted correctly based on the current state
and input.

Rather than focusing on each of the possible states of the hardware,
verification engineers validate the logic at a higher level of abstraction:
inputs are grouped into valid command and data sets, and the verifica-
tion engineer concentrates on the behavior of the design based on the
functional input stimulus.

% Verification engineers cannot ignore illegal states in certain chip designs, specifically

those chips that must be tolerant of errors. Illegal states can occur because of many factors,
including erroneous input, alpha particles flipping a latch, or circuit failures. The verifi-
cation task may require ensuring that the hardware can recover from these unexpected
conditions.

TABLE 1.1 = Examples of functional stimulus and
stimulus — method of validating results

1.2 The Verification Challenge 13

a possible verification method: Type of logic—

Type of design

Microprocessor

|0 device

Memory controller in
a multiprocessor
server

Digital video converter

Functional-based
stimulus

Instruction stream
loaded into memory

Header data
followed by
destination
address, data,
and checkbits

Requests for data
and store
commands from
multiple processors
to a large array
space

Streaming-encoded
video

Example of result
validation

Do the resulting
registers have the
correct values after
each instruction?

Does the proper
data move to the
correct outbound
port?

Is the correct data
retrieved and
stored?

Does the video appear
correctly on a
monitor?

Special challenges

Have all possible
combinations of
instruction
sequences been
verified?

Can the 10 device
handle hundreds
of possible traffic
generation
sources?

Is systemwide
coherency
maintained?

How do we know
if a pixel is
wrong?

In the traffic signal example, a verification engineer will expect certain
behavior from the design. Stimulus is applied to the design by manipu-
lation of the five input signals, and the output, Light_direction, is
monitored. When Light_direction is “01” (Main Street traffic is flowing)
and Elm Street traffic is detected, the verification engineer expects that
the light will change direction when the timer_pulse rises. This may
or may not flag the flaw in the design, depending on whether or not
Main Street traffic is still detected. Furthermore, the verification engi-
neer can look inside the design and place checks on internal components.
In our example, the verification engineer should assert that the
current_state_dout latch must never enter a state of “00” or “11.”

Table 1.1 describes four real-life examples of functional verification,
as well as the particular nuances and special challenges associated with
verifying each logic type. Each example requires a method for activating
the design (stimulus) and a method for checking that the design acted
correctly (result validation). The first example, a microprocessor, may
have hundreds of instructions that can operate on the values in the
general-purpose registers (GPRs). When each instruction completes, the
verification engineer can check that the appropriate target register con-
tains the correct value. It is equally important to check that the logic did
not update another register erroneously.

14

Chapter 1 = Verification in the Chip Design Process

In simplest terms, then, the verification challenge comes down to
two fundamentals:

1. Drive the state transitions and input scenarios

2. Flag any incorrect behavior exhibited by the design

Verification engineers attack the challenge by using two fundamental
methods: (1) simulation-based verification and (2) formal verification,
or verifying the design adheres to protocols by using formal proof
engines.

In simulation-based verification, the verification engineer applies stim-
ulus to a software model of the design. The sim model runs in conjunc-
tion with a simulation engine, which accurately reflects the behavior of
the design. As inputs are applied, the simulation engine evaluates the
design’s reaction to the specific inputs on the current state, and updates
the internal state of the design accordingly. The simulation engine is
often run on a desk-side workstation (a general purpose computer), and
the verification engineer uses the user interface to query the behavior of
the model to check for results and to flag incorrect behavior.

Formal verification, a newer technique, is a great complement to sim-
ulation. Rather than verifying possible input sequences and internal-state
machine values individually or in sequence, formal verification proves
that a protocol, assertion, or design rule holds true for all possible cases
in the design. The major drawback of formal verification is that it can
only verify a limited size design. Because all possible values in a design
are checked, formal verification engines can consume enormous
amounts of computer resources, even on small designs. For this reason,
formal verification most often is applied to portions of the entire design
rather than the whole so the engine can digest the design and return
results in a reasonable timeframe.

This book covers the strategies used to verify complex hardware
designs. It describes techniques to apply stimuli and identify errors while
running simulation, as well as methods to perform formal verification.
The verification engineer must be a sleuth, keeping an open mind about
the possible problems that may occur in the design. A top-notch verifi-
cation engineer is invaluable to the design team, combining experience
on how to uncover design flaws with the ability to develop tests and
checks that guarantee the success of the fabricated chip.

1.3

MISSION AND GOALS OF VERIFICATION

Design teams manage the process of developing computer hardware by
balancing the triple constraints:

1.3 Mission and Goals of Verification 15

= Schedule: Computer product success depends heavily on hitting
the marketplace at the right time. Delays in getting products to
market can be deadly for a company, as, more than in any other
industry, a disproportionate amount of revenue goes to the product
that gets to market first.

= Cost: At the same time, a company must endeavor to maximize
the profit created by a digital hardware product. A key profit lever
is to keep the manufacturing and development expense for a
product at a minimum.

An expanded look at the verification cycle, as pictured in Figure
1.6, shows that after silicon fabrication, engineers perform testing
on the entire system using fabricated hardware running end-user
applications. Frequently, bugs missed by verification are discovered
by engineers during this systems testing, causing design updates
and re-fabrication of the hardware. These changes costs money and
time, as fabrication facilities charge additional money for re-doing
a chip, and some chips, depending on the technology used, may
take up to 2 months to process. After a completed systems test, the
company manufactures the product and ships it to customers.
Customers provide the company with feedback about the product,
which, in turn, feeds the requirements for follow-up products.
Examples of customer feedback include requests for new features
or higher quality.

= Quality: Customers expect that delivered products will meet qual-
ity standards. Component failures invoke warranty costs, which
affect the company’s bottom-line. Furthermore, if the marketplace
perceives that a product is of poor quality, it can have a devastat-
ing effect on the company.

Finding the correct balance of schedule, cost, and quality will depend
on the product. However, the balancing act is tricky, as optimizing for
two of the constraints will often hurt the third. For example, maximiz-
ing quality while minimizing schedule often inflates product cost.

Figure 1.7 shows how the costs of undetected bugs grow over time. If
a bug is uncovered early during verification, it costs little to fix: the
designer reworks the HDL and the verification team shows that the
update fixed the original problem. A bug found in a systems test,
however, may cost hundreds of thousands of dollars: hardware must
be refabricated and there is additional time-to-market. Finally, and
most costly, a customer discovering a bug not only invokes warranty
replacement or upgrades but may tarnish the image of the company or
brand of products—a problem from which the company may never
recover.

16 Chapter 1 = Verification in the Chip Design Process

Customer

A

General
specification and
architecture

Customer
requirements

\/

High level -
chip design Manufacturing

A

y Fixes to

HDL implementation HDL Functional
(logic design)
at RTL level

Ti/b,
Physical circuit design 2
via synthesis or 2
custom layout
s\,‘—'@
B : 7 %
i 0,
: & e e System
i - testin
Design sent g

to fab

Fabricated chip

= FIGURE 1.6

An expanded look at the design process includes the systems testing on the real hardware, manufac-
turing, and delivery to the customer. A well-verified chip avoids the re-fabrication step and proceeds
right to manufacturing. Avoiding the re-fabrication loop saves both time and product cost.

Verification is the single biggest lever that affects all three of the triple
constraints. A chip can be fabricated sooner rather than later if the ver-
ification team is able to remove errors quickly and efficiently. Further-
more, costs of re-fabricating a chip multiple times (“re-spins”) can drive
development expenses to an unacceptable level and negatively affect
the product schedule. A solid verification effort reduces the number of
re-spins and removes latent problems, which, if not discovered by veri-
fication and a systems test, can show up in customer environments and
cause quality problems.

Because verification has such a strong effect on the triple constraints,
it is prudent to track verification productivity. The design team measures
verification productivity by two factors: schedule time and quality of bugs
found.

1.3 Mission and Goals of Verification 17

Cost

Verification Systems test Customer
Time
= FIGURE 1.7

The cost of undetected problems grows over time. There is little cost in finding and fixing a problem in
verification, but there is a huge cost if the customer finds the problem.

Productivity improvements drive
early problem discovery

S U S
[2]
g
g Systems test
3 Verification
1S
=]
=
Time
= FIGURE 1.8

Increasing verification productivity reduces schedule and costs. The figure shows three possible “bug
curves.” The longest one stretches into the systems test, where engineers find the last bugs on the
hardware. Improvements in verification, depicted by the two other curves, will drive the bug discovery
earlier, reducing schedule and costs.

Project teams track productivity with respect to schedule time by mea-
suring the steepness of the “bug curve,” as shown in Figure 1.8. An effi-
cient verification team with a robust process will remove bugs at a faster
pace than will a less effective team and process. Therefore, it is a good
practice to maintain a history of bug curve rates from each project to
track improvements in verification productivity.

18

Chapter 1 = Verification in the Chip Design Process

The second measure of verification productivity, quality of bugs found,
is a more qualitative evaluation than is measuring bug curve rates. The
verification team measures the quality of a bug by analyzing the scenario
and test case that uncovered the design flaw: the more difficult, esoteric,
or complex the scenario, the higher the quality of bug. A productive ver-
ification team should find any “easy” or low-quality bugs early in the ver-
ification schedule. Throughout the process, the average complexity of the
design flaws that the verification team uncovers should grow. Simple
bugs found late in the verification cycle signal that the verification envi-
ronment and test plans need to be analyzed.

1.3.1 Verification Engineer “Musts”

A strong verification team is an invaluable asset to a company that devel-
ops hardware. The mission of the verification team is to remove all of
the functional design problems as quickly as possible. To do this, verifi-
cation engineers must gain specific skills. Successful verification engi-
neers must understand the design, must be able to work closely and
cordially with designers, must understand the strengths and weaknesses
of the variety of verification tools at their disposal, and must be able to
use these tools efficiently to uncover the bugs in the design.

Verification requires detailed knowledge of the design that is being
verified (the design under verification, or DUV). Understanding of the
design comes at two levels: the specification level and the implementa-
tion level.

The specification dictates the overall function of the design. It includes
the architecture, the inputs and outputs, and the performance require-
ments. The architecture is the main specification of the device: for a
microprocessor, this is the instruction set and definitions; for an I/O
device, this is the protocols. The architecture is well documented and
often globally published. The inputs and outputs of the DUV define the
chip or system pins and include the required timings and protocols. The
performance requirements of the DUV include the desired throughput of
the design, processing speed, and bandwidth, as well as associative cache
size and cache.

The implementation of the design deals with the internal constructs
used to perform the specification. This is known as the microarchitecture
of the design. Implementation components include the following:

= Queues and buffers that hold data and commands
= Internal state machines
= Pipelines

= Data and control flows

1.3 Mission and Goals of Verification 19

Designers or system-level architects (in the company or in industry)
write the specifications of the design, documents that are available for
the verification engineer to study and are the arbiter when design ques-
tions arise. Less formal documentation exists for implementation details,
and this information must come from the designers. If necessary, verifi-
cation engineers must extract the implementation details by inter-
viewing the designers. These implementation details are needed so
appropriate verification tests that stress the many structures within the
design can be created.

Throughout a project, the verification engineer must have a strong
relationship with the designer team. This does take some finesse, as
it is the verification engineer’s role to find a designer’s mistakes and
oversights.

Consider the words used when reporting a bug back to the designer.
A verification engineer might state, “I found another bug in your design,
and I need a fix right away.” Depending on the verification engineer’s
tone, this could be an insult to the designer. It is also important not to
jump to conclusions about the design. Very often, “alleged” design bugs
are not a design deficiency but are problems in the test-case stimuli or
checking components. A more tactful approach would be to say, “I think
I've uncovered an interesting condition in the design. Can you take a look
at this?”

With the wealth of techniques available for verification, it is important
for a verification engineer to understand the strengths and weaknesses
of each method. Some methods may be very effective on small portions
of the design but not on large chips (e.g., formal verification). Other
methods might require long lead times to create the code necessary for
the environment. A verification engineer must also understand the tools
that assist in gauging the state space covered by the testing. Each of these
tools must be evaluated for

= Effectiveness of approach for this design implementation
= Effect of the approach on simulation throughput

= Amount of time required to create the verification environment

Finally, when a verification approach is selected, the verification engineer
must be able to create the verification environment, ensuring that
the required functional test scenarios occur and that the checking is
complete. This requires proficiency in multiple verification techniques,
all of which rely on the verification engineer’s knack for sniffing out bugs
in the design.

20

Chapter 1 = Verification in the Chip Design Process

1.4

COST OF VERIFICATION

Functional verification is essential to the hardware design process. The
benefits of the verification effort appear throughout the design process,
but the team measures its success by results in system testing. So how
does the development team gauge just how many resources to put into
verification? Too few resources and the hardware will need multiple
passes through the fabrication process, which costs orders of magnitude
more dollars in time-to-market and development expenses than would
allocation of enough verification resources. At the same time, a design
team does not want to over-invest in any area, including verification, as
overinvestment would indicate costly redundancy. Therefore, the devel-
opment team must strike the right balance.

Verification resource costs fall into three areas: engineering costs, DA
tools, and time. A successful verification effort requires appropriate
investment in all three areas.

1.4.1 Engineering Costs and the Need for an Independent
Verification Team

Verification engineering cost is a measure of the number of people per-
forming verification. Some design teams employ separate verification
engineers, whereas other teams use their logic designers to perform ver-
ification after writing their HDL. However, there are clear advantages to
using an independent verification team and not having the design team
play a dual role. Some of these advantages are listed here.

Verification is a separate vocation that requires different skills than
does logic design. The ability to create the scenarios and checkers needed
to find bugs is detective work unlike the skills needed to create HDL that
meets logical and physical requirements. The multiple disciplines of
verification are a full-time job to master—and once mastered, the verifi-
cation engineer’s worth to the design team remains in the verification
realm.

A second reason for an independent verification team is these verifi-
cation engineers will not be biased by the thought process that goes
into the design. There is a certain catch-22 in verifying one’s own logic
design. If a designer overlooked a case while creating the logic, the same
designer should not be expected to write a test scenario for that missed
case.

Finally, when creating logic, a designer makes assumptions about the
design. It is the verification engineer’s job to judge separately the verifi-
cation environment requirements without the bias of the designer’s
assumptions. Interface protocol specifications should come from an inde-
pendent designer or from master documentation, rather than from the
designer whose logic is under test.

1.4 Cost of Verification 21

However, for many reasons, the design team is crucial to the verifica-
tion effort. First, designers are the initial line of defense against bugs.
Designers should perform a suite of verification tests that ensures a level
of quality before delivering HDL to the verification team. No designer
wants to “throw HDL over the wall” to the verification team, only to have
it “thrown back” because of typographical errors, simple bugs, or an HDL
compile failure.

Designers also have keen insight into tricky areas of the logic. As the
designer writes the HDL, there are complex parts that cause him or her
to pause and think through multiple scenarios and different implemen-
tation choices. The designer should highlight these areas of the design
to the verification team as potential sources of bugs. Methods of identi-
fying these areas include assertions statements, e-mails to the verifica-
tion team, and suggestions for functional coverage metrics.

A final key element for designers to assist in the verification effort is
through accurate and timely documentation. Documentation is an essen-
tial part of the design job. Important documents for the verification engi-
neer include interface specifications and details on the internals of
the design such as queue depth, pipeline length, array sizes, and state
machine transitions. This information guides the verification team in cre-
ating complete test plans and executing their work.

Design management teams often calculate the engineering cost of ver-
ification by the ratio of logic designers to verification engineers. This
ratio can vary in industry from about 1:1 to 1:4 (four verification engi-
neers for every designer). Accounting for the difference in these ratios is
tricky. Investment in sophisticated DA tools can differ across design
teams; where there is less investment, more verification engineers are
needed. In addition, active participation in verification by the design
team as “the first line of defense” can drive down the number of required
verification engineers. Other factors such as business pressure will
alter the equation. For example, a small company in a highly competitive
market such as network processors must get their new products correct
on the first fabrication pass, and hit the market with a new product every
6 months. A failure in verification can put this small company out of
business. For this company, it is better to hire additional verification
engineers than risk missing a bug.

1.4.2 DA Tools

This book will cover multiple methodologies for functional verification.
Behind each of these methods is DA software that assists the verification
engineer in finding bugs.

The basic building blocks of DA tools for verification are simulation
engines and formal verification engines. Simulation engines allow the
verification engineer to drive stimulus into a software model of the HDL.
The engine, which compiles the HDL, will “simulate” the effects of

22

Chapter 1 = Verification in the Chip Design Process

stimulus on the HDL over time. The simulation engine calculates the
values of internal latches, wires, and arrays and presents these values to
the user. Formal verification engines are conceptually different from sim-
ulation engines. Whereas simulation engines allow the user to create dis-
crete scenarios and check multiple properties concurrently within the
logic, formal verification engines check a single property against all pos-
sible input scenarios. A formal verification engine uses mathematical
proofs to verify the single property against all inputs. The two methods
are complimentary, and verification engineers must be trained to use
each.
Other DA tools build on the two basic engines. Software includes

= “Coverage” tools that assist in evaluating the effectiveness of the
scenarios driven into the logic during simulation

= Trace viewers that show graphical (waveform) representations of
the scenarios and the values of the latches, arrays, and wires in the
HDL

= High-level verification languages that assist the verification engi-
neer in writing complex simulation environments

= Test case generation software that can create multiple simulation
test cases based on abstract templates

= Simulation farm control software that allows simulation jobs to be
run across multiple workstations simultaneously and collects the
test scenario results

= Assertion-based tools that assist in debug, allowing a bug to be
flagged at the moment it occurs and enabling the engineer to know
exactly where the HDL failed

Electronic DA (EDA) vendors supply these tools to the industry. DA
software costs generally are based on licensing fees. A verification team
must procure enough software licenses to run the peak number of veri-
fication jobs. If, for example, a company allocates 100 workstations for
running simulation cycles, 100 simulation engine licenses are required;
otherwise, workstations will be idle.

1.4.3 Time

The amount of time spent on verification is key in the overall cost equa-
tion. Design teams must balance engineering costs and DA software
licensing with schedule time. If a design team has an aggressive sched-
ule (based on fabrication passes, experience, and industry benchmarks),
then more verification skills and software will be required to meet the
goals. If the verification team is not allocated enough resources for the

1.5 Areas of Verification Beyond the Scope of this Book 23

allotted schedule, either the schedule will slip or the results seen in the
fabricated hardware will be poor. Time IS money in the equation.

All of these factors lead to a key management requirement for suc-
cessful verification: commitment. Engineering management must invest
in the appropriate verification skills (including experienced leaders) and
software tools to meet goals. The complexity of the hardware designs
requires nurturing of the verification teams as well as the design team.
Long-term careers in verification must be encouraged. The best hardware
teams have separate and clear career paths for verification engineers to
reach high technical ranks within the company.

1.5

AREAS OF VERIFICATION BEYOND THE SCOPE OF THIS BOOK

There are multiple verification disciplines within hardware design,
including functional verification, timing verification, and test verifica-
tion. This book focuses on functional verification and does not cover the
other areas.

However, test verification is worth a comparison to functional verifi-
cation, as the two are sometimes grouped together despite different
requirements and personnel skills. Test verification focuses on the ability
to detect manufacturing defects quickly as chips come off the manufac-
turing line. Current practices in test verification include driving random
patterns within the chip and collecting the output patterns. Test engi-
neers choose patterns to stimulate a maximum number of circuits inside
of the chip. Test tools assist in predicting the output patterns based on
the inputs. These patterns are run on the manufactured chips, allowing
defective ones to be discarded.

Also included in the field of test verification is built-in self test (BIST).
Test engineers create BIST engines for both arrays (ABIST) and logic
(LBIST). The goals behind both types of BIST are the same. After man-
ufacturing, process engineers activate the BIST engines inside the chip.
The engine drives patterns through the logic or arrays, and compares the
resulting patterns against the predicted pattern. If the patterns do not
match, the manufacturing process may need to be tuned in order for the
chips to be fabricated correctly.

Even though test verification and functional verification are often
grouped together, the two disciplines have little in common. A chip that
successfully runs through test verification may still add 1 + 1 and get
three if the chip had poor functional verification. Test verification only
confirms (to a high probability) that the manufactured chip is equivalent
to the circuit design specified to the manufacturing process. It makes no
statement about the logical functionality of the chip itself.

Furthermore, the theory behind functional verification and test verifi-
cation are different. Test verification aims to create patterns that flag bad

24

Chapter 1 = Verification in the Chip Design Process

circuits; therefore, patterns that exercise a broad number of circuits in
a short interval are optimal. However, functional verification bugs
are much more insidious, in that the circuits are defect-free but the
combination of specific circuits—which together define a function in
the design—may give a wrong result in specific scenarios across a long
interval.

On a different front, this book will briefly detail some specific DA tools
but will not compare strengths and weaknesses of competing DA com-
panies’ offerings. The book demonstrates some of these tools as possible
choices for specific verification challenges.

1.6

THE VERIFICATION CYCLE: A STRUCTURED PROCESS

Structure is necessary in any complex field. In verification, structure
comes from a well-defined process. The verification process identifies the
required steps toward developing a bug-free chip release. Because the
verification team enhances their environment based on previous experi-
ences, the process is called the verification cycle.

Generally, verification teams stay together across multiple products.
The verification cycle shadows the product cycle, allowing verification
engineers to incorporate enhancements into the methodology continu-
ously. Verification engineers gain experience through multiple passes of
this cycle.

Figure 1.9 shows the stages of the verification cycle. The cycle
proceeds in a clockwise direction, starting from the functional specifica-
tion, a key delivery to both the design and verification teams. As the
team starts development of the verification environment, they reach
the first checkpoint. After completing the verification plan based on the
specifications, the entire engineering team reviews the plan to look for
enhancements.

Two stages in the process provide feedback to previous stages. These
stages are the debug and regression stages in which the verification team
detects problems either in the HDL or in their environment code. As
regression winds down, the team prepares the product for fabrica-
tion. This is the second checkpoint in the cycle, when the design and
verification teams review all of the verification work against the tape-out
criteria.

The cycle proceeds through the manufacturing and systems test. Once
the team receives fabricated hardware, they evaluate the quality of their
verification effort through escape analysis, which provides feedback into
the process to plug holes in the verification environment. The final check-
point in the cycle, lessons learned, uses escape analysis and the entire
verification cycle experience to compile a list of items to improve on as
they start the cycle again.

1.6 The Verification Cycle: A Structured Process 25

Functional
Specification

Lessons
Learned }

Tape Out
Readiness

Designer
Implements
Functional
Specification

= FIGURE 1.9

Each spin of the verification cycle starts with the functional specification. This process gives a struc-
ture to the verification tasks and provides feedback for continuous improvements. Tasks around the
inner circle are the stages of the verification cycle. Strategic checkpoints assure process compliance.

1.6.1 Functional Specification

The functional specification describes the desired product. It contains
the specification of the interfaces with which it communicates, the func-
tion that it must perform, and the conditions that affect the design. In
the case of a processor, the functional specification describes the inter-
faces to memory and I0, the architecture it must obey, and details of the

26

Chapter 1 = Verification in the Chip Design Process

surrounding system. The system architect determines the functional
specification.

The functional specification is the foundation of the verification cycle.
While the designers implement the functional specification in HDL
(shown to the outside of the Debug HDL and Environment stage), veri-
fication engineers incorporate the functional specification into the veri-
fication environment. This may seem redundant, but it is the foundation
of verification. A second implementation of the functional specification
by the verification environment forms the cross-check in the cycle. This
redundancy ensures that the designer’s assumptions and implementation
match the architect’s intent.

1.6.2 Create Verification Plan

A verification plan is crucial because it presents a detailed description of
the verification effort. It answers the questions “what am I verifying?”
and “how am I going to verify it?”

The verification leaders write the verification plan, using the logic
designers and system architects as consultants during the process.

Unless the design is simple, a hierarchical approach to verification is
required. This approach allows the verification engineer to work on
smaller components before building up to the system level (for more
detail, see Chapter 2, Section 2.1). The verification plan contains sections
for each component at each level of the hierarchy.

Verification plans include many of the following elements:

= Specific tests and methods—define the type of environment that the
verification engineers will create (see Chapters 3-4, 7-12).

= Required tools—list the software necessary to support the
described environment. This list may drive requirements on the
software procurement team or on internal software development
teams (Chapters 5, 6).

= Completion criteria—define the measurements that indicate that
verification is complete (Chapter 13).

= Resources (people, hardware, and software) required and schedule
details—tie plan to program management by estimating the cost of
verification.

= Functions to be verified—list the functions that will be verified at
this level of verification.

= Functions not covered—describe any functions that must be veri-
fied at a different level of the hierarchy. The verification of these
functions will be specified in a different section of the verification
plan.

1.6 The Verification Cycle: A Structured Process 27

Chapter 4 contains an in-depth look at the components of a quality ver-
ification plan.

The team reviews the final verification plans with the architects and
designers. This is the first checkpoint in the cycle. The designers and
architects compare the verification plans with the design specification
and internal structures, suggesting enhancements and modifications to
the verification environment plans.

1.6.3 Develop Environment

Once the verification plan is in place, construction of the verification
environment begins. Verification engineers spend the majority of their
time on this stage of the cycle. As such, much of this book describes
methods for developing verification environments. Major components in
the verification environment are stimuli and checking for simulation-
based environments, as well as rules generation for formal verification
environments.

The verification environment is the set of software code and tools that
enable the verification engineer to identify flaws in the design. The soft-
ware code tends to be specific to the design, whereas the tools are more
generic and are used across multiple verification projects.

There are many different types of environments, including determin-
istic, random based, formal based, and test case generators. Each of these
environments has different mechanisms to create stimuli and check
results against the DUV. In all cases, a reference model cross-checks the
behavior against the design intent. The verification team creates the ref-
erence model to implement independently the design specification. A ref-
erence model makes a prediction of the test case results based on the test
case stimulus. The verification team builds the knowledge of the func-
tion and design into the reference model. The reference model provides
the checking components with the predicted data. The checking com-
ponents compare the predicted data to the actual data from the DUV.

The environment is continually refined throughout the verification
cycle. Refinements include fixes and additions to the software code.

1.6.4 Debug HDL and Environment

The next step of the verification cycle integrates the verification envi-
ronment with the HDL. This is when verification engineers begin to
debug the hardware by running tests. As these tests run, verification engi-
neers find anomalies and examine them. Examination reveals the failure
source, which will be either in the verification environment or in the HDL
design. The anomaly occurs because the verification environment has
predicted different behavior than has the HDL. This is the payoff of the
redundant path in the cycle.

28

Chapter 1 = Verification in the Chip Design Process

If the error is in the verification environment, the verification engineer
updates the software to correct the predicted behavior. Otherwise, the
HDL has a bug that the design team must correct. Once fixed, the veri-
fication engineer reruns the exact same test. This ensures that the update
corrects the original anomaly and does not introduce new ones. The team
applies this iterative approach until all tests pass.

Chapter 8 details the debug process.

1.6.5 Regression

Regression is the continuous running of the tests defined in the verifica-
tion plan. This is a required step in the verification cycle for two main
reasons. The first reason is that verification environments often have ele-
ments of randomization, which drive different input scenarios each time
the team runs the test. The second reason is that the team must repeat
all tests after fixes have been applied to the design.

The failure occurrence rate drops as the verification cycle reaches the
regression stage. To uncover hard-to-find bugs, verification teams lever-
age large workstation pools, or “farms,” to run an ever-increasing number
of verification jobs. The randomization built into the environment
enables new test scenarios on each of the jobs.

When the team finds a bug during regression, they use the same
process as during HDL and environment debug. The bug is isolated and
fixed, and then the verification team re-runs the exact same test.

With chip fabrication on the horizon, the verification team must reflect
on the environment to ensure that they have applied all valid scenarios
to the design and performed all pertinent checks. This is the tape-out
readiness checkpoint.

Chapter 13 contains full details on the regression process.

1.6.6 Fabricate Hardware

The design team releases the hardware to the fabrication facility when
they meet all fabrication criteria. Releasing a chip to the fabrication facil-
ity, or fab, is also known as the tape-out, a reference to the past when the
design team stored the chip’s physical design information onto magnetic
tape and sent it to the fabrication facility. The chip design team uses a
checklist, or tape-out criteria, to track all of the items, both physical and
logical, that they must complete before sending the design to manufac-
turing. Verification is a major part of the checklist, being the indepen-
dent judge of the logical capabilities of the chip. The verification team
creates and maintains their portion of the tape-out criteria, initially
basing it on the test plan. This tape-out criteria is the formalized require-
ments for the verification cycle.

With all the hard work that goes into preparing a design for manu-
facturing, this stage is a good time to celebrate a milestone in the process.

1.6 The Verification Cycle: A Structured Process 29

At this point, the failure occurrence rate in the regression stage has
dropped to near zero, indicating that the verification environments have
exhausted their bug-finding capability. However, environments that
include randomization parameters continue in the regression stage after
the design is sent to manufacturing. During the time between tape-
out and receiving parts back from manufacturing (about 2 months’
duration), continued regression using randomization parameters may
uncover further logical bugs. In complex designs, random-based verifi-
cation environments continually create logical states in the design or sce-
narios that were never encountered before tape-out. Occasionally, one of
these new states yields a bug, making the continued regression worth-
while. Designers integrate fixes for bugs found after the initial tape-out
into revised HDL code, which will also contain fixes for any problems
found during the hardware debug of the systems test.

1.6.7 Debug Fabricated Hardware (Systems Test)

The design team receives the hardware once the chip fabrication com-
pletes and the manufacturing test of the chip has been applied (this val-
idates that there are no physical defects that may affect the function).
The hardware is then mounted onto test vehicles or into the planned
systems for these chips. At this point, the hardware debug team (which
often consists of designers and verification engineers) performs the
hardware bring-up. During hardware bring-up, further anomalies may
present themselves.

Again, the design and verification teams must investigate these anom-
alies. The overall verification goal is to avoid finding bugs on the real
hardware, as it is very expensive. Debugging on the real hardware is
much more difficult than in a verification environment, mainly because
the real hardware does not provide the full tracing capabilities of the ver-
ification environment. If an anomaly is determined to be a functional
bug, the design team must fix it. There may be multiple options for fixing
the bug, which include using system microcode to avoid the failing con-
dition. However, if the fix must be made in the hardware, re-fabrication
is required.?

1.6.8 Escape Analysis

If bugs are uncovered during the hardware bring-up, then the verifica-
tion team must perform escape analysis. This often overlooked but crit-
ical part of the verification cycle ensures that the verification team fully

3 Often hardware fixes can be contained to the metal layers or to wires on a chip. If

this is the case, then the re-fabrication process may not require rebuilding certain masks.
This is a less expensive and shorter process than when a fix requires latches or arrays to

be modified or added.

30

Chapter 1 = Verification in the Chip Design Process

understands the bug and the reasons why it was not discovered in the
verification environments. The verification team must reproduce the bug
in a simulation environment, if possible, to confirm they understand the
bug and to assess how the bug got through the verification stage and into
the real hardware. The team cannot assert that the bug fix is correct
without reproducing the original bug in verification.

Chapter 13 describes the analysis process on the bugs that “escape.”

The escape analysis assessment feeds back to the beginning of the
verification cycle, as the verification team learns from escapes. Future
hardware benefits from the learning, as verification test plans and
environments are continually improved. This is the lessons-learned
checkpoint.

1.6.9 Common Verification Cycle Breakdowns

Breakdowns in the verification cycle result in time-consuming and costly
re-spins of the chip. Too often, teams do not follow the entire verifica-
tion cycle. A few of the more common verification errors made by design
teams or their management are listed here. These errors lead to break-
downs and sub-optimal chip or system development efforts.

The first breakdown is when the verification engineer uses a functional
description based on the design implementation rather than on the func-
tional specification. When this occurs, the redundancy path breaks,
leading to a verification effort that simply proves that the HDL design is
equal to itself. The functional specification must come from a higher-
level source than the HDL.

Underdeveloped verification plans can foul-up a design effort. The ver-
ification plan is the road map for the environment implementation. It is
also the communication vehicle to other verification engineers and the
design team. Skipping or skimping on the verification plan inevitably
causes engineers to overlook functional testing on portions of the design.
The plan review checkpoint protects against this failure.

Similarly, an underdeveloped or late-to-arrive specification will cause
verification breakdowns. As with the problem of underdeveloped verifi-
cation plans, the design team needs to create and document the spe-
cification prior to writing HDL. The specification provides both designers
and verification engineers with valuable information needed for
implementation.

Another common breakdown occurs if the verification team skips the
escape analysis step of the cycle. There are lessons to be learned from
the mistakes. Because most escapes occur on very difficult or esoteric
problems, there is no shame in discussing the holes in the verification
environments. However, one of the more common reasons that a verifi-
cation team might skip escape analysis is that the team disbands and the
members take on different jobs. Even in this case, the team should give
the next set of verification engineers the benefit of escape analysis. We

1.7 Summary 31

are destined to repeat our mistakes when we do not learn from them.
This is the intent of the lessons-learned checkpoint

Too often, management does not employ a large enough verification
team. Without the needed number of verification engineers, the team
cannot complete a robust verification plan on the required schedule. This
breakdown will cause morale problems and execution failure.

A final breakdown worth highlighting occurs when the project team
sends the design to manufacturing based on the schedule rather than on
tape-out criteria. Occasionally, the drive to maintain a schedule over-
shadows quality. However, in the end, both schedule and quality suffer
when the team does not meet the design tape-out criteria. The second
checkpoint, tape-out readiness, brings rigor and a quantitative assess-
ment needed to protect against this process breakdown.

1.7

SUMMARY

Functional verification is a necessary step in the development of today’s
complex digital designs. In the past, chips were simple enough that a
good designer could review and debug a chip with relative success. At
the same time, schedules were not so competitive, so that companies
were not concerned about the chips needing a multitude of passes
through the fabrication facility before the product shipped to customers.
Now, chip complexity and product competitiveness have increased to the
point that design teams require partners, the verification engineers, to
find the multitude of bugs that lurk in their RTL designs.

Verification engineers must understand the specification and internal
microarchitecture of the DUV. They couple this knowledge with pro-
gramming skills, RTL comprehension, and a detective’s ability to find
the scenarios that uncover bugs. The entire design team relies on the
verification engineers’ success, as no other group can more positively
influence the costs, schedule, and quality of a product.

Verification engineers face two major challenges in their work. The
first is the creation of a comprehensive set of stimuli, a task made diffi-
cult by the enormous state space of complex chip and system designs.
The second challenge is to identify incorrect design behavior when
encountered during verification of the DUV. Together, driving stimulus
and checking for bugs are the pillars of functional verification.

The foundation under these two pillars is the well-defined verification
cycle. Verification teams use the cycle to create a repeatable, closed-loop
practice upon which they base their work. The cycle requires careful
planning, communication, consistency checks, and feedback loops to
ensure that the design is solid when released to the fabrication facility.
The process includes creation of test plans, writing and running verifi-
cation tests, debugging, and analysis of the holes in the verification

32 Chapter 1 = Verification in the Chip Design Process

environments. This book describes the details of the verification cycle

and the methods verification engineers use to ensure quality design

releases.
1.8 EXERCISES

1. What relevance do scenario creation and checking for incorrect
behavior have on functional verification?

2. What prevents verification engineers from creating test benches for
every possible scenario in a DUV?

3. Describe the role of functional verification within the chip design
process.

4. How do the costs of verification compare to the savings? What
impact would under-spending on verification have on the triple
constraints?

5. From which stage (or stages) of the verification cycle are these
activities?

(a) Write code to drive and check the DUV

(b) Understand the interesting scenarios and corner cases in the
DUV

(c¢) Contemplate what improvements need to be made to the ver-
ification environment based on hardware results

(d) Contemplate what improvements need to be made to the ver-
ification environment as the bug rate drops

(e) Find bugs by using a simulation engine

(f) Find bugs by using an oscilloscope

(g) Discuss design intent and specification with designer and
architect

(h) Discuss a miscompare between the HDL and the reference
model with the designer

(i) List the tools needed for verification

(j) Create a reference model to check the design’s behavior

6. Which of the following should verification engineers do, and which

should they avoid?

(a) Talk to designers about the function and understand the
design

(b) Rely on the DUV designer’s description for input/output spec-
ification

(c) When creating checkers and reference models, look at the
HDL implement for hard-to-predict cases

1.8 Exercises 33

(d) Try to think of situations the designer might have missed

(e) Focus on exotic scenarios and situations

(f) After receiving a bug fix, move on to the next job in the test
plan

(g) Try to fill all queues during simulation

(h) Focus on multiple events at the same time

(i) Move on to the next product after the initial tape-out because
the work is complete

CHAPTER 2

VERIFICATION FLOW

The verification team spends the majority of their time in two stages of
the verification cycle: (1) develop verification environment and (2) debug
hardware design language (HDL) and environment. These two stages are
at the heart of verification work, and at their foundation are hierarchi-
cal verification and the strategies for driving and checking designs under
verification (DUVs).

A basic practice with a complex problem is to break the large problem
into smaller, more manageable challenges. Verification accomplishes this
by using the existing hierarchical structure of the design. Rather than
verifying an entire system from the start, the verification team will first
attack the smaller building blocks of the system before advancing to
larger portions.

No matter where in the hierarchy a verification engineer works, the
basic strategy of driving stimuli and detecting errors is vital to verification.
With driving stimuli and detecting errors as the underlying requirement, it
is useful to understand the roots of today’s verification methodologies.
Early verification methodologies had little automation for stimulus or
checking. However, the design complexity explosion demanded continu-
ous and dramatic changes to the available verification techniques.

This chapter starts by describing how the verification team creates
the right hierarchical partitions for the design. Then, basic driving and
checking strategies are discussed, providing a guide for the sources of
these basic verification building blocks. Together, these concepts form
the structure upon which verification engineers build successful envi-
ronments. The chapter ends with a brief summary of the evolution of the
verification methodologies, from the early and simple test patterns to
complex test case drivers and formal verification.

2.1

VERIFICATION HIERARCHY

Designers of today’s complex chips do not create “flat” HDL. Instead,
designers divide the system and chips into logical units. These logical
units usually, but are not required to, follow the architecture for the

36 Chapter 2 = Verification Flow

System Node
Board 1
Backplane
Memory Cache FPU
bus |
arbiter
DMA ALU
Processor

Local Peripheral
System | |

memory
memory L

= FIGURE 2.1

A block diagram showing the multiple components of a large system. This system contains multiple
processor boards, or nodes, hooked together with a backplane containing a bus adapter and system
memory.

system and chip. This common practice is called hierarchical design.
Hierarchical design allows a designer to subdivide a complex problem
into more manageable blocks. The design team combines these more
manageable blocks to form bigger blocks; these blocks are merged until
the chip or system is complete. Figure 2.1 shows an example of a large,
complex system.

Can verification capitalize on this inherent design style? The answer
is “absolutely!” The same factors that drive the design team to break a
complex chip into simpler components also suggest that verification
teams take advantage of the same hierarchical designs.

2.1.1 Levels of Verification

Because designers divide the logic into hierarchical components, verifi-
cation takes advantage of the same hierarchical boundaries, or “levels.”
There can be many levels of verification. Presented here are some typical
levels, but actual implementations may have more or fewer levels
depending on the complexity of the design. The following list represents
some potential levels, from lowest to highest:

System
level
Board Board
level
Chip ’ Peripheral ‘ ’ Processor ‘ Local
level memory
unit ’ DMA ‘ ’ Cache ‘ ’ ALU ‘ ’ FPU ‘
level

Designer Memory Memory Bus snoop
level access unit unit

= FIGURE 2.2

2.1 Verification Hierarchy 37

PCI
controller

A hierarchical diagram of the multiple node system from Figure 2.1 showing the system built from the
lower-level components. The designer level contains the HDL building blocks. For space reasons, the
figure only shows the lowest level of the cache unit. However, every chip has units, and every unit has
designer level HDL. Each of the next levels—unit, chip, board, and system—stitch together multiple
lower-level blocks.

A T o

Designer
Unit
Core
Chip

Board and system

Hardware/software coverification

Figure 2.2 shows how the above hierarchical verification levels cor-
respond to the large, complex system shown in Figure 2.1.

Each of these levels of verification has strengths and weaknesses.
Although most projects do not require all of these levels, complex designs
need at least two levels of verification. Verification teams choose levels
based on their unique design features and the complexity of the logic
within the hierarchy.

38

Chapter 2 = Verification Flow

Designer-Level Verification

The designer level (also called macro) is the lowest level. This level is
often verified by the designer, hence its name. This level may be simply
a “smoke test” in which the designer “certifies” the design’s use for the
“real” verification environment. The designer level of verification ensures
that the design will load into the simulation engine and that the basic
functions are correct.

The designer level tends to be very dynamic, especially at the begin-
ning of a project. At this level, interfaces and functionality tend to change
often. During the design phase, engineers often uncover problems that
make altering or moving functions across HDL macro boundaries
necessary, which, in turn, causes interfaces to change.

Because of the high number of designer level blocks in a system, it is
not feasible to have a verification engineer verify each block indepen-
dently. However, the blocks at the most risk should have an independent
verification effort.

Because of the small size of these blocks, verification engineers often
use formal verification (for more detail, see Chapters 11, 12) at this level.
At higher levels of the hierarchy, with thousands of latches, formal veri-
fication tends to hit a state space explosion problem, rendering the tool
cumbersome above the designer or unit level.

Unit-Level Verification

In large and complex designs, unit-level verification is needed. In the
system diagram of Figure 2.2, the DMA, ALU, FPU, and cache blocks are
all units. The unit contains multiple designer level pieces of HDL that
are stitched together into units. Interfaces and function are more stable
than at the designer level, because units tend to have formalized specifi-
cations and physical or timing contracts to which designers adhere.
Because interfaces and specifications are more stable, the verification
team can create a more advanced environment (using randomized
stimuli and autonomous checking).

To facilitate verification, the design should be partitioned so that the
units have fully contained functions. These verification requirements are
synergetic with the hierarchical design partitioning, which facilitates
larger design efforts. Although the purpose of the unit level is to verify
fully the functionality of the unit, there may be certain functions that
the verification team cannot verify here, such as function split across
multiple units.

Once the unit level is verified, the verification engineer can proceed to
higher levels of verification, knowing that the unit’s basic functionality is
correct. The higher levels must then verify that the connectivity and inter-
face protocols to and from the unit are correct; that is, the neighboring
units contained in higher levels correctly implement the unit.

2.1 Verification Hierarchy 39

Core-Level Verification

A core is a special, reusable unit which requires a complete functional
specification with stable interfaces. Designers may use a core multiple
times within a system and across multiple systems. They may create the
core internally, or obtain it from an external source.

The verification of a core is a double-edged sword. The positive is that
once verified, reusing a core should not add a burden to the verification
effort. For example, a core that the engineering team reuses 10 times in
a design needs just one strong verification effort, saving the need to verify
it nine other times. The drawback to core-level verification is that because
designers may use cores in many different applications across a system
or multiple systems, the usage of each instance may be different. This
drives a broader verification effort because the verification team may not
know all of the actual interface and application parameters in which the
design team will place the core. Engineers can be very creative when it
comes to using a core, exercising it in ways different from the primary
intentions. Therefore, the verification team must think outside the box
when verifying a core, allowing for a broader range of input scenarios
than the core’s initial use. Thus, the bounds in which the verification
team works on a core are less defined and put a bigger burden on the
team to verify the core in a more aggressive manner, as they must dream
of “weird” scenarios.

When the core will be used by outside design teams, the verification
team must employ a well-defined process, as engineers shy away from
cores they do not trust. The key question when designing and verifying
a core that other design teams will use is, “How do I gain my customers’
confidence?” This is where a well-defined process helps. The verification
cycle for a reusable core includes a regression suite, well-documented
specification (functions and interfaces), coverage items (to help indi-
cate what has been verified), and possibly verification scenarios (these
scenarios are the ones in the regression suite). The well-documented
specification teaches the end-user about the core, and the verification
scenarios indicate the bounds and depth of the core verification effort.
The regression suite exists for when designers make changes to the
core. When this occurs, the verification team runs this suite of verifica-
tion tests to ensure that this fix or enhancement did not cause any other
problems within the core. Chapter 10 covers verification reuse in full
detail.

Chip-Level Verification

The chip level is composed of multiple units. At this level, there are very
well defined interface boundaries. The purpose of this verification is to
ensure that the units are properly connected and that the design adheres
to all unit interface protocols. However, there may also be functions that

40

Chapter 2 = Verification Flow

could not be validated at the unit level; these functions require full testing
at the chip level. An example of this is chip reset, in which the verifica-
tion team simulates the entire start-up sequence of the chip.

The well-defined interface of a chip creates a huge advantage for the
verification team at this level. Designers must solidify the physical chip
pin definitions early in the design process, giving the verification team a
stable base on which they can create chip level test suites. Although
lower-level environments and designs tend to evolve throughout the
project, chip-level verification requires less maintenance.

Board- and System-Level Verification

A board is a collection of chips that may also contain some discrete,
“glue” logic (AND gates, OR gates, etc.). Many times, designers place this
glue logic into a small field programmable gate array (FPGA), providing
an inexpensive and modifiable interchip connection. The purpose of this
level of verification is to confirm the chip interconnection, integration,
and board design.

The definition of a system is different across industry segments and
product lines. In some cases, a chip could be a system (in which case,
the chip and system levels are the same); in other cases, the system is
a multiframe server with hundreds of chips. For verification, the basic
definition of a system is a logical partition of independently verified
components.

The verification focus at the system level is that of interaction rather
than particular functions buried inside a chip or unit. As a result, a ver-
ification team working on a large application-specific integrated circuit
(ASIC) will assume that previous verification efforts on its units and
cores specified, documented, and fully verified the lower levels below the
system level. Because the focus is on component interaction, the verifi-
cation engineer assumes that the individual chips, cores, or units are
functionally correct.

Hardware/Software Coverification

The hardware/software coverification level marries the system level
hardware with the code that runs on the hardware. The code may be
device drivers, system boot code, microcode, or application software
that runs on the hardware engines. The purpose of this level of verifi-
cation is to find bugs due to inconsistent understandings of the specifi-
cations between the hardware designers and the code architects and
programmers.

To run the hardware and software together, hardware and software
engineers must rigorously verify both components. Methods of software
verification are beyond the realm of this book.

2.1 Verification Hierarchy 41

2.1.2 What Level To Choose?

Choosing which verification levels to use is not as easy as it may seem.
Although six levels of hardware verification were described above, most
verification projects will use an appropriate subset of these levels based
on the design details. A single system on chip (SoC) may need unit-level
verification on certain new blocks, followed by a chip/system-level effort.
On the other hand, a complex server would need verification at the
designer, unit, chip, system, and coverification levels.

There are technical factors that help teams decide which levels to
choose for a given design. These factors are highlighted here.

= Always choose the lowest level that completely contains the targeted
function. The smaller the model, the more direct control the veri-
fication engineer has over creating the required test scenarios. A
test that exercises the board in Figure 2.2 does not need a system-
level model containing the node and the backplane. These extra
design pieces have a negative effect on simulation engine perfor-
mance without providing any benefit to the test.

s Each verifiable piece should have its own specification document.
This helps keep interfaces and the function more stable, as well as
allows everyone on the team to be “reading from the same sheet of
music.” If functions and interfaces change often, then verification
environments must change as well (with recoding each time).

= New or complex components need focus. If a portion of function is
new (versus function inherited from previous designs) or complex,
then the verification team should isolate this function and create
an environment to test it. Complex functions often have arbitration
logic or multiple requestors vying for a single resource. This type
of function lends itself to creation of robust, focused verification
environments.

s The appropriate level of control and observability drives decisions on
which levels to verify. The lower the verification level, the more
control the verification engineer has on the interface inputs, and the
more observability on the outputs. This comes at a price of addi-
tional effort. Robust designer-level verification on all macrocompo-
nents in a large system is not realistic, as more effort is required to
construct each environment for each macro. Instead, only the
complex macros have individual verification, leaving the less risky
components to the higher levels. When dealing with higher levels of
verification (chip, board, system), the team implicitly verifies the
smaller components at the cost of lower control and observability.

» Function may dictate verification levels. Verification engineers
cannot verify certain functions at the lower levels. Often, this is
because a function spans multiple components. Although the veri-
fication environment can test each component individually, the

42 Chapter 2 = Verification Flow
A
Lower levels: Higher levels:
controllability and system view
observability
N
I~
\\\\
I~
\\\\
\\\
\\
>
— ™~
g=
- T
[T T
1 1 || L1 1 11
Most resources Least resources
= FIGURE 2.3

Lower levels of the verification hierarchy provide the verification engineer with more control over the
smaller environment. Higher levels provide a systemwide view, but lose the tight control. The trade-off
for the control is that, because there are more designer or unit levels (compared with one system), the
total staffing requirements for the lower levels is higher than the system level.

environment can prove only portions of the whole function. At a
higher level, the team assembles all of the components and verifies
the entire function. The trace/debug function is an example of this."
Trace/debug logic usually spans across many smaller blocks, cap-
turing signal and latch data from across the entire chip.

From a business standpoint, verification resources are in demand and
management must allocate them wisely. It may be desirable to verify
every designer block, but resources may make this unfeasible. Alterna-
tively, proposing to take the available resources and serialize the
designer-level verification effort would break the schedule. Figure 2.3
illustrates the trade offs.

Bug Rates and the Levels at Which They Are Found

The amount of controllability and observability that the verification
engineer has directly correlates to the ability to find bugs in the design.

! Design teams use the trace/debug function to debug the fabricated hardware. When

testing on the actual hardware, engineers must obtain information about the internal states
of the machine in order to debug errors. The trace/debug functions capture the state of a
set of internal signals and latches across a small window of time (a few hundred cycles).
It is critical for the verification team to verify the trace/debug function or it may not work
when the chip is fabricated.

2.1 Verification Hierarchy 43

T
|
T
[T
i
|
[

(a) Filling the buffer at the designer level... (b) ... is easier than at the core level

= FIGURE 2.4

At the designer level, verification engineers can manipulate the HDL inputs and create corner con-
ditions in the logic. It is harder to create these cases at higher levels as the other portions of the
design effect the stimulus.

Controllability indicates the ease at which the verification engineer
creates the specific scenarios that are of interest. If a design contains a
bug but the input scenario conditions that create the bug never occur,
the verification engineer will not discover the bug in simulation. Con-
trollability and the verification level of hierarchy are closely related. The
higher the level of the hierarchy, the less controllability the verification
engineer has. Verification engineers have greater controllability at lower
levels because there are fewer dependencies on the surrounding units to
cause the scenario.

As an example, a verification engineer wants to create a buffer-full con-
dition in a macro within a core. If the level of hierarchy is the designer
level, in which just the macro exists in the simulation environment, the
verification engineer simply controls the input signals by pushing data
into the buffer without ever popping the data. However, at the higher
core level of verification, it is much harder to create this condition
because the core level inputs are further from the buffer, and the behav-
ior of the surrounding macros and units may continuously pop data from
the buffer unless a very specific core level event occurs. This makes it
difficult to fill the buffer. Figure 2.4 depicts these two cases: in Figure
2.4a, the verification engineer can directly control the state of the buffer;
in Figure 2.4b, the control is indirect because of all of the surrounding
logic.

44 Chapter 2 = Verification Flow
100
80
X
()
s
Z 60
[9)
o
[%2]
§
= 40 A
S
o
20 .
\.;-:-::...'A
- e,
0 I I I -I
Months
Designer ~ ======= Chip
===== Unit === System
= FIGURE 2.5

Lower levels of verification tend to uncover more bugs because they occur earlier in the design cycle
and because verification of each designer or unit level occurs in parallel with the others. It is an effi-
cient practice to wait until the bug rate begins to drop in a lower level before moving to the next level.

Observability is the other aspect in discovering bugs. Observability
indicates the ease with which the verification engineer can identify when
the design acts appropriately versus when it demonstrates incorrect
behavior. Lower levels of verification are conducive to observability
because bugs are more likely to manifest themselves on the outputs. At
the higher levels, it is often harder to observe interesting bugs without
internal observation points.

The increased ability to find bugs at the lower levels dovetails with the
design cycle as well. Each designer on the team works at a different rate
and pace. Therefore, not all macros in a project are ready for verification
simultaneously. Designer- or unit-level verification may be available on
early blocks long before an entire chip is ready for verification. As a
result, it is good practice to progress the verification focus from the lower
levels to the higher levels over time. This practice typically yields bug
rates and trends as shown in Figure 2.5.

Another Word on the Cost of Bugs

Figure 1.7 compared the cost of finding a bug in verification to finding
the bug in hardware or the customer environment, showing that the
longer a bug goes undetected, the more costly it is to fix. There is a saying

2.2 Strategy of Verification 45

that holds true: “Pay me now, or pay me later—with inflation.” Similarly,
this trend holds true across the levels of verification, further augment-
ing the business and technical need for a hierarchical approach to
verification.

A bug found at the designer level has little cost. The designer has the
algorithms and decision process of the HDL fresh in his or her mind, and
finding a bug quickly may drive the designer to implement the function
differently, long before physical design or timing of the macro occurs.
That same bug found at chip or system level has moderate cost because
it will require more problem isolation and debug time. Furthermore, the
designer may no longer be able to reimplement the function in a more
effective manner because the required rework of physical design on this
and other macros would break the schedule.

2.2

STRATEGY OF VERIFICATION

The above discussion of controllability and observability illustrates that
the verification engineer divides work into two separate tasks: driving
(controllability) and checking (observability) the design under test. The
two tasks correspond to the following basic questions a verification engi-
neer must ask:

1. Am I driving all possible input scenarios?

2. How will I know when a failure has occurred?

These tasks are separate but must work together to succeed. A verifi-
cation engineer captures a bug if the design inputs aggravate the failing
condition and if a checker flags an illegal state. One is inadequate without
the other. Driving all possible combinations of inputs cannot uncover a
bug if the checkers fail to identify the bad condition. Likewise, checking
for all possible failures is futile if the drivers fail to stimulate the con-
ditions that cause the failure. As shown in Figure 2.6, drivers and
checkers are the yin and yang of verification.

The following sections give a brief overview of how driving and check-
ing work together to uncover bugs. The principles of driving and check-
ing are expanded in Chapters 7 and 8.

2.2.1 Driving Principles

What does it mean to “drive all possible input scenarios”? Although
driving all possible input scenarios is trivial with a two-latch design, it
is very hard to gauge completeness of input scenarios in a complex
design. And what does it mean to “know when it fails”? How can we know
if a complete set of checkers are in place?

46

Chapter 2 = Verification Flow

Driver

= FIGURE 2.6

Finding a bug in the design under verification requires both the stimulus components, or drivers, and
checking components. A verification engineer cannot find a bug without creating the failing conditions
and detecting incorrect hardware description language behavior. Therefore, driving and checking are the
yin and yang of verification.

Design
under
verification
(DUV)

Inputs Outputs

= FIGURE 2.7

Black box verification is the most common simulation style of verification. Under the black box style,
verification engineers manipulate the inputs and check the outputs but do not observe or set signals or
latches inside the design under verification.

To analyze these questions, first look at the “black box” in Figure 2.7.
The black box is a piece of HDL, which is called a black box because ver-
ification engineers do not look inside the design implementation. The
verification engineer does look at its inputs and outputs, their definitions,
and their functions. The actual behavior of the black box and its outputs
will depend on the inputs supplied to it over time and the function it
performs. Given a set of input stimuli, the function of the black box will
yield specific, predictable values over one or more machine cycles.

The black box may have complete documentation, or not. The amount
of documentation required and the quality of documentation varies by
the designer, the company policy, and the size of the black box. Larger
pieces of design (which are higher in the design’s hierarchy) tend to have

2.2 Strategy of Verification 47

more documentation. Smaller portions of HDL (lowest levels of the hier-
archy) tend to have embedded documentation but not separate func-
tional descriptions.

When charged with verifying a piece of design, the verification engi-
neer should first read whatever documentation exists for that design. The
first task is to understand all input and output lines. The verification
engineer must then understand the design’s function and thereby be
able to predict the outputs based on the inputs. This is the design’s
specification.

It is important that the verification engineer obtain the input descrip-
tions from a source other than the author of the HDL under test. This
source might be an industry standard specification (such as a Peripheral
Component Interconnect (PCI) protocol) or another designer whose HDL
outputs are the inputs to the HDL under test. This is significant because
the verification engineer must maintain independence in understanding
the design inputs in order to break the redundancy path. If the DUV
designer authors the input specification, the verification engineer would
duplicate any incorrect input understanding that the DUV designer has
and bugs may be missed. If the interface specification must come from
the designer whose logic is under test, the verification engineer should
ensure that other designers sign off on the contents as matching their
expectations of what their logic will drive into the DUV.

With the input definitions understood, the verification engineer begins
to plan a stimulus strategy. Often, a design has a large number of input
signals. In this case, the verification engineer will group multiple signals
together based on their logical function. For example, a memory design’s
command and address busses function hand in hand to access or store
data at the intended memory location. Other memory DUV input signals
might support different functions such as resetting the design. Grouping
signals and busses together is important because the verification engi-
neer will develop separate driving strategies for each set of grouped input
signals.

In developing a stimulus strategy, the verification engineer must
always remember the goal is to maximize the scenarios that the verifi-
cation environment creates. For control signals, this means ensuring that
the environment exercises all possible commands and modifiers. For data
busses, the environment should create a wide assortment of possible data
patterns. It is especially important for the environment to exercise edge
cases when data patterns are choosen. Edge cases create odd, exception,
or end conditions in the design such as storing to the last address in
memory or causing an overflow in an adder.

Driving the Black Box

Figure 2.8 briefly describes four inputs, including a wire name and bit
width, for our black box. Even with the limited description of the inputs

48 Chapter 2 = Verification Flow

~1in_buf_data(0:7) is the data to be placed in the stack

~1in_buf_valid(0) is on if data is valid

Inputs = DUV Outputs

~ clean_stack(0) will invalidate the entire stack

- pop_buf(0:1) directs the logic to pop the top 0,
1, or 2 entries from the stack the next cycle

= FIGURE 2.8

A DUV has inputs and input descriptions. This DUV has four sets of input signals, each with an English
language description of the purpose of the signals.

of this black box, the verification engineer can start to understand the
design by ascertaining the following details:

= There is a stack inside.

= The stack is at least two deep.

= The stack is 8 bits wide.

= Only one entry can be written at a time.
However, there are still plenty of unknowns about this black box. For
example, even though it is clear that there is a stack inside the design,
the current description does not indicate whether the stack protocol is
last in, first-out (LIFO) or first in, first out (FIFO). Other unknowns about
the design include the following:

= How deep is the stack?

= What conditions indicate a full stack?

= When do the contents become valid?

= What is the behavior if a read and write occur on the same cycle?
Is that even allowed?

= How long does it take to reset the stack?
= Do the entries get zeroed-out or just marked invalid?

= What happens if a read operation occurs when the stack is empty?

2.2 Strategy of Verification 49

TABLE 2.1 = The verification team should include these scenarios in the test plan for the black box in

Figure 2.8

Stimulus cases

Description

Writing and not writing

Writing and reading

All three possible reads

Reading when there is nothing in
the stack

Writing when the stack is full

Reading from the stack and
resetting it (clean_stack)

Writing to the stack and resetting it
(clean_stack)
All bits of data

Temporal cases such as writing
back-to-back with a double read
on the first cycle (starting with
an empty stack).

Writing data to the stack is obvious. However, the
verification engineer must include in the test plan
cases in which data are not written to the stack for
multiple cycles.

The inputs appear to allow for simultaneous reads and
writes to the stack.

There are three different decodes (none, 1, or 2)
described for pop_buf(0:1) and the verification
engineer must create all three cases.

The correct function of the design in this case has not
been defined yet. Regardless of whether or not the
design will return no data or an error, the verification
engineer must include this case in the test plan.

At this point, both the depth of the stack and the correct
function when data is written to a full stack is not
defined. The test plan still must include this scenario.

Concurrent conflicting operations, such as reading from
the stack and resetting the contents of the stack are
often a source of bugs.

Again, this concurrent conflicting operation must be
included in the test plan.

The test plan should include verifying that each bit of
the width of data (8 bits) can be either ‘O’b or ‘1’b,
and that each line in the stack correctly holds the 8
bit value.

Temporal cases, where stimulus evolves over multiple
cycles, are always the most difficult to create—and
most often where bugs lurk.

= In case of reading two entries, how are the two data items returned?
Back to back or one at a time?

= What happens if pop_buf(0:1) is set to “11”b (e.g., three reads)?

Despite these unknowns, the verification engineer can begin to con-
template the types of scenarios that he or she must drive into the logic.
This simple input definition allows the test plan to begin. Table 2.1 lists
stimulus that the verification team should include in the test plan for the

black box.

Because of the close ties between driving stimuli and checking
outputs, the verification engineer must next look at the outputs of the
black box before completing the stimulus strategy. However, before

50

Chapter 2 = Verification Flow

returning to the black box example, the fundamental verification check-
ing strategies must be discussed.

2.2.2 Checking Strategies

Stimulus and checking are tightly coupled. Although the verification
stimulus engines drive inputs, it is the checker’s job to ensure that the
DUV behaves correctly based on the stimulus. A DUV behaves correctly
when it abides by the design specification and intended function.

There are four main sources of checkers. The design and architecture
teams document these sources in various specifications, and the verifi-
cation engineer must understand each of these sources to create en-
vironments that contain complete checking. The four sources are as
follows:

= The inputs and outputs of the design
= The context of the design
= The microarchitecture rules of the design

= The architecture of the design

Checkers Based on Inputs and Outputs

A fundamental source of checkers is the outputs of the DUV because any
bug in the design will at some point manifest itself at the outputs of the
design. With robust drivers, most bugs will show up as a miscompare on
an output of the design. A miscompare occurs when the actual DUV data
does not match the expected data from the checker.

To predict the correct outputs—and to flag incorrect outputs—the
verification engineer must understand the output specification. Output
documentation comes in many forms, such as an industry standard
specification (e.g., a PCI protocol) or an informal interface between two
designers. As discussed, the verification engineer should work from a
definition of the output that is independent from the designer whose
HDL is under test.

The verification engineer writes code to check the values of the outputs
at all times during simulation. It is equally important to check for a
correct value on a bus when the verification engineer expects a specific
output as it is to check that there is no value on the bus when the bus
should be idle.

The verification engineer’s checking code uses the inputs to predict the
outputs. Outputs are a function of the inputs, so the verification code
must understand the function to correctly predict the outputs. The actual
implementation of the function in verification code is usually simpler
than in the HDL, as the verification code is not burdened by require-

2.2 Strategy of Verification 51

DUV

= FIGURE 2.9

A fundamental source of output checking is the DUV inputs. The verification engineer creates
checkers for output signals based on the inputs and an understanding of the DUV function.

ments on latch counts and physical timing. Further simplifying the ver-
ification code is that the environment, unlike the HDL, does not have to
handle all possible input cases when the verification engineer knows that
the environment will only drive specific values.

Figure 2.9 shows that verification engineers create checkers for output
signals based on the DUV function and properties and on the input stim-
ulus. A function might be as simple as “when a command is sent on the
input, a response is expected on the third cycle.” This property might
actually generate multiple checks: a countdown from three to make
sure the response appears on the output at the correct time, and a check
that the actual response is correct. In addition, there should be a check
that the response bus remains idle on all cycles except when the verifi-
cation environment predicts a response. The inputs and the function of
the design dictate the value of the response.

Checkers Based on the Context of the Design

When verifying HDL at the lower levels of the design hierarchy, it is
important for the verification engineer to understand the design’s higher-
level functionality, or design context. A verification engineer must under-
stand the big picture, even when focusing on a specific portion of the
design.

In Figure 2.10, HDL A and HDL B are two portions of the design that
work together to perform a higher-level function. For example, the higher
level of DUV hierarchy in Figure 2.10 might be an instruction decode
unit within a microprocessor. The function of HDL A might be to parse
an incoming instruction stream into individual instructions, and the
function of HDL B might be to group a few instructions together to
feed a parallel (superscalar) pipeline in the neighboring execution unit.

52 Chapter 2 = Verification Flow

HDLA HDL B

Higher level of DUV hierarchy

= FIGURE 2.10

When verifying lower levels of hierarchy such as individual HDLs, the verification engineer derives
checkers from an understanding of the function, properties, and context of the larger design. In this
figure, functions of the higher level of hierarchy imply checking on the individual outputs of HDL A and
HDL B.

The execution unit’s inputs would be wired to the outputs of this decode
unit.

In this example, it is important to understand the overall function of
the decode unit while verifying an individual portion such as HDL A. A
design context property or function would be that the decode unit design
should feed only valid instructions (op-codes) to the execution unit.
When verifying HDL A by itself (macro-level hierarchy), the verification
engineer needs to know all valid op-codes, and that invalid op-codes
should cause exceptions and not be passed on signals that drive HDL B.
The test plan for verifying HDL A would include tests that imbed invalid
instructions in the stream.

Verification engineers derive design context checking for HDL B as
well. Knowledge of the number of parallel execution paths in the super-
scalar pipeline and the types of instructions that are valid in each path
is required to verify HDL B. HDL B must group the instructions accord-
ing to these design context rules, as the outputs feed the execution paths.
For example, the execution unit might contain a fixed-point arithmetic
pipeline, a floating-point arithmetic pipeline, a branch execution pipe-
line, and a store pipeline. Tt would be illegal to have floating-point oper-
ations fed to the fixed-point unit. The verification of HDL B must ensure
that this never occurs.

Checkers Based on Microarchitecture Rules of the Design

Verification teams derive many checkers from properties based on the
microarchitecture, or internal structures of the design, so verification
engineers must understand the internals of the design. This applies to
driving techniques as well as checking because it is equally important for

2.2 Strategy of Verification 53

SUPERSCALAR PIPELINE

Instruction
Example instruction stream: grouping
SUB R7
BRZ R7
Execution
Execute
%]
Q<
(8]
>
O
Put-away results

Fixed Float Branch Store
D. , _ I I I O I
In-flight instructions | | | | | | | | |

General purpose registers RO-R15

= FIGURE 2.11

The architecture and microarchitecture of the design under verification provide a source of checkers.
This figure shows a superscalar pipeline with four pipes: Fixed, Float, Branch, and Store. The ability or
inability of in-flight results to feed prior stages of a pipeline will affect instruction grouping, as shown
by the stall or no-stall arrows. In all cases, as defined by the architecture, the BRZ R7 instruction must
use the results of the SUB R7 instruction.

the verification engineer to know if, during the course of simulation, the
stimulus has filled a buffer (driving) as it is to know if there has been a
buffer overrun (checking).

Checks based on the microarchitecture can come from many sources,
including these common ones:

= Invalid state machine values

= Invalid state machine transitions

= Overrun or underrun queues and buffers

= Bad timing on control signals

= Invalid data
However, the above list is an oversimplification of the specific imple-
mentation of most microarchitecture-based checkers. Figure 2.11 shows
the microprocessor’s superscalar pipeline briefly described in the pre-
vious section. Here, the instruction grouping HDL feeds instructions to
our four parallel executing pipelines. Depending on the contents of

the instruction stream, the pipeline can execute one, two, three, or four
instructions in parallel.

54

Chapter 2 = Verification Flow

A superscalar pipeline such as this one will have many checkers based
on the implementation details. One example of checkers is how the
design handles shared resources within the pipeline such as the general-
purpose registers (GPRs). If the microprocessor places the results of a
fixed-point operation in a register (e.g. the subtract result goes to regis-
ter R7 in the figure) that the following instruction, branch if zero (BRZ),
will use, then we have resource contention on R7. If the design under
verification is the execution unit, then the verification engineer can write
checkers that monitor for correct behavior in the case of shared re-
sources. The figure shows two possible implementations. The lower
arrow represents the case in which one pipeline (fixed point) forwards
results to another pipeline (branch) simultaneous to the write of R7. The
upper arrow represents a different implementation, in which a pipeline
stall occurs because the BRZ instruction must wait for the logic to write
the results of the SUB to R7 before execution can continue. The verifi-
cation engineer must write checkers to verify the correct behavior in
either case.

It is interesting to note that if the design under verification is the
instruction grouping design (rather than the execution unit), the verifi-
cation team must check the above example of stalling the pipeline based
on register resource conflicts. In this case, the checker is a design context
based checker of the instruction grouping design. The verification engi-
neer requires an understanding of the input restrictions in the neigh-
boring execution unit. The design context dictates that if a branch follows
a subtract and uses the same register, the design cannot group the
instructions together.

Checkers Based on the Architecture of the Design

Most verification checkers have their roots in the design architecture.
Although the microarchitecture defines the structures that compose the
design, the architecture dictates how the design must act. Industry stan-
dards groups and companies publish architecture specifications for
public protocols, programmable processing units, and system structures.
Hardware designs must abide by these specifications. The architecture
lends itself to being the verification engineer’s main source of checkers
because of the strict requirements on documenting the architecture.
Again using the microprocessor superscalar pipeline shown in Figure
2.11 as an example, the architecture dictates the behavior of all instruc-
tions that pass through the pipeline. The example instructions behave
similarly across practically any microprocessor architecture. The sub-
tract (SUB) instruction must correctly operate on the operands (not spec-
ified on our example) and store the results in R7. The BRZ instruction
must test the contents of R7 and branch to the target instruction address
(again, unspecified in our example) if the contents equal zero. The veri-
fication engineer must predict the results of the instruction stream and

2.2 Strategy of Verification 55

check that the design results are correct. Furthermore, because all micro-
processor architectures dictate that the BRZ instruction must test the
contents of R7 after any previous instructions (in this case, the SUB
instruction) have updated R7, the checking must also verify this. In this
case, a well-constructed test case would ensure that either

= R7 be initialized with a nonzero value, and the result of the SUB
instruction writes zero into R7

= R7 be initialized with a zero value, and the result of the SUB
instruction writes a nonzero value into R7

With this setup, the results of the branch (taken or not taken) will
allow for direct observation of whether the BRZ instruction waited for
execution logic to write the results of the SUB instruction to R7 before
testing for a zero value. Otherwise, if zeros overwrite zeros or nonzeros
overwrite nonzeros, it is difficult to observe from the outputs of the exe-
cution pipeline if the pipeline implementation obeyed the architecture.

Architecture documents exist for all industry standard design proto-
cols, such as Infiniband, all types of PCI, and Ethernet. All micro-
processors have strict architecture rules that dictate their behavior as
well. Programming applications are written based on these documents,
so the verification engineer’s highest priority is to check that the design
follows the architecture in all cases.

2.2.3 Checking the Black Box

We return now to our black box example. Figure 2.12 defines the outputs
of the black box. Each of the four output wires has an associated bit
width and wire name. The short descriptions of the function that accom-
panies each wire begin to answer some of the open questions about the
design:

= In case of double-read, entries come simultaneously.

= The logic within the black box indicates when the stack is full.

= The input driver must retry when overflow occurs, as the data is

discarded.

Yet there are still many unknown details about the design. More
documentation is required to understand the following:

= How deep is the stack?
= How soon after a write do the stack contents become valid?

= What is the behavior if we read and write the same cycle, and can
we even do this?

56 Chapter 2 = Verification Flow

out_buf_datal(0:8),out_buf_data2(0:8) arethe
requested data lines. Bit O of both signals are the valid bits. ~

Inputs DUV :: Outputs

buf_full1(0) indicates that the buffer is currently full
and that any new entries will be dropped.

buf_overrun(0) indicates that the last input was not
added to the stack due to an overrun. -

= FIGURE 2.12

Checking the design under verification requires an understanding of the output signal definitions. This
figure shows four output signals (two of them are bundled and two are single-bit signals) with their
accompanied English language descriptions.

= How long does it take to reset the stack?

= After a reset, are the entries zeroed-out or just marked invalid?

= What if a test performs a read when the stack is empty?

= Is the stack a FIFO or LIFO?

= Must the design return data from a single read on bus1?
The design or architecture team produces a specification of our black
box design. This documentation reveals the following:

= The stack is seven deep.

= A new stack entry is valid for reading the next cycle.

= The stack reset completes the cycle after a clean command, and
the design ignores inputs arriving simultaneous with a clean
command.

= The clean command turns the valid bit off on all seven entries.
= No data are returned for a read if the stack is empty.
= The stack is a FIFO.
Furthermore, the documentation provides an explanation for usage

of the buf_full and buf _overrun signals. The buf_full and buf overrun
outputs are both required because buf_full becomes active the cycle after

2.2 Strategy of Verification 57

TABLE 2.2 = The verification team must check these cases for the black box example

Checker

Checker source

Checker implementation

The design returns
the correct data

Buffer overflow

Stack become valid
at the right time

Check all outputs
all of the time

Inputs and outputs,
architecture

Microarchitecture

Microarchitecture

Design context

A fundamental check on the black box is that the
returned data matches the sent data. The
verification code must keep an independent
copy of all design under verification (DUV) data
in order to check the data outputs coming from
the stack.

The verification code must keep a count of how
much data is in the design. This allows
prediction and checking of the buf_full(0) and
buf_overrun outputs.

The design description stipulates that the driver
may read data from the stack the cycle after it
sends it. Therefore, the verification team should
write a checker to verify that the data is not
valid too early (the same cycle it was written)
and that it can be read the following cycle.

Other designs that use the outputs of this black
box depend on these outputs always being
correct. It is not sufficient only to check for
valid data after a read operation. The
out_buf datal and out_buf data? wires should
never contain valid data unless the driver
performed a read and there was data in the
stack. Similarly, the buf_full and buf_overrun
wires should only be active when the verification
code predicts a full or overrun condition.

The table lists the checker as well as the type of checker (source).

the design receives the data that fill the stack. It is possible for the input
driver to send another byte of data to the cycle so that the buf_full signal
wire becomes active. In this case, the design raises the buf_overrun signal
on the following cycle, and the design drops the “eighth” byte of data.

With all of this information in hand, the verification engineer can write
a test plan that specifies the checkers. Table 2.2 suggests some of the
checkers, the checker source, and an implementation.

Verification Checking Should Not Reimplement To Design

The verification engineer must remain independent while maintaining a
close working relationship with the design team. This is especially impor-
tant when checking code for verification is being created. Although the
verification engineer is privy to the design implementation, the checking
code should not mirror the design algorithm.

58

Chapter 2 = Verification Flow

Data field \%

next_write —» <—— next_read

= FIGURE 2.13

The seven-deep stack hardware description language for design implementation uses a data field, a
valid bit (V), and two pointers. The pointers track the position for the next write to the buffer and the
next read (oldest entry).

The verification engineer must always start with the assumption that
the design implementation is wrong. If the checking code mirrors the
design, the potential exists for the checkers to implement a bug in the
same fashion that the design did. This breaks the redundancy path and
would cause the bug to go undetected, as both the design and checker
results match.

To demonstrate this, consider the HDL design implementation of the
stack inside the black box example. Figure 2.13 shows the seven-deep
stack with two pointers, a next_read pointer and a next_write pointer.
The next_read pointer indicates which position to read when the inputs
drive the next read command, and the next_write pointer indicates which
position to put the next byte of data received from the inputs. The V
column is the valid bit for each entry. If next_read and next_write point
to the same entry, then the stack is either empty or full, depending on
the state of the valid bit. The design implements a wrap condition when
either pointer is incremented beyond the seventh position.

As described in Table 2.2, verification checking code must keep track
of the data, as well as the number of entries currently in the stack. Check-
ing code written in C could create a seven-deep stack and use pointers
as in the design. However, the better, simpler way is to create a linked
list. This creates a checking structure with a different and independent
implementation than the HDL design. Verification engineers can take
advantage of the fact that they do not synthesize their code and do
not have to meet timing or physical goals; they must only compile it for

2.2 Strategy of Verification 59

read counter

write

= FIGURE 2.14

The verification code uses a different, and easier to implement, method for tracking the contents of the
data. Rather than building a physical stack (as required in hardware), the verification engineer can
utilize a “virtual” stack implemented as a linked list. The different implementation provides an optimal
checking method uninfluenced by the design implementation.

simulation. As such, many verification teams use programming lan-
guages rather than HDLs to implement their drivers and checkers. The
choice of a different style source code further divorces the verification
implementation from the HDL.

Figure 2.14 shows the linked list checker implementation. The simple
linked list has a head and a tail. The code increments a counter for each
write operation and decrements it for each read. A null pointer value
indicates an empty list, as would a counter value of zero. This strategy
allows the checking code to quickly access the top of the stack for read
operations and then remove the data from the stack (and release the
memory). Write operations trigger memory allocation and append the
data to the end of the linked list. This implementation is simple, effec-
tive, and independent from the design approach.

2.2.4 Putting It All Together

The previous sections introduced strategies for driving and checking a
design. Verification engineers find bugs with robust drivers that aggra-
vate the error condition and with complete checking that flags a mis-
compare in the design.

Uncovering complex bugs requires intricate drivers and checkers. Con-
sider the following bug in the black box stack example:?

2 This example works backward and is for illustration purposes only. During the course of
normal verification, the verification engineer is not “given” a bug description and then asked
to create the drivers and checkers that find it. However, this backward challenge does occur
during the reproduction stage of escape analysis (Chapter 13).

60

Chapter 2 = Verification Flow

The design description states that when the driver asserts the input
signal clean_stack(0) to “1,” the design should clear all the data valid
bits inside the stack design. For simplicity, the design should set the
next_write pointer and next_read pointer to the top of the stack. If
the driver asserts in_buf_valid(0) to “1” (with data) the same cycle as
the clean_stack, the logic resets the pointers as intended but erroneously
puts the data in the stack. This case only occurs when the stack has six
valid entries when the clean_stack and in_buf_valid are set, as the bug is
in the logic that is trying to set the buf_full output. As a result, some-
where in the stack there is a valid bit set to “1”b that should not be on.

What does it take to find this bug? What scenario must the drivers
create? What checkers must be in place to flag the erroneous behavior?
Finding this bug is not trivial.

First, the driver must create a specific sequence of events. Over the
course of a test case, enough writes to the stack need to occur so that
there are exactly six entries loaded. Then, the test case must set the
clean_stack and in_buf valid signals simultaneously. At this point, the
stack has an erroneous value, but the bug has not manifested itself on
the outputs. If a second clean_stack operation occurs over the course of
the next few cycles, then the design would clear its erroneous behavior
and the bug would go undetected. To detect this bug, the stack needs to
accumulate six new entries without another clean_stack operation. Only
then would the internal pointers move to the erroneously valid entry.

The checkers that would highlight this bug are more straightforward
than the driver scenario, but equally important. The bug could show up
in any one of the following three ways.

The first is a miscompare on the buf_ful output signal. The buf_full
comes on because the next_write points to an entry marked valid (but
should not be valid). Because there is supposed to be only six entries in
the seven-deep stack, the checker flags the bug.

The second way that the bug could manifest itself is as incorrect data
on the out_buf datal or out_buf data2. This occurs when the HDL
responds to a read request by sending the data in the stack position of
the erroneously set valid bit. The checking code predicts the output data
will be the first data written after the clean_stack occurred, but the HDL
returns different data and the environment finds the bug.

The final way that the checkers may discover the bug is when the HDL
sets the buf_overrun output signal too soon. This would occur when the
HDLs write pointer detects that it is pointing to a valid entry when
another write comes in. Once again, there is supposed to be only six
entries in the seven-deep stack, but the HDL incorrectly has all seven
entries marked valid.

Is it reasonable to believe that the best, most experienced verification
engineer would know to create this exact scenario? Maybe. However,
today’s hardware designs are orders of magnitude more complex, and the
bugs are even more devious. A verification engineer can never envision

2.2 Strategy of Verification 61

Thou shalt stress thine Thou shalt place Thou shalt not move

logic harder than it will checking upon all onto a higher level until

ever be stressed again things the bug rate has
dropped off

= FIGURE 2.15

The three simulation commandments edict robust stimulus, complete checking, and the rule for moving
to the next verification level.

all of the possible failing mechanisms in a complex design. To combat
the problem of increasing complexity, verification technology has
advanced to assist the verification engineer in uncovering even the most
difficult bugs.

The essence of verification lies in the fundamental completeness of the
stimulus and checking components, and the use of these components
across verification levels. This foundation is so important that it com-
prises the three simulation commandments shown in Figure 2.15. The
commandments edict the highest quality of stimulus, checker, and
monitor components and the appropriate time to move from one verifi-
cation level to the next.

2.2.5 The General Simulation Environment

Verification methodologies continue to evolve. In earlier days of hard-
ware design, engineers first performed verification on the fabricated
hardware itself. As the designs became more complex, design auto-
mation teams created simulation engines to model the behavior of the
design. Although Chapter 5 fully describes simulation engines, a descrip-
tion of the general simulation-based verification environment, which
became the springboard for the evolution of the methodology, now
follows.

Figure 2.16 shows the flow of the general simulation-based verifica-
tion environment. The verification engineer writes a test case and sup-
plies environmental data, such as initial values, to the simulation engine,
and the designer supplies the logic description in the form of an HDL.
In this picture, the test case is generic. No matter what the form of the

62 Chapter 2 = Verification Flow

Test case

Test case driver or

(not always
required)
Envi > Simulati ——
nvironment > Simulation
data »| engine — > Output
T Testcase results
Initialization
Run-time requirements
- Lo
Design » del
source Mode
VHDL
Verilog
= FIGURE 2.16

A typical simulation-based verification environment uses a test case, environmental data, and hardware
description language source code as inputs to the simulation engine.

test case, the environment presents it to the simulation engine either
directly or indirectly through a compiler or test case driver. The envi-
ronmental data may be required for both the test case driver and simu-
lation engine. A step called model-build compiles the HDL into a
simulation model, which is the format that the simulation engine uses
to step through cycles and reproduce the behavior of the design.

Simulation engines provide many types of outputs. All simulation
engines have the ability to produce traces of the activity that took
place within the design during the simulation run. Designers and verifi-
cation engineers use waveform viewers to read the trace output files.
Depending on the type of test case, other output files include data on
miscompares identified by the verification code, as well as text-based
results files.

2.2.6 \Verification Methodology Evolution

With the advent of simulation engines, the engineers drove simple, single
scenario test cases into the simulation model. The engineers observed
the behavior of the design by looking at a trace generated by the simu-
lation engine. Meticulous scrutiny of the trace revealed unwanted behav-
ior within the design. This type of deterministic verification is called test
patterns and is shown at the start of the verification methodology evo-

2.2 Strategy of Verification 63

~
Single scenario
[) Hand generated
Test pam) Hand checked
Hardcoded
NG
A - .
Single scenario
Test cases Hand generated
Self checking
Hardcoded
o | NG
£ p
|_ . .
Test case Test case Multiple scenarios
generators drivers Tool generated
Self checking
NG
4 A 4] R
Hardcoded Interactive on-the-fly generation
On-the-fly checking
More stress per cycle
Y
Coverage tools
Formal verification
= FIGURE 2.17

Verification environments continue to evolve. Early test cases had simple, handwritten stimulus and had
no automated checking. The evolution brought complex stimulus and checking, along with coverage
tools to the simulation-based environment. Additionally, verification engineers have added formal veri-
fication tools to their arsenal of bug-finding tools.

lution in Figure 2.17. The engineering teams hand-generated each test
pattern to perform a specific scenario, and hand-checked the results via
the simulation trace. Test patterns are deterministic or static, and require
routine maintenance when design changes occur that render the test
pattern invalid. Without maintenance, the team may lose the intent of
the test pattern.’

The process of scrutinizing traces of simulation outputs in search of
bugs is tedious and error prone. As verification methodology evolved,
self-checking test cases replaced the test patterns. Test cases were still
hand-generated and contained a single scenario; however, they differed
from test patterns in that the test case polls the simulation engine while
the scenario is running on the model and compares selected values
from the design with expected values from the test case. The design

* The design methodology also evolved because of complexity issues. Early designs were
captured at the gate level, but it became clear that the designers needed a level of abstrac-
tion to capture the intent of the design, without worrying about each gate. Register Trans-
fer Level design languages such as VHDL and Verilog were created to facilitate the design
process against the onslaught of complexity.

64

Chapter 2 = Verification Flow

engineer bases the expected values on his or her understanding of the
design function.

Engineers needed more and more test cases to accomplish their tasks
on the newer designs. Engineers began to specialize in the creation of
test cases, and the verification career was born.

At this point, verification engineers and designers wrote most test
cases in the register transfer level (RTL) language (e.g. VHDL or Verilog).
Test cases written in RTL are called test benches. Today, teams still use
the test-bench methodology for simple designs or for verifying a single
macro (designer-level verification). It is possible to create robust test
benches that drive multiple scenarios; however, it is clear that although
RTL is great for describing hardware design, it is not optimal for creat-
ing test cases.

Test Benches Evolve into Test Cases

As verification engineers looked at the onslaught of required test cases,
it was apparent that they needed further design automation to keep pace
with the growing design complexity. Verification engineers invented
test case languages to facilitate writing the input scenarios and checks
required for the given scenario. Test case languages varied from design
to design, but they generally captured the intent of the test scenario at a
level of abstraction higher than the bits and bytes that the verification
engineer needs to drive and check.

Although a verification engineer may create a test case language for
any type of DUV, a microprocessor test case is a special case in which
the engineer can use a test case language to create instruction streams.
A microprocessor test case example follows to illustrate the power of a
test case language.

Figure 2.18 shows a simple microprocessor test case language. The
test case defines initial values; a short, two-operation instruction stream;
and end-of-test case checks. This test case initializes four GPRs: GPRO,
GPR1, GPRS5, and GPR6. The two instructions, ADD and OR, use the
initialized GPRs as data operands and write the results into GPR2 and
GPR7. Note that the end-of-test case checks not only verify that the
design writes correct instruction results to GPR2 and GPR7 but also
verify that the operand GPRs remain unchanged.

Figure 2.19 shows a reusable test case translation program for the
microprocessor test case in Figure 2.18. The translation program allows
the verification engineer to focus on the scenarios that must be verified
rather than address the mundane task of initializing every byte in the
model or driving inputs. The verification engineer leaves these tedious
tasks to the test case parser, loader, mnemonic translator, and end
checking program routines. A simple routine such as the mnemonic
translator demonstrates how raising the level of abstraction eases the
burden of creating test cases. The mnemonic (such as ADD and OR)

2.2 Strategy of Verification 65

Test case ADD QR
Initializations

INIT GPRO “00000008”X

INIT GPR1 “00000005”X

INIT GPR5 “A5A5A5A5”X

INIT GPR6 “5A5A5A5A”X

Instructions

START ADDR “000050007X

INSTR ADDR “00005000”X OP ADD GPRO GPR1 GPR2
INSTR ADDR “00005002”X OP OR GPR5 GPR6 GPR7
FHAFResultsrx*

ENDCHECK GPRO *“00000008”X

ENDCHECK GPR1 *“00000005”X

ENDCHECK GPR2 *“0000000D”X

ENDCHECK GPR5 “A5A5A5A5”X

ENDCHECK GPR6 “5A5A5A5A”X

ENDCHECK GPR7 “FFFFFFFF”X

= FIGURE 2.18

A simple simulation test case language for microprocessor verification initializes internal design under
verification latches, defines an instruction stream for stimulus, and provides end-of-test-case values for
results checking.

Microprocessor
test case

Microprocessor test case
translator and simulation
driver

Test case parser

/

Mnemonic End checks
translation

table

Test case
loader

Yy

Simulation
engine

= FIGURE 2.19

A test case environment allows the verification engineer to create multiple test cases by raising the
abstraction level for the verification engineer.

is a programming level representation of a multibit code that “instructs”
a processor to perform a specific operation. Rather than requiring the
test case writer to memorize the multibit op-code for each instruction,
the test case language uses the user-friendly mnemonic. Furthermore, the
use of mnemonics in the test case makes for easy test case readability.

66

Chapter 2 = Verification Flow

With the test case translation routine in place, the verification engi-
neer can quickly modify the ADD operands to verify the design of the
adder. The verification engineer pays special attention to creating test
cases with operands that hit corner cases such as overflows. The verifi-
cation engineer would also write test cases that verify that any GPR can
be used for the ADD instruction, as well as the case in which the results
of the ADD overwrite one of the operands. The verification and design
teams can conceive of dozens of test cases to verify the adder, as well as
any other of the hundreds of instructions. That is thousands of test cases
required to verify single instructions. Thousands more test cases are
needed to verify that every instruction can follow every other instruction.
Writing each of these test cases by hand would be an overwhelming task,
even for a large verification team.

Test Case Generators and Test Case Drivers

With the need for so many test cases, verification teams realized they
needed further advances in test case automation. At this point in the
evolution, verification engineers invented two separate technologies that
revolutionized simulation-based verification.

The first technology was a direct result of the overwhelming number
of test cases required to verify a design such as a microprocessor. Rather
than hand-generating (at a keyboard) individual test cases for each sce-
nario, verification and tools designers created expert software systems
that use test case templates as inputs. These expert systems have built-
in knowledge of the microprocessor architecture. This raises the abstrac-
tion for the verification engineer to the next level. Now, rather than
calculating each operand needed to verify that the adder overflow works,
a template with keywords such as OVERFLOW tells the test case gener-
ator the desired type of test case. A single template can create hundreds
of different test cases, all with similar attributes. Templates can be very
specific or very generic. For example, a template might call for a specific
instruction (e.g., ADD), or it could specify a choice of any instruction that
uses the fixed-point unit of the microprocessor (e.g. ADD, SUB, OR, XOR,
AND, Shift Left). Innovations such as test case generators allowed veri-
fication engineers to focus on the intent of their test plans rather than
spend their time manipulating bits and bytes of inputs.

Automated test case drivers were the second technology developed
after basic test cases. Test case drivers differ from test case generators in
that test case drivers do not produce a test scenario that can be viewed
before simulation. Whereas the test case generator produces many test
cases that hit specific cases, the test case driver is designed to understand
the input protocols and manipulate the design’s inputs on-the-fly during
simulation. Test case drivers are interactive programs that continuously
interface with the simulation model. Rather than using pregenerated
test cases as the source, test case drivers make real-time decisions about
what to drive on the DUV inputs. Test case drivers replace the test case

2.2 Strategy of Verification 67

Parameter file

STORE 30
FETCH 25
STORE QW 15
FETCH EXCL 10
NO 0P

CMD_VLD(0) RSP_VLD(0)

—

|, CMDC0:3) RSP(0:2)

Test case DATA_IN(0:31) Cache
driver > CMD_TAG_IN(0:7) design DATA_OUT(0:31)

—

CMD_ADR(0:23) CMD_TAG_0OUT(0:7)
= FIGURE 2.20

Under the test case generation paradigm, the test case driver uses a parameter file to make decisions
on input stimulus to the DUV. In this case, the DUV is a cache. This parameter file shows weightings
for different cache commands.

generator templates with parameter files, which use probabilities and
pseudorandom number generators to bias the controls of the design
inputs. These parameter files guide the real-time decisions made by the
driver.

Figure 2.20 shows a generic test case generator setup for a few of the
inputs to a cache. The biasing in the parameter file directs the test case
generator to drive commands based on the specified ratios, or weight-
ings. The parameter file shows only command biasing for illustration
purposes; a real cache parameter file would contain many biasing fields,
including address ranges and data patterns. When the cache DUV inter-
face allows the driver to send a command, the test case generator chooses
one of {STORE, FETCH, STORE QuadWord, FETCH EXCLusive, or NO
OPeration} by using a pseudorandom number generator and the weights
from the parameter file. In this example, the driver would choose the
STORE command 30% of the time on average. The test case generator
then manipulates the input lines (valid, command, data, and tag) as dic-
tated by the cache input protocols. Designers must document these pro-
tocols and the verification engineer who creates the driver program must
understand the precise protocols, but the intent of the driver is to
abstract this low-level detail out of test case creation. In all cases, check-
ing code (not pictured) verifies that the DUV provides the correct
response for each command and that fetch data matches previous store
data for the given address.

68

Chapter 2 = Verification Flow

Initially, verification engineers wrote test case drivers in general-
purpose programming languages such as C or C++. This remains an
acceptable and viable solution. Recently, the use of High-Level Verifica-
tion Languages (HVLs) has further eased the creation of robust verifica-
tion driver and checker environments. HVLs are described in Chapter 6.

Coverage and Formal Verification

Test case drivers and generators provide the ability to run enormous
numbers of test cases. Server farms dedicated to running simulations
have grown to handle all of these test cases. However, the creation of
pseudorandom, on-the-fly test cases led to the need for more observ-
ability of what sequences test cases actually generate. Verification engi-
neers accomplished this by capturing the scenarios that the test cases
create. Coverage is the collection of information about the scenarios run
against a DUV. Coverage metrics allow verification engineers to be sure
that their test cases actually hit the scenarios that they intended to create.
Coverage metrics also help show the effectiveness of the test case
automation by highlighting unexercised areas of the design.

Continuing with the evolution shown in Figure 2.17, effective formal
verification engines further expanded the tool kit available to the verifi-
cation engineer. This technology departs from the use of simulation
engines by using automated mathematical proofs to show that a prop-
erty of the design holds for all cases. Whereas simulation-based tech-
niques show that for a single path in the design (a test scenario) all
properties are upheld (checkers), formal verification shows that a single
property holds for all paths. The initial drawback of formal verification
engines was that the engines could model only very small portions of the
design (less than 100 latches). Recent advances continue to improve the
size constraints, making formal verification complementary to simula-
tion-based verification techniques. We explain the details of formal
verification in Chapters 11 and 12.

Timeframes of the early evolution in verification methods differed
from one design company to another. Until the mid 1990s, the main
technology available from the EDA industry was simulation engines.
Hardware design companies developed test case generation and driver
techniques in-house. In contrast, today, the EDA industry provides some
of the most advanced engines for both simulation and formal verifica-
tion methods.

2.3

SUMMARY

As design complexity increases, the design teams break their HDL into
logic partitions, which come together in a hierarchy. Verification teams
take advantage of the hierarchy in the same manner and split their work

2.4 Exercises 69

into hierarchical levels. The team must decide which hierarchical levels
to use on a project, based on its unique features. The team bases their
choice of levels on multiple factors, including location of highly complex
functions, specification availability, work force, and evolutionary versus
new design implementation.

Once the team chooses the levels of hierarchy, each environment must
focus on the cornerstone of verification: driving and checking. Robust
drivers and complete checkers are both required for effective verification.
One is no good without the other.

Robust drivers require an understanding of the inputs to the DUV. The
goal for the verification engineer is to create all possible scenarios, but
that is not feasible on the largest designs. In any case, the verification
engineer must maximize the scenario generation capability of the envi-
ronment. This process includes driving all possible command and control
signals and driving a varied array of values on data signals. Equally
important is the creation of edge cases, in which unique exceptions and
odd combinations of inputs often uncover bugs in the DUV.

A complete set of checkers comes from multiple sources. One
source is the DUV output signals, from which the verification engineer
can create basic checks. Another source is the design context, which
supplies the verification engineer with a greater understanding of the
underlying function. Finally, the architecture and microarchitecture
specify the exact behavior that the DUV must exhibit and the design
implementation.

Driver and checker practices evolved over time. In their early form,
engineers imbedded stimulus in test patterns—hand-coded bit-level DUV
inputs. Verification has grown enormously from these simple roots.
Advances in test case techniques have raised the level of abstraction,
allowing the verification engineer to focus on creating scenarios and
results checking through automation. Recent advances brought coverage
and formal verification tools into the mix. Each advance in methodology
further strengthens the verification engineer’s capability at all levels of
the hierarchy.

24

EXERCISES

1. We return to the town of Eagleton, where the town board has
awarded a new contract to the development team at Eagleton Signal
Controllers and Parking Engineering Solutions (ESCAPES). The con-
tract stipulates that ESCAPES should design and deliver a parking
lot controller for the new, state-of-the-art parking garage.

The garage is a multilevel structure with 500 parking spots. The town
council has decided to base the parking fees on an hourly charge,
with a maximum charge for 8 hours. With this in mind, the team at

70 Chapter 2 = Verification Flow

Lot_full(0)

New_car_id(0:8)

New_car_entering(0) >

Y

New_car_time_hour(0:5)

Exit_car_valid(0) DUV Newfcarftimefminutes(0:6):

Exit_car_id(0:8)

= FIGURE 2.21

Exit_car_cost(0:2)

The input and output signals for the parking lot controller design under verification in Exercise 1.

ESCAPES designs a chip with inputs and outputs as depicted in
Figure 2.21.

The design team breaks the inputs to the chip into two parts:

1.

2.

An indication that a new car is entering the garage
(new_car_entering(0))

An indication that a car 1is leaving the garage
(exit_car_valid(0) and exit_car_id(0:8)). The controller
assigns the 9-bit ID to the car when it enters the garage. Nine
bits accommodates the 500-car capacity.

The outputs to the chip are in three parts:

1.

A single bit to indicate that the lot is full (lot_full(0)).

A set of signals for cars entering the garage. New_car_id
assigns the car a 9-bit ID tag. The chip also outputs the
time (in hours and minutes) that the car arrived
(new_car_time_hours(0:5) accommodates 24 hours, and
new_car_time_minutes(0:6) accommodates 60 minutes). The
controller also saves the time in an internal array associated
with the car identification number.

Exit_car_cost(0:2) indicates the number of hours that the car
was in the lot (up to 8 hours) and rounded up to the next hour.

As Eagleton’s chief verification engineer, you have the job of verify-
ing this chip. What scenarios must your team create? What checks
are required? Is the input and output definition sufficient?

2. Figure 2.22 shows the interface of a household temperature con-
troller. The user can set the temperature between 60°F and 100°F.
The chip has a mechanical temperature sensor and has the follow-
ing inputs and outputs:

2.5 Exercises 71

Temp_up(0) Heat_on(0)

Temp_down(0) Cool_on(0)
DUV

Temp_set(0:6) Desired_temp(0:6)

Enter(0) Current_temp(0:6)

>

= FIGURE 2.22

The input and output description for the temperature controller design under verification in Exercise 2.

Processor

Instruction
buffering

Execution

fli

E— ? Registers I
g- Ethernet

E— g Shared bus —

— & | PCI-E |—
£

- ||| € —

S I
— Cache Encryption —

control engine

Error correction
code engine

= FIGURE 2.23

Logical connections of the card in Exercises 2 and 3. This card plugs into a system that may have up
to 15 more identical cards.

Inputs:
= Temp_up(0) is the request for increasing the temperature by
1°.
» Temp_down(0) is the request for decreasing the temperature
by 1°.

= Temp(0:6) and Enter(0) function together to set the tempera-
ture to a particular value.

Outputs:

= When asserted, Heat_on(0) turns on the heater.
= When asserted, Cool_on(0) turns on the air conditioner.

72

Chapter 2 = Verification Flow

= Current_temp(0:6) displays the current temperature.
= Desired_temp(0:6) shows the requested temperature.

The specification for the temperature controller follows. The con-
troller reads inputs at the beginning of each clock cycle. If the
homeowner asserts Temp_up(0), the controller must update
Desired_temp to the new value (Current_temp + 1) at the beginning
of the next clock cycle. Conversely, if the homeowner asserts
Temp_down(0), the controller decrements Current_temp.

At any given cycle, the controller asserts Heat_on if [Desired_temp >
Current_temp]. Similarly, the controller asserts Cool_on if
[Desired_temp < Current_temp]. If [Desired_temp = Current_temp],
then the controller sets both Heat_on(0) and Cool_on(0) to “0”b.
Finally, the controller never sets Heat_on(0) and Cool_on(0) simul-
taneously.

You have the job of verifying this chip. What scenarios must you
create? What checks must you implement?

The card in Figure 2.23 depicts a design that plugs into a backplane.
The backplane may contain up to 16 of these cards. Describe the
levels of hierarchy and components at each level needed to verify this
system.

Where would the verification engineer obtain input and output
definitions for the Ethernet and PCI-E units shown in Figure 2.23?

CHAPTER 3

FUNDAMENTALS OF SIMULATION-BASED
VERIFICATION

This chapter introduces a simple simulation-based verification environ-
ment, explores the individual elements (also known as verification
components) that comprise the verification environment, and examines
the driver and checker concepts that were introduced in Chapter 2
(by discussing the details of the verification components and their
interactions).

In addition, this chapter covers the depth to which a verification team
needs to understand the functions they are verifying in order to create a
robust set of verification components, expands on the black box verifi-
cation paradigm by introducing two other paradigms that the verifica-
tion team must understand, and includes a discussion on the extent that
the team needs to understand the design intent and implementation.

As the complexities of verification compound, designers can partici-
pate and assist in verification by using a new paradigm called assertion-
based verification. This chapter gives an overview of assertion-based
verification and how it relates to the different verification paradigms.

This chapter concludes by presenting different strategies of testing,
discussing how the verification environment is structured and how the
verification components interact with one another, as well as how the
depth implementation knowledge that the verification team has affects
the testing strategy.

3.1

BASIC VERIFICATION ENVIRONMENT: A TEST BENCH

The verification environment models the universe for the design and
must support all actions that can happen to the design. The basic envi-
ronment consists of the design or logic that is being verified, stimulus
components, monitor components, checking components, and score-
board components (some environments may not include a scoreboard).
Figure 3.1 shows a diagram of a basic verification environment.

This environment is referred to as a test bench. In general, a test bench
is all the code used to create, observe, and check a pre-determined

74

= FIGURE 3.1

Chapter 3 = Fundamentals of Simulation-Based Verification

Stimulus >
”' responder [>| Checker =
Stimulus
initiator A
_I—/w»

o> DUV >| Monitor
Stimulus : - I
initiator B

L—»| Scoreboard [

Basic verification environment: a test bench. (Some environments do not include a scoreboard.)

(“deterministic”) input sequence to the design. This pre-determined input
sequence may be generated in a direct approach or by a random method.
The test bench, or environment, is a closed system, meaning that the top
level of the test bench has no inputs or outputs. It is effectively a model
of the universe from the design-under-verification (DUV) standpoint.

The verification engineer must create the code for the components of
this test bench universe, and the logic designer creates the hardware
description language (HDL) for the DUV. These components can be
written in the HDL itself, in a language that was designed for verifica-
tion (HVL, a high-level verification language covered in Chapter 6), or in
a general-purpose programming language such as C/C++. In the case of
an HVL or programming language, the code communicates to the sim-
ulation engine through an application programming interface (API).
Occasionally, it is necessary to mix and match the languages in which
the components are written. An outside customer’s model may even be
required in the verification environment.

The challenge for a verification engineer is to create a test bench that
stimulates the design with interesting input patterns (ideally, these
patterns should cover all the functionality of the design if possible, or at
least as much as possible) and calculates the expected responses for the
outputs based on those input patterns. The design can be said to be func-
tioning as intended by exercising all the functionality and by predicting
and checking all responses.

The sections that follow look at each component in the test bench.

3.1.1 Stimulus Component

The stimulus component manipulates inputs to the DUV. Stimulus
models are also known as drivers, behaviorals, agitators, irritators, or
generators. Typically, the stimulus component code mimics the behavior

3.1 Basic Verification Environment: A Test Bench

8 & (oN
2 Duv ¥ %9 — puv
£ Q" Neighboring %
0 S design
Y
% component
Uy,
/ﬁ,%s
(a) DUV with Stimulus (b) DUV with actual logical input
component connections

= FIGURE 3.2

75

Stimulus component. The stimulus component need not model the real design component.

of a neighboring design entity or entities. In creating the stimulus com-
ponent, the verification engineer should not model the entire behavior of
the neighboring design component; instead, the stimulus component
should only mimic the interface inputs to the DUV. This not only makes
the simulation code easier to maintain but also allows the stimulus
engine to drive the interfaces free of the burden of the realities of the
neighboring design component it is mimicking. The stimulus component
only needs to concern itself with the behavior of the inputs that affect

the DUV, as shown in Figure 3.2.

For example, the real design component (Figure 3.2b) may have an
eight-deep queue that, when full, inhibits sending a control signal to the
DUV, even if the DUV could accept the control signal. The stimulus com-
ponent only concerns itself with the availability of the DUV to accept the
control signal, not whether the real design component’s queue is full

(Figure 3.2a).

This is a key concept in verification. The stimulus engine must drive
what the DUV is capable of accepting and not restrict itself to what the
real neighboring design component might send. This allows the verifica-
tion engineer to exert a maximum amount of stress on the DUV. If
possible, this stress level should exceed that which will ever occur in a
customer environment. By exceeding the limits of the design, the verifi-
cation engineer is more likely to encounter seldom seen occurrences,
called corner cases, in the DUV. These corner cases otherwise might
never be seen until hundreds of trillions of cycles of hardware test. This
concept of “over-stressing” the DUV allows the verification engineer to
compete with the relatively infinite number of cycles run in fabricated

hardware.

All stimulus components must understand the complete interface
protocol; that is, they must be capable of mimicking all possible varia-
tions of the protocol. This must occur so that the DUV is stimulated in
all possible ways. Without full protocol stimulus capability, the model is

incomplete.

76

Chapter 3 = Fundamentals of Simulation-Based Verification

Sometimes these verification components have configuration settings
that allow the model to work in different environments or levels. These
settings indicate to the stimulus component how it should behave. For
example, given an Ethernet stimulus component, a configuration mode
may exist to allow it to only create jumbo Ethernet packets.

It is also interesting to place a model in a mode in which all it does is
generate bus traffic that is not used. This just irritates the system with
“noise.” Then when real bus commands are performed, different results
occur because the irritator is running.

A final job of the stimulus component is to track its activity for pos-
sible post-simulation analysis of the test case. The stimulus components
should record events into a file used for initial test case debugging.

The particular details for both initiators and responders are discussed
in the sections that follow.

Deciding What To Model

The verification engineer should use the design specification when decid-
ing on what to model from a behavioral standpoint. If the DUV does not
have a specification, the verification engineer should interview the
designer of the neighboring design component to understand the proto-
cols. This provides a cross-check of the DUV designer’s assumptions. At
this level, the verification team should find miscommunications between
designers.

The verification engineer should not rely on the DUV designer for
interface protocol specification because this breaks the redundancy
model built into the verification cycle (discussed in Chapter 1). The
designer could misunderstand a part of the agreed on communications
scheme and thus bias the stimulus model such that both the HDL and
the stimulus component code the incorrect or incomplete behavior.
Occasionally, this does occur, and the misunderstanding is not found
until the next higher verification level when the two real components
exist together. However, as discussed in Chapter 2, there will be less
control over this interface at the next level of verification, and the mis-
understood scenario may never be created. A second concern with receiv-
ing input definitions from the designer of the DUV is that the designer
may bias the verification engineer about what will occur on the interface.
This could lead the verification engineer to miss stimulating certain
boundary conditions.

The deterministic test bench stimulus component mainly has outputs
that drive the DUV. The only inputs to these stimulus components will
be those necessary for their behavior, such as a clock or reset signal.
However, more complex stimulus generation components will have
inputs that control the stimulus generation.

There are two types of stimulus models: initiators and responders. An
initiator is a stimulus model that will initiate a transaction or transac-

3.1 Basic Verification Environment: A Test Bench 77

CMD_VLD(0) . RSP_VLD(0)

CMD(0:3) > RSP(0:2)

DATA_IN(0:31) Cache

CMD?TAG?IN(OJ; design DATA_OUT(0:31)

CMD_ADR(0:31) : CMD_TAG_0OUT(0:7)
Initiator stimulus i

= FIGURE 3.3

Initiator stimulus.

tions to the DUV; a responder reacts to outputs from the DUV and feeds
stimulus back into the DUV.

Initiators

All verification environments, simple simulation based or advanced,
require driving the bit-level stimulus into the DUV as defined by the pro-
tocols. This portion of the environment requires the verification engineer
to have detailed knowledge of the complete interface definition. This is
the protocol component of the initiator. As an example, this chapter
builds on the cache design shown in Chapter 2 (see Figure 2.20). Figure
3.3 shows that the protocol component needs to drive five separate
signals and buses comprising 77 total bits.

In this example, the protocol component must understand the decode
values and relative timings required by the cache for initiating a valid
request. In this cache design, a 64-bit store request is represented by a
“5”x value on the command bus. Up to 15 other request types may exist
with different CMD(0:3) decode values. The valid bit must accompany
the request, along with the tag, address, and first 32 bits of data. The next
32 bits of data follow on the next cycle. Figure 3.4 shows the trace of a
single store.

The protocol component acts as a slave to the generation component.
Although the protocol component handles low-level bit manipulation
into the DUV, it is the role of the generation component to supply the
higher-level request. In the cache example, the generation component
dictated the sending of a 64-bit store request to address “01357900”X. In
a deterministic environment, this might be the only request sent to the
cache. More than likely, however, the test case will contain more requests
for the DUV, such as more stores to similar addresses or fetches that
collide with the stores. On an interface such as the cache, the generation
component will feed the protocol component one request at a time as
determined by the simple test case.

78 Chapter 3 = Fundamentals of Simulation-Based Verification
Cycle 0 1 2 3 4 5

CMD_VLD 0:0 ETE

CMD 0:3 | ‘0101'b I

DATA_IN 0:31 | 1 11223344x | ‘55667788 |

CMD_TAG_IN 0:7 | 24°x I

CMD?ADR O : 31 I ‘01357900'x I

= FIGURE 3.4

Cache input timing for a single store request. This figure shows the input signal values driven by the
stimulus component into the cache design.

The microarchitecture of the DUV will dictate how the generation
component knows when it is legal to supply a new command to the DUV.
Invariably there are two ways that any design communicates availability
of its resources to a requestor. The two choices are as follows:

1. The requestor knows the depth of the resource and keeps track
of it.

2. The owner of the resource supplies an “available” signal to the
requestor.

To illustrate this, suppose that the microarchitecture of the cache
example contains a buffer than can hold up to eight fetch requests con-
currently. If at any time during the test case, the generation component
(requestor) sends a request to the DUV such that the cache had nine
outstanding fetch requests, then an illegal test case with an overwrite
condition occurs. Therefore, the generation component must implement
the same resource availability determination as the microarchitecture.
Either the generation component must keep count of the number of out-
standing fetches in the cache (number of fetches sent minus the number
of fetches completed), or the cache must supply a signal indicating that
the buffer is full.

In both cases, a feedback mechanism is required to prevent the gen-
eration component from illegally initiating a request. Often, the score-
board component of the verification environment (described later in this
section) participates in this feedback. In the simplest terms, a scoreboard
is a temporary holding location for information that the checker will
require (described later in this chapter). The generation component must
contain the intelligence to know when resources are available.

Implementation decisions abound even in a simple example such as
this cache. Depending on the significance of the CMD_TAG_IN(0:7) line,

3.1 Basic Verification Environment: A Test Bench 79

the test case writer may want control over the values. If this were the
case, the generation component would also send the tag with the request.
On the other hand, if the tag were used only as an identifier to be escorted
along the request path, it would suffice to have the protocol generator
supply a unique tag to the DUV with each request. A simple incremen-
tor would satisfy the protocol as long as the protocol generator guarded
against duplicate outstanding tags (assuming that the design forbids
having duplicate tags in the DUV concurrently). Similarly, there is a deci-
sion to be made on the DATA_IN(0:31) values, as they could be randomly
generated by the protocol component or strategically chosen by the test
case writer.

The separation of the generation and protocol components is impor-
tant. Most interfaces are not as trivial as this cache example and have
multiple concurrent or overlapping interactions and many more control
and data signals. Breaking these components apart simplifies the coding
of the environment. This structure has other benefits as well: a separate
protocol component allows the test case writer to think more about the
transactions rather than focus on the bit-level manipulations, and fur-
thermore, a well-defined interface between the generation component
and the protocol component allows for substitution of generation com-
ponents. Simple test bench environments often precede complex random
environments. The verification team avoids redundant work by creating
stand-alone protocol components, allowing current and future genera-
tion components to plug into them. The stand-alone protocol component
is also referred to as a Bus Functional Model (BFM), a model that
performs the bus function.

This type of stimulation of the DUV is called “transaction-based”
verification. The basis for the simulation is all types of transactions,
generated in a random or directed fashion.

Responders

The second type of stimulus component, responders, reacts to outputs
from the DUV and feeds stimulus back into the DUV. The difference
between an initiator and a responder is that the responder acts as a slave
to the DUV. It will only send stimulus back into the DUV as a result of a
request, command, or other demand from the DUV.

Continuing with the cache example, Figure 3.5 shows a main storage
memory component that communicates with the cache. The memory
receives either a store or fetch command from the cache and must act
on that request. The memory itself never initiates communication.

For verification of the cache, the memory is replaced by a main store
responder stimulus component. When receiving a store command along
with an address and data, the main store will react at the appropriate
time with a response. For a fetch command, the main store component
will return both a response and the requested data.

80 Chapter 3 = Fundamentals of Simulation-Based Verification

Main store
responder
[N I} .
<t | — ~| <
—~ Nej — — O
— |~ o
ol ol .- ol o
o el =) —~| —
| <| = a | <
Qf —| n| =
= <| o | <<
Ol O < x| O
Yy VY
CMD_VLD(0) -~ RSP_VLD(0)
_ CMD(Q:3) - RSP(0:2)
Generatlorl Protocol . DATA_IN(0:31) Cache
componen componen > i .
CMD_TAG_IN(0:7) design DATA_OUT(0:31)
CMD_ADR(0:31) _ CMD_TAG_0UT(0:7)
Initiator stimulus

= FIGURE 3.5

Memory stim

ulus acting as a responder.

Variability is allowed in the sequence with the responder. In the cache
to main store example, there can be variability in the response (success-
ful completion or failure) and in the number of cycles between command
and response (if the timing is not fixed allows). However, in simple
simulation environments, the test case writer pre-determines the timings
and values.

3.1.2 Monitor

A monitor is a model that observes different aspects of the environment.
Monitors are self-contained components that observe

= Outputs of the DUV for protocol adherence

= Inputs to the DUV for functional coverage analysis and scoreboard
updates

= Internals of the DUV for events of interest to the environment

At a minimum, the monitor must observe the outputs of the DUV. If
the DUV does not adhere to the protocol, then the monitor must return
an error. The monitor does not drive any signals or wires into the DUV;
it only receives inputs and/or callbacks to it. By developing a monitor in
this fashion, the verification engineer ensures it is reusable at other
levels.

3.1 Basic Verification Environment: A Test Bench 81

Main store
responder
11 —
< | —~ ~| <
—~ Ne) — — Ne)
N o
LS Sl S
o ~ o ~ | ~—
— | <<| — a | <
o —| < | =
=| <| 2 | <<
Ol O] < x| o
N Y v
CMD_VLD(0) . RSP_VLD(0) _
_ CHbe0:3) - RSP(0:2) _
cGoer:g:)ar::aonrl cg’%o;;gg(;t DATA_INCO:31) Caghe - Monitor
CMD_TAG_IN(Q:7) design DATA_OUT(0:31) .
CMD_ADR (0:3[1) CMD_TAG_OUT(0:7)
Initiator stimulus

= FIGURE 3.6

Monitor observing the cache design under verification.

Figure 3.6 shows the monitor added to the cache environment. The
monitor verifies that the DUV obeys the output protocols at all times. In
this case, the monitor must check the following:

= RSP_VLD(0) (the response valid signal) always accompanies a valid
response.

= The RSP(0:2) signal, when accompanied by the valid signal, has
legal values (e.g., 001 = success; 010 = parity error; 011 = retry due
to busy; 100 = illegal command sent; all others are illegal response
decodes).

In addition, the monitor may check for the following, depending on
the environment and protocols:

= The RSP(0:2) signal never is on in the absence of the RSP_VLD(0)
signal. Depending on the protocol, the outputs may be required to
be zero unless a valid response is being sent.

= The tag is correct; that is, it matches with a tag sent previously by
the initiator component.

When deciding on how to monitor the outputs for protocol adherence,
the verification engineer should refer to the specification. Similar to the
stimulus model, if the DUV does not have a specification, then at a
minimum, the verification engineer should communicate with the archi-
tect and the designer of the piece of logic on the receiving side of the

82

Chapter 3 = Fundamentals of Simulation-Based Verification

DUV. The independence of the verification engineer is lost if information
on how the monitor should work is obtained from the designer, who
could misunderstand a part of the correct communication and protocol
scheme and thus bias the verification checking.

However, the monitor may need to probe internals of the DUV to
collect information to pass on to the checker or scoreboard components.
In this case, the verification engineer should limit the internal probes and
beware of breaking the redundancy path by relying on the design for too
much information.

In all the above scenarios, the monitor can use this information to
generate functional coverage data (for more information on functional
coverage, see Chapter 6).

In sophisticated environments, the stimulus components may use
coverage information (either from internal DUV probes or from DUV
inputs) collected by the monitor to adapt the stimulus for a more stress-
ful or diverse DUV simulation (for more information, see Chapter 14).
This is called coverage directed generation.

A final job of the monitor is to provide post-simulation information to
the verification engineer. The monitor should be able to record interface
events to a runtime file, formatting it for readability and debugging
assistance.

3.1.3 Checker

A checker is a special type of monitor that only collects DUV outputs.
However, it validates that the design is working as intended from a
functional standpoint, not just from a protocol standpoint.

The checker tends to be one of the harder components in the envi-
ronment to get correct, as the verification engineer must implement
many functional checks within the component. It is not only challenging
to get individual checkers working correctly for all cases but also imper-
ative that the verification engineer conceive of all the required checking.
This is fundamental to the question, “How will I know if the design has
a flaw?”

In the past, verification engineers performed the functional checking
by reviewing the test case traces by hand and looking for specific results
on the DUV outputs. Often, the reference model for the DUV was in
the verification engineer’s head. Although this was an arduous process,
the designs were simpler and contained fewer corner conditions and
complex interactions. As design complexity increased, verification engi-
neers transferred the intelligence behind the checking from their own
knowledge to automated software checker components.

The checker may need knowledge from a monitor or scoreboard to
accomplish its task. The checker needs to understand what stimulus has
occurred in order to independently predict functional results. Because
there may be multiple requests and interaction stimulus in a single test

3.1 Basic Verification Environment: A Test Bench 83

case, the checker needs to correlate input requests with output responses.
The checker code compares these expected results against actual outputs
of the DUV. If the results match, the test case continues or completes
successfully. If the results miscompare, the checker will write a failure
message to a debug file, noting the actual and expected results along with
other information needed to understand the failure.

Checkers monitor for various types of error types:

= All requests receive responses (no lost data, commands, packets,
etc.)

= All outputs match predicted values (response codes, data, packets,
etc.)

= No superfluous output activity (outputs that do not correspond to
any stimulus)

Remember, the monitor component performs checks that are more
mundane:

= Parity and check-bit correctness
= Actual data transfer length corresponds to header transfer length

= Other checking that does not require knowledge from the stimulus
components

3.1.4 Scoreboard

A scoreboard is a relatively new term, although the concept has been
around for a long time. In the simplest terms, a scoreboard is a tempo-
rary holding location for information the checker will require.

A checker can use a scoreboard in two ways. The main difference
between the two methods centers on which component does the trans-
lation from inputs and expected outputs. The component that performs
this function acts as the DUV reference model and contains the check-
ing intelligence.

In the first method, the checker component contains the reference
model. The scoreboard’s role is to examine the inputs for transactions to
occur, capture pertinent information, and store the information for later
use. Then when the checker observes some condition on the outputs of
the DUV, it makes a call to the scoreboard to get the data (referred to as
a callback).

The scoreboard implementation depends on the functionality that is
contained in the DUV. If the DUV has a simple first in, first out (FIFO)
protocol, then the scoreboard would also contain a simple FIFO, and the
data returned would be from a callback such as “pop expect from port
1.” Or if the DUV had a complex queuing algorithm, then a much more

84 Chapter 3 = Fundamentals of Simulation-Based Verification
Main store
responder
A A A
S~ ~| & Checker
~| ©| — —| O
— e N ..
[=3 R ol o
O | © | ~— l
~— <C ~— o <C
ol —| n| =
= <| 2 w| <<
ol ol < x| o
X Y v
CMD_VLD(OD _ RSP_VLD(D) _
. CMD(0:3) > RSP(0:2) _
foemnﬁf)arffn? ccf’r:\OptgﬁZLt DATATNC0G31) Cache | Monitor
CMD_TAG_IN(0:7) design DATA_OUT(0:31) .
CMD_ADR (Q:3[L) CMD_TAG_PUT(0:7) |
Initiator stimulus)
H[Scoreboard WA
= FIGURE 3.7

Checker comparing responses.

complex function such as a search based on port number would need to
be performed in the scoreboard in order to return the correct data. Once
the scoreboard returns the data, the reference model in the checker
“transforms the data” into expected results and then compares those
results to the actual DUV output signals.

In the second method, the scoreboard is the reference model and does
the expected result calculation based on the input stimulus it observes.
When the checker observes DUV output events, it then queries the score-
board for the expected data and performs the compare.

Figure 3.7 shows the checker and scoreboard components added to
the cache design verification environment. To illustrate the two reference
model cases described above, consider the required checking on a
command that fetches data from memory address “01234500”X with a
tag of “23”X.

In both cases (in which the checker or scoreboard contains the refer-
ence model), the following basic sequence occurs. The scoreboard
observes and records the initiator stimulus, sending a fetch command to
the cache design. The scoreboard must observe the stimulus on the inter-
face, rather than have the initiator stimulus component write the data to
the scoreboard directly. The independence of the scoreboard and stimu-
lus generator is important for component re-use at later levels of the
verification hierarchy.

The scoreboard also records other command stimulus. The informa-
tion about the commands that are outstanding in the DUV is stored in a

3.1 Basic Verification Environment: A Test Bench 85

table. The index into the table is the command tag. Soon after receiving
the fetch command, the DUV forwards the fetch to the main store
memory. The checker observes this action and queries the scoreboard,
ensuring that there was a fetch command to address “01234500”X in the
system. When the main store responder component responds to the fetch
request with data, the scoreboard writes the data into the table. The
cache design finishes the fetch transaction as it drives the response, valid,
tag, and data output signals. The monitor verifies that as the RSP_VLD(0)
signal is raised, there is a valid decode value on the RSP(0:2) bus.

At this point, the final checks are required. In the case in which
the checker component has the reference model, it will query the score-
board for all data in the table indexed by the value of the tag on
the CMD_TAG_OUT(0:7) signal. The scoreboard dumps the data to the
checker for the final checks. If the scoreboard has no valid data corre-
sponding to the tag index, then one of the following is true:

= The DUV has corrupted a tag.
= The DUV is returning a tag that has previously been returned.
= The DUV has “made-up” a tag.

= The scoreboard has a bug.

However, in this case, the tag of “23”X has a valid entry in the scoreboard
table, and the checker receives the values saved in the table. It is then
the checker’s job to compile the expected results and compare it to the
DUV output data. In some cases, this might entail manipulating the data,
depending on the format of the main store responder inputs and the
expected outputs of the DUV.

In the case in which the scoreboard contains the reference model code,
the checker will still send the scoreboard the tag index. The scoreboard
will compile the data, including any reformatting or manipulation, and
send the exact expected results to the checker for final comparison to the
actual DUV outputs.

In both cases, any failures or miscompare values should be recorded
to an output file for debug purposes. Depending on the severity of the
observed error, the test case halts after hitting the failure.

Either of the above divisions of work between scoreboard and checker
is acceptable. However, it is important that the choice of reference model
placement remains consistent. The same paradigm should be followed
for all DUV checking throughout the environment.

3.1.5 Design Under Verification

The last component, the DUV, is the center of the verification environ-
ment and is also known as the unir under test (UUT) or the device under

86

Chapter 3 = Fundamentals of Simulation-Based Verification

test (DUT). Most of the other components interact with the DUV. If there
are bugs in the DUV, the verification team must find them.

The DUV source is the HDL itself. Whether running a simulation or
formal verification, the source HDL gets interpreted or compiled into the
DUV model (depending on the tools and HDL source used), which the
verification team uses for its simulation. The specific interpreter or com-
piler differs depending on the electronic design automation vendor, but
in all cases, the DUV is an accurate representation of the HDL.

The DUV can be from any level of the hierarchy. The DUV in Figure
3.1 can represent a sole designer macro, a logical unit, a chip, or an entire
system. Regardless of the level, the verification engineer must customize
stimulus and checking components, scoreboards, and monitors to exer-
cise and validate the particular DUV.

The depth at which the DUV is described can be different as well. The
source HDL may describe the function at the RTL level, gate level, tran-
sistor level, or even behavioral level (non-synthesisable). As seen in
Chapter 1, it is the responsibility of the verification team to ensure that
whatever form the design takes, the function matches the intent.

The DUV interacts directly with the stimulus and checking compo-
nents. The stimulus component manipulates the DUV’s inputs, and the
monitor and checking components observe its outputs. In some situa-
tions, monitors and checkers may reside inside the DUV, which could be
attributed to the need for additional observation or checking points.

3.2

OBSERVATION POINTS: BLACK-BOX, WHITE-BOX, AND
GREY-BOX VERIFICATION

In the cache example above, all of the verification code was restricted to
interfacing with external interfaces of the DUV. This is known as black
box verification, because the verification environment is “in the dark”
about internal details of the DUV. However, some environments may look
at signals that are inside the DUV. These environments are grey box
or white box environments, depending on the type of internal DUV
observation.

3.2.1 Black Box

Most simulation-based environments begin as black box environments.
The verification engineers begin reading a specification of the DUV that
contains the function and the definition of the external interfaces. As the
team writes the verification code, the drivers, monitors, checkers, and
scoreboard use only the external interfaces as defined by the specifica-
tion. The internal signals and constructs remain in the dark.

The key to black box verification is the ability to predict the outputs
based on the inputs. To do this, the specification must clearly explain the
function of the DUV.

3.2 Observation Points: Black-Box, White-Box, and Grey-Box Verification 87

The black box environment has pros and cons. The good points are
that structural changes inside the DUV have little impact on the verifi-
cation code, as the function is independent of implementation. If an
internal pipeline had to change because of a timing constraint, there is
little to no impact on the verification environment. Furthermore, the
ability to predict functional results based on inputs alone ensures that
the reference model remains independent from the DUV algorithms.

On the other hand, because the black box environment can only
control the inputs and observe the outputs, it lacks control and observa-
tion points. There are many cases in which a verification environment
can be more robust just by keying off internal signals in the DUV.
Similarly, checking ambiguous cases becomes trivial if the scoreboard
component monitors internal signals. By using internal signals, the
verification engineers can shed some light on the black box.

3.2.2 White Box

The advantages and disadvantages of black box testing are reversed in
the white box environment, which provides a full understanding of the
internal structures of the DUV. The verification engineer observes and
places checking on internal signals, as well as models and predicts the
behavior of internal queues, pipelines, state machines, and other por-
tions of the microarchitecture.

The white box environment contrasts with the black box environment
through its direct measurement of the DUV. A white box environment
will flag a bug at its source, whereas the black box environment captures
a failure indirectly as its symptoms appear on the DUV output. More
details of the cache design described above can illustrate the white box
methods.

Figure 3.8 shows that the incoming command, tag, and address are
placed into an eight-deep command queue. In the white box environ-
ment, the verification engineer might keep a reference model of the
command queue and use that model to constantly check the contents
of the queue. If the design has a bug such that a valid entry in the
queue was dropped or overwritten, the white box environment checker
would immediately flag the flaw. This is a direct capture of the failure
where valid data is destroyed. The black box environment would also
flag this bug, as the cache design would never give a response to a
command that was recorded in the scoreboard. In this case, the checker
is indirect, detecting the symptoms (a lost command). Both paradigms
are successful.

Assertion checkers, comment-like statements in the HDL that the veri-
fication environment or simulation engine monitors, are a second form
of white box verification placed in the DUV by the designer. Assertion
checkers monitor the behavior for specific invalid cases. Typical asser-
tion checkers flag invalid state transitions, overflowing queues, and other
illegal states. Because these checkers observe specific cases within the

88 Chapter 3 = Fundamentals of Simulation-Based Verification

S~ ~

—~ [Ve) — — O

— .. [qN] .o

|l ol .. o| o

(e»] —| O ~ ~

—| <| — a | <c

o | x | =

= << O | <c

| O < x| o
CMD(0:3) RSP(0:2) R
DATA_IN(0:31) Cache -

design DATA_OUT(0:31)
CMD_TAG_IN(0:7) >
CMD_ADR(0:31) CMD_TAG_OUT(0:7)
Cmd queue
= FIGURE 3.8

Cache design implementation details and white box checking.

design, they fit the definition of white box verification. Further details of
assertions follow in this chapter.

Any form of white box verification has its drawbacks in the amount
of maintenance required on the environment. The problem is that the
environment is tightly integrated with the implementation: if a signal
name changes, the white box checker component must change as well,
which can become a maintenance nightmare. Therefore, this type of
verification is typically done only at the low levels of the hierarchy.

Verification environments coded in a white box paradigm must also
take care to remain independent of the DUV. Despite knowledge of the
internal microarchitecture, the verification engineer must not use the
HDL algorithms as a source of checking. This would break the redun-
dancy path required to find bugs in the design.

3.2.3 Grey Box

Grey box verification is the combination of both black box and white box
verifications. In the grey box environment, the verification engineer
monitors or observes some internal signals, which assist in validating
the functional specification of the black box level; the rest of the DUV
remains “in the dark.”

Grey box is typically the model used for most environments, mainly
because some prediction of interface level results is nearly impossible
without viewing an internal signal. Drawing on the cache design
example, there is a case in which two or more fetch commands to the
same address can be in the design simultaneously. In time, the main store

3.3 Assertion-Based Verification: An Overview 89

assert <expression>
[report <message>]
[severity <level>]

= FIGURE 3.9

General syntax of VHDL assertion statement.

responder returns data to each command. In a black box environment,
it is impossible to know if the correct data was returned with each
command without “peeking” inside the DUV to see which tag corre-
sponded to each main store fetch request.

There are also certain test scenarios that are desirable but rarely occur
without verification intervention inside the DUV structures. Often,
designs have counters used to initiate actions on a repetitive basis. In
many cases, these counters “go off” after thousands or even millions of
machine cycles. Although this may be only milliseconds on real hard-
ware, it is an eternity in simulation cycles. To cause the counter-initiated
event multiple times in a single test case, the verification engineer must
overwrite the counter to a value close to its limit. This activity falls into
the realm of grey box verification.

3.3

ASSERTION-BASED VERIFICATION: AN OVERVIEW

Assertion-based verification is a variant of white box verification and has
been gaining much attention in literature and industry during the last
several years [1]. Assertions by their very definition target the imple-
mentation of a design; they formalize assumptions about conditions
inside the design that are supposed to hold true at all times.

The idea of assertions is not new. Software engineers have used the
concept for ages. Many programming languages have formalized asser-
tion constructs (e.g., the C language with the assert macro), even though
other terms sometimes were used (e.g., invariants). In the context of
hardware design, VHDL, even in its first standardization, included a
language construct to express assertions (Figure 3.9).

Of course, assertions and verification checkers have related purposes.
There is a choice to do the checking of an internal microarchitecture con-
dition in a test bench that is owned by a verification engineer or directly
in the HDL by the designer.

In the implementation of the traffic light design introduced in Chapter
1 (Figure 1.3), the encoding of the internal state machine used 2 bits to
encode two legal states. As was mentioned in Chapter 1, the assertion
that the state flip-flops should never assume illegal values covered by the
verification engineer’s test bench. However, the fact that the internal state

90 Chapter 3 = Fundamentals of Simulation-Based Verification
assert (buf_overrun(0)/="1")
report "Internal Buffer Overflow"
severity ERROR;
= FIGURE 3.10

VHDL assertion example.

encoding is identical to the encoding of the signal Light_direction is
an internal implementation detail that is unlikely to be formally docu-
mented between design and verification engineers. Even more danger-
ously, other logic internally downstream from these flip-flops might rely
on this assertion. It is therefore vital for the designer to capture such an
assumption to protect the downstream logic (Figure 3.10).

One real practical argument for the designer ownership of assertions
is the fact that at the designer best understands and considers such inter-
nal white box checks at the time the he or she writes the HDL. Good
examples are corner conditions and specific illegal encodings of signal
states such as

= Illegal states
= Orthogonality of signals or one-hot encodings

= Illegal control conditions

One view of a systematic use of assertion checking is the notion of
defensive HDL design (Figure 3.11). Every assertion checks a “cone of
logic” for boundary conditions and protects the downstream logic by
continuously guarding the assumption.

Figure 3.12 shows another implementation level example. This time
the HDL assertion actually protects the physical implementation of the
logic. It codifies the assumption that two “select” signals (s1, s2), which
drive a pass-gate multiplexer implementation, are to be orthogonal. In
the absence of the assertion, logic simulation would never detect the
functional problem where s1 and s2 are on at the same time. It is the
circuit implementation that exploits the orthogonality condition by using
a cheaper, faster circuit layout and needs to be protected from destruc-
tion by a violation of this assumption. Very clearly, this implementation
assumption must be formalized by the design engineer.

3.3.1 The Importance of Assertions

There are several reasons why a modern verification methodology
must make heavy use of assertions that are embedded into the HDL
design:

= FIGURE 3.11

3.3 Assertion-Based Verification: An Overview 91

DUV

Logic Logic
checked ! protected
Assertion
by assertion - by assertion

Assertion checking as defensive hardware design language design.

Custom

s2

slg%o

0 <= not ((sl and dl) or (s2 and d2);

assert (not(sl and s2))
report "both selects on; blue smoke"
severity error;

= FIGURE 3.12

Pass-gate mux implementation, exploiting orthogonal select signals.

White box conditions are best specified and, more importantly,
maintained over time by the design team. Many internal assertions
could not be known by a verification engineer, but violation of these
internal conditions can lead to severe malfunction of the design.

Unlike non-HDL test bench checkers, formal verification tools
(Chapters 11, 12) can process HDL assertions. This opens the
potential of proving formally that an assertion always holds true, a
much more powerful verification result than any amount of
pattern-based simulation can ever deliver.

An uncaught assertion violation can result in an error that is
detected in the architecture state of the design downstream after
more simulation time. However, catching a problem at the point of
an internal assertion violation is always more effective in debug-
ging because the problem is caught at its very source.

92

Chapter 3 = Fundamentals of Simulation-Based Verification

= Assertions are cheap. Typically, they are sanity checks that are
easily written by the designer, and they do not consume a lot of
simulation engine performance.

= Empirical evidence shows that a systematic application of asser-
tions by the design team is able to catch significant amounts
(24% to 35%) of the design bugs found overall on large industrial
projects [2, 3].

3.3.2 Assertions Express Design Intent

Although the HDL expresses what a design implements, assertions also
play an important role in the specification of design intent. For example,
in a high-frequency design, finite state machines are usually imple-
mented by a collection of discrete flip-flops and Boolean logic. The
Boolean logic implements the state transfer and output functions in
the physically most efficient way. Very often, the physical constraints on
the design overrule the desire to clearly specify the finite state machine
(FSM) functionality in the most abstract and concise way.

In such cases, the HDL looks like a random set of flip-flops and gates,
and the original design intent, the FSM, is lost. Using assertions, which
specify the legal versus illegal states and the legal versus illegal state
transitions, will serve the verification cycle in two ways:

= The original design intent is explicitly expressed by stating what
the intended implementation behavior is. It is possible to look at
such a set of assertions as an internal implementation specifica-
tion, encoded in the HDL.

= The verification cycle can utilize an invaluable set of checks that
make it possible to verify the implementation specification against
the discrete implementation.

It is important to note that the HDLs have mechanisms that allow the
expression and checking for design intent even at compile time. Doing
the check earlier than simulation, as part of the model build process,
has obvious advantages for the strength of verification. Otherwise, the
incidental test case must stimulate the design in a way that exposes a
violation of design intent.

The most powerful way to express design intent in VHDL is the use of
signal data types. VHDL is what is called a strongly typed language.
Signals have defined data types, and the VHDL compiler checks type
compatibility between signals when the source file is processed. Going
back once again to the traffic light example from Chapter 1, the asser-
tion of the illegal state encodings, introduced above, can be completely
replaced with the correct use of signal types (Figure 3.13).

3.3 Assertion-Based Verification: An Overview 93

library ieee;
use ieee.std_logic_1164.all;

entity traffic is

port(

clk : in std_ulogic; -- Clock

reset : in std_ulogic; -- Async Reset

timer_pulse : in std_ulogic; -- The timer pulse, 'l' indicates timer expiration
Main_Street : in std_ulogic; -- Indicates when traffic is present on Main St.
ETm_Street : in std_ulogic; -- Indicates when traffic is present on Elm St.
Light_Direction : out std_ulogic_vecotor(l downto 0) -- '01' indicates that Main St.

should be green

- '10" indicates that EIm St.
should be green

)
end traffic;
architecture rtl of traffic is
type state is (main, elm);
signal current_state_din, current_state_dout: state;

begin -- rtl

purpose: Determines when the Tight should change
type : combinational
-- dinputs : timer_pulse, Main_Street, EIm_Street, current_state_dout
-- outputs: current_state_din
dataflow _proc: process (timer_pulse, Main_Street, EIm_Street, current_state_dout)
begin -- process change_light
current_state_din <= current_state_dout;
-- When the timer expires, evaluate the traffic situation
if timer_pulse = "1" then
if Main_Street = '1' then
current_state_din <= main;
elsif EIm_Street = '1' then
current_state_din_ <= elm;
end if;
end if;
end process dataflow_proc;

Light_Direction <= '01' when current_state_dout = main else "10";

-- purpose: creates the registers for current state
-- type : sequential

-- dinputs : clk, reset, current_state_din

-- outputs: current_state_dout

reg_proc: process (clk, reset)

begin -- process register
if reset = '0' then --asynchronous reset (active Tow)
current_state_dout <= main;
elsif clk'event and clk = '1' then -- rising clock edge
current_state_dout <= current_state_din;
end if;
end process reg_proc;
end rtl;

= FIGURE 3.13

VHDL for the traffic light algorithm with enumerated state machine encoding.

94 Chapter 3 = Fundamentals of Simulation-Based Verification
assert (clock and condition)..; if (clock) then
assert (condition) .. ;
end if g
(a) Flat assertion (b) Nested assertion
= FIGURE 3.14

Flat (a) and nested (b) hardware design language assertion.

In this version, the state encoding uses an enumerated type declara-
tion for the two states “main” and “elm.” The state transitions move the
controller between these two symbolic states. Furthermore, an illegal
assignment to a different state value would be a compile error. Using the
type declaration makes the design intent explicitly clear and removes one
source of potential design errors.

Assertion-based verification moves the specification of checkers earlier
into the design cycle. The earlier design intent is captured in the HDL,
the more effective verification processes can catch design bugs.

3.3.3 Classification of Assertions

The examples up to this point have used assertions that only check
Boolean conditions that have to hold true over all times.

More often than not, a certain condition holds true only after another
gating condition is also true. A simple example would be if the condition
could only be checked during the time that a certain clock signal was
active. There are two ways to handle this complication. Either the pre-
condition (e.g. “clock active”) can be encoded as a simple term in the
Boolean expression or the HDL has already a conditional structure into
which the assertion can be embedded, thus exploiting already existing
decoding of the pre-condition (Figure 3.14).

The following list attempts to classify assertions according to increas-
ing complexity:

= FEvent detection: The most atomic and simple assertion checks for
absence of an event, a “failure condition.” Designers encode these
events by the flat assertions discussed mostly so far. Such events
can be classified as static; that is, they do not relate to any other
events.

= Temporal event detection: More complex assertions will refer to
sequence of events over time; that is, several events have to occur
before the final asserted event can be checked. Designers encode
such assertion events via the embedded (nested) method shown in
Figure 3.14. Essentially, the designer embeds the assertion into the

3.4 Test Benches and Testing Strategies 95

logic of a state machine (the sequentially nested context in HDL)
that controls the pre-condition for the final Boolean check.

= Pre-defined event detection building blocks: Pre-build a set of asser-
tions for events to occur often in hardware designs. Examples are
data structures (buffers, stacks, FIFOs) or control structures (hand-
shake, windows with pre- and/or post-conditions).

Temporal events require a general mechanism to express events (not
just assertions) over time. Formal verification tools first pioneered the
definition of such specifications. With the standardization of a property
specification language (PSL/Sugar), there is now a broadly supported
means to express event sequences over time, as assertions available for
all forms of verification, not just formal verification [4]. We will discuss
PSL/Sugar in Chapter 12.

A popular example of pre-defined event detection building blocks is
the Open Verification Library (OVL) library [5]. OVL is a library of HDL
building blocks that a designer can embed as an instantiated component
into an HDL specification and connect to a set of signals that provide the
context for the assertion check.

In light of the development of OVL and PSL/Sugar, designers of HDLs
have started to extend the HDLs themselves to provide more than the
basic assertion checking support in their languages. SystemVerilog
defined its own built-in assertion mechanism that parallels many of
PSL/Sugar’s capabilities as a direct extension of Verilog [4]. Obviously,
this makes the assertion language very specific to Verilog, and it is
unavailable for VHDL users.

3.4

TEST BENCHES AND TESTING STRATEGIES

With the test bench environment and components defined, focus is now
on the test case. A test case constrains the stimulus components such that
a specific function (or set of functions) within the DUV is targeted to be
exercised. We also call this deterministic testing, or a deterministic test
bench, because the targeted function is determined before the test runs.
There are also self-checking test benches in which the test bench always
performs checking regardless of the stimulus. This allows for the func-
tionality of the DUV to be checked regardless of the test case.

3.4.1 Deterministic Test Benches

Verification teams use deterministic test cases predominantly early in the
verification cycle to prove basic DUV functionality. Here, the verification
engineer looks to the specification for guidance on the basic commands
and protocols to test and monitor, creates deterministic test cases to

96 Chapter 3 = Fundamentals of Simulation-Based Verification

TABLE 3.1 = Two-input AND gate
Input A Input B Expected Output

0 0
0 1
1 0
1 1

— O OO

pinpoint specific points of contention in the DUV specification, and relies
in part on the design engineers for advice on scenarios to exercise.

A very simple example is a “two-input AND gate.” There are four deter-
ministic tests for the DUV in Table 3.1.

A verification engineer charged with verifying this two-input AND gate
could create four individual deterministic test cases. Alternatively, the
verification engineer could decide that the four scenarios are simplistic
enough to merge into a single deterministic test case that drives the four
scenarios in sequence.

A more interesting deterministic test case involving the cache design
would be to ensure that particular sequences of operations maintain data
coherency. Coherency dictates that data requestors always get the latest
copy of the data. This inherently implies that for every address in the
system, there is only one current data value associated with that address.
In this cache design, a fetch cannot return data that does not represent
the latest value for that address. A verification engineer could write many
deterministic test cases to verify coherency. One such case is described
here.

Figure 3.15 shows a decode mux in front of separate store and fetch
queues in the cache design. As commands enter the cache DUV, the
design directs the address, tag, and the data (for stores) toward the
appropriate logic based on the type of command.

A deterministic sequence to verify coherency might consist of the
following inputs:

= Three store commands to various addresses are sent. These com-
mands initially fill three of the four positions in the store queue.

= A fourth store request to address X is sent. This store request is the
last in line to be executed

= A fetch request to address X is sent.

Because the fetch request is at the top of the queue and a previous
store request is buried in the store queue, this test case is designed to
uncover a design flaw that would return fetch data other than that in the
store queue. Coherency requires that the fetch request return the latest
data, which may be in the store queue rather than in the cache or main

3.4 Test Benches and Testing Strategies 97

~ ~ =
<t — — O
—~ (e} — .
— .. N o o
oS Z 2
o — o o <C
S| 5| 2 = =
(&) [<C
CMD_VLD(0) * *
CMD(0:3) |
DATA_IN(0:31) ! RSP_VLD(0) R
CMD_TAG_IN(0:7) RSP(0.2) .
CMD_ADR(0:31) DATA_OUT(0:31)
CMD_TAG_OUT(0:7)
Fetch CMD Store CMD
queue queue
Cache design
= FIGURE 3.15

Cache design with separate queues for stores and fetches.

memory. The cache design must deal with this case by one of these
means:

= Give stores higher priority than that of fetches, allowing the store
queue to drain before processing fetches.

= Do an address comparison of all stores addresses pending based on

the fetch address and block the fetch.

= Do an address comparison of all stores addresses pending based on
the fetch address and provide a cache and main store bypass by the
store queue data that would feed the fetch response data.

3.4.2 Self-Checking Test Benches

Placing the knowledge of the DUV’s function into the test bench envi-
ronment is extremely advantageous as it automates the tedious checking
process, which means that a user does not have to scrutinize every test
case trace to ensure that it passes the functional criteria.

Because the test bench is the “universe,” all the knowledge needed for
checking exists in the test bench. The verification engineer codes that

98

Chapter 3 = Fundamentals of Simulation-Based Verification

knowledge into the checkers and the scoreboard in order to make the
environment self-checking. There are different types of self-checking test
benches:

= Golden Vectors
= Reference Model

= Transaction Based

Golden Vectors

A golden vectors environment is a simple environment in which some
knowledge base of valid output vectors is stored in the scoreboard. The
checking component compares the DUV results to this knowledge base
by calling the scoreboard and requesting the expected vectors. This can
be done either for every cycle or for every transaction (based on the func-
tions). In most cases, the scoreboard is loaded (via a file or some other
mechanism) at the beginning of the test with a known set of valid expect
traces that correspond to what the stimulus will be generating. The
output checker compares the actual DUV results to the golden vector-
predicted results. The verification engineer either generates these valid
traces manually or generates them by using an external program. Figure
3.16 shows a diagram of this type of environment.

The advantage to this mechanism of checking is that the verification
engineer can check all of the predicted result traces before running the
simulation. Another advantage is that when the verification team runs a
regression (for more detail on regression, see Chapter 13), all the vectors
that need to be verified already exist.

A disadvantage to this type of verification is twofold: the creation and
the maintenance of the golden vectors. Manual creation of golden vectors
is tedious. If a program creates the golden vectors, then that program
will require knowledge about the DUV. (The reference model environ-
ment explained next tackles this by placing the knowledge directly into
the simulation environment). The maintenance challenge is keeping the

Golden
vectors

Checker

Stimulus > DUV >

= FIGURE 3.16

Golden vector environment.

3.4 Test Benches and Testing Strategies 99

golden vectors and stimulus generation synchronized. If the DUV rules
change, the verification team must update all of the test cases and golden
vectors to reflect the change.

Golden vector checking is best suited for DUVs that have sporadic
outputs that correspond closely to the inputs. DUVs that handle just one
concurrent command are ripe for golden vector checking as the output
is usually easy to predict.

Reference Model

The reference model calculates all expected outputs based on the input
stimulus. The reference model re-implements the function of the DUV,
usually in a high level programming language or an HVL. Because the
reference model calculates the results for each cycle, it is also known as
a cycle accurate model.

Unlike the golden vectors approach, the checker component does not
request information from the reference model. Instead, the reference
model sends information to the checker every cycle based on the program
calculations. It is the checker’s job to compare this information to the
DUV outputs and decide if the output signals match the expected results.
Figure 3.17 shows a diagram of this checking paradigm.

The main advantage to the reference model is the level of checking
accuracy. Once the reference model is correct (and debugged), the veri-
fication team knows that the DUV is correct for every cycle. This comes
at a price, as this method has a maintenance overhead. The reference
model must know the exact internal timing implementation of the DUV,
which is very similar to white box verification except that the reference
model has no probes into the design.

Verification teams should chose reference models for checking DUVs
that have high activity on the outputs. DUVs with multiple concurrent
inputs or internal priority logic to process stimulus are candidates for
reference model checking because the prediction of the outputs depends
highly on the stimulus sequence. Furthermore, if the internal timings of
the DUV changes, it is easier to update the reference model once than to
edit all of the golden vector test cases.

Reference model

A
Checker

Stimulus > DUV >

= FIGURE 3.17

Reference model environment.

100 Chapter 3 = Fundamentals of Simulation-Based Verification

A variation of the reference model checker is one that is not accurate
for every cycle but instead is checked at key points in time. For example,
consider an ALU that contains a pipeline with a depth of five. Five cycles
after receiving input stimulus to the ALU, the reference model sends pre-
dicted outputs to the checker component. This also helps alleviate poten-
tial performance disadvantages because the reference model does not
have to keep up with all the details, but the reference model does have
to know that the pipeline depth is five.

Transaction Based

A transaction-based environment is used for DUVs that have identifiable
transactions in which commands and data are acted on and forwarded to
appropriate output signals. This allows the verification engineer to struc-
ture the environment based on the transaction nature of the DUV. Caches,
which act on commands and data, are one example. Many input/output
(IO) protocol devices (such as Ethernet and PCI) that forward and route
packets of data should use transaction-based checking.

This type of checking environment uses a scoreboard to track
commands and data driven on the inputs of the DUV. In this environ-
ment, the DUV processes the commands and associated data before
forwarding the transactions on the outputs. The DUV may reformat
the command and data before forwarding it. Figure 3.18 shows the
transaction-based environment.

The scoreboard keeps a record of all “current” transactions that have
entered the DUV but have not been completed (or forwarded). The score-
board must also perform any data reformatting. On observing output
signals, the checker component queries the scoreboard, usually with a
transaction identifier, and receives the expected data. The checker flags
an error if the identifier does not match an outstanding transaction or if
the command or data are not as predicted by the scoreboard.

The key in the transaction-based environment is the abstraction level
of the command and data. Often, this is simple, as in the Ethernet packet
protocol or PCI bus commands. However, DUVs may allow transactions
to be spread across many cycles or have other transactions intermixed.

A
Checker

Stimulus > DUV >

= FIGURE 3.18

Transaction-based environment.

3.5 Summary 101

It is the scoreboard’s job to package the abstracted transactions into
predictable outputs.

The only disadvantage and difficulty to this type of environment is
deciding the correct level of abstraction, which is an important decision
as it influences both the effectiveness and efficiency of the verification
environment. The team should base this decision on the functional
stimulus injected into the DUV. When the team defines the right level
of abstraction, it becomes easy to define interesting test cases by using
sequences of these abstract items, as well as to generate meaningful tests,
and it is easier to analyze the test results by looking at the abstract items
for debug.

3.5

SUMMARY

In creating the verification environment, the verification team creates
many different components. Some of these components are ones that
stimulate the DUV, whereas others perform the checking. To allow the
checking components to work, monitors are created to observe the DUV’s
inputs and outputs, and scoreboards are created to store the expected
results. These four types of components allow the verification team to
create the yin and yang of verification. It allows the verification team to
drive the necessary input combinations and check the resulting outputs
for those inputs.

However, before the verification team can create any of the compo-
nents, they must understand the function to be verified. This is especially
true when deciding on what type of observability is desired for checking.
As seen in the cache design example (Figure 3.8), both the white and
black box approaches would have caught the bug where data was
destroyed. However, the white box approach has a larger price to pay in
terms of maintenance. Because of the high price, white box verification
should be used only when necessary. In many cases, the verification engi-
neer would like to have some visibility into the design. The verification
team can obtain this visibility by using monitor components that observe
some internal portions of the DUV. The drawback is that the verification
engineer must learn portions of the implementation.

Assertion-based verification is another approach to adding visibility
into the DUV that is gaining much attention in the industry. In this
approach, the designer takes on some responsibility by placing assertions
within the design. These assertions can be static (event based) or tem-
poral in nature, or they can use a pre-defined set of event-based build-
ing blocks. In any event, these assertions provide a mechanism by which
some of the logic is checked by the assertion and other logic is protected
by the assertion.

Once the verification team understands the functionality of the design
and what visibilty depth is needed, they can start to strategize on how to

102

Chapter 3 = Fundamentals of Simulation-Based Verification

validate the DUV. Validating simple DUVs is straightforward and feasi-
ble by using a deterministic testing strategy. However, when the function
gets more complex, deterministic testing strategy becomes more of a
burden and a self-checking becomes the better approach because it is
independent of the stimulus component. As discussed, the verification
team must consider three different self-checking test strategies. Each of
these has pros and cons, and the verification engineer must choose the
appropriate one based on the functions to be verified.

3.6

EXERCISES

1. Why is over-stressing the design so important?

2. What are the two ways of knowing when a resource is available?
How does this microarchitecture choice affect the verification
environment?

3. Deterministic test cases can be used on simple DUVs such as the
2-bit adder. The problem becomes much bigger with a 32-bit adder.
How many deterministic tests would there be now?

4. What kind of verification is applicable for the following (black box,
grey box, or white box) and why:

(a) A 32-bit adder
(b) An eight-stage CPU pipeline
(¢) An Ethernet to local bus bridge

Name the advantages of doing HDL-based assertions.

6. Compare the three types of checking models (golden vectors, refer-
ence model, and transaction). When should each be used?

7. Again, we return to the town of Eagleton, where you are the chief
verification engineer for the parking lot controller. Given the criteria
from Exercise 1 in Chapter 2, perform the following:

(a) Describe a simple verification environment by using a block
diagram, and list the functions required for each component.

(b) Describe what type of observation points you desire (black
box, white box, or grey box).

(c) Describe the testing strategy for the environment.

CHAPTER 4

THE VERIFICATION PLAN

The verification plan is a decisive factor for success. It defines both the
functions that the verification team must attack and how they will do
their work. As the first step in the verification cycle, the team derives the
entire verification effort from this document. This document is a living
document, owned by the entire design team—not by any one person and
not by the verification team alone.

This chapter describes the construction and section contents of the
verification plan. A verification plan must contain each of these sections,
as they provide necessary insight into the upcoming verification task. The
chapter concludes with the functional specification of an example design,
Calcl. We provide a sample verification plan for Calcl as a template for
future work and as a guide for verifying the Calcl exercise.

Calcl is the first of our interactive examples. We invite the reader to
download the example source code and verify the design. The Preface
contains details for downloading the examples.

4.1

THE FUNCTIONAL SPECIFICATION

The source of the plan is the functional intent and specification. The ver-
ification engineer must first understand the design under verification
(DUV) before determining how to verify it. The specification is the
driving vehicle for this; it becomes the “law.” Many times, discrepancies
arise between verification and design (these manifest themselves as test
case miscompares). In these cases, the team will refer to the specifica-
tion for the correct behavior.

However, discrepancies can often occur when the specification is
unclear or ambiguous on a technical matter. If two people read the same
specification issue and interpret it differently, then the specification has
a problem. Observe the following example: “A response, R, shall occur
when A occurs after B or C.” This English language statement is ambigu-
ous because it has two possible meanings. The first is that “R should
occur when A occurs after B, or when C occurs”; the second, “the design

104

Chapter 4 = The Verification Plan

asserts R when A occurs after either B or C occurs.” This is a basic matter
of order of operations, which, in English, may not follow mathematical
ordering rules. The reader may interpret it in different ways.

In this case, the specification was unclear. Because the specification is
the law, the team must settle the discrepancy. It is a simple matter of
going back to the architect and having the intent clarified.

The specification and verification plan are not “gentleman’s agree-
ments,” as both items must exist in written form and apply to the current
project. It is not acceptable to use a previous version of the verification
plan and specification on a new version of a design. These documents
must evolve with the design: if the project is important enough to create
another version, then it is important enough to update both the specifi-
cation and verification plan to reflect the current changes.

However, the reality is not always so black and white. Often the final
specification is not complete until the chip ships to manufacturing or
even to the customer. The verification team must use the evolving docu-
ment as the basis of the plan. Other times, designers have workbooks
that evolve into the specification. If this is the current specification, then
these workbooks are the basis for the verification plan. However, tech-
nical insights that affect the system or chip, such as power-on-reset
sequences or chip configuration initializations, may be missing from the
workbooks. In these cases, the architect must have input on the function
of the design. These cases are suboptimal, but do occur in industry.

4.2

THE EVOLUTION OF THE VERIFICATION PLAN

The verification plan is an evolving document. In the beginning, the ver-
ification team pours the foundation of their work into this document,
however this initial plan may be incomplete. The team will update the
plan with details found within the environment and design as the project
progresses, sometimes because of new requirements owing to architec-
tural changes or because of missing items found on the design or verifi-
cation team drive updates.

Figure 4.1 shows how a typical schedule for a design interlocks with
the verification cycle. It depicts the portion of the verification cycle from
high-level specification and verification plan creation through to the
regression stage.

The design and verification cycle interlock follows a “waterfall” flow.
Key to the flow is the functional specification development, high-level
design, and verification plan. Although some of the subsequent stages of
development may overlap to reduce overall schedule, the initial stages
lay the foundation for a solid, timely, and executable development cycle.
Even so, the verification team will modify and enhance the verification
plan throughout the process, as the team will undoubtedly discover the

4.2 The Evolution of the Verification Plan 105

| Design cycle duration
f 1

2]

g Functional

£ specification

S development

<

%) High level

@ design F—— . |

k=) Design implementation

(%]
= —r—

a Final physical
design

o b——t -

o Create Evolve verification plan

k= verification

2 |

S plan

s Implement

= environment | |

;%’ from plan "Debug HDL and environment: '

9 write and run tests fromplan | ——— |
Regression

Plan review checkpoint Tape-out readiness Tape out
checkpoint
= FIGURE 4.1

Design and verification cycle interlock. This figure shows a timeline for the first half of the verification
cycle.

need for new scenarios and checkers while implementing the environ-
ment and debugging the HDL.

A key milestone in any project is a plan review checkpoint, which is
intended to “sync up” all the involved players for a design. At a minimum,
the reviewing committee includes the designer and verifier of the DUV,
the designers and verifiers of its neighboring blocks, and the architect.
This review ensures that the design adheres to the interface protocols,
that functional models have the correct behavior, and that the plan is
complete. This review should occur before any verification code is
written. Because the plan is the base for implementing the verification
environment, it is important to ensure that the foundation of the envi-
ronment is correct.

Failure to review the verification plan often results in an incomplete
or faulty foundation, which in turn carries on into the verification envi-
ronment. As a result, the environment may need to be rewritten—a waste
of precious time. In other cases, the verification engineer might choose
to “bandage” the faulty environment to prevent rewriting; typically when
this occurs, the environment is fundamentally flawed, allowing bugs to
go undetected. Thus, to maintain the shortest possible schedule, the
initial review must gate the implementation phase. The team should
continuously review and revalidate the plan throughout the verification

106

Chapter 4 = The Verification Plan

cycle, especially if the specification evolves. This is critical to ensure that
the plan matches the specification. In addition, there should be reviews
that coincide with key milestones such as “ready for the next level of
verification” or “ready for fabrication.”

Following this process puts the verification plan and execution in lock
step with the design cycle, thus reducing the overall design risk by
keeping verification in the forefront of the design consciousness.

Another aspect to consider is the integration of all the hierarchical-
level verification plans into one cohesive plan. Every block that will have
its own environment should have its own verification plan; as a result,
there may be numerous owners of these plans or for each verification
level. To ensure that all functions are covered, the verification plan and
initial review should be a compilation of all these plans. The lead verifi-
cation engineer for the project usually owns the comprehensive plan,
which covers the verification of all functions and indicates at what level
the functions are exercised.

4.3

CONTENTS OF THE VERIFICATION PLAN

The verification plan consists of multiple sections, each articulating a
critical component of the verification workload. These sections describe
both the technical requirements for the verification environments and
the project management needs.

The technical requirements of the verification plan fall into the fol-
lowing major headings: description of verification levels, functions to be
verified, specific tests and methods, coverage requirements, and test sce-
narios (matrix). These sections describe, in detail, the strategy and con-
struction of the verification environments for the project.

The project management sections of the plan have these major head-
ings: required tools, risks and dependencies, resources requirements, and
schedule details. These sections articulate the software, compute hard-
ware, and personnel required to complete the project on the required
schedule.

4.3.1 Description of Verification Levels

The verification team’s first decision in verifying a design is to articulate
the verification levels. As described in Section 2.1, a system may contain
multiple levels of design hierarchy. Depending on the complexity of each
level, the verification team must choose to verify levels independently or
group levels together into functional components.

The verification team bases their decision to group components
together or to first verify some (or each) components independently on
two factors. The first factor is the complexity of the individual component.

4.3 Contents of the Verification Plan 107

Complex portions of the DUV require their own verification. Proper
verification on complex functions usually requires a high level of control
and observability. Conversely, the verification team may fold simpler
macros that do not require this high level of control and observability
into the next level of verification with little risk.

The second factor in grouping components is the existence of a clean
interface and specification to drive the component. The ability to prop-
erly drive interface protocol and check for results is the key to verifica-
tion and requires a stable, documented interface. If the interface is
“a moving target,” then the volatility in the design and verification
environment should be expected. If it is feasible to verify blocks with
unwieldy or unstable interfaces at a higher level, then this may be an
appropriate trade-off.

After defining the verification levels, the verification team will create
verification plans for each level. The following sections describe the
components of a verification plan needed for each level.

4.3.2 Required Tools

The required tools section contains the specification and list of the veri-
fication toolset, describing the software (and potentially hardware simu-
lation machines) needed to perform the plan. Some examples of this are
as follows:

= FEvent simulation tools for units

= Cycle simulation tools for chip (for performance reasons)

= Formal verification tools

= Assertion-based tools

= Debuggers

= Emulation hardware

= Acceleration hardware

= Cosimulation software

= High-level verification languages (HVLs)

= Libraries of functions
In some companies, a concrete verification methodology exists, and this
section is predetermined. In these cases, the verification plan follows the
current methodology, including the default toolset.

There are instances in which a deviation is required from the default

toolset. For example, if a system-level simulation environment involves
a chip verified separately under a different methodology or toolset, the

108

Chapter 4 = The Verification Plan

team may need additional tools to bridge the environments. It might
follow then that the team needs a cosimulation environment. Cosimula-
tion occurs when the team verifies diverse source code or methodologies
at once. This could be between VHDL and Verilog, or it might be between
two different HVLs—Specman e, SystemC, and/or Vera.

Articulating the required tools is important because they could have
a resource or monetary impact. New or different tools will drive more
resources or inflate the schedule as the team learns the appropriate
usages. Inclusion of tools in the plan also serves to document software
purchase requirements from electronic design automation (EDA)
vendors, as well as simulation engine estimates.

4.3.3 Risks and Dependencies

This section of the verification plan identifies critical threats to success
and delivery requirements that project management needs to track to
closure. The complexity of today’s designs inherently contains verifi-
cation risks. The verification team depends on other teams to deliver
information, tools, function, and intellectual property in order to achieve
success. This section articulates these items.

The verification team manages risk through focusing on avoidance and
by creating contingency plans. For instance, there are risks associated
with dependence on a new tool: delivery and start-up delays (e.g., late
delivery or nonworking functions), integration with established tools,
and educational challenges. Contingency plans might consist of using a
backup tool or creating an early acceptance test for the tool.

Dependencies range from on-time HDL deliveries to availability of
tools and technology. HDL deliveries may come in regularly scheduled
packages, in which the design team delivers basic function first, followed
by further, more complex functions. The verification team must plan
their work based on these deliveries, so the plan must articulate this
dependency.

The verification team should highlight the dependency and risks
during the initial plan review, thus driving overall acknowledgement of
these items and discussion of possible risk mitigation actions.

In a complex design project, there are common risks and dependen-
cies. One of the most common risks in a large design project is the
reliance on a separate verification team, such as a local team or an intel-
lectual property (IP) vendor (in a system-on-a-chip design), to preverify
a lower-level core before chip- or system-level verification. Receiving a
release of a poorly verified core likely leads to debugging a unit-level bug
at the system level. In these situations, pinpointing the bug is much more
difficult or even impossible.

As mentioned above, new tools and new versions of current tools add
risk to a project. As tools continue to evolve in order to keep pace
with design complexity, the engineering team must manage new tool

4.3 Contents of the Verification Plan 109

deliveries. Problems include occasions when the tool is not available
when promised, when quality defects in the tool slow the pace of the ver-
ification effort, or when the promised functionality of the tool is not deliv-
ered. Worse yet, a new tool, advertised as a seamless integration effort,
might end up requiring months of environment changes. Many groups
have a tool freeze within a project. This is a point after which the team
will not entertain new tools (or revisions of tools) because of the risk
associated with changes. Beta testing tools is a good practice before new
releases. This avoids wasted hours because the new tool has bugs, which
requires the team to go back to a previous version. The team must plan
for education on new tools as well. Classes and on-site support help alle-
viate these risks.

Architecture closure is a common risk and dependency item. As men-
tioned before, the design team rarely supplies the complete and final
specification before the start of verification. Often, there are architectural
and specification issues that are not resolved when the team writes the
verification plan. This is both a dependency and a risk. The team requires
closure of architectural items by specific dates in order to meet the
schedule. However, the team also runs the risk that they need to over-
haul their verification environment because the early assumptions prove
to be invalid.

A final common risk and dependency is having the available resources
to complete the work on schedule. There may be a unique resource
requirement that needs to be listed (e.g., people, machines, licenses). For
instance, there may be contention among multiple projects for specific
simulation hardware such as emulators. In another case, the verification
plan will assume a certain daily simulation cycle throughput during the
early phases of the design right through the regression phase. The sim-
ulation engines and licenses must be available to meet this throughput.
Most important is having the available, skilled verification engineers on
a project. These verification engineers are in high demand, with other
projects vying for the same limited skill pool. The project must manage
the appropriate staffing levels to maintain the desired quality and
schedule goals.

4.3.4 Functions to be Verified

This section lists the specific functions of the DUV that the verification
team will exercise. Because the plan is crucial in determining success,
this is where the verification team articulates the functional require-
ments. This section identifies everything that the team will verify. Any
functions omitted (intentionally or inadvertently) may not be verified.
During the initial review, it is equally important for the design team to
focus on the listed functions as it is to brainstorm on what might be
missing. The verification team creates this section of the plan for each
level of verification.

110

Chapter 4 = The Verification Plan

The main source of the list of functions is the specification. Each func-
tion should have a short description about it, and the team can cross-
reference these functions to the specification to help determine if the plan
covers all functions in the specification. This list of functions can also be
of assistance when disputes arise on the function of something that is
being tested, as the team has a quick reference back to the specification
for clarification on a function.

The list of functions to be verified must include pervasive functions,
operations other than those that may occur under normal running con-
ditions. Pervasive functions include system resets, error handling, and
system debug. The verification team often devotes an entire section of
the verification plan toward pervasive function (for more detail, see
Chapter 9).

This section also describes under what conditions the team will verify
all the functions. This is crucial in that it helps define the functions that
the verification components need to support. If a component cannot
produce the stimulus, then the verification engineer cannot check that
function. Even if a check exists, the environment will never exercise the
checker because the stimulus is constrained in an inappropriate fashion.

The other purpose of the list of functions is to provide an order of pri-
ority. The list should be broken down into different areas:

= Critical functions
= Secondary functions

= Nonverified functions at this level

The critical functions are those that the team must verify before using
the design elsewhere. These functions provide the base set of tasks and
behaviors of the DUV. If the design were a unit, this could be the crite-
rion needed to start the next level of verification. Typically, the functions
listed here are the things that will render the chip dead if not met. The
critical functions list is like “drawing a line”; if crossed, the team com-
promises the success of the project.

There are two categories of secondary functions: noncritical to tape-
out and noncritical to the next level of verification. Functions that are
not critical to the initial tape-out include performance-related issues,
functions that the designers will enable in later versions of the chip, or
function that has software backup. If any one of these functions is
broken, the design is not “dead.” In these cases, there may be a decision
not to delay the design’s release to manufacturing while the verification
effort continues on these functions. It does not mean that the team will
not verify these functions; it just means that the team will verify them
after releasing the design to manufacturing.

Schedule dictates the need to classify function as noncritical to the
next level of verification. In a perfect world, the next level of verification

4.3 Contents of the Verification Plan 111

will not start until the verification team completes the lower level verifi-
cation plan. This is typically unrealistic in a fast-paced business.To par-
allelize some of the schedule, the team may choose to verify only the
critical functions before beginning the next level of verification. This
gives the next level a chance to test and initiate their environment while
the lower level continues verification of secondary functions. These func-
tions are typically corner case type criteria that the next level will not
expect to hit until later. The owners of the next level must scrutinize this
list of functions so as to align expectations. Discovering that some func-
tion initially deemed as secondary is actually critical will cause churn in
the verification environment. This is another aspect covered by the design
teams during the initial review.

The final category, nonverified function, may seem out of place, but it
is necessary. Nonverified functions indicate functions that the verification
team will not exercise at this particular level of verification. There are
two reasons to ignore function at a particular level: the first is that the
team fully verified the function at a lower level (usually through exhaus-
tive formal verification) and there will be further verification (for a sanity
check) in simulation at a higher level, and the second is that the func-
tion is not applicable at this level of verification.

Articulating this category of function informs everyone that the team
considered these functions and decided that the functions would be ver-
ified elsewhere. It is important to note in the plan where the function
will be verified.

Architects, designers, and verification engineers all need to focus on
this section of the verification plan to identify holes and overlooked func-
tions. By listing nonverified and verified functions together, all parties
gain insight into the verification plan.

4.3.5 Specific Tests and Methods: Environment

This section provides the details of the verification environments for each
level of verification. It describes if the environment will treat the DUV as
a black box, white box, or grey box and provides specifics on the verifi-
cation strategy, including the amount of randomness or determinism in
a simulation environment and the types of checks for a formal verifica-
tion environment.

For simulation environments, the verification team must document
the level of abstraction the components will use. In addition, this section
of the verification plan describes the checking strategy.

It is often helpful to include a block diagram showing the universe for
the DUV, which is an easy way to indicate the required components in
the environment. This description of the environment components is
critical because it details the interactions between blocks and the con-
trols a user has on them. In many instances, this is crucial for component
reuse (for reuse strategies, see Chapter 10), as it is often desirable to use

112

Chapter 4 = The Verification Plan

a component in multiple levels of verification. Each component in the
diagram should have its own description, which details how the envi-
ronment will drive all of the inputs and check the outputs.

Along with a block diagram, the following sections provide a frame-
work for the specific tests and methods for the verification environment.

What Type of Verification?

This section states the choice of black box, white box, or grey box veri-
fication, as well as the ramifications of the decision. If the verification
team chooses a black box approach, it may not be necessary to have the
monitors probe into the design; however, if the team chooses a white box
approach, it may require many more monitors for the DUV. The team
bases their choice on the following:

= The function to be verified
= How to best exercise the internal structures
= How errors may manifest themselves

= The availability of resources for maintenance (remember, white box
style will require more work but may also uncover more bugs)

Most environments are grey box, as the verification team decides to
create observation points within the DUV to ensure the handful of inter-
esting aspects occur during simulation. By laying out this approach, it
may be feasible to settle on some standard observation points that will
not change, thus causing less maintenance because of the stability within
the implementation.

Verification Strategy

The choice of deterministic simulation, random-based simulation, or
formal verification drives divergent environment components. The veri-
fication team bases the choice on the function of the DUV and the avail-
able resources. Simple designs with straightforward functionality lend
themselves to deterministic test approaches. Complex functions require
randomization, because the verification team cannot envision all of the
input permutations. In this case, the verification team builds intelligence
into the components so they can leverage the speed of their workstation
farm through design automation. The team chooses formal verification
for small, complex blocks of design for which many permutations exist.
The key trade-off between simulation-based randomization and formal
verification is that the team will employ formal verification if the formal
verification engine can manage the block size. Larger DUV models will
require simulation.

4.3 Contents of the Verification Plan 113

The deterministic approach requires the verification engineer to put
features into the environment to enable writing all permutations of deter-
ministic tests. The deterministic environment must be sufficiently robust
to exercise the DUV function. In this environment, the intelligence in
driving stimulus and checking outputs and intent of the test case remains
in the verification engineer’s mind. The environment enables the unin-
hibited flow of that intent into the DUV.

The random environment and formal verification choices drive much
of the same thinking. Both environments require that the verification
engineer allow all possible permutations to occur on the DUV’s input
interfaces. Although deterministic testing drives a single, legal event,
random and formal verification approaches require that the verification
engineer explicitly disable illegal stimulus and allow everything else.
Rather than considering all of the possible scenarios, the random and
formal verification approaches prevent scenarios that the specification
prohibits. The random and formal verification environments require
the verification engineers to codify their checking knowledge into the
checker, scoreboard, and monitor components or into the formal verifi-
cation rules.

Random Aspects

The decision on random, formal, or deterministic testing affects the func-
tions within the model. Too much randomness can prevent problems
from being uncovered, as the tests may not hit interesting cases, and may
drive false failures. Conversely, not enough randomness will prohibit the
creation of all the interesting tests. A user wants controlled and properly
constrained randomness possibly with “unrandomizing” controls built
in. Controls to cut back on randomization allow for a more directed
random approach. These controls can pursue

= Hangs due to looping

= Low activity scenarios

= Specific directed tests
The random environment may require further specialized micromodes to
get around an architecture fault or to create a known scenario. A micro-

mode allows the verification engineer to inject a deterministic sequence
into the random environment.

Abstraction Level

The abstraction level dictates how the verification environment views
streams of control and data bits. At the lowest level, at which the envi-
ronment components observe and examine each input and output of the

114 Chapter 4 = The Verification Plan

Verification
level
System
Program or Groups of A
— algorithmic level sequences
across time
Sequence level Groups
DUV of packets
Yy _ | Command and data across time
" “packet” level
:, Groups
Bit level of bits
» (no abstraction)
Designer

= FIGURE 4.2

Abstraction levels dictate how the verification components interact with the design under verification.

DUV as bits, there is no abstraction. This level is generally shunned by
the verification team as there is little design intent context; instead, teams
usually opt to group control and data bits into meaningful functions,
raising the level of abstraction. Once chosen, the team uses this level for
all checkers, stimulus, scoreboards, and monitors in the particular veri-
fication environment.

Figure 4.2 shows various abstraction level choices. Above the bit-level,
inputs and outputs join to make meaningful command and data packets.
Components create sequences by joining multiple packets together to
form a function; multiple sequences create a program or implement an
algorithm.

Often, the choice of abstraction level parallels the verification level.
Designer-level verification uses bit streams to verify simple blocks. For
the unit and chip levels, verification engineers choose the packet or
sequence level of abstraction. Program-level abstraction rarely occurs
below the system level.

For example, the verification engineer would drive and check a Periph-
eral Component Interconnect (PCI) model using PCI transactions packets
or sequences, not a stream of bits or bytes. Although the verification
engineer could think of all the bus transactions in terms of a stream of
bits, it complicates the creation, maintainability, and effectiveness of the
model. Similar examples hold for microprocessor verification, in which
verification engineers can choose to deal in binary instruction encoding,
abstract to the mnemonic op-code, write sequences of instructions, or
advance to writing programs that run on the microprocessor.

Without the correct abstraction level, it may not be feasible to cover
all the interesting scenarios. The correct abstraction level will make it

= Easy to define concise test scenarios based on interesting
sequences

4.3 Contents of the Verification Plan 115

= Able to generate meaningful reports for debug analysis of test
results

Checking

The checking strategy falls into place based on the choice of verification
type (black box, white box, grey box), the verification stimulus strategy,
and the level of abstraction. Still, the team needs to document the choice
among golden vectors, reference model, and transaction-based strategies
for simulation-based environments. Checking for formal verification
environments requires equal thought, but comes in the form of rules and
assertions.

The level of abstraction will dictate the required level of context check-
ing. However, the team still needs to think through the multiple sources
of checkers (see Chapter 2).

For checking on inputs and outputs, the verification team must
examine the output specification and remember to check all outputs.
Even if a higher level of abstraction is chosen for the environment, there
still will be bit-level checking built into the monitors for parity and basic
outputs.

For design context checking, the verification team must understand
the larger system or higher level of hierarchy in which the DUV will work.
Higher-level or neighboring designs will dictate requirements and checks.

To address microarchitecture checking, the team studies the con-
structs within the DUV to ensure that checking components will know if
the DUV has gone astray. The checkers must know when a queue over-
flows or when state machines have taken illegal transitions.

For architecture checking, the design must fully adhere to the pub-
lished standards. Checkers must be in place to guarantee that there are
no violations.

The type of stimulus (deterministic versus random) guides the choice
between golden vectors and the reference model or transaction-based
checking. The available staffing will also drive the decision, especially
between a cycle-accurate reference model and the transaction-based
checking. Appropriate verification staffing allows for pinpoint accuracy
in reference model checking.

The verification team can include details such as the data contents of
the scoreboard in this section of the verification plan. The team must
understand what information they will track globally within the envi-
ronment, as well as what data they must check in local output monitor
components.

4.3.6 Coverage Requirements

Coverage is the feedback mechanism that evaluates the quality of the ver-
ification environment’s stimulus generation components. The verification
environment provides “quality control” on the DUV, coverage provides

116

Chapter 4 = The Verification Plan

quality control on the verification environment. Coverage information is
required in any complex simulation-based environment.

This section of the verification plan describes the intended stimulus
goals for the environment. The goals should cover all of the functional
stimulus requirements and ensure that the stimulus components in the
environment do what they should. These coverage goals may include the
following:

= The environment has exercised all types of commands and
transactions.

= The stimulus has created a specific or varying range of data types.

= The environment has driven varying degrees of legal concurrent
stimulus.

= The initiator and responder components have driven errors into the
DUV

Another good practice is to have coverage feedback for all environment
checkers to verify that the stimulus exercises all of the checking code.
Unexercised individual checks indicate that there is a hole somewhere
in the stimulus components or in the plan (for more information on
coverage, see Chapter 6).

4.3.7 Test Case Scenarios: Matrix

A good verification plan should list all of the interesting test scenarios
that will serve to verify the design. This list is the test case matrix. Defin-
ing a preliminary matrix is necessary before starting the design and mod-
eling of the verification environment because every potentially valuable
test should be enabled. Within the matrix, the verification plan should
label each test, give a short description, and contain a cross-reference to
the function and coverage lists.

The matrix starts with the basic required tests and then builds on
them. The plan groups tests with similar features to form test scenarios,
which may have the same configuration, granularity, or verification strat-
egy. The descriptions of the scenario designate the targeted function. The
last item on the matrix is a cross-reference to the functional requirements
and coverage goals.

This section can produce a huge matrix of tests. Often, the matrix size
can explode when there are multiple DUV configurations. If a DUV has
10 basic functional tests and each one is valid in one of three modes (e.g.,
bus frequency), then the net result is that the matrix will have 30 tests.

A random coverage-based matrix begins with a listing of the targeted
functions. The initial description states how the team will constrain
the environment to achieve the goals. In a random environment, this

4.3 Contents of the Verification Plan 117

translates to driving certain inputs with specific values while leaving
other inputs unconstrained (randomly generated values). This set of
constraints then determines the scenario.

The test matrix grows as the implementation continues. For complex
DUVs, the team cannot define all tests at the start; instead, they add to
the test matrix as they determine new scenarios, through either DUV dis-
covery or coverage holes. It is critical to document these new tests in the
verification plan, as the team needs to include these tests in the future.

As part of defining a verification plan, the verification team needs to
specify the legal values, illegal values, and corner cases of each input data
element they want to generate. The following should be kept in mind
when creating the matrix: configurations to verify, variations of the data
items in the environment (this ties to the abstraction level), important
attributes of each data item, interesting sequences for every DUV input
port, error conditions, and corner cases.

Corner cases deserve their own section in the test case matrix. The ver-
ification team must pay special attention to many out-of-the-ordinary
cases, which include the smallest and the largest data elements such as
an empty and full queue or first in, first out (FIFO), extreme values such
as the largest and smallest packet lengths, and unique time relations
such as bus collisions and interrupts during instruction streams.

As the above test scenarios listed, the team should define the range of
values for each generated data item, thus helping to define the verifica-
tion plan and model the input data.

4.3.8 Resource Requirements

With the environment architecture and test scenarios in place, the team
can estimate its resource requirements. Resource requirements include
not only people but also compute and license resources.

People resource estimates vary based on the type of environment and
the experience of the individuals. Reference model checking environ-
ments will require more people to implement, but their accuracy and
checking capabilities are often worth the investment. However, less
resource-intensive solutions such as transaction-based checking may be
adequate. Experienced verification engineers will require less time to
code and debug the environment. Time should be planned for review of
the verification components for all portions of the code, paying special
attention to the code of inexperienced verification engineers.

The verification leaders allocate people resources across the verifica-
tion hierarchy, starting with the lowest level in the plan. The verification
assignments will shift as the lower levels complete and the next level of
verification in the hierarchy begins. Because there are more total envi-
ronments at the lower levels (e.g., there are many units in a single chip
and multiple chips in a system), the resource plan allocates fewer people
per environment at the lower levels and has the verification engineers

118

Chapter 4 = The Verification Plan

moving together toward system level. Typically, it takes fewer people to
execute a unit environment than a system environment.

Within every environment, the leaders allocate individual verification
engineers across the components. Typically, a single verification engineer
will write all of the stimulus components at a unit level. The leaders may
assign another verification engineer to create the checking for that unit.
However, for a complex chip or system, there are too many interfaces for
a single verification engineer to write all of the stimulus or checking com-
ponents, so the team splits the development across multiple people along
sensible partitions. In a well-designed verification plan, the plan calls for
porting many of the lower-level drivers and checkers to the higher levels
of the verification hierarchy. This reuse eases some of the resource
requirements.

Aside from engineering resources, it is very important to estimate the
required compute resources. This is calculated based on the length of
one test scenario and the estimated number of tests to run during the
whole verification cycle. These numbers should be consistent with the
time and computing resources available for the project (the limiting
factor could be central processing units or licenses available to the
project), which may drive requests for additional compute or license
resources.

When deciding on the length of tests, keep in mind that long tests
might reach more interesting DUV scenarios, but they are harder to
debug when they fail. It may be more beneficial to have many smaller
(more focused and easier-to-debug) tests than a few long ones. In prac-
tice, a simulation time of 15 minutes to 1 hour provides a good balance
of all the above factors, assuming that the environment can create all
interesting scenarios within this time span.

4.3.9 Schedule Details

Previous sections of the plan cover the verification of the many different
levels of hierarchy and the proposed environments for each. The final
portion of verification planning is to document the timeline for each of
the verification activities.

As the team creates the schedule details, they must consider all of the
other sections of the verification plan. However, the resource section is
the most tightly coupled to the schedule details section because the avail-
able resources have a direct and obvious impact on schedule. More
resources will improve the schedule, and less resources will extend the
schedule.

The schedule includes both deliveries to the verification team and ver-
ification work items. The first step is to create a high-level schedule
before filling in the details. The high-level schedule follows the first half
of the verification cycle. It starts with a delivery of the specification and
completes with chip release(s) to manufacturing. For each level of the

= FIGURE 4.3

4.3 Contents of the Verification Plan 119

hierarchy, the high-level schedule includes the development of verifica-
tion environments, the debugging of the HDL, and the regression stage.

A key delivery in the schedule is the first drop of HDL to the verifica-
tion team. An HDL drop consists of enough HDL to perform specific DUV
functions. Often, there are multiple drops of HDL in the development
cycle. Staggering the drops allows the verification team to make progress
on basic functions while the HDL designers work on complex and sec-
ondary functions. This parallelization can streamline the schedule;
however, it will force the HDL designers to balance their time between
creating new HDL and fixing newly discovered verification bugs in pre-
vious drops.

The verification leaders must estimate how long it will take to create
the basic verification environment. In most cases, this time is closely
aligned with how long it takes the designers to create the first HDL deliv-
ery. The second time estimate is the duration of the debug portion of the
schedule, which begins after the initial delivery of environment and HDL.
The estimated duration of this portion of the schedule is based on how
long it should take to run through the test matrix. The estimate must
account for further HDL delivery dates as well. The remaining timeframe
before the chip release to manufacturing is set aside for regression.

Figure 4.3 shows the format of the high-level schedule. In this
example, the team chose to execute three levels of functional verification:
unit, chip, and system. Verification engineers have singled out four units
across three chips for unit simulation environments.

Time >
Units

UnitA A....... Ay 1

UnitB A......... N T]

Chips
ChipX A ... N o A
Chip Y Aoy N A
Chip Z Ao, N o A
System A b, N]
Key: A Specification }....| Develop
delivered verification
A First HDL environment
delivered —— Debug HDL
A Release to - — 4 Regression

manufacturing

High-level sc

hedule showing the first half of the verification cycle. The major checkpoints include design

deliveries, environment development, debug, and regression.

120 Chapter 4 = The Verification Plan

Verification proceeds from the lowest level of the hierarchy (in this
case, unit level) to the highest. Unit verification precedes chip level,
which then precedes system level. Chip-level verification should not start
until after the verification of substantial function at unit level. Similarly,
system level cannot begin until all three chips have demonstrated solid
functionality.

The schedule must allow enough time for each level of hierarchy to
test the function before the next level starts. This ensures that the verifi-
cation team will find bugs at the lowest level possible, easing the debug-
ging burden and capturing bugs at the earliest point in the schedule. A
good practice is to start the next level of verification when the bug rate
from the lower level has dropped. This ensures that the resources stay
focused on the most productive verification level. Figure 4.4 shows
a sample bug curve that results when the team follows the schedule
guidelines.

The scheduling challenge is to create reasonable estimates of when
these events will occur. The typical bug curve in Figure 4.4 looks great
in hindsight, but predicting the timing of the bug rate fall-off is no easy
task. To assist in schedule estimation, the verification team should use
historical references from past projects. By coupling the history of
similar projects with the latest enhancements in verification methodolo-
gies, the verification leaders can make reliable schedule estimates.

70

Problems per week

Months

= Unit level ---+ Chip level == System level

= FIGURE 4.4

A typical bug curve shows that the lowest levels of verification uncover the majority of bugs because of
their granularity and their precedence in the schedule.

4.4 Verification Example: Calcl 121

4.4

VERIFICATION EXAMPLE: CALC1

Calcl is a sample DUV used to demonstrate test planning and simple ver-
ification. This section describes Calc1 from the view of a verification engi-
neer and then discusses the first step in verifying the design, the creation
of a verification plan, and the deterministic test cases required to verify
the Calcl1 design. Compared to real-world complex designs, Calcl is very
simple although it serves well as an initial training example. The design
also serves as a base for more complex verification tutorials.

4.4.1 Design Description

Before creating a verification plan and test cases for Calcl, the verifica-
tion engineer must understand the design. This section describes the
inputs, outputs, and function of the Calcl design.

Calcl is a register transfer level (RTL) design implementation of a
four-operation calculator. The four operators are Add, Subtract,
Shift_left, and Shift_right. The RTL can accept up to four simultaneous
operators from its four ports. A single port request sends an operator into
the calculator on the command input bus, accompanied by operand data.
Each request uses one of four input ports to send the command and
operand data. The four ports can each handle a single command in
parallel.

Each command will receive a response from the calculator design.
Except in the case of an error condition, the response will include the
result of the operation. This section describes the exact protocols.

Figure 4.5 shows the input and output signals for Calcl. As with all
designs, the RTL must generate or receive a clock signal input. For Calcl,
the RTL receives the clock signal on c_clk.

Each of the four Calcl ports has two separate input busses and two
output busses. The first input bus, reqX_cmd_in(0:3) (where X is
replaced by port numbers 1, 2, 3, or 4) is a 4-bit bus used to transmit the
command to the Calc design. Table 4.1 shows the command and decode
values for the 4-bit command bus.

The second input bus, reqX_data_in(0:31), is the operand data bus.
Each of the four operation types requires two operands. The requestor
ports send operandl data and operand2 data on sequential cycles, with
operandl data concurrent with the command. Therefore, it takes two
cycles to send a complete command and data sequence.

Table 4.2 shows how the Calcl design operates on the two operands.

The two output lines for each port are the response bus, out_respX
(0:1), and result data bus, out_dataX(0:31). The response bus goes active
for one cycle when the Calcl design completes the computation for the
port. The number of cycles that it takes to complete an operation depends
on amount of activity on the three other ports but will always be at

122 Chapter 4 = The Verification Plan

c_clk
reql_cmd_in<0:3>
reql_data_in<0:31>
req2_cmd_in<0:3>
req2_data_in<0:31>
req3_cmd_in<0:3>
req3_data_in<0:31>
req4_cmd_in<0:3>
req4_data_in<0:31>
reset<0:7>

out_respl<0:1>
out_datal<0:31>
out_resp2<0:1>
out_dataz<0:31>
out_resp3<0:1>
out_data3<0:31>
out_resp4<0:1>
out_data4<0:31>

Calcl
Design

= FIGURE 4.5

The Calcl design receives a clock and reset signal, along with a command and data bus from each of
the four ports. The outputs include a response and data bas for each port.

TABLE 4.1 = Calcl command decode values

Command Decode value
No operation “0000"b
Add “0001"b
Subtract “0010"b
Shift_left “0101"b
Shift_right “0110"b
Invalid All others

TABLE 4.2 = Calcl operation details

Command Effect on operands

Add Result is Operandl + Operand2
Subtract Result is Operandl — Operand?2
Shift_left Result is Operand1 shifted left
Operand2 places. Bits shifted out are
dropped. Zeros are always shifted in.
Shift_right Result is operandl shifted right
Operand?2 places. Bits shifted out are
dropped. Zeros are always shifted in.

For both shift commands, only the rightmost (low-order) 5
bits, reqX_data_in(27:31), of Operand 2 (the shift amount)
are used. The calcl logic ignores bits O to 26 of the shift
Operand2, allowing the Operandl data to be shifted any
amount from O to 31 places (inclusive).

4.4 Verification Example: Calcl 123

TABLE 4.3 = Calcl response values

Response decode Response meaning

“00"b No response on this cycle.

“01”"b Successful response. Response
data are on the output data
bus.

“10"b Overflow, underflow, or invalid

command. Overflow/underflow
only valid for the add or
subtract commands. No data on
output data bus.

“11"b Unused response value.

Each port must wait for its response prior to sending the next command!

reql_cmd_in<0:3> M1 f
reql_data_in<0:31> Jﬂ—é—
out_respl<0:1>

7 [
out_datal<0:31> 7 [

= FIGURE 4.6

A timing diagram of a single port command sequence.

least three cycles. Table 4.3 shows the possible responses for a given
operation.

The output data bus, out_dataX(0:31), should only be sampled when
out_respX(0:1) contains the successful response decode value (“01”b).
At that time, the value on the output bus will contain the result of the
operation for that port.

Figure 4.6 shows a timing diagram of the command and response
sequence for a single successful command on Port 1. The command and
first operand of data appear on the first cycle of the sequence, and the
second operand data follows on the second cycle. A few cycles pass, and
the response appears on the output of the design, accompanied by the
result data.

Each port may have one operation ongoing at a time. Once a port
sends a command, it may not send another command until it receives a
response for the preceding command. The protocols do not require that
arequestor port send a new command whenever the preceding command
completes; the port may be idle for any number of cycles in between
commands.

124

Chapter 4 = The Verification Plan

TABLE 4.4 = Add and subtract overflow/underflow and successful response examples

Command Operandl Operand2 Response Result data
Add “80002345"X “00010000"X Successful “80012345"X
Add “FFFFFFFF"X “00000001"X Overflow None

Subtract “FFFFFFFF”X “111111117X Successful “EEEEEEEE"X
Subtract “111111117X “20000000"X Underflow None

Each port is independent of the others: all four ports may send com-
mands concurrently or any combination of commands across cycles
(with the stated restriction of only one outstanding command per port).
Therefore, at any given point, the Calcl design may work on any number
of commands, up to a maximum of four.

If all four ports send commands concurrently, the responses will not
be concurrent. Although each port has equal priority, there are limited
resources inside the design. Specifically, there is one ALU for adds and
subtracts, and a second ALU for shift commands. Hence, if all four ports
sent concurrent add commands, the Calcl logic would serialize the
responses, as only one add command could be processed by the ALU at
a time.'

Internal to the design is a priority logic scheme that sends commands
to one ALU or the other, depending on the command decode. Calc1 ser-
vices commands on a first-come, first-serve basis. Calcl may service
commands that arrive on the same cycle in any order.

The design has a reset bus input used to clear the internal state of the
design. During verification, the test case initially should activate the reset
to put the design in a cleared state. Setting the reset line, reset(0:7), to
“11111111”7b activates the reset. This input value needs to be held for
seven consecutive cycles in order for the reset to propagate through the
design. The test case should set to zero all other input busses except the
c_clk while resetting the Calcl DUV.?

Calcl treats arithmetic operands as unsigned data. The most signifi-
cant (leftmost) bit, bit 0, is a data bit, not a sign bit. An overflow occurs
on an add operation when the high-order bit (bit 0) has a carryout, and
an underflow occurs on a subtract operation when a larger number is
subtracted from a smaller number. Table 4.4 shows examples.

! This is microarchitectural information describing the internals of Calcl. The verification

engineer may not need this information to drive inputs, but checking components, such as
reference models, do require this information. The more a verification engineer under-
stands how the design functions, the better the environment.

2 The test case must drive the c_clk. However, the value of the c_clk input depends on the
type of simulation engine. For event simulation, the stimulus component must toggle c_clk

every cycle. For cycle simulation engines, the stimulus component should stick c_clk to
b

4.4 Verification Example: Calcl 125

4.4.2 Creating the Verification Plan for Calc1

Now that the specification is in place, it is time to create the verification
plan for the Calcl design. Even for a relatively simple design such as
Calcl, it is best not to jump into test case writing before thinking through
the entire verification plan requirements.

The above design description details the intent of the Calcl design. It
is the verification engineer’s job to prove that the actual design imple-
mentation matches the intent. Therefore, the verification engineer should
not assume the details of the above Calcl design are correct in the
implementation.

Description of Verification Levels

Calcl is a simple design used as an initial introduction to simulation-
based verification (however, verification engineers have successfully
applied formal verification to the design as well). Therefore, this design
requires verification only at the top level of the DUV hierarchy; further-
more, the available specification only describes the top-level interfaces.
Verification at a lower level of hierarchy, such as the ALUs, would require
an input and output description of that subunit.

However, if the people resources exist, it is better to do unit-level ver-
ification, thus placing the priority logic and ALUs under a microscope
of verification and allowing a higher level of control and stress on
the design. Furthermore, in real-world designs, it is common for one
designer’s logic to be available before others’ logic. If the priority logic
HDL is ready for verification before the ALUs, the priority logic unit-level
verification can commence without waiting for the entire chip. This level
of verification would add a dependency on the design team to document
the unit interfaces.

Required Tools

The tools inventory for Calcl comprises a single software simulation
engine (and license to run it) and one workstation, a waveform viewer,
and a test case language or infrastructure. The language or infrastruc-
ture must communicate with the simulation engine through the engine’s
application programming interface (API), which provides the means to
drive the inputs, check the outputs, and clock the model of the design,
which is simulated by the engine itself.?

3 Basic tools such as text editors (to write test cases) need not be included in the required

tools section of the verification plan.

126

Chapter 4 = The Verification Plan

Risks and Dependencies

This exercise does not have risks worthy of documentation. In a larger
project with a more complex design, there might be risks inherent in the
delivery of the specification of esoteric operations (e.g., binary floating
point) or in the ability to verify the design in a short schedule. If Calcl
were part of a large system, this section would detail schedule integra-
tion factors. The system-level verification cycle depends on the correct-
ness of the Calcl1 function so that broader system integration verification
can occur without being concerned with the quality of the add, subtract,
or shift functions.

The Calcl exercise also depends on the delivery of the specification
(which was delivered above) and availability of the required tools. To
perform this exercise, you will need the required tools as documented in
the previous section of the verification plan.

Functions to be Verified and Test Scenarios: Matrix

Because Calcl is simple, we have combined the functions to be verified
and the fest case scenarios (matrix) sections of the verification plan. We
list the details here in table format with a reference number for cross-
checking tests against the verification plan.

Certain test case requirements jump out at the verification engineer.
From the Calcl design description, it is clear that the verification engi-
neer must create the following basic tests as shown in Table 4.5. Beyond
the basic functions described in Table 4.5 are a series of tests that involve
scenarios that are more complex (Table 4.6). Finally, there are generic
tests and checks that are applicable to all verification plans (Table 4.7).

Specific Tests and Methods: Environment

This section describes all of the specifics of the verification environment
plans for Calcl. All sections enumerated in the plan’s previous sections
are described. However, some of the specifics, such as resource require-
ments, depend on the available team.

TABLE 4.5 = Calcl basic function tests

Test reference number Test description

1.1 Check the basic command-response protocol on each of
the four ports.

2 Check the basic operation of each command on each port.

3 Check overflow and underflow cases for add and subtract
commands.

1
1

4.4 Verification Example: Calcl 127

TABLE 4.6 = Calcl advanced function tests

Test reference number

Test description

2.1.1

2.1.2

2.2

2.3

24.1

2.4.2

2.4.3
24.4

2.4.5

2.4.6

2.5

For each port, check that each command can have any command follow
it without leaving the state of the design dirty, such that the
following command is corrupted, such that the following command is
corrupted.

Across all ports (e.g., four concurrent adds do not interfere with each
other), check that each command can have any command follow it
without leaving the state of the design dirty, such that the following
command is corrupted, such that the following command is
corrupted.

Check that there is fairness across all four ports such that no port has
higher priority than the others.

Check that the high-order 27 bits are ignored in the second operand of
both shift commands.

Data dependent corner case: Add two numbers that overflow by 1
(“FFFFFFFF"X + 1).

Data dependent corner case: Add two numbers whose sum is
“FFFFFFFF"X.

Data dependent corner case: Subtract two equal numbers.

Data dependent corner case: Subtract a number that underflows by 1
(Operand?2 is one greater than Operandl).

Data dependent corner case: Shift O places (should return Operandl
unchanged).

Data dependent corner case: Shift 31 places (the max allowable shift
places).

Check that the design ignores data inputs unless the data are supposed
to be valid (concurrent with the command and the following cycle).
Remember that “00000000"X is a data value just as any other 32-
bit combination. Here, the check must include verifying that the
design latches the data only when appropriate, and does not key off
nonzero data.

TABLE 4.7 = Generic tests and checks

Test reference Test description

number

3.1 Check that the design correctly
handles illegal commands.

3.2 Check all outputs all of the time.

Calcl should not generate
superfluous output values.
3.3 Check that the reset function
correctly resets the design.

128

Chapter 4 = The Verification Plan

Type of Verification: Black Box, White Box, Grey Box

A verification engineer can create all of the functions listed under the
functions to be verified section by driving the chip inputs and can check
most scenarios by monitoring the chip outputs. This would indicate that
black box checking is adequate. However, checkers placed on certain
logic functions internal to the design might flag logic flaws faster. These
checkers include checks on internal queues or stacks, especially in the
priority logic. This would verify that no command leaves the state of the
machine dirty (item 2.1 in the list of functions to be verified). In addi-
tion, the environment could include checks that verify fairness in the
priority logic by monitoring the dispatch of commands to the ALUs
(item 2.2 in the list of functions to be verified).

These checkers indicate that grey box verification is appropriate.
Therefore, all stimulus will be driven on the chip inputs, and most check-
ers will monitor the chip outputs. The environment will contain a limited
number of checkers on internal logic.

Verification Strategy

Deterministic, random, and formal verification are all viable technolo-
gies for Calcl. However, formal verification could have trouble verifying
correct ALU results across all 32 bits simultaneously. A full-blown
random environment might be overkill for this simple design, as the
number of test cases required to verify the functions is limited. There-
fore, for the Calcl exercise, the deterministic verification method is
chosen.*

Randomization Controls

Given the deterministic test case method, questions such as randomiza-
tion controls become moot. The test case writer will encode the input
values and the expected outputs into the test case itself.

Abstraction Level

The level of abstraction depends on the test case language. If the infra-
structure exists, driving the Calcl at the packet level is optimal for
quickly coding test cases. Figure 4.7 shows an example test case with
packet-level syntax.

The syntax in Figure 4.7 is very convenient, as the infrastructure that
reads and manages the test case handles many mundane tasks, allowing

* As we advance to the Calc2 exercise in Chapter 7, the number of permutations and the

level of complexity quickly exceed the number of deterministic tests that a verification team
can reasonably write. Therefore, we leave the example of random-based methods to Calc2.

4.4 Verification Example: Calcl 129

/* Port number Cmd Operandl Operand? Result Response*/

Portl

ADD "00012345"X "00054321"X "00066666"X Good

Port2 SHL "22222222"X "00000002"X "88888888"X Good
Portl SUB "00000001"X "00000003"X "00000000"X Underflow
= FIGURE 4.7

A basic Calcl test case with packet-level abstraction.

the test case writer to focus on the intent of the test case. In the the syntax,
the infrastructure environment manages multiple tasks for the test case
writer. The first task for the infrastructure is translating the actual
command decode values to bits (e.g., ADD = “0001”b). This has a poten-
tially huge added benefit: if the designer ever changes the decode value
of the ADD operand (e.g., ADD = “1001”b), all that is required in the
environment is a simple modification to the infrastructure. If, instead,
the verification engineer codes the operand decode values in the test case
itself, then the team must change every test case with the ADD command.
The same is true for the encoding of the response value.

The next task for the infrastructure is driving the bit-level values into
the Calcl design. The infrastructure knows to place the operandl data
value on the bus concurrent with the command and to send operand2
data the next cycle.

The infrastructure design also waits for the valid response. The test
case writer cannot predict when the response will come back, so the
infrastructure waits for the response event and checks the value when it
finally appears on the outputs. This enables the next infrastructure task
to send the next command to the port when the port becomes available.
In the sample test case of Figure 4.7, there are two commands destined
for Port 1. The protocol states that only one command may be out-
standing at a time on a given port. Therefore, the infrastructure can send
the first two commands concurrently (to Port]l and Port2) but must wait
for the ADD on Port 1 to finish before initiating the SUB. Without an
infrastructure, sending multiple commands to the same port is a very
tedious task involving trial and error.

The infrastructure will also take care of resetting the logic and driving
the clocks. The infrastructure automatically raises the reset line for seven
cycles as required at the beginning of every test case, thus circumventing
the need to articulate the reset in every test case. The infrastructure also
drives the clocks to the correct values. An even more robust infrastructure
might further simplify the test case writing task by including other
advanced aspects of verification stimulus generation and checking.

An advanced Calcl verification environment would include data pre-
diction. If the infrastructure included a golden model that predicts the
result and response fields, it frees the test case writer from having to “do
the math.”

130

SET INPUT
CLOCK 7;
SET INPUT
CLOCK 1;
SET INPUT
SET INPUT

CLOCK 3;

Chapter 4 = The Verification Plan

"reset(0:7)""11111111"b;
"reset(0:7)""00000000"b;

"reql_cmd_in(0:3)""0001"b;
"reql_data_in(0:31)""00012345"x0©

EXPECT OUTPUT "out_respl(0:1)""01"b;

= FIGURE 4.8

A bit-level test case for Calcl.

Further functions in an advanced verification environment include
generation of random operand data. If desired, the syntax of the test case
allows the writer to replace an operand data value with the keyword
“random,” which tells the packet generator to pick a random number
value. This requires data prediction capabilities in the infrastructure.’
The test case writer maintains deterministic control over the command
selection and flow of the test case, but optionally can allow the infra-
structure to choose values.

When compared with the packet level of abstraction in the test case
of Figure 4.7, the test case in Figure 4.8 shows the tedious nature of
bit-level environments. The bit-stream level test case language requires
the test case writer to specify all inputs every cycle.

This bit-stream level of abstraction is very tiresome for a verification
engineer to write test cases. This test case sample does not even com-
plete the sending of a single Port command. Even worse, the writer must
predict when the response will return from Calc1 through trial and error.
This entails adjusting the clock value in line 8 to the actual cycle that the
Calcl logic returns the response.

Output Checking

The previous section prescribed the golden vector approach to checking.
Under this approach, the verification engineer supplies the expected
output values for the deterministic sequences. Unless the team creates
an advanced verification infrastructure with predictive data checking, the
test case writer imbeds the data and result checking inside the test case.

> This type of random data generation should not be confused with “random-based verifi-

cation methodologies” (see Chapter 7). Random-based verification go well beyond random
data by using biasing tables to randomly select commands and ports, as well as idle cycles
between port commands.

4.4 Verification Example: Calcl 131

Coverage Requirements

Coverage goals for the Calcl example are based on the tests defined in
the functions to be verified section, and the goals require that the verifi-
cation tests create all of the cases described in that section. These goals
are simple because the test scenarios in this design are able to be artic-
ulated. However, in robust designs, coverage goals require greater effort
and rigor in the verification cycle.

Although there is a detailed explanation of coverage and coverage
tools in Chapter 7, the fundamental notion of coverage is to provide feed-
back and confirmation of what the verification environment has exer-
cised in the DUV. Coverage feedback provides the verification engineer
with insight into the actual data of what the test case has done. This data
will show either that the test case has met its intent or that the test case
failed to exercise the intended function or scenario within the design. For
example, in the functions to be verified section of the verification plan,
test reference number 2.1.1 calls for tests that verify that each command
can follow any other command on each port. This statement stipulates
a series of 16 pairs of commands on each port for a total of 64 different
test scenarios. Coverage feedback will track which of the 64 sequences
the test cases have completed.

Resource Requirements

For the Calcl exercise, the resource requirements call for a single verifi-
cation engineer. The compute resources call for a single workstation on
which the simulation engine runs.

Schedule Details

The schedule details for the Calcl exercise are straightforward. A verifi-
cation engineer should expect to complete the Calcl design example in
a single workday.

In the case of the packet-level abstraction, the Calcl verification engi-
neer depends on the existence and quality of the infrastructure. Usually,
the verification engineer must create the infrastructure or at least per-
sonalize it for the design under test. If this is the case, extra schedule
time is required.

4.4.3 Deterministic Verification of Calc1

With the design intent and the verification plan in place, it is time to begin
verifying the Calcl design. The verification plan called for deterministic
testing of the design. For clarity, this description uses a packet level of
abstraction to detail the deterministic tests. As stated in the verification
plan, the packet level requires an infrastructure to be in place.

132 Chapter 4 = The Verification Plan

Calcl VHDL

Testcase

> Calcl >
Stimulus initiator [| simulation [| Checker
» model >
A M\ +
\ Y \l
Outstanding command Trace
scoreboard debugger

= Keyboard text
[Testcase infrastructure
3 Simulation tools and model

= FIGURE 4.9

Infrastructure for sending simple command packets into the Calcl simulation model.

Figure 4.9 shows the high-level view of the components in the infra-
structure. The test case parser reads the text-based commands from the
test case and converts them into packet structures for the stimulus ini-
tiator. The initiator passes the packets into the model on the designated
port, performing the packet to bit-stream conversion. Each command
packet requires two cycles to transmit into the Calcl simulation model
as dictated by the design’s specification. The stimulus initiator can mul-
tiplex across all four ports, sending simultaneous or staggered com-
mands based on the test case. When the interface driver transmits a
command packet, it also posts the command to a scoreboard, which
keeps track of commands currently under execution by the Calcl simu-
lation model. As the Calcl simulation model completes commands, the
output checker pulls the expected response and expected data from the
scoreboard for comparison to the actual response. If there is a response
or data mismatch, the test case execution ceases and the output checker
records both the error and the actual versus expected data. Otherwise,
the output checker removes the command from the scoreboard, indicat-
ing that the stimulus initiator may dispatch a new packet to that port.
When the stimulus initiator transmits all of the test case packets and the
checker receives all responses, the test case ends successfully.

The infrastructure also takes care of the seven-cycle reset sequence as
well as driving the clocks into the model.

4.4 Verification Example: Calcl 133

/* Port number DelayN Cmd Operandl Operand? Result Response*/
Portl 0 ADD "00012345"X "00054321"X "00066666"X Good
Port2 2 SHL "22222222"X "00000002"X "88888888"X Good
Portl 3 SUB "00000001"X "00000003"X "00000000"X Underflow
= FIGURE 4.10

Test case syntax with a delay field.

1 1 1 1

Cycle 0 1 2 3 4 5 6 7 8 9 0 1 2 3
c clk 0:0 [bl bt L0 7 I . LI LI\ \LI LI LI \L.
reset 0:7 L
reql_cmd_in 0:3 10001 'bl
reql_data_in 0:31 I0005 10008 x1
out_respl 0:1 I'Ol'b |
out_datal 0:31 o000 x 1
= FIGURE 4.11

The Calcl DUV trace for test case 1.1.1, an ADD command to Portl.

For this exercise, we will build on the test case syntax introduced in
the test case of Figure 4.7, described in the previous section. The new
syntax includes an additional field, DelayN, to control the number of
cycles between packets (Figure 4.10).

The delay field causes the interface driver to wait N cycles before dis-
patching the packet. In the above example, the first packet on Port1 (ADD
command) will dispatch as soon as the reset completes (cycle 8), and the
environment will initiate the Port2 command two cycles later. When
the Portl command completes, the port will remain idle for three cycles
before the interface driver initiates the SUB command packet.

With this packet-level infrastructure in place, the verification engineer
focuses on the intent of each test case. The first set of test cases in the
plan can now be written.

Verification Plan Tests 1.1 to 1.3

Our first test case runs to completion and the simulation engine captures
the trace. The response and data are correct, and test case 1.1.1 is suc-
cessful. Figure 4.11 shows the trace of test case 1.1.1. Similar test cases,
1.1.2, 1.1.3, and 1.1.4, verify the basic command-response flow of each
port for the ADD command. However, test case 1.1.4 does not complete
in 13 cycles, as the others did. Instead, it runs until the test times out.
Figure 4.12 shows the trace for test case 1.1.4.

The out_resp4 wire never returns a valid response. At this point, the
verification engineer has potentially found a bug where Port4 hangs.

134 Chapter 4 = The Verification Plan
1 1 1 1 5

Cycle 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0
c_clk 0:0 _I?
reset 0:7 L
reqd_cmd_in 0:3 J0001 ol \
reqd4_data_in 0:31 0005 xT000D " x1 \
out_resp4 0:1 \
out_data4 0:31 ‘\‘
= FIGURE 4.12

The Calcl DUV trace for test case 1.1.4, an ADD command to Port4.

After further study of the trace, the verification engineer confers with the
designer, and the designer concludes that the priority logic does have a
bug. The designer makes a fix and recompiles the model. The verifica-
tion engineer reruns the exact same test case to validate the fix and con-
cludes that the basic command-response sequence on Port4 now works.
For good measure, the verification engineer reruns the first three test
cases to ensure that the fix did not break any other logic that had been
working. The first bug in Calcl has been uncovered and fixed.

Test reference number 1.2 of the verification plan prescribes test cases
for each operation on each port. Test cases 1.1.1 through 1.1.4 already
verified the add operation on each port, so the new test case verifies the
subtract operation on each port in parallel.

/* Test case 1.2.1 SUB commands on each port */
/* Port # DelayN Cmd Operandl Operand2 Result Response*/
Portl O SUB “00000007”X “00000004”X “00000003"X Good
Port2 0O SUB “0000000D”X “00000008”X “00000005"X Good
Port3 0O SUB “00000010”X “00000001”X “O000000F”"X Good
Port4 0O SUB “00000012"X “00000007”"X “0O000000B"X Good

The test case runs to

trace.

completion in 16 cycles.

Figure 4.13 shows the

Next, test cases 1.2.2 and 1.2.3 verify the Shift_left and Shift_right
operations on each port. Both test cases run successfully against the
Calc1 model.

Section 1.3 of the verification plan calls for add and subtract overflows
and underflows.

/* Test case 1.3.1 Overflow and underflow

*/

/* Port # DelayN Cmd Operandl Operand2 Result Response*/
Portl O ADD “FFFFFFFF”X “00000002"X “00000000"X Overflow
Port2 0O SUB “0000000D”X “O000000E”X “00000000"X Underflow

4.4 Verification Example: Calcl 135

1 1 1 1 1 1 1
Cycle 3 4 5 6 7 8 9 0 1 2 3 4 5 6
c_clk 0:0 [b b0—Jt LT L L . . .\ I\ I\L.I\L.TIL\L.
reset 0:7 1
reql_cmd_in 0:3 0010 bl
reql_data_in 0:31 [0007 " xT0004 x1
out_respl 0:1 IWI
out_datal 0:31 [0003 " x 1
reqz_cmd_in 0:3 0010 bl
req?_data_in 0:31 m
out_resp2 0:1 IWI
out_data2 0:31 I0005 x 1
req3_cmd_in 0:3 0010 bl
req3_data_in 0:31 IOOlO'x 0001'x|
out_resp3 0:1 IWI
out_data3 0:31 Io00F ' x 1
req4_cmd_in 0:3 [0070 bl
reqd4_data_in 0:31 IOOlZ'x 0007'x|
out_resp4 0:1 [orp 1
out_datad 0:31 Io008 x 1
= FIGURE 4.13
The Calcl DUV trace for test case 1.2.1, the subtract operation on each port.
1 1 1 1 1 1 1
Cycle 3 4 5 6 7 8 9 0 1 2 3 4 5 6
c_clk 0:0 [b bt b0 T I L . . L’ L’ \L_’ri.TI 1.
reset 0:7 1
reql_cmd_in 0:3 0001 bl
reql_data_in 0:31 IFFrr 10002 x1
out_respl 0:1 IWI
out_datal 0:31 Io001 x 1
req2_cmd_in 0:3 0010 bl
reqz_data_in 0:31 000D xT000E ' x1
out_resp? 0:1 [T b 1
out_data2 0:31 [Frrrx 1

= FIGURE 4.14

The Calcl DUV trace for test case 1.3.1, overflow and underflow add and subtract operations.

When test case 1.3.1 runs against the Calc1 model, the test case fails with
miscompares on both the result and response values. Figure 4.14 shows
the trace.

Rather than responding with the overflow/underflow response of

“10”b, the Calcl model returns a good response. Further examina-
tion reveals that the results for both the add and subtract would be
correct in 2’s complement but that does not match the specification. The
verification engineer consults the designer and confirms the second
bug. The Calcl design ignored the carry_out bit from the adder
ALU instead of using it to generate the overflow/underflow response. The

136 Chapter 4 = The Verification Plan
verification engineer reruns the test case with the fix, and it runs
successfully.

Further overflow and underflow test case permutations run against
each of the ports and find no more bugs in this area.

4.5 SUMMARY
Throughout the project, the verification plan provides the blueprint for
success. It contains the details for all of the environments. Although the
plan will inevitably require updates as the project progresses, it contains
all of the fundamental information on what will be verified, where it will
be verified, and when that verification will occur.

As time progresses, the question “when am I done?” will arise. The
team finds many of the answers to the following targets by referencing
the verification plan.

= Components written with all required function

= All checkers contain all appropriate checks

= All identified tests written

= All identified tests pass

= All identified coverage goals met

= All bug rates have dropped off

4.6 EXERCISES

1. There are two bugs identified in the Calcl design (see test case 1.1.1
and test case 1.3.1). Using the Calcl verification plan as your guide
(Tables 4.5-4.7), write the remaining deterministic test cases and
identify any remaining bugs. You will need the Calcl HDL (down-
load from the companion Web site for this book) to create a simu-
lation model using your vendor’s engine. Describe any more bugs and
indicate the verification plan section under which you found them.

2. List and summarize the sections of the verification plan.

gesere

____ SIMULATION-BASED VERIFICATION ||

Within the Verification Cycle, the verification team spends most of their time develop-
ing the verification environment and debugging the HDL. Having completed the verifi-
cation plan, the team embarks on creating robust stimulus and checkers in their quest
for delivering a bug-free hardware design. Because of the depth of effort needed to
develop a verification environment and debug both the HDL and verification environ-
ment, Part 2 and Part 3 of this book focus squarely on these two portion of the Verifi-
cation Cycle.

Simulation based verification is the most widely used method of functional
verification. At the heart of this methodology is the simulation engine, which allows
the verification team to model the behavior of the design. Other critical tools support
the simulation method, including High-level Verification Languages, debugging soft-
ware and coverage modelers. Within Part 2, Chapter 5 and 6 describe these simulation-
based verification tools.

Robust simulation tools provide a platform upon which skilled verification

engineers create stimulus and checking components that verify the correct design

behavior. Verification engineers have multiple techniques available for creating these

components. Chatpers 7 and 8 explain these varying methods, citing multiple exam-

ples, including a second Calc design. Chapter 8 also delves into the debug process used

when the environment detects a difference between the expected behavior and the

actual results from the modeled design.

Simulation extends beyond the basic function of the design as verification engi-

neers employ simulation-based techniques to reset logic, built-in test logic, and system-

level verification. Chapter 9 describes simulation methods for non-basic, or pervasive

functions, and Chapter 10 explains the many elements of system-level simulation.

CHAPTER 5

HARDWARE DESCRIPTION LANGUAGES
AND SIMULATION ENGINES

Before exploring the details of the verification cycle’s simulation-based
strategies, this chapter and Chapter 6 discuss the typical design auto-
mation (DA) tools that are available to the design and verification teams.
First, we introduce the major characteristics of hardware description lan-
guages (HDLs) and their simulation engines, which provide the heart of
the simulation-based verification cycle. Newer DA technologies that
allow the formal verification of a DUV are the focus of Chapters 11 and
12.

Design engineers normally use an HDL to define the function and the
structure of a design under verification (DUV). Specifying a design in the
text format of an HDL, an activity called design entry, allows the engi-
neer to document the DUV unambiguously and later execute it as a model
in a simulation engine. The HDL version of the DUV is also the basis for
the physical implementation of the design. To better support the simu-
lation task, HDLs have features that go beyond the mere description of
the design and include the specification of stimulus and checking com-
ponents, which form an HDL test bench. When we characterize the
typical elements of HDLs as design specification tools in this chapter, we
compare and contrast the two most popular HDLs, VHDL and Verilog,
as prime examples.

Figure 5.1 is used to guide the discussion from design entry through
the simulation-based verification cycle. The simulation engine is at the
heart of simulation-based verification. It executes the HDL model in con-
junction with the HDL test bench elements a user might have coded.

There are a variety of algorithms available to build simulation engines.
Because the simulation engine plays such a crucial role in the center of
the simulation-based flow, typical architectures of such engines in this
are discussed in this chapter. It is important that verification engineers
understand the characteristics of such tools at their disposal. Electronic
design automation (EDA) developers build tools such as simulation
engines around different sets of trade-offs, many of which select between
accuracy and speed. The verification team must choose those tools that
are most adequate for their given project.

142

Chapter 5 = Hardware Description Languages and Simulation Engines

| Interactive user control GUI I

J
Stimulus ! Check

(—————————————— N\
HDL model
of DUV

Stimulus Interactive

A
Stimulus "Check Simulation [«——{ Testbench testbench
engine [—| program debug
HDL Check GUI
testbench

HDL model
& J

Coverage
traces

Interactive waveform Interactive coverage
viewer GUI analysis GUI

= FIGURE 5.1

Overview of major simulation tools. The simulation engine executes the design under verification model

as well as a

test bench specified in a hardware description language. The verification team can stim-

ulate and check the model in two additional ways: through a test bench external to the simulation

engine or by

an interactive control user-interface. Shaded rectangles show a set of graphical user inter-

faces typically provided around these tools to improve verification productivity.

Many simulation engines offer an interactive graphical user interface
(GUI), which lets the user apply individual stimulus and check com-
mands manually in between simulation steps of the model. Such inter-
faces, which support a detailed debug mode, are effective mainly on
smaller models or very specific debug situations. When working with
larger-sized DUVs, the verification engineer lets the simulation engine
save the results of a simulation run to trace files, which capture simu-
lated model states over time. As also shown in Figure 5.1, waveform
viewer tools let the user browse through these results files in various
ways, for example, forward and backward in simulation time, to inspect
and debug the model behavior in detail. An overview of typical charac-
teristics of such tools is provided at the end of the chapter.

For many verification tasks, the users do not find the test bench fea-
tures of the HDL sufficient. Therefore, most simulation engines provide
open interfaces that support the application of checks and stimuli from
a programming or test bench authoring language. The discussion of
several test bench languages is the subject of Chapter 6.

It is already apparent from Figure 5.1 that many simulation tools
present an interactive GUI to the designer. A very common approach is
to integrate the different GUI tasks under one single master GUI, which

5.1 Hardware Description Languages 143

then gives the user the view of a single integrated HDL and verification
development environment even if the implementation underneath con-
sists of separate tools.

All major EDA companies offer many of these tools, often integrated
into one GUI framework. The benefit of the Institute of Electrical and
Electronics Engineers (IEEE) standardization of the HDLs is that many
simulation engines are largely interchangeable with each other. The dif-
ferentiation comes from simulation speed and value-add features such
as the integration of the other simulation tasks: coverage, test bench
program support, and user-friendliness for debug.

5.1

HARDWARE DESCRIPTION LANGUAGES

Hardware description languages are the central tools for design engi-
neers to specify the behavior and the functional and physical partition-
ing of a piece of hardware design. This chapter will not provide a detailed
tutorial of one or several HDLs because there are excellent textbooks
available on all the popular HDLs [1,2]. Despite the detailed lists of
syntax elements and features of the HDLs, this chapter will give a tax-
onomy of the most important properties of VHDL and Verilog as repre-
sentatives that together stand for the majority of HDLs in use today. This
discussion and the comparison between the two languages should allow
readers a foundation from which they can quickly explore actual lan-
guage details using an HDL textbook.

5.1.1 HDL Modeling Levels

The idea of a formal language to specify the behavior of hardware goes
back to the 1960s. Similar to the concept of a programming language,
the idea was to use a formal, machine-readable syntax with well-defined
semantics to allow the unambiguous specification of a given hardware
design. Developers in academia and industry have defined and imple-
mented various HDLs over the decades.

Aside from the pure specification of the design, the main purpose of
using an HDL was always to automatically turn the HDL text into a
simulation model. Figure 5.2 shows the model build flow from HDL to
simulation engine. A simulation engine runs the model and lets the
verification engineer interact with it at various times during the simula-
tion. Typical interactions during simulation run time are the control of
the amount of time to simulate, interrogation of the state of the model,
and changing the state of the model. There are different options for the
level of integration of the components of the system shown in Figure 5.2.
The most integrated system presents the user with a tool that loads files
of HDL specifications directly into the simulation engine, making the
compilation and model build appear seamless. Other systems give the

144 Chapter 5 = Hardware Description Languages and Simulation Engines

Design specification
(HDL)

[HDL compiler & model builder]

Simulation model

Simulation engine

= FIGURE 5.2

This flow shows how a language-processing program (compiler) reads the hardware description language
specification of a design under verification (DUV) and produces a simulation model in the end. The user
can execute the compiled model by calling a simulation engine, which loads the model of the DUV and
evaluates it.

user access to discrete components in which a compiler translates the
HDL into a simulation model file that is stored to disk, and the simula-
tion engine simply loads the pre-compiled model file at the beginning of
every simulation run.

The two main hardware description languages used in the industry
today are Verilog and VHDL. The IEEE has defined standards for both
(VHDL IEEE 1076, Verilog IEEE 1364), and all major EDA vendors
support both languages equally well [3, 4]. There are largely historical
reasons for the existence of two different standards in this field; however,
the two languages focus on different areas of the hardware specifica-
tion task. A taxonomy of the hardware specification space will help
understand the differences between Verilog and VHDL as well as give a
framework, to make it easier to characterize future trends in HDL
development.

The main attributes of a design at the highest modeling level
(Figure 5.3) are its inputs and outputs and the behavior of the DUV. One
way to describe the behavior would simply be the specification of the
value of input signals and the corresponding value of output signals over
time.

Modeling Dimensions

Approaching the specification of input/output (I/O) behavior more
systematically, the properties of the design block and its I/Os can be
described along four different modeling dimensions (Figure 5.4). For
each dimension, we list specification methods ordered by increasing
levels of abstraction.

The temporal dimension is necessary to describe behavior over time,
which is always observable as change of model state. The values of 1/0

5.1 Hardware Description Languages 145

e >
— E—
— Model -
e >
Inputs Outputs
) Input behavior over time
mutput behavior over time
>t

= FIGURE 5.3

At the highest level of abstraction, the designer specifies the outside interface of a design under veri-
fication (DUV) and the behavior of the DUV outputs because of DUV input changes over time.

« Temporal dimension

« Continuous (analog)

« Gate/wire delay

« Clock cycle

« Instruction/transaction cycle

* Events
« Data abstraction

« Continuous (analog)

« “Bit” : multiple values

« Bit : binary

« Abstract value — Discrete value

« Composite value (“struct”/“record”)
« Functional dimension

« Continuous functions (e.g. differential equations)

« Switch-level (transistors as switches)

* Boolean logic

« Algorithmic (e.g. sort procedure)

« Abstract mathematical formula (e.g. matrix multiplication)
« Structural dimension

« Single black box

« Functional blocks

« Detailed hierarchy with primitive library elements

— Discrete time

= FIGURE 5.4

This list of four dimensions allows the discussion of independent aspects of the specification of design
under verification (DUV) behavior into separate categories. The temporal dimension deals with the timing
relationship of DUV behavior. The data abstraction defines the value sets for DUV signals. The specifi-
cation of the functional relationships between DUV inputs/outputs belongs into the functional dimen-
sion. The structural dimension is relevant when the designer specifies a DUV not by functional behavior
but by creating a more complex DUV from simpler building blocks.

146

Chapter 5 = Hardware Description Languages and Simulation Engines

signals or state-holding variables inside the DUV represent the state of
the model. An analog simulation system lets us specify behavior in con-
tinuous time, fairly close to the physical model of an electrical circuit.
Gate and wire delays are more abstract; they are the first example of dis-
crete time in the list of increasing temporal abstraction in Figure 5.4.
They measure the time it takes to propagate changes of signal values
through the elements of a model. Every change occurs abruptly at the
outputs of these elements. The notion of clock cycle abstracts time
further: on this level, we are only interested in sampling signal values at
specific periodic, recurring points in time. Such a cycle might coincide
with a clock cycle of a synchronous design. More generally, however, a
clock cycle of HDL specification could simply sample signals several
times during a real hardware clock cycle. A DUV specification uses the
most abstract notion of time when it views changes of model state only
as occurrences of instructions or transactions. The model is still sampled
periodically, but the measure of time is abstractly the completion of units
of work in the model. Finally, the most abstract notion of time knows
only abstract events. The only concern at this level is the mere prece-
dence of observed changes of model state.

For the purpose of the level of verification discussed in this book, we
will limit ourselves to discrete time.

In the dimension of data abstraction, it is useful to distinguish five
different levels to describe model state. Again close to the physical
model of a circuit is the notion of a continuous value, typically a voltage
measure. At a level more abstract, multi-value simulation engines or
HDL signal types allow for granular representations of a signal state as
a multi-valued “bit”. A multi-valued bit signal or variable can assume
values besides the strict binary “0” and “1”. For example, values like
“u” or “x” specify the states “un-initialized” or “unknown”, respectively.
Other value denotations are useful to distinguish signal strength and
are helpful to simulate bus signals with multiple sources. The more
abstract binary representation of bit is central to the type of verifi-
cation discussed here. Abstract values are much better suited than
are simple bits and collection of bits to encode the actual intention of
the design and the semantic meaning implied by a signal state. The def-
inition of the symbolically enumerated values main and elm used in
Section 3.3.2 is an example. Figure 5.5 repeats the relevant section of
Figure 3.13.

However, integer, floating-point, or text string types are equally suited
to serve as abstract values. From this more abstract specification, the bit
encoding is a question of implementation. Finally, at the end of the list
of data abstractions, composite values can package together several
abstract values to one structured object, similar to records or C-language-
like structs, which allow users to refer to complex composite values or
states in a very concise way.

5.1 Hardware Description Languages 147

architecture rtl of traffic is
type state is (
signal current_state_din, current_state_dout : state;

begin -- rtl

-- purpose: Determines when the Tight should change
-- type : combinational
-- dinputs : timer_pulse, Main_Street, EIm_Street, current_state_dout
-- outputs: current_state_din
dataflow_proc: process (timer_pulse, Main_Street, EIm_Street, current_state_dout
begin -- process change_light
current_state_din <= current_state_dout;
-- When the timer expires, evaluate the traffic situation
if timer_pulse = '1' then
if Main_Street = '1' then
current_state_din <=
elsif EIm_Street = '1' then
current_state_din <=
end if;
end if;
end process dataflow_proc;

Light_Direction <= "01" when current_state_dout = else "10";

= FIGURE 5.5

Enumerated types in VHDL are an example of abstract values for signals.

For the specification of the behavior of a DUV, we can choose from
the different abstraction levels in the functional dimension. Clearly
related to the continuous domain in the dimensions of data abstraction
and temporal abstraction is the use of continuous mathematical functions
such as differential equations. Next, the abstractions of transistors to
switch-level elements yield a concise model for detailed custom-circuit
simulations. So-called gate-level and register-transfer models (explained
below) use Boolean logic as the base for the specification of functional
blocks built from Boolean elements. Further abstracted forms of speci-
fication use general programmed algorithms to define functionality. For
example, a sort algorithm that sorts different key entries in a buffer can
concisely use a bubble-sort subroutine regardless of how the real hard-
ware implements the function in Boolean logic later. If our simulation
system and HDL support built-in high-level data types and operators,
such as matrices and their multiply operators, the behavioral function of
a block can be defined most concisely with an abstract mathematical
formula.

The fourth and final important dimension of our modeling taxonomy
is the structural dimension. We can describe a design as a single

148 Chapter 5 = Hardware Description Languages and Simulation Engines

Temporal

Continuous Gate delay Clock cycle Instruction Events

cycle

Data

Continuous Multivalue bit Bit Abstract value “Struct”
Functional]

Continuous Switch level Boolean logic Algorithmic Abstrac_t

mathematical
Structural
Single black box Functional blocks Detallgd SEClERt
hierarchy

= FIGURE 5.6

Coverage of modeling levels by Verilog. We list the four dimensions of the hardware description lan-
guage taxonomy vertically with their different modeling levels expanded horizontally. The shaded, over-
laid area represents the modeling levels directly supported in the Verilog language.

amorphous black box without any structural content, for example, a fast-
Fourier-transformation (FFT) design described with abstract mathe-
matical formulas. More typical is the breakdown of a single black box to
a set of interconnected functional blocks in a refinement step. Although
such simple structural refinement implies at least two levels of hierar-
chy, the most granular structural partitioning uses potentially many
levels of detailed hierarchy, all the way to a library of pre-defined primi-
tive elements.

Figure 5.6 illustrates how the Verilog HDL covers the dimensions of
our HDL taxonomy. Similar to VHDL (Figure 5.7), Verilog covers large
parts of the non-analog domain in all dimensions. Verilog has direct
built-in support for switch-level modeling, which gives it a clear per-
formance edge over VHDL in this area. VHDLSs focus is decidedly on
higher-levels of abstractions with its support for user-defined data-types,
programming-language-like function overloading, and the support to
define complex composite data types with records. On the other hand,
VHDL supports switch-level and multi-value logic only specified as open-
ended user packages without direct language support versus the built-in
but fixed capabilities of Verilog. The trade-offs between the languages are
generality and flexibility versus performance.

Both languages excel in their flexibility to express structural de-
composition and hierarchy as one would expect in an area where an HDL
is most fundamentally different from a programming language. After all,
it is a central design technique in hardware design to build more complex

5.1 Hardware Description Languages 149

Temporal
Continuous Gate delay Clock cycle Ins;;uglzéion Events
Data
Continuous Multivalue bit Bit Abstract value “Struct”
Functional —
Continuous Switch level Boolean logic Algorithmic ma?l?e?rtrr;iitcal
Structural
Single black box | Functional blocks Detaiﬁ:rgcr)&;;/onent

= FIGURE 5.7

Coverage of modeling levels by VHDL. We list the four dimensions of the hardware description language
taxonomy vertically with their different modeling levels expanded horizontally. The shaded, overlaid area
represents the modeling level modeling levels directly supported in the VHDL language.

hardware modules from simpler building blocks. The definition of
modules (Verilog) or entities (VHDL) that represent such re-usable build-
ing blocks, their instantiation, and the interconnection of the instances
via signals is a basic activity of HDL-based logic design.

It is interesting to note that Verilog’s built-in support for abstract
events has no counterpart in VHDL, in which the designer has to model
the occurrence of an event as a change of a signal value.

The IEEE standard called VHDL-AMS (IEEE 1076.1) extends VHDL
to cover the continuous domains (time and data values).

Before we extend the HDL review from constructs for modeling the
DUV to the support of verification concepts, we use the modeling tax-
onomy to discuss two important modeling styles, which apply to both
VHDL and Verilog. The two styles are gate-level and RT-level modeling
and are the workhorses for functional digital hardware verification today.

Gate-Level Model

A gate-level model is an exclusively structural model that only uses
instances of a fixed set of elementary Boolean function library blocks to
build the DUV. The interconnect specification of these instances might
extend over several levels of a hierarchy. The source for these models is
usually a physical netlist. Many times such a netlist is the output of a
logic synthesis tool that transformed an original HDL design source and
mapped the function into an available silicon library of logic primitives

150 Chapter 5 = Hardware Description Languages and Simulation Engines

Temporal

Continuous Gate delay Clock cycle Instruction Events

cycle

Data

Continuous Multivalue bit Bit Abstract value "Struct"
Functional ! |

Continuous Switch level Boolean logic Algorithmic Abstrac_t

mathematical
|
Structural
Single black box Functional blocks Detallgd EellseliEl
hierarchy

= FIGURE 5.8

The gate-level modeling style covers the lower levels of abstraction of the modeling taxonomy of the
hardware description language. Gate-level models are highly structural and use a gate delay time ref-
erence, multi-value signals, and Boolean logic primitive to implement the function of the design under

verification.

(Figure 1.1). Such a library of technology-specific building blocks con-
tains HDL models that include information about the timing behavior of
the primitives. Many times, engineers verify the implementation timing
behavior of the design at the gate-level.

At the gate-level (Figure 5.8), it is standard to use a multi-value bit
representation for signals to enable a more detailed verification of non-
Boolean function aspects of the DUV. A good example is the so-called
power-on-reset (POR) simulation (Chapter 9), which verifies that the
DUV can be set into a defined starting state after power on. The multi-
value simulation initializes the DUV to a random state, represented by
an initial value “u” for all DUV state elements. “u” represents the state
un-initialized, a symbolic short-hand for any possible Boolean value. POR
simulation verifies that there is a controlled input sequence, which moves
the DUV from this “u” state to its defined initial state from where it will
be ready to execute its specified main function.

The detailed simulation at the gate-level comes at the price of lower
simulation performance compared to the register-transfer level (RTL),
which we discuss next.

Register-Transfer Model

The RTL style (Figure 5.9) is more abstract but overlaps somewhat with
the gate-level model. The intention of an RTL model is to specify the DUV

5.1 Hardware Description Languages 151

Temporal [

Continuous Gate delay Clock cycle Insé;/u;gon Events
Data |

Continuous Multivalue bit Bit Abstract value “Struct”

. | I

Functional |

Continuous Switch level Boolean logic Algorithmic Abstrac't

mathematical
Structural
Single black box | Functional blocks Detallgd BBl
hierarchy

= FIGURE 5.9

The register transfer level (RTL) modeling style covers more abstracts levels of the modeling taxonomy
of the hardware description language. RTL models can be very structural such as gate-level models.
However, they typically model the function of the design under verification (DUV) by using Boolean
logic, equations, and algorithmic specification using sequential code. Designers use the full range of
high-level data abstractions to allow a concise behavioral specification of the DUV.

in terms of state-holding dataflow elements (registers and storage arrays)
and how the DUV updates the state between clock cycles. Most typically,
the granularity of an RTL model differs from the gate-level in that the
structural hierarchy does not reach all the way down to technology
library primitives but ends at least at the level of Boolean equations.
Modern design methodologies use equations and sequential HDL con-
structs (always/process constructs in Verilog/VHDL) but keep corre-
sponding state-holding elements, latches and flip-flops, identical between
the RTL and the gate-level. Keeping the consistent state-elements
between the two levels allows formal verification methods to prove
Boolean equivalence between the two and reduces greatly the need for
the more costly gate-level simulation. Chapter 11 discusses the advan-
tages of formal verification and the equivalence proof between gate-level
and RTL models.

The use of higher-level abstractions at the RTL in the description of
the combinational function of the DUV allows for a more concise design
specification and better simulation performance. The influence of HDL
style on simulation performance will be discussed in more detail later in
this chapter.

Figure 5.10 shows the role of the RTL specification in the design flow.
An RTL specification is the starting point for both verification and physi-
cal implementation of a DUV. From this perspective, a gate-level version

152 Chapter 5 = Hardware Description Languages and Simulation Engines

RT-level
HDL

specification

Implementation Verification

\

. . Simulati
Logic synthesis muation

Formal verification

Gate-level Verification

HDL

Gate-level netlist

Physical design and fabrication

= FIGURE 5.10

The very large scale integration (VLSI) design flow uses an register transfer level (RTL) model as the
source for both verification and implementation. A modern design system supports the automatic
mapping of the RTL specification via a logic synthesis tool to a technology library at the gate level. The
RTL model is the principal model for verification in this approach. Verification of the gate-level model
checks correctness of logic synthesis and dynamic timing properties. The gate-level netlist is input to
the physical design process (chip placement and wiring) and finally to chip fabrication.

of the DUV is an implementation of the RTL specification. Although
designers can implement the gate-level version manually, it is usually an
EDA tool, logic synthesis, which creates the implementation of the DUV
automatically. Most of the functional verification of the DUV can occur
on the RTL model. Simulation on the gate level provides the verification
team with a detailed view of physical parameters such as signal propa-
gation times. Such parameters, unknown at the time the RTL specifica-
tion is done, can be part of a detailed simulation at the gate-level. In
addition, verification that the gate-level and the RTL versions of the DUV
are functionally identical is necessary to ensure that the transformation
of RTL to gate-level did not introduce inconsistencies.

The Finite State Machine Model of an RTL Specification

Figure 5.11 shows an alternate view of the RTL style of DUV specifica-
tion. We view the RTL model as a general finite state machine (FSM). All
state-holding elements of the DUV represent the state of the FSM, and
all RTL code that is concerned with the state changes between clock
cycles translates into the combinational state transition function of
Figure 5.11.

If all the clocks in the FSM model run at the same frequency, we call
the FSM purely synchronous. However, it is possible to have different
frequencies for different clocks in the RTL specification. We consider all

5.1 Hardware Description Languages 153

Primary inputs

Primary
outputs

State transition function
(combinational logic)

\

State-
holding
elements

Yy

AN
A

Clock(s)

= FIGURE 5.11

A specific view of a register transfer level specification expresses the notion of a finite-state machine.
The finite state machine (FSM) notion combines all state-holding elements of a design conceptually
together to a single state vector. The combinational logic of the FSM reacts to changes on the primary
inputs of the design or the current state. This results in changes to the primary outputs or the new
input values of the state-holding elements. The state updates if any of the clocks are active that syn-
chronize the update of state-holding elements.

logic clocked by the same clock a clock domain. We will discuss some
aspects of multiple clock domain simulation in Section 5.5.3.

The general state machine model of a DUV will be the basis for many
verification tasks and tools throughout this book.

5.1.2 Verification Aspects of HDLs

The use of HDLs in verification is not limited to the simulation of the
hardware design specification (the DUV). Modern HDLs also include
constructs that support verification tasks. The verification aspects dis-
cussed in this section cover two different areas: capturing design intent
and HDL features for the creation of test benches. This chapter provides
only an informal overview of both topics; for detailed coverage, refer
to books that focus extensively on these aspects of HDL use: Assertion-
Based Design [5] covers systematic ways to insert design intent and its
benefits for verification, and Writing Test Benches: Functional Verification
of HDL Models [6] focuses on a methodology to use HDLs to write test
benches.

154

Chapter 5 = Hardware Description Languages and Simulation Engines

Design Intent

In general, the concept of defining design intent in an HDL description
is that there is additional information present in the HDL that the
verification cycle can utilize in addition to the functional and structural
specification.

Some of the design intent is contained implicitly. A finite-state
machine expressed on the RTL with enumerated values for the states and
a “case” statement for the state-transfer function captures more about
the intent of the design than the gate-level implementation that imple-
ments states encoded in Boolean values and the transfer function as a
sea of low-level gates. For example, the RTL use of three enumerated
values to encode the three possible states of an FSM clearly delineates
legal state values (encodings) from illegal ones. On the other hand, the
gate-level implementation of the state vector as two flip-flop bits loses
the original explicit design intent of three states and leaves it implicit to
the state transition function, which does not allow the FSM to reach the
illegal state encoding.

The lower-level implementation contains less semantic structure.
For example, it is clear from the RTL description what the state-
holding latches are. If the verification task is to collect information
about states reached during a simulation, we can simply look at the set
of state-holding elements and capture their values. The design intent
of the FSM is clearly visible in the RTL. On the other hand, the gate-
level implementation does not clearly distinguish between FSM control
state latches and data-flow latches. If the only specification available is
gate-level, it is very difficult to retrieve the FSM semantics from a sea of
gates.

HDLs also have mechanisms to express functional design intent
directly. The main means for this is the ASSERT construct in VHDL
(which interestingly has no counterpart in standard Verilog). An ASSERT
can be used to clearly specify an assumption on the input or an intended
guarantee on the output of a design. We discuss the importance of asser-
tions in Section 3.3 and the systematic methodology of an assertion-based
verification process in Chapter 8.

In an ideal world for verification, designers would use the highest
levels of abstraction possible in their HDL descriptions and thus provide
much implicitly contained semantic structure. Then, verification engi-
neers and EDA tools could retrieve the design intent from the HDL auto-
matically. The tools could tie into specific usage patterns of certain HDL
constructs, such as enumerated values and case statements to denote
FSMs.

However, there is a problem with this direction. A basic goal conflict
affects HDL descriptions. On one hand, we want the highest possible
abstraction to aid verification, but on the other hand, the HDL needs to
satisfy physical design constraints such as timing, area, and power testa-

5.1 Hardware Description Languages 155

bility. Sometimes these physical goals are diametrically opposed to our
desires for verification. Increasing pressure from the physical design con-
straints in the sub-micron very large scale integration (VLSI) design era
morphed typical HDL descriptions to contain more and more structural
detail, which increasingly obscures the semantic structure.

It is for this very conflict that methods to explicitly express design intent
have gained much more attention in recent years. Although the explicit
ASSERT has more value than normally utilized, its expressive power is
nevertheless limited. More complicated and expressive methods are
desirable, and this did lead to a trend of extending the traditional HDLs.
The two main examples of language extensions to express design intent
are property specification language (PSL) (for more detail, see Chapter
12) [7] and the assertion language part of the new HDL SystemVerilog
[8]. All these HDL extensions are clearly annotations to the actual design
description, and their common purpose is to capture design intent
explicitly.

HDL Test Benches

As discussed in Chapter 3, a test bench for a given design has two main
tasks (Figure 5.12):

1. Stimulate the primary inputs of a design with drivers.

2. Check interfaces and internal state of the design.

It is good practice to separate test benches into at least two partitions
along the lines of these main tasks. Hierarchical verification will be dis-
cussed later in this book (Chapter 10), and it will become clear that
reusing the investment made into the checkers on interfaces and design
internals is needed, as the real designs are connected to the interface of
the previously standalone verified design units.

In Figure 5.12, the driver was separated from the checker. The larger
model in Figure 5.13 still includes the checker for the design units while
replacing the drivers with the neighboring real design.

Interface/internal state checking

Stimulus A

generation ::>(Design under verification
“driver”

= FIGURE 5.12

A basic hardware description language test bench is represented by the components stimulus genera-
tion and checking.

156 Chapter 5 = Hardware Description Languages and Simulation Engines
Interface/internal state checking Interface/internal state checking
= FIGURE 5.13

Hardware description language test bench re-use example. We integrate Designl and Design2 into a
larger design under verification and want to re-use as much as possible from the simulation environ-
ments used to verify Designl and Design2 standalone. While Designl replaces the driver component
for Design2, all checker components are re-usable in this configuration, as well as the driver compo-
nent for Designl.

Using HDLs to implement test benches is especially intuitive in the
structural domain. The drivers and checkers are “connected” to their
target signals by connecting instances of the test bench components into
the HDL hierarchy. The strong support for structural specification in
HDLs pays off nicely in the case in which a higher-level design replicates
a lower-level design unit multiple times. Figure 5.14 illustrates this
with a DUV called System that contains three instances of a lower-level
unit called Design. One test bench checker needs to connect to each of
the Design instances. Once we package CheckedDesign in Figure 5.14 as
its own HDL module or entity, it is easy to replicate the test bench
component fogether with every instance of Design. Every co-replicated
checker automatically connects to the correct signals of its respective
design.

Although this scheme shows nicely how powerful it can be to take
advantage of HDL features supporting test bench writing, there is one
complication with this method to instrument the Design: it forces us to
change the HDL specification of our target DUV System. This side effect
is trivial for the case of a standalone design (Figure 5.12). All that is
needed is to create a new level of model hierarchy above the actual DUV.
However, once this instrumented DUV is embedded inside a higher-level
structure, its HDL must be changed more profoundly. Notice that
CheckedDesign and not Design inside Systemn must be instantiated. This
might be of little consequence if the HDL for System exists for verifica-
tion only. However, if we want to utilize the Systems HDL for other pur-
poses, such as logic synthesis, timing, or placement, special provisions
must be made because it is not a pure design specification anymore.

There are three solutions to manage this intrusive nature of HDL test
benches. First, we can use so-called pragmas in the HDL code to mark
specifically which instances and signal connections were added for
verification only and which other tools, such as logic synthesis, can be
ignored. Second, VHDL has configurations that let the user include the
test bench component pieces only in verification configurations and
exclude them for synthesis or timing analysis. Finally, Verilog has the

5.1 Hardware Description Languages 157

System
| Interface/internal state checking |
U
Design | Interface/internal state checking
Instancel
CheckedDesign ﬁ
L
| Interface/internal state checking | DEE
Instance2
ﬁ CheckedDesign
L
Design
Instance3
CheckedDesign

= FIGURE 5.14

Hardware description language (HDL) test bench replication. As we package the design unit Design with
its checker component, we can replicate the overall CheckedDesign easily, using standard structural
instantiation features of common HDLs.

capability to connect an instance to signals by using hierarchical names,
allowing the instantiation of the test bench at the outer level of the model
HDL and cross-hierarchy connections to tunnel into the desired model
hierarchy (Figure 5.15).

The HDL coding for drivers and checkers does not need to satisfy any
of the non-verification constraints imposed on design HDL. Therefore,
the full range of HDL constructs is available. Test bench components are
the area of heavy use of the higher-level, behavioral HDL constructs,
which have little or no application in pure design specifications:

= Abstract data types, records, multi-dimensional arrays
= File I/O
= Subprograms, tasks, fork/join
= Dynamic memory allocation (e.g., for scoreboarding)
Most of the language features listed here are very similar to what pro-

gramming languages offer. Therefore, a viable alternative to using HDL
coding for test benches is the use of a general-purpose programming

158 Chapter 5 = Hardware Description Languages and Simulation Engines

CheckedSystem

|Interface/internal state checking

System A

---------------------------------- Heirarchical signal
name connection

Design [>-

Instancel

|Interface/interna| state checking

--- »G
Design >

"""" »Heirarchical signal
Instance2 name connection

|Interface/internal state checking

Design >
-

Instance3 Hierarchical signal
name connection

= FIGURE 5.15

Verilog’s cross-hierarchy connection capability allows the instrumentation of the three Design instances
with their respective checker components from a level of hardware description language (HDL) hierar-
chy above System, thus leaving the design specification of System unchanged by the verification task.
We place the checker components for every Design instance in the HDL hierarchy level Checked
System above System.

(HDL compiler and model builder)

A\

. .) > User
Simulation model |
API testbench

Simulator > < code

Y

Hardware simulation system

= FIGURE 5.16

Using a programming language outside the simulation engine that accesses the model via an applica-
tion-programming interface (API) is an alternative to the use of hardware description language test
benches.

language that has access to the simulation model via a programming
interface to the simulation engine.

As shown in Figure 5.16, simulation engines usually offer an
application-programming interface (API) that lets test bench code
written in programming languages interact with the simulation engine
and the model. There are even simulation engine-independent standard

5.2 Simulation Engines: Introduction 159

definitions of such interfaces. Verilog programming-language interface
(PLI) is part of the language’s IEEE standard. A corresponding activity
for VHDL is under way.

The availability of standard interfaces to simulation engines and the
desire to improve productivity for verification led to the development of
special-purpose verification languages (Vera, e, System C languages),
which use the available API or PLI of various commercial simulation
engines. The focus on the verification task alone in these languages led
to the development of innovative features supporting the verification task
(for more detail, see Chapter 6).

The acceptance of these so-called high-level verification languages
(HVLs) in turn created the motivation for HDL developers to add such
features directly into hardware description languages. Many extensions
over IEEE Verilog found in SystemVerilog are directly verification related

[8].

5.2

SIMULATION ENGINES: INTRODUCTION

After this overview of the key HDL capabilities, the discussion now turns
to the principles of simulation engines. Figure 5.1 shows the simulation
engine as the primary tool using HDL specifications. There are many
simulation engines available on the electronic design automation (EDA)
market. This book will not provide usage instructions for any of the com-
mercial tools as these tools are too different from each other to make a
generalized user’s guide possible. In addition, such a reference would be
outdated quickly, and the EDA vendor of choice provides it anyway.
Instead, this book will discuss the general principles and look under the
cover of these tools. These insights are important to verification engi-
neers because they introduce the different trade-offs and help engineers
decide which simulation engine to use in a given project.

The task of a simulation engine is to evaluate an HDL model over
time and present its state to the user and programs, which the user
attaches to the engine’s programming interface. The HDL language
reference manual (LRM) defines the behavior of the simulation engine.
Both VHDL and Verilog have an LRM as a result of IEEE standardiza-
tion [3, 4]. The VHDL LRM in particular prescribes a detailed model of
processing to define the correct and unambiguous execution semantics
of the language.

Built into the definition of Verilog and VHDL is the concept of event-
driven simulation. It provides an algorithm well suited to support both
HDLs across all their features. We will discuss the event-driven simula-
tion scheme in more detail in more detail in a later section (Section 5.3),
as well as the different methods to increase simulation throughout
(Section 5.4), and we finish the overview of simulation engine technol-
ogy with a view of cycle-based simulation. Cycle-based simulation is a

160

Chapter 5 = Hardware Description Languages and Simulation Engines

high-speed alternative to event-driven simulation and relies on a method-
ology that allows the verification team to accomplish most functional ver-
ification on an abstract RTL model. It can also serve to enable the use of
hardware accelerator and emulator engines (Chapter 10) and formal ver-
ification (Chapters 11, 12). The focus in this chapter is only on software
simulation engines and their optimization because of their high impor-
tance for every verification project. Chapter 10 will extend the discussion
to specialized hardware simulation engines that speed up simulation
even more.

The following section highlights some of the general principles guiding
the application of simulation engines.

5.2.1 Speed Versus Accuracy

A simulation engine is a central tool for the verification team, which
spends a majority of the effort of the verification cycle running simula-
tion. This part of the cycle requires the most compute resources, and
therefore, it is easy to understand that the optimization of simulation
efficiency is a high priority. The performance of the simulation engine is
only one factor of the overall efficiency; however, it is a key factor because
a verification team that can run models twice as fast can run double the
amount of test cases in the same time and likely find DUV bugs faster.

It is possible to optimize simulation efficiency from two different
angles. First, a higher level of abstraction in the HDL specification of the
DUV will generally result in faster simulation because the model will
contain less detail that the simulation engine has to evaluate. The second
method to improve simulation performance is, of course, optimizing the
simulation engine itself. The optimization of simulation engine perfor-
mance has been a key differentiator for EDA vendors for the past 10
years, and only recently have the performance gains achieved every year
flattened out somewhat, indicating a maturation of the technology.

Both methods to improve simulation speed can work together in
synergy. When a design methodology supports a certain abstract style of
HDL specification and it is possible to optimize a simulation engine very
specifically toward that style, a significant improvement of speed is
possible. The cycle-based simulation method discussed later (Section 5.5)
is a classic example of this synergy.

The first HDL simulation engines were quite literal implementations
of the ideal execution models defined in the LRMs. They used algorithms
designed to support all features of the full HDL languages. With such
general-purpose simulation engines, the level of abstraction used to
specify the DUV is the biggest factor influencing simulation performance.
Figure 5.17 illustrates the basic trade-offs for simulation engine effi-
ciency. Different HDL modeling styles are used to characterize the choice
between faster simulation with the RTL abstraction and a DUV model

5.2 Simulation Engines: Introduction 161

Simulation runtime and
memory requirements

A

Gate-level
with detailed
delays

Gate-level
style

Model detail
and accuracy

= FIGURE 5.17

The level of abstraction used to model a design under verification (DUV) has a direct impact on simu-
lation runtime and memory requirements. The more detailed and accurate the modeling style with
respect to the DUV implementation, the bigger and slower the simulation model becomes. Abstract
register transfer level (RTL) simulation can be much more efficient than a detailed timing-aware simu-
lation on the gate-level. The actual performance difference depends much on the given simulation
engine and the exact modeling style used, but can reach factors of 5 to 10 times in runtime and model
size.

that exhibits a close relationship with the design implementation, down
to the delay characteristics of individual gates.

There is a fundamental goal conflict in verification between speed and
accuracy. A simulation engine that is able to simulate more test cases per
time can simulate a bigger part of the state space of a design. However,
abstraction means that less accuracy and detailed design implementa-
tion information are contained in the model. For functional verification
to rely safely on an abstract model, the design methodology must cover
the verification of the implementation details otherwise.

For example, if the design team uses logic synthesis to implement a
synchronously clocked design, the verification team may not need delay
simulation if a static timing tool guarantees timing verification during
logic synthesis, placement, and wiring. Relieving functional simulation
from the detailed delay information can lead to better simulation per-
formance because verification can use a more abstract HDL model.
However, if the designers add an asynchronous interface, it might be nec-
essary to run at least some amount of dedicated tests against a detailed
delay simulation model, which will simulate more slowly. If the verifica-
tion team simulates the asynchronous interface without the exact delay
information, it will likely miss error scenarios in which the hardware

162

Chapter 5 = Hardware Description Languages and Simulation Engines

interfaces fail to interact correctly. In this case, the emphasis on a fast
simulation model leads to the costly escape of design bugs.

This discussion shows that it is not possible to come to a general
verdict whether simulation speed or modeling accuracy is more impor-
tant. It is necessary to make this choice only after a consideration of the
design methodology as a whole and not just with the desire to optimize
functional verification in isolation.

5.2.2 Making the Right Methodology Choices

A correctly designed verification methodology makes choices of tools and
algorithms in a way that systematically eliminates the risk of verification
escapes and optimally uses available resources.

One of the first methodology choices is obviously the HDL itself. As
discussed, Verilog and VHDL cover slightly different areas of the HDL
space (Figures 5.6, 5.7). If, for example, the verification team needs to
simulate parts of a design in switch-level logic to be able to verify tran-
sistor level behavior accurately, Verilog appears to be a better choice for
performance reasons. On the other hand, the speed advantage on the
switch-level side might be less important compared with the capability
of designing at a more abstract level using VHDL, if other parts of this
design use interfaces that the design team can specify more concisely as
packets in user-defined record types. The more abstract design specifica-
tion can avoid design mistakes likely made when constantly designing
on the bit level of the implementation.

It is certainly possible to benchmark different simulation engines by
using the same HDL source files and the same test cases. Under such
constant conditions, a faster simulation engine might well be better. Most
often, however, optimization for performance in one case means the
exploitation of a special set of parameters to be able to short cut what
under other conditions need a more general, slower solution.

It is crucial to keep this importance of the methodology trade-offs in
perspective during the following discussion of details of different simu-
lation algorithms. Accuracy and performance are not goals with absolute
value. It is a measure of effectiveness of a methodology to cover the
maximum amount of verification (i.e., uncovering bugs) with a minimum
amount of total people and compute resources.

5.3

EVENT-DRIVEN SIMULATION

The event-driven simulation scheme is the most popular and broadly
known simulation algorithm and reaches far beyond just simulation of
digital hardware designs. Most simulation systems have used discrete
event-driven approaches since the 1960s. This simulation scheme is very
general, which explains its wide applicability. Every event-driven model

5.3 Event-Driven Simulation 163

consists of a network of blocks interconnected with each other. The inter-
connections, sometimes called channels or signals, transport information
between the blocks, flowing from block outputs to inputs of other blocks.
It is the function of each block to process the information presented at
its inputs. This may result in the change of the internal state of a block
or in the transfer of new information to the block’s outputs. We call such
a transfer an event. The general event-driven scheme does not define how
the user specifies the function of a block. This can occur via a special-
purpose simulation language, a programming language, or an HDL. The
event-driven simulation engine has a structural view of the model: the
block/interconnect topology or model network. By using this view of
the model network, the simulation engine activates a block whenever an
event occurs on its inputs. In this scheme, the engine takes notice of the
events propagating through the network, activating only those blocks
affected by the event flow. This is the essence of the event-driven simu-
lation scheme. An alternative scheme, for example, could call all blocks
of the model network round robin, making sure to activate every block
function during every such cycle through the model. The event-driven
simulation, on the other hand, activates only those parts of the model
that need to process new input data. Skipping the activation of blocks
whose inputs show no events promises superior simulation performance,
which is the reason why event-driven simulation is so attractive in many
areas.

The following section discusses how the functionality and structure of
HDL models map to the event-driven simulation algorithm.

5.3.1 Hierarchical Model Network

The earlier HDL discussion (Section 5.1.1) introduced the top-level view
of a simulation model, showing the input/output interfaces and a mono-
lithic block for the DUV model itself (Figure 5.3). Only for the simplest
models is it possible to specify the behavior of the block also as one
monolithic function. It is more natural to refine the model structurally
for one or several levels by replacing the top-level block with a set of
interconnected blocks on the next level of hierarchy.

Figure 5.18 demonstrates the structural refinement process as a
hierarchy tree diagram for an example. Model A contains blocks B, C,
and D on the next level of detail. Blocks B and C themselves are parti-
tioned into two or three sub-blocks, respectively. The top level of the hier-
archy is the root; the blocks D, Bi, B2, C1, C2, C3 are the leaf-level nodes.
By definition, leaf-level nodes have no further structural refinement, and
therefore, their functional specification is contained in one VHDL
entity/architecture or Verilog module without any instances of lower-
level entity/architectures or modules. The root of every sub-hierarchy (4,
B, C) contains the instances of the lower levels and potentially functional
HDL code.

164 Chapter 5 = Hardware Description Languages and Simulation Engines

Block B
Block B1 Block B2

A tree structure illustrates on example Model A how HDL specifications can use structural refinement
to build from instances of lower level elements. Model A builds on blocks B, C, and D; blocks B and
C in turn instantiate components of their own, and block D contains no further structural refinement.

Block D

Refinement

= FIGURE 5.18

Figure 5.19 shows the same model hierarchy, Model A, using a dataflow
model network diagram. In addition to the component hierarchy, this
representation shows the flow of information, the signal flow between
the different model components, and levels of hierarchy. Consider, for
example, the first model input i/. It is a primary input, an input port of
Model A itself. A signal s/ connects this port to the first input port of
block B, which in turn drives signal s2, which connects to the first port
of block BI. Inside BI, this port drives signal s3, the only visible signal
inside the diagram of that block.

The blocks of the model interconnected by signals build a network.
Because the signals have a specific direction, as shown by the arrows in
the diagram, we say the model forms a directed network. The signal flow
connects the component blocks with each other. The behavioral HDL
specification of each block prescribes the application of the values of the
input ports to the block’s internal computation. The HDL behavior also
specifies how output ports, and therefore the connected signals, change
as result of such a computation.

It is the task of the simulation engine to compute the values of the
model signals over time. The direction of the signals implies a natural
order of computation. It is clear that, if signal s/ changes, the signals s2
and s3 should change to keep the values in the network consistent.
Because s3 is an input to Bl, it is intuitive to assume that Bl’s behav-
ioral specification needs to be invoked when s3’s value changes. Because
of this computation, it is possible that signals s4, s5, and s6 will sub-
sequently change in value.

Consistent with the discussion of the scope of HDLs earlier, we limit
ourselves to models with discrete signal values. Figure 5.20 shows an

5.3 Event-Driven Simulation 165

Block B Block C
i1 sl|s2 s4

3
S s5 c2

i2 i s6 i V|—>] > g g

\
\

Cc1
> >
— > >

|
i3 R k B2 C3 D
i4 | -~ > > > > I .
Inputs Model A Outputs

= FIGURE 5.19

The same example Model A used in Figure 5.18 shown again as a hierarchical dataflow network. Embed-
ding lower level blocks represents the structural hierarchy. In addition, all components have input and
output ports. Signals, illustrated by arrows, connect inputs and outputs of the model components to
show the data flow between blocks and through the levels of hierarchy.

example of discrete signal waveforms over time as recorded during an
HDL simulation. Disregarding the analog extensions of VHDL, HDL sim-
ulations use discrete time intervals, meaning that the signal update and
block evaluation scheme described above occurs at fixed model time
intervals. The finest granularity for these intervals in VHDL is on a time
scale of femtoseconds. The time scale for Verilog is more abstract and
just a 64-bit number that the user can map to a time scale appropriate
for the given DUV.

Changes of signal values designate events in the model. The model
time orders events relative to each other; that is, it is important to be
able to tell whether a particular event happened before another event or
if it caused another event. Therefore, it is possible to look at the discrete
time steps in Figure 5.20 as points at which the simulation engine cal-
culates or samples the model state.

5.3.2 Model Evaluation Over Time

There are two fundamentally different algorithms to control simulation
over time as specified in Table 5.1.

Algorithm 1 is useful only if it is very likely that at every evaluation
time there are new values to be calculated. Clearly, compute power would
be wasted if the model was simply in a steady state at many evaluation

166 Chapter 5 = Hardware Description Languages and Simulation Engines

1

—
___I: S

—

I

I

00

Signal/value | | |

[&)]
-to{-——-————-—--1

)\ ER NI EB IERNY

Time

1EINEIN

\

= FIGURE 5.20

Hardware description language (HDL) model signal changes over time recorded as waveforms. HDL
signals have discrete values and change at discrete time intervals. The vertical lines in the waveform
display help the user to align signal changes visually. The waveforms show bit-signal values simply
by level and illustrate more complex signal values by annotation, like the integer values in the lowest
waveform.

TABLE 5.1 = The two basic algorithms for simulation
engines to manage model time

Algorithm 1

Evaluate the model at every point in time along the
finest time granularity known to the simulation
engine.

Algorithm 2
Evaluate signals and blocks only at model times for
which events are scheduled.

Algorithm 2 is part of the event-driven simulation scheme.

points, and the simulation engine had to evaluate the entire model only
to find out that no signal update work has to be done. Algorithm 2 can
only function if the simulation engine has knowledge about which events
it has to evaluate at the current time or any point in future model time.
The model objects (blocks and signals) need to notify the simulation
engine about future changes. This notification about change or update
information is called scheduling. By using the scheduling information,
the simulation engine is able to skip time intervals during which no work
is scheduled, a performance advantage for the simulation.

5.3 Event-Driven Simulation

Delayed assignment in Verilog
and #27 (z, a, b); // gate delay "27"
assign #3 z = a & b; // assign after "3"

Wait statement in VHDL
oscillator: process is

begin
clock <= '0";
wait for 1Ins;
clock <= "1";

wait for 1Ins;
end process oscillator;

= FIGURE 5.21

167

Example for hardware description language constructs in both Verilog and VHDL that schedule future
events with the simulation engine. Both Verilog statements specify a delay of a number of model time
ticks in the assignment of output signal z. The VHDL process statement contains two wait statements
that suspend the execution of this VHDL code and schedule a continuation with the simulation engine

at model time 1ns in the future.

Figure 5.21 shows two classic examples of HDL constructs that
contain explicit scheduling information for events the simulation engine
has to execute at a future model time.

The Verilog examples in Figure 5.21 specify delayed propagation of
a computed signal change: first for a signal connected to the output
of a gate primitive and second for a delayed assignment statement. If the
simulation engine implements Algorithm 2 above, the HDL model code
evaluates the future value of the output signal z and schedules this
value change with the simulation engine.

The VHDL example in Figure 5.21 illustrates a simple sequential
process specifying the function of an oscillator block. The behavioral
code for process oscillator iterates endlessly between setting the signal
clock to “0” and “1.” After each update, the process suspends control to
the simulation engine for the specified amount of model time.

In both cases, the HDL model code relinquishes control and delegates
the scheduled future action to the simulation engine. It is part of the
semantic rules in the LRM of both HDLs to support Algorithm 2 in any
implementation of a simulation engine.

5.3.3 Event-Driven Control of Model Evaluation

Now that we decided how the engine advances time during a simulation,
the next question is how the engine controls the evaluation of model
updates.

Going back to the example for a hierarchical network model of Figure
5.21 (shown with mark-ups in Figure 5.22), we assume, as an example,
that a specific update occurs on the input i2. Several of the key model
update events are marked with the numbers 1 to 5 highlighted with
shaded circles. The change event of s/ (1) propagates over time in a series

168 Chapter 5 = Hardware Description Languages and Simulation Engines

Block B Block C
i1 sl|s2 s4

s3

s5 C2
B1 g g .
i2 @sl s6 ()| s9 |—> > d g

....... >t ot EERRREERREREE = EERRE 2 B
s8 i s10

: C1
@ @ =
3 A s11 T T
Ry :
: C3
i3 B2 s D
-1 L 312
i4 > > > .,:..y..> > >
> > i I L N e Sl3
Inputs Model A Outputs

= FIGURE 5.22

A change of the signal value on input i2 results in a series of updates to Model A. The dashed arrows
show how the change propagates over time. The sequence of signal changes and corresponding key
model updates are marked by the numbered circles and discussed below.

of signal changes through the network until it concludes with an output
signal change of s13 (5).

Initially, after a series of signal changes (s7, s8), block B/ is activated,
which results in a change of signal s6. This causes a scheduled change,
marked as (3), of block B’s output port, the signal connected to it (s9)
and the activation of block B2 (2). Note that B2’s output does not change
at this point because apparently the change on input signal s6 has no
effect of B2’s output function. The signal change on s9 ripples into block
C, causes the call of C/ and a change event on signal s// (4). After the
activation of C3, the signals s/2 and s/3 change. Because s12 is also an
input to block CI, this block has to be activated again. For this example,
we assume that the repeated call to C/ does not cause another output
change on s/1. Note that the re-activation of C/ results from a topolog-
ical feedback loop, which could cause repeated calls of the same model
blocks. In the example of Figure 5.22, the second activation of C/ does
not cause further signal changes. Similarly, the final update of s/3 and
the call to block D causes no further update event.

The feedback loop in the topology exhibits how a particular block (C1)
can be scheduled and re-scheduled because of a wave of updates. The
feedback of the signal change of s12 leads to another evaluation of CI.
Although the example assumes no further events after that evaluation, it
is possible that the behavior of the model exercises the re-scheduling loop
between C/ and C3 more than once. It depends on the behavior of the

5.3 Event-Driven Simulation 169

blocks whether such a topological loop settles at some point or contin-
ues to oscillate forever. The simulation engine or an external interven-
tion by the user has to interrupt an uncontrolled model oscillation.
Throughout the example update sequence in Figure 5.22, block C2 was
never activated, illustrating how the event-driven scheme only evaluates
those parts of the DUV model that are affected by changes and success-
fully avoids the activation of model parts that can be skipped. Still, the
topology of the model required massive updates in this case because
input i2 affects many model blocks. However, changing input i4, for
example, would probably result in only the activation of B2, C3, and D.
Another way to visualize the model updates of Figure 5.22 is to line
up the sequence of scheduled model events over time. If the HDL for
Model A specifies explicit delays for model updates (signals/gate delays
orwait statements in behavioral code such as in Figure 5.21), the changes
will spread out naturally over a range of model time controlled by the
DUV specification. The simulation engine itself must order changes
dynamically that have no HDL-specified model time delay (zero delay).
Assuming the HDL of Model A does not use any explicit delays (zero delay
model), we show every successive model event as one discrete step inter-
nal to the simulation engine in Figure 5.23. Every evaluation creates a
resulting update that the simulation engine schedules to occur at the
beginning of the next internal step. At several points in the sequence
(after the changes of s6 and s12), the simulation engine schedules more

@ C1

s9 |s10| C1 (s11|C3 |s12

@ s7 | s8|B1/| s6 @ s13| D
€plun O

Simulation engine scheduling steps

|:| = Signal update
|:| = Block evaluation

= FIGURE 5.23

The update sequence of Figure 5.22 assuming all zero-delay events. The numbers in the shaded circles
refer to the same marked key events in Figure 5.22. The simulation engine orders the events dyna-
mically as they occur on the model. The change events on signals s6 and s12 cause parallel change

events.

170 Chapter 5 = Hardware Description Languages and Simulation Engines

TABLE 5.2 = The essential properties of event-driven
simulation

Evaluate model behavior only at those times when
model events are scheduled.

Evaluate behavior only for the blocks or signals for
which events are scheduled.

than one update in parallel. In a sequential program that simulates this
network, it is effectively up to the simulation engine’s random choice to
decide in which sequence the two model updates really happen; from a
user view, the model actions happen in parallel.

We call the described evaluation strategy event-driven. Whenever an
event occurs, such as the update of a signal, the simulation engine sched-
ules the computation of all the blocks, which are sinks of this signal. If
these blocks update their output signals, the changes propagate further
in the same way.

We can now combine the two key aspects of the event-driven simula-
tion approach (Table 5.2).

It appears obvious that event-driven simulation is quite efficient
because the strategy implies that the simulation engine only does the
work necessary to evaluate model changes. Extraneous computations do
not occur.

Although we assumed zero-delay in Figure 5.23, the event-driven sim-
ulation algorithm is much more general. By using VHDL or Verilog time
control constructs, signal updates can have delays of arbitrary amounts
of model time. In contrast to Figure 5.23, this simply postpones the
model evaluation to another discrete model time step instead of all
updates happening at the same model time. Hence, it stretches out the
event sequence over simulated time but does not change the basic event-
driven update mechanism.

The definition of Verilog and VHDL clearly includes the assumption
of an underlying event-driven simulator. Figure 5.24 illustrates this using
VHDL with two blocks (processes) connected to each other via the signals
count and tick. Whenever tick toggles, block 1 updates count, which trig-
gers block 2’s inversion of tick’s value again.

With Table 5.3, we introduce an example piece of VHDL that specifies
the implementation of a 2-bit ripple-carry adder at the low abstraction
level of Boolean equations including delayed assignments.

Figure 5.25 shows how a simulation engine could translate the adder
VHDL into a network view. For the example, we assume that the network
consists of Boolean operator blocks. Another valid translation could have
created one network block per VHDL statement, yielding six blocks
instead of the fine granularity of 16 blocks in Figure 5.25. The event-
driven algorithm of the example engine keeps track of model changes

5.3 Event-Driven Simulation 171

- process (tick) process (count)
begin begin
if (count<=15) then my_count <= count;
count <= count + 1 after Ins; tick <= not tick;
else
count <= 0 after 1Ins; end process;
end if;

~end process;

Each process:
— loops forever

— waits for change of signal
from other process

Block 1 Block 2

= FIGURE 5.24

Two VHDL example blocks with process statements defining the behavior. Each process iteration causes
a signal update that schedules the resumed execution of the other process.

TABLE 5.3 = VHDL fragment that defines a 2-bit adder
design under verification at the Boolean equation level

(1) s(0) <= a(0) xor b(0) after 2ns;

(2) ¢(0) <= a(0) and b(0) after 1ns;

(3) s(1) <= a(1) xor b(1) xor c(0) after 2ns;

(4) c(1) <= (a(1) and b(1))or (b(1) and c(0)) or
(c(0) and a(1)) after 1ns;

(5) sum_out(1 to 0) <= s(1 to 0);

(6) carry_out <= c(1);

through the network shown. The signals that have label names in Figure
5.25 correspond to the HDL signals in Figure 5.24. Because the engine
split the equations to their constituent operator blocks, the network also
contains signals that have no user names. The event-driven simulation
engine will propagate every change of the input signals a and b through
the network.

The pair of Figures 5.26 and 5.27 shows in detail the event-driven
update of the adder model as a result of the arrival of new values at the
adder inputs. We show only the first eight simulation steps that lead
the model from time Ons to 2ns. This is enough model time to propa-
gate the necessary changes to the output signal carry_out. Because the
path through the equations driving the sum_out vector runs through
the assignment statements with a longer delay (statements / and 3 in
Table 5.3), it will take more simulation steps at model time 3 ns to com-
plete the adder model update. These final simulation steps were left out
for space reasons and left as an exercise for the reader.

172

M

a(lto0) |

b(1 to 0)

e

Chapter 5 = Hardware Description Languages and Simulation Engines

Xor

> > s(1)
xor > ~B—> sum_out(1)
|
g xor SO =
ol | > >|2NS|»- » => | sum_out(0)

| and
@ and [VEL?(O) o B
> or
©) o
-
and

—> or C(l)
and | » > H-(1ns =>|»carry_out

= FIGURE 5.25

Network view of the 2-bit adder equation logic from Table 5.3. The example simulation engine turns
every Boolean operator into its own block in the model network. The delayed assignments turn into
the shaded special-purpose blocks. All the signals in the network that have HDL names are marked

accordingly.

The HDL specification of the 1-bit adder in this example is modeled
at a Boolean-equation level. This granularity of detail in the model ties
the delay information to a per-equation level. A truly RTL model would
compress the specification dramatically by using the arithmetic “+” oper-
ator (see Figure 5.31). In the opposite direction of less abstraction, a
gate-level model would have an even finer resolution and reference the
Boolean operations in terms of primitives from a technology library (e.g.,
NANDs, NORs). With many commercial simulation engines, it is possi-
ble to leave the gate-level HDL free of timing control constructs and back-
annotate the actual physical timing information into the simulation via
the loading of the so-called standard delay format (SDF) file. Physical
design tools can generate SDF files (IEEE standard 1497—1999) at the
point when exact technology parameters such as library cell character-
istics and placement and wiring information are available.

5.3.4 Implementation Sketch of an Event-Driven
Simulation Engine

The properties of the event-driven simulation approach can now be sum-
marized, with a conceptual description of the basic mechanisms of an
event-driven simulation engine.

173

5.3 Event-Driven Simulation

N A N

11 [l [
L]
)

"SUT awi} e dels om} 1sdiy Byl ‘p pue 9

)0 |eusis Jo aiepdn pake|ap 8y} YlIM SHeIS SUT dWIl Byl "suQ

awI] |apow 819|dwod 0} Alessadau sdals uolle|nwis oml ay] ‘q pue e ‘saindi{ Juanbasgns syl ul payJew ulewals ‘A1IAI10B uolle|nWIS JO
asneoaq a3ueyd 1ey} sanjea [eudiS "9]2410 papeys e sey dais snolaaid ayl Ul ¥00|q Ues|00g SAIIOR UB JO asnedaq sadueyod leyl indino
A1an3 "sadueyd sindul Jo asnedaq UOIRAIIOR 104 PR|NPaYds 8s0y} aie punoidyoeq papeys Yim sy00|q Jojesado uesjoog ay} ‘dels A1ans
J04 *g pue e sJ0}09A 1ndul sy} Jo a1epdn syl Jolje |apow JSpPe 1Ig-Z Byl JO UOIIe|NWIS UBAIIP-IUSAS JO Sdals uolle|nwis Anoj isiiy ay |

zda)s ‘sut awiL (p)

pue

[]——1 | TO=M

1o

pue [| T

]

[

c
IS
<]
<

0 TT=e

E" o

i
<]
<

9¢'G NI =

(9) 1dals ‘sut awi|

pue

—

UT|
T | tox

zdals ‘sug awiL (@)

pue

10 . 1, T0=Q

(e)

]
]

pue
Jox
1dai1s ‘sug awiL
pue
Jox

| TO=q
TT=e
| TO=q
TT=E

-

Chapter 5 = Hardware Description Languages and Simulation Engines

174

'sdals 8y} 0] spes| N0~ Aued |eudis 0} jJuswugdisse pake|ap syl ‘p pue 2 *(1)2 |eudis
Jo a1epdn ayj 919|dwod 0} Alessadau sdals |euly 8yl ‘g pue e ‘9z'G aJndi4 ul pauels alepdn uolle|nwis ayl o sdals Jnoj 1xau ay|

LZ°G 3HNIId =
zdas ‘sut awiy () () Tdals *suT awiL
ple) | ple] [
l_ug _, pue g - pue
o - [l— TO=0 A‘ ol| [l— TO=0
pue pue
pue T E T pue p U
_ | N .
<= _“_ O 10X ._u._”Hm <= E O Jox ._u._uHmw
<= _lc_ _Mtu <= _lc_ Jox N
_|@| T | sox T T | 10x
@ (e) 1da)s ‘sug awiL
pe na m E 10 e |
- pue g B pue
- | T0=q A‘ oy l— | T0=0
| | pue
pue m_l. pue E
= m_@/ o —— P E

Jox

pue
J0x TT=R

5.3 Event-Driven Simulation 175

TABLE 5.4 = The three basic data structures at the core of
every event-driven simulation engine

1. A list of all executable blocks present in the
model network

2. A data structure that represents the
interconnection of the blocks via signals

3. A value table that holds all current signal values

The simulation engine needs to maintain the following data structures
to represent the model network, its interconnect topology, and the
current state of the model (Table 5.4).

A central data structure to control activity and time progress in an
event simulator is typically the so-called time wheel (Figure 5.28). The
time wheel is a simple linked list that contains entries for every model
time, current or future, for which the engine has scheduled an activity.
For any such model time, the simulation engine keeps a to-do list of
model blocks and signals that are scheduled. The simulation engine
always takes the next item from the list for the current time, does the
necessary evaluation, and proceeds to the next list item. As we have
shown, the result of an evaluation can trigger the addition of list items
for the current time (zero-delay) or any future time. Once the list for a
current time is empty, the time wheel can “turn” to the next model
time for which work is scheduled. As illustrated in Figure 5.28, the
engine updates the current model time simply by moving the
current_model_time reference to the new head of the time wheel list.

For time zero, the start time of simulation, the simulation engine
schedules all executable model blocks contained in a model. In VHDL,
these are all processes and concurrent assignment statements. For Verilog,
the initial model blocks scheduled at time zero are all always blocks and
all continuous signal assignment statements. This approach makes sure
that the simulation properly initializes all model blocks. In addition,
Verilog supports a special provision with the initialize block that the
simulation engine only schedules for time zero.

Figure 5.29 shows the core algorithm of an event-driven simulation
engine. Users issue a “run” command, either interactively or via a
program, which hands control over to the simulation engine. Starting at
point 1 in Figure 5.29, the simulation engine takes the next scheduled
model block from the to-do list for the current time and call its code.
Typically, a block evaluation results in scheduled signal updates. Once
the engine is done with all scheduled model blocks, it performs the sched-
uled signal updates (point 2 in Figure 5.29), which usually add more
model blocks into the current to-do list of the scheduling data. As long
as signal updates add more model blocks to the to-do list for the current
model time, the engine will loop back to point 1 in the flowchart. Once

176 Chapter 5 = Hardware Description Languages and Simulation Engines

Linked to-do lists of
scheduled activities

| | | —
I\
time=0 L L L
Current ’
model
time
time=t1
/V
Time g g
\ wheel time=t2
/
V\ /
= FIGURE 5.28

Conceptual diagram of the central scheduling data structure at the heart of the execution control of an
event-driven simulation engine. Every model time with scheduled events has a linked to-do list con-
taining information to enable the engine to execute the event. Every to-do list is anchored at a partic-
ular position of the time wheel. The time wheel is a circular linked list in which every entry maintains
a pointer to the to-do list for a given model time, which has scheduled activity. The data entry
current_model_time simply marks the head of the time wheel list for the current model time.

all block and signal updates have rippled through (point 3 in Figure 5.29),
the simulation engine is ready to increment model time, which means
advancing the time wheel to the next time for which events are sched-
uled. Simulation stops when the engine reaches the user-defined model
time limit.

Because event-driven simulation has been so widely used, the opti-
mization of its performance is well understood. The algorithm for the
simulation engines just described has obvious performance-critical por-
tions. The most prominent area is the management of the to-do lists, the
time wheel, and the data that represents the topology of the model. For
every event evaluated, the simulation engine must traverse the model
topology data to find which blocks or signals it needs to schedule next.
Once identified, the simulation engine must find the scheduled time on
the time wheel and put the corresponding event on the to-do list for that
given time.

5.3 Event-Driven Simulation 177

@ .

Activate next call Block code
scheduled block Block function execution

Schedule signal updates

Scheduling data

More blocks
scheduled?

Block/signal interconnect topology
Event data: time wheel

Increment
model time?

= FIGURE 5.29

The main control algorithm for an event-driven simulation engine. The dashed arrows show data access
of the execution algorithm to the scheduling data. The engine starts at model time zero with calls to
all initially scheduled model blocks, which schedule signal updates. Afterward, it performs the sched-
uled signal updates. This might result in more scheduled block activations. Once there are no more
scheduled updates for the current model time, the engine moves to the time of the next scheduled
events. We use the numbered circles in the flow diagram to anchor the explanation in the text.

Figure 5.30 illustrates the sensitivity of simulation performance in
relationship to the granularity of the model. For the case of many small
blocks (e.g., the 2-bit adder example above), most time in simulation will
be spent on scheduling overhead while the actual block evaluations are
trivial. For the cases of large processes (VHDL) or always blocks (Verilog),
the model topology will increasingly be fraught with feedback loops (see
Figure 5.22). Although the amount of scheduling activity is low compared
with the time spent inside the code of the model blocks, the blocks are
evaluated multiple times until the model converges to a steady state.

The activity rate of the model is another big factor for the performance
of event-driven simulation, and therefore, Figure 5.30 illustrates it as
another dimension. Obviously, a low activity rate helps simulation speed.
The primary advantage of event-driven simulation is the ability to skip
unnecessary model evaluations; however, a model with few monolithic
blocks of sequential code can take less advantage of a low activity rate

178 Chapter 5 = Hardware Description Languages and Simulation Engines
A
o
S
@ Eg
g 2z
IS
£ 33
L o ®
g a
Few large blocks: Many tiny blocks:
High re-scheduling overhead High scheduling overhead
Model granularity
number of blocks
= FIGURE 5.30

Performance balance for event-driven simulation. The speed of simulation depends on the granularity
of the model and the rate of dynamic model changes. A model with few monolithic blocks will likely
suffer from a large amount of re-scheduling overhead because of topological feedback loops. The same
DUV function modeled with a large number of primitive blocks will degrade in speed because the sim-
ulation engine must keep track of a huge amount of scheduling activity. The optimum performance lies
somewhere between these two extremes. Less dynamic model activity improves simulation speed more
in the case of fine model granularity.

than can a model with finer granularity. Performance gain from low
activity is only possible if there are distinct blocks of work that the engine
can skip. In contrast, with a model of the finest granularity, the sched-
uling overhead will again cause loss of efficiency compared with a model
that has an optimal balance in model block size.

Overall, event-driven simulation proved to cover a wide range of mod-
eling styles with reasonable performance results, which led to its domi-
nant position in the area of simulation engines. The reader should now
have enough technical insight of this technology to be able to understand
what trade-offs are available in its use.

9.4

IMPROVING SIMULATION THROUGHPUT

Because of the overwhelming size of the state space of industrial designs,
simulation performance is a critical factor for a project. The correct
measure for the performance of simulation, however, is not only the speed
of a single simulation run but the amount of verification in number of
tests, number of cycles, and number of distinct model states visited and
checked during simulation per time spent: the simulation throughput.

5.4 Improving Simulation Throughput 179

TABLE 5.5 = The three main techniques to improve simu-
lation throughput

1. Increase simulation engine performance
2. Run many simulations in parallel
3. Eliminate redundant simulations

There are several ways to improve simulation throughput (Table 5.5).

The parallelization of a project’s simulation effort, option (2), is a
topic of Chapter 13 (Section 13.1.3), and Chapter 6 (Section 6.2) covers
option (3). Several approaches to increase the performance of a simula-
tion engine, option (1), or simply the speed of model simulation are dis-
cussed in the remainder of this chapter.

The apparent, technically trivial option is simply to buy a faster sim-
ulation engine. However, this alternative is surprisingly complicated.
Unlike performance benchmarks for general-purpose computer systems,
such as those of Standard Performance Evaluation Corporation (SPEC),
simulation engine benchmarks are hard to find [9]. Too many parame-
ters influence simulation engine speed: most are project specific and defy
classification with a simple benchmark number; others are HDL style,
event activity rate, and the profile of the interaction between test bench
and DUV model. In addition, there is the expected reluctance on the
side of the EDA vendors to accept a common set of simulation engine
benchmarks.

This chapter has discussed how the HDLs cover a wide range of spec-
ification styles. HDL style is one factor in the performance profile of a
simulation engine. It is entirely possible to optimize a simulation engine
largely for gate-level timing simulation with the result of an engine per-
formance profile that does compete well against another simulation
engine whose primary target is high-level, programming-language-like
HDL. For a verification project that uses mostly gate-level simulation, the
first simulation engine might be the optimal choice. If that same project
accumulates a set of high-level test bench code in HDL over time, a sim-
ulation engine whose performance is more balanced across the full HDL
spectrum might be the better long-term alternative. In summary, the ver-
ification team should consider simulation engine benchmarks with care
and only under clear consideration of the project-specific HDL style.

With that said, the HDL writers have indeed a big influence on the per-
formance of their simulation. Several EDA vendors publish guidelines
such as “HDL style to optimize performance.” In addition, some simu-
lation engines offer a profiling function, which allows a user to trace in
which parts of the model most of the simulation time is spent.

As discussed above, the overhead of scheduling versus the time spent
in actual HDL code largely defines the efficiency of an event-driven
simulation, meaning that simulations run faster if there are less events

180 Chapter 5 = Hardware Description Languages and Simulation Engines

TABLE 5.6 = A selection of hardware design language (HDL) style choices to improve event-driven
simulation performance

More abstract HDL ~ Use higher-level built-in operators versus explicit gate/expression level
constructs implementations of those functions.
Use integer arithmetic instead versus bit-level arithmetic.
VHDL: Use standard libraries versus Project-specific versions; simulation
engines often have optimized, built-in support for standard libraries.

Two-valued logic Use binary values over multivalues when possible. Simulation engines
often optimize for binary logic operations.
Full data-value Use delay control statements judiciously, i.e., only in modeling situations
operations in which the function is dependent on timing. Use zero-delay

specification when possible. Many simulation engines will be able to
order events statically at model build time and eliminate runtime
scheduling overhead automatically for that part of the model.

Two-valued logic Consider sequential code (process/always-block, procedure/function) for
part of a design in which the order of evaluation can clearly be defined
at specification time.

scheduled. Given the same DUV function, there are HDL style choices
that allow the user to improve simulation performance. As always, there
are trade-offs to observe. If the HDL specification is not only the input
for simulation, the user should ensure that a style choice that improves
simulation speed does not hurt the other uses of the design source, like
logic synthesis results for example.

In Table 5.6 we list some example strategies to improve event-driven
HDL simulation speed, partially dependent on the given simulation
engine, most of which minimize event creation and scheduling.

Table 5.7 shows several examples for the choices in Table 5.6. The least
efficient version, version 3, uses concurrent signal assignment statements
with delay clauses (see Table 5.3). Every evaluation causes new events to
be scheduled. Depending on the possibly random initial ordering of the
assignments, the simulation engine will schedule statements several
times before the model settles. Version 2 is more abstract, using built-in
arithmetic expressions, full-vector assignments, and no delay clauses.
Note that this level of specification is only applicable if the verification
team does not really need the accuracy of version 3 to verify the cor-
rectness of this design. Version 1 goes a step further by ordering the state-
ments of version 2 statically inside a sequential process block. Except for
the output signal updates, no scheduling is necessary for the simulation
engine; the whole process is one atomic action for the engine. Further-
more, the engine’s model build process is able to apply optimizations that
have proven powerful for the compilation of programming languages.
For example, the actual model code can keep the value of signal s avail-
able in a processor register for further use in the second statement of the
process.

5.4 Improving Simulation Throughput 181

TABLE 5.7 = Examples for range of abstractions of hardware design language specifica-
tions for a 2-bit adder in the order of increasing structural detail but decreasing simula-
tion speed

(1) process(a, b)
variable s: std_ulogic_vector(2 to 0);
begin
s(2 to 0) := (‘0" & a(1 to 0)) + (‘0" & b(1 to 0));
sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(0);
end;
end process;

(2) sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(0);
s(2 to 0) := (‘0’ & a(1 to 0)) + (‘0" & b(1 to 0));

(3) s(0) <= a(0) xor b(0) after 2ns;
c(0) <= a(0) and b(0) after 1ns;
s(1) <= a(1) xor b(1) xor c(0) after 2ns;
c(1) <= (a(1) and b(1))or (b(1) and c(0)) or (c(0) and a(1)) after 1ns;
sum_out(1l to 0) <= s(1 to 0);
carry_out <= c(1);

The overall theme of these optimizations is that we can gain simula-
tion speed if the model specification does not rely on the most general
use of HDL styles. The more specific, concise, and abstract the specifi-
cation of the model function, the faster the simulation of the function
will be. The following section (Section 5.5) will use an even more
restricted HDL style that can yield radically better simulation speed.

The other option to improve simulation speed is parallelization. There
has been significant research into parallel algorithms for hardware
simulation over the years. Even though the results have shown per-
formance improvements, no break-through has occurred. Event-driven
simulation seems to be inherently hard to parallelize, and there currently
is no commercially successful parallel event-driven simulation engine
available.

Another important reason for the lack of commercial interest in par-
allelized simulation engines is that there are two powerful alternatives
competing with this approach. The first is the utilization of pools of
compute workstations all running independent simulations. The second
is the most radical approach to speed up a single simulation job, the
direct implementation of a simulation engine in hardware, as used in
hardware accelerators and emulators. Hardware simulation engines are
discussed in Chapter 10.

We call the most simple and straightforward way to improve simula-
tion throughput trivial parallelization: running independent simulation

182

Chapter 5 = Hardware Description Languages and Simulation Engines

jobs on a pool of workstations. For large design and verification projects,
it is common to use hundreds, or even thousands, of workstations in par-
allel, all running simulation. The industry refers to this arrangement as
the simulation farm. Instead of running one single model partitioned and
parallelized across several computers, the workstations in the simulation
farm all run their own independent simulation job. The attraction of this
simple way to boost simulation throughput is evident: if the project has
to run 1 million test cases of roughly equal length, the verification team
can optimally use a farm of 1000 workstations by running a sequence
of 1000 test cases on each machine. The improvement of throughput is
nearly ideal (1000 times) in this case. In addition, it is simple to upgrade
the simulation farm with additional machines if the project needs to scale
up the simulation throughput. The result of such an additional capital
investment is predictable because the throughput improvement remains
linear with number of additional computers bought. The application of
simulation farms is discussed further in Chapter 13.

9.9

CYCLE-BASED SIMULATION

Cycle-based simulation is a specialized technique to improve simulation
efficiency. It has a long history of development and successful applica-
tion on the largest design and verification projects [10]. The reason for
the superior performance of cycle-based simulation engines compared
with event-driven simulation is the simplicity of the algorithm and the
total optimization toward a specific hardware design style-synchronous
design. Therefore, as always, a tremendous speedup comes with the dis-
advantage of trading off general-purpose applicability.

On designs and projects in which cycle-based simulation applies, the
speedup can be large. A speedup of 10 to 20 times and a DUV model
size compression of more than 10 times are typically quoted; some
sources even put the speedup at 100 times that of traditional event-
simulation [11].

The downside of cycle-based simulation is that it puts severe con-
straints on the HDL style of the DUV. Pure cycle-based simulation
engines do not support or ignore delay controls, limit sequential con-
structs significantly, and do not allow most test bench-specific features
of the HDLs. Projects with large synchronous designs, however, can pro-
ductively use cycle-based engines to speed up the DUV simulation, while
leaving the test bench writing to the use of special-purpose test bench
languages outside the realm of HDLs (see Chapter 6).

Most EDA vendors attempted to market pure cycle-based simulation
engines during the second half of the 1990s. The significant methodol-
ogy restrictions associated with this technology severely limited a broad
market acceptance. This leaves pure cycle-based simulation mostly in the
domain of microprocessor and server development houses, which typi-

5.5 Cycle-Based Simulation 183

cally run the largest simulation models. However, the EDA vendors inte-
grated most techniques of cycle-based optimizations that are described
below into the commercial simulation engines. There, they automatically
optimize the simulation speed of those parts of a DUV model, in which
the design restrictions hold. The fastest event-driven simulation engines
today are in fact hybrids between pure event-driven engines and cycle-
based technology.

5.5.1 Synchronous Design

The foundation of cycle-based simulation rests on a fundamental
methodology restriction that applies to many modern designs, the syn-
chronous design principle. If we separate the state-holding elements
(latches, flip-flops, memory arrays) of a design from the combinational
logic, it becomes clear that the function of the combinational portion is
identical to the state transition and output generation function of a FSM.

The clock signal used to update the state-holding elements syn-
chronizes the FSM update and the progression of the design through the
state space. In a first approximation, we consider a clock signal that is
central and occurs at the same time for all state-holding elements, which
we simply call latches. We refer to such a clock signal as a synchronous
clock.

On a historical note [10], even though it is easier to correctly design
and verify synchronous designs than asynchronous designs, this design
method originates from requirements for the manufacturing test of
chips and not from functional verification. Manufacturing test uses test
patterns that are able to isolate fabrication problems on a chip. For this
procedure, it is necessary to be able to stop the clock on the chip at
any time, supply a new state initialization, clock the design, and subse-
quently read out the new state of the chip. This approach prompted the
demand for a synchronous clock and a design that is largely functionally
independent from the actual frequency at which the clock updates the
latches.

The longest delay along any update path through the combinational
logic of a design defines the maximum frequency for the clock signal of
a synchronous design (Figure 5.31). We call the calculation of this
maximum frequency under which the design still functions correctly
timing verification. The critical delay path is the longest delay path
allowed from latch to latch. Any path with a longer delay leads to incor-
rect functioning of the circuit because the combinational result will not
arrive in time to update the target latch correctly. The scheme also
implies that combinational feedback loops are not possible.

Given that manufacturing test potentially applies any possible pattern
to the combinational logic, it is no longer possible to use only functional
patterns (only those patterns possible within the legal state space of the
design), but all Boolean possibilities must be accounted for in timing

184 Chapter 5 = Hardware Description Languages and Simulation Engines

V
xor
| xor
and| [
or [~]..... >
State-holding elements 2ud or
(latches, flip-flops) and

State-holding elements
(latches, flip-flops)

= FIGURE 5.31

Fragment of the network model of a synchronous design. The combinational logic between the state-
holding elements must be able to propagate updates faster than the clock frequency of the latches or
flip-flops. The dashed arrow shows the path with the longest delay-the critical delay path of this part
of the design.

verification. In addition, the exact delays on the chip are unknown until
a physical netlist is available with the exact placement and wiring data.

Therefore, rather than using dynamic techniques that would have to
apply all possible combinational input patterns, timing verification is
done with static, pattern-independent techniques. Timing verification
tools process the physical netlist topologically as a graph and do not
apply Boolean patterns at all. Thus, this process can be separated com-
pletely from the discipline of functional verification. Timing verification
guarantees that the maximum clock frequency is low enough to enable
correct electrical function of the circuit, whereas functional verification
can focus exclusively on the functional content of the design.

This separation of physical from functional concerns is the founda-
tion for the extreme performance optimization and simplification that
cycle-based simulation engines offer.

5.5.2 The Cycle-Based Simulation Algorithm

The separation of timing and functional verification allows the HDL spec-
ification to be purely functional. This means that the HDL of a synchro-
nous design needs to specify timing only for the clock signal. Even for
this signal, the delay time, or cycle time, is rather arbitrary because the
real cycle time can change with any iteration in the physical design
process. In fact, for functional simulation all that is needed is the sepa-

“w

ration from a time at cycle “n” to the time at cycle “n + 1.” Therefore,

5.5 Cycle-Based Simulation 185

Model inputs
—

—> — —_— |
——

> —™ Levelized]

g combinatjonal
. & > logic

@
(%2}

— — e A

1
'
i

= FIGURE 5.32

Model network for a cycle-based simulation. Starting from the network model of design under verifica-
tion, the model ordering process combines all state-holding elements (marked latches) and levelizes
the combinational logic blocks. Levelization starts at level 1 with all blocks that connect to model inputs
or latches only. Any subsequent level n contains only blocks whose inputs connect to outputs from
blocks of prior levels (maximally level n — 1). This results in an ordered directed acyclic graph as illus-
trated in magnifying glass view.

many cycle-based simulation engines do not reference physical time
measures but simply an integer that denotes the current cycle.

It is evident that this abstract view of the DUV has a close affinity to
Algorithm 1 in Table 5.1. A possible cycle-based algorithm can take the
cycle as the finest time granularity and simply update the model once per
cycle.

The combinational logic description of a cycle-based model is devoid
of timing control statements. It is a zero-delay specification and free of
combinational feedback loops. By using the primary inputs and the
current values of the state-holding elements as the starting points, as well
as the primary outputs and the next values of the state-holding elements
as the end points, it is possible to strictly order, or levelize, all blocks of
the model network. Technically speaking the model is a directed acyclic
graph (DAG). Figure 5.32 illustrates the basic view of this graph. By using
simple gates as an example for combinational function, the magnifying
glass cut-out in Figure 5.32 shows the ordering of the graph, which illus-
trates that if signals A and B are evaluated first, signal C needs to be
evaluated once only per evaluation of the state machine function.

The cycle-based simulation engine proceeds from cycle to cycle by
evaluating the combinational function graph and calculating the new
latch and primary output values.

In comparison to the event-driven algorithm, the cycle-based engine
does not need to schedule blocks because it is clear from their position

186

a(lto 0)
b(1 to 0)

Chapter 5 = Hardware Description Languages and Simulation Engines

in the graph when their evaluation is necessary. Although it is possible
to use an event-driven scheme within the combinational function evalu-
ation, most cycle-based simulation engines have implemented what the
literature calls the oblivious simulation algorithm [12]. The oblivious
scheme calculates all the combinational function at every simulation
cycle and thus foregoes any dynamic event scheduling whatsoever. The
algorithm trades off the redundant work of evaluating those parts of the
model that do not change from cycle to cycle for the omission of com-
plicated management of the to-do lists and time wheel management that
are key to event-driven simulation (Section 5.3.4). The oblivious algo-
rithm is extremely simple and, most importantly, a good basis for further
optimization.

Another positive effect of the separation of timing from functional ver-
ification is the diminishing need of multi-value data representation for
signals. With the exception of multiply sourced bus signals (discussed
below), we can simulate most signals in the DUV with a binary value
domain without loss of verification quality. This is a result of making the
circuits synchronous, which eliminates glitches and hazards as a func-
tional verification problem. It allows the dramatic simplification and sim-
ulation speed-up using a binary value set for the overwhelming majority
of signals.

Figure 5.33 shows the power of the simplicity and capacity for
simulation efficiency of this basic flavor of cycle-based simulation. The

a(1)

b(D) xor | —(@

i XOr |- s) - = Load templ, a(0)

Load temp2, b(0)
1) Xor templ, temp2, temp3

s(0) Store templ, s(0)
And templ, temp2, temp3

Store temp3, c(0)

Load templ, a(l)

Load temp2, b(1)

c(0) and Xor templ, temp2, temp3
and Load temp4, c(0)
I or Xor temp3, temp4, tempb
2 | L Store temp5, s(1)
)
or

x
S
Il
v

N

w

IN

and [p |

(b) Compiled Model Code

(a) Levelized Model Network

= FIGURE 5.33

Cycle-based model of 2-bit adder design. (a) The levelized model network for the adder design with
four model blocks marked by circled numbers. (b) The first section of compiled microprocessor machine
code that represents the design under verification for a cycle-based simulation model. The logical
instructions in the code are marked with numbered circles, cross-referencing the gates in Figure 5.33a
that the instructions simulate.

5.5 Cycle-Based Simulation 187

example illustrates one possible extreme compilation of the zero-delay
version of the 2-bit adder into a pseudo instruction set of a workstation
microprocessor. The simulation model actually becomes a piece of
executable machine code, a program.

The pseudo-code in Figure 5.33b uses symbolic names for the storage
locations at which the simulation engine stores the representation of the
original VHDL signals. The code follows the ordered graph of the model
network. For every block in this example model, there is a corresponding
Boolean logic instruction in the code. This scheme also applies to blocks
that are more complicated by expanding the simple AND/OR/XOR func-
tions, which happen to have single microprocessor instruction equiva-
lents, to more complicated code sequences. For Figure 5.33, we can now
translate every Boolean block function that has a single corresponding
instruction in the pseudo instruction set into a series of approximately
four instructions: two load instructions for the input operands, one
logical instruction for the block function, and a store instruction for the
resulting value. This example makes clear how extremely compact the
cycle-based translation can become, especially when compared with an
algorithm, which needs to traverse and maintain lists of scheduled blocks
and to traverse a data structure that represents the model topology.

The following, very crude calculation illustrates the performance and
size compression potential of cycle-based simulation. If a cycle-based
simulation engine translates a DUV of one million gates into code for a
1-GHz microprocessor with the above instruction set, the approximate
code size of the model would be 4 MB. If we assume a processor per-
formance of one instruction per clock cycle, it is possible to run the
cycle-based simulation of this model at a speed of 250 clock cycles per
second.

Especially with larger models, the assumption of one instruction per
clock cycle does not hold with the approach shown, because the gener-
ated code is linear. Rather than using the processor caches, the simula-
tion engine program reads the model code from main memory every
simulation cycle. On the other hand, it is possible to push the average
instructions per model block well below the assumed four. It is visible in
the small example of Figure 5.33 that the code does not need to store
every intermediate result to a named signal and therefore does not need
to store it into model memory. This optimization can eliminate many
store instructions.

Overall, typical comparisons show improvements of cycle-based sim-
ulation engines by 10 to 20 times in speed and 3 to 10 times in capacity
depending on what types of cycle-based simulation and event-driven sim-
ulation we compare. The capacity improvement often has a much bigger
impact because it allows the simulation of designs that otherwise would
not fit into the address space of the workstation on which the simulation
needs to run.

188

Chapter 5 = Hardware Description Languages and Simulation Engines

Further optimizations are possible but beyond this discussion.
Increased capacity of the model representation, even at model build time,
as well as the fact that the model build process can statically order the
model network graph, opens a variety of optimizations that originate in
the disciplines of programming language compilation and logic synthe-
sis. These optimizations reach from simple operations, such as forward
constant propagation, to complex ones, such as elimination of redundant
logic in the model. The simplicity of the basic graph-oriented ordering
makes such optimizations affordable while still allowing reasonable
model build times of minutes per one million gates.

5.5.3 Extensions to Basic Cycle-Based Simulation Engines

The basic cycle-based simulation scheme considered so far severely
limits the style of HDL that the simulation engine can support. It is a
very narrow slice of the HDL LRMs: some excluded because the design
methodology allows us to (separation of timing verification from func-
tional verification), and some constructs are not supported for the sake
of performance optimization. The main purpose of extending the basic
cycle-based simulation algorithm is to bring back some of the missing
HDL features that improve the quality of verification even if that means
lowering the efficiency of the simulation engine.

Multiv-alued Signal Support

The first example for the extensions to cycle-based simulation discussed
here is the support for multi-valued signals. As mentioned above, multi-
sourced buses (data type std_logic for signals in VHDL) require a more
accurate value domain. With the simple, brute-force binary encoding of
signal values, it is impossible to detect a driving conflict on a bus signal
that has multiple drivers. It must be possible for the simulation engine
to discern which one of multiple sources actually drives the bus actively.
The VHDL value set for std_logic has nine logic values to make this
differentiation possible. Multiple drivers on a bus with different driving
strengths are not a problem for the DUV function as long as there is only
one driver with the strongest driving strength. A cycle-based simulation
engine should handle at least the condition of “blue smoke”-multiple
drivers with opposing logic values that drive with the same strength. This
extension requires a more sophisticated encoding of the logic values for
bus signals, more than simple binary encoding, as well as a more elabo-
rate handling of bus updates in the combinational logic. This extension
has no big performance impact because only a minority of the signals in
a standard design is buses.

An extension of all signals and state-holding elements to a multi-value
set is much more expensive. This means that all signals need a multi-bit
value encoding. All Boolean expressions are now more expensive as well

5.5 Cycle-Based Simulation 189

because of the more complicated multi-value operation. However, only
specialized tasks in verification need a cycle-based model of this flavor.
An example of such a task is power-on reset (POR) simulation, which
verifies that a design can initialize itself cleanly (for more discussion
about these aspects of the verification task, see Chapter 9).

Experience shows that it is possible to extend binary cycle-based sim-
ulation to support Verilog-style four value simulation (0,1,X,Z) with a
performance degradation factor of two to three compared with the basic
algorithms. Hence, even with such an extension, it is possible to keep the
performance and capacity advantage of the cycle-based simulation tech-
nology. Also, verification methodology can select this more expensive
model only for the specific tasks it is needed for.

Multiple Clock Domains in Cycle-Based Simulation

There is a widely held prejudice against cycle-based simulation, imply-
ing that cycle-based simulation engines cannot accurately verify designs
with state-holding elements clocked by clock signals at different fre-
quency. However, this is not the case.

We can divide a design that has independent clock signals into parti-
tions, which each have a single uniform clock. We call such partitions
clock domains. We break the problem into two categories based on fun-
damentally different relationships between two clock domains. The first
category is synchronous clock domains, in which the clock domains have
an integer ratio relationship to each other. The second category is for
cases in which the clock domains have a non-integer ratio. The non-
integer ratio leads to a more complicated situation, and this category is
called pseudo-asynchronous because the clock-edge relationships are
constantly changing over time.

Figure 5.34a shows an example of a 2:1 integer ratio synchronous
clock domain relationship. This example is used to explain how to
support multiple clock domain simulation with cycle-based simulation
engines. Assuming the rising edge of a model clock is the time when
latches update to their new state, the fastest clock of the DUV is taken
to synchronize model evaluations. The model update, the call of the clock
command of a cycle-based simulation engine, can be considered a clock
tick of some base simulator clock. Clocking the model at the rate of the
fastest design clock will make sure that the verification will not miss a
rising edge of any clock in the DUV. This scheme simply over-clocks the
slower clock domains. Sampling the design at the frequency of the faster
clock domain with the simulation engine allows visibility of all com-
binational updates from the faster clock domain to the slower domain,
even though the state holding elements of the slower domain will not
update during their off-times.

Figure 5.34b is an example of pseudo-asynchronous clock domains
(3:2 ratio). The time when clock2 rises coincides with the rising of clock 1

190 Chapter 5 = Hardware Description Languages and Simulation Engines
’_‘_‘ clockl
T ‘ T clock2
f f f f f (Cycle-based engine
| model evaluation “ticks”
(a) 2:1 clock ratio
clockl
clock2
| I N N
|
(b) 3:2 clock ratio
= FIGURE 5.34

Multiclock domains simulation with a cycle-base simulation engine. (a) A simple integer 2:1 clock
domain relationship; (b) a more complex non-integer 3:2 mode. Both indicate where the simulation
engine’s model evaluation must occur to synchronize the simulation with the rising edge of every clock
in the design under verification.

in some cases but also with the fall of clock! in some other cases, which
illustrates the nature of this shifting clock relationship. Again, the figure
indicates that the simulation engine’s model evaluation tick occurs at all
times when any clock of the DUV is rising. Because of the non-integer
clock ratio, these calls to the simulation engine are not equidistant but
follow a more complex pattern over model time.

In the most general case, the evaluation tick of a cycle-based simula-
tion engine clock marks the time when it is necessary to sample the DUV
because interesting events occur in the model. The verification of truly
asynchronous clock domains is also possible using cycle-based simula-
tion engines but is beyond the scope of this chapter.

The approach discussed here successfully fulfills the needs of multi-
ple clock domain verification. It is clear, however, that it causes a per-
formance penalty because each additional simulator clock causes a full
evaluation of the model even of those clock domains, where no design
clock is currently active. In Figure 5.34a, for example, the simulation
engine has to evaluate the logic of the slower clock domain (clock2) twice
as many times, as it would be necessary without the faster clock domain.
Modern cycle-based simulation engines have built-in support for multi-
ple clock domains that minimizes the performance penalty by not eval-

5.6 Waveform Viewers 191

uating the logic of a currently quiet clock domain. This requires the sim-
ulation engine to have insight into clock domains and events on the clock
signals. It is evident that the more clock domains exist in a design, the
more cycle-based simulation engines need to embrace features of their
event-driven counterparts.

Hybrid Simulation Algorithms

As mentioned in the introduction of cycle-based simulation, the method-
ology and HDL style restrictions imposed by this technology are not
acceptable to many design and verification projects. Therefore, the EDA
vendors and academia have developed hybrid algorithms that combine
event-driven and cycle-based simulation into a new class of hybrid
engines.

There are two basic approaches to a hybrid simulation engine: an
event-driven engine inside a cycle-based simulation engine, or a cycle-
based algorithm inside an event-driven simulation engine.

The first variant, event-driven updates inside a cycle-based engine, is
quite commonly used and known research work in this area has been
documented [13, 14]. The above example of multi-clock domain simula-
tion explains the benefits.

The more popular approach is to combine a general event-driven algo-
rithm with a core engine that speeds up simulation of designs, which
contain islands for which cycle-based simulation applies. An important
variant of this situation is the case in which the design itself is completely
synchronous while the test bench heavily relies on event-driven
constructs.

However, the success of such an approach is limited unless over-
whelming parts of the model are compliant with the cycle-based scheme.
Even if we assume cycle-based evaluation applies to 50% of a design, we
will still only see a moderate speed improvement as the following thought
experiment shows: if it were possible to simulate the synchronous
50% part of the model in zero time, the speed-up would only be a factor
of two.

5.6

WAVEFORM VIEWERS

We return now to the user interface of the simulation system (Figure 5.1).
The most important GUI component in a simulation system is certainly
the waveform viewer. Usually, a simulation engine comes with its own
waveform viewer tool. Some companies have specialized in this area, and
they offer waveform viewers that work with many simulation engines.
The purpose of this following discussion is to give an overview of what

192 Chapter 5 = Hardware Description Languages and Simulation Engines

File Edit View List Wawves Operations Markers Annotation Windows Help |

EEERE F eI ks

Goto:| Start:| 0 cycles Interval: 1 cycles End:

= FIGURE 5.35

A simple waveform window.

features a user can typically expect. However, we will not go into many
details describing bells-and-whistle features.

All simulation engines are able to produce trace files during simula-
tion runs to support debug. The files need to contain enough informa-
tion to allow a user to look at the values of the HDL signals and variables
after simulation. At minimum, a trace file has to contain the symbol
name and signal value information.

Different EDA vendors have come up with different formats (e.g., value
change dump, or VCD) that their simulation engines and waveform
viewer tools support. A differentiator between trace file formats is how
compressed this information is because for long simulation runs these
files can obviously become rather large.

Figure 5.35 shows a first simple waveform window in an example tool,
representative of the many available commercial offerings. Vendors have
converged on standard look-and-feel features of such GUIs, so it is
not surprising to see many common elements in this illustration. The
menu and status bars show the standard control elements such as
File/Edit/View, menu bars that can dock and undock and similarly
standard GUI features.

The main part of the viewer shows four different panes. Leftmost is a
list of signals currently selected for display. The signals have attributes
such as their name and whether they are composites like vector or record
types in the HDL. For the vectors it is possible to select a combined
representation of the value in the value panes, for example, REQ(0:2),
or a representation of each signal bit by itself. There are two value panes
in this example: a waveform that shows the signal values over a period
of time, and values at a specific time. The user selects the specific time

5.6 Waveform Viewers 193
‘| File Edit Traces Time Markers View Help
Add Traces
1@k % ¢ & @l @
From: |0 s To: [104 ns | Marker: -- Cursor: 96 ns
~Signals Waves
Time : 49 ns 98 ns
benchx.clk 1 I O | L1 1L
benchx.count[10:0] $300¢ |so+ [so01 |s002 [s003 [s004 [$005 [s006 [$007 [s0
benchx.realnum UNDEF [2.718281+ [3.14153
benchx.string UNDEF [The [ouick [Bxrown Fox | ed over e a2
henchxtoggle_01 [}+— I] | 1 | 1 [
N = T“" I =)
| Feeld®

= FIGURE 5.36

Example screen of the GTK Wave viewer.

using a cursor (vertical red line in the waveform pane) positioned
inside the waveforms to easily align all signal values at that given model
time.

In the example, the time base is cycles. This reveals that this tool
belongs to a cycle-based simulation environment. For an event-driven
simulation engine trace, the time-base would be a measure of time, such
as pico-seconds or nano-seconds. This does not change the nature of the
displayed waveform or the controls available to the user. Changes are still
step functions at discrete time intervals. Only in analog simulation would
a waveform view display smooth signal curves over time.

Figure 5.36 shows an open source waveform viewer that is
compatible with the trace formats of many commercial simulation
engines [15]. It demonstrates a time-base of nano-seconds and displays
signals of other data types than just bit or integers (string data for
benchx.string, real numbers for benchx.realnum).

Of course, an essential functionality is the movement of the waveform
pane forward and backward in time over the waveform. This can occur
by simply moving scroll bars or explicit directives in a menu of the cycle
or time boundaries to be displayed. A more interesting way to move
across time is a search for certain signal values or specific value transi-
tions. Even just a search for the next value change on a signal that is flat
over a long interval can be extremely useful. Consider, for example, an

194 Chapter 5 = Hardware Description Languages and Simulation Engines

IR_OPCODE(0:S) x1g"

= IR_RS1(0:4) x"02"

MEM _BEHAV.. Il B |R_RS2(0:4) x'01"
IR_RTYPE_RD(0:4) X"00"
IR_SP_FUNC(0:5) X'0A"
ITYPE_RD(0:31) x"00000000"
LOAD_INSTR bo”
NEXT_STATE(0:2) x'3"
PC(0:31) x"00000010"
REG(0:31)
RS1(0:31) X"00000000"
RS2(0:31) X"00000000"
RTYPE_RD(0:31) X'00000000"
START_BUS_READ_CYCLE b"1"
START_BUS_WRITE_CYCLE b0’
TRAP bo”

A(0:31) X'08000000"
D(0:31) X"1420FFF0"
HALT b0"
IFETCH b*1"

= FIGURE 5.37

Hierarchy browser.

5.6 Waveform Viewers 195

asserted error signal that usually stays inactive during most simulation
runs. A user can load the trace file of a failing simulation test case into
the viewer and quickly center the viewer to the time at which the error
occurs by using the pull-down menu to search for the first value change
of the error signal.

Typical viewer tools offer more than signal waveforms alone. Figure
5.37 shows a capability to traverse through the model’s design hierarchy.
The left-most sub-window shows a model with the instances mem and
proc, with proc selected. This tree traversal widget lets the user expand
and collapse sub-hierarchies. For a selected node in the hierarchy, the
tree view displays all signals. In the sub-window with the signal list, the
view shows the value for the current time (cycle) selected with the time
slider widget at the bottom of the window. The additional signal area
directly above the time slider is a grab bag for selected signals from
across the hierarchy.

If the previous example has moved the debug view to the model
source, Figure 5.38 extends this paradigm by putting all signal values
into a display of the original source file (marked by brackets). Such a
view is especially productive for the original author of the source HDL.

It is easy to see how a viewer with all the above capabilities evolves
quickly to a full IDE (integrated development environment). Such
tools resemble the C/C++/Java development environments that software
developers have learned to depend on. Many modern simulation tools
integrate such debuggers, addressing one of the bottlenecks of hardware
verification: logic debug.

9.7

SUMMARY

Hardware description languages cover a variety of possible abstraction
levels and specification styles. Designers today mostly use RTL or gate-
level HDL to define the functionality of a DUV. Inherent in an HDL spec-
ification is the structure of a model network with behavioral blocks
interconnected by signals. The simulation semantics of VHDL and
Verilog imply event-driven simulation semantics.

Modern HDLs also provide features that support the writing of simu-
lation test benches. In fact, the further development of both VHDL [16]
and Verilog [8] emphasizes adding verification-related constructs.
Chapter 6 focuses on test bench development.

A simulation engine compiles an HDL specification to the equivalent
model network as the first step to build a simulation model. Event-driven
simulation is a simple and efficient technology that scales across the full
scope of the features that HDLs provide. It uses the model network to
propagate signal changes during simulation runtime. An event-driven

196 Chapter 5 = Hardware Description Languages and Simulation Engines

se ieee.std_logic_1164. all ;
se ibm. synthesis_support.all ;

entity printer_buffer is -- DEMO GO TO ARCHITECTURE
port(scanin[0] : in std_logic ;
sc(0] s 4 ic ;
1

scanmode [0]
reset[0) :
chus [00] Ee std_logic_vector (0 to 7) ;
phus [00] i std_logic_vector (0 to 7) ;
cvalid[0] : std_logic ;
phusy[0] g std_logic
packnowledge [0] : i std_logic
pvalid[0] - std_logic

c;igml : std_logic

[

A

i
£

: entity is 1;

signal is "TB_KFLAG=/SI/";
signal is “TB_KFLAG=/S0/";

[ss

= FIGURE 5.38

Source file browser.

5.8 Exercises 197

simulation engine activates only those parts of a DUV model whose input
signals change and skips all model regions that experience no input
changes, thus avoiding unnecessary work.

Different simulation execution algorithms are possible for the res-
tricted HDL style used to specify synchronous RTL or gate-level designs. A
cycle-based simulation engine can transform this finite state-machine
view of the HDL model into a levelized network. Where the event-driven
engine leaves the execution order of the simulated model network to the
dynamic signal flow, the cycle-based engine orders the network statically
at model compile time. This opens a range of optimizations at build time
that improves performance and size of the model at runtime.

Most of this chapter focused on discussing event-driven and cycle-
based simulation technology in their purest form. However, the
commercially offered high-end simulation engines today incorporate
elements of both technologies in hybrid engines to support maximum
speed and full support of all HDL features.

Aside from understanding simulation engines and their optimization,
the discussion of cycle-based simulation is an important introduction to
other technologies that we discuss in later chapters. Many hardware
accelerators (Chapter 10) and the core algorithms of formal verification
(Chapters 11, 12) all rely on the cycle-based or FSM semantics of model
evaluation.

5.8

EXERCISES

1. Finish the sequence of event-driven simulation steps of Figure 5.27
until the model is in steady state, which means no more signal
updates are scheduled.

2. The xor gate that drives the delayed assignment to signal s(1)
switches its output value from “I” to “0” (Figure 5.26, compare
panels ¢ and d). Explain the reason for this change.

3. Consider the following change of the model network in the figures
underlying Exercise 2: assume that there is no delayed assignment
but a zero-delay connection between the xor gate and s(1). How does
that change the model behavior from the step in Figure 5.26¢
onward?

4. Implement four different HDL models for a 32-bit adder using the
HDL style used in Table 5.7. Run performance comparisons of the
different styles by using an available simulation engine and enough
test patterns to make the comparison worthwhile. Convert the VHDL
of Table 5.7 to the equivalent Verilog if only a Verilog engine is avail-
able. For the VHDL case, compare the three HDL styles to a fourth
variant using integer signal types.

198 Chapter 5 = Hardware Description Languages and Simulation Engines

5. Complete the pseudo-code of Figure 5.33b until it captures the
complete logic of Figure 5.33a.

6. Summarize the main performance advantages of cycle-base simula-
tion versus event-driven simulation.

7. Summarize the drawbacks of cycle-based simulation.

CHAPTER 6

CREATING ENVIRONMENTS

This second part of the overview of tools for simulation-based verifica-
tion focuses on the simulation environment. A walk through the land-
scape of test bench writing serves two purposes. First, there is a general
overview of the requirements for tools in this area. The main goal is to
understand the principles of how languages and libraries can support
well-structured test benches and higher productivity of verification
teams. Second, interleaved with this discussion is a walkthrough of
several available test bench writing tools and languages. We cover test
bench aspects of hardware description languages, the e language,
OpenVera, and SystemC.

Because there are a multitude of tools available, there is no room to
cover every single one in detail. Instead, as the different areas of test
bench writing are discussed, the chapter switches between different tools
and highlights some of their specific properties. However, the goal of this
section, and thus the thread of the discussion, is to gain an understand-
ing of the challenges and the common features of these tools. Although
the chapter looks at some of the distinguishing features of the tools dis-
cussed, the focus is on this class of tools as a group and not on detailed
specifics of a single one of them. This is still an emerging, ever-changing
field of technology, and it is more important to have a framework of the
key concepts than a reference manual on specifics, which will be out-
dated quickly.

The ultimate measure for quality of a verification effort is the number
of bugs found in the DUV specification. However, an assertion of this
metric is only possible after the fact, at the end of the verification cycle.
The bug detection rate is one indicator and feedback mechanism about
the relative progress during verification (Chapter 13). Verification cover-
age analysis is the real systematic approach to generate insight into the
quality of the verification done while the project is ongoing. The second
part of this chapter completes the discussion of the simulation environ-
ment with an overview of different approaches available to assess verifi-
cation coverage. The various coverage metrics, which industry and
research have developed during the last few years, are classified into the

200

Chapter 6 = Creating Environments

areas of structural coverage and functional coverage. Structural coverage
metrics instrument the design under verification (DUV) model with data
collection capability tied to the organizational structure of the imple-
mentation or the hardware description language (HDL) specification of
the DUV. Based on the collected data, coverage analysis is able to point
to areas of the design that the verification driver components were not
able to exercise. Instead of looking at structural features of the DUV, the
functional coverage approach measures the verification progress based
on an assessment of the design functionality covered by the verification
work. The overview of coverage analysis is finished with a few of the data
management challenges posed by the collection of coverage data across
many simulation runs in large industrial verification projects.

6.1

= FIGURE 6.1

TEST BENCH WRITING TOOLS

Chapter 3 introduced the base concepts of test benches and the princi-
ples to structure them so that the resulting simulation environment is
flexible and productive. This section discusses the tools that are at the
disposal of the verification engineer to accomplish this task.

Figure 6.1 highlights again the relationship between the simulation
engine, containing the model of the DUV, and the different forms of
test benches. In the discussion of features of HDLs in Chapter 5, their
structural features were introduced, including easy connection of HDL
test benches to the DUV and the management of replicated design units.

HDL
model of DUV

A Stimulus

Stimulus Check AP Testbench
\i »| program

HDL Check
testbench . .
Simulation

HDL model) engine

Coverage
traces

The relationship between the test bench and the simulation engine. A hardware description language
test bench is integrated with the model of the DUV, while an external test bench uses the simulation
engine’s programming interface to interact with the model.

6.1 Test Bench Writing Tools 201

This overview of the test bench tools looks more closely at VHDL and
Verilog features that support the actual coding of driver and checker
components.

The chapter then turns to test bench writing external to HDLs and
simulation engines. There are technical foundations and challenges that
any test bench library or tool has to address. Instead of introducing
special-purpose test bench languages immediately, this chapter starts
with the application of a general programming language as the founda-
tion because test bench coding is also programming, using C++ as an
example and designing the base architecture of an example test bench
library as an educational thought experiment. Although a passing famil-
iarity with C++ certainly helps the reader follow this description, more
important are the general features incorporated into this example library
design. The interesting parts of a C++ test bench library are those con-
structs that general programming languages cannot offer, and their
discussion highlights the specific requirements that test bench coding
creates. After the experiment of creating our own test bench library from
the ground up, we are better prepared to appreciate the features of the
custom-built languages and libraries offered by the industry today.

During the past few years, several special-purpose languages gained
widespread usage. This chapter highlights some example features of the
e language, OpenVera, and the SystemC C++ environment, the most
popular high-level verification languages (HVLs) today.

6.1.1 HDL Languages as Test Bench Tool

From the beginning, the creators of HDLs conceived them as simulation
languages to support both design and test bench writing. Verilog and
VHDL are both very large languages, and at least half of the language
definition is devoted to test bench writing. The following discussion does
intend to introduce some of the fundamental concepts. There are com-
plete books that cover the details of these languages and their use as test
bench tools [1, 2]. The reader who is interested in a more detailed view
of HDL test bench coding is encouraged to study one of the HDLs more
thoroughly. In the following, we again assume the reader to be somewhat
familiar with the HDLs used.

In an HDL environment, all test bench components—stimulus gener-
ators, monitors, checkers, and scoreboards—connect to the DUV struc-
turally via signals (VHDL) or wires (Verilog). The explicit specification
of the structural connection certainly is a basic capability of any HDL.
Returning to the cache design example from Chapter 2 (see Figure 2.20),
Figure 6.2 shows the implementation of the top level of a Verilog test
bench.

In addition to the three instances—DUYV, monitor, stimulus compo-
nent, and their interconnecting signals (wires in Verilog)—the test bench
code also contains the control of a central clock. The initial block keeps

202

Chapter 6 = Creating Environments

// Testhench
module cache_test;

“define

CYCLE_TIME 100

wire CMD_VLD, [0:3]CMD, [0:311DATA_IN, [0:7]ICMD_TAG_IN, [0:31]1CMD_ADDR;
wire RSP_VLD, [0:2]RSP, [0:31]DATA_OUT, [0:7]1CMD_TAG_OUT;

reg CLK;

// instances of testbench components

stim STI

mon MON

// insta

M (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR);
(CLK, RSP_VLD, RSP, DATA_OUT, CMD_TAG_OUT);

nce of cache design

cache CACHE (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR,

RSP_VLD, RSP, DATA_OUT, CMD_TAG_OUT);

// clock control

initial

begin

forever begin
CLK = 0;
#CYCLE_TIME/2; // this is where the time progress is controlled
CLK = 1;
#CYCLE_TIME/2;

end
end
endmodule

= FIGURE 6.2

Verilog test bench with stimulus and monitor component. This top level of a hardware description lan-
guage model instantiates the DUV CACHE, a stimulus component STIM, and a monitor component

MON. There

is also an initial block that serves as the clock generator for the DUV, as well as time

control component for the whole model.

the clock signal toggling every 50 ticks of the simulation engine’s base
clock, thus defining the base cycle of this simulation with a resolution of
100 time steps. The use of a symbolically defined constant for the cycle
time is a simple example of how to create parameters in the HDL with
a single point of control for change.

Figure 6.3 implements a simple generator component in Verilog. At
simulation start time, the initial-block of generator loads the contents of
a text file into a pattern array. $readmemh() is a task (similar to a proce-
dure in other languages) that is part of the Verilog standard language
environment. It allows the loading of hexadecimal data in textual format
into Verilog arrays. Hence, the file cache.patterns is the real test case. The
file can contain a regression set of golden test vectors, manually written
tests, or a test pattern that a generation program creates. The generator

6.1 Test Bench Writing Tools 203

// Stimulus Component

module generator(CLK, REQUEST, CMD, DATA, ADDR, TAG)
input CLK, REQUEST;
output [0:31CMD, [0:631DATA, [0:31]JADDR, [0:7]TAG;

reg
reg
reg

[0:3]1CMD, [0:631DATA, [0:31JADDR, [0:71TAG;
[0:107] patterns[0:1023], [0:10]ptr;
[0:107] n_patt;

intial begin
$readmemh("cache.patterns", patterns); ptr = 0; ready = 1;

end
always @(posedge CLK)
begin

if (REQUEST)

if(ptr < 1024) begin
n_patt = patternsiptr]; ptr = ptr + 1;
CMD = n_patt[0:3]; DATA=n_patt[4:67]; ADDR=n_patt[68:99]; TAG=n_patt[100:107];

end

else begin
##1000;
$display("Simulation Done!");
$finish();

end
end
endmodule

= FIGURE 6.3

Simple generator component in Verilog. At simulation initialization, the component reads a file of test
patterns into the array patterns. The component input REQUEST triggers the generator to read out one
new test pattern to its output ports at a time. After reaching the capacity of the test pattern array, the
generator stops the simulation.

component is prepared to read 1,024 commands and supply them to the
stimulus component.

After processing all patterns, the generator waits for 1,000 time steps
and shuts down the simulation run. This certainly is a very crude form
of hard-coded control. What happens if it takes more than these time
steps to process commands that might be pending in the DUV? A real
production test bench must implement a more appropriate test case
control, most likely in the checker component.

Figure 6.4 instantiates this generator inside the stimulus component.
We explained that it is important to separate the generator and the pro-
tocol components. Such a structure reflects the different areas of concern
addressed by these components. If the generation process needs to be
changed radically, the protocol component should remain untouched and
vice versa.

Although Figure 6.3 encapsulated the generator in a module, for the
example of the stimulus component stim in Figure 6.4, another structur-
ing construct available in Verilog is highlighted. A fask combines a series
of sequential statements together and makes it callable as one atomic
unit. The specialty of a Verilog task is that the user can suspend simula-
tion execution inside the body of a task and can pass input parameters to
a task and can return outputs at the end of the task execution.

204 Chapter 6 = Creating Environments

module stim (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR)

input CLK;
output CMD_VLD, [0:3]CMD, [0:311DATA_IN, [0:7]CMD_TAG_IN, [0:31]1CMD_ADDR;

reg CMD_VLD, [0:3]CMD, [0:31]DATA_IN, [0:7]CMD_TAG_IN, [0:311CMD_ADDR;
reg [0:3]IN_CMD, [0:63]N_DATA_IN, [0:31IN_ADDR, [0:7IN_TAG_IN;
reg REQUEST;

// instantiate generator
generator GENERATOR(REQUEST, N_CMD, N_DATA_IN, N_ADDR, N_TAG_IN);

task write_command; // protocol component
begin

@(posedge CLK);
CMD_VLD = 1; CMD = N_CMD;
DATA_IN N_DATA_IN[0:31]; CMD_ADDR = N_ADDR; CMD_TAG_IN = N_TAG_IN;
REQUEST = 0;
@(posedge CLK);
CMD_VLD = 0; CMD = 0;

DATA_IN = N_DATA_IN[32:63]1; CMD_ADDR = 0; CMD_TAG_IN = N_TAG_IN;
REQUEST = 1;
end
endtask

initial begin
CMD_VLD = 0; CMD = 0; DATA_IN = 0; CMD_TAG_IN = 0; CMD_ADDR = 0;
N_CMD = 0; N_DATA_IN = 0; N_ADDR = 0; N_TAG_IN = 0; REQUEST = 1;
forever begin

write_command(); // apply command using correct protocol

end

end

endmodule

= FIGURE 6.4

Stimulus component for the cache DUV in Verilog. Module stim instantiates the generator component
and contains the protocol component write_command, which translates every newly generated test
pattern, supplied by generator, to the two cycle cache command required by the DUV. After complet-
ing the command protocol, the protocol component initiates the generation of the next test pattern by
turning signal REQUEST back on.

The protocol component inside stim implements the protocol compo-
nent with the task write_command. Every call of write_command will take
a test pattern or command, newly delivered by generator, and apply it to
the output of the stimulus component using the two model cycles that
the input protocol of the cache DUV requires.

The example code in Figure 6.4 illustrates a bare skeleton of a real
stimulus test bench component. The following are descriptions of the
additional considerations a verification engineer would include to make
this example robust and usable in a production environment.

6.1 Test Bench Writing Tools 205

Parameterization

Separating central decisions from actual code and encoding them as
parameters is always helpful to make the test bench easily adaptable to
different usage situations. For example, it would be much better to read
in the name of the test case file cache the patterns from outside the test
bench. This way a team can keep many different test case files in a single
directory of a file system at the same time. We call such a collection of
test cases a test case bucket.

Debug Trace File Generation

Verilog has a number of facilities to write out debug information. For
example, the $display() call lets a user write text and signal values to the
console; $fdisplay() routes this information to a file. If the test bench calls
the pair $monitor/$fmonitor with a list of signals, the simulation prints
out formatted name/value information at the end of every time step at
which any of the referenced signals did change. Using such directed
debug trace mechanisms allows a focused diagnosis of test bench prob-
lems. Of course, the verification can always use the trace file data that
the simulation engine supports natively (Figure 6.1).

Randomization

The stimulus generation shown is completely deterministic. To fulfill any
reasonably complete test plan, the actual tests must vary over a number
of properties of the cache design interface

= Different commands, different sequences of commands

= Different temporal spacing between the command, i.e., up to eight
commands back-to-back in sequence, different dead cycles between
back-to-back commands

= Different and colliding target addresses

= A wide variation of the data values is probably not important

With the given test bench, the verification team can only accomplish this
variation by creating many different cache patterns files, which cover
these cases. It is possible to move some of the variability into the test
bench code itself. Verilog offers a number of system tasks that support
randomization. The most obvious is $randomi(), which returns a 32-bit
random integer value. However, there are several additional tasks—for
example, $dist_normal(), $dist_exponential(), and $dist_poisson()—that
let the test bench writer control the statistical distribution of the ran-
domized selections. All these functions support a “seed” parameter whose
importance we explain below.

206

Chapter 6 = Creating Environments

Verification engineers can use randomization either to pregenerate
deterministic tests or during the runtime of a test bench-driven simula-
tion (for further details, see Chapter 7). In either case, it is important,
for the completion of the verification plan, that the project tracks which
of the cases the stimulus component actually applied. The methods and
techniques of this verification coverage tracking will be discussed in the
second half of this chapter.

It is important that test bench writers understand the statistical char-
acteristics of the random distribution they select in their stimulus com-
ponents. This is even more important if there are holes suspected in the
coverage tracking done by the project. HDL test bench implementations
whose random distributions are deficient can leave dangerous coverage
holes if a project relies on a specific distribution.

Another aspect of working with randomized testing is that the verifi-
cation must be able to repeat any simulation run. If a simulation reveals
a design error (or test bench error) it is necessary to rerun the simula-
tion, perhaps many times, to support debug and later the validation of a
fix. For the difficult bugs, it is also desirable to package the conditions
that lead to the problem and be able to rerun the exact scenario for
regression purposes. Repeatability is trivial for pregenerated tests if the
test files are stored in a file system. However, if runtime randomization
is used, it is vital to supply seeds to the random number generation func-
tions. Using the same seed will guarantee that the simulation engine will
repeat the generation of a sequence of random numbers in exactly the
same way.

If a test bench uses runtime randomization in many different places,
explicit random seed management is advisable. This means that the code
should collect and set all seeds at one or only a few central places. Such
an organization will make it easier to support a controlled exact rerun
of a simulation test for debug or regression.

This section uses exclusively Verilog to demonstrate some HDL test
bench concerns. This discussion is only an introduction to provide a
flavor for the techniques available in this area, and, of course, VHDL
would provide an equally good platform to illustrate these points.
Although VHDL has no built-in randomization constructs, the power of
the language supports many different ways to define random number
generators. For an example of an elaborate package for random number
generation, refer to VHDL Random Number Generation Package [4].

Many aspects of the test bench support constructs of HDLs very
similar to general programming languages. In fact, advances in software
engineering and general-purpose programming languages have heavily
influenced the development of HDLs over the years. After all, the ADA
language formed the base for VHDL, and the Verilog developers certainly
took a serious look at the C language. As general software engineering
embraced modern programming techniques such as object-orientation
and function overloading, the HDLs followed suit, for example, object-

6.1 Test Bench Writing Tools 207

oriented proposals for VHDL [4] or the object-oriented features of
SystemVerilog [5]. In some ways, the test bench subset of HDLs has
taken the hardware specifics of the HDLs and augmented them with
general programming constructs such as tasks, procedures, functions,
and all control structures available in a typical programming language.

6.1.2 C/C++ Libraries

Given the obvious need of programming capabilities in test bench
writing, many have approached this area from the opposite direction:
rather than extend HDLs, determine what extensions to a programming
language are necessary to cast it productively as a test bench writing tool.

Certainly, C and C++ are widely popular programming languages avail-
able on any computer platform that possibly hosts a simulator tool.
These languages have turned into a basic requirement of most computer
or electrical engineering curricula, creating a large skill base from which
verification teams can draw. In addition, as discussed in Chapter 5, most
simulation engines offer a programming language interface through
which a C or C++ program can control and interact with the DUV and
the engine.

In the following, the basic elements necessary for a library that extends
C++ to support test bench writing will be discussed. The following
description is only an educational vehicle and does not refer to a library
that really exists. We can only sketch out the implementation, with a
focus on the principal requirements. The software organization
described in the following section is only one possibility among many.
Many projects in the industry have created their own environments,
sometimes project specific and at other times carrying the libraries over
from one project to the next, always refining and generalizing the
approach.

Overall, this discussion will lay the groundwork to better understand
and appreciate the productivity and usability features of the three com-
mercial test bench writing environments (Vera, e, and SystemC) that we
cover afterward.

Figure 6.5 shows our C++ library built stepwise from several different
layers. Table 6.1 gives an overview of the tasks covered by the different
library layers shown in Figure 6.5. The following discussion of the dif-
ferent C++ library features follows the list of service layers.

The Simulation Engine Abstraction Layer

The simulation engine abstraction layer allows test bench code to be
portable between different simulation engines. With the multitude of
commercial simulation engines available, this part of the library seems
to be a daunting task. However, the standardization process has led to
the program-language interface (PLI), the VPI for Verilog [6] and the

208 Chapter 6 = Creating Environments

[User testbench code

A
Y

I A

Y Y

Testbench | Testbench
object | building block

Testbench execution
control

registry objects v
Simulation engine abstraction | Infrastructure layer:
layer
File-management
Simulation engine API Memory management

Operating system (typically Unix/Linux)

= FIGURE 6.5

Example C++ test bench library architecture. The top layers of the library are accessible by the user’s
test bench code and support an object-oriented structure. Test bench components are built as class
instances and registered with the library, which takes over the control of test bench execution and offers
predefined building blocks to improve test bench coding productivity.

TABLE 6.1 = The five mayor layers of the C++ test bench library

Simulation engine abstraction layer Abstract interface to simulation engine application
programming interfaces that provides the rest of the
library easy portability to any available simulation
engine because all engine-specific code is concentrated
in this layer.

Basic infrastructure layer A centralized set of utilities providing a portable interface
to operating system services like files, console
inputs/outputs and memory management.

Test bench object registry The library supports test benches built from user-defined
classes that register themselves with this layer. Once
registered, the library can call the user objects at
appropriate times to perform their work.

Test bench building block objects The library offers predefined building blocks as
productivity aid for test bench writers.

Test bench execution control The library controls when to call the different user test
bench components in what sequence from this central
library service layer.

foreign language interface (FLI) [7] and VHPI [8] for VHDL, which sim-
plifies this task because most commercial simulation engines offer one
of these interfaces. The following uses simple examples of PLI and FLI
mechanisms to illustrate the capabilities of such interfaces. Common to
this list of programming interfaces with their confusing set of acronyms
is the functionality that allows a C/C++ program access to any named

6.1 Test Bench Writing Tools 209

HDL object in the DUV model. One of the most basic sets of portable
functions the C++ test bench library has to provide is the ability to get
and set model objects such as signals, wires, registers, and variables. For
any given simulation engine, the gef and set functions map to the appro-
priate interface offered by the engine, and they provide one single
common interface to the rest of the C++ test bench library.

A most important design decision for the C++ library is the control
flow mechanism between the simulation engine and the test bench. It is
possible to differentiate between two basic approaches, the integrated test
bench and the separated test bench. In the first alternative, the simulation
engine always calls the test bench components. Even though the test
bench components use a separate programming language, the engine
application programming interface (API) treats them as natural exten-
sions of the HDL supported. The separated test bench approach views
the test bench as an independent program with its own internal control
flow. In the overall process, simulation engine and test bench program
hand control to each other in alternating fashion. When the simulation
engine finds the model in steady state for a given model time, it hands
control over to the test bench. Once the test bench components finish
their work, the library hands control back to the engine to advance the
simulation of the model. In the following, we discuss the integrated and
separated test bench alternatives with advantages and disadvantages.

Integrated C/C++ Test Bench

The original intention of the Verilog PLI was to enable the calling of cus-
tomized C functions from within Verilog. For example, the user could
write a task (such as the write_command() task in Figure 6.4) in the C
language and, if linked correctly with the executable program of the sim-
ulation engine, could call this task seamlessly from within the Verilog
source code. Staying with the write_command() example task of Figure
6.4, the caller would refer to it as $write_command(), the “$” indicating
an externally linked task.

Another common approach to integrate C/C++ test bench routines is
to use a wrapper block in the source HDL. Figure 6.6 illustrates this with
the monitor component of the cache test bench, using the FLI of a given
simulation engine. The base mechanism is to define an empty VHDL
entity annotated with a special foreign attribute, which tells the model
build process that a specific C program is to be dynamically loaded at
simulation startup time (elaboration time in VHDL) and an initialization
function, monitor_init(), is to be called with certain parameters (string
value parms).

The initialization routine has to establish addressability of the
input/output signals inside the C program. In addition, the C code can
establish callback routines. These routines are C functions, which the
simulation engine must call at specific points in time. Examples of such

210

Chapter 6 = Creating Environments

entity monitor is

port (
clk :in std_ulogic; -- Clock
rsp_valid : in std_ulogic;
rsp : in std_logic_vector(0 to 2);
data_out : in std_logic_vector(0 to 31);
cmd_tag_out : in std_logic_vector(0 to 7);
cmd_tag_in : in std_logic_vector(0 to 7)

) .

end monitor;

architecture c_code of monitor is
attribute foreign of c_code : architecture is "monitor_init monitor.so; parms";
end c_code;

= FIGURE 6.6

Wrapping a C code version of the cache monitor to a foreign language interface routine.

callbacks are the process code of the entity, simulator exit or checkpoint,
and restart. Figure 6.7 illustrates the relationships between the foreign
program monitor.so of the example used in Figure 6.6 and the simula-
tion engine. The VHDL attribute provides the engine with enough infor-
mation to load and call the initialization function of the monitor
component. The monitor_init() function finishes the connection between
the monitor component and the HDL model and simulation engine
by calling a variety of FLI functions. A main task for monitor_init()
is to register the function monitor_proc() with the engine using the
mti_CreateProcess() FLI function. The registered function is a callback
for the model evaluation that the simulation will call whenever the event-
driven algorithm defines a necessary update of the monitor component.
Via this callback, the engine treats the external C code similar to any
other VHDL process in the HDL model—the model extension with C
routines is complete and ready for execution.

Similar to PLI, the FLI also supports foreign subprograms, which are
subroutines callable from VHDL but written in C/C++. PLI, on the other
hand, also has mechanisms that support the embedding of C routines as
modules inside a Verilog hierarchy, similar to the example shown in
Figures 6.6 and Figure 6.7.

The idea of wrapping every test bench component behind an HDL
facade takes advantage of keeping the HDL environment as the master
environment. This has clear advantages for the test bench coder. There
is no need to write a test bench execution component because the control
flow stays with the host simulation engine; the simulation engine calls
the test bench routines whenever the HDL semantics require the activa-
tion of a module/entity (e.g., when input signals change). Another advan-
tage is that the connection of the test bench components to the HDL
model occurs with the standard HDL structural connection mechanisms,
component instantiation.

6.1 Test Bench Writing Tools 21

monitor.so

load *| monitor_init() {

// code to establish access entity ports

HDL model

// code to estabHs‘h“caHback functions
mti_CreateProcess(

Entity with FLI "caghe monitor",
monitor_proc,
Simulation Q ctrl_data);
engine \

Model
evaluation

A

\

}

callback ™| monitor_proc() {

// code to do monitoring work

4

An entity with a foreign language interface causes the simulation to load a specified external program
monitor.so at model initialization time. The main entry point of the program, specified in the VHDL
attribute in Figure 6.6 (monitor_init), establishes data structures and other callback functions that the
engine calls at the appropriate times. monitor_proc() is an example callback function. It acts similarly
to a VHDL process inside a VHDL architecture of the corresponding entity. The callback is reactivated
whenever the model evaluation algorithm deems necessary.

= FIGURE 6.7

However, there are also some disadvantages. Because the host simu-
lation engine calls the C/C++ code, calling and linking conventions of the
host environment have to be satisfied by the C/C++ coder of the test
bench. This tends to create a number of cryptic rules and a need to call
a significant number of rather arcane C functions, which transport
control and data back and forth between the C language and the HDL
environment. PLI and FLI each encompass hundreds of functions. In
addition, verification engineers often require structural changes in the
test bench, such as the access to different signals or the need to instan-
tiate additional test bench components. Every time there is a structural
change in the test bench environment, HDL source changes occur as a
result.

Embedding more and more test bench components in the HDL source
becomes very hard to manage when a project evolves from unit-level ver-
ification to chip and system level.

A checker written for a unit simulation environment can be instanti-
ated in a simulation HDL wrapper around the unit. However, when this
unit is integrated into the chip-level HDL test bench, the question arises

212 Chapter 6 = Creating Environments
¥
\4
HDL simulation Testbench
control flow control flow
a &\
K/ K/ Timeless
execution
Model time step Y
executed by
simulation engine
= FIGURE 6.8

A separated C/C++ test bench and its control flow interaction with the hardware description language
(HDL) model. The branching of arrows inside the execution flowchart of both the HDL model and the
test bench indicate that inside each domain, control of execution is fully independent of the control
flow in the other domain. Whenever the simulation engine finishes a model time step, control passes
to the test bench. The engine only gets runtime control back after the test bench has finished all its
work for the current model time. Simulation model time advances only during the activity of the HDL
simulation from whose perspective the test bench execution is timeless.

as to where the checker instance should go. This dilemma was discussed
in Chapter 5 when the characteristics of the HDLs were examined.
Clearly, VHDL has no good solution. Verilog allows cross-hierarchy con-
nections, which means the unit checker instance could be instantiated
in simulation HDL wrapper around the chip. However, it becomes clear
from this discussion that the amount of maintenance of simulation-only
HDL wrappers on different levels of the simulation hierarchy quickly
becomes excessive, which is the reason why the approach of the inte-
grated C++ test bench does not scale well with larger projects.

Separated C/C++ Test Bench

A radically different approach is the total separation of the C/C++ test
bench domain from the HDL context. The basic idea is to let the test
bench library control the instantiation and the control flow of all
test bench components itself, in a separate context from the HDL
domain.

Figure 6.8 conceptualizes the control flow between the two domains.
The HDL simulation proceeds to a predefined point in time at which the
HDL model is in a steady state. At this time, the simulation engine passes
control to the test bench. Now the test bench execution control takes
over, calls whichever test bench components need to run next, and even-
tually returns control back to the HDL simulation engine. All the test

6.1 Test Bench Writing Tools 213

bench activity between HDL simulation time steps is called a test bench
cycle.

Several key observations about this scheme are notable. First, there is
only one point in the test bench code at which control transfers back and
forth between the test bench and the simulation engine. The simulation
engine abstraction layer (Figure 6.5) of the test bench library should
completely encapsulate this piece of code, thus freeing all verification
engineers from dealing with arcane calling conventions and PLI function
parameters. In addition, this scheme hides all the complexity of the back-
and-forth control flow and the verification engineers can focus on their
real job—creating effective stimulus and checking components. Second,
tracking of model time stays with the HDL model. Model time passes
only when HDL components are active. As a result, from the viewpoint
of the test bench, time stands still. Once the simulation engine hands
control to the test bench, all changes made by the test bench to the model
signals and variables happen at the same time, in parallel. Time can
advance only when control returns to the model; it is then that the actions
of the test bench become observable in the model.

This strict separation of model and test bench domain dramatically
simplifies the infrastructure and the communication between the two
domains. It can also be argued that any other control flow would lead to
the extreme complications of a spaghetti flow if any of the test bench
component writers had to concern their code with execution control.

To drive that point further, consider Figure 6.9, which shows how data
flows between test bench and HDL model. Although the test bench can
read model variables and signals at any time during the execution of test
bench code, the test bench library buffers all updates that go from the
test bench to the model. The obvious place for this buffering is in the
simulation abstraction layer of the test bench library. The buffered model
update ensures that all changes from the test bench to the model occur
at the exact time and all test bench components access the same consis-
tent model state. If test bench components were able to change model
state immediately, some components, when activated, would observe a
different model state than do others. Under such conditions, the execu-
tion order of the test bench components would become very important,
which would complicate the writing of the test bench dramatically, espe-
cially in a large project in which many verification engineers have to work
in parallel.

Consider, for example, the test bench sets the two inputs of a two-way
and gate to “1.” If this action would propagate into the model immedi-
ately, there are two ways to handle this update. In the first scenario, the
test bench library activates the simulation engine immediately and lets
it propagate the changes, starting with the possible change of the signal
on the output of the two-way and gate. The second alternative is to allow
the change of the model signals but not let the simulation engine update
the model with the subsequent changes.

214 Chapter 6 = Creating Environments

¥
\4
HDL simulation Testbench
engine control flow - control flow

=eg

Timeless
execution
Y
Model time step Y — Apply model
_ exec_uted by_ changes
simulation engine

o

= FIGURE 6.9

Control and dataflow between test bench and hardware description language (HDL) model. The dashed
arrows show when the test bench code has access to the state of the HDL model (signals, variables,
registers, etc.). Test bench components can inspect model state at any point during their execution. All
changes to the model are buffered by the test bench library and applied only at the end of the test
bench cycle. This algorithm ensures that all test bench components have access to the same unaltered,
consistent model state.

The latter case is clearly illegal, as it would possibly show wrong sim-
ulation results (such as a two-way and gate with both inputs set to “1”
and “0” output). The former case, updating the model in real time while
the test bench code is active, has two problems. First, different test bench
components observe a different model state. It now becomes the user’s
problem to manage which parts of the test bench run before others,
clearly a complexity explosion and recipe for unmanageable spaghetti
code. Second, if the test bench propagated every signal change through
the model, the simulation engine must iterate through the model a large
number of times, every time there is a model update from the test bench,
causing a major degradation in simulation performance.

Given this simplified scheme of control and dataflow between test
bench library and simulation engine (Figure 6.9), we can now list the
principal interface, which the simulation engine abstraction layer pre-
sents to the rest of the test bench library (Table 6.2). Example usage code
for this interface is introduced below.

The Base Infrastructure Layer

The basic infrastructure layer (see Figure 6.5) centralizes services that
all components of a test bench use. Most of these services are concerned
about resources owned by the underlying operating system, such as
memory and files.

6.1 Test Bench Writing Tools 215

TABLE 6.2 = The base interface of the simulation engine abstraction layer for the C++ test bench library

The user instantiates a signal object specifying the name of the model
signal or variable (facility). Test bench components can access model
signals only through such objects.

Signal_Object get_value(): function of Signal_Object that returns the current state of
the corresponding model facility.
set_value(): function of Signal_Object that writes a new value into the
corresponding model facility at the end of the test case cycle.
For simplicity of the discussion, we assume integer facility values.

The test bench library provides one instance of this class. It
encapsulates all engine control functions of the different supported
simulation engines and provides one portable interface to the other
layers of the test bench library.

Simulation _Control clock(): function that turns control over to the simulation engine for the
duration of one simulation engine clock tick. A base clock tick can be
one simulation cycle for a cycle-based engine or a discrete time
interval for an event-driven engine.

checkpoint()/restart() functions to suspend/resume simulation model.

simulation_exit(): end HDL simulation end exit simulation engine.

Memory Management

Many components of a test bench allocate memory dynamically. For
example, the scoreboard of the cache design (Chapter 3) needs to keep
track of all outstanding commands. If our knowledge of the internal
microarchitecture of the cache DUV guarantees that a maximum of eight
fetch or store commands can be outstanding at a given time, the score-
board component could just allocate a fixed buffer of eight entries at the
beginning of the simulation. Under the fixed microarchitecture condi-
tions, this is the most robust and least error-prone solution, and it pro-
vides the best runtime performance. However, if the design specification
does not indicate a maximum number of in-flight transactions, the test
bench needs to allocate buffer memory dynamically every time the stim-
ulus component sends a command into the DUV and must unallocate it
again when the DUV finishes servicing the command.

Dynamic memory allocation should be centrally controlled in a test
bench, for example, by overloading the new() and delete() operators in
C++. A well-written memory manager will increase test bench perfor-
mance and make it easier to debug memory problems in the test bench
code. A typical memory problem encountered with C++ programs is
called a memory leak: parts of a test bench continuously allocate memory
but never release it before the end of simulation. Memory leaks can
create huge debug problems, especially in long-running simulations,
when the jobs fail when they run out of memory. This can be horren-
dously difficult to debug if the test bench code does not have a central
point of control for memory allocation.

216

Chapter 6 = Creating Environments

File Management

A file manager has the important job of tracking all files that the test
bench reads or writes during a simulation run. The more complex a DUV
and the corresponding test bench become, the higher the number of files
created by different test bench components rises. A file manager can keep
track of location and time-date information of all input files and write
out a bill-of-materials list at the end of a simulation run. This list is
important when it comes time to rerun the exact simulation for debug
Or regression purposes.

Output files will be either status or debug and track files. Usually a
project will standardize the layout of such files. A librarywide file
manager will make a standardized layout of output files easy.

Test Bench Building Block Objects: Test Bench Components

The verification team organizes a test bench along the structural princi-
ples defined in Chapter 3. There will be stimuli generators, monitors,
checkers, and scoreboards. In the following, these elements are called
test bench components.

In a C++ environment, the library can map the test bench components
to appropriate C++ classes. The class member variables hold the current
status of a component, and the member functions define the operations
available for the component. If a component class has member variables
of the type Signal_Object, these objects give the component access to the
corresponding facilities, signal, registers, and arrays, in the HDL model
via their connection through the simulation engine abstraction layer.
If the component writes a new value to a Signal Object, using the
set_value() function, the test bench library will update the correspond-
ing model facility at the end of the test case cycle.

It is a good idea for the C++ library to provide a base class Testbench-
Component (similar to the one shown in Figure 6.10). The test bench
writer must derive any user component from this base class, which
defines a common interface and services for all test bench components
in the system. The interface includes common debug and trace functions,
as well as imposing a fixed set of member functions that a user com-
ponent must implement in its own way. C++ calls this type of a base
class an abstract base class. Only derive user classes, which define the
yet-undefined function of the abstract base class, can be instantiated in
a test bench.

With this base class any components will have a function called
trace(), which prints out the component’s name. The function execute()
is not defined for the base class, but this abstract declaration enforces
that any derived user component class defines such a function. The
intended use of execute() is that this function contains the actual execu-
tion code, the behavior of the test bench component. Because the base

6.1 Test Bench Writing Tools 217

class TestbenchComponent {

public:
TestbenchComponent(string name);

void trace() { cout << "Name of component" << mName << endl };
void execute() = 0;
private:

string mName;

}

= FIGURE 6.10

Abstract base class TestbenchComponent. The class provides a trace() function, which is the same for
all test bench components and requires any user-derived class to implement an execute() function. Test-
benchComponents are named when instantiated to allow the library to communicate via component
names with the user during debug.

1o .
o simulation _ Checker
Stimulus initiator _ model 4

A

Outstanding command
scoreboard

Key

:) Keyboard text
:) Testbench infrastructure
:) Simulation tools and model

= FIGURE 6.11

The Calcl simulation environment with its three test bench components.

class TestbenchComponent enforces that every component has this func-
tion, it is easy for the test bench execution control layer (described below)
to activate any component when necessary, just by calling its execute()
function.

The test bench requirements for Calcl (discussed in Chapter 4) are
used as the basis for a more detailed example of the C++ test bench
library. Figure 6.11 repeats the relevant parts of the structure of the

218 Chapter 6 = Creating Environments

struct Operation {
int cmd; int opl, op2, expResult, expResponse;
}

class ScoreBoard : TestbenchComponent {
public:
ScoreBoard(string name);

void execute() {}; // ScoreBoard is passive
void postOperation(int portNum, Operation &op); // log operation, set port not ready
bool popOperation(int portNum); // un-Tog operation, set port ready

bool portlReady, port2Ready, port3Ready, port4Ready;

private:
Operation pendingOp[4];
}
class StimulusInitiator : TestbenchComponent {
public:
StimulusInitiator(string name, string filename);

void execute(); // per port: if port ready apply next operation to
// model and post to scoreboard

void registerScoreBoard(ScoreBoard &s);
private:
ScoreBoard *mScoreBoard;
Signal_0Object *req_l_cmd_in, *req_l_data_in, .. ; // input interface of Calcl DUV
}
class Checker : TestbenchComponent {
public:
Checker(string name);
void execute(); // receive result, call scoreboard popOperation() and check
void registerScoreBoard(ScoreBoard &s);
private:

ScoreBoard *mScoreBoard;
Signal_0Object *out_respl, *out_datal, .. ; // output interface of Calcl DUV

}
= FIGURE 6.12

Class declarations for the test bench components of the Calc1 simulation environment.

simulation environment for the Calcl design. The test bench consists
of three components that are mapped into C++ classes as shown in
Figure 6.12.

The struct Operation in Figure 6.12 is a data structure that captures
all data of a single Calc1 operation, including the expected response and
result. The ScoreBoard component class captures one Operation per
port. ScoreBoard does not necessarily need to be a TestbenchComponent
because it is a passive component and its execute() function is empty.

6.1 Test Bench Writing Tools 219

This means that the ScoreBoard functions will be called by other test
bench components directly, whereas the call of the test bench execu-
tion control is of no consequence. The methods postOperation() and
popOperation() cover all operations of ScoreBoard and are called by
other components. Every postOperation(), with the port number as an
argument to the call, sets the ready field of the corresponding port in
ScoreBoard (portlReady, . ..), every popOperation() clears it. A postOp-
eration() call carries a reference to an Operation data structure, which
allows the ScoreBoard to copy the currently pending operation to its
internal data buffer for the port.

The active components of this test bench are Stimulusinitiator and
Checker.

StimulusInitiator’s constructor creates the Signal_Object’s, which cor-
responds to the four ports of Calcl by using the correct model signal
names. The other task of the constructor is to open and parse the test
file. The execution control layer of the test bench library calls the
execute() every test bench cycle. For every port of Calcl, StimulusInitia-
tor checks whether the port is ready (using ScoreBoard) to accept the next
operation. If true, the execute() function applies the operation to the
model and posts it to ScoreBoard. If no more operations are available
from the test file, execute() simply returns whenever it is called; at that
point StimulusInitiator becomes inactive.

The constructor of the Checker class connects its Signal_Object’s on the
output interface of Calcl. Checker’s execute() function monitors this inter-
face, and once the model posts a results, Checker pops the correspond-
ing Operation from the ScoreBoard to perform the check. Because the
popOperation() call clears the ready field for the port in ScoreBoard, the
SimuluslInitiator is free to issue the next operation.

Both active components, StimulusInitiator and Checker, need access
to the ScoreBoard of the test bench to be able call ScoreBoard’s data
access functions. To give these components access to ScoreBoard, they
both have the function registerScoreBoard(). The assumption behind this
architecture is that the code, which instantiates the three components,
will call registerScoreBoard() and pass in the reference to the ScoreBoard
component.

As shown in Figure 6.13, the top level of the test bench instantiates
the Simulator_Control infrastructure interface block and all three test
bench components. This is also where the calls to the registerScore-
Board() function give the driver and the checker access to the scoreboard
component.

The test loop iterates for 1,000 steps, calling each component’s
execute() function before telling Simulator_Control to simulate the HDL
model for the next time interval (typically a model clock cycle). With the
top-level test bench code, the overall structure and interlock of the dif-
ferent test bench library services that have been discussed up to this point
can be seen.

220

Chapter 6 = Creating Environments

main (int argc, char *argv[]) {

}

Simulation_Control control;

StimulusInitiator driver("CalclDriver", "mytest");
Checker checker("CalclChecker");

ScoreBoard score("CalclScoreBoard");

driver.registerScoreBoard(score);
checker.registerScoreBoard(score);

for (int i = 0; i < 1000; i++) { // testcase execution Tloop

}

driver.execute();
checker.execute();
control.clock();

control.simulation_exit();

= FIGURE 6.13

Top-level C++ test bench code for Calcl.

There are several obvious problems with the test bench of Figure 6.13.
The most severe problem is the fact that the code calls the driver before
the checker

After the driver returns control to the test bench, there is no call to the
simulation engine to update the model. This only occurs when the test
bench calls control.clock(). Therefore, the results of the driver updates for
the current cycle are not visible to checker. In addition, the driver cannot
react to results that the checker will collect from the previous model
update, control.clock() call last time through the loop. Remember, when-
ever the Calcl design delivers results on the output interface, the checker
calls the ScoreBoard to pop the registered, pending operation. This is the
prerequisite for the clearance of the ready status of the corresponding
port.

Because the program in Figure 6.13 calls the checker last, the driver
will only be able to issue a new operation at the beginning of the next
test bench cycle. As a result, this test bench is unable to issue back-to-
back operations on a single port, a scenario that the functional specifi-
cation of Calcl clearly supports. Simply calling the checker before the
driver will fix this problem. Now, directly after the update of the model
by the simulation engine, the checker will observe a finished Operation,
pop it from the ScoreBoard, and check its results. The driver component
gets control right afterward and can issue the next Operation if the test
case requires it to do so.

Another problem with Figure 6.13 is the hard-coded test file name. The
top-level test bench accepts runtime parameters via the main() function
interface. The test bench can parse the argv, argc parameter pair to
extract a test file name provided by the user on the keyboard.

6.1 Test Bench Writing Tools 221

The hard-coded number of test bench cycles in Figure 6.10 is the final
problem that needs discussion. To support different test files with varying
number of test bench cycles, the driver needs to be able to communicate
the fact that it has applied the last operation to Calcl, but this is not
enough to determine the end of a simulation. Operations can take an
undetermined number of cycles in the DUV. Only when the checker
receives the results of the last operation from the outputs can test bench
terminate the simulation run. To support this end-of-test condition check-
ing correctly, the driver must signal the last operation to the scoreboard.
For every operation that the checker pops from the scoreboard, the
checker must now query the scoreboard for end-of-test and return that
status back to the top-level test bench loop. In addition, the checker
should verify at this point that the scoreboard has no more pending
operations that the checker has not yet accounted for. We leave these
changes of the C++ test bench as exercises for the reader at the end of
the chapter.

Test Bench Execution Control

It is the main purpose of the library architecture in Figure 6.5 to encap-
sulate common functionality in a central place rather than letting the test
bench writer replicate it, perhaps redundantly, across the user test bench
code. There are two sources for common functionality that the library
author can factor out and move into the library.

The first source is code that is typically part of every test bench. It
would be a very repetitive, nonrewarding task for the verification team
to include such code in every test bench, for example, the simulation
engine abstraction layer, the file, and memory infrastructure layer.

Second, if certain control and communication flow mechanisms are
available in the library, the test bench components can use those instead
of personalizing such flows in special ways for every new test bench.

A good example for the second source of functionality is the test bench
execution control. Execution control is the coordination of when to call
the test bench components, in which sequence to call them, and when
to finish the test.

As an example, Figure 6.14a shows the flow of the end-of-test control
status for the environment of Calcl as designed above. The driver detects
the end-of-test condition first. The status flows from there to the score-
board, to the checker, and finally to the top-level test bench loop.

Figure 6.14b shows a scheme, where all test bench components report
status back to the library. The biggest advantage of this architecture is
that the top-level test bench loop can now become generic. This scheme
turns the for loop of Figure 6.13 into a while loop whose terminating con-
dition is the overall end-of-test status.

Furthermore, it is now very useful to enhance the status to include
more than only the condition that there are no more tests (operations)

222 Chapter 6 = Creating Environments
Driver Checker Driver Checker
l Testbench library
Testbench
control loop
(a) Distributed status logging (b) Centralized status logging
End of test
status
= FIGURE 6.14

Distributed versus centralized status logging. All test bench components have to pass end-of-test status
information to each other, via a predefined protocol when status logging is managed in a distributed
way (a). The advantage of centralized status logging (b) is that the status is a first-class object sup-
ported by the test bench library, and there is no more code necessary that passes it between individ-
ual test bench components at specific times.

available for the current simulation run. If the status includes additional
conditions, such as test error conditions, the structure in Figure 6.14b
allows moving the test case termination check to the top-level test bench
loop instead of hiding it in some test bench component (such as Stimu-
lusInitiator). The test bench top level now becomes the one place where
the program makes all execution control decisions. This results in a
single point of control for the test bench execution and therefore greatly
improves the long-term maintainability of the test bench code.

Figure 6.15 shows the new interface for all test bench components in
a changed class declaration for TestbenchComponent. Now every com-
ponent returns its status to the caller of the execute() function. To let the
library be the central place where the sum of all component status is
accumulated it is necessary to let the library call the execute() functions
of every component.

The test bench execution control layer in the library architecture in
Figure 6.5 is the place where the calling of the execute() functions occurs.
However, this layer can only accomplish this function only if

1. It has access to all test bench components and their execute() func-
tions, and
2. Tt knows the correct calling sequence for these functions
This is the purpose of the test bench object registry in Figure 6.5.

The object registry records every instance of a test bench component.
Because every component class is a subclass of the base class

6.1 Test Bench Writing Tools 223

enum ExecuteStatus { done, error, continue };
class TestbenchComponent {

public:
TestbenchComponent(string name);

void trace() { cout << *“Name of component" << mName << endl;
ExecuteStatus execute() = 0;
private:

string mName;

}

= FIGURE 6.15

New TestbenchComponent class declaration including the status logging mechanism. Every test bench
component’s execute() function now returns status information. The test bench execution control layer
accumulates this status and makes it available to the top-level of the test bench to make runtime control
decisions.

TestbenchComponent, which enforces the existence of an execute() func-
tion, the base class constructor can register the component in a class
ObjectRegistry behind the scenes of the library and the execute() function
with the execution control layer.

Now that the library calls the execute() functions, there is a need for
a mechanism that lets the user specify the calling sequence of the com-
ponents to the library. For this example, the sequence of the component
constructor calls was chosen for this, meaning that the execute() func-
tion for a component is called first if its constructor is called first.

As a result of all these changes concerning execution control, Figure
6.16 shows the new test bench top-level code, including the now simpli-
fied and completely generic test execution loop.

The library for Figure 6.16 was also changed to move the call to all
execute() functions inside the library service control.clock(). This func-
tion now lets the library call all execute() functions in the defined
sequence before the HDL simulation proceeds.

As a welcome side effect, moving this sequencing control to the library
also opens opportunities to enhance performance of the test bench.
Whenever a particular component indicates that it is done for the rest of
the simulation of a test, the library can simply skip the call to its execute()
function from then on.

Adding Additional Components

With the centralized execution control layer, it is now very easy to include
additional test bench components or remove components without any
need to touch the code of the test bench loop again. All a verification

224 Chapter 6 = Creating Environments

main (int argc, char *argv[]) {

}

Simulation_Control control;

StimulusInitiator driver("CalclDriver", "mytest");
Checker checker("CalclChecker");

ScoreBoard score("CalclScoreBoard");

driver.registerScoreBoard(score);
checker.registerScoreBoard(score);

do {

control.clock();
} while (control.status == busy);
if (control.status == error) {

.. // error handling
}

control.simulation_exit();

= FIGURE 6.16

Top-level C++ test bench code for Calcl, revised, with the test bench library now managing execution

and status control.

engineer needs to do is add or delete the component’s constructor call.
Obviously, the new control structure has improved code maintainability
greatly, which stems from the fact that the different components have
become more modular and their code is more independent from each
other.

Clearly, modularity becomes more and more important as DUVs and
their test benches grow in complexity. This is also referred to as scaling.
The more modular a test bench is, the better it scales as design and sim-
ulation environments grow.

Multiple Tests

The next step in improved versatility of our test bench is the addition of
support for multiple tests. We can achieve the capability to run several
tests in a sequence by calling the simulation engine and the test bench
multiple times in a row. However, the start-up phase of the simulation,
including initialization of the test bench, can become quite costly for
large DUVs. To avoid this start-up overhead, it should be possible to
support the execution of multiple tests in one run of simulation engine
and test bench. This is accomplished by changing the test bench input
parameter to be the name of a file, which contains a list of test files. There
will be a main loop around the test case loop in Figure 6.16, which
processes the list of tests. In addition, it is now necessary to reset the
DUV between tests, which has the advantage that once a single test ends

6.1 Test Bench Writing Tools 225

with a simulation error, the verification team is able to rerun just this
test without having to rerun the previous tests of the original test list.

Execution Phases

With more complex DUVs it is not realistic to expect the verification engi-
neer to group all the active test bench code in just one function: execute().
Typically, the work a component does during a simulation has different
phases. For example, the test bench might need to initialize the checker
when the DUV is reset at the beginning of a test (init phase). It then typ-
ically accumulates checking information during the runtime of the test
(execution phase). Finally, at the end of the test there is a sweep over the
accumulated information (end-of-test phase).

It would be possible to keep state information about which phase the
test case is in, inside every component and have the execute() functions
switch to the appropriate phase based on the current state. However, the
test bench library can directly support this concept of finer modulariza-
tion into separate functions. Figure 6.17 illustrates how such a scheme
leads to a flow of execution control that lets the user position compo-
nents into the different phases of a test bench run.

Test Bench Modularity

Centralizing infrastructure functionality can improve the modularity of
a test bench. There are other ways to modularize complex test benches
to improve their maintainability. As stated earlier, test bench develop-
ment is software development, and therefore, all techniques of software
engineering apply here. A major advantage of using C/C++ for test bench
development is that many of these techniques apply directly.

The test bench components themselves do not need to have a monolithic
structure similar to the one discussed so far in the examples. They can
utilize other classes, and the member functions can call other functions.

As an example for the further application of modularization, consider
the repetitive structure of the input and output ports of Calcl. There are
four identical ports on both the input and output side. It would be
possible to split out a common subcomponent for each of the three
test bench components (Stimulusinitiator, Checker, ScoreBoard). For
example, there could be a driver port class that applies to a generic input
port and is instantiated four times inside StimulusInitiator. Each instan-
tiation takes a parameter that indicates to which of the four physical
ports this particular port object connects. The common port class does
eliminate the replicated code that processes four ports in the original test
bench. However, reduction of tedious and error prone replication is not
the only advantage. In addition, it is now very simple to add or remove
ports in Calcl and adjust the test bench easily. Good software engineer-
ing greatly improves this type of maintenance and scaling work.

226 Chapter 6 = Creating Environments

Testbench execution control User testbench components
SN -
Initialize F--—------ > L
———————— - init()
—— - __ -
Bxecute [----777-3 execute()

Any
component
busy?

end0fTest()

it Q)

st()

End-of-test F~-~--—— -

checks |--------

End of simulation

= FIGURE 6.17

Test bench execution control with separated execution phases. Instead of the single execute() function,
every test bench component now has three separate functions—init(), execute(), and endOfTest()—that
are called during the three respective phases of test execution.

For the design and development of C/C++ test benches, the verification
team can use all common software modeling techniques available, as
well as software development tools such as integrated development
environments (IDEs) and debuggers that are available for all C/C++
programmers.

Test Bench Building Block Objects: Params

The last part of the test bench library architecture of Figure 6.5 that
needs discussion are additional test bench common building block
objects. This library layer contains an open-ended set of utility classes
whose main purpose is productivity improvement for the test bench
writer.

As an example of an important type of utility class, we introduce the
class Param. As the name indicates, a Param object is a parameter for a

6.1 Test Bench Writing Tools 227

class Param {
public:
Param (string name);

string getValue();
void setValue();
}

= FIGURE 6.18

Definition of the utility class Param. An instance of this class is a named parameter usable anywhere
inside test bench code. The constructor of Param requires a unique name for the object to enable the
test bench to assign values to the object at runtime.

main (int argc, char *argv[]) f{
Param testcase("testfile");
Simulation_Control control;
control.initParams("my_paramfile");
} -

= FIGURE 6.19

Instance of a Param object in the top-level C++ test bench program. The Param named testfile will be
used in the program as a parameter that holds the name of a test case list file. Simulation_Control's
function initParams() reads a file (similar to the one in Figure 6.20) and assigns values to the Param
objects listed.

test bench or one of its components. It is the nature of a parameter that
it has no fixed value at compile time. The versatility of a Param comes
from the fact that its value can be assigned at runtime. With a Param
object, it is possible to set values of test bench variables at runtime and
therefore influence certain behaviors of the test bench dynamically.

Figure 6.18 shows a simple Param class and Figure 6.19 shows an
instance of a Param at the start of our example test bench. Every Param
instance gets its own unique name, by which the test bench library can
identify it unambiguously. The Simulation_Control class now needs the
capability to parse a file (Param file). This file supports a simple assign-
ment syntax, which names a Param on the left-hand side and assigns it
a value on the right-hand side.

The initParams function of Simulation_Control parses the file speci-
fied as an argument and assigns the string values found in the Param file
to the corresponding Param object found in the test bench.

In the example shown in Figures 6.18 through 6.20, the application of
a Param simplifies the passing of a test case file name into the test bench.
The verification team does this now through the Param file my_paramfile.
The team changes the name of the test case file by changing the value
of the testfile Param assignment inside my_paramfile. Tt is easy to see

228 Chapter 6 = Creating Environments
testfile = "my_tests" ;
= FIGURE 6.20

Example of Param file my_paramfile. A Param file contains assignments of values to named Param
objects in the test bench. Simulation_Control's function initParams() reads such a file and assigns the
values to the corresponding Params.

class RandomIntParam {

public:

Param (string name);

int drawValue();

private:

}

= FIGURE 6.21

Random integer Param class definition. Random/ntParam is a named Param that is able to provide a
randomly generated integer through its interface function drawValue(). The class contains private data
structures to manage a seed and random value range information such as the one shown in the exam-
ples in Figure 6.22.

how this scheme can simplify the management of many runtime
parameters.

An important extension of the Param idea is the support of random-
ization tasks in the test bench.

Figure 6.21 shows the class RandomiIntParam, which holds a named
parameter with value type integer. Instead of reading the value of such
a parameter once with a getValue() function, the intention of this para-
meter is for the test bench code to draw a value multiple times, when-
ever it needs a new random integer value. The name of the access
function drawValue() indicates this usage.

Initializing a RandomintParam with a fixed value from a Param file,
as in the case of the basic Param above, does not appear useful. Figure
6.22 shows two examples for a possible use of file-supplied initial value.
The first example shows a range definition. A possible implementation
of RandomiIntParam could use this value to limit the range of possible
drawValue() results to be between 0 and 99. Although the probability for
all numbers within the range of my_random_param is the same, the
syntax for my_other_random_param is more elaborate, showing a possi-
bility to specify multiple ranges and associate a weight specification with
each range. The example forces the drawValue() function to return a
value between “0” and “99” 90% of the time, the value “100” 1% of the
time, and the value “101” 9% of the time.

Utility classes such as the Param classes show how the architects of
the test bench library can easily extend it with additional functionality

6.1 Test Bench Writing Tools 229

my_random_param = 0 - 99;
my_other_random_param = { { 0 - 99, 90 }, { 100, 1 }, { 101, 9 } };

= FIGURE 6.22

Example syntax for range and weighted range definitions for class Randomi/ntParam. The function
drawValue() for my_random_param will return an integer between O and 99 with uniform distribution.
drawValue() for my_other_random_param will return an integer in the range “0 to 99" 90% of the time,
the value “100” 1%, and “101"” 9% of the time.

that makes the test bench writers more productive because they can rely
on already implemented utilities instead of rewriting them all the time.

Test Bench Performance

As test benches scale up in size and complexity with their corresponding
DUVs, it is important to monitor their performance.

Chapter 5 showed how the industry puts into technology that improves
simulation engine performance. It would be a waste of all this technol-
ogy if the verification team did not regularly monitor the simulation test
bench for its performance characteristics.

The runtime of a simulation job splits between time spent in the HDL
model (the DUV) and time spent in the test bench. Efficient test benches
utilize 20% to 40% of the total runtime. Obviously, such a number is just
arule of thumb. The key is to balance driver and checker robustness with
efficiency, while avoiding test bench redundancy. A very efficient test
bench measured by this performance ratio might be one that checks very
little and does not capture all of the DUV internal bugs. On the other
hand, a test bench, which checks and uncovers many internal bugs,
might be very performance invasive to the overall simulation execution.

However, the following reasoning should illustrate how important it
is to keep an eye on performance to optimize the vast resources that ver-
ification projects consume. If we assume a utilization of 50% of the sim-
ulation time by the test bench, it is not possible to speed up the overall
simulation efficiency by more than two times with a faster simulation
engine. Even if the verification team would buy the impossible, very
expensive, infinitely fast simulation engine, capable of executing the HDL
model in zero time, the overall performance improvement would just be
a factor of two.

The verification team can measure the performance of a C/C++-based
test bench with standard system utilities available to all programmers.
Usually, the C/C++ compiler has a parameter that lets the programmer
instrument the output code for performance measurement. After the run
of a typical simulation job, it is then possible to inspect the data gener-
ated by the instrumentation with a profiler tool such as gprof. This tool
prints out the details of time spent in each section of the test bench

230

Chapter 6 = Creating Environments

program. An advantage of C++ is to have such tools readily available. The
reader can find usage information for gprof in various places on the
Internet and as part of the Unix operating system reference information.

6.1.3 High-Level Verification Languages

During the past few years, special purpose languages for test bench
writing have gained much focus and popularity. These HVLs are a variety
of domain-specific languages. Such languages have built-in functionality
targeted for one specific application domain. The idea is that if the vocab-
ulary of such a language is built directly in terms of the application area,
users will learn more easily how to use the language and will be instantly
more productive compared with using a general-purpose programming
language.

The following discusses some of the features all of the available HVLs
share. The discussion of important features for test bench writers con-
tinues by turning to several example HVLs and highlighting some of their
unique features. This is not an attempt to give the reader detailed usage
information because this discussion should provide an overall map of the
field of HVLs, a skeleton that makes further, more detailed study of an
individual HVL easier.

Features of HVLs
All HVLs usually provide the following basic functionality.

= Simulation independence is fundamental for any such language.
This allows the verification engineer to write a test bench that is
portable between simulation engines from different vendors.

= Full visibility to all HDL model objects (signal, registers, arrays,
etc.) is necessary to control all aspects of the DUV. It must be pos-
sible to read and write these model facilities.

= High-level programming language features such as complex data
types, object-oriented class definitions, and modularity are another
requirement that all popular HVLs share.

In addition to this list of features, modern HVLs include a few new
features.

Temporal Expressions

The specification of sequences of events over time is at the heart of
complex assertion checking (see Chapter 3). The HVLs have built-in con-
structs to express such temporal expression concisely.

6.1 Test Bench Writing Tools 231

Constrained Random Generation

Random generation of stimulus is one of the core capabilities of an effi-
cient test bench. Thus far, the discussion of randomization has been
limited to the probabilistic selection of a single value. Interfaces of real-
life DUVs will not allow the free randomization of input signals and
busses. Interfaces follow specific protocols. The purpose of a protocol is,
of course, the limitation of the possible input values to a specific domain.
There are two dimensions for constraints on input interfaces.

First is the value dependency of between different signals at the same
time. For example, if the driver currently pushes a new operation into
the Calcl design, the reset bus should remain all zeroes during the two
cycles it takes to launch the request.

Second are value dependencies over time. This constraint specifies
value sequences.

Such dependencies can exist between different signals, or they can be
necessary for the same signal. For example, once initiated, the reset of
Calcl should stay on for seven cycles. These are sequential constraints.

HVLs offer built-in features to express constraints, thus making the
authors of driver code more productive.

Coverage Collection

One important measure of the quality of the verification cycle is the quan-
tification of how much of the design functionality the simulation process
has covered. HVLs offer built-in mechanisms to express which coverage
information to collect over time. These data supply the verification team
with information about which goals the test bench has hit during
simulation.

Automatic Garbage Collection

One of the features the custom HVLs typically offer addresses test
bench complexity and programming safety: the user does not (have to)
directly control dynamic memory management. The runtime system of
the language handles allocation and deallocation of dynamic memory
automatically. The system tracks references to dynamically allocated
memory and destroys data structures that are not referenced anymore
from anywhere in the test bench. This circumvents completely the
problem with memory leaks discussed in the context of C/C++ test
benches above.

Interpretation Versus Compilation

Similar to any programming language, HVLs need their own compilers,
debuggers, and runtime system. Some of these languages offer an

232 Chapter 6 = Creating Environments

interpreted runtime environment, which gives the HVL a script-like
appeal in that there is no need to compile and link the test bench. To be
able to achieve sufficient performance scaling capabilities, it is a require-
ment that the HVL environment also provides a compilation environ-
ment to support optimized runtime code.

A Flavor of OpenVera

OpenVera is an HVL marketed by Synopsys [9]. Synopsys donated the
language definition to a consortium of several electronic design automa-
tion (EDA) vendors to create an environment in which multiple vendors
support the language.

This is an object-oriented programming language that supports
complex data types, classes, and inheritance. The syntax of the language
is similar to C++ or Java for the programming language features.

OpenVera has a built-in data type that matches the four-value signal
type provided by the Verilog HDL (“0,” “1,” “x,” “z”). The connection to
the HDL model in OpenVera uses the concept of test case ports, inter-
faces, and bindings. A port declares inputs to the test bench coming from
the model. An interface specifies attributes of these inputs, such as signal
widths, and the clock signal, which is used to synchronize the collection
of the signal values from the model. OpenVera connects interface/port
signals to the HDL signals via bindings by using hierarchical path names.
The bindings unambiguously specify the location of the HDL signals in
the model hierarchy.

The foundation for random generation in OpenVera is the concept
of random variables (for an example, see Figure 6.23). The test bench
declares the randomization domain and its boundaries at variable dec-
laration time. OpenVera also supports the specification of weights to
subdomains similar to the functionality discussed in Figure 6.22.

variable my_random_param in { 1:99, 101, 200:299 };
class foo {
rand int randl, rand2, rand3;
constraint cons {
randl > rand2 + rand3;
} }

= FIGURE 6.23

Random value support in OpenVera. At the creation of the variable my_random_param, its value is drawn
from the range definition. The constraint block cons defines dependencies between random values of
several variables.

6.1 Test Bench Writing Tools 233

In addition, it is possible to express constraints via named constraint
blocks (cons in Figure 6.23), which limit the randomization of separate
but related variables. Constraint blocks are declarative expressions,
which express relationships between variables that are supposed to
hold true throughout any randomization of the variables referenced.
OpenVera enforces the constraints and the resulting values assigned to
the random variables by a call to a function called randomize(); this
would be foo.randomize() for the example above.

Driving randomized values into a DUV by using a mix of programmed
code and declarative constraints expressed as value relationships is a
powerful and productive method to design a test bench. OpenVera and
other HVLs create random constrained variable values with a software
component called constraint solver in the runtime system of the language.
Constraint solving will be discussed in further detail in Chapter 7.

It is possible to specify constraints that the solver can never satisfy
because the specification is contradictory. We call this a constraint error.
If the OpenVera runtime environment detects this situation, it halts the
simulation. The detection is only possible if the relations used to express
constraints do not refer to other random variables. If the set of constraint
expressions connects several random variables, the randomize() will
return an error. It is the responsibility of the user test bench code to react
appropriately to such constraint errors.

OpenVera has a unique feature to generate sequences of randomized
variable values with its stream generator capability. A stream generator
is similar to a grammar definition in Backus-Naur Form (BNF) format,
which specifies how to generate a series of tokens [10]. BNF is a general
scheme to specify derivation rules. A derivation starts with a complex,
compound symbol that we replace by successively applying derivation
rules until no more replacements are possible with the given set of
rules. The derivation process stops at leafs for which no further replace-
ment is available. Figure 6.24 shows an example for an OpenVera
stream generator that defines the derivation rules to generate Calcl test
operations.

Figure 6.24 starts the specification of the Calcl test format with the
top-level rule Operation. It is possible to read this notation like a

Operation : Port Delay Command Operandl Operand? ;

Port : Portl | Port2 | Port3 | Portd ;
Command : Nop | Add | Subtract | ShiftLeft | ShiftRight | Invalid ;
= FIGURE 6.24

OpenVera stream generator scheme to generate Calcl tests.

234 Chapter 6 = Creating Environments
Port &(2) Portl {printf("Portl\n");}
| &(1) Port2 {printf("Port2\n");}
| &(1) Port3 {printf("Port3\n");}
| &(1) Portd {printf("Portd\n");}
= FIGURE 6.25

OpenVera stream generator with executable statements and weights.

generation scheme that always starts at Operation and ends with a com-
plete compound value of a Calcl operation.

The line in Figure 6.24 that has Operation on the right-hand side of
the colon is the first replacement rule. The application of such a rule
replaces the left-hand side with the right-hand side. If a component on
the right-hand side has its own replacement rule, the generation scheme
continues with the application of that rule. The scheme traverses depth-
first recursively to resolve every component with its replacement. After
the successful replacement of a component, the next component is
resolved until all top-level components have been fully replaced recur-
sively using the rules of the grammar.

Starting at the top of Figure 6.24, the generator specifies how five com-
ponents replace Operation, thus effectively constructing an Operation
from these components. The generator then replaces each component in
turn with its replacement components until it has assembled a complete
Operation as specified by the grammar.

Replacement rules often contain choices. For example, Figure 6.24
allows the replacement of Command by one of six different components.
The logical or operator symbol “I” expresses the set of choices available
at such decision points. Unless specified otherwise, OpenVera stream
generators will make a random choice. However, it is possible to anno-
tate the choices with weights. Such weights enable the user to constrain
the generation in a certain direction.

As it visits grammar components sequentially, quite naturally Open-
Vera allows executable statements to be interspersed with grammar
components. As OpenVera unrolls a grammar scheme, at every point it
encounters a statement in the grammar specification, it executes the
statement.

Figure 6.25 combines these two capabilities. Port’s replacement rule
has to pick one of four alternatives. After making a choice, the rule
instructs OpenVera to print a message. The random selection between
the four possibilities is constrained by the designation of a weight expres-
sion at each alternative, &() expression). OpenVera allows any expres-
sion as weight specification. References to test bench variables in weight
expressions allow verification engineers to specify very sophisticated
stream generators.

In this example, OpenVera will choose Portl 40% of the time, leaving
a 20% probability for each of the other ports.

6.1 Test Bench Writing Tools 235

struct BaseOperation {

cmd : [noop=0b0000, add=0b0001, sub=0b0010, sh1=0b0101, shr=0b0110] (bits:4);
opl :uint (bits:32);
op2 :uint (bits:32);

I

= FIGURE 6.26

e base struct type declaration.

struct CalclOperation Tike BaseOperation f{

port
}s

[portl, port2, port3, port4d];

= FIGURE 6.27

e subtype declaration and extending a subtype.

OpenVera is a complete HVL that supports a number of features and
requirements. More detailed overviews of OpenVera’s features are avail-
able [9, 11]. The temporal assertion portion of the language is also avail-
able in the new, emerging HDL SystemVerilog [5].

A Flavor of e

The EDA vendor Verisity (now under Synopsys) develops and markets an
HVL called e, which is the center of the test bench authoring and debug
tool Specman [12]. Verisity has donated the definition of the e language
to an IEEE standardization workgroup [13]. Similar to OpenVera, e is a
fully featured HVL, which offers all the functionality described in the
overview of HVLs. The following discusses only a few selected highlights
of e.

e supports all common concepts of object-oriented programming lan-
guages such as data abstraction and inheritance. The basic language
concept is a struct, which declares a class or a derived class. Similar to
C++, e classes contain declarations of member objects such as data struc-
tures, functions, and procedures. A subtype class derives from a base
struct type in the usual object-oriented inheritance relation.

Figures 6.26, 6.27, and 6.28 demonstrate some of the data structuring
features of e by using struct declarations. Figure 6.26 defines a base
struct called BaseOperation for the Calcl operations data members
command (cmd) and the two operands (opl, op2). In Figure 6.27 the
subtype Calc1Operation derives from BaseOperation and adds the port
member.

Figure 6.28 shows two examples how e allows the user to add addi-
tional declarations to an already existing struct using the extend clause.
The first declaration simply adds the delay member data. The second dec-
laration adds constraints to all Calc1Operation structs that a test bench

236 Chapter 6 = Creating Environments

extend CalclOperation {
delay : uint [1..107;
}s

extend portl CalclOperation f{
keep delay >= 2;

keep cmd == add;

keep opl + op2 < 16;

}s

= FIGURE 6.28

e extend declaration.

will create. However, the constraints apply only to those Calc1Operation
structs whose port member has a value portl. The constraints guide the
e runtime environment to generate only add operations for port 1, keep
the sum of the operands below 16, and furthermore limit the delay until
the next operation to a value between 2 and 10. The portl extension
keeps the lower limit of delay to 2, and the first extension in Figure 6.28
limits all delay values to a maximum of 10.

With the extend clause, the e language provides a post object-
oriented programming technique to test bench coding called aspect-
oriented programming [14]. The main method object-oriented languages
offer to decompose large software systems is the tree structure of class
inheritance. If the programmer wants to add additional members to a
class already compiled into the software, the natural approach is to
derive a subclass and add the members there. However, the extend feature
of e allows the user to “open up” already existing class definitions, add
member data or functions, and change attributes of existing members.
Adding constraints to the members of Calc1Operation in Figure 6.28 is
such an example.

Extensions in e are not limited to the same source file that contains
the original class definition. This opens the possibility of a powerfully
layered approach to test bench writing. First, the verification team
creates a base test bench with class declarations that cover the full range
of possibilities allowed by the DUV specification. Figure 6.29 indicates
this by placing the Calc1Operation class into the file Calc1.e. Calcl.e con-
tains the full specification of an operation that applies to all ports of
Calcl and is part of the base test bench that is used in all simulations.
The file test_portl_adds.e in Figure 6.29 defines constraints for some
aspects of the base test bench, like portl operations. The constraints are
contained in a separate file that is loaded on demand, when the verifi-
cation team decides to subset the behavior of the test bench. It is very
practical to keep different constraint sets in different such add-on test

bench files.

6.1 Test Bench Writing Tools 237

test_portl_adds.e:

extend portl CalclOperation {
keep delay <= 2;.....

1 g

Calcl.e:

struct CalclOperation {
port :

opl

op2

I8

= FIGURE 6.29

Creating tests in e by extending base classes and using aspect-oriented programming.

The verification team can use add-on files, or sets of related add-on
files, as a template for the generation of biased random tests that target
a certain aspect of the DUV functionality. This approach is much more
powerful than storing many static, directed tests in separate test case
files.

The e language allows the extend feature to change much more than
the generation of random data values. For example, it is possible to
append additional code at the beginning or the end of class member func-
tions, allowing the verification engineer to add, dynamically at runtime,
additional common functionality such as logging and debug tracing to a
set of base test bench classes without the need to change the original
class definitions.

The verification team must use this powerful flexibility of on-the-fly
extensions carefully. On larger projects, in which the test bench can easily
consist of thousands of source files, it is quickly possible to lose track of
all the files and team members who define extensions to classes. A well-
defined test bench architecture and rules that govern who can override
base class behavior guarantee that a large test bench team does not lose
control of their e code structure.

The e language offers units as special types of structs. A unit can only
exist once in a test bench. It carries user-defined data structs inside and
is itself typically connected to the DUV via an HDL path. This path gives
all model facility references, which are inside a unit, a common prefix,
and thus creates a context of hierarchy for the unit.

All user-defined units are rooted inside a unit called sys, which
provides a common runtime context similar to the main() function is
C. Other runtime functionality, such as file inputs/outputs (I/O), the
simulation engine interface, and current session information are also
encapsulated global units.

238 Chapter 6 = Creating Environments
struct StimulusInitiator {
event portlReady, port2Ready, port3Ready, port4Ready;

on portlReady {// port 1 code //};
on port2Ready {(// port 2 code //};

Y;
= FIGURE 6.30

Sketch of an e Stimulusinitiator.

Key structural elements of the e language are events, which syn-
chronize the behavior between the HDL model and the test bench and
among test bench components. Events allow specification of behavior
over time.

Figure 6.30 shows how the use of events lets the StimulusInitiator for
Calcl synchronize itself with other test bench components. The struct
for this test bench component connects the generation and transfer of
an operation to the Calcl inputs with the readiness of the correspond-
ing port via the on clause. Whenever the test bench signals a port’s ready
event, it subsequently activates the connected member function.

Test bench code either emits events explicitly or associates the defini-
tion of the event to a temporal expression, which specifies a sequence of
events over time. If the e runtime environment detects the occurrence of
this sequence, it will emit the signal and broadcast it to all receiving test
bench components. The reader is referred to a Web site [13] to find the
details of the e event and temporal expression constructs.

Temporal expressions play an important role in the specification of
properties for formal verification, and their importance and use in the
context of formal verification will be discussed in detail in Chapter 10.

So far, all member methods discussed here were truly functions,
meaning that once called, program control returns only at the end of
a function. The e language also supports time-consuming methods (TCM).
These are functions that suspend their execution to either wait for or syn-
chronize (sync) with the signaling of an event. A TCM is code whose
sequential flow does not start and end during the same HDL model time
but covers several simulation time steps.

The reader interested in a more thorough overview of e is referred to
a Web site that contains a full reference manual [13]. There is also a book
that covers the e language in depth [15].

A Flavor of SystemC

SystemC is a large C++ library that supports high-level hardware design,
modeling, simulation, and verification. At this point, the Open SystemC
Initiative (OSCI) drives the development of the library and provides the
source code of the library free for download on the Internet [16].

6.1 Test Bench Writing Tools 239

SystemC originally targeted mostly the simulation and specification of
designs in C++ as its main goal. The synthesis of subset of SystemC to
register transfer level (RTL) logic is actually supported by several EDA
vendors. This chapter will not discuss these aspects of SystemC; impor-
tant here is one part of the SystemC library called the SystemC Verifica-
tion Library (SCV). OSCI added SCV more recently, and its origin was
the open-source project TestBuilder [17].

In the following, we review some aspects of SCV’s large functionality.

The major EDA vendors support SystemC at this point, which
guarantees test bench portability between different simulation engines.
However, the library does not yet have a fully elaborated API, which
would allow an easy, uniform implementation of the simulation engine
abstraction layer for an arbitrary simulator. This is one of the still evolv-
ing areas of SCV.

SCV supports a range of built-in data types, all of which are also part
of the design and modeling portion of SystemC. There are sc_int and
sc_uint with fixed widths (64 or less), as well as the corresponding
sc_bigint and sc_biguint types, with the latter providing arbitrary preci-
sion integers. The type sc_bv handles arbitrary length bit-vectors with
bit-wise and range-wise access. sc_logic is a vector with a four-value data
domain (Verilog-style: “0,1,x,2”).

The library offers a number of services based on the built-in data types.
The main areas are as follows:

= Randomization and seed management

= Constrained randomization

= Weighted randomization

= Support for transactions; transaction monitoring, and recording

= Sparse array support
Figure 6.31 shows some examples of the randomization support using
built-in C++ types. The data type of the random variable functions as a
C++ template parameter in its declaration.

The class scv_smart_ptr is what the C++ literature calls a smart pointer
because it has the same look and feel as a data pointer. With a uniform

scv_smart_ptr<int> delay;

delay->keep_out(7);

delay->keep_only(0,10);

delay->next(); // --> generate new random value

= FIGURE 6.31

Randomization for simple data types in SystemC Verification Library.

240 Chapter 6 = Creating Environments

class CalclOperands {
sc_uint<32> opl;
sc_uint<32> op2;
}
scv_smart_ptr<CalclOperands> op;
op->next(); // completely randomized operands

= FIGURE 6.32

Randomization for user-defined data types in SystemC Verification Library.

distribution, SCV’s constraint solver assigns the variable delay in Figure
6.31 a random value between “0” and “10,” excluding the value “7” at all
times.

A remarkable feature of SCV is the capability to declare user-defined
data types to the system in such a way that constrained, randomized
value assignments are available to these types exactly as for built-in
types.

Figure 6.32 demonstrates how to pass the user-defined type
Calc1Operands as a template parameter into the declaration of an
scv_smart_ptr. As a result, every call to the member function next() will
return a fully randomized value.

Obviously, a completely random selection is usually not what is needed
in a test bench. Figure 6.33 shows the declaration of constraints used in
SCV test benches. Because the library has to stay within the confines of
C++, the constraint declarations are not quite as elegant and concise com-
pared with those of OpenVera or e. However, the advantage with SCV is
that the verification team can easily integrate any existing C++ class
library into a test bench and have test bench functions available for those
imported classes as well.

Figure 6.33 also illustrates the definition of derived constraints. Small-
IntConstraint limits the sum of the two operands just as in Figure 6.28
for e, MyConstraint eliminates the case of equal operand values in
addition to the first constraint. The test bench example instantiates a
random variable, whose value SCV will generate following the associated
constraint specifications.

Test benches use the transaction-recording feature, which SCV offers,
typically in the implementation of a stimulus initiator. The generation
component creates new transactions, which the protocol component
translates into applied signal changes on the concrete DUV input
interface.

Similar to the technique used by scv_smart_ptr, SCV also offers a class
scv_tr_generation, which allows the user to declare a custom transaction
with its data content to the library. The user then declares the beginning
and end of individual transactions in the test bench code. These calls

6.1 Test Bench Writing Tools

class SmallIntConstraint: public scv_constraint_base { // basic constraint
public:
scv_smart_ptr<CalclOperands> data;
SCV_CONSTRAINT_CTOR(SmaTlIntConstraint) {
SCV_CONSTRAINT(data->opl+data->op2 < 16);
}
}

class MyConstraint: public SmallIntConstraint {
public:
SCV_CONSTRAINT_CTOR(MyConstraint) {
SCV_CONSTRAINT(data->opl != data->o0p2);
}
}

MyConstraint m("constraint");
m.data->next(); // <-- constrained randomized value generation

= FIGURE 6.33

241

Constrained randomization for user-defined data types in SystemC Verification Library.

records transactions in an external database and are accessible by exter-
nal debug tools after the simulation is finished. To maximize the use of
transactions in the debug process, it is also possible to record causal
relationships between transactions. External viewer tools can visualize
these relationships when they display a trace from a previous simulation

run.

As was mentioned above, SCV is a library that is still evolving. Impor-
tant areas that still need further definition and development are tempo-
ral and nontemporal assertions, temporal constraints, and support for

functional coverage.

6.1.4 Other Test Bench Tools

To complete the discussion on test bench writing tools, this short section
mentions a number of other approaches that have been popular with ver-

ification teams.

Scripting Languages

Before EDA companies focused on verification as a bottleneck for hard-
ware design projects and developed HVLs as productivity aid, verifica-
tion teams made use of scripting languages to write test benches and

generate tests.

In the open source domain, there is a number of scripting languages
that support rapid development of software [18-20]. The advantages of

a scripting language are usually

242

Chapter 6 = Creating Environments

= Interpreted execution: no compile and link cycle

= Weak type system: no tedious type declarations for data variables
= High-level data types: lists, dictionaries, hash-arrays

= Strong support of text processing

= FEasy access to operating system services: files, directories, data
management systems

Interestingly, there is no common, popular library for any of the script-
ing languages in the context of verification. All their uses have been more
or less ad hoc. Undoubtedly, the ease of using scripting languages has
led to their wide popularity.

However, there is typically a 5 to 10 times performance gap between
an interpreted scripting language and a compiled programming lan-
guage. This strong disadvantage severely limited the success of scripting
languages as test bench authoring tools. If we assume a 50/50 split
between the time spent in the HDL model versus the C/C++ test bench,
the use of a scripting language would shift this relation dramatically.
Assuming a 10 times worse execution speed of a scripting language, 90%
of the simulation time would be spent in the test bench. This is clearly
not an acceptable balance and use of large simulation resources.

Simulation runs are usually not standalone activities. There is a
need to maintain the HDL and test bench code in source code libraries.
Setting up a simulation run is preceded by a checkout of source code,
compile, model build, and job distribution to a host simulation machine,
and in the end the collection and triage of simulation results. Many of
these data management and preparation activities can greatly benefit
from the use of the flexible, highly productive scripting languages. There-
fore, a verification engineer should be fluent in at least one or two of
them.

Waveform Editors

There have been many attempts to use a graphical language to specify
test bench behavior. Waveforms or timing diagrams are a very popular
method to convey expected or generated signal changes in documenta-
tion of hardware interfaces. Consequently, waveform editors have been
promising approaches for graphical test bench authoring [21-23].

One of the limitations of strictly graphical waveforms is that they only
specify one scenario. To express the variations or alternatives in a wave-
form that is expected or to be generated on the interface of the DUV,
these graphical tools need other graphic user interface (GUI) elements
that allow the user to specify classes of possible waveforms.

These constructs lead to a need to connect individual waveforms
and pages of waveforms together with property sheets. For realistically

6.2 Verification Coverage 243

complex interfaces, the graphical model does not scale well, and the
amount of necessary waveforms and property sheets become excessive.

In addition to the complexity of the specification medium itself,
waveforms share one disadvantage with all other graphical specification
methods. Once a more complex specification is finished, the daily main-
tenance of updates, such as signal name and property changes, requires
typically more work in a graphical than a textual representation.

Consequently, timing diagrams and waveform editors have been
limited to small design block simulation.

On the other hand, timing diagrams are a powerful and efficient
communication medium between designers and verification engineers.
Because of the popularity of waveforms in their informal use with paper
and pencil, there remains hope that at some point an effective user inter-
face technology will open timing diagram specification to a wider verifi-
cation audience.

6.2

VERIFICATION COVERAGE

The verification team needs metrics for the quality and completeness of
their work as the project proceeds over time.

There are obvious completeness criteria the verification team can
derive from the discussions of the verification plan in Chapter 4. Keeping
track of the status of different verification tasks is a fundamental piece
of information about how well a project is progressing. Knowledge about
which tests the verification engineers have indeed exercised from the test
plan provides a necessary metric. Watching the bug rate is certainly a
key piece of scorekeeping that guides a project.

Still, the central question for the verification team remains: “When is
verification complete?”

Once the team has finished all planned verification tasks, run all tests,
and the bug rate has dropped to zero, is it time to declare success?
Kantrowitz and Noack provide a very insightful case study, which dis-
cusses this question from the perspective of a large industry project [24].

As discussed in the DVD video chip example from Chapter 1, exhaus-
tive simulation of even small designs is not possible. The following
example recalls the combinatorial explosion that makes verification such
a daunting task.

Let the DUV be a 16-bit adder. Simulating all combinatorial possibil-
ities of the adder takes 4 billion simulation cycles, assuming that this
circuit does not have state-holding elements. If the project uses a simu-
lation engine that is able to run 1,000 cycles per second, the team still
needs around 50 days to simulate this trivial DUV exhaustively. When
does the verification team stop simulation? Is it good enough to continue
until the simulation has been bug-free for 3 days? How do they know
that another day of simulation would not yield yet another bug?

244

Chapter 6 = Creating Environments

Furthermore, is it truly necessary to simulate the adder DUV exhaustively
to make a convincing case of verification completeness?

It is the task of verification coverage analysis to convince the verifica-
tion team that they have done sufficient verification, not exhaustive
verification, to satisfy defined quality criteria.

The following overview of coverage, its many facets and techniques,
provides the reader with a conceptual framework for verification quality
measurement. It also reminds that some of the metrics, which are easy
to implement, are not necessarily good ones. Good coverage analysis
relies on insightful instrumentation of the verification environment by
using a variety of methods and metrics, most of them not automatically
generated.

6.2.1 Overview

Verification coverage is the measurement of state space that simulation-
based verification has touched in the entire environment. Coverage can
measure DUV internal states, queues, and activities, as well as DUV
inputs and even states of the verification environment components. Fun-
damentally, coverage is a measurement of how well the stimulus com-
ponents have exercised the DUV. Coverage cannot make a statement on
the quality or robustness of the checking components.

There are two completely complementary sides of the verification
coverage task. First, there is coverage of the verification environment.
Here, the objective is to measure how well the verification stimulus en-
vironment covers the specification of the design. This coverage aspect is
called functional verification test coverage. Second, there is coverage of
the function implemented in the DUV. This metric seeks to measure how
well the verification stimulus activates or exercises the implementation
of the specification in the concrete design. This coverage task is called
functional implementation coverage. Figure 6.34 shows the two areas
of coverage analysis side by side.

The base activity that precedes any type of coverage analysis is the
collection of coverage measurements. The verification team collects the
measures for functional test coverage from the stimulus initiator com-
ponent, the test case, or the interface into the DUV. Implementation
coverage analysis relies on measurements of activities inside the DUV by
inspection into the HDL model during simulation.

Throughout the measurement and analysis activity, the verification
team must never forget that the ultimate goal of coverage analysis is to
guide the verification process, and not to prove its completeness. Com-
pleteness is an elusive goal that is unreachable anyway.

A seemingly simple coverage goal would be the combinatorial space
spanned by the enumeration of all possible patterns on the DUV inputs,
all possible states internal to the DUV, and all possible output patterns
on the outputs of the DUV. Although this coverage metric is trivial to

6.2 Verification Coverage 245

DUV
Stimulus
eneration ==
9 T e
N SN
Measure Measure
v v
Functional Functional
test . implementation
coverage [coverage
analysis analysis

Coverage
metrics

Verification test coverage versus implementation coverage.

Coverage
metrics

= FIGURE 6.34

define, it is also completely useless to guide the verification process,
because it is unachievable.

Then, toward which targets should coverage analysis drive the verifi-
cation process?

Dill and Tasiran define coverage analysis as the task to maximize the
probability of stimulating and detecting bugs, at minimum cost (in time,
labor, and computation) [25]. In the end, not very surprisingly, detection
of hidden bugs is the main objective.

Figure 6.35 illustrates how coverage information can guide the simu-
lation through the state space of a DUV to find the hidden bugs.

The generated stimulus drives the simulation through the state space
in a meandering path. The task of coverage guidance is to influence the
direction of the traversal to hit areas that are prone to hidden bugs. Cov-
erage measurement is not productive for all the areas of the DUV that
do not have any hidden bugs.

In summary, the amount of hidden bugs found measures the quality
of the coverage analysis effort.

Coverage is a tool that helps the verification team to find bugs, and it
is only a means to an end. A coverage measure that the verification team
meets without finding bugs has only a limited value.

Several times it has been said that it is impossible to cover all parts of
a design with simulation. Therefore, coverage must focus on error prone
areas. In this sense, a good coverage metric needs to have a predictive
component; it needs to be able to measure bug coverage [25].

Figure 6.34 distinguishes coverage efforts by their target areas—test
coverage versus implementation coverage. Developers and researchers

246 Chapter 6 = Creating Environments

State space of DUV

State
traversal
path by simulation

/ / ‘ = Hidden bug

Coverage guidance

= FIGURE 6.35

Functional coverage guidance to the hidden bugs. The overall rectangle represents the state space of
a design under verification (DUV). Simulation traverses through this state space along a zig-zag trajec-
tory. The hidden bugs in the DUV are shown as shaded circles. Influence of coverage guidance is shown
by arrows that cause the simulation traversal to change in a different direction, hopefully closer to a
hidden bug.

have evolved different successful schemes to specify coverage metrics for
both applications. These schemes are referred to as coverage models.

It is possible to classify coverage models as either structural or func-
tional. Both classes apply to verification test coverage or implementation
coverage. Functional coverage models focus on the semantics of either
the test or the design implementation. For example, did the test cover all
possible commands or did the simulation ever trigger a first in, first out
(FIFO) buffer overflow? Structural coverage models, on the other hand,
tie into the representation of the domain to be covered. A good example
for a structural coverage model is line coverage, a measure of whether all
source lines in the stimulus generator program or the DUV HDL have
been visited during simulation.

Before structural and functional coverage are discussed in more detail,
we want to clarify the difference between functional test coverage and
manufacturing test coverage because new students of the field easily
confuse both areas.

6.2.2 Functional Verification Test Coverage Versus
Manufacturing Test Coverage

It is important not to confuse functional verification test coverage with
the problem of manufacturing test coverage [26]. We can compare and
contrast manufacturing test coverage with aspects of functional test cov-
erage to gain additional insights.

6.2 Verification Coverage 247

Manufacturing tests apply test patterns to a chip on a tester device to
expose manufacturing flaws. It is typical for projects to speak of test cov-
erage for these patterns to be in the high 90% range. This is a coverage
metric measured against a fault model. Manufacturing tests do assume
that a uniform model of faults can represent all relevant fabrication
flaws. The test pattern generation has the task to select patterns that
expose these faults at the output of the circuit. The predominant and suc-
cessful fault model has been the stuck-ar model, which assumes that the
test patterns should expose signals in the circuit that are permanently
stuck to a certain logic value.

The fault model for manufacturing tests has indeed a predictive com-
ponent. Manufacturing coverage measures bug coverage.

There have been many attempts in research to create the equivalent
of a fault model for functional verification. An example is a model that
assumes that the designer accidentally switched the outputs of two HDL
statements. The corresponding coverage metric measures the tests run
in simulation by their ability to find such a switch. This fault model does
not capture a large range of typical design bugs and therefore has not
been successful in practice.

6.2.3 Structural Coverage

The application for structural coverage models is largely implementation
coverage analysis. These models always tie into a structural aspect of the
implementation of the test generation, the DUV, or the representation of
the design HDL. Below are the typical structural models, presented in a
sequence of increasing complexity.

Toggle Coverage

Toggle coverage measures how many times the signals and latches (facil-
ities) in the HDL model have changed their logic value during simula-
tion. The absence of signal change activity in an area of the DUV
indicates that the stimuli did not target this area at all.

The advantage of toggle coverage is that it is a very simple, easy-to-
understand model. Its drawback is, however, that it yields massive
amounts of data, and the statement that 100% of all signals in a DUV
have toggled does not yield any insight into the functional significance
of the testing done.

Statement Coverage

Statement coverage or line coverage takes the syntactical structure of the
HDL specification and measures which HDL lines were executed by the
simulation run.

248

Chapter 6 = Creating Environments

Similar to toggle coverage, this coverage model is easy to comprehend,
and the absence of activity in areas of the HDL model highlights omis-
sions in the tests. One of the problems with this model is that it only
applies to HDL that is written as a sequential statement. Concurrent
VHDL, for example, does not have a structure consistent with this model.
The other limitation of line coverage is the missing semantic insight; the
fact that an HDL statement has been executed results in no knowledge
about the correctness of the content of the statement.

Branch Coverage

Branch coverage or conditional coverage looks at conditional statements
in the HDL and keeps track of which conditions the simulation encoun-
ters and which it does not.

This model assumes that there is semantic meaning in the condition
that the designer expressed in HDL. Decision points in the HDL specifi-
cation are typically representative of different conditions to which the
design needs to react. Therefore, the lack of exercising a decision in all
possible, anticipated ways clearly indicates a lack of testing. The main
limitation of this model is that conditional constructs are not the only
way to implement decision in a design. For example, it is possible to
specify a multiplexer as a case statement or as a set of and/or expressions.
The former construct would lead to a coverage measurement point; the
latter form would hide the branch condition.

Path Coverage

Path coverage is a refinement of branch coverage. Rather than looking at
single conditional decisions in isolation, path coverage does an execu-
tion flow analysis of the HDL and identifies combinations of subsequent
decisions into execution paths.

Figure 6.36 shows the automatic inference of two possible execution
paths on a given HDL with if/then/else structure. If simulation had taken
path2, branch coverage would have indicated that at some point the cond1-
else branch and at some point the cond2-if path were active. Only the com-
bination of the decision points into paths would have uncovered that the
simulation hit the second nested cond2-if statement and not the first.

Although path coverage raises the functional semantic level higher
than simple branch coverage, the drawback of branch coverage is more
relevant here as well. This coverage metric does completely rely on the
presence of certain constructs in the HDL. If the design team can use
these constructs, the HDL style and the coverage analysis goals are in
accord. However, many times the design team has good reasons to struc-
ture the logic of Figure 6.36 in other ways (e.g., high-frequency design
constraints). This results in a goal conflict for the HDL structure. In these
cases, it is typically coverage analysis that loses out.

6.2 Verification Coverage 249

pathl = condl & condZL\ ijch = not (condl) & cond?

if (condl=‘1’) then

if (cond2=°1’) then
else
end'%f;
else
%%.(cond2=‘1’) then
end if;
end if;

= FIGURE 6.36

Definition of execution paths for coverage analysis.

Finite State Machine Coverage

Finite state machine (FSM) coverage associates a state-machine structure
with HDL design and measures various aspects of the resulting model.
There is state coverage, which measures which states of the FSM the
simulation visited, and there is arc coverage, which accounts for the
possible state-transitions and whether simulation traversed them or
not. Similar to path coverage above, it is possible to combine states and
arcs taken in the FSM structure and construct paths.

There are two variants of FSM coverage: the constructive and the
inferred approach.

The constructive FSM coverage approach assumes that the FSM struc-
ture is clearly visible in the HDL syntax. The traffic light HDL in Chapter
3 is an example of this HDL style. The FSM HDL defines the state-holding
elements all together in one signal declaration, and all the state-
transitions are contained in one process statement (always block for the
Verilog version). This approach works well if the design intent is explici-
tly visible in the HDL. If the HDL representation does not syntactically
delineate the FSM, the constructive FSM coverage model does not apply.

Inferred FSM coverage does an analysis of the logic represented by
the HDL model and assembles separate state-holding elements together
into the inferred FSM state vector. Further automatic analysis yields
the possible state values and the state transitions, as they are present
in the model. The limitation of the inferred FSM approach is that the
state machine, which the automatic analysis finds, may not be recogniz-
able by the design team as an intended, designed state machine. The
coverage reports will then refer to states and state-transitions, which

250

Chapter 6 = Creating Environments

simulation has not encountered, and these structures have no semantic
meaning to the designer. Subsequently, it will be very hard for both the
design and verification teams to reason about the missing scenarios that
the coverage analysis highlighted.

Multiple State Machine

Multiple state machine coverage combines several state machines together
into one coverage model and measure events that focus on relationships
between them. Complex events such as interlocked and synchronized
state-transitions are the target of this analysis. This area is still mostly
in research and progress is limited by the ability of the analysis to iden-
tify the groups of FSMs.

Discussion of Structural Coverage Models

So far, we discussed structural coverage only in the context of the design
and its HDL representation. Structural coverage plays a lesser role for
the verification environment. Of course, it is possible to apply line,
branch, and path coverage to any type of sequential code. Why would
this not work for verification code?

Indeed, it is possible to instrument the code of checkers or monitor
component. A checker or monitor has to inspect the HDL model over
time and compare these observations against the specification. As the
verification follows events in the model, it naturally assembles scenarios
and transactions. All these abstractions are relevant to coverage analy-
sis, and in some cases, the environment code might be the source of more
effective coverage models. It is very practical to measure which condi-
tions a checker or monitor had to compare against the specification and
which scenarios it never encountered.

Structural coverage, especially the more sophisticated forms, can
clearly improve the verification quality. The strength of structural cover-
age analysis, aside from its easy implementation, is its ability to point
out holes of uncovered areas in the design.

However, as discussed above, it is clear that for any nontrivial design
there will be areas that simulation will not cover. The real problem
is deciding which areas are safe for the verification team to leave
uncovered.

This is the common drawback of structural coverage. The indication
of absence of coverage is its value. However, that is only the start of a rea-
son