

In Praise of Comprehensive Functional Verification:
The Complete Industry Cycle

As chip design complexity continues to
increase, functional verification is becoming
the dominant task in the development
process. The book does an excellent job of
describing the fundamentals of functional
verification. The reader of this book will
learn the details of the verification cycle
and the methods employed by verification
engineers to ensure a bug-free design release.

Fadi A. Aloul, American University of
Sharjah, UAE

This book provides the most comprehensive
treatment of functional verification to date.
The authors have used their extensive
experience to provide an industrial
perspective on issues and challenges that
verification engineers could face. The book
is valuable to both novice and experienced
verification engineers.

Baback Izadi, State University of New
York—New Paltz

This book is a comprehensive tour of the
industrial verification cycle. The authors
have paid particular attention to the
coverage of recent advances in the field, and
introduced them gradually in a chain of
well-organized chapters. This, along with
the abundance of illustrative examples and
case studies, make it an ideal text for a
university course on functional verification.

Nazanin Mansouri, Syracuse University

This book provides a comprehensive
overview of verification principles and
techniques. The extensive use of examples
and insightful perspective on practical
verification challenges make this book
ideal for introducing hardware
verification concepts to undergraduate
computer engineering students.

Vijaykrishnan Narayanan and Mary
Jane Irwin, The Pennsylvania State
University

Verification now dominates digital design
flows, as teams struggle to efficiently ensure
their systems work correctly. Despite the
tremendous importance of verification, no
book has adequately covered the material
needed to guarantee the quality of complex
electronic systems. Wile, Goss, and Roesner
present an insightful introduction to
functional verification technology, including
theoretical issues and practical techniques.
This excellent text promises to benefit both
the student and practicing engineer in
becoming more effective in addressing
modern verification challenges.

Greg Peterson, University of Tennessee

This is an excellent reference for those
needing an in-depth treatment of functional
verification but also a much needed text for
courses which focus on this complex and
difficult topic. It goes beyond the normal
coverage of functional verification topics
by including two chapters on formal
verification, a topic often skipped or barely
mentioned in other texts. The message
“verification is tough” has been heard often
at recent Design Automation Conferences.
This book is a powerful response to that
very important message.

Hardy J. Pottinger, University of
Missouri—Rolla

COMPREHENSIVE FUNCTIONAL

VERIFICATION

THE COMPLETE INDUSTRY CYCLE

Author Bios

Bruce Wile, IBM Distinguished Engineer, is ASIC Chief Engineer for IBM Systems and Tech-
nology Group. In this position, he leads the development of the current and next generation
server chip set. Mr. Wile worked in functional verification for 18 years, where he started his
career in 1985 after graduating from the Pennsylvania State University. He has worked as a
verification engineer on many chips and systems, starting with IBM’s S/390 ES/9000 series’
cache and storage controller unit, and thereafter working on processors, IO devices, and
entire systems. Throughout his verification career, he has held both team lead and manage-
ment positions. In 2000, Mr. Wile was named the Verification Lead for all IBM server chips,
where, he was responsible for driving verification technology deployment and execution
across the entire IBM line of server products. Mr. Wile has several patents and published
papers. He is passionately involved with engineering, science, and math educational efforts,
working with all levels of secondary schools as well as universities.

John C. Goss, an Advisory Engineer, is a verification team lead for IBM Systems and Tech-
nology Group. In this position, he leads the system simulation efforts the current and next
generation server processor chips. Mr. Goss has worked in the field of functional verification
his entire career, since 1993. He graduated from Pennsylvania State University with his BS
in Computer Engineering and a minor in Computer Science. Shortly after joining IBM, he
then pursued his Masters degree in Computer Engineering at the North Carolina State
University where he graduated in 1996. He has worked as a verification engineer on many
chips and systems, starting with IBM’s networking division. He worked on a series of ASIC’s
that were used in IBM’s networking gear including a network processor. In 2002, he has
assumed responsibility of system verification in one of IBM’s next generation server proces-
sor chips. In addition to his position at IBM, Mr. Goss also is an adjunct professor at North
Carolina State University where he has been teaching functional verification to graduate
students since 2001.

Wolfgang Roesner is an IBM Distinguished Engineer and the Verification Lead for the IBM
Systems and Technology Group. He currently leads both the verification technology teams
as well as the verification execution teams on IBM’s next generation server chips and systems.
Dr. Roesner started his IBM career in Boeblingen, Germany, developing HDL compilers and
simulators. After a temporary assignment to be part of the development of the first POWER
processor chip, he decided to stay with the Austin, TX based teams and projects. During the
last fifteen years, his verification tools have been used on every CMOS microprocessor system
including the POWER and PowerPC systems and IBM’s large zSeries servers. IBM’s verifi-
cation technologies range from software- and hardware-based simulation engines to test-
bench languages and formal and semi-formal verification tools. Since 2003, Dr. Roesner is
also responsible for the verification teams of the next generation server chips. He has pub-
lished numerous papers and has been an invited speaker to several technical conferences.

COMPREHENSIVE
FUNCTIONAL
VERIFICATION
THE COMPLETE

INDUSTRY CYCLE

Bruce Wile

John C. Goss

Wolfgang Roesner

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Publisher Denise E.M. Penrose
Publishing Services Manager Simon Crump
Project Manager Brandy Lilly
Project Management Graphic World NY
Developmental Editor Nate McFadden
Cover Design Chen Design
Cover Image TBA
Text Design Julio Esperas
Composition TBA
Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Graphic World NY
Proofreader Graphic World NY
Indexer Graphic World NY
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

ISBN: 0-12-751803-7

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Throughout this book, we place the verification team at the

forefront of technical performance. Over the years we’ve been

influenced by many outstanding individuals on our

verification and verification tools teams. The information in

this book is truly a compilation of that which we’ve learned,

together with these teammates. We wish to acknowledge their

camaraderie, support, and dedication to producing bug-free

designs.

We wish to thank our families for their continued support

throughout this long stretch of time when we stared at our

laptop screens at night and on weekends while the only

words they heard from us were, “yes . . . I think” and “say

again?”

Finally, we must express our gratitude to Nate McFadden,

whose tireless work shepherded this book through the

creative process. His advice, guidance, and enthusiasm kept

us on course.

FOREWORD

Complex electronic designs pervade almost every aspect of modern life.
We take for granted the existence of cell phones, or antilock brakes, or
medical imaging devices, not to mention the ubiquitous PC. As users or
customers, we also take it for granted that these devices will function
correctly. The impact of an undetected functional failure can range from
mild annoyance to major catastrophe, and the cost—to individuals, to
companies, to society as a whole—can likewise be immense.

The danger is compounded by the fact that the relentless march of
semiconductor process technology allows us to produce increasingly
complex designs, which contain an increasing number of bugs. With
shorter design cycles and increased competitive pressure to get prod-
ucts to market, verification is often the critical path to production. The
authors of the 2003 International Technology Roadmap for Semicon-
ductors were moved to describe verification as “a bottleneck that has now
reached crisis proportions”.

For that reason alone, this book would be welcome. But there are
many other reasons. The authors bring to their task a wealth of practi-
cal verification experience and a strong academic background—a rare
combination. Their focus on the verification cycle as a process is partic-
ularly important in placing verification in the proper context—as the
authors state: “results and learning from the current project feed the
verification plans and implementation for the next project”. The only way
to stay on top of the growth in complexity is to continuously learn and
improve, so that verification becomes a systematic and sustainable
process.

A unique feature of this book is that it is designed be used in con-
junction with hands-on functional verification exercises. The authors
have collaborated with major Electronic Design Automation (EDA) com-
panies to create exercises based on RTL design implementations of a
four-operation calculator. These implementations come complete with
functional errors for the student to find, using an industrial-strength
verification environment. As in real life, successive implementations of
the calculator provide increasing complexity and additional verification
challenges. Not only will the student learn how to look for and find bugs
in these designs, he or she will do so using the tools that they will later

use to attack real-life verification problems of their own. Unfortunately,
the latter will not come with a handy web-based set of solutions, as these
exercises do!

Part II of the book covers the three pillars of Simulation Based Verifica-
tion: testing, checking and coverage. A good simulation environment, or
“testbench,” provides the mechanisms for stimulating the design with some
mixture of directed and randomized tests; provides a language and tools for
creating checkers at all the appropriate levels of the design; and provides
a means for collecting and analyzing coverage data to tell the verification
engineer what has, and more importantly what has not, been tested.

I particularly commend the discussion of coverage in Section 6.2.
Coverage is an important and much misunderstood part of the verifica-
tion cycle. A colleague of mine with a great deal of experience in this
area once summarized his opinion as follows: “the value of coverage lies
in the act of analyzing it and driving it up.” Coverage analysis often
results in surprises—complex designs, by their very nature, are difficult
to grasp, and our intuition is a poor guide to the interactions that are
occurring as we simulate the design. Coverage analysis, if done properly,
challenges our assumptions and makes us stop and think about what we
might otherwise take for granted. Testing without coverage is like driving
a car with a blindfold—you may think you know where you are going,
but where you end up is not where you intended to be!

The discussion of “Pervasive Function Verification” in Chapter 9 is
another good example of the authors sharing their practical experience
of what it takes to get a product to market. In the real world, it is not
enough just to verify the correctness of mainline functionality, though
this is where most of the focus is applied. A product also needs to be
tested, manufactured, debugged and maintained, and very often this
involves mechanisms that are orthogonal to the rest of the design. After
all, if the part won’t come out of reset, it doesn’t matter that the function
units are logically correct!

I am particularly pleased to see the emphasis that the authors place
on formal verification in Part III. Although it is not always possible to
apply formal methods, when they can be applied they provide a level of
certitude that dynamic simulation (in general) cannot—as the authors
state, “A formal proof is the most desirable verification of a property.” In
the past decade, formal verification has gone from being largely of aca-
demic interest to becoming an indispensable tool for attacking certain
classes of problems. For example, formal verification is the only practi-
cal way of assuring the correctness of an implementation for the huge
data space specified by the IEEE 754 floating point standard. Verifica-
tion engineers should have both formal and dynamic verification tools
in their toolbox, and should know how and when to apply the right tool
to the problem at hand.

The Case Studies in Chapter 15 provide an all-too-rare glimpse
“behind the curtain” at the kinds of problems that are seldom, if ever,

x Foreword

discussed in public. Every experienced validator could cite a similar set
of examples, and every novice can learn from these cases. The authors
are to be commended for their willingness to discuss their successes and
their failures for the benefit of the verification community as a whole.

This book is a must-read for the novice validator, but even the most
grizzled veteran will find it an excellent addition to his or her library. It
has my highest recommendation.

Bob Bentley
Intel Corporation

Foreword xi

CONTENTS

Foreword ix

Preface xxi

Acknowledgements xxv

Part I: Introduction to Verification

1 Verification in the Chip Design Process 5

1.1 Introduction to Functional Verification 5
1.2 The Verification Challenge . 8

1.2.1 The Challenge of State Space Explosion 9
1.2.2 The Challenge of Detecting Incorrect

Behavior . 12
1.3 Mission and Goals of Verification . 14

1.3.1 Verification Engineer “Musts” 18
1.4 Cost of Verification . 20

1.4.1 Engineering Costs and the Need for an
Independent Verification Team 20

1.4.2 Design Automation Tools . 21
1.4.3 Time . 22

1.5 Areas of Verification Beyond the Scope of this Book 23
1.6 The Verification Cycle: A Structured Process 24

1.6.1 Functional Specification . 25
1.6.2 Create Verification Plan . 26
1.6.3 Develop Environment . 27
1.6.4 Debug HDL and Environment 27
1.6.5 Regression . 28
1.6.6 Fabricate Hardware . 28
1.6.7 Debug Fabricated Hardware (Systems Test) 29
1.6.8 Escape Analysis . 29
1.6.9 Common Verification Cycle Breakdowns 30

1.7 Summary . 31
1.8 Exercises . 32

2 Verification Flow 35

2.1 Verification Hierarchy . 35
2.1.1 Levels of Verification . 36
2.1.2 What Level to Choose? . 41

2.2 Strategy of Verification . 45
2.2.1 Driving Principles . 45
2.2.2 Checking Strategies . 50
2.2.3 Checking the Black Box . 55
2.2.4 Putting It All Together . 59
2.2.5 The General Simulation Environment 61
2.2.6 Verification Methodology Evolution 62

2.3 Summary . 68
2.5 Exercises . 69

3 Fundamentals of Simulation Based Verification 73

3.1 Basic Verification Environment: A Test Bench 73
3.1.1 Stimulus Component . 74
3.1.2 Monitor . 80
3.1.3 Checker . 82
3.1.4 Scoreboard . 83
3.1.5 Design Under Verification 85

3.2 Observation Points: Black-Box, White-Box and
Grey-Box Verification . 86
3.2.1 Black Box . 86
3.2.2 White Box . 87
3.2.3 Grey Box . 88

3.3 Assertion Based Verification—An Overview 89
3.3.1 The Importance of Assertions 90
3.3.2 Assertions Express Design Intent 92
3.3.3 Classification of Assertions 94

3.4 Test Benches and Testing Strategies 95
3.4.1 Deterministic Test Benches 95
3.4.2 Self-Checking Test Benches 97

3.5 Summary . 101
3.6 Exercises . 102

4 The Verification Plan 103

4.1 The Functional Specification . 103
4.2 The Evolution of the Verification Plan 104
4.3 Contents of the Verification Plan . 106

4.3.1 Description of Verification Levels 106

xiv Contents

4.3.2 Required Tools . 107
4.3.3 Risks and Dependencies . 108
4.3.4 Functions to be Verified . 109
4.3.5 Specific Tests and Methods: Environment 111
4.3.6 Coverage Requirements . 115
4.3.7 Test Case Scenarios: Matrix 116
4.3.8 Resource Requirements . 117
4.3.9 Schedule Details . 118

4.4 Verification Example: Calc1 . 121
4.4.1 Design Description . 121
4.4.2 Creating the Verification Plan for Calc1 125
4.4.3 Deterministic Verification of Calc1 131

4.5 Summary . 136
4.6 Exercises . 136

Part II: Simulation Based Verification

5 HDLs and Simulation Engines 141

5.1 Hardware Description Languages . 143
5.1.1 HDL Modeling Levels . 143
5.1.2 Verification Aspects of HDLs 153

5.2 Simulation Engines: Introduction . 159
5.2.1 Speed versus Accuracy . 160
5.2.2 Making the Right Methodology Choices 162

5.3 Event-Driven Simulation . 162
5.3.1 Hierarchical Model Network 163
5.3.2 Model Evaluation Over Time 165
5.3.3 Event-Driven Control of Model Evaluation 167
5.3.4 Implementation Sketch of an Event-Driven

Simulation Engine . 172
5.4 Improving Simulation Throughput 178
5.5 Cycle-Based Simulation . 182

5.5.1 Synchronous Design . 183
5.5.2 The Cycle-Based Simulation Algorithm 184
5.5.3 Extensions to Basic Cycle-Based Simulation

Engines . 188
5.6 Waveform Viewers . 191
5.7 Summary . 196
5.8 Exercises . 197

6 Creating Environments 199

6.1 Test Bench Writing Tools . 200
6.1.1 HDL Languages as Test Bench Tool 201
6.1.2 C/C++ Libraries . 207

Contents xv

6.1.3 High-Level Verification Languages 230
6.1.4 Other Test Bench Tools . 241

6.2 Verification Coverage . 243
6.2.1 Overview . 244
6.2.2 Functional Verification Test Coverage versus

Manufacturing Test Coverage 246
6.2.3 Structural Coverage . 247
6.2.4 Functional Coverage . 251
6.2.5 Coverage Bulk Data Collection and

Management . 254
6.2.6 The Right Coverage Analysis Strategy 255

6.3 Summary . 256
6.4 Exercises . 258

7 Strategies for Simulation-Based Stimulus
Generation 259

7.1 Calc2 Overview . 260
7.1.1 Calc2 Verification Plan . 263
7.1.2 Calc2 and the Strategies for Stimulus

Generation . 269
7.2 Strategies for Stimulus Generation 270

7.2.1 Types of Stimulus Generation 270
7.2.2 General Algorithms for Stimulus

Components . 275
7.2.3 Applying the Four Types of Stimulus

Generation to Calc2 . 277
7.2.4 Seeding Random Test Cases 294
7.2.5 Constraint Solving in Random

Environments . 297
7.2.6 Coverage Techniques in Random

Environments . 301
7.2.7 Making Rare Events Occur 303
7.2.8 Stimulus Generation of Deadlocks and

Livelocks . 306
7.3 Summary . 310
7.4 Exercises . 311

8 Strategies for Results Checking in Simulation-
Based Verification 313

8.1 Types of Result Checking . 313
8.1.1 On-the-Fly Checking versus End-of-Test

Case Checking . 314
8.1.2 Pregenerated Test Cases versus On-the-Fly

xvi Contents

Generated Test Cases . 321
8.1.3 Applying the Checking Strategies to Calc2 322

8.2 Debug . 334
8.2.1 Debug Process . 336
8.2.2 How Different Types of Test Benches Affect

Debug . 349
8.3 Summary . 352
8.4 Exercises . 353

9 Pervasive Function Verification 355

9.1 System Reset and Bring-Up . 356
9.1.1 Reset Line Initialization . 357
9.1.2 Scan Initialization . 361
9.1.3 Testability and Built-In Self-Test 363

9.2 Error and Degraded Mode Handling 368
9.2.1 Verifying Error Detection 368
9.2.2 Verifying Self-Healing Hardware 372

9.3 Verifying Hardware Debug Assists 380
9.3.1 Verifying Scan Ring Dumps 381

9.4 Low Power Mode Verification . 384
9.4.1 Power Savings Through Disabling Functional

Units . 385
9.4.2 Power Savings Through Cycle Time

Degradation . 387
9.5 Summary . 389
9.6 Exercises . 389

10 Re-Use Strategies and System Simulation 391

10.1 Re-Use Strategies . 392
10.1.1 Guidelines for Re-Use . 395
10.1.2 Horizontal Re-Use . 403
10.1.3 Vertical Re-Use . 404
10.1.4 Applying Re-Use to Calc2 405
10.1.5 Assertion Re-Use . 410

10.2 System Simulation . 412
10.2.1 System Test Bench . 412
10.2.2 Connectivity and Interaction of Units 414
10.2.3 Verification Challenges in a Re-Usable

IP World . 418
10.3 Beyond General-Purpose Logic Simulation 420

10.3.1 Acceleration . 421
10.3.2 Emulation . 427
10.3.3 Hardware/Software Co-verification 428
10.3.4 Co-simulation . 430

Contents xvii

10.4 Summary . 434
10.5 Exercises . 435

Part III: Formal Verification

11 Introduction to Formal Verification 439

11.1 Foundations . 440
11.1.1 Design Correctness and Specifications 441
11.1.2 Computational Complexity 443
11.1.3 The Myth of Linear Scaling of Simulation 445
11.1.4 Mathematical Proof Methods in Formal

Verification . 446
11.2 Formal Boolean Equivalence Checking 448

11.2.1 The Role of Equivalence Checking in the
VLSI Design Flow . 449

11.2.2 Main Elements of an Equivalence Checker
Tool . 450

11.2.3 Sequential and Combinational Boolean
Equivalence Checking . 451

11.2.4 Core Algorithms for Combinational
Equivalence Checking . 454

11.2.5 Blueprint of a Modern Equivalence
Checking Tool . 465

11.3 Functional Formal Verification—Property Checking 467
11.3.1 Property Checking vs. Sequential

Equivalence Checking . 468
11.3.2 The Myth of Complete Verification with FV 470
11.3.3 Properties for an Example Design 471
11.3.4 DUV Drivers for Formal Verification 476
11.3.5 State Space Traversal and Temporal Logic 479
11.3.6 Functional Formal Verification Tool Flow 483

11.4 Summary . 484
11.5 Exercises . 485

12 Using Formal Verification 487

12.1 Property Specification Using an HDL Library 488
12.1.1 The Open Verification Library (OVL) 489
12.1.2 Using OVL to Specify Properties 495

12.2 The Property Specification Language PSL 499
12.2.1 Overview . 500
12.2.2 The Boolean Layer of PSL 501
12.2.3 The Temporal Layer of PSL 504
12.2.4 The Verification Layer of PSL 508

xviii Contents

12.2.5 The Modeling Layer of PSL 511
12.2.6 Using PSL to Specify Properties 512
12.2.7 Advanced PSL Topics and Caveats 514

12.3 Property Checking Using Formal Verification 521
12.3.1 Property Re-Use between Simulation and FV 521
12.3.2 Model Compilation . 522
12.3.3 Formal Functional Verification Algorithms 523
12.3.4 Solutions to Address the Problem of State

Space Explosion . 527
12.3.5 Semi-Formal Verification . 530
12.3.6 EDA Vendors Supplying Formal and

Semi-Formal Verification Tools 532
12.4 Summary . 532
12.5 Exercises . 533

Part IV: Comprehensive Verification

13 Completing the Verification Cycle 539

13.1 Regression . 540
13.1.1 Regression in the Verification Flow 540
13.1.2 Regression Quality . 542
13.1.3 Regression Efficiency . 543

13.2 Problem Tracking . 548
13.3 Tape-Out Readiness . 552

13.3.1 Metrics . 552
13.3.2 Completion Criteria . 557

13.4 Escape Analysis . 559
13.4.1 Individual Bug Analysis . 561
13.4.2 Escape Examples . 569
13.4.3 Escape Analysis Trends . 572

13.5 Summary . 575
13.6 Exercises . 577

14 Advanced Verification Techniques 579

14.1 Save Verification Cycles—Bootstrapping the Verification
Process . 580
14.1.1 Separating POR and Mainline Verification 580
14.1.2 Bootstrapping the DUV into High-Potential

States . 583
14.1.3 Manipulating the DUV Specification Provoking

States of Resource Conflict 585
14.2 High-Level Modeling—Concepts . 586

14.2.1 Applications of the High-Level Model 587

Contents xix

14.2.2 High-Level Modeling Styles 590
14.3 Coverage-Directed Generation . 595
14.4 Summary . 598
14.5 Exercises . 599

Part V: Case Studies

15 Case Studies 603

15.1 The Line Delete Escape . 603
15.1.1 The Background . 603
15.1.2 The Verification Environments 605
15.1.3 The Escape . 607

15.2 Branch History Table . 608
15.2.1 The Background . 608
15.2.2 BHT Purpose and Logic Design 609
15.2.3 BHT Verification . 614
15.2.4 Results . 624

15.3 Network Processor . 624
15.3.1 System Overview . 625
15.3.2 Verification Effort . 627
15.3.3 Results . 638

15.4 Summary . 639

Glossary 641

References 657

Subject Index 663

xx Contents

PREFACE

Within the chip hardware design process, there are multiple verification
efforts. These efforts include functional verification, timing verification,
test verification, and equivalence checking. The most time consuming
of these is functional verification. Functional verification ensures that
the logic in a chip and system performs operations correctly under all
circumstances as stipulated by the specification of that design. Func-
tional verification engineers perform their work on a software model
of the hardware design prior to fabrication of the chip. They measure
their success based on the functionality of the first pass of fabricated
hardware.

There is no single formula for functional verification success. There is
no golden code to employ consistently on every design. Every hardware
design has unique subtleties. Like a sculptor staring at a block of wood
and visualizing its final form, the verification engineer requires experi-
ence and insight to craft a precise environment essential for exploring
and verifying that design.

While experience is important for a successful verification effort, so
is a core understanding of verification theory, strategy, and available
methods. Over the last 20 years, a strong verification team has become
the keystone to hardware development efforts. Yet hiring engineering (or
programming) college graduates into the verification field remains chal-
lenging. Through the early 1990s, the extent of most engineering gradu-
ates’ exposure to verification came from a few days of simple testbench
writing during their design class labs. In fact, most engineering gradu-
ates never hear about the verification career path until they come to work
on a major hardware design effort.

To combat the gap in base verification knowledge in our new engi-
neers, we developed a two-week class on the fundamentals of functional
verification. The course content included an introduction to verification,
and separate sections on simulation-based verification and formal veri-
fication. The class became a staple for the education of new verification
engineers as well as experienced engineers looking to sharpen their
skills.

It was not long before we took the base verification education package
to our contacts at various universities. Soon, our material had seeded

multiple undergraduate level classes on functional verification. We even
found our class lab exercises—Calc1, Calc2, and Calc3—worked well in
the university lab environment. We collaborated with the universities,
providing guest lecturers on specific verification topics, bringing a feel
for the industry challenges to the classrooms. As invigorating as it is to
provide classroom lectures, the most rewarding outcome from the uni-
versity partnerships is watching top engineering talent emerge with the
skills and desire to pursue a career in functional verification.

The same classroom syllabus provided us with the original outline
for Comprehensive Functional Verification: The Complete Industry Cycle.
Much of that foundation remains in this book, including the Calc exer-
cises. However, we have added considerably more depth, including exten-
sive discussions on the development of a verification plan, the anatomy of
a simulation environment, the inner workings of a simulation engine, the
underlying practical usage of formal verification, system-level and perva-
sive verification, and management of a verification project. To provide
an industry perspective on real issues and challenges, we augment verifi-
cation theory with practical examples and real-world case studies. The
result is a comprehensive text on functional verification.

THE VERIFICATION CYCLE

The unifying theme throughout Comprehensive Function Verification:
The Complete Industry Cycle is the concept of the verification cycle. Func-
tional verification is a structured, cyclical process, and this book follows
this concept. The process is a cycle because results and learning from
the current project feed the verification plans and implementation for the
next project. This book follows the cycle from planning to implementa-
tion, through regression and the feedback stage, called escape analysis.
Like the functional verification effort itself, we devote the most attention
to the implementation stage of the cycle.

STRUCTURE OF THE BOOK

This book is organized in five parts. Part I contains an overview of func-
tional verification, including background concepts, verification planning
and strategy, and basic exercises. It also introduces the concept of the
verification cycle as well as hierarchical verification, the practice of
breaking down large designs into verifiable components. Parts II and III
focus on the two main functional verification methods: simulation based
verification and formal verification. Part IV concentrates on latter stages
of the verification cycle, including regression and escape analysis, as well
as advanced verification techniques. The book concludes with Part V, a

xxii Preface

collection of case studies, which highlight concepts from the verification
cycle and processes.

BASIC KNOWLEDGE NEEDED FOR THIS BOOK

This book’s discussions and exercises assume a basic understanding of
computer engineering concepts. We use the two standard hardware
design languages, Verilog and VHDL, throughout the book, so some
familiarity with these languages is helpful. The reader should also have
an understanding of logic design architecture and system structures.
Finally, a background in programming is important, as major parts of
the verification environment rely on programming constructs.

EXERCISES AND SUPPORTING MATERIALS

Comprehensive Functional Verification: The Complete Industry Cycle
should be used in conjunction with hands-on functional verification exer-
cises. To support this hands-on approach, we have collaborated with the
major Electronic Design Automation (EDA) companies to create exer-
cises based on RTL design implementations of a four-operation calcula-
tor: Calc1 and Calc2. Both Calc implementations come complete with
functional errors for you to find using your verification environment. The
Calc2-based exercise extends the first exercise based on Calc1, as Calc2
is a substantially more complex design. This progression follows the stan-
dard industry practice of increasing complexity with each new genera-
tion of the design. Of course, along with complexity comes additional
verification challenges!

Links to the Calc1 and Calc2 vendor implementations and a link to a
third, even more challenging Calc3 exercise, are available on-line. Access
to these and other related materials, including exercise solutions and
figures from the book, may be found at www.mkp.com/companions/
0127518037.

Preface xxiii

ACKNOWLEDGEMENTS

We would like to acknowledge many people who helped create this book.
First and foremost are the reviewers who gave us invaluable feedback,
namely, Hardy J. Pottinger (University of Missouri—Rolla), Nazanin
Mansouri (Syracuse University), Fadi A. Aloul (The American University
of Sharjah, UAE), Vijaykrishnan Narayanan (The Pennsylvania State
University) Baback Izadi (The State University of New York–New Paltz),
Yuval Caspi (Yuval Caspi Consultants), Steven P. Levitan (University of
Pittsburgh), Sean Smith (Denali Software, Inc.), and Scott Taylor (Intel).

We would also like to give additional special thanks to Professor
Nazanin Mansouri and Yuval Caspi for their contributions of exercise
material.

We created the Calc exercises featured in this book over a period of
years. Multiple users have suggested both design and specification
updates based on their experiences. However, in order to meet teaching
deadlines for Calc3, Lance Hehenberger provided invaluable assistance
in creating portions of the original Calc3 designs.

Finally, we want to thank our partners at Mentor Graphics, Synopsys,
and Verisity Design for their work on creating implementations of the
Calc1 and Calc2 examples. All were extremely supportive of this project
from the start, and we are deeply grateful for their generous assistance.

P A R T I

Functional
Specification

Designer
Implements
Functional

Specification

Pe
rfo

rm

Es
ca

pe

An
aly

sis

Environment

HDL andDebug

Create
Verification

Plan

Tests

Regression

Run

Verification
Cycle

Develop

Verification

Environm
ent

H
ardw

are
Fabricated

D
ebu

Form
al Verification

System
s

Test

Stim
ulus, C

heckers,

HDLHDLHDL
Tape Out

Readiness

CHECKPOINT

Lessons
Learned

CHECKPOINT
Plan

Review

CHECKPOINT

Functional verification plays a key role in meeting an aggressive chip design schedule

and achieving cost and quality goals. Because functional verification is a critical part

of all complex chip designs, to achieve these lofty targets the functional verification

team must have a deep understanding of the chip design and a robust process. This

process is the Verification Cycle. The process is cyclic, providing feedback from past

projects, allowing the verification team to continually improve their process and

environment.

Part One begins by describing the verification challenges and introducing the

Verification Cycle. Chapters 2 and 3 describe basic verification strategies central to all

techniques and the simulation-based components commonly used throughout the

Verification Cycle. Chapter 4 details the verification plan—the first part of a project

cycle—containing the strategy, methods, and requirements for the project.

I N T R O D U C T I O N T O V E R I F I C A T I O N

Functional verification has become a major challenge in the chip and
system design arena. As engineers place more and more function in
increasingly dense chips, the discipline required for successful chip and
system verification has advanced. As a result, the verification engineer,
little known 10 years ago, has become a treasured member of the chip
design team.

This chapter introduces verification tasks, illustrated with basic exam-
ples; their challenges; and the defined process behind functional verifi-
cation. These challenges require a controlled verification process, with
continuous feedback for improvements. This chapter also introduces the
two fundamental methods, simulation and formal verification, which the
book describes in detail as the foundations of functional verification.

1.1 INTRODUCTION TO FUNCTIONAL VERIFICATION

Silicon chip technology powers many of today’s innovations and newest
products. Rapid technology advancement fuels ever-increasing chip com-
plexity, which in turn enables the latest round of amazing products.
These chips touch many aspects of our everyday life, from the pocket-
sized combination cell phone, pager, and digital camera to the high-end
server that searches an online bookseller’s database, verifies credit
card funds, and sends the order to the warehouse for immediate deliv-
ery. Expectations for these chips grow at an equal rate, despite the addi-
tional complexity. For example, consumers do not expect the chips that
monitor safety processes in our cars to fail during the normal life of the
vehicle. Nor is it acceptable to be denied access to our on-line brokerage
accounts because the server is down. Thus, it has become a major engi-
neering feat to design these silicon chips correctly.

An enormous amount of engineering goes into each of these chips,
whether it is a microprocessor, memory device, or entire system on a
chip (SoC). All types of chips have a set of challenges that the engineers
must solve for the final product to be successful in the marketplace.

C H A P T E R 1

VERIFICATION IN THE CHIP
DESIGN PROCESS

Figure 1.1 shows a chip’s design flow, which starts with the customer’s
requirements. Those requirements include (but are not limited to) func-
tion, chip size, chip power consumption, and processing speed. Require-
ments are compiled and prioritized during the concept and high-level
design phase, in which designers architect the chip’s main internal com-
ponents and goals. As the chip design process progresses, engineers face
challenges to balance goals that often conflict: higher chip performance
may require faster cycle times, but that will raise power consumption;
faster cycle times may require adding more stages in the logic, but that
increases chip complexity and area.

Throughout the chip design process, design automation (DA) tools
accurately predict chip area, timing, and power aid the engineers. After

6 Chapter 1 ■ Verification in the Chip Design Process

Customer
requirements

High level
chip design

General
specification and

architecture

HDL implementation
(logic design)
at RTL level

Physical circuit design
via synthesis or
custom layout

Functional
verification

Fixes to
HDL

Timing
analysis

Design sent
to fab

Fabricated chip

■ FIGURE 1.1

The chip design process. All silicon design starts with the customer’s requirements, which drive the
general specification and architecture. The chip components then take shapae during the high-level
design stage, followed by the register transfer level (RTL) implementation in a hardware description
language (HDL; usually Verilog or VHDL). Circuit design and timing analysis are based on the HDL,
whereas functional verification explores the state space of the logic design to compare the implemen-
tation against the specification and design intent.

an engineer creates logic, written in a hardware description language
(HDL), DA tools can synthesize that logic into appropriate gates that
correspond to the original design. Verilog and VHDL are the two most
common HDLs. But two questions remain: (1) what if the HDL did not
express the correct function in the first place, and (2) what if the designer
missed a critical corner condition? Detecting incorrect function has
become one of the trickiest challenges in the entire chip design process.
This is the challenge of functional verification.

Functional verification ensures that the design performs the tasks as
intended by the overall system architecture. It differs from circuit level
validation in multiple ways. First, verification engineers work predomi-
nantly on the register transfer level (RTL) of the design rather than on the
gate level. RTL is a more abstract way to specify the logic design than
are the low-level ANDs and ORs of the gate level. RTL languages (HDLs)
allow the designer to specify the behavior by using higher-level constructs
such as Boolean equations and IF-THEN-ELSE structures. Second,
although the main challenge for the circuit designers is to fit the gates
into the available chip area and ensure that timing goals are met, it is
the verification engineer’s role to ensure that the design is functionally
correct in the first place.

To illustrate the role of functional verification, consider the design of
a simple traffic light controller. After a few minor accidents at the corner
of Elm and Main streets in Eagleton, the town council commissions the
installation of a traffic light. A careful study of the traffic survey leads the
council to specify that the light should stay green for 1 minute in each
direction when the intersection is busy. Workers are to install sensors to
detect traffic on both streets.

The town council grants the contract for design and installation
of the light to a local company, Eagleton Signal Controllers and
Parking Engineering Solutions (ESCAPES). The ESCAPES SoC team
quickly creates the algorithm for the traffic light controller, as shown in
Figure 1.2.

The next step in the design process is to write the HDL. The ESCAPES
team uses VHDL to code the algorithm as defined (Figure 1.3).

The algorithm and VHDL match, but they contain a flaw. Cars that
approach the intersection on Main Street trigger the “Main Street
Traffic?” sensor, and cars that approach on Elm Street trigger the “Elm
Street Traffic?” sensor. The design team maps an exact translation of this
algorithm to a circuit layout. However, the Eagleton council intended the
traffic light to have a concept of fairness for the cars approaching the
intersection from any direction; that is, the traffic light must allow all
cars to proceed through the intersection within a realistic timeframe. In
this flawed design, continued traffic on Main Street would indefinitely
lock out the Elm Street traffic, leading, of course, to a nightmare on Elm
Street. It is the job of the verification engineer to uncover these design
flaws, ensuring that the final product acts as intended.

1.1 Introduction to Functional Verification 7

Despite the flawed HDL, the design team can translate the VHDL to a
circuit design. Figure 1.4 shows the circuit design for the traffic light and
accurately represents the original VHDL. The circuit design meets the
timing, power, and chip area targets; however, without appropriate
verification, the algorithm flaw would go undetected until testing at
the intersection.

1.2 THE VERIFICATION CHALLENGE

Chip designs can easily consist of hundreds of thousands of lines of HDL.
A verification engineer’s job is to seek out problems in the HDL imple-
mentation, flagging flaws or bugs when the HDL does not act according
to specification. A verification engineer exposes these bugs by running
complex simulations on the design. The verification engineer faces two
major challenges: dealing with enormous state space size and detecting
incorrect behavior.

8 Chapter 1 ■ Verification in the Chip Design Process

Main Street
traffic?

Wait 60
seconds

Elm Street
turns green

Elm Street
traffic?

No

No Yes

Yes

Main Street
turns green

■ FIGURE 1.2

Algorithm for a traffic controller as written by the Eagleton Signal Controllers and Parking Engineering
Solutions (ESCAPES) system-on-a-chip (SoC) team.

1.2.1 The Challenge of State Space Explosion
The scale of the state space is the first verification challenge. Typically,
HDL contains thousands of latches, large arrays (RAM), and combina-
torial logic, all of which control the behavior of the chip. The chip inputs
manipulate the internal logic, causing it to act on the applied stimulus.

1.2 The Verification Challenge 9

library ieee;
use ieee.std_logic_1164.all;

entity traffic is
 port(
 clk :in std_ulogic; --Clock
 reset :in std_ulogic; --Async Reset
 timer_pulse :in std_ulogic; --The timer pulse, '1' indicates timer expiration
 Main_Street :in std_ulogic; --Indicates when traffic is present on Main St.
 Elm_Street :in std_ulogic; --Indicates when traffic is present on Elm St.
 Light_Direction :out std_ulogic_vector(1 downto 0) --"01" Indicates that Main St. should be green
 --"10" Indicates that Elm St. should be green
);
end traffic;

architecture rtl of traffic is

 signal current_state_din, current_state_dout : std_ulogic_vector(1 downto 0);

begin --rtl

 --purpose: Determines when the light should change
 --type : combinational
 --inputs : timer_pulse, Main_Street, Elm_Street, current_state_dout
 --outputs: current_state_din
 dataflow_proc: process(timer_pulse, Main_Street, Elm_Street, current_state_dout)
 begin --process change_light
 current_state_din <= current_state_dout;
 --When the timer expires, evaluate the traffic situation
 if timer_pulse = '1' then
 if Main _Street = '1' then
 current_state_din <= "01";
 elsif Elm_Street = ‘1’ then
 current_state_din <= "10";
 end if;
 end if;
 end process dataflow_proc;

 Light_Direction <= current_state_dout;

 --purpose: creates the registers for current state
 --type :sequential
 --inputs : clk, reset, current_state_din
 --outputs: current_state_dout
 reg_proc: process(clk, reset)
 begin --process register
 if reset = '0' then --asynchronous reset (active low)
 current_state_dout <= "01";
 elsif clk'event and clk = '1' then -- rising clock edge
 current_state_dout <= current_state_din;
 end if;
 end process reg_proc;

end rtl;

■ FIGURE 1.3

VHDL for the traffic light algorithm.

These inputs transform the current state of the chip, defined by the stored
values in the latches and arrays, into the next and future states of the
chip. At a given point in time, a chip can be in any one of an enormous
number of possible current states.1 Furthermore, the next state of the
chip, determined by the current state and the current inputs, can be any
of the possible states. To verify exhaustively that a chip is functionally
correct, the verification engineer would have the daunting task of check-
ing that each possible current state and each possible input combination
yields the correct next state.

In the case of the traffic light mentioned above, there are just 2 bits of
internal latches, yielding 4 possible current states, and 5 input pins, yield-
ing 32 possible input combinations. Exhaustive verification of the entire
state space of this simple example would yield just 128 combinations (32
input scenarios ¥ 4 current states).

However, even simple computer designs may have huge state space
problems that make the task of checking the combinations of current
state and next state impossible. Consider the video portion of a DVD
player with six possible inputs: “nothing pressed” (remain in current
state), “play,” “pause,” “stop,” “fast forward,” and “reverse.” Internally, the
DVD player uses five states: “stopped,” “playing at normal speed,”
“paused,” “forward at 2¥ speed,”, and “reverse at 2¥ speed.” Figure 1.5
shows the effect of the inputs on these five states.

Pressing a button on the DVD remote (corresponding to the inputs)
causes the video to superimpose the name of the button in the top left
corner of the video output. Therefore, one other video state must be con-
sidered: the current state of the screen (video output). The screen is 1024
pixels wide by 768 pixels high and has “true color” (32 bits per pixel), for
a total of (232)(1024 ¥ 768) possible discrete states. To calculate the combina-

10 Chapter 1 ■ Verification in the Chip Design Process

Main_Street

reset

timer_pulse

Elm_Street

reg_
proc
latch

clk

Light_Direction(0)

Light_Direction(1)

■ FIGURE 1.4

Circuit design of the flawed traffic signal showing the logic gates translated from the VHDL in Figure
1.3.

1 The number of possible states is 2n, where n is the total number of bits of latches and
arrays.

tions of current-screen states to next-screen states, square the number of
screen states: [(232)(1024 ¥ 768)]2. However, because each pixel has no effect
on any other pixel, it is only necessary to verify that each pixel can display
all 232 possible colors, limiting the state space and keeping calculations
in the realm of workstation computability.

Therefore, the bounded number of possible current states of the DVD
video design is as follows:

number of pixels ¥ number of possible pixel colors ¥ number
of internal state machines, or

(1024 ¥ 768) ¥ 232 ¥ 5 = 16,888,498,602,639,360

However, to verify exhaustively that the chip is correct, all transitions
from current state to next state must be considered. The number of
possible next states of the DVD video design is based on

number of pixels ¥ number of possible pixel colors ¥ number
of possible inputs, or

(1024 ¥ 768) ¥ 232 ¥ 6 = 20,266,198,323,167,232

1.2 The Verification Challenge 11

Stop

Rew

Play

PauseFF

■ FIGURE 1.5

The DVD state machine transitions. The ellipses represent the five states; the arrows show the effect of
pressing particular buttons on the remote control.

Therefore, to exhaustively verify the chip, the correctness of all tran-
sitions from all possible current states to all possible next states must be
checked, or

16,888,498,602,639,360 ¥ 20,266,198,323,167,232 = 3.4 ¥ 1032

Even with a simulation engine that could verify 1,000,000
transitions every second, this task would still take more than
10,853,172,947,159,498,300 years. Want to hang around?

In this same example, the DVD video chip illustrates the extreme of
state space explosion. The introduction of array space and a number of
internal states produces too many possible combinations to verify
exhaustively.

To combat state space explosion, verification engineers break the
problem down into smaller pieces. A typical chip may have 100,000
latches, imbedded arrays, and hundreds of input pins. Rather than verify
the entire chip at once, the verification team will carve out sub-
components of the design and verify these pieces separately. Once the
smaller, more manageable pieces are verified, the team stitches the
chip subcomponents back together and ensures that they work.

Furthermore, many of the possible states of the chip and many of the
possible input combinations are defined as illegal based on design spec-
ifications. An illegal state is a state that the design should never enter.
The traffic light example mentioned above has just 64 legal combinations,
as two of the internal states are unused and are therefore invalid. Illegal
states cut down the size of the current states that must be evaluated by
the verification engineer.2

1.2.2 The Challenge of Detecting Incorrect Behavior
The second verification challenge is detecting when the design violates
the expected behavior or specification. With all of the possible transitions
from one state to the next, the verification engineer must be able to iden-
tify whether or not the design acted correctly based on the current state
and input.

Rather than focusing on each of the possible states of the hardware,
verification engineers validate the logic at a higher level of abstraction:
inputs are grouped into valid command and data sets, and the verifica-
tion engineer concentrates on the behavior of the design based on the
functional input stimulus.

12 Chapter 1 ■ Verification in the Chip Design Process

2 Verification engineers cannot ignore illegal states in certain chip designs, specifically
those chips that must be tolerant of errors. Illegal states can occur because of many factors,
including erroneous input, alpha particles flipping a latch, or circuit failures. The verifi-
cation task may require ensuring that the hardware can recover from these unexpected
conditions.

In the traffic signal example, a verification engineer will expect certain
behavior from the design. Stimulus is applied to the design by manipu-
lation of the five input signals, and the output, Light_direction, is
monitored. When Light_direction is “01” (Main Street traffic is flowing)
and Elm Street traffic is detected, the verification engineer expects that
the light will change direction when the timer_pulse rises. This may
or may not flag the flaw in the design, depending on whether or not
Main Street traffic is still detected. Furthermore, the verification engi-
neer can look inside the design and place checks on internal components.
In our example, the verification engineer should assert that the
current_state_dout latch must never enter a state of “00” or “11.”

Table 1.1 describes four real-life examples of functional verification,
as well as the particular nuances and special challenges associated with
verifying each logic type. Each example requires a method for activating
the design (stimulus) and a method for checking that the design acted
correctly (result validation). The first example, a microprocessor, may
have hundreds of instructions that can operate on the values in the
general-purpose registers (GPRs). When each instruction completes, the
verification engineer can check that the appropriate target register con-
tains the correct value. It is equally important to check that the logic did
not update another register erroneously.

1.2 The Verification Challenge 13

TABLE 1.1 ■ Examples of functional stimulus and a possible verification method: Type of logicÆ
stimulus Æ method of validating results

Type of design Functional-based Example of result Special challenges
stimulus validation

Microprocessor Instruction stream Do the resulting Have all possible
loaded into memory registers have the combinations of

correct values after instruction
each instruction? sequences been

verified?

IO device Header data Does the proper Can the IO device
followed by data move to the handle hundreds
destination correct outbound of possible traffic
address, data, port? generation
and checkbits sources?

Memory controller in Requests for data Is the correct data Is systemwide
a multiprocessor and store retrieved and coherency
server commands from stored? maintained?

multiple processors
to a large array
space

Digital video converter Streaming-encoded Does the video appear How do we know
video correctly on a if a pixel is

monitor? wrong?

In simplest terms, then, the verification challenge comes down to
two fundamentals:

1. Drive the state transitions and input scenarios

2. Flag any incorrect behavior exhibited by the design

Verification engineers attack the challenge by using two fundamental
methods: (1) simulation-based verification and (2) formal verification,
or verifying the design adheres to protocols by using formal proof
engines.

In simulation-based verification, the verification engineer applies stim-
ulus to a software model of the design. The sim model runs in conjunc-
tion with a simulation engine, which accurately reflects the behavior of
the design. As inputs are applied, the simulation engine evaluates the
design’s reaction to the specific inputs on the current state, and updates
the internal state of the design accordingly. The simulation engine is
often run on a desk-side workstation (a general purpose computer), and
the verification engineer uses the user interface to query the behavior of
the model to check for results and to flag incorrect behavior.

Formal verification, a newer technique, is a great complement to sim-
ulation. Rather than verifying possible input sequences and internal-state
machine values individually or in sequence, formal verification proves
that a protocol, assertion, or design rule holds true for all possible cases
in the design. The major drawback of formal verification is that it can
only verify a limited size design. Because all possible values in a design
are checked, formal verification engines can consume enormous
amounts of computer resources, even on small designs. For this reason,
formal verification most often is applied to portions of the entire design
rather than the whole so the engine can digest the design and return
results in a reasonable timeframe.

This book covers the strategies used to verify complex hardware
designs. It describes techniques to apply stimuli and identify errors while
running simulation, as well as methods to perform formal verification.
The verification engineer must be a sleuth, keeping an open mind about
the possible problems that may occur in the design. A top-notch verifi-
cation engineer is invaluable to the design team, combining experience
on how to uncover design flaws with the ability to develop tests and
checks that guarantee the success of the fabricated chip.

1.3 MISSION AND GOALS OF VERIFICATION

Design teams manage the process of developing computer hardware by
balancing the triple constraints:

14 Chapter 1 ■ Verification in the Chip Design Process

■ Schedule: Computer product success depends heavily on hitting
the marketplace at the right time. Delays in getting products to
market can be deadly for a company, as, more than in any other
industry, a disproportionate amount of revenue goes to the product
that gets to market first.

■ Cost: At the same time, a company must endeavor to maximize
the profit created by a digital hardware product. A key profit lever
is to keep the manufacturing and development expense for a
product at a minimum.

An expanded look at the verification cycle, as pictured in Figure
1.6, shows that after silicon fabrication, engineers perform testing
on the entire system using fabricated hardware running end-user
applications. Frequently, bugs missed by verification are discovered
by engineers during this systems testing, causing design updates
and re-fabrication of the hardware. These changes costs money and
time, as fabrication facilities charge additional money for re-doing
a chip, and some chips, depending on the technology used, may
take up to 2 months to process. After a completed systems test, the
company manufactures the product and ships it to customers.
Customers provide the company with feedback about the product,
which, in turn, feeds the requirements for follow-up products.
Examples of customer feedback include requests for new features
or higher quality.

■ Quality: Customers expect that delivered products will meet qual-
ity standards. Component failures invoke warranty costs, which
affect the company’s bottom-line. Furthermore, if the marketplace
perceives that a product is of poor quality, it can have a devastat-
ing effect on the company.

Finding the correct balance of schedule, cost, and quality will depend
on the product. However, the balancing act is tricky, as optimizing for
two of the constraints will often hurt the third. For example, maximiz-
ing quality while minimizing schedule often inflates product cost.

Figure 1.7 shows how the costs of undetected bugs grow over time. If
a bug is uncovered early during verification, it costs little to fix: the
designer reworks the HDL and the verification team shows that the
update fixed the original problem. A bug found in a systems test,
however, may cost hundreds of thousands of dollars: hardware must
be refabricated and there is additional time-to-market. Finally, and
most costly, a customer discovering a bug not only invokes warranty
replacement or upgrades but may tarnish the image of the company or
brand of products—a problem from which the company may never
recover.

1.3 Mission and Goals of Verification 15

Verification is the single biggest lever that affects all three of the triple
constraints. A chip can be fabricated sooner rather than later if the ver-
ification team is able to remove errors quickly and efficiently. Further-
more, costs of re-fabricating a chip multiple times (“re-spins”) can drive
development expenses to an unacceptable level and negatively affect
the product schedule. A solid verification effort reduces the number of
re-spins and removes latent problems, which, if not discovered by veri-
fication and a systems test, can show up in customer environments and
cause quality problems.

Because verification has such a strong effect on the triple constraints,
it is prudent to track verification productivity. The design team measures
verification productivity by two factors: schedule time and quality of bugs
found.

16 Chapter 1 ■ Verification in the Chip Design Process

Customer
requirements

High level
chip design

General
specification and

architecture

HDL implementation
(logic design)
at RTL level

Physical circuit design
via synthesis or
custom layout

Functional
verification

Fixes to
HDL

Timing
analysis

Design sent
to fab

Fabricated chip

Customer

Manufacturing

System
testing

Errors found in the hardware...

Repeat fabrication process

■ FIGURE 1.6

An expanded look at the design process includes the systems testing on the real hardware, manufac-
turing, and delivery to the customer. A well-verified chip avoids the re-fabrication step and proceeds
right to manufacturing. Avoiding the re-fabrication loop saves both time and product cost.

Project teams track productivity with respect to schedule time by mea-
suring the steepness of the “bug curve,” as shown in Figure 1.8. An effi-
cient verification team with a robust process will remove bugs at a faster
pace than will a less effective team and process. Therefore, it is a good
practice to maintain a history of bug curve rates from each project to
track improvements in verification productivity.

1.3 Mission and Goals of Verification 17

Verification Systems test

Time

Customer

C
os

t

■ FIGURE 1.7

The cost of undetected problems grows over time. There is little cost in finding and fixing a problem in
verification, but there is a huge cost if the customer finds the problem.

N
um

be
r

of
 b

ug
s

Verification

Systems test

Productivity improvements drive
early problem discovery

Time

■ FIGURE 1.8

Increasing verification productivity reduces schedule and costs. The figure shows three possible “bug
curves.” The longest one stretches into the systems test, where engineers find the last bugs on the
hardware. Improvements in verification, depicted by the two other curves, will drive the bug discovery
earlier, reducing schedule and costs.

The second measure of verification productivity, quality of bugs found,
is a more qualitative evaluation than is measuring bug curve rates. The
verification team measures the quality of a bug by analyzing the scenario
and test case that uncovered the design flaw: the more difficult, esoteric,
or complex the scenario, the higher the quality of bug. A productive ver-
ification team should find any “easy” or low-quality bugs early in the ver-
ification schedule. Throughout the process, the average complexity of the
design flaws that the verification team uncovers should grow. Simple
bugs found late in the verification cycle signal that the verification envi-
ronment and test plans need to be analyzed.

1.3.1 Verification Engineer “Musts”
A strong verification team is an invaluable asset to a company that devel-
ops hardware. The mission of the verification team is to remove all of
the functional design problems as quickly as possible. To do this, verifi-
cation engineers must gain specific skills. Successful verification engi-
neers must understand the design, must be able to work closely and
cordially with designers, must understand the strengths and weaknesses
of the variety of verification tools at their disposal, and must be able to
use these tools efficiently to uncover the bugs in the design.

Verification requires detailed knowledge of the design that is being
verified (the design under verification, or DUV). Understanding of the
design comes at two levels: the specification level and the implementa-
tion level.

The specification dictates the overall function of the design. It includes
the architecture, the inputs and outputs, and the performance require-
ments. The architecture is the main specification of the device: for a
microprocessor, this is the instruction set and definitions; for an I/O
device, this is the protocols. The architecture is well documented and
often globally published. The inputs and outputs of the DUV define the
chip or system pins and include the required timings and protocols. The
performance requirements of the DUV include the desired throughput of
the design, processing speed, and bandwidth, as well as associative cache
size and cache.

The implementation of the design deals with the internal constructs
used to perform the specification. This is known as the microarchitecture
of the design. Implementation components include the following:

■ Queues and buffers that hold data and commands

■ Internal state machines

■ Pipelines

■ Data and control flows

18 Chapter 1 ■ Verification in the Chip Design Process

Designers or system-level architects (in the company or in industry)
write the specifications of the design, documents that are available for
the verification engineer to study and are the arbiter when design ques-
tions arise. Less formal documentation exists for implementation details,
and this information must come from the designers. If necessary, verifi-
cation engineers must extract the implementation details by inter-
viewing the designers. These implementation details are needed so
appropriate verification tests that stress the many structures within the
design can be created.

Throughout a project, the verification engineer must have a strong
relationship with the designer team. This does take some finesse, as
it is the verification engineer’s role to find a designer’s mistakes and
oversights.

Consider the words used when reporting a bug back to the designer.
A verification engineer might state, “I found another bug in your design,
and I need a fix right away.” Depending on the verification engineer’s
tone, this could be an insult to the designer. It is also important not to
jump to conclusions about the design. Very often, “alleged” design bugs
are not a design deficiency but are problems in the test-case stimuli or
checking components. A more tactful approach would be to say, “I think
I’ve uncovered an interesting condition in the design. Can you take a look
at this?”

With the wealth of techniques available for verification, it is important
for a verification engineer to understand the strengths and weaknesses
of each method. Some methods may be very effective on small portions
of the design but not on large chips (e.g., formal verification). Other
methods might require long lead times to create the code necessary for
the environment. A verification engineer must also understand the tools
that assist in gauging the state space covered by the testing. Each of these
tools must be evaluated for

■ Effectiveness of approach for this design implementation

■ Effect of the approach on simulation throughput

■ Amount of time required to create the verification environment

Finally, when a verification approach is selected, the verification engineer
must be able to create the verification environment, ensuring that
the required functional test scenarios occur and that the checking is
complete. This requires proficiency in multiple verification techniques,
all of which rely on the verification engineer’s knack for sniffing out bugs
in the design.

1.3 Mission and Goals of Verification 19

1.4 COST OF VERIFICATION

Functional verification is essential to the hardware design process. The
benefits of the verification effort appear throughout the design process,
but the team measures its success by results in system testing. So how
does the development team gauge just how many resources to put into
verification? Too few resources and the hardware will need multiple
passes through the fabrication process, which costs orders of magnitude
more dollars in time-to-market and development expenses than would
allocation of enough verification resources. At the same time, a design
team does not want to over-invest in any area, including verification, as
overinvestment would indicate costly redundancy. Therefore, the devel-
opment team must strike the right balance.

Verification resource costs fall into three areas: engineering costs, DA
tools, and time. A successful verification effort requires appropriate
investment in all three areas.

1.4.1 Engineering Costs and the Need for an Independent
Verification Team

Verification engineering cost is a measure of the number of people per-
forming verification. Some design teams employ separate verification
engineers, whereas other teams use their logic designers to perform ver-
ification after writing their HDL. However, there are clear advantages to
using an independent verification team and not having the design team
play a dual role. Some of these advantages are listed here.

Verification is a separate vocation that requires different skills than
does logic design. The ability to create the scenarios and checkers needed
to find bugs is detective work unlike the skills needed to create HDL that
meets logical and physical requirements. The multiple disciplines of
verification are a full-time job to master—and once mastered, the verifi-
cation engineer’s worth to the design team remains in the verification
realm.

A second reason for an independent verification team is these verifi-
cation engineers will not be biased by the thought process that goes
into the design. There is a certain catch-22 in verifying one’s own logic
design. If a designer overlooked a case while creating the logic, the same
designer should not be expected to write a test scenario for that missed
case.

Finally, when creating logic, a designer makes assumptions about the
design. It is the verification engineer’s job to judge separately the verifi-
cation environment requirements without the bias of the designer’s
assumptions. Interface protocol specifications should come from an inde-
pendent designer or from master documentation, rather than from the
designer whose logic is under test.

20 Chapter 1 ■ Verification in the Chip Design Process

However, for many reasons, the design team is crucial to the verifica-
tion effort. First, designers are the initial line of defense against bugs.
Designers should perform a suite of verification tests that ensures a level
of quality before delivering HDL to the verification team. No designer
wants to “throw HDL over the wall” to the verification team, only to have
it “thrown back” because of typographical errors, simple bugs, or an HDL
compile failure.

Designers also have keen insight into tricky areas of the logic. As the
designer writes the HDL, there are complex parts that cause him or her
to pause and think through multiple scenarios and different implemen-
tation choices. The designer should highlight these areas of the design
to the verification team as potential sources of bugs. Methods of identi-
fying these areas include assertions statements, e-mails to the verifica-
tion team, and suggestions for functional coverage metrics.

A final key element for designers to assist in the verification effort is
through accurate and timely documentation. Documentation is an essen-
tial part of the design job. Important documents for the verification engi-
neer include interface specifications and details on the internals of
the design such as queue depth, pipeline length, array sizes, and state
machine transitions. This information guides the verification team in cre-
ating complete test plans and executing their work.

Design management teams often calculate the engineering cost of ver-
ification by the ratio of logic designers to verification engineers. This
ratio can vary in industry from about 1 :1 to 1 :4 (four verification engi-
neers for every designer). Accounting for the difference in these ratios is
tricky. Investment in sophisticated DA tools can differ across design
teams; where there is less investment, more verification engineers are
needed. In addition, active participation in verification by the design
team as “the first line of defense” can drive down the number of required
verification engineers. Other factors such as business pressure will
alter the equation. For example, a small company in a highly competitive
market such as network processors must get their new products correct
on the first fabrication pass, and hit the market with a new product every
6 months. A failure in verification can put this small company out of
business. For this company, it is better to hire additional verification
engineers than risk missing a bug.

1.4.2 DA Tools
This book will cover multiple methodologies for functional verification.
Behind each of these methods is DA software that assists the verification
engineer in finding bugs.

The basic building blocks of DA tools for verification are simulation
engines and formal verification engines. Simulation engines allow the
verification engineer to drive stimulus into a software model of the HDL.
The engine, which compiles the HDL, will “simulate” the effects of

1.4 Cost of Verification 21

stimulus on the HDL over time. The simulation engine calculates the
values of internal latches, wires, and arrays and presents these values to
the user. Formal verification engines are conceptually different from sim-
ulation engines. Whereas simulation engines allow the user to create dis-
crete scenarios and check multiple properties concurrently within the
logic, formal verification engines check a single property against all pos-
sible input scenarios. A formal verification engine uses mathematical
proofs to verify the single property against all inputs. The two methods
are complimentary, and verification engineers must be trained to use
each.

Other DA tools build on the two basic engines. Software includes

■ “Coverage” tools that assist in evaluating the effectiveness of the
scenarios driven into the logic during simulation

■ Trace viewers that show graphical (waveform) representations of
the scenarios and the values of the latches, arrays, and wires in the
HDL

■ High-level verification languages that assist the verification engi-
neer in writing complex simulation environments

■ Test case generation software that can create multiple simulation
test cases based on abstract templates

■ Simulation farm control software that allows simulation jobs to be
run across multiple workstations simultaneously and collects the
test scenario results

■ Assertion-based tools that assist in debug, allowing a bug to be
flagged at the moment it occurs and enabling the engineer to know
exactly where the HDL failed

Electronic DA (EDA) vendors supply these tools to the industry. DA
software costs generally are based on licensing fees. A verification team
must procure enough software licenses to run the peak number of veri-
fication jobs. If, for example, a company allocates 100 workstations for
running simulation cycles, 100 simulation engine licenses are required;
otherwise, workstations will be idle.

1.4.3 Time
The amount of time spent on verification is key in the overall cost equa-
tion. Design teams must balance engineering costs and DA software
licensing with schedule time. If a design team has an aggressive sched-
ule (based on fabrication passes, experience, and industry benchmarks),
then more verification skills and software will be required to meet the
goals. If the verification team is not allocated enough resources for the

22 Chapter 1 ■ Verification in the Chip Design Process

allotted schedule, either the schedule will slip or the results seen in the
fabricated hardware will be poor. Time IS money in the equation.

All of these factors lead to a key management requirement for suc-
cessful verification: commitment. Engineering management must invest
in the appropriate verification skills (including experienced leaders) and
software tools to meet goals. The complexity of the hardware designs
requires nurturing of the verification teams as well as the design team.
Long-term careers in verification must be encouraged. The best hardware
teams have separate and clear career paths for verification engineers to
reach high technical ranks within the company.

1.5 AREAS OF VERIFICATION BEYOND THE SCOPE OF THIS BOOK

There are multiple verification disciplines within hardware design,
including functional verification, timing verification, and test verifica-
tion. This book focuses on functional verification and does not cover the
other areas.

However, test verification is worth a comparison to functional verifi-
cation, as the two are sometimes grouped together despite different
requirements and personnel skills. Test verification focuses on the ability
to detect manufacturing defects quickly as chips come off the manufac-
turing line. Current practices in test verification include driving random
patterns within the chip and collecting the output patterns. Test engi-
neers choose patterns to stimulate a maximum number of circuits inside
of the chip. Test tools assist in predicting the output patterns based on
the inputs. These patterns are run on the manufactured chips, allowing
defective ones to be discarded.

Also included in the field of test verification is built-in self test (BIST).
Test engineers create BIST engines for both arrays (ABIST) and logic
(LBIST). The goals behind both types of BIST are the same. After man-
ufacturing, process engineers activate the BIST engines inside the chip.
The engine drives patterns through the logic or arrays, and compares the
resulting patterns against the predicted pattern. If the patterns do not
match, the manufacturing process may need to be tuned in order for the
chips to be fabricated correctly.

Even though test verification and functional verification are often
grouped together, the two disciplines have little in common. A chip that
successfully runs through test verification may still add 1 + 1 and get
three if the chip had poor functional verification. Test verification only
confirms (to a high probability) that the manufactured chip is equivalent
to the circuit design specified to the manufacturing process. It makes no
statement about the logical functionality of the chip itself.

Furthermore, the theory behind functional verification and test verifi-
cation are different. Test verification aims to create patterns that flag bad

1.5 Areas of Verification Beyond the Scope of this Book 23

circuits; therefore, patterns that exercise a broad number of circuits in
a short interval are optimal. However, functional verification bugs
are much more insidious, in that the circuits are defect-free but the
combination of specific circuits—which together define a function in
the design—may give a wrong result in specific scenarios across a long
interval.

On a different front, this book will briefly detail some specific DA tools
but will not compare strengths and weaknesses of competing DA com-
panies’ offerings. The book demonstrates some of these tools as possible
choices for specific verification challenges.

1.6 THE VERIFICATION CYCLE: A STRUCTURED PROCESS

Structure is necessary in any complex field. In verification, structure
comes from a well-defined process. The verification process identifies the
required steps toward developing a bug-free chip release. Because the
verification team enhances their environment based on previous experi-
ences, the process is called the verification cycle.

Generally, verification teams stay together across multiple products.
The verification cycle shadows the product cycle, allowing verification
engineers to incorporate enhancements into the methodology continu-
ously. Verification engineers gain experience through multiple passes of
this cycle.

Figure 1.9 shows the stages of the verification cycle. The cycle
proceeds in a clockwise direction, starting from the functional specifica-
tion, a key delivery to both the design and verification teams. As the
team starts development of the verification environment, they reach
the first checkpoint. After completing the verification plan based on the
specifications, the entire engineering team reviews the plan to look for
enhancements.

Two stages in the process provide feedback to previous stages. These
stages are the debug and regression stages in which the verification team
detects problems either in the HDL or in their environment code. As
regression winds down, the team prepares the product for fabrica-
tion. This is the second checkpoint in the cycle, when the design and
verification teams review all of the verification work against the tape-out
criteria.

The cycle proceeds through the manufacturing and systems test. Once
the team receives fabricated hardware, they evaluate the quality of their
verification effort through escape analysis, which provides feedback into
the process to plug holes in the verification environment. The final check-
point in the cycle, lessons learned, uses escape analysis and the entire
verification cycle experience to compile a list of items to improve on as
they start the cycle again.

24 Chapter 1 ■ Verification in the Chip Design Process

1.6.1 Functional Specification
The functional specification describes the desired product. It contains
the specification of the interfaces with which it communicates, the func-
tion that it must perform, and the conditions that affect the design. In
the case of a processor, the functional specification describes the inter-
faces to memory and IO, the architecture it must obey, and details of the

1.6 The Verification Cycle: A Structured Process 25

■ FIGURE 1.9

Each spin of the verification cycle starts with the functional specification. This process gives a struc-
ture to the verification tasks and provides feedback for continuous improvements. Tasks around the
inner circle are the stages of the verification cycle. Strategic checkpoints assure process compliance.

surrounding system. The system architect determines the functional
specification.

The functional specification is the foundation of the verification cycle.
While the designers implement the functional specification in HDL
(shown to the outside of the Debug HDL and Environment stage), veri-
fication engineers incorporate the functional specification into the veri-
fication environment. This may seem redundant, but it is the foundation
of verification. A second implementation of the functional specification
by the verification environment forms the cross-check in the cycle. This
redundancy ensures that the designer’s assumptions and implementation
match the architect’s intent.

1.6.2 Create Verification Plan
A verification plan is crucial because it presents a detailed description of
the verification effort. It answers the questions “what am I verifying?”
and “how am I going to verify it?”

The verification leaders write the verification plan, using the logic
designers and system architects as consultants during the process.

Unless the design is simple, a hierarchical approach to verification is
required. This approach allows the verification engineer to work on
smaller components before building up to the system level (for more
detail, see Chapter 2, Section 2.1). The verification plan contains sections
for each component at each level of the hierarchy.

Verification plans include many of the following elements:

■ Specific tests and methods—define the type of environment that the
verification engineers will create (see Chapters 3–4, 7–12).

■ Required tools—list the software necessary to support the
described environment. This list may drive requirements on the
software procurement team or on internal software development
teams (Chapters 5, 6).

■ Completion criteria—define the measurements that indicate that
verification is complete (Chapter 13).

■ Resources (people, hardware, and software) required and schedule
details—tie plan to program management by estimating the cost of
verification.

■ Functions to be verified—list the functions that will be verified at
this level of verification.

■ Functions not covered—describe any functions that must be veri-
fied at a different level of the hierarchy. The verification of these
functions will be specified in a different section of the verification
plan.

26 Chapter 1 ■ Verification in the Chip Design Process

Chapter 4 contains an in-depth look at the components of a quality ver-
ification plan.

The team reviews the final verification plans with the architects and
designers. This is the first checkpoint in the cycle. The designers and
architects compare the verification plans with the design specification
and internal structures, suggesting enhancements and modifications to
the verification environment plans.

1.6.3 Develop Environment
Once the verification plan is in place, construction of the verification
environment begins. Verification engineers spend the majority of their
time on this stage of the cycle. As such, much of this book describes
methods for developing verification environments. Major components in
the verification environment are stimuli and checking for simulation-
based environments, as well as rules generation for formal verification
environments.

The verification environment is the set of software code and tools that
enable the verification engineer to identify flaws in the design. The soft-
ware code tends to be specific to the design, whereas the tools are more
generic and are used across multiple verification projects.

There are many different types of environments, including determin-
istic, random based, formal based, and test case generators. Each of these
environments has different mechanisms to create stimuli and check
results against the DUV. In all cases, a reference model cross-checks the
behavior against the design intent. The verification team creates the ref-
erence model to implement independently the design specification. A ref-
erence model makes a prediction of the test case results based on the test
case stimulus. The verification team builds the knowledge of the func-
tion and design into the reference model. The reference model provides
the checking components with the predicted data. The checking com-
ponents compare the predicted data to the actual data from the DUV.

The environment is continually refined throughout the verification
cycle. Refinements include fixes and additions to the software code.

1.6.4 Debug HDL and Environment
The next step of the verification cycle integrates the verification envi-
ronment with the HDL. This is when verification engineers begin to
debug the hardware by running tests. As these tests run, verification engi-
neers find anomalies and examine them. Examination reveals the failure
source, which will be either in the verification environment or in the HDL
design. The anomaly occurs because the verification environment has
predicted different behavior than has the HDL. This is the payoff of the
redundant path in the cycle.

1.6 The Verification Cycle: A Structured Process 27

If the error is in the verification environment, the verification engineer
updates the software to correct the predicted behavior. Otherwise, the
HDL has a bug that the design team must correct. Once fixed, the veri-
fication engineer reruns the exact same test. This ensures that the update
corrects the original anomaly and does not introduce new ones. The team
applies this iterative approach until all tests pass.

Chapter 8 details the debug process.

1.6.5 Regression
Regression is the continuous running of the tests defined in the verifica-
tion plan. This is a required step in the verification cycle for two main
reasons. The first reason is that verification environments often have ele-
ments of randomization, which drive different input scenarios each time
the team runs the test. The second reason is that the team must repeat
all tests after fixes have been applied to the design.

The failure occurrence rate drops as the verification cycle reaches the
regression stage. To uncover hard-to-find bugs, verification teams lever-
age large workstation pools, or “farms,” to run an ever-increasing number
of verification jobs. The randomization built into the environment
enables new test scenarios on each of the jobs.

When the team finds a bug during regression, they use the same
process as during HDL and environment debug. The bug is isolated and
fixed, and then the verification team re-runs the exact same test.

With chip fabrication on the horizon, the verification team must reflect
on the environment to ensure that they have applied all valid scenarios
to the design and performed all pertinent checks. This is the tape-out
readiness checkpoint.

Chapter 13 contains full details on the regression process.

1.6.6 Fabricate Hardware
The design team releases the hardware to the fabrication facility when
they meet all fabrication criteria. Releasing a chip to the fabrication facil-
ity, or fab, is also known as the tape-out, a reference to the past when the
design team stored the chip’s physical design information onto magnetic
tape and sent it to the fabrication facility. The chip design team uses a
checklist, or tape-out criteria, to track all of the items, both physical and
logical, that they must complete before sending the design to manufac-
turing. Verification is a major part of the checklist, being the indepen-
dent judge of the logical capabilities of the chip. The verification team
creates and maintains their portion of the tape-out criteria, initially
basing it on the test plan. This tape-out criteria is the formalized require-
ments for the verification cycle.

With all the hard work that goes into preparing a design for manu-
facturing, this stage is a good time to celebrate a milestone in the process.

28 Chapter 1 ■ Verification in the Chip Design Process

At this point, the failure occurrence rate in the regression stage has
dropped to near zero, indicating that the verification environments have
exhausted their bug-finding capability. However, environments that
include randomization parameters continue in the regression stage after
the design is sent to manufacturing. During the time between tape-
out and receiving parts back from manufacturing (about 2 months’
duration), continued regression using randomization parameters may
uncover further logical bugs. In complex designs, random-based verifi-
cation environments continually create logical states in the design or sce-
narios that were never encountered before tape-out. Occasionally, one of
these new states yields a bug, making the continued regression worth-
while. Designers integrate fixes for bugs found after the initial tape-out
into revised HDL code, which will also contain fixes for any problems
found during the hardware debug of the systems test.

1.6.7 Debug Fabricated Hardware (Systems Test)
The design team receives the hardware once the chip fabrication com-
pletes and the manufacturing test of the chip has been applied (this val-
idates that there are no physical defects that may affect the function).
The hardware is then mounted onto test vehicles or into the planned
systems for these chips. At this point, the hardware debug team (which
often consists of designers and verification engineers) performs the
hardware bring-up. During hardware bring-up, further anomalies may
present themselves.

Again, the design and verification teams must investigate these anom-
alies. The overall verification goal is to avoid finding bugs on the real
hardware, as it is very expensive. Debugging on the real hardware is
much more difficult than in a verification environment, mainly because
the real hardware does not provide the full tracing capabilities of the ver-
ification environment. If an anomaly is determined to be a functional
bug, the design team must fix it. There may be multiple options for fixing
the bug, which include using system microcode to avoid the failing con-
dition. However, if the fix must be made in the hardware, re-fabrication
is required.3

1.6.8 Escape Analysis
If bugs are uncovered during the hardware bring-up, then the verifica-
tion team must perform escape analysis. This often overlooked but crit-
ical part of the verification cycle ensures that the verification team fully

1.6 The Verification Cycle: A Structured Process 29

3 Often hardware fixes can be contained to the metal layers or to wires on a chip. If
this is the case, then the re-fabrication process may not require rebuilding certain masks.
This is a less expensive and shorter process than when a fix requires latches or arrays to
be modified or added.

understands the bug and the reasons why it was not discovered in the
verification environments. The verification team must reproduce the bug
in a simulation environment, if possible, to confirm they understand the
bug and to assess how the bug got through the verification stage and into
the real hardware. The team cannot assert that the bug fix is correct
without reproducing the original bug in verification.

Chapter 13 describes the analysis process on the bugs that “escape.”
The escape analysis assessment feeds back to the beginning of the

verification cycle, as the verification team learns from escapes. Future
hardware benefits from the learning, as verification test plans and
environments are continually improved. This is the lessons-learned
checkpoint.

1.6.9 Common Verification Cycle Breakdowns
Breakdowns in the verification cycle result in time-consuming and costly
re-spins of the chip. Too often, teams do not follow the entire verifica-
tion cycle. A few of the more common verification errors made by design
teams or their management are listed here. These errors lead to break-
downs and sub-optimal chip or system development efforts.

The first breakdown is when the verification engineer uses a functional
description based on the design implementation rather than on the func-
tional specification. When this occurs, the redundancy path breaks,
leading to a verification effort that simply proves that the HDL design is
equal to itself. The functional specification must come from a higher-
level source than the HDL.

Underdeveloped verification plans can foul-up a design effort. The ver-
ification plan is the road map for the environment implementation. It is
also the communication vehicle to other verification engineers and the
design team. Skipping or skimping on the verification plan inevitably
causes engineers to overlook functional testing on portions of the design.
The plan review checkpoint protects against this failure.

Similarly, an underdeveloped or late-to-arrive specification will cause
verification breakdowns. As with the problem of underdeveloped verifi-
cation plans, the design team needs to create and document the spe-
cification prior to writing HDL. The specification provides both designers
and verification engineers with valuable information needed for
implementation.

Another common breakdown occurs if the verification team skips the
escape analysis step of the cycle. There are lessons to be learned from
the mistakes. Because most escapes occur on very difficult or esoteric
problems, there is no shame in discussing the holes in the verification
environments. However, one of the more common reasons that a verifi-
cation team might skip escape analysis is that the team disbands and the
members take on different jobs. Even in this case, the team should give
the next set of verification engineers the benefit of escape analysis. We

30 Chapter 1 ■ Verification in the Chip Design Process

are destined to repeat our mistakes when we do not learn from them.
This is the intent of the lessons-learned checkpoint

Too often, management does not employ a large enough verification
team. Without the needed number of verification engineers, the team
cannot complete a robust verification plan on the required schedule. This
breakdown will cause morale problems and execution failure.

A final breakdown worth highlighting occurs when the project team
sends the design to manufacturing based on the schedule rather than on
tape-out criteria. Occasionally, the drive to maintain a schedule over-
shadows quality. However, in the end, both schedule and quality suffer
when the team does not meet the design tape-out criteria. The second
checkpoint, tape-out readiness, brings rigor and a quantitative assess-
ment needed to protect against this process breakdown.

1.7 SUMMARY

Functional verification is a necessary step in the development of today’s
complex digital designs. In the past, chips were simple enough that a
good designer could review and debug a chip with relative success. At
the same time, schedules were not so competitive, so that companies
were not concerned about the chips needing a multitude of passes
through the fabrication facility before the product shipped to customers.
Now, chip complexity and product competitiveness have increased to the
point that design teams require partners, the verification engineers, to
find the multitude of bugs that lurk in their RTL designs.

Verification engineers must understand the specification and internal
microarchitecture of the DUV. They couple this knowledge with pro-
gramming skills, RTL comprehension, and a detective’s ability to find
the scenarios that uncover bugs. The entire design team relies on the
verification engineers’ success, as no other group can more positively
influence the costs, schedule, and quality of a product.

Verification engineers face two major challenges in their work. The
first is the creation of a comprehensive set of stimuli, a task made diffi-
cult by the enormous state space of complex chip and system designs.
The second challenge is to identify incorrect design behavior when
encountered during verification of the DUV. Together, driving stimulus
and checking for bugs are the pillars of functional verification.

The foundation under these two pillars is the well-defined verification
cycle. Verification teams use the cycle to create a repeatable, closed-loop
practice upon which they base their work. The cycle requires careful
planning, communication, consistency checks, and feedback loops to
ensure that the design is solid when released to the fabrication facility.
The process includes creation of test plans, writing and running verifi-
cation tests, debugging, and analysis of the holes in the verification

1.7 Summary 31

environments. This book describes the details of the verification cycle
and the methods verification engineers use to ensure quality design
releases.

1.8 EXERCISES

1. What relevance do scenario creation and checking for incorrect
behavior have on functional verification?

2. What prevents verification engineers from creating test benches for
every possible scenario in a DUV?

3. Describe the role of functional verification within the chip design
process.

4. How do the costs of verification compare to the savings? What
impact would under-spending on verification have on the triple
constraints?

5. From which stage (or stages) of the verification cycle are these
activities?

(a) Write code to drive and check the DUV
(b) Understand the interesting scenarios and corner cases in the

DUV
(c) Contemplate what improvements need to be made to the ver-

ification environment based on hardware results
(d) Contemplate what improvements need to be made to the ver-

ification environment as the bug rate drops
(e) Find bugs by using a simulation engine
(f) Find bugs by using an oscilloscope
(g) Discuss design intent and specification with designer and

architect
(h) Discuss a miscompare between the HDL and the reference

model with the designer
(i) List the tools needed for verification
(j) Create a reference model to check the design’s behavior

6. Which of the following should verification engineers do, and which
should they avoid?

(a) Talk to designers about the function and understand the
design

(b) Rely on the DUV designer’s description for input/output spec-
ification

(c) When creating checkers and reference models, look at the
HDL implement for hard-to-predict cases

32 Chapter 1 ■ Verification in the Chip Design Process

(d) Try to think of situations the designer might have missed
(e) Focus on exotic scenarios and situations
(f) After receiving a bug fix, move on to the next job in the test

plan
(g) Try to fill all queues during simulation
(h) Focus on multiple events at the same time
(i) Move on to the next product after the initial tape-out because

the work is complete

1.8 Exercises 33

The verification team spends the majority of their time in two stages of
the verification cycle: (1) develop verification environment and (2) debug
hardware design language (HDL) and environment. These two stages are
at the heart of verification work, and at their foundation are hierarchi-
cal verification and the strategies for driving and checking designs under
verification (DUVs).

A basic practice with a complex problem is to break the large problem
into smaller, more manageable challenges. Verification accomplishes this
by using the existing hierarchical structure of the design. Rather than
verifying an entire system from the start, the verification team will first
attack the smaller building blocks of the system before advancing to
larger portions.

No matter where in the hierarchy a verification engineer works, the
basic strategy of driving stimuli and detecting errors is vital to verification.
With driving stimuli and detecting errors as the underlying requirement, it
is useful to understand the roots of today’s verification methodologies.
Early verification methodologies had little automation for stimulus or
checking. However, the design complexity explosion demanded continu-
ous and dramatic changes to the available verification techniques.

This chapter starts by describing how the verification team creates
the right hierarchical partitions for the design. Then, basic driving and
checking strategies are discussed, providing a guide for the sources of
these basic verification building blocks. Together, these concepts form
the structure upon which verification engineers build successful envi-
ronments. The chapter ends with a brief summary of the evolution of the
verification methodologies, from the early and simple test patterns to
complex test case drivers and formal verification.

2.1 VERIFICATION HIERARCHY

Designers of today’s complex chips do not create “flat” HDL. Instead,
designers divide the system and chips into logical units. These logical
units usually, but are not required to, follow the architecture for the

C H A P T E R 2

VERIFICATION FLOW

system and chip. This common practice is called hierarchical design.
Hierarchical design allows a designer to subdivide a complex problem
into more manageable blocks. The design team combines these more
manageable blocks to form bigger blocks; these blocks are merged until
the chip or system is complete. Figure 2.1 shows an example of a large,
complex system.

Can verification capitalize on this inherent design style? The answer
is “absolutely!” The same factors that drive the design team to break a
complex chip into simpler components also suggest that verification
teams take advantage of the same hierarchical designs.

2.1.1 Levels of Verification
Because designers divide the logic into hierarchical components, verifi-
cation takes advantage of the same hierarchical boundaries, or “levels.”
There can be many levels of verification. Presented here are some typical
levels, but actual implementations may have more or fewer levels
depending on the complexity of the design. The following list represents
some potential levels, from lowest to highest:

36 Chapter 2 ■ Verification Flow

System Node

Board 1

Backplane

Memory
bus

arbiter

System
memory

Local
memory

Peripheral

Processor

Cache FPU

DMA ALU

■ FIGURE 2.1

A block diagram showing the multiple components of a large system. This system contains multiple
processor boards, or nodes, hooked together with a backplane containing a bus adapter and system
memory.

1. Designer

2. Unit

3. Core

4. Chip

5. Board and system

6. Hardware/software coverification

Figure 2.2 shows how the above hierarchical verification levels cor-
respond to the large, complex system shown in Figure 2.1.

Each of these levels of verification has strengths and weaknesses.
Although most projects do not require all of these levels, complex designs
need at least two levels of verification. Verification teams choose levels
based on their unique design features and the complexity of the logic
within the hierarchy.

2.1 Verification Hierarchy 37

NodeBoard Backplane

Bus
arbiter

Memory
access unit

Local
memory

Peripheral Processor

Cache FPUDMA ALU

SystemSystem
level

Board
level

Chip
level

Unit
level

Designer
level

Memory PCI
controller

PeripheralSouth
bridge

X Y

Memory Bus snoop
unit

■ FIGURE 2.2

A hierarchical diagram of the multiple node system from Figure 2.1 showing the system built from the
lower-level components. The designer level contains the HDL building blocks. For space reasons, the
figure only shows the lowest level of the cache unit. However, every chip has units, and every unit has
designer level HDL. Each of the next levels—unit, chip, board, and system—stitch together multiple
lower-level blocks.

Designer-Level Verification

The designer level (also called macro) is the lowest level. This level is
often verified by the designer, hence its name. This level may be simply
a “smoke test” in which the designer “certifies” the design’s use for the
“real” verification environment. The designer level of verification ensures
that the design will load into the simulation engine and that the basic
functions are correct.

The designer level tends to be very dynamic, especially at the begin-
ning of a project. At this level, interfaces and functionality tend to change
often. During the design phase, engineers often uncover problems that
make altering or moving functions across HDL macro boundaries
necessary, which, in turn, causes interfaces to change.

Because of the high number of designer level blocks in a system, it is
not feasible to have a verification engineer verify each block indepen-
dently. However, the blocks at the most risk should have an independent
verification effort.

Because of the small size of these blocks, verification engineers often
use formal verification (for more detail, see Chapters 11, 12) at this level.
At higher levels of the hierarchy, with thousands of latches, formal veri-
fication tends to hit a state space explosion problem, rendering the tool
cumbersome above the designer or unit level.

Unit-Level Verification

In large and complex designs, unit-level verification is needed. In the
system diagram of Figure 2.2, the DMA, ALU, FPU, and cache blocks are
all units. The unit contains multiple designer level pieces of HDL that
are stitched together into units. Interfaces and function are more stable
than at the designer level, because units tend to have formalized specifi-
cations and physical or timing contracts to which designers adhere.
Because interfaces and specifications are more stable, the verification
team can create a more advanced environment (using randomized
stimuli and autonomous checking).

To facilitate verification, the design should be partitioned so that the
units have fully contained functions. These verification requirements are
synergetic with the hierarchical design partitioning, which facilitates
larger design efforts. Although the purpose of the unit level is to verify
fully the functionality of the unit, there may be certain functions that
the verification team cannot verify here, such as function split across
multiple units.

Once the unit level is verified, the verification engineer can proceed to
higher levels of verification, knowing that the unit’s basic functionality is
correct. The higher levels must then verify that the connectivity and inter-
face protocols to and from the unit are correct; that is, the neighboring
units contained in higher levels correctly implement the unit.

38 Chapter 2 ■ Verification Flow

Core-Level Verification

A core is a special, reusable unit which requires a complete functional
specification with stable interfaces. Designers may use a core multiple
times within a system and across multiple systems. They may create the
core internally, or obtain it from an external source.

The verification of a core is a double-edged sword. The positive is that
once verified, reusing a core should not add a burden to the verification
effort. For example, a core that the engineering team reuses 10 times in
a design needs just one strong verification effort, saving the need to verify
it nine other times. The drawback to core-level verification is that because
designers may use cores in many different applications across a system
or multiple systems, the usage of each instance may be different. This
drives a broader verification effort because the verification team may not
know all of the actual interface and application parameters in which the
design team will place the core. Engineers can be very creative when it
comes to using a core, exercising it in ways different from the primary
intentions. Therefore, the verification team must think outside the box
when verifying a core, allowing for a broader range of input scenarios
than the core’s initial use. Thus, the bounds in which the verification
team works on a core are less defined and put a bigger burden on the
team to verify the core in a more aggressive manner, as they must dream
of “weird” scenarios.

When the core will be used by outside design teams, the verification
team must employ a well-defined process, as engineers shy away from
cores they do not trust. The key question when designing and verifying
a core that other design teams will use is, “How do I gain my customers’
confidence?” This is where a well-defined process helps. The verification
cycle for a reusable core includes a regression suite, well-documented
specification (functions and interfaces), coverage items (to help indi-
cate what has been verified), and possibly verification scenarios (these
scenarios are the ones in the regression suite). The well-documented
specification teaches the end-user about the core, and the verification
scenarios indicate the bounds and depth of the core verification effort.
The regression suite exists for when designers make changes to the
core. When this occurs, the verification team runs this suite of verifica-
tion tests to ensure that this fix or enhancement did not cause any other
problems within the core. Chapter 10 covers verification reuse in full
detail.

Chip-Level Verification

The chip level is composed of multiple units. At this level, there are very
well defined interface boundaries. The purpose of this verification is to
ensure that the units are properly connected and that the design adheres
to all unit interface protocols. However, there may also be functions that

2.1 Verification Hierarchy 39

could not be validated at the unit level; these functions require full testing
at the chip level. An example of this is chip reset, in which the verifica-
tion team simulates the entire start-up sequence of the chip.

The well-defined interface of a chip creates a huge advantage for the
verification team at this level. Designers must solidify the physical chip
pin definitions early in the design process, giving the verification team a
stable base on which they can create chip level test suites. Although
lower-level environments and designs tend to evolve throughout the
project, chip-level verification requires less maintenance.

Board- and System-Level Verification

A board is a collection of chips that may also contain some discrete,
“glue” logic (AND gates, OR gates, etc.). Many times, designers place this
glue logic into a small field programmable gate array (FPGA), providing
an inexpensive and modifiable interchip connection. The purpose of this
level of verification is to confirm the chip interconnection, integration,
and board design.

The definition of a system is different across industry segments and
product lines. In some cases, a chip could be a system (in which case,
the chip and system levels are the same); in other cases, the system is
a multiframe server with hundreds of chips. For verification, the basic
definition of a system is a logical partition of independently verified
components.

The verification focus at the system level is that of interaction rather
than particular functions buried inside a chip or unit. As a result, a ver-
ification team working on a large application-specific integrated circuit
(ASIC) will assume that previous verification efforts on its units and
cores specified, documented, and fully verified the lower levels below the
system level. Because the focus is on component interaction, the verifi-
cation engineer assumes that the individual chips, cores, or units are
functionally correct.

Hardware/Software Coverification

The hardware/software coverification level marries the system level
hardware with the code that runs on the hardware. The code may be
device drivers, system boot code, microcode, or application software
that runs on the hardware engines. The purpose of this level of verifi-
cation is to find bugs due to inconsistent understandings of the specifi-
cations between the hardware designers and the code architects and
programmers.

To run the hardware and software together, hardware and software
engineers must rigorously verify both components. Methods of software
verification are beyond the realm of this book.

40 Chapter 2 ■ Verification Flow

2.1.2 What Level To Choose?

Choosing which verification levels to use is not as easy as it may seem.
Although six levels of hardware verification were described above, most
verification projects will use an appropriate subset of these levels based
on the design details. A single system on chip (SoC) may need unit-level
verification on certain new blocks, followed by a chip/system-level effort.
On the other hand, a complex server would need verification at the
designer, unit, chip, system, and coverification levels.

There are technical factors that help teams decide which levels to
choose for a given design. These factors are highlighted here.

■ Always choose the lowest level that completely contains the targeted
function. The smaller the model, the more direct control the veri-
fication engineer has over creating the required test scenarios. A
test that exercises the board in Figure 2.2 does not need a system-
level model containing the node and the backplane. These extra
design pieces have a negative effect on simulation engine perfor-
mance without providing any benefit to the test.

■ Each verifiable piece should have its own specification document.
This helps keep interfaces and the function more stable, as well as
allows everyone on the team to be “reading from the same sheet of
music.” If functions and interfaces change often, then verification
environments must change as well (with recoding each time).

■ New or complex components need focus. If a portion of function is
new (versus function inherited from previous designs) or complex,
then the verification team should isolate this function and create
an environment to test it. Complex functions often have arbitration
logic or multiple requestors vying for a single resource. This type
of function lends itself to creation of robust, focused verification
environments.

■ The appropriate level of control and observability drives decisions on
which levels to verify. The lower the verification level, the more
control the verification engineer has on the interface inputs, and the
more observability on the outputs. This comes at a price of addi-
tional effort. Robust designer-level verification on all macrocompo-
nents in a large system is not realistic, as more effort is required to
construct each environment for each macro. Instead, only the
complex macros have individual verification, leaving the less risky
components to the higher levels. When dealing with higher levels of
verification (chip, board, system), the team implicitly verifies the
smaller components at the cost of lower control and observability.

■ Function may dictate verification levels. Verification engineers
cannot verify certain functions at the lower levels. Often, this is
because a function spans multiple components. Although the veri-
fication environment can test each component individually, the

2.1 Verification Hierarchy 41

environment can prove only portions of the whole function. At a
higher level, the team assembles all of the components and verifies
the entire function. The trace/debug function is an example of this.1

Trace/debug logic usually spans across many smaller blocks, cap-
turing signal and latch data from across the entire chip.

From a business standpoint, verification resources are in demand and
management must allocate them wisely. It may be desirable to verify
every designer block, but resources may make this unfeasible. Alterna-
tively, proposing to take the available resources and serialize the
designer-level verification effort would break the schedule. Figure 2.3
illustrates the trade offs.

Bug Rates and the Levels at Which They Are Found

The amount of controllability and observability that the verification
engineer has directly correlates to the ability to find bugs in the design.

42 Chapter 2 ■ Verification Flow

Higher levels:
system view

Most resources

Lower levels:
controllability and
observability

Least resources

■ FIGURE 2.3

Lower levels of the verification hierarchy provide the verification engineer with more control over the
smaller environment. Higher levels provide a systemwide view, but lose the tight control. The trade-off
for the control is that, because there are more designer or unit levels (compared with one system), the
total staffing requirements for the lower levels is higher than the system level.

1 Design teams use the trace/debug function to debug the fabricated hardware. When
testing on the actual hardware, engineers must obtain information about the internal states
of the machine in order to debug errors. The trace/debug functions capture the state of a
set of internal signals and latches across a small window of time (a few hundred cycles).
It is critical for the verification team to verify the trace/debug function or it may not work
when the chip is fabricated.

Controllability indicates the ease at which the verification engineer
creates the specific scenarios that are of interest. If a design contains a
bug but the input scenario conditions that create the bug never occur,
the verification engineer will not discover the bug in simulation. Con-
trollability and the verification level of hierarchy are closely related. The
higher the level of the hierarchy, the less controllability the verification
engineer has. Verification engineers have greater controllability at lower
levels because there are fewer dependencies on the surrounding units to
cause the scenario.

As an example, a verification engineer wants to create a buffer-full con-
dition in a macro within a core. If the level of hierarchy is the designer
level, in which just the macro exists in the simulation environment, the
verification engineer simply controls the input signals by pushing data
into the buffer without ever popping the data. However, at the higher
core level of verification, it is much harder to create this condition
because the core level inputs are further from the buffer, and the behav-
ior of the surrounding macros and units may continuously pop data from
the buffer unless a very specific core level event occurs. This makes it
difficult to fill the buffer. Figure 2.4 depicts these two cases: in Figure
2.4a, the verification engineer can directly control the state of the buffer;
in Figure 2.4b, the control is indirect because of all of the surrounding
logic.

2.1 Verification Hierarchy 43

(a) Filling the buffer at the designer level . . . (b) . . . is easier than at the core level

■ FIGURE 2.4

At the designer level, verification engineers can manipulate the HDL inputs and create corner con-
ditions in the logic. It is harder to create these cases at higher levels as the other portions of the
design effect the stimulus.

Observability is the other aspect in discovering bugs. Observability
indicates the ease with which the verification engineer can identify when
the design acts appropriately versus when it demonstrates incorrect
behavior. Lower levels of verification are conducive to observability
because bugs are more likely to manifest themselves on the outputs. At
the higher levels, it is often harder to observe interesting bugs without
internal observation points.

The increased ability to find bugs at the lower levels dovetails with the
design cycle as well. Each designer on the team works at a different rate
and pace. Therefore, not all macros in a project are ready for verification
simultaneously. Designer- or unit-level verification may be available on
early blocks long before an entire chip is ready for verification. As a
result, it is good practice to progress the verification focus from the lower
levels to the higher levels over time. This practice typically yields bug
rates and trends as shown in Figure 2.5.

Another Word on the Cost of Bugs

Figure 1.7 compared the cost of finding a bug in verification to finding
the bug in hardware or the customer environment, showing that the
longer a bug goes undetected, the more costly it is to fix. There is a saying

44 Chapter 2 ■ Verification Flow

Months

P
ro

bl
em

s
pe

r
w

ee
k

100

80

60

40

20

0

Designer
Unit

Chip
System

■ FIGURE 2.5

Lower levels of verification tend to uncover more bugs because they occur earlier in the design cycle
and because verification of each designer or unit level occurs in parallel with the others. It is an effi-
cient practice to wait until the bug rate begins to drop in a lower level before moving to the next level.

that holds true: “Pay me now, or pay me later—with inflation.” Similarly,
this trend holds true across the levels of verification, further augment-
ing the business and technical need for a hierarchical approach to
verification.

A bug found at the designer level has little cost. The designer has the
algorithms and decision process of the HDL fresh in his or her mind, and
finding a bug quickly may drive the designer to implement the function
differently, long before physical design or timing of the macro occurs.
That same bug found at chip or system level has moderate cost because
it will require more problem isolation and debug time. Furthermore, the
designer may no longer be able to reimplement the function in a more
effective manner because the required rework of physical design on this
and other macros would break the schedule.

2.2 STRATEGY OF VERIFICATION

The above discussion of controllability and observability illustrates that
the verification engineer divides work into two separate tasks: driving
(controllability) and checking (observability) the design under test. The
two tasks correspond to the following basic questions a verification engi-
neer must ask:

1. Am I driving all possible input scenarios?

2. How will I know when a failure has occurred?

These tasks are separate but must work together to succeed. A verifi-
cation engineer captures a bug if the design inputs aggravate the failing
condition and if a checker flags an illegal state. One is inadequate without
the other. Driving all possible combinations of inputs cannot uncover a
bug if the checkers fail to identify the bad condition. Likewise, checking
for all possible failures is futile if the drivers fail to stimulate the con-
ditions that cause the failure. As shown in Figure 2.6, drivers and
checkers are the yin and yang of verification.

The following sections give a brief overview of how driving and check-
ing work together to uncover bugs. The principles of driving and check-
ing are expanded in Chapters 7 and 8.

2.2.1 Driving Principles
What does it mean to “drive all possible input scenarios”? Although
driving all possible input scenarios is trivial with a two-latch design, it
is very hard to gauge completeness of input scenarios in a complex
design. And what does it mean to “know when it fails”? How can we know
if a complete set of checkers are in place?

2.2 Strategy of Verification 45

To analyze these questions, first look at the “black box” in Figure 2.7.
The black box is a piece of HDL, which is called a black box because ver-
ification engineers do not look inside the design implementation. The
verification engineer does look at its inputs and outputs, their definitions,
and their functions. The actual behavior of the black box and its outputs
will depend on the inputs supplied to it over time and the function it
performs. Given a set of input stimuli, the function of the black box will
yield specific, predictable values over one or more machine cycles.

The black box may have complete documentation, or not. The amount
of documentation required and the quality of documentation varies by
the designer, the company policy, and the size of the black box. Larger
pieces of design (which are higher in the design’s hierarchy) tend to have

46 Chapter 2 ■ Verification Flow

Checker

Driver

■ FIGURE 2.6

Finding a bug in the design under verification requires both the stimulus components, or drivers, and
checking components. A verification engineer cannot find a bug without creating the failing conditions
and detecting incorrect hardware description language behavior. Therefore, driving and checking are the
yin and yang of verification.

Inputs Outputs

Design
under

verification
(DUV)

■ FIGURE 2.7

Black box verification is the most common simulation style of verification. Under the black box style,
verification engineers manipulate the inputs and check the outputs but do not observe or set signals or
latches inside the design under verification.

more documentation. Smaller portions of HDL (lowest levels of the hier-
archy) tend to have embedded documentation but not separate func-
tional descriptions.

When charged with verifying a piece of design, the verification engi-
neer should first read whatever documentation exists for that design. The
first task is to understand all input and output lines. The verification
engineer must then understand the design’s function and thereby be
able to predict the outputs based on the inputs. This is the design’s
specification.

It is important that the verification engineer obtain the input descrip-
tions from a source other than the author of the HDL under test. This
source might be an industry standard specification (such as a Peripheral
Component Interconnect (PCI) protocol) or another designer whose HDL
outputs are the inputs to the HDL under test. This is significant because
the verification engineer must maintain independence in understanding
the design inputs in order to break the redundancy path. If the DUV
designer authors the input specification, the verification engineer would
duplicate any incorrect input understanding that the DUV designer has
and bugs may be missed. If the interface specification must come from
the designer whose logic is under test, the verification engineer should
ensure that other designers sign off on the contents as matching their
expectations of what their logic will drive into the DUV.

With the input definitions understood, the verification engineer begins
to plan a stimulus strategy. Often, a design has a large number of input
signals. In this case, the verification engineer will group multiple signals
together based on their logical function. For example, a memory design’s
command and address busses function hand in hand to access or store
data at the intended memory location. Other memory DUV input signals
might support different functions such as resetting the design. Grouping
signals and busses together is important because the verification engi-
neer will develop separate driving strategies for each set of grouped input
signals.

In developing a stimulus strategy, the verification engineer must
always remember the goal is to maximize the scenarios that the verifi-
cation environment creates. For control signals, this means ensuring that
the environment exercises all possible commands and modifiers. For data
busses, the environment should create a wide assortment of possible data
patterns. It is especially important for the environment to exercise edge
cases when data patterns are choosen. Edge cases create odd, exception,
or end conditions in the design such as storing to the last address in
memory or causing an overflow in an adder.

Driving the Black Box

Figure 2.8 briefly describes four inputs, including a wire name and bit
width, for our black box. Even with the limited description of the inputs

2.2 Strategy of Verification 47

of this black box, the verification engineer can start to understand the
design by ascertaining the following details:

■ There is a stack inside.

■ The stack is at least two deep.

■ The stack is 8 bits wide.

■ Only one entry can be written at a time.

However, there are still plenty of unknowns about this black box. For
example, even though it is clear that there is a stack inside the design,
the current description does not indicate whether the stack protocol is
last in, first-out (LIFO) or first in, first out (FIFO). Other unknowns about
the design include the following:

■ How deep is the stack?

■ What conditions indicate a full stack?

■ When do the contents become valid?

■ What is the behavior if a read and write occur on the same cycle?
Is that even allowed?

■ How long does it take to reset the stack?

■ Do the entries get zeroed-out or just marked invalid?

■ What happens if a read operation occurs when the stack is empty?

48 Chapter 2 ■ Verification Flow

Inputs OutputsDUV

clean_stack(0) will invalidate the entire stack

pop_buf(0:1) directs the logic to pop the top 0,
1, or 2 entries from the stack the next cycle

in_buf_data(0:7) is the data to be placed in the stack

in_buf_valid(0) is on if data is valid

■ FIGURE 2.8

A DUV has inputs and input descriptions. This DUV has four sets of input signals, each with an English
language description of the purpose of the signals.

■ In case of reading two entries, how are the two data items returned?
Back to back or one at a time?

■ What happens if pop_buf(0:1) is set to “11”b (e.g., three reads)?

Despite these unknowns, the verification engineer can begin to con-
template the types of scenarios that he or she must drive into the logic.
This simple input definition allows the test plan to begin. Table 2.1 lists
stimulus that the verification team should include in the test plan for the
black box.

Because of the close ties between driving stimuli and checking
outputs, the verification engineer must next look at the outputs of the
black box before completing the stimulus strategy. However, before

2.2 Strategy of Verification 49

TABLE 2.1 ■ The verification team should include these scenarios in the test plan for the black box in
Figure 2.8

Stimulus cases Description

Writing and not writing Writing data to the stack is obvious. However, the
verification engineer must include in the test plan
cases in which data are not written to the stack for
multiple cycles.

Writing and reading The inputs appear to allow for simultaneous reads and
writes to the stack.

All three possible reads There are three different decodes (none, 1, or 2)
described for pop_buf(0:1) and the verification
engineer must create all three cases.

Reading when there is nothing in The correct function of the design in this case has not
the stack been defined yet. Regardless of whether or not the

design will return no data or an error, the verification
engineer must include this case in the test plan.

Writing when the stack is full At this point, both the depth of the stack and the correct
function when data is written to a full stack is not
defined. The test plan still must include this scenario.

Reading from the stack and Concurrent conflicting operations, such as reading from
resetting it (clean_stack) the stack and resetting the contents of the stack are

often a source of bugs.
Writing to the stack and resetting it Again, this concurrent conflicting operation must be

(clean_stack) included in the test plan.
All bits of data The test plan should include verifying that each bit of

the width of data (8 bits) can be either ‘0’b or ‘1’b,
and that each line in the stack correctly holds the 8
bit value.

Temporal cases such as writing Temporal cases, where stimulus evolves over multiple
back-to-back with a double read cycles, are always the most difficult to create—and
on the first cycle (starting with most often where bugs lurk.
an empty stack).

returning to the black box example, the fundamental verification check-
ing strategies must be discussed.

2.2.2 Checking Strategies
Stimulus and checking are tightly coupled. Although the verification
stimulus engines drive inputs, it is the checker’s job to ensure that the
DUV behaves correctly based on the stimulus. A DUV behaves correctly
when it abides by the design specification and intended function.

There are four main sources of checkers. The design and architecture
teams document these sources in various specifications, and the verifi-
cation engineer must understand each of these sources to create en-
vironments that contain complete checking. The four sources are as
follows:

■ The inputs and outputs of the design

■ The context of the design

■ The microarchitecture rules of the design

■ The architecture of the design

Checkers Based on Inputs and Outputs

A fundamental source of checkers is the outputs of the DUV because any
bug in the design will at some point manifest itself at the outputs of the
design. With robust drivers, most bugs will show up as a miscompare on
an output of the design. A miscompare occurs when the actual DUV data
does not match the expected data from the checker.

To predict the correct outputs—and to flag incorrect outputs—the
verification engineer must understand the output specification. Output
documentation comes in many forms, such as an industry standard
specification (e.g., a PCI protocol) or an informal interface between two
designers. As discussed, the verification engineer should work from a
definition of the output that is independent from the designer whose
HDL is under test.

The verification engineer writes code to check the values of the outputs
at all times during simulation. It is equally important to check for a
correct value on a bus when the verification engineer expects a specific
output as it is to check that there is no value on the bus when the bus
should be idle.

The verification engineer’s checking code uses the inputs to predict the
outputs. Outputs are a function of the inputs, so the verification code
must understand the function to correctly predict the outputs. The actual
implementation of the function in verification code is usually simpler
than in the HDL, as the verification code is not burdened by require-

50 Chapter 2 ■ Verification Flow

ments on latch counts and physical timing. Further simplifying the ver-
ification code is that the environment, unlike the HDL, does not have to
handle all possible input cases when the verification engineer knows that
the environment will only drive specific values.

Figure 2.9 shows that verification engineers create checkers for output
signals based on the DUV function and properties and on the input stim-
ulus. A function might be as simple as “when a command is sent on the
input, a response is expected on the third cycle.” This property might
actually generate multiple checks: a countdown from three to make
sure the response appears on the output at the correct time, and a check
that the actual response is correct. In addition, there should be a check
that the response bus remains idle on all cycles except when the verifi-
cation environment predicts a response. The inputs and the function of
the design dictate the value of the response.

Checkers Based on the Context of the Design

When verifying HDL at the lower levels of the design hierarchy, it is
important for the verification engineer to understand the design’s higher-
level functionality, or design context. A verification engineer must under-
stand the big picture, even when focusing on a specific portion of the
design.

In Figure 2.10, HDL A and HDL B are two portions of the design that
work together to perform a higher-level function. For example, the higher
level of DUV hierarchy in Figure 2.10 might be an instruction decode
unit within a microprocessor. The function of HDL A might be to parse
an incoming instruction stream into individual instructions, and the
function of HDL B might be to group a few instructions together to
feed a parallel (superscalar) pipeline in the neighboring execution unit.

2.2 Strategy of Verification 51

DUV

DUV function

■ FIGURE 2.9

A fundamental source of output checking is the DUV inputs. The verification engineer creates
checkers for output signals based on the inputs and an understanding of the DUV function.

The execution unit’s inputs would be wired to the outputs of this decode
unit.

In this example, it is important to understand the overall function of
the decode unit while verifying an individual portion such as HDL A. A
design context property or function would be that the decode unit design
should feed only valid instructions (op-codes) to the execution unit.
When verifying HDL A by itself (macro-level hierarchy), the verification
engineer needs to know all valid op-codes, and that invalid op-codes
should cause exceptions and not be passed on signals that drive HDL B.
The test plan for verifying HDL A would include tests that imbed invalid
instructions in the stream.

Verification engineers derive design context checking for HDL B as
well. Knowledge of the number of parallel execution paths in the super-
scalar pipeline and the types of instructions that are valid in each path
is required to verify HDL B. HDL B must group the instructions accord-
ing to these design context rules, as the outputs feed the execution paths.
For example, the execution unit might contain a fixed-point arithmetic
pipeline, a floating-point arithmetic pipeline, a branch execution pipe-
line, and a store pipeline. It would be illegal to have floating-point oper-
ations fed to the fixed-point unit. The verification of HDL B must ensure
that this never occurs.

Checkers Based on Microarchitecture Rules of the Design

Verification teams derive many checkers from properties based on the
microarchitecture, or internal structures of the design, so verification
engineers must understand the internals of the design. This applies to
driving techniques as well as checking because it is equally important for

52 Chapter 2 ■ Verification Flow

HDL A

Higher level of DUV hierarchy

HDL B

■ FIGURE 2.10

When verifying lower levels of hierarchy such as individual HDLs, the verification engineer derives
checkers from an understanding of the function, properties, and context of the larger design. In this
figure, functions of the higher level of hierarchy imply checking on the individual outputs of HDL A and
HDL B.

the verification engineer to know if, during the course of simulation, the
stimulus has filled a buffer (driving) as it is to know if there has been a
buffer overrun (checking).

Checks based on the microarchitecture can come from many sources,
including these common ones:

■ Invalid state machine values

■ Invalid state machine transitions

■ Overrun or underrun queues and buffers

■ Bad timing on control signals

■ Invalid data

However, the above list is an oversimplification of the specific imple-
mentation of most microarchitecture-based checkers. Figure 2.11 shows
the microprocessor’s superscalar pipeline briefly described in the pre-
vious section. Here, the instruction grouping HDL feeds instructions to
our four parallel executing pipelines. Depending on the contents of
the instruction stream, the pipeline can execute one, two, three, or four
instructions in parallel.

2.2 Strategy of Verification 53

Example instruction stream:

General purpose registers R0–R15

SUPERSCALAR PIPELINE

Instruction
grouping

SUB R7
BRZ R7

SUB R7

In-flight instructions

Fixed

BRZ R7

Execution

Execute

Put-away results

StoreBranchFloat

C
yc

le
s

Stall

No-stall

■ FIGURE 2.11

The architecture and microarchitecture of the design under verification provide a source of checkers.
This figure shows a superscalar pipeline with four pipes: Fixed, Float, Branch, and Store. The ability or
inability of in-flight results to feed prior stages of a pipeline will affect instruction grouping, as shown
by the stall or no-stall arrows. In all cases, as defined by the architecture, the BRZ R7 instruction must
use the results of the SUB R7 instruction.

A superscalar pipeline such as this one will have many checkers based
on the implementation details. One example of checkers is how the
design handles shared resources within the pipeline such as the general-
purpose registers (GPRs). If the microprocessor places the results of a
fixed-point operation in a register (e.g. the subtract result goes to regis-
ter R7 in the figure) that the following instruction, branch if zero (BRZ),
will use, then we have resource contention on R7. If the design under
verification is the execution unit, then the verification engineer can write
checkers that monitor for correct behavior in the case of shared re-
sources. The figure shows two possible implementations. The lower
arrow represents the case in which one pipeline (fixed point) forwards
results to another pipeline (branch) simultaneous to the write of R7. The
upper arrow represents a different implementation, in which a pipeline
stall occurs because the BRZ instruction must wait for the logic to write
the results of the SUB to R7 before execution can continue. The verifi-
cation engineer must write checkers to verify the correct behavior in
either case.

It is interesting to note that if the design under verification is the
instruction grouping design (rather than the execution unit), the verifi-
cation team must check the above example of stalling the pipeline based
on register resource conflicts. In this case, the checker is a design context
based checker of the instruction grouping design. The verification engi-
neer requires an understanding of the input restrictions in the neigh-
boring execution unit. The design context dictates that if a branch follows
a subtract and uses the same register, the design cannot group the
instructions together.

Checkers Based on the Architecture of the Design

Most verification checkers have their roots in the design architecture.
Although the microarchitecture defines the structures that compose the
design, the architecture dictates how the design must act. Industry stan-
dards groups and companies publish architecture specifications for
public protocols, programmable processing units, and system structures.
Hardware designs must abide by these specifications. The architecture
lends itself to being the verification engineer’s main source of checkers
because of the strict requirements on documenting the architecture.

Again using the microprocessor superscalar pipeline shown in Figure
2.11 as an example, the architecture dictates the behavior of all instruc-
tions that pass through the pipeline. The example instructions behave
similarly across practically any microprocessor architecture. The sub-
tract (SUB) instruction must correctly operate on the operands (not spec-
ified on our example) and store the results in R7. The BRZ instruction
must test the contents of R7 and branch to the target instruction address
(again, unspecified in our example) if the contents equal zero. The veri-
fication engineer must predict the results of the instruction stream and

54 Chapter 2 ■ Verification Flow

check that the design results are correct. Furthermore, because all micro-
processor architectures dictate that the BRZ instruction must test the
contents of R7 after any previous instructions (in this case, the SUB
instruction) have updated R7, the checking must also verify this. In this
case, a well-constructed test case would ensure that either

■ R7 be initialized with a nonzero value, and the result of the SUB
instruction writes zero into R7

■ R7 be initialized with a zero value, and the result of the SUB
instruction writes a nonzero value into R7

With this setup, the results of the branch (taken or not taken) will
allow for direct observation of whether the BRZ instruction waited for
execution logic to write the results of the SUB instruction to R7 before
testing for a zero value. Otherwise, if zeros overwrite zeros or nonzeros
overwrite nonzeros, it is difficult to observe from the outputs of the exe-
cution pipeline if the pipeline implementation obeyed the architecture.

Architecture documents exist for all industry standard design proto-
cols, such as Infiniband, all types of PCI, and Ethernet. All micro-
processors have strict architecture rules that dictate their behavior as
well. Programming applications are written based on these documents,
so the verification engineer’s highest priority is to check that the design
follows the architecture in all cases.

2.2.3 Checking the Black Box
We return now to our black box example. Figure 2.12 defines the outputs
of the black box. Each of the four output wires has an associated bit
width and wire name. The short descriptions of the function that accom-
panies each wire begin to answer some of the open questions about the
design:

■ In case of double-read, entries come simultaneously.

■ The logic within the black box indicates when the stack is full.

■ The input driver must retry when overflow occurs, as the data is
discarded.

Yet there are still many unknown details about the design. More
documentation is required to understand the following:

■ How deep is the stack?

■ How soon after a write do the stack contents become valid?

■ What is the behavior if we read and write the same cycle, and can
we even do this?

2.2 Strategy of Verification 55

■ How long does it take to reset the stack?

■ After a reset, are the entries zeroed-out or just marked invalid?

■ What if a test performs a read when the stack is empty?

■ Is the stack a FIFO or LIFO?

■ Must the design return data from a single read on bus1?

The design or architecture team produces a specification of our black
box design. This documentation reveals the following:

■ The stack is seven deep.

■ A new stack entry is valid for reading the next cycle.

■ The stack reset completes the cycle after a clean command, and
the design ignores inputs arriving simultaneous with a clean
command.

■ The clean command turns the valid bit off on all seven entries.

■ No data are returned for a read if the stack is empty.

■ The stack is a FIFO.

Furthermore, the documentation provides an explanation for usage
of the buf_full and buf_overrun signals. The buf_full and buf_overrun
outputs are both required because buf_full becomes active the cycle after

56 Chapter 2 ■ Verification Flow

Inputs OutputsDUV

buf_full(0) indicates that the buffer is currently full
and that any new entries will be dropped.

buf_overrun(0) indicates that the last input was not
added to the stack due to an overrun.

out_buf_data1(0:8), out_buf_data2(0:8) are the
requested data lines. Bit 0 of both signals are the valid bits.

■ FIGURE 2.12

Checking the design under verification requires an understanding of the output signal definitions. This
figure shows four output signals (two of them are bundled and two are single-bit signals) with their
accompanied English language descriptions.

the design receives the data that fill the stack. It is possible for the input
driver to send another byte of data to the cycle so that the buf_full signal
wire becomes active. In this case, the design raises the buf_overrun signal
on the following cycle, and the design drops the “eighth” byte of data.

With all of this information in hand, the verification engineer can write
a test plan that specifies the checkers. Table 2.2 suggests some of the
checkers, the checker source, and an implementation.

Verification Checking Should Not Reimplement To Design

The verification engineer must remain independent while maintaining a
close working relationship with the design team. This is especially impor-
tant when checking code for verification is being created. Although the
verification engineer is privy to the design implementation, the checking
code should not mirror the design algorithm.

2.2 Strategy of Verification 57

TABLE 2.2 ■ The verification team must check these cases for the black box example

Checker Checker source Checker implementation

The design returns Inputs and outputs, A fundamental check on the black box is that the
the correct data architecture returned data matches the sent data. The

verification code must keep an independent
copy of all design under verification (DUV) data
in order to check the data outputs coming from
the stack.

Buffer overflow Microarchitecture The verification code must keep a count of how
much data is in the design. This allows
prediction and checking of the buf_full(0) and
buf_overrun outputs.

Stack become valid Microarchitecture The design description stipulates that the driver
at the right time may read data from the stack the cycle after it

sends it. Therefore, the verification team should
write a checker to verify that the data is not
valid too early (the same cycle it was written)
and that it can be read the following cycle.

Check all outputs Design context Other designs that use the outputs of this black
all of the time box depend on these outputs always being

correct. It is not sufficient only to check for
valid data after a read operation. The
out_buf_data1 and out_buf_data2 wires should
never contain valid data unless the driver
performed a read and there was data in the
stack. Similarly, the buf_full and buf_overrun
wires should only be active when the verification
code predicts a full or overrun condition.

The table lists the checker as well as the type of checker (source).

The verification engineer must always start with the assumption that
the design implementation is wrong. If the checking code mirrors the
design, the potential exists for the checkers to implement a bug in the
same fashion that the design did. This breaks the redundancy path and
would cause the bug to go undetected, as both the design and checker
results match.

To demonstrate this, consider the HDL design implementation of the
stack inside the black box example. Figure 2.13 shows the seven-deep
stack with two pointers, a next_read pointer and a next_write pointer.
The next_read pointer indicates which position to read when the inputs
drive the next read command, and the next_write pointer indicates which
position to put the next byte of data received from the inputs. The V
column is the valid bit for each entry. If next_read and next_write point
to the same entry, then the stack is either empty or full, depending on
the state of the valid bit. The design implements a wrap condition when
either pointer is incremented beyond the seventh position.

As described in Table 2.2, verification checking code must keep track
of the data, as well as the number of entries currently in the stack. Check-
ing code written in C could create a seven-deep stack and use pointers
as in the design. However, the better, simpler way is to create a linked
list. This creates a checking structure with a different and independent
implementation than the HDL design. Verification engineers can take
advantage of the fact that they do not synthesize their code and do
not have to meet timing or physical goals; they must only compile it for

58 Chapter 2 ■ Verification Flow

next_write next_read

Data field V

■ FIGURE 2.13

The seven-deep stack hardware description language for design implementation uses a data field, a
valid bit (V), and two pointers. The pointers track the position for the next write to the buffer and the
next read (oldest entry).

simulation. As such, many verification teams use programming lan-
guages rather than HDLs to implement their drivers and checkers. The
choice of a different style source code further divorces the verification
implementation from the HDL.

Figure 2.14 shows the linked list checker implementation. The simple
linked list has a head and a tail. The code increments a counter for each
write operation and decrements it for each read. A null pointer value
indicates an empty list, as would a counter value of zero. This strategy
allows the checking code to quickly access the top of the stack for read
operations and then remove the data from the stack (and release the
memory). Write operations trigger memory allocation and append the
data to the end of the linked list. This implementation is simple, effec-
tive, and independent from the design approach.

2.2.4 Putting It All Together
The previous sections introduced strategies for driving and checking a
design. Verification engineers find bugs with robust drivers that aggra-
vate the error condition and with complete checking that flags a mis-
compare in the design.

Uncovering complex bugs requires intricate drivers and checkers. Con-
sider the following bug in the black box stack example:2

2.2 Strategy of Verification 59

read

write

counter

■ FIGURE 2.14

The verification code uses a different, and easier to implement, method for tracking the contents of the
data. Rather than building a physical stack (as required in hardware), the verification engineer can
utilize a “virtual” stack implemented as a linked list. The different implementation provides an optimal
checking method uninfluenced by the design implementation.

2 This example works backward and is for illustration purposes only. During the course of
normal verification, the verification engineer is not “given” a bug description and then asked
to create the drivers and checkers that find it. However, this backward challenge does occur
during the reproduction stage of escape analysis (Chapter 13).

The design description states that when the driver asserts the input
signal clean_stack(0) to “1,” the design should clear all the data valid
bits inside the stack design. For simplicity, the design should set the
next_write pointer and next_read pointer to the top of the stack. If
the driver asserts in_buf_valid(0) to “1” (with data) the same cycle as
the clean_stack, the logic resets the pointers as intended but erroneously
puts the data in the stack. This case only occurs when the stack has six
valid entries when the clean_stack and in_buf_valid are set, as the bug is
in the logic that is trying to set the buf_full output. As a result, some-
where in the stack there is a valid bit set to “1”b that should not be on.

What does it take to find this bug? What scenario must the drivers
create? What checkers must be in place to flag the erroneous behavior?
Finding this bug is not trivial.

First, the driver must create a specific sequence of events. Over the
course of a test case, enough writes to the stack need to occur so that
there are exactly six entries loaded. Then, the test case must set the
clean_stack and in_buf_valid signals simultaneously. At this point, the
stack has an erroneous value, but the bug has not manifested itself on
the outputs. If a second clean_stack operation occurs over the course of
the next few cycles, then the design would clear its erroneous behavior
and the bug would go undetected. To detect this bug, the stack needs to
accumulate six new entries without another clean_stack operation. Only
then would the internal pointers move to the erroneously valid entry.

The checkers that would highlight this bug are more straightforward
than the driver scenario, but equally important. The bug could show up
in any one of the following three ways.

The first is a miscompare on the buf_ful output signal. The buf_full
comes on because the next_write points to an entry marked valid (but
should not be valid). Because there is supposed to be only six entries in
the seven-deep stack, the checker flags the bug.

The second way that the bug could manifest itself is as incorrect data
on the out_buf_data1 or out_buf_data2. This occurs when the HDL
responds to a read request by sending the data in the stack position of
the erroneously set valid bit. The checking code predicts the output data
will be the first data written after the clean_stack occurred, but the HDL
returns different data and the environment finds the bug.

The final way that the checkers may discover the bug is when the HDL
sets the buf_overrun output signal too soon. This would occur when the
HDL’s write pointer detects that it is pointing to a valid entry when
another write comes in. Once again, there is supposed to be only six
entries in the seven-deep stack, but the HDL incorrectly has all seven
entries marked valid.

Is it reasonable to believe that the best, most experienced verification
engineer would know to create this exact scenario? Maybe. However,
today’s hardware designs are orders of magnitude more complex, and the
bugs are even more devious. A verification engineer can never envision

60 Chapter 2 ■ Verification Flow

all of the possible failing mechanisms in a complex design. To combat
the problem of increasing complexity, verification technology has
advanced to assist the verification engineer in uncovering even the most
difficult bugs.

The essence of verification lies in the fundamental completeness of the
stimulus and checking components, and the use of these components
across verification levels. This foundation is so important that it com-
prises the three simulation commandments shown in Figure 2.15. The
commandments edict the highest quality of stimulus, checker, and
monitor components and the appropriate time to move from one verifi-
cation level to the next.

2.2.5 The General Simulation Environment
Verification methodologies continue to evolve. In earlier days of hard-
ware design, engineers first performed verification on the fabricated
hardware itself. As the designs became more complex, design auto-
mation teams created simulation engines to model the behavior of the
design. Although Chapter 5 fully describes simulation engines, a descrip-
tion of the general simulation-based verification environment, which
became the springboard for the evolution of the methodology, now
follows.

Figure 2.16 shows the flow of the general simulation-based verifica-
tion environment. The verification engineer writes a test case and sup-
plies environmental data, such as initial values, to the simulation engine,
and the designer supplies the logic description in the form of an HDL.
In this picture, the test case is generic. No matter what the form of the

2.2 Strategy of Verification 61

Thou shalt stress thine
logic harder than it will
ever be stressed again

Thou shalt place
checking upon all

things

Thou shalt not move
onto a higher level until

the bug rate has
dropped off

■ FIGURE 2.15

The three simulation commandments edict robust stimulus, complete checking, and the rule for moving
to the next verification level.

test case, the environment presents it to the simulation engine either
directly or indirectly through a compiler or test case driver. The envi-
ronmental data may be required for both the test case driver and simu-
lation engine. A step called model-build compiles the HDL into a
simulation model, which is the format that the simulation engine uses
to step through cycles and reproduce the behavior of the design.

Simulation engines provide many types of outputs. All simulation
engines have the ability to produce traces of the activity that took
place within the design during the simulation run. Designers and verifi-
cation engineers use waveform viewers to read the trace output files.
Depending on the type of test case, other output files include data on
miscompares identified by the verification code, as well as text-based
results files.

2.2.6 Verification Methodology Evolution
With the advent of simulation engines, the engineers drove simple, single
scenario test cases into the simulation model. The engineers observed
the behavior of the design by looking at a trace generated by the simu-
lation engine. Meticulous scrutiny of the trace revealed unwanted behav-
ior within the design. This type of deterministic verification is called test
patterns and is shown at the start of the verification methodology evo-

62 Chapter 2 ■ Verification Flow

Simulation
engine

VHDL
Verilog

Test case

Testcase results

(not always
required)

Output

Model

Test case
driver or
translator

Initialization
Run-time requirements

Environment
data

Design
source

■ FIGURE 2.16

A typical simulation-based verification environment uses a test case, environmental data, and hardware
description language source code as inputs to the simulation engine.

lution in Figure 2.17. The engineering teams hand-generated each test
pattern to perform a specific scenario, and hand-checked the results via
the simulation trace. Test patterns are deterministic or static, and require
routine maintenance when design changes occur that render the test
pattern invalid. Without maintenance, the team may lose the intent of
the test pattern.3

The process of scrutinizing traces of simulation outputs in search of
bugs is tedious and error prone. As verification methodology evolved,
self-checking test cases replaced the test patterns. Test cases were still
hand-generated and contained a single scenario; however, they differed
from test patterns in that the test case polls the simulation engine while
the scenario is running on the model and compares selected values
from the design with expected values from the test case. The design

2.2 Strategy of Verification 63

Ti
m

e

Test patterns

Single scenario
Hand generated
Hand checked
Hardcoded

Hardcoded

Test cases

Test case
generators

Test case
drivers

More stress per cycle

Formal verification

Coverage tools

Single scenario
Hand generated
Self checking
Hardcoded

Multiple scenarios
Tool generated
Self checking

Interactive on-the-fly generation
On-the-fly checking

■ FIGURE 2.17

Verification environments continue to evolve. Early test cases had simple, handwritten stimulus and had
no automated checking. The evolution brought complex stimulus and checking, along with coverage
tools to the simulation-based environment. Additionally, verification engineers have added formal veri-
fication tools to their arsenal of bug-finding tools.

3 The design methodology also evolved because of complexity issues. Early designs were
captured at the gate level, but it became clear that the designers needed a level of abstrac-
tion to capture the intent of the design, without worrying about each gate. Register Trans-
fer Level design languages such as VHDL and Verilog were created to facilitate the design
process against the onslaught of complexity.

engineer bases the expected values on his or her understanding of the
design function.

Engineers needed more and more test cases to accomplish their tasks
on the newer designs. Engineers began to specialize in the creation of
test cases, and the verification career was born.

At this point, verification engineers and designers wrote most test
cases in the register transfer level (RTL) language (e.g. VHDL or Verilog).
Test cases written in RTL are called test benches. Today, teams still use
the test-bench methodology for simple designs or for verifying a single
macro (designer-level verification). It is possible to create robust test
benches that drive multiple scenarios; however, it is clear that although
RTL is great for describing hardware design, it is not optimal for creat-
ing test cases.

Test Benches Evolve into Test Cases

As verification engineers looked at the onslaught of required test cases,
it was apparent that they needed further design automation to keep pace
with the growing design complexity. Verification engineers invented
test case languages to facilitate writing the input scenarios and checks
required for the given scenario. Test case languages varied from design
to design, but they generally captured the intent of the test scenario at a
level of abstraction higher than the bits and bytes that the verification
engineer needs to drive and check.

Although a verification engineer may create a test case language for
any type of DUV, a microprocessor test case is a special case in which
the engineer can use a test case language to create instruction streams.
A microprocessor test case example follows to illustrate the power of a
test case language.

Figure 2.18 shows a simple microprocessor test case language. The
test case defines initial values; a short, two-operation instruction stream;
and end-of-test case checks. This test case initializes four GPRs: GPR0,
GPR1, GPR5, and GPR6. The two instructions, ADD and OR, use the
initialized GPRs as data operands and write the results into GPR2 and
GPR7. Note that the end-of-test case checks not only verify that the
design writes correct instruction results to GPR2 and GPR7 but also
verify that the operand GPRs remain unchanged.

Figure 2.19 shows a reusable test case translation program for the
microprocessor test case in Figure 2.18. The translation program allows
the verification engineer to focus on the scenarios that must be verified
rather than address the mundane task of initializing every byte in the
model or driving inputs. The verification engineer leaves these tedious
tasks to the test case parser, loader, mnemonic translator, and end
checking program routines. A simple routine such as the mnemonic
translator demonstrates how raising the level of abstraction eases the
burden of creating test cases. The mnemonic (such as ADD and OR)

64 Chapter 2 ■ Verification Flow

is a programming level representation of a multibit code that “instructs”
a processor to perform a specific operation. Rather than requiring the
test case writer to memorize the multibit op-code for each instruction,
the test case language uses the user-friendly mnemonic. Furthermore, the
use of mnemonics in the test case makes for easy test case readability.

2.2 Strategy of Verification 65

Test case ADD OR
Initializations
INIT GPR0 “00000008”X
INIT GPR1 “00000005”X
INIT GPR5 “A5A5A5A5”X
INIT GPR6 “5A5A5A5A”X
Instructions
START ADDR “00005000”X
INSTR ADDR “00005000”X OP ADD GPR0 GPR1 GPR2
INSTR ADDR “00005002”X OP OR GPR5 GPR6 GPR7
Results
ENDCHECK GPR0 “00000008”X
ENDCHECK GPR1 “00000005”X
ENDCHECK GPR2 “0000000D”X
ENDCHECK GPR5 “A5A5A5A5”X
ENDCHECK GPR6 “5A5A5A5A”X
ENDCHECK GPR7 “FFFFFFFF”X

■ FIGURE 2.18

A simple simulation test case language for microprocessor verification initializes internal design under
verification latches, defines an instruction stream for stimulus, and provides end-of-test-case values for
results checking.

Simulation
engine

Microprocessor
test case

End checks

Test case parser

Mnemonic
translation

table
Test case

loader

Microprocessor test case
translator and simulation
driver

■ FIGURE 2.19

A test case environment allows the verification engineer to create multiple test cases by raising the
abstraction level for the verification engineer.

With the test case translation routine in place, the verification engi-
neer can quickly modify the ADD operands to verify the design of the
adder. The verification engineer pays special attention to creating test
cases with operands that hit corner cases such as overflows. The verifi-
cation engineer would also write test cases that verify that any GPR can
be used for the ADD instruction, as well as the case in which the results
of the ADD overwrite one of the operands. The verification and design
teams can conceive of dozens of test cases to verify the adder, as well as
any other of the hundreds of instructions. That is thousands of test cases
required to verify single instructions. Thousands more test cases are
needed to verify that every instruction can follow every other instruction.
Writing each of these test cases by hand would be an overwhelming task,
even for a large verification team.

Test Case Generators and Test Case Drivers

With the need for so many test cases, verification teams realized they
needed further advances in test case automation. At this point in the
evolution, verification engineers invented two separate technologies that
revolutionized simulation-based verification.

The first technology was a direct result of the overwhelming number
of test cases required to verify a design such as a microprocessor. Rather
than hand-generating (at a keyboard) individual test cases for each sce-
nario, verification and tools designers created expert software systems
that use test case templates as inputs. These expert systems have built-
in knowledge of the microprocessor architecture. This raises the abstrac-
tion for the verification engineer to the next level. Now, rather than
calculating each operand needed to verify that the adder overflow works,
a template with keywords such as OVERFLOW tells the test case gener-
ator the desired type of test case. A single template can create hundreds
of different test cases, all with similar attributes. Templates can be very
specific or very generic. For example, a template might call for a specific
instruction (e.g., ADD), or it could specify a choice of any instruction that
uses the fixed-point unit of the microprocessor (e.g. ADD, SUB, OR, XOR,
AND, Shift Left). Innovations such as test case generators allowed veri-
fication engineers to focus on the intent of their test plans rather than
spend their time manipulating bits and bytes of inputs.

Automated test case drivers were the second technology developed
after basic test cases. Test case drivers differ from test case generators in
that test case drivers do not produce a test scenario that can be viewed
before simulation. Whereas the test case generator produces many test
cases that hit specific cases, the test case driver is designed to understand
the input protocols and manipulate the design’s inputs on-the-fly during
simulation. Test case drivers are interactive programs that continuously
interface with the simulation model. Rather than using pregenerated
test cases as the source, test case drivers make real-time decisions about
what to drive on the DUV inputs. Test case drivers replace the test case

66 Chapter 2 ■ Verification Flow

generator templates with parameter files, which use probabilities and
pseudorandom number generators to bias the controls of the design
inputs. These parameter files guide the real-time decisions made by the
driver.

Figure 2.20 shows a generic test case generator setup for a few of the
inputs to a cache. The biasing in the parameter file directs the test case
generator to drive commands based on the specified ratios, or weight-
ings. The parameter file shows only command biasing for illustration
purposes; a real cache parameter file would contain many biasing fields,
including address ranges and data patterns. When the cache DUV inter-
face allows the driver to send a command, the test case generator chooses
one of {STORE, FETCH, STORE QuadWord, FETCH EXCLusive, or NO
OPeration} by using a pseudorandom number generator and the weights
from the parameter file. In this example, the driver would choose the
STORE command 30% of the time on average. The test case generator
then manipulates the input lines (valid, command, data, and tag) as dic-
tated by the cache input protocols. Designers must document these pro-
tocols and the verification engineer who creates the driver program must
understand the precise protocols, but the intent of the driver is to
abstract this low-level detail out of test case creation. In all cases, check-
ing code (not pictured) verifies that the DUV provides the correct
response for each command and that fetch data matches previous store
data for the given address.

2.2 Strategy of Verification 67

Parameter file

Test case
driver

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:23)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

STORE 30
FETCH 25
STORE QW 15
FETCH EXCL 10
NO OP 20

■ FIGURE 2.20

Under the test case generation paradigm, the test case driver uses a parameter file to make decisions
on input stimulus to the DUV. In this case, the DUV is a cache. This parameter file shows weightings
for different cache commands.

Initially, verification engineers wrote test case drivers in general-
purpose programming languages such as C or C++. This remains an
acceptable and viable solution. Recently, the use of High-Level Verifica-
tion Languages (HVLs) has further eased the creation of robust verifica-
tion driver and checker environments. HVLs are described in Chapter 6.

Coverage and Formal Verification

Test case drivers and generators provide the ability to run enormous
numbers of test cases. Server farms dedicated to running simulations
have grown to handle all of these test cases. However, the creation of
pseudorandom, on-the-fly test cases led to the need for more observ-
ability of what sequences test cases actually generate. Verification engi-
neers accomplished this by capturing the scenarios that the test cases
create. Coverage is the collection of information about the scenarios run
against a DUV. Coverage metrics allow verification engineers to be sure
that their test cases actually hit the scenarios that they intended to create.
Coverage metrics also help show the effectiveness of the test case
automation by highlighting unexercised areas of the design.

Continuing with the evolution shown in Figure 2.17, effective formal
verification engines further expanded the tool kit available to the verifi-
cation engineer. This technology departs from the use of simulation
engines by using automated mathematical proofs to show that a prop-
erty of the design holds for all cases. Whereas simulation-based tech-
niques show that for a single path in the design (a test scenario) all
properties are upheld (checkers), formal verification shows that a single
property holds for all paths. The initial drawback of formal verification
engines was that the engines could model only very small portions of the
design (less than 100 latches). Recent advances continue to improve the
size constraints, making formal verification complementary to simula-
tion-based verification techniques. We explain the details of formal
verification in Chapters 11 and 12.

Timeframes of the early evolution in verification methods differed
from one design company to another. Until the mid 1990s, the main
technology available from the EDA industry was simulation engines.
Hardware design companies developed test case generation and driver
techniques in-house. In contrast, today, the EDA industry provides some
of the most advanced engines for both simulation and formal verifica-
tion methods.

2.3 SUMMARY

As design complexity increases, the design teams break their HDL into
logic partitions, which come together in a hierarchy. Verification teams
take advantage of the hierarchy in the same manner and split their work

68 Chapter 2 ■ Verification Flow

into hierarchical levels. The team must decide which hierarchical levels
to use on a project, based on its unique features. The team bases their
choice of levels on multiple factors, including location of highly complex
functions, specification availability, work force, and evolutionary versus
new design implementation.

Once the team chooses the levels of hierarchy, each environment must
focus on the cornerstone of verification: driving and checking. Robust
drivers and complete checkers are both required for effective verification.
One is no good without the other.

Robust drivers require an understanding of the inputs to the DUV. The
goal for the verification engineer is to create all possible scenarios, but
that is not feasible on the largest designs. In any case, the verification
engineer must maximize the scenario generation capability of the envi-
ronment. This process includes driving all possible command and control
signals and driving a varied array of values on data signals. Equally
important is the creation of edge cases, in which unique exceptions and
odd combinations of inputs often uncover bugs in the DUV.

A complete set of checkers comes from multiple sources. One
source is the DUV output signals, from which the verification engineer
can create basic checks. Another source is the design context, which
supplies the verification engineer with a greater understanding of the
underlying function. Finally, the architecture and microarchitecture
specify the exact behavior that the DUV must exhibit and the design
implementation.

Driver and checker practices evolved over time. In their early form,
engineers imbedded stimulus in test patterns—hand-coded bit-level DUV
inputs. Verification has grown enormously from these simple roots.
Advances in test case techniques have raised the level of abstraction,
allowing the verification engineer to focus on creating scenarios and
results checking through automation. Recent advances brought coverage
and formal verification tools into the mix. Each advance in methodology
further strengthens the verification engineer’s capability at all levels of
the hierarchy.

2.4 EXERCISES

1. We return to the town of Eagleton, where the town board has
awarded a new contract to the development team at Eagleton Signal
Controllers and Parking Engineering Solutions (ESCAPES). The con-
tract stipulates that ESCAPES should design and deliver a parking
lot controller for the new, state-of-the-art parking garage.

The garage is a multilevel structure with 500 parking spots. The town
council has decided to base the parking fees on an hourly charge,
with a maximum charge for 8 hours. With this in mind, the team at

2.4 Exercises 69

ESCAPES designs a chip with inputs and outputs as depicted in
Figure 2.21.

The design team breaks the inputs to the chip into two parts:

1. An indication that a new car is entering the garage
(new_car_entering(0))

2. An indication that a car is leaving the garage
(exit_car_valid(0) and exit_car_id(0:8)). The controller
assigns the 9-bit ID to the car when it enters the garage. Nine
bits accommodates the 500-car capacity.

The outputs to the chip are in three parts:

1. A single bit to indicate that the lot is full (lot_full(0)).
2. A set of signals for cars entering the garage. New_car_id

assigns the car a 9-bit ID tag. The chip also outputs the
time (in hours and minutes) that the car arrived
(new_car_time_hours(0:5) accommodates 24 hours, and
new_car_time_minutes(0:6) accommodates 60 minutes). The
controller also saves the time in an internal array associated
with the car identification number.

3. Exit_car_cost(0:2) indicates the number of hours that the car
was in the lot (up to 8 hours) and rounded up to the next hour.

As Eagleton’s chief verification engineer, you have the job of verify-
ing this chip. What scenarios must your team create? What checks
are required? Is the input and output definition sufficient?

2. Figure 2.22 shows the interface of a household temperature con-
troller. The user can set the temperature between 60°F and 100°F.
The chip has a mechanical temperature sensor and has the follow-
ing inputs and outputs:

70 Chapter 2 ■ Verification Flow

DUV

New_car_entering(0)

Exit_car_valid(0)

Exit_car_id(0:8)

Lot_full(0)

New_car_id(0:8)

New_car_time_hour(0:5)

New_car_time_minutes(0:6)

Exit_car_cost(0:2)

■ FIGURE 2.21

The input and output signals for the parking lot controller design under verification in Exercise 1.

Inputs:

■ Temp_up(0) is the request for increasing the temperature by
1°.

■ Temp_down(0) is the request for decreasing the temperature
by 1°.

■ Temp(0:6) and Enter(0) function together to set the tempera-
ture to a particular value.

Outputs:

■ When asserted, Heat_on(0) turns on the heater.
■ When asserted, Cool_on(0) turns on the air conditioner.

2.5 Exercises 71

DUV

Heat_on(0)

Cool_on(0)

Desired_temp(0:6)

Current_temp(0:6)

Temp_up(0)

Temp_down(0)

Temp_set(0:6)

Enter(0)

■ FIGURE 2.22

The input and output description for the temperature controller design under verification in Exercise 2.

Shared bus

Ethernet

PCI-E

Processor

Instruction
buffering

Execution

Registers

In
fin

itb
an

d
ad

ap
te

r

Cache
control

Encryption
engine

Error correction
code engine

■ FIGURE 2.23

Logical connections of the card in Exercises 2 and 3. This card plugs into a system that may have up
to 15 more identical cards.

■ Current_temp(0:6) displays the current temperature.
■ Desired_temp(0:6) shows the requested temperature.

The specification for the temperature controller follows. The con-
troller reads inputs at the beginning of each clock cycle. If the
homeowner asserts Temp_up(0), the controller must update
Desired_temp to the new value (Current_temp + 1) at the beginning
of the next clock cycle. Conversely, if the homeowner asserts
Temp_down(0), the controller decrements Current_temp.

At any given cycle, the controller asserts Heat_on if [Desired_temp >
Current_temp]. Similarly, the controller asserts Cool_on if
[Desired_temp < Current_temp]. If [Desired_temp = Current_temp],
then the controller sets both Heat_on(0) and Cool_on(0) to “0”b.
Finally, the controller never sets Heat_on(0) and Cool_on(0) simul-
taneously.

You have the job of verifying this chip. What scenarios must you
create? What checks must you implement?

3. The card in Figure 2.23 depicts a design that plugs into a backplane.
The backplane may contain up to 16 of these cards. Describe the
levels of hierarchy and components at each level needed to verify this
system.

4. Where would the verification engineer obtain input and output
definitions for the Ethernet and PCI-E units shown in Figure 2.23?

72 Chapter 2 ■ Verification Flow

This chapter introduces a simple simulation-based verification environ-
ment, explores the individual elements (also known as verification
components) that comprise the verification environment, and examines
the driver and checker concepts that were introduced in Chapter 2
(by discussing the details of the verification components and their
interactions).

In addition, this chapter covers the depth to which a verification team
needs to understand the functions they are verifying in order to create a
robust set of verification components, expands on the black box verifi-
cation paradigm by introducing two other paradigms that the verifica-
tion team must understand, and includes a discussion on the extent that
the team needs to understand the design intent and implementation.

As the complexities of verification compound, designers can partici-
pate and assist in verification by using a new paradigm called assertion-
based verification. This chapter gives an overview of assertion-based
verification and how it relates to the different verification paradigms.

This chapter concludes by presenting different strategies of testing,
discussing how the verification environment is structured and how the
verification components interact with one another, as well as how the
depth implementation knowledge that the verification team has affects
the testing strategy.

3.1 BASIC VERIFICATION ENVIRONMENT: A TEST BENCH

The verification environment models the universe for the design and
must support all actions that can happen to the design. The basic envi-
ronment consists of the design or logic that is being verified, stimulus
components, monitor components, checking components, and score-
board components (some environments may not include a scoreboard).
Figure 3.1 shows a diagram of a basic verification environment.

This environment is referred to as a test bench. In general, a test bench
is all the code used to create, observe, and check a pre-determined

C H A P T E R 3

FUNDAMENTALS OF SIMULATION-BASED
VERIFICATION

(“deterministic”) input sequence to the design. This pre-determined input
sequence may be generated in a direct approach or by a random method.
The test bench, or environment, is a closed system, meaning that the top
level of the test bench has no inputs or outputs. It is effectively a model
of the universe from the design-under-verification (DUV) standpoint.

The verification engineer must create the code for the components of
this test bench universe, and the logic designer creates the hardware
description language (HDL) for the DUV. These components can be
written in the HDL itself, in a language that was designed for verifica-
tion (HVL, a high-level verification language covered in Chapter 6), or in
a general-purpose programming language such as C/C++. In the case of
an HVL or programming language, the code communicates to the sim-
ulation engine through an application programming interface (API).
Occasionally, it is necessary to mix and match the languages in which
the components are written. An outside customer’s model may even be
required in the verification environment.

The challenge for a verification engineer is to create a test bench that
stimulates the design with interesting input patterns (ideally, these
patterns should cover all the functionality of the design if possible, or at
least as much as possible) and calculates the expected responses for the
outputs based on those input patterns. The design can be said to be func-
tioning as intended by exercising all the functionality and by predicting
and checking all responses.

The sections that follow look at each component in the test bench.

3.1.1 Stimulus Component
The stimulus component manipulates inputs to the DUV. Stimulus
models are also known as drivers, behaviorals, agitators, irritators, or
generators. Typically, the stimulus component code mimics the behavior

74 Chapter 3 ■ Fundamentals of Simulation-Based Verification

DUV

Stimulus
initiator A

Stimulus
initiator B

Monitor

Stimulus
responder

Scoreboard

Checker

■ FIGURE 3.1

Basic verification environment: a test bench. (Some environments do not include a scoreboard.)

of a neighboring design entity or entities. In creating the stimulus com-
ponent, the verification engineer should not model the entire behavior of
the neighboring design component; instead, the stimulus component
should only mimic the interface inputs to the DUV. This not only makes
the simulation code easier to maintain but also allows the stimulus
engine to drive the interfaces free of the burden of the realities of the
neighboring design component it is mimicking. The stimulus component
only needs to concern itself with the behavior of the inputs that affect
the DUV, as shown in Figure 3.2.

For example, the real design component (Figure 3.2b) may have an
eight-deep queue that, when full, inhibits sending a control signal to the
DUV, even if the DUV could accept the control signal. The stimulus com-
ponent only concerns itself with the availability of the DUV to accept the
control signal, not whether the real design component’s queue is full
(Figure 3.2a).

This is a key concept in verification. The stimulus engine must drive
what the DUV is capable of accepting and not restrict itself to what the
real neighboring design component might send. This allows the verifica-
tion engineer to exert a maximum amount of stress on the DUV. If
possible, this stress level should exceed that which will ever occur in a
customer environment. By exceeding the limits of the design, the verifi-
cation engineer is more likely to encounter seldom seen occurrences,
called corner cases, in the DUV. These corner cases otherwise might
never be seen until hundreds of trillions of cycles of hardware test. This
concept of “over-stressing” the DUV allows the verification engineer to
compete with the relatively infinite number of cycles run in fabricated
hardware.

All stimulus components must understand the complete interface
protocol; that is, they must be capable of mimicking all possible varia-
tions of the protocol. This must occur so that the DUV is stimulated in
all possible ways. Without full protocol stimulus capability, the model is
incomplete.

3.1 Basic Verification Environment: A Test Bench 75

S
tim

ul
us

DUV

(a) DUV with Stimulus
 component

(b) DUV with actual logical input
 connections

DUVNeighboring
design

component

Que
ue

s Counters

State machines

■ FIGURE 3.2

Stimulus component. The stimulus component need not model the real design component.

Sometimes these verification components have configuration settings
that allow the model to work in different environments or levels. These
settings indicate to the stimulus component how it should behave. For
example, given an Ethernet stimulus component, a configuration mode
may exist to allow it to only create jumbo Ethernet packets.

It is also interesting to place a model in a mode in which all it does is
generate bus traffic that is not used. This just irritates the system with
“noise.” Then when real bus commands are performed, different results
occur because the irritator is running.

A final job of the stimulus component is to track its activity for pos-
sible post-simulation analysis of the test case. The stimulus components
should record events into a file used for initial test case debugging.

The particular details for both initiators and responders are discussed
in the sections that follow.

Deciding What To Model

The verification engineer should use the design specification when decid-
ing on what to model from a behavioral standpoint. If the DUV does not
have a specification, the verification engineer should interview the
designer of the neighboring design component to understand the proto-
cols. This provides a cross-check of the DUV designer’s assumptions. At
this level, the verification team should find miscommunications between
designers.

The verification engineer should not rely on the DUV designer for
interface protocol specification because this breaks the redundancy
model built into the verification cycle (discussed in Chapter 1). The
designer could misunderstand a part of the agreed on communications
scheme and thus bias the stimulus model such that both the HDL and
the stimulus component code the incorrect or incomplete behavior.
Occasionally, this does occur, and the misunderstanding is not found
until the next higher verification level when the two real components
exist together. However, as discussed in Chapter 2, there will be less
control over this interface at the next level of verification, and the mis-
understood scenario may never be created. A second concern with receiv-
ing input definitions from the designer of the DUV is that the designer
may bias the verification engineer about what will occur on the interface.
This could lead the verification engineer to miss stimulating certain
boundary conditions.

The deterministic test bench stimulus component mainly has outputs
that drive the DUV. The only inputs to these stimulus components will
be those necessary for their behavior, such as a clock or reset signal.
However, more complex stimulus generation components will have
inputs that control the stimulus generation.

There are two types of stimulus models: initiators and responders. An
initiator is a stimulus model that will initiate a transaction or transac-

76 Chapter 3 ■ Fundamentals of Simulation-Based Verification

tions to the DUV; a responder reacts to outputs from the DUV and feeds
stimulus back into the DUV.

Initiators

All verification environments, simple simulation based or advanced,
require driving the bit-level stimulus into the DUV as defined by the pro-
tocols. This portion of the environment requires the verification engineer
to have detailed knowledge of the complete interface definition. This is
the protocol component of the initiator. As an example, this chapter
builds on the cache design shown in Chapter 2 (see Figure 2.20). Figure
3.3 shows that the protocol component needs to drive five separate
signals and buses comprising 77 total bits.

In this example, the protocol component must understand the decode
values and relative timings required by the cache for initiating a valid
request. In this cache design, a 64-bit store request is represented by a
“5”x value on the command bus. Up to 15 other request types may exist
with different CMD(0:3) decode values. The valid bit must accompany
the request, along with the tag, address, and first 32 bits of data. The next
32 bits of data follow on the next cycle. Figure 3.4 shows the trace of a
single store.

The protocol component acts as a slave to the generation component.
Although the protocol component handles low-level bit manipulation
into the DUV, it is the role of the generation component to supply the
higher-level request. In the cache example, the generation component
dictated the sending of a 64-bit store request to address “01357900”X. In
a deterministic environment, this might be the only request sent to the
cache. More than likely, however, the test case will contain more requests
for the DUV, such as more stores to similar addresses or fetches that
collide with the stores. On an interface such as the cache, the generation
component will feed the protocol component one request at a time as
determined by the simple test case.

3.1 Basic Verification Environment: A Test Bench 77

Initiator stimulus

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

■ FIGURE 3.3

Initiator stimulus.

The microarchitecture of the DUV will dictate how the generation
component knows when it is legal to supply a new command to the DUV.
Invariably there are two ways that any design communicates availability
of its resources to a requestor. The two choices are as follows:

1. The requestor knows the depth of the resource and keeps track
of it.

2. The owner of the resource supplies an “available” signal to the
requestor.

To illustrate this, suppose that the microarchitecture of the cache
example contains a buffer than can hold up to eight fetch requests con-
currently. If at any time during the test case, the generation component
(requestor) sends a request to the DUV such that the cache had nine
outstanding fetch requests, then an illegal test case with an overwrite
condition occurs. Therefore, the generation component must implement
the same resource availability determination as the microarchitecture.
Either the generation component must keep count of the number of out-
standing fetches in the cache (number of fetches sent minus the number
of fetches completed), or the cache must supply a signal indicating that
the buffer is full.

In both cases, a feedback mechanism is required to prevent the gen-
eration component from illegally initiating a request. Often, the score-
board component of the verification environment (described later in this
section) participates in this feedback. In the simplest terms, a scoreboard
is a temporary holding location for information that the checker will
require (described later in this chapter). The generation component must
contain the intelligence to know when resources are available.

Implementation decisions abound even in a simple example such as
this cache. Depending on the significance of the CMD_TAG_IN(0:7) line,

78 Chapter 3 ■ Fundamentals of Simulation-Based Verification

Cycle

CMD_VLD

CMD

DATA_IN

CMD_TAG_IN

CMD_ADR

10 2 3 4 5

‘1’b

‘0101’b

‘11223344’x ‘55667788’x

‘24’x

‘01357900’x

0:0

0:3

0:31

0:7

0:31

■ FIGURE 3.4

Cache input timing for a single store request. This figure shows the input signal values driven by the
stimulus component into the cache design.

the test case writer may want control over the values. If this were the
case, the generation component would also send the tag with the request.
On the other hand, if the tag were used only as an identifier to be escorted
along the request path, it would suffice to have the protocol generator
supply a unique tag to the DUV with each request. A simple incremen-
tor would satisfy the protocol as long as the protocol generator guarded
against duplicate outstanding tags (assuming that the design forbids
having duplicate tags in the DUV concurrently). Similarly, there is a deci-
sion to be made on the DATA_IN(0:31) values, as they could be randomly
generated by the protocol component or strategically chosen by the test
case writer.

The separation of the generation and protocol components is impor-
tant. Most interfaces are not as trivial as this cache example and have
multiple concurrent or overlapping interactions and many more control
and data signals. Breaking these components apart simplifies the coding
of the environment. This structure has other benefits as well: a separate
protocol component allows the test case writer to think more about the
transactions rather than focus on the bit-level manipulations, and fur-
thermore, a well-defined interface between the generation component
and the protocol component allows for substitution of generation com-
ponents. Simple test bench environments often precede complex random
environments. The verification team avoids redundant work by creating
stand-alone protocol components, allowing current and future genera-
tion components to plug into them. The stand-alone protocol component
is also referred to as a Bus Functional Model (BFM), a model that
performs the bus function.

This type of stimulation of the DUV is called “transaction-based”
verification. The basis for the simulation is all types of transactions,
generated in a random or directed fashion.

Responders

The second type of stimulus component, responders, reacts to outputs
from the DUV and feeds stimulus back into the DUV. The difference
between an initiator and a responder is that the responder acts as a slave
to the DUV. It will only send stimulus back into the DUV as a result of a
request, command, or other demand from the DUV.

Continuing with the cache example, Figure 3.5 shows a main storage
memory component that communicates with the cache. The memory
receives either a store or fetch command from the cache and must act
on that request. The memory itself never initiates communication.

For verification of the cache, the memory is replaced by a main store
responder stimulus component. When receiving a store command along
with an address and data, the main store will react at the appropriate
time with a response. For a fetch command, the main store component
will return both a response and the requested data.

3.1 Basic Verification Environment: A Test Bench 79

Variability is allowed in the sequence with the responder. In the cache
to main store example, there can be variability in the response (success-
ful completion or failure) and in the number of cycles between command
and response (if the timing is not fixed allows). However, in simple
simulation environments, the test case writer pre-determines the timings
and values.

3.1.2 Monitor
A monitor is a model that observes different aspects of the environment.
Monitors are self-contained components that observe

■ Outputs of the DUV for protocol adherence

■ Inputs to the DUV for functional coverage analysis and scoreboard
updates

■ Internals of the DUV for events of interest to the environment

At a minimum, the monitor must observe the outputs of the DUV. If
the DUV does not adhere to the protocol, then the monitor must return
an error. The monitor does not drive any signals or wires into the DUV;
it only receives inputs and/or callbacks to it. By developing a monitor in
this fashion, the verification engineer ensures it is reusable at other
levels.

80 Chapter 3 ■ Fundamentals of Simulation-Based Verification

Initiator stimulus

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

Main store
responder

CM
D(

0:
1)

DA
TA

(0
:6

4)

AD
R(

0:
21

)

RE
SP

(0
:1

)

DA
TA

(0
:6

4)

Generation
component

Protocol
component

■ FIGURE 3.5

Memory stimulus acting as a responder.

Figure 3.6 shows the monitor added to the cache environment. The
monitor verifies that the DUV obeys the output protocols at all times. In
this case, the monitor must check the following:

■ RSP_VLD(0) (the response valid signal) always accompanies a valid
response.

■ The RSP(0:2) signal, when accompanied by the valid signal, has
legal values (e.g., 001 = success; 010 = parity error; 011 = retry due
to busy; 100 = illegal command sent; all others are illegal response
decodes).

In addition, the monitor may check for the following, depending on
the environment and protocols:

■ The RSP(0:2) signal never is on in the absence of the RSP_VLD(0)
signal. Depending on the protocol, the outputs may be required to
be zero unless a valid response is being sent.

■ The tag is correct; that is, it matches with a tag sent previously by
the initiator component.

When deciding on how to monitor the outputs for protocol adherence,
the verification engineer should refer to the specification. Similar to the
stimulus model, if the DUV does not have a specification, then at a
minimum, the verification engineer should communicate with the archi-
tect and the designer of the piece of logic on the receiving side of the

3.1 Basic Verification Environment: A Test Bench 81

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR (0:31)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

Main store
responder

CM
D(

0:
1)

DA
TA

(0
:6

4)

AD
R(

0:
21

)

RE
SP

(0
:1

)

DA
TA

(0
:6

4)

Initiator stimulus

Generation
component

Protocol
component Monitor

■ FIGURE 3.6

Monitor observing the cache design under verification.

DUV. The independence of the verification engineer is lost if information
on how the monitor should work is obtained from the designer, who
could misunderstand a part of the correct communication and protocol
scheme and thus bias the verification checking.

However, the monitor may need to probe internals of the DUV to
collect information to pass on to the checker or scoreboard components.
In this case, the verification engineer should limit the internal probes and
beware of breaking the redundancy path by relying on the design for too
much information.

In all the above scenarios, the monitor can use this information to
generate functional coverage data (for more information on functional
coverage, see Chapter 6).

In sophisticated environments, the stimulus components may use
coverage information (either from internal DUV probes or from DUV
inputs) collected by the monitor to adapt the stimulus for a more stress-
ful or diverse DUV simulation (for more information, see Chapter 14).
This is called coverage directed generation.

A final job of the monitor is to provide post-simulation information to
the verification engineer. The monitor should be able to record interface
events to a runtime file, formatting it for readability and debugging
assistance.

3.1.3 Checker
A checker is a special type of monitor that only collects DUV outputs.
However, it validates that the design is working as intended from a
functional standpoint, not just from a protocol standpoint.

The checker tends to be one of the harder components in the envi-
ronment to get correct, as the verification engineer must implement
many functional checks within the component. It is not only challenging
to get individual checkers working correctly for all cases but also imper-
ative that the verification engineer conceive of all the required checking.
This is fundamental to the question, “How will I know if the design has
a flaw?”

In the past, verification engineers performed the functional checking
by reviewing the test case traces by hand and looking for specific results
on the DUV outputs. Often, the reference model for the DUV was in
the verification engineer’s head. Although this was an arduous process,
the designs were simpler and contained fewer corner conditions and
complex interactions. As design complexity increased, verification engi-
neers transferred the intelligence behind the checking from their own
knowledge to automated software checker components.

The checker may need knowledge from a monitor or scoreboard to
accomplish its task. The checker needs to understand what stimulus has
occurred in order to independently predict functional results. Because
there may be multiple requests and interaction stimulus in a single test

82 Chapter 3 ■ Fundamentals of Simulation-Based Verification

case, the checker needs to correlate input requests with output responses.
The checker code compares these expected results against actual outputs
of the DUV. If the results match, the test case continues or completes
successfully. If the results miscompare, the checker will write a failure
message to a debug file, noting the actual and expected results along with
other information needed to understand the failure.

Checkers monitor for various types of error types:

■ All requests receive responses (no lost data, commands, packets,
etc.)

■ All outputs match predicted values (response codes, data, packets,
etc.)

■ No superfluous output activity (outputs that do not correspond to
any stimulus)

Remember, the monitor component performs checks that are more
mundane:

■ Parity and check-bit correctness

■ Actual data transfer length corresponds to header transfer length

■ Other checking that does not require knowledge from the stimulus
components

3.1.4 Scoreboard
A scoreboard is a relatively new term, although the concept has been
around for a long time. In the simplest terms, a scoreboard is a tempo-
rary holding location for information the checker will require.

A checker can use a scoreboard in two ways. The main difference
between the two methods centers on which component does the trans-
lation from inputs and expected outputs. The component that performs
this function acts as the DUV reference model and contains the check-
ing intelligence.

In the first method, the checker component contains the reference
model. The scoreboard’s role is to examine the inputs for transactions to
occur, capture pertinent information, and store the information for later
use. Then when the checker observes some condition on the outputs of
the DUV, it makes a call to the scoreboard to get the data (referred to as
a callback).

The scoreboard implementation depends on the functionality that is
contained in the DUV. If the DUV has a simple first in, first out (FIFO)
protocol, then the scoreboard would also contain a simple FIFO, and the
data returned would be from a callback such as “pop expect from port
1.” Or if the DUV had a complex queuing algorithm, then a much more

3.1 Basic Verification Environment: A Test Bench 83

complex function such as a search based on port number would need to
be performed in the scoreboard in order to return the correct data. Once
the scoreboard returns the data, the reference model in the checker
“transforms the data” into expected results and then compares those
results to the actual DUV output signals.

In the second method, the scoreboard is the reference model and does
the expected result calculation based on the input stimulus it observes.
When the checker observes DUV output events, it then queries the score-
board for the expected data and performs the compare.

Figure 3.7 shows the checker and scoreboard components added to
the cache design verification environment. To illustrate the two reference
model cases described above, consider the required checking on a
command that fetches data from memory address “01234500”X with a
tag of “23”X.

In both cases (in which the checker or scoreboard contains the refer-
ence model), the following basic sequence occurs. The scoreboard
observes and records the initiator stimulus, sending a fetch command to
the cache design. The scoreboard must observe the stimulus on the inter-
face, rather than have the initiator stimulus component write the data to
the scoreboard directly. The independence of the scoreboard and stimu-
lus generator is important for component re-use at later levels of the
verification hierarchy.

The scoreboard also records other command stimulus. The informa-
tion about the commands that are outstanding in the DUV is stored in a

84 Chapter 3 ■ Fundamentals of Simulation-Based Verification

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR (0:31)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

Main store
responder

CM
D(

0:
1)

DA
TA

(0
:6

4)

AD
R(

0:
21

)

RE
SP

(0
:1

)

DA
TA

(0
:6

4)

Initiator stimulus

Generation
component

Protocol
component Monitor

Scoreboard

Checker

■ FIGURE 3.7

Checker comparing responses.

table. The index into the table is the command tag. Soon after receiving
the fetch command, the DUV forwards the fetch to the main store
memory. The checker observes this action and queries the scoreboard,
ensuring that there was a fetch command to address “01234500”X in the
system. When the main store responder component responds to the fetch
request with data, the scoreboard writes the data into the table. The
cache design finishes the fetch transaction as it drives the response, valid,
tag, and data output signals. The monitor verifies that as the RSP_VLD(0)
signal is raised, there is a valid decode value on the RSP(0:2) bus.

At this point, the final checks are required. In the case in which
the checker component has the reference model, it will query the score-
board for all data in the table indexed by the value of the tag on
the CMD_TAG_OUT(0:7) signal. The scoreboard dumps the data to the
checker for the final checks. If the scoreboard has no valid data corre-
sponding to the tag index, then one of the following is true:

■ The DUV has corrupted a tag.

■ The DUV is returning a tag that has previously been returned.

■ The DUV has “made-up” a tag.

■ The scoreboard has a bug.

However, in this case, the tag of “23”X has a valid entry in the scoreboard
table, and the checker receives the values saved in the table. It is then
the checker’s job to compile the expected results and compare it to the
DUV output data. In some cases, this might entail manipulating the data,
depending on the format of the main store responder inputs and the
expected outputs of the DUV.

In the case in which the scoreboard contains the reference model code,
the checker will still send the scoreboard the tag index. The scoreboard
will compile the data, including any reformatting or manipulation, and
send the exact expected results to the checker for final comparison to the
actual DUV outputs.

In both cases, any failures or miscompare values should be recorded
to an output file for debug purposes. Depending on the severity of the
observed error, the test case halts after hitting the failure.

Either of the above divisions of work between scoreboard and checker
is acceptable. However, it is important that the choice of reference model
placement remains consistent. The same paradigm should be followed
for all DUV checking throughout the environment.

3.1.5 Design Under Verification
The last component, the DUV, is the center of the verification environ-
ment and is also known as the unit under test (UUT) or the device under

3.1 Basic Verification Environment: A Test Bench 85

test (DUT). Most of the other components interact with the DUV. If there
are bugs in the DUV, the verification team must find them.

The DUV source is the HDL itself. Whether running a simulation or
formal verification, the source HDL gets interpreted or compiled into the
DUV model (depending on the tools and HDL source used), which the
verification team uses for its simulation. The specific interpreter or com-
piler differs depending on the electronic design automation vendor, but
in all cases, the DUV is an accurate representation of the HDL.

The DUV can be from any level of the hierarchy. The DUV in Figure
3.1 can represent a sole designer macro, a logical unit, a chip, or an entire
system. Regardless of the level, the verification engineer must customize
stimulus and checking components, scoreboards, and monitors to exer-
cise and validate the particular DUV.

The depth at which the DUV is described can be different as well. The
source HDL may describe the function at the RTL level, gate level, tran-
sistor level, or even behavioral level (non-synthesisable). As seen in
Chapter 1, it is the responsibility of the verification team to ensure that
whatever form the design takes, the function matches the intent.

The DUV interacts directly with the stimulus and checking compo-
nents. The stimulus component manipulates the DUV’s inputs, and the
monitor and checking components observe its outputs. In some situa-
tions, monitors and checkers may reside inside the DUV, which could be
attributed to the need for additional observation or checking points.

3.2 OBSERVATION POINTS: BLACK-BOX, WHITE-BOX, AND
GREY-BOX VERIFICATION

In the cache example above, all of the verification code was restricted to
interfacing with external interfaces of the DUV. This is known as black
box verification, because the verification environment is “in the dark”
about internal details of the DUV. However, some environments may look
at signals that are inside the DUV. These environments are grey box
or white box environments, depending on the type of internal DUV
observation.

3.2.1 Black Box
Most simulation-based environments begin as black box environments.
The verification engineers begin reading a specification of the DUV that
contains the function and the definition of the external interfaces. As the
team writes the verification code, the drivers, monitors, checkers, and
scoreboard use only the external interfaces as defined by the specifica-
tion. The internal signals and constructs remain in the dark.

The key to black box verification is the ability to predict the outputs
based on the inputs. To do this, the specification must clearly explain the
function of the DUV.

86 Chapter 3 ■ Fundamentals of Simulation-Based Verification

The black box environment has pros and cons. The good points are
that structural changes inside the DUV have little impact on the verifi-
cation code, as the function is independent of implementation. If an
internal pipeline had to change because of a timing constraint, there is
little to no impact on the verification environment. Furthermore, the
ability to predict functional results based on inputs alone ensures that
the reference model remains independent from the DUV algorithms.

On the other hand, because the black box environment can only
control the inputs and observe the outputs, it lacks control and observa-
tion points. There are many cases in which a verification environment
can be more robust just by keying off internal signals in the DUV.
Similarly, checking ambiguous cases becomes trivial if the scoreboard
component monitors internal signals. By using internal signals, the
verification engineers can shed some light on the black box.

3.2.2 White Box
The advantages and disadvantages of black box testing are reversed in
the white box environment, which provides a full understanding of the
internal structures of the DUV. The verification engineer observes and
places checking on internal signals, as well as models and predicts the
behavior of internal queues, pipelines, state machines, and other por-
tions of the microarchitecture.

The white box environment contrasts with the black box environment
through its direct measurement of the DUV. A white box environment
will flag a bug at its source, whereas the black box environment captures
a failure indirectly as its symptoms appear on the DUV output. More
details of the cache design described above can illustrate the white box
methods.

Figure 3.8 shows that the incoming command, tag, and address are
placed into an eight-deep command queue. In the white box environ-
ment, the verification engineer might keep a reference model of the
command queue and use that model to constantly check the contents
of the queue. If the design has a bug such that a valid entry in the
queue was dropped or overwritten, the white box environment checker
would immediately flag the flaw. This is a direct capture of the failure
where valid data is destroyed. The black box environment would also
flag this bug, as the cache design would never give a response to a
command that was recorded in the scoreboard. In this case, the checker
is indirect, detecting the symptoms (a lost command). Both paradigms
are successful.

Assertion checkers, comment-like statements in the HDL that the veri-
fication environment or simulation engine monitors, are a second form
of white box verification placed in the DUV by the designer. Assertion
checkers monitor the behavior for specific invalid cases. Typical asser-
tion checkers flag invalid state transitions, overflowing queues, and other
illegal states. Because these checkers observe specific cases within the

3.2 Observation Points: Black-Box, White-Box, and Grey-Box Verification 87

design, they fit the definition of white box verification. Further details of
assertions follow in this chapter.

Any form of white box verification has its drawbacks in the amount
of maintenance required on the environment. The problem is that the
environment is tightly integrated with the implementation: if a signal
name changes, the white box checker component must change as well,
which can become a maintenance nightmare. Therefore, this type of
verification is typically done only at the low levels of the hierarchy.

Verification environments coded in a white box paradigm must also
take care to remain independent of the DUV. Despite knowledge of the
internal microarchitecture, the verification engineer must not use the
HDL algorithms as a source of checking. This would break the redun-
dancy path required to find bugs in the design.

3.2.3 Grey Box
Grey box verification is the combination of both black box and white box
verifications. In the grey box environment, the verification engineer
monitors or observes some internal signals, which assist in validating
the functional specification of the black box level; the rest of the DUV
remains “in the dark.”

Grey box is typically the model used for most environments, mainly
because some prediction of interface level results is nearly impossible
without viewing an internal signal. Drawing on the cache design
example, there is a case in which two or more fetch commands to the
same address can be in the design simultaneously. In time, the main store

88 Chapter 3 ■ Fundamentals of Simulation-Based Verification

Cache
design

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

CM
D(
0:
1)

DA
TA
(0
:6
4)

AD
R(
0:
21
)

RE
SP
(0
:1
)

DA
TA
(0
:6
4)

Cmd queue

■ FIGURE 3.8

Cache design implementation details and white box checking.

responder returns data to each command. In a black box environment,
it is impossible to know if the correct data was returned with each
command without “peeking” inside the DUV to see which tag corre-
sponded to each main store fetch request.

There are also certain test scenarios that are desirable but rarely occur
without verification intervention inside the DUV structures. Often,
designs have counters used to initiate actions on a repetitive basis. In
many cases, these counters “go off” after thousands or even millions of
machine cycles. Although this may be only milliseconds on real hard-
ware, it is an eternity in simulation cycles. To cause the counter-initiated
event multiple times in a single test case, the verification engineer must
overwrite the counter to a value close to its limit. This activity falls into
the realm of grey box verification.

3.3 ASSERTION-BASED VERIFICATION: AN OVERVIEW

Assertion-based verification is a variant of white box verification and has
been gaining much attention in literature and industry during the last
several years [1]. Assertions by their very definition target the imple-
mentation of a design; they formalize assumptions about conditions
inside the design that are supposed to hold true at all times.

The idea of assertions is not new. Software engineers have used the
concept for ages. Many programming languages have formalized asser-
tion constructs (e.g., the C language with the assert macro), even though
other terms sometimes were used (e.g., invariants). In the context of
hardware design, VHDL, even in its first standardization, included a
language construct to express assertions (Figure 3.9).

Of course, assertions and verification checkers have related purposes.
There is a choice to do the checking of an internal microarchitecture con-
dition in a test bench that is owned by a verification engineer or directly
in the HDL by the designer.

In the implementation of the traffic light design introduced in Chapter
1 (Figure 1.3), the encoding of the internal state machine used 2 bits to
encode two legal states. As was mentioned in Chapter 1, the assertion
that the state flip-flops should never assume illegal values covered by the
verification engineer’s test bench. However, the fact that the internal state

3.3 Assertion-Based Verification: An Overview 89

assert <expression>
 [report <message>]
 [severity <level>]

■ FIGURE 3.9

General syntax of VHDL assertion statement.

encoding is identical to the encoding of the signal Light_direction is
an internal implementation detail that is unlikely to be formally docu-
mented between design and verification engineers. Even more danger-
ously, other logic internally downstream from these flip-flops might rely
on this assertion. It is therefore vital for the designer to capture such an
assumption to protect the downstream logic (Figure 3.10).

One real practical argument for the designer ownership of assertions
is the fact that at the designer best understands and considers such inter-
nal white box checks at the time the he or she writes the HDL. Good
examples are corner conditions and specific illegal encodings of signal
states such as

■ Illegal states

■ Orthogonality of signals or one-hot encodings

■ Illegal control conditions

One view of a systematic use of assertion checking is the notion of
defensive HDL design (Figure 3.11). Every assertion checks a “cone of
logic” for boundary conditions and protects the downstream logic by
continuously guarding the assumption.

Figure 3.12 shows another implementation level example. This time
the HDL assertion actually protects the physical implementation of the
logic. It codifies the assumption that two “select” signals (s1, s2), which
drive a pass-gate multiplexer implementation, are to be orthogonal. In
the absence of the assertion, logic simulation would never detect the
functional problem where s1 and s2 are on at the same time. It is the
circuit implementation that exploits the orthogonality condition by using
a cheaper, faster circuit layout and needs to be protected from destruc-
tion by a violation of this assumption. Very clearly, this implementation
assumption must be formalized by the design engineer.

3.3.1 The Importance of Assertions
There are several reasons why a modern verification methodology
must make heavy use of assertions that are embedded into the HDL
design:

90 Chapter 3 ■ Fundamentals of Simulation-Based Verification

assert (buf_overrun(0)/='1')
 report "Internal Buffer Overflow"
 severity ERROR;

■ FIGURE 3.10

VHDL assertion example.

■ White box conditions are best specified and, more importantly,
maintained over time by the design team. Many internal assertions
could not be known by a verification engineer, but violation of these
internal conditions can lead to severe malfunction of the design.

■ Unlike non-HDL test bench checkers, formal verification tools
(Chapters 11, 12) can process HDL assertions. This opens the
potential of proving formally that an assertion always holds true, a
much more powerful verification result than any amount of
pattern-based simulation can ever deliver.

■ An uncaught assertion violation can result in an error that is
detected in the architecture state of the design downstream after
more simulation time. However, catching a problem at the point of
an internal assertion violation is always more effective in debug-
ging because the problem is caught at its very source.

3.3 Assertion-Based Verification: An Overview 91

DUV

Assertion

Logic
checked

by assertion

Logic
protected

by assertion

■ FIGURE 3.11

Assertion checking as defensive hardware design language design.

Custom
circuit

d1

0

d2

s1

s2

0 <= not ((s1 and d1) or (s2 and d2);

assert (not(s1 and s2))
 report "both selects on; blue smoke"
 severity error;

■ FIGURE 3.12

Pass-gate mux implementation, exploiting orthogonal select signals.

■ Assertions are cheap. Typically, they are sanity checks that are
easily written by the designer, and they do not consume a lot of
simulation engine performance.

■ Empirical evidence shows that a systematic application of asser-
tions by the design team is able to catch significant amounts
(24% to 35%) of the design bugs found overall on large industrial
projects [2, 3].

3.3.2 Assertions Express Design Intent
Although the HDL expresses what a design implements, assertions also
play an important role in the specification of design intent. For example,
in a high-frequency design, finite state machines are usually imple-
mented by a collection of discrete flip-flops and Boolean logic. The
Boolean logic implements the state transfer and output functions in
the physically most efficient way. Very often, the physical constraints on
the design overrule the desire to clearly specify the finite state machine
(FSM) functionality in the most abstract and concise way.

In such cases, the HDL looks like a random set of flip-flops and gates,
and the original design intent, the FSM, is lost. Using assertions, which
specify the legal versus illegal states and the legal versus illegal state
transitions, will serve the verification cycle in two ways:

■ The original design intent is explicitly expressed by stating what
the intended implementation behavior is. It is possible to look at
such a set of assertions as an internal implementation specifica-
tion, encoded in the HDL.

■ The verification cycle can utilize an invaluable set of checks that
make it possible to verify the implementation specification against
the discrete implementation.

It is important to note that the HDLs have mechanisms that allow the
expression and checking for design intent even at compile time. Doing
the check earlier than simulation, as part of the model build process,
has obvious advantages for the strength of verification. Otherwise, the
incidental test case must stimulate the design in a way that exposes a
violation of design intent.

The most powerful way to express design intent in VHDL is the use of
signal data types. VHDL is what is called a strongly typed language.
Signals have defined data types, and the VHDL compiler checks type
compatibility between signals when the source file is processed. Going
back once again to the traffic light example from Chapter 1, the asser-
tion of the illegal state encodings, introduced above, can be completely
replaced with the correct use of signal types (Figure 3.13).

92 Chapter 3 ■ Fundamentals of Simulation-Based Verification

3.3 Assertion-Based Verification: An Overview 93

library ieee;
use ieee.std_logic_1164.all;

entity traffic is
 port(
 clk
 reset
 timer_pulse
 Main_Street
 Elm_Street
 Light_Direction

 : in std_ulogic; -- Clock
 : in std_ulogic; -- Async Reset
 : in std_ulogic; -- The timer pulse, '1' indicates timer expiration
 : in std_ulogic; -- Indicates when traffic is present on Main St.
 : in std_ulogic; -- Indicates when traffic is present on Elm St.
 : out std_ulogic_vecotor(1 downto 0) -- '01' indicates that Main St.

 -- '10' indicates that Elm St.

);
end traffic;

architecture rtl of traffic is
 type state is (main, elm);
 signal current_state_din, current_state_dout: state;

begin -- rtl

Light_Direction <= '01' when current_state_dout = main else "10";

-- purpose: creates the registers for current state
-- type : sequential
-- inputs : clk, reset, current_state_din
-- outputs: current_state_dout
reg_proc: process (clk, reset)
begin -- process register
 if reset = '0' then --asynchronous reset (active low)
 current_state_dout <= main;
 elsif clk'event and clk = '1' then -- rising clock edge
 current_state_dout <= current_state_din;
 end if;
end process reg_proc;

-- purpose: Determines when the light should change
-- type : combinational
-- inputs : timer_pulse, Main_Street, Elm_Street, current_state_dout
-- outputs: current_state_din
dataflow _proc: process (timer_pulse, Main_Street, Elm_Street, current_state_dout)
begin -- process change_light
 current_state_din <= current_state_dout;
 -- When the timer expires, evaluate the traffic situation
 if timer_pulse = '1' then
 if Main_Street = '1' then
 current_state_din <= main;
 elsif Elm_Street = '1' then
 current_state_din_ <= elm;
 end if;
 end if;
end process dataflow_proc;

end rtl;

should be green

should be green

■ FIGURE 3.13

VHDL for the traffic light algorithm with enumerated state machine encoding.

In this version, the state encoding uses an enumerated type declara-
tion for the two states “main” and “elm.” The state transitions move the
controller between these two symbolic states. Furthermore, an illegal
assignment to a different state value would be a compile error. Using the
type declaration makes the design intent explicitly clear and removes one
source of potential design errors.

Assertion-based verification moves the specification of checkers earlier
into the design cycle. The earlier design intent is captured in the HDL,
the more effective verification processes can catch design bugs.

3.3.3 Classification of Assertions
The examples up to this point have used assertions that only check
Boolean conditions that have to hold true over all times.

More often than not, a certain condition holds true only after another
gating condition is also true. A simple example would be if the condition
could only be checked during the time that a certain clock signal was
active. There are two ways to handle this complication. Either the pre-
condition (e.g. “clock active”) can be encoded as a simple term in the
Boolean expression or the HDL has already a conditional structure into
which the assertion can be embedded, thus exploiting already existing
decoding of the pre-condition (Figure 3.14).

The following list attempts to classify assertions according to increas-
ing complexity:

■ Event detection: The most atomic and simple assertion checks for
absence of an event, a “failure condition.” Designers encode these
events by the flat assertions discussed mostly so far. Such events
can be classified as static; that is, they do not relate to any other
events.

■ Temporal event detection: More complex assertions will refer to
sequence of events over time; that is, several events have to occur
before the final asserted event can be checked. Designers encode
such assertion events via the embedded (nested) method shown in
Figure 3.14. Essentially, the designer embeds the assertion into the

94 Chapter 3 ■ Fundamentals of Simulation-Based Verification

assert (clock and condition)…; if (clock) then
 ……
 assert (condition) ……;
 ……
end if;

(a) Flat assertion (b) Nested assertion

■ FIGURE 3.14

Flat (a) and nested (b) hardware design language assertion.

logic of a state machine (the sequentially nested context in HDL)
that controls the pre-condition for the final Boolean check.

■ Pre-defined event detection building blocks: Pre-build a set of asser-
tions for events to occur often in hardware designs. Examples are
data structures (buffers, stacks, FIFOs) or control structures (hand-
shake, windows with pre- and/or post-conditions).

Temporal events require a general mechanism to express events (not
just assertions) over time. Formal verification tools first pioneered the
definition of such specifications. With the standardization of a property
specification language (PSL/Sugar), there is now a broadly supported
means to express event sequences over time, as assertions available for
all forms of verification, not just formal verification [4]. We will discuss
PSL/Sugar in Chapter 12.

A popular example of pre-defined event detection building blocks is
the Open Verification Library (OVL) library [5]. OVL is a library of HDL
building blocks that a designer can embed as an instantiated component
into an HDL specification and connect to a set of signals that provide the
context for the assertion check.

In light of the development of OVL and PSL/Sugar, designers of HDLs
have started to extend the HDLs themselves to provide more than the
basic assertion checking support in their languages. SystemVerilog
defined its own built-in assertion mechanism that parallels many of
PSL/Sugar’s capabilities as a direct extension of Verilog [4]. Obviously,
this makes the assertion language very specific to Verilog, and it is
unavailable for VHDL users.

3.4 TEST BENCHES AND TESTING STRATEGIES

With the test bench environment and components defined, focus is now
on the test case. A test case constrains the stimulus components such that
a specific function (or set of functions) within the DUV is targeted to be
exercised. We also call this deterministic testing, or a deterministic test
bench, because the targeted function is determined before the test runs.
There are also self-checking test benches in which the test bench always
performs checking regardless of the stimulus. This allows for the func-
tionality of the DUV to be checked regardless of the test case.

3.4.1 Deterministic Test Benches
Verification teams use deterministic test cases predominantly early in the
verification cycle to prove basic DUV functionality. Here, the verification
engineer looks to the specification for guidance on the basic commands
and protocols to test and monitor, creates deterministic test cases to

3.4 Test Benches and Testing Strategies 95

pinpoint specific points of contention in the DUV specification, and relies
in part on the design engineers for advice on scenarios to exercise.

A very simple example is a “two-input AND gate.” There are four deter-
ministic tests for the DUV in Table 3.1.

A verification engineer charged with verifying this two-input AND gate
could create four individual deterministic test cases. Alternatively, the
verification engineer could decide that the four scenarios are simplistic
enough to merge into a single deterministic test case that drives the four
scenarios in sequence.

A more interesting deterministic test case involving the cache design
would be to ensure that particular sequences of operations maintain data
coherency. Coherency dictates that data requestors always get the latest
copy of the data. This inherently implies that for every address in the
system, there is only one current data value associated with that address.
In this cache design, a fetch cannot return data that does not represent
the latest value for that address. A verification engineer could write many
deterministic test cases to verify coherency. One such case is described
here.

Figure 3.15 shows a decode mux in front of separate store and fetch
queues in the cache design. As commands enter the cache DUV, the
design directs the address, tag, and the data (for stores) toward the
appropriate logic based on the type of command.

A deterministic sequence to verify coherency might consist of the
following inputs:

■ Three store commands to various addresses are sent. These com-
mands initially fill three of the four positions in the store queue.

■ A fourth store request to address X is sent. This store request is the
last in line to be executed

■ A fetch request to address X is sent.

Because the fetch request is at the top of the queue and a previous
store request is buried in the store queue, this test case is designed to
uncover a design flaw that would return fetch data other than that in the
store queue. Coherency requires that the fetch request return the latest
data, which may be in the store queue rather than in the cache or main

96 Chapter 3 ■ Fundamentals of Simulation-Based Verification

TABLE 3.1 ■ Two-input AND gate

Input A Input B Expected Output

0 0 0
0 1 0
1 0 0
1 1 1

memory. The cache design must deal with this case by one of these
means:

■ Give stores higher priority than that of fetches, allowing the store
queue to drain before processing fetches.

■ Do an address comparison of all stores addresses pending based on
the fetch address and block the fetch.

■ Do an address comparison of all stores addresses pending based on
the fetch address and provide a cache and main store bypass by the
store queue data that would feed the fetch response data.

3.4.2 Self-Checking Test Benches
Placing the knowledge of the DUV’s function into the test bench envi-
ronment is extremely advantageous as it automates the tedious checking
process, which means that a user does not have to scrutinize every test
case trace to ensure that it passes the functional criteria.

Because the test bench is the “universe,” all the knowledge needed for
checking exists in the test bench. The verification engineer codes that

3.4 Test Benches and Testing Strategies 97

RSP_VLD(0)

RSP(0.2)

DATA_OUT(0:31)

CM
D(
0:
1)

DA
TA
(0
:6
4)

AD
R(
0:
21
)

RE
SP
(0
:1
)

DA
TA
(0
:6
4)

CMD_TAG_OUT(0:7)

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

Fetch CMD
queue

Store CMD
queue

Cache design

■ FIGURE 3.15

Cache design with separate queues for stores and fetches.

knowledge into the checkers and the scoreboard in order to make the
environment self-checking. There are different types of self-checking test
benches:

■ Golden Vectors

■ Reference Model

■ Transaction Based

Golden Vectors

A golden vectors environment is a simple environment in which some
knowledge base of valid output vectors is stored in the scoreboard. The
checking component compares the DUV results to this knowledge base
by calling the scoreboard and requesting the expected vectors. This can
be done either for every cycle or for every transaction (based on the func-
tions). In most cases, the scoreboard is loaded (via a file or some other
mechanism) at the beginning of the test with a known set of valid expect
traces that correspond to what the stimulus will be generating. The
output checker compares the actual DUV results to the golden vector-
predicted results. The verification engineer either generates these valid
traces manually or generates them by using an external program. Figure
3.16 shows a diagram of this type of environment.

The advantage to this mechanism of checking is that the verification
engineer can check all of the predicted result traces before running the
simulation. Another advantage is that when the verification team runs a
regression (for more detail on regression, see Chapter 13), all the vectors
that need to be verified already exist.

A disadvantage to this type of verification is twofold: the creation and
the maintenance of the golden vectors. Manual creation of golden vectors
is tedious. If a program creates the golden vectors, then that program
will require knowledge about the DUV. (The reference model environ-
ment explained next tackles this by placing the knowledge directly into
the simulation environment). The maintenance challenge is keeping the

98 Chapter 3 ■ Fundamentals of Simulation-Based Verification

DUVStimulus

Golden
vectors

Checker

■ FIGURE 3.16

Golden vector environment.

golden vectors and stimulus generation synchronized. If the DUV rules
change, the verification team must update all of the test cases and golden
vectors to reflect the change.

Golden vector checking is best suited for DUVs that have sporadic
outputs that correspond closely to the inputs. DUVs that handle just one
concurrent command are ripe for golden vector checking as the output
is usually easy to predict.

Reference Model

The reference model calculates all expected outputs based on the input
stimulus. The reference model re-implements the function of the DUV,
usually in a high level programming language or an HVL. Because the
reference model calculates the results for each cycle, it is also known as
a cycle accurate model.

Unlike the golden vectors approach, the checker component does not
request information from the reference model. Instead, the reference
model sends information to the checker every cycle based on the program
calculations. It is the checker’s job to compare this information to the
DUV outputs and decide if the output signals match the expected results.
Figure 3.17 shows a diagram of this checking paradigm.

The main advantage to the reference model is the level of checking
accuracy. Once the reference model is correct (and debugged), the veri-
fication team knows that the DUV is correct for every cycle. This comes
at a price, as this method has a maintenance overhead. The reference
model must know the exact internal timing implementation of the DUV,
which is very similar to white box verification except that the reference
model has no probes into the design.

Verification teams should chose reference models for checking DUVs
that have high activity on the outputs. DUVs with multiple concurrent
inputs or internal priority logic to process stimulus are candidates for
reference model checking because the prediction of the outputs depends
highly on the stimulus sequence. Furthermore, if the internal timings of
the DUV changes, it is easier to update the reference model once than to
edit all of the golden vector test cases.

3.4 Test Benches and Testing Strategies 99

DUVStimulus

Reference model

Checker

■ FIGURE 3.17

Reference model environment.

A variation of the reference model checker is one that is not accurate
for every cycle but instead is checked at key points in time. For example,
consider an ALU that contains a pipeline with a depth of five. Five cycles
after receiving input stimulus to the ALU, the reference model sends pre-
dicted outputs to the checker component. This also helps alleviate poten-
tial performance disadvantages because the reference model does not
have to keep up with all the details, but the reference model does have
to know that the pipeline depth is five.

Transaction Based

A transaction-based environment is used for DUVs that have identifiable
transactions in which commands and data are acted on and forwarded to
appropriate output signals. This allows the verification engineer to struc-
ture the environment based on the transaction nature of the DUV. Caches,
which act on commands and data, are one example. Many input/output
(IO) protocol devices (such as Ethernet and PCI) that forward and route
packets of data should use transaction-based checking.

This type of checking environment uses a scoreboard to track
commands and data driven on the inputs of the DUV. In this environ-
ment, the DUV processes the commands and associated data before
forwarding the transactions on the outputs. The DUV may reformat
the command and data before forwarding it. Figure 3.18 shows the
transaction-based environment.

The scoreboard keeps a record of all “current” transactions that have
entered the DUV but have not been completed (or forwarded). The score-
board must also perform any data reformatting. On observing output
signals, the checker component queries the scoreboard, usually with a
transaction identifier, and receives the expected data. The checker flags
an error if the identifier does not match an outstanding transaction or if
the command or data are not as predicted by the scoreboard.

The key in the transaction-based environment is the abstraction level
of the command and data. Often, this is simple, as in the Ethernet packet
protocol or PCI bus commands. However, DUVs may allow transactions
to be spread across many cycles or have other transactions intermixed.

100 Chapter 3 ■ Fundamentals of Simulation-Based Verification

DUVStimulus

Scoreboard

Checker

■ FIGURE 3.18

Transaction-based environment.

It is the scoreboard’s job to package the abstracted transactions into
predictable outputs.

The only disadvantage and difficulty to this type of environment is
deciding the correct level of abstraction, which is an important decision
as it influences both the effectiveness and efficiency of the verification
environment. The team should base this decision on the functional
stimulus injected into the DUV. When the team defines the right level
of abstraction, it becomes easy to define interesting test cases by using
sequences of these abstract items, as well as to generate meaningful tests,
and it is easier to analyze the test results by looking at the abstract items
for debug.

3.5 SUMMARY

In creating the verification environment, the verification team creates
many different components. Some of these components are ones that
stimulate the DUV, whereas others perform the checking. To allow the
checking components to work, monitors are created to observe the DUV’s
inputs and outputs, and scoreboards are created to store the expected
results. These four types of components allow the verification team to
create the yin and yang of verification. It allows the verification team to
drive the necessary input combinations and check the resulting outputs
for those inputs.

However, before the verification team can create any of the compo-
nents, they must understand the function to be verified. This is especially
true when deciding on what type of observability is desired for checking.
As seen in the cache design example (Figure 3.8), both the white and
black box approaches would have caught the bug where data was
destroyed. However, the white box approach has a larger price to pay in
terms of maintenance. Because of the high price, white box verification
should be used only when necessary. In many cases, the verification engi-
neer would like to have some visibility into the design. The verification
team can obtain this visibility by using monitor components that observe
some internal portions of the DUV. The drawback is that the verification
engineer must learn portions of the implementation.

Assertion-based verification is another approach to adding visibility
into the DUV that is gaining much attention in the industry. In this
approach, the designer takes on some responsibility by placing assertions
within the design. These assertions can be static (event based) or tem-
poral in nature, or they can use a pre-defined set of event-based build-
ing blocks. In any event, these assertions provide a mechanism by which
some of the logic is checked by the assertion and other logic is protected
by the assertion.

Once the verification team understands the functionality of the design
and what visibilty depth is needed, they can start to strategize on how to

3.5 Summary 101

validate the DUV. Validating simple DUVs is straightforward and feasi-
ble by using a deterministic testing strategy. However, when the function
gets more complex, deterministic testing strategy becomes more of a
burden and a self-checking becomes the better approach because it is
independent of the stimulus component. As discussed, the verification
team must consider three different self-checking test strategies. Each of
these has pros and cons, and the verification engineer must choose the
appropriate one based on the functions to be verified.

3.6 EXERCISES

1. Why is over-stressing the design so important?

2. What are the two ways of knowing when a resource is available?
How does this microarchitecture choice affect the verification
environment?

3. Deterministic test cases can be used on simple DUVs such as the
2-bit adder. The problem becomes much bigger with a 32-bit adder.
How many deterministic tests would there be now?

4. What kind of verification is applicable for the following (black box,
grey box, or white box) and why:

(a) A 32-bit adder
(b) An eight-stage CPU pipeline
(c) An Ethernet to local bus bridge

5. Name the advantages of doing HDL-based assertions.

6. Compare the three types of checking models (golden vectors, refer-
ence model, and transaction). When should each be used?

7. Again, we return to the town of Eagleton, where you are the chief
verification engineer for the parking lot controller. Given the criteria
from Exercise 1 in Chapter 2, perform the following:

(a) Describe a simple verification environment by using a block
diagram, and list the functions required for each component.

(b) Describe what type of observation points you desire (black
box, white box, or grey box).

(c) Describe the testing strategy for the environment.

102 Chapter 3 ■ Fundamentals of Simulation-Based Verification

The verification plan is a decisive factor for success. It defines both the
functions that the verification team must attack and how they will do
their work. As the first step in the verification cycle, the team derives the
entire verification effort from this document. This document is a living
document, owned by the entire design team—not by any one person and
not by the verification team alone.

This chapter describes the construction and section contents of the
verification plan. A verification plan must contain each of these sections,
as they provide necessary insight into the upcoming verification task. The
chapter concludes with the functional specification of an example design,
Calc1. We provide a sample verification plan for Calc1 as a template for
future work and as a guide for verifying the Calc1 exercise.

Calc1 is the first of our interactive examples. We invite the reader to
download the example source code and verify the design. The Preface
contains details for downloading the examples.

4.1 THE FUNCTIONAL SPECIFICATION

The source of the plan is the functional intent and specification. The ver-
ification engineer must first understand the design under verification
(DUV) before determining how to verify it. The specification is the
driving vehicle for this; it becomes the “law.” Many times, discrepancies
arise between verification and design (these manifest themselves as test
case miscompares). In these cases, the team will refer to the specifica-
tion for the correct behavior.

However, discrepancies can often occur when the specification is
unclear or ambiguous on a technical matter. If two people read the same
specification issue and interpret it differently, then the specification has
a problem. Observe the following example: “A response, R, shall occur
when A occurs after B or C.” This English language statement is ambigu-
ous because it has two possible meanings. The first is that “R should
occur when A occurs after B, or when C occurs”; the second, “the design

C H A P T E R 4

THE VERIFICATION PLAN

asserts R when A occurs after either B or C occurs.” This is a basic matter
of order of operations, which, in English, may not follow mathematical
ordering rules. The reader may interpret it in different ways.

In this case, the specification was unclear. Because the specification is
the law, the team must settle the discrepancy. It is a simple matter of
going back to the architect and having the intent clarified.

The specification and verification plan are not “gentleman’s agree-
ments,” as both items must exist in written form and apply to the current
project. It is not acceptable to use a previous version of the verification
plan and specification on a new version of a design. These documents
must evolve with the design: if the project is important enough to create
another version, then it is important enough to update both the specifi-
cation and verification plan to reflect the current changes.

However, the reality is not always so black and white. Often the final
specification is not complete until the chip ships to manufacturing or
even to the customer. The verification team must use the evolving docu-
ment as the basis of the plan. Other times, designers have workbooks
that evolve into the specification. If this is the current specification, then
these workbooks are the basis for the verification plan. However, tech-
nical insights that affect the system or chip, such as power-on-reset
sequences or chip configuration initializations, may be missing from the
workbooks. In these cases, the architect must have input on the function
of the design. These cases are suboptimal, but do occur in industry.

4.2 THE EVOLUTION OF THE VERIFICATION PLAN

The verification plan is an evolving document. In the beginning, the ver-
ification team pours the foundation of their work into this document,
however this initial plan may be incomplete. The team will update the
plan with details found within the environment and design as the project
progresses, sometimes because of new requirements owing to architec-
tural changes or because of missing items found on the design or verifi-
cation team drive updates.

Figure 4.1 shows how a typical schedule for a design interlocks with
the verification cycle. It depicts the portion of the verification cycle from
high-level specification and verification plan creation through to the
regression stage.

The design and verification cycle interlock follows a “waterfall” flow.
Key to the flow is the functional specification development, high-level
design, and verification plan. Although some of the subsequent stages of
development may overlap to reduce overall schedule, the initial stages
lay the foundation for a solid, timely, and executable development cycle.
Even so, the verification team will modify and enhance the verification
plan throughout the process, as the team will undoubtedly discover the

104 Chapter 4 ■ The Verification Plan

need for new scenarios and checkers while implementing the environ-
ment and debugging the HDL.

A key milestone in any project is a plan review checkpoint, which is
intended to “sync up” all the involved players for a design. At a minimum,
the reviewing committee includes the designer and verifier of the DUV,
the designers and verifiers of its neighboring blocks, and the architect.
This review ensures that the design adheres to the interface protocols,
that functional models have the correct behavior, and that the plan is
complete. This review should occur before any verification code is
written. Because the plan is the base for implementing the verification
environment, it is important to ensure that the foundation of the envi-
ronment is correct.

Failure to review the verification plan often results in an incomplete
or faulty foundation, which in turn carries on into the verification envi-
ronment. As a result, the environment may need to be rewritten—a waste
of precious time. In other cases, the verification engineer might choose
to “bandage” the faulty environment to prevent rewriting; typically when
this occurs, the environment is fundamentally flawed, allowing bugs to
go undetected. Thus, to maintain the shortest possible schedule, the
initial review must gate the implementation phase. The team should
continuously review and revalidate the plan throughout the verification

4.2 The Evolution of the Verification Plan 105

Design cycle duration

Functional
specification
development

High level
design

Design implementation

Final physical
design

Create
verification
plan

Evolve verification plan

Implement
environment
from plan Debug HDL and environment:

write and run tests from plan
Regression

Plan review checkpoint Tape-out readiness
checkpoint

Tape out

V
er

ifi
ca

tio
n

en
gi

ne
er

s
D

es
ig

ne
rs

A
rc

hi
te

ct
s

■ FIGURE 4.1

Design and verification cycle interlock. This figure shows a timeline for the first half of the verification
cycle.

cycle, especially if the specification evolves. This is critical to ensure that
the plan matches the specification. In addition, there should be reviews
that coincide with key milestones such as “ready for the next level of
verification” or “ready for fabrication.”

Following this process puts the verification plan and execution in lock
step with the design cycle, thus reducing the overall design risk by
keeping verification in the forefront of the design consciousness.

Another aspect to consider is the integration of all the hierarchical-
level verification plans into one cohesive plan. Every block that will have
its own environment should have its own verification plan; as a result,
there may be numerous owners of these plans or for each verification
level. To ensure that all functions are covered, the verification plan and
initial review should be a compilation of all these plans. The lead verifi-
cation engineer for the project usually owns the comprehensive plan,
which covers the verification of all functions and indicates at what level
the functions are exercised.

4.3 CONTENTS OF THE VERIFICATION PLAN

The verification plan consists of multiple sections, each articulating a
critical component of the verification workload. These sections describe
both the technical requirements for the verification environments and
the project management needs.

The technical requirements of the verification plan fall into the fol-
lowing major headings: description of verification levels, functions to be
verified, specific tests and methods, coverage requirements, and test sce-
narios (matrix). These sections describe, in detail, the strategy and con-
struction of the verification environments for the project.

The project management sections of the plan have these major head-
ings: required tools, risks and dependencies, resources requirements, and
schedule details. These sections articulate the software, compute hard-
ware, and personnel required to complete the project on the required
schedule.

4.3.1 Description of Verification Levels
The verification team’s first decision in verifying a design is to articulate
the verification levels. As described in Section 2.1, a system may contain
multiple levels of design hierarchy. Depending on the complexity of each
level, the verification team must choose to verify levels independently or
group levels together into functional components.

The verification team bases their decision to group components
together or to first verify some (or each) components independently on
two factors. The first factor is the complexity of the individual component.

106 Chapter 4 ■ The Verification Plan

Complex portions of the DUV require their own verification. Proper
verification on complex functions usually requires a high level of control
and observability. Conversely, the verification team may fold simpler
macros that do not require this high level of control and observability
into the next level of verification with little risk.

The second factor in grouping components is the existence of a clean
interface and specification to drive the component. The ability to prop-
erly drive interface protocol and check for results is the key to verifica-
tion and requires a stable, documented interface. If the interface is
“a moving target,” then the volatility in the design and verification
environment should be expected. If it is feasible to verify blocks with
unwieldy or unstable interfaces at a higher level, then this may be an
appropriate trade-off.

After defining the verification levels, the verification team will create
verification plans for each level. The following sections describe the
components of a verification plan needed for each level.

4.3.2 Required Tools
The required tools section contains the specification and list of the veri-
fication toolset, describing the software (and potentially hardware simu-
lation machines) needed to perform the plan. Some examples of this are
as follows:

■ Event simulation tools for units

■ Cycle simulation tools for chip (for performance reasons)

■ Formal verification tools

■ Assertion-based tools

■ Debuggers

■ Emulation hardware

■ Acceleration hardware

■ Cosimulation software

■ High-level verification languages (HVLs)

■ Libraries of functions

In some companies, a concrete verification methodology exists, and this
section is predetermined. In these cases, the verification plan follows the
current methodology, including the default toolset.

There are instances in which a deviation is required from the default
toolset. For example, if a system-level simulation environment involves
a chip verified separately under a different methodology or toolset, the

4.3 Contents of the Verification Plan 107

team may need additional tools to bridge the environments. It might
follow then that the team needs a cosimulation environment. Cosimula-
tion occurs when the team verifies diverse source code or methodologies
at once. This could be between VHDL and Verilog, or it might be between
two different HVLs—Specman e, SystemC, and/or Vera.

Articulating the required tools is important because they could have
a resource or monetary impact. New or different tools will drive more
resources or inflate the schedule as the team learns the appropriate
usages. Inclusion of tools in the plan also serves to document software
purchase requirements from electronic design automation (EDA)
vendors, as well as simulation engine estimates.

4.3.3 Risks and Dependencies
This section of the verification plan identifies critical threats to success
and delivery requirements that project management needs to track to
closure. The complexity of today’s designs inherently contains verifi-
cation risks. The verification team depends on other teams to deliver
information, tools, function, and intellectual property in order to achieve
success. This section articulates these items.

The verification team manages risk through focusing on avoidance and
by creating contingency plans. For instance, there are risks associated
with dependence on a new tool: delivery and start-up delays (e.g., late
delivery or nonworking functions), integration with established tools,
and educational challenges. Contingency plans might consist of using a
backup tool or creating an early acceptance test for the tool.

Dependencies range from on-time HDL deliveries to availability of
tools and technology. HDL deliveries may come in regularly scheduled
packages, in which the design team delivers basic function first, followed
by further, more complex functions. The verification team must plan
their work based on these deliveries, so the plan must articulate this
dependency.

The verification team should highlight the dependency and risks
during the initial plan review, thus driving overall acknowledgement of
these items and discussion of possible risk mitigation actions.

In a complex design project, there are common risks and dependen-
cies. One of the most common risks in a large design project is the
reliance on a separate verification team, such as a local team or an intel-
lectual property (IP) vendor (in a system-on-a-chip design), to preverify
a lower-level core before chip- or system-level verification. Receiving a
release of a poorly verified core likely leads to debugging a unit-level bug
at the system level. In these situations, pinpointing the bug is much more
difficult or even impossible.

As mentioned above, new tools and new versions of current tools add
risk to a project. As tools continue to evolve in order to keep pace
with design complexity, the engineering team must manage new tool

108 Chapter 4 ■ The Verification Plan

deliveries. Problems include occasions when the tool is not available
when promised, when quality defects in the tool slow the pace of the ver-
ification effort, or when the promised functionality of the tool is not deliv-
ered. Worse yet, a new tool, advertised as a seamless integration effort,
might end up requiring months of environment changes. Many groups
have a tool freeze within a project. This is a point after which the team
will not entertain new tools (or revisions of tools) because of the risk
associated with changes. Beta testing tools is a good practice before new
releases. This avoids wasted hours because the new tool has bugs, which
requires the team to go back to a previous version. The team must plan
for education on new tools as well. Classes and on-site support help alle-
viate these risks.

Architecture closure is a common risk and dependency item. As men-
tioned before, the design team rarely supplies the complete and final
specification before the start of verification. Often, there are architectural
and specification issues that are not resolved when the team writes the
verification plan. This is both a dependency and a risk. The team requires
closure of architectural items by specific dates in order to meet the
schedule. However, the team also runs the risk that they need to over-
haul their verification environment because the early assumptions prove
to be invalid.

A final common risk and dependency is having the available resources
to complete the work on schedule. There may be a unique resource
requirement that needs to be listed (e.g., people, machines, licenses). For
instance, there may be contention among multiple projects for specific
simulation hardware such as emulators. In another case, the verification
plan will assume a certain daily simulation cycle throughput during the
early phases of the design right through the regression phase. The sim-
ulation engines and licenses must be available to meet this throughput.
Most important is having the available, skilled verification engineers on
a project. These verification engineers are in high demand, with other
projects vying for the same limited skill pool. The project must manage
the appropriate staffing levels to maintain the desired quality and
schedule goals.

4.3.4 Functions to be Verified
This section lists the specific functions of the DUV that the verification
team will exercise. Because the plan is crucial in determining success,
this is where the verification team articulates the functional require-
ments. This section identifies everything that the team will verify. Any
functions omitted (intentionally or inadvertently) may not be verified.
During the initial review, it is equally important for the design team to
focus on the listed functions as it is to brainstorm on what might be
missing. The verification team creates this section of the plan for each
level of verification.

4.3 Contents of the Verification Plan 109

The main source of the list of functions is the specification. Each func-
tion should have a short description about it, and the team can cross-
reference these functions to the specification to help determine if the plan
covers all functions in the specification. This list of functions can also be
of assistance when disputes arise on the function of something that is
being tested, as the team has a quick reference back to the specification
for clarification on a function.

The list of functions to be verified must include pervasive functions,
operations other than those that may occur under normal running con-
ditions. Pervasive functions include system resets, error handling, and
system debug. The verification team often devotes an entire section of
the verification plan toward pervasive function (for more detail, see
Chapter 9).

This section also describes under what conditions the team will verify
all the functions. This is crucial in that it helps define the functions that
the verification components need to support. If a component cannot
produce the stimulus, then the verification engineer cannot check that
function. Even if a check exists, the environment will never exercise the
checker because the stimulus is constrained in an inappropriate fashion.

The other purpose of the list of functions is to provide an order of pri-
ority. The list should be broken down into different areas:

■ Critical functions

■ Secondary functions

■ Nonverified functions at this level

The critical functions are those that the team must verify before using
the design elsewhere. These functions provide the base set of tasks and
behaviors of the DUV. If the design were a unit, this could be the crite-
rion needed to start the next level of verification. Typically, the functions
listed here are the things that will render the chip dead if not met. The
critical functions list is like “drawing a line”; if crossed, the team com-
promises the success of the project.

There are two categories of secondary functions: noncritical to tape-
out and noncritical to the next level of verification. Functions that are
not critical to the initial tape-out include performance-related issues,
functions that the designers will enable in later versions of the chip, or
function that has software backup. If any one of these functions is
broken, the design is not “dead.” In these cases, there may be a decision
not to delay the design’s release to manufacturing while the verification
effort continues on these functions. It does not mean that the team will
not verify these functions; it just means that the team will verify them
after releasing the design to manufacturing.

Schedule dictates the need to classify function as noncritical to the
next level of verification. In a perfect world, the next level of verification

110 Chapter 4 ■ The Verification Plan

will not start until the verification team completes the lower level verifi-
cation plan. This is typically unrealistic in a fast-paced business.To par-
allelize some of the schedule, the team may choose to verify only the
critical functions before beginning the next level of verification. This
gives the next level a chance to test and initiate their environment while
the lower level continues verification of secondary functions. These func-
tions are typically corner case type criteria that the next level will not
expect to hit until later. The owners of the next level must scrutinize this
list of functions so as to align expectations. Discovering that some func-
tion initially deemed as secondary is actually critical will cause churn in
the verification environment. This is another aspect covered by the design
teams during the initial review.

The final category, nonverified function, may seem out of place, but it
is necessary. Nonverified functions indicate functions that the verification
team will not exercise at this particular level of verification. There are
two reasons to ignore function at a particular level: the first is that the
team fully verified the function at a lower level (usually through exhaus-
tive formal verification) and there will be further verification (for a sanity
check) in simulation at a higher level, and the second is that the func-
tion is not applicable at this level of verification.

Articulating this category of function informs everyone that the team
considered these functions and decided that the functions would be ver-
ified elsewhere. It is important to note in the plan where the function
will be verified.

Architects, designers, and verification engineers all need to focus on
this section of the verification plan to identify holes and overlooked func-
tions. By listing nonverified and verified functions together, all parties
gain insight into the verification plan.

4.3.5 Specific Tests and Methods: Environment
This section provides the details of the verification environments for each
level of verification. It describes if the environment will treat the DUV as
a black box, white box, or grey box and provides specifics on the verifi-
cation strategy, including the amount of randomness or determinism in
a simulation environment and the types of checks for a formal verifica-
tion environment.

For simulation environments, the verification team must document
the level of abstraction the components will use. In addition, this section
of the verification plan describes the checking strategy.

It is often helpful to include a block diagram showing the universe for
the DUV, which is an easy way to indicate the required components in
the environment. This description of the environment components is
critical because it details the interactions between blocks and the con-
trols a user has on them. In many instances, this is crucial for component
reuse (for reuse strategies, see Chapter 10), as it is often desirable to use

4.3 Contents of the Verification Plan 111

a component in multiple levels of verification. Each component in the
diagram should have its own description, which details how the envi-
ronment will drive all of the inputs and check the outputs.

Along with a block diagram, the following sections provide a frame-
work for the specific tests and methods for the verification environment.

What Type of Verification?

This section states the choice of black box, white box, or grey box veri-
fication, as well as the ramifications of the decision. If the verification
team chooses a black box approach, it may not be necessary to have the
monitors probe into the design; however, if the team chooses a white box
approach, it may require many more monitors for the DUV. The team
bases their choice on the following:

■ The function to be verified

■ How to best exercise the internal structures

■ How errors may manifest themselves

■ The availability of resources for maintenance (remember, white box
style will require more work but may also uncover more bugs)

Most environments are grey box, as the verification team decides to
create observation points within the DUV to ensure the handful of inter-
esting aspects occur during simulation. By laying out this approach, it
may be feasible to settle on some standard observation points that will
not change, thus causing less maintenance because of the stability within
the implementation.

Verification Strategy

The choice of deterministic simulation, random-based simulation, or
formal verification drives divergent environment components. The veri-
fication team bases the choice on the function of the DUV and the avail-
able resources. Simple designs with straightforward functionality lend
themselves to deterministic test approaches. Complex functions require
randomization, because the verification team cannot envision all of the
input permutations. In this case, the verification team builds intelligence
into the components so they can leverage the speed of their workstation
farm through design automation. The team chooses formal verification
for small, complex blocks of design for which many permutations exist.
The key trade-off between simulation-based randomization and formal
verification is that the team will employ formal verification if the formal
verification engine can manage the block size. Larger DUV models will
require simulation.

112 Chapter 4 ■ The Verification Plan

The deterministic approach requires the verification engineer to put
features into the environment to enable writing all permutations of deter-
ministic tests. The deterministic environment must be sufficiently robust
to exercise the DUV function. In this environment, the intelligence in
driving stimulus and checking outputs and intent of the test case remains
in the verification engineer’s mind. The environment enables the unin-
hibited flow of that intent into the DUV.

The random environment and formal verification choices drive much
of the same thinking. Both environments require that the verification
engineer allow all possible permutations to occur on the DUV’s input
interfaces. Although deterministic testing drives a single, legal event,
random and formal verification approaches require that the verification
engineer explicitly disable illegal stimulus and allow everything else.
Rather than considering all of the possible scenarios, the random and
formal verification approaches prevent scenarios that the specification
prohibits. The random and formal verification environments require
the verification engineers to codify their checking knowledge into the
checker, scoreboard, and monitor components or into the formal verifi-
cation rules.

Random Aspects

The decision on random, formal, or deterministic testing affects the func-
tions within the model. Too much randomness can prevent problems
from being uncovered, as the tests may not hit interesting cases, and may
drive false failures. Conversely, not enough randomness will prohibit the
creation of all the interesting tests. A user wants controlled and properly
constrained randomness possibly with “unrandomizing” controls built
in. Controls to cut back on randomization allow for a more directed
random approach. These controls can pursue

■ Hangs due to looping

■ Low activity scenarios

■ Specific directed tests

The random environment may require further specialized micromodes to
get around an architecture fault or to create a known scenario. A micro-
mode allows the verification engineer to inject a deterministic sequence
into the random environment.

Abstraction Level

The abstraction level dictates how the verification environment views
streams of control and data bits. At the lowest level, at which the envi-
ronment components observe and examine each input and output of the

4.3 Contents of the Verification Plan 113

DUV as bits, there is no abstraction. This level is generally shunned by
the verification team as there is little design intent context; instead, teams
usually opt to group control and data bits into meaningful functions,
raising the level of abstraction. Once chosen, the team uses this level for
all checkers, stimulus, scoreboards, and monitors in the particular veri-
fication environment.

Figure 4.2 shows various abstraction level choices. Above the bit-level,
inputs and outputs join to make meaningful command and data packets.
Components create sequences by joining multiple packets together to
form a function; multiple sequences create a program or implement an
algorithm.

Often, the choice of abstraction level parallels the verification level.
Designer-level verification uses bit streams to verify simple blocks. For
the unit and chip levels, verification engineers choose the packet or
sequence level of abstraction. Program-level abstraction rarely occurs
below the system level.

For example, the verification engineer would drive and check a Periph-
eral Component Interconnect (PCI) model using PCI transactions packets
or sequences, not a stream of bits or bytes. Although the verification
engineer could think of all the bus transactions in terms of a stream of
bits, it complicates the creation, maintainability, and effectiveness of the
model. Similar examples hold for microprocessor verification, in which
verification engineers can choose to deal in binary instruction encoding,
abstract to the mnemonic op-code, write sequences of instructions, or
advance to writing programs that run on the microprocessor.

Without the correct abstraction level, it may not be feasible to cover
all the interesting scenarios. The correct abstraction level will make it

■ Easy to define concise test scenarios based on interesting
sequences

114 Chapter 4 ■ The Verification Plan

DUV

Program or
algorithmic level

Sequence level

Command and data
“packet” level

Bit level
(no abstraction)

Groups
of bits

Groups
of packets
across time

Groups of
sequences
across time

Verification
level

System

Designer

■ FIGURE 4.2

Abstraction levels dictate how the verification components interact with the design under verification.

■ Able to generate meaningful reports for debug analysis of test
results

Checking

The checking strategy falls into place based on the choice of verification
type (black box, white box, grey box), the verification stimulus strategy,
and the level of abstraction. Still, the team needs to document the choice
among golden vectors, reference model, and transaction-based strategies
for simulation-based environments. Checking for formal verification
environments requires equal thought, but comes in the form of rules and
assertions.

The level of abstraction will dictate the required level of context check-
ing. However, the team still needs to think through the multiple sources
of checkers (see Chapter 2).

For checking on inputs and outputs, the verification team must
examine the output specification and remember to check all outputs.
Even if a higher level of abstraction is chosen for the environment, there
still will be bit-level checking built into the monitors for parity and basic
outputs.

For design context checking, the verification team must understand
the larger system or higher level of hierarchy in which the DUV will work.
Higher-level or neighboring designs will dictate requirements and checks.

To address microarchitecture checking, the team studies the con-
structs within the DUV to ensure that checking components will know if
the DUV has gone astray. The checkers must know when a queue over-
flows or when state machines have taken illegal transitions.

For architecture checking, the design must fully adhere to the pub-
lished standards. Checkers must be in place to guarantee that there are
no violations.

The type of stimulus (deterministic versus random) guides the choice
between golden vectors and the reference model or transaction-based
checking. The available staffing will also drive the decision, especially
between a cycle-accurate reference model and the transaction-based
checking. Appropriate verification staffing allows for pinpoint accuracy
in reference model checking.

The verification team can include details such as the data contents of
the scoreboard in this section of the verification plan. The team must
understand what information they will track globally within the envi-
ronment, as well as what data they must check in local output monitor
components.

4.3.6 Coverage Requirements
Coverage is the feedback mechanism that evaluates the quality of the ver-
ification environment’s stimulus generation components. The verification
environment provides “quality control” on the DUV; coverage provides

4.3 Contents of the Verification Plan 115

quality control on the verification environment. Coverage information is
required in any complex simulation-based environment.

This section of the verification plan describes the intended stimulus
goals for the environment. The goals should cover all of the functional
stimulus requirements and ensure that the stimulus components in the
environment do what they should. These coverage goals may include the
following:

■ The environment has exercised all types of commands and
transactions.

■ The stimulus has created a specific or varying range of data types.

■ The environment has driven varying degrees of legal concurrent
stimulus.

■ The initiator and responder components have driven errors into the
DUV.

Another good practice is to have coverage feedback for all environment
checkers to verify that the stimulus exercises all of the checking code.
Unexercised individual checks indicate that there is a hole somewhere
in the stimulus components or in the plan (for more information on
coverage, see Chapter 6).

4.3.7 Test Case Scenarios: Matrix
A good verification plan should list all of the interesting test scenarios
that will serve to verify the design. This list is the test case matrix. Defin-
ing a preliminary matrix is necessary before starting the design and mod-
eling of the verification environment because every potentially valuable
test should be enabled. Within the matrix, the verification plan should
label each test, give a short description, and contain a cross-reference to
the function and coverage lists.

The matrix starts with the basic required tests and then builds on
them. The plan groups tests with similar features to form test scenarios,
which may have the same configuration, granularity, or verification strat-
egy. The descriptions of the scenario designate the targeted function. The
last item on the matrix is a cross-reference to the functional requirements
and coverage goals.

This section can produce a huge matrix of tests. Often, the matrix size
can explode when there are multiple DUV configurations. If a DUV has
10 basic functional tests and each one is valid in one of three modes (e.g.,
bus frequency), then the net result is that the matrix will have 30 tests.

A random coverage-based matrix begins with a listing of the targeted
functions. The initial description states how the team will constrain
the environment to achieve the goals. In a random environment, this

116 Chapter 4 ■ The Verification Plan

translates to driving certain inputs with specific values while leaving
other inputs unconstrained (randomly generated values). This set of
constraints then determines the scenario.

The test matrix grows as the implementation continues. For complex
DUVs, the team cannot define all tests at the start; instead, they add to
the test matrix as they determine new scenarios, through either DUV dis-
covery or coverage holes. It is critical to document these new tests in the
verification plan, as the team needs to include these tests in the future.

As part of defining a verification plan, the verification team needs to
specify the legal values, illegal values, and corner cases of each input data
element they want to generate. The following should be kept in mind
when creating the matrix: configurations to verify, variations of the data
items in the environment (this ties to the abstraction level), important
attributes of each data item, interesting sequences for every DUV input
port, error conditions, and corner cases.

Corner cases deserve their own section in the test case matrix. The ver-
ification team must pay special attention to many out-of-the-ordinary
cases, which include the smallest and the largest data elements such as
an empty and full queue or first in, first out (FIFO), extreme values such
as the largest and smallest packet lengths, and unique time relations
such as bus collisions and interrupts during instruction streams.

As the above test scenarios listed, the team should define the range of
values for each generated data item, thus helping to define the verifica-
tion plan and model the input data.

4.3.8 Resource Requirements
With the environment architecture and test scenarios in place, the team
can estimate its resource requirements. Resource requirements include
not only people but also compute and license resources.

People resource estimates vary based on the type of environment and
the experience of the individuals. Reference model checking environ-
ments will require more people to implement, but their accuracy and
checking capabilities are often worth the investment. However, less
resource-intensive solutions such as transaction-based checking may be
adequate. Experienced verification engineers will require less time to
code and debug the environment. Time should be planned for review of
the verification components for all portions of the code, paying special
attention to the code of inexperienced verification engineers.

The verification leaders allocate people resources across the verifica-
tion hierarchy, starting with the lowest level in the plan. The verification
assignments will shift as the lower levels complete and the next level of
verification in the hierarchy begins. Because there are more total envi-
ronments at the lower levels (e.g., there are many units in a single chip
and multiple chips in a system), the resource plan allocates fewer people
per environment at the lower levels and has the verification engineers

4.3 Contents of the Verification Plan 117

moving together toward system level. Typically, it takes fewer people to
execute a unit environment than a system environment.

Within every environment, the leaders allocate individual verification
engineers across the components. Typically, a single verification engineer
will write all of the stimulus components at a unit level. The leaders may
assign another verification engineer to create the checking for that unit.
However, for a complex chip or system, there are too many interfaces for
a single verification engineer to write all of the stimulus or checking com-
ponents, so the team splits the development across multiple people along
sensible partitions. In a well-designed verification plan, the plan calls for
porting many of the lower-level drivers and checkers to the higher levels
of the verification hierarchy. This reuse eases some of the resource
requirements.

Aside from engineering resources, it is very important to estimate the
required compute resources. This is calculated based on the length of
one test scenario and the estimated number of tests to run during the
whole verification cycle. These numbers should be consistent with the
time and computing resources available for the project (the limiting
factor could be central processing units or licenses available to the
project), which may drive requests for additional compute or license
resources.

When deciding on the length of tests, keep in mind that long tests
might reach more interesting DUV scenarios, but they are harder to
debug when they fail. It may be more beneficial to have many smaller
(more focused and easier-to-debug) tests than a few long ones. In prac-
tice, a simulation time of 15 minutes to 1 hour provides a good balance
of all the above factors, assuming that the environment can create all
interesting scenarios within this time span.

4.3.9 Schedule Details
Previous sections of the plan cover the verification of the many different
levels of hierarchy and the proposed environments for each. The final
portion of verification planning is to document the timeline for each of
the verification activities.

As the team creates the schedule details, they must consider all of the
other sections of the verification plan. However, the resource section is
the most tightly coupled to the schedule details section because the avail-
able resources have a direct and obvious impact on schedule. More
resources will improve the schedule, and less resources will extend the
schedule.

The schedule includes both deliveries to the verification team and ver-
ification work items. The first step is to create a high-level schedule
before filling in the details. The high-level schedule follows the first half
of the verification cycle. It starts with a delivery of the specification and
completes with chip release(s) to manufacturing. For each level of the

118 Chapter 4 ■ The Verification Plan

hierarchy, the high-level schedule includes the development of verifica-
tion environments, the debugging of the HDL, and the regression stage.

A key delivery in the schedule is the first drop of HDL to the verifica-
tion team. An HDL drop consists of enough HDL to perform specific DUV
functions. Often, there are multiple drops of HDL in the development
cycle. Staggering the drops allows the verification team to make progress
on basic functions while the HDL designers work on complex and sec-
ondary functions. This parallelization can streamline the schedule;
however, it will force the HDL designers to balance their time between
creating new HDL and fixing newly discovered verification bugs in pre-
vious drops.

The verification leaders must estimate how long it will take to create
the basic verification environment. In most cases, this time is closely
aligned with how long it takes the designers to create the first HDL deliv-
ery. The second time estimate is the duration of the debug portion of the
schedule, which begins after the initial delivery of environment and HDL.
The estimated duration of this portion of the schedule is based on how
long it should take to run through the test matrix. The estimate must
account for further HDL delivery dates as well. The remaining timeframe
before the chip release to manufacturing is set aside for regression.

Figure 4.3 shows the format of the high-level schedule. In this
example, the team chose to execute three levels of functional verification:
unit, chip, and system. Verification engineers have singled out four units
across three chips for unit simulation environments.

4.3 Contents of the Verification Plan 119

Time
Units

Chips

System

Unit A
Unit B
Unit C
Unit D

Chip X
Chip Y
Chip Z

Key: Specification
delivered

Develop
verification
environment

Regression

First HDL
delivered Debug HDL

Release to
manufacturing

■ FIGURE 4.3

High-level schedule showing the first half of the verification cycle. The major checkpoints include design
deliveries, environment development, debug, and regression.

Verification proceeds from the lowest level of the hierarchy (in this
case, unit level) to the highest. Unit verification precedes chip level,
which then precedes system level. Chip-level verification should not start
until after the verification of substantial function at unit level. Similarly,
system level cannot begin until all three chips have demonstrated solid
functionality.

The schedule must allow enough time for each level of hierarchy to
test the function before the next level starts. This ensures that the verifi-
cation team will find bugs at the lowest level possible, easing the debug-
ging burden and capturing bugs at the earliest point in the schedule. A
good practice is to start the next level of verification when the bug rate
from the lower level has dropped. This ensures that the resources stay
focused on the most productive verification level. Figure 4.4 shows
a sample bug curve that results when the team follows the schedule
guidelines.

The scheduling challenge is to create reasonable estimates of when
these events will occur. The typical bug curve in Figure 4.4 looks great
in hindsight, but predicting the timing of the bug rate fall-off is no easy
task. To assist in schedule estimation, the verification team should use
historical references from past projects. By coupling the history of
similar projects with the latest enhancements in verification methodolo-
gies, the verification leaders can make reliable schedule estimates.

120 Chapter 4 ■ The Verification Plan

Months

P
ro

bl
em

s
pe

r
w

ee
k

70

60

50

40

30

20

10

0

Unit level Chip level System level

■ FIGURE 4.4

A typical bug curve shows that the lowest levels of verification uncover the majority of bugs because of
their granularity and their precedence in the schedule.

4.4 VERIFICATION EXAMPLE: CALC1

Calc1 is a sample DUV used to demonstrate test planning and simple ver-
ification. This section describes Calc1 from the view of a verification engi-
neer and then discusses the first step in verifying the design, the creation
of a verification plan, and the deterministic test cases required to verify
the Calc1 design. Compared to real-world complex designs, Calc1 is very
simple although it serves well as an initial training example. The design
also serves as a base for more complex verification tutorials.

4.4.1 Design Description
Before creating a verification plan and test cases for Calc1, the verifica-
tion engineer must understand the design. This section describes the
inputs, outputs, and function of the Calc1 design.

Calc1 is a register transfer level (RTL) design implementation of a
four-operation calculator. The four operators are Add, Subtract,
Shift_left, and Shift_right. The RTL can accept up to four simultaneous
operators from its four ports. A single port request sends an operator into
the calculator on the command input bus, accompanied by operand data.
Each request uses one of four input ports to send the command and
operand data. The four ports can each handle a single command in
parallel.

Each command will receive a response from the calculator design.
Except in the case of an error condition, the response will include the
result of the operation. This section describes the exact protocols.

Figure 4.5 shows the input and output signals for Calc1. As with all
designs, the RTL must generate or receive a clock signal input. For Calc1,
the RTL receives the clock signal on c_clk.

Each of the four Calc1 ports has two separate input busses and two
output busses. The first input bus, reqX_cmd_in(0 :3) (where X is
replaced by port numbers 1, 2, 3, or 4) is a 4-bit bus used to transmit the
command to the Calc design. Table 4.1 shows the command and decode
values for the 4-bit command bus.

The second input bus, reqX_data_in(0 :31), is the operand data bus.
Each of the four operation types requires two operands. The requestor
ports send operand1 data and operand2 data on sequential cycles, with
operand1 data concurrent with the command. Therefore, it takes two
cycles to send a complete command and data sequence.

Table 4.2 shows how the Calc1 design operates on the two operands.
The two output lines for each port are the response bus, out_respX

(0 :1), and result data bus, out_dataX(0 :31). The response bus goes active
for one cycle when the Calc1 design completes the computation for the
port. The number of cycles that it takes to complete an operation depends
on amount of activity on the three other ports but will always be at

4.4 Verification Example: Calc1 121

122 Chapter 4 ■ The Verification Plan

Calc1
Design

c_clk
req1_cmd_in<0:3>

req1_data_in<0:31>
req2_cmd_in<0:3>

req2_data_in<0:31>
req3_cmd_in<0:3>

req3_data_in<0:31>
req4_cmd_in<0:3>

req4_data_in<0:31>
reset<0:7>

out_resp1<0:1>
out_data1<0:31>
out_resp2<0:1>
out_data2<0:31>
out_resp3<0:1>
out_data3<0:31>
out_resp4<0:1>
out_data4<0:31>

■ FIGURE 4.5

The Calc1 design receives a clock and reset signal, along with a command and data bus from each of
the four ports. The outputs include a response and data bas for each port.

TABLE 4.1 ■ Calc1 command decode values

Command Decode value

No operation “0000”b
Add “0001”b
Subtract “0010”b
Shift_left “0101”b
Shift_right “0110”b
Invalid All others

TABLE 4.2 ■ Calc1 operation details

Command Effect on operands

Add Result is Operand1 + Operand2
Subtract Result is Operand1 - Operand2
Shift_left Result is Operand1 shifted left

Operand2 places. Bits shifted out are
dropped. Zeros are always shifted in.

Shift_right Result is operand1 shifted right
Operand2 places. Bits shifted out are
dropped. Zeros are always shifted in.

For both shift commands, only the rightmost (low-order) 5
bits, reqX_data_in(27:31), of Operand 2 (the shift amount)
are used. The calc1 logic ignores bits 0 to 26 of the shift
Operand2, allowing the Operand1 data to be shifted any
amount from 0 to 31 places (inclusive).

least three cycles. Table 4.3 shows the possible responses for a given
operation.

The output data bus, out_dataX(0 :31), should only be sampled when
out_respX(0 :1) contains the successful response decode value (“01”b).
At that time, the value on the output bus will contain the result of the
operation for that port.

Figure 4.6 shows a timing diagram of the command and response
sequence for a single successful command on Port 1. The command and
first operand of data appear on the first cycle of the sequence, and the
second operand data follows on the second cycle. A few cycles pass, and
the response appears on the output of the design, accompanied by the
result data.

Each port may have one operation ongoing at a time. Once a port
sends a command, it may not send another command until it receives a
response for the preceding command. The protocols do not require that
a requestor port send a new command whenever the preceding command
completes; the port may be idle for any number of cycles in between
commands.

4.4 Verification Example: Calc1 123

req1_cmd_in<0:3>
req1_data_in<0:31>

out_resp1<0:1>
out_data1<0:31>

Each port must wait for its response prior to sending the next command!

■ FIGURE 4.6

A timing diagram of a single port command sequence.

TABLE 4.3 ■ Calc1 response values

Response decode Response meaning

“00”b No response on this cycle.
“01”b Successful response. Response

data are on the output data
bus.

“10”b Overflow, underflow, or invalid
command. Overflow/underflow
only valid for the add or
subtract commands. No data on
output data bus.

“11”b Unused response value.

Each port is independent of the others: all four ports may send com-
mands concurrently or any combination of commands across cycles
(with the stated restriction of only one outstanding command per port).
Therefore, at any given point, the Calc1 design may work on any number
of commands, up to a maximum of four.

If all four ports send commands concurrently, the responses will not
be concurrent. Although each port has equal priority, there are limited
resources inside the design. Specifically, there is one ALU for adds and
subtracts, and a second ALU for shift commands. Hence, if all four ports
sent concurrent add commands, the Calc1 logic would serialize the
responses, as only one add command could be processed by the ALU at
a time.1

Internal to the design is a priority logic scheme that sends commands
to one ALU or the other, depending on the command decode. Calc1 ser-
vices commands on a first-come, first-serve basis. Calc1 may service
commands that arrive on the same cycle in any order.

The design has a reset bus input used to clear the internal state of the
design. During verification, the test case initially should activate the reset
to put the design in a cleared state. Setting the reset line, reset(0 :7), to
“11111111”b activates the reset. This input value needs to be held for
seven consecutive cycles in order for the reset to propagate through the
design. The test case should set to zero all other input busses except the
c_clk while resetting the Calc1 DUV.2

Calc1 treats arithmetic operands as unsigned data. The most signifi-
cant (leftmost) bit, bit 0, is a data bit, not a sign bit. An overflow occurs
on an add operation when the high-order bit (bit 0) has a carryout, and
an underflow occurs on a subtract operation when a larger number is
subtracted from a smaller number. Table 4.4 shows examples.

124 Chapter 4 ■ The Verification Plan

1 This is microarchitectural information describing the internals of Calc1. The verification
engineer may not need this information to drive inputs, but checking components, such as
reference models, do require this information. The more a verification engineer under-
stands how the design functions, the better the environment.
2 The test case must drive the c_clk. However, the value of the c_clk input depends on the
type of simulation engine. For event simulation, the stimulus component must toggle c_clk
every cycle. For cycle simulation engines, the stimulus component should stick c_clk to
“1”b.

TABLE 4.4 ■ Add and subtract overflow/underflow and successful response examples

Command Operand1 Operand2 Response Result data

Add “80002345”X “00010000”X Successful “80012345”X
Add “FFFFFFFF”X “00000001”X Overflow None
Subtract “FFFFFFFF”X “11111111”X Successful “EEEEEEEE”X
Subtract “11111111”X “20000000”X Underflow None

4.4.2 Creating the Verification Plan for Calc1
Now that the specification is in place, it is time to create the verification
plan for the Calc1 design. Even for a relatively simple design such as
Calc1, it is best not to jump into test case writing before thinking through
the entire verification plan requirements.

The above design description details the intent of the Calc1 design. It
is the verification engineer’s job to prove that the actual design imple-
mentation matches the intent. Therefore, the verification engineer should
not assume the details of the above Calc1 design are correct in the
implementation.

Description of Verification Levels

Calc1 is a simple design used as an initial introduction to simulation-
based verification (however, verification engineers have successfully
applied formal verification to the design as well). Therefore, this design
requires verification only at the top level of the DUV hierarchy; further-
more, the available specification only describes the top-level interfaces.
Verification at a lower level of hierarchy, such as the ALUs, would require
an input and output description of that subunit.

However, if the people resources exist, it is better to do unit-level ver-
ification, thus placing the priority logic and ALUs under a microscope
of verification and allowing a higher level of control and stress on
the design. Furthermore, in real-world designs, it is common for one
designer’s logic to be available before others’ logic. If the priority logic
HDL is ready for verification before the ALUs, the priority logic unit-level
verification can commence without waiting for the entire chip. This level
of verification would add a dependency on the design team to document
the unit interfaces.

Required Tools

The tools inventory for Calc1 comprises a single software simulation
engine (and license to run it) and one workstation, a waveform viewer,
and a test case language or infrastructure. The language or infrastruc-
ture must communicate with the simulation engine through the engine’s
application programming interface (API), which provides the means to
drive the inputs, check the outputs, and clock the model of the design,
which is simulated by the engine itself.3

4.4 Verification Example: Calc1 125

3 Basic tools such as text editors (to write test cases) need not be included in the required
tools section of the verification plan.

Risks and Dependencies

This exercise does not have risks worthy of documentation. In a larger
project with a more complex design, there might be risks inherent in the
delivery of the specification of esoteric operations (e.g., binary floating
point) or in the ability to verify the design in a short schedule. If Calc1
were part of a large system, this section would detail schedule integra-
tion factors. The system-level verification cycle depends on the correct-
ness of the Calc1 function so that broader system integration verification
can occur without being concerned with the quality of the add, subtract,
or shift functions.

The Calc1 exercise also depends on the delivery of the specification
(which was delivered above) and availability of the required tools. To
perform this exercise, you will need the required tools as documented in
the previous section of the verification plan.

Functions to be Verified and Test Scenarios: Matrix

Because Calc1 is simple, we have combined the functions to be verified
and the test case scenarios (matrix) sections of the verification plan. We
list the details here in table format with a reference number for cross-
checking tests against the verification plan.

Certain test case requirements jump out at the verification engineer.
From the Calc1 design description, it is clear that the verification engi-
neer must create the following basic tests as shown in Table 4.5. Beyond
the basic functions described in Table 4.5 are a series of tests that involve
scenarios that are more complex (Table 4.6). Finally, there are generic
tests and checks that are applicable to all verification plans (Table 4.7).

Specific Tests and Methods: Environment

This section describes all of the specifics of the verification environment
plans for Calc1. All sections enumerated in the plan’s previous sections
are described. However, some of the specifics, such as resource require-
ments, depend on the available team.

126 Chapter 4 ■ The Verification Plan

TABLE 4.5 ■ Calc1 basic function tests

Test reference number Test description

1.1 Check the basic command-response protocol on each of
the four ports.

1.2 Check the basic operation of each command on each port.
1.3 Check overflow and underflow cases for add and subtract

commands.

4.4 Verification Example: Calc1 127

TABLE 4.6 ■ Calc1 advanced function tests

Test reference number Test description

2.1.1 For each port, check that each command can have any command follow
it without leaving the state of the design dirty, such that the
following command is corrupted, such that the following command is
corrupted.

2.1.2 Across all ports (e.g., four concurrent adds do not interfere with each
other), check that each command can have any command follow it
without leaving the state of the design dirty, such that the following
command is corrupted, such that the following command is
corrupted.

2.2 Check that there is fairness across all four ports such that no port has
higher priority than the others.

2.3 Check that the high-order 27 bits are ignored in the second operand of
both shift commands.

2.4.1 Data dependent corner case: Add two numbers that overflow by 1
(“FFFFFFFF”X + 1).

2.4.2 Data dependent corner case: Add two numbers whose sum is
“FFFFFFFF”X.

2.4.3 Data dependent corner case: Subtract two equal numbers.
2.4.4 Data dependent corner case: Subtract a number that underflows by 1

(Operand2 is one greater than Operand1).
2.4.5 Data dependent corner case: Shift 0 places (should return Operand1

unchanged).
2.4.6 Data dependent corner case: Shift 31 places (the max allowable shift

places).
2.5 Check that the design ignores data inputs unless the data are supposed

to be valid (concurrent with the command and the following cycle).
Remember that “00000000”X is a data value just as any other 32-
bit combination. Here, the check must include verifying that the
design latches the data only when appropriate, and does not key off
nonzero data.

TABLE 4.7 ■ Generic tests and checks

Test reference Test description
number

3.1 Check that the design correctly
handles illegal commands.

3.2 Check all outputs all of the time.
Calc1 should not generate
superfluous output values.

3.3 Check that the reset function
correctly resets the design.

Type of Verification: Black Box, White Box, Grey Box

A verification engineer can create all of the functions listed under the
functions to be verified section by driving the chip inputs and can check
most scenarios by monitoring the chip outputs. This would indicate that
black box checking is adequate. However, checkers placed on certain
logic functions internal to the design might flag logic flaws faster. These
checkers include checks on internal queues or stacks, especially in the
priority logic. This would verify that no command leaves the state of the
machine dirty (item 2.1 in the list of functions to be verified). In addi-
tion, the environment could include checks that verify fairness in the
priority logic by monitoring the dispatch of commands to the ALUs
(item 2.2 in the list of functions to be verified).

These checkers indicate that grey box verification is appropriate.
Therefore, all stimulus will be driven on the chip inputs, and most check-
ers will monitor the chip outputs. The environment will contain a limited
number of checkers on internal logic.

Verification Strategy

Deterministic, random, and formal verification are all viable technolo-
gies for Calc1. However, formal verification could have trouble verifying
correct ALU results across all 32 bits simultaneously. A full-blown
random environment might be overkill for this simple design, as the
number of test cases required to verify the functions is limited. There-
fore, for the Calc1 exercise, the deterministic verification method is
chosen.4

Randomization Controls

Given the deterministic test case method, questions such as randomiza-
tion controls become moot. The test case writer will encode the input
values and the expected outputs into the test case itself.

Abstraction Level

The level of abstraction depends on the test case language. If the infra-
structure exists, driving the Calc1 at the packet level is optimal for
quickly coding test cases. Figure 4.7 shows an example test case with
packet-level syntax.

The syntax in Figure 4.7 is very convenient, as the infrastructure that
reads and manages the test case handles many mundane tasks, allowing

128 Chapter 4 ■ The Verification Plan

4 As we advance to the Calc2 exercise in Chapter 7, the number of permutations and the
level of complexity quickly exceed the number of deterministic tests that a verification team
can reasonably write. Therefore, we leave the example of random-based methods to Calc2.

the test case writer to focus on the intent of the test case. In the the syntax,
the infrastructure environment manages multiple tasks for the test case
writer. The first task for the infrastructure is translating the actual
command decode values to bits (e.g., ADD = “0001”b). This has a poten-
tially huge added benefit: if the designer ever changes the decode value
of the ADD operand (e.g., ADD = “1001”b), all that is required in the
environment is a simple modification to the infrastructure. If, instead,
the verification engineer codes the operand decode values in the test case
itself, then the team must change every test case with the ADD command.
The same is true for the encoding of the response value.

The next task for the infrastructure is driving the bit-level values into
the Calc1 design. The infrastructure knows to place the operand1 data
value on the bus concurrent with the command and to send operand2
data the next cycle.

The infrastructure design also waits for the valid response. The test
case writer cannot predict when the response will come back, so the
infrastructure waits for the response event and checks the value when it
finally appears on the outputs. This enables the next infrastructure task
to send the next command to the port when the port becomes available.
In the sample test case of Figure 4.7, there are two commands destined
for Port 1. The protocol states that only one command may be out-
standing at a time on a given port. Therefore, the infrastructure can send
the first two commands concurrently (to Port1 and Port2) but must wait
for the ADD on Port 1 to finish before initiating the SUB. Without an
infrastructure, sending multiple commands to the same port is a very
tedious task involving trial and error.

The infrastructure will also take care of resetting the logic and driving
the clocks. The infrastructure automatically raises the reset line for seven
cycles as required at the beginning of every test case, thus circumventing
the need to articulate the reset in every test case. The infrastructure also
drives the clocks to the correct values. An even more robust infrastructure
might further simplify the test case writing task by including other
advanced aspects of verification stimulus generation and checking.

An advanced Calc1 verification environment would include data pre-
diction. If the infrastructure included a golden model that predicts the
result and response fields, it frees the test case writer from having to “do
the math.”

4.4 Verification Example: Calc1 129

/* Port number
Port1
Port2
Port1

Cmd
ADD
SHL
SUB

Operand1
"00012345"X
"22222222"X
"00000001"X

Operand2
"00054321"X
"00000002"X
"00000003"X

Result
"00066666"X
"88888888"X
"00000000"X

Response*/
Good
Good
Underflow

■ FIGURE 4.7

A basic Calc1 test case with packet-level abstraction.

Further functions in an advanced verification environment include
generation of random operand data. If desired, the syntax of the test case
allows the writer to replace an operand data value with the keyword
“random,” which tells the packet generator to pick a random number
value. This requires data prediction capabilities in the infrastructure.5

The test case writer maintains deterministic control over the command
selection and flow of the test case, but optionally can allow the infra-
structure to choose values.

When compared with the packet level of abstraction in the test case
of Figure 4.7, the test case in Figure 4.8 shows the tedious nature of
bit-level environments. The bit-stream level test case language requires
the test case writer to specify all inputs every cycle.

This bit-stream level of abstraction is very tiresome for a verification
engineer to write test cases. This test case sample does not even com-
plete the sending of a single Port command. Even worse, the writer must
predict when the response will return from Calc1 through trial and error.
This entails adjusting the clock value in line 8 to the actual cycle that the
Calc1 logic returns the response.

Output Checking

The previous section prescribed the golden vector approach to checking.
Under this approach, the verification engineer supplies the expected
output values for the deterministic sequences. Unless the team creates
an advanced verification infrastructure with predictive data checking, the
test case writer imbeds the data and result checking inside the test case.

130 Chapter 4 ■ The Verification Plan

5 This type of random data generation should not be confused with “random-based verifi-
cation methodologies” (see Chapter 7). Random-based verification go well beyond random
data by using biasing tables to randomly select commands and ports, as well as idle cycles
between port commands.

SET INPUT "reset(0:7)""11111111"b;
CLOCK 7;
SET INPUT "reset(0:7)""00000000"b;
CLOCK 1;
SET INPUT "req1_cmd_in(0:3)""0001"b;
SET INPUT "req1_data_in(0:31)""00012345"x©
...
CLOCK 3;
EXPECT OUTPUT "out_resp1(0:1)""01"b;
...

■ FIGURE 4.8

A bit-level test case for Calc1.

Coverage Requirements

Coverage goals for the Calc1 example are based on the tests defined in
the functions to be verified section, and the goals require that the verifi-
cation tests create all of the cases described in that section. These goals
are simple because the test scenarios in this design are able to be artic-
ulated. However, in robust designs, coverage goals require greater effort
and rigor in the verification cycle.

Although there is a detailed explanation of coverage and coverage
tools in Chapter 7, the fundamental notion of coverage is to provide feed-
back and confirmation of what the verification environment has exer-
cised in the DUV. Coverage feedback provides the verification engineer
with insight into the actual data of what the test case has done. This data
will show either that the test case has met its intent or that the test case
failed to exercise the intended function or scenario within the design. For
example, in the functions to be verified section of the verification plan,
test reference number 2.1.1 calls for tests that verify that each command
can follow any other command on each port. This statement stipulates
a series of 16 pairs of commands on each port for a total of 64 different
test scenarios. Coverage feedback will track which of the 64 sequences
the test cases have completed.

Resource Requirements

For the Calc1 exercise, the resource requirements call for a single verifi-
cation engineer. The compute resources call for a single workstation on
which the simulation engine runs.

Schedule Details

The schedule details for the Calc1 exercise are straightforward. A verifi-
cation engineer should expect to complete the Calc1 design example in
a single workday.

In the case of the packet-level abstraction, the Calc1 verification engi-
neer depends on the existence and quality of the infrastructure. Usually,
the verification engineer must create the infrastructure or at least per-
sonalize it for the design under test. If this is the case, extra schedule
time is required.

4.4.3 Deterministic Verification of Calc1
With the design intent and the verification plan in place, it is time to begin
verifying the Calc1 design. The verification plan called for deterministic
testing of the design. For clarity, this description uses a packet level of
abstraction to detail the deterministic tests. As stated in the verification
plan, the packet level requires an infrastructure to be in place.

4.4 Verification Example: Calc1 131

Figure 4.9 shows the high-level view of the components in the infra-
structure. The test case parser reads the text-based commands from the
test case and converts them into packet structures for the stimulus ini-
tiator. The initiator passes the packets into the model on the designated
port, performing the packet to bit-stream conversion. Each command
packet requires two cycles to transmit into the Calc1 simulation model
as dictated by the design’s specification. The stimulus initiator can mul-
tiplex across all four ports, sending simultaneous or staggered com-
mands based on the test case. When the interface driver transmits a
command packet, it also posts the command to a scoreboard, which
keeps track of commands currently under execution by the Calc1 simu-
lation model. As the Calc1 simulation model completes commands, the
output checker pulls the expected response and expected data from the
scoreboard for comparison to the actual response. If there is a response
or data mismatch, the test case execution ceases and the output checker
records both the error and the actual versus expected data. Otherwise,
the output checker removes the command from the scoreboard, indicat-
ing that the stimulus initiator may dispatch a new packet to that port.
When the stimulus initiator transmits all of the test case packets and the
checker receives all responses, the test case ends successfully.

The infrastructure also takes care of the seven-cycle reset sequence as
well as driving the clocks into the model.

132 Chapter 4 ■ The Verification Plan

Testcase Calc1 VHDL

Parser Compiler

Stimulus initiator
Calc1

simulation
model

Checker

Outstanding command
scoreboard

Trace
debugger

Keyboard text
Testcase infrastructure
Simulation tools and model

■ FIGURE 4.9

Infrastructure for sending simple command packets into the Calc1 simulation model.

For this exercise, we will build on the test case syntax introduced in
the test case of Figure 4.7, described in the previous section. The new
syntax includes an additional field, DelayN, to control the number of
cycles between packets (Figure 4.10).

The delay field causes the interface driver to wait N cycles before dis-
patching the packet. In the above example, the first packet on Port1 (ADD
command) will dispatch as soon as the reset completes (cycle 8), and the
environment will initiate the Port2 command two cycles later. When
the Port1 command completes, the port will remain idle for three cycles
before the interface driver initiates the SUB command packet.

With this packet-level infrastructure in place, the verification engineer
focuses on the intent of each test case. The first set of test cases in the
plan can now be written.

Verification Plan Tests 1.1 to 1.3

Our first test case runs to completion and the simulation engine captures
the trace. The response and data are correct, and test case 1.1.1 is suc-
cessful. Figure 4.11 shows the trace of test case 1.1.1. Similar test cases,
1.1.2, 1.1.3, and 1.1.4, verify the basic command-response flow of each
port for the ADD command. However, test case 1.1.4 does not complete
in 13 cycles, as the others did. Instead, it runs until the test times out.
Figure 4.12 shows the trace for test case 1.1.4.

The out_resp4 wire never returns a valid response. At this point, the
verification engineer has potentially found a bug where Port4 hangs.

4.4 Verification Example: Calc1 133

/* Port number
Port1
Port2
Port1

Cmd
ADD
SHL
SUB

Operand1
"00012345"X
"22222222"X
"00000001"X

Operand2
"00054321"X
"00000002"X
"00000003"X

Result
"00066666"X
"88888888"X
"00000000"X

Response*/
Good
Good
Underflow

DelayN
0
2
3

■ FIGURE 4.10

Test case syntax with a delay field.

Cycle 0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

c_clk
reset
req1_cmd_in
req1_data_in
out_resp1
out_data1

0:0
0:7
0:3
0:31
0:1
0:31

0001'b

0005'x 0008'x

000D'x
'01'b

■ FIGURE 4.11

The Calc1 DUV trace for test case 1.1.1, an ADD command to Port1.

After further study of the trace, the verification engineer confers with the
designer, and the designer concludes that the priority logic does have a
bug. The designer makes a fix and recompiles the model. The verifica-
tion engineer reruns the exact same test case to validate the fix and con-
cludes that the basic command-response sequence on Port4 now works.
For good measure, the verification engineer reruns the first three test
cases to ensure that the fix did not break any other logic that had been
working. The first bug in Calc1 has been uncovered and fixed.

Test reference number 1.2 of the verification plan prescribes test cases
for each operation on each port. Test cases 1.1.1 through 1.1.4 already
verified the add operation on each port, so the new test case verifies the
subtract operation on each port in parallel.

/* Test case 1.2.1 SUB commands on each port */

/* Port # DelayN Cmd Operand1 Operand2 Result Response*/

Port1 0 SUB “00000007”X “00000004”X “00000003”X Good

Port2 0 SUB “0000000D”X “00000008”X “00000005”X Good

Port3 0 SUB “00000010”X “00000001”X “0000000F”X Good

Port4 0 SUB “00000012”X “00000007”X “0000000B”X Good

The test case runs to completion in 16 cycles. Figure 4.13 shows the
trace.

Next, test cases 1.2.2 and 1.2.3 verify the Shift_left and Shift_right
operations on each port. Both test cases run successfully against the
Calc1 model.

Section 1.3 of the verification plan calls for add and subtract overflows
and underflows.

/* Test case 1.3.1 Overflow and underflow */

/* Port # DelayN Cmd Operand1 Operand2 Result Response*/

Port1 0 ADD “FFFFFFFF”X “00000002”X “00000000”X Overflow

Port2 0 SUB “0000000D”X “0000000E”X “00000000”X Underflow

134 Chapter 4 ■ The Verification Plan

Cycle 0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

5
0

c_clk
reset
req4_cmd_in
req4_data_in
out_resp4
out_data4

0:0
0:7
0:3
0:31
0:1
0:31

0001'b

0005'x 000D'x

■ FIGURE 4.12

The Calc1 DUV trace for test case 1.1.4, an ADD command to Port4.

When test case 1.3.1 runs against the Calc1 model, the test case fails with
miscompares on both the result and response values. Figure 4.14 shows
the trace.

Rather than responding with the overflow/underflow response of
“10”b, the Calc1 model returns a good response. Further examina-
tion reveals that the results for both the add and subtract would be
correct in 2’s complement but that does not match the specification. The
verification engineer consults the designer and confirms the second
bug. The Calc1 design ignored the carry_out bit from the adder
ALU instead of using it to generate the overflow/underflow response. The

4.4 Verification Example: Calc1 135

Cycle 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

c_clk
reset
req1_cmd_in
req1_data_in
out_resp1
out_data1
req2_cmd_in
req2_data_in
out_resp2
out_data2
req3_cmd_in
req3_data_in
out_resp3
out_data3
req4_cmd_in
req4_data_in
out_resp4
out_data4

0:0
0:7
0:3
0:31
0:1
0:31
0:3
0:31
0:1
0:31
0:3
0:31
0:1
0:31
0:3
0:31
0:1
0:31

0010'b

0007'x 0004'x
'01'b

0003'x
0010'b

000D'x 0008'x
'01'b

0005'x
0010'b

0010'x 0001'x
'01'b

000F'x
0010'b

0012'x 0007'x
'01'b

000B'x

■ FIGURE 4.13

The Calc1 DUV trace for test case 1.2.1, the subtract operation on each port.

Cycle 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

c_clk
reset
req1_cmd_in
req1_data_in
out_resp1
out_data1
req2_cmd_in
req2_data_in
out_resp2
out_data2

0:0
0:7
0:3
0:31
0:1
0:31
0:3
0:31
0:1
0:31

0001'b

FFFF'x 0002'x
'01'b

0001'x
0010'b

000D'x 000E'x
'01'b

FFFF'x

■ FIGURE 4.14

The Calc1 DUV trace for test case 1.3.1, overflow and underflow add and subtract operations.

verification engineer reruns the test case with the fix, and it runs
successfully.

Further overflow and underflow test case permutations run against
each of the ports and find no more bugs in this area.

4.5 SUMMARY

Throughout the project, the verification plan provides the blueprint for
success. It contains the details for all of the environments. Although the
plan will inevitably require updates as the project progresses, it contains
all of the fundamental information on what will be verified, where it will
be verified, and when that verification will occur.

As time progresses, the question “when am I done?” will arise. The
team finds many of the answers to the following targets by referencing
the verification plan.

■ Components written with all required function

■ All checkers contain all appropriate checks

■ All identified tests written

■ All identified tests pass

■ All identified coverage goals met

■ All bug rates have dropped off

4.6 EXERCISES

1. There are two bugs identified in the Calc1 design (see test case 1.1.1
and test case 1.3.1). Using the Calc1 verification plan as your guide
(Tables 4.5–4.7), write the remaining deterministic test cases and
identify any remaining bugs. You will need the Calc1 HDL (down-
load from the companion Web site for this book) to create a simu-
lation model using your vendor’s engine. Describe any more bugs and
indicate the verification plan section under which you found them.

2. List and summarize the sections of the verification plan.

136 Chapter 4 ■ The Verification Plan

P A R T I I

Functional
Specification

Designer
Implements
Functional

Specification

Pe
rfo

rm

Es
ca

pe

An
aly

sis

Environment

HDL andDebug

Create
Verification

Plan

Tests

Regression

Run

Verification
Cycle

Develop

Verification

Environm
ent

H
ardw

are
Fabricated

D
ebug

Form
al Verification

System
s

Test

Stim
ulus, C

heckers,

HDLHDLHDL
Tape Out

Readiness

CHECKPOINT

Lessons
Learned

CHECKPOINT
Plan

Review

CHECKPOINT

Within the Verification Cycle, the verification team spends most of their time develop-

ing the verification environment and debugging the HDL. Having completed the verifi-

cation plan, the team embarks on creating robust stimulus and checkers in their quest

for delivering a bug-free hardware design. Because of the depth of effort needed to

develop a verification environment and debug both the HDL and verification environ-

ment, Part 2 and Part 3 of this book focus squarely on these two portion of the Verifi-

cation Cycle.

Simulation based verification is the most widely used method of functional

verification. At the heart of this methodology is the simulation engine, which allows

the verification team to model the behavior of the design. Other critical tools support

the simulation method, including High-level Verification Languages, debugging soft-

ware and coverage modelers. Within Part 2, Chapter 5 and 6 describe these simulation-

based verification tools.

Robust simulation tools provide a platform upon which skilled verification

engineers create stimulus and checking components that verify the correct design

S I M U L A T I O N - B A S E D V E R I F I C A T I O N

behavior. Verification engineers have multiple techniques available for creating these

components. Chatpers 7 and 8 explain these varying methods, citing multiple exam-

ples, including a second Calc design. Chapter 8 also delves into the debug process used

when the environment detects a difference between the expected behavior and the

actual results from the modeled design.

Simulation extends beyond the basic function of the design as verification engi-

neers employ simulation-based techniques to reset logic, built-in test logic, and system-

level verification. Chapter 9 describes simulation methods for non-basic, or pervasive

functions, and Chapter 10 explains the many elements of system-level simulation.

Before exploring the details of the verification cycle’s simulation-based
strategies, this chapter and Chapter 6 discuss the typical design auto-
mation (DA) tools that are available to the design and verification teams.
First, we introduce the major characteristics of hardware description lan-
guages (HDLs) and their simulation engines, which provide the heart of
the simulation-based verification cycle. Newer DA technologies that
allow the formal verification of a DUV are the focus of Chapters 11 and
12.

Design engineers normally use an HDL to define the function and the
structure of a design under verification (DUV). Specifying a design in the
text format of an HDL, an activity called design entry, allows the engi-
neer to document the DUV unambiguously and later execute it as a model
in a simulation engine. The HDL version of the DUV is also the basis for
the physical implementation of the design. To better support the simu-
lation task, HDLs have features that go beyond the mere description of
the design and include the specification of stimulus and checking com-
ponents, which form an HDL test bench. When we characterize the
typical elements of HDLs as design specification tools in this chapter, we
compare and contrast the two most popular HDLs, VHDL and Verilog,
as prime examples.

Figure 5.1 is used to guide the discussion from design entry through
the simulation-based verification cycle. The simulation engine is at the
heart of simulation-based verification. It executes the HDL model in con-
junction with the HDL test bench elements a user might have coded.

There are a variety of algorithms available to build simulation engines.
Because the simulation engine plays such a crucial role in the center of
the simulation-based flow, typical architectures of such engines in this
are discussed in this chapter. It is important that verification engineers
understand the characteristics of such tools at their disposal. Electronic
design automation (EDA) developers build tools such as simulation
engines around different sets of trade-offs, many of which select between
accuracy and speed. The verification team must choose those tools that
are most adequate for their given project.

C H A P T E R 5

HARDWARE DESCRIPTION LANGUAGES
AND SIMULATION ENGINES

Many simulation engines offer an interactive graphical user interface
(GUI), which lets the user apply individual stimulus and check com-
mands manually in between simulation steps of the model. Such inter-
faces, which support a detailed debug mode, are effective mainly on
smaller models or very specific debug situations. When working with
larger-sized DUVs, the verification engineer lets the simulation engine
save the results of a simulation run to trace files, which capture simu-
lated model states over time. As also shown in Figure 5.1, waveform
viewer tools let the user browse through these results files in various
ways, for example, forward and backward in simulation time, to inspect
and debug the model behavior in detail. An overview of typical charac-
teristics of such tools is provided at the end of the chapter.

For many verification tasks, the users do not find the test bench fea-
tures of the HDL sufficient. Therefore, most simulation engines provide
open interfaces that support the application of checks and stimuli from
a programming or test bench authoring language. The discussion of
several test bench languages is the subject of Chapter 6.

It is already apparent from Figure 5.1 that many simulation tools
present an interactive GUI to the designer. A very common approach is
to integrate the different GUI tasks under one single master GUI, which

142 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Stimulus Check

Stimulus

Check

HDL model
of DUV

HDL model

Simulation
engine

Interactive user control GUI

HDL
testbench

Testbench
program

Interactive
testbench

debug
GUI

Interactive waveform
viewer GUI

Interactive coverage
analysis GUI

Coverage
traces

Trace
files

Stimulus Check

■ FIGURE 5.1

Overview of major simulation tools. The simulation engine executes the design under verification model
as well as a test bench specified in a hardware description language. The verification team can stim-
ulate and check the model in two additional ways: through a test bench external to the simulation
engine or by an interactive control user-interface. Shaded rectangles show a set of graphical user inter-
faces typically provided around these tools to improve verification productivity.

then gives the user the view of a single integrated HDL and verification
development environment even if the implementation underneath con-
sists of separate tools.

All major EDA companies offer many of these tools, often integrated
into one GUI framework. The benefit of the Institute of Electrical and
Electronics Engineers (IEEE) standardization of the HDLs is that many
simulation engines are largely interchangeable with each other. The dif-
ferentiation comes from simulation speed and value-add features such
as the integration of the other simulation tasks: coverage, test bench
program support, and user-friendliness for debug.

5.1 HARDWARE DESCRIPTION LANGUAGES

Hardware description languages are the central tools for design engi-
neers to specify the behavior and the functional and physical partition-
ing of a piece of hardware design. This chapter will not provide a detailed
tutorial of one or several HDLs because there are excellent textbooks
available on all the popular HDLs [1,2]. Despite the detailed lists of
syntax elements and features of the HDLs, this chapter will give a tax-
onomy of the most important properties of VHDL and Verilog as repre-
sentatives that together stand for the majority of HDLs in use today. This
discussion and the comparison between the two languages should allow
readers a foundation from which they can quickly explore actual lan-
guage details using an HDL textbook.

5.1.1 HDL Modeling Levels
The idea of a formal language to specify the behavior of hardware goes
back to the 1960s. Similar to the concept of a programming language,
the idea was to use a formal, machine-readable syntax with well-defined
semantics to allow the unambiguous specification of a given hardware
design. Developers in academia and industry have defined and imple-
mented various HDLs over the decades.

Aside from the pure specification of the design, the main purpose of
using an HDL was always to automatically turn the HDL text into a
simulation model. Figure 5.2 shows the model build flow from HDL to
simulation engine. A simulation engine runs the model and lets the
verification engineer interact with it at various times during the simula-
tion. Typical interactions during simulation run time are the control of
the amount of time to simulate, interrogation of the state of the model,
and changing the state of the model. There are different options for the
level of integration of the components of the system shown in Figure 5.2.
The most integrated system presents the user with a tool that loads files
of HDL specifications directly into the simulation engine, making the
compilation and model build appear seamless. Other systems give the

5.1 Hardware Description Languages 143

user access to discrete components in which a compiler translates the
HDL into a simulation model file that is stored to disk, and the simula-
tion engine simply loads the pre-compiled model file at the beginning of
every simulation run.

The two main hardware description languages used in the industry
today are Verilog and VHDL. The IEEE has defined standards for both
(VHDL IEEE 1076, Verilog IEEE 1364), and all major EDA vendors
support both languages equally well [3, 4]. There are largely historical
reasons for the existence of two different standards in this field; however,
the two languages focus on different areas of the hardware specifica-
tion task. A taxonomy of the hardware specification space will help
understand the differences between Verilog and VHDL as well as give a
framework, to make it easier to characterize future trends in HDL
development.

The main attributes of a design at the highest modeling level
(Figure 5.3) are its inputs and outputs and the behavior of the DUV. One
way to describe the behavior would simply be the specification of the
value of input signals and the corresponding value of output signals over
time.

Modeling Dimensions

Approaching the specification of input/output (I/O) behavior more
systematically, the properties of the design block and its I/Os can be
described along four different modeling dimensions (Figure 5.4). For
each dimension, we list specification methods ordered by increasing
levels of abstraction.

The temporal dimension is necessary to describe behavior over time,
which is always observable as change of model state. The values of I/O

144 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Design specification
(HDL)

HDL compiler & model builder

Simulation model

Simulation engine

■ FIGURE 5.2

This flow shows how a language-processing program (compiler) reads the hardware description language
specification of a design under verification (DUV) and produces a simulation model in the end. The user
can execute the compiled model by calling a simulation engine, which loads the model of the DUV and
evaluates it.

5.1 Hardware Description Languages 145

Model

Inputs

Input behavior over time

Output behavior over time
t

Outputs

■ FIGURE 5.3

At the highest level of abstraction, the designer specifies the outside interface of a design under veri-
fication (DUV) and the behavior of the DUV outputs because of DUV input changes over time.

• Temporal dimension
 • Continuous (analog)
 • Gate/wire delay
 • Clock cycle
 • Instruction/transaction cycle
 • Events
• Data abstraction
 • Continuous (analog)
 • “Bit” : multiple values
 • Bit : binary
 • Abstract value
 • Composite value (“struct”/“record”)
• Functional dimension
 • Continuous functions (e.g. differential equations)
 • Switch-level (transistors as switches)
 • Boolean logic
 • Algorithmic (e.g. sort procedure)
 • Abstract mathematical formula (e.g. matrix multiplication)
• Structural dimension
 • Single black box
 • Functional blocks
 • Detailed hierarchy with primitive library elements

Discrete time

Discrete value

■ FIGURE 5.4

This list of four dimensions allows the discussion of independent aspects of the specification of design
under verification (DUV) behavior into separate categories. The temporal dimension deals with the timing
relationship of DUV behavior. The data abstraction defines the value sets for DUV signals. The specifi-
cation of the functional relationships between DUV inputs/outputs belongs into the functional dimen-
sion. The structural dimension is relevant when the designer specifies a DUV not by functional behavior
but by creating a more complex DUV from simpler building blocks.

signals or state-holding variables inside the DUV represent the state of
the model. An analog simulation system lets us specify behavior in con-
tinuous time, fairly close to the physical model of an electrical circuit.
Gate and wire delays are more abstract; they are the first example of dis-
crete time in the list of increasing temporal abstraction in Figure 5.4.
They measure the time it takes to propagate changes of signal values
through the elements of a model. Every change occurs abruptly at the
outputs of these elements. The notion of clock cycle abstracts time
further: on this level, we are only interested in sampling signal values at
specific periodic, recurring points in time. Such a cycle might coincide
with a clock cycle of a synchronous design. More generally, however, a
clock cycle of HDL specification could simply sample signals several
times during a real hardware clock cycle. A DUV specification uses the
most abstract notion of time when it views changes of model state only
as occurrences of instructions or transactions. The model is still sampled
periodically, but the measure of time is abstractly the completion of units
of work in the model. Finally, the most abstract notion of time knows
only abstract events. The only concern at this level is the mere prece-
dence of observed changes of model state.

For the purpose of the level of verification discussed in this book, we
will limit ourselves to discrete time.

In the dimension of data abstraction, it is useful to distinguish five
different levels to describe model state. Again close to the physical
model of a circuit is the notion of a continuous value, typically a voltage
measure. At a level more abstract, multi-value simulation engines or
HDL signal types allow for granular representations of a signal state as
a multi-valued “bit”. A multi-valued bit signal or variable can assume
values besides the strict binary “0” and “1”. For example, values like
“u” or “x” specify the states “un-initialized” or “unknown”, respectively.
Other value denotations are useful to distinguish signal strength and
are helpful to simulate bus signals with multiple sources. The more
abstract binary representation of bit is central to the type of verifi-
cation discussed here. Abstract values are much better suited than
are simple bits and collection of bits to encode the actual intention of
the design and the semantic meaning implied by a signal state. The def-
inition of the symbolically enumerated values main and elm used in
Section 3.3.2 is an example. Figure 5.5 repeats the relevant section of
Figure 3.13.

However, integer, floating-point, or text string types are equally suited
to serve as abstract values. From this more abstract specification, the bit
encoding is a question of implementation. Finally, at the end of the list
of data abstractions, composite values can package together several
abstract values to one structured object, similar to records or C-language-
like structs, which allow users to refer to complex composite values or
states in a very concise way.

146 Chapter 5 ■ Hardware Description Languages and Simulation Engines

For the specification of the behavior of a DUV, we can choose from
the different abstraction levels in the functional dimension. Clearly
related to the continuous domain in the dimensions of data abstraction
and temporal abstraction is the use of continuous mathematical functions
such as differential equations. Next, the abstractions of transistors to
switch-level elements yield a concise model for detailed custom-circuit
simulations. So-called gate-level and register-transfer models (explained
below) use Boolean logic as the base for the specification of functional
blocks built from Boolean elements. Further abstracted forms of speci-
fication use general programmed algorithms to define functionality. For
example, a sort algorithm that sorts different key entries in a buffer can
concisely use a bubble-sort subroutine regardless of how the real hard-
ware implements the function in Boolean logic later. If our simulation
system and HDL support built-in high-level data types and operators,
such as matrices and their multiply operators, the behavioral function of
a block can be defined most concisely with an abstract mathematical
formula.

The fourth and final important dimension of our modeling taxonomy
is the structural dimension. We can describe a design as a single

5.1 Hardware Description Languages 147

...
architecture rtl of traffic is
 type state is (main, elm);
 signal current_state_din, current_state_dout : state;

begin -- rtl

 -- purpose: Determines when the light should change
 -- type : combinational
 -- inputs : timer_pulse, Main_Street, Elm_Street, current_state_dout
 -- outputs: current_state_din
 dataflow_proc: process (timer_pulse, Main_Street, Elm_Street, current_state_dout
 begin -- process change_light
 current_state_din <= current_state_dout;
 -- When the timer expires, evaluate the traffic situation
 if timer_pulse = '1' then
 if Main_Street = '1' then
 current_state_din <= main;
 elsif Elm_Street = '1' then
 current_state_din <= elm;
 end if;
 end if;
 end process dataflow_proc;

 Light_Direction <= "01" when current_state_dout = main else "10";
...

■ FIGURE 5.5

Enumerated types in VHDL are an example of abstract values for signals.

amorphous black box without any structural content, for example, a fast-
Fourier-transformation (FFT) design described with abstract mathe-
matical formulas. More typical is the breakdown of a single black box to
a set of interconnected functional blocks in a refinement step. Although
such simple structural refinement implies at least two levels of hierar-
chy, the most granular structural partitioning uses potentially many
levels of detailed hierarchy, all the way to a library of pre-defined primi-
tive elements.

Figure 5.6 illustrates how the Verilog HDL covers the dimensions of
our HDL taxonomy. Similar to VHDL (Figure 5.7), Verilog covers large
parts of the non-analog domain in all dimensions. Verilog has direct
built-in support for switch-level modeling, which gives it a clear per-
formance edge over VHDL in this area. VHDL’s focus is decidedly on
higher-levels of abstractions with its support for user-defined data-types,
programming-language-like function overloading, and the support to
define complex composite data types with records. On the other hand,
VHDL supports switch-level and multi-value logic only specified as open-
ended user packages without direct language support versus the built-in
but fixed capabilities of Verilog. The trade-offs between the languages are
generality and flexibility versus performance.

Both languages excel in their flexibility to express structural de-
composition and hierarchy as one would expect in an area where an HDL
is most fundamentally different from a programming language. After all,
it is a central design technique in hardware design to build more complex

148 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Temporal

Continuous Gate delay Clock cycle Instruction
cycle

Events

Continuous Multivalue bit Bit Abstract value “Struct”

Continuous Switch level Boolean logic

Single black box Functional blocks
Detailed component

hierarchy

Algorithmic
Abstract

mathematical

Data

Functional

Structural

■ FIGURE 5.6

Coverage of modeling levels by Verilog. We list the four dimensions of the hardware description lan-
guage taxonomy vertically with their different modeling levels expanded horizontally. The shaded, over-
laid area represents the modeling levels directly supported in the Verilog language.

hardware modules from simpler building blocks. The definition of
modules (Verilog) or entities (VHDL) that represent such re-usable build-
ing blocks, their instantiation, and the interconnection of the instances
via signals is a basic activity of HDL-based logic design.

It is interesting to note that Verilog’s built-in support for abstract
events has no counterpart in VHDL, in which the designer has to model
the occurrence of an event as a change of a signal value.

The IEEE standard called VHDL-AMS (IEEE 1076.1) extends VHDL
to cover the continuous domains (time and data values).

Before we extend the HDL review from constructs for modeling the
DUV to the support of verification concepts, we use the modeling tax-
onomy to discuss two important modeling styles, which apply to both
VHDL and Verilog. The two styles are gate-level and RT-level modeling
and are the workhorses for functional digital hardware verification today.

Gate-Level Model

A gate-level model is an exclusively structural model that only uses
instances of a fixed set of elementary Boolean function library blocks to
build the DUV. The interconnect specification of these instances might
extend over several levels of a hierarchy. The source for these models is
usually a physical netlist. Many times such a netlist is the output of a
logic synthesis tool that transformed an original HDL design source and
mapped the function into an available silicon library of logic primitives

5.1 Hardware Description Languages 149

Temporal

Continuous Gate delay Clock cycle Instruction
cycle

Events

Continuous Multivalue bit Bit Abstract value “Struct”

Continuous Switch level Boolean logic

Single black box Functional blocks
Detailed component

hierarchy

Algorithmic
Abstract

mathematical

Data

Functional

Structural

■ FIGURE 5.7

Coverage of modeling levels by VHDL. We list the four dimensions of the hardware description language
taxonomy vertically with their different modeling levels expanded horizontally. The shaded, overlaid area
represents the modeling level modeling levels directly supported in the VHDL language.

(Figure 1.1). Such a library of technology-specific building blocks con-
tains HDL models that include information about the timing behavior of
the primitives. Many times, engineers verify the implementation timing
behavior of the design at the gate-level.

At the gate-level (Figure 5.8), it is standard to use a multi-value bit
representation for signals to enable a more detailed verification of non-
Boolean function aspects of the DUV. A good example is the so-called
power-on-reset (POR) simulation (Chapter 9), which verifies that the
DUV can be set into a defined starting state after power on. The multi-
value simulation initializes the DUV to a random state, represented by
an initial value “u” for all DUV state elements. “u” represents the state
un-initialized, a symbolic short-hand for any possible Boolean value. POR
simulation verifies that there is a controlled input sequence, which moves
the DUV from this “u” state to its defined initial state from where it will
be ready to execute its specified main function.

The detailed simulation at the gate-level comes at the price of lower
simulation performance compared to the register-transfer level (RTL),
which we discuss next.

Register-Transfer Model

The RTL style (Figure 5.9) is more abstract but overlaps somewhat with
the gate-level model. The intention of an RTL model is to specify the DUV

150 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Temporal

Continuous Gate delay Clock cycle Instruction
cycle

Events

Continuous Multivalue bit Bit Abstract value "Struct"

Continuous Switch level Boolean logic

Single black box Functional blocks
Detailed component

hierarchy

Algorithmic
Abstract

mathematical

Data

Functional

Structural

■ FIGURE 5.8

The gate-level modeling style covers the lower levels of abstraction of the modeling taxonomy of the
hardware description language. Gate-level models are highly structural and use a gate delay time ref-
erence, multi-value signals, and Boolean logic primitive to implement the function of the design under
verification.

in terms of state-holding dataflow elements (registers and storage arrays)
and how the DUV updates the state between clock cycles. Most typically,
the granularity of an RTL model differs from the gate-level in that the
structural hierarchy does not reach all the way down to technology
library primitives but ends at least at the level of Boolean equations.
Modern design methodologies use equations and sequential HDL con-
structs (always/process constructs in Verilog/VHDL) but keep corre-
sponding state-holding elements, latches and flip-flops, identical between
the RTL and the gate-level. Keeping the consistent state-elements
between the two levels allows formal verification methods to prove
Boolean equivalence between the two and reduces greatly the need for
the more costly gate-level simulation. Chapter 11 discusses the advan-
tages of formal verification and the equivalence proof between gate-level
and RTL models.

The use of higher-level abstractions at the RTL in the description of
the combinational function of the DUV allows for a more concise design
specification and better simulation performance. The influence of HDL
style on simulation performance will be discussed in more detail later in
this chapter.

Figure 5.10 shows the role of the RTL specification in the design flow.
An RTL specification is the starting point for both verification and physi-
cal implementation of a DUV. From this perspective, a gate-level version

5.1 Hardware Description Languages 151

Temporal

Continuous Gate delay Clock cycle Instruction
cycle

Events

Continuous Multivalue bit Bit Abstract value “Struct”

Continuous Switch level Boolean logic

Single black box Functional blocks
Detailed component

hierarchy

Algorithmic
Abstract

mathematical

Data

Functional

Structural

■ FIGURE 5.9

The register transfer level (RTL) modeling style covers more abstracts levels of the modeling taxonomy
of the hardware description language. RTL models can be very structural such as gate-level models.
However, they typically model the function of the design under verification (DUV) by using Boolean
logic, equations, and algorithmic specification using sequential code. Designers use the full range of
high-level data abstractions to allow a concise behavioral specification of the DUV.

of the DUV is an implementation of the RTL specification. Although
designers can implement the gate-level version manually, it is usually an
EDA tool, logic synthesis, which creates the implementation of the DUV
automatically. Most of the functional verification of the DUV can occur
on the RTL model. Simulation on the gate level provides the verification
team with a detailed view of physical parameters such as signal propa-
gation times. Such parameters, unknown at the time the RTL specifica-
tion is done, can be part of a detailed simulation at the gate-level. In
addition, verification that the gate-level and the RTL versions of the DUV
are functionally identical is necessary to ensure that the transformation
of RTL to gate-level did not introduce inconsistencies.

The Finite State Machine Model of an RTL Specification

Figure 5.11 shows an alternate view of the RTL style of DUV specifica-
tion. We view the RTL model as a general finite state machine (FSM). All
state-holding elements of the DUV represent the state of the FSM, and
all RTL code that is concerned with the state changes between clock
cycles translates into the combinational state transition function of
Figure 5.11.

If all the clocks in the FSM model run at the same frequency, we call
the FSM purely synchronous. However, it is possible to have different
frequencies for different clocks in the RTL specification. We consider all

152 Chapter 5 ■ Hardware Description Languages and Simulation Engines

RT-level
HDL

specification

Implementation Verification

Logic synthesis
Simulation

Formal verification

VerificationGate-level
HDL

Gate-level netlist

Physical design and fabrication

■ FIGURE 5.10

The very large scale integration (VLSI) design flow uses an register transfer level (RTL) model as the
source for both verification and implementation. A modern design system supports the automatic
mapping of the RTL specification via a logic synthesis tool to a technology library at the gate level. The
RTL model is the principal model for verification in this approach. Verification of the gate-level model
checks correctness of logic synthesis and dynamic timing properties. The gate-level netlist is input to
the physical design process (chip placement and wiring) and finally to chip fabrication.

logic clocked by the same clock a clock domain. We will discuss some
aspects of multiple clock domain simulation in Section 5.5.3.

The general state machine model of a DUV will be the basis for many
verification tasks and tools throughout this book.

5.1.2 Verification Aspects of HDLs
The use of HDLs in verification is not limited to the simulation of the
hardware design specification (the DUV). Modern HDLs also include
constructs that support verification tasks. The verification aspects dis-
cussed in this section cover two different areas: capturing design intent
and HDL features for the creation of test benches. This chapter provides
only an informal overview of both topics; for detailed coverage, refer
to books that focus extensively on these aspects of HDL use: Assertion-
Based Design [5] covers systematic ways to insert design intent and its
benefits for verification, and Writing Test Benches: Functional Verification
of HDL Models [6] focuses on a methodology to use HDLs to write test
benches.

5.1 Hardware Description Languages 153

Primary inputs

State transition function
(combinational logic)

Primary
outputs

State-
holding

elements

Clock(s)

■ FIGURE 5.11

A specific view of a register transfer level specification expresses the notion of a finite-state machine.
The finite state machine (FSM) notion combines all state-holding elements of a design conceptually
together to a single state vector. The combinational logic of the FSM reacts to changes on the primary
inputs of the design or the current state. This results in changes to the primary outputs or the new
input values of the state-holding elements. The state updates if any of the clocks are active that syn-
chronize the update of state-holding elements.

Design Intent

In general, the concept of defining design intent in an HDL description
is that there is additional information present in the HDL that the
verification cycle can utilize in addition to the functional and structural
specification.

Some of the design intent is contained implicitly. A finite-state
machine expressed on the RTL with enumerated values for the states and
a “case” statement for the state-transfer function captures more about
the intent of the design than the gate-level implementation that imple-
ments states encoded in Boolean values and the transfer function as a
sea of low-level gates. For example, the RTL use of three enumerated
values to encode the three possible states of an FSM clearly delineates
legal state values (encodings) from illegal ones. On the other hand, the
gate-level implementation of the state vector as two flip-flop bits loses
the original explicit design intent of three states and leaves it implicit to
the state transition function, which does not allow the FSM to reach the
illegal state encoding.

The lower-level implementation contains less semantic structure.
For example, it is clear from the RTL description what the state-
holding latches are. If the verification task is to collect information
about states reached during a simulation, we can simply look at the set
of state-holding elements and capture their values. The design intent
of the FSM is clearly visible in the RTL. On the other hand, the gate-
level implementation does not clearly distinguish between FSM control
state latches and data-flow latches. If the only specification available is
gate-level, it is very difficult to retrieve the FSM semantics from a sea of
gates.

HDLs also have mechanisms to express functional design intent
directly. The main means for this is the ASSERT construct in VHDL
(which interestingly has no counterpart in standard Verilog). An ASSERT
can be used to clearly specify an assumption on the input or an intended
guarantee on the output of a design. We discuss the importance of asser-
tions in Section 3.3 and the systematic methodology of an assertion-based
verification process in Chapter 8.

In an ideal world for verification, designers would use the highest
levels of abstraction possible in their HDL descriptions and thus provide
much implicitly contained semantic structure. Then, verification engi-
neers and EDA tools could retrieve the design intent from the HDL auto-
matically. The tools could tie into specific usage patterns of certain HDL
constructs, such as enumerated values and case statements to denote
FSMs.

However, there is a problem with this direction. A basic goal conflict
affects HDL descriptions. On one hand, we want the highest possible
abstraction to aid verification, but on the other hand, the HDL needs to
satisfy physical design constraints such as timing, area, and power testa-

154 Chapter 5 ■ Hardware Description Languages and Simulation Engines

bility. Sometimes these physical goals are diametrically opposed to our
desires for verification. Increasing pressure from the physical design con-
straints in the sub-micron very large scale integration (VLSI) design era
morphed typical HDL descriptions to contain more and more structural
detail, which increasingly obscures the semantic structure.

It is for this very conflict that methods to explicitly express design intent
have gained much more attention in recent years. Although the explicit
ASSERT has more value than normally utilized, its expressive power is
nevertheless limited. More complicated and expressive methods are
desirable, and this did lead to a trend of extending the traditional HDLs.
The two main examples of language extensions to express design intent
are property specification language (PSL) (for more detail, see Chapter
12) [7] and the assertion language part of the new HDL SystemVerilog
[8]. All these HDL extensions are clearly annotations to the actual design
description, and their common purpose is to capture design intent
explicitly.

HDL Test Benches

As discussed in Chapter 3, a test bench for a given design has two main
tasks (Figure 5.12):

1. Stimulate the primary inputs of a design with drivers.

2. Check interfaces and internal state of the design.

It is good practice to separate test benches into at least two partitions
along the lines of these main tasks. Hierarchical verification will be dis-
cussed later in this book (Chapter 10), and it will become clear that
reusing the investment made into the checkers on interfaces and design
internals is needed, as the real designs are connected to the interface of
the previously standalone verified design units.

In Figure 5.12, the driver was separated from the checker. The larger
model in Figure 5.13 still includes the checker for the design units while
replacing the drivers with the neighboring real design.

5.1 Hardware Description Languages 155

Interface/internal state checking

Design under verification
Stimulus

generation
“driver”

■ FIGURE 5.12

A basic hardware description language test bench is represented by the components stimulus genera-
tion and checking.

Using HDLs to implement test benches is especially intuitive in the
structural domain. The drivers and checkers are “connected” to their
target signals by connecting instances of the test bench components into
the HDL hierarchy. The strong support for structural specification in
HDLs pays off nicely in the case in which a higher-level design replicates
a lower-level design unit multiple times. Figure 5.14 illustrates this
with a DUV called System that contains three instances of a lower-level
unit called Design. One test bench checker needs to connect to each of
the Design instances. Once we package CheckedDesign in Figure 5.14 as
its own HDL module or entity, it is easy to replicate the test bench
component together with every instance of Design. Every co-replicated
checker automatically connects to the correct signals of its respective
design.

Although this scheme shows nicely how powerful it can be to take
advantage of HDL features supporting test bench writing, there is one
complication with this method to instrument the Design: it forces us to
change the HDL specification of our target DUV System. This side effect
is trivial for the case of a standalone design (Figure 5.12). All that is
needed is to create a new level of model hierarchy above the actual DUV.
However, once this instrumented DUV is embedded inside a higher-level
structure, its HDL must be changed more profoundly. Notice that
CheckedDesign and not Design inside System must be instantiated. This
might be of little consequence if the HDL for System exists for verifica-
tion only. However, if we want to utilize the System HDL for other pur-
poses, such as logic synthesis, timing, or placement, special provisions
must be made because it is not a pure design specification anymore.

There are three solutions to manage this intrusive nature of HDL test
benches. First, we can use so-called pragmas in the HDL code to mark
specifically which instances and signal connections were added for
verification only and which other tools, such as logic synthesis, can be
ignored. Second, VHDL has configurations that let the user include the
test bench component pieces only in verification configurations and
exclude them for synthesis or timing analysis. Finally, Verilog has the

156 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Interface/internal state checking

Design 1

Interface/internal state checking

Driver Design 2

■ FIGURE 5.13

Hardware description language test bench re-use example. We integrate Design1 and Design2 into a
larger design under verification and want to re-use as much as possible from the simulation environ-
ments used to verify Design1 and Design2 standalone. While Design1 replaces the driver component
for Design2, all checker components are re-usable in this configuration, as well as the driver compo-
nent for Design1.

capability to connect an instance to signals by using hierarchical names,
allowing the instantiation of the test bench at the outer level of the model
HDL and cross-hierarchy connections to tunnel into the desired model
hierarchy (Figure 5.15).

The HDL coding for drivers and checkers does not need to satisfy any
of the non-verification constraints imposed on design HDL. Therefore,
the full range of HDL constructs is available. Test bench components are
the area of heavy use of the higher-level, behavioral HDL constructs,
which have little or no application in pure design specifications:

■ Abstract data types, records, multi-dimensional arrays

■ File I/O

■ Subprograms, tasks, fork/join

■ Dynamic memory allocation (e.g., for scoreboarding)

Most of the language features listed here are very similar to what pro-
gramming languages offer. Therefore, a viable alternative to using HDL
coding for test benches is the use of a general-purpose programming

5.1 Hardware Description Languages 157

Interface/internal state checking

Design

CheckedDesign

Instance1

Interface/internal state checking

Design

CheckedDesign

Instance3

Interface/internal state checking

Design

CheckedDesign

Instance2

System

■ FIGURE 5.14

Hardware description language (HDL) test bench replication. As we package the design unit Design with
its checker component, we can replicate the overall CheckedDesign easily, using standard structural
instantiation features of common HDLs.

language that has access to the simulation model via a programming
interface to the simulation engine.

As shown in Figure 5.16, simulation engines usually offer an
application-programming interface (API) that lets test bench code
written in programming languages interact with the simulation engine
and the model. There are even simulation engine-independent standard

158 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Interface/internal state checking

Design

Instance2

Design

Instance3

Heirarchical signal
name connection

Interface/internal state checking

Heirarchical signal
name connection

Interface/internal state checking

Hierarchical signal
name connection

System

CheckedSystem

Design

Instance1

■ FIGURE 5.15

Verilog’s cross-hierarchy connection capability allows the instrumentation of the three Design instances
with their respective checker components from a level of hardware description language (HDL) hierar-
chy above System, thus leaving the design specification of System unchanged by the verification task.
We place the checker components for every Design instance in the HDL hierarchy level Checked
System above System.

HDL compiler and model builder

Simulation model

Simulator
API

User
testbench

code

Hardware simulation system

■ FIGURE 5.16

Using a programming language outside the simulation engine that accesses the model via an applica-
tion-programming interface (API) is an alternative to the use of hardware description language test
benches.

definitions of such interfaces. Verilog programming-language interface
(PLI) is part of the language’s IEEE standard. A corresponding activity
for VHDL is under way.

The availability of standard interfaces to simulation engines and the
desire to improve productivity for verification led to the development of
special-purpose verification languages (Vera, e, System C languages),
which use the available API or PLI of various commercial simulation
engines. The focus on the verification task alone in these languages led
to the development of innovative features supporting the verification task
(for more detail, see Chapter 6).

The acceptance of these so-called high-level verification languages
(HVLs) in turn created the motivation for HDL developers to add such
features directly into hardware description languages. Many extensions
over IEEE Verilog found in SystemVerilog are directly verification related
[8].

5.2 SIMULATION ENGINES: INTRODUCTION

After this overview of the key HDL capabilities, the discussion now turns
to the principles of simulation engines. Figure 5.1 shows the simulation
engine as the primary tool using HDL specifications. There are many
simulation engines available on the electronic design automation (EDA)
market. This book will not provide usage instructions for any of the com-
mercial tools as these tools are too different from each other to make a
generalized user’s guide possible. In addition, such a reference would be
outdated quickly, and the EDA vendor of choice provides it anyway.
Instead, this book will discuss the general principles and look under the
cover of these tools. These insights are important to verification engi-
neers because they introduce the different trade-offs and help engineers
decide which simulation engine to use in a given project.

The task of a simulation engine is to evaluate an HDL model over
time and present its state to the user and programs, which the user
attaches to the engine’s programming interface. The HDL language
reference manual (LRM) defines the behavior of the simulation engine.
Both VHDL and Verilog have an LRM as a result of IEEE standardiza-
tion [3, 4]. The VHDL LRM in particular prescribes a detailed model of
processing to define the correct and unambiguous execution semantics
of the language.

Built into the definition of Verilog and VHDL is the concept of event-
driven simulation. It provides an algorithm well suited to support both
HDLs across all their features. We will discuss the event-driven simula-
tion scheme in more detail in more detail in a later section (Section 5.3),
as well as the different methods to increase simulation throughout
(Section 5.4), and we finish the overview of simulation engine technol-
ogy with a view of cycle-based simulation. Cycle-based simulation is a

5.2 Simulation Engines: Introduction 159

high-speed alternative to event-driven simulation and relies on a method-
ology that allows the verification team to accomplish most functional ver-
ification on an abstract RTL model. It can also serve to enable the use of
hardware accelerator and emulator engines (Chapter 10) and formal ver-
ification (Chapters 11, 12). The focus in this chapter is only on software
simulation engines and their optimization because of their high impor-
tance for every verification project. Chapter 10 will extend the discussion
to specialized hardware simulation engines that speed up simulation
even more.

The following section highlights some of the general principles guiding
the application of simulation engines.

5.2.1 Speed Versus Accuracy
A simulation engine is a central tool for the verification team, which
spends a majority of the effort of the verification cycle running simula-
tion. This part of the cycle requires the most compute resources, and
therefore, it is easy to understand that the optimization of simulation
efficiency is a high priority. The performance of the simulation engine is
only one factor of the overall efficiency; however, it is a key factor because
a verification team that can run models twice as fast can run double the
amount of test cases in the same time and likely find DUV bugs faster.

It is possible to optimize simulation efficiency from two different
angles. First, a higher level of abstraction in the HDL specification of the
DUV will generally result in faster simulation because the model will
contain less detail that the simulation engine has to evaluate. The second
method to improve simulation performance is, of course, optimizing the
simulation engine itself. The optimization of simulation engine perfor-
mance has been a key differentiator for EDA vendors for the past 10
years, and only recently have the performance gains achieved every year
flattened out somewhat, indicating a maturation of the technology.

Both methods to improve simulation speed can work together in
synergy. When a design methodology supports a certain abstract style of
HDL specification and it is possible to optimize a simulation engine very
specifically toward that style, a significant improvement of speed is
possible. The cycle-based simulation method discussed later (Section 5.5)
is a classic example of this synergy.

The first HDL simulation engines were quite literal implementations
of the ideal execution models defined in the LRMs. They used algorithms
designed to support all features of the full HDL languages. With such
general-purpose simulation engines, the level of abstraction used to
specify the DUV is the biggest factor influencing simulation performance.
Figure 5.17 illustrates the basic trade-offs for simulation engine effi-
ciency. Different HDL modeling styles are used to characterize the choice
between faster simulation with the RTL abstraction and a DUV model

160 Chapter 5 ■ Hardware Description Languages and Simulation Engines

that exhibits a close relationship with the design implementation, down
to the delay characteristics of individual gates.

There is a fundamental goal conflict in verification between speed and
accuracy. A simulation engine that is able to simulate more test cases per
time can simulate a bigger part of the state space of a design. However,
abstraction means that less accuracy and detailed design implementa-
tion information are contained in the model. For functional verification
to rely safely on an abstract model, the design methodology must cover
the verification of the implementation details otherwise.

For example, if the design team uses logic synthesis to implement a
synchronously clocked design, the verification team may not need delay
simulation if a static timing tool guarantees timing verification during
logic synthesis, placement, and wiring. Relieving functional simulation
from the detailed delay information can lead to better simulation per-
formance because verification can use a more abstract HDL model.
However, if the designers add an asynchronous interface, it might be nec-
essary to run at least some amount of dedicated tests against a detailed
delay simulation model, which will simulate more slowly. If the verifica-
tion team simulates the asynchronous interface without the exact delay
information, it will likely miss error scenarios in which the hardware

5.2 Simulation Engines: Introduction 161

Simulation runtime and
memory requirements

RTL
style

Gate-level
style

Gate-level
with detailed

delays

Model detail
and accuracy

■ FIGURE 5.17

The level of abstraction used to model a design under verification (DUV) has a direct impact on simu-
lation runtime and memory requirements. The more detailed and accurate the modeling style with
respect to the DUV implementation, the bigger and slower the simulation model becomes. Abstract
register transfer level (RTL) simulation can be much more efficient than a detailed timing-aware simu-
lation on the gate-level. The actual performance difference depends much on the given simulation
engine and the exact modeling style used, but can reach factors of 5 to 10 times in runtime and model
size.

interfaces fail to interact correctly. In this case, the emphasis on a fast
simulation model leads to the costly escape of design bugs.

This discussion shows that it is not possible to come to a general
verdict whether simulation speed or modeling accuracy is more impor-
tant. It is necessary to make this choice only after a consideration of the
design methodology as a whole and not just with the desire to optimize
functional verification in isolation.

5.2.2 Making the Right Methodology Choices
A correctly designed verification methodology makes choices of tools and
algorithms in a way that systematically eliminates the risk of verification
escapes and optimally uses available resources.

One of the first methodology choices is obviously the HDL itself. As
discussed, Verilog and VHDL cover slightly different areas of the HDL
space (Figures 5.6, 5.7). If, for example, the verification team needs to
simulate parts of a design in switch-level logic to be able to verify tran-
sistor level behavior accurately, Verilog appears to be a better choice for
performance reasons. On the other hand, the speed advantage on the
switch-level side might be less important compared with the capability
of designing at a more abstract level using VHDL, if other parts of this
design use interfaces that the design team can specify more concisely as
packets in user-defined record types. The more abstract design specifica-
tion can avoid design mistakes likely made when constantly designing
on the bit level of the implementation.

It is certainly possible to benchmark different simulation engines by
using the same HDL source files and the same test cases. Under such
constant conditions, a faster simulation engine might well be better. Most
often, however, optimization for performance in one case means the
exploitation of a special set of parameters to be able to short cut what
under other conditions need a more general, slower solution.

It is crucial to keep this importance of the methodology trade-offs in
perspective during the following discussion of details of different simu-
lation algorithms. Accuracy and performance are not goals with absolute
value. It is a measure of effectiveness of a methodology to cover the
maximum amount of verification (i.e., uncovering bugs) with a minimum
amount of total people and compute resources.

5.3 EVENT-DRIVEN SIMULATION

The event-driven simulation scheme is the most popular and broadly
known simulation algorithm and reaches far beyond just simulation of
digital hardware designs. Most simulation systems have used discrete
event-driven approaches since the 1960s. This simulation scheme is very
general, which explains its wide applicability. Every event-driven model

162 Chapter 5 ■ Hardware Description Languages and Simulation Engines

consists of a network of blocks interconnected with each other. The inter-
connections, sometimes called channels or signals, transport information
between the blocks, flowing from block outputs to inputs of other blocks.
It is the function of each block to process the information presented at
its inputs. This may result in the change of the internal state of a block
or in the transfer of new information to the block’s outputs. We call such
a transfer an event. The general event-driven scheme does not define how
the user specifies the function of a block. This can occur via a special-
purpose simulation language, a programming language, or an HDL. The
event-driven simulation engine has a structural view of the model: the
block/interconnect topology or model network. By using this view of
the model network, the simulation engine activates a block whenever an
event occurs on its inputs. In this scheme, the engine takes notice of the
events propagating through the network, activating only those blocks
affected by the event flow. This is the essence of the event-driven simu-
lation scheme. An alternative scheme, for example, could call all blocks
of the model network round robin, making sure to activate every block
function during every such cycle through the model. The event-driven
simulation, on the other hand, activates only those parts of the model
that need to process new input data. Skipping the activation of blocks
whose inputs show no events promises superior simulation performance,
which is the reason why event-driven simulation is so attractive in many
areas.

The following section discusses how the functionality and structure of
HDL models map to the event-driven simulation algorithm.

5.3.1 Hierarchical Model Network
The earlier HDL discussion (Section 5.1.1) introduced the top-level view
of a simulation model, showing the input/output interfaces and a mono-
lithic block for the DUV model itself (Figure 5.3). Only for the simplest
models is it possible to specify the behavior of the block also as one
monolithic function. It is more natural to refine the model structurally
for one or several levels by replacing the top-level block with a set of
interconnected blocks on the next level of hierarchy.

Figure 5.18 demonstrates the structural refinement process as a
hierarchy tree diagram for an example. Model A contains blocks B, C,
and D on the next level of detail. Blocks B and C themselves are parti-
tioned into two or three sub-blocks, respectively. The top level of the hier-
archy is the root; the blocks D, B1, B2, C1, C2, C3 are the leaf-level nodes.
By definition, leaf-level nodes have no further structural refinement, and
therefore, their functional specification is contained in one VHDL
entity/architecture or Verilog module without any instances of lower-
level entity/architectures or modules. The root of every sub-hierarchy (A,
B, C) contains the instances of the lower levels and potentially functional
HDL code.

5.3 Event-Driven Simulation 163

Figure 5.19 shows the same model hierarchy, Model A, using a dataflow
model network diagram. In addition to the component hierarchy, this
representation shows the flow of information, the signal flow between
the different model components, and levels of hierarchy. Consider, for
example, the first model input i1. It is a primary input, an input port of
Model A itself. A signal s1 connects this port to the first input port of
block B, which in turn drives signal s2, which connects to the first port
of block B1. Inside B1, this port drives signal s3, the only visible signal
inside the diagram of that block.

The blocks of the model interconnected by signals build a network.
Because the signals have a specific direction, as shown by the arrows in
the diagram, we say the model forms a directed network. The signal flow
connects the component blocks with each other. The behavioral HDL
specification of each block prescribes the application of the values of the
input ports to the block’s internal computation. The HDL behavior also
specifies how output ports, and therefore the connected signals, change
as result of such a computation.

It is the task of the simulation engine to compute the values of the
model signals over time. The direction of the signals implies a natural
order of computation. It is clear that, if signal s1 changes, the signals s2
and s3 should change to keep the values in the network consistent.
Because s3 is an input to B1, it is intuitive to assume that B1’s behav-
ioral specification needs to be invoked when s3’s value changes. Because
of this computation, it is possible that signals s4, s5, and s6 will sub-
sequently change in value.

Consistent with the discussion of the scope of HDLs earlier, we limit
ourselves to models with discrete signal values. Figure 5.20 shows an

164 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Model A

Block B

Block B1 Block B2 Block C1 Block C2 Block C3

Block C Block D

R
ef

in
em

en
t

■ FIGURE 5.18

A tree structure illustrates on example Model A how HDL specifications can use structural refinement
to build from instances of lower level elements. Model A builds on blocks B, C, and D; blocks B and
C in turn instantiate components of their own, and block D contains no further structural refinement.

example of discrete signal waveforms over time as recorded during an
HDL simulation. Disregarding the analog extensions of VHDL, HDL sim-
ulations use discrete time intervals, meaning that the signal update and
block evaluation scheme described above occurs at fixed model time
intervals. The finest granularity for these intervals in VHDL is on a time
scale of femtoseconds. The time scale for Verilog is more abstract and
just a 64-bit number that the user can map to a time scale appropriate
for the given DUV.

Changes of signal values designate events in the model. The model
time orders events relative to each other; that is, it is important to be
able to tell whether a particular event happened before another event or
if it caused another event. Therefore, it is possible to look at the discrete
time steps in Figure 5.20 as points at which the simulation engine cal-
culates or samples the model state.

5.3.2 Model Evaluation Over Time
There are two fundamentally different algorithms to control simulation
over time as specified in Table 5.1.

Algorithm 1 is useful only if it is very likely that at every evaluation
time there are new values to be calculated. Clearly, compute power would
be wasted if the model was simply in a steady state at many evaluation

5.3 Event-Driven Simulation 165

B1

B2

C1

C2

C3 D

s4s2

s3
s5

s6

s1i1

i2

i3

i4

Block B Block C

Inputs Model A Outputs

■ FIGURE 5.19

The same example Model A used in Figure 5.18 shown again as a hierarchical dataflow network. Embed-
ding lower level blocks represents the structural hierarchy. In addition, all components have input and
output ports. Signals, illustrated by arrows, connect inputs and outputs of the model components to
show the data flow between blocks and through the levels of hierarchy.

points, and the simulation engine had to evaluate the entire model only
to find out that no signal update work has to be done. Algorithm 2 can
only function if the simulation engine has knowledge about which events
it has to evaluate at the current time or any point in future model time.
The model objects (blocks and signals) need to notify the simulation
engine about future changes. This notification about change or update
information is called scheduling. By using the scheduling information,
the simulation engine is able to skip time intervals during which no work
is scheduled, a performance advantage for the simulation.

166 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Signal/value

Time

00

5 52 2 2 2 2 2

■ FIGURE 5.20

Hardware description language (HDL) model signal changes over time recorded as waveforms. HDL
signals have discrete values and change at discrete time intervals. The vertical lines in the waveform
display help the user to align signal changes visually. The waveforms show bit-signal values simply
by level and illustrate more complex signal values by annotation, like the integer values in the lowest
waveform.

TABLE 5.1 ■ The two basic algorithms for simulation
engines to manage model time

Algorithm 1
Evaluate the model at every point in time along the
finest time granularity known to the simulation
engine.

Algorithm 2
Evaluate signals and blocks only at model times for
which events are scheduled.

Algorithm 2 is part of the event-driven simulation scheme.

Figure 5.21 shows two classic examples of HDL constructs that
contain explicit scheduling information for events the simulation engine
has to execute at a future model time.

The Verilog examples in Figure 5.21 specify delayed propagation of
a computed signal change: first for a signal connected to the output
of a gate primitive and second for a delayed assignment statement. If the
simulation engine implements Algorithm 2 above, the HDL model code
evaluates the future value of the output signal z and schedules this
value change with the simulation engine.

The VHDL example in Figure 5.21 illustrates a simple sequential
process specifying the function of an oscillator block. The behavioral
code for process oscillator iterates endlessly between setting the signal
clock to “0” and “1.” After each update, the process suspends control to
the simulation engine for the specified amount of model time.

In both cases, the HDL model code relinquishes control and delegates
the scheduled future action to the simulation engine. It is part of the
semantic rules in the LRM of both HDLs to support Algorithm 2 in any
implementation of a simulation engine.

5.3.3 Event-Driven Control of Model Evaluation
Now that we decided how the engine advances time during a simulation,
the next question is how the engine controls the evaluation of model
updates.

Going back to the example for a hierarchical network model of Figure
5.21 (shown with mark-ups in Figure 5.22), we assume, as an example,
that a specific update occurs on the input i2. Several of the key model
update events are marked with the numbers 1 to 5 highlighted with
shaded circles. The change event of s1 (1) propagates over time in a series

5.3 Event-Driven Simulation 167

and #27 (z, a, b); // gate delay "27"
assign #3 z = a & b; // assign after "3"

oscillator: process is
begin
 clock <= '0';
 wait for 1ns;
 clock <= '1';
 wait for 1ns;
end process oscillator;

Delayed assignment in Verilog

Wait statement in VHDL

■ FIGURE 5.21

Example for hardware description language constructs in both Verilog and VHDL that schedule future
events with the simulation engine. Both Verilog statements specify a delay of a number of model time
ticks in the assignment of output signal z. The VHDL process statement contains two wait statements
that suspend the execution of this VHDL code and schedule a continuation with the simulation engine
at model time 1ns in the future.

of signal changes through the network until it concludes with an output
signal change of s13 (5).

Initially, after a series of signal changes (s7, s8), block B1 is activated,
which results in a change of signal s6. This causes a scheduled change,
marked as (3), of block B’s output port, the signal connected to it (s9)
and the activation of block B2 (2). Note that B2’s output does not change
at this point because apparently the change on input signal s6 has no
effect of B2’s output function. The signal change on s9 ripples into block
C, causes the call of C1 and a change event on signal s11 (4). After the
activation of C3, the signals s12 and s13 change. Because s12 is also an
input to block C1, this block has to be activated again. For this example,
we assume that the repeated call to C1 does not cause another output
change on s11. Note that the re-activation of C1 results from a topolog-
ical feedback loop, which could cause repeated calls of the same model
blocks. In the example of Figure 5.22, the second activation of C1 does
not cause further signal changes. Similarly, the final update of s13 and
the call to block D causes no further update event.

The feedback loop in the topology exhibits how a particular block (C1)
can be scheduled and re-scheduled because of a wave of updates. The
feedback of the signal change of s12 leads to another evaluation of C1.
Although the example assumes no further events after that evaluation, it
is possible that the behavior of the model exercises the re-scheduling loop
between C1 and C3 more than once. It depends on the behavior of the

168 Chapter 5 ■ Hardware Description Languages and Simulation Engines

B1

B2

C1

C2

C3 D

s4s2

s7

s8

s3
s5

s6 s9

s10

s11

s12

s13

s1i1

i2

i3

i4

Block B Block C

Inputs Model A Outputs

1

2

3

4

5

■ FIGURE 5.22

A change of the signal value on input i2 results in a series of updates to Model A. The dashed arrows
show how the change propagates over time. The sequence of signal changes and corresponding key
model updates are marked by the numbered circles and discussed below.

blocks whether such a topological loop settles at some point or contin-
ues to oscillate forever. The simulation engine or an external interven-
tion by the user has to interrupt an uncontrolled model oscillation.

Throughout the example update sequence in Figure 5.22, block C2 was
never activated, illustrating how the event-driven scheme only evaluates
those parts of the DUV model that are affected by changes and success-
fully avoids the activation of model parts that can be skipped. Still, the
topology of the model required massive updates in this case because
input i2 affects many model blocks. However, changing input i4, for
example, would probably result in only the activation of B2, C3, and D.

Another way to visualize the model updates of Figure 5.22 is to line
up the sequence of scheduled model events over time. If the HDL for
Model A specifies explicit delays for model updates (signals/gate delays
or wait statements in behavioral code such as in Figure 5.21), the changes
will spread out naturally over a range of model time controlled by the
DUV specification. The simulation engine itself must order changes
dynamically that have no HDL-specified model time delay (zero delay).
Assuming the HDL of Model A does not use any explicit delays (zero delay
model), we show every successive model event as one discrete step inter-
nal to the simulation engine in Figure 5.23. Every evaluation creates a
resulting update that the simulation engine schedules to occur at the
beginning of the next internal step. At several points in the sequence
(after the changes of s6 and s12), the simulation engine schedules more

5.3 Event-Driven Simulation 169

s7 s8 B1 s6

s10 C1

C1

s13 D

C3s11 s12s9

B2

1

3

2

4

5

= Signal update

= Block evaluation

Simulation engine scheduling steps

■ FIGURE 5.23

The update sequence of Figure 5.22 assuming all zero-delay events. The numbers in the shaded circles
refer to the same marked key events in Figure 5.22. The simulation engine orders the events dyna-
mically as they occur on the model. The change events on signals s6 and s12 cause parallel change
events.

than one update in parallel. In a sequential program that simulates this
network, it is effectively up to the simulation engine’s random choice to
decide in which sequence the two model updates really happen; from a
user view, the model actions happen in parallel.

We call the described evaluation strategy event-driven. Whenever an
event occurs, such as the update of a signal, the simulation engine sched-
ules the computation of all the blocks, which are sinks of this signal. If
these blocks update their output signals, the changes propagate further
in the same way.

We can now combine the two key aspects of the event-driven simula-
tion approach (Table 5.2).

It appears obvious that event-driven simulation is quite efficient
because the strategy implies that the simulation engine only does the
work necessary to evaluate model changes. Extraneous computations do
not occur.

Although we assumed zero-delay in Figure 5.23, the event-driven sim-
ulation algorithm is much more general. By using VHDL or Verilog time
control constructs, signal updates can have delays of arbitrary amounts
of model time. In contrast to Figure 5.23, this simply postpones the
model evaluation to another discrete model time step instead of all
updates happening at the same model time. Hence, it stretches out the
event sequence over simulated time but does not change the basic event-
driven update mechanism.

The definition of Verilog and VHDL clearly includes the assumption
of an underlying event-driven simulator. Figure 5.24 illustrates this using
VHDL with two blocks (processes) connected to each other via the signals
count and tick. Whenever tick toggles, block 1 updates count, which trig-
gers block 2’s inversion of tick’s value again.

With Table 5.3, we introduce an example piece of VHDL that specifies
the implementation of a 2-bit ripple-carry adder at the low abstraction
level of Boolean equations including delayed assignments.

Figure 5.25 shows how a simulation engine could translate the adder
VHDL into a network view. For the example, we assume that the network
consists of Boolean operator blocks. Another valid translation could have
created one network block per VHDL statement, yielding six blocks
instead of the fine granularity of 16 blocks in Figure 5.25. The event-
driven algorithm of the example engine keeps track of model changes

170 Chapter 5 ■ Hardware Description Languages and Simulation Engines

TABLE 5.2 ■ The essential properties of event-driven
simulation

Evaluate model behavior only at those times when
model events are scheduled.

Evaluate behavior only for the blocks or signals for
which events are scheduled.

through the network shown. The signals that have label names in Figure
5.25 correspond to the HDL signals in Figure 5.24. Because the engine
split the equations to their constituent operator blocks, the network also
contains signals that have no user names. The event-driven simulation
engine will propagate every change of the input signals a and b through
the network.

The pair of Figures 5.26 and 5.27 shows in detail the event-driven
update of the adder model as a result of the arrival of new values at the
adder inputs. We show only the first eight simulation steps that lead
the model from time 0ns to 2ns. This is enough model time to propa-
gate the necessary changes to the output signal carry_out. Because the
path through the equations driving the sum_out vector runs through
the assignment statements with a longer delay (statements 1 and 3 in
Table 5.3), it will take more simulation steps at model time 3ns to com-
plete the adder model update. These final simulation steps were left out
for space reasons and left as an exercise for the reader.

5.3 Event-Driven Simulation 171

process (count)
begin
 my_count <= count;
 tick <= not tick;
 ...
end process;

process (tick)
begin
 if (count<=15) then
 count <= count + 1 after 1ns;
 else
 count <= 0 after 1ns;
 end if;
end process;

Each process:
– loops forever
– waits for change of signal
 from other process

Block 1 Block 2

■ FIGURE 5.24

Two VHDL example blocks with process statements defining the behavior. Each process iteration causes
a signal update that schedules the resumed execution of the other process.

TABLE 5.3 ■ VHDL fragment that defines a 2-bit adder
design under verification at the Boolean equation level

(1) s(0) <= a(0) xor b(0) after 2ns;
(2) c(0) <= a(0) and b(0) after 1ns;
(3) s(1) <= a(1) xor b(1) xor c(0) after 2ns;
(4) c(1) <= (a(1) and b(1))or (b(1) and c(0)) or

(c(0) and a(1)) after 1ns;
(5) sum_out(1 to 0) <= s(1 to 0);
(6) carry_out <= c(1);

The HDL specification of the 1-bit adder in this example is modeled
at a Boolean-equation level. This granularity of detail in the model ties
the delay information to a per-equation level. A truly RTL model would
compress the specification dramatically by using the arithmetic “+” oper-
ator (see Figure 5.31). In the opposite direction of less abstraction, a
gate-level model would have an even finer resolution and reference the
Boolean operations in terms of primitives from a technology library (e.g.,
NANDs, NORs). With many commercial simulation engines, it is possi-
ble to leave the gate-level HDL free of timing control constructs and back-
annotate the actual physical timing information into the simulation via
the loading of the so-called standard delay format (SDF) file. Physical
design tools can generate SDF files (IEEE standard 1497—1999) at the
point when exact technology parameters such as library cell character-
istics and placement and wiring information are available.

5.3.4 Implementation Sketch of an Event-Driven
Simulation Engine

The properties of the event-driven simulation approach can now be sum-
marized, with a conceptual description of the basic mechanisms of an
event-driven simulation engine.

172 Chapter 5 ■ Hardware Description Languages and Simulation Engines

xor

xor

xor

and

and

and

and

or

or

a(1 to 0)

b(1 to 0)

(1)

(1)

(0)

(0)

1ns

1ns

2ns

2ns

s(1)

s(0)

=>

=>

=>

sum_out(1)

sum_out(0)

c(0)

c(1)
carry_out

■ FIGURE 5.25

Network view of the 2-bit adder equation logic from Table 5.3. The example simulation engine turns
every Boolean operator into its own block in the model network. The delayed assignments turn into
the shaded special-purpose blocks. All the signals in the network that have HDL names are marked
accordingly.

5.3 Event-Driven Simulation 173

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

(a
)

(b
)

(d
)

(c
)

T
im

e
0n

s,
 s

te
p1

T
im

e
1n

s,
 s

te
p1

T
im

e
0n

s,
 s

te
p2

T
im

e
1n

s,
 s

te
p2

0 0

1

1

1
1

1
1

0

1

0

1
1

■
FI

GU
RE

 5
.2

6

Th
e

fir
st

 f
ou

r
si

m
ul

at
io

n
st

ep
s

of
 e

ve
nt

-d
ri

ve
n

si
m

ul
at

io
n

of
 t

he
 2

-b
it

 a
dd

er
 m

od
el

 a
ft

er
 t

he
 u

pd
at

e
of

 t
he

 i
np

ut
 v

ec
to

rs
 a

 a
nd

 b
.

Fo
r

ev
er

y
st

ep
,

th
e

B
oo

le
an

 o
pe

ra
to

r
bl

oc
ks

 w
it

h
sh

ad
ed

 b
ac

kg
ro

un
d

ar
e

th
os

e
sc

he
du

le
d

fo
r

ac
ti

va
ti

on
 b

ec
au

se
 o

f
in

pu
ts

 c
ha

ng
es

.
E

v e
ry

ou
tp

ut
 t

ha
t

ch
an

ge
s

be
ca

us
e

of
 a

n
ac

ti
ve

 B
oo

le
an

 b
lo

ck
 i

n
th

e
pr

ev
io

us
 s

te
p

ha
s

a
sh

ad
ed

 c
ir

cl
e.

 S
ig

na
l

va
lu

es
 t

ha
t

ch
an

ge
 b

ec
a u

se
of

 s
im

ul
at

io
n

ac
ti

vi
ty

,
re

m
ai

n
m

ar
ke

d
in

 t
he

 s
ub

se
qu

en
t

Fi
gu

re
s.

 a
 a

nd
 b

,
Th

e
tw

o
si

m
ul

at
io

n
st

ep
s

ne
ce

ss
ar

y
to

 c
om

pl
et

e
m

od
el

 t
im

e
0

ns
.

Th
e

ti
m

e
1

ns
 s

ta
rt

s
w

it
h

th
e

de
la

ye
d

up
da

te
 o

f
si

gn
al

 c
(0

).
 c

 a
nd

 d
,

Th
e

fir
st

 t
w

o
st

ep
 a

t
ti

m
e

1
ns

.

174 Chapter 5 ■ Hardware Description Languages and Simulation Engines

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

xo
r

xo
r

xo
r

an
d

an
d

an
d

an
d

or

or

a=
11

b=
01

1n
s

1n
s

2n
s

2n
s

=
>

=
> =
>

(a
)

(b
)

(d
)

(c
)

T
im

e
0n

s,
 s

te
p1

T
im

e
1n

s,
 s

te
p1

T
im

e
0n

s,
 s

te
p2

T
im

e
1n

s,
 s

te
p2

0 0

1

1

1
1

1
1

0

1

0

1
1

■
FI

GU
RE

 5
.2

7

Th
e

ne
xt

 f
ou

r
st

ep
s

of
 t

he
 s

im
ul

at
io

n
up

da
te

 s
ta

rt
ed

 i
n

Fi
gu

re
 5

.2
6

.
a

an
d

b,
 T

he
 fi

na
l

st
ep

s
ne

ce
ss

ar
y

to
 c

om
pl

et
e

th
e

up
da

te
 o

f
si

gn
al

 c
(1

).
 c

 a
nd

 d
,

Th
e

de
la

ye
d

as
si

gn
m

en
t

to
 s

ig
na

l
ca

rr
y_

ou
t

le
ad

s
to

 t
he

 s
te

ps
.

The simulation engine needs to maintain the following data structures
to represent the model network, its interconnect topology, and the
current state of the model (Table 5.4).

A central data structure to control activity and time progress in an
event simulator is typically the so-called time wheel (Figure 5.28). The
time wheel is a simple linked list that contains entries for every model
time, current or future, for which the engine has scheduled an activity.
For any such model time, the simulation engine keeps a to-do list of
model blocks and signals that are scheduled. The simulation engine
always takes the next item from the list for the current time, does the
necessary evaluation, and proceeds to the next list item. As we have
shown, the result of an evaluation can trigger the addition of list items
for the current time (zero-delay) or any future time. Once the list for a
current time is empty, the time wheel can “turn” to the next model
time for which work is scheduled. As illustrated in Figure 5.28, the
engine updates the current model time simply by moving the
current_model_time reference to the new head of the time wheel list.

For time zero, the start time of simulation, the simulation engine
schedules all executable model blocks contained in a model. In VHDL,
these are all processes and concurrent assignment statements. For Verilog,
the initial model blocks scheduled at time zero are all always blocks and
all continuous signal assignment statements. This approach makes sure
that the simulation properly initializes all model blocks. In addition,
Verilog supports a special provision with the initialize block that the
simulation engine only schedules for time zero.

Figure 5.29 shows the core algorithm of an event-driven simulation
engine. Users issue a “run” command, either interactively or via a
program, which hands control over to the simulation engine. Starting at
point 1 in Figure 5.29, the simulation engine takes the next scheduled
model block from the to-do list for the current time and call its code.
Typically, a block evaluation results in scheduled signal updates. Once
the engine is done with all scheduled model blocks, it performs the sched-
uled signal updates (point 2 in Figure 5.29), which usually add more
model blocks into the current to-do list of the scheduling data. As long
as signal updates add more model blocks to the to-do list for the current
model time, the engine will loop back to point 1 in the flowchart. Once

5.3 Event-Driven Simulation 175

TABLE 5.4 ■ The three basic data structures at the core of
every event-driven simulation engine

1. A list of all executable blocks present in the
model network

2. A data structure that represents the
interconnection of the blocks via signals

3. A value table that holds all current signal values

all block and signal updates have rippled through (point 3 in Figure 5.29),
the simulation engine is ready to increment model time, which means
advancing the time wheel to the next time for which events are sched-
uled. Simulation stops when the engine reaches the user-defined model
time limit.

Because event-driven simulation has been so widely used, the opti-
mization of its performance is well understood. The algorithm for the
simulation engines just described has obvious performance-critical por-
tions. The most prominent area is the management of the to-do lists, the
time wheel, and the data that represents the topology of the model. For
every event evaluated, the simulation engine must traverse the model
topology data to find which blocks or signals it needs to schedule next.
Once identified, the simulation engine must find the scheduled time on
the time wheel and put the corresponding event on the to-do list for that
given time.

176 Chapter 5 ■ Hardware Description Languages and Simulation Engines

Current
model
time

time=0

time=t1

time=t2
Time
wheel

Linked to-do lists of
scheduled activities

■ FIGURE 5.28

Conceptual diagram of the central scheduling data structure at the heart of the execution control of an
event-driven simulation engine. Every model time with scheduled events has a linked to-do list con-
taining information to enable the engine to execute the event. Every to-do list is anchored at a partic-
ular position of the time wheel. The time wheel is a circular linked list in which every entry maintains
a pointer to the to-do list for a given model time, which has scheduled activity. The data entry
current_model_time simply marks the head of the time wheel list for the current model time.

Figure 5.30 illustrates the sensitivity of simulation performance in
relationship to the granularity of the model. For the case of many small
blocks (e.g., the 2-bit adder example above), most time in simulation will
be spent on scheduling overhead while the actual block evaluations are
trivial. For the cases of large processes (VHDL) or always blocks (Verilog),
the model topology will increasingly be fraught with feedback loops (see
Figure 5.22). Although the amount of scheduling activity is low compared
with the time spent inside the code of the model blocks, the blocks are
evaluated multiple times until the model converges to a steady state.

The activity rate of the model is another big factor for the performance
of event-driven simulation, and therefore, Figure 5.30 illustrates it as
another dimension. Obviously, a low activity rate helps simulation speed.
The primary advantage of event-driven simulation is the ability to skip
unnecessary model evaluations; however, a model with few monolithic
blocks of sequential code can take less advantage of a low activity rate

5.3 Event-Driven Simulation 177

Activate next
scheduled block

More blocks
scheduled?

Block code
Block function execution

Schedule signal updates

call

return

Yes

Yes

Perform signal updates

More blocks
scheduled?

No

Yes

No

Increment
model time?

Done

Scheduling data

Block/signal interconnect topology
Event data: time wheel

1

2

3

No

■ FIGURE 5.29

The main control algorithm for an event-driven simulation engine. The dashed arrows show data access
of the execution algorithm to the scheduling data. The engine starts at model time zero with calls to
all initially scheduled model blocks, which schedule signal updates. Afterward, it performs the sched-
uled signal updates. This might result in more scheduled block activations. Once there are no more
scheduled updates for the current model time, the engine moves to the time of the next scheduled
events. We use the numbered circles in the flow diagram to anchor the explanation in the text.

than can a model with finer granularity. Performance gain from low
activity is only possible if there are distinct blocks of work that the engine
can skip. In contrast, with a model of the finest granularity, the sched-
uling overhead will again cause loss of efficiency compared with a model
that has an optimal balance in model block size.

Overall, event-driven simulation proved to cover a wide range of mod-
eling styles with reasonable performance results, which led to its domi-
nant position in the area of simulation engines. The reader should now
have enough technical insight of this technology to be able to understand
what trade-offs are available in its use.

5.4 IMPROVING SIMULATION THROUGHPUT

Because of the overwhelming size of the state space of industrial designs,
simulation performance is a critical factor for a project. The correct
measure for the performance of simulation, however, is not only the speed
of a single simulation run but the amount of verification in number of
tests, number of cycles, and number of distinct model states visited and
checked during simulation per time spent: the simulation throughput.

178 Chapter 5 ■ Hardware Description Languages and Simulation Engines

P
er

fo
rm

an
ce

Model granularity
number of blocks

Few large blocks:
High re-scheduling overhead

Many tiny blocks:
High scheduling overhead

D
ec

re
as

in
g

m
od

el
ac

tiv
ity

 r
at

e

■ FIGURE 5.30

Performance balance for event-driven simulation. The speed of simulation depends on the granularity
of the model and the rate of dynamic model changes. A model with few monolithic blocks will likely
suffer from a large amount of re-scheduling overhead because of topological feedback loops. The same
DUV function modeled with a large number of primitive blocks will degrade in speed because the sim-
ulation engine must keep track of a huge amount of scheduling activity. The optimum performance lies
somewhere between these two extremes. Less dynamic model activity improves simulation speed more
in the case of fine model granularity.

There are several ways to improve simulation throughput (Table 5.5).
The parallelization of a project’s simulation effort, option (2), is a

topic of Chapter 13 (Section 13.1.3), and Chapter 6 (Section 6.2) covers
option (3). Several approaches to increase the performance of a simula-
tion engine, option (1), or simply the speed of model simulation are dis-
cussed in the remainder of this chapter.

The apparent, technically trivial option is simply to buy a faster sim-
ulation engine. However, this alternative is surprisingly complicated.
Unlike performance benchmarks for general-purpose computer systems,
such as those of Standard Performance Evaluation Corporation (SPEC),
simulation engine benchmarks are hard to find [9]. Too many parame-
ters influence simulation engine speed: most are project specific and defy
classification with a simple benchmark number; others are HDL style,
event activity rate, and the profile of the interaction between test bench
and DUV model. In addition, there is the expected reluctance on the
side of the EDA vendors to accept a common set of simulation engine
benchmarks.

This chapter has discussed how the HDLs cover a wide range of spec-
ification styles. HDL style is one factor in the performance profile of a
simulation engine. It is entirely possible to optimize a simulation engine
largely for gate-level timing simulation with the result of an engine per-
formance profile that does compete well against another simulation
engine whose primary target is high-level, programming-language-like
HDL. For a verification project that uses mostly gate-level simulation, the
first simulation engine might be the optimal choice. If that same project
accumulates a set of high-level test bench code in HDL over time, a sim-
ulation engine whose performance is more balanced across the full HDL
spectrum might be the better long-term alternative. In summary, the ver-
ification team should consider simulation engine benchmarks with care
and only under clear consideration of the project-specific HDL style.

With that said, the HDL writers have indeed a big influence on the per-
formance of their simulation. Several EDA vendors publish guidelines
such as “HDL style to optimize performance.” In addition, some simu-
lation engines offer a profiling function, which allows a user to trace in
which parts of the model most of the simulation time is spent.

As discussed above, the overhead of scheduling versus the time spent
in actual HDL code largely defines the efficiency of an event-driven
simulation, meaning that simulations run faster if there are less events

5.4 Improving Simulation Throughput 179

TABLE 5.5 ■ The three main techniques to improve simu-
lation throughput

1. Increase simulation engine performance
2. Run many simulations in parallel
3. Eliminate redundant simulations

scheduled. Given the same DUV function, there are HDL style choices
that allow the user to improve simulation performance. As always, there
are trade-offs to observe. If the HDL specification is not only the input
for simulation, the user should ensure that a style choice that improves
simulation speed does not hurt the other uses of the design source, like
logic synthesis results for example.

In Table 5.6 we list some example strategies to improve event-driven
HDL simulation speed, partially dependent on the given simulation
engine, most of which minimize event creation and scheduling.

Table 5.7 shows several examples for the choices in Table 5.6. The least
efficient version, version 3, uses concurrent signal assignment statements
with delay clauses (see Table 5.3). Every evaluation causes new events to
be scheduled. Depending on the possibly random initial ordering of the
assignments, the simulation engine will schedule statements several
times before the model settles. Version 2 is more abstract, using built-in
arithmetic expressions, full-vector assignments, and no delay clauses.
Note that this level of specification is only applicable if the verification
team does not really need the accuracy of version 3 to verify the cor-
rectness of this design. Version 1 goes a step further by ordering the state-
ments of version 2 statically inside a sequential process block. Except for
the output signal updates, no scheduling is necessary for the simulation
engine; the whole process is one atomic action for the engine. Further-
more, the engine’s model build process is able to apply optimizations that
have proven powerful for the compilation of programming languages.
For example, the actual model code can keep the value of signal s avail-
able in a processor register for further use in the second statement of the
process.

180 Chapter 5 ■ Hardware Description Languages and Simulation Engines

TABLE 5.6 ■ A selection of hardware design language (HDL) style choices to improve event-driven
simulation performance

More abstract HDL Use higher-level built-in operators versus explicit gate/expression level
constructs implementations of those functions.

Use integer arithmetic instead versus bit-level arithmetic.
VHDL: Use standard libraries versus Project-specific versions; simulation

engines often have optimized, built-in support for standard libraries.
Two-valued logic Use binary values over multivalues when possible. Simulation engines

often optimize for binary logic operations.
Full data-value Use delay control statements judiciously, i.e., only in modeling situations

operations in which the function is dependent on timing. Use zero-delay
specification when possible. Many simulation engines will be able to
order events statically at model build time and eliminate runtime
scheduling overhead automatically for that part of the model.

Two-valued logic Consider sequential code (process/always-block, procedure/function) for
part of a design in which the order of evaluation can clearly be defined
at specification time.

The overall theme of these optimizations is that we can gain simula-
tion speed if the model specification does not rely on the most general
use of HDL styles. The more specific, concise, and abstract the specifi-
cation of the model function, the faster the simulation of the function
will be. The following section (Section 5.5) will use an even more
restricted HDL style that can yield radically better simulation speed.

The other option to improve simulation speed is parallelization. There
has been significant research into parallel algorithms for hardware
simulation over the years. Even though the results have shown per-
formance improvements, no break-through has occurred. Event-driven
simulation seems to be inherently hard to parallelize, and there currently
is no commercially successful parallel event-driven simulation engine
available.

Another important reason for the lack of commercial interest in par-
allelized simulation engines is that there are two powerful alternatives
competing with this approach. The first is the utilization of pools of
compute workstations all running independent simulations. The second
is the most radical approach to speed up a single simulation job, the
direct implementation of a simulation engine in hardware, as used in
hardware accelerators and emulators. Hardware simulation engines are
discussed in Chapter 10.

We call the most simple and straightforward way to improve simula-
tion throughput trivial parallelization: running independent simulation

5.4 Improving Simulation Throughput 181

TABLE 5.7 ■ Examples for range of abstractions of hardware design language specifica-
tions for a 2-bit adder in the order of increasing structural detail but decreasing simula-
tion speed

(1) process(a, b)
variable s: std_ulogic_vector(2 to 0);
begin
s(2 to 0) := (‘0’ & a(1 to 0)) + (‘0’ & b(1 to 0));
sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(0);
end;
end process;

(2) sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(0);
s(2 to 0) := (‘0’ & a(1 to 0)) + (‘0’ & b(1 to 0));

(3) s(0) <= a(0) xor b(0) after 2ns;
c(0) <= a(0) and b(0) after 1ns;
s(1) <= a(1) xor b(1) xor c(0) after 2ns;
c(1) <= (a(1) and b(1))or (b(1) and c(0)) or (c(0) and a(1)) after 1ns;
sum_out(1 to 0) <= s(1 to 0);
carry_out <= c(1);

jobs on a pool of workstations. For large design and verification projects,
it is common to use hundreds, or even thousands, of workstations in par-
allel, all running simulation. The industry refers to this arrangement as
the simulation farm. Instead of running one single model partitioned and
parallelized across several computers, the workstations in the simulation
farm all run their own independent simulation job. The attraction of this
simple way to boost simulation throughput is evident: if the project has
to run 1 million test cases of roughly equal length, the verification team
can optimally use a farm of 1000 workstations by running a sequence
of 1000 test cases on each machine. The improvement of throughput is
nearly ideal (1000 times) in this case. In addition, it is simple to upgrade
the simulation farm with additional machines if the project needs to scale
up the simulation throughput. The result of such an additional capital
investment is predictable because the throughput improvement remains
linear with number of additional computers bought. The application of
simulation farms is discussed further in Chapter 13.

5.5 CYCLE-BASED SIMULATION

Cycle-based simulation is a specialized technique to improve simulation
efficiency. It has a long history of development and successful applica-
tion on the largest design and verification projects [10]. The reason for
the superior performance of cycle-based simulation engines compared
with event-driven simulation is the simplicity of the algorithm and the
total optimization toward a specific hardware design style-synchronous
design. Therefore, as always, a tremendous speedup comes with the dis-
advantage of trading off general-purpose applicability.

On designs and projects in which cycle-based simulation applies, the
speedup can be large. A speedup of 10 to 20 times and a DUV model
size compression of more than 10 times are typically quoted; some
sources even put the speedup at 100 times that of traditional event-
simulation [11].

The downside of cycle-based simulation is that it puts severe con-
straints on the HDL style of the DUV. Pure cycle-based simulation
engines do not support or ignore delay controls, limit sequential con-
structs significantly, and do not allow most test bench-specific features
of the HDLs. Projects with large synchronous designs, however, can pro-
ductively use cycle-based engines to speed up the DUV simulation, while
leaving the test bench writing to the use of special-purpose test bench
languages outside the realm of HDLs (see Chapter 6).

Most EDA vendors attempted to market pure cycle-based simulation
engines during the second half of the 1990s. The significant methodol-
ogy restrictions associated with this technology severely limited a broad
market acceptance. This leaves pure cycle-based simulation mostly in the
domain of microprocessor and server development houses, which typi-

182 Chapter 5 ■ Hardware Description Languages and Simulation Engines

cally run the largest simulation models. However, the EDA vendors inte-
grated most techniques of cycle-based optimizations that are described
below into the commercial simulation engines. There, they automatically
optimize the simulation speed of those parts of a DUV model, in which
the design restrictions hold. The fastest event-driven simulation engines
today are in fact hybrids between pure event-driven engines and cycle-
based technology.

5.5.1 Synchronous Design
The foundation of cycle-based simulation rests on a fundamental
methodology restriction that applies to many modern designs, the syn-
chronous design principle. If we separate the state-holding elements
(latches, flip-flops, memory arrays) of a design from the combinational
logic, it becomes clear that the function of the combinational portion is
identical to the state transition and output generation function of a FSM.

The clock signal used to update the state-holding elements syn-
chronizes the FSM update and the progression of the design through the
state space. In a first approximation, we consider a clock signal that is
central and occurs at the same time for all state-holding elements, which
we simply call latches. We refer to such a clock signal as a synchronous
clock.

On a historical note [10], even though it is easier to correctly design
and verify synchronous designs than asynchronous designs, this design
method originates from requirements for the manufacturing test of
chips and not from functional verification. Manufacturing test uses test
patterns that are able to isolate fabrication problems on a chip. For this
procedure, it is necessary to be able to stop the clock on the chip at
any time, supply a new state initialization, clock the design, and subse-
quently read out the new state of the chip. This approach prompted the
demand for a synchronous clock and a design that is largely functionally
independent from the actual frequency at which the clock updates the
latches.

The longest delay along any update path through the combinational
logic of a design defines the maximum frequency for the clock signal of
a synchronous design (Figure 5.31). We call the calculation of this
maximum frequency under which the design still functions correctly
timing verification. The critical delay path is the longest delay path
allowed from latch to latch. Any path with a longer delay leads to incor-
rect functioning of the circuit because the combinational result will not
arrive in time to update the target latch correctly. The scheme also
implies that combinational feedback loops are not possible.

Given that manufacturing test potentially applies any possible pattern
to the combinational logic, it is no longer possible to use only functional
patterns (only those patterns possible within the legal state space of the
design), but all Boolean possibilities must be accounted for in timing

5.5 Cycle-Based Simulation 183

verification. In addition, the exact delays on the chip are unknown until
a physical netlist is available with the exact placement and wiring data.

Therefore, rather than using dynamic techniques that would have to
apply all possible combinational input patterns, timing verification is
done with static, pattern-independent techniques. Timing verification
tools process the physical netlist topologically as a graph and do not
apply Boolean patterns at all. Thus, this process can be separated com-
pletely from the discipline of functional verification. Timing verification
guarantees that the maximum clock frequency is low enough to enable
correct electrical function of the circuit, whereas functional verification
can focus exclusively on the functional content of the design.

This separation of physical from functional concerns is the founda-
tion for the extreme performance optimization and simplification that
cycle-based simulation engines offer.

5.5.2 The Cycle-Based Simulation Algorithm
The separation of timing and functional verification allows the HDL spec-
ification to be purely functional. This means that the HDL of a synchro-
nous design needs to specify timing only for the clock signal. Even for
this signal, the delay time, or cycle time, is rather arbitrary because the
real cycle time can change with any iteration in the physical design
process. In fact, for functional simulation all that is needed is the sepa-
ration from a time at cycle “n” to the time at cycle “n + 1.” Therefore,

184 Chapter 5 ■ Hardware Description Languages and Simulation Engines

State-holding elements
(latches, flip-flops)

State-holding elements
(latches, flip-flops)

xor
xor

and

and

and

or

or

■ FIGURE 5.31

Fragment of the network model of a synchronous design. The combinational logic between the state-
holding elements must be able to propagate updates faster than the clock frequency of the latches or
flip-flops. The dashed arrow shows the path with the longest delay–the critical delay path of this part
of the design.

many cycle-based simulation engines do not reference physical time
measures but simply an integer that denotes the current cycle.

It is evident that this abstract view of the DUV has a close affinity to
Algorithm 1 in Table 5.1. A possible cycle-based algorithm can take the
cycle as the finest time granularity and simply update the model once per
cycle.

The combinational logic description of a cycle-based model is devoid
of timing control statements. It is a zero-delay specification and free of
combinational feedback loops. By using the primary inputs and the
current values of the state-holding elements as the starting points, as well
as the primary outputs and the next values of the state-holding elements
as the end points, it is possible to strictly order, or levelize, all blocks of
the model network. Technically speaking the model is a directed acyclic
graph (DAG). Figure 5.32 illustrates the basic view of this graph. By using
simple gates as an example for combinational function, the magnifying
glass cut-out in Figure 5.32 shows the ordering of the graph, which illus-
trates that if signals A and B are evaluated first, signal C needs to be
evaluated once only per evaluation of the state machine function.

The cycle-based simulation engine proceeds from cycle to cycle by
evaluating the combinational function graph and calculating the new
latch and primary output values.

In comparison to the event-driven algorithm, the cycle-based engine
does not need to schedule blocks because it is clear from their position

5.5 Cycle-Based Simulation 185

Levelized
combinational

logic

Latches

Model inputs

A

B

C

■ FIGURE 5.32

Model network for a cycle-based simulation. Starting from the network model of design under verifica-
tion, the model ordering process combines all state-holding elements (marked latches) and levelizes
the combinational logic blocks. Levelization starts at level 1 with all blocks that connect to model inputs
or latches only. Any subsequent level n contains only blocks whose inputs connect to outputs from
blocks of prior levels (maximally level n - 1). This results in an ordered directed acyclic graph as illus-
trated in magnifying glass view.

in the graph when their evaluation is necessary. Although it is possible
to use an event-driven scheme within the combinational function evalu-
ation, most cycle-based simulation engines have implemented what the
literature calls the oblivious simulation algorithm [12]. The oblivious
scheme calculates all the combinational function at every simulation
cycle and thus foregoes any dynamic event scheduling whatsoever. The
algorithm trades off the redundant work of evaluating those parts of the
model that do not change from cycle to cycle for the omission of com-
plicated management of the to-do lists and time wheel management that
are key to event-driven simulation (Section 5.3.4). The oblivious algo-
rithm is extremely simple and, most importantly, a good basis for further
optimization.

Another positive effect of the separation of timing from functional ver-
ification is the diminishing need of multi-value data representation for
signals. With the exception of multiply sourced bus signals (discussed
below), we can simulate most signals in the DUV with a binary value
domain without loss of verification quality. This is a result of making the
circuits synchronous, which eliminates glitches and hazards as a func-
tional verification problem. It allows the dramatic simplification and sim-
ulation speed-up using a binary value set for the overwhelming majority
of signals.

Figure 5.33 shows the power of the simplicity and capacity for
simulation efficiency of this basic flavor of cycle-based simulation. The

186 Chapter 5 ■ Hardware Description Languages and Simulation Engines

xor

xor

xor

and

and

and

and

or

or

a(1 to 0)

b(1 to 0)

=>

=>

=>

1
1

2

3

4

3

4

2

a(1)

b(1)
s(1)

s(0)

c(0)

Load temp1, a(0)
Load temp2, b(0)
Xor temp1, temp2, temp3
Store temp1, s(0)
And temp1, temp2, temp3
Store temp3, c(0)
Load temp1, a(1)
Load temp2, b(1)
Xor temp1, temp2, temp3
Load temp4, c(0)
Xor temp3, temp4, temp5
Store temp5, s(1)
 . . .
 . . .

(b) Compiled Model Code

(a) Levelized Model Network

■ FIGURE 5.33

Cycle-based model of 2-bit adder design. (a) The levelized model network for the adder design with
four model blocks marked by circled numbers. (b) The first section of compiled microprocessor machine
code that represents the design under verification for a cycle-based simulation model. The logical
instructions in the code are marked with numbered circles, cross-referencing the gates in Figure 5.33a
that the instructions simulate.

example illustrates one possible extreme compilation of the zero-delay
version of the 2-bit adder into a pseudo instruction set of a workstation
microprocessor. The simulation model actually becomes a piece of
executable machine code, a program.

The pseudo-code in Figure 5.33b uses symbolic names for the storage
locations at which the simulation engine stores the representation of the
original VHDL signals. The code follows the ordered graph of the model
network. For every block in this example model, there is a corresponding
Boolean logic instruction in the code. This scheme also applies to blocks
that are more complicated by expanding the simple AND/OR/XOR func-
tions, which happen to have single microprocessor instruction equiva-
lents, to more complicated code sequences. For Figure 5.33, we can now
translate every Boolean block function that has a single corresponding
instruction in the pseudo instruction set into a series of approximately
four instructions: two load instructions for the input operands, one
logical instruction for the block function, and a store instruction for the
resulting value. This example makes clear how extremely compact the
cycle-based translation can become, especially when compared with an
algorithm, which needs to traverse and maintain lists of scheduled blocks
and to traverse a data structure that represents the model topology.

The following, very crude calculation illustrates the performance and
size compression potential of cycle-based simulation. If a cycle-based
simulation engine translates a DUV of one million gates into code for a
1-GHz microprocessor with the above instruction set, the approximate
code size of the model would be 4MB. If we assume a processor per-
formance of one instruction per clock cycle, it is possible to run the
cycle-based simulation of this model at a speed of 250 clock cycles per
second.

Especially with larger models, the assumption of one instruction per
clock cycle does not hold with the approach shown, because the gener-
ated code is linear. Rather than using the processor caches, the simula-
tion engine program reads the model code from main memory every
simulation cycle. On the other hand, it is possible to push the average
instructions per model block well below the assumed four. It is visible in
the small example of Figure 5.33 that the code does not need to store
every intermediate result to a named signal and therefore does not need
to store it into model memory. This optimization can eliminate many
store instructions.

Overall, typical comparisons show improvements of cycle-based sim-
ulation engines by 10 to 20 times in speed and 3 to 10 times in capacity
depending on what types of cycle-based simulation and event-driven sim-
ulation we compare. The capacity improvement often has a much bigger
impact because it allows the simulation of designs that otherwise would
not fit into the address space of the workstation on which the simulation
needs to run.

5.5 Cycle-Based Simulation 187

Further optimizations are possible but beyond this discussion.
Increased capacity of the model representation, even at model build time,
as well as the fact that the model build process can statically order the
model network graph, opens a variety of optimizations that originate in
the disciplines of programming language compilation and logic synthe-
sis. These optimizations reach from simple operations, such as forward
constant propagation, to complex ones, such as elimination of redundant
logic in the model. The simplicity of the basic graph-oriented ordering
makes such optimizations affordable while still allowing reasonable
model build times of minutes per one million gates.

5.5.3 Extensions to Basic Cycle-Based Simulation Engines
The basic cycle-based simulation scheme considered so far severely
limits the style of HDL that the simulation engine can support. It is a
very narrow slice of the HDL LRMs: some excluded because the design
methodology allows us to (separation of timing verification from func-
tional verification), and some constructs are not supported for the sake
of performance optimization. The main purpose of extending the basic
cycle-based simulation algorithm is to bring back some of the missing
HDL features that improve the quality of verification even if that means
lowering the efficiency of the simulation engine.

Multiv-alued Signal Support

The first example for the extensions to cycle-based simulation discussed
here is the support for multi-valued signals. As mentioned above, multi-
sourced buses (data type std_logic for signals in VHDL) require a more
accurate value domain. With the simple, brute-force binary encoding of
signal values, it is impossible to detect a driving conflict on a bus signal
that has multiple drivers. It must be possible for the simulation engine
to discern which one of multiple sources actually drives the bus actively.
The VHDL value set for std_logic has nine logic values to make this
differentiation possible. Multiple drivers on a bus with different driving
strengths are not a problem for the DUV function as long as there is only
one driver with the strongest driving strength. A cycle-based simulation
engine should handle at least the condition of “blue smoke”–multiple
drivers with opposing logic values that drive with the same strength. This
extension requires a more sophisticated encoding of the logic values for
bus signals, more than simple binary encoding, as well as a more elabo-
rate handling of bus updates in the combinational logic. This extension
has no big performance impact because only a minority of the signals in
a standard design is buses.

An extension of all signals and state-holding elements to a multi-value
set is much more expensive. This means that all signals need a multi-bit
value encoding. All Boolean expressions are now more expensive as well

188 Chapter 5 ■ Hardware Description Languages and Simulation Engines

because of the more complicated multi-value operation. However, only
specialized tasks in verification need a cycle-based model of this flavor.
An example of such a task is power-on reset (POR) simulation, which
verifies that a design can initialize itself cleanly (for more discussion
about these aspects of the verification task, see Chapter 9).

Experience shows that it is possible to extend binary cycle-based sim-
ulation to support Verilog-style four value simulation (0,1,X,Z) with a
performance degradation factor of two to three compared with the basic
algorithms. Hence, even with such an extension, it is possible to keep the
performance and capacity advantage of the cycle-based simulation tech-
nology. Also, verification methodology can select this more expensive
model only for the specific tasks it is needed for.

Multiple Clock Domains in Cycle-Based Simulation

There is a widely held prejudice against cycle-based simulation, imply-
ing that cycle-based simulation engines cannot accurately verify designs
with state-holding elements clocked by clock signals at different fre-
quency. However, this is not the case.

We can divide a design that has independent clock signals into parti-
tions, which each have a single uniform clock. We call such partitions
clock domains. We break the problem into two categories based on fun-
damentally different relationships between two clock domains. The first
category is synchronous clock domains, in which the clock domains have
an integer ratio relationship to each other. The second category is for
cases in which the clock domains have a non-integer ratio. The non-
integer ratio leads to a more complicated situation, and this category is
called pseudo-asynchronous because the clock-edge relationships are
constantly changing over time.

Figure 5.34a shows an example of a 2 :1 integer ratio synchronous
clock domain relationship. This example is used to explain how to
support multiple clock domain simulation with cycle-based simulation
engines. Assuming the rising edge of a model clock is the time when
latches update to their new state, the fastest clock of the DUV is taken
to synchronize model evaluations. The model update, the call of the clock
command of a cycle-based simulation engine, can be considered a clock
tick of some base simulator clock. Clocking the model at the rate of the
fastest design clock will make sure that the verification will not miss a
rising edge of any clock in the DUV. This scheme simply over-clocks the
slower clock domains. Sampling the design at the frequency of the faster
clock domain with the simulation engine allows visibility of all com-
binational updates from the faster clock domain to the slower domain,
even though the state holding elements of the slower domain will not
update during their off-times.

Figure 5.34b is an example of pseudo-asynchronous clock domains
(3 :2 ratio). The time when clock2 rises coincides with the rising of clock1

5.5 Cycle-Based Simulation 189

in some cases but also with the fall of clock1 in some other cases, which
illustrates the nature of this shifting clock relationship. Again, the figure
indicates that the simulation engine’s model evaluation tick occurs at all
times when any clock of the DUV is rising. Because of the non-integer
clock ratio, these calls to the simulation engine are not equidistant but
follow a more complex pattern over model time.

In the most general case, the evaluation tick of a cycle-based simula-
tion engine clock marks the time when it is necessary to sample the DUV
because interesting events occur in the model. The verification of truly
asynchronous clock domains is also possible using cycle-based simula-
tion engines but is beyond the scope of this chapter.

The approach discussed here successfully fulfills the needs of multi-
ple clock domain verification. It is clear, however, that it causes a per-
formance penalty because each additional simulator clock causes a full
evaluation of the model even of those clock domains, where no design
clock is currently active. In Figure 5.34a, for example, the simulation
engine has to evaluate the logic of the slower clock domain (clock2) twice
as many times, as it would be necessary without the faster clock domain.
Modern cycle-based simulation engines have built-in support for multi-
ple clock domains that minimizes the performance penalty by not eval-

190 Chapter 5 ■ Hardware Description Languages and Simulation Engines

clock1

clock2

Cycle-based engine
model evaluation “ticks”

(a) 2:1 clock ratio

clock1

clock2

Cycle-based engine
model evaluation “ticks”

(b) 3:2 clock ratio

■ FIGURE 5.34

Multiclock domains simulation with a cycle-base simulation engine. (a) A simple integer 2 :1 clock
domain relationship; (b) a more complex non-integer 3 :2 mode. Both indicate where the simulation
engine’s model evaluation must occur to synchronize the simulation with the rising edge of every clock
in the design under verification.

uating the logic of a currently quiet clock domain. This requires the sim-
ulation engine to have insight into clock domains and events on the clock
signals. It is evident that the more clock domains exist in a design, the
more cycle-based simulation engines need to embrace features of their
event-driven counterparts.

Hybrid Simulation Algorithms

As mentioned in the introduction of cycle-based simulation, the method-
ology and HDL style restrictions imposed by this technology are not
acceptable to many design and verification projects. Therefore, the EDA
vendors and academia have developed hybrid algorithms that combine
event-driven and cycle-based simulation into a new class of hybrid
engines.

There are two basic approaches to a hybrid simulation engine: an
event-driven engine inside a cycle-based simulation engine, or a cycle-
based algorithm inside an event-driven simulation engine.

The first variant, event-driven updates inside a cycle-based engine, is
quite commonly used and known research work in this area has been
documented [13, 14]. The above example of multi-clock domain simula-
tion explains the benefits.

The more popular approach is to combine a general event-driven algo-
rithm with a core engine that speeds up simulation of designs, which
contain islands for which cycle-based simulation applies. An important
variant of this situation is the case in which the design itself is completely
synchronous while the test bench heavily relies on event-driven
constructs.

However, the success of such an approach is limited unless over-
whelming parts of the model are compliant with the cycle-based scheme.
Even if we assume cycle-based evaluation applies to 50% of a design, we
will still only see a moderate speed improvement as the following thought
experiment shows: if it were possible to simulate the synchronous
50% part of the model in zero time, the speed-up would only be a factor
of two.

5.6 WAVEFORM VIEWERS

We return now to the user interface of the simulation system (Figure 5.1).
The most important GUI component in a simulation system is certainly
the waveform viewer. Usually, a simulation engine comes with its own
waveform viewer tool. Some companies have specialized in this area, and
they offer waveform viewers that work with many simulation engines.
The purpose of this following discussion is to give an overview of what

5.6 Waveform Viewers 191

features a user can typically expect. However, we will not go into many
details describing bells-and-whistle features.

All simulation engines are able to produce trace files during simula-
tion runs to support debug. The files need to contain enough informa-
tion to allow a user to look at the values of the HDL signals and variables
after simulation. At minimum, a trace file has to contain the symbol
name and signal value information.

Different EDA vendors have come up with different formats (e.g., value
change dump, or VCD) that their simulation engines and waveform
viewer tools support. A differentiator between trace file formats is how
compressed this information is because for long simulation runs these
files can obviously become rather large.

Figure 5.35 shows a first simple waveform window in an example tool,
representative of the many available commercial offerings. Vendors have
converged on standard look-and-feel features of such GUIs, so it is
not surprising to see many common elements in this illustration. The
menu and status bars show the standard control elements such as
File/Edit/View, menu bars that can dock and undock and similarly
standard GUI features.

The main part of the viewer shows four different panes. Leftmost is a
list of signals currently selected for display. The signals have attributes
such as their name and whether they are composites like vector or record
types in the HDL. For the vectors it is possible to select a combined
representation of the value in the value panes, for example, REQ(0:2),
or a representation of each signal bit by itself. There are two value panes
in this example: a waveform that shows the signal values over a period
of time, and values at a specific time. The user selects the specific time

192 Chapter 5 ■ Hardware Description Languages and Simulation Engines

■ FIGURE 5.35

A simple waveform window.

using a cursor (vertical red line in the waveform pane) positioned
inside the waveforms to easily align all signal values at that given model
time.

In the example, the time base is cycles. This reveals that this tool
belongs to a cycle-based simulation environment. For an event-driven
simulation engine trace, the time-base would be a measure of time, such
as pico-seconds or nano-seconds. This does not change the nature of the
displayed waveform or the controls available to the user. Changes are still
step functions at discrete time intervals. Only in analog simulation would
a waveform view display smooth signal curves over time.

Figure 5.36 shows an open source waveform viewer that is
compatible with the trace formats of many commercial simulation
engines [15]. It demonstrates a time-base of nano-seconds and displays
signals of other data types than just bit or integers (string data for
benchx.string, real numbers for benchx.realnum).

Of course, an essential functionality is the movement of the waveform
pane forward and backward in time over the waveform. This can occur
by simply moving scroll bars or explicit directives in a menu of the cycle
or time boundaries to be displayed. A more interesting way to move
across time is a search for certain signal values or specific value transi-
tions. Even just a search for the next value change on a signal that is flat
over a long interval can be extremely useful. Consider, for example, an

5.6 Waveform Viewers 193

■ FIGURE 5.36

Example screen of the GTK Wave viewer.

194 Chapter 5 ■ Hardware Description Languages and Simulation Engines

■ FIGURE 5.37

Hierarchy browser.

asserted error signal that usually stays inactive during most simulation
runs. A user can load the trace file of a failing simulation test case into
the viewer and quickly center the viewer to the time at which the error
occurs by using the pull-down menu to search for the first value change
of the error signal.

Typical viewer tools offer more than signal waveforms alone. Figure
5.37 shows a capability to traverse through the model’s design hierarchy.
The left-most sub-window shows a model with the instances mem and
proc, with proc selected. This tree traversal widget lets the user expand
and collapse sub-hierarchies. For a selected node in the hierarchy, the
tree view displays all signals. In the sub-window with the signal list, the
view shows the value for the current time (cycle) selected with the time
slider widget at the bottom of the window. The additional signal area
directly above the time slider is a grab bag for selected signals from
across the hierarchy.

If the previous example has moved the debug view to the model
source, Figure 5.38 extends this paradigm by putting all signal values
into a display of the original source file (marked by brackets). Such a
view is especially productive for the original author of the source HDL.

It is easy to see how a viewer with all the above capabilities evolves
quickly to a full IDE (integrated development environment). Such
tools resemble the C/C++/Java development environments that software
developers have learned to depend on. Many modern simulation tools
integrate such debuggers, addressing one of the bottlenecks of hardware
verification: logic debug.

5.7 SUMMARY

Hardware description languages cover a variety of possible abstraction
levels and specification styles. Designers today mostly use RTL or gate-
level HDL to define the functionality of a DUV. Inherent in an HDL spec-
ification is the structure of a model network with behavioral blocks
interconnected by signals. The simulation semantics of VHDL and
Verilog imply event-driven simulation semantics.

Modern HDLs also provide features that support the writing of simu-
lation test benches. In fact, the further development of both VHDL [16]
and Verilog [8] emphasizes adding verification-related constructs.
Chapter 6 focuses on test bench development.

A simulation engine compiles an HDL specification to the equivalent
model network as the first step to build a simulation model. Event-driven
simulation is a simple and efficient technology that scales across the full
scope of the features that HDLs provide. It uses the model network to
propagate signal changes during simulation runtime. An event-driven

5.6 Waveform Viewers 195

196 Chapter 5 ■ Hardware Description Languages and Simulation Engines

■ FIGURE 5.38

Source file browser.

simulation engine activates only those parts of a DUV model whose input
signals change and skips all model regions that experience no input
changes, thus avoiding unnecessary work.

Different simulation execution algorithms are possible for the res-
tricted HDL style used to specify synchronous RTL or gate-level designs. A
cycle-based simulation engine can transform this finite state-machine
view of the HDL model into a levelized network. Where the event-driven
engine leaves the execution order of the simulated model network to the
dynamic signal flow, the cycle-based engine orders the network statically
at model compile time. This opens a range of optimizations at build time
that improves performance and size of the model at runtime.

Most of this chapter focused on discussing event-driven and cycle-
based simulation technology in their purest form. However, the
commercially offered high-end simulation engines today incorporate
elements of both technologies in hybrid engines to support maximum
speed and full support of all HDL features.

Aside from understanding simulation engines and their optimization,
the discussion of cycle-based simulation is an important introduction to
other technologies that we discuss in later chapters. Many hardware
accelerators (Chapter 10) and the core algorithms of formal verification
(Chapters 11, 12) all rely on the cycle-based or FSM semantics of model
evaluation.

5.8 EXERCISES

1. Finish the sequence of event-driven simulation steps of Figure 5.27
until the model is in steady state, which means no more signal
updates are scheduled.

2. The xor gate that drives the delayed assignment to signal s(1)
switches its output value from “1” to “0” (Figure 5.26, compare
panels c and d). Explain the reason for this change.

3. Consider the following change of the model network in the figures
underlying Exercise 2: assume that there is no delayed assignment
but a zero-delay connection between the xor gate and s(1). How does
that change the model behavior from the step in Figure 5.26c
onward?

4. Implement four different HDL models for a 32-bit adder using the
HDL style used in Table 5.7. Run performance comparisons of the
different styles by using an available simulation engine and enough
test patterns to make the comparison worthwhile. Convert the VHDL
of Table 5.7 to the equivalent Verilog if only a Verilog engine is avail-
able. For the VHDL case, compare the three HDL styles to a fourth
variant using integer signal types.

5.8 Exercises 197

5. Complete the pseudo-code of Figure 5.33b until it captures the
complete logic of Figure 5.33a.

6. Summarize the main performance advantages of cycle-base simula-
tion versus event-driven simulation.

7. Summarize the drawbacks of cycle-based simulation.

198 Chapter 5 ■ Hardware Description Languages and Simulation Engines

This second part of the overview of tools for simulation-based verifica-
tion focuses on the simulation environment. A walk through the land-
scape of test bench writing serves two purposes. First, there is a general
overview of the requirements for tools in this area. The main goal is to
understand the principles of how languages and libraries can support
well-structured test benches and higher productivity of verification
teams. Second, interleaved with this discussion is a walkthrough of
several available test bench writing tools and languages. We cover test
bench aspects of hardware description languages, the e language,
OpenVera, and SystemC.

Because there are a multitude of tools available, there is no room to
cover every single one in detail. Instead, as the different areas of test
bench writing are discussed, the chapter switches between different tools
and highlights some of their specific properties. However, the goal of this
section, and thus the thread of the discussion, is to gain an understand-
ing of the challenges and the common features of these tools. Although
the chapter looks at some of the distinguishing features of the tools dis-
cussed, the focus is on this class of tools as a group and not on detailed
specifics of a single one of them. This is still an emerging, ever-changing
field of technology, and it is more important to have a framework of the
key concepts than a reference manual on specifics, which will be out-
dated quickly.

The ultimate measure for quality of a verification effort is the number
of bugs found in the DUV specification. However, an assertion of this
metric is only possible after the fact, at the end of the verification cycle.
The bug detection rate is one indicator and feedback mechanism about
the relative progress during verification (Chapter 13). Verification cover-
age analysis is the real systematic approach to generate insight into the
quality of the verification done while the project is ongoing. The second
part of this chapter completes the discussion of the simulation environ-
ment with an overview of different approaches available to assess verifi-
cation coverage. The various coverage metrics, which industry and
research have developed during the last few years, are classified into the

C H A P T E R 6

CREATING ENVIRONMENTS

areas of structural coverage and functional coverage. Structural coverage
metrics instrument the design under verification (DUV) model with data
collection capability tied to the organizational structure of the imple-
mentation or the hardware description language (HDL) specification of
the DUV. Based on the collected data, coverage analysis is able to point
to areas of the design that the verification driver components were not
able to exercise. Instead of looking at structural features of the DUV, the
functional coverage approach measures the verification progress based
on an assessment of the design functionality covered by the verification
work. The overview of coverage analysis is finished with a few of the data
management challenges posed by the collection of coverage data across
many simulation runs in large industrial verification projects.

6.1 TEST BENCH WRITING TOOLS

Chapter 3 introduced the base concepts of test benches and the princi-
ples to structure them so that the resulting simulation environment is
flexible and productive. This section discusses the tools that are at the
disposal of the verification engineer to accomplish this task.

Figure 6.1 highlights again the relationship between the simulation
engine, containing the model of the DUV, and the different forms of
test benches. In the discussion of features of HDLs in Chapter 5, their
structural features were introduced, including easy connection of HDL
test benches to the DUV and the management of replicated design units.

200 Chapter 6 ■ Creating Environments

Simulation
engine

Testbench
program

Trace
files

Coverage
traces

HDL model

HDL
model of DUV

HDL
testbench

Stimulus Check
API

Stimulus

Check

■ FIGURE 6.1

The relationship between the test bench and the simulation engine. A hardware description language
test bench is integrated with the model of the DUV, while an external test bench uses the simulation
engine’s programming interface to interact with the model.

This overview of the test bench tools looks more closely at VHDL and
Verilog features that support the actual coding of driver and checker
components.

The chapter then turns to test bench writing external to HDLs and
simulation engines. There are technical foundations and challenges that
any test bench library or tool has to address. Instead of introducing
special-purpose test bench languages immediately, this chapter starts
with the application of a general programming language as the founda-
tion because test bench coding is also programming, using C++ as an
example and designing the base architecture of an example test bench
library as an educational thought experiment. Although a passing famil-
iarity with C++ certainly helps the reader follow this description, more
important are the general features incorporated into this example library
design. The interesting parts of a C++ test bench library are those con-
structs that general programming languages cannot offer, and their
discussion highlights the specific requirements that test bench coding
creates. After the experiment of creating our own test bench library from
the ground up, we are better prepared to appreciate the features of the
custom-built languages and libraries offered by the industry today.

During the past few years, several special-purpose languages gained
widespread usage. This chapter highlights some example features of the
e language, OpenVera, and the SystemC C++ environment, the most
popular high-level verification languages (HVLs) today.

6.1.1 HDL Languages as Test Bench Tool
From the beginning, the creators of HDLs conceived them as simulation
languages to support both design and test bench writing. Verilog and
VHDL are both very large languages, and at least half of the language
definition is devoted to test bench writing. The following discussion does
intend to introduce some of the fundamental concepts. There are com-
plete books that cover the details of these languages and their use as test
bench tools [1, 2]. The reader who is interested in a more detailed view
of HDL test bench coding is encouraged to study one of the HDLs more
thoroughly. In the following, we again assume the reader to be somewhat
familiar with the HDLs used.

In an HDL environment, all test bench components—stimulus gener-
ators, monitors, checkers, and scoreboards—connect to the DUV struc-
turally via signals (VHDL) or wires (Verilog). The explicit specification
of the structural connection certainly is a basic capability of any HDL.
Returning to the cache design example from Chapter 2 (see Figure 2.20),
Figure 6.2 shows the implementation of the top level of a Verilog test
bench.

In addition to the three instances—DUV, monitor, stimulus compo-
nent, and their interconnecting signals (wires in Verilog)—the test bench
code also contains the control of a central clock. The initial block keeps

6.1 Test Bench Writing Tools 201

the clock signal toggling every 50 ticks of the simulation engine’s base
clock, thus defining the base cycle of this simulation with a resolution of
100 time steps. The use of a symbolically defined constant for the cycle
time is a simple example of how to create parameters in the HDL with
a single point of control for change.

Figure 6.3 implements a simple generator component in Verilog. At
simulation start time, the initial-block of generator loads the contents of
a text file into a pattern array. $readmemh() is a task (similar to a proce-
dure in other languages) that is part of the Verilog standard language
environment. It allows the loading of hexadecimal data in textual format
into Verilog arrays. Hence, the file cache.patterns is the real test case. The
file can contain a regression set of golden test vectors, manually written
tests, or a test pattern that a generation program creates. The generator

202 Chapter 6 ■ Creating Environments

// Testbench
module cache_test;

 `define CYCLE_TIME 100

 wire CMD_VLD, [0:3]CMD, [0:31]DATA_IN, [0:7]CMD_TAG_IN, [0:31]CMD_ADDR;
 wire RSP_VLD, [0:2]RSP, [0:31]DATA_OUT, [0:7]CMD_TAG_OUT;

 reg CLK;

 // instances of testbench components

 stim STIM (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR);

 mon MON (CLK, RSP_VLD, RSP, DATA_OUT, CMD_TAG_OUT);

 // instance of cache design

 cache CACHE (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR,
 RSP_VLD, RSP, DATA_OUT, CMD_TAG_OUT);

 // clock control
 initial begin
 forever begin
 CLK = 0;
 #CYCLE_TIME/2; // this is where the time progress is controlled
 CLK = 1;
 #CYCLE_TIME/2;
 end
 end
endmodule

■ FIGURE 6.2

Verilog test bench with stimulus and monitor component. This top level of a hardware description lan-
guage model instantiates the DUV CACHE, a stimulus component STIM, and a monitor component
MON. There is also an initial block that serves as the clock generator for the DUV, as well as time
control component for the whole model.

component is prepared to read 1,024 commands and supply them to the
stimulus component.

After processing all patterns, the generator waits for 1,000 time steps
and shuts down the simulation run. This certainly is a very crude form
of hard-coded control. What happens if it takes more than these time
steps to process commands that might be pending in the DUV? A real
production test bench must implement a more appropriate test case
control, most likely in the checker component.

Figure 6.4 instantiates this generator inside the stimulus component.
We explained that it is important to separate the generator and the pro-
tocol components. Such a structure reflects the different areas of concern
addressed by these components. If the generation process needs to be
changed radically, the protocol component should remain untouched and
vice versa.

Although Figure 6.3 encapsulated the generator in a module, for the
example of the stimulus component stim in Figure 6.4, another structur-
ing construct available in Verilog is highlighted. A task combines a series
of sequential statements together and makes it callable as one atomic
unit. The specialty of a Verilog task is that the user can suspend simula-
tion execution inside the body of a task and can pass input parameters to
a task and can return outputs at the end of the task execution.

6.1 Test Bench Writing Tools 203

// Stimulus Component
module generator(CLK, REQUEST, CMD, DATA, ADDR, TAG)
 input CLK, REQUEST;
 output [0:3]CMD, [0:63]DATA, [0:31]ADDR, [0:7]TAG;
 reg [0:3]CMD, [0:63]DATA, [0:31]ADDR, [0:7]TAG;
 reg [0:107] patterns[0:1023], [0:10]ptr;
 reg [0:107] n_patt;
 intial begin
 $readmemh("cache.patterns", patterns); ptr = 0; ready = 1;
 end
 always @(posedge CLK)
 begin
 if (REQUEST)
 if(ptr < 1024) begin
 n_patt = patterns[ptr]; ptr = ptr + 1;
 CMD = n_patt[0:3]; DATA=n_patt[4:67]; ADDR=n_patt[68:99]; TAG=n_patt[100:107];
 end
 else begin
 #1000;
 $display("Simulation Done!");
 $finish();
 end
 end
endmodule

■ FIGURE 6.3

Simple generator component in Verilog. At simulation initialization, the component reads a file of test
patterns into the array patterns. The component input REQUEST triggers the generator to read out one
new test pattern to its output ports at a time. After reaching the capacity of the test pattern array, the
generator stops the simulation.

The protocol component inside stim implements the protocol compo-
nent with the task write_command. Every call of write_command will take
a test pattern or command, newly delivered by generator, and apply it to
the output of the stimulus component using the two model cycles that
the input protocol of the cache DUV requires.

The example code in Figure 6.4 illustrates a bare skeleton of a real
stimulus test bench component. The following are descriptions of the
additional considerations a verification engineer would include to make
this example robust and usable in a production environment.

204 Chapter 6 ■ Creating Environments

module stim (CLK, CMD_VLD, CMD, DATA_IN, CMD_TAG_IN, CMD_ADDR) ;

 input CLK;
 output CMD_VLD, [0:3]CMD, [0:31]DATA_IN, [0:7]CMD_TAG_IN, [0:31]CMD_ADDR;

 reg CMD_VLD, [0:3]CMD, [0:31]DATA_IN, [0:7]CMD_TAG_IN, [0:31]CMD_ADDR;

 reg [0:3]N_CMD, [0:63]N_DATA_IN, [0:31]N_ADDR, [0:7]N_TAG_IN;

 reg REQUEST;

 // instantiate generator
 generator GENERATOR(REQUEST, N_CMD, N_DATA_IN, N_ADDR, N_TAG_IN);

 task write_command; // protocol component
 begin
 @(posedge CLK);
 CMD_VLD = 1; CMD = N_CMD;
 DATA_IN = N_DATA_IN[0:31]; CMD_ADDR = N_ADDR; CMD_TAG_IN = N_TAG_IN;
 REQUEST = 0;
 @(posedge CLK);
 CMD_VLD = 0; CMD = 0;
 DATA_IN = N_DATA_IN[32:63]; CMD_ADDR = 0; CMD_TAG_IN = N_TAG_IN;
 REQUEST = 1;
 end
 endtask

 initial begin
 CMD_VLD = 0; CMD = 0; DATA_IN = 0; CMD_TAG_IN = 0; CMD_ADDR = 0;
 N_CMD = 0; N_DATA_IN = 0; N_ADDR = 0; N_TAG_IN = 0; REQUEST = 1;
 forever begin
 write_command(); // apply command using correct protocol
 end
 end
endmodule

■ FIGURE 6.4

Stimulus component for the cache DUV in Verilog. Module stim instantiates the generator component
and contains the protocol component write_command, which translates every newly generated test
pattern, supplied by generator, to the two cycle cache command required by the DUV. After complet-
ing the command protocol, the protocol component initiates the generation of the next test pattern by
turning signal REQUEST back on.

Parameterization

Separating central decisions from actual code and encoding them as
parameters is always helpful to make the test bench easily adaptable to
different usage situations. For example, it would be much better to read
in the name of the test case file cache the patterns from outside the test
bench. This way a team can keep many different test case files in a single
directory of a file system at the same time. We call such a collection of
test cases a test case bucket.

Debug Trace File Generation

Verilog has a number of facilities to write out debug information. For
example, the $display() call lets a user write text and signal values to the
console; $fdisplay() routes this information to a file. If the test bench calls
the pair $monitor/$fmonitor with a list of signals, the simulation prints
out formatted name/value information at the end of every time step at
which any of the referenced signals did change. Using such directed
debug trace mechanisms allows a focused diagnosis of test bench prob-
lems. Of course, the verification can always use the trace file data that
the simulation engine supports natively (Figure 6.1).

Randomization

The stimulus generation shown is completely deterministic. To fulfill any
reasonably complete test plan, the actual tests must vary over a number
of properties of the cache design interface

■ Different commands, different sequences of commands

■ Different temporal spacing between the command, i.e., up to eight
commands back-to-back in sequence, different dead cycles between
back-to-back commands

■ Different and colliding target addresses

■ A wide variation of the data values is probably not important

With the given test bench, the verification team can only accomplish this
variation by creating many different cache patterns files, which cover
these cases. It is possible to move some of the variability into the test
bench code itself. Verilog offers a number of system tasks that support
randomization. The most obvious is $random(), which returns a 32-bit
random integer value. However, there are several additional tasks—for
example, $dist_normal(), $dist_exponential(), and $dist_poisson()—that
let the test bench writer control the statistical distribution of the ran-
domized selections. All these functions support a “seed” parameter whose
importance we explain below.

6.1 Test Bench Writing Tools 205

Verification engineers can use randomization either to pregenerate
deterministic tests or during the runtime of a test bench-driven simula-
tion (for further details, see Chapter 7). In either case, it is important,
for the completion of the verification plan, that the project tracks which
of the cases the stimulus component actually applied. The methods and
techniques of this verification coverage tracking will be discussed in the
second half of this chapter.

It is important that test bench writers understand the statistical char-
acteristics of the random distribution they select in their stimulus com-
ponents. This is even more important if there are holes suspected in the
coverage tracking done by the project. HDL test bench implementations
whose random distributions are deficient can leave dangerous coverage
holes if a project relies on a specific distribution.

Another aspect of working with randomized testing is that the verifi-
cation must be able to repeat any simulation run. If a simulation reveals
a design error (or test bench error) it is necessary to rerun the simula-
tion, perhaps many times, to support debug and later the validation of a
fix. For the difficult bugs, it is also desirable to package the conditions
that lead to the problem and be able to rerun the exact scenario for
regression purposes. Repeatability is trivial for pregenerated tests if the
test files are stored in a file system. However, if runtime randomization
is used, it is vital to supply seeds to the random number generation func-
tions. Using the same seed will guarantee that the simulation engine will
repeat the generation of a sequence of random numbers in exactly the
same way.

If a test bench uses runtime randomization in many different places,
explicit random seed management is advisable. This means that the code
should collect and set all seeds at one or only a few central places. Such
an organization will make it easier to support a controlled exact rerun
of a simulation test for debug or regression.

This section uses exclusively Verilog to demonstrate some HDL test
bench concerns. This discussion is only an introduction to provide a
flavor for the techniques available in this area, and, of course, VHDL
would provide an equally good platform to illustrate these points.
Although VHDL has no built-in randomization constructs, the power of
the language supports many different ways to define random number
generators. For an example of an elaborate package for random number
generation, refer to VHDL Random Number Generation Package [4].

Many aspects of the test bench support constructs of HDLs very
similar to general programming languages. In fact, advances in software
engineering and general-purpose programming languages have heavily
influenced the development of HDLs over the years. After all, the ADA
language formed the base for VHDL, and the Verilog developers certainly
took a serious look at the C language. As general software engineering
embraced modern programming techniques such as object-orientation
and function overloading, the HDLs followed suit, for example, object-

206 Chapter 6 ■ Creating Environments

oriented proposals for VHDL [4] or the object-oriented features of
SystemVerilog [5]. In some ways, the test bench subset of HDLs has
taken the hardware specifics of the HDLs and augmented them with
general programming constructs such as tasks, procedures, functions,
and all control structures available in a typical programming language.

6.1.2 C/C++ Libraries
Given the obvious need of programming capabilities in test bench
writing, many have approached this area from the opposite direction:
rather than extend HDLs, determine what extensions to a programming
language are necessary to cast it productively as a test bench writing tool.

Certainly, C and C++ are widely popular programming languages avail-
able on any computer platform that possibly hosts a simulator tool.
These languages have turned into a basic requirement of most computer
or electrical engineering curricula, creating a large skill base from which
verification teams can draw. In addition, as discussed in Chapter 5, most
simulation engines offer a programming language interface through
which a C or C++ program can control and interact with the DUV and
the engine.

In the following, the basic elements necessary for a library that extends
C++ to support test bench writing will be discussed. The following
description is only an educational vehicle and does not refer to a library
that really exists. We can only sketch out the implementation, with a
focus on the principal requirements. The software organization
described in the following section is only one possibility among many.
Many projects in the industry have created their own environments,
sometimes project specific and at other times carrying the libraries over
from one project to the next, always refining and generalizing the
approach.

Overall, this discussion will lay the groundwork to better understand
and appreciate the productivity and usability features of the three com-
mercial test bench writing environments (Vera, e, and SystemC) that we
cover afterward.

Figure 6.5 shows our C++ library built stepwise from several different
layers. Table 6.1 gives an overview of the tasks covered by the different
library layers shown in Figure 6.5. The following discussion of the dif-
ferent C++ library features follows the list of service layers.

The Simulation Engine Abstraction Layer

The simulation engine abstraction layer allows test bench code to be
portable between different simulation engines. With the multitude of
commercial simulation engines available, this part of the library seems
to be a daunting task. However, the standardization process has led to
the program-language interface (PLI), the VPI for Verilog [6] and the

6.1 Test Bench Writing Tools 207

foreign language interface (FLI) [7] and VHPI [8] for VHDL, which sim-
plifies this task because most commercial simulation engines offer one
of these interfaces. The following uses simple examples of PLI and FLI
mechanisms to illustrate the capabilities of such interfaces. Common to
this list of programming interfaces with their confusing set of acronyms
is the functionality that allows a C/C++ program access to any named

208 Chapter 6 ■ Creating Environments

User testbench code

Testbench execution
control

Testbench
object

registry

Infrastructure layer:

File-management
Memory management

Testbench
building block

objects

Simulation engine API

Simulation engine abstraction
layer

Operating system (typically Unix/Linux)

■ FIGURE 6.5

Example C++ test bench library architecture. The top layers of the library are accessible by the user’s
test bench code and support an object-oriented structure. Test bench components are built as class
instances and registered with the library, which takes over the control of test bench execution and offers
predefined building blocks to improve test bench coding productivity.

TABLE 6.1 ■ The five mayor layers of the C++ test bench library

Simulation engine abstraction layer Abstract interface to simulation engine application
programming interfaces that provides the rest of the
library easy portability to any available simulation
engine because all engine-specific code is concentrated
in this layer.

Basic infrastructure layer A centralized set of utilities providing a portable interface
to operating system services like files, console
inputs/outputs and memory management.

Test bench object registry The library supports test benches built from user-defined
classes that register themselves with this layer. Once
registered, the library can call the user objects at
appropriate times to perform their work.

Test bench building block objects The library offers predefined building blocks as
productivity aid for test bench writers.

Test bench execution control The library controls when to call the different user test
bench components in what sequence from this central
library service layer.

HDL object in the DUV model. One of the most basic sets of portable
functions the C++ test bench library has to provide is the ability to get
and set model objects such as signals, wires, registers, and variables. For
any given simulation engine, the get and set functions map to the appro-
priate interface offered by the engine, and they provide one single
common interface to the rest of the C++ test bench library.

A most important design decision for the C++ library is the control
flow mechanism between the simulation engine and the test bench. It is
possible to differentiate between two basic approaches, the integrated test
bench and the separated test bench. In the first alternative, the simulation
engine always calls the test bench components. Even though the test
bench components use a separate programming language, the engine
application programming interface (API) treats them as natural exten-
sions of the HDL supported. The separated test bench approach views
the test bench as an independent program with its own internal control
flow. In the overall process, simulation engine and test bench program
hand control to each other in alternating fashion. When the simulation
engine finds the model in steady state for a given model time, it hands
control over to the test bench. Once the test bench components finish
their work, the library hands control back to the engine to advance the
simulation of the model. In the following, we discuss the integrated and
separated test bench alternatives with advantages and disadvantages.

Integrated C/C++ Test Bench

The original intention of the Verilog PLI was to enable the calling of cus-
tomized C functions from within Verilog. For example, the user could
write a task (such as the write_command() task in Figure 6.4) in the C
language and, if linked correctly with the executable program of the sim-
ulation engine, could call this task seamlessly from within the Verilog
source code. Staying with the write_command() example task of Figure
6.4, the caller would refer to it as $write_command(), the “$” indicating
an externally linked task.

Another common approach to integrate C/C++ test bench routines is
to use a wrapper block in the source HDL. Figure 6.6 illustrates this with
the monitor component of the cache test bench, using the FLI of a given
simulation engine. The base mechanism is to define an empty VHDL
entity annotated with a special foreign attribute, which tells the model
build process that a specific C program is to be dynamically loaded at
simulation startup time (elaboration time in VHDL) and an initialization
function, monitor_init(), is to be called with certain parameters (string
value parms).

The initialization routine has to establish addressability of the
input/output signals inside the C program. In addition, the C code can
establish callback routines. These routines are C functions, which the
simulation engine must call at specific points in time. Examples of such

6.1 Test Bench Writing Tools 209

210 Chapter 6 ■ Creating Environments

entity monitor is
 port (
 clk : in std_ulogic; -- Clock
 rsp_valid : in std_ulogic;
 rsp : in std_logic_vector(0 to 2);
 data_out : in std_logic_vector(0 to 31);
 cmd_tag_out : in std_logic_vector(0 to 7);
 cmd_tag_in : in std_logic_vector(0 to 7)
);
end monitor;

architecture c_code of monitor is
 attribute foreign of c_code : architecture is "monitor_init monitor.so; parms";
end c_code;

■ FIGURE 6.6

Wrapping a C code version of the cache monitor to a foreign language interface routine.

callbacks are the process code of the entity, simulator exit or checkpoint,
and restart. Figure 6.7 illustrates the relationships between the foreign
program monitor.so of the example used in Figure 6.6 and the simula-
tion engine. The VHDL attribute provides the engine with enough infor-
mation to load and call the initialization function of the monitor
component. The monitor_init() function finishes the connection between
the monitor component and the HDL model and simulation engine
by calling a variety of FLI functions. A main task for monitor_init()
is to register the function monitor_proc() with the engine using the
mti_CreateProcess() FLI function. The registered function is a callback
for the model evaluation that the simulation will call whenever the event-
driven algorithm defines a necessary update of the monitor component.
Via this callback, the engine treats the external C code similar to any
other VHDL process in the HDL model—the model extension with C
routines is complete and ready for execution.

Similar to PLI, the FLI also supports foreign subprograms, which are
subroutines callable from VHDL but written in C/C++. PLI, on the other
hand, also has mechanisms that support the embedding of C routines as
modules inside a Verilog hierarchy, similar to the example shown in
Figures 6.6 and Figure 6.7.

The idea of wrapping every test bench component behind an HDL
façade takes advantage of keeping the HDL environment as the master
environment. This has clear advantages for the test bench coder. There
is no need to write a test bench execution component because the control
flow stays with the host simulation engine; the simulation engine calls
the test bench routines whenever the HDL semantics require the activa-
tion of a module/entity (e.g., when input signals change). Another advan-
tage is that the connection of the test bench components to the HDL
model occurs with the standard HDL structural connection mechanisms,
component instantiation.

However, there are also some disadvantages. Because the host simu-
lation engine calls the C/C++ code, calling and linking conventions of the
host environment have to be satisfied by the C/C++ coder of the test
bench. This tends to create a number of cryptic rules and a need to call
a significant number of rather arcane C functions, which transport
control and data back and forth between the C language and the HDL
environment. PLI and FLI each encompass hundreds of functions. In
addition, verification engineers often require structural changes in the
test bench, such as the access to different signals or the need to instan-
tiate additional test bench components. Every time there is a structural
change in the test bench environment, HDL source changes occur as a
result.

Embedding more and more test bench components in the HDL source
becomes very hard to manage when a project evolves from unit-level ver-
ification to chip and system level.

A checker written for a unit simulation environment can be instanti-
ated in a simulation HDL wrapper around the unit. However, when this
unit is integrated into the chip-level HDL test bench, the question arises

6.1 Test Bench Writing Tools 211

Model
evaluation

callback

HDL model

Entity with FLI

Simulation
engine

FLI

load

monitor.so

monitor_init() {

// code to establish access entity ports
 º
// code to establish callback functions
 º mti_CreateProcess(
 "cache monitor",
 monitor_proc,
 ctrl_data);

}

monitor_proc() {

 // code to do monitoring work
 º

}

■ FIGURE 6.7

An entity with a foreign language interface causes the simulation to load a specified external program
monitor.so at model initialization time. The main entry point of the program, specified in the VHDL
attribute in Figure 6.6 (monitor_init), establishes data structures and other callback functions that the
engine calls at the appropriate times. monitor_proc() is an example callback function. It acts similarly
to a VHDL process inside a VHDL architecture of the corresponding entity. The callback is reactivated
whenever the model evaluation algorithm deems necessary.

as to where the checker instance should go. This dilemma was discussed
in Chapter 5 when the characteristics of the HDLs were examined.
Clearly, VHDL has no good solution. Verilog allows cross-hierarchy con-
nections, which means the unit checker instance could be instantiated
in simulation HDL wrapper around the chip. However, it becomes clear
from this discussion that the amount of maintenance of simulation-only
HDL wrappers on different levels of the simulation hierarchy quickly
becomes excessive, which is the reason why the approach of the inte-
grated C++ test bench does not scale well with larger projects.

Separated C/C++ Test Bench

A radically different approach is the total separation of the C/C++ test
bench domain from the HDL context. The basic idea is to let the test
bench library control the instantiation and the control flow of all
test bench components itself, in a separate context from the HDL
domain.

Figure 6.8 conceptualizes the control flow between the two domains.
The HDL simulation proceeds to a predefined point in time at which the
HDL model is in a steady state. At this time, the simulation engine passes
control to the test bench. Now the test bench execution control takes
over, calls whichever test bench components need to run next, and even-
tually returns control back to the HDL simulation engine. All the test

212 Chapter 6 ■ Creating Environments

Testbench
control flow

HDL simulation
control flow

Timeless
execution

Model time step
executed by

simulation engine

■ FIGURE 6.8

A separated C/C++ test bench and its control flow interaction with the hardware description language
(HDL) model. The branching of arrows inside the execution flowchart of both the HDL model and the
test bench indicate that inside each domain, control of execution is fully independent of the control
flow in the other domain. Whenever the simulation engine finishes a model time step, control passes
to the test bench. The engine only gets runtime control back after the test bench has finished all its
work for the current model time. Simulation model time advances only during the activity of the HDL
simulation from whose perspective the test bench execution is timeless.

bench activity between HDL simulation time steps is called a test bench
cycle.

Several key observations about this scheme are notable. First, there is
only one point in the test bench code at which control transfers back and
forth between the test bench and the simulation engine. The simulation
engine abstraction layer (Figure 6.5) of the test bench library should
completely encapsulate this piece of code, thus freeing all verification
engineers from dealing with arcane calling conventions and PLI function
parameters. In addition, this scheme hides all the complexity of the back-
and-forth control flow and the verification engineers can focus on their
real job—creating effective stimulus and checking components. Second,
tracking of model time stays with the HDL model. Model time passes
only when HDL components are active. As a result, from the viewpoint
of the test bench, time stands still. Once the simulation engine hands
control to the test bench, all changes made by the test bench to the model
signals and variables happen at the same time, in parallel. Time can
advance only when control returns to the model; it is then that the actions
of the test bench become observable in the model.

This strict separation of model and test bench domain dramatically
simplifies the infrastructure and the communication between the two
domains. It can also be argued that any other control flow would lead to
the extreme complications of a spaghetti flow if any of the test bench
component writers had to concern their code with execution control.

To drive that point further, consider Figure 6.9, which shows how data
flows between test bench and HDL model. Although the test bench can
read model variables and signals at any time during the execution of test
bench code, the test bench library buffers all updates that go from the
test bench to the model. The obvious place for this buffering is in the
simulation abstraction layer of the test bench library. The buffered model
update ensures that all changes from the test bench to the model occur
at the exact time and all test bench components access the same consis-
tent model state. If test bench components were able to change model
state immediately, some components, when activated, would observe a
different model state than do others. Under such conditions, the execu-
tion order of the test bench components would become very important,
which would complicate the writing of the test bench dramatically, espe-
cially in a large project in which many verification engineers have to work
in parallel.

Consider, for example, the test bench sets the two inputs of a two-way
and gate to “1.” If this action would propagate into the model immedi-
ately, there are two ways to handle this update. In the first scenario, the
test bench library activates the simulation engine immediately and lets
it propagate the changes, starting with the possible change of the signal
on the output of the two-way and gate. The second alternative is to allow
the change of the model signals but not let the simulation engine update
the model with the subsequent changes.

6.1 Test Bench Writing Tools 213

The latter case is clearly illegal, as it would possibly show wrong sim-
ulation results (such as a two-way and gate with both inputs set to “1”
and “0” output). The former case, updating the model in real time while
the test bench code is active, has two problems. First, different test bench
components observe a different model state. It now becomes the user’s
problem to manage which parts of the test bench run before others,
clearly a complexity explosion and recipe for unmanageable spaghetti
code. Second, if the test bench propagated every signal change through
the model, the simulation engine must iterate through the model a large
number of times, every time there is a model update from the test bench,
causing a major degradation in simulation performance.

Given this simplified scheme of control and dataflow between test
bench library and simulation engine (Figure 6.9), we can now list the
principal interface, which the simulation engine abstraction layer pre-
sents to the rest of the test bench library (Table 6.2). Example usage code
for this interface is introduced below.

The Base Infrastructure Layer

The basic infrastructure layer (see Figure 6.5) centralizes services that
all components of a test bench use. Most of these services are concerned
about resources owned by the underlying operating system, such as
memory and files.

214 Chapter 6 ■ Creating Environments

Testbench
control flow

HDL simulation
engine control flow

Timeless
execution

Model time step
executed by

simulation engine

Apply model
changes

■ FIGURE 6.9

Control and dataflow between test bench and hardware description language (HDL) model. The dashed
arrows show when the test bench code has access to the state of the HDL model (signals, variables,
registers, etc.). Test bench components can inspect model state at any point during their execution. All
changes to the model are buffered by the test bench library and applied only at the end of the test
bench cycle. This algorithm ensures that all test bench components have access to the same unaltered,
consistent model state.

Memory Management

Many components of a test bench allocate memory dynamically. For
example, the scoreboard of the cache design (Chapter 3) needs to keep
track of all outstanding commands. If our knowledge of the internal
microarchitecture of the cache DUV guarantees that a maximum of eight
fetch or store commands can be outstanding at a given time, the score-
board component could just allocate a fixed buffer of eight entries at the
beginning of the simulation. Under the fixed microarchitecture condi-
tions, this is the most robust and least error-prone solution, and it pro-
vides the best runtime performance. However, if the design specification
does not indicate a maximum number of in-flight transactions, the test
bench needs to allocate buffer memory dynamically every time the stim-
ulus component sends a command into the DUV and must unallocate it
again when the DUV finishes servicing the command.

Dynamic memory allocation should be centrally controlled in a test
bench, for example, by overloading the new() and delete() operators in
C++. A well-written memory manager will increase test bench perfor-
mance and make it easier to debug memory problems in the test bench
code. A typical memory problem encountered with C++ programs is
called a memory leak: parts of a test bench continuously allocate memory
but never release it before the end of simulation. Memory leaks can
create huge debug problems, especially in long-running simulations,
when the jobs fail when they run out of memory. This can be horren-
dously difficult to debug if the test bench code does not have a central
point of control for memory allocation.

6.1 Test Bench Writing Tools 215

TABLE 6.2 ■ The base interface of the simulation engine abstraction layer for the C++ test bench library

The user instantiates a signal object specifying the name of the model
signal or variable (facility). Test bench components can access model
signals only through such objects.

Signal_Object get_value(): function of Signal_Object that returns the current state of
the corresponding model facility.

set_value(): function of Signal_Object that writes a new value into the
corresponding model facility at the end of the test case cycle.

For simplicity of the discussion, we assume integer facility values.

The test bench library provides one instance of this class. It
encapsulates all engine control functions of the different supported
simulation engines and provides one portable interface to the other
layers of the test bench library.

Simulation _Control clock(): function that turns control over to the simulation engine for the
duration of one simulation engine clock tick. A base clock tick can be
one simulation cycle for a cycle-based engine or a discrete time
interval for an event-driven engine.

checkpoint()/restart() functions to suspend/resume simulation model.
simulation_exit(): end HDL simulation end exit simulation engine.

File Management

A file manager has the important job of tracking all files that the test
bench reads or writes during a simulation run. The more complex a DUV
and the corresponding test bench become, the higher the number of files
created by different test bench components rises. A file manager can keep
track of location and time-date information of all input files and write
out a bill-of-materials list at the end of a simulation run. This list is
important when it comes time to rerun the exact simulation for debug
or regression purposes.

Output files will be either status or debug and track files. Usually a
project will standardize the layout of such files. A librarywide file
manager will make a standardized layout of output files easy.

Test Bench Building Block Objects: Test Bench Components

The verification team organizes a test bench along the structural princi-
ples defined in Chapter 3. There will be stimuli generators, monitors,
checkers, and scoreboards. In the following, these elements are called
test bench components.

In a C++ environment, the library can map the test bench components
to appropriate C++ classes. The class member variables hold the current
status of a component, and the member functions define the operations
available for the component. If a component class has member variables
of the type Signal_Object, these objects give the component access to the
corresponding facilities, signal, registers, and arrays, in the HDL model
via their connection through the simulation engine abstraction layer.
If the component writes a new value to a Signal_Object, using the
set_value() function, the test bench library will update the correspond-
ing model facility at the end of the test case cycle.

It is a good idea for the C++ library to provide a base class Testbench-
Component (similar to the one shown in Figure 6.10). The test bench
writer must derive any user component from this base class, which
defines a common interface and services for all test bench components
in the system. The interface includes common debug and trace functions,
as well as imposing a fixed set of member functions that a user com-
ponent must implement in its own way. C++ calls this type of a base
class an abstract base class. Only derive user classes, which define the
yet-undefined function of the abstract base class, can be instantiated in
a test bench.

With this base class any components will have a function called
trace(), which prints out the component’s name. The function execute()
is not defined for the base class, but this abstract declaration enforces
that any derived user component class defines such a function. The
intended use of execute() is that this function contains the actual execu-
tion code, the behavior of the test bench component. Because the base

216 Chapter 6 ■ Creating Environments

class TestbenchComponent enforces that every component has this func-
tion, it is easy for the test bench execution control layer (described below)
to activate any component when necessary, just by calling its execute()
function.

The test bench requirements for Calc1 (discussed in Chapter 4) are
used as the basis for a more detailed example of the C++ test bench
library. Figure 6.11 repeats the relevant parts of the structure of the

6.1 Test Bench Writing Tools 217

class TestbenchComponent {

 public:
 TestbenchComponent(string name);

 void trace() { cout << "Name of component" << mName << endl };

 void execute() = 0;

 private:
 string mName;
}

■ FIGURE 6.10

Abstract base class TestbenchComponent. The class provides a trace() function, which is the same for
all test bench components and requires any user-derived class to implement an execute() function. Test-
benchComponents are named when instantiated to allow the library to communicate via component
names with the user during debug.

Calc1
simulation

model

Outstanding command
scoreboard

Testcase

Parser

Stimulus initiator
Checker

Key

Keyboard text

Testbench infrastructure

Simulation tools and model

■ FIGURE 6.11

The Calc1 simulation environment with its three test bench components.

simulation environment for the Calc1 design. The test bench consists
of three components that are mapped into C++ classes as shown in
Figure 6.12.

The struct Operation in Figure 6.12 is a data structure that captures
all data of a single Calc1 operation, including the expected response and
result. The ScoreBoard component class captures one Operation per
port. ScoreBoard does not necessarily need to be a TestbenchComponent
because it is a passive component and its execute() function is empty.

218 Chapter 6 ■ Creating Environments

struct Operation {
 int cmd; int op1, op2, expResult, expResponse;
}

class ScoreBoard : TestbenchComponent {
 public:
 ScoreBoard(string name);

 void execute() {}; // ScoreBoard is passive
 void postOperation(int portNum, Operation &op); // log operation, set port not ready
 bool popOperation(int portNum); // un-log operation, set port ready

 bool port1Ready, port2Ready, port3Ready, port4Ready;

 private:
 Operation pendingOp[4];
}

class StimulusInitiator : TestbenchComponent {
 public:
 StimulusInitiator(string name, string filename);

 void execute(); // per port: if port ready apply next operation to
 // model and post to scoreboard

 void registerScoreBoard(ScoreBoard &s);

 private:
 ScoreBoard *mScoreBoard;
 Signal_Object *req_1_cmd_in, *req_1_data_in, … ; // input interface of Calc1 DUV
}

class Checker : TestbenchComponent {
 public:
 Checker(string name);

 void execute(); // receive result, call scoreboard popOperation() and check

 void registerScoreBoard(ScoreBoard &s);

 private:
 ScoreBoard *mScoreBoard;
 Signal_Object *out_resp1, *out_data1, … ; // output interface of Calc1 DUV

}

■ FIGURE 6.12

Class declarations for the test bench components of the Calc1 simulation environment.

This means that the ScoreBoard functions will be called by other test
bench components directly, whereas the call of the test bench execu-
tion control is of no consequence. The methods postOperation() and
popOperation() cover all operations of ScoreBoard and are called by
other components. Every postOperation(), with the port number as an
argument to the call, sets the ready field of the corresponding port in
ScoreBoard (port1Ready, . . .), every popOperation() clears it. A postOp-
eration() call carries a reference to an Operation data structure, which
allows the ScoreBoard to copy the currently pending operation to its
internal data buffer for the port.

The active components of this test bench are StimulusInitiator and
Checker.

StimulusInitiator’s constructor creates the Signal_Object’s, which cor-
responds to the four ports of Calc1 by using the correct model signal
names. The other task of the constructor is to open and parse the test
file. The execution control layer of the test bench library calls the
execute() every test bench cycle. For every port of Calc1, StimulusInitia-
tor checks whether the port is ready (using ScoreBoard) to accept the next
operation. If true, the execute() function applies the operation to the
model and posts it to ScoreBoard. If no more operations are available
from the test file, execute() simply returns whenever it is called; at that
point StimulusInitiator becomes inactive.

The constructor of the Checker class connects its Signal_Object’s on the
output interface of Calc1. Checker’s execute() function monitors this inter-
face, and once the model posts a results, Checker pops the correspond-
ing Operation from the ScoreBoard to perform the check. Because the
popOperation() call clears the ready field for the port in ScoreBoard, the
SimulusInitiator is free to issue the next operation.

Both active components, StimulusInitiator and Checker, need access
to the ScoreBoard of the test bench to be able call ScoreBoard’s data
access functions. To give these components access to ScoreBoard, they
both have the function registerScoreBoard(). The assumption behind this
architecture is that the code, which instantiates the three components,
will call registerScoreBoard() and pass in the reference to the ScoreBoard
component.

As shown in Figure 6.13, the top level of the test bench instantiates
the Simulator_Control infrastructure interface block and all three test
bench components. This is also where the calls to the registerScore-
Board() function give the driver and the checker access to the scoreboard
component.

The test loop iterates for 1,000 steps, calling each component’s
execute() function before telling Simulator_Control to simulate the HDL
model for the next time interval (typically a model clock cycle). With the
top-level test bench code, the overall structure and interlock of the dif-
ferent test bench library services that have been discussed up to this point
can be seen.

6.1 Test Bench Writing Tools 219

There are several obvious problems with the test bench of Figure 6.13.
The most severe problem is the fact that the code calls the driver before
the checker.

After the driver returns control to the test bench, there is no call to the
simulation engine to update the model. This only occurs when the test
bench calls control.clock(). Therefore, the results of the driver updates for
the current cycle are not visible to checker. In addition, the driver cannot
react to results that the checker will collect from the previous model
update, control.clock() call last time through the loop. Remember, when-
ever the Calc1 design delivers results on the output interface, the checker
calls the ScoreBoard to pop the registered, pending operation. This is the
prerequisite for the clearance of the ready status of the corresponding
port.

Because the program in Figure 6.13 calls the checker last, the driver
will only be able to issue a new operation at the beginning of the next
test bench cycle. As a result, this test bench is unable to issue back-to-
back operations on a single port, a scenario that the functional specifi-
cation of Calc1 clearly supports. Simply calling the checker before the
driver will fix this problem. Now, directly after the update of the model
by the simulation engine, the checker will observe a finished Operation,
pop it from the ScoreBoard, and check its results. The driver component
gets control right afterward and can issue the next Operation if the test
case requires it to do so.

Another problem with Figure 6.13 is the hard-coded test file name. The
top-level test bench accepts runtime parameters via the main() function
interface. The test bench can parse the argv, argc parameter pair to
extract a test file name provided by the user on the keyboard.

220 Chapter 6 ■ Creating Environments

main (int argc, char *argv[]) {

 Simulation_Control control;
 StimulusInitiator driver("Calc1Driver", "mytest");
 Checker checker("Calc1Checker");
 ScoreBoard score("Calc1ScoreBoard");

 driver.registerScoreBoard(score);
 checker.registerScoreBoard(score);

 for (int i = 0; i < 1000; i++) { // testcase execution loop
 driver.execute();
 checker.execute();
 control.clock();
 }
 control.simulation_exit();
}

■ FIGURE 6.13

Top-level C++ test bench code for Calc1.

The hard-coded number of test bench cycles in Figure 6.10 is the final
problem that needs discussion. To support different test files with varying
number of test bench cycles, the driver needs to be able to communicate
the fact that it has applied the last operation to Calc1, but this is not
enough to determine the end of a simulation. Operations can take an
undetermined number of cycles in the DUV. Only when the checker
receives the results of the last operation from the outputs can test bench
terminate the simulation run. To support this end-of-test condition check-
ing correctly, the driver must signal the last operation to the scoreboard.
For every operation that the checker pops from the scoreboard, the
checker must now query the scoreboard for end-of-test and return that
status back to the top-level test bench loop. In addition, the checker
should verify at this point that the scoreboard has no more pending
operations that the checker has not yet accounted for. We leave these
changes of the C++ test bench as exercises for the reader at the end of
the chapter.

Test Bench Execution Control

It is the main purpose of the library architecture in Figure 6.5 to encap-
sulate common functionality in a central place rather than letting the test
bench writer replicate it, perhaps redundantly, across the user test bench
code. There are two sources for common functionality that the library
author can factor out and move into the library.

The first source is code that is typically part of every test bench. It
would be a very repetitive, nonrewarding task for the verification team
to include such code in every test bench, for example, the simulation
engine abstraction layer, the file, and memory infrastructure layer.

Second, if certain control and communication flow mechanisms are
available in the library, the test bench components can use those instead
of personalizing such flows in special ways for every new test bench.

A good example for the second source of functionality is the test bench
execution control. Execution control is the coordination of when to call
the test bench components, in which sequence to call them, and when
to finish the test.

As an example, Figure 6.14a shows the flow of the end-of-test control
status for the environment of Calc1 as designed above. The driver detects
the end-of-test condition first. The status flows from there to the score-
board, to the checker, and finally to the top-level test bench loop.

Figure 6.14b shows a scheme, where all test bench components report
status back to the library. The biggest advantage of this architecture is
that the top-level test bench loop can now become generic. This scheme
turns the for loop of Figure 6.13 into a while loop whose terminating con-
dition is the overall end-of-test status.

Furthermore, it is now very useful to enhance the status to include
more than only the condition that there are no more tests (operations)

6.1 Test Bench Writing Tools 221

available for the current simulation run. If the status includes additional
conditions, such as test error conditions, the structure in Figure 6.14b
allows moving the test case termination check to the top-level test bench
loop instead of hiding it in some test bench component (such as Stimu-
lusInitiator). The test bench top level now becomes the one place where
the program makes all execution control decisions. This results in a
single point of control for the test bench execution and therefore greatly
improves the long-term maintainability of the test bench code.

Figure 6.15 shows the new interface for all test bench components in
a changed class declaration for TestbenchComponent. Now every com-
ponent returns its status to the caller of the execute() function. To let the
library be the central place where the sum of all component status is
accumulated it is necessary to let the library call the execute() functions
of every component.

The test bench execution control layer in the library architecture in
Figure 6.5 is the place where the calling of the execute() functions occurs.
However, this layer can only accomplish this function only if

1. It has access to all test bench components and their execute() func-
tions, and

2. It knows the correct calling sequence for these functions

This is the purpose of the test bench object registry in Figure 6.5.
The object registry records every instance of a test bench component.
Because every component class is a subclass of the base class

222 Chapter 6 ■ Creating Environments

Testbench
control loop

Scoreboard

Driver Checker

End of test
status

(a) Distributed status logging (b) Centralized status logging

ScoreboardDriver Checker

Testbench library

■ FIGURE 6.14

Distributed versus centralized status logging. All test bench components have to pass end-of-test status
information to each other, via a predefined protocol when status logging is managed in a distributed
way (a). The advantage of centralized status logging (b) is that the status is a first-class object sup-
ported by the test bench library, and there is no more code necessary that passes it between individ-
ual test bench components at specific times.

TestbenchComponent, which enforces the existence of an execute() func-
tion, the base class constructor can register the component in a class
ObjectRegistry behind the scenes of the library and the execute() function
with the execution control layer.

Now that the library calls the execute() functions, there is a need for
a mechanism that lets the user specify the calling sequence of the com-
ponents to the library. For this example, the sequence of the component
constructor calls was chosen for this, meaning that the execute() func-
tion for a component is called first if its constructor is called first.

As a result of all these changes concerning execution control, Figure
6.16 shows the new test bench top-level code, including the now simpli-
fied and completely generic test execution loop.

The library for Figure 6.16 was also changed to move the call to all
execute() functions inside the library service control.clock(). This func-
tion now lets the library call all execute() functions in the defined
sequence before the HDL simulation proceeds.

As a welcome side effect, moving this sequencing control to the library
also opens opportunities to enhance performance of the test bench.
Whenever a particular component indicates that it is done for the rest of
the simulation of a test, the library can simply skip the call to its execute()
function from then on.

Adding Additional Components

With the centralized execution control layer, it is now very easy to include
additional test bench components or remove components without any
need to touch the code of the test bench loop again. All a verification

6.1 Test Bench Writing Tools 223

enum ExecuteStatus { done, error, continue };

class TestbenchComponent {

 public:
 TestbenchComponent(string name);

 void trace() { cout << “Name of component" << mName << endl;

 ExecuteStatus execute() = 0;

 private:
 string mName;
}

■ FIGURE 6.15

New TestbenchComponent class declaration including the status logging mechanism. Every test bench
component’s execute() function now returns status information. The test bench execution control layer
accumulates this status and makes it available to the top-level of the test bench to make runtime control
decisions.

engineer needs to do is add or delete the component’s constructor call.
Obviously, the new control structure has improved code maintainability
greatly, which stems from the fact that the different components have
become more modular and their code is more independent from each
other.

Clearly, modularity becomes more and more important as DUVs and
their test benches grow in complexity. This is also referred to as scaling.
The more modular a test bench is, the better it scales as design and sim-
ulation environments grow.

Multiple Tests

The next step in improved versatility of our test bench is the addition of
support for multiple tests. We can achieve the capability to run several
tests in a sequence by calling the simulation engine and the test bench
multiple times in a row. However, the start-up phase of the simulation,
including initialization of the test bench, can become quite costly for
large DUVs. To avoid this start-up overhead, it should be possible to
support the execution of multiple tests in one run of simulation engine
and test bench. This is accomplished by changing the test bench input
parameter to be the name of a file, which contains a list of test files. There
will be a main loop around the test case loop in Figure 6.16, which
processes the list of tests. In addition, it is now necessary to reset the
DUV between tests, which has the advantage that once a single test ends

224 Chapter 6 ■ Creating Environments

main (int argc, char *argv[]) {

 Simulation_Control control;
 StimulusInitiator driver("Calc1Driver", "mytest");
 Checker checker("Calc1Checker");
 ScoreBoard score("Calc1ScoreBoard");

 driver.registerScoreBoard(score);
 checker.registerScoreBoard(score);

 do {
 control.clock();
 } while (control.status == busy);

 if (control.status == error) {
 … // error handling
 }

 control.simulation_exit();
}

■ FIGURE 6.16

Top-level C++ test bench code for Calc1, revised, with the test bench library now managing execution
and status control.

with a simulation error, the verification team is able to rerun just this
test without having to rerun the previous tests of the original test list.

Execution Phases

With more complex DUVs it is not realistic to expect the verification engi-
neer to group all the active test bench code in just one function: execute().
Typically, the work a component does during a simulation has different
phases. For example, the test bench might need to initialize the checker
when the DUV is reset at the beginning of a test (init phase). It then typ-
ically accumulates checking information during the runtime of the test
(execution phase). Finally, at the end of the test there is a sweep over the
accumulated information (end-of-test phase).

It would be possible to keep state information about which phase the
test case is in, inside every component and have the execute() functions
switch to the appropriate phase based on the current state. However, the
test bench library can directly support this concept of finer modulariza-
tion into separate functions. Figure 6.17 illustrates how such a scheme
leads to a flow of execution control that lets the user position compo-
nents into the different phases of a test bench run.

Test Bench Modularity

Centralizing infrastructure functionality can improve the modularity of
a test bench. There are other ways to modularize complex test benches
to improve their maintainability. As stated earlier, test bench develop-
ment is software development, and therefore, all techniques of software
engineering apply here. A major advantage of using C/C++ for test bench
development is that many of these techniques apply directly.

The test bench components themselves do not need to have a monolithic
structure similar to the one discussed so far in the examples. They can
utilize other classes, and the member functions can call other functions.

As an example for the further application of modularization, consider
the repetitive structure of the input and output ports of Calc1. There are
four identical ports on both the input and output side. It would be
possible to split out a common subcomponent for each of the three
test bench components (StimulusInitiator, Checker, ScoreBoard). For
example, there could be a driver port class that applies to a generic input
port and is instantiated four times inside StimulusInitiator. Each instan-
tiation takes a parameter that indicates to which of the four physical
ports this particular port object connects. The common port class does
eliminate the replicated code that processes four ports in the original test
bench. However, reduction of tedious and error prone replication is not
the only advantage. In addition, it is now very simple to add or remove
ports in Calc1 and adjust the test bench easily. Good software engineer-
ing greatly improves this type of maintenance and scaling work.

6.1 Test Bench Writing Tools 225

For the design and development of C/C++ test benches, the verification
team can use all common software modeling techniques available, as
well as software development tools such as integrated development
environments (IDEs) and debuggers that are available for all C/C++
programmers.

Test Bench Building Block Objects: Params

The last part of the test bench library architecture of Figure 6.5 that
needs discussion are additional test bench common building block
objects. This library layer contains an open-ended set of utility classes
whose main purpose is productivity improvement for the test bench
writer.

As an example of an important type of utility class, we introduce the
class Param. As the name indicates, a Param object is a parameter for a

226 Chapter 6 ■ Creating Environments

Any
component

busy?

Initialize

Execute

End of simulation

User testbench componentsTestbench execution control

End-of-test
checks

End of test

More
tests?

init()

execute()

endOfTest()

■ FIGURE 6.17

Test bench execution control with separated execution phases. Instead of the single execute() function,
every test bench component now has three separate functions—init(), execute(), and endOfTest()—that
are called during the three respective phases of test execution.

test bench or one of its components. It is the nature of a parameter that
it has no fixed value at compile time. The versatility of a Param comes
from the fact that its value can be assigned at runtime. With a Param
object, it is possible to set values of test bench variables at runtime and
therefore influence certain behaviors of the test bench dynamically.

Figure 6.18 shows a simple Param class and Figure 6.19 shows an
instance of a Param at the start of our example test bench. Every Param
instance gets its own unique name, by which the test bench library can
identify it unambiguously. The Simulation_Control class now needs the
capability to parse a file (Param file). This file supports a simple assign-
ment syntax, which names a Param on the left-hand side and assigns it
a value on the right-hand side.

The initParams function of Simulation_Control parses the file speci-
fied as an argument and assigns the string values found in the Param file
to the corresponding Param object found in the test bench.

In the example shown in Figures 6.18 through 6.20, the application of
a Param simplifies the passing of a test case file name into the test bench.
The verification team does this now through the Param file my_paramfile.
The team changes the name of the test case file by changing the value
of the testfile Param assignment inside my_paramfile. It is easy to see

6.1 Test Bench Writing Tools 227

class Param {
 public:
 Param (string name);

 string getValue();
 void setValue();
}

■ FIGURE 6.18

Definition of the utility class Param. An instance of this class is a named parameter usable anywhere
inside test bench code. The constructor of Param requires a unique name for the object to enable the
test bench to assign values to the object at runtime.

main (int argc, char *argv[]) {
 Param testcase("testfile");
 Simulation_Control control;
 ….
 control.initParams("my_paramfile");
 …
}

■ FIGURE 6.19

Instance of a Param object in the top-level C++ test bench program. The Param named testfile will be
used in the program as a parameter that holds the name of a test case list file. Simulation_Control’s
function initParams() reads a file (similar to the one in Figure 6.20) and assigns values to the Param
objects listed.

how this scheme can simplify the management of many runtime
parameters.

An important extension of the Param idea is the support of random-
ization tasks in the test bench.

Figure 6.21 shows the class RandomIntParam, which holds a named
parameter with value type integer. Instead of reading the value of such
a parameter once with a getValue() function, the intention of this para-
meter is for the test bench code to draw a value multiple times, when-
ever it needs a new random integer value. The name of the access
function drawValue() indicates this usage.

Initializing a RandomIntParam with a fixed value from a Param file,
as in the case of the basic Param above, does not appear useful. Figure
6.22 shows two examples for a possible use of file-supplied initial value.
The first example shows a range definition. A possible implementation
of RandomIntParam could use this value to limit the range of possible
drawValue() results to be between 0 and 99. Although the probability for
all numbers within the range of my_random_param is the same, the
syntax for my_other_random_param is more elaborate, showing a possi-
bility to specify multiple ranges and associate a weight specification with
each range. The example forces the drawValue() function to return a
value between “0” and “99” 90% of the time, the value “100” 1% of the
time, and the value “101” 9% of the time.

Utility classes such as the Param classes show how the architects of
the test bench library can easily extend it with additional functionality

228 Chapter 6 ■ Creating Environments

testfile = "my_tests" ;

■ FIGURE 6.20

Example of Param file my_paramfile. A Param file contains assignments of values to named Param
objects in the test bench. Simulation_Control’s function initParams() reads such a file and assigns the
values to the corresponding Params.

class RandomIntParam {
 public:
 Param (string name);

 int drawValue();
 private:
 …
}

■ FIGURE 6.21

Random integer Param class definition. RandomIntParam is a named Param that is able to provide a
randomly generated integer through its interface function drawValue(). The class contains private data
structures to manage a seed and random value range information such as the one shown in the exam-
ples in Figure 6.22.

that makes the test bench writers more productive because they can rely
on already implemented utilities instead of rewriting them all the time.

Test Bench Performance

As test benches scale up in size and complexity with their corresponding
DUVs, it is important to monitor their performance.

Chapter 5 showed how the industry puts into technology that improves
simulation engine performance. It would be a waste of all this technol-
ogy if the verification team did not regularly monitor the simulation test
bench for its performance characteristics.

The runtime of a simulation job splits between time spent in the HDL
model (the DUV) and time spent in the test bench. Efficient test benches
utilize 20% to 40% of the total runtime. Obviously, such a number is just
a rule of thumb. The key is to balance driver and checker robustness with
efficiency, while avoiding test bench redundancy. A very efficient test
bench measured by this performance ratio might be one that checks very
little and does not capture all of the DUV internal bugs. On the other
hand, a test bench, which checks and uncovers many internal bugs,
might be very performance invasive to the overall simulation execution.

However, the following reasoning should illustrate how important it
is to keep an eye on performance to optimize the vast resources that ver-
ification projects consume. If we assume a utilization of 50% of the sim-
ulation time by the test bench, it is not possible to speed up the overall
simulation efficiency by more than two times with a faster simulation
engine. Even if the verification team would buy the impossible, very
expensive, infinitely fast simulation engine, capable of executing the HDL
model in zero time, the overall performance improvement would just be
a factor of two.

The verification team can measure the performance of a C/C++-based
test bench with standard system utilities available to all programmers.
Usually, the C/C++ compiler has a parameter that lets the programmer
instrument the output code for performance measurement. After the run
of a typical simulation job, it is then possible to inspect the data gener-
ated by the instrumentation with a profiler tool such as gprof. This tool
prints out the details of time spent in each section of the test bench

6.1 Test Bench Writing Tools 229

my_random_param = 0 – 99;

my_other_random_param = { { 0 – 99, 90 }, { 100, 1 }, { 101, 9 } };

■ FIGURE 6.22

Example syntax for range and weighted range definitions for class RandomIntParam. The function
drawValue() for my_random_param will return an integer between 0 and 99 with uniform distribution.
drawValue() for my_other_random_param will return an integer in the range “0 to 99” 90% of the time,
the value “100” 1%, and “101” 9% of the time.

program. An advantage of C++ is to have such tools readily available. The
reader can find usage information for gprof in various places on the
Internet and as part of the Unix operating system reference information.

6.1.3 High-Level Verification Languages
During the past few years, special purpose languages for test bench
writing have gained much focus and popularity. These HVLs are a variety
of domain-specific languages. Such languages have built-in functionality
targeted for one specific application domain. The idea is that if the vocab-
ulary of such a language is built directly in terms of the application area,
users will learn more easily how to use the language and will be instantly
more productive compared with using a general-purpose programming
language.

The following discusses some of the features all of the available HVLs
share. The discussion of important features for test bench writers con-
tinues by turning to several example HVLs and highlighting some of their
unique features. This is not an attempt to give the reader detailed usage
information because this discussion should provide an overall map of the
field of HVLs, a skeleton that makes further, more detailed study of an
individual HVL easier.

Features of HVLs

All HVLs usually provide the following basic functionality.

■ Simulation independence is fundamental for any such language.
This allows the verification engineer to write a test bench that is
portable between simulation engines from different vendors.

■ Full visibility to all HDL model objects (signal, registers, arrays,
etc.) is necessary to control all aspects of the DUV. It must be pos-
sible to read and write these model facilities.

■ High-level programming language features such as complex data
types, object-oriented class definitions, and modularity are another
requirement that all popular HVLs share.

In addition to this list of features, modern HVLs include a few new
features.

Temporal Expressions

The specification of sequences of events over time is at the heart of
complex assertion checking (see Chapter 3). The HVLs have built-in con-
structs to express such temporal expression concisely.

230 Chapter 6 ■ Creating Environments

Constrained Random Generation

Random generation of stimulus is one of the core capabilities of an effi-
cient test bench. Thus far, the discussion of randomization has been
limited to the probabilistic selection of a single value. Interfaces of real-
life DUVs will not allow the free randomization of input signals and
busses. Interfaces follow specific protocols. The purpose of a protocol is,
of course, the limitation of the possible input values to a specific domain.
There are two dimensions for constraints on input interfaces.

First is the value dependency of between different signals at the same
time. For example, if the driver currently pushes a new operation into
the Calc1 design, the reset bus should remain all zeroes during the two
cycles it takes to launch the request.

Second are value dependencies over time. This constraint specifies
value sequences.

Such dependencies can exist between different signals, or they can be
necessary for the same signal. For example, once initiated, the reset of
Calc1 should stay on for seven cycles. These are sequential constraints.

HVLs offer built-in features to express constraints, thus making the
authors of driver code more productive.

Coverage Collection

One important measure of the quality of the verification cycle is the quan-
tification of how much of the design functionality the simulation process
has covered. HVLs offer built-in mechanisms to express which coverage
information to collect over time. These data supply the verification team
with information about which goals the test bench has hit during
simulation.

Automatic Garbage Collection

One of the features the custom HVLs typically offer addresses test
bench complexity and programming safety: the user does not (have to)
directly control dynamic memory management. The runtime system of
the language handles allocation and deallocation of dynamic memory
automatically. The system tracks references to dynamically allocated
memory and destroys data structures that are not referenced anymore
from anywhere in the test bench. This circumvents completely the
problem with memory leaks discussed in the context of C/C++ test
benches above.

Interpretation Versus Compilation

Similar to any programming language, HVLs need their own compilers,
debuggers, and runtime system. Some of these languages offer an

6.1 Test Bench Writing Tools 231

interpreted runtime environment, which gives the HVL a script-like
appeal in that there is no need to compile and link the test bench. To be
able to achieve sufficient performance scaling capabilities, it is a require-
ment that the HVL environment also provides a compilation environ-
ment to support optimized runtime code.

A Flavor of OpenVera

OpenVera is an HVL marketed by Synopsys [9]. Synopsys donated the
language definition to a consortium of several electronic design automa-
tion (EDA) vendors to create an environment in which multiple vendors
support the language.

This is an object-oriented programming language that supports
complex data types, classes, and inheritance. The syntax of the language
is similar to C++ or Java for the programming language features.

OpenVera has a built-in data type that matches the four-value signal
type provided by the Verilog HDL (“0,” “1,” “x,” “z”). The connection to
the HDL model in OpenVera uses the concept of test case ports, inter-
faces, and bindings. A port declares inputs to the test bench coming from
the model. An interface specifies attributes of these inputs, such as signal
widths, and the clock signal, which is used to synchronize the collection
of the signal values from the model. OpenVera connects interface/port
signals to the HDL signals via bindings by using hierarchical path names.
The bindings unambiguously specify the location of the HDL signals in
the model hierarchy.

The foundation for random generation in OpenVera is the concept
of random variables (for an example, see Figure 6.23). The test bench
declares the randomization domain and its boundaries at variable dec-
laration time. OpenVera also supports the specification of weights to
subdomains similar to the functionality discussed in Figure 6.22.

232 Chapter 6 ■ Creating Environments

variable my_random_param in { 1:99, 101, 200:299 };

class foo {

 rand int rand1, rand2, rand3;

 constraint cons {
 rand1 > rand2 + rand3;
 }
}

■ FIGURE 6.23

Random value support in OpenVera. At the creation of the variable my_random_param, its value is drawn
from the range definition. The constraint block cons defines dependencies between random values of
several variables.

In addition, it is possible to express constraints via named constraint
blocks (cons in Figure 6.23), which limit the randomization of separate
but related variables. Constraint blocks are declarative expressions,
which express relationships between variables that are supposed to
hold true throughout any randomization of the variables referenced.
OpenVera enforces the constraints and the resulting values assigned to
the random variables by a call to a function called randomize(); this
would be foo.randomize() for the example above.

Driving randomized values into a DUV by using a mix of programmed
code and declarative constraints expressed as value relationships is a
powerful and productive method to design a test bench. OpenVera and
other HVLs create random constrained variable values with a software
component called constraint solver in the runtime system of the language.
Constraint solving will be discussed in further detail in Chapter 7.

It is possible to specify constraints that the solver can never satisfy
because the specification is contradictory. We call this a constraint error.
If the OpenVera runtime environment detects this situation, it halts the
simulation. The detection is only possible if the relations used to express
constraints do not refer to other random variables. If the set of constraint
expressions connects several random variables, the randomize() will
return an error. It is the responsibility of the user test bench code to react
appropriately to such constraint errors.

OpenVera has a unique feature to generate sequences of randomized
variable values with its stream generator capability. A stream generator
is similar to a grammar definition in Backus-Naur Form (BNF) format,
which specifies how to generate a series of tokens [10]. BNF is a general
scheme to specify derivation rules. A derivation starts with a complex,
compound symbol that we replace by successively applying derivation
rules until no more replacements are possible with the given set of
rules. The derivation process stops at leafs for which no further replace-
ment is available. Figure 6.24 shows an example for an OpenVera
stream generator that defines the derivation rules to generate Calc1 test
operations.

Figure 6.24 starts the specification of the Calc1 test format with the
top-level rule Operation. It is possible to read this notation like a

6.1 Test Bench Writing Tools 233

Operation : Port Delay Command Operand1 Operand2 ;

Port : Port1 | Port2 | Port3 | Port4 ;

Command : Nop | Add | Subtract | ShiftLeft | ShiftRight | Invalid ;

….

■ FIGURE 6.24

OpenVera stream generator scheme to generate Calc1 tests.

generation scheme that always starts at Operation and ends with a com-
plete compound value of a Calc1 operation.

The line in Figure 6.24 that has Operation on the right-hand side of
the colon is the first replacement rule. The application of such a rule
replaces the left-hand side with the right-hand side. If a component on
the right-hand side has its own replacement rule, the generation scheme
continues with the application of that rule. The scheme traverses depth-
first recursively to resolve every component with its replacement. After
the successful replacement of a component, the next component is
resolved until all top-level components have been fully replaced recur-
sively using the rules of the grammar.

Starting at the top of Figure 6.24, the generator specifies how five com-
ponents replace Operation, thus effectively constructing an Operation
from these components. The generator then replaces each component in
turn with its replacement components until it has assembled a complete
Operation as specified by the grammar.

Replacement rules often contain choices. For example, Figure 6.24
allows the replacement of Command by one of six different components.
The logical or operator symbol “|” expresses the set of choices available
at such decision points. Unless specified otherwise, OpenVera stream
generators will make a random choice. However, it is possible to anno-
tate the choices with weights. Such weights enable the user to constrain
the generation in a certain direction.

As it visits grammar components sequentially, quite naturally Open-
Vera allows executable statements to be interspersed with grammar
components. As OpenVera unrolls a grammar scheme, at every point it
encounters a statement in the grammar specification, it executes the
statement.

Figure 6.25 combines these two capabilities. Port’s replacement rule
has to pick one of four alternatives. After making a choice, the rule
instructs OpenVera to print a message. The random selection between
the four possibilities is constrained by the designation of a weight expres-
sion at each alternative, &() expression). OpenVera allows any expres-
sion as weight specification. References to test bench variables in weight
expressions allow verification engineers to specify very sophisticated
stream generators.

In this example, OpenVera will choose Port1 40% of the time, leaving
a 20% probability for each of the other ports.

234 Chapter 6 ■ Creating Environments

Port : &(2) Port1 {printf("Port1\n");}
 | &(1) Port2 {printf("Port2\n");}
 | &(1) Port3 {printf("Port3\n");}
 | &(1) Port4 {printf("Port4\n");} ;

■ FIGURE 6.25

OpenVera stream generator with executable statements and weights.

OpenVera is a complete HVL that supports a number of features and
requirements. More detailed overviews of OpenVera’s features are avail-
able [9, 11]. The temporal assertion portion of the language is also avail-
able in the new, emerging HDL SystemVerilog [5].

A Flavor of e

The EDA vendor Verisity (now under Synopsys) develops and markets an
HVL called e, which is the center of the test bench authoring and debug
tool Specman [12]. Verisity has donated the definition of the e language
to an IEEE standardization workgroup [13]. Similar to OpenVera, e is a
fully featured HVL, which offers all the functionality described in the
overview of HVLs. The following discusses only a few selected highlights
of e.

e supports all common concepts of object-oriented programming lan-
guages such as data abstraction and inheritance. The basic language
concept is a struct, which declares a class or a derived class. Similar to
C++, e classes contain declarations of member objects such as data struc-
tures, functions, and procedures. A subtype class derives from a base
struct type in the usual object-oriented inheritance relation.

Figures 6.26, 6.27, and 6.28 demonstrate some of the data structuring
features of e by using struct declarations. Figure 6.26 defines a base
struct called BaseOperation for the Calc1 operations data members
command (cmd) and the two operands (op1, op2). In Figure 6.27 the
subtype Calc1Operation derives from BaseOperation and adds the port
member.

Figure 6.28 shows two examples how e allows the user to add addi-
tional declarations to an already existing struct using the extend clause.
The first declaration simply adds the delay member data. The second dec-
laration adds constraints to all Calc1Operation structs that a test bench

6.1 Test Bench Writing Tools 235

struct BaseOperation {
 cmd : [noop=0b0000, add=0b0001, sub=0b0010, shl=0b0101, shr=0b0110] (bits:4);
 op1 : uint (bits:32);
 op2 : uint (bits:32);
};

■ FIGURE 6.26

e base struct type declaration.

struct Calc1Operation like BaseOperation {
 port : [port1, port2, port3, port4];
};

■ FIGURE 6.27

e subtype declaration and extending a subtype.

will create. However, the constraints apply only to those Calc1Operation
structs whose port member has a value port1. The constraints guide the
e runtime environment to generate only add operations for port 1, keep
the sum of the operands below 16, and furthermore limit the delay until
the next operation to a value between 2 and 10. The port1 extension
keeps the lower limit of delay to 2, and the first extension in Figure 6.28
limits all delay values to a maximum of 10.

With the extend clause, the e language provides a post object-
oriented programming technique to test bench coding called aspect-
oriented programming [14]. The main method object-oriented languages
offer to decompose large software systems is the tree structure of class
inheritance. If the programmer wants to add additional members to a
class already compiled into the software, the natural approach is to
derive a subclass and add the members there. However, the extend feature
of e allows the user to “open up” already existing class definitions, add
member data or functions, and change attributes of existing members.
Adding constraints to the members of Calc1Operation in Figure 6.28 is
such an example.

Extensions in e are not limited to the same source file that contains
the original class definition. This opens the possibility of a powerfully
layered approach to test bench writing. First, the verification team
creates a base test bench with class declarations that cover the full range
of possibilities allowed by the DUV specification. Figure 6.29 indicates
this by placing the Calc1Operation class into the file Calc1.e. Calc1.e con-
tains the full specification of an operation that applies to all ports of
Calc1 and is part of the base test bench that is used in all simulations.
The file test_port1_adds.e in Figure 6.29 defines constraints for some
aspects of the base test bench, like port1 operations. The constraints are
contained in a separate file that is loaded on demand, when the verifi-
cation team decides to subset the behavior of the test bench. It is very
practical to keep different constraint sets in different such add-on test
bench files.

236 Chapter 6 ■ Creating Environments

extend Calc1Operation {
 delay : uint [1..10];
};

extend port1 Calc1Operation {
 keep delay >= 2;
 keep cmd == add;
 keep op1 + op2 < 16;
};

■ FIGURE 6.28

e extend declaration.

The verification team can use add-on files, or sets of related add-on
files, as a template for the generation of biased random tests that target
a certain aspect of the DUV functionality. This approach is much more
powerful than storing many static, directed tests in separate test case
files.

The e language allows the extend feature to change much more than
the generation of random data values. For example, it is possible to
append additional code at the beginning or the end of class member func-
tions, allowing the verification engineer to add, dynamically at runtime,
additional common functionality such as logging and debug tracing to a
set of base test bench classes without the need to change the original
class definitions.

The verification team must use this powerful flexibility of on-the-fly
extensions carefully. On larger projects, in which the test bench can easily
consist of thousands of source files, it is quickly possible to lose track of
all the files and team members who define extensions to classes. A well-
defined test bench architecture and rules that govern who can override
base class behavior guarantee that a large test bench team does not lose
control of their e code structure.

The e language offers units as special types of structs. A unit can only
exist once in a test bench. It carries user-defined data structs inside and
is itself typically connected to the DUV via an HDL path. This path gives
all model facility references, which are inside a unit, a common prefix,
and thus creates a context of hierarchy for the unit.

All user-defined units are rooted inside a unit called sys, which
provides a common runtime context similar to the main() function is
C. Other runtime functionality, such as file inputs/outputs (I/O), the
simulation engine interface, and current session information are also
encapsulated global units.

6.1 Test Bench Writing Tools 237

extend port1 Calc1Operation {
 keep delay <= 2;.....
};

struct Calc1Operation {
 port : ..
 op1 : ..
 op2 : ..
};

Calc1.e:

test_port1_adds.e:

■ FIGURE 6.29

Creating tests in e by extending base classes and using aspect-oriented programming.

Key structural elements of the e language are events, which syn-
chronize the behavior between the HDL model and the test bench and
among test bench components. Events allow specification of behavior
over time.

Figure 6.30 shows how the use of events lets the StimulusInitiator for
Calc1 synchronize itself with other test bench components. The struct
for this test bench component connects the generation and transfer of
an operation to the Calc1 inputs with the readiness of the correspond-
ing port via the on clause. Whenever the test bench signals a port’s ready
event, it subsequently activates the connected member function.

Test bench code either emits events explicitly or associates the defini-
tion of the event to a temporal expression, which specifies a sequence of
events over time. If the e runtime environment detects the occurrence of
this sequence, it will emit the signal and broadcast it to all receiving test
bench components. The reader is referred to a Web site [13] to find the
details of the e event and temporal expression constructs.

Temporal expressions play an important role in the specification of
properties for formal verification, and their importance and use in the
context of formal verification will be discussed in detail in Chapter 10.

So far, all member methods discussed here were truly functions,
meaning that once called, program control returns only at the end of
a function. The e language also supports time-consuming methods (TCM).
These are functions that suspend their execution to either wait for or syn-
chronize (sync) with the signaling of an event. A TCM is code whose
sequential flow does not start and end during the same HDL model time
but covers several simulation time steps.

The reader interested in a more thorough overview of e is referred to
a Web site that contains a full reference manual [13]. There is also a book
that covers the e language in depth [15].

A Flavor of SystemC

SystemC is a large C++ library that supports high-level hardware design,
modeling, simulation, and verification. At this point, the Open SystemC
Initiative (OSCI) drives the development of the library and provides the
source code of the library free for download on the Internet [16].

238 Chapter 6 ■ Creating Environments

struct StimulusInitiator {
 event port1Ready, port2Ready, port3Ready, port4Ready;

 on port1Ready {// port 1 code //};
 on port2Ready {// port 2 code //};
…
};

■ FIGURE 6.30

Sketch of an e StimulusInitiator.

SystemC originally targeted mostly the simulation and specification of
designs in C++ as its main goal. The synthesis of subset of SystemC to
register transfer level (RTL) logic is actually supported by several EDA
vendors. This chapter will not discuss these aspects of SystemC; impor-
tant here is one part of the SystemC library called the SystemC Verifica-
tion Library (SCV). OSCI added SCV more recently, and its origin was
the open-source project TestBuilder [17].

In the following, we review some aspects of SCV’s large functionality.
The major EDA vendors support SystemC at this point, which

guarantees test bench portability between different simulation engines.
However, the library does not yet have a fully elaborated API, which
would allow an easy, uniform implementation of the simulation engine
abstraction layer for an arbitrary simulator. This is one of the still evolv-
ing areas of SCV.

SCV supports a range of built-in data types, all of which are also part
of the design and modeling portion of SystemC. There are sc_int and
sc_uint with fixed widths (64 or less), as well as the corresponding
sc_bigint and sc_biguint types, with the latter providing arbitrary preci-
sion integers. The type sc_bv handles arbitrary length bit-vectors with
bit-wise and range-wise access. sc_logic is a vector with a four-value data
domain (Verilog-style: “0,1,x,z”).

The library offers a number of services based on the built-in data types.
The main areas are as follows:

■ Randomization and seed management

■ Constrained randomization

■ Weighted randomization

■ Support for transactions; transaction monitoring, and recording

■ Sparse array support

Figure 6.31 shows some examples of the randomization support using
built-in C++ types. The data type of the random variable functions as a
C++ template parameter in its declaration.

The class scv_smart_ptr is what the C++ literature calls a smart pointer
because it has the same look and feel as a data pointer. With a uniform

6.1 Test Bench Writing Tools 239

scv_smart_ptr<int> delay;
delay–>keep_out(7);
delay–>keep_only(0,10);
delay–>next(); // ––> generate new random value

■ FIGURE 6.31

Randomization for simple data types in SystemC Verification Library.

distribution, SCV’s constraint solver assigns the variable delay in Figure
6.31 a random value between “0” and “10,” excluding the value “7” at all
times.

A remarkable feature of SCV is the capability to declare user-defined
data types to the system in such a way that constrained, randomized
value assignments are available to these types exactly as for built-in
types.

Figure 6.32 demonstrates how to pass the user-defined type
Calc1Operands as a template parameter into the declaration of an
scv_smart_ptr. As a result, every call to the member function next() will
return a fully randomized value.

Obviously, a completely random selection is usually not what is needed
in a test bench. Figure 6.33 shows the declaration of constraints used in
SCV test benches. Because the library has to stay within the confines of
C++, the constraint declarations are not quite as elegant and concise com-
pared with those of OpenVera or e. However, the advantage with SCV is
that the verification team can easily integrate any existing C++ class
library into a test bench and have test bench functions available for those
imported classes as well.

Figure 6.33 also illustrates the definition of derived constraints. Small-
IntConstraint limits the sum of the two operands just as in Figure 6.28
for e, MyConstraint eliminates the case of equal operand values in
addition to the first constraint. The test bench example instantiates a
random variable, whose value SCV will generate following the associated
constraint specifications.

Test benches use the transaction-recording feature, which SCV offers,
typically in the implementation of a stimulus initiator. The generation
component creates new transactions, which the protocol component
translates into applied signal changes on the concrete DUV input
interface.

Similar to the technique used by scv_smart_ptr, SCV also offers a class
scv_tr_generation, which allows the user to declare a custom transaction
with its data content to the library. The user then declares the beginning
and end of individual transactions in the test bench code. These calls

240 Chapter 6 ■ Creating Environments

class Calc1Operands {
 sc_uint<32> op1;
 sc_uint<32> op2;
}

scv_smart_ptr<Calc1Operands> op;

op->next(); // completely randomized operands

■ FIGURE 6.32

Randomization for user-defined data types in SystemC Verification Library.

records transactions in an external database and are accessible by exter-
nal debug tools after the simulation is finished. To maximize the use of
transactions in the debug process, it is also possible to record causal
relationships between transactions. External viewer tools can visualize
these relationships when they display a trace from a previous simulation
run.

As was mentioned above, SCV is a library that is still evolving. Impor-
tant areas that still need further definition and development are tempo-
ral and nontemporal assertions, temporal constraints, and support for
functional coverage.

6.1.4 Other Test Bench Tools
To complete the discussion on test bench writing tools, this short section
mentions a number of other approaches that have been popular with ver-
ification teams.

Scripting Languages

Before EDA companies focused on verification as a bottleneck for hard-
ware design projects and developed HVLs as productivity aid, verifica-
tion teams made use of scripting languages to write test benches and
generate tests.

In the open source domain, there is a number of scripting languages
that support rapid development of software [18–20]. The advantages of
a scripting language are usually

6.1 Test Bench Writing Tools 241

class SmallIntConstraint: public scv_constraint_base { // basic constraint
 public:
 scv_smart_ptr<Calc1Operands> data;
 SCV_CONSTRAINT_CTOR(SmallIntConstraint) {
 SCV_CONSTRAINT(data->op1+data->op2 < 16);
 }
}

class MyConstraint: public SmallIntConstraint {
 public:
 SCV_CONSTRAINT_CTOR(MyConstraint) {
 SCV_CONSTRAINT(data->op1 != data->op2);
 }
}

MyConstraint m("constraint");

m.data->next(); // <-- constrained randomized value generation

■ FIGURE 6.33

Constrained randomization for user-defined data types in SystemC Verification Library.

■ Interpreted execution: no compile and link cycle

■ Weak type system: no tedious type declarations for data variables

■ High-level data types: lists, dictionaries, hash-arrays

■ Strong support of text processing

■ Easy access to operating system services: files, directories, data
management systems

Interestingly, there is no common, popular library for any of the script-
ing languages in the context of verification. All their uses have been more
or less ad hoc. Undoubtedly, the ease of using scripting languages has
led to their wide popularity.

However, there is typically a 5 to 10 times performance gap between
an interpreted scripting language and a compiled programming lan-
guage. This strong disadvantage severely limited the success of scripting
languages as test bench authoring tools. If we assume a 50/50 split
between the time spent in the HDL model versus the C/C++ test bench,
the use of a scripting language would shift this relation dramatically.
Assuming a 10 times worse execution speed of a scripting language, 90%
of the simulation time would be spent in the test bench. This is clearly
not an acceptable balance and use of large simulation resources.

Simulation runs are usually not standalone activities. There is a
need to maintain the HDL and test bench code in source code libraries.
Setting up a simulation run is preceded by a checkout of source code,
compile, model build, and job distribution to a host simulation machine,
and in the end the collection and triage of simulation results. Many of
these data management and preparation activities can greatly benefit
from the use of the flexible, highly productive scripting languages. There-
fore, a verification engineer should be fluent in at least one or two of
them.

Waveform Editors

There have been many attempts to use a graphical language to specify
test bench behavior. Waveforms or timing diagrams are a very popular
method to convey expected or generated signal changes in documenta-
tion of hardware interfaces. Consequently, waveform editors have been
promising approaches for graphical test bench authoring [21–23].

One of the limitations of strictly graphical waveforms is that they only
specify one scenario. To express the variations or alternatives in a wave-
form that is expected or to be generated on the interface of the DUV,
these graphical tools need other graphic user interface (GUI) elements
that allow the user to specify classes of possible waveforms.

These constructs lead to a need to connect individual waveforms
and pages of waveforms together with property sheets. For realistically

242 Chapter 6 ■ Creating Environments

complex interfaces, the graphical model does not scale well, and the
amount of necessary waveforms and property sheets become excessive.

In addition to the complexity of the specification medium itself,
waveforms share one disadvantage with all other graphical specification
methods. Once a more complex specification is finished, the daily main-
tenance of updates, such as signal name and property changes, requires
typically more work in a graphical than a textual representation.

Consequently, timing diagrams and waveform editors have been
limited to small design block simulation.

On the other hand, timing diagrams are a powerful and efficient
communication medium between designers and verification engineers.
Because of the popularity of waveforms in their informal use with paper
and pencil, there remains hope that at some point an effective user inter-
face technology will open timing diagram specification to a wider verifi-
cation audience.

6.2 VERIFICATION COVERAGE

The verification team needs metrics for the quality and completeness of
their work as the project proceeds over time.

There are obvious completeness criteria the verification team can
derive from the discussions of the verification plan in Chapter 4. Keeping
track of the status of different verification tasks is a fundamental piece
of information about how well a project is progressing. Knowledge about
which tests the verification engineers have indeed exercised from the test
plan provides a necessary metric. Watching the bug rate is certainly a
key piece of scorekeeping that guides a project.

Still, the central question for the verification team remains: “When is
verification complete?”

Once the team has finished all planned verification tasks, run all tests,
and the bug rate has dropped to zero, is it time to declare success?
Kantrowitz and Noack provide a very insightful case study, which dis-
cusses this question from the perspective of a large industry project [24].

As discussed in the DVD video chip example from Chapter 1, exhaus-
tive simulation of even small designs is not possible. The following
example recalls the combinatorial explosion that makes verification such
a daunting task.

Let the DUV be a 16-bit adder. Simulating all combinatorial possibil-
ities of the adder takes 4 billion simulation cycles, assuming that this
circuit does not have state-holding elements. If the project uses a simu-
lation engine that is able to run 1,000 cycles per second, the team still
needs around 50 days to simulate this trivial DUV exhaustively. When
does the verification team stop simulation? Is it good enough to continue
until the simulation has been bug-free for 3 days? How do they know
that another day of simulation would not yield yet another bug?

6.2 Verification Coverage 243

Furthermore, is it truly necessary to simulate the adder DUV exhaustively
to make a convincing case of verification completeness?

It is the task of verification coverage analysis to convince the verifica-
tion team that they have done sufficient verification, not exhaustive
verification, to satisfy defined quality criteria.

The following overview of coverage, its many facets and techniques,
provides the reader with a conceptual framework for verification quality
measurement. It also reminds that some of the metrics, which are easy
to implement, are not necessarily good ones. Good coverage analysis
relies on insightful instrumentation of the verification environment by
using a variety of methods and metrics, most of them not automatically
generated.

6.2.1 Overview
Verification coverage is the measurement of state space that simulation-
based verification has touched in the entire environment. Coverage can
measure DUV internal states, queues, and activities, as well as DUV
inputs and even states of the verification environment components. Fun-
damentally, coverage is a measurement of how well the stimulus com-
ponents have exercised the DUV. Coverage cannot make a statement on
the quality or robustness of the checking components.

There are two completely complementary sides of the verification
coverage task. First, there is coverage of the verification environment.
Here, the objective is to measure how well the verification stimulus en-
vironment covers the specification of the design. This coverage aspect is
called functional verification test coverage. Second, there is coverage of
the function implemented in the DUV. This metric seeks to measure how
well the verification stimulus activates or exercises the implementation
of the specification in the concrete design. This coverage task is called
functional implementation coverage. Figure 6.34 shows the two areas
of coverage analysis side by side.

The base activity that precedes any type of coverage analysis is the
collection of coverage measurements. The verification team collects the
measures for functional test coverage from the stimulus initiator com-
ponent, the test case, or the interface into the DUV. Implementation
coverage analysis relies on measurements of activities inside the DUV by
inspection into the HDL model during simulation.

Throughout the measurement and analysis activity, the verification
team must never forget that the ultimate goal of coverage analysis is to
guide the verification process, and not to prove its completeness. Com-
pleteness is an elusive goal that is unreachable anyway.

A seemingly simple coverage goal would be the combinatorial space
spanned by the enumeration of all possible patterns on the DUV inputs,
all possible states internal to the DUV, and all possible output patterns
on the outputs of the DUV. Although this coverage metric is trivial to

244 Chapter 6 ■ Creating Environments

define, it is also completely useless to guide the verification process,
because it is unachievable.

Then, toward which targets should coverage analysis drive the verifi-
cation process?

Dill and Tasiran define coverage analysis as the task to maximize the
probability of stimulating and detecting bugs, at minimum cost (in time,
labor, and computation) [25]. In the end, not very surprisingly, detection
of hidden bugs is the main objective.

Figure 6.35 illustrates how coverage information can guide the simu-
lation through the state space of a DUV to find the hidden bugs.

The generated stimulus drives the simulation through the state space
in a meandering path. The task of coverage guidance is to influence the
direction of the traversal to hit areas that are prone to hidden bugs. Cov-
erage measurement is not productive for all the areas of the DUV that
do not have any hidden bugs.

In summary, the amount of hidden bugs found measures the quality
of the coverage analysis effort.

Coverage is a tool that helps the verification team to find bugs, and it
is only a means to an end. A coverage measure that the verification team
meets without finding bugs has only a limited value.

Several times it has been said that it is impossible to cover all parts of
a design with simulation. Therefore, coverage must focus on error prone
areas. In this sense, a good coverage metric needs to have a predictive
component; it needs to be able to measure bug coverage [25].

Figure 6.34 distinguishes coverage efforts by their target areas—test
coverage versus implementation coverage. Developers and researchers

6.2 Verification Coverage 245

DUV
Stimulus

generation

Functional
test

coverage
analysis

Coverage
metrics

Coverage
metrics

Functional
implementation

coverage
analysis

Measure Measure

■ FIGURE 6.34

Verification test coverage versus implementation coverage.

have evolved different successful schemes to specify coverage metrics for
both applications. These schemes are referred to as coverage models.

It is possible to classify coverage models as either structural or func-
tional. Both classes apply to verification test coverage or implementation
coverage. Functional coverage models focus on the semantics of either
the test or the design implementation. For example, did the test cover all
possible commands or did the simulation ever trigger a first in, first out
(FIFO) buffer overflow? Structural coverage models, on the other hand,
tie into the representation of the domain to be covered. A good example
for a structural coverage model is line coverage, a measure of whether all
source lines in the stimulus generator program or the DUV HDL have
been visited during simulation.

Before structural and functional coverage are discussed in more detail,
we want to clarify the difference between functional test coverage and
manufacturing test coverage because new students of the field easily
confuse both areas.

6.2.2 Functional Verification Test Coverage Versus
Manufacturing Test Coverage

It is important not to confuse functional verification test coverage with
the problem of manufacturing test coverage [26]. We can compare and
contrast manufacturing test coverage with aspects of functional test cov-
erage to gain additional insights.

246 Chapter 6 ■ Creating Environments

State space of DUV

Coverage guidance

= Hidden bug

State
traversal

path by simulation

■ FIGURE 6.35

Functional coverage guidance to the hidden bugs. The overall rectangle represents the state space of
a design under verification (DUV). Simulation traverses through this state space along a zig-zag trajec-
tory. The hidden bugs in the DUV are shown as shaded circles. Influence of coverage guidance is shown
by arrows that cause the simulation traversal to change in a different direction, hopefully closer to a
hidden bug.

Manufacturing tests apply test patterns to a chip on a tester device to
expose manufacturing flaws. It is typical for projects to speak of test cov-
erage for these patterns to be in the high 90% range. This is a coverage
metric measured against a fault model. Manufacturing tests do assume
that a uniform model of faults can represent all relevant fabrication
flaws. The test pattern generation has the task to select patterns that
expose these faults at the output of the circuit. The predominant and suc-
cessful fault model has been the stuck-at model, which assumes that the
test patterns should expose signals in the circuit that are permanently
stuck to a certain logic value.

The fault model for manufacturing tests has indeed a predictive com-
ponent. Manufacturing coverage measures bug coverage.

There have been many attempts in research to create the equivalent
of a fault model for functional verification. An example is a model that
assumes that the designer accidentally switched the outputs of two HDL
statements. The corresponding coverage metric measures the tests run
in simulation by their ability to find such a switch. This fault model does
not capture a large range of typical design bugs and therefore has not
been successful in practice.

6.2.3 Structural Coverage
The application for structural coverage models is largely implementation
coverage analysis. These models always tie into a structural aspect of the
implementation of the test generation, the DUV, or the representation of
the design HDL. Below are the typical structural models, presented in a
sequence of increasing complexity.

Toggle Coverage

Toggle coverage measures how many times the signals and latches (facil-
ities) in the HDL model have changed their logic value during simula-
tion. The absence of signal change activity in an area of the DUV
indicates that the stimuli did not target this area at all.

The advantage of toggle coverage is that it is a very simple, easy-to-
understand model. Its drawback is, however, that it yields massive
amounts of data, and the statement that 100% of all signals in a DUV
have toggled does not yield any insight into the functional significance
of the testing done.

Statement Coverage

Statement coverage or line coverage takes the syntactical structure of the
HDL specification and measures which HDL lines were executed by the
simulation run.

6.2 Verification Coverage 247

Similar to toggle coverage, this coverage model is easy to comprehend,
and the absence of activity in areas of the HDL model highlights omis-
sions in the tests. One of the problems with this model is that it only
applies to HDL that is written as a sequential statement. Concurrent
VHDL, for example, does not have a structure consistent with this model.
The other limitation of line coverage is the missing semantic insight; the
fact that an HDL statement has been executed results in no knowledge
about the correctness of the content of the statement.

Branch Coverage

Branch coverage or conditional coverage looks at conditional statements
in the HDL and keeps track of which conditions the simulation encoun-
ters and which it does not.

This model assumes that there is semantic meaning in the condition
that the designer expressed in HDL. Decision points in the HDL specifi-
cation are typically representative of different conditions to which the
design needs to react. Therefore, the lack of exercising a decision in all
possible, anticipated ways clearly indicates a lack of testing. The main
limitation of this model is that conditional constructs are not the only
way to implement decision in a design. For example, it is possible to
specify a multiplexer as a case statement or as a set of and/or expressions.
The former construct would lead to a coverage measurement point; the
latter form would hide the branch condition.

Path Coverage

Path coverage is a refinement of branch coverage. Rather than looking at
single conditional decisions in isolation, path coverage does an execu-
tion flow analysis of the HDL and identifies combinations of subsequent
decisions into execution paths.

Figure 6.36 shows the automatic inference of two possible execution
paths on a given HDL with if/then/else structure. If simulation had taken
path2, branch coverage would have indicated that at some point the cond1-
else branch and at some point the cond2-if path were active. Only the com-
bination of the decision points into paths would have uncovered that the
simulation hit the second nested cond2-if statement and not the first.

Although path coverage raises the functional semantic level higher
than simple branch coverage, the drawback of branch coverage is more
relevant here as well. This coverage metric does completely rely on the
presence of certain constructs in the HDL. If the design team can use
these constructs, the HDL style and the coverage analysis goals are in
accord. However, many times the design team has good reasons to struc-
ture the logic of Figure 6.36 in other ways (e.g., high-frequency design
constraints). This results in a goal conflict for the HDL structure. In these
cases, it is typically coverage analysis that loses out.

248 Chapter 6 ■ Creating Environments

Finite State Machine Coverage

Finite state machine (FSM) coverage associates a state-machine structure
with HDL design and measures various aspects of the resulting model.
There is state coverage, which measures which states of the FSM the
simulation visited, and there is arc coverage, which accounts for the
possible state-transitions and whether simulation traversed them or
not. Similar to path coverage above, it is possible to combine states and
arcs taken in the FSM structure and construct paths.

There are two variants of FSM coverage: the constructive and the
inferred approach.

The constructive FSM coverage approach assumes that the FSM struc-
ture is clearly visible in the HDL syntax. The traffic light HDL in Chapter
3 is an example of this HDL style. The FSM HDL defines the state-holding
elements all together in one signal declaration, and all the state-
transitions are contained in one process statement (always block for the
Verilog version). This approach works well if the design intent is explici-
tly visible in the HDL. If the HDL representation does not syntactically
delineate the FSM, the constructive FSM coverage model does not apply.

Inferred FSM coverage does an analysis of the logic represented by
the HDL model and assembles separate state-holding elements together
into the inferred FSM state vector. Further automatic analysis yields
the possible state values and the state transitions, as they are present
in the model. The limitation of the inferred FSM approach is that the
state machine, which the automatic analysis finds, may not be recogniz-
able by the design team as an intended, designed state machine. The
coverage reports will then refer to states and state-transitions, which

6.2 Verification Coverage 249

path1 = cond1 & cond2 path2 = not (cond1) & cond2

if (cond1=‘1’) then
 ...

 if (cond2=‘1’) then
 ...
 else
 ...
 end if;
else
 ...
 if (cond2=‘1’) then
 ...
 end if;
end if;

■ FIGURE 6.36

Definition of execution paths for coverage analysis.

simulation has not encountered, and these structures have no semantic
meaning to the designer. Subsequently, it will be very hard for both the
design and verification teams to reason about the missing scenarios that
the coverage analysis highlighted.

Multiple State Machine

Multiple state machine coverage combines several state machines together
into one coverage model and measure events that focus on relationships
between them. Complex events such as interlocked and synchronized
state-transitions are the target of this analysis. This area is still mostly
in research and progress is limited by the ability of the analysis to iden-
tify the groups of FSMs.

Discussion of Structural Coverage Models

So far, we discussed structural coverage only in the context of the design
and its HDL representation. Structural coverage plays a lesser role for
the verification environment. Of course, it is possible to apply line,
branch, and path coverage to any type of sequential code. Why would
this not work for verification code?

Indeed, it is possible to instrument the code of checkers or monitor
component. A checker or monitor has to inspect the HDL model over
time and compare these observations against the specification. As the
verification follows events in the model, it naturally assembles scenarios
and transactions. All these abstractions are relevant to coverage analy-
sis, and in some cases, the environment code might be the source of more
effective coverage models. It is very practical to measure which condi-
tions a checker or monitor had to compare against the specification and
which scenarios it never encountered.

Structural coverage, especially the more sophisticated forms, can
clearly improve the verification quality. The strength of structural cover-
age analysis, aside from its easy implementation, is its ability to point
out holes of uncovered areas in the design.

However, as discussed above, it is clear that for any nontrivial design
there will be areas that simulation will not cover. The real problem
is deciding which areas are safe for the verification team to leave
uncovered.

This is the common drawback of structural coverage. The indication
of absence of coverage is its value. However, that is only the start of a rea-
soning process, which decides whether this result is relevant or not for
the verification of the design. Structural coverage models have no ability
to predict bugs; bug coverage model they are not.

Most EDA companies have embraced structural coverage measure-
ment with vigor. This should not be a surprise, because it is straightfor-
ward to add and integrate most of the data collection for the structural

250 Chapter 6 ■ Creating Environments

models into the HDL processing tools that the vendors already provide.
It is also much more runtime-efficient to evaluate the instrumentation
embedded inside the HDL simulation compared with retrieving this data
out of the model and processing them in the test bench.

All these advantages of embedded structural instrumentation have
made structural coverage an important feature of HDL simulation
engines.

6.2.4 Functional Coverage
Unlike structural coverage, there is no automated way to create func-
tional coverage models. Functional coverage targets semantic aspects of
the test generation or design implementation. Underlying all functional
coverage activities there is the acknowledgement that it is necessary to
choose which functional areas of the design need to be tested. Insight
into the design semantics drives these choices, and they must come from
the designer or the verification engineer.

A very important component of this insight is the knowledge of design
complexity, of areas that are prone to bugs. The predictive bug coverage
component of functional coverage models must come from the experi-
ence of the engineers.

There is no set of complex automation tools available to define func-
tional coverage models. The tool support focuses mostly on the imple-
mentation of the coverage model and the efficient collection of the data
during runtime. After the data are collected, the tools provide GUI
support to help in the traversal of the results.

The most basic functional coverage model is the coverage event (or cov-
erage task) [27]. A coverage event specifies an event in the model or the
test bench, which is important enough that the verification environment
must note and log its occurrence.

Functional coverage based on events has much similarity and synergy
with assertion-based verification as discussed in Chapter 3. The event
classification there applies to coverage events as well. Coverage events
can be simple, static events and temporal event sequences; finally, it is
possible to have a library of prebuilt coverage event building blocks. For
example, a FIFO structure with its assertions such as buffer overflow is
also a good target for coverage events such as buffer full.

As a result, event-based functional coverage models can use the same
mechanisms as assertions for specification and evaluation during simu-
lation. Temporal expressions, such as those that PSL supports, can drive
event detection in a simulation engine [28]. PSL assertions and coverage
are detailed in Chapter 12. Only after the simulation engine detects the
event is there a need for differentiation between assertion and coverage
event. The assertion violation leads to an error message and possibly the
halt of simulation, whereas the simulation process just logs the coverage
event information and stores it in a database.

6.2 Verification Coverage 251

The analysis of functional event coverage is simple. Besides the pres-
ence or absence of an event, the coverage results show additional infor-
mation associated with the event. This could be a count, which specifies
how many times simulation encountered the event and the name of the
test case that triggered the event occurrence.

In addition, it is a good idea to collect events into event groups. The
basis for the group can be, for example, the HDL entity or module. Other
grouping criteria can be functional area, the association of the events to
the same FSM, or the same dataflow structure. Once the database logs
events under groups, a GUI that supports analysis of the coverage data
will allow access to coverage results based on group selection.

A very popular structuring principle for groups of coverage events is
the notion of cross-product coverage. The motivation behind cross-
product analysis is the interest in the occurrence of a group of events in
relation to each other.

Figure 6.31 shows a simple example of a cross-product that captures
what the stimulus initiator drives into Calc1. The analysis of interest for
this cross-product is the command distribution over all four ports. The
goal to cover all cells of the cross-product is equivalent to the statement
that the driver generated all commands, including illegal ones, at least
once for every port.

The example in Figure 6.31 has only two dimensions because it com-
bines only two variables into the cross-product. Models that are more
complex will cover a multidimensional space. The reason cross-products
are popular, especially when investigating the quality of stimulus gener-
ation, is that they organize the possibility of complex codependent
enumerations into an easy-to-understand scheme.

It is possible to analyze the cross-product data per test case. Alterna-
tively, the coverage collection tool can tabulate many test case results into

252 Chapter 6 ■ Creating Environments

Port/command 1 2 3 4

No-op

Add

Subtract

Shift left

Shift right

Illegal

■ FIGURE 6.37

Cross-product coverage analysis for Calc1 stimulus. The two dimensions of the cross-product are oper-
ations and ports. The coverage model gives insight into which operation/port combinations were not
simulated versus which ones were and how many times they were simulated.

one result cross-product. Coverage tools typically provide two types of
reports: status reports and progress reports [29].

The status report (Figure 6.38a) shows the current overall encountered
coverage events in a snapshot diagram, whereas the progress reports
(Figure 6.38b) display a curve of the increasing sum of encountered
events over the process of test case simulation. The typical shape of the
progress is asymptotical toward the goal of reaching all events, with a
sharp increase in the beginning of the process. The early events are
typically the easy ones to hit, whereas the events encountered later
need much more effort from the verification team, tuning the stimulus
generation.

Cross-product coverage event matrices are so easy to define that it is
a typical phenomenon to see meaningless events defined. Nonmeaning-
ful events are either illegal by their definition or are impossible to occur.

The verification team should turn illegal events into assertions, which
once again demonstrates the synergy between coverage analysis and
assertion verification. Impossible events are harder to identify. It can take
a fair amount of reasoning over the design specification to understand
which event combinations cannot occur. However, this effort is not lost
because it goes hand in hand with the verification engineer’s deeper
understanding of the DUV.

It is useful to extend the cross-product of Figure 6.37 with another
dimension. We add the response value from the output ports of Calc1.
Now the cross-product spans the space of all commands, on all ports and
with all possible response values. These combinations, however, are not
all reachable, as with the shift commands and the overflow response. If
the events are kept in the cross-product, there will forever be events that
will not be covered.

It is important in the upfront analysis of the coverage model, to
exclude illegal and unreachable events from the cross-product.

6.2 Verification Coverage 253

Port/command 1 2 3 4

No-op

Add

Subtract

Shift left

Shift right

Illegal

Verification effort

Number of tests

N
um

be
r

of
co

ve
ra

ge
 e

ve
nt

s

All defined events

X

X X

X

X

X

X

(b) Progress report

Status report(a)

■ FIGURE 6.38

Cross-product coverage reports. (a), Status report showing the summary of all coverage data up to a
point in time. (b), Coverage results tabulated over time.

Currently, test bench environments support cross-product coverage
analysis. In some cases, there is a separate library available for model
definition and instrumentation functions, as well as the transport of the
result to a centralized repository. The modern HVLs (OpenVera, e) have
built-in support for coverage definition and data collection. The reader
is encouraged to download the HVL manuals and study the verification
coverage sections.

6.2.5 Coverage Bulk Data Collection and Management
Many commercial coverage tools are a great productivity help for the ver-
ification team. Often, their functionality supports the whole process from
coverage model definition to data collection and analysis after the sim-
ulation has ended with easy-to-use interactive GUIs.

Any evaluation of such a tool set should ask questions about the
support of more than a single simulation. In other words, evaluate how
the coverage methodology scales for the case in which the verification
environment runs a large number of simulations (bulk simulation).

The two most important aspects that influence scaling to support bulk
simulation are as follows:

■ How are the coverage results stored when the simulation is
finished?

■ How does the coverage analysis function access the stored cover-
age results?

Figure 6.39 illustrates the topology of a large verification project and one
possible solution for a scalable coverage strategy.

The idea is that all compute servers, which run simulation, ship a
result file at the end of the simulation job to a central coverage data
server. This server has enough disk storage and compute power to handle
large data volumes and compute intensive analysis algorithms over the
coverage data. The user client machines send their requests for analysis
to the coverage data server, which in turn sends results back to the user
clients.

It is clear that the network capacity needs to be available to support
large amounts of network traffic that results from this topology. In addi-
tion, it is very important that the size of the data sets that are sent via
network is kept as compact as possible. One of the options for rebal-
ancing the compute work is to let the user client machines do more of
the algorithmic work to analyze the coverage status. The counterbalance
to this approach could be an increased need for network bandwidth to
give the user client machines access to the necessary data.

Verification coverage provides very important feedback that keeps the
verification team informed about the quality of the simulation jobs.

254 Chapter 6 ■ Creating Environments

Coverage, the bugs found and the bug rate are the “eyes and ears” of the
verification project.

6.2.6 The Right Coverage Analysis Strategy
The overall discussion in this section should highlight that coverage
analysis is one of the harder problems for a verification team. Although
there are many automatic tools that promise a quick fix for the coverage
quandary, all of them have significant drawbacks. On the other hand,
neither industry nor academia has so far found coverage metrics with
the right necessary predictive capability to guide simulation into those
areas of the state space where the hidden bugs are.

This leaves a verification team with a range of necessary incomplete
alternatives to select the right coverage strategy for their specific pro-
ject. However, the discussion above leaves us with useful guidelines
that will result in a better use of coverage technologies and an overall
better verification methodology. Table 6.3 attempts to collect some of
these.

6.2 Verification Coverage 255

Coverage
data server

Simulation
and

coverage data
collection

User
coverage
analysis

. . .
. . .

■ FIGURE 6.39

Bulk coverage data collection.

6.3 SUMMARY

The training of airplane pilots includes a lot of technical background
on airplanes and the physics of flying because it creates better pilots. In
the same way, a verification team has to gain a conceptual understand-
ing of the verification technologies they use, to be better verification
engineers. For this reason, this chapter took a detailed look “under
the hood” of the technologies that are essential for building simulation
environments.

256 Chapter 6 ■ Creating Environments

TABLE 6.3 ■ Guidelines for the use of coverage analysis

■ Use coverage analysis. Especially with random-biased stimulus generation, the verification is
blind without the coverage feedback.

■ Use coverage as a method that provides insight into verification progress, not as a tool that
provides a set of absolute numbers. The verification team should not confuse reaching 100%
of the coverage with a guaranteed bug-free design under verification (DUV). Coverage
numbers are only useful with careful interpretation.

■ The more insight it takes to create a coverage model, the more insightful the coverage
feedback information will be.

■ Use automatically generated coverage feedback mainly as an indicator for holes in the
simulation coverage. Because automatic metrics take not much insight, the value of their
positive feedback (events have been hit) is limited. Missing events, however, provide
unambiguous feedback of missing verification in the areas specific to the metric used.

■ Limit automatically generated coverage feedback to the amount of data the simulation
infrastructure can support. Low-level automatic coverage collection often easily overwhelms a
project.

■ Use as much manually instrumented coverage data collection as possible. Manual
instrumentation of the simulation process requires insight and effort. The insight provides
useful coverage information; the effort limits the instrumentation to mostly useful coverage
information.

■ Instrument corner conditions in the DUV for coverage analysis. Corner conditions are
naturally more error-prone. Examples of corner conditions are maximum and minimum
resource allocations or rare collisions of events that need special treatment in the DUV
implementation.

■ Combine assertion checking as much as possible with coverage instrumentation and vice
versa. Both activities are related, and insight in one usually provides insight in the other.

■ Select the dimensions of coverage cross-products carefully. A cross-product that is too large
likely provides not enough insight. Similar to the DUV state space, cross-products tend to
blow up easily in size and simulation cannot cover all the events specified.

■ Use broad coverage analysis at the level of functional unit simulation. Prioritize and review
coverage goals at the higher level of the hierarchy. The unit-level simulation provides the
broadest amount of functional coverage. Levels above unit simulation by intent will not reach
all coverage measures that are in place for a unit. A selection of prioritized measures from
the units and new measures should constitute the coverage goals for a higher verification
level (e.g., chip level).

Test benches are the primary vehicle of the verification work. On a
large industrial project, it is common to have possibly dozens of engi-
neers work on the development of test bench components. These com-
ponents work on functional units at first, but as verification moves to the
higher levels of chip and system verification, the team assembles many
components from the lower levels, for example, checkers and monitors,
to build the more complex test bench environment. Several chapters of
this book discuss content and strategy of these test benches. In addition,
the verification team needs to have a clear plan, up front, of the struc-
ture and architecture of the test bench at the highest level of the hierar-
chy. There, many pieces, reused from the lower levels, must build a
robust larger piece of software. Therefore, it is necessary for the verifi-
cation team to have a broad understanding of different test bench archi-
tecture and features.

This chapter covered a large landscape of applicable test bench tech-
nologies. Starting from the use of HDLs for test benches, we embarked
on the experiment to design our own from-scratch C++ test bench library
and then used that experience to survey a selection of available HVLs,
namely, OpenVera, the e language, and SystemC. By using this overview
of many issues with simulation engine interfaces and HVLs, the focus
always was to provide the conceptual background of what are the
common and unique characteristics a user can expect from these
environments. This exercise of compare-and-contrast should help a
further study of any one of these options available to the verification
team.

Staying with the airplane analogy, airplane engine and cockpit can be
compared to the role of the test bench in verification. From this view,
coverage analysis is similar to the radar of the airplane. Coverage gives
the verification team vital insight into the progress of their efforts and a
direction to focus verification next to uncover the hidden bugs of the
DUV. Functional test coverage analysis tracks test bench activity, whereas
functional implementation coverage reports DUV state space visited
during simulation. For both classes of coverage, the user can decide to
use structural or functional coverage methods. Structural methods
attempt to track coverage based on inherent structural properties of the
test bench or the DUV specification and are therefore well suited for auto-
matic coverage instrumentation via tools. The advantages and disadvan-
tages of structural versus functional coverage, which relies mostly on
manual model instrumentation was discussed.

While the field of coverage analysis is still evolving in the industry,
it is nevertheless possible to specify a number of guidelines for a prac-
tical coverage strategy, which uses a combination of the available
coverage analysis techniques that is optimal for a given verification
project.

6.3 Summary 257

6.4 EXERCISES

1. Change the classes in Figures 6.12 and 6.13 such that the end-of-
test reporting status flows from the driver to the scoreboard and
then the checker and finally returns to the top-level test bench loop.

2. Change the test bench components from Exercise 1 to enable
a check for pending, unfinished operations at the end of the
simulation.

3. Change the test bench from Exercise 2 to support the name of a test
case file as a command line parameter, function main().

4. Sketch out how to add the hardware reset of the DUV to the top-
level test bench loop in Figure 6.13.

5. Add control for the execution of several test cases to the top-level
test bench loop in Figure 6.16. Change the test bench from Exercise
2 to accept a name of a test case list file as a parameter. The test
case list contains the name of a test case file per line. Between test
cases, reset the Calc1 DUV using the specification from Chapter 4.

6. Show how the test bench library architecture has to change such
that test bench components can have a separate function for dif-
ferent phases of execution (hardware initialization, execution, end-
of-test checking), not just a single execute() function (as a reference,
see Figure 6.17).

7. The test bench of Figures 6.12 and 6.13 has replicated declarations
and code concerning the four input and output ports of Calc1.
Create a new port class for the driver and a similar one for the
checker and replace the originally replicated code with four
instances of the port objects.

8. Instrument the stimulus generator developed for the exercises of
Chapter 4 (Calc1) with coverage collection code. Run the test case
suite developed for Chapter 4 and inspect and discuss the coverage
results.

9. Instrument the test bench of Calc1, developed for the exercises of
Chapter 4, with code that captures coverage events in the HDL
model. Run the test cases developed for Chapter 4 against this
model and inspect and discuss the coverage results.

10. Using the Web site references and freely available reference mate-
rial from the Internet, compare and contrast the coverage support
built in to the HVLs OpenVera, and e.

258 Chapter 6 ■ Creating Environments

Complex designs require robust stimulus generation components.
Together with the checking components, stimulus generation is critical
for discovering design problems. This chapter describes methods for cre-
ating simulation-based stimulus generation in complex designs.

Earlier chapters used simpler example designs to illustrate determin-
istic test cases and introduce the building blocks of a simulation envi-
ronment. The Calc1 design was used as an example of a relatively simple
design under verification (DUV). To illustrate more complex stimulus
generation techniques, this chapter launches the Calc2 design, which
builds on Calc1.

This chapter introduces four corners of stimulus generation, which
range from deterministic to random generation and from predetermined
to on-the-fly verification environments. Each has strengths and weak-
nesses, which the verification team must evaluate using their insight into
the function of the DUV. This chapter should enable the reader to plan
a stimulus environment that appropriately matches the requirements of
the design under verification.

When devising a stimulus environment, the verification engineer must
understand the interrelationship of events and interface activity on the
DUV. Often, the design places restrictions on the inputs, requiring intel-
ligence in creating stimulus components. This is called constraint solving
and is an integral part of complex stimulus generation. Insight into
design constraints contributes greatly to the quality of the stimulus gen-
eration components. This chapter describes the process for evaluating
design constraints and the methods for properly tuning the stimulus
components to exploit these constraints.

No stimulus component is complete without coverage feedback, which
provides invaluable insight into the quality of the stimulus components
by highlighting areas of the design that the components have not exer-
cised. Without coverage, the verification team can only speculate on the
scenarios the stimulus components create. With coverage, they know for
sure. We previously defined the types of coverage and coverage tools. This
chapter demonstrates coverage’s use to tune stimulus generation.

C H A P T E R 7

STRATEGIES FOR SIMULATION-BASED
STIMULUS GENERATION

7.1 CALC2 OVERVIEW

The Calc2 design builds on the Calc1 example detailed in Chapter 4. On
the surface, Calc2 has just a single, relatively simple specification change
over Calc1. However, the change adds substantial complexity to the
design.

The Calc1 design allowed only one command from each of the four
port requestors at a time. All ports needed to wait until the calculator
completed execution of the current command before sending another
command. In the new design, the port requestor can send up to four com-
mands into Calc2 from each of the four ports. Hence, this calculator
could (theoretically) work on up to 16 commands at a single time.

This single design change has major implications to the system.
Because there are two internal arithmetic pipelines in the calculator (one
for add/sub and one for shifts), it is possible for commands sent from a
single port to be executed out of order. For example, if all four ports send
in three add commands followed by a shift command, the calculator is
likely to execute the shift commands before the older add commands.
However, the specification dictates that commands from the same port
that use the same pipeline (add/sub or shift) must return in order.

To correlate the responses to the correct commands, the specification
calls for adding a 2-bit tag to the input and output protocols. This tag
shall be a unique identifier for each of the commands from each port.
(Inside the calculator design, the hardware description language (HDL)
maintains another pair of “internal” tag bits to correlate the command
back to the correct port.) Therefore, each port requestor must keep track
of the outstanding tags it has sent to the DUV to ensure that it never
allows duplicate tags.

Figure 7.1 shows the input and output description of Calc2. Table 7.1
describes each of the input and output busses.

In Calc1, the HDL design merely had to latch the single incoming
command from a given port and hold it until the priority logic forwarded
the command to the adder or shifter ALU. The Calc2 design requires a
more complicated structure. Now, the HDL design must implement a
pair of queues to hold multiple commands. Rather than creating four
individual queues for each port, the HDL implementation uses two
queues, one for each ALU. As the port requestors issue commands, the
Calc2 logic places the commands and data into either the add/sub queue
or the shift queue. This guarantees the integrity of the order of opera-
tions because the HDL design places new commands directly into the
queues as it receives them.

Although a port can now send up to four commands without receiv-
ing a response, the port requestor cannot send these commands in four
consecutive cycles. This is because each command still requires two
cycles to send both data operands. Figure 7.2 shows the timing of a single

260 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

7.1 Calc2 Overview 261

c_clk
reset

req1_cmd_in(0:3)
req1_data_in(0:31)
req1_tag_in(0:1)

req2_cmd_in(0:3)
req2_data_in(0:31)
req2_tag_in(0:1)

req3_cmd_in(0:3)
req3_data_in(0:31)
req3_tag_in(0:1)

req4_cmd_in(0:3)
req4_data_in(0:31)
req4_tag_in(0:1)

out_resp1(0:1)
out_data1(0:31)
out_tag1(0:1)

out_resp2(0:1)
out_data2(0:31)
out_tag2(0:1)

out_resp3(0:1)
out_data3(0:31)
out_tag3(0:1)

out_resp4(0:1)
out_data4(0:31)
out_tag4(0:1)

OutputsInputs

Calc2 Design

■ FIGURE 7.1

The input and output signals for Calc2, grouped by ports. Each port has the same basic signals and
protocols.

TABLE 7.1 ■ Input and output descriptions

Input/output Description

c_clk c_clk is the main clock. Drive c_clk the same as in the Calc1 design.
reset Hold reset high for seven cycles at the start of the test case. This signal

must remain low during functional testing. Similarly, all input ports
need to be driven low (“0’’b, not “X’’ or “U’’) from the start of
simulation.

reqX_cmd_in(0:3) The command bus has the same definitions as Calc1: Add (“0001’’b),
Subtract (“0010’’b), Shift_left (“0101’’b), and Shift_right (“0110’’b).

reqX_data_in(0:31) The data bus has the same definitions as Calc1. The requesting port
sends the operand data on back-to-back cycles. Operand1 data
accompanies the command, and Operand2 data follows.

reqX_tag_in(0:1) The tag bus is the 2-bit identifier for each command from the port. The
port requestor can reuse the tag as soon as the Calc2 HDL responds to
the command.

out_respX(0:1) The output response bus has the same definition as Calc1: Good
response (“01’’b); invalid command or overflow/underflow (“10’’b); and
internal error (“11’’b; never happens). “00’’b on the response line
indicates there is no response from that port on that cycle.

out_dataX(0:31) The output data bus has the same definition as Calc1. This data
accompanies a good response.

out_tagX(0:1) The output tag bus corresponds to the command tag sent by the
requester. It is used to correlate the response to the original command.

add command on port 1, and Figure 7.3 shows multiple add and sub
commands from port 1. Note that in Figure 7.3, each command uses a
different tag value.

Because all of the commands in Figure 7.3 are adds and subtracts, this
sequence only uses one of the two ALUs. As a result, the commands
return in the same order that they were initiated. If other ports were
to send commands, it would be possible for a single port to receive
responses on back-to-back cycles. This would give a far less predictable
response timing compared with in Figure 7.3, where the responses come
every-other cycle.

Finally, there are some nonobvious implications of the changes to the
design. Often, these implications are not in the specification, and the ver-
ification engineer realizes interesting cases only after simulation starts.
A good example of this occurs in Calc2. The combination of paralleliza-

262 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

‘1111’x ‘2222’x ‘2020’x ‘3333’x‘1111’x

6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

c_clk

reset

req1_cmd_in

req1_data_in

req1_tag_in

out_resp1

out_data1

out_tag1

0:0

0:7

0:3

0:31

0:1

0:1

0:31

0:1

‘0001’b

‘00’b

‘01’b

‘11’b

‘0404’x

‘0010’b

‘01’b

‘0001’b

‘10’b

‘3333’x

‘0010’b

‘11’b

‘4444’x ‘4040’x

‘01’b

‘10’b

‘6666’x

‘01’b

‘01’b

‘0202’x

‘01’b

‘00’b

‘2222’x

Cycle

■ FIGURE 7.3

Calc2 timing diagram showing multiple add and subtract commands from the same port, each using
different tag values.

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

c_clk

reset

req1_cmd_in

req1_data_in

req1_tag_in

out_resp1

out_data1

out_tag1

0:0

0:7

0:3

0:31

0:1

0:1

0:31

0:1

‘0001’b

‘10’b

0005’x 000D’x

‘01’b

‘10’b

‘0012’x

Cycle

■ FIGURE 7.2

Timing diagram showing the protocol of a single add command for port1 in Calc2.

tion of commands across two execution pipelines and multiple com-
mands from a single port creates the potential for very interesting special
cases, also called window conditions. Given the right state of the queues
when commands arrive from a single port, it is now possible that the
next command in both the add and shift queues is from the same port
requestor. If the priority logic dispatched both commands simultane-
ously, the results from the adder ALU and the shifter ALU would collide
at the output driver. To avoid this bug, either the priority logic must
prevent the simultaneous dispatch of commands from the same port, or
the output driver logic must be able to serialize the responses. In any
case, the verification engineer must ensure that the stimulus component
creates this special case during simulation and should document this in
the verification plan.

The potential for this type of problem exists in most of today’s designs.
During the test plan development phase, the verification engineer
must hunt for these scenarios. The key characteristic in these cases is
resources shared across multiple paths.

7.1.1 Calc2 Verification Plan
Calc2 presents a greater verification challenge than does Calc1. Multiple
outstanding commands, which can complete out of order, require a more
sophisticated environment than do the deterministic driving and check-
ing mechanisms used in Calc1. Because each port can send four com-
mands, the variability on the interface timings increases such that the
verification engineer needs to build an automated, programmed envi-
ronment. With all the possible timings between four commands and four
operations across four ports, the state space explodes to a point that the
verification engineer cannot conjure up all of the necessary permutations
manually.

The following section documents the verification plan for Calc2, fol-
lowing the test plan template introduced in Chapter 4.

Description of Verification Levels

Full verification of Calc2 requires two levels of verification. We will focus
this verification plan on the top level. However, in a real project, the ver-
ification work would include unit-level plans for the priority logic, which
is substantially more complicated than in Calc1.1

The verification team might consider unit-level verification for the two
ALU units. However, in this case, Calc2 reuses both the add and shift
ALUs from the Calc1 design. It is common in the design world to carry

7.1 Calc2 Overview 263

1 Verification of the priority unit requires a unit level specification including the input and
output definitions.

forward design blocks from previous projects. This makes both the
design and verification job easier.

Required Tools

Calc2 has the same simulation engine and license requirements as does
Calc1. However, the added complexity of Calc2 requires a programming
or high-level verification language (HVL) infrastructure. If multiple
people share the verification effort, this infrastructure must include a
code revision tool (RCS, CVS, Clear Case, etc). This allows the verifica-
tion team to control the data management of the environment code via
check-in and check-out from a centrally shared repository.

Risks and Dependencies

As this is a textbook exercise, there are none of the risks associated with
normal industry products. In industry, this project might have risks such
as not obtaining the required verification staffing or the lack of on-time
delivery of HDL. Similarly, most of the dependencies inherent in indus-
try designs do not enter into this exercise. Under normal conditions, the
verification plan would explicitly state the following dependencies:

■ Verification of the unit-level priority logic depends on the delivery
of its specification

■ Chip-level verification depends on the completion of the unit-level
verification

■ Tool and license availability

Functions To Be Verified

The verification engineer must verify the following functions in addition
to those listed for the Calc1 exercise. This verification listing builds on
the tests listed in Chapter 4 (4.4.2). Therefore, the tests in Tables 4.5, 4.6,
and 4.7 serve as the foundation for the Calc2 test matrix.

Table 7.2 lists the first set of expanded test cases required for Calc2.
The test case reference numbers begin with the number 4 because the
Calc1 set of tests (tests 1 through 3) serve as the base for Calc2.

In addition, there are interesting corner cases that the verification
environment must create. Table 7.3 describes these cases.

Note that this test plan calls for verifying all lengths of shift opera-
tions, but not all different add or subtract operands. This is because there
are just 32 different possible shift operand2 values, whereas there are 232

different add/sub operands.

264 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

The checking for Calc2 must verify that the design handles multiple
interesting cases, along with the basic command-data-response check-
ing. Table 7.4 shows some of the required checks.

Specific Tests and Methods: Environment

The Calc2 verification environment will take a grey box approach. All
stimulus generation will occur at the top-level interface, driving the spec-
ified Calc2 inputs. Although most checkers and monitors will also be at
the top level, some verification code will peek inside the DUV. Specifi-
cally, we have already stated in the test plan the desire to fill the queues,
indicating a case for monitoring the internal state of the queues.

The Calc2 design goes beyond the limits of the capability of deter-
ministic verification. Although formal verification is feasible, we choose
a random-based environment for this design.

Construction of the stimulus initiators for any random environment
should allow a bypass for deterministic verification. For Calc2, early sim-
ulations should be restricted to simple scenarios to verify the most basic
functions of the DUV. The random controls will allow deterministic
scenarios.

7.1 Calc2 Overview 265

TABLE 7.2 ■ Calc2 expansion test cases

Test reference Test description
number

4.1 Send multiple commands with
variable timing between commands
from the same port

4.2 Send commands using variable tags
for each command

4.3 Send multiple invalid commands

TABLE 7.3 ■ Calc2 corner case tests cases

Test reference Test description
number

5.1 Send only a mix of add and subtract commands to fill the add
queue

5.2 Send only a mix of shift commands to fill the shift queue
5.3 Verify mixes of overflow, underflow, and good response cases across

back-to-back port commands
5.4 Verify all lengths of shift cases across back-to-back port commands
5.5 Verify the design under verification does not allow output collisions

from both pipelines sending results to the same port
simultaneously

Randomization controls will enable the test case automation to choose
command and data values rather than placing the burden on the test case
writer. This provides a level of abstraction and a broader range of data
and control stimulus. However, the environment needs the ability to
limit, or constrain, the randomization, so that the verification engineer
can steer the test case into interesting cases. The following inputs to
Calc2 must allow for constrained random values:

■ Operand data

■ Command types

■ Tag values

■ Delay between commands

The environment duplicates these randomization controls for each
port, allowing for independence across the requestors. Furthermore, the
mechanism to choose the values must have a bias control (parame-
terized-random) to give the verification engineer influence over the sta-
tistical distribution of the values. This will allow control over such cases
as the percentage of invalid commands sent in a particular test case.

The need for constrained random input values (versus pure random)
is required on the tag values. The stimulus initiator may pick any tag
value for a given port as long as that value is not already in use. There-
fore, the stimulus initiator must have access to the record of outstand-
ing tags, and must constrain itself to choosing unused tags.

The Calc2 environment will use the packet level of abstraction. The
stimulus initiator for Calc2 will consist of two parts. The first is a

266 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

TABLE 7.4 ■ Specific checks for Calc2 verification environment

Check reference Check description
number

1.1 Check that response value matches expected response based on
command and data

1.2 Check that every command gets a response
1.3 Check for unmatched tags on the response port
1.4 Check that result data matches expected result based on

command and data
1.5 Check for correctness of out-of-order responses across command

pipeline types but never across the same command type
1.6 Verify in-order execution of all adds/subtracts or shifts, no matter

which port sent the command
1.7 Check that the response tag matches the data for the command

that was sent (tags do not get swapped)
1.8 Check that there are no unexpected or stray values on the

outputs.

random, packet-level stimulus generator. The “brains” of the stimulus ini-
tiator, the stimulus generator creates the packets, keeps track of port and
tag availability, and posts inputs to the scoreboard. The second part is
the interface protocol driver. This routine is the slave to the packet gen-
erator and converts the packets into the bit-level interface protocols. The
verification environment will instantiate the stimulus initiator four times,
once for each port.

The verification environment for Calc2 will use the transaction-based
approach to checking. The transactions correspond to the packet-driven
stimulus. Each transaction is a single command, tag, and data operation
sent by the stimulus initiator. This method was chosen over a cycle
accurate reference model approach because the cycle accurate reference
model approach would require cycle accurate output predictions, which
complicates the verification code beyond the requirements. Predicting
the exact cycle of each Calc2 response is a cumbersome task that requires
constant tuning with each change in the HDL. Our transaction-based
approach verifies the correct answers for all operands, as well as the
correct ordering of responses. Initially, the transaction approach might
provide less accurate checking capability than does the cycle accurate
reference model. However, the verification engineer can easily bolster
the transaction-based approach by maintaining latency statistics
(measurements of how many cycles each operation took). These statis-
tics verify that the Calc2 pipeline has no unexpected stalls or delays,
while bypassing the coding overhead of a cycle accurate reference
model.

As with the stimulus, the environment will perform checking at
the packet level. The checking component on each port follows a simpler,
but similar model to the stimulus generator. One routine will package
the response and data coming out of the DUV, and the second routine
checks that the values are correct according to the data in the scoreboard.

The output-checking component must verify all of the checks outlined
in Table 7.4.

In addition, the checking routine must inform the stimulus initiator
(via the scoreboard) when tags are made available.

Finally, a monitor must track the state of the two queues. The verifi-
cation team will use this information for coverage feedback, as well as
checking that the queue does not overflow.

Test Scenarios: Matrix

Early verification of Calc2 should constrain the environment’s random-
ization parameters such that it drives the basic functions identified in
the test plan. Table 7.5 shows a test matrix for the basic functions.

The verification team checks off each box of the matrix as test cases
complete. The team runs most of the basic tests (except those denoted)
on a port-by-port basis.

7.1 Calc2 Overview 267

As a few deterministic test cases complete successfully, the verification
team starts to remove constraints from the environment’s randomization
controls. This allows the stimulus components to create a wider variance
of cases simultaneously across all four ports. In practice, a verification
team will migrate from the deterministic tests to an unconstrained envi-
ronment. As the test cases become less constrained, the team uses cov-
erage statistics to track the test matrix as well as other interesting
scenarios. The following section of the test plan documents the tracking
of the interesting cases performed under this method.

Coverage Requirements

The preceding test matrix articulates the most basic set of test case sce-
narios for Calc2. This is not enough to guarantee that the verification
team fully exercises the HDL. Because of the many permutations of
interesting events, Calc2 requires tracking functional coverage. This
section of the test plan suggests only a few of the many functional cov-
erage models for Calc2. The creation of further functional coverage
models, including those dealing with tags, ports, command sequencing,
and data ranges, are given as reader exercises.

Model 1: Number of commands in each queue. This model has an
initial set of combinations of 17 ¥ 17 = 289. This space is based on the
total number of commands that each queue can hold (0 to 16). However,
136 of the permutations are illegal—those in which the total number of
outstanding commands is greater than 16. Hence, the legal set of com-
binations for this model is 153.

Model 2: Number of concurrent invalid commands. The verification
plan dedicates most of the Calc2 stimulus to valid commands. However,
it would be interesting to track that the stimulus components send mul-
tiple invalid commands concurrently across all four ports. This model
has a theoretical size limit of 17 (0 to 16 concurrent invalid commands).

268 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

TABLE 7.5 ■ Calc2 basic test matrix

Function Port 1 Port 2 Port 3 Port 4

Basic Add command
Basic Subtract command
Basic Shift_left
Basic Shift_right
All four tags
Variable timing between commands
Fill add queue (all four ports involved)
Fill shift queue (all four ports involved)
Invalid commands
Overflow and underflow cases
Various lengths of shift values

But because the Calc2 DUV responds quickly to invalid commands (they
bypass the ALUs), it is unlikely that it is possible to have a large number
of concurrent invalid commands.

Model 3: Permutations of ports at the top of each queue. This model
tracks which port sent the commands on the top of the two internal
queues. The model size is 5 ¥ 2 = 10, based on the five possible port values
(four ports plus the case of an empty queue) on the top of two queues.
All cases are legal. Of particular interest are the cases in which both com-
mands at the top of the queues are from the same port.

Resource Requirements

For the Calc2 exercise, the resource requirements call for either one or
two verification engineers. If two people work on the exercise, one should
construct the stimulus components while the other writes the checking
components. Because both components require access to the scoreboard,
either engineer can write the scoreboard function.

The compute resources call for a single workstation on which the
simulation engine runs. The exercise also requires other basic simula-
tion-based tools, such as the debugger, a compiler (for either the pro-
gramming language or the HVL), and a simulation engine.

Schedule Details

Depending on the experience level of the verification engineer, the Calc2
exercise will take between 15 and 40 hours of work by a single person.
Existence of an initial code skeleton can significantly reduce the work.

This schedule is derived by breaking the work into its parts. The
verification engineers will dedicate significant time to environment
development and to DUV debug. We can break the environment debug
down into individual components, consisting of the stimulus, checking,
and scoreboard components. The scoreboard component is the simplest
of these because it is a table driven by the stimulus and checking
routines. The stimulus and checking components will take from 5 to 10
hours of coding each. Here, the verification engineer will focus on a
single port and copy most of the code for the other three ports.

The debug schedule for Calc2 will vary based on the quality of the
stimulus, checking, and error messages within the environment. With a
quality environment in place, a verification engineer should be able to
identify and debug Calc2 within 5 hours.

7.1.2 Calc2 and the Strategies for Stimulus Generation
The Calc2 test plan specifically calls for a random-based environment
and a grey box approach. However, to illustrate the multiple strategies
for stimulus generation, the Calc2 design will be used as a sample for
each stimulus paradigm. Although a random-based environment is

7.1 Calc2 Overview 269

indeed the best fit for Calc2, it is feasible to verify portions of the DUV
by using the various strategies described in the next section.

7.2 STRATEGIES FOR STIMULUS GENERATION

Verification can never compete with the number of cycles that the real
hardware will encounter. In just a few seconds of runtime, the real hard-
ware will exceed the aggregate number of simulation cycles run under
verification. Yet the customer expects the verification “warrantee” to last
the life of the machine. Therefore, from a practical standpoint, every ver-
ification effort is handicapped by a limited number of simulation cycles
across a short delivery schedule.

To battle these odds, the verification team needs a robust strategy for
creating stimulus for the relatively small number of available simulation
cycles. The fundamental mantra behind the strategy is to stress the hard-
ware more vigorously during every simulation test than it will ever be
stressed again. This mantra holds when comparing stimulus stress across
different simulation levels or during the lifetime of the part. The verifi-
cation suite must contain more permutations, drive more interactions,
and create more extraordinary cases over a short period of cycles than
will be encountered in normal program or application activity. The ability
to drive intricate scenarios is more acute at the lowest levels of simula-
tion. When dealing with smaller portions of HDL, the verification engi-
neer can control more of the internals via the input signals. Furthermore,
at the lower levels of verification, the test suite is more likely to exercise
a higher percentage of the entire HDL state space, as the total size of the
state space is comparatively small. As the size of the design grows to the
system level, it becomes more challenging for the verification engineer
to overstress internals of the design and hit odd permutations.

Therefore, the verification team must take this approach to heart at
each level. The lower levels of verification must create more stress on the
smaller pieces of the design than the next levels will create on the ag-
gregate of the smaller pieces. If this holds true, then each higher level of
verification should uncover only those bugs caused by stitching logic
together. The verification team should find bugs internal to a single
portion of logic at the lowest level that contains that portion.

We have stated that finding these bugs requires a coordinated effort
between stimulus creation and checking. This section describes methods
and strategies for creating robust stimulus generation. Chapter 8 will
focus on checking approaches to complement these stimulus strategies.

7.2.1 Types of Stimulus Generation
The verification test plan articulates the proposed verification environ-
ment for each level in the hierarchy. During that planning phase, the ver-

270 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

ification leaders make basic choices on stimulus generation. Two of the
most fundamental decisions are

■ Deterministic versus random stimulus generation

■ Pregenerated test cases versus on-the-fly test case generation

Deterministic Versus Random Stimulus Generation

Chapter 3 highlighted deterministic testing. Deterministic tests create
specific scenarios that the verification engineer wants to see. The sce-
narios are “determined” before running the simulation.

Random environments contain stimulus generation components that
use pseudorandom number generators and probability tables to make
decisions on input stimulus. The verification team programs intelligence
about the DUV protocols into the stimulus components to limit the input
scenarios to legal scenarios. The probability tables, which the verifica-
tion engineer may adjust before runtime, bias the components’ decisions
on what inputs to send and how often to send them.

Most verification environments avoid completely random stimulus
generation. In most cases, completely random stimulus does not adhere
to the DUV’s input protocols, rendering illegal scenarios. Therefore,
random environments generally use constraints to limit scenarios to the
legal subset of the input space.2

Although this chapter focuses on stimulus, it is important to note that
random environments tend to use automated checking. Even though the
verification engineer can hand-code specific checks on a deterministic
sequence, it is prudent to use programmed scoreboard and checking
components that allow for the wide range of possible input scenarios in
random-based environments.

There is a broad range of possibilities between deterministic and
completely random input stimulus. Even in deterministic environments,
verification engineers routinely use pseudorandom number generation
to create data. Conversely, verification engineers can tightly constrain
random environments to create specific, nearly deterministic sequences.
Figure 7.4 shows the range of stimulus generation between determinis-
tic and random.

Most verification plans initially call for deterministic test cases. After
the basic scenario test cases pass successfully on complex DUVs, the ver-
ification team will enable random generation to hit more of the state
space. Therefore, testing tends to go from left to right on the axis shown
in Figure 7.4.

7.2 Strategies for Stimulus Generation 271

2 The verification plan may call for some deviations from the legal subset of input
protocols. This is called error injection verification or bad path testing, and is covered in
Chapter 9.

The verification team defines the deterministic tests based on scenar-
ios they can conceive. However, there are too many cases beyond the
bounds of the team’s imagination and time constraints to verify without
the use of automated, programmed environments. This is where random
environments help. Random environments with constraint directives are
effective at hitting a wide range of stimulus, which tends to find many
bugs in areas that the engineer did not consider. The key is to have pro-
grammable constraints and enough compute resources for the random
environment to explore the interesting state space.

In the early stages of verification, when the DUV and the test envi-
ronment are relatively unstable and incomplete, the team will use the
biasing parameters to constrain the environment so that the simulation
is effectively a directed test. Later, when the design is more stable, the
team relaxes those constraints.

Any time the stimulus components use random approaches, coverage
metrics guide the team to search in untouched corners of the design.
After all the simulation cycles, the coverage data may point to specific
corners of the design’s state space that the test suite has not exercised.
Here again, it may be necessary for the team to write deterministic test
cases to cover the holes.

Across each level of the verification hierarchy, the verification team
needs to decide their strategy on deterministic versus random stimulus
generation. At the lowest levels, deterministic test cases may cover the
entire interesting state space. As the design size grows, the team will need
to incorporate more and more randomization controls to hit the broad
spectrum of input possibilities.

Pregenerated Test Cases Versus On-The-Fly Test Case Generation

Pregenerated test cases are those in which the input stimulus and output
checking exist before running the simulation job. The verification engi-

272 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Specific scenarios
with some random

values Random environments

Specific scenarios Tightly constrained
Random environment

Fully random—
illegal sequences

RandomDeterministic

■ FIGURE 7.4

The range of stimulus generation goes from deterministic or specific scenarios on the left to fully random
sequences on the right. Verification engineers choose a mix of the extremes for their specific environ-
ment, depending on the test plan and design under verification requirements.

neer can read the test case and know exactly what it will do. These tests
drive very specific scenarios. The stimulus creates unambiguous cases in
the DUV such that the verification engineer can pregenerate the check-
ing as well.

The alternative to predetermined test cases are those created on-the-
fly, or while the simulation job is running. On-the-fly test cases use input
constraint directives to create stimulus and make decisions on a cycle-
by-cycle basis. These environments require a high amount of pro-
grammed intelligence in the stimulus components. Each cycle, the
stimulus component makes decisions about what stimulus it will send
for this cycle. The programmed intelligence within the stimulus compo-
nent knows the legal input choices for a given cycle. The stimulus com-
ponent will continue to send multicycle commands or data initiated on
previous cycles and decide whether to initiate new commands. The con-
straint directives guide these decisions, allowing the verification engineer
to control each test case to the desired level. The verification team uses
the scoreboard or a cycle accurate reference model to communicate the
generated stimulus to the checking components. A later section (“General
Algorithms for Stimulus Components”) describes general algorithms for
making these decisions.

At first glance, there appears to be a one-to-one relationship between
predetermined test cases and deterministic test generation. Similarly,
random stimulus generation appears to have a tightly coupled relation-
ship with on-the-fly generation. However, this is not the case. Predeter-
mined and on-the-fly define when the verification team creates the test
case with respect to the simulation run. Alternatively, deterministic and
random define how the verification team creates the test case. It is
common to generate predetermined, yet random test cases. For example,
there are complex programs, called test case generators, that use bias-
control input parameters and random number generators to create pre-
determined test cases. Good test case generators may create hundreds of
different predetermined test cases from a single template (a single set of
bias parameters). Each of these test cases differs, depending on the para-
meters and the initial value used to seed the random number generator.
On the other end of the spectrum, deterministic tests can use some on-
the-fly generation to drive inputs less critical to the test case intent. For
example, a test case written to verify control logic may use on-the-fly gen-
eration for data packets. This style uses the same scoreboard checking
techniques as a randomly generated, on-the-fly test case.

The previous section described the range of possibilities between
deterministic and random test cases. Figure 7.4 showed that many test
cases have both deterministic and random stimulus generation elements.
For this discussion, deterministic-leaning test cases is defined as those
written to test a specific scenario but may have randomization on some
data or timings. Random-leaning test cases are defined as those with
the freedom to create differing scenarios based on the pseudorandom
numbers in the generation programs. By using those definitions, Figure

7.2 Strategies for Stimulus Generation 273

7.5 describes the four paradigms of input generation controls that result
from the cross between pregeneration versus on-the-fly generation and
deterministic-leaning versus random-leaning test cases.

There are appropriate times to use each of these four paradigms, as
there are pros and cons to each. Pregenerated, deterministic tests are
appropriate for designs with very few input signals or a small internal
state space. This style of test case provides exact scenarios and precise
control. Pregeneration (either deterministic or random) provides the ver-
ification team with a library of tests with a known set of input scenar-
ios—what you see is what you get. However, pregeneration does have
drawbacks with its inability to use the current state of the design to tailor
the input stimulus. Pregenerated tests often use the most conservative
input timing to control sequences in order to avoid creating illegal input
scenarios. To avoid these overconstraint cases, verification engineers
couple pregeneration with some on-the-fly capabilities. Pregeneration
also requires maintenance over the life of the test case library as the
design and specification changes. For these reasons, verification teams
continue to migrate toward on-the-fly generated test cases, as evidenced
by the growing popularity of HVLs that provide these capabilities.

Although the functional capability of the test case generation is the
most important factor when choosing a test case type, the verification

274 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Single scenario
testbenches, usually
written by hand to verify
the specific scenario.
Most often used early in
the design schedule.

Deterministic-
leaning

(written for a
specific scenario)

Random-leaning
(created using
bias controls)

Single scenario test cases
with some random
generation of peripheral
inputs. Random
generation is used for
inputs not critical to the
test case intent.

Test case generators using
random parameters to bias
the stimulus.
Architecturally correct test
cases are created, then
run on the simulation
engine.

Stimulus generated each
cycle using parameter
biasing to determine that
cycle’s inputs. The
environment must have the
knowledge of legal and
illegal scenarios.

Pre-generated
(prior to

simulation)

On-the-fly
(during

simulation)

How the test is created

W
he

n
th

e
te

st
 is

 c
re

at
ed

■ FIGURE 7.5

The type of test case stimulus combines deterministic or random with pregeneration or on-the-fly
generation.

team must consider two other factors: memory usage and simulation
performance. Both of these factors contribute to the verification team’s
ability to run test cases on their simulation engines. Simulation engines
run on general-purpose computers (e.g., workstations), which have large
but finite memory. On-the-fly generation techniques tend to use more
memory as the test case environment must save the generated input
(usually in the scoreboard or in a cycle accurate reference model) during
simulation until the transaction or command completes. Pregeneration
does not have this problem as the generation program and simulation
run at different times.

The throughput (performance) of their verification suite is also
a concern for the verification team. Here, the choice is between when
the generation work occurs—either before the simulation job (pregener-
ation) or during the simulation (on-the-fly). A pregenerated test case
will complete slightly faster than an on-the-fly test case running the
same number of cycles against the same design because on-the-fly test
case generation takes additional runtime workstation horsepower.
However, verification teams often accept this trade-off because of the
abundance of workstations and the additional capabilities of on-the-fly
generation.

7.2.2 General Algorithms for Stimulus Components
No matter which stimulus generation paradigm the verification team
chooses, the stimulus components, and especially the protocol compo-
nent, use a similar algorithm for basic input transactions. The differences
occur in step 3, listed below, when the environment initiates a new trans-
action or input sequence.

Stimulus generation programs follow this general decision-making
order:

1. Check for global environment changes such as resets.

2. Continue required stimulus initiated on previous cycles.

3. Check if DUV can accept new stimulus and, if so, initiate based
on generation paradigm.

Figure 7.6 shows a flow chart of this generalized decision-making algo-
rithm. The flow chart shows only a single action on any given cycle.
However, some DUV protocols may allow multiple actions in a single
cycle. In that case, the order still holds, but the program may jump to
the next decision after performing an action block.

If the environment takes the “Y” branch of the “new action allowed”
decision block, the source of the “generate new stimulus” block in
Figure 7.6 is the test case in a pregenerated paradigm, or a randomly
chosen command in an on-the-fly paradigm. In both cases, the protocol

7.2 Strategies for Stimulus Generation 275

component drives the inputs based on the new stimulus, applying the
correct transaction protocols.

Stimulus responder components follow a slightly different algorithm,
as these routines never initiate an action. Instead, the stimulus respon-
der reacts to actions from the DUV. Stimulus responders follow this
general decision-making order:

1. Check for global environment changes such as resets.

2. Continue response sequences for previous activity/requests from
the DUV.

3. Initiate new response sequence for activity/requests that just
occurred from the DUV.

Again, step 3 for stimulus responder components depends on the
generation paradigm. In pregenerated tests, the stimulus responder
sequence’s source is the test case. In on-the-fly generation, the stimulus
responder component may randomly choose a response based on the test
case constraints or parameters.

276 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Global
action?

Continue
previous
action?

No Yes

Perform stimulus
for global action

Begin stimulus

New action
allowed?

No

No

Yes

Continue stimulus
from previous action

Yes

Generate new
stimulus

End stimulus

■ FIGURE 7.6

A stimulus generation component’s general decision-making algorithm for the beginning of each cycle.

7.2.3 Applying the Four Types of Stimulus Generation to Calc2
The Calc2 test plan called for the verification effort to use a random envi-
ronment. Nevertheless, for illustration purposes, we will step through an
implementation of each of the generation paradigms using the Calc2
design as an example. Rather than look at the entire design, the focus
will be on a single port and the logic sequence and state transitions for
that port. In all cases, the verification team must replicate the stimulus
generation for a single port across the other three.

Figure 7.7 shows the flow control for a single Calc2 input port. Each
port’s input flow feeds the Calc2 priority logic via the ADD_SUB queue
and the SHIFT queue. Inputs to the port logic include the command,
operand data, and tag lines. Outputs include the controls to write to the
shift and add queues (which are located in the neighboring priority logic

7.2 Strategies for Stimulus Generation 277

Reset?

New
command?

No Yes

Clear all
buffers

and
queues

Start of cycle

ADD_CMD_
LAST_CYCLE

= ON?

No Yes

Capture
operand 2

End of cycle

Valid
command?

No Yes

SHIFT_CMD_
LAST_CYCLE

= ON?

No Yes

Place command in
ADD_SUB QUEUE

Set ADD_CMD_
LAST_CYCLE OFF

No Yes

Capture
operand 2

Place command in
SHIFT QUEUE

Set SHIFT_CMD_
LAST_CYCLE OFF

Forward TAG
of invalid
command
to outputs

ADD/SUB
CMD?

No Yes

Capture TAG,
operand1,
and CMD

Set
SHIFT_CMD_
LAST_CYCLE

ON

Capture TAG,
operand1,
and CMD

Set
ADD_CMD_

LAST_CYCLE
ON

■ FIGURE 7.7

The stimulus generation algorithm for a single port on Calc2. The stimulus component uses this algo-
rithm at the start of each cycle. The shading within the decision tree corresponds to the shading in
Figures 7.8 and 7.9.

design). Other outputs are the signals that bypass the priority logic in the
case of invalid commands. There are also environmental internal state
machine controls that indicate that the stimulus component sent an add
or shift command during the previous cycle. These controls allow the
stimulus component to send the second operand data.

The different shading after major decisions indicates a state that the
stimulus generation component enters. Consistent shading across the
figures is used in this section to indicate the choice of shift commands,
add commands, illegal commands, idle cycles, resets, and the second
cycles for sending both add/sub and shift commands.

A major decision in Figure 7.7 is the “new command?” choice. This
decision first requires knowledge of whether or not the stimulus com-
ponent sent a command on the previous cycle and if there are already
four outstanding commands from this port. If either is true, then the “N”
branch of “new command?” must be taken. If both cases are false, there
is still the decision of whether or not to send a new command on this
cycle. If we choose not to send a new command, the stimulus compo-
nent will drive idle values on the inputs. Otherwise, the stimulus com-
ponent will take the “Y” side of the “new command?” decision block and
initiate a new command.

The flow control shown in Figure 7.7 translates to the state machine
diagram shown in Figure 7.8. This diagram indicates the legal transitions
across six state machines in addition to the reset state machine.

278 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Invalid
command

No active
commands

Reset

Latch add
operand 2

(ADD_CMD_LAST_
CYCLE = ON)

Valid shift
command

Valid add
command

Latch shift
operand 2

(ADD_CMD_LAST_
CYCLE = ON)

■ FIGURE 7.8

The Calc2 single port stimulus generation algorithm’s state machine diagram. The shading corresponds
to the shading in Figures 7.7 and 7.9.

Because the design can enter the reset state at any time, all states have
an implied (not pictured) transition back to the reset state machine. All
other transitions not explicitly shown are illegal input sequences. For
example, no valid command can follow an invalid command, as the
protocols require that the cycle that follows a command (valid or illegal)
be a null command. Therefore, it would break the protocol to follow an
illegal command with another command the next cycle. This is interest-
ing to note because the Calc2 DUV explicitly handles cases in which
the input command is not a legal add, subtract, or shift command;
however, the DUV does not handle cases in which the input stimulus
sends commands on consecutive cycles. In the latter case, the Calc2
behavior is undefined. Therefore, it is appropriate for the Calc2 designer
to place an assertion in the design to capture any case of consecutive
commands.

The state machine diagram shows the two-cycle input sequence
required for all add, subtract, shift left, or shift right commands. After
receiving the second operand, the DUV internal logic ships the complete
command packet (data, command, and tag) to the priority logic’s
ADD_SUB queue or SHIFT queue. On the following cycle, the logic can
then accept a new command from the port inputs as long as there are
available tags (less than four outstanding port requests). The inputs may
also be idle, entering the logic into the “no active commands” state.

Figure 7.9 shows an exploded view of the state machine diagram. This
figure shows how the possible execution state space explodes rather
quickly. It depicts a portion of the legal transitions as defined in Figure
7.8 for seven cycles.

The dashed line shows a single path taken during simulation. Any type
of stimulus generation (random or deterministic, pregenerated or on-the-
fly) can create this path. However, each uses different methods to create
the stimulus for the test case.

With an understanding of the Calc2 input port implementation algo-
rithm, we can now examine the effects of the different stimulus types on
simulation. Each of the four paradigms is described using Calc2 as the
DUV.

Deterministic Test Cases

This exploded state machine view of Figure 7.9 repeats for all four Calc2
ports, although each port will follow different paths along the tree. For
the following deterministic test case example, Port1 is assumed. Figure
7.10 shows a predetermined, deterministic test case for the dashed line
path in Figure 7.9.

As with Calc1, the verification environment handles the reset sequence
at the start of each test case. The DelayN field is also the same as with
Calc1, in which this field indicates the number of cycles to wait until ini-
tiating the command.

7.2 Strategies for Stimulus Generation 279

280 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

In
va

lid
co

m
m

an
d

N
o

ac
tiv

e
co

m
m

an
ds

R
es

et

V
al

id
 s

hi
ft

co
m

m
an

d

N
o

ac
tiv

e
co

m
m

an
ds

In
va

lid
co

m
m

an
d

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 s

hi
ft

co
m

m
an

d

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 s

hi
ft

co
m

m
an

d

La
tc

h
sh

ift
op

er
an

d
2

N
o

ac
tiv

e
co

m
m

an
ds

In
va

lid
co

m
m

an
d

V
al

id
 s

hi
ft

co
m

m
an

d

V
al

id
 a

dd
co

m
m

an
d

La
tc

h
sh

ift
op

er
an

d
2

La
tc

h
ad

d
op

er
an

d
2

V
al

id
 a

dd
co

m
m

an
d

V
al

id
 a

dd
co

m
m

an
d

La
tc

h
ad

d
op

er
an

d
2

La
tc

h
sh

ift
op

er
an

d
2

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 a

dd
co

m
m

an
d

La
tc

h
ad

d
op

er
an

d
2

V
al

id
 s

hi
ft

co
m

m
an

d

N
o

ac
tiv

e
co

m
m

an
ds

La
tc

h
ad

d
op

er
an

d
2

V
al

id
 a

dd
co

m
m

an
d

La
tc

h
ad

d
op

er
an

d
2

N
o

ac
tiv

e
co

m
m

an
ds

La
tc

h
ad

d
op

er
an

d
2

V
al

id
 a

dd
co

m
m

an
d

N
o

ac
tiv

e
co

m
m

an
ds

In
va

lid
co

m
m

an
d

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 s

hi
ft

co
m

m
an

d

N
o

ac
tiv

e
co

m
m

an
ds

La
tc

h
sh

ift
op

er
an

d
2

V
al

id
 a

dd
co

m
m

an
d

La
tc

h
ad

d
op

er
an

d
2

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 s

hi
ft

co
m

m
an

d

N
o

ac
tiv

e
co

m
m

an
ds

V
al

id
 s

hi
ft

co
m

m
an

d

V
al

id
 a

dd
co

m
m

an
d

V
al

id
 a

dd
co

m
m

an
d

Ti
m

e
in

 c
yc

le
s

P
os

si
bl

e
pa

th
 o

f a
si

ng
le

 s
im

ul
at

io
n

ru
n

■
FI

GU
RE

 7
.9

A
n

ex
pl

od
ed

 v
ie

w
 o

f
th

e
st

at
e

m
ac

hi
ne

 f
ro

m
 F

ig
ur

e
7

.8
.

Th
is

 d
ia

gr
am

 s
ho

w
s

al
l

of
 t

he
 p

os
si

bl
e

pa
th

s
th

at
 a

 t
es

t
ca

se
 m

ay
 t

ak
e.

 T
he

sh
ad

in
g

of
 e

ac
h

bl
oc

k
co

rr
es

po
nd

s
to

 t
he

 s
ha

di
ng

 i
n

Fi
gu

re
s

7
.7

 a
nd

 7
.8

.

A deterministic test case may continue beyond the sequence in Figure
7.10. It may also contain simultaneous commands from other ports. It
is the job of the test case writer to define explicitly the sequences and
expected results desired for each test case.

This paradigm gives complete control to the test case writer. There is
no automation beyond the parsing of the command and bit-level stimu-
lus translation. The test case writer makes all decisions on input values,
including commands, timings, tag values, and data. This is an excellent
method for testing specific short scenarios but becomes cumbersome
for verifying a wide assortment of possible input scenarios. For example,
test cases with more than four commands from a single port may cause
headaches when trying to get hard-coded tags correct. Hard-coded tags
require predicting the timing on responses in out-of-order cases. This
requires trial-and-error, along with maintenance whenever the internals
of the Calc2 priority logic changes.

Deterministic Test Cases with On-The-Fly Generation

It is easy for the verification engineer to generate a short test case by
hand. However, writing a long, deterministic test case becomes quite tire-
some. Imagine typing the syntax of Figure 7.10 for 100 commands. Cre-
ating the data and hand calculating the results is a time-consuming and
monotonous job for long, deterministic tests. This is where the power of
on-the-fly generation helps, even when coupled with deterministic
testing. Rather than generating data and tags by hand, the stimulus com-
ponent can do it. The following test case keeps the verification engineer’s
deterministic intent, while freeing the writer to focus on the sequence,
not the data.

Figure 7.11 shows an example deterministic test case with random-
ization for Calc2 Port1. Figure 7.12 shows the verification environment
that utilizes the test case in Figure 7.11. In this environment, the port
protocol component replaces the “x” tag values and the stimulus gener-
ation component replaces the “rand” keyword operands. In few cases,
the writer uses hard-coded values (“Port1.2” and “00000000”X data) in
which the intent of the test case requires specific values. When this test
case runs, the environment generates tags based on their availability.
Because the DUV may return commands out of order, predicting the

7.2 Strategies for Stimulus Generation 281

Port.tag
Port1.0
Port1.0
Port1.2

DelayN
0
0
0

Cmd
"111"B
ADD
SHL

Operand1
"DEADBEEF"X
"00012345"X
"22222222"X

Response*/
Illegal
Good
Good

/* Operand2
"BEADCAFE"X
"00054321"X
"00000002"X

Result
"00000000"X
"00066666"X
"88888888"X

■ FIGURE 7.10

Example predetermined, deterministic test case for Calc2 Port1.

sequence of returning tags on a long test case is a waste of time, requir-
ing extensive trial and error simulation jobs. Furthermore, the test case
would need ongoing maintenance each time internal DUV changes
altered the response timings. Instead, the verification team builds the
intelligence into the environment with a simple table that tracks out-
standing command tags. If no tags are available, the environment cannot
send in a new command until the DUV completes one. Otherwise, the
protocol component simply uses an available tag to replace the “x” value
in the test case. This is an elegant and efficient method that avoids dupli-
cating the DUV priority and control logic, which would have to predict
the ordering of the responses. Implementation of this algorithm involves
communication between the protocol component and the monitor com-

282 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Port.tag
Port1.x
Port1.x
Port1.x
Port1.2
Port1.x
Port1.x
Port1.x
Port1.x

DelayN
0
0
2
0
1
0
3
1

Cmd
"111"B
ADD
SHL
"011"B
SUB
SHR
SHL
SUB

Operand1
rand
rand
rand
rand
rand
"00000000"X
rand
rand

Response*/
Illegal
Good
Good
Illegal
Good
Good
Good
Underflow

/*

■ FIGURE 7.11

Example deterministic test case with randomization for Calc2 Port1.

Scoreboard

Port1 monitor

Checker

Port2 monitor

Port3 monitor

Port4 monitor

Simulation engine
running calc2

Port1 protocol

Port2 protocol

Port3 protocol

Port4 protocol

4 port
stimulus

generation

Test
case

parser

Test case(s)
(includes

stimulus and
checking)

■ FIGURE 7.12

The Calc2 verification environment for deterministic test cases.

ponent. Therefore, the environment requires that the tag table be in a
global area that both components can update. The stimulus component
must write to the table to remove tag availability each time it sends a
new command. The monitor component must free the tag in the table
when the response comes from the DUV. This is a common approach
used in many verification environments, with the scoreboard serving as
a fine choice for placing the tag table (see Figure 7.13).

The stimulus component needs to be intelligent when it creates data
values as well. The “good” or “Overflow/Underflow” keywords in the
response column imply constraints on the operands. In the case of a good
response for an add command, the environment must generate two
operands whose sum is less than “FFFFFFFF”X (unsigned). The straight-
forward approach to this is to first pick a number between zero and
“FFFFFFFF”X and assign this value to Operand1. The algorithm then cal-
culates Operand2’s value by choosing a random number between zero
and “FFFFFFFF”X - Operand1. The environment calculates operands
for a “good” response for the sub command using an even simpler algo-
rithm. After choosing Operand1, Operand2 must be less than or equal
to Operand1. Overflow or underflow responses require breaking the
above constraints. In the add case, operand1 may be between 1
and “FFFFFFFF”X, and Operand2 must be a number greater than
“FFFFFFFF”X - Operand1. For the underflow case on the sub command,
Operand2 must be greater than Operand1 (therefore, Operand1 cannot

7.2 Strategies for Stimulus Generation 283

Port number
Port 1
Port 1
Port 1
Port 1
Port 2
Port 2
Port 2
Port 2
Port 3
Port 3
Port 3
Port 3
Port 4
Port 4
Port 4
Port 4

Tag
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

Command

SHL

SUB
ADD

SHR

SHR

ADD

SUB

Operand 1

"6F3C6870"X

"A318F792"X
"AC7DCC59"X

"E3E99D88"X

"E6FE24F4"X

"793F8731"X

"A3BA1751"X

In use
0
0
1
0
0
1
1
0
1
0
1
0
1
0
0
1

Operand 2

"00000005"X

"884429BC"X
"B6623D76"X

"00000001"X

"0000001A"X

"2F849275"X

"2F849275"X

Write by
port1 stimulus

Read by
port1 stimulus

Reset by
port1 monitor

Used by
port1 checker

Verified by
port1 checker

"

■ FIGURE 7.13

The format of the Calc2 scoreboard allows for quick indexing using the port and tag value (shaded
fields). The verification components read and write to the other fields.

be “FFFFFFFF”X). The verification team builds these algorithms into the
environment.

Because the environment generates the operands, there is no “Result”
value column in the test case. The environment must perform the result
value check based on the operand values created by the stimulus com-
ponent. This check is simple enough to code into the environment. The
stimulus component needs to post the tag, command, and operands to
the scoreboard so that the checker component can calculate the expected
value when the DUV returns a response.

The scoreboard is simply a data structure used by multiple verifica-
tion components to communicate with each other. It is required when-
ever stimulus components create values on-the-fly. Figure 7.13 shows a
scoreboard for Calc2, implemented as a table. Each row of the table cor-
responds to a tag from a particular port. The verification components
read and write to the fields: “tag in use,” “command,” “Operand1,” and
“Operand2”. This setup allows quick indexing into the scoreboard by the
stimulus, checker, and monitor components.

The stimulus component reads the tag “in use” value to check for avail-
ability. If available, it sets the value to “in use” and writes the command
and operand values when it sends the command. When the DUV com-
pletes the command, the monitor resets the “in-use” value, and the
checker reads the command and operand values to perform the check.

This static table method works well for small, densely populated values
such as this. In larger, sparsely populated scoreboard spaces, the score-
board implementation requires a linked list or hash table with a search
algorithm to find the desired value. Verification of designs such as caches
requires this, as the simulation does not use the entire array but rather
randomly chosen portions. Implementing the cache scoreboard as a
static table might exhaust the workstation memory while utilizing very
little of the reserved memory space.

Figures 7.10 and 7.11 demonstrate deterministic test case approaches
to verifying Calc2. The first test case is fully predetermined. The second
test case used some on-the-fly generation to ease the burden of writing
long tests. Although the second test case contained some use of randomly
created values, it is still deterministic because the test case writer dic-
tated the specific scenario. We now move to the cases of random test
cases.

Pregenerated Random Test Cases

Random stimulus generation uses an entirely different approach. The
verification team automates the generation of the command and associ-
ated result values into either a test case generator (predetermined) or the
stimulus components (on-the-fly). A test case generator program runs
separately from the simulation environment, whereas an on-the-fly gen-
eration style integrates into the simulation environment.

284 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Random-based test case generation requires programming the stimu-
lus and checking algorithm intelligence into stand-alone software. There
are generally two types of inputs to a test case generator: a template, or
map of the desired test case, and a more general set of parameter inputs
used to bias certain randomizations. Depending on the DUV, the team
may choose to embed the parameter in the template input file. In the
examples for Calc2, the parameter bias controls are separate from the
template. The output of the test case generator is a test case (or test cases)
that contains all the stimulus and checking information required for the
simulation environment. The test cases created by the generator use the
same style of verification environment components as deterministic test
cases (shown in Figure 7.12). The test case parser will change to match
the different format, but the concepts of the environment remain the
same. The test case generator includes an internal, or reference, model
of the DUV. The generator uses this model to precalculate the expected
results given the inputs it creates. Depending on the complexity of the
design, these models may be quite complex. Figure 7.14 shows the inputs
and outputs of the test case generator.

Verification engineers commonly use test case generation to verify
microprocessors or embedded controllers. Although microprocessors
have a far more complex instruction set than do the few used in Calc2,
Calc2 serves as a good demonstration of the test case generation
technique.

Figure 7.15 shows three example template files for a test case genera-
tor for Calc2. The first template, called “most constrained,” uses the test
case generator to create a deterministic test case. The second template,
“add queue intensive,” is an example of the most common mode used in
test case generation. The third template, “least constrained,” allows the
test case generator’s randomization capabilities to dictate most of the
resulting test case.

Templates provide a roadmap for the test case generator. The result
is one or more test cases that follow the roadmap. The test cases run

7.2 Strategies for Stimulus Generation 285

Test case
generator

Randomization
controls

(parameters)

Test case(s)
(includes

stimulus and
checking)

Template
file

■ FIGURE 7.14

The test case generation environment uses a template file and randomization controls as input. The test
case generator’s output is a test case, complete with stimulus and checking.

separately against the Calc2 DUV, using the verification environment to
parse the port commands, drive stimulus, and check results. The actual
test case format, shown in Figure 7.16, is a variation of the format shown
in Figure 7.10.

The test case generator in this example defers control of the tag spec-
ification to the verification environment. The test case specifies all other
values, including the delays between commands. Some of these values
originate from the template file (ports, command, delays, and responses).
The test case generator creates the rest of the values (operands and
results).

The second template, “add queue intensive,” is a more interesting and
common use of test case generation. Here, the template calls for the use
of groups and randomizations in test case construction. Figure 7.17
shows the definitions of the groups cited in this test case, ADDERCMD
and ANYRESP, along with other groupings that verification might use.

The first definition, ANYCMD, includes a second-level grouping, ANY-
GOODCMD, which encompasses the four defined CALC2 commands.
ANYCMD also includes illegal command types.

The command grouping used in the “add queue intensive” template,
ADDERCMD, lists the add and sub commands. This group is interesting

286 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Port1: ADD GOODRESP
Port2: SUB OVERFLOW Delay 2
Port3: SHL GOODRESP Delay 1
Port4: ILLEGALCMD ILLEGALRESP
Port3: SUB GOODRESP Delay 4
....

Most constrained Least constrained

A: Repeat 40
 ANYPORT: ANYCMD ANYRESP
END A

Add queue intensive

A: Repeat 10
 Port1: ADDERCMD ANYRESP
 Port2: ADDERCMD ANYRESP
 Port3: ADDERCMD ANYRESP
 Port4: ADDERCMD ANYRESP
END A

■ FIGURE 7.15

Three possible template files for a Calc2 test case generator.

Port.tag
Port1.x
Port2.x
Port3.x
Port4.2
Port3.x

DelayN
0
2
1
0
4

Cmd
ADD
SUB
SHL
"A"X
SUB

Operand1
"396A29EF"X
"7C2D3E49"X
"2048BE96"X
"218BC572"X
"B5610EF3"X

Response*/
Good
Underflow
Good
Illegal
Good

/* Operand2
"670B5C23"X
"82C37526"X
"00000003"X
"23C01864"X
"37AD48E0"X

Result
"A0758612"X
"00000000"X
"0245F4B0"X
"00000000"X
"7DB3C613"X

■ FIGURE 7.16

A “most constrained” test case from generator.

because the DUV directs these commands toward the adder ALU,
whereas the commands in SHIFTERCMD use the shift ALU. Therefore,
the intent of this template is to stress the adder ALU and the priority
paths that lead to it. A resulting test case creates interesting scenarios
that not only will keep the adder ALU busy but also because it forces all
of the command traffic into a single control and data path, ensuring that
intense corner cases occur.

Finally, the “add queue intensive” template uses the ANYRESP group,
which encompasses all command response types. The test case genera-
tor uses the GOODRESP and OVERFLOW response types to guide the
selection of operand data. The ILLEGALRESP is used only when the test
case generator calls for an illegal command.

The final input file, randomization controls, defines the biasing
between the selections that the test case generator makes. Figure 7.18
shows a sample randomization control file.

The randomization controls dictate the average ratio between the
choices. Together with a pseudorandom number generator, the test case
generator uses these bias controls to choose specific values each time it
creates a command. Therefore, on average, a template using the
ANYCMD keyword will choose legal commands 90% of the time and
illegal commands in the remaining 10%. Of the 90% legal commands,
the add command is selected 30% of the time, and so forth.

Figure 7.19 shows a possible test case created using the “add queue
intensive” template. Note that after the reset, all commands must be add
or sub as defined in the template. The delay values, as defined in the ran-
domization control file, range from zero to five. The data selections
appear to be random across a 32-bit range. However, closer inspection
reveals that the response type constrains the operand values.

7.2 Strategies for Stimulus Generation 287

ANYCMD: ANYGOODCMD, ILLEGALCMD
ANYGOODCMD: ADD, SUB, SHL, SHR
ADDERCMD: ADD, SUB
SHIFTERCMD: SHL, SHR
ANYRESP: GOODRESP, OVERFLOW, ILLEGALRESP
ANYPORT: Port1, Port2, Port3, Port4

■ FIGURE 7.17

The Calc2 test case generation list creates shorthand keywords for the template writer. Each keyword
contains a list of possible values.

The template calls for 40 commands (Figure 7.19 lists only the first
12). Note the regularity of the port command ordering (1, 2, 3, 4, 1, 2, 3,
4 . . .). The template dictated this ordering. The user could use another
randomization control, called “ANYPORT” in the “least constrained”
template, which would leave the port number selection to the test case
generator under random biasing controls.

A single template file such as “add queue intensive” can spawn hun-
dreds of unique test cases. Although Figure 7.19 shows a single example,
the generator can re-run, using a different initial seed, creating a differ-
ent test case that still follows the template. This capability enhances the
verification team’s ability to hit corner conditions in the design. In this
example, the template will focus test cases on DUV controls such as filling
the add queue and interactions between ALU data and control under
stressful, back-to-back conditions. This is less valuable with the “most
constrained” test case example, in which the only deviation would be in
the data value randomizations.

288 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

ANYCMD: ANYGOODCMD 90
 ILLEGAL 10
ANYGOODCMD: ADD 30
 SUB 30
 SHL 20
 SHR 20
ADDERCMD: ADD 40
 SUB 60
SHIFTERCMD: SHL 50
 SHR 50
DELAY Range:0 30
 1 25
 2 20
 3 15
 4 5
 5 5
RESPONSE: GOOD 80
 OVERFLOW 20
ANYPORT: Port1 25
 Port2 25
 Port3 25
 Port4 25
...

■ FIGURE 7.18

The test case randomization controls defines the probabilities of each choice within a generation list.

The “least constrained” template in Figure 7.15 gives few constraints
to the test case generator. The generator will create a test case with 40
commands of any type, with any possible response, from any combina-
tion of ports. Figure 7.20 shows the first 10 commands from a single test
case created using this template. However, the random control biasing
shown in Figure 7.18 still hold.

Even in this randomly generated test case, the stimulus components
still must ensure that the inputs adhere to the DUV protocols. The timing
between port commands is a prime example of this. The port stimulus
component cannot send Calc2 a new command if no tags are available,
regardless of the “DelayN” value dictated by the test case. Here, the def-
inition of the DelayN field changes. It now indicates a minimum number
of cycles between commands from the same port. After waiting DelayN
cycles, the port stimulus component sends the new command if there is
an available tag. Otherwise, the port stimulus component continues to
hold the command until there is an available tag.

7.2 Strategies for Stimulus Generation 289

Port.tag
Port1.x
Port2.x
Port3.x
Port4.x
Port1.x
Port2.x
Port3.x
Port4.x
Port1.x
Port2.x
Port3.x
Port4.x
...

DelayN
1
0
0
2
1
5
0
3
0
1
1
0

Cmd
SUB
SUB
ADD
SUB
ADD
SUB
ADD
ADD
SUB
SUB
SUB
ADD

Operand1
"CFAA6E5D"X
"9A1B0AC9"X
"CFB6FEC8"X
"3385D066"X
"993C398E"X
"E58C0B0B"X
"76BA4E2A"X
"57AFC991"X
"D84EC9C7"X
"AABB1BFE"X
"91782416"X
"3B60DBF6"X

Response*/
Good
Underflow
Good
Good
Good
Good
Good
Overflow
Good
Good
Good
Good

/* Operand2
"BC18080A"X
"E50F3803"X
"28F188CC"X
"2BC9B810"X
"3CC2059F"X
"2FF2F492"X
"578E5BF5"X
"F954D4C4"X
"4612AEEE"X
"2DFC9460"X
"7D49CF59"X
"15F8F2F1"X

Result
"13926653"X
"00000000"X
"F8A88794"X
"07BC1856"X
"D5FE3F2D"X
"B5991679"X
"CE48AA1F"X
"00000000"X
"923C1AD9"X
"7CBE879E"X
"142E54BD"X
"5159CEE7"X

■ FIGURE 7.19

An “add queue intensive” test case from generator.

Port.tag
Port4.x
Port3.x
Port1.x
Port3.x
Port3.x
Port1.x
Port3.x
Port2.x
Port4.x
Port2.x
...

DelayN
0
3
0
1
1
1
3
0
0
2

Cmd
SHR
SUB
ADD
SHR
SHR
ADD
“C”X
SHR
SHL
SUB

Operand1
"6F3C6870"X
"A318F792"X
"AC7DCC59"X
"E3E99D88"X
"E6FE24F4"X
"793F8731"X
"A3BA1751"X
"C494A384"X
"D0D75B46"X
"65931FF4"X

Response*/
Good
Good
Overflow
Good
Good
Good
Illegal
Good
Good
Good

/* Operand2
"00000005"X
"884429BC"X
"B6623D76"X
"00000001"X
"0000001A"X
"2F849275"X
"2F849275"X
"00000007"X
"0000000A"X
"0F467BB9"X

Result
"0379E343"X
"1AD4CDD6"X
"00000000"X
"71F4CEC4"X
"00000039"X
"A8C419A6"X
"00000000"X
"01892947"X
"5D6D1800"X
"564CA43B"X

■ FIGURE 7.20

A “least constrained” test case from generator.

The test case generation software for Calc2 is relatively simple. More
complex microprocessor test case generation falls into a category known
as knowledge-based test case generation (KBTG) [1, 2]. Under KBTG
lies a database pertaining to the specific architecture and design of
the DUV, which contains all of the information needed to create inter-
esting input stimulus and to predict the behavior of the microproces-
sor. Today’s complex microprocessor cores require the database to have
a deep knowledge of the architecture. This software handles the
result prediction for any synchronous instruction stream for the given
microprocessor.

Although it is likely that the Calc2 verification engineers could tuck
the stimulus generation and result prediction logic into a single program
as shown in Figure 7.14, complex microprocessors require the separa-
tion of these routines. Furthermore, the KBTG programmers personal-
ize the stimulus generation for each new microprocessor core design,
which is required to create stimulus that attacks the nuances of the new
design point. Every time the design point changes for a new release of
the processor, the test case stimulus generation requires updates in order
to exercise any new microarchitecture design features, such as super-
scalar instruction grouping or pipeline depth adjustments.

On the other hand, the result prediction routines under KBTG only
require updates when the design implements new architectural features.
For example, if the latest version of the microprocessor supports binary
floating-point operations, the KBTG programmers enhance the pre-
diction logic for this support. However, the result prediction for legacy
(previous) instructions remains unchanged.

On-the-Fly Random Test Cases

The final type of stimulus generation is on-the-fly generated random.
This is the paradigm chosen in our verification plan and is the best fit
for Calc2. On-the-fly generated random test cases have similarities to test
case generation in that it uses constraint directives to make stimulus
decisions. However, on-the-fly random generation makes these decisions
while running simulation, rather than before the simulation, requiring
the verification team to build generation intelligence into the stimulus
components. The main advantage of on-the-fly generation is that the ver-
ification environment can create stimulus in reaction to the state of the
DUV.

In the test case generation environment, the test case parser reads the
predetermined test case and forwards the port commands to the stimu-
lus component. In the on-the-fly random generation environment, the
stimulus component receives biasing parameters as input and makes
the stimulus decisions each cycle. The output prediction programming
moves from the test case generation program into the stimulus, score-
board, and checking components as well.

290 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

In the on-the-fly paradigm, the verification environment calls the
stimulus component programs at the beginning of each simulation cycle.
The stimulus generation components must track the state of the DUV
and decide whether to send new stimulus, send complete stimulus that
started on a previous cycle, or not send any stimulus. This is the same
algorithm shown in Figure 7.6. Some of these generation choices may be
limited based on how busy the DUV is (e.g., four outstanding port com-
mands from a single port in Calc2) or on stimulus sent on previous cycles
(e.g., the Calc2 requirement to send the second operand data on the cycle
after the initial command and data). The protocol components translate
the transaction-level decisions of the generation component into bit-level
stimulus, maintaining good parity and protocols no matter what choices
the generation component made.

Calc2 does not require stimulus responder components, but it does
require stimulus generation components for each of the four ports.
Figure 7.21 shows the algorithm for generating commands on-the-fly for
Calc2. The flowchart represents a single port’s stimulus. The verification
team duplicates this for each port.

Each port has individualized constraint directives. These bias controls
affect the outcome of the “send new command?” block, the “choose
command” block, the “choose response type” block, and the “choose
operand” block. In addition, the constraint directives may control the
usage of specific tags by a port. The constraints may differ from port to
port, altering the biasing of each instance.

The algorithm first checks to see if the stimulus component initiated
a command on the previous cycle (2nd_Cmd_Cycle is ON). If so, it must
complete the operation by sending the second operand. In this state, the
stimulus component also uses the randomization controls to choose a
Delay_Count, which indicates the between-command cycle gap on the
port. Figure 7.22 shows a randomization control file. This sample indi-
cates the bias controls for the Delay_Count.

To choose a value based on the randomization controls, the stimulus
component first uses a pseudorandom number generation to pick a
number between 1 and the sum of the individual weights (30 + 25 + 20
+ 15 + 5 + 5 = 100 in the case of Delay_Count). The stimulus component
uses the chosen number to index to the particular Delay_Count value. In
our example, a random number between 1 and 30 would give a 0 delay,
between 31 and 55 would give a 1-cycle delay; between 56 and 75 would
give a 2-cycle delay, and so forth. Note that the sum of the weights need
not total 100 as in the case of RESPONSE. This method of choosing a
value for a variable works for any bias control table.

If 2nd_Cmd_Cycle is OFF, the stimulus component checks the score-
board to see if there is an available tag. If no tag is available, then the
stimulus component’s work is complete for this cycle. If a tag is avail-
able, it checks to see if the Delay_Count is zero. A zero count indicates
that the between-command cycle gap has been met. If the delay count is

7.2 Strategies for Stimulus Generation 291

not zero, then it is decremented. Otherwise, the stimulus component
chooses a command based on the randomization controls. In our
example, there is a 10% chance that the stimulus component chooses to
send an illegal command, a 30% chance of an add command, and so on.
After choosing a command value, the stimulus component chooses a
response value unless the command was an illegal value—in that case,
the response must be “illegal.” Finally, by using the response value
(“good” or “overflow/underflow”), the stimulus component chooses
operands using the same algorithm described for the “rand” operands in
Figure 7.11. The order of decisions, in which the algorithm chooses the

292 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Reset on?

2nd_Cmd_
Cycle on?

No Yes

Begin stimulus

TAG
available?

No Yes

End stimulus

Delay_Count
= 0?

No Yes

No Yes

Choose
command

Choose
response type

Write command,
tag, and operand1

to scoreboard

Choose
operands

Decrement
Delay_Count

Send command,
tag, and operand1

Set
2nd_Cmd_Cycle

Reset
2nd_Cmd_Cycle

Set
Delay_Count

Send
operand2

■ FIGURE 7.21

An on-the-fly generation algorithm for a stimulus generation on a single Calc2 port.

response type before the operand data, may seem odd. However, there
is good reason for this ordering, as choosing data first will lock in a
response type (e.g., overflow/underflow for add/sub). The verification
engineer’s intent is to have control over the average probability of good
responses versus overflow/underflow responses, so the algorithm makes
that decision first. The effect of one decision on others falls under con-
straint solving, described in a later section (“Constraint Solving in
Random Environments”).

After choosing all of the values, the stimulus component’s protocol
driver sends the command, tag, and first operand. It also sets
2nd_Cmd_Cycle to ON, indicating that the stimulus component must
complete the command send sequence the following cycle.

The SHIFTOP2 values are of particular interest in the randomization
control file. Here, the verification engineer indicates that there are special
values within the range of Operand2 values for shift commands. Instead
of an even distribution of numbers between 0 and 31, the two endpoints
have a higher probability than the values in-between.

In an on-the-fly generation environment, the stimulus component con-
tinues to send commands until one of two events occur:

7.2 Strategies for Stimulus Generation 293

/* Format is.... */
/* VAR NAME: Value1 Weight1 */
/* ValueN WeightN */
CMDS: ILLEGAL 10
 ADD 30
 SUB 25
 SHL 20
 SHR 15
DELAYCount: 0 30
 1 25
 2 20
 3 15
 4 5
 5 5
RESPONSE: GOOD 75
 OVERFLOW 15
SHIFTOP2: 0 25
 31 15
 OTHER

■ FIGURE 7.22

The randomization controls for the Calc2 on-the-fly stimulus generation component.

■ The checker or monitor components encounter an unexpected DUV
value.

■ The environment hits its predetermined limit based on either the
number of cycles or the number of transactions.

When one of these events occurs, the stimulus component will not ini-
tiate any new commands. If the stimulus component is in the middle of
sending a command, it will complete the transaction as dictated by the
protocols, and then quiesce. A quiesced stimulus component will not ini-
tiate any new commands but may complete any transactions started on
previous cycles.

In the case of an error, the test case will complete a few cycles after
detection of the error. It is good practice to allow the test case to run for
a nominal number of cycles (10 or so) before stopping the simulation.
This practice assists in debugging, as a designer or verification engineer
can view traces of the HDL’s behavior just after the environment detects
the error. The reason this is important is that the HDL could arrive in a
particular state from multiple paths. Allowing the test case to run beyond
the error condition may assist in pointing to the exact path and cause of
the bug.

In the case of the predetermined cycle or transaction limit, the test
case completes when the DUV completes all commands. The environ-
ment relies on the scoreboard to indicate when the DUV has completed
all commands or transactions. Either method of ending a successful test
case is acceptable. Verification environments with cycle-based limits run
until a predetermined number of cycles have passed. This is called the
quiesce cycle. Alternatively, verification environments with transaction
limits send a predetermined number of transactions before the environ-
ment quiesces.

7.2.4 Seeding Random Test Cases
Random test cases, similar to all verification jobs, must be repeatable.
Repeatability is required because it is necessary to reproduce failures
both for analysis and for fix verification.

Re-running a deterministic, predetermined test case is not a concern.
The test case exists before the simulation run, so the verification team
can save it for later use when the designer makes the required updates.
However, in on-the-fly random, in which stimulus components make
decisions during the course of simulation, there is no predetermined test
case to “save.”

To meet the repeatability requirement, a single initial seed value must
be the root for all of the random number generators used by all envi-
ronment components. Using an initial seed guarantees that the random
number generators produce the same sequence of values when re-

294 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

running the test case. Rather than saving a test case, the verification team
saves the seed that generates the test case.

In addition, the verification team must save the randomization control
file along with the seed. Using the same seed with the same randomiza-
tion control file against the same simulation model will produce an
identical test case. Conversely, a change in randomization control para-
meters will likely change the entire test case, even if the initial seed is
the same.

Seeding each stimulus component requires careful planning and an
understanding of random number generators’ behavior. Given the same
initial seed, a random number generator will produce the same sequence
of numbers. Each time the stimulus component calls the random number
generation function, it uses the previous random number to seed the next
call. This gives a repeatable, but pseudorandom sequence of numbers.
The good side of this is that it allows the verification engineer to repro-
duce a test case; however, each stimulus component must use different
seeds or the components will act in concert. Using Calc2 as an example,
Figure 7.23 shows three possible methods for seeding the individual port
stimulus generators.

Method 1 in Figure 7.23 uses the initial test case seed directly for each
of the four port stimulus generators. In this case, all four ports will ini-
tially send identical commands rather than make personalized decisions.
Because all four ports use the same random number generation func-
tion, they will continually produce the same sequence of decisions.
Rather than acting independently, the stimulus components are har-
monic. This is not the verification engineer’s intent. Method 1 will sig-
nificantly handicap the verification environment’s ability to drive
interesting scenarios.

Method 2 appears to avoid Method 1’s problem. The environment uses
the initial test case seed to create different initial seeds for each stimu-
lus component. Therefore, each stimulus component starts with its own
seed. However, this method also has undesirable side effects. Because the
random number generator uses the previous seed to generate the next
number, all of the stimulus components under Method 2 create a similar
set of random numbers, just offset by one, two, or three calls to the
routine. Given the initial seed value of “a,” the random number genera-
tor will produce values “b,” “c,” “d,” “e,” “f,” “g,” etc, in that order. There-
fore, the initial test case seed, a, will seed port1 with seed b, port2 with
seed c, port3 with seed d, and port4 with seed e. On the surface, this
seems okay. However, port1’s sequence of random numbers will be c, d,
e, f, g, etc. Port2 will be offset only slightly: d, e, f, g, h. . . . This may lead
to less than desired randomization across the ports.

Method 3 fixes the problem by introducing a second random number
generator. The second random number generator produces an entirely
different sequence of numbers than does the first, even when seeded with
the same value as the other generator. By using the first generator to seed

7.2 Strategies for Stimulus Generation 295

the individual ports with different values and the second generator to
make on-the-fly random biasing decisions, Method 3 achieves the verifi-
cation engineer’s intent of independent, randomly driven ports.

When re-running test cases for complex DUVs, any variation from the
original simulation sequence quickly sends the new test case down a
divergent path. Even the slightest of changes in DUV or stimulus com-

296 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Initial test
case seed

Calc2
DUV

Port2 stimulus component

Port3 stimulus component

Port4 stimulus component

Port1 stimulus component

Method 1

Individual port
seed generationInitial test

case seed

Calc2
DUV

Port2 stimulus component

Port3 stimulus component

Port4 stimulus component

Port1 stimulus component

Method 2
Individual port

seed generation

Individual port
seed generation

Individual port
seed generation

Individual port
seed generationInitial test

case seed

Calc2
DUV

Port2 stimulus component

Port3 stimulus component

Port4 stimulus component

Port1 stimulus component

Method 3
Individual port

seed generation

Individual port
seed generation

Individual port
seed generation

Rand() number generator Different rand() number generatorKey:

■ FIGURE 7.23

Three methods for seeding duplicate stimulus components. Method 3 is the most effective algorithm
for avoiding harmonic stimulus component activity.

ponent timing will result in a different test case from the original. Occa-
sionally, this presents a hole in the on-the-fly random paradigm. When
the fix for a design error changes the timing on the DUV outputs, it likely
changes the cycle sequence for the stimulus component, forever altering
the sequence of on-the-fly generated inputs. In this case, it is best to add
coverage monitors to snoop for a recurrence of the error condition to
assure that the stimulus component creates the error scenario and the
design update fixed the flaw.

7.2.5 Constraint Solving in Random Environments
Every time a stimulus component chooses a value to drive into the DUV,
there are restrictions on the possible choices. The most basic restriction
is the number of input bits for that value. However, most input lines have
further restrictions on the content of the control or data signals. These
restrictions are based on the content and context of the input. These
restrictions are called constraints.

Most verification environments have some sort of constraint solving
challenge. A constraint solving challenge, as defined by Eyal Bin et al.
“consists of a finite set of variables and a set of constraints” [3]. There is a
range of possible values for each variable; however, choosing a particular
value for one variable may restrict the realm of possible values for another
variable. These implications are constraints. A constraint solving chal-
lenge occurs when a relationship exists between multiple input values.

In verification, there are two categories of constraint solving engines.
The first is a general-purpose constraint solver. HVLs (Specman, Vera as
discussed in Chapter 6) use powerful, general-purpose constraint solvers
to aid in the attack of the exploding state space challenges faced by test
bench authors. General-purpose constraint solving engines require a
deep background and are beyond the realm of this book.

The second approach is to embed constraint-solving mechanisms
in the test bench code. This category includes code written by verifica-
tion engineers to solve constraints on the DUV. To this end, we offer
approaches and examples.

In the course of creating verification environments for specific DUVs,
engineers constantly deal with input constraints, which may restrict the
value of a single variable or restrict other variables based on a relation-
ship between them. Constraints may also exist over time, restricting
inputs for a period of cycles or requiring responses with a number of
cycles. Ignoring constraints in stimulus generation leads to illegal con-
ditions and protocol violations. The most basic constraint on most
designs is the set of legal decode values. The Calc2 design constrains the
4-bit command bus to five legal inputs: zero (no op) and the four
command codes for add, subtract, shift left, and shift right. All other values
are illegal commands. A more complex constraint in Calc2 is the restric-
tion that each port may have no more than four commands outstanding

7.2 Strategies for Stimulus Generation 297

at a given time. This is a temporal constraint, to which the verification
environment must constantly abide. However, this is still a relatively
simple constraint.

In Calc2, the case in which the operand data generation requires intel-
ligence is our first venture into constraint solving between multiple vari-
ables. Here, the possible Operand2 values had to be tailored based on
the type of response already chosen. The operands both have a large
set of possible values (232), whereas there are two possible values for the
responses for add and subtract commands: good and overflow/underflow.
However, once the stimulus component makes a choice for one variable,
it limits the other variable’s legal solution space. For example, a “good”
response for the subtract command constrains the second operand to be
less than the first operand.

Importance of the Sequence of Solving Variable Constraints

When creating random environments, the order that the stimulus com-
ponent assigns values to variables is a key decision made by the verifi-
cation engineer. Choosing variable values in the wrong sequence may
unduly limit the input stimulus. Such a limitation can handicap a veri-
fication environment so that certain areas of the DUV remain unexer-
cised. It is therefore imperative that the verification engineer understand
the constraint relationships between variables.

The data and response variables in Calc2 are a simple, yet powerful
example of the implication of the sequence in which the stimulus com-
ponent assigns values to constrained variables. The randomization table
in Figure 7.22 shows that for add and subtract commands, it is the veri-
fication engineer’s intent that the stimulus component creates “good”
responses for 80% of the commands and “overflow/underflow” responses
on the remaining 20% of the commands. Consider the two possible
sequences: choose the operand data first, or choose the response first. If
the stimulus component chooses the operand data first, then there is a
50% probability that the operands would produce an overflow or under-
flow response. Randomly chosen operand values in the range of 0 to 232

- 1 automatically constrain the response value; that is, once the stimu-
lus component chooses operands without constraints, the response value
is determined. Therefore, the correct sequence to implement the verifi-
cation engineer’s intent is first to choose the value for the response vari-
able. Then, the stimulus component uses a constrained algorithm for
choosing operands shown in Figure 7.11. The flowchart in Figure 7.21
indicates the correct sequence.

Constraint Solving in Stimulus Components

Constraint solving for specific DUV applications requires a three-step
process:

298 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

1. Understand the interdependencies.

2. Prioritize the variables.

3. Analyze the implications.

The first step is to map all of the interdependencies of the input vari-
ables. This entails understanding which variables are closely coupled,
loosely coupled, or unrelated. Closely coupled variables imply that when
the stimulus component selects the value of one variable, another vari-
able’s (or variables’) value is restricted to a small range. Loosely coupled
variables imply fewer restrictions on the second variable’s value. Choices
between unrelated variables have no effect on the other.

Generally, the best method for understanding interdependencies on a
particular DUV is to first group related input signals. A DUV may have
dozens of input signals, but many of these are unrelated to each other.
Group together those that are related. Stimulus components may act
independently on these groups. These stimulus components may even be
in separate modules. The four ports on Calc2 are an example of group-
ing related inputs. Within each port, input signals (data, command, and
tag) values are coupled. However, across each port, these input signals
are unrelated. Port1’s signals imply no constraints on any other port.

Continuing down the path of understanding the interdependencies,
the verification engineer should now map the closely coupled variables
to each other. The loosely coupled variables follow. For every set of vari-
ables that constrain each other, test that the constraints are reciprocal;
that is, validate that all of the same constraints apply regardless of which
variable value is chosen first. Closely coupled constraints are generally
reciprocal. For loosely coupled constraints, the order in which variable
values are chosen matters.

On Calc2, the specifications imply coupling the signals on each port.
Looking closer at the relationships within a port, we see a relationship
between the response values and the commands. There is a 1-to-1 rela-
tionship between the shift operation and the good response (a shift
command only gets a good response). The add and subtract commands
have a looser coupling to the response codes, as the data and response
values are coupled. We have already discussed the loosely coupled con-
straint relationship between the add/subtract operand values and the
good/overflow/underflow responses.

Prioritization of the variables dictates the order in which the verifica-
tion environment assigns values to variables. Understanding the impli-
cations of the sequencing of value choices is the heart of the
prioritization process. Three factors dictate priority:

■ Intent of the test

■ The relationship between groups of coupled variables

■ The relationship within variables in a group

7.2 Strategies for Stimulus Generation 299

The most important factor in sequencing variables is the intent of the
test case. If the intent is very specific, the constraints on variable values
are tight. Conversely, if the verification engineer’s intent is to hit a broad
range of the DUV space, then the variable values tend to be constrained
only by the DUV specification. An example of a tightly constrained test
case for Calc2 would be one written to verify a Shift_left of zero places
from Port1. Here, only the tag and Operand1 values are unconstrained.
The port, command (Shift_left), and Operand2 data (“00000000”x) are
tightly constrained. On the other hand, the “least constrained” test case
in Figure 7.15 is a template for a test case constrained only by the Calc2
specification. However, even that template can run tightly constrained,
depending on the values in the randomization control file. In either case,
the intent of the test case dictates a sequence of choices for variable
values.

The relationship between groups of coupled variables and the rela-
tionship within variables in a group have equal priority when sequenc-
ing constraint solving. In many DUV specifications, there may be only
weak constraints between groups of variables. This is the case on Calc2,
in which the only constraining values that exist between the four ports
are the reset line and the clock signal. Fundamentally, these two signals
have little impact on Calc2 test cases except when the intent is to verify
the reset or the clock.

Although there may not be constraints across groups of coupled vari-
ables, there are always constraints between variables in a group (other-
wise, the variables would not be grouped together). Here, the order that
the verification environment assigns values to variables is key in assur-
ing the proper stimulus generation. The rule of thumb (after accounting
for test case intent) is to sequence the variables by first choosing values
for the variables that least constrain the other variables. This method
leaves the largest available state space for choosing values for variables
late in the sequence.

For a general-purpose Calc2 test case, this rule dictates the following
sequence for choosing variable values within a single port. First, choose
the tag value. Its value has no implication on the other values. (If there
is no available tag, then the stimulus is tightly constrained to no new
commands.) Next, choose the command, which will place constraints on
the possible response values. The choice of response value follows.
Finally, based on the chosen response value, choose the values for the
two operand variables. Although the intent of the test case may alter this
general-purpose sequence, this order of variable choices follows the rule
of choosing the least constraining variables first.

After mapping the constraints and sequencing the variables, the final
step is to analyze the implications of the sequence. This step searches for
overconstrained variables, as well as constraints that unintentionally
restrict the stimulus components from exploring states within the DUV.
There are two types of overconstrained variables: those groups whose
valid state space is null, and those groups with an unintentionally limited

300 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

state space. Groups whose constraints unintentionally limit the state
space are actually more dangerous for the verification engineer than
those groups with unsolvable constraints, because the stimulus compo-
nent’s constraint solver will flag the unsolvable constraints but not
the unintentionally limited constraints.

There are cases in which the intent of the test case overconstrains the
variables. In these cases, no set of variable values exists that meets the
intent of the test case. This occurs most often when the constraints on
any single variable seem reasonable but the mix of constraint values
unexpectedly creates an unsolvable state space. In other cases, the design
rules or implementation make certain constraint solving tasks difficult
or impossible. Here are three examples from Calc2:

Overconstrained Owing To Architecture Specification

(1) The case of a SHL or SHR command with an overflow/underflow
response is invalid, and (2) The design specifies that an illegal command
will only get an “illegal command” response not a good response.

Tightly Constrained Owing To Intent (Small State Space of Values that
Solve Constraints)

A Shift test with a result of zero having nonzero Operand1 values and
low Operand2 values (less than four). The intent of this test case is to
verify the shift logic across a range of input values that produce a zero
result. This requires choosing Operand1 values with zeros in the low-
order n bits for SHL and high-order n bits for SHR, where n is the
Operand2 value.

Overconstrained Owing To Microarchitecture

The verification plan calls for filling the add queue and shift queue.
However, it turns out that no matter what constraints the verification
engineer places on the stimulus component, it is impossible to fill the 16-
deep internal queue! This is because the Calc2 priority logic continuously
dispatches the top entry in the queue. Given the case in which all four
ports have sent four commands and all of these commands are the same
type (add/sub or shift), one command will be in the adder, one command
will be entering the response output logic, and one will be on the Calc2
output signals. This leaves a maximum of 13 commands in the queue.
No matter how fast the stimulus component sends commands, it can
never fill the queue.

7.2.6 Coverage Techniques in Random Environments
Although analyzing the implications of the constraints is an important
step, it is not foolproof. Therefore, the verification team needs back-up

7.2 Strategies for Stimulus Generation 301

in the form of runtime coverage techniques used to track the stimulus
and DUV internal states. The ideal target of the coverage mechanisms
in this realm is the cross-product of the grouped variables. Verification
engineers should look for unexpected holes in the cross-product matrix.

The need for coverage in verification environments cannot be over-
stated. Verification engineers use coverage data to point to holes in their
environments, test matrix, random bias controls, or constraint solvers.
Errors in program coding, oversights in constraint solving, or typo-
graphical errors in bias controls can all lead to missed test scenarios.
Coverage results allow the verification team to compare what simulations
actually ran versus what the team expected to run.

Table 7.6 displays the coverage results from a set of Calc2 simulation
runs. The results track the number of occurrences of each of the 40 pos-
sible cross-product variable values on a single port. This coverage model
tracks only control values, not data values. Therefore, the coverage table

302 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

TABLE 7.6 ■ Coverage results for single Calc2 port across multiple simulation runs

Cross-product num Tag Command Response Count

30 10 ILLEGAL Illegal 0
16 01 ADD Overflow 3
17 01 SUB Underflow 7
40 11 ILLEGAL Illegal 127
10 00 ILLEGAL Illegal 139
20 01 ILLEGAL Illegal 147
7 00 SUB Underflow 255

26 10 ADD Overflow 258
36 11 ADD Overflow 266
37 11 SUB Underflow 270
6 00 ADD Overflow 272

27 10 SUB Underflow 272
11 01 ADD Good 802
31 11 ADD Good 823
2 00 SUB Good 829
1 00 ADD Good 846

22 10 SUB Good 873
12 01 SUB Good 881
21 10 ADD Good 893
32 11 SUB Good 914
33 11 SHL Good 1136
24 10 SHR Good 1162
3 00 SHL Good 1189

34 11 SHR Good 1201
23 10 SHL Good 1211
14 01 SHR Good 1230
4 00 SHR Good 1236

13 01 SHL Good 1242

derives the 40 values from the cross-product of the four tags, five com-
mands, and two responses (4 ¥ 5 ¥ 2 = 40).

The cross-product number field shows the number assigned to each
of the 40 cross-products. Note that Table 7.6 only shows 28 of the 40 pos-
sible cross-products. The other 12 cases are illegal cases, shown in Table
7.7. These cross-products are illegal because the result value cannot
occur with the given command (illegal command with good response, or
a shift command with an overflow response). A nonzero count field for
any of the illegal cases in Table 7.7 would indicate a problem in the DUV.

The coverage results in Table 7.6 are ordered by the count field. This
directs the verification engineer to unexpected count values.

The intent of the coverage model is to identify holes in the stimulus
component that may have come about because of unintentionally limited
constraints. Analysis of these coverage results does show three anom-
alies. Cross-product number 30 (tag “10”b, Illegal command, and Illegal
response) has a zero-count value, whereas the illegal command and
illegal response counts for the other three tags (cross-product numbers
10, 20, and 40) all have totals in the 100s. The verification engineer must
investigate why the stimulus component is not creating this combina-
tion. The other two anomalies also require investigation. The results for
cross-product numbers 16 and 17 show abnormally low count values
compared with the other add and sub commands with overflow/under-
flow responses. These anomalies often indicate a constraint solving error
in the stimulus component.

7.2.7 Making Rare Events Occur
Coverage counts such as those shown in Table 7.6 serve many purposes
beyond the search for overconstrained values. Coverage data also

7.2 Strategies for Stimulus Generation 303

TABLE 7.7 ■ Illegal cross-product coverage combinations for coverage model shown in
Table 7.6

Cross-product num Tag Command Response Count

5 00 ILLEGAL Good 0
8 00 SHL Underflow 0
9 00 SHR Underflow 0

15 01 ILLEGAL Good 0
18 01 SHL Underflow 0
19 01 SHR Underflow 0
25 10 ILLEGAL Good 0
28 10 SHL Underflow 0
29 10 SHR Underflow 0
35 11 ILLEGAL Good 0
38 11 SHL Underflow 0
39 11 SHR Underflow 0

provides insight into the workings of the environment’s randomization
controls. Over a long period of simulation cycles, coverage data should
echo the probability ranges dictated by the randomization control files.
Any significant deviation from the values of the randomization control
file requires investigation.

Therefore, the data shown in Table 7.6 indicates an approximate 3 :1
ratio of good responses to overflow/underflow responses for add and
subtract commands. The data also indicates about a 1 :1 ratio between
add/subtract commands and shift commands. If the coverage data and
the probability tables do not correlate, then the verification engineers
must examine the stimulus component.

Many simulation runs ought to be dedicated to running the DUV in a
“normal mode” of operation, which is characterized by a ratio of stimu-
lus that reflects the expected load on the DUV when running an average
workload. However, verification must take advantage of its ability to
deviate into the unexpected, making normally rare events occur at a
heightened pace. As stated in the introduction to this section, the verifi-
cation suite must contain more permutations, drive more interactions,
and create more extraordinary cases over a short period of time when
compared to normal program or application activity. This indicates the
desire to make rare events occur often in verification.

The fundamental reason to increase the rate of occurrence of rare
events is that this is where nasty bugs lurk. As the designer writes the
initial specification and proceeds with the HDL, the focus is on the
normal mode of operation. Designers center their performance opti-
mizations (bandwidth, throughput, latency) on the normal cases. Good
designers also consider the odd cases, but it is difficult for a designer to
think of all possible cases in a complex system. These rare occurrences
are also known as corner cases and window conditions.

The verification team must allocate a substantial amount of effort
toward driving corner cases. There are three prongs to this effort: probes
of the design for special cases; examinations of coverage data; and
automations that modify the randomization controls.

The most powerful lead in the search for corner case bugs is the design
itself. The verification engineer must probe and investigate the DUV’s
microarchitecture and understand all of the various stimulus events. The
microarchitecture includes queues, buffers, state machines, data paths,
and controls. Stimulus events include all of the separate input commands
and response codes, as well as interrupts and service support (resets,
clocking, and initialization). Each of these items requires attention not
only at the single event level (“has the buffer been filled?”) but also at a
cross-product level (“what happens when we take an interrupt when the
buffer is filled?”).

From a microarchitecture standpoint, rare events occur when inde-
pendent single events align, there are data or control path collisions, or

304 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

there are unusually busy conditions. These three areas require the atten-
tion of the verification team.

Although early verification efforts ensure the proper behavior during
single events such as interrupts or buffer full cases, the verification engi-
neer must focus simulation cycles toward alignment of multiple single
conditions across a short period of cycles. This might entail busying
the traffic into multiple queues simultaneously, or initiating external
interrupt stimulus at such a pace that the interrupts inhibit forward
progress of the DUV’s function. These cases, rare as they may be, push
the design into unusual conditions that tend to uncover unintended DUV
behavior.

Collisions occur when multiple requestors vie for a shared resource
simultaneously. Well-architected designs intentionally minimize the rate
of collisions by providing enough resources for more than the average
amount of activity. However, any time there is a shared resource, the
potential for collisions exist, and the design must be able to handle these
cases. A cache controller in a multiprocessor environment provides a
good example. The design architects specify a cache size as large as the
chip allows—large enough to provide low latency to multiple processors’
data requests. Because of the relatively large cache size, the processors
will usually access completely different addresses in the cache. However,
the most interesting verification cases occur when multiple processors
request the same data address at the same time. The cache must follow
the architecture rules, only granting requests that maintain coherency
and rejecting those that would allow access to old data or simultaneous
writes. For this reason, verification’s stimulus components should do the
unusual—step up the pace of requests to the same address, effectively
utilizing only a small portion of the cache for the duration of the test
case. This forces collisions to occur at a much-heightened rate.

Bus busyness is another form of collision, in which the bus is the
shared resource. Architects design busses to satisfy latency requirements,
which necessitate a low utilization rate. Therefore, the hardware may
average a 30% utilization rate on a bus, with peaks and lulls depending
on the applications running on the system. Verification, though, needs to
drive beyond the peaks, hitting the obscure conditions of near-total uti-
lization. Verification engineers often find bugs based on the effects of
constant retry actions, low bus availability, and high traffic rates.

The probability of the simultaneous occurrence of multiple corner
cases may be quite low—maybe one in a trillion—but a trillion cycles at
today’s frequencies translates to merely a handful of minutes on the hard-
ware. If verification mirrored the hardware applications’ level of activity,
many bugs would go undetected until hardware fabrication because of
the limited throughput of simulation cycles. Therefore, it is the verifica-
tion team’s job to make all sorts of rare events occur frequently in
simulation.

7.2 Strategies for Stimulus Generation 305

This requirement on verification highlights the need for stimulus com-
ponents to run in modes that are independent of the hardware’s base
applications and programs. Although it is good to run some simulation
with application-like mix of stimulus, this mode must be restricted to a
minority of the verification effort. The specialized stimulus components
that we have described act on the rules of the microarchitecture, which
are different from the profile of the average application. Continuously
changing the bias controls and stimulus parameters drives further diver-
gence in stimulus profile, allowing the environment to create a wide
range of internal DUV cases.

The Calc2 design contains multiple corner conditions that the verifi-
cation team must stimulate. Under normal conditions, these cases are
rare events that could contain DUV bugs. We now examine a few of these
cases.

In the category of alignment of independent single events, the verifi-
cation team would want to create the case in which the next command
in both internal queues contain an add and a shift command from the
same port. This will verify that the priority logic does not dispatch both
commands simultaneously, causing a collision on the output bus. Simi-
larly, the verification team should create the case in which the DUV for-
wards an invalid command (which the DUV should not place in either
queue) directly to the output at the same time it completes an add or
shift command from the same port. This is another potential data colli-
sion case caused by two independent commands.

Other Calc2 rare events, as documented in the verification plan, occur
under unusually busy conditions. It is important to try to fill the add
queue and, in a second test case, the shift queue. These test cases are
independent because the stimulus can only focus on filling one queue at
a time.

7.2.8 Stimulus Generation of Deadlocks and Livelocks
If there is one Achilles’ heel to on-the-fly random environments, it is their
inability to create deadlock and livelock conditions, which occur when
the logic design cannot make forward progress when running an appli-
cation and are usually the result of a resource conflict when two differ-
ent components of the system vie for a shared resource. A deadlock
condition is one in which processing completely halts waiting for access
to a shared resource; a livelock condition occurs when processing
appears to move forward, but irresolvable contention for a shared
resource continually causes processing to retry or loop back to an earlier
state.

Deadlocks and livelocks are most common in a multiprocessor system
where a common storage controller provides memory and input/output
(IO) access for many processors. A main role of the storage controller is
to give each processor the appearance that it has the entire system’s

306 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

resources to itself, even though there are multiple processors connected
to the controller. As a result, the controller contains many shared
resources which, when not apportioned correctly, can cause deadlocks
and livelocks.

The verification team must ensure that the design does not allow dead-
locks or livelocks. This is not easy, as locking conditions often occur
under rare circumstances because of separate repetitive and synchro-
nized stimulus patterns. The “separate repetitive and synchronized”
element is what makes it difficult for generic on-the-fly random envi-
ronments to find locking cases. Verification engineers design random
environments to make stimulus choices each cycle without regard to pre-
vious system activity. The randomness of the stimulus choices opposes
the “repetitive and synchronized” locking conditions.

However, there are mechanisms that verification engineers can build
into stimulus components to assist in the search of locking conditions
in the hardware. Fundamentally, these mechanisms “derandomize” the
random environment. These mechanisms bring persistent or repetitive
stimulus to the environment in a search for locking conditions in the
DUV.

To understand the verification techniques used to find locking condi-
tions, first look at an example deadlock condition. Figure 7.24 shows a
storage controller in a four-processor system. The memory controller
must provide each processor with memory access to main memory while
maintaining coherency across the system. Coherency means that there is
a single value for every byte of memory within the system, or the storage
controller may never allow two different processors to write the same
byte of data simultaneously. Furthermore, if a processor holds data in its
local cache (L1) with the intent to write to it, no other processor may
have a copy of the data. However, all processors may have a copy of a
specific byte of data if none intends to modify the data. Therefore, the
storage controller maintains a directory that keeps track of the data
within all processors. Whenever a processor requests new data, the
storage controller looks in the directory to see if any other processors
have the data.

Consider a case in which microprocessor 1 owns a modified copy of
the data from address X, and microprocessor 2 owns a modified copy of
the data in address Y. The instruction stream running on microproces-
sor 1 next looks to operate on the address X data based on the value of
the data in address Y. Microprocessor 1 must request the data in address
Y from the storage controller. Simultaneously, microprocessor 2 tries to
access the data in address X. Both requests arrive at the look-up and
invalidate logic in the storage controller. The storage controller checks
the directory and tries to invalidate both processors’ copy of their
updated data. However, both processors await the return of their
requested data before processing the invalidate request. At this point, the
processors deadlock, as neither can make forward progress.

7.2 Strategies for Stimulus Generation 307

This scenario represents a simple deadlock condition. Even so, a
random environment needs special mechanisms to uncover this condi-
tion because the timing of the dual requests from the processors, the spe-
cific address dependencies, and the likelihood that a third processor’s
request could break the deadlock makes this an intricate scenario. Actu-
ally, this scenario is ripe for a deterministic test case that ought to be
included in the verification plan. However, the verification team must
look for other, more complex locking scenarios beyond this simple
example. These cases require an automated mechanism.

Figure 7.25 shows the stimulus generation components for creating
locking conditions within the storage controller environment. The dotted
area indicates the additional automated mechanisms. The new mecha-
nisms are in addition to the normal random stimulus environment. A
mode switch enables normal random or “lock sniffing” mode.

The lock sniffing mode allows the verification team to input a hand-
generated deterministic scenario, or enables an automated, highly con-
strained biasing mechanism. In both cases, the environment forwards a
short, looping set of commands to two or more of the microprocessor

308 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

Memory
access

Main memory

Controller
pipeline

Micro-
processor

1

Storage
controller

(DUV)

Look-up and invalidate logic

Directory

L1 cache

Micro-
processor

2

L1 cache

Micro-
processor

3

L1 cache

Micro-
processor

4

L1 cache

■ FIGURE 7.24

Microprocessor 1 holds the data needed by microprocessor 2 and vice versa. The system memory
coherency protocols do not allow either processor to access old copies of the data. This can result in a
deadlock.

stimulus generators. The automated biasing mechanism’s loop focuses
on a small number of addresses to cause contention between the micro-
processors. The verification team tunes the mix of instructions in the loop
to cause thrashing in the storage controller pipeline. Adjustments to the
number of stores and loads and the length of the command loop will
have differing effects on the storage controller and can uncover locking
situations. The verification team does not need to update the scoreboard
or checking components (not shown in Figure 7.25) as the stimulus gen-
eration components still interface with the rest of the environment the
same as in the normal mode.

Most DUVs that are susceptible to locking conditions have multiple
stimulus interfaces. The storage controller in our example likely has

7.2 Strategies for Stimulus Generation 309

Microprocessor1
stimulus generator

Microprocessor3
stimulus generator

Microprocessor2
stimulus generator

Microprocessor4
stimulus generator

“Normal”
random
biasing

Deter-
ministic
scenario

Lock mode
biasing:

1, 2, or 3
addresses

small mix of
loads and
stores

2, 3, or 4
processors

Lock mode
program

cmd1
cmd2
cmd3
cmd4
...

Normal or lock
mode switch

Memory
access

Main memory

Controller
pipeline

Storage
controller

(DUV)

Look-up and invalidate logic

Directory

■ FIGURE 7.25

To create locking conditions in the storage controller, the verification team adds additional lock “sniff-
ing” programming modes to the normal random environment. When in lock sniffing mode, the micro-
processor stimulus generators loop on either hand-generated small programs or highly constrained
automatically generated scenarios.

additional ports for IO devices such as Peripheral Component Intercon-
nect (PCI) or Ethernet. The verification team can add micro modes to
these interfaces as well, because locking conditions may occur across dif-
ferent types of stimulus input. Some of the most complex locking con-
ditions occur when an IO device locks out a processor, involving multiple
shared resources across the system.

In attempting to find lock conditions, the verification team should
always limit the number of active stimulus generators, as overstimulus
can prevent livelocks and deadlocks from occurring. Too much stimulus
is not conducive to creating lock scenarios because additional commands
can bump the resource out of a deadlock or change the timing in a live-
lock. Two stimulus components may create a lock scenario that the team
needs to uncover; however, another stimulus component could “unlock”
the DUV before the checking components detect that the lock situation
occurred. To prevent this, the loop mode program should contain gaps
in which the environment sends no new stimulus until it detects the DUV
continuing to make forward progress.

Deadlocks and livelocks are difficult to uncover in simulation-
based verification. The verification plan should contain a healthy dose of
deterministic test cases any time a DUV contains shared resources. The
addition of automated, highly constrained lock sniffing modes will also
help uncover these flaws. The verification team should augment their
simulation-based verification effort with formal verification of DUVs
with shared resources. Formal verification (Chapters 11, 12) can uncover
some “pathological” locking conditions across the controls of DUVs with
shared resources.

7.3 SUMMARY

Verification engineers have an array of choices for personalizing
stimulus components to the DUV. These choices range across two axes:
determinism versus randomness and pregeneration versus on-the-fly
generation.

Traditional stimulus components were deterministic, relying on spe-
cific choices made by the verification engineer. Deterministic test cases
drive precise scenarios onto the inputs of the design. Alternatively, the
verification team can build their knowledge of the input protocols into
the stimulus components and use constraint directives and biasing to
control the range of input stimulus. Stimulus strategies may use a com-
bination of both styles.

The second axis describes when the environment makes the stimulus
decisions. Here, the choices are before running the simulation (prede-
termined) or during the simulation job (on-the-fly). In the predetermined
paradigm, the verification engineer can look at the test case before
running simulation. The verification team may use automation in the

310 Chapter 7 ■ Strategies for Simulation-Based Stimulus Generation

construction of predetermined test cases, allowing for a wide range of
random choices during test case generation. Alternatively, the verifica-
tion engineer can choose determinism, meticulously constructing the test
case by hand. In the on-the-fly paradigm, the verification team defers cre-
ation of the test case until runtime, in which the stimulus components
react to the current state of the DUV. Here again, the verification team
may alter the amount of determinism or randomness in the choices that
the stimulus components make.

No matter which paradigm the verification team chooses, it is imper-
ative that they understand the constraints on the inputs of the design.
Constraints describe the interrelationship between input signals and the
limitations across a period of cycles. This chapter describes a method for
solving constraints in the least restrictive fashion, which allows the stim-
ulus component to generate the broadest set of input scenarios.

Finally, this chapter describes the use of coverage feedback to evalu-
ate the quality of the stimulus components. Robust coverage metrics
point to weaknesses in the verification environments stimulus generation
controls. This feedback allows the verification team to update their stim-
ulus components no matter which generation paradigm they choose.

7.4 EXERCISES

1. What other coverage models should the verification team document
in the Calc2 test plan?

2. Explain the differences between the four types of test case stimulus.

3. Why do verification teams need to create both random and deter-
ministic test cases?

4. What pitfalls must the verification team avoid when using random
number generators for seeding stimulus components?

5. What is significant about the order that random drivers choose
values for input signals?

6. What is the process for solving constraints in a random stimulus
environment?

7. How does coverage feedback assist in evaluating the stimulus
component? How does it help with evaluating constraint-solving
algorithms?

8. Describe rare events. Why is it important to focus on creating these
cases during simulation?

7.4 Exercises 311

A customer expects the verification “warranty” to last the life of the
system. At the same time, the limited number of simulation cycles
(compared to the life of the system) handicaps the verification effort. To
combat this, the verification team needs a robust strategy for creating
stressful stimulus during the relatively small number of available simu-
lation cycles. However, the additional challenge beyond creating the
stimulus is that the environment must identify all the bugs triggered by
this stress. Driving the stimulus is only half of the equation. Remember
the yin and yang of verification: not only must the stimulus aggravate the
DUV, the checking components also must recognize when a bug exists in
the design.

After creating the stimulus and checking components, the verification
team can begin to debug the hardware description language (HDL) and
the verification components. When the results of the design under veri-
fication (DUV) and the checking component disagree, the verification
engineer must investigate the miscompare. This investigation is the
debug phase, and during this phase, the verification team reaps the fruits
of their component-building labor.

This chapter describes methods for checking complex designs using
simulation. The Calc2 design is used to demonstrate multiple verification
techniques that were introduced in Chapter 3 for results checking. The
chapter then introduces the debug process and how choices in the veri-
fication strategy effect debug.

8.1 TYPES OF RESULT CHECKING

During the planning phase of the verification test bench, verification
leaders must make the basic choices on stimulus generation. These
choices, such as when the generation occurs, affect the results checking
portion of the test bench. In addition, there is another aspect of results
checking—when the verification environment performs the checking.
The two choices are (1) throughout the life of the test case (on-the-fly

C H A P T E R 8

STRATEGIES FOR RESULTS CHECKING IN
SIMULATION-BASED VERIFICATION

checking) or (2) at the end of the test (end-of-test checking). The verifica-
tion leaders need to consider both stimulus generation and results check-
ing before making a decision on the overall test bench.

Remember there are three different types of self-checking test benches
(see Section 3.4.2):

■ Golden vectors: A test bench in which some knowledge base of valid
output vectors is stored in the scoreboard. The checking compo-
nent compares the DUV results to this knowledge base by calling
the scoreboard and requesting the expected vectors. The checker
does this either every cycle or every transaction.

■ Cycle accurate reference models: A test bench in which the reference
model calculates all expected outputs based on the input stimulus.
The reference model re-implements the function of the DUV,
usually in a high-level programming language (HVL). The check-
ing component compares the outputs of both the DUV and the ref-
erence model.

■ Transaction based: A test bench in which the DUV has identifiable
transactions. The test bench uses a scoreboard to track commands
and data driven on the inputs of the DUV. The scoreboard compo-
nent performs the transformation from inputs to outputs, and the
checking component then performs a callback to the scoreboard to
retrieve a transaction to check.

Later sections discuss how the type of checking (either end-of-test case
or on-the-fly) and test case generation affect the three different types of
test benches.

8.1.1 On-the-Fly Checking Versus End-of-Test
Case Checking

An important aspect of the test bench is when to perform the checking—
either on-the-fly or at the end of the test case. In the on-the-fly paradigm,
the verification environment performs checking during the simulation.
The stimulus components initiate transactions, and as these transactions
complete, the checking components immediately verify the correctness
of the transaction. If the checking component detects any type of error,
it records the time, transaction, and any other useful information for
debug. End-of-test case checking performs at the completion of the sim-
ulation test, either within the simulation (end of simulation checking) or
in a separate job (postanalysis checking).

On-the-Fly Checking

On-the-fly checking is most applicable to a DUV that operates on trans-
actions and performs some type of data transformation on that transac-
tion. Figure 8.1 illustrates this type of paradigm.

314 Chapter 8 ■ Strategies for Results Checking

There are multiple benefits of on-the-fly checking that lead to this par-
adigm’s common usage. These types of test benches are easier to debug
and require less memory for simulation; as a result, they run faster than
a pure end-of-test case checking paradigm. The addition of verification
languages and verification aspects to traditional languages (Verilog,
System C) tend to make on-the-fly checking easier to implement, allow-
ing the verification engineer to easily create a transaction-based test
bench. Debug is also easier with on-the-fly checking because the simu-
lation stops when the checker detects an error during the simulation,
rather than at the end. This assists in debug, which is discussed in more
detail later in this chapter. The overall simulation requires less memory
with on-the-fly checking because the checking component does not need
to keep the expected data until the end of simulation: as soon as the
checker finishes with a transaction, the checker releases that memory.
Because less memory is required, the simulation tends to run faster.
Moreover, with the performances of event-based simulators improving
and the creation of cycle-based simulators (another performance
increase), on-the-fly checks are more affordable.

End-of-Test Case Checking

End-of-test case checking applies when the checking components need
to check the state of the test bench after the test completes. One scenario

8.1 Types of Result Checking 315

Stimulus DUV Checker

Expected results

Cycle t + 0 t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

clk

duv_inputs

duv_outputs

Check
Expected v. actual

Transaction 1 Transaction 2

Transaction 2Transaction 1

■ FIGURE 8.1

On-the-fly checking. The stimulus component initiates a transaction that lasts for three cycles on cycle
t + 1 and t + 6. Each transaction completes on the outputs of the design under verification (DUV) in
one cycle after the end of the transaction. The checking component senses the end of the output trans-
action and at that time compares the actual outputs versus the expected outputs. These expected
outputs could be pre-calculated by using golden vectors, calculated from a scoreboard as in a trans-
action-based test bench, or generated in a cycle accurate reference model.

is to compare the contents of a cycle accurate reference model to the
contents within the DUV. Another scenario is to check when the score-
board and DUV queues to ensure that they are empty and no transac-
tions are pending. This completeness check will find bugs if at some
point during the test case data were incorrectly stored and never again
accessed. End-of-test case checking tends to be used when any of the
following conditions exist:

■ The results remain persistent within the DUV’s memory until the
end of the test.

■ Signal access is limited (e.g., acceleration or emulation).

■ Check of the ending state of the test bench and/or DUV (queues
being empty, reference model comparison, etc.) is required.

■ Functions have system aspects (e.g., arbitration, latency,
performance).

When using the end of simulation checking paradigm, the verification
environment calls an end-of-test case checking routine when all the
checking components have finished. This end of test routine will then
perform any user-defined checks on the test bench and DUV. Figure 8.2
illustrates this paradigm.

In addition to the monitor observing the DUV outputs in Figure 8.2,
the monitor may also capture internal DUV data for end of test case
results checking. This allows the checking component to compare inter-
nal DUV resources (such as general-purpose registers) to the expected
results. The environment predicts the expected results based on the type
of test bench: golden vectors, transaction based, or cycle accurate refer-
ence model.

A different method of performing end-of-test case checking is to
perform the checks outside of the simulation engine. It is similar to the
end-of-test case checking within the simulation engine, except the simu-
lation engine and verification environment programs complete before a
separate program performs the checking. Figure 8.3 illustrates end-of-
test case checking using a postanalysis program.

As with the end of simulation method, a monitor collects the trans-
actions on the output of the DUV, but instead of writing it to memory, it
writes to a file. Once the simulation completes, the simulation program
exits (note that in Figure 8.3 the checking is not performed in the simu-
lation wave window). Now a post-processing routine, independent from
the simulation environment, invokes checking by using the expected
results file and actual results file as inputs. This program checks for cor-
rectness of the results. As with the end of simulation method, the monitor
can also probe into the DUV at the end of simulation to add any neces-
sary states or conditions that it may need to check. Once again, the

316 Chapter 8 ■ Strategies for Results Checking

source of the expected results depends on the checking paradigm: golden
vectors, transaction based, or cycle accurate reference model.

End-of-test case checking applies well to functions having system
aspects, for example, performance verification. Performance has differ-
ent meanings depending on the application. In a data transmission
system, the environment typically measures performance in both band-
width and latency. Bandwidth is the amount of data successfully moved
across the bus over a given timeframe, and latency is the amount of time
the DUV takes to process each transaction. In a processor system, per-
formance is the amount of work that the processor can perform in a given
amount of time. This work may mean the number of instructions or the
number of useful operations.

The common point between both a data transmission system and a
processor system is that the measure of performance is over time. In cal-
culating performance, monitors compute the average time of every trans-
action during the steady state of the system. Monitors typically ignore
the simulation ramp-up and ramp-down times. If the calculation uses the

8.1 Types of Result Checking 317

Cycle

clk

DUV instruction

DUV operands

Internal resource 1

Internal resource 2

Internal resource 3

0 1 2 3 4 5 t–3 t–2 t–1 t

DUV

Checker

Stimulus

Monitor

Expected
results

Instr1 Instr2 Instr3 InstrN

DataNData3Data2Data1

■ FIGURE 8.2

End-of-test checking: end of simulation. The stimulus component sends instructions and data to the
design under verification (DUV) throughout the simulation. The monitor observes the DUV outputs
throughout the simulation. Whenever the monitor sees a transaction on the outputs of the DUV, it cap-
tures the transaction and saves it to memory. (The monitor must capture the pertinent data for this
transaction and cycle number.) On completion of the simulation, the environment calls the checking
component. The checking component validates the transactions captured by the monitor throughout the
test case.

ramp-up and ramp-down times, it skews the overall average to be less
optimal. Because the performance goal is an average, it only makes sense
for the verification engineer to apply this same strategy to the checking.
That is, either post-process all the transactions response times to calcu-
late the average, or compute the average of the transactions response
times during the simulation and at the end of the test and compare this
to the performance target. Because the verification environment must
look at the average performance for the entire simulation, this is end-of-
test case checking.

Another example is with processor test cases. For processor DUVs, the
test case will often use end-of-test case checking to validate the state of
the DUV at the end of the test. A test case selects specific registers for
each operation and will either (1) not overwrite a calculated value or (2)
store calculated values to memory before overwriting. Therefore, the test
case preserves all results processed by the DUV during simulation, allow-
ing for an end-of-test case checking. Referring back to Figure 8.2, the
DUV inputs consist of a stream of instructions and operand data. The
instructions perform precise manipulation of the operand data, using
internal registers as resources (e.g., an ALU status register or general-
purpose registers). At the end of the test, the checking routine compares
the contents of the registers to the expected contents. These internal reg-
isters are not visible to the test bench without the monitor component.

318 Chapter 8 ■ Strategies for Results Checking

Cycle

clk

duv_inputs

monitor captures
internal

resource(s)

0 1 2 3 4 5 t–3 t–2 t–1 t

DUV

Checker
program

Stimulus

Monitor

Transaction 1 Transaction N

Actual
results

Expected
results

■ FIGURE 8.3

End-of-test checking: postanalysis program. Some of the results checking is performed by an external
program that is invoked after the simulation engine has finished and terminated.

This monitor component’s main purpose is to capture the contents of the
internal registers within the DUV for end-of-test case checking.

Combining On-the-Fly and End-of-Test Case Checking

It is more likely that a test bench will require a combination of on-the-
fly and end-of-test case checking. The key is that the test bench contains
the services to be able to perform these types of checks. Recall that the
three types of test benches are golden vectors, transaction based, and
cycle accurate reference models. Let us look at what facilities need to
exist to perform on-the-fly and/or end-of-test case checking within these
test benches.

Golden Vector Test Bench

In a golden vector approach, the environment calculates expected results
by an external test case generation program or by hand (regardless of
on-the-fly or end-of-test case paradigm). The environment loads the
golden vectors into a scoreboard and/or the checker. As the DUV drives
its outputs, the checker detects a transaction on the outputs of the DUV
and captures it. The checker then calls a scoreboard function that returns
the next expected data. The scoreboard will need to provide the expected
data to the checker in the correct order. The environment can match the
scoreboard transaction to the DUV output by implicit ordering of trans-
actions within the golden vectors, by numbering each transaction, or by
attaching an absolute time to each transaction. If the transformation
allows for out of order data, then the scoreboard may require a search
algorithm that correlates the transaction. Once the scoreboard returns
the correct expected data to the checker, it then releases the memory that
it had allocated for this data. The checker then compares the expected
data to the actual data. In the case of a miscompare (expected is dif-
ferent from actual), the checker logs pertinent information for debug.
This continues until the stimulus component does not initiate any more
transactions.

At this point, the test case is over and any end-of-test case checking
occurs. For end-of-test case checking, the scoreboard will, at a minimum,
need to contain a method that ensures that the scoreboard is empty and
no outstanding transactions exist. If any outstanding transactions exist,
the scoreboard should flag an error.

Transaction-Based Test Bench

A transaction-based test bench is very similar to that of a golden vector
test bench when a scoreboard is used. The main difference is how the
expected data is calculated. In a transaction-based test bench, the envi-
ronment gathers the expected results on-the-fly. Instead of loading the

8.1 Types of Result Checking 319

scoreboard with the expected data, it monitors the inputs to the DUV.
The environment then performs the necessary transformation on the
transaction sent by the stimulus component. This becomes the expected
data for what the DUV will output. The scoreboard continues collecting
and transforming the inputs to the DUV and will need to hand the correct
expected data to the checker. The environment also needs to contain
an end-of-test case checking method similar to the golden vector
approach.

Cycle Accurate Reference Model Test Bench

When using a cycle accurate reference model test bench, the reference
model receives the same inputs as the DUV. The reference model then
produces the expected results at the same time as the DUV. The checker
does not request any expected data; the checker simply compares the
outputs of the DUV to the outputs of the reference model every cycle. If
at any time they do not match, the checker indicates an error.

At the end of the test, a method should exist to compare any func-
tion specific contents of the reference model to the DUV. This depends
on the contents of the reference model. Reference models can be deep
or shallow in function. A deep function cycle accurate reference model
will be a pure white box approach, closely mimicking the DUVs activi-
ties. A shallow function cycle accurate reference model abstracts as much
as possible, verifying the intent over the DUV implementation.

For example, take another look at Calc1, which has two internal
pipelines. Data are captured in consecutive cycles and then placed into
an internal buffer (one buffer per port). The priority logic arbitrates
across the buffers to determine which port gets access to these internal
pipelines. On deciding on a winner, the priority logic then dispatches that
cmd/data pair to the appropriate pipeline. Each pipeline executes, and
the results are then placed onto the appropriate output ports to be driven
out of the DUV (Figure 8.4).

A deep function model would contain each stage from the DUV and
mimic its function (Figure 8.4a), thus verifying the DUV via implemen-
tation. A shallow function model performs the arbitration at the same
time as the design, and performs the calculation of the result data in a
behavioral fashion, thus verifying the DUV via intent and not imple-
mentation (Figure 8.4b).

The deep function reference model has an advantage in that an end-
of-test case checking can be created to validate the contents of the DUV
for each of the stages.

As can be seen in Figure 8.5, the implementation of a reference model
spans from a pure white box approach to a grey box approach. The
deeper knowledge put into the reference model creates a “whiter” box.
The less knowledge placed into the reference model, the more abstrac-
tion and allowance for a grey box approach of verification.

320 Chapter 8 ■ Strategies for Results Checking

8.1 Types of Result Checking 321

Add Cmd/Op1

clk

Port 1

Port 2

Cycle t+0 t+1 t+2 t+3 t+4 t+5 t+6 t+7

Add Cmd/Op1

Op2

Op2

Arbitration

Arbitration Arbitration

Perform Add

Perform Add

Drive Output

Drive Output

(b)

(a)

Data Capture
Port 1 & 2
Cmd/Op1

Data Capture
Port 1 & 2
Op2

Data Capture
Port 1 & 2
Cmd/Op1

Data Capture
Port 1 & 2 Op2
& Perform
Function
ON Ports 1&2

Arbitrate
& Pick
Port 1

Arbitrate
& Pick
Port 1

Arbitrate
& Pick
Port 2

Perform Port
1 Add
And Arbitrate
to Pick Port 2

Drive Port 1
Results
And Perform
Port 2 Add

Drive Port 1
Results

Drive Port 2
Results

Drive Port 2
Results

■ FIGURE 8.4

Calc1 Pipeline. (a) The deep function reference model mimics each stage. (b) The shallow function ref-
erence model performs the arbitration on the exact cycle that the logic does.

Deep function Shallow function

White box Grey box

■ FIGURE 8.5

The deep function reference model is a pure white box approach that is required to change as the logic
changes. The shallow function reference model abstracts what it can, thus becoming a grey box
approach.

8.1.2 Pregenerated Test Cases Versus On-the-Fly Generated
Test Cases

Checking does not depend on the type of test case generation—it can be
deterministic or random—but it does depend on when the generation
occurs, whether pregeneration or on-the-fly. The dependency on when
generation occurs limits what type of checking may be applied.

Golden vectors are restricted to pre-generated test cases. On-the-fly
generation does not apply to golden vectors, as the expected results are
not available before running the test cases. The last two types of check-
ing environments, transaction-based and cycle accurate reference
models, can be applied to either pre-generated or on-the-fly generation
test cases.

Another factor that limits golden vectors are situations in which the
stimulus component requires feedback from the design. A verification
engineer could treat this type of stimulus as “reactive.” In these types of
environments, pre-generation is not a good choice because of the false
constraints (see Section 7.2.5). Because pre-generation is not a good
choice, neither are golden vectors.

Either a transaction-based or cycle accurate reference model test
bench can be applied to pre-generated or on-the-fly generated test cases.
This is because both of these checking environments capture the trans-
actions on-the-fly and do not require anything before the test case start-
ing. The major difference between these two types of environments is
that a transaction-based test bench has a higher level of abstraction
(black box application), whereas a cycle accurate reference model envi-
ronment contains precise DUV implementation details (white box
approach). The cycle accurate reference model implies that the verifica-
tion environment encodes quite a bit of the implementation (e.g., queue
depths, pipeline stages). Verification teams should limit their choice of
cycle accurate reference models to stable DUVs in which the implemen-
tation does not constantly change.

8.1.3 Applying the Checking Strategies to Calc2
As already stated, a transaction-based test bench would be the preferred
test bench for Calc2, but, for completeness, this chapter also discusses
the implementation of a golden vector and a cycle accurate reference
model test bench. In the same way as was covered in the section on stim-
ulus generation, the verification engineer must fully understand the
design intent in order to create robust checkers.

When writing checking components, it is necessary to understand the
verification requirements as specified in the verification plan. Table 8.1
recaps the Calc2 functions that were created when the verification plan
was created (see Section 7.1.2) and highlights which component is
responsible for that item.

Any function that lists the checker as the responsible component
assumes that the stimulus component will make that scenario occur.
However, if the stimulus component creates the scenario and if the test
bench does not contain the proper checks, then it will not find any
errors.

322 Chapter 8 ■ Strategies for Results Checking

The verification team must elaborate on each checking component
responsibility function so that the team can specify the actual checking
requirements. The elaboration of “all four command types” and “all four
ports” indicates that the environment must check that

■ The data and response is correct for a non-overflow add operation
on each port.

■ The response is correct for an overflow add operation on each port.

■ The data and response is correct for a non-underflow subtract oper-
ation on each port.

■ The response is correct for an underflow subtract operation on each
port.

■ The data and response is correct for a Shift left operation on each
port.

8.1 Types of Result Checking 323

TABLE 8.1 ■ Calc2 functions

Calc2 function Component Explanation
responsible

All four command types Checker Checker needs to ensure that all four commands
actually work

All four ports Checker Checker needs to ensure that each port operates
correctly

Variable timing between Stimulus Stimulus controls the input commands and when to
commands send each one

Variable tags for each Stimulus Stimulus controls the generation of the tags to send
command in for each command

Invalid commands Checker Checker responsible that invalid commands work as
described

Filling of the add and Stimulus Stimulus controls the variable timing, thus it is in
shift queues control of filling up the add and shift queues

Overflow cases for adds Checker Checker must ensure that add with overflows work
properly

Underflow cases subtracts Checker Checker must ensure that subtracts with underflows
work properly

All lengths of shift Stimulus Stimulus controls the operand 2 data for shift
operations operations

Out-of-order responses Checker Checker must ensure that out-of-order responses
across command occur properly
pipelines

In-order execution within Checker Checker must ensure that in-order execution occurs
the pipeline properly

Verify tags do not get Checker Checker must ensure that tags and commands
swapped match up

■ The data and response is correct for a Shift right operation on each
port.

Continuing down the list, the checking component must validate that
invalid commands are handled correctly. The component must verify
that the DUV returns the “illegal command” response code any invalid
command.

The checking component must validate that responses across
command pipelines are performed either in order or out-of-order,
depending on the command streams across all four ports. It must also
validate that all responses from a command stream to the two pipelines
are always in-order.

The last item to verify is that the DUV correctly processes every
command/tag pair across all ports, meaning that the design does not give
any superfluous response/tags pairs and that every command receives a
response. If the checking component receives an unrecognized tag, then
it must indicate an error. Similarly, if the design ever drops a tag, then
the checking component must indicate that the DUV lost the command.

Golden Vectors Test Bench

Recall the pre-determined, deterministic test case for Calc2 Port1, as
shown in Figure 8.6.

Notice the last two columns in the test case format: “Result” and
“Response.” This implies that in addition to the stimulus, this pre-deter-
mined test case generated the expected results for data and response.
Because the expected results exist before the simulation runs, a golden
vector test bench becomes a prime candidate to create for this type of
test case. Figure 8.7 shows the verification environment that the verifi-
cation team would create to support this pre-determined, deterministic
test case for port 1.

As shown in the flow of Figure 8.7, the test case parser loads infor-
mation into the scoreboard. This path contains various fields and
expected data for each command. This information comes directly from

324 Chapter 8 ■ Strategies for Results Checking

/* Port.tag DelayN
Port1.0 0
Port1.1 0
Port1.2 0

Cmd
“111”B
ADD
SHL

Operand1
“DEADBEEF”X
”00012345”X
“22222222”X

Operand2
“BEADCAFE”X
”00054321”X
“00000002”X

Result
“00000000”X
”00066666”X
“88888888”X

Response*/
Illegal
Good
Good

■ FIGURE 8.6

Pre-determined, deterministic example for Calc2 Port1.

the test case. The scoreboard also requires the DelayN field so it can order
the expected data for the checker. When the command emerges from the
DUV on the outputs, the checker component requires information on the
port number, tag, expected response, and expected results to determine
if the outputs are correct for a particular command. The only informa-
tion that the checker does not require is the command, Operand1, and
Operand2 fields because the test case has already calculated the expected
data.

As the test case runs, the port monitors observe the outputs. They
capture the actual OUT_TAG, OUT_RESP, and OUT_DATA. The monitors
pass this data, in addition to the time (cycle number), to the checker.
The checker uses the data from the monitor to request that port’s
next expected data from the scoreboard. The checker then compares
the expected data to the actual data. This continues until the end of the
test.

Once the test is complete, the checking component calls the score-
board’s end-of-test case checking routines. In addition, the checker
queries the number of transactions outstanding in the DUV’s arithmetic,
shift, and invalid queues; these should all be zero. If any queue contains
unresolved transactions, then the checker indicates an error. In this

8.1 Types of Result Checking 325

Simulation engine
running Calc2

Scoreboard

Port1 monitor

Port2 monitor

Port3 monitor

Port4 monitor

Port1 protocol

Port2 protocol

Port3 protocol

Port4 protocol

Checker

Test
case

parser

4
port

stimulus
gener-
ation

Test case(s)
(includes

stimulus and
checking)

■ FIGURE 8.7

Calc2 verification environment using golden vectors test bench.

type of test bench, all of the end-of-test case checking is within the
components.

The approach described above meets the functional requirements
because the checks for all the combinations exist (given that all combi-
nations of stimulus occur). For any given command, data, and tag com-
bination, the checking components verify the correct response, results,
and tag combination on the outputs. This ensures that the checking com-
ponents verify the following functional requests:

■ All four command types

■ All four ports

■ Invalid commands

■ Overflow cases for adds

■ Underflow cases subtracts

■ Tags do not get swapped

It is worth mentioning the algorithm the Calc2 verification environment
uses to maintain order within each queue. This is required to verify two
items: out-of-order responses across command pipelines and in-order
execution within the pipeline. The plan must detail a specialized func-
tion that verifies that Calc2 DUV completes commands in the appropri-
ate order. The simplest method for performing this check (remember, do
not re-implement the design) is to track in the scoreboard, via a time
stamp, the cycle number that the stimulus component initiates each
command. This is the sent cycle for a given command. By ensuring that
the time stamps complete in order within a queue, the checking compo-
nent verifies the order within a queue. The checking component merely
needs to confirm that, for each response, the sent cycle value is never less
than the sent cycle from this queue’s previous response. That is, as com-
mands complete, the sent cycle time stamps always are higher than the
previous.

However, in the golden vector paradigm, the scoreboard has no direct
method of sampling the sent cycle. Instead of using the sent cycle, the
scoreboard utilizes the fact that within a port, the commands must com-
plete in order (with respect to the queues). So the scoreboard creates
three first in, first out (FIFO) queues for each port—one for adds and
subtracts (arithmetic FIFO), one for the shift lefts and rights (logical
FIFO), and the last for any other command (invalid FIFO). The check-
ing component then requests from the scoreboard the next expected data
for a particular port/tag pair. The scoreboard compares this with the
heads of the three FIFOs to decide what to return to the checking com-
ponent. This method works because for a particular port, only one out-
standing tag can be in use.

326 Chapter 8 ■ Strategies for Results Checking

To create these FIFOs, the scoreboard sorts the test case file from top
to bottom: first by port number and then by command type. This needs
to be done because the scoreboard only knows the delay from one
command to the next (DelayN), it does not know anything about absolute
time due to the pre-generation of the test case. Thus, it cannot predict
the sent cycle. This scheme will validate the functional requirement for
the in-order execution within the pipelines.

Another golden vector test bench approach exists that does not use a
scoreboard. In this approach, it does the checking at the end of the test
case within an external checking program. Figure 8.8 shows the test
bench.

The verification environment uses a separate post-processing program
to perform the checking. In this paradigm, the flow commences when
the test parser reads in the test case and then loads the stimulus com-
ponents (identical to the previous approach). The test begins and the
stimulus components initiate transactions. The monitors observe the
outputs (again, identical to the above approach) for any activity. When
the monitors detect activity (a change in the OUT_TAG or OUT_RESP
signals), they record the port information into a file. The content of the
file is similar to the data captured earlier. For a given port, the monitor
might record the data shown in Figure 8.9.

The monitors continue to capture the outputs until the end of the
test case. At this time, the simulation ends and invokes the external

8.1 Types of Result Checking 327

Simulation
engine

running
Calc2

Port1 monitor

Port2 monitor

Port3 monitor

Port4 monitor

Port1 results

Port2 results

Port3 results

Port4 results

Port1 protocol

Port2 protocol

Port3 protocol

Port4 protocol

Checker
program

Test
case

parser

4
port

stimulus
gener-
ation

Test case(s)
(includes

stimulus and
checking)

■ FIGURE 8.8

Calc2 verification environment using golden vectors and end-of-test checking.

checking program. The program uses the information from the test case
and the results that the port monitors collected to validate that the results
were correct.

By looking at the test case format, many of the required checking func-
tions are easy to formulate. To check for responses, the checking program
uses the tags to correlate the cmd field from the test case input file (see
Figure 8.6) and response field from what the monitors captured. The test
case shows that the checker can determine if the actual result and
responses for the various commands across the ports match the expected
results by correlating the port and tag. This validates everything but the
in-order and out-of-order functionality. To validate this, the checking
program uses the time stamps. It calculates the time stamps from the
DelayN field in the test case. The results file already has the time stamp
in the file. The checker must process all the ports’ outputs to determine
if the order is correct. To check the ordering within a queue, the program
would first sort the output file results into buckets based on queue type
(adds or subtracts go in order into the arithmetic bucket, shifts go into
the shift bucket, and all other commands go into the invalid bucket).
Then the program would sort each of these buckets based on the time
stamp. The checker would perform this same type of sort for the test
case. Now it compares the three buckets from the test case and output
file from top to bottom. This verifies the ordering of the commands.

In both approaches, the checking component has satisfied all the func-
tional requirements in the golden vector test bench.

Transaction-Based Test Bench

A golden vector test bench is only applicable when the expected data is
available before simulation begins using pre-generation. If the verifica-
tion team chooses to implement an on-the-fly generation scheme, then
the team must utilize a different style of checking component.

On-the-fly generated test cases as in Figure 8.10 (taken from Chapter
7), no longer define the tag as a specific value. Instead, they specify the
tag value per port as an “X,” which means use the next available tag. In

328 Chapter 8 ■ Strategies for Results Checking

/* Port Tag
Port1.0
Port1.0
Port1.1
Port1.2

8
10
12
14

Result
"00000000"X
"00000000"X
"00066666"X
"88888888"X

Response*/
None
Illegal
Good
Good

Time

■ FIGURE 8.9

Port 1 monitor output. Each line indicates when a transaction occurred on the outputs of the particu-
lar port.

the golden vector test bench, the tag was important in correlating input
commands to output responses. Now that the stimulus model chooses
the tag during simulation, the test case cannot supply this information
to the scoreboard and to the checking component. Now the scoreboard
must collect the tags during the simulation. Figure 8.11 shows this test
bench.

The flow shown in Figure 8.11 is similar to the golden vector test bench
except that instead of the test case parser loading the scoreboard with

8.1 Types of Result Checking 329

/*Port.tag
Port1.x
Port1.x
Port1.x
Port1.2
Port1.x
Port1.x
Port1.x
Port1.x

DelayN
0
0
2
0
1
0
3
1

Cmd
“111”B
ADD
SHL
“011”B
SUB
SHR
SHL
SUB

Operand1
rand
rand
rand
rand
rand
rand
rand
rand

Operand2
rand
rand
rand
rand
rand
"00000000"X
rand
rand

Response*/
Illegal
Good
Good
Illegal
Good
Good
Good
Underflow

■ FIGURE 8.10

Deterministic with randomization example for Calc2 Port 1.

Simulation engine
running Calc2

Scoreboard

Port1 monitor

Port2 monitor

Port3 monitor

Port4 monitor

Port1 protocol

Port2 protocol

Port3 protocol

Port4 protocol

Checker

Test
case

parser

4
Port

stimulus
gener-
ation

Test case(s)
(stimulus

constraints)

■ FIGURE 8.11

Calc2 verification environment using transaction-based test bench.

all the data, now the scoreboard collects the information on-the-fly.
During simulation, as the stimulus component initiates a transaction to
the DUV, it also informs the scoreboard of this transaction.

This scheme simplifies the major complexity that existed under the
golden vector paradigm: the scoreboard’s inability to calculate the sent
cycle. As detailed above, the scoreboard had to maintain multiple FIFOs
per port and sort the information from the test case into these FIFOs. By
having the scoreboard receive all of its information from the stimulus
component and not from the test case loader, the scoreboard can calcu-
late the expected data. Now that the verification environment captures
the sent cycle, the checking component can now perform its checks as
described previously.

In addition, this change also allows the verification environment to
be robust enough to handle pre-generated or on-the-fly test cases (it
becomes independent on the type of generation). To do this, the score-
board must analyze each transaction sent into the DUV and create the
expected data on-the-fly. With this change, the test case is now just a set
of stimulus constraints.

Under the golden vectors paradigm, the verification environment did
not perform priority checking across queues. The change to a full, on-
the-fly checking paradigm enables this checking. The verification engi-
neer could look at the problem using a statistical approach. If the
verification team performs a statistical analysis across the ports, it should
show that for a given set of fair inputs (on average, the two queues have
the same number of transactions), the logic should give equal priority to
the two queues because the two queues have an equal number of entries.
This means that the latency from command to response across the two
queues should be about equal over the life of the simulation. The use of
time stamps assist in verifying this property. A modification to the score-
board could allow it to track the latency for each port within the queues
and analyze the data at the end of the test case. The checker can call an
additional end-of-test case checking routine to determine that it fairly
serviced each port. The only caveat to this approach is that the distribu-
tion of queue type (number of add/sub and shift commands) must be fair
across ports. If the stimulus component sends all of one queue type, then
this check will fail. Hence, a dependency on the generation constraint
exists for the checking component. The checking component should only
perform this latency verification routine when the stimulus component
has sent an even distribution of traffic.

If the verification team really prefers the golden vector approach
with a post-processing program, the above transaction-based environ-
ment supports this method. This environment deviates from the
strict golden vector paradigm in that the scoreboard creates the trans-
action stream sent into the DUV instead of the test case. The post-
processing program remains the same. Figure 8.12 shows this test
bench.

330 Chapter 8 ■ Strategies for Results Checking

Cycle Accurate Reference Model Test Bench

In the cycle accurate reference model type of environment, the reference
model receives all inputs that the DUV receives and determines what
the outputs should be on a cycle-by-cycle basis. Figure 8.13 shows
the test bench that uses a cycle accurate reference model instead of a
scoreboard.

In the reference model paradigm, the checker is simple—it only com-
pares all outputs of the DUV with the outputs of the reference model.
If there is a mismatch, the checker indicates an error. However, the
reference model can be extremely complex. This approach is advan-
tageous for a certain class of checking, in particular if the verification
plan calls for regimented checking on the exact timing of outputs. If the
DUV is out of step with the reference model for any reason (it may
not be a critical bug), the cross-check with the reference model will
catch it. Take, for example, the Calc2 single command timing diagram
in Figure 8.14.

The stimulus generation component sends a command on port 1 at
time 7. The DUV outputs its response six cycles later at time 13 as
opposed to 12 (originally, the output was described to be on cycle 12 as
denoted by the dashed lines in Figure 8.14); the reference model would

8.1 Types of Result Checking 331

Simulation
Engine

Running
Calc2

Port1 monitor

Port2 monitor

Port3 monitor

Port4 monitor

Port1 results

Port2 results

Port3 results

Port4 results

Port1 Portocol

Port2 Portocol

Port3 Portocol

Port4 Portocol

Checker
program

Test
case

parser

4
port

stimulus
gener-
ation

Test case(s)
(stimulus

constraints)

New test
case(s)

including
time stamps

■ FIGURE 8.12

Calc2 verification environment using a transaction-based test bench with a postprocessing program.

332 Chapter 8 ■ Strategies for Results Checking

Simulation engine
running Calc2

Port1 protocol

Port2 protocol

Port3 protocol

Port4 protocol
Checker

Test
case

parser

4
Port

stimulus
gener-
ation

Test case(s)
(stimulus

constraints)

Reference model

■ FIGURE 8.13

Calc2 verification environment using a reference model.

c_clk

reset

req1_cmd_in

req1_data_in

req1_tag_in

out_resp1 0:1

out_data1 0:31

out_tag1 0:1

0:0

0:7

Cycle 1 2 3 4 5 6 7 8 9 0 1 2 3
1 1 1 1

'0001'b

0005'x 000D'x

'10'b

'10'b '10'b

'01'b '01'b

000D'x 000D'x

0:1

0:31

0:3

■ FIGURE 8.14

Calc2 single command timing diagram.

issue an error that at time 12 a command response was expected but
none was received. In the transaction approach, the scoreboard-based
checker would not verify the exact latency and would allow the response
at time 13.

The latency check seems easy as long as a single command is consid-
ered on a single port. However, the complexity can explode: what would
the latency be of port 1 given an example in which there are 12 shift com-
mands in one queue and 7 add commands in the other. If the environ-
ment has to calculate the latency for all commands all the time, the
reference model complexity converges on that of the DUV.

With a reference model approach, the environment checks all func-
tions within the design (including the algorithm Calc2 uses for main-
taining order within each queue) inherently owing to the timely
prediction of all outputs. Given the level of detail required in the refer-
ence model, it is extremely important to remember to implement the ref-
erence model differently than the design!

Coverage for Calc2

Chapter 7 discussed coverage requirements with respect to stimulus.
However, some aspects of coverage are pertinent to checking. For
instance, it is important to guarantee that for an add command with over-
flow, the overflow response actually occurred. It takes both stimulus and
checking to ensure the design, as well as the coverage, is correct.

Verification engineers can fall prey to environment implementation
errors as equally often as designers can on the DUV. For example, the
verification engineer may make a change to the test bench that effectively
disables a check. This could occur when the verification engineer needs
to make a modification to a check and include some other condition. The
original code might look like this:

. . .
If condition_a then {
Check to ensure data is correct for condition A
} else {
. . .
}
. . .

A change is required to perform the check when either condition_a or
condition_b (these conditions are mutually exclusive) occurs. However,
the verification engineer inadvertently codes the following:

. . .
If condition_a and condition_b then {
Check to ensure data is correct for condition A

8.1 Types of Result Checking 333

} else {
. . .
}
. . .

Without manually validating the change, the verification engineer runs a
complete regression thinking that if anything goes wrong, the test cases
will catch the error. However, in actuality, the new code disables the
check altogether.

A way to prevent this from happening is to put coverage on the
checks within the test bench. Applying this to Calc2, the verification
team needs to add the following event coverage recording to the check-
ing component:

Output data of an add, subtract, shift left or shift right command is
correct for non-overflow cases per port

■ Output response for all commands are correct

■ Tag correlation for all commands

■ Priority checking within a queue

■ Priority checking across queues

These are specific coverage checks on the checker code, not on the DUV
outputs. For this to occur, the coverage event indicates that during run-
time, the program reached the block of code in the checking component.
If the verification engineer ensures that the simulation utilizes all checks,
he or she also ensures that all the checks in the environment are func-
tioning. This type of coverage check may also indicate a stimulus error
in which the environment does not create the intended input stimulus.
As any other coverage hole, the verification team needs to investigate and
apply fixes to fill in these holes. The team could determine that these
coverage items are incorrect or that they need to write more tests to fill
in these holes.

Applying checking coverage to the test bench gives greater confidence
to the overall environment.

8.2 DEBUG

Debug is the process of locating and correcting problems in the DUV or
test bench. Debug is important because a swift and effective debug
process saves time and schedule. Because quick debug saves schedule
time, the measure is how fast the verification team determines the cause
of the failure. Thus far this chapter has presented different checking com-

334 Chapter 8 ■ Strategies for Results Checking

ponent algorithms that lead to failure reporting. This section discusses
what happens after that.

A failure could be from any of the existing environments. Once a test
fails, the verification team must analyze the failure to find the cause of
the problem. When a test fails, a bug could exist in one (or more) of the
following areas:

■ Design

■ Environment

■ Specification

■ Tools

The area listed last, tools, is a rare source of bugs, so this is usually
the last place to investigate. An example of a tool bug is when the
simulation engine does not correctly calculate the proper value of a latch
or signal in the design. This type of bug is rare because of the broad use
of verification tools and is usually confined to beta or new releases
of tools. A bug in the tools reveals itself when a calculated value in the
DUV or environment does not match the input values of the HDL or
program.

A verification engineer’s job is to find the bugs in the HDL and report
only these to the designer. In most cases, the verification team is best
suited to differentiate between HDL bugs and environment bugs. Design-
ers own plenty of tasks, but deciding what is a design bug versus a test
bench problem is typically not one of them. If the verification team were
to report all failures to the design team, they would soon lose credibil-
ity. Therefore, a verification engineer is responsible for sorting out the
failures and determining what are design bugs versus test bench bugs.
Only when a design bug exists does the verification engineer report it
to the designer for repair. When a test bench bug exists, the verification
team performs the fix. Because the verification engineer must have inti-
mate knowledge of the function in order to create appropriate stimulus
and checking, it makes sense for him or her to “dig-in” and assist the
designer in locating the proximity of the bug.

In some cases, the source of the bug is owing to an ambiguous spec-
ification. In these cases, the architect must provide a more precise defi-
nition of the intent in the specification.

A good debug process is also important because the sooner the verifi-
cation engineer locates and fixes the bugs, the more schedule time exists
to run random simulations. The more simulations run in a random envi-
ronment, the higher the overall quality of the design. The better the
design, the smaller chance of hard-to-detect bugs that escape to the lab.
Therefore, to reduce overall verification time and increase overall

8.2 Debug 335

verification productivity, the verification engineer should concentrate on
ways to improve debug.

8.2.1 Debug Process
The basic debug process flow starts at the point of failure and traces back
to the origin of what caused the failure. Figure 8.15 illustrates the
process.

The main philosophy behind debug is the following question: why did
a test fail? This will determine what to fix—the HDL, the verification
components, the specification, or, in rare instances, the tools. Although
this flow seems straightforward, the complexity of the debug process lies
in determining which branch of the flow to take in the “Expected Data
Correct?” and “Inputs Correct?” blocks.

When debugging a test case, it is common to see multiple checkers
flagging a problem. Typically, the verification engineer can assume that
all failures after the first one are side effects of the initial failure. This is
primarily because of the difficulty in re-synchronizing the reference
model/scoreboard once it differs from the DUV. Therefore, the verifica-
tion team only needs to focus on the first failure reported from the test
case. If subsequent failures exist, they will remain in the DUV, and the
same test case will encounter them after re-running the simulation to
test the initial fix.

Following the diagram flow in Figure 8.15, a checker indicates an
initial failure. The first step for the verification engineer is to compare

336 Chapter 8 ■ Strategies for Results Checking

Initial failure

Yes

Yes

Yes

Actual
=

Expect

No

No

NoExpect
data

correct?

Checker
bug

Checker
bug

Stimulus
bug

Inputs
correct?

DUV
bug

Trace back to
next observation

point

■ FIGURE 8.15

Debug process.

manually the actual and expected data by using the simulation trace
output. These data can be from a single point in time or gathered over
many simulation cycles. If the actual data equal the expected data, then
the verification environment requires updating as the check that indi-
cated the error is incorrect. If the actual data do not equal the expected
data, then the verification engineer must determine which is correct: the
DUV data or the verification environment’s expected data.

The heart of the debug process lies in the validation of which results
are correct. To determine if the DUV’s or verification environment’s
results are correct, the verification engineer must trace the failure back
to the input stimulus values. For example, to determine if the Calc2 DUV
calculated a shift operation correctly, the verification engineer must
match the result’s tag to the initial stimulus to ascertain the actual
command and data values. From there, the verification engineer must
independently calculate the result and compare it to the DUV’s and envi-
ronment’s values. If the expected data are wrong again, the checking
component contains the bug. However, if the actual data are incorrect,
this does not immediately indicate a design bug. It is still possible that
an incorrect stimulus condition affected the design. An example of this
in Calc2 could be if the stimulus component initiated two commands
with the same tag, an illegal case with indeterminate results. In that
case, the verification team must fix the stimulus component. In the
end, the verification engineer must determine why the actual data are
incorrect.

To do this, the verification engineer starts at the observation point
determined by the failure. In black box verification, this is a DUV output.
In white or grey box verification, the observation point could be internal
to the design or a DUV output. In any case, the verification engineer must
find the logic that feeds the observation point. In the best of cases, the
verification engineer can correlate the observation point to a particular
stimulus value or sequence; in the worst of cases, there may be a large
convergence across the logic, meaning many paths might feed a single
observation point. The verification engineer then spends time determin-
ing if the logic that feeds the observation point is correct. If that logic is
correct, then the engineer must go back even further. The engineer must
validate that all of these are correct (or incorrect). This continues until
the verification engineer encounters a previous observation point in the
test bench or the input stimulus. If the verification engineer reaches a
previous observation point at which a checking component did not fire,
then the area of the failure must be between the two observation points.
The bug exists after this point (because this check did not fail) and before
the area at which the check failed. However, the verification engineer
must determine if the previous observation point is faulty. This trace-
back process continues until the verification engineer finds the point in
which the DUV or the verification environment miscalculated a value.
This is the source of the bug.

8.2 Debug 337

In some instances, the specification is ambiguous, and both the
checker and the design can be correct from an interpretation standpoint.
In these scenarios, the specification is the source of the bug, and the ver-
ification engineer must consult the architect to fix the ambiguity in the
specification.

However, having a good verification plan can reduce these situations.
The specification authors need to be present during the verification plan
review to address any misinterpretation of the specification. This will
save time and avoid wasted efforts because there will be no waiting until
a test fails because of a misinterpretation.

The debug process determines the specific failure by tracing a mis-
compare or unexpected value back to the point of origin. Therefore, the
identification of the failure point (point of origin) is a critical step. The
closer the specific failure is to the observation point (the checker at which
the environment detected the miscompare value), the faster the debug
process proceeds. Therefore, the verification team could streamline the
process by adding more observation points to isolate the failure point
quickly. To take this to an extreme, every node in the circuit could have
a check on it. These checks would always be on so that when a check
failed, no trace back would be needed because the team would know
exactly what failed. However, this extreme case creates difficulties on
multiple fronts. First, if the verification team imbeds internal checks
throughout the design, the team tips the scales too far toward verifying
the design’s implementation rather than the design’s intent. Second,
maintenance of the extensive checkers becomes difficult, as the verifica-
tion team must update internal checkers with every change in the design.

The other extreme is black box, in which no observation points exist
within the design. This approach would just check the outputs. However,
unless the design is small, it is likely that the failure point is logically
distant from the observation point. Thus, the trace back is through a
good portion of the design, lengthening the debug time.

Therefore, the verification team must strike a balance between the
quantity of checkers and debug efficiency. The “meeting point” of these
two approaches is the gray box paradigm. A verification engineer needs
to decide where to place monitors or checkers within the design. This
will allow some observation into the DUV and still cut down on the trace
back. This “divide and conquer” approach assists in identifying the
failure points quickly.

Let us take Calc2 as an example. The previous approaches of check-
ing using golden vectors, transaction based, and reference model all
assume use of a black box. To illustrate the importance of observation
points, as well as shed some light into the black box, more details of
implementation are required. The Calc2 design captures the command
and data in two consecutive cycles and then enqueues this data into one
of two internal buffers: one handles the addition/subtraction pipeline; the

338 Chapter 8 ■ Strategies for Results Checking

other, the shift pipeline. A priority block exists inside the DUV to dis-
patch commands from the buffers to the pipelines.

Previously we discussed mechanisms to check the in-order and out-
of-order functional requirements. Now that the box is gray, observation
points (monitors) can be placed on the input of the priority block, as well
as a checker on the output of the priority block. By doing this, the pre-
vious discussion on the methods of checking the in-order and out-of-
order function in the various checking paradigms becomes much
simpler. The output checking of the DUV (versus the priority block) can
concentrate on the correctness of commands because the internal checks
will now validate the order of execution is correct. The other advantage
is that if and when the priority checks fail, the verification engineer
knows exactly where the bug exists.

Here are some general guidelines for deciding where to place
observation points in the design to aid in debug and provide additional
checking:

■ Aim for mechanisms defined in the design’s architecture.
Observation points on these structures are stable and require less
maintenance.

■ Space observation points evenly throughout the design.

■ Use observation points to augment the design team’s assertions.
Do not create redundant observation points for logic that already
contains assertions.

The last of the above guidelines highlights an additional benefit of
assertion-based verification as discussed in Chapter 3 (“Assertion-Based
Verification: An Overview”). Assertions can have a very positive influence
on debug time. Using an ABV approach reduces verification time because
it pinpoints the failure immediately, and in addition, it does not require
a complete white box approach.

Previously, this chapter described the construction of effective check-
ers relative to a basic verification environment. There are additional
aspects of checking component construction that assist in debugging.
This includes how and when a checking component reports a failure,
which is critical in assisting the verification engineer during debug. The
more information that the checking component provides, the faster the
verification engineer can debug the failure. Just indicating that a failure
exists is not enough. When a verification component reports the failure
is equally important because the debug process goes faster when a
checker reports a failure when the failure occurred. Conversely, if the
failure occurred early in the simulation but the checking component indi-
cated a failure near the end, the tracing back through time (i.e., many
transactions) is time-consuming and wastes simulation cycles that the

8.2 Debug 339

verification team could use for other test cases. This indicates an inher-
ent disadvantage for end-of-test case checking.

For example, a test case ends and reports the following:

Simulation completed:
100 transactions sent
100 transactions received
1 error

This reporting style does not assist the verification engineer in debugging
with respect to how and when the checker encountered a failure. These
messages do not even point the verification engineer to the observation
point. In this case, the verification engineer must debug the failure by
viewing the trace file with no indication of what the error was or when
it occurred.

Instead, the checker should log complete data about the failure. This
should include many of the following items: the current cycle, the veri-
fication model, a failure message, the design hierarchy in which the
checker encountered the failure, the nets involved in the check, the actual
DUV values, and the expected values. For example

ERROR (Time 50): Checker: Port 1 — Wrong response
ERROR (Time 50): Checker: Port 1 — Expected Response: Good
ERROR (Time 50): Checker: Port 1 — Actual Response: Overflow
ERROR (Time 50): Checker: Port 1 — Expected Result: “0F12023F’’X
ERROR (Time 50): Checker: Port 1 — Actual Result: “0F12023E’’X

The information on the “how and when” of the error cuts down on debug
time. This message style gives much more detail and steers the initiation
of the debug process. The verification engineer knows to start debugging
at cycle 50. The engineer also knows that the checking component found
the error on port 1 and exactly what signal values did not match the
expected values. This level of messaging speeds the initial portion of the
debug process, quickly directing the verification engineer to the mis-
compare and assisting in localizing the failure point.

There are multiple tools in the arsenal that assist the verification
engineer in discovering the “how and when” of a miscompare. These
tools exist as mechanisms to reduce debug time and range from basic
messaging to more advanced tools that allow for graphical debug of the
test bench. The following are a set of debug tools:

■ Print

■ Assertions

■ Waveform viewers

■ Memory viewers

340 Chapter 8 ■ Strategies for Results Checking

Print

The most basic reporting mechanism is print. To implement this mech-
anism for debug, the verification engineer simply adds print statements
into the environment components to log test bench activity. This is a
common debug mechanism for software designers. The print statements
echo the values of the verification components at different times via
some logging mechanism. This logging mechanism captures the infor-
mation and directs it to a simulation log file or a dedicated log file. Ver-
ification engineers use dedicated log files for individual verification
components (rather than a global log file that captures all components’
messages), giving them the ability to sort through many messages
quickly. This is especially useful during early component debug. Verifi-
cation teams may also choose to use dedicated log files to sort logically
separate data streams. In Calc2, for example, there are four independent
requestors on four different ports. The team could choose to create the
environment such that each of the four stimulus components logs every
transaction into separate files. This way, if a failure occurs on port 2,
debugging commences on the log file for port 2, bypassing potentially
extraneous data from other ports. However, the verification engineer
cannot discount the potential that other ports’ inputs may affect each
other. Therefore, the potential exists that while debugging a port 2
failure, the verification engineer traces commands from other ports’ log
files.

The down side to logging messages is that they tend to be very verbose.
Components can generate thousands of lines of messages in a log file.
This can also negatively affect the simulation engine’s performance
owing to the file input/output (I/O) throughout the test case.

A solution to this is to include programmed debug levels in the envi-
ronment code, a technique the software industry has used for years.
When running a test case in the default mode, the components use the
lowest message level at which checkers only report errors—no other per-
tinent information. However, when an error occurs, the verification engi-
neer reruns the simulation, applying a higher level of debug messaging.
Now the components print detailed information to the log files, aiding
the debug process. All units throughout the environment can use debug
levels—not just checkers. This may include stimulus, scoreboards, check-
ers, and/or monitors. However, a global messaging method can easily
lead to information overload with all the verification components logging
information for the test case. Instead, the verification team may consider
a more granular message logging paradigm in which parameters enable
debug messages only for a subset of the verification components. This
may assist in controlling the amount of information written to the log
file while also avoiding the performance problem.

It is important to note that the verification team needs to plan this
fine-grained control of debug message levels before writing the actual test

8.2 Debug 341

bench code. It is very time-consuming to add such debug message control
into already released code.

Although print statements work well for directly debugging verifica-
tion components, verification engineers must rely on different means
for debugging the DUV. Therefore, verification engineers add white box
monitors (with print statements) to the environment or ask the designer
to add assertions to the logic. If using monitors, the verification team
creates them with the same type of controls as the other portions of
the environment. This will allow fine control of the debug messages
during simulation, which will help to maximize performance of the
simulation engine and minimize information overload on the debugger.
On the other hand, assertions will always “fire” based on the content of
the assertion.

Assertions for Debug

Section 3.3 provided an overview of assertions. This overview only men-
tioned why assertions were good for debug. This section now discusses
assertions in more detail and how they assist in debug.

Assertions can be used in two ways—embedded within the HDL (HDL
assertions) and external to the HDL (non-HDL assertions).

Designers make assumptions when implementing the intentions of the
specification. These assumptions include the designer’s understanding of
the input rules, as well as postulations for the internal structures of the
design. By embedding assertions within the design, designers guard
against violations of these assumptions. Coding the RTL in this fashion
is a defensive HDL coding style. It helps to document the assumptions
of the design for others, including cases in which another designer in-
herits the logic. Although commenting the design performs the same
task, this is passive and violations will not result in simulation errors.
Because HDL assertions are active, they perform the documentation of
the assumptions and provide run-time checks. Now, when a simulation
scenario violates an assumption, the assertions indicate when and where
the violation occurred. This helps the debug process by immediately iso-
lating the problem.

An example of this with the Calc2 design might be to have an asser-
tion on the input cmd bus to assure that no two commands occur on suc-
cessive cycles. If the stimulus component ever violates this assertion, the
simulation engine would immediately raise an error within the test. This
error makes for swift debug, as it would indicate that the problem was
within stimulus component.

Non-HDL assertions are those that the verification team applies to the
design. Unlike the HDL assertions in the DUV, these assertions are exter-
nal to the design and coded as a check on an interface—similar to an

342 Chapter 8 ■ Strategies for Results Checking

interface monitor that is just checking for protocol compliance. Non-
HDL assertions are useful when the verification team would like to
provide additional observation points within a design. The benefit of
writing an assertion rather than a protocol checker is that assertions are
easier to write and maintain.

Assertions (either HDL or non-HDL) come in two flavors: concurrent
and temporal. Concurrent assertions are those that must always hold
true. Every cycle of simulation checks these assertions; for example, a
cache design might assert that the read and write commands must not
be active at the same time. Temporal assertions are those that are only
true for a given time period under specific circumstances. The Calc2 cmd
assertion mentioned above is temporal because it states that a command
may not be sent the cycle after sending a command. The assertion will
not activate again until another command is sent.

Most designers code using concurrent assertions. However, the tem-
poral assertions are very useful, and thus the verification team utilizes
them. This may change as designers become fluent in property specifi-
cation language (PSL) or other temporal languages. These assertions
guard against any violation of the rules. The violator could be from a
stimulus component in a unit test bench, or it could be from a neigh-
boring design block at a chip-level test bench.

Whether the assertions are HDL-based or non-HDL-based, they are
beneficial because an assertion will guard the logic from any incorrect
assumptions and guarantee that the downstream logic sees only legal
stimulus. For debug, this accelerates the determination of the problem.
Figure 8.16 shows the assumptions and guarantees encapsulated by
internal assertions. The assert statements check input assumptions,
raising an error when a violation occurs and guarantee specific output
checks and flagging problems before they propagate to downstream
logic.

Assertions also benefit reuse of the design. Once implemented, anyone
who uses this DUV and its set of assertions gets the benefit for debug—
the indication of a violation at the source of the problem.

Waveform Viewers

Often it is necessary to get more details when a test case goes awry. Many
times when debugging, the verification engineer needs to view signals
within the design and their values at different times within the simula-
tion. To accomplish this, the verification engineer can use a visual tool
and view the DUV’s internal values in a waveform. A waveform viewer is
now a mainstream tool packaged with every simulation engine. Elec-
tronic design automation (EDA) companies provide waveform viewers
mainly because they are the most common type of debugger. For more
details on waveform viewers, see Section 5.6.

8.2 Debug 343

Waveform viewers within the debug process display the signals and
latches that are of interest after a test fails and, when tracing back
through the logic, help determine the correctness of the actual outputs.
Once it captures these signals and latches, the engineer compares these
values to the ones that the checking component indicated was an error.

Another use of a waveform viewer during the debug process is to view
the internals of the verification components. Stimulus components,
monitor components, and checking components may have internal state
machines just as a design might. A waveform viewer is a useful debug
tool for a designer (to look at the HDL); it can be just as useful for the
verification engineers to look at their code. By using a waveform viewer
to show internal variables/states of the verification components over
time, the verification engineer can identify bugs (just as a designer
would) within the environment. This ability is very powerful and may
show the source of a problem much more quickly than just using print
statements.

Some EDA companies have focused on the debug issue and have
added function to their waveform viewers beyond the functions covered
in Chapter 5. Verification directly influenced one of these added fea-
tures—abstraction. In some waveform viewers, the verification engineer
can create or specify a user defined transaction based on abstraction
principles. This is a powerful debug mechanism. Consider the case in
which a verification engineer abstracts Peripheral Component Intercon-
nect (PCI) read and write commands. Figures 8.17 and 8.18 show exam-
ples of PCI read and write commands. Notice how each utilizes the same
set of signals; it is the temporal behavior of the signals over time that
indicates whether the transaction is a read or a write.

344 Chapter 8 ■ Strategies for Results Checking

Assume

Assume

Assume

Assume

Guarantee

Guarantee

Guarantee

Assert

Assert

Assert

Assert

■ FIGURE 8.16

Assertion guarding and guarantee.

A test fails with the checking component indicating incorrect data at
a specific address. The verification engineer knows that the only way the
DUV could corrupt this address is via a write transaction on the PCI bus.
The engineer now needs to find which write transaction in the waveform
was the culprit, but the waveform could contain hundreds of reads and
writes. In a typical waveform, the engineer would have to analyze the
individual set of PCI signals to determine whether the PCI transaction
was a read or a write; however, in an abstracted waveform, the tool dif-
ferentiates the read and write transactions and their cycles. Figure 8.19
illustrates the difference between a transaction abstracted waveform and
a grouped waveform.The verification team created a group within the

8.2 Debug 345

Cycle

CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Addr

CMD BE

Data1 Data2 Data3

1 2 3 4 5 6 7 8 9 0
1 1

1
1 1
2 3

■ FIGURE 8.17

PCI read transaction.

Cycle

CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Addr

CMD BE

Data1 Data2 Data3

1 2 3 4 5 6 7 8 9 0
1 1

1
1 1
2 3

■ FIGURE 8.18

PCI write transaction.

waveform called PCI_TRAN that contains all the PCI signals. In the
grouped method, the verification engineer observes that on every cycle
some signals within the grouping have changed. When the verification
engineer looks at the abstracted waveform, he or she sees exactly when
each transaction occurred and how long it lasted. To see the details of
the transactions, the engineer zooms into a transaction of interest, and
then expands the group to see the individual signals. To look for the faulty
write, the verification engineer need only search for the last PCI_WRITE
to the failing address. This is simple using the abstracted waveform
viewing technique.

Memory Debuggers

Another class of debugging tools deals with memories (physical HDL
type memory such as caches, DIMMs, DDR, SRAM, etc.). These tools

346 Chapter 8 ■ Strategies for Results Checking

Cycle

CLK

PCI_TRAN+

1 2 3 4 5 6 7 8 9 0 1
1 1 1 1

2 3

Cycle

CLK

PCI_TRAN+

1 2 3 4 5 6 7 8 9 0 1
1 1 1 1

2 3

PCI_READ PCI_WRITE

(a) Grouped Waveform

(b) Transaction Waveform

■ FIGURE 8.19

Transaction abstracted waveform versus regular grouping waveform. (a) The view of when the grouped
PCI signals are collapsed. (b) The same grouping of PCI bus signals, but they are abstracted based on
their temporal aspects.1

1 Signal grouping is shown in this figure. Grouping is when multiple signals are combined
and shown as a combination of all the signals. A simple example is an array. It is a group-
ing of individual bits. This is extended so that a user can define their own groups.

assist the verification team in debugging memory controllers and any
design that has extensive use of memory (either internal or external to
the chip). Memory debuggers are important because the memory con-
trollers implement the logical memory space differently than the physi-
cal memory layout.

Figure 8.20 illustrates two logical to physical memory maps. The chip
has a logical memory of 4MB, but the designer could implement this in
different ways. This figure shows two different mapping techniques. The
first technique uses four different smaller memories of the same data
width (32 bits), each 1–

4
of the total addressable memory space. They are

cascaded to represent the logical memory. A second technique uses mem-
ories that are 1–

4
of the data width but are the same total addressable

memory space. Factors such as availability of memory, bandwidth
requirements, and latency affect the choice of techniques. Many systems
combine the two above techniques. A system could use 16 smaller mem-
ories that are 1–

4
of the data width and 1–

4
the total addressable memory

space.
The problem with this is that when a verification engineer tries to

debug a failing test, it takes time to look into the various memories and
decipher the content. Data may be scattered throughout the physical
memories in the system, even though from a logical standpoint, all the
data are together. This consumes a lot of engineering time paging up and
down in a waveform viewer, or doing the translation on paper or a white
board. This is where memory debuggers assist the engineer. Their basic
function allows the engineer to define the translation from logical to

8.2 Debug 347

32 bits wide 32 bits wide

Logical
memory

0

4mb-1

Sequential memory
layout

Striped memory layout

8 bits
wide

8 bits
wide

8 bits
wide

8 bits
wide

Physical
memory

A

Physical
memory

A

Physical
memory

B Physical
memory

BPhysical
memory

C

Physical
memory

C

Physical
memory

D

Physical
memory

D

■ FIGURE 8.20

Logical to physical memory map.

physical. Thus during debug, the verification team spends their time
dealing with the logical format (typically the more intuitive view); and
when the problem is found, they “switch” to the physical format by
switching views. This enables the engineer to find the offending memory
location quickly.

For example, consider a system using the striping memory layout. A
transaction performs a write of data 0xAABBCCDD at address 0x0.
Because of the physical layout of the memory, one memory does not
contain all the data. The DUV scatters the data across the four physical
memories: physical memory A contains data 0xAA, physical memory B
contains data 0xBB, physical memory C contains data 0xCC, and physi-
cal memory D contains data 0xDD. Each memory stores the data at
address 0x0. Figure 8.21 illustrates this.

Another aspect deals with buffer management such as linked lists.
Many ASICs contain functions that deal with data packets. The designs
store these data packets as linked lists within system memory, and the
ASIC contains some internal structures to manage the lists (refer to
Figure 8.22).

Memory debug tools give a verification engineer some extra function-
ality to traverse these buffers quickly and then go to that memory (either
in a physical or logical view). The engineer can then backtrack through
the logic that wrote this memory. Some of the tools go even further,
enabling the verification engineer to define the buffer structure and then
at end-of-test case checking time, make a single program call to the
memory tool to validate that no buffers were lost. The tool performs the
traversal of the memory structures to validate that the count contained

348 Chapter 8 ■ Strategies for Results Checking

32 bits wide

Logical
memory

0

4mb-1

0xAABBCCDD

Physical
memory

A

0xAA

Physical
memory

B

0xBB

Physical
memory

C

0xCC

Physical
memory

D

0xDD

Striped memory layout

■ FIGURE 8.21

Striped memory layout example.

inside the design matches the expected count contained within the tool.
This saves the verification team from having to implement these checks
themselves.

Overall, these debugging tools are a productivity aid. The verification
engineer can survive without them. However, as mentioned previously,
verification is the biggest lever the whole team has to reduce time to
market. These debugging tools assist the verification productivity in
reducing the overall time it takes to determine what caused a test to fail.
Table 8.2 compares the different debug methods.

8.2.2 How Different Types of Test Benches Affect Debug
The stimulus and checking paradigms affect the debug process. Although
all environment types require similar DUV approaches, the different
stimulus and checking techniques require different approaches when
debugging the verification components themselves. Specifically, the type
of generation (pre-generation versus on-the-fly generation) and type of
checking (on-the-fly versus end-of-test case checking) drive different
internal debug strategies based on the information provided by the
test case. When using a pre-generation strategy, all the facilities and

8.2 Debug 349

32 bits wide Internal ASIC structure

System
(Logical)
memory

Free pool

Used pool

1st address Last address Count

1st address Last address Count

■ FIGURE 8.22

Linked lists in memory. The free pool manages the available free buffers in the system, and the used
pool maintains the buffers that contain valid data. In many environments, the verification team must
verify this buffer management function. The team must ensure that the design never loses a buffer
because if any buffers get lost, data is lost. This is similar to a software memory leak. If a hard-
ware memory leak exists, then over time it cannot reclaim these data buffers. The only means of reclaim-
ing this lost memory is to perform a reset of the device or system. In many applications, this is
unacceptable.

stimulus are available before running any simulation cycles. On the other
hand, on-the-fly generation components must run simulation cycles in
order to decide if the stimulus is correct. The following sections provide
details and insight on the differences between debugging pre-generation
test cases, on-the-fly generation, and checking.

Debugging Pre-Generated Test Cases

Determining if stimulus is correct with a pre-generation stimulus com-
ponent is the easier and less time-consuming than on-the-fly generation.
Before running any simulation cycles, the verification engineer can
observe the transactions that the stimulus component will send into the
DUV. The verification engineer expects the stimulus component to send
these specific scenarios in a legal format. If, through debugging, the ver-
ification engineer finds that the test case contains an error, then the gen-
erator (or writer) needs to fix the generation problem. If the test case is
correct but the inputs to the DUV are not, then the verification engineer
must fix the stimulus component.

However, debugging pre-generated test benches is often not so simple.
Complexities arise in environments in which stimulus components
require feedback from the design. In these cases, the stimulus compo-
nent cannot send in the next transaction until it receives an acknowl-
edgement from the DUV. Because of the timing and interaction between
the stimulus component and the DUV, the verification engineer must
determine if the pacing is correct at simulation runtime. Therefore, in

350 Chapter 8 ■ Strategies for Results Checking

TABLE 8.2 ■ Debug method comparison

Debug Pros Cons
method

Print ■ Applied anywhere ■ Degradation of simulation performance
■ Create lots of information
■ Must architect into verification components

Assertions ■ Applied anywhere ■ Rely on designer
■ Always active

Abstracted ■ Allows identification of different ■ Applicable to transaction based
waveform transactions quickly environments

■ Defined by user

Memory ■ Allows different views of ■ Applicable to memory designs
memory

■ Allows viewing memory as used
by design (linked lists, etc)

these situations, pre-generation debug may only get the verification team
part way. The verification engineer must debug the test case stimulus
through run-time debugging methods.

Debugging On-the-Fly Generated Test Cases

Debugging on-the-fly stimulus component is not as quick as pre-genera-
tion. The reason is turn-around time. Because the verification engineer
must run simulation in order to debug the stimulus component, there is
an upfront wait time to determine if the stimulus is correct. In addition,
the verification engineer must wait until after re-running the test case to
the same point to determine if the fix was actually good.

For example, a test case that fails after 3 hours is determined to have
a stimulus component bug. The verification engineer fixes the compo-
nent and re-runs the simulation—another 3 hours—to determine the
success of the fix. At this pace, the verification engineer can only perform
one fix a day. Moreover, this does not even account for the debug time
to determine that the stimulus component contained the issue.

However, the verification engineer is not limited to just using print
messaging and waveform viewers. In on-the-fly generation, the verifica-
tion engineer can also perform source code debug by using standard pro-
gramming or HVL interactive debuggers. In very complex stimulus
components, this may outweigh the turn-around time.

Debugging On-the-Fly and End-of-Test Case Checking

Debugging end-of-test case and on-the-fly checking require similar
methods. Both require tracing back to the origin of failure. Thus, it is
advisable to use debug tools, such as print statements, within the verifi-
cation environment. These tools allow the verification team to trace a
transaction from its conception (generation) through the environment to
the checker. Many times, the verification team will add special fields to
the data structures used within the verification environment. The sole
purpose of these special fields is to assist in tracing back to the origin of
the failure.

The verification team uses different mechanisms to perform this trace.
One mechanism is to direct all the transactions to one log file. In this
scheme, the verification team parses through this file looking for port
transactions relative to the failure based on addresses, transaction types,
or other events related to the failure. A different method is to correlate
similar functions and direct each one to its own trace file. For example,
in Calc2, the verification components could direct the printing of trans-
action information (i.e., trace information) to a log file on an individual
port basis. At the end of simulation, four trace files exist, one for each
port. If the verification team needs to perform debug on port 1, all the
transactions that port 1 performed are contained in a single file. The trace

8.2 Debug 351

file would contain pertinent information for every transaction such as
cycle transaction was sent into the design, cycle at which the scoreboard
performed its dispatch, cycle at which the checking component received
its response, and cycle at which the check was performed. However, this
scheme makes it more difficult to debug failures with roots in multiple
port operations.

It is imperative that all the verification component authors stay “on
the same page” when creating the print statements for these trace files.
If the stimulus component creates four separate trace files (one per port)
but the checking components log everything to one file, then additional
burden is placed on the verification team to correlate everything.

8.3 SUMMARY

Results checking is affected by the stimulus generation choices and the
type of checking required to validate the functional intent of the DUV.
On-the-fly checking is one paradigm, and end-of-test case checking is
another. In most situations, the verification team will require both para-
digms of checking. On-the-fly checking is applicable to test benches in
which a transaction-based approach is being used. End-of-test case
checking is typically useful when results remain persistent within the
DUV’s memory until the end of the test, when signal access is limited,
when checking the ending state of the test bench and/or DUV, or when
checking any function that has system aspects.

In many situations, on-the-fly and end-of-test case checking are com-
bined to obtain the best of both worlds. To achieve this, the verification
environment must be architected properly (as was described when the
different results checking methods were applied to Calc2).

Debug is important (and crucial) in the verification cycle. A good
debug approach can cut down the time it takes to verify a design. Then
engineers spend less time doing debug and more time writing and
running tests, thus gaining functional coverage and completing the
criteria for the verification task much faster. Many tools exist to assist
the verification team in the area of debug. These tools are all productiv-
ity boosters, and they allow the verification engineer to spend less time
debugging.

Having good debug mechanisms in the environment will also cut down
on the time required to decide whether a bug is in the design or in the
verification environment. To create an effective debug strategy, the veri-
fication engineer must consider the effects of the different types of stim-
ulus generation and results checking have on debug. Once the
verification engineer understands these items, he or she can formulate
an effective debug strategy for the verification environment. A good
debug strategy allows the verification engineer to navigate quickly the
design and verification environment to find the source of the failure.

352 Chapter 8 ■ Strategies for Results Checking

8.4 EXERCISES

1. Explain the differences between the four types of results
checking.

2. When should on-the-fly checking be done? What about end-of-test
case checking?

3. How can coverage assist in checking?

4. Define the debug process.

5. When a failure occurs, can a test bench and design both be correct?
If so, how can this be avoided?

6. Discuss the impacts of the different types of stimulus generation
and results checking on debug.

7. For Calc2, what type of end-of-test case checking should be in place?

8. Give an example for assume type assertions for Calc2.

9. Give an example for guarantee type assertions for Calc2.

10. Define at least two assertions that could catch a bug before it is
caught by a checker on the output ports for Calc2.

11. Using the verification plan and strategies for stimulus as outlined
in Chapter 7 and the strategies for checking from this chapter, create
a verification environment using your choice of an HVL. The envi-
ronment should use on-the-fly generation, coverage metrics, and a
combination of on-the-fly and end-of-test case checking techniques.
You will need to download the Calc2 HDL (download from the com-
panion Web site for this book)—and create a simulation model
using your vendor’s engine. Describe any more bugs and indicate
the test scenarios that uncovered them.

8.4 Exercises 353

When starting a design effort, it is natural for the verification and design
teams to focus initially on the main function of the design. In this chapter
the normal chip operations are called mainline functions. Much thought
goes into the stimulus and checking components required to verify the
architectural compliance and the microarchitectural features of the
chip’s mainline function. Amazingly, verifying hardware functionality
under normal operations is only half of the verification battle, because
the end users’ expectations are much greater than basic system func-
tionality. Verification teams must also create tests for functions beyond
the normal stream of operations.

Pervasive functions are those operations beyond the normal chip or
system operations. These functions support the chip infrastructure,
allowing the end user to get the system into a good state, to manage it
while running mainline operations, to administer maintenance opera-
tions, and to diagnose any problems. These functions are globally woven
into the chip design and orthogonal to the mainline functions. Pervasive
functions include the resetting of the hardware, built-in self test (auto-
mated, hardware-driven diagnostics), recovery scenarios, chip level
testability, low-power modes, and all hardware debug mechanisms. This
chapter discusses the basic strategies required for success in pervasive
verification.

The amount of pervasive function required for the hardware depends
on the customers’ expectations and the usage of the hardware. Some
hardware may have little or no recovery mechanisms, leaving the con-
sumer to perform recovery by switching off the power and rebooting. On
the other hand, robust designs have intensive error detection and recov-
ery schemes, allowing the system to maintain functionality by disabling
bad hardware until replacement parts become available. These systems
have complex software interfaces and can pinpoint failing components,
divert traffic to alternative resources, and inform the consumer and field
engineers of the required maintenance. In these systems, designers set
aside a substantial amount of the silicon real estate for pervasive func-
tion—all of which the verification team must test.

C H A P T E R 9

PERVASIVE FUNCTION VERIFICATION

Pervasive verification requires as much early attention and planning
as mainline functional verification. The verification team includes the
pervasive verification work in the verification plan, sizing the schedule,
and the effort along with the rest of the labor. The design and verifica-
tion teams must avoid the impulse of forging ahead with main function
design and verification while leaving pervasive design until the latter
stages of the project. Early pervasive planning saves design and verifica-
tion rework later.

In large servers or other robust systems, a separate service element con-
trols initialization and other pervasive functions. Service elements run
specialized software, called firmware, that performs initialization, diag-
nostic, and recovery actions on the hardware. Many of the pervasive
functions described in this chapter require the guidance of a service
element. Although the service element itself requires verification, this
chapter restricts the pervasive verification discussions to the effects of
the service element (and its software) on the hardware function it drives
and the implications for the stimulus and checking components.

The amount of design verification investment into pervasive function
is surprisingly large. Although designers tend to deliberately contemplate
and document mainline functions for all scenarios, they are more apt to
overlook pervasive function. However, pervasive function is inherently
complex. In some pervasive areas such as error recovery, the number of
illegal conditions that hardware needs to handle is orders of magnitude
larger than that of the legal conditions. Experienced design and verifi-
cation teams know that although pervasive function implementation may
seem straightforward, the amount of time and resources needed for
proper execution of all pervasive functions often overshadows that of
mainline function.

9.1 SYSTEM RESET AND BRING-UP

Of all the verification tasks, the most important is ensuring that the
product reset works correctly. When engineers power-on early silicon
parts, the first hurdle is getting the hardware initialized to a state in
which it can run functional operations. An outstanding verification effort
on these main functional operations is rendered irrelevant if the engi-
neers cannot get the hardware into a state in which it can run basic oper-
ations. Therefore, all verification plans must include full reset and system
bring-up testing.

When engineers initially apply power to real hardware, the internal
latches and arrays are in an undetermined state. Most likely, the initial
state of the hardware is different every time the engineers bring it on-
line. From a functional perspective, the initial state is probably not a legal
state—it may have bad parity, illegal or incompatible values in the state
machines, and conflicting signals. Therefore, the design team imple-

356 Chapter 9 ■ Pervasive Function Verification

ments a standard method for returning the hardware to a known-good,
initial state.

There are two basic methods for initializing the hardware. The intent
of both cases is to place the hardware into a consistent, operational state.
The first method uses a single input line, called a reset signal, to initiate
a hardware reset. The second uses the scan rings to propagate the correct
values to each latch. In either case, verification of hardware reset entails
two parts. The first is verifying the initialization of each latch in the
system to a determined state. The second part requires verifying that the
initialized state enables the hardware to run normal main functional
operations.

Table 9.1 compares reset signal initialization to scan reset initializa-
tion. The main reason for using the scan reset methodology is for its
ability to fix defective hardware through alterations in the initial values.
Designers can repair the hardware by scanning alternative values into
special registers. Designers can also fix faulty initial values, although with
proper verification these cases can be avoided. The repair flexibility
comes at the cost of initialization speed and ease of physical design effort
and verification effort. However, there are tools available to automate the
wiring process during synthesis and physical design.

In complex computer systems, the initialization routine may be under
the control of a software supervisor or service element. In this case, the
software still uses one of the two hardware initialization methods. Addi-
tionally, the software also performs diagnostics, array initializations, and
other start-up functions.

9.1.1 Reset Line Initialization
Many hardware devices receive an external reset signal intended to ini-
tiate the hardware to a known-good, idle state. The input signal propa-
gates to each latch/flip-flop often through re-drive buffers, used to
re-power the input signal across the chip. Upon receiving the signal along
with a normal clock, each latch sets itself to either a zero or one value.
Figure 9.1 shows the general layout for reset-line hardware. Figure 9.1
does not show the clock tree, which accompanies the reset line.

9.1 System Reset and Bring-Up 357

TABLE 9.1 ■ Comparison of initialization via reset signal and scan reset methodologies

Reset Signal Scan Reset

Speed of initialization Faster Slower
Repair flexibility in fabricated hardware Low High
Ease of verification effort Simple Medium
Ease of hardware design language Simple Simple
Ease of synthesis and physical design Simple Medium

The latch primitive shown in Figure 9.1 shows all the latch inputs
and outputs. This includes three scan-related input signals, Scan_A_clk,
Scan_B_clk, and Scan_in, as well as one scan-related output signal,
Scan_out. In a system that utilizes a reset initialization scheme, the func-
tion of the scan ports is for chip testability. During normal operations,
the clock signal, Clock, gates functional data into the latch. The latch has
both normal and inverted output ports.

Verification of Reset Line Initialization

As previously stated, the verification team first ensures that the reset line
sets all latches to a determined state. The team can perform this using
either simulation techniques or formal verification. Under simulation,
the test case must start with all latches in an undetermined state. Most
simulation engines provide a multi-value capability that includes an
undetermined or unknown state called “X” or “u” (see Section 5.1.1).
With the clocks toggling normally, the test case drives the input reset
signal for a predetermined number of cycles. During that period, the
test case and verification environment must ignore any error signals or
illegal states. The test case then drops the reset signal. At this point, the
test case or verification environment should dump the value of all latches
and flag an error for any latches that still have an undetermined state
value.

358 Chapter 9 ■ Pervasive Function Verification

Reset
input

Functional
inputs

Functional
outputs

Reset
Data_out
Data_out_n
Scan_out

Scan_in
Scan_B_clk
Scan_A_clk

Data
Clock

Reset
driver

Actual latch
primitive

■ FIGURE 9.1

Each latch contains a reset input that when activated by a centralized reset driver, sets the value of
the latch to a known-good state (usually “0”).

For simulation engines that allow only zero and one values for latches,
the verification engineer must still run this task. Instead of initializing
the latches to the undetermined state, the test case should put random
values in all of the latches. After the reset sequence, the test case dumps
all of the latch values and compares those values with previous reset sim-
ulation jobs. If the hardware reset works properly, these initial values will
always match from test case to test case, no matter what initial random
values the reset test case assigns to the latches. Additionally, the verifi-
cation team should use this reset state as the starting state of the design
for all mainline test cases. This shows that the reset leaves the design
under verification (DUV) in a good state.

Formal verification of indeterminate initial values mirrors the simu-
lation process. The test environment initializes all latches to the X state
and then runs the reset. The final rule check verifies no remaining X
states exist in the model.

The second part of the reset verification process ensures that the initial
values enable proper running of the hardware. First, the verification envi-
ronment should check that no errors or illegal states are present in the
hardware after reset. Then, starting from the reset state, the environment
runs multiple mainline functional test cases. These tests should run suc-
cessfully, showing a clean reset state.

Depending on how many cycles the reset sequence takes, the verifica-
tion team must choose one of two paradigms. For short reset sequences,
they can run the reset sequence before every mainline test. In hardware
with extended reset sequences, the team can run the sequence once, take
a snapshot of all the values, and then initialize all the latches to these
values at the start of the individual mainline test cases. In either case,
the mainline functional test case should run successfully.

The Calc1 and Calc2 designs use a reset line for initialization. All
of our sample environments have held the reset line for seven cycles
before starting mainline function. The verification team can verify the
reset of both Calc designs by raising the reset line for seven cycles
and then dumping the latch values. In a multiple-value simulation
engine, no X state latches should exist. In a two-value simulation engine,
the verification team should randomize the starting latch values before
each run and then check for consistent values after each test case’s reset
completes.

In complex systems with multiple hardware chips, a particular chip
may require specialized latches to accomplish a reset. These latches
reside on the chip inputs and outputs and protect the chip or other chips
from invalid states during the reset sequence. Latches that protect the
chip from invalid inputs during the system reset sequence are called
fencing latches. Latches that protect other chips from invalid inputs are
called boundary latches. Boundary latches drive the outputs of a chip. A
particular chip may have any mix of boundary and fencing latches: none,
one type, or both types (Figure 9.2).

9.1 System Reset and Bring-Up 359

Systems require these specialized latch types because chips may not
reach their initialized state simultaneously. If a chip that has already
been reset receives raw input signals from an uninitialized chip, the chip
in the reset state will likely go into an error state because the inputs are
illegal.

Fencing latches provide a protective wall around the chip to protect it
from invalid inputs. Fencing latches receive separate reset and clock
signals than the internal latches, as shown in Figure 9.2. These clocks
turn on after the system initializes the driving chip(s) and the incoming
signals are valid. Boundary latches, shown driving the output signals in
the chip in Figure 9.2, receive a separate reset and clock signals. These
signals initialize the chip’s output drivers to valid states so that other
chips receive good inputs.

The system initializes boundary latches first but blocks their data
clocks until the system resets the entire chip. This prevents the output
signals from receiving and then driving bad inputs after initialization.
The system activates the fencing latches’ clocks only after it resets the
chips that drive incoming signals. This protects the chip from receiving
invalid inputs.

Verification of boundary and fencing latches requires appropriate
sequencing of the input signals. This sequence matches the system reset

360 Chapter 9 ■ Pervasive Function Verification

Reset
input

Boundary
clock &

reset Input

Fence clock &
reset Input

Functional
inputs

Functional
outputs

Reset
driver

Bndry
reset
driver

Bndry
reset
driver

Fencing latch Normal latch Boundary latch

Reset
Data_out
Data_out_n
Scan_out

Scan_in
Scan_B_clk
Scan_A_clk

Data
Clock

Actual latch
primitive

■ FIGURE 9.2

Chips may have fencing and boundary latches. This allows the system to reset without having its
multiple chips affect each other with “stray” values. The internal, fence, and boundary types each have
their own reset controls.

sequence. The system architects must define and document this
sequence. Verification should proceed as described above, first verifying
that after the reset sequence the chip has no X states and then verifying
that the initial state allows test cases to run successfully.

9.1.2 Scan Initialization
Scan initialization is the alternative to reset line initialization. Rather
than using a centralized reset control, scan initialization propagates
values from one latch to the next in a ring structure. The designers place
each latch into the ring based on physical proximity, minimizing the
wiring required to go from latch to latch. This is called a scan ring. Scan
rings serve multiple purposes, including initialization and chip debug-
ging. However, the original and most used function of the scan ring is
for physical chip testability. Scan initialization takes advantage of the
scan ring structure already in place for testability purposes. Section 9.1.3
focuses on the design and verification of testability features.

The ring loops from a scan driver through all the latches on the chip
and back into the scan driver. Rather than have the scan ring traverse
the entire chip before returning to the scan driver, the wiring returns
back to the scan driver multiple times. This breaks the chip scan ring
into stumps. The stumps do not assist in the scan initialization process
but are integral for high-speed chip testability. Each stump may contain
hundreds of latches, but, again, for testability purposes, the design team
aims to keep the length of each stump approximately equal to all other
stumps. Figure 9.3 shows a scan ring and stump structure. The design
team also breaks the fence and boundary latches into separate stumps.

As with the reset line initialization, there are multiple types of latches.
Figure 9.3 shows three stumps of normal, functional latches plus a
boundary stump. A typical chip may have dozens of stumps, each with
hundreds of latches.

Although the chip’s physical implementation breaks the scan ring into
stumps, the logical scan initialization routine links all stumps into one
long scan ring. When in initialization mode, the DUV’s scan driver con-
nects the returning scan data from one stump to the outgoing scan data
for the next stump.

The inputs to the DUV’s scan driver include scan clocks, a scan enable,
scan mode, and a scan input. When the scan mode is set to reset and the
scan enable line is high, the software system reset driver sends a new
scan input value with each toggle of the scan clocks. A single toggle of
the scan clock includes raising the scan_a_clk signal, dropping it, and
then raising the scan_b_clk and dropping it. A single toggle of the scan
clocks allows a value on the scan_in to propagate through a latch. For
example, using the chip shown in Figure 9.3, it takes 18 scan clock
toggles to reset the normal latches—one for each normal latch. The first

9.1 System Reset and Bring-Up 361

scan input value propagates further through the ring with each clock
toggle. After the 18th toggle, the first value is in the last latch in the third
stump, whereas the newest value is in the first latch in the first stump.
The boundary and fence stumps reset uses a separate scan enable but
the same method.

The scan rings also assist with hardware debug. During initial scan
ring reset, the chip level scan output contains garbage and the system
ignores these data. However, once initialized, system test engineers can
use the scan output line during debug to view the values of every latch
on the chip. The service element shifts the entire ring, reading the
scan_out value while also feeding it back into the scan input. The entire
scan operation allows the service element to capture each latch’s value
while also ensuring that it leaves the chip in the same state as before the
scan operation. This function is so vital to system debug that it exists in
chips that use both the scan and the reset line initialization schemes.
Further details on the use of scan rings for debug are provided in section
9.3 of this chapter.

362 Chapter 9 ■ Pervasive Function Verification

Scan
inputs &
controls

Functional
inputs

Functional
outputs

Scan output

Normal latch Boundary/fence latch

Scan
Driver

Stump1Stump1Stump1

Stump3Stump3

Stump4Stump4
(fence(fence
stump)stump)

Stump2Stump2

Stump3

Stump2

Stump5Stump5
(boundary(boundary

stump)stump)

Stump4
(fence
stump)

Stump5
(boundary

stump)

Reset
Data_out
Data_out_n
Scan_out

Scan_in
Scan_B_clk
Scan_A_clk

Data
Clock

Actual latch
primitive

■ FIGURE 9.3

Under scan ring initialization, the designer links all latches, boundary, fence, or internal, into individ-
ually shifting stumps. A single stump contains only one type of latch.

In some chips or systems, the system controller can only drive zeros
onto the scan_in pin during initialization. This allows faster initializa-
tion and may not require a controller. However, this loses some of the
flexibility of scan reset repair in the fabricated hardware. In these cases,
the designers insert inverters into the scan ring path before (and after)
each latch that requires initialization to a ‘1’b value. Although this
simplifies the system controller operation, it adds verification com-
plexity to the DUV. One of the most common bugs found in this scheme
is that the scan ring contains an odd number of inverters. This indicates
that the designer inserted an inverter before a latch that needs a ‘1’b
initial value but failed to insert an inverter after the latch. This, in turn,
initializes latches further down in the ring to the opposite value as
intended.

Verification of Scan Ring Reset

Verification of scan ring resets is similar to reset line initialization veri-
fication. On multiple-value simulation engines, the chip should start with
all latches in an undetermined state. With the appropriate scan_enable
inputs high, the scan reset test case toggles the scan clocks and drives
initial values, one-by-one, on the chip’s scan_in signal. This method
requires that the verification engineer knows the exact order of all the
latches in the scan ring. Zero and one values propagate through the chip
until the test case stops the scan clock toggling. This occurs when the
first value reaches the last bit in the logical scan ring (the last bit on the
last stump). On an average chip, this sequence takes hundreds of thou-
sands of cycles to complete.

When the test case completes the initialization, the checking occurs.
Special checking should be in place to verify that every latch’s scan_out
wire drives one and only one scan in value. All latch values are dumped
and initial values checked (no X states should be present). Any latches
not on a scan ring still have an X state. There are specific cases where
this is the intended behavior, and the verification engineer must investi-
gate each of these incidents.

The test case should repeat the process for the boundary rings as well.
Because this type of initialization takes an enormous number of cycles,
the test case must save the state of all latches after initialization. The
verification team uses these values to initialize main functional test cases
to show that the chip can run from the reset state.

9.1.3 Testability and Built-In Self-Test
Although scan initialization uses the scan ring structure, its original
purpose is for physical chip testability. Testability is a final step of the
manufacturing process when technicians screen individual chips for
defects, using expensive test machines that probe the chip’s input and

9.1 System Reset and Bring-Up 363

output pins. The technicians apply test vectors to each chip’s pins using
the scan ring stumps to propagate test data patterns throughout the
latches of the chip. After loading the vectors, the chip test tool toggles
the functional clocks for a few cycles, activating the transistors through-
out the chip. The speed of the clocks is dictated by the speed of the test
machine, which is slower than most of today’s chip frequencies.

The initial test vector is not a legal functional state. Instead, test-
engineering tools select specific vectors that maximize chip-wide circuit
activity. After running a few cycles, the chip test tool again uses the scan
ring structure to read the new state of the chip’s latches. The new state
is a function of the initial test vector and the circuit flow between latches.
The new pattern is a signature of the initial test vector. Separately, soft-
ware tools predict the correct value of the signature based on the gate-
level design model, using the same initial test vector. The signature is
distinctive for each initial test vector on a given chip design. If the new
state, as seen by the chip test tool, matches the predicted signature, then
the chip passes the manufacturing screening process. If the signature
does not match, it is an indication of one or more ill-formed or defective
circuits or wires.

The test patterns only uncover physical circuit defects and do not
confirm that a chip meets its functional or architectural requirements.
Testability only shows equivalence between a manufactured chip’s phys-
ical constructs and the gate-level design model. In fact, random test pat-
terns are not suited for functional verification mainline testing because
the test patterns reflect illegal values in the functional machine states and
run for only a few cycles. Similarly, patterns generated by functional
verification’s stimulus components are not suited for testability because
functional verification patterns tend not to exercise an adequate number
of circuits in a short number of cycles. As chip complexity and frequency
increases, testability becomes a bigger challenge. Test machines cannot
keep pace with the chip frequencies, meaning that the chip’s circuits do
not run at the intended chip frequency during test. Furthermore, the
overhead and cost of loading, dumping, and re-loading new test vectors
become unwieldy. As a result, test engineers are turning to on-chip test
solutions known as built-in self-test (BIST). BIST uses one or more auto-
mated engines (state machine designs inside of the chip) to drive pat-
terns through logic or arrays. Because the BIST engines are part of the
chip circuitry, they run more vectors and gain higher test coverage in less
time than standard test processes. Additionally, BIST enables test vectors
to run at the chip’s intended frequency rather than at the speed of the
external test tool.

Traditionally, software tools automatically insert scan ring logic for
testability. Engineers consider these tools reliable enough that no func-
tional verification is required. However, this only holds true if the intent
of the scan logic is for testability only. Dual usage of a chip’s scan rings

364 Chapter 9 ■ Pervasive Function Verification

for initialization or for debugging through scan ring dumping (as
described in Section 9.3.1) requires functional verification.

Engineers use BIST for dual purposes. First, BIST runs automated
test patterns as part of the manufacturing process. The second usage
of BIST is to initialize specific parts of the chip. During physical testing
of the chip, the logic BIST (LBIST) patterns result in a specific signa-
ture as discussed above. During initializations, array BIST (ABIST)
engines quickly clean and reset large arrays with good parity or initial
values. Verification teams contribute to both BIST purposes before
manufacturing.

LBIST Engine

The LBIST engine, using the scan ring stumps discussed in Section 9.1.2,
drives pre-determined patterns into all the latches. This engine is part of
the scan driver DUV shown in Figure 9.3. Unlike the single logical scan
chain mechanism used for scan initialization, the LBIST engine uses
each stump simultaneously to quickly propagate the pattern. The engine
then toggles the normal system clocks for a few cycles, engaging the chip
circuitry, which transforms the original patterns into new signatures. The
testability tools measure the amount of physical gates that the patterns
drive while also predicting the signature. The LBIST engine still requires
a test machine, but the test machine does not toggle the functional
clocks. Instead, it must only enable LBIST controls and collect signatures
for comparison.

Figure 9.4 shows the connections between the scan driver logic and
an LBIST engine. The LBIST on-off controls enable the engine to select
the appropriate multiplexer inputs (mux1 . . . muxN) used to drive either
a continuous scan ring or the LBIST test patterns. In test pattern mode,
the LBIST engine drives unique patterns into each stump simultaneously.
Then, the LBIST engine enables the chip’s functional clocks, running the
circuits at the intended frequency. Finally, the LBIST engine again scans
the stumps, shifting-in a new pattern while reading the current stump
signature based on the previous pattern and the functional clocking. The
LBIST engine collects each stump signature and forwards it to the test
machine for comparison against expected values. In continuous scan
mode, the multiplexers simply connect the output of the previous stump
to the input of the next. This allows the engineering team to scan the
chip for initialization and debug.

Verification of the LBIST Engine

Verification of LBIST has dual purposes. The first purpose verifies the
LBIST engine functionality and connections to the chip. The second
purpose verifies that the signature in simulation matches the signature
created by the predictive testability tools.

9.1 System Reset and Bring-Up 365

The verification team must check multiple modes to ensure LBIST
functionality. With the additional multiplexers, the verification team
must make sure that the chip can both scan for initialization and run
LBIST and that both modes are mutually exclusive. Additionally, verifi-
cation must check that LBIST does not interfere with vital clocks and
phase lock loops (PLLs), which allow the chip to run at the intended fre-
quency. Scanning testability patterns while using the on-chip clocks
cannot interfere with these clocks.

Checking that the predicted signature from the testability tool matches
the signature collected during simulation proves that the LBIST con-
nections are correct. To run this test, the verification team should drive
chip level inputs (black box testing) and collect the signatures via chip
outputs. This ensures that the LBIST engine works via the chip test
machine. The stimulus for this test is straightforward—it corresponds to
the stimulus that the test machine applies on the fabricated hardware.
The checking is simply a matter of comparing the signatures to those
predicted by the test tools. This may seem like a double check on the test

366 Chapter 9 ■ Pervasive Function Verification

mu
x1

mu
x2

mu
x3

mu
xN

Test Pattern3

Test PatternN

Test Pattern2

To Signature Collection In from stump2

LBIST Signature Out

In from Chip Scan_in

LBIST on/off Controls

Out to Chip Scan_Out

Out to stumpN

In from stumpN

Out to stump2

Out to stump1

Out to stump3

To Signature Collection In from stump1

Test Pattern1

To Signature Collection

To Signature Collection

In from stumpN-1

Scan driver

LBIST
pattern

generation
and signature

collection
logic

LBIST logic

■ FIGURE 9.4

The LBIST control logic inside the scan driver creates test patterns into the chip and collects signa-
tures, enabling at-speed testability.

tool’s signature creation capability. In part, this is true and worthwhile,
because chip complexity also produces tool complexity. This is also a
good check that the simulation model accurately reflects the complex
clocking functions of the DUV. In the end, matching signatures from the
simulation model and the test tools gives high confidence in the signa-
tures delivered to the fabrication facility for hardware testability.

ABIST Engine

As with LBIST, the verification team runs the ABIST engines to verify the
patterns as well as to check the initializations. When a chip first receives
power, the arrays are in an undetermined state. The ABIST engine tests
large arrays, searching for faults by writing patterns and reading them
back out of the array. The ABIST engine then writes all good patterns
into the array. The good patterns are often zeros with good parity or all
zeros if the array has a “valid bit” for each entry. The verification test
cases step through this process to ensure that the ABIST engine correctly
identifies bad array sectors and initializes the array.

Verifying that the ABIST engine can identify bad sectors requires the
simulation test case to emulate a bad array cell. This means using the
simulation engine to inject an error in a single bit (or multiple bits)
across the array to zero or one. Injecting an error in a simulation engine
overrides the value of the bit(s), simulating the effects of a bad circuit.
No matter what value the ABIST engine writes, the injection, or stuck
value, overrides the ABIST value. This appears as a physical fault to the
ABIST engine on approximately half of the patterns it reads. On the other
half of the patterns, the stuck value matches the ABIST written value,
causing no mismatch. The test case must verify that the ABIST engine
flags the correct array sector.

Verifying the ABIST initialization sequence is simple. The test case
should start in an undetermined state (X or random values) and apply
the control signals that initiate the ABIST initialization. When the ABIST
initialization completes, the test case should verify that the DUV has set
all rows in the array to the correct, initialized value.

The importance of verifying BIST functions cannot be underesti-
mated. Before powering on a system, all chips must go through
manufacturing screening. Verification of the LBIST patterns provides
confidence in the patterns, speeding the manufacturing test process and
ensuring that the chips that make it through the screening process are
good. Verification of ABIST provides critical assurance that the chip’s
array reset process works correctly.

There is one final task on verifying all BIST engines. The verification
team must check the reset of the BIST engine itself. It is feasible to use
either a scan reset or reset signal initialization scheme for BIST. In any
case, the verification team has to include BIST engines in the reset
verification plan.

9.1 System Reset and Bring-Up 367

9.2 ERROR AND DEGRADED MODE HANDLING

Many of today’s chips work in systems that require some level of relia-
bility. At a minimum, this translates to the need for self-diagnostics. Each
chip must be able to detect when invalid conditions occur in its circuitry.
In the most robust systems, chips not only need to self-diagnose failures
and errors but also need to perform self-healing functions. Verification
must ensure that these functions work properly.

In the following sections, verifying error detection and self-healing
hardware are discussed. The vital element to remember when verifying
all of this function is that the verification environment must reproduce
the conditions that occur because of physical errors. These error condi-
tions come in two classifications: hard errors and soft errors. Hard errors
occur when the hardware is physically broken. These errors are persis-
tent. To simulate hard errors, the test case must over-ride the simulation
model values with a persistent stuck value. Remember that the simula-
tion engine is a software model, not a physical model—it is the verifica-
tion engineer’s job to make the software model act like the physical model
(the Line Delete Case Study in the Case Studies chapter describes exactly
this verification failure). Soft errors, on the other hand, are not persis-
tent. These errors occur when cosmic rays or alpha particles strike
latches or memory cells, causing them to change value once. The parti-
cle does not damage the physical hardware, but the current value in the
latch or array is incorrect. To simulate soft errors, the verification engi-
neer must stick a bit for a short period (often just for one cycle).

Whether the design can recover from a hard or soft error depends on
a combination of factors. These factors include the state of the design
when the error occurred; the criticality of the data in the affected signal,
latch, or array; and the ability of the system to recover the changed or
lost data. A recoverable error is one that the DUV can correct while guar-
anteeing the operation results. Alternatively, a non-recoverable error is
one where the system cannot guarantee the integrity of the application
results. Verification must differentiate between these cases and test that
the system never allows the DUV to permute a non-recoverable error con-
dition into a recoverable condition. Conversely, the verification team
wants to ensure that the DUV does not classify recoverable errors as non-
recoverable cases.

9.2.1 Verifying Error Detection
All error and degraded mode handling starts with the detection of an
error. The amount of error detection capability within a chip differs with
the required level of reliability. The most robust systems have parity on
control signals and on data paths, with error correction codes (ECC) on
vectored data busses such as arrays and buffers [54]. ECC gives the

368 Chapter 9 ■ Pervasive Function Verification

system the ability to detect and correct errors across a broad number of
bits. Depending on the implementation, designers can use ECC to correct
one or more bits and detect errors across even more bits. A common
implementation of ECC uses an 8-bit encoding appended to a 64-bit
vector to correct any single-bit error and detect dual errors.

Designers must add extra logic to the DUV to manage errors. This logic
includes monitor signals to read parity signals and detect whether a soft
or hard error has flipped a bit. Other monitor logic watches the func-
tional logic for illegal states in the state machines or invalid command
values. This is the internal error checking logic.

Verification of hardware error detection follows a three-step process:
check the hardware’s monitoring logic, verify that the hardware correctly
reports the error, and verify that the hardware correctly isolates the
source of the error. The three steps are detailed below.

Step 1: Verifying the Hardware’s Monitoring Logic

Verification’s first task is to check that the hardware’s built-in monitor-
ing systems are correct. This verification occurs on all test cases, includ-
ing those not intended to test error conditions. In the least, all test cases
must monitor the hardware for unexpected activation of internal error
checkers. When the test case does not inject an error, the internal error
checkers should remain inactive.

The more challenging verification task is to verify that each internal
error checker turns on appropriately. The test case or environment does
this through error injection. Error injection under simulation precisely
sticks bit values at specific times. Error injection may emulate a hard
error or a soft error, depending on the test case intent. In either case, the
injection should either trigger an internal error checker or the test case
must complete error free. The difference between these two cases is
based on the actual timing of the error injection and the ongoing inter-
nal activity. If the error injection occurs on a bit that remains unused
during the test case, then an internal error checker will not turn on. What
makes the verification task more challenging is the notion that at a given
time, most of a chip’s logic may be idle. To cause an error condition, the
injection must occur on an active bit. This is simpler on hard errors
because eventually the hardware is likely to use a bit. The appropriate
verification technique for soft errors is to hold a value stuck until the
hardware uses that bit and then turn off the injection mechanism.
However, there are many subtleties in error injection, including the soft
error injection mechanism. If the verification engineer intends to create
a soft error, the test case should not simply inject until the hardware
detects the error and triggers the internal error checker. This approach
overlooks the case where there is an error in the internal error checking
logic. Instead, the test case or environment must monitor for when the
DUV uses the injected bit and then turn off the soft error. If this occurs,

9.2 Error and Degraded Mode Handling 369

the DUV either correctly flags the error or the test case does not pass,
citing the DUV for failing to flag the injection. The key is that the test
case should not rely on the DUV’s error checking but on the usage of the
injected bit.

Test cases must intelligently manage error injection into arrays. Most
arrays are too large to expect the test case to utilize the entire space.
Therefore, the test case must align injections into the parts of the array
exercised by the test case. Test cases that inject single-bit errors (either
hard or soft) into arrays protected by ECC should expect the injection to
have no effect on the test case results because the ECC logic corrects the
single-bit error. Therefore, single-bit error injection into ECC protected
arrays can (and should) be done by the test case environment during
mainline functional tests, not just during pervasive function verification.
However, pervasive test cases must verify the logic correctly handles dual
bit error injection into ECC protected arrays. In these cases, the DUV
cannot use the data because it is unable to isolate the flipped bits. The
DUV must discard the entire line of data.

Figure 9.5 shows the verification environment and DUV design for a
cache controller and main memory. The main memory contains ECC

370 Chapter 9 ■ Pervasive Function Verification

Checking and
monitor

components

Stimulus
component

Single bit injection
into array

Injection component
(linked to stimulus)

Append ECC Check ECC

Main memory with ECC

CMD_VLD(0)

CMD(0:3)

CM
D(

0:
1)

AD
R(

O:
21

)

DA
TA

(O
:6

4)

RE
SP

(0
:1

)

DA
TA

(O
:6

4)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

System logging
and recovery

System logging
and recovery

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

Cache controller

■ FIGURE 9.5

During simulation, a single-bit error injection into an ECC protected array should have no effect on the
test case, because the ECC logic should repair the bit.

append and checking logic that enables correction of single-bit errors. In
this figure, an error injection stimulus component continually sticks a
single bit in the array, whereas a normal mainline test case runs through
the stimulus, monitor, and checking components. The injection should
have no effect on the test case because the ECC correction logic fixes any
flipped bits. The verification engineer should design the injection com-
ponent such that it zaps different locations in the array in different test
cases, with the sole constraint that it chooses locations in the array used
by the particular test case.

Step 2: Verify Error Reporting

The next step in verifying error detection logic is ensuring that the hard-
ware correctly flags detected errors to the system level. For this activity,
error reporting falls into two fundamental categories: cases where the
system must take recovery action and cases where the hardware just
needs to log the occurrence of an error. Robust systems require logging
all errors, including those from which the hardware recovers and cor-
rects (e.g., using single-bit ECC). This enables the system to detect trends
in faulty hardware or even request preventative maintenance on parts
that have higher than usual recoverable errors.

Because there are two categories of error reporting, verification must
ensure each error flags the appropriate level to the system. Significant
errors must request recovery actions, whereas errors from which the
hardware has recovered should just present the log to the system. The
verification team builds this intelligence into the checking and monitor
components.

Step 3: Verify the Hardware Correctly Pinpoints the Erroneous
Source Logic

The final step in error detection is making sure the DUV correctly pin-
points the source of the error. This may not be trivial, because a single
error condition may quickly spread to other parts of the logic, causing
multiple internal error checkers to activate. Because errors tend to
cascade, it is important that the system identify the original failure. The
DUV must perform first error data capture, and the verification suite
must make sure this logic works correctly. Chips with this level of recov-
ery have central error logging DUV, with inputs from all internal error
checkers. The latency from each error checker to this central logging
repository must be the same. This allows the logic to identify which
checker activated first.

Verification of first error data capture is straightforward. The error
captured by the central logging DUV should correspond to the error
injected by the test case or environment. The first error data capture logic
should lock out all cascading error checkers or flag these as secondary
errors.

9.2 Error and Degraded Mode Handling 371

9.2.2 Verifying Self-Healing Hardware
In robust systems, the hardware must heal itself after an error condition.
Designers have used many different mechanisms to handle error condi-
tions. Aside from in-line adjustments such as single-bit error correction
using ECC, these mechanisms fall into four categories:

■ Hardware reject

■ Hardware retry

■ Software-assisted recovery

■ Hardware degradation

Hardware Reject

Hardware reject is the simplest form of action that the DUV takes. Reject
conditions occur when a portion of logic identifies an error on its inputs.
The logic refuses to accept the input, preventing the error from propa-
gating by shielding itself from the incorrect control or data. Designers
often create a control path back to the initiator, indicating that a reject
occurred. This informs the initiating logic that the receiving logic
dropped the input because of an error. In some cases, the receiving logic
does not provide a response, requiring the initiator to time-out and retry
the request later.

The Calc1 and Calc2 examples both use hardware reject functions for
illegal commands. The Calc2 design, which correctly implements the
reject, has bypass logic specifically for cases of unknown commands. The
logic returns an “invalid command” response. Our Calc2 test plans
contain multiple scenarios for verifying that the design properly handles
invalid commands.

Figure 9.6 shows a second example using the cache controller. Here,
the error injection stimulus component sticks a bit on the incoming
command (or the command parity) signals. The cache control logic
detects bad parity on the input lines. The input cannot be trusted, so the
logic bypasses the command queue and returns a reject response.

Verification of these cases requires specialized test case checking.
Because the error injection changes the expected result of the input stim-
ulus, the environment must inform the checker and monitor components
of the reject condition. Verification engineers implement this feature via
the scoreboard with an additional “reject” field. This field communicates
the injection to the checking and monitor components. It is up to the test
case writer to decide whether the stimulus component retries the oper-
ation. In a real system environment, the initiating logic would likely
resend the command after a reject, but that is not required in a test case
whose intent is to verify the reject action.

372 Chapter 9 ■ Pervasive Function Verification

For retry cases, the verification environment should turn off the inter-
face error injection to simulate a soft error. If there were truly a broken
input wire to the cache controller (a hard error), the cache controller
would continually reject the command. In robust systems, the initiator
would retry the command (maybe a few times) before reporting the
problem to the system controller and system software.

Hardware Retry

Hardware retry occurs when the DUV detects an error on which it can
take action without affecting other parts of the system. Hardware retry
attempts to fix a failed operation by repeating it. Retry operations work
well on soft error conditions where the problem is transient. Retry con-
ditions require that the hardware contains the error to a small portion
of the system. Errors that cascade beyond logic affected by the retry algo-
rithm must go through software-assisted recovery. In the containable
case, the hardware should first attempt to repeat the operation. If the

9.2 Error and Degraded Mode Handling 373

Checking and
monitor

components

Stimulus
component

Append ECC Check ECC

Main memory with ECC

CMD_VLD(0)

CMD(0:3)

CM
D(
0:
1)

AD
R(
O:
21
)

DA
TA
(O
:6
4)

RE
SP
(0
:1
)

DA
TA
(O
:6
4)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

System logging
and recovery

System logging
and recovery

RSP_VLD(0)

RSP(0:2)

Reject response

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)
Cache controller

Scoreboard

Cmd
queue

Soft error
into chip input

Injection component
(linked to stimulus)

■ FIGURE 9.6

Injecting an error on a control input requires a coordinated environment where the scoreboard com-
municates the injection to the monitor and checking components.

error checking logic does not detect the error after repeating the opera-
tion, the retry is successful and hardware requires no further action.
However, if the error checking logic detects an error upon retry, software-
assisted recovery or hardware degradation is required.

Verification of hardware retry does not require much overhead. The
verification team can utilize mainline test cases that exercise the DUV
target of the retry action. The test cases need only add the transient injec-
tion to the environment, causing the retry action to occur. When suc-
cessful, the DUV contains the error and repeats the hardware operation.
The test case should complete with the same results as the case without
the injection—only taking more cycles because of the retry action. The
test case environment must also make sure that despite the successful
retry action, the DUV logs the error to the system. Verification engineers
must pay special attention to the coding of the checking components for
hardware retry. The checking component must be able to identify the
case where the hardware fails to clear the injected error. The code must
detect latent errors in stored data or incorrect machine states that oth-
erwise might go undetected in normal mainline testing.

Figure 9.7 shows the cache controller and main memory verification
environment with an error injection into the controller’s pipeline. The

374 Chapter 9 ■ Pervasive Function Verification

Checking and
monitor

components

Stimulus
component

Append ECC Check ECC

Main memory with ECC

CMD_VLD(0)

CMD(0:3)

CM
D(
0:
1)

AD
R(
O:
21
)

DA
TA
(O
:6
4)

RE
SP
(0
:1
)

DA
TA
(O
:6
4)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

System logging
and recovery

System logging
and recovery

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)
Cache controller

Cmd
queue

Soft error
into pipeline

Injection component
(linked to stimulus)

Store Q

Fetch Q

Controller
pipeline

with parity

■ FIGURE 9.7

A soft error injected into parity-protected control logic causes the logic to initiate an internal retry. The
test case should succeed; however, the logic requires additional cycles to execute the retry.

pipeline DUV, protected by parity, should detect the flipped bit and call
for hardware retry. In this case, the DUV should flush the pipeline after
all commands ahead of the detected error complete. Then the command
queue can re-initiate the failed command. If the error is a transient (soft)
error, the verification environment turns off the injection and the retry
succeeds. A hard error in the pipeline, simulated by a continuous injec-
tion, requires software-assisted recovery, likely followed by hardware
degradation. In the case of a transient error, the stimulus, monitor, and
checker components run a mainline test case to completion. Without
the error injection, the test case completes in fewer cycles than with the
injection due to the extra cycles for the retry action. In addition, the
monitor and checker components should expect to see the cache con-
troller log the retry action.

The Calc2 designs contain no logic for hardware retry or for manag-
ing any type of internal hardware failures. If, for example, a failure
occurred on a valid bit in either of the Calc2 queues, the hardware would
not detect the error and would either lose a command (if the valid bit
turned off) or contain an illegal command (if the valid bit turned on).
Either case leads to architectural violations. To protect against such fail-
ures, the Calc2 design would require detection logic throughout the
control and data flows to handle hard or soft errors.

Software-Assisted Recovery

Software-assisted recovery is necessary when the hardware detects an
error in which there is no reject or retry action. The software that assists
in the recovery action resides on the service element. Because service ele-
ments exist only in the most robust systems (usually highly reliable
servers), software-assisted recovery is limited to high-end machines.

Hardware may request service element intervention due to many dif-
ferent error scenarios. The hardware should limit these cases to errors
that it cannot resolve through retry or reject actions. Three main causes
of software-assisted recovery are for recurring errors, errors where data
may be lost, or for cases where the error may propagate to other parts
of the system. Generally, the service element attempts to repair the hard-
ware by resetting it. Failing that, the service element removes the failing
hardware from the system configuration (degraded hardware mode).
Degraded modes require alternate paths through the system or alternate,
less efficient use of system resources. If there are no alternate paths, then
the service element must take the system off-line for repairs.

Software-assisted recovery slows the throughput of the system while
the recovery action occurs. The hardware first informs the service
element of a failure through an interrupt. At that point, if available, the
service element contains the error by fencing the recovering hardware
from the neighboring, unaffected hardware. Fencing effectively puts a
wall around the failing hardware, preventing other hardware from

9.2 Error and Degraded Mode Handling 375

driving inputs and using outputs. Hence, the throughput of the system
slows while the recovery action occurs.

The next step in the recovery action resets the hardware. The service
element initiates the reset, which clears the state of the hardware. This
cleans any soft errors in the hardware but does not have an effect on
hard errors (broken circuits). Hard errors cause software-assisted recov-
ery again, which, after reaching a threshold, invokes an action to de-
grade the system. In the case of a soft error, the recovery action effectively
repairs the hardware and allows it to continue to function. After the reset,
the service element may need to restore certain machine states to their
pre-error values or back to the last known-good state. Finally, the service
element brings the hardware back on-line and lowers the fences to the
neighboring hardware.

Verification of software-assisted recovery requires specialized function
in the stimulus, monitors, and checking components. These functions are
in addition to the normal operations of a mainline test case. Any error
injection and recovery actions must occur during the course of normal
operations. The point in time when the injection occurs should vary from
test case to test case.

The additional functions in the stimulus components required for soft-
ware-assisted recovery are the error injection function, step-by-step
recovery actions, and fence test probes.

Error Injection Function

The error injection function of the stimulus component sticks internal
signals, latches, or array elements until the hardware flags an interrupt.
Stimulus components can inject into either data paths or control logic.
In either case, the error injection function requires some finesse because
of the temporal nature of the hardware. At any given time, only a subset
of the hardware is valid or in-use. The challenge for the verification engi-
neer is to flip a signal or latch in the hardware that is in use by the test
case. Feedback for a successful injection comes in one of two ways: either
the hardware raises an interrupt or the monitor or checking components
flag an unexpected value on the outputs of the DUV. The latter indicates
a bug in the logic where the hardware failed to detect an internal error.
If neither of these actions occurs, the injection failed and the stimulus
component must try again. To raise the probability of a successful injec-
tion, the stimulus component can operate in a white box paradigm,
observing the control signals inside the design and triggering the injec-
tion when the target logic is in-use.

Step-by-Step Recovery Actions

After the hardware raises an interrupt, the stimulus component invokes
the next phase of the recovery action. Up to this point, the stimulus com-

376 Chapter 9 ■ Pervasive Function Verification

ponent has been driving normal stimulus into the hardware. Now, the
specialized stimulus functions gain control.

The step-by-step recovery actions of the stimulus component mirror
the function of the service element from the time the hardware flags the
interrupt. These actions vary depending on the hardware but usually
start with the fencing function. After that, the stimulus component walks
the hardware through the recovery and reset sequence, raising the input
signals as the service element would. Figure 9.8 shows the cache con-
troller example with the additional components. The monitor and check-
ing components contain the usual mainline checks along with an error
and interrupt detection collection point. This portion of the checking
component provides a feedback path to the service element stimulus
component used to initiate the recovery action.

Fence Test Probes

During the recovery actions, the mainline stimulus component should
conduct fence test probes. This action verifies that the DUV’s internal

9.2 Error and Degraded Mode Handling 377

Checking and
monitor

components

Mainstream
stimulus

component

Service element
stimulus

component

Append ECC Check ECC

Main memory with ECC

CMD_VLD(0)

CMD(0:3)

CM
D(

0:
1)

AD
R(

O:
21

)

DA
TA

(O
:6

4)

RE
SP

(0
:1

)

DA
TA

(O
:6

4)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

System logging
and recovery

System logging
and recovery

RSP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)
Cache controller

Cmd
queue

Injection
stimulus

Store Q

Fetch Q

Controller
pipeline

with parity

Interrupt
detection

CMD_ADR(0:31)

■ FIGURE 9.8

Software-assisted recovery requires coordination between the checking and monitor components and
the service element stimulus component.

fence logic prevents the DUV from acting on stimulus during recovery.
The real neighboring hardware (the logic that drives inputs into the DUV)
could occasionally drive signals into the DUV while the DUV is under-
going recovery. To cover these cases, the stimulus component should
have modes to drive normal stimulus or random “garbage” on the inter-
face. Because of the fences, the checker components must ensure that
the DUV ignores all fence probe stimulus.

Another example of software-assisted recovery occurs when a system
must work around a failure on a high-speed link between chips. To enable
this recovery scenario, the design team includes an extra link bit, or spare
bit, between the chips. A 32-bit interface might contain a 33rd spare bit
just in case a driver or wire takes a hard error. The logic on both sides
of the interface may detect the corrupted bit using parity or ECC codes
and send an interrupt to the service element code. A simpler retry action
cannot fix this failure, because both chips need to shut down the inter-
face for the repair action. During the recovery action, the high-speed
drivers perform calibrations on the new bit and cease usage on the failing
bit path. During the repair action, no data traffic may pass on the link.

Verification of this scenario requires four steps.

■ Step 1: Continuous Injection. Unlike retry or reject cases, the
error injection component must perform a continuous injection to
simulate a hard error on the link. With mainline traffic running
across the chip-to-chip interface, both chips in the DUV detect link
errors via the ECC logic as shown in Figure 9.9. As the link errors
continue, the link error counters (“counters” in Figure 9.9) reach
their threshold and raise an interrupt. During this time, the
monitor and checking components should see no indications that
there are errors on the link as the ECC logic corrects the corrupted
packets continuously driven by the stimulus component.

■ Step 2: Monitoring for the Link Failure Threshold. The verifica-
tion environment can accurately predict when the counters reach
the threshold using white box monitors on the link. The environ-
ment keeps its own counter to verify the threshold comparator. This
allows the checking component to expect the interrupt at the
appropriate time.

■ Step 3: Service Element Intervention Performing the Bit Sparing.
When the interrupt occurs, the service element raises the fences in
the two chips. It then commences the bit-sparing sequence and
brings the link back on-line. During this time, the stimulus com-
ponents should continue to drive patterns, probing the interfaces
for fencing failures. The stimulus component does not write these
patterns to the scoreboard, because the proper DUV behavior is to
ignore the inputs while fenced. If the DUV failed to fence all the
inputs, the failure would manifest itself as unknown data or as
responses on the DUV outputs.

378 Chapter 9 ■ Pervasive Function Verification

■ Step 4: Verification That the Hardware No Longer Uses the Bad
Link. After the recovery and sequence completes, the service
element component lowers the fences, bringing the chips back on-
line. The stimulus components restart mainline scenarios, now
expecting the DUV to accept and process the commands and data.
It is critical that the injections on the bad link continue after
sparing. The bad bit on the link is still bad, and the hardware
should not use it. The verification environment must ensure that
the DUV never uses the bit again on either side of the link. There
are multiple ways to accomplish this in verification. One method
is through white box monitoring of the bit, making sure it remains
inactive. A second method would be to inject soft errors on other
bits on the link. Even though this method injects two errors on the
link simultaneously, the DUV should only observe the soft error,
because the hard error is on the bit that has been retired. The ECC
logic cleans the soft error and the mainline test flow continues
without errors.

Hardware Degradation

The final mechanism in verifying self-healing systems is hardware degra-
dation. Hardware degradation is a form of software-assisted recovery
where the system detects that a portion of the hardware no longer func-
tions properly. Degradation can only occur when there is an alternate

9.2 Error and Degraded Mode Handling 379

Monitor
and checking
components

Stimulus
component

Service
element
stimulus

component

Chip A Chip B

Injection
stimulus

counter

E
C

C

E
C

C

Bit muxes for sparing

H
ig

h
 s

p
ee

d
 li

n
ks

intrpt

intrpt

counter intrpt

DUV

■ FIGURE 9.9

A recurring error on a high-speed link requires the service element’s intervention to spare out the bad
link. Throughout the test case, ECC logic maintains data integrity for single-bit errors.

path through the system. The system must be able to survive without the
failing hardware.

System architects who specialize in self-healing systems spend a great
deal of their time creating back-up mechanisms in case of hardware fail-
ures. The goal is to remove all single points of failure that could bring down
the system. This raises the reliability and the availability of the system.

Hardware degradation requires service element and firmware inter-
action. Unlike the cases of software-assisted recovery described above,
hardware degradation occurs when the hard error prohibits successful
recovery or reset. Furthermore, a hardware degrade action permanently
lowers the efficiency or throughput of the system, at least until installa-
tion of a replacement part. The service element firmware may invoke
hardware degradation based on the severity of the interrupt code, or if
the same interrupt has occurred frequently enough, the firmware identi-
fies the problem as a hard error.

Examples of degradable hardware include systems with extra power
supplies, back-up service elements (for code or hardware failures), or
even spare processors. The Line Delete example in Chapter 15.1 (Line
Delete Escape) is an example of a hardware degradation operation,
where the system deactivates a line of memory.

The verification process for degraded hardware is similar to that of
software-assisted recovery. The verification team must first ensure that
the hardware identifies the error and raises an interrupt to the service
element. At this point, the service element permanently disables the
failing hardware and enables any bypass paths. The final verification step
checks that the failing hardware remains off-line and unused.

This section described cases where the verification components per-
formed the function of the service element. The components imple-
mented the service element algorithms, avoiding the need to include the
actual service element hardware and firmware in the environment.
However, at a system level of verification, it is desirable to include the
firmware in the verification environment. This allows the design team a
chance to debug the firmware code before running it on the fabricated
hardware. Verifying the hardware and firmware together is known as
hardware/software co-verification (see Chapter 10).

9.3 VERIFYING HARDWARE DEBUG ASSISTS

Much of this book focuses on the first half of the verification cycle
described in Chapter 1. Verification teams spend most of their effort
creating environments that remove bugs in the DUV before hardware
fabrication. They use software tools and models of the hardware logic
that ease the debug of the DUV without the cost of fabrication. Software
tools such as waveform viewers give simulation a huge productivity boost
not available to the team once they move to the fabricated hardware.

380 Chapter 9 ■ Pervasive Function Verification

Testing and debugging fabricated hardware presents major challenges
compared with the comfort of simulation environments. The simulation
environment’s ability to probe all the internal signals all the time is a
huge advantage. When a test case fails in simulation, the simulation
engine can capture a complete trace and can re-run the same test case
until the team completely understands the bug and verifies the fix. Testing
on fabricated hardware is quite different. Here, test cases are often pro-
grammed applications running on the system and may take days to com-
plete. When a test case fails on the fabricated hardware, the design and
verification teams require information about the failure. Yet most of the
required debug information is unavailable unless the design contains
specific mechanisms for hardware-assisted debug.

Two main challenges in debugging fabricated hardware are isolating
the point when the error occurred and capturing enough internal infor-
mation to discover the root of the problem.1 Because tests may run for
billions of cycles, isolating the point in the test case when the error occurs
may be a bit like finding a needle in a haystack. Of course, this is not a
problem when hardware error detection logic flags a problem. On the
other hand, if the failure shows itself as wrong data on the system output,
the incorrect data could have been residing in storage for millions of
cycles. This not only masks the root error, it also makes it difficult to pin-
point the cycle when the logic error occurred.

Chip and system architects allocate silicon area to assist in hardware
debug. These functions provide a small but critical window into the inner
workings of the fabricated chip design. The goal of these functions is to
ease the difficult task of debugging the fabricated hardware, slashing the
amount of time it takes to understand a failure from weeks down to
hours. However, the verification team must allocate significant resources
toward verifying the hardware debug functions. As with any other hard-
ware feature, the verification team will uncover flaws in the initial DUV
implementations of these debug features. Without a solid verification
effort, the hardware debug functions will not work when needed in the
fabricated hardware environment. Then the team would need to debug
the debug features.

9.3.1 Verifying Scan Ring Dumps
Scan rings (described above under Scan Initialization) provide a
powerful debug function as well as the aforementioned test, reset, and

9.3 Verifying Hardware Debug Assists 381

1 This text assumes that the problem found in the fabricated hardware is a design logic
error. However, it is also possible that a failure occurs because of other reasons, such as a
faulty circuit or a timing issue. Engineers can spend hours (or days) isolating the failure
to faulty circuits, timing issues, or design source if the chip does not contain automated
mechanisms such as BIST.

initialization tasks. Because the scan rings indirectly connect every func-
tional latch to a scan_out chip pin, the engineering team can read latch
values as well as initialize them. This function takes the scan ring usage
well beyond traditional testability and the correct-by-construction tools
that insert the scan rings.

The procedure for reading the scan rings first requires that the system
stop the functional clocks. Then, the system controller follows a similar
procedure to initialization, where the system toggles the scan_a_clk
and scan_b_clk to move data through the ring. The difference between
debug operations and initialization is that during initialization, the
data driven on the scan_in pin are the ring initialization data, whereas
during debug operations the system captures the scan_out data and also
drives it directly back into the scan_in pin. This allows the system to
acquire the entire ring data and, after scanning the entire ring, leave the
chip in the same state as before the scan started. Figure 9.10 shows an
abbreviated block diagram of this process, using only three latches in the
design. At any given time, Latch C’s current value appears on the chip’s
scan_out line and the System Controller captures that value. As the
System Controller toggles the scan clocks again, it feeds the current
Latch C value into the chip scan_in, driving that value into Latch A. After

382 Chapter 9 ■ Pervasive Function Verification

Scan clock cycle

Initial value

After 1 scan clock toggle

After 2 scan clocks toggles

After 3 scan clocks toggles
(scan capture complete)

Captured
Latch B

0

Latch A

1

1

0

1

Captured
Latch C

1

Latch B

0

1

1

0

Latch C

1

0

1

1

Captured
Latch A

1

System controller

Scan ring capture facility

scan_a_clk
scan_b_clk

Chip boundary

scan_a_clk
scan_b_clk

scan_in scan_out

data_out
data_out_n1

Latch A

scan_a_clk
scan_b_clk

scan_in scan_out

data_out
data_out_n0

Latch B

scan_a_clk
scan_b_clk

scan_in scan_out

data_out
data_out_n1

Latch C

■ FIGURE 9.10

The scan ring dump example operation shows just three latches in the chip. As the System Controller
toggles the scan clocks, the latch values propagate through the scan ring.

three scan clock toggles, the System Controller has captured the values
of all the latches and has rotated the proper values back to each of the
latches.

The scan ring dump procedure is a powerful debug utility for the team
that tests the fabricated hardware. When a failure occurs, the scan ring
dump provides insight into the state of the chip. However, as with all
functions, the verification team must run the scan ring dump procedure
in simulation to ensure that the chip or system works correctly.

For scan ring dump verification, the verification team needs to
combine test case structures from the mainline test suite with the test
case used for initialization verification (from System Reset and Bring-
Up, above). The mainline test case provides a good DUV state, whereas
the initialization test case provides the scan clock-toggling infrastruc-
ture. The scan ring dump test case requires the following differences
compared with the scan ring initialization test:

■ Initialization of the DUV to a good state

■ Connection of the scan_out pin into the scan_in pin

■ Capturing the scan_out values for checking

■ Upon completion, verification that the chip is back in the same
state as before the operation.

For scan ring dump verification, the DUV must be in a known-good state.
The easiest way to do this is to run a mainline test case before starting
the scan ring dump. The best mainline test case is one that puts the DUV
into a very busy state, varying the latch values throughout the DUV. For
the scan ring dump operation, the test case stops the functional clocks
at the height of the mainline test’s activity—not after the mainline test
completes. This leaves the DUV’s latches in a good, but not idle, state.
With the functional clocks stopped, the scan ring dump operation begins
by enabling the scan operation and toggling the scan clocks. Because the
verification team uses the mainline test case infrastructure, they must
program an additional mode into the drivers and checkers. The drivers
must enable the scan operation (scan clock toggling, connection of
scan_out to scan_in, etc). All mainline monitors must disable checking
during the scan, because the scan operation drives the DUV into unex-
pected states while shifting the scan rings.

Unlike the initialization test case, the scan ring dump test case must
hook the scan_out pin back to the scan_in pin. The test case accom-
plishes this by reading the scan_out value and driving that value back
into the scan_in pin. Feeding these values back into the DUV ensures that
the scan ring dump is non-destructive to the DUV, meaning that when
the dump completes, the DUV is in the same state as before the dump.

9.3 Verifying Hardware Debug Assists 383

This operation rotates the ring one time such that the latch values return
to their original position.

As the latch values appear on the scan_out pin and the test case drives
these values into the scan_in pin, the test case must also capture each
scan_out value and maintain that value for checking. After the scan dump
operation, each captured value must be equivalent to the corresponding
latch values from before the scan dump operation started. This checking
ensures that the system controller sees the correct latch values.

The final step in the verification of the scan ring dump operation is to
check that the chip or system returns to the state it was in before the
operation. Because the scan ring dump operation is non-destructive, all
latches must end up with the same values as just before the scan ring
shifts began. An initial check for this is to perform a three-way compar-
ison for each latch. All three of the following values for each latch should
be equal: the value of the latch before the scan, the value captured by the
system controller during the scan, and the value of the latch after the
scan.

However, just verifying that the latches return to their original state
may not be sufficient. Scanning could be unintentionally destructive to
other elements of the chip or system. To detect that the scan operation
preserved the entire state of the DUV, the verification team should lever-
age the mainline test case used initially to put the DUV into a busy state.
Recall that the scan ring dump operation requires stopping the func-
tional clocks in the middle of running the mainline test. This leaves the
DUV in a good, but not idle, state. The scan ring dump operation should
leave the DUV in that exact same state. Therefore, the verification engi-
neer should be able to continue running the mainline test case by simply
de-asserting the scan dump inputs, restarting the functional clocks, and
re-enabling the mainline drivers, monitors, and checkers. With the excep-
tion of the number of cycles that the test case takes, the mainline test
case should complete normally. The verification team often finds that any
unexpected values flagged by the monitors or checkers can be traced back
to changed states in the DUV after the scan ring dump operation. These
changes are bugs.

9.4 LOW-POWER MODE VERIFICATION

Extended battery life, circuit leakage, and heat dissipation are three of
the biggest challenges faced by today’s chip design teams. Many chips
run in portable electronic devices where consumers base their buying
decisions on product functional capabilities and average battery life.
The best products balance leading edge features with a smart power
savings strategy. In fixed location devices, limiting the chips’ power
consumption not only saves the customer in their utility bills but

384 Chapter 9 ■ Pervasive Function Verification

also requires less aggressive heat dissipation solutions. Chips that draw
more power often need elaborate and expensive cooling infrastructures,
including fans, heat sinks, and even refrigerants. Therefore, there is a
strong business incentive for designers to limit the power that a chip
draws.

Power saving strategies fall into two categories: turn off unused por-
tions of the chip and slow down the cycle time of the chip. Both strate-
gies can yield significant power savings. Moreover, both strategies require
specialized verification environments.

In all power savings modes, the verification task falls into three steps.
First, in any dynamically controlled power savings mode, the verification
team must prove that the design correctly enters into the power savings
mode. Second, the verification team ensures that the design always gives
the architecturally correct result under power savings modes. Third, the
verification team must check that when a unit enters power savings
mode, the logic behaves as expected—usually by verifying that the clocks
shut off and the unit has no activity.

9.4.1 Power Savings Through Disabling Functional Units
Chips contain functional units that, at certain times, the software appli-
cations do not exercise. Examples of units include specific acceleration
engines such as floating-point units or broad connectivity devices where
the user does not utilize all ports. These units are all candidates for power
savings modes. Candidates for unit-level power savings fall into two
categories. First, sub-units such as acceleration engines derive power
savings in a dynamic fashion, shutting down under specific applications
and reactivating only when the chip requires utilization of the unit.
Dynamic power savings are application dependent, where the disabling
and re-enabling of the unit depends on the chip activity. The second cat-
egory is static power savings where the customer’s configuration dictates
power savings. In static power savings, the machine settings disable units
for prolonged periods or even permanently. Figure 9.11 shows examples
of both types.

It is important to note that idle sub-units still draw significant power.
To stop power leakage in idle portions of the design, the chip must shut
off the clocks to that unit. This actually makes verification of power
savings easier.

Verification of Power Savings Through Disabling Functional Units

Verification of dynamically controlled power savings is more complex
than the static type, because the verification team must create tests to
show that the chip correctly enters and exits power savings modes. Static
power savings only requires verifying idle clocks to the sub-unit through
the length of the test.

9.4 Low-Power Mode Verification 385

The verification team follows a four-step process for verifying
power savings modes. The first step requires that the verification team
test that the DUV correctly enters and exits the power savings mode.
The challenge for the verification team lies in the creation of dynamic
power savings test cases. Here, the verification team must understand
the exact mechanism that initiates the unit’s disablement in the DUV.
In the case of the floating-point example, that mechanism might be a
certain threshold of cycles passes without encountering a floating-point
operation.

First, the verification team must update both the stimulus and check-
ing components to verify that the DUV enters and exits the power savings
mode. The stimulus components must create the conditions for the
power savings mode. For dynamic power savings, those conditions may
be that the stimulus component must prevent certain operations—what-
ever the exact mechanism is as described by the specification. For static
power savings, the stimulus component may just need to initialize inter-
nal registers to the power savings state. For checking components, the
verification team must enhance the code to detect that the DUV has
entered the power savings mode. This includes verifying that the DUV
updates pertinent system status register values and takes all appropriate

386 Chapter 9 ■ Pervasive Function Verification

(b) Static Power Savings

South
Port 1

South
Port 2

South
Port 3

South
Port 4

North-side bus

Priority and
switch

(a) Dynamic Power Savings

Fixed
point

execution

Floating
point

execution

Branch
execution

Load–
store

execution

On-chip cache

Instruction dispatch

Instruction completion

■ FIGURE 9.11

(a) A sample superscalar microprocessor with four parallel execution units. Certain applications may
not require the floating-point unit (shaded area), making it a candidate for power savings. (b) An
input/output bridge chip, which contains four parallel south ports (shaded). Because the customer
may not configure all four ports simultaneously, each of the port units is a candidate for static power
savings.

power savings actions. Similarly, when the power-saving condition no
longer exists, the test case must verify that the DUV detects that it must
move back into full-power mode.

The second part in verifying power savings modes is to validate that
the system operations complete with the correct architectural results.
This implies that the stimulus and checking components continue to run
normally. Power savings modes cannot alter the architectural results of
a test case when compared with running the same test case without
power savings. In some cases, power savings may degrade system per-
formance, and the verification team needs to adjust checking compo-
nents to compensate for these differences only.

The third step in verifying power savings modes is to show that the
power savings mechanisms work as planned and to provide feedback to
the designers and architects. To perform this check, the verification team
must directly monitor the internals of the DUV for true indications of
power savings. In most cases, this means that the monitor components
spy on the functional clocks that feed the disabled unit to ensure they
remain inactive for the duration of the power savings mode. The verifi-
cation team cannot rely on the stimulus component and architectural
correctness alone, because the only way to know that the design reaps
the benefit of power savings is to monitor the internal signals directly.
Any activity on clocks, latches, or arrays during power savings modes
indicates the DUV may not have put the unit to sleep.

The final step is similar to step two. Instead of verifying that the system
operations complete correctly during power savings mode, the test case
must check compliance when the DUV returns to full-power mode. As
part of the architectural checking, the test case should closely monitor
the DUV during transitions into and out of low-power mode. When the
DUV switches modes, it still must maintain good machine states and
cannot miss interrupts.

The verification team cannot directly measure power savings, because
the simulation engine does not have physical current, leakage, and power
draw information. However, the verification team can provide inputs for
estimations of power savings by comparing identical test cases run with
and without power savings. A common metric used in such a compari-
son is the number of latches and arrays affected by the power savings
mode as well as the duration of the idle clocks.

9.4.2 Power Savings Through Cycle-Time Degradation
Reducing the chip or system cycle time lowers power consumption.
Whereas chip architects may prescribe this mechanism directly for
power savings, design teams also use it to prevent a catastrophic over-
heating scenario. High-frequency chip speeds, which burn power at a
higher rate than the same chip at lower frequencies, also place the chip

9.4 Low-Power Mode Verification 387

in physical danger if the power consumption exceeds the thermal dissi-
pation capabilities.

Fabrication processes prescribe specific thermal tolerances based on
rules customized for the manufacturing process. Exceeding these thresh-
olds can cause damage to the chip. Although the architects must design
the chip to maintain its target cycle time under most conditions, there
may be certain applications that use a broad range of chip resources
simultaneously, causing a larger than usual power draw. To prevent this
disastrous situation, designers add on-chip temperature sensors to the
chip. These sensors provide a warning when the chip is reaching a
critical temperature. The logic then dynamically adjusts the chip’s cycle
time.

A second usage of cycle-time degradation for power savings occurs
during prolonged idle periods of the system. Again, certain applications
may under-utilize system resources, providing the opportunity for power
savings when the user does not require high frequencies. No matter what
the end goal, more and more design teams use frequency degradation as
a tool for achieving power savings.

Verification of Power Savings Through Cycle-Time Degradation

Although functional verification does not play directly into the physical
timing aspects of cycle-time degradation, there are implications to the
verification environment. Affected areas include verification of the appro-
priate cycle-time degradation triggers and checking that the design
updates the correct logical state registers. Additionally, the verification
environment must support reinstating the cycle-time to higher frequen-
cies as required.

Any cycle-time degradation trigger uses a state machine or register
value to invoke the action. A thermal sensor, for example, sets a state
machine latch that must trigger the cycle-time degradation. Although the
verification team cannot create a thermal crisis in a simulation environ-
ment, the stimulus component can overwrite the value of the thermal
sensor’s state machine latch, which in turn should invoke the appropri-
ate degradation of cycle-time. This requires the verification team to
update their stimulus and checking components to simulate the thermal
crisis.

Mainline test cases that create lots of DUV activity are best suited for
verifying cycle-time degradation features. While at the peak of the test
case activity, the stimulus component overwrites the degradation state
machine trigger in the DUV. The checking components must verify that
all appropriate DUV actions occur as the specification dictates. This
would include checking that the DUV writes the control values that
slow down the clock frequencies, reset the state machine register that
initially called for the degradation activity, and set any required logging
registers. Additionally, the verification environment must turn off the

388 Chapter 9 ■ Pervasive Function Verification

state machine sensor some time later. This simulates the condition where
the chip has cooled sufficiently to regain full speed. The stimulus com-
ponent resets the register and informs the checking component. The
checking component must verify that the hardware resets the frequency
controls that allow the chip to run at full speed.

9.5 SUMMARY

Verification of pervasive functions requires much of the same ingenuity
and concepts used for mainline function verification. As with any verifi-
cation activity, the stimulus components must create the appropriate sce-
narios and the checking components must always be able to detect
incorrect DUV activity. Most pervasive function verification requires a
level of integration with the mainline environment components, allow-
ing “normal” test cases to run as the background to the pervasive func-
tion test. This interoperability necessitates early planning for pervasive
function so that the verification team need not overhaul the components
for pervasive tests.

Pervasive functions provide critical services to the system, including
initialization and debug capabilities. After fabrication, many of these
functions are the first portions of the hardware exercised. Other perva-
sive functions, such as error recovery, require huge amounts of verifica-
tion team effort as well as simulation cycles. For all the legal cases
verified in mainline tests, there are orders of magnitude more illegal sce-
narios where hard or soft errors affect the hardware. Complete verifica-
tion of these capabilities requires the imagination and focus of the
verification team. Without this effort, the hardware could be dead on
arrival.

9.6 EXERCISES

1. How do verification engineers utilize the X state capabilities of
most simulation engines creating initialization test cases? Without
the X state capability, how would the verification team simulate
initialization?

2. Verification of recovery functions requires injecting hard or soft
errors into the DUV. What are the implications of hard errors on the
verification environment components compared with soft errors?

3. What must checking components verify if an error injection goes
undetected?

4. Hardware designs may use fencing to temporarily prevent other
chips from affecting the logic during initialization and recovery

9.6 Exercises 389

activity. What should the stimulus components do with the chip
input lines during this time?

5. When debugging an error during simulation, why might it be bene-
ficial for the verification engineer to provide a trace of only a single
cycle rather than the usual trace of hundreds of cycles? What process
does this mirror?

6. Why is it important to verify that clock and latches do not toggle in
units that are in power savings modes? What do the verification
engineers need to customize in their environment to check this
adequately?

390 Chapter 9 ■ Pervasive Function Verification

System simulation is the first time the verification team brings all the
logic together into one simulation environment. Previous levels of veri-
fication focus on all the functions contained within one unit or chip,
whereas system-level verification concentrates on the connectivity and
interaction of all the units and chips. System simulation focuses on
how the customer uses the system as an end application of all the chips.
Still, system can mean many different things. The application of the chip
or chips defines the system. For example, a system for a server might
include the processor, an oscillator, memory, a chip that bridges trans-
actions to and from the processor to a memory subsystem (called a north
bridge), a chip that bridges transactions to and from the input and output
(I/O) subsystem (called a south bridge), a graphics controller, and the
board that connects them all together. For a networking processor chip,
the system includes an oscillator, memory, physical interface (PHY)
modules (gigabit Ethernet PHY, Asynchronous Transfer Mode (ATM)
PHY, etc.), switch fabric, and the network processor. An embedded
system would contain an embedded processor, memory, Ethernet PHY,
universal serial bus (USB) port, and application specific logic. Many
times this embedded system is self-contained within one chip, which is
called a system on a chip (SoC).

Regardless of what kind of system it is, the verification environment
for that system contains stimulus components (both initiators and
responders), monitor components, scoreboard components, and check-
ing components. To leverage the verification work done previously at the
lower levels, verification components may be re-used. In addition to these
components, the system verification team may be responsible for other
verification components. These other components are written by the
system verification team, purchased from a vendor (a third-party model),
or acquired from another group.

Because re-using chip and unit verification components is a signi-
ficant portion of system simulation, this chapter initially details re-use
strategies. It then covers the methods for verifying a system in func-
tional simulation and issues associated with SoCs or, more generically,

C H A P T E R 1 0

RE-USE STRATEGIES AND
SYSTEM SIMULATION

issues associated with verifying re-usable IP (intellectual property) in a
system.

The chapter also discusses advanced simulation techniques that
address the unique challenges of system simulation. Hardware accelera-
tion and emulation are covered, which address the radically increased
need for simulation performance. The last topic that is covered is simu-
lation between several simulation engines, called co-simulation. Co-
simulation is necessary in some system-level verification efforts because
of the need to integrate different types of verification IP into one cohe-
sive verification environment.

10.1 RE-USE STRATEGIES

Re-use allows the verification team to leverage verification components
and design blocks across a chip or across multiple chips in a system. As
it does for design, the concept of “create once, use in many places”
applies to verification components as well. The result is improved time
to market and reduced resource requirements. Figure 10.1 illustrates an
example of design re-use (verification aspects of re-use follow).

In this example, unit A is used across the two chips, X and Y, and many
times within a single chip, X. The re-use of unit A allows for better
resource utilization. The development team for chip X only needs to
design two units: A and B. The development team for chip Y only needs
to design one unit, C, because it re-uses unit A from chip X. This type of
design re-use is called horizontal re-use, because the team uses the design
blocks across a single chip (as in unit A within chip X) and across mul-
tiple chips (unit A used in both chip X and Y).

Because verification is a large part of the design effort, it makes sense
that the same concepts for design re-use apply. Applying re-use concepts
to verification reduces the duration of a project. So, in general, horizon-
tal re-use occurs when a team uses a design unit or verification compo-

392 Chapter 10 ■ Re-Use Strategies and System Simulation

Unit A

Chip X
Chip Y

Unit A

Unit A

Unit B

Unit A

Unit C

■ FIGURE 10.1

Design re-use. Multiple usage of a single unit (many instances) within a chip or within multiple
chips.

nent multiple times at the same level of the hierarchy. Figure 10.2 is an
example of horizontal re-use within verification.

In this example, units A, B, and C all connect to a common shared
bus. Because the units have a common shared bus, there is no need for
each verification team to develop its own stimulus component. Instead,
a verification team can create a re-usable stimulus component for each
unit test bench. This concept can expand to include other common ver-
ification components such as interface monitors and checkers. This is an
example of horizontal re-use because the team utilizes a set of verifica-
tion components across the same level of the verification hierarchy (in
this case, unit test benches). More details of how to achieve horizontal
re-use are discussed later in this chapter.

Another form of re-use, vertical re-use, is unique to verification. Verti-
cal verification component re-use is the usage of verification components
up the levels of hierarchy. Vertical re-use is important to system simula-
tion because it allows for the verification team to leverage what has
already been implemented. This, as in horizontal re-use, allows for opti-
mization of resources. Figure 10.3 shows a simple example of vertical
verification re-use.

As shown in Figure 10.3, unit A’s test bench has two verification com-
ponents associated with it: a stimulus component and an interface
monitor/checker. This design unit is at the periphery of the chip. This
means that the chip level verification team can re-use the stimulus com-
ponent from the unit test bench in their test bench. In addition to the

10.1 Re-Use Strategies 393

Unit AChip

Unit C

Unit A

Unit C

Unit B

Shared bus
Unit B

Shared bus
re-usable
stimulus

component

Unit A
testbench

Unit B
testbench

Unit C
testbench

Shared bus
re-usable
stimulus

component

Shared bus
re-usable
stimulus

component

(b) Unit Verification Re-use of the
shared bus stimulus component

(a) Design Hierarchy

■ FIGURE 10.2

Horizontal verification re-use: using verification components across a level of verification. (a) A chip in
which three units, A, B, and C, interface to a shared bus. (b) The interface to this shared bus is iden-
tical, so the verification team creates a re-usable stimulus component for the three unit verification
environments.

stimulus component, the chip level verification team also utilizes the
interface monitor/checker to assist in their debug activities. Therefore,
vertical re-use occurs when a higher verification level utilizes verification
components from a lower level. More details of how to achieve vertical
re-use are discussed later in this chapter.

Verification components that can be re-used both horizontally and ver-
tically are referred to as re-usable verification IP. Re-usable verification
IP allows companies to maximize the verification work. This may occur
when a company develops multiple chips that use an industry standard
interface such as peripheral component interconnect (PCI) and share the
stimulus and checking components across projects. Alternatively, if many
groups within a company develop the same verification components,
resources are wasted. As inefficient as it may seem, many reasons exist
for why multiple groups may develop similar verification components
independently. It could be that the different groups utilize different hard-
ware description language (HDL) and/or verification languages or that
the different groups require different functionality from the verification
components. However, if one group concentrates on developing re-usable
verification IP, then all groups within the company can leverage that
expertise and reduce overall resources. To go one step further, a company
can purchase re-usable verification IP from vendors. This IP may seem
expensive at first, but usually in the end it saves money. These compa-
nies have a magnitude of uses for these components (thus enhancing
their function), more than a local team would ever get. With this broader
use, the quality of their product increases. Additionally, purchased veri-
fication IP is most likely to follow the interface specification, because
many different verification teams test it against their different design
implementations. There is a level of safety in the higher number of
users.

394 Chapter 10 ■ Re-Use Strategies and System Simulation

Unit A

Chip

Unit B
Stimulus

component

Interface
monitor/checker

Vertical re-use

Stimulus
component

Unit A
Interface

monitor/checker

■ FIGURE 10.3

Vertical verification re-use: using verification components up the levels of hierarchy (from unit up to
system).

One last aspect of re-use is the ability to bridge the gap from func-
tional simulation to and from formal verification. The use of assertions
helps to accomplish this. The reason is that most formal tools accept
industry standard assertions as the checks.

10.1.1 Guidelines for Re-Use
Re-use may seem very easy, because the concepts are simple. In reality,
few companies and groups achieve a high degree of re-usability because
they fail to put guidelines in place. The following guidelines allow test
bench components to be re-usable:

■ Independent stimulus components

■ Configurable logging of messages

■ Generic scoreboard components

■ Dynamic mapping of signals into verification components

■ Packaging verification components

■ Documentation

Independent Stimulus Components

Stimulus components need to be independent of all other verification
components. They should not communicate with any other component
nor should any other component communicate with the stimulus com-
ponent. Figure 10.4 shows an example of why independent stimulus com-
ponents are critical for re-use.

In Figure 10.4a, unit B’s test bench contains a stimulus component
that directly communicates to the scoreboard. This works well at the
unit level and also has advantages because the developer of the stimulus
component already knows much information of what is to be driven into
the design under verification (DUV). However, looking at Figure 10.4b
shows the usage of unit B at the next higher level of verification. At this
level, internal checking is desired for debug. It can be seen that the ability
to re-use the scoreboard at this level now has issues. The chip level
cannot re-use the scoreboard because it requires the stimulus compo-
nent, which is now replaced with the design, to communicate with the
scoreboard.

Adhering to this guideline allows for vertical re-use of any verification
component. Many verification engineers are tempted to provide the data
sent into the DUV to the scoreboard component directly from the stim-
ulus component. Their reasoning is valid: Why create another verifica-
tion component to monitor the inputs when the stimulus component
already contains the data sent into the DUV and can directly inform the

10.1 Re-Use Strategies 395

stimulus component of new data? However, if the verification team
wishes to re-use the scoreboard or checker components at a higher level
where the real HDL design replaces the stimulus component in the test
bench, then the scoreboard component will not receive any data. There-
fore, the best solution for re-use maximization is to add a monitor com-
ponent to the interface between the stimulus component and the DUV.
The monitor component spies the data on the interface and informs the
scoreboard. The verification team then re-uses the monitor component
at the higher hierarchical level to drive the scoreboard, even in the
absence of the stimulus component.

Configurable Logging of Messages

When re-using verification components, the requirement of debugging
and informational messages exists as with any other environment.
However, there are additional issues to consider. The first issue is that
the components need the ability to have configurable and controllable
messaging (including debug level and filters). This helps prevent infor-
mation overload of debug messages (see Chapter 8). Another issue, from
the developer’s standpoint, is that the verification component needs to
have debug messages for when it is determined that there is a bug in the

396 Chapter 10 ■ Re-Use Strategies and System Simulation

Unit B

Chip

Checking
component

Stimulus
component

Re-usable
scoreboard
component

Stimulus
component

Unit A

Unit B

Re-usable
scoreboard
component

Checking
component

Stimulus
component

Unit A

?

(a) Unit Test Bench

(b) Chip Test Bench

■ FIGURE 10.4

Independent stimulus components. (a) A stimulus component for unit B that communicates directly to
a scoreboard. (b) The usage of unit B at a higher level (where some intermediate checking is desired
for debug); the scoreboard is now nonfunctional.

component. For this, the component needs a debug level to give detailed
messages that are useful to the developers of the component. The end
user will not care about any internally specific messages that the com-
ponent might produce. The last issue to consider is the ability to cus-
tomize how the messaging occurs. The developer of the verification
component does not know the end environment or how it will be
utilized. It may be that one particular user wishes to capture all the
debug messages from the various components into a single simulation
log file, whereas another user requires each verification component to
log its information into its own separate file. This ability requires the
developer of the verification components to create a message handler
that can handle configurable debug levels as well as different logging
mechanisms.

Generic Scoreboard Components

To achieve a high degree of re-use, scoreboard components must be
generic and not specific to the particular input protocol or the checking
function. The verification team may use a scoreboard in different
manners, depending on their implementation of horizontal or vertical
re-use. The scoreboard should be generic in the sense that it contains the
abstract data that the DUV receives on its inputs. The interface to the
scoreboard should be via an application-programming interface (API) as
opposed to direct monitoring of the input interface. An API should exist
for the checking component to get the expected data from the scoreboard
as well. The scoreboard’s checking API must be extendable or overridden
because the functions within the API may be different within the differ-
ent test benches that utilize the scoreboard.

Vertical re-use drives the requirement for having the API, instead of
the scoreboard, monitoring the DUV inputs. Figure 10.5 shows two test
benches, one for unit level and one for chip level.

Unit A buffers inputs before passing the data off to unit B. Unit A is
a simple first in, first out (FIFO) buffer. Unit B processes the data and
sends it out of the chip. Because there are multiple instances of unit A
and unit B processes the outputs of these, data can be received out of
order on the outputs of the chip.

The verification team uses a scoreboard in the unit test bench. This
scoreboard contains an API to enqueue data into the scoreboard.
The same scoreboard can be re-used vertically in the chip level test
bench. The chip test bench has multiple instances of the stimulus and
interface components. Each interface component uses the same API
to enqueue data to the scoreboard. If the scoreboard contained the
interface monitor directly, instead of an API, when the team re-used
the scoreboard at the chip level, the scoreboard would need to be
modified to accommodate the multiple buses. Creating and using the API
alleviates this.

10.1 Re-Use Strategies 397

Vertical and horizontal re-use both drives the requirement for the
checking API to be overridden or modified. Figure 10.4, in addition to
illustrating the need for an API on the stimulus side, also illustrates the
need for a checking API. Because the scoreboard is being re-used, the
function within the scoreboard is different at the unit versus the chip
level. At the unit level, the scoreboard acts like a simple FIFO. The unit
test bench checking component uses the API to “request” the next data
to check for from the scoreboard. However, at the chip level this is not
the case. At the chip level, the function is not a simple FIFO, as out of
order data packets can arrive, so now the scoreboard must be able to
handle this. Two different methods exist for managing this. The first
method is to have the unit verification team (the scoreboard authors)
handle the chip verification needs. This requires the unit verification
team to create the scoreboard with the chip team in mind and maintain
it as bugs are found in the scoreboard. The second option is to use an
extendable API (using object-oriented principles) that allows the chip ver-
ification team to enhance the API as needed. The unit verification team
creates a scoreboard that contains the data structures and an API to get
at those data structures, whereas the chip verification team extends the
base function of the scoreboard to accommodate their needs.

Both cases require the same amount of effort-enhancement of the
scoreboard to support the different uses. However, if the unit verification

398 Chapter 10 ■ Re-Use Strategies and System Simulation

Unit A

Chip

Checking
component

Stimulus
component

Re-usable
scoreboard
component

Stimulus
component

Unit A

Unit B

Re-usable
scoreboard
component

Checking
component

Stimulus
component

Unit A

Interface
component

component

Interface
component

(a) Unit Test Bench

(b) Chip Test Bench

■ FIGURE 10.5

Re-using a scoreboard. (a) The usage of a scoreboard for a unit test bench. (b) The usage of the same
scoreboard from a chip test bench.

team is responsible for creating and supporting the scoreboard, they
must understand all the re-use environments. This may not be practical
if the verification team re-uses this scoreboard across projects. On the
other hand, when the verification team provides an extendable API, they
split the work across teams. This allows the unit team to focus on unit
simulation and the other verification team, wherever that team may exist,
to focus on their own specifics. Third-party models utilize this extend-
able method with their IP.

Dynamic Mapping of Signals Into Verification Components

The names of the interface signals in which the monitors, checkers, and
stimulus components interact must be configurable to allow for re-use
either horizontally or vertically. In a horizontal scope, a single verifica-
tion component may be instantiated numerous times within an envi-
ronment, or a single verification component may connect to different
units where each unit may have different signal names. In either case,
the connections to the verification component are different.

Calc 2 (see Chapter 7) is a good example of this, as shown in
Figure 10.6. Each port has a different set of names (REQX_CMD_IN,
REQX_TAG_IN, REQX_DATA_IN, where X is the port number), but a
single stimulus component could be created to attach to each port. The
stimulus component outputs must map to each of the four different ports
on the DUV. By allowing for dynamic mapping, the end-user would only
need to “configure” the component for its specific mapping. Without
this mapping, the end-user would need to copy and paste individual

10.1 Re-Use Strategies 399

Re-usable
stimulus

component
Port 1

Port 2

Port 3

Port 4

REQ_CMD_IN
REQ_TAG_IN

REQ_DATA_IN

REQ1_CMD_IN
REQ1_TAG_IN
REQ1_DATA_IN

Re-usable
stimulus

component

REQ_CMD_IN
REQ_TAG_IN

REQ_DATA_IN

REQ2_CMD_IN
REQ2_TAG_IN
REQ2_DATA_IN

Re-usable
stimulus

component

REQ_CMD_IN
REQ_TAG_IN

REQ_DATA_IN

Re-usable
stimulus

component

REQ_CMD_IN
REQ_TAG_IN

REQ_DATA_IN

REQ3_CMD_IN
REQ3_TAG_IN
REQ3_DATA_IN

REQ4_CMD_IN
REQ4_TAG_IN
REQ4_DATA_IN

Calc 2

■ FIGURE 10.6

Horizontal naming issues. By keeping names generic, the same component can attach to many units
or to the same unit many times to help facilitate horizontal re-use.

components and modify each one. This leads to higher maintenance and
reduces the overall benefit of re-use.

For vertical re-use, most unit environments’ top level is the unit itself.
However, when this unit is within the chip, extra levels of hierarchy exist.
Thus, verification components need to be “attached” to the different
levels. Figure 10.7 shows an example of the vertical naming issue.

In this example, the signal name to which the common interface
checker attaches changes its name because of hierarchy prefixes. If the
verification components have a static interface (i.e., directly connects to
specific design signals), then it would be difficult to re-use the verifica-
tion components up the hierarchy.

The ability to have a dynamic mapping mechanism is crucial for re-
use. This way, the component can attach to any of the necessary signals
at any level, either horizontally or vertically.

Packaging Verification Components

Packaging a verification component gives the end-user the ability to
instantiate and easily use the component. Packaging includes all the
structures and documentation that the verification team requires to bring
the verification component into production seamlessly. If it is not easy

400 Chapter 10 ■ Re-Use Strategies and System Simulation

Unit A

Re-usable
interface
checker

Re-usable
interface
checker

(a) Unit Level of Verification

(b) Higher Level of Verification

Re-usable
stimulus

component Net B

Unit AUnit C
Net Top/B

Top

■ FIGURE 10.7

Vertical naming issues. By keeping names generic, the same model can attach up the levels of verifi-
cation to help facilitate horizontal re-use. (a) A unit level verification environment where the interface
checker is monitoring net B. (b) The same interface checker is re-used but now it needs to monitor Net
Top/B.

to use the components, the likelihood is that the verification team writes
their own. Packaging verification components allows the end-user to
apply them more efficiently and instantiate the verification components
into different environments easily.

The package should be a self-contained structure for the components.
If the component has dependencies on any specific environment, then
the verification team must carry these dependencies to any environment
that will contain this component. If not, then the component will not
work.

Two different packaging approaches exist. One method is to encapsu-
late the re-usable components (stimulus, monitor, scoreboard, and
checker) into one package that behaves differently based on constraints.
In this scheme, the verification team would create the components with
the packaging method in mind. For instance, the dynamic mapping
structure mentioned above is re-used across all the components. This
also means that the verification team also needs to add “mode” switches
that operate differently based on the package constraints. These switches
turn different parts of the components on and off. The verification team
could create a mode for the stimulus component. This mode would
control the enabling of the stimulus component. By doing this, it allows
the end user to activate the stimulus component based on the environ-
ment. A unit test bench would require an active stimulus model, but
within the chip level test bench the stimulus model is passive because
the real logic drives the interface. However, the other components of the
package (monitors and/or checkers) remain active. Taking the “modes”
one-step further, the verification team can include constraint-controllable
levels of checking and monitoring in the package.

The other method is to package each verification component sepa-
rately. This allows the end user to select the exact components to put in
the test bench. This provides the greatest flexibility to the end user. Unlike
the previous model, this only uses necessary components. Hence, some
of the above-mentioned modes are not required. A verification team
would not need to turn on or off the stimulus model. If the test bench at
the next higher level does not require the stimulus component (because
the real logic exists), then the verification team would not instantiate it.
A disadvantage to this paradigm is that the end user must now create
and configure all the separate components individually. This may be inef-
ficient when components share similar interfaces.

The basic difference between the two methods is the placement of the
work emphasis. Re-use requires a little more planning and work for
implementation. The complete package paradigm requires the devel-
oper(s) to perform more work (including more modes) and to solve
any intercomponent dependency issues. The independent component
package paradigm shifts this responsibility to the end user. In many
cases, it makes sense for the developer to perform this work because they
are the most familiar with the individual components. It may take the

10.1 Re-Use Strategies 401

end-user more time in using the components because they are not famil-
iar with any inter-dependencies between them.

The advantage to having the developer do the work and having a
more integrated package is that the end-user only has to worry about
configuring one big component. All inter-dependencies of the inner
components are in the packaging (if any cross-constraints exist). The
disadvantage is that the developers creating these components need to
do more work. However, the more times that verification teams re-use
the components, the more worthwhile the pre-packaged method
becomes.

In addition to deciding on a packaging mechanism, the verification
team must also reflect upon and document the scope in which they will
use the verification IP. The verification team must take into considera-
tion any dependencies, such as simulation engines, high-level verifica-
tion language (HVL)/HDL, operating system, and compiler. Any of these
aspects may limit the usage of the verification IP. These limitations may
be acceptable depending on the targeted user audience, but the users
need to know about them.

Documentation

Documentation is advantageous to any design and verification endeavor,
but it is necessary for re-usable verification components. The end user
must be aware of what constraints and controls they have over the com-
ponents. Documentation is a fundamental requirement for re-use. If the
end user does not know how the components behave or how to control
their behavior, then the user will not trust the verification IP. Documen-
tation is also important in informing the end user on any limitations or
configuration options that are available. The following is a list of features
that, at a minimum, should be documented:

■ Basic function

■ Usage notes and limitations

■ Modes and constraints

■ Release notes

Documentation of the basic function of the verification component
should exist so that the end user knows what the verification component
is intended to do. If developing a verification IP for sale, then this basic
function can exist in some “glossy” that marketing and sales use to
promote the IP. However, if this IP is used only for internal purposes,
then the documentation could simply be text file (a “README” file) that
explains the basic concepts and purpose of the IP.

In addition to the function, usage notes and any known limitations
need to be listed so the end user does not try to use the verification IP

402 Chapter 10 ■ Re-Use Strategies and System Simulation

in the wrong way. The usage notes explain how to use the verification IP.
It describes how to instantiate the component into a test bench, how to
compile it (if applicable), and how to link it into any specific simulation
engines. Any limitations should also be noted here, such as limitations
on what operating systems are supported. The end user can use the ver-
ification IP more effectively once they know the limitations.

The documentation needs to explain any modes and constraints that
are available to the end user. The end user needs to know how to control
the verification IP, what variations are available in the parameters, and
what they do when changed. This allows the end user to direct the veri-
fication IP for their specific implementation and purposes.

Release notes are important because they allow the end user to know
what is new in a particular release. It could be that an end user has an
issue with a particular release of a verification component and will
upgrade once a new feature has been included in the component. An easy
way to convey this information is to put it into a set of release notes that
indicate the reasons for this release and how it differs from previous
releases.

Documentation gives more credibility to the verification components
and removes some of the support burden from the developers of the ver-
ification IP. It allows the end user to instantiate and use the verification
IP easily by explaining the purpose of the switches and constraints. In
addition, the documentation explains any limitations and new features
that are included in the verification IP.

10.1.2 Horizontal Re-Use
As mentioned previously, horizontal re-use is defined by the use of the
same verification components across the same level of verification hier-
archy. Horizontal re-use occurs when multiple units exploit a single ver-
ification component in the same hierarchical level (Figure 10.2). In this
section the additional complexities that exist when developing verifica-
tion components for horizontal re-use are discussed.

Different scopes of horizontal re-use exist and, depending on the scope
of re-use, different complexities exist. Verification engineers apply hori-
zontal re-use within the following scopes:

■ Re-use across units (within a chip)

■ Re-use across chips (within a company)

■ Re-use across companies (realm of electronic design automation
(EDA) IP developers–third-party IP)

Re-use across units has the narrowest scope. This means that a single
team understands the functionality that the verification components must
support. At a minimum, the teams all fall under the same project scope.

10.1 Re-Use Strategies 403

The scope of function that the components must support broadens
when re-using components across chips (but within a company). Here,
the teams may not fall under the same project, leading to conflicts due
to prioritization of function requirements, resources, and schedule. This
paradigm requires communications and a unified decision-making pro-
cess that maximizes company effectiveness.

The broadest scope is a verification component that is fully re-usable.
This is where the component supports all the capabilities of the proto-
col and interface (it is fully compliant in that it follows and supports the
complete specification). This scope focuses on third-party verification IP.
Many EDA companies have created a business model around writing ver-
ification IP. Because their customers demand high-quality IP (verifica-
tion engineers expect a high degree of quality from what they purchase!),
these companies not only focus on the protocol and checks of the verifi-
cation IP they are developing, but also in documentation and packaging.
They know that the easier it is for their customers to use their IP, the
broader use it receives. If the verification IP is hard to use and control,
then customers will not purchase the IP and the company will lose
market share.

Horizontal re-use has its own complexities because many times the
components are not all encompassing in terms of functions supported.
For example, a verification team working on chip A that contains a PCI
interface is going to create re-usable verification PCI components for
their company. Chip A’s function specifies support for single beat reads
and writes only (this is a certain type of PCI bus transaction). Thus, this
team concentrates on this function for the verification components.
Somewhere else in the company, a team is designing chip B that also
contains a PCI interface. Chip B’s verification team heard of this common
verification component and now depends on it to meet their schedule.
However, chip B, in addition to single beat reads and writes, also sup-
ports burst length reads and writes. To make the component re-usable,
chip A’s PCI verification team must now add additional function because
of chip B’s requirements. If they were to leave this out of the verification
components, then chip B could not use it and would have to create their
own component, thus creating additional work. Alternatively, chip B’s
verification team could copy the components and add their functional-
ity to it—which in the end may be the faster approach.

10.1.3 Vertical Re-Use
As mentioned earlier, using the same verification components up the
levels of verification hierarchy is vertical re-use. This can occur when
the chip level team uses internal checks and monitors from the
unit levels or exploits a stimulus component from a unit (Figure 10.3).
Here, the challenges associated with implementing vertical re-use are
described.

404 Chapter 10 ■ Re-Use Strategies and System Simulation

The difficulty in vertical re-use is that the requirements for a stimulus
component at the unit level are typically different from the top level,
especially for stimulus components that must initiate transactions (as
opposed to reactors). Most unit environments want a highly randomized
stimulus component with a small set of directed tests to achieve high
functional verification coverage. However, at a chip and system level, the
verification teams desire randomization “on a higher level.” This means
that within a unit test bench, stimulus components tend to focus ran-
domization at individual transactions and generate these transactions
randomly across the DUV interface. At the next level, the stimulus
components require more control in generating specific sequences. The
randomization at this level is across transaction sequences, not on the
transactions themselves. Or the desire is to create random sequences
involving more than one type of stimulus component (hence needing
the ability to coordinate different stimulus components to create a
desired higher level sequence). This requires the verification team to
produce a stimulus component capable of either type of randomization
control.

Vertical re-use of components in a unit test bench that have no
external interfaces at the next higher verification level are typically
limited to monitors and checkers. This is because in the next level of hier-
archy, the DUV replaces the stimulus components with the real design.
However, checkers and monitors remain valid if the verification team
follows the re-use guidelines in the construction of the verification com-
ponents. The verification team doing the next level of verification simply
includes these components into the test bench. The desire to do this is
to try to reduce the debug time for the system level of verification (see
Chapter 8).

Another aspect of vertical re-use is the use of assertions (either inter-
nal or external). Internal assertions carry up the hierarchy automatically
because the designers embedded them in the HDL. The verification team
treats external assertions the same way as monitors and checkers. They
are contained as part of the package of code that the unit verification
team delivers to the next level of verification.

10.1.4 Applying Re-Use to Calc2
Calc2 is used, as described in Chapters 7 and 8, as an example of apply-
ing the re-use guidelines to a verification environment. In this example,
Calc2 is a unit within a chip. Figure 10.8 shows the next level of hierar-
chy that uses the Calc2 unit.

Calc2, along with three other units, forms a processing engine. This
basic flow of the processing engine is that attached to the memory con-
troller unit is some memory. The dispatcher units fetch the “next” trans-
action by issuing a series of reads from different addresses from the
memory controller unit. The memory controller unit responds by

10.1 Re-Use Strategies 405

providing the data for each read. Once the dispatcher units acquire all
the necessary data, they initiate transactions to the Calc2 unit, and upon
these transactions being finished, the memory controller unit updates its
memory.

The verification team performing this level of verification wishes to re-
use the checkers from the unit level of Calc2 within their verification
environment. They choose to do this because of debug time. They believe
that by re-using the checkers, they reduce their coding and debugging
time considerably.

To do this, the original verification environment first described in
Chapter 8 needs to change because of the challenges of vertical re-use.
Figure 10.9 shows the original Calc2 verification environment.

The original verification environment for Calc2 using a transac-
tion-based test bench had the following verification components: one
stimulus generation component and four port protocol components, a
scoreboard, a checker, and four output port monitors.

The original Calc2 verification environment does not support re-use.
The stimulus component is dependent on other verification compo-
nents—the output port monitors. Remember that the output port moni-
tors sent the completed command’s tag back to the stimulus component
so that the stimulus component could recycle the tag. In addition, the
scoreboard component depended on the scoreboard. It received its trans-
actions directly from the stimulus components; thus, in our new envi-
ronment when the real logic (the dispatcher units) drives transactions,
the scoreboard will not receive any. Another re-use rule violation is that
the unit team hard-coded the port monitors to observe the signals at the

406 Chapter 10 ■ Re-Use Strategies and System Simulation

Calc2
unit

Dispatcher1
unit

Dispatcher2
unit

Memory
controller

unit

■ FIGURE 10.8

Calc2 processing engine. The potential usage is shown of the Calc2 design at a higher level where the
designers architected it to have two dispatch units. Each can dispatch two items at a time. The memory
controller unit interfaces with the dispatch and Calc2 unit.

unit level. This violates re-use, because at the next level of verification
the signal names are different.

The unit team must revamp the Calc2 unit environment to support re-
use. From a verification architectural level, these changes create an envi-
ronment as shown in Figure 10.10. This figure shows the new re-use
friendly Calc2 unit environment.

To fix the independent stimulus component violation of re-use, the
team adds two new verification components per port: an input port
monitor (Port iMonitor) and an output port monitor for the stimulus
component (Port Stim Monitor). The reason for the input port monitor
is to disconnect the direct communication between the scoreboard and
the stimulus component. Now, the input port monitors observe the input
buses directly and then interact with the scoreboard. At the next higher
level, when the stimulus component does not exist, the input port mon-
itors still capture the inputs to the Calc2 portion of the DUV and pass
those transactions to the scoreboard. The new output port monitors for
the stimulus components removes the stimulus and output port monitor
dependency. At the new level of verification where the stimulus compo-
nents do not exist, the output port monitor is not able to communicate
with the removed stimulus component.

The hard-coded paths to the inputs and outputs of the DUV need to
be removed as well. This is accomplished using a dynamic mapping
mechanism whereby an input file supplies the monitor with a virtual (the
name that the component uses) to real (the signal name within the test
bench) signal mapping. Then, the next level of verification only needs to

10.1 Re-Use Strategies 407

Test
case

parser

Test case(s)
(stimulus

constraints)

4 port
stimulus

generation

Port 1 protocol

Port 2 protocol

Port 3 protocol

Port 4 protocol

Simulation engine
running calc2

Port 1 monitor

Port 2 monitor

Port 3 monitor

Port 4 monitor

Scoreboard Checker

■ FIGURE 10.9

The original Calc2 verification environment (transaction based) from Chapter 8 where the stimulus,
scoreboard, and checking components are all dependent on one another.

specify a new mapping within a file that would be specific to the com-
ponents and the hierarchical level. This same change is made to the input
port monitors and the stimulus protocol components (the reason for the
latter will be seen momentarily).

One additional change splits the port stimulus generation component
into four separate components—one for each port. Now each port con-
tains a stimulus model (which has a generation and protocol compo-
nent), input port monitor (Port iMonitor), output port stimulus monitor
(Port Stim Monitor), and output port monitor (Port oMonitor). The I/O
port monitors communicate with the scoreboard and checker and does
not interact with the stimulus components. Now the stimulus compo-
nents are not specific to any port.

Because of the changes (including the change to the stimulus proto-
col component for dynamic signal mapping), the verification engineers
for the unit can concentrate on one set of components and instantiate
them as many times as required—in this case, four. If in the future the
design were to change to support more ports, the environment scales
quickly. The verification team concentrates on making changes to func-
tional portions of the environment–scoreboard and checker—and then
simply changes the number of port component instantiations within the
test bench. The stimulus components themselves do not need changes.

408 Chapter 10 ■ Re-Use Strategies and System Simulation

Port stim monitor
Port stim monitor

Port stim monitor

Test
case

parser

Test case(s)
(includes

stimulus and
checking)

Simulation
engine
running
calc2

Port oMonitor

Port oMonitor

Port oMonitor

Port oMonitor

Scoreboard Checker

Port iMonitor
Port iMonitor

Port iMonitor
Port iMonitor

Port stim monitor

Port generation port protocol

Port generation port protocol

Port generation port protocol

Port generation port protocol

■ FIGURE 10.10

Calc2 re-use friendly verification environment.

The next level of verification now exploits the appropriate verification
components as shown in Figure 10.11.

The next level of verification utilizes the port I/O monitors in con-
junction with the scoreboard and checker. The monitors and checkers
flag any failure within this area immediately and reduce the overall
debug time. This method is similar to assertions—the verification team
has implanted the checks within the larger DUV. Now, as with assertions,
the test bench has internal checking components that guard against
inputs and guarantee the outputs. In addition to the Calc2 unit, the next
level test bench also has other components it is re-using. In this case, the
memory controller unit’s verification components are also being re-used
for the same purpose as the Calc2 unit. With these components being re-
used, the only component this team must provide is the memory respon-
der verification component. By utilizing these internal monitors and
checkers, this verification team leverages existing verification compo-
nents that allow them to reduce overall verification time because the
debug time is reduced. This can further be expanded upon to include the
monitors and checkers from the dispatcher units.

10.1 Re-Use Strategies 409

Calc2
unit

Scoreboard Checker

Port4 iMonitor
Port3 iMonitor

Port2 iMonitor
Port1 iMonitor

Dispatcher1
unit

Dispatcher2
unit

ScoreboardChecker

Port4 oMonitor
Port3 oMonitor

Port2 oMonitor
Port1 oMonitor

Memory
controller unit

MCNTL iMon
Memory

responderMCNTL oMon

■ FIGURE 10.11

Calc2 processing engine and verification environment with re-use of unit level monitors and checkers.

10.1.5 Assertion Re-Use
Assertions express properties of the logic that hold true regardless of
where the logic is used. Therefore, regardless of where the designers
instantiate the logic (in a unit environment or in a system environment),
the assertion is always valid. This is a form of vertical re-use. If multiple
units have assertions and these units merge at the chip level, then all
the assertions, from all units, must still hold true. Figure 10.12 illustrates
the cascading of assertions and how the assertions protect against any
assumptions on the inputs and guarantee the outputs of their particular
unit. When the designers cascade the units together with these assertions
at the next higher level (re-using the assertions vertically), then the ver-
ification team benefits from the assertion safeguards that assist in debug-
ging when a test fails.

Figure 10.12 shows that both unit A and B contain assertions inside
the logic. If, during a test, an assertion fails within B (but not within A),
the verification team quickly pinpoints the unit with the failure. Unit A’s
assertions guarantee that the stimulus component is behaving properly.
Therefore, because unit B’s assertions flagged the problem, the issue
resides between the assertions in unit A and the assertion in unit B that
indicated the problem. This isolates the problem area very quickly.

Let us make a slight change and say that unit A has assertions (acting
as protocol monitors) on its outputs (versus internally) and unit B has
assertions on its inputs. Again, during a test an assertion fails within unit
B, whereas unit A reports no errors. This indicates conflicting informa-
tion between the two units. Unit A’s assertions should guarantee that unit

410 Chapter 10 ■ Re-Use Strategies and System Simulation

Chip

Unit A
Assume

Assume

Assume

Assume

Assert

Assert

Assert

Assert

Guarantee

Guarantee

Guarantee

Unit B
Assume

Assume

Assume

Assume

Assert

Assert

Assert

Assert

Guarantee

Guarantee

Guarantee

■ FIGURE 10.12

Cascading of assertions shows how assertions hold true throughout the hierarchy.

B only receives valid stimulus. Unit B’s assertions are guarding against
any violation of its assumptions. Because an assertion within unit B
failed, this indicates an inconsistency of interface protocol assumptions
between the two units. Without the re-use principal, finding this dis-
crepancy tends to consume a lot of time. Instead, this method reduces
the debug time dramatically.

The problem is that the two units of this interface are not following
the same set of protocol assumptions. While the engineering team fixes
the logic and the assertions, the verification team needs to review and
update the unit verification environments to correspond to the design
change. At least one component, if not both, must correct the problem,
because there was a verification team failure in allowing conflicting inter-
face protocols to exist in side-by-side units. Furthermore, the whole test
bench needs to be regressed (including coverage analysis) with the
updates. To catch this problem earlier, the verification team can perform
horizontal re-use with unit A’s output monitors. Unit B’s verification test
bench would re-use some of unit A’s verification components.

The theory of assertion properties holding true wherever they are used
also applies to formal methods (refer to Chapter 11 for more details on
formal verification). The verification team creates these properties using
a language supported by the formal verification tool such as property
specification language. Now the verification team gets the benefit of these
assertions, whether they use a formal method tool or a functional simu-
lation based environment. Figure 10.13 shows the dual usage.

Formal methods verify the unit on the left side of Figure 10.13. The
verification team may then include the assertions in the simulation-
based environment on the right side of Figure 10.13. Because both types
of technology require different environment assumption formats, a
problem might exist if the separate assumptions are not equivalent. The
re-use of the same assertions ties the two environments together and

10.2 System Simulation 411

Assertions

Design
(HDL)

Simulation engineFormal model checking

FV
environment

Pass/fail Pass/fail
Simulation

environment

Unit Unit

Chip

System

■ FIGURE 10.13

Assertion re-use from formal verification to functional simulation-based verification.

allows the validation of these assumptions. This is in addition to the
debug advantages of vertical re-use with assertions.

10.2 SYSTEM SIMULATION

As verification moves up the hierarchy, the test bench must evolve to
ensure that all the units work together correctly. Units, verified separately,
must now work as a system. The system level validates any assumptions
made within the lower level environments, both in the design and in the
verification components. The purpose of system simulation is to ensure
that the separate units work together to perform the intended applica-
tions. System-level test benches must exercise broad functionality
because they bring together all the design units for the first time.

In this section the question of how the system verification team builds
its test benches is dealt with. Just as in a unit environment, a test bench
exists to portray the universe for this system. At the system level, there
are different mechanisms for creating this test bench. The system verifi-
cation team can utilize existing verification components from the unit
verification environments or create its own verification components.
In many cases, multiple test benches exist (which is similar to a unit
environment); however, the system level may be too large to re-use them.
This leads to a common system-level challenge in obtaining the perfor-
mance required on the test benches. In many cases, a day or more to run
a single test is typical. As a result, system-level verification often requires
higher speed simulation engines to process the volumes of cycles on large
DUVs.

Once the system-level verification team creates the test benches, the
team uses them to ensure that all connectivity is correct and that all the
units and chips interact properly to obtain the intended functionality.
This requires that the system verification team run tests that target inter-
action of units and not the functions that are completely self-contained
within a chip or unit. This section looks at how the system simulation
team has to deal with the same issues as the unit levels, and in addition,
they must deal with the multitude of test benches, modes to be run (con-
figurations), overall simulation performance, and potentially integrating
a multitude of verification IP.

Re-using design IP, whether it is to create an SoC or just to assist in
reducing overall development time, contains its own set of complications
at the system level. These complexities are also addressed.

10.2.1 Systems Test Bench
As mentioned earlier, a test bench models the universe for the DUV. At
the system level, the test bench drives the application level. This is where
the total function of the system comes together in a final environment.

412 Chapter 10 ■ Re-Use Strategies and System Simulation

System-level test benches must exercise the end-to-end functionality of
the system.

The verification team usually requires numerous test benches for a
single system-level model. Some test benches verify different system-level
modes of operations such as specific configurations. Others may use
stimulus components from lower levels of the verification hierarchy to
ensure that basic chip-to-chip or unit-to-unit assumptions hold. The
system-level verification team may need to create their own test benches
that exercise application-level functionality, such as I/O requests travel-
ing through the system to the microprocessor and then back to the
requesting I/O.

Regardless of how many test benches exist, each test bench requires
the same types of verification components as a unit environment—
stimulus components, scoreboard components, and checking com-
ponents. However, the system faces the decision of how to acquire these
components. In many cases, the system verification team can re-use what
the units have already created. In an ideal situation, the system verifica-
tion team should only need to create stimulus components for applica-
tion-level functions. For these test benches, the verification team may use
the application itself for stimulus creation or write their own stimulus
component that mimics system-level function. In either case, they re-use
the checking components from the lower levels.

However, system simulation requires a different tact than lower levels.
At lower levels, especially at unit levels, the verification team attempts to
hit all cases across the DUV. At the system level, the state space is too
big. Instead, the verification team must count on the lower levels for
hitting the detailed scenarios while they focus on a higher level of
abstraction–the system functionality. The focus must be on commands
and stimulus making it through the system end-to-end and for applica-
tions to run to completion. Because of the scope of the system-level tests
being different from the units, the unit verification components may not
have the required function. This is especially true for stimulus compo-
nents. If a verification engineer did not write a stimulus component with
system-level functionality in mind, then it cannot be re-used. System sim-
ulation targets very specific function within the DUV—interaction and
connectivity of the units. Devising tests to focus on these application-
level areas typically requires very specific sequences of transactions to
occur or for sequences of transactions between different stimulus com-
ponents to be coordinated. For example, a systems test to ensure that a
certain type of PCI transaction is aborted properly when an external
interrupt becomes active during that transaction requires coordination
from the PCI stimulus components and from the external interrupt stim-
ulus component. If these two stimulus components do not support the
control necessary to cause this event, then the verification team must
make a decision: Do they write their own model or have the unit team
add this functionality to the component? Depending on the specific

10.2 System Simulation 413

needs, either option may be viable. This must be decided on a case-by-
case basis.

Re-using monitors and checkers at the system level is easy if the unit
verification teams follow the re-use guidelines. Vertical re-use is as simple
as including the verification components in the test bench. One thing to
keep in mind is that for every verification component added, system sim-
ulation performance is going to decrease.

One way to help alleviate performance issues is to use only the bare
minimum set of verification components. The trade-off is that when a
test fails, it may take longer to debug because observability within the
DUV decreases. A solution is to create a layered environment. A layered
environment has the ability to enable or disable portions of verification
components as needed. This way, initial tests are run with the bare
minimum components, maximizing performance and throughput. When
a test fails, the team enables other components (or portions of existing
components) to give better debug information.

In some cases, the verification team may not have a defined system
environment. If a team creates an application specific integrated circuit
(ASIC) to sell to various customers, then the customer, not the ASIC
team, defines the system “universe.” However, the ASIC verification team
must create a superset of the possible system configurations based on
the ASIC’s intended usage. This information comes from the architects
and product teams.

However, for most, the specific usage has already been defined for the
particular product and they set off to re-use lower level components and
create end-to-end stimulus. Here, the verification team goes beyond the
chips and includes inter-chip packaging such as cards and boards. The
verification team and package design teams coordinate efforts to use a
common set of schematics to build the systems test bench. In these sce-
narios, interconnect of the product is verified before getting silicon back
in the lab.

10.2.2 Connectivity and Interaction of Units
In most ASIC flows, the top level of the chip looks like a black box
schematic containing multiple instantiations of lower level units. The
designers place any logic required to “glue” the units together into its
own separate unit and instantiate it parallel to the others. Therefore, the
top chip level just connects all the units to each other and to the chip I/O
pins. At this level, it is critical to verify this interconnection.

Verifying connectivity goes one-step further at the system level if mul-
tiple chips come together to form the system. Here, the verification team
performs system simulation of the target environment to validate the
connectivity between all the chips in the system. This assists the product
team with validating their schematics.

To validate this interconnection, the system verification team creates
test cases that provide a broad range of system-level interaction trying

414 Chapter 10 ■ Re-Use Strategies and System Simulation

to exercise all interconnections. Skill and knowledge is required to create
those tests because the system verification team must understand lower
level functionality, the internal interfaces between units, and the inter-
action between the units. Once understood, then the team constructs the
system-level tests to target the connectivity.

As with the lower levels of verification, coverage remains a key topic.
Knowing what the DUV actually did in system level compared with the
intent of the test benches is as important as ever. For connectivity at the
system level, toggle coverage can be used to assist in deciding whether
the test cases have exercised all the connections within system. Toggle
coverage measures what signals have switched—from a logic zero to
logic one and from logic one to logic zero. Thus, if any facilities have not
toggled, then some interconnections have not been exercised. This type
of coverage is typically a “freebie” that requires no additional work from
the verification team. Most commercial simulation engines have an
option to enable toggle coverage. All the verification team must do is to
enable the option, run the test cases, and then analyze the results.

The tests that focus on connectivity also cause interaction between the
units. This brings us to the next purpose of system simulation: verifying
functions that span units. These functions are prime candidates for
system-level verification. At lower levels of the hierarchy, the verification
teams created each environment with stimulus components intended to
behave as the real portions of the design. Because the verification com-
ponents are behavioral models and not the real logic, they may not act
as the real logic does (and probably does not intentionally). Therefore,
when the design sub-components interact with one another at system
level, the verification team may find bugs.

Any functions that spans multiple portions of the DUV are items that
the system-level verification team should target. Below are some typical
functions that are prime candidates for system-level verification. These
may not be the only functions, but these are very common among any
system:

■ Interrupts

■ Power-on-reset (POR) and configuration

■ Changing of chip modes on-the-fly

■ End-to-end data and command flow

■ Code loads to exercise system or processor functions

Internal or external interrupts drive interaction between many units.
Interrupts cause an exception in the machine or they request the system
to stop and handle special work. This requires a change in what all the
units are doing. This disruption from mainline function to exception or
handling routines necessitates many units to save their current state and
then change their operation. Once the system handles the interrupt, the

10.2 System Simulation 415

units restore the state of the machine and continue running as they did
before the interrupt. For example, when a split write transaction is on a
PCI bus and the chip receives an interrupt from somewhere in the system
(either internally or externally), the chip must terminate the transaction.
This requires the PCI unit to respond appropriately onto the PCI bus to
abort the transaction. The memory controller must finish its current
memory cycle and flush its buffers, and some control flow is required to
reallocate that memory into a free pool so that it can be used by some
other resource.

POR and configuration cycles are interesting because this is what
brings the system “on-line”. These tests require that all units in the
system are connected properly and that they are initialized to the correct
state. The very nature of initializing all of the units requires interaction.
Chapter 9 covered specific POR verification methods.

Changing modes on-the-fly may require portions of the system to be
quiescent. Typically, when a unit changes modes, it has a requirement
that all interactions with it cease until it completes the change of mode.
This requires interaction of the units. First, the unit changing its mode
indicates a quiescent request to all units interfacing with it. These units
then indicate they have suspended interactions to the requesting unit.
The unit then changes mode and indicates to all other units they may
resume operations. This entails a lot of interaction. Derivatives to this
interaction exist where a system controller oversees and directs the
change in modes.

End-to-end data and command flow, by nature, focus on interaction.
Because the focus is on the application, many design components get
involved. An example of this is in networking chips. FIFOs (queues) exist
to perform buffering. In many cases, these buffers fill up. When they fill
up, the desired action applies a pacing scheme to allow the buffers to
empty. In this situation, the logic writing to the buffer must stop. If this
does not occur, data packets may be corrupted or lost if the buffer over-
flows. Therefore, the system team may have specific tests that target
filling up the FIFO. This also validates the normal buffering functional-
ity within the system because this normal mode must take place before
the buffer can be filled.

Within a processor system (either it is embedded, general purpose, or
network), some level of microcode runs to perform functionality. Loading
this code and running it requires many units to interact. The loading of
the code requires interaction of the microprocessor with memory. As the
code runs, its instructions fetch and move data to and from various parts
of the system.

As with lower level environments, the verification team runs the
tests while applying constraints to the stimulus components. These con-
straints indicate how these components should stimulate the DUV (in
this case the system). Meanwhile, the test bench re-uses the lower level
monitor and checking components to validate the operations. From this

416 Chapter 10 ■ Re-Use Strategies and System Simulation

standpoint, the system-level simulation environment is just like the lower
level environments.

Now that the team has identified, written, and run the test benches,
how do they know that the test bench exercised the intended function?
As with the lower levels, functional coverage can help identify what the
verification environment has not exercised and directs the team to put
more effort into untested areas. As the test cases run, verification com-
ponents watch for the test to exercise pre-determined coverage points.
When exercised, the verification components (typically monitors) collect
and log the coverage event. What makes system-level coverage more dif-
ficult is the fact that re-use is limited for functional coverage. Typically,
the units only contain coverage events that are for within that unit. They
do not contain coverage events that span units, a far more interesting
subject for system simulation because the system verification team’s
focus is on the interaction. The system team must either re-use lower
level coverage events and make cross products with other units or write
specific verification components (monitors) to capture these higher-level
coverage points.

Tests that focus on interaction also exercise connectivity. The two go
hand-in-hand. However, coverage for connectivity and interaction is dif-
ferent. Code coverage tools can gather coverage for connectivity, whereas
functional coverage is required for interaction.

After creating the tests, a suite of test benches and test cases exist.
The system team now must intelligently cross these two items for
performance issues at the system level. A single test case may take
hours or even days to run. If the verification team simply ran every
test against every applicable configuration, it would require an over-
whelming amount of computing power and memory. Special pur-
pose simulation machines, discussed in Section 10.3, address this
requirement. However, a small set of these machines typically exists, and
they are in high demand across the different verification teams. The
system team can apply some strategy to reduce the overall requirements
for these machines.

One strategy is to align the tests and configurations, only running tests
against the applicable configurations. For example, a PCI and interrupt
test case was mentioned where the test ensured that a PCI transaction
was aborted properly because of an interrupt. Also mentioned was that
the chip’s memory controller unit supports three different memory con-
figurations. This test is not required to run in all three configurations.
The purpose of this test is to ensure the interaction of the PCI unit with
the interrupt unit. One test bench needs to be chosen to run this test in,
not all three.

Another strategy is to use a random technique where the test randomly
chooses which configuration to run against. Over time, as the test runs
multiple times, it exercises all the configurations. The verification team
can also apply this method to the above PCI/interrupt example. The

10.2 System Simulation 417

memory configuration could be randomized, so that over time all three
of the memory configurations are exercised.

One additional strategy is to create new test benches that have certain
functions “stubbed” out. If a test targets only certain units to interact,
then any units that are not participating can be removed. This creates a
smaller memory footprint for the system simulation environment and
decreases overall run time of the tests. An example of this is within a
multiprocessor system. A test could focus on a single processor doing
memory reads and writes. Because this test only focuses on one of the
many processors, the verification team can remove the other processors
from the model. This removal not only saves on memory footprint, but
also improves simulation speed because the model is smaller.

However, doing this adds to the total number of test benches that must
be maintained by the system verification team. The team must know
when to use each test bench. If the wrong test bench is used, the simu-
lation may indicate a false failure. This wastes both compute resource
and time of the verification engineer to debug the test.

10.2.3 Verification Challenges in a Re-Usable IP World
Another system-level aspect of verification evolves from including IP
from other groups or vendors into the system simulation environment.
Including this IP creates challenges for the system verification team. The
verification team must solve issues surrounding the re-use of this IP.
These issues are re-using verification components of these IP blocks and
debug of logic that includes this IP.

These issues abound in SoC designs as well. As already mentioned, a
SoC contains an embedded processor, memory, and any functions that
make the ASIC unique. In a SoC, the architect chooses some of the com-
ponents of the system from a library of pre-existing design blocks and
then adds their own units to differentiate their product in the market.
What sets a SoC apart from a normal system is that the components
within a SoC have rigid interfaces that cannot be changed (unlike a
normal chip where the designers may collaborate and change the inter-
face protocols as they see fit). The other item that sets SoCs apart is the
fact that the impact to finding a bug after fabrication is costly. In systems
that have multiple chips mounted on a board, there exists room to imple-
ment patch logic to get around bugs discovered after fabrication. This is
not the case with a SoC. If any bugs are found after fabrication, then a
re-spin of the complete chip is required.

Re-Use of Verification Components

In many situations, re-usable IP designs do not come with verification
components. These re-usable IP blocks do have verification environ-
ments, but often the providers do not include the verification compo-

418 Chapter 10 ■ Re-Use Strategies and System Simulation

nents to their customers. Shipping verification components with IP
blocks require the IP provider to support the mainstream verification
environments, including the simulation engines and HVLs from all major
vendors. For the IP blocks that do include verification components, many
issues may surround re-using these components. Merging multiple
source environments from different vendors can be a trying task, espe-
cially if the source environments use different engines or HVLs. One IP
block may have used Synopsys’ Vera language to implement the verifi-
cation components, whereas another used SystemC, another used
Verisity’s e, and yet another used Verilog. The environment requires work
to utilize the verification components within one environment (if it
can be done at all). Additionally, there may be additional costs due to
licensing of the tools.

Depending on the situation, the verification team may choose to
explore the use of a third-party source that would provide a cohesive set
of verification components to ensure compatibility. Again, there may be
costs associated with this. This is along the lines of the system team
writing their verification components for system.

The last aspect of re-use with IP occurs when the design team adds
logic to differentiate their system from a competitor’s product (especially
in a SoC). Ideally, the verification team creates a unit environment to
verify the new function. However, the unit verification team must inter-
pret various data books regarding how the different interfaces work. As
already discussed, this interpretation can lead to incorrect assumptions.
Based on this, re-use becomes important—ideally, the unit team should
be able to re-use verification components from other units to verify inter-
face protocols. Again, tool compatibility issues can further complicate
environment creation. If any verification components exist, they may not
work in the end-user environment, and this new unit’s verification team
will be required to create new verification components.

In all cases, the verification team must work with the design architects
in evaluating what IP units are available. The design team must take into
account verification requirements when making decisions on which
external IP to purchase.

Debug

Debug is typically harder and more time consuming in an environment
where the IP logic may not be visible, verification components may not
exist, and access to the IP teams may not be an option. Because of these
issues, it may take longer to debug failures.

In many cases, the chip design teams may not have access to the
HDL; the logic is in gate-level form or the unit uses some encryption
technology so the internals are not available to debug at all. In this
situation, the IP is a black box—with reduced visibility that increases
debug time.

10.2 System Simulation 419

If the IP providers do not follow re-use guidelines, a limited number
of verification components may exist at the next level of verification hier-
archy. This reduces the ability to observe the design and flag problems
as they occur. Furthermore, in cases where a gate-level model exists for
IP, the process of creating the IP removes any verification components.
Gate-level IP went through synthesis, which eliminates any internal
assertions.

In a traditional system verification environment, the design and veri-
fication teams are available to consult with the unit teams when issues
arise. The unit teams develop most units specifically for this particular
system; thus, they are on the same program. In this case, when the team
encounters issues, a simple path exists to gain assistance from the indi-
viduals that authored this unit (either the verification team and/or the
design team). When re-using design IP, this is not the case. Often, the
original team is not available because they have moved onto a completely
different project. In this situation, no simple path exists to the original
team. The system verification team must debug the environment with
little or no assistance from the original team. This can be a very lengthy
and tedious process. Furthermore, this may uncover a situation that the
original owners never documented in the re-usable IP specification.
When this occurs, it may mean a change in the architecture to get around
this problem. This highlights the requirement of performing system sim-
ulation with re-usable IP.

10.3 BEYOND GENERAL-PURPOSE LOGIC SIMULATION

System simulation moves the focus of verification for the hardware com-
ponents toward their real application space. This results in unique chal-
lenges driven by the need for radically higher simulation speed, the desire
to verify the components in their real target system, the increasing role
of software in the system implementation, and the import of design com-
ponents (IP) that require their own simulation environments. Table 10.1
lists the approaches to the challenges of system simulation. The need for
simulation compute power increases rapidly as verification proceeds
from chip to system level. One strategy to counter the growing need for
performance is to use specialized hardware for logic simulation. Such
simulation accelerators have a long successful history in verification.

Logic emulation became feasible in the early 1990s as programmable
hardware structures became available. The idea of loading a register
transfer level (RTL) model of a chip into a piece of programmable hard-
ware that is directly connected, or literally plugged-in, to the target
system has a powerful attraction to any verification project.

In addition, at the system level of the implementation hierarchy, soft-
ware is likely to be part of the system implementation. Hardware/soft-

420 Chapter 10 ■ Re-Use Strategies and System Simulation

ware co-verification is the task to simulate at least those layers of the soft-
ware on the RTL model that interact closely with the hardware. Logic
acceleration and emulation engines provide enough RTL simulation per-
formance to allow software debug in real time. Alternate techniques like
cycle-accurate, abstract models are viable alternatives for the higher
levels of the software stack.

Co-simulation is used wherever the need exists to import a system
component that has its own unique requirements for its simulation envi-
ronment that a single logic simulation engine cannot support. Although
such a runtime coupling of several simulators always has simulator-spe-
cific challenges, which go beyond the scope of this section, there are
general principles that are common to all such IP-import scenarios.

10.3.1 Acceleration
Hardware acceleration has been tried in many compute-intense areas,
among them database engines, Lisp engines for artificial intelligence
applications, and logic simulation. In most areas, general-purpose com-
puters have eventually proven to be the superior solution. Their advan-
tage is based on the breakneck pace of the 2x/18 months performance
improvements of processor speed and the cost-performance leverage of
chips that are manufactured by the millions versus a few thousand
expensive special-purpose chips.

Hardware-accelerated logic simulation is an exception to this obser-
vation. The need for radically increased simulation performance, espe-
cially for system simulation, has motivated hardware design engineers
since the 1980s to develop accelerators and has yielded many successful
solutions [55, 56].

Two different implementation approaches can be differentiated for
simulation accelerators (Figure 10.14). The first approach uses an indi-
rect implementation: The base premise here is that a simulation engine
is implemented in hardware. The second approach utilizes programma-
ble hardware elements to achieve a direct implementation, a direct
mapping of the RTL specification into hardware structures.

10.3 Beyond General-Purpose Logic Simulation 421

TABLE 10.1 ■ Approaches to the challenges of system simulation

Approach Purpose

Simulation accelerator Address need for more simulation compute power
Logic emulation Address need for more simulation compute power

Debug chip or system in target environment
Hardware/software Address need for more simulation compute power to be

coverification able to debug software
Co-simulation Address problems with system component having unique

requirements on a simulation technology

Indirect Implementation–Hardware Simulator

Both basic simulation algorithms, cycle-based and event-based, have suc-
cessfully built the basis for hardware accelerators. As an example, the
conceptually simpler cycle-based approach is briefly discussed.

The grandfather of all cycle-based accelerators is the EVE machine,
which consists of a vast network of primitive logic processors (LP) [55].
Every LP is a simple processor whose instruction set consists of a
Boolean function and the input values for a four-input logic gate (Figure
10.15a). LPs continuously loop through a sequence of such instructions.
Every pass through a complete sequence constitutes a simulation cycle.
Figure 10.15c shows several LPs interconnected to a cluster where dif-
ferent LPs can cross-communicate gate input values between each other
through a multiplexor (MUX) interconnect structure.

The more LPs are available, the more Boolean functions the acceler-
ator can evaluate in parallel. On counterbalance, the communication
between LPs takes extra time. The art of mapping a DUV to such an accel-
erator, model build, is to find the right trade-off between more paral-
lelization, which yields faster simulation, and sequential execution to
avoid cross-LP communication. Overall, the base performance of an
accelerated model is determined by the longest chain of sequential gate
instructions on any of the LPs.

Figure 10.16 uses the example of the adder DUV from Chapter 5 to
illustrate the scheduling problem that is at the core of the model build
process for many hardware accelerators and emulators. Figure 10.16a
shows a schematic view of the DUV and gives every block a numbered
label. In Figure 10.16b, the gates are scheduled, attempting to keep as

422 Chapter 10 ■ Re-Use Strategies and System Simulation

Hardware accelerators

Programmable
logic

Hardware
simulation engine

Direct implementationIndirect implementation

Cycle-based Event-based PLAs PLDs FPGAs

■ FIGURE 10.14

Classification of different hardware acceleration approaches. The direct implementation maps the RTL
model directly into logic structures in hardware. The indirect implementation creates a hardware version
of a logic simulator. Programmable logic arrays (PLAs), programmable logic devices (PLDs), and field
programmable gate arrays (FPGAs) are different types of programmable logic structures discussed in
the text.

many of the four LPs busy as possible. This is somewhat successful
because overall we need six LP time steps for one simulation cycle of the
12 gate DUV.

Of course, a hardware accelerator needs to support more functional-
ity than Boolean function blocks. Hardware elements for RAM arrays
and register/latches are also needed, and their access needs to be sched-
uled into the flow of logic evaluations. It should be obvious that the soft-
ware that synthesizes HDLs into the accelerator primitives and schedules
the execution of the evaluation over time is as critical a part for an accel-
erator as the hardware engine itself.

The two main parameters that define the base speed of a cycle-based
hardware accelerator are the number of LPs, the instruction depth of
a single LP, and the LP instruction cycle time. If the model of a DUV
does not fill all instruction slots of all LPs, which would mark 100%

10.3 Beyond General-Purpose Logic Simulation 423

AND/OR AND/OR a b c d

a
b
c
d

Bool func i1 i2 i3 i4
Bool func i1 i2 i3 i4

Bool func i1 i2 i3 i4

Gate evaluation instruction

(a) Logic Gate Primitive

LP

LP

MUX

. . .

(b) Logic Processor Element

LP

MUX

LP

MUX

LP

MUX

(c) Logic Processor Cluster

■ FIGURE 10.15

Building blocks for a cycle-based hardware accelerator. (a) An example of how a four-input logic gate
corresponds to a single instruction for a logic processor (LP). (b) An example of how an LP executes a
sequence of gate instructions. (c) Four LPs are put together to a cluster of LPs that are able to exchange
gate input values among each other via a multiplexor (MUX) interconnect structure.

utilization of the hardware, the model build software can trade-off par-
allelism with scheduling depth to achieve the highest performance.

The model evaluation speed, which can be calculated by the longest
LP instruction sequence, is called the raw accelerator performance. The
actual accelerator performance is lower in practice and depends highly on
the structure of the total accelerator-test bench interaction. Different
approaches of this interaction are shown for the control flow of the setup
in Figure 10.17a and 10.17b, whereas different alternatives for the data
flow are illustrated in Figure 10.17c and 10.17d.

The overall objective of an optimized test bench/accelerator setup is
to maximize the time spent in the DUV versus in the test bench. All time
spent in the comparatively slow test bench while the accelerator sits idle
wastes a valuable resource. A cycle-by-cycle setup, like in Figure 10.17a,
might be tolerable for a software simulator. If a hardware accelerator is
driven this way, however, the overall simulation speed does not increase

424 Chapter 10 ■ Re-Use Strategies and System Simulation

and and
or

and

and

a

1 2

11 6

3 4

8

9

5

10

12

7

2

1

3
5

4

6

7

8

9

10

11

12

xor

xor
xor

or

=>

=>

=>

b

(a) Adder Example Design

(b) Adder Design scheduled across 4 LPs

LP1 LP2 LP3 LP4

Time
steps

■ FIGURE 10.16

Adder example design mapped to primitive logic gates (a) and scheduled for partially parallelized exe-
cution on an accelerator that consists of four LPs (b). The arrows in b symbolize cross-LP communi-
cation. It is assumed that the time necessary to transport a signal value from one LP to another is the
same as the time an LP needs to evaluate one gate instruction (which is overly optimistic).

10.3 Beyond General-Purpose Logic Simulation 425

Model
load

Apply
stimuli

Run
accelerator cyle

Check results

Done

Testbench
software

Pin-level
I/F

Host
workstation

DUV
model

Hardware
accelerator

Model
load

Apply
stimuli

Run
accelerator cyle

Check results

Done

Multiple
tests

Testbench
software

Transaction
I/F

Host
workstation

DUV
model

Hardware
accelerator

(a) Tightly Couple Testbench/
 Accelerator Control Flow

(c) Signal Pin-Level Testbench/
 Accelerator interface

(d) Transaction-Level Testbench/Accelerator
 Interface w/Virtual Logic

(b) Optimized Testbench/
 Accelerator Control
 FLow

■ FIGURE 10.17

Different test bench/accelerator integration scenarios. (a) This setup applies stimuli and checks before
and after every accelerator cycle and is therefore most intrusive. (b) This scenario optimizes the time
spent actually simulating the DUV. (c) The case where the test bench interacts with the DUV in the
accelerator on the level of individual signal pins is illustrated. The test bench part that maps transac-
tions to signal interactions is shown as a triangle. (d) This setup shows this code mapped to virtual
logic and loaded into the accelerator to minimize the overhead of the test bench/accelerator interface,
moving it to the transaction level.

because the stimulus/check loop dominates performance completely.
Figure 10.17b pushes the stimulus/check application outside the loop
that runs cycles on the DUV and therefore minimizes the time spent
waiting for the software on the workstation. In addition, several tests are
run in a row, thus amortizing the time spent to load the model into the
accelerator over several test cases of a bucket of test cases.

The data flow interaction scenarios of Figure 10.17c and 10.17d illus-
trate how the interaction between test bench and DUV can be abstracted
to the transaction level, thereby enabling the transfer of work (shown as
a shaded triangle) from the test bench to the DUV. This creation of so-
called virtual logic is a key principle to optimize the utilization of a hard-
ware accelerator.

Direct Implementation–Programmable Hardware

Programmable logic arrays (PLAs) were the first hardware structures
whose Boolean function was definable after chip manufacturing. Figure
10.18a shows an example of a typical PLA. The input signals (i1, i2, i3)
are fed into a programmable AND/OR structure, the AND and OR planes.
The personalization of this flexible combinational logic block occurs by
blowing fuses that connect the inputs of and or or gates, respectively.

Whereas PLAs can only implement combinational logic, complex pro-
grammable logic devices (CPLDs; Figure 10.18b) are the next step in the
evolution of more complex programmable logic because they support the
implementation of combinational logic as well as registers and arrays.
The disadvantage of more complex building blocks is the increased com-
plexity of the model build software that has to map HDL logic to these
complex structures and use the switch interconnect matrix to combine
them to build up a complete implementation of the DUV.

Field programmable gate arrays (FPGAs; Figure 10.18c and 10.18d)
take a more structured building block approach. The base element typi-
cally uses a MUX, which allows universal programmability of the com-
binational logic component, and a flip-flop, which allows the integration
of state-holding elements to implement the state of the DUV state
machine function. The FPGA chip supports a programmable intercon-
nect of many of these basic building blocks. Very soon, FPGAs will reach
a capacity of 10 million gates. Already today there are families of FPGAs
that embed a general-purpose micro-controller on the same chip to allow
even more programmability of the chip.

Accelerators that use FPGAs (or simpler forms of programmable logic)
as their base building blocks have one clear advantage over the acceler-
ators, which use indirect implementation of the DUV: FPGA implemen-
tations can be much faster than hardware simulation engines. The
two main disadvantages, however, are the higher price and the higher
complexity of model build, which raises the model build times
considerably.

426 Chapter 10 ■ Re-Use Strategies and System Simulation

If simulation speed is of prime concern, an FPGA-based accelerator is
preferred. If price and model build turn-around time are more impor-
tant, a hardware simulation engine is the better solution.

10.3.2 Emulation
The main differences between high-end accelerators and emulator
engines are the speed requirements and the support to connect the emu-
lator to real hardware, the target hardware.

Emulators can operate at a raw speed of 100kHz to 1MHz. At these
performance levels, it is realistic to model parts of a system in the emu-
lator, whereas the rest of the system, which exists as real hardware
already, connects directly to the emulation machine. Even at these
speeds, it is typical that the target hardware has to operate at a slower
frequency to match the clock rate that the emulated model is able to
achieve. This is an extra requirement for the target hardware and the
interface between the DUV model and the target hardware. I/O or bus

10.3 Beyond General-Purpose Logic Simulation 427

i1

i2

i3

AND plane

OR plane

o1=(~i1 & i3) | (i1 & ~i2)

o2=(i2 & ~i3) | (i1 & ~i2)

(a) PLA

Switch
matrix

Logic
block

Logic
block

Logic
block

Logic
block

(b) CPLD

00
01
10
11

(c) Example for basic FPGA
 logic block

(d) FPGA example structure with
 programmable Interconnect

■ FIGURE 10.18

Programmable logic as it evolved over time. (a) A simple example of a programmable logic array (PLA)
with the characteristic AND and OR planes. (b) More complex logic blocks of a CPLD (complex pro-
grammable logic device) are connected via a programmable switch matrix. (c) The basic building block
for a typical FPGA (field programmable gate array). Model build maps all DUV logic to this universal
building block. (d) The FPGA example of many such building blocks in a checkerboard pattern with a
programmable interconnect structure.

interfaces between DUV and target hardware are a typical example for a
productive setup for emulation. For example, PCI’s lowest bus frequency
is 33MHz. To perform emulation with a system utilizing PCI, the PCI
bus in the target system must be lowered to match the PCI speed in the
emulator.

Although the emulator connects to the target hardware on one side, it
also needs a workstation server interface. The server provides the capa-
bility to load the DUV model, control the execution over time, and give
the verification team a debugging interface into the DUV model on the
emulator. Even more than for the accelerator case, it is critical to keep
the server-emulator interaction to a bare minimum so that the emulator
can run uninterrupted most of the time. Otherwise, the workstation
server performance will severely limit the speed of the overall setup.

Originally, only CPLD or FPGA implementations yielded a platform
fast enough to support the speed requirements for emulation. The higher
speeds achieved did offset the higher price and higher complexity of the
model build. However, in the last few years, indirect implementations
similar to the ones discussed above improved in performance enough to
make emulation engines viable. The basic operational principle of these
engines is the same as for the cycle-based accelerator in Figure 10.15.
The difference in the design is a much higher number of LPs with a much
reduced program stack depth. This results in much higher parallel exe-
cution of the DUV logic per cycle.

Figure 10.19 puts performance and capacity of the software simula-
tion, acceleration, and emulation platforms in perspective. Typical high-
end engines were chosen for each category, because they are available in
the EDA market.

A higher range of capacity over performance is shown for the soft-
ware simulator because it is used more typically over these ranges and
the performance scaling is more interesting in that case. For a
smaller practical range, model size and performance can be traded in
the application of an accelerator. It is necessary to achieve a cer-
tain minimum performance with the emulator to support the already
slowed-down target hardware. This leaves no room to trade model size
and performance.

10.3.3 Hardware/Software Co-verification
Hardware/software co-verification is used when there is a requirement
to simulate together a DUV and (some of) the software that interacts with
the hardware under design. There is an increasing importance of hard-
ware/software co-verification in today’s verification methodologies.

The main driver has been the occurrence of more and more pro-
grammable controllers as building blocks for designs (such as embedded
processors and micro-controllers). This leaves the design engineer with
the option to implement some of the specified function of the DUV in

428 Chapter 10 ■ Re-Use Strategies and System Simulation

software and only part of it directly in hardware. Hardware/software
co-design is concerned with the optimized partitioning between the
hardware partition and the part of the design that is implemented as a
program for a micro-controller. The optimization step usually has to con-
sider performance versus cost. Of course, it is possible to repair bugs in
the software after manufacturing of the part. However, such problems
are very expensive if they prevent progress during the bring-up phase of
the chip in the lab, which makes hardware/software co-verification a
necessity.

There are two methods to support the verification of software with the
DUV hardware, a layered verification and the brute-force total system sim-
ulation approach, both of which are characterized briefly.

Layered Verification

The layered approach separates different levels of software that run on
the embedded processor. Layer 1 is the part of the code that interacts
most closely with the hardware features of the processor. It typically ini-
tializes the processor and interacts with features like interrupt control
and diagnostic registers. Layer 2 is the application layer that assumes the
processor implements the instruction set architecture correctly.

10.3 Beyond General-Purpose Logic Simulation 429

1 10

Max. simulation performance – (cycles/sec)

100 1,000 10,000 100,000 1,000,000 10,000,000

S
ys

te
m

 c
ap

ac
ity

M
 g

at
es

1000

100

10

1

Cycle sim

Accelerator

Emulator

Accelerator
Emulator
Cycle-based software sim

■ FIGURE 10.19

The performance and capacity comparison between software simulation, three different accelerator
machines, and an emulation engine shows the scalability of the different platforms.

It is most productive to simulate only layer 1 together with the RTL
model of the hardware. The amount of code is very limited, and it is
possible to cover the more limited scenarios of this layer with RTL
simulation. If necessary, acceleration or even emulation engines (for
performance reasons, not to connect target hardware) provide a per-
formance boost to run enough of the low-level code to prevent wasted
lab bring-up time.

For layer 2 of the code, the application layer, a high-level model of the
processor is used for debug. This high-level model implements the
instruction set architecture in abstract form and thus provides the code
an execution and debug platform. Such a model is usually called an
instruction set simulator (ISS). An ISS model can easily run at a speed
of 50 to 100kHz on a workstation. Besides the excellent cost/performance
of the ISS model, it also provides the software team with the advantage
of starting the debug process of the code much earlier than what the
availability of the RTL would allow. Parallel development opportunity
translates directly into faster time to market of the overall project.

Total System Simulation

The brute-force alternative to the layered approach usually requires the
investment in accelerator or emulator hardware. It is possible that there
is no significant advantage to partition the software to support the
layered verification approach. Here, all software needs to be loaded into
the DUV on the accelerator/emulator and simulate both RTL and soft-
ware together, with all the apparent disadvantages.

One reason for the need to keep all code together and simulate it with
the DUV hardware can be the high interaction of the code-driven micro-
controller with surrounding DUV. In this scenario, the software debug
aspect is not the main reason to run the software on the DUV model. It
is even possible that the software debug still occurs on an ISS model.
However, the hardware verification needs to run enough of the applica-
tion code to hit a sufficient number of scenarios where the software of the
embedded processor drives features in the surrounding hardware.

It is possible for this case to replace the RTL of the embedded proces-
sor with the ISS and resort to a co-simulation scenario. All parts of DUV
are simulated on the RTL—except the processor. The combination of
code plus ISS model is separated and acts as a special driver for the
remaining RTL model.

This alternative to hardware/software co-verification leads us naturally
to a brief overview of the challenges of co-simulation.

10.3.4 Co-simulation
Co-simulation is necessary whenever integration of two independent
simulations into one larger system-level simulation is needed. The

430 Chapter 10 ■ Re-Use Strategies and System Simulation

normal approach of model integration on the system level is the inclu-
sion of all model parts into one single simulation model.

There are several possible reasons why this might not be feasible. It
is possible that different model partitions require simulation engines
with different simulation paradigms. Examples are RTL model partitions
that need to simulate with an ISS model or an analog simulation model.

Alternatively, the system model might need to integrate a piece of
design IP, which the supplier does not deliver in source form but only as
a completely assembled simulation model. In this case, it may be neces-
sary to couple multiple simulations using the same simulator for each
model partition.

Finally, it can be necessary to cut a large system simulation model into
several partitions to minimize the memory requirement of each partition
by itself or to optimize performance of the overall simulation by dis-
tributing the partitions across multiple simulation servers.

In all these cases, co-simulation means a coordinated run of several
simulations. Figure 10.20 illustrates the two main alternatives to achieve
the coupling of two simulations.

Figure 10.20a shows a centralized coordination program that exists
independently of each individual simulation A and B. Neither simulator
is aware of the coordination. The co-simulation control program inter-
acts at the test bench level with either simulation engine. The access to
either simulation model or its signals is left to the API of either simula-
tion engine, which the test benches use anyway. The tasks of the co-
simulation control program are

10.3 Beyond General-Purpose Logic Simulation 431

Test Bench
A

Simulation
engine A

Model A

Test Bench
A

Simulation
engine A

Model A

Test Bench
B

Simulation
engine B

Model B

Test Bench
B

Simulator B

Model B

Co-sim
control

Integration
testbench

(a) (b) Simulation Engine A is
 the master process

Centralized co-simulation control

■ FIGURE 10.20

Different approaches to co-simulation. (a) This scenario treats the two simulation engines (A and B) as
independent and connects them via a central co-simulation control program. (b) This scenario uses sim-
ulation engine A as the master process and links both simulation engine B and test bench B into test
bench A, resulting in one single process overall.

■ Synchronizing the start of both simulation engines

■ Transfer of the signal values crossing model A and B

■ Maintaining the central simulation time and synchronizing the
advancement of time in either simulation

It is possible that at least one of the simulation engines involved in the
co-simulation does not require running as its own separate program
(process). For example, if the integration involves an ISS model that can
by linked-in as a library, the scenario of Figure 10.20b might by appro-
priate, where the test bench for model A just links in the simulator and
model B. For simulator A the coupled simulator is just an extension of
test bench A.

The co-simulation control program of Figure 10.20a and its tasks still
exist in the scenario in Figure 10.20b. However, this functionality is now
totally integrated into the two test bench programs.

A couple of challenges that typically exist for the synchronization
of multiple simulation engines across the signal interface that connect
the model partitions need to be highlighted. They are illustrated in
Figure 10.21.

The co-simulation control program is active after completion of each
time step of the co-simulation. At this point, it has to transfer the signal

432 Chapter 10 ■ Re-Use Strategies and System Simulation

Co-sim
interface

Model A Model B

latch a

latch b

Co-sim
interface

Model A Model B

(a) Co-simulation across
 combinational logic boundaries

(b) Co-simulation across a multi-source
 bus interface

c1

c2

en1

en2

c3

c4

en3

en4

b1 b2

represents combinational zero-delay logic

■ FIGURE 10.21

Recurring interface challenges for co-simulation. (a) A path through combinational logic that connects
latch a in model 1 with latch b in model 2. (b) The challenge of running co-simulation across an inter-
face that consists of a multisource bus signal. Each model (A and B) drives two bus contributors onto
their respective half of the bus signal (b1 and b2).

values of the partition-crossing signals to the simulation engine of the
adjacent partition. Ideally, the simulation can proceed with the next time
step after all values have been exchanged.

However, it is possible that the logic across an interface requires
update and value propagation within the same time step. Such an
example is shown in Figure 10.21a. Here a signal update that originates
from latch a, crosses into model B, runs through zero-delay logic, crosses
back into model A, and after more model partition crossing ends up as
an input signal to latch b. Because this signal change needs to propagate
with zero delay back and forth between model A and B, co-simulation
control needs to call the simulation engines A and B multiple times for
the same simulation time.

The exact amount of times each partition needs to be updated for the
current time depends entirely on the topology of the interface between
the partitions. The co-simulation control program needs to contain
mechanisms that continue updates that bounce between partitions until
the model is stable for the current simulation time. Obviously, the mul-
tiple re-simulations of the same partition have a negative performance
impact for the overall system simulation but are unavoidable to ensure
correct co-simulation results.

System hardware components typically connect with multiple-source
buses with each other. For co-simulation this can easily lead to interface
scenarios like the one shown in Figure 10.21b, where the co-simulation
interface cuts through a bus signal.

The challenge of this scenario is that neither simulation engine (A
or B) has access to all contributors of the bus. Model A only has
contributor c1 and c2, which connect to partial bus b1. Partial bus
b2 only has the contributor c3 and c4 from model B. Only an algorithm
that has access to each individual contribution value can maintain the
fully resolved value of bus b. It is not correct if co-simulation control
just transfers the partially resolved values b1 and b2 to either parti-
tion. A further evaluation of this example is left as an exercise to the
reader.

It is possible to create a custom co-simulation harness for every con-
crete project situation as it occurs. Typically, verification teams have a
library of co-simulation-related functions they can draw from.

Further factoring out of co-simulation control code can occur to
support concept in more generic ways. For example, it is possible to write
a co-simulation control program that works generically for a large class
of commercial simulators and deals directly with their programming
APIs. There have been attempts to place such EDA products in the
market under the name simulation backplane, which suggests a generic
plug-and-play capability for co-simulation. So far, the technical value-
add achieved over the ad-hoc solutions has not made these products eco-
nomically viable.

10.3 Beyond General-Purpose Logic Simulation 433

10.4 SUMMARY

System simulation adds a variety of challenges to the verification task.
These challenges have created the motivation for a number of unique
approaches and tools.

As with design re-use, verification re-use leverages work done by
various teams throughout the entire company, thus reducing overall
schedules. However, to capitalize on each other’s work, the teams must
follow specific re-use guidelines. The basic guidelines to assist a verifi-
cation team in writing components that obtain a high degree of re-use
were described. By following these guidelines, the verification team
reduces the set of re-use complexities, whether for vertical, horizontal,
or both paradigms.

System-level verification requires many of the same aspects of a unit
verification environment. System verification environments contain ver-
ification components that drive the test benches. These components may
be acquired in various ways. Options include re-use of the unit verifica-
tion components, acquiring the verification components from another
group, or writing specific verification components for the system level.

Numerous test benches exist for a system-level environment, and
because of performance reasons, the verification team must optimize the
tests across these numerous test benches. In addition to managing tests
across test benches, the system verification team must also take into con-
sideration the performance of the tests at the system level. The system
verification team may choose to build the test benches using a layered
approach. This layered approach does not contain all the monitors and
checkers—only the required ones. Then if a test fails, the verification
team re-runs the test with other verification components enabled to
provide better observability for debug.

Regardless of how the test bench comes together, tests verify the con-
nectivity of all the chips, units, and IP blocks as well as their interac-
tions. As with lower level simulation environments, the team must apply
coverage to the system-level environment to assist in determining what
has been exercised and what is still left to be done.

For systems that contain re-usable IP, verification tool incompatibili-
ties may create challenges in capitalizing on pre-existing verification
components. In addition, debug of these systems become harder without
the assistance of the original authors or HDL code.

Hardware acceleration engines address the exploding need for fast
simulation cycles for the larger system models. Emulators bring the
speed of the simulated DUV to a level where it can be integrated into
its target system, using real hardware for already existing system
components.

The increasing use of embedded processor cores drives the need
for better methods in hardware/software co-verification. In some cases,

434 Chapter 10 ■ Re-Use Strategies and System Simulation

this goal is achieved using our faster accelerator and emulator engines.
In other situations, hardware/software co-verification better uses co-
simulation where the embedded software runs on a higher level ISS
model, which runs coupled with an RTL simulation of the rest of the
DUV.

Co-simulation is a general scheme to run multiple simulation parti-
tions together as one system. The main challenges of co-simulation occur
in the context of synchronization and signal value transfer between the
different partitions. There is no general-purpose co-simulation frame-
work readily available for a verification project, but there is a body of
experience and recurring problems that need to be addressed up-front to
allow a faster set-up of a co-simulation scenario.

10.5 EXERCISES

1. List and discuss the different types of re-use.

2. Discuss the two types of packaging techniques that are used for re-
usable verification components and discuss the pros and cons.

3. Discuss the purpose of system-level simulation.

4. Describe the differences between a directly and an indirectly imple-
mented simulation accelerator.

5. Experiment with different scheduling schemes for Figure 10.16b. Try
to minimize the number of steps needed.

6. Evaluate why it is wrong to run co-simulation in Figure 10.21b with
a scheme that transfers the partially resolved bus values b1 and b2
between model A and B.

7. Using the verification plan and strategies for stimulus as outlined in
Chapter 7 and the strategies for checking from Chapter 8, create a
verification environment in which the verification components are
re-usable (use your choice of HVLs). You will need to download the
Calc2 HDL from the companion Web site for this book and create a
simulation model using your vendor’s engine. Describe any more
bugs and indicate the test scenarios that uncovered them.

10.5 Exercises 435

P A R T I I I

Functional
Specification

Designer
Implements
Functional

Specification

Pe
rfo

rm

Es
ca

pe

An
aly

sis

Environment

HDL andDebug

Create
Verification

Plan

Tests

Regression

Run

Verification
Cycle

Develop

Verification

Environm
ent

H
ardw

are
Fab

ricated
D

ebug

Form
al Verification

System
s

Test

Stim
ulus, C

heckers,

HDLHDLHDL
Tape Out

Readiness

CHECKPOINT

Lessons
Learned

CHECKPOINT
Plan

Review

CHECKPOINT

Part 3 continues to focus on the portion of the Verification Cycle that focusses on the

development of the Verification Environment. While simulation-based verification is the

most widely used method of functional verification, formal verification continues to grow

and meld with mainstream design efforts. In the past, formal verification was ham-

pered by size constraints and language complexity, but advances on both fronts have

opened the gates to widespread usage of formal techniques in functional verification.

Chapters 11 and 12 introduce formal verification, discuss the algorithms

behind the methodology, and describe the Property Specification Language (PSL/Sugar).

Major portions of the text are devoted to Boolean Equivalency Checking and Property

Checking, the most widely used formal methodologies. Chapter 12 also includes a

description of semi-formal verification, a leading method that melds formal techniques

with simulation based methodologies.

F O R M A L V E R I F I C A T I O N

In simulation, the verification environment visits one state of the design
under verification (DUV) at a time. This process can be viewed as state
traversal. The set of all possible states for a DUV is called its reachable
state space. The overwhelming size of the DUV’s state space is the biggest
verification challenge (Section 1.1). Throughout this book, the main tech-
nique underlying all verification tasks is simulation of the DUV. However,
there are severe limitations of this approach that will be discussed now.

At every state visited during simulation, checkers and monitors are
active to test whether the state itself is legal and whether the DUV gen-
erates correct output results. Fast simulation engines and environment
code enable a more efficient and faster state traversal. A key metric for
the quality of the verification cycle is the amount of the DUV’s reachable
state space visited and checked. Simulation stimulus components of
high-quality and coverage feedback ensure that the state traversal visits
different and interesting states within the reachable state space, which
again increases the efficiency of this process.

However, the size of the reachable state space does not allow an
exhaustive, simulation-based state traversal for any interesting, real-life
DUV. Therefore, simulation-based verification is fundamentally limited
to checking correctness of the design in a case-by-case fashion. For
any case not checked or design state not visited, the simulation-based
approach cannot give any assurance that the design behaves correctly.
This means that functional simulation in reality is testing and not really
verification of the DUV. This is, for hardware design, the direct equiva-
lent of what the pioneer computer scientist, E.W. Dijkstra, described with
respect to program testing versus true software verification: “Program
testing can be used to show the presence of bugs, but never to show their
absence!” [57].

The promise of formal verification (FV) is to achieve stronger, true ver-
ification of the DUV instead of merely testing with simulation-based
methods. FV can provide full verification for at least part of a DUV, full
checking of properties for all DUV states, in contrast to the limited.

During the last decade, FV has established itself as a productive addi-
tional weapon in the arsenal of the verification team. This chapter dis-
cusses some basic principles of FV and introduces different methods and

C H A P T E R 1 1

INTRODUCTION TO FORMAL VERIFICATION

application areas. Many engineers still misunderstand FV as an acade-
mic approach. However, rapid improvements and much practical use of
formal methods yielded advances in areas like specification and asser-
tion languages. These advances not only improved productivity of verifi-
cation methods in the formal field, but also have influenced simulation
methods.

It is not the goal of this chapter to dive into the theoretical founda-
tions of FV. Many texts contain these foundations, and they are recom-
mended to the interested reader [58, 59]. In contrast, this chapter shows
where FV fits into the overall verification cycle to give the verification
engineer a more intuitive understanding of its strengths and weaknesses.
The concepts behind FV are developed in this chapter. The discussion
then follows the historic path of the successful application of FV tech-
nology to formal equivalence checking of two DUVs. Afterward, the goal
of formal proofs from the simple property of equivalence to general prop-
erties of design correctness is generalized. Using the example of a simple
bus arbiter as a backdrop, the basics of temporal property specification
are introduced. Properties are one part of the FV environment, which is
very similar in concept to the simulation environment introduced in
Chapter 3. FV technologies process the model of the DUV and the FV
environment together, using the paradigm of state exploration to prove
that a property is valid or provide a counterexample. We end with an
overview of the principles of property verification, which is the key appli-
cation of FV techniques today. In Chapter 12 we apply these insights to
the application of the practical tools available to verification teams.

11.1 FOUNDATIONS

The central focus of FV is the attempt to prove with mathematical cer-
tainty the correctness of a design. Proof means that the verification is
exhaustive and therefore the checking is valid for all cases. This implies
a mathematical rigor to FV. The advantage of the strong reliance on
formal, mathematically sound methods is that the application of FV
leads to true verification (as opposed to just testing) where completed
successfully.

Because formal methods grew out of the field of theoretical computer
science, the vocabulary and presentation of FV often uses mathematical
terminology. This reliance on theoretical terminology can be intimidat-
ing and may even obstruct the view of the merits and difficulties of the
application of FV in hardware verification. However, it is also true that
as the field of FV matures rapidly, verification teams today can draw on
many software tools that have formal methods at their core but do not
require a detailed knowledge of the inner, theory-heavy mechanisms to
apply them successfully.

440 Chapter 11 ■ Introduction to Formal Verification

In this way, the development of FV is very similar to the way simula-
tion technology itself matured. For example, it is hardly necessary to
understand the theoretical details of constraint solving algorithms to
apply constraint directives in a simulation driver. However, a general
understanding of constraint language constructs and the limitations of
their applicability make the verification engineer more successful.

In this chapter, a structural rather than a detailed mechanical under-
standing of formal methods is provided. A few basic concepts are defined
first, which are the foundation of the following discussion of formal
methods for hardware verification.

11.1.1 Design Correctness and Specifications
The focus of the earlier chapters is on simulation of the hardware
design language (HDL) representation of a DUV. Often we call the HDL
the implementation of the design. It is important to remember that the
correctness of a design is never just a statement about one particular
representation of the DUV [60]. We can only postulate correctness of a
design relative to a specification. A specification makes statements about
properties an implementation of the DUV should realize.

Figure 11.1 shows an example of a hierarchy of specifications. The
lowest two levels of the hierarchy are familiar from previous chapters.
The gate-level representation implements the register transfer level (RTL)
specification, which in turn is an implementation of a high-level specifi-
cation of the DUV. The high-level specification could be, for example, the
requirements specification for the DUV from a customer standpoint.

There are two types of specifications: high-level models and properties
[58]. Both types specify what encompasses the correct behavior of an
implementation.

First, a higher-level model is a complete operational or behavioral
specification of the design implementation. The RTL model is an example

11.1 Foundations 441

RTL representation

Gate level representation

High-level representation

Specifies

Specifies

Implements

Implements

■ FIGURE 11.1

Example for three levels of design representations. The high-level design representation is the specifi-
cation for the register transfer level (RTL); the RTL representation is the specification of the gate level.
Every lower level representation is an implementation of the higher level specification.

of a high-level model specification for the gate-level implementation. The
implementation realizes all functional aspects that the high-level model
specifies operationally. We call the correctness of a DUV relative to an
operational model equivalence. Equivalence checking verifies that the
design implements all operations or behaviors of the specification. Equiv-
alence checking was the first FV approach successful in the domain of
industrial application and has been the most successfully applied FV
technology to date.

The second type is the specification of properties. Properties are attrib-
utes of behavior that the implementation should always honor. By their
very nature, properties do not provide a complete specification of the
implementation but make a statement about functional aspects of the
DUV. The description of the Calc1 design in Section 4.4.1 provides many
properties. For example, a basic property of the design is the description
of which output results to expect based on which input commands. The
statement that the design services commands on a first-come, first-serve
basis is another property of Calc1.

Properties can be static or dynamic. This classification is similar to the
one we used in the introduction of assertions in Section 3.3. A static
property is a condition that holds true in the design at one particular
time or at all times. A simple example of the condition expressed for a
specific point in time is the property that after power-on-reset, all latches
of the DUV are initialized to “0.” A static property example for all times
is the condition that the parity bit on a data bus always indicates odd
parity.

Dynamic properties are temporal properties. This is the more general,
more powerful case of property specification. In fact, static properties
are a subset of temporal properties. The typical example for a temporal
property is resource management of data buses: A bus arbiter that
receives a bus_request input signal issues the bus_grant output signal
after a maximum number of cycles. The general form of such temporal
properties states a series of events as pre-conditions and then postulates
a sequence of events as post-conditions to be verified.

The specification of temporal properties is the most important, most
successful specification mechanism used in modern FV approaches. The
pre-dominant use of property specification in FV also makes the term
property checking often synonymous with FV.

A design implementation, or DUV, is correct if all properties of its
specification hold true. There are different ways to reach a correct
design from a specification (Figure 11.2). The simulation-based approach
translates the specification into drivers and checkers. The automatic
synthesis method uses algorithms to create an implementation that
is correct-by-construction. FV relies on a formal specification and
proves that all properties of the specification hold true in the
implementation.

442 Chapter 11 ■ Introduction to Formal Verification

11.1.2 Computational Complexity
This chapter began by stating again that the core verification problem
is the exponential nature of the DUV’s reachable state space. The
exponential nature of the reachable state space exists independently
of whether verification uses simulation-based or formal methods. The
promise of FV, to offer a more complete verification than simulation,
means that formal methods must address the state space traversal and
checking in different ways from simulation. A quick side discussion
about complexity introduces metrics helpful to appreciate the nature and
size of the problem that we attempt to solve with FV. Complexity theory
classifies problems based on the difficulty of their solution.

Computational complexity [61] is a sub-field of theoretical computer
science that addresses the resources required to solve a computing
problem. The most important resources are the time and memory (or
space) required to run all the steps of an algorithm.

The time complexity to solve a problem is typically dependent on the
size of the input to be processed. If we denote the size of the input with
the number n, the time it takes to process the n inputs is a function of
n. An abstract measure of time complexity does not account for the exact
function, only how n factors into the function. Computer science has
come up with the Big-O notation. If the time needed to process the input
grows linearly with the size of the input, we say that the time complex-
ity is O(n) (called “order n”), whereas if the time grows quadratic with
the input size, we say complexity is O(n2) (called “order n-square”).

11.1 Foundations 443

(a) Correct-by-
 Construction

Simulation with
checkers/drivers

Automatic
implementation

(synthesis)

Implementation

Property checking
Equivalence checking

Specification

Formal specification

(b) Simulation-based
 Verification

(c) Format
 Verification

■ FIGURE 11.2

Three different paths to achieve a correct implementation from a specification. (a) Automatic tools are
used to synthesize the implementation. (b) A simulation environment is derived from the specification
for a traditional simulation-based verification methodology. (c) The formal verification (FV) approach
that requires a formalized specification before the verification team can drive the FV flow.

For example, the time complexity to simulate the scan ring dump pro-
cedure (Section 9.3.1) is O(n): The time required to shift the scan ring
grows proportionally with the number n of latches in the scan chain. If
the designer creates double the amount of chains with half the number
of latches, simulation only needs to run half the amount of cycles to
scan all chains. If the simulation engine is a pure cycle-based engine
(oblivious evaluation; see Section 5.5.2), half the amount of cycles means
half the amount of time for the procedure. In any case, given the DUV
does not change with the exception of the scan chain order, the time
complexity of the procedure is linearly dependent on the length of the
chains.

As a second example, the steps required to simulate all possible input
patterns through a block of combinational logic with n inputs has a
complexity of O(2n), which is exponential growth. Even with a modest
increase in the number of inputs, the number of simulation steps grows
rapidly, quickly making exhaustive simulation impossible for real-life
designs. Figure 11.3 shows several classes of complexity functions as a
graph of time over input size n.

The fastest growing are the quadratic, the polynomial (O(nc)), and
the exponential (O(cn)) functions (where c is a constant selected
such that it bounds the complexity with an upper limit). Complexity
theory calls problems intractable whose algorithmic solution requires
exponential time (or space/memory) in the worst case. There is much
research to classify which verification problem has exactly which order
of complexity.

For our purposes, it is sufficient to say that both the input space and
the state space of a DUV grow exponentially (O(2n)) with the number of
inputs and the number of state bits. The problem of processing every
element of a DUV’s input and state space is intractable, and the expo-

444 Chapter 11 ■ Introduction to Formal Verification

n : input size

Ti
m

e

O(cn) O(nc) O(n2)

O(n)

O(log n)

■ FIGURE 11.3

Survey of time complexity classes drawn as graphs of time over the size of input that needs to be
processed.

nential nature of this expansion is often called the state space explosion
problem [62]. The complexity is exponential for either dimension: time
and space/memory. Explicit state space traversal takes exponential time
to visit all states, and storing information about every state explicitly
takes an exponential amount of memory. The memory to store one byte
of information explicitly per state of a DUV with 100 state holding ele-
ments (flip-flops, latches, RAM cells) would need 2100 bytes, clearly more
than exhausting the address space of even a 64-bit workstation.

Simulation-based methods tackle the state space explosion with the
attempt to verify only the relevant state space, guided by the verification
plan and coverage feedback. Even though FV promises to provide proof
or exhaustive verification, formal methods face the same state space com-
plexity. In the remainder of this chapter, we explore the different ways
in which FV technology addresses the state explosion problem.

11.1.3 The Myth of Linear Scaling of Simulation
What makes simulation so compelling as a verification algorithm is that
the growth of the model and the decline of simulation speed are linear
functions of the increase of DUV size, measured in number of RTL state-
ments or gates. This behavior has kept simulation the main workhorse
of verification while design sizes grew ever larger.

As we have seen, however, the verification problem grows exponen-
tially. Verification teams must not fool themselves into the false sense of
security when design growth goes parallel with only proportionally
slower simulations (Figure 11.4).

The complexity of the verification problem does not disappear for the
simulation approach. It is present in the fact that the overall simulation

11.1 Foundations 445

Number of state/input bits

Ti
m

e/
si

ze
/s

pe
ed

Time needed
to visit all states

Model size

Model speed

■ FIGURE 11.4

Simulation speed and model size scale linearly with increasing design under verification (DUV) sizes.
The time needed to simulate the state space of the DUV, however, increases exponentially.

time needed to traverse the full state space grows exponentially. In the
face of this exponential growth, a linear speed increase by faster simu-
lators, parallel simulations in workstation farms, or hardware accelera-
tors provides only some relief but brings simulation nowhere close to a
possible exhaustive verification.

Figure 11.5 illustrates how a single simulation is akin to a random
walk through the reachable state space of the DUV. Simulation proceeds
one state at a time through the reachable state space. Smart drivers and
coverage feedback guide the walk at every point until we hit, hopefully,
a design bug.

Simulation is able to process state spaces of gigantic sizes (greater
than 1 billion gates) but at the expense of state space coverage. This
makes simulation-based methods very practical in the verification team’s
endeavor to find bugs. Simulation is not a strong method to confirm the
absence of bugs.

11.1.4 Mathematical Proof Methods in FV
The use of mathematical transformations using symbolic logic is one
form of FV. For combinational logic, the Boolean algebra and its axioms

446 Chapter 11 ■ Introduction to Formal Verification

Initial
state

DUV
state space

Bug

Bug

Bug

Bug

Bug

■ FIGURE 11.5

Path of one simulation from an initial state through the reachable state space of a design under veri-
fication (DUV) to a design bug.

are the foundation for correctness proofs. Applying the axioms of the
algebra and theorems, derived from the axioms, we can transform
Boolean equations symbolically without changing their logic value.
Figure 11.6 shows a simple example using algebraic transformations to
show the equivalence between two Boolean circuits.

Automatic theorem provers are programs that let the user specify a
statement (a conjecture) in symbolic form to prove it is a consequence
of axioms and theorems, which the user loaded into the prover before-

hand. The language for the axioms, the theorems, and the conjecture is
usually mathematical logic. Theorem provers play an important role in
the FV of some types of hardware, for example, floating-point units
in microprocessors. Typically, these are areas where the direct applica-
tion of mathematical theorems is very natural because the target design
is the immediate implementation of a mathematical concept. A typical
example is the verification of floating arithmetic units as described in
Russinof [63].

However, their application requires a deep knowledge in mathemati-
cal logic, and the prover tool usually requires that an expert user closely
guide the program through the mathematical proof steps. This, so far,
prevents a wide application of theorem proving in industrial projects,
with the exception of a few niche areas. For this reason, we do not discuss
theorem provers any further. For the reader who wants to explore the
capabilities theorem proving more deeply, we recommend the Web sites
on ACL2 Language, HOL System, or PVS Specification and Verification
System as starting points [64–66].

11.1 Foundations 447

a�•b•c�•d + a�•b•c�•d�

a

b

c

d

f

DUV 1

a�•b•c�

a

b

c

d

f

DUV 2

=
?

a�•b•c�•d + a�•b•c�•d� = a�•b•c�•(d + d�) : distributive law

a�•b•c�•(d + d�) = a�•b•c� : complementary theorem

■ FIGURE 11.6

The application of Boolean algebra to prove equivalence between two designs.

For the remainder of this chapter, we focus on the two most suc-
cessful, automated methods of FV, equivalence checking and property
verification.

11.2 FORMAL BOOLEAN EQUIVALENCE CHECKING

We start the deeper exploration of FV with a discussion of Boolean equiv-
alence checking (BEC), where FV had the most successful application
to date. Because the specification of the verification task is extremely
simple, the equivalence of two different representations of the same
Boolean function, we can use equivalence checking as a good introduc-
tory discussion to exhibit some of the algorithms and concepts that find
use in many other FV applications.

The task of equivalence checking is a primary target for the applica-
tion of formal methods for two reasons. First, it supports the important
assurance that no design transformations, many of which occur in a
VLSI design flow, harm the correctness of the design. Equivalence check-
ing proves, which means it verifies exhaustively, that a design represen-
tation is functionally equivalent to its specification even after many
manual or automated design transformations (Section 11.2.1). With this
application, equivalence checking supports an implementation refine-
ment flow that is correct by construction.

The second important application area for BEC is the proof of a DUV
implementation against a higher-level model specification. The con-
straint is that high-level specification and implementation can only differ
in the way they specify their combinational Boolean functionality
because, as we see in the following sections, BEC only works if the states
and state holding elements of the models compared are identical.
Nevertheless, this allows the verification team to use the most abstract,
concise, and implementation independent model of the DUV for the bulk
of the functional verification work. With this second application of equiv-
alence checking, the design and verification teams can use the higher-
level model purely as a specification, not to drive a synthesis-based
automatic implementation process.

For example, the design team might have to specify the actual design
implementation as custom transistor circuits. If and only if formal equiv-
alence checking can prove that the transistor netlist is functionally iden-
tical to the RTL specification can the verification rely on RTL simulation
for the majority of the functional simulation work.

The alternative to the equivalence proof is simulation of a finite set of
tests on both models with comparison of the results. As shown in above,
this method is limited to a fraction of the actual DUV state space and,
in addition, severely cuts into the precious simulation cycles available
for the functional RTL simulation.

448 Chapter 11 ■ Introduction to Formal Verification

11.2.1 The Role of Equivalence Checking in the VLSI
Design Flow

The modern VLSI design flow uses a number of manual and automatic
design transformations between the RTL specification and the physical
netlist, a design representation that is the input to the manufacturing
process of the VLSI chip.

Figure 11.7 shows two alternative paths from the RTL specification to
the physical netlist, the automated, tools-driven, and the custom circuit
implementation. The automatic flow (Figure 11.7a) starts with logic
synthesis, a program that maps the RTL specification into a pre-defined
library of Boolean logic gates for the given, fabrication-specific, silicon
technology. Pre-placement and wiring is the first physical design step.

11.2 Formal Boolean Equivalence Checking 449

Physical netlist

(a) Automatic Implementation

Logic
synthesis

Equivalence
checking

RTL

Pre-place/wire

Design-for-test
synthesis

Place/wire

Physical netlist

(b) Manual Implementation

Custom circuit
implementation

Equivalence
checking

RTL

■ FIGURE 11.7

The position of formal equivalence checking in a typical VLSI design flow. (a) The automatic imple-
mentation flow. (b) The alternate flow where a custom designer manually implements the circuit.

This step positions the gates into their approximate geometric location
on the chip, using optimization criteria such as shortest wire length, wire
noise-reduction, and timing as its primary constraints. Design-for-test
synthesis supports the automated insertion of testability logic (scan ring
and built-in self test, as discussed in Chapter 9, Testability and Built-In
Self Test). The final placement and wiring step finishes the physical
design of both the mainline and pervasive function.

BEC is vital to verify that all these tools in the automatic implemen-
tation flow operate without changing the function of the DUV. Figure
11.7a shows two inputs to BEC in the automated flow, the RTL and the
physical netlist. This guarantees the checking occurs as closely as pos-
sible to the original specification and the final physical implementation
and therefore covers all steps of the flow. However, it might be more prac-
tical for ease of debug to check the output of every step (e.g., logic syn-
thesis) separately by comparing input and output data of each tool.
Whereas the automated flow can be considered correct-by-construction,
the use of BEC gives a guarantee that no tool bugs or tool application
errors interfere with the correctness of the implementation. Automatic
logic synthesis provides a great productivity advantage for the imple-
mentation of RTL designs into gate-level, whereas at the same time the
tools-driven flow is much less error prone than a manual implementa-
tion. However, these tools are large software systems and possibly intro-
duce errors during the transformation of the logic. BEC provides the
necessary safety net to catch such tool errors.

The main reason for custom circuit implementation (Figure 11.7b) is
the need for extreme physical optimization for speed or compactness of
the design. Experienced circuit designers take the RTL specification and
implement its function manually on the transistor level. The role of BEC
in this scenario is even more vital than in the automated flow, because
it checks against human errors inserted into the implementation.

11.2.2 Main Elements of an Equivalence Checker Tool
Figure 11.8 shows the breakout of the main components of a BEC tool.
Because of the position of equivalence checking in the design flow, the
checker needs to support the import of different input formats, which
each have their own challenges. The import of the RTL specification
requires a full HDL compiler. Various netlist formats used in the auto-
mated design implementation flow, including the gate-level netlist shown
in Figure 11.8, need their specific input parsing function. The third
class of import components is the circuit functional abstraction block. It
reads the transistor-level netlist coming out of the custom design process
and translates it into a switch-level specification. Using circuit pattern
matching and switch-level simulation techniques, the functional ab-
stractor then calculates the Boolean behavior of the switch-level netlist
[67]. The abstraction has to map all dynamic circuit behavior to a static

450 Chapter 11 ■ Introduction to Formal Verification

Boolean network that the BEC core can compare with the other input
formats.

The result of all input processing is a design representation internal
to the BEC tool that is uniform for all classes of inputs and is well suited
for the tool’s core equivalence checking algorithms. If the comparison
shows any discrepancies between the design representations, the equiv-
alence checker reports these in the form of at least one counterexample.

The most user-friendly presentation of a counterexample shows the
differences of the compared DUV representations in the form of Boolean
values back annotated into the two original design representations. With
all signal values visible in the context of the original design specification,
the designers productively debug the equivalence failure using the coun-
terexample like a failing test pattern.

11.2.3 Sequential and Combinational BEC
The BEC core, shown in Figure 11.8, uses a common model to represent
the design after the import into the equivalence checker. The model
format is a data structure that represents the finite state machine (FSM)
view of the design. Because the task is the comparison of two models,
the tool reads in two different design representations and converts both
to the FSM view.

Figure 11.9 shows the general scheme that connects two FSM with the
input vector and connects the out vectors via a bit-wise XOR function

11.2 Formal Boolean Equivalence Checking 451

Gate-level
netlist

Netlist
import

RTL

HDL compiler

Counter
example

Equivalence checking core

Transistor-level
netlist

Circuit-to-Boolean
functional

abstraction

Equivalence
checker

■ FIGURE 11.8

The main components of a Boolean equivalence checker tool. The core of the checker relies on import
from the various input formats that exist in the design flow of Figure 11.7.

condition. The state of both machines is stored in state-vectors S1 and
S2, which are both initialized to their initial value set. The two state
machines are equivalent exactly if the vector E on the output has a con-
stant value of 0 at all times.

We know from the discussion of complexity (Section 11.1, Founda-
tions) that the equivalence problem suffers from the exponential state
space explosion. Even for small DUVs we have no way to use exhaustive
simulation to prove equivalence.

The first step to a practical solution of the equivalence problem is a
simplification of what we want to achieve. Figure 11.10 recasts the
general problem to just a BEC problem by asserting that the state vectors
of both machines are the same at all times. This means we drive the
vectors B1 and B2 with the same value B and feed the next state vectors
via an XOR-condition to a second output vector E2. These changes assert
that the state vectors of both FSMs are the same at all times, starting
with the same initialization.

452 Chapter 11 ■ Introduction to Formal Verification

S1

XOR

Combinational
logic

B1+B1

FSM1

Z1

= 0
E

?

S2

Combinational
logic

B2+B2

FSM2

Z2

A

■ FIGURE 11.9

The general setup for the proof of equivalence between state machines FSM1 and FSM2. Both machines
are connected to the same input stimulus, whereas the outputs feed an XOR check condition. The
checker proves equivalence by showing that vector E has a constant 0 value at all times.

The checker tool proves combinational Boolean equivalence if E1 and
E2 are 0 at all times. Even after this drastic simplification of the original
problem, BEC is still of significant practical use. It allows the exhaustive
comparison of two state machines with the same set of states and the
same initial state. The application in terms of the methodology flow,
described above, means that the state vectors and the state encoding of
the DUV stay constant after the definition of the RTL. This restriction is
reasonable for most practical applications because many tool-driven
design transformations and optimizations change the combinational part
of the DUV only. We call the more general problem of FSM equivalence
sequential equivalence checking.

A combinational Boolean equivalence checker does not have to ex-
plore the state space of the DUV, which makes the problem much more
tractable. The reader should note, however, that exhaustive simulation
still cannot solve the problem of combinational equivalence checking for
practical DUV sizes. The amount of simulation steps necessary to step
through each possible input value of the DUV grows exponentially with

11.2 Formal Boolean Equivalence Checking 453

FSM1

FSM2

XOR

Combinational
logic

B1+

Z1

= 0
E1

?

Combinational
logic

B2+

Z2

A

B
XOR = 0

E2

?

■ FIGURE 11.10

Simplification of the general equivalence checking problem to combinational Boolean equivalence. In
addition to the inputs, now the state vectors are held to the exact same value at all times. With a second
XOR condition, the next-state vectors B1

+ and B2
+ are checked for equality at all times as well.

the number of inputs. Other methods and algorithms are necessary to
address this complexity.

11.2.4 Core Algorithms for Combinational
Equivalence Checking

The core task of BEC is a well-known research topic that has yielded
several different strategies, which can lead to a successful equivalence
proof. However, every single strategy has a worst-case behavior that leads
to either exponential memory or time requirements. This is not surpris-
ing, because the base problem has exponential complexity. It turns out
that many times the algorithms show their worst-case behavior under
different conditions dependent on the structure of the DUV. Where one
algorithm shows exponential behavior, another approach can still yield
practical results and vice versa. A usable equivalence checker therefore
requires the application of several different algorithms combined into
one tool.

The most established techniques to BEC are the use of canonical rep-
resentations and automatic test pattern generation (ATPG) or satisfiabil-
ity testing (SAT) solvers. We start with a discussion of canonical forms
followed by a description of the other techniques. Kuehlmann et al. first
introduced a generalized hybrid approach of putting all these different
techniques together into a hybrid approach as a multiple solution engine
[67].

Canonical Forms

It is the main property of a canonical form that it represents every unique
Boolean function in one unique way, independent of its original imple-
mentation or representation. One way to perform BEC is to translate two
representations of the combinational logic of a DUV into a canonical
form and check for identical results.

An example for a very simple canonical form is the truth table. Figure
11.11 shows two implementations of a DUV and the single correspond-
ing truth table. As long as we order the input signal columns exactly in
the same sequence (a, b, c), the truth table derived from any different
gate-level implementation is identical. Once the BEC tool converts the
implementations to their corresponding truth table, the equivalence
proof turns to a simple comparison of all rows of f.

It is immediately clear that the truth table is not a practical canonical
form for a BEC tool. The table grows O(2n), and therefore DUVs with
more than 32 or 64 inputs overflow the virtual address space of any com-
puter on which the tool could run. In addition, the comparison of the
results column f also has a O(2n) complexity, meaning the time needed
to do the actual, albeit computationally simple, comparison grows expo-

454 Chapter 11 ■ Introduction to Formal Verification

nentially. The cost of the conversion from gate-level to truth table is also
part of the total complexity of this algorithm.

From the truth table example we can derive four complexity criteria
that all need to be considered when selecting a canonical form for a prac-
tical BEC tool.

1. Efficiency of the conversion into the canonical form

2. Memory requirement

3. Efficiency of the comparison of two representations of the canon-
ical form

4. Efficiency to generate a counterexample in case of a miscompare

The last criterion is of trivial complexity for the truth table approach
because the program can simply print out the values for a, b, and c for
the first row of f that is not identical between the truth table of both DUV
representations.

Another set of popular representations of Boolean functions are the
disjunctive normal form (DNF) and the conjunctive normal form (CNF)
(also called sum-of-products and product-of-sums) [68]. Figure 11.12a
shows the two functions for the sum and carry signals of a multi-bit
adder. The c(i) function is already in DNF format. The function for s(i)
uses the xor operator and is therefore not a DNF. Figures 11.12b and
11.12c show the transformation of this function to DNF.

The main problem of using a DNF for equivalence checking is that
a sum-of-products specification is not a canonical form unless it is a

11.2 Formal Boolean Equivalence Checking 455

a

b
c

f

f = (a + c) (b + c)

(b) Implementation 2 of Function f

a
b

c
f

f = ab + c

(a) Implementation 1 of Function f

(c) Truth Table for Function f

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

f
1
0
1
0
1
1
1
1

c
0
1
0
1
0
1
0
1

■ FIGURE 11.11

(a) A gate-level implementation of a Boolean function “f.” (b) An alternate, equally valid one. (c) The
truth table for function “f” as canonical form that is the same regardless of the implementation.

minimized DNF. Many different DNFs for the same logic function exist
(another example is Figure 11.11). Minimization of Boolean functions is
a well-known exponential problem itself. This violates criterion 1 for a
usable canonical form; the transformation is extremely inefficient. In
addition, in the worst case, the DNF of combinational functions grows
exponentially in size.

Figure 11.12a shows how the equation for the ith bit of an adder carry
generator is recursively dependent on the (i - 1)th bit. Successive replace-
ment of c(i - 1) with the carry logic of the previous stage explodes the
number of terms. The equation of a three-input XOR function is trans-
formed into its DNF in Figure 11.12b to illustrate the exponential expan-
sion during the translation of the XOR. Because the sum for stage i of
the adder in Figure 11.12a is exactly such a three-input XOR, the sum of
n-bit adder recursively expands into an exponential set of DNF terms,
which makes the DNF unusable according to criterion 2 for canonical
forms; the size of the DNF can become intractable.

The most popular canonical form is the binary decision diagram
(BDD), which is a graphic representation of Boolean functions. The cur-
rently common form of BDDs first appeared in Bryant [69]. A BDD is a
directed graph with nodes labeled by the variables used in the Boolean
function. Each node has two outgoing arcs, which are labeled with 0 or
1 and represent the value of the node’s variable. The graph has a tree
format like a decision diagram. We start with a randomly chosen vari-
able as the root node and connect its outgoing 0/1arcs. At the end of each
arc, we connect the next variable node. This procedure continues until
all variables are used. All outgoing arcs connected to the nodes for the
last variable end at constant nodes for the values of 0 or 1. The leaf con-
stants are chosen such that every path from the root to a leaf ends with

456 Chapter 11 ■ Introduction to Formal Verification

s(i) = a(i) xor b(i) xor c(i–1)
c(i) = a(i)b(i) + a(i)c(i–1) + b(i)c(i–1)

(a) Multi Adder Logic for Adder Output Stage i

x = a xor b xor c
 = a�bc� + ab�c� + a�b�c + abc

(b) XOR function between 3 variables

s(i) = a(i)�b(i)c(i–1)� + a(i)b(i)�c(i–1)� +
 a(i)�b(i)�c(i–1) + a(i)b(i)c(i–1)

(c) DNF (sum-of-product) Specification of Adder Sum

■ FIGURE 11.12

(a) The generalized combinational function for a multi-bit adder. (b) The XOR function for three vari-
ables are specified. (c) The equation of the adder sum into a sum-of-products notation is expanded.

the function’s result value for the valuation of its variables represented
by the arcs chosen during the traversal.

Figure 11.13 shows such a BDD for the function used in Figure 11.11.
At every level of the tree diagram, we use the same variable to label the
next node (e.g., variable b on level 2 of the tree). Because this variable
ordering is constant, we call this type of BDD an ordered BDD.

Figure 11.14a shows a simplification of the BDD in Figure 11.13. We
have eliminated those nodes where the 0 and the 1 arc arrive at the same
sub-tree, which means that this node does not contribute to the value of
the function at all. The BDD of Figure 11.14b shows the same Boolean
function but with a different sort order for the input variables. Clearly,
the selection of this sort order affects the structure of the diagram and
the amount of nodes and edges needed to represent the given Boolean
function.

Finally, Figure 11.15 shows a reduced ordered BDD (ROBDD). In
addition to the reduction achieved with Figure 11.14a, the ROBDD
also merges all identical sub-trees to achieve this minimized form. The
ROBDD for any given Boolean function is unique and therefore canoni-
cal, regardless of the original representation of the function.

11.2 Formal Boolean Equivalence Checking 457

a

f = ab + c

b

c c

0 1 1 1

0 1 0 1

0 1

c c

0 1 0 1

0 1 0 1

0 1

b

0 1

Identical sub-trees

■ FIGURE 11.13

Binary decision diagram for the function f = ab + c. The diagram has a tree format starting with one
arbitrarily chosen variable. For each Boolean value, the diagram branches to a subtree with the next
chosen variable of function f as anchor. The two marked identical subtrees indicate that the value of
variable b does not control the resulting value of f, which leads to the first simplification of the BDD
in Figure 11.14, where we skip variable b altogether for this subtree of the diagram.

458 Chapter 11 ■ Introduction to Formal Verification

a

f = ab + c

b

1

0 1

c c

0 1 0 1

0 1 0 1

0 1

Identical sub-trees

(a) BDD with variable sort order [a, b, c]

c

b

1

0 1

a

10 0

0 1

0 1

(b) BDD with variable sort order [c, b, a]

■ FIGURE 11.14

Binary decision diagrams (BDDs) for the same function but with different sort orders have a different
size, measured by the number of nodes and edges. Figure 11.14a marks the two instances of identi-
cal sub-trees that the ROBDD diagram in Figure 11.15 combines into one instance, thus reducing the
size of the diagram even more.

a

f = ab + c

b

1

0 1

c

0

0

0 1

(a) ROBDD for f = ab+c

c

b

a

0

0 1

(b) ROBDD for XOR function
 with 4 variables

1
d

c

b

1

d

0 1
01

0 1
01

0 1
01

f = a xor b xor c xor d

■ FIGURE 11.15

Reduced ordered binary decision diagrams (ROBDDs) for two example functions. (a) The final ROBDD
form of f = ab + c. (b) With the ROBDD of a four-input XOR function, how BDDs for this “hard” func-
tion grow only linearly with increasing number of inputs is illustrated.

One of the great practical advantages of BDDs is that they yield a
compact representation of functions compared with other canonical
forms. This is true even for some of the functions where the other rep-
resentations explode in size when the number of inputs grows. For
example, Figure 11.15b illustrates how the ROBDD for the multi-
input XOR function grows only linearly with the number of inputs.
In comparison, a truth-table representation for this function grows
exponentially.

This does not mean BDDs circumvent the exponential complexity of
the problem itself. There are classes of functions, for example, arithmetic
functions like multiply or divide, whose BDD representation size grows
exponentially with the number of input variable. In addition, in many
situations BDD size is sensitive to the variable ordering. The growth in
the number of BDD nodes per input variable for the same function can
vary between linear and exponential depending on the choice variable
ordering.

The problem to find the optimal variable ordering for minimal BDD
size is again of exponential order. This shows that complexity of the base
problem never disappears completely; it just reveals itself in different aspects
of the distinct algorithms. Fortunately, research has found many good
heuristic methods for variable ordering that BEC tools utilize when
BDDs grow beyond a certain threshold.

However, BDDs behave well across a large class of Boolean functions,
which cause problems for other canonical forms. The positive practical
characteristics of BDDs discussed led to their popularity as the main
canonical form for analysis of Boolean functions. This applies not only
to equivalence checking but also to other applications in FV and logic
synthesis.

ATPG and SAT Solving

ATPG is originally a domain of the field of manufacturing test (see
Section 6.2.2). As shown in Figure 11.16a, the goal of ATPG is the gen-
eration of an input pattern that stimulates the combinational logic of the
design in such a way that the outputs show a wrong result if the inter-
nal signal x is stuck-at-1 (or stuck-at-0).

ATPG algorithms can address equivalence checking if the search is
directed toward patterns that show a different result on the equivalent
outputs of the combined designs in Figure 11.9. In essence, BEC tools
use ATPG to find counterexamples where the outputs Z1 and Z2 as well
as B1

+ and B2
+ show a conflict.

The classic ATPG algorithms use implication and decision procedures
[68] and work on a gate-level structural representation of the design.
Starting from the stuck-at signal, ATPG uses forward and backward
implication to find a pattern that reveals a wrong result.

In Figure 11.17, we see a simple example for the implication proce-
dures used in ATPG. Figure 11.17a combines the two implementations

11.2 Formal Boolean Equivalence Checking 459

of the function used in Figures 11.11 into one combinational test design
whose output e indicates whether the two implementations are equiva-
lent. To make the example slightly more interesting, we inserted a
problem into the second implementation with the inversion of signal c
on the input of the gate a OR c¢ (marked with an inversion dot). In addi-
tion, we named internal signals in both design parts (i1, i2, i3) to be able
to refer to them in the following.

The decision procedure (Figure 11.17b) starts at the output and pos-
tulates a miscompare. The following steps take this starting point and
walk the design backward toward the inputs with the goal to either derive
signal values by implication or choose signal values where a degree of
freedom exists and the output conditions still hold.

Step (2) of Figure 11.17b executes a choice of values that satisfy the
condition of step (1). This choice implies signal values in steps (3) and
(4). Recursively working backward toward the design inputs, the proce-
dure postulates implied values in steps (5) and (6). However, the impli-
cations do not completely force specific input values yet. Steps (5) and

460 Chapter 11 ■ Introduction to Formal Verification

Combinational
logic

a

b

c

x = 1?

DUV

Combinational
logic

a

(a) ATPG Problem

b

c

d

x

DUT

Combinational
logic

Stuck-at-1

(b) SAT Problem

■ FIGURE 11.16

Problem definitions for automatic test pattern generation (ATPG) and SAT. (a) A design-under-test (DUT).
ATPG tools attempt to find a vector for inputs a, b, c, d such that a stuck-at-1 fault on the internal
signal x is detected by a wrong result on the outputs of the DUT. (b) The general configuration for a
SAT solver, whose goal it is to find an input pattern a, b, c that the value of output x is 1.

(6) log the possible choices as OR conditions. Finally, step (7) concludes
with an implication that contradicts an implication made in step (5).

Whenever the ATPG decision procedure finds conflict, it needs to back-
track to a decision (choose) point before the conflict. In the example, this
backtracking step sets the procedure back to step (2) to start over with a
different choice.

Full ATPG also must run implication forward from the stuck-at signal
to the outputs to provide the expected fault results. In the worst case, the
ATPG algorithm may require an exhaustive enumeration of all possible
input patterns. This is clearly as intractable as exhaustive simulation.
However, especially for cases where the two models are not equivalent,
ATPG can efficiently reveal counterexamples. Even though ATPG
becomes unusable under its worst-case behavior, it is a very practical tool
for many real-life designs.

The SAT problem definition is similar to the starting point of ATPG.
The difference is that a SAT solver attempts to find an input pattern that
stimulates a single output signal to 1 (Figure 11.16b) as opposed to an
internal stuck-at value propagated to the output. The SAT problem

11.2 Formal Boolean Equivalence Checking 461

(1) e = 1
(2) choose f1=0, f2=1
(3) (f1=0) impllies c=0, i1=0
(4) (f2=1) impllies i2=1, i3=1
(5) (i1=0) implies (a=0 or b=0), c=0
(6) (i2=1) implies (a=x, c=0)or
 (a=1, c=x)
(7) (i3=1) implies b=1, c=1

a

b
c

f2

(a) Comparison of two
 implementations of f = ab+c

(b) Partial ATPG Implication Sequence

a
b

c

f1

i1

i2

i3

e

Conflict

■ FIGURE 11.17

Example of a simple automatic test pattern generation (ATPG) procedure. (a) The two implementations
of f = ab + c as shown in Figure 11.11a/b combined by an XOR condition to show equivalence. Note
the erroneously inserted inversion. (b) A snippet of a decision procedure that attempts to find an input
pattern for signals a, b, and c, which reveals a miscompare and sets output e to 1.

translates directly to equivalence checking, for example, in Figure 11.17a:
If the SAT solver can prove that signal e cannot be satisfied (drive to 1),
then it proves equivalence of the two implementations.

Figure 11.18 shows a simple example to introduce one of the popular
SAT algorithms [70]. The gate-level design in Figure 11.18a implements
function f from a DNF. The example shows a SAT process finding an input
pattern that satisfies f, which is a simple Boolean function with no direct
connection to equivalence checking.

The first step of this SAT algorithm is the conversion of the design into
a CNF. This format is the basis for the Putnam-Davis SAT solver. The
algorithm successively chooses a variable and replaces it with the value
0 or 1. At every such point, it recursively calls itself to choose the next
variable value. If at the end of the recursion all variables either have
defined values or are explicitly left undefined (variable b in Figure
11.18b), the assigned variable values satisfy the function. If at any point
in the process the function cannot resolve to 1 because of a contradic-
tory variable assignment, the algorithm backtracks to the last choice and
takes the alternate assignment. If the program has chosen all alternate
assignments and found no solution, the function cannot be satisfied
(UNSAT).

462 Chapter 11 ■ Introduction to Formal Verification

(1) f = (a+b�)(b+c)(c�+d)(d�+e�)
(2) choose a=1, c=1
(3) (c=1) implies c�=0 –> d=1
(4) (d=1) implies d�=0 –> e�=1 –> e=0
(5) a=1,c=1,d=1,e=0, b=undefined

(b) Example SAT sequence

(a) Example Design for SAT

a
b

c

Success

f

d

e

■ FIGURE 11.18

A simple example for the Putnam-Davis SAT procedure. The process converts the example design of a
to a conjunctive normal form and applies the SAT solver algorithm in (b). Step (5) of the SAT proce-
dure results in an input pattern for a, b, c, d, e that satisfies function f.

There are many approaches to SAT solving. Kuehlmann et al. and
Briere and Kunz are good starting points for an overview [71, 72]. Links
to the newest research can be found in reference [73]. For insight into
highly efficient SAT solver algorithms, we refer the reader to [74–76]. The
improvements in SAT solvers during the last few years have made them
a key component for hybrid multi-engine BEC tools.

Structural Analysis and DUV Partitioning

BDD analysis, ATPG, and SAT solvers all have a potential for exponen-
tial worst-case behavior requiring either intractable amounts of memory
or time. Several heuristic techniques are available to cut down the size
of the initial DUV representation to postpone the threshold where any of
the actual equivalence algorithms exhaust the machine resources.

Structural analysis or optimization reduces the amount of redundancy
in the DUV, whereas DUV partitioning attempts to divide the DUV into
smaller pieces for which the BEC algorithms prove equivalence individ-
ually. Typically, DUV representations derived from HDL compilation
show a redundancy rate of 30% to 50% [71]. The main sources of redun-
dancies are replicated structures and signals tied to constants. Replicated
structures originate either from timing optimization, where the designer
parallelizes logic to lower the fan-out load, or from the repeated use of
common library elements, which include the same equations inside. The
use of common library elements is also the main source for tied signals:
Universal building blocks offer more flexibility than needed in all
instances, which is why in specific situations unused input signals are
tied up or down to provide a default, don’t-care function.

Heavy replication is also inherent to the task of equivalence checking.
As shown in Figures 11.9, 11.10, and 11.17, the BEC tool receives an
input model that connects two different representations of the DUV with
XOR logic. Especially if both models are structurally similar, the DUV
replications are a cheap target for simple redundancy reduction
algorithms.

Structural optimization is, of course, by itself a problem with expo-
nential cost. However, as we just discussed, the target for optimization
is so large in practice that even simple, cheap heuristics have a chance
to reduce the size of the model for BEC dramatically.

A selection of such simple heuristics contains

■ Constant propagation

■ Hash-based redundancy removal

Constant propagation works most effectively on a Boolean network
model. The propagation algorithm takes constant inputs of Boolean

11.2 Formal Boolean Equivalence Checking 463

functions and attempts to push them forward to the sinks of the function.
A constant 0 on an AND function propagates directly to its outputs. The
same is true for a constant input on an OR function. In both cases the
AND or OR can be eliminated. The hash-based redundancy removal
records a unique hash-value for every block in a Boolean network model.
The program derives the hash from the input signal names and the actual
Boolean function of the block. Hash collisions quickly point to poten-
tially redundant blocks that the optimizer can combine into one.

An even more powerful reduction approach for equivalence check-
ing is DUV partitioning. We can differentiate between horizontal and
vertical partitioning. Figure 11.19 illustrates the horizontal partitioning
approach to equivalence checking.

The equivalence checker successively picks a pair of inputs, one per
DUV model (Model 1 and Model 2 in Figure 11.19) for the check. It iter-
ates over all DUV outputs. For each iteration step, the tool eliminates all
the logic that does not directly drive the given outputs. This cone-of-
influence reduction leaves only logic cones, cut out of the full DUV logic,
for every comparison step. This transformation reduces the number of
inputs into every compared cone and reduces the overall amount of logic
per checking step. Modern BEC tools do this step automatically without
user interaction.

464 Chapter 11 ■ Introduction to Formal Verification

A1

B1

C1

Model 1

XOR = 0
E

?

A2

B2

C2

Model 2

■ FIGURE 11.19

The horizontal partitioning approach to equivalence checking. The equivalence checkers take outputs
from either model and compare only the logic that specifically drives these outputs. In this example,
the comparison occurs between the pairs of logic partitions A1, A2, B1, B2, and C1, C2.

Vertical partitioning selects intermediate points inside the logic of
either DUV model. This cuts the depth of the logic cones compared at
each step as well as number of inputs and amount of logic covered by
the cone. Figure 11.20 shows an illustration of this principle: C1, C2, C3
are the cut points for which the checker must prove equivalence for the
partitioning to succeed. Either the user specifies the cut points manually
or the BEC tool has built-in heuristics to find these automatically [77].

11.2.5 Blueprint of a Modern Equivalence Checking Tool
In this section, we want to put together all available elements and algo-
rithms discussed into a single coherent design of a Boolean equivalence
checker. Discussing the different algorithms at our disposal for this task,
we learned that the fundamental exponential nature of the problem does
not disappear using a single “magic” algorithm. However, the different

11.2 Formal Boolean Equivalence Checking 465

C11

Model1

Pair-wise
XOR = 0 ?

E

C21
C31

C41

C12

Model2

C22
C32

C42

■ FIGURE 11.20

Vertical partitioning using cut points C1, C2, and C3 allows the comparison process to prove equiva-
lence for smaller subcones with less number of inputs and logic. Horizontal partitioning only works if
the equivalence checker can indeed prove that the cut points are Boolean equivalent. The XOR check
now takes not only the model output to compare pair-wise but also the signals that represent the cut
points in each model.

approaches have different strengths and weaknesses. This clearly leads
to a desirable architecture that encompasses most of these algorithms
and puts them together in a flow where heuristic choices select the appro-
priate times when a certain algorithm is most applicable.

Figure 11.21 shows a possible overall flow for such a hybrid, multiple
algorithm, equivalence checker tool. After the import of both DUV rep-
resentations, a structural analysis and optimization squeeze out as much
redundancy of the combined model as possible, consistent with a rea-
sonable turn-around time for the overall task. The partitioning algo-
rithms follow afterward. Per partition, the BEC tool first uses simple
random simulation, which cheaply filters out easy-to-find miscompares.
Random simulation is an inexpensive filter, because it finds gross mis-
matches between the two models quickly. It is a heuristic choice of the
tool how long to use random simulation before proceeding to the more
expensive algorithms.

466 Chapter 11 ■ Introduction to Formal Verification

Import DUV representations
combine into single model

Translate
partition-based

results into full DUV
model

Display counter-example

Per partition

Structural analysis and
optimization

Horizontal/vertical partitioning

Random simulation

Heuristic
choice

No
miscompares
found

Miscompare

BDD analysis SAT/ATPG analysis

Compare OK?

No Yes
Success!

Miscompare!

■ FIGURE 11.21

Flow of a multiple algorithm Boolean equivalence checker.

Heuristics are the basis for the choice between BDD-based or
ATPG/SAT-based analysis. It is also possible to abort one algorithm in
favor of the other, if it exceeds a certain time or memory threshold.
Random simulation generally never concludes success; the BEC tool uses
it only as a filter for easy-to-find fails. A non-fail result still is overall
inconclusive with respect to equivalency. BDD or ATPG/SAT analysis can
conclude either success or failure. Success means a proof of equivalence
for the given partition. Failure means the result is inconclusive because
the tool either exceeded resource limits or found a miscompare. In the
latter case, the algorithm needs to generate a counterexample pattern,
which it needs to enlarge from a partition-limited pattern to a DUV-wide
pattern to allow efficient user debug. Only after all partitions prove to be
equivalent can the tool signal the successful conclusion to the user.

Today’s BEC tools have brought FV into the mainstream of verifica-
tion. Without equivalence checking, the massive reliance of modern ver-
ification methodologies on fast RTL simulation would not be possible.
BEC frees the verification team from most encounters with gate-level
DUV implementations and certainly from the need to run massive
simulation cycles on the switch-level implantation of aggressive custom
circuit designs. All larger commercial electronic design automation
vendors now include BEC tools in their offering, for example, Formality
from Synopsys, Encounter Conformal from Cadence, or Formal Pro from
Mentor Graphics, to name a few [78–80].

In addition, sequential equivalence checking, despite its increased
complexity over combination equivalence checking, has made progress
toward practical project application. The base technologies to prove
sequential equivalence are the same as those used for functional prop-
erty checking, which we discuss next.

11.3 FUNCTIONAL FV—PROPERTY CHECKING

We defined property checking above as the main focus for functional FV.
As mentioned before, this limits the scope of our FV discussion to the
subset of model-based formal methods and explicitly leaves theorem-
proving methods aside. The reason is that property checking is over-
whelmingly the most practically important technology in the industry
today.

Central to property checking are of course the mechanisms to specify
properties themselves. During the 1990s, a wide variety of property spec-
ification languages evolved. In the last few years, the electronic design
automation industry organization Accellera has devoted considerable
effort to standardize a common property specification language [81]. The
result is the language PSL, which we discuss in detail in Chapter 12 [82].
In addition, assertion language concepts, to which property specification
is closely related, have taken a hold in design language standards like

11.3 Functional FV—Property Checking 467

SystemVerilog as well [81]. In this section, we prepare the in-depth dis-
cussion of property specification tools in Chapter 12 with a close look at
the basic principles underlying these tools. In this context, we introduce
the FV environment, which consists of checker and driver components
similar to the simulation-based environments. After the introduction
of the principles of temporal logic, we conclude the section with an
overview of a typical FV tools flow.

The target for model-based property checking is the FSM model of the
DUV. To check formally that a design conforms to a property, it must be
proven that for all states and all state transitions when the property is
relevant, the FSM does not violate the conditions expressed in the prop-
erty. The question is how to express in a systematic way when the prop-
erty is relevant.

11.3.1 Property Checking Versus Sequential
Equivalence Checking

Static properties are like assertions (Section 3.3): They are conditions
that hold true for all possible states of a DUV. More general are tempo-
ral properties, which hold over a selected subset of the DUV’s states.
Static properties are merely the subset of temporal properties where that
subset of states includes all states. Static properties can be expressed
using Boolean logic expressions, for example, the one-hot value condi-
tion for a collection of enable signals of all drivers on a data bus. Tem-
poral properties must in addition specify for which DUV states the checks
need to hold.

Therefore, one practical way to specify temporal properties is the use
of a state machine whose logic tracks the DUV state and applies the
checking at the relevant states. The requirements for such a checker FSM
are not different from those for a hardware specification, and therefore
it is quite possible to implement a checker FSM with an HDL.

As Figure 11.22 shows, the checker FSM does need access to the
inputs, outputs, and internal signals of the DUV. The checker tracks the
DUV execution through its state space, keeps track of its own states, and
generates a 1-bit signal for every property that it checks. These checker
output signals indicate at every moment of time whether the DUV vio-
lates a particular property, and we name them appropriately fail signals.

We can recast the goal of functional FV. The task is to prove that there
are no cycles with an active fail signal.

Properties that check DUV internal states are implementation-
dependent assertions. Sometimes the access to internals is necessary,
just as described in the gray, white, and black box discussion in
Section 3.2.

Of course, this implementation of properties in Figure 11.22 is just a
different view of an HDL test bench (see Chapter 5). It can be beneficial
to use the HDL checker in simulation and FV. If the state space explo-

468 Chapter 11 ■ Introduction to Formal Verification

sion prevents the FV methods from proving that certain fail signals are
always off, simulation can re-use the checker to verify those fails do not
occur during all simulation cycles. This is a method to leverage the
investment into the FV checker also if the FV problem turns out to be
intractable. In general, the HDL checker needs access to DUV internal
signals. As discussed in Chapter 5, this is possibly a problem when the
RTL used is VHDL. HDL checker components need to be instantiated at
the right levels of hierarchy to give the checker proper access to the DUV
signals it needs to perform the verification.

The DUV is an FSM itself. A comparison of Figure 11.22 with Figure
11.9 shows that property checking is just a special case of the sequential
equivalence check. If we assign the DUV to FSM1 and the checker to
FSM2 and we make the checker observe and check all DUV outputs
during all cycles, the setup of Figure 11.22 does check for sequential
equivalence. The clock of the checker FSM is always the same as the DUV
clock, as we discuss further in Chapter 12.

Sequential equivalence checking is a much more complete check of
the DUV and is therefore harder than the checking of a collection of some
functional properties. In fact, the more different the two representations
are, the harder it becomes. Similar simplification techniques as were dis-
cussed above apply here to cut the equivalence-checking problem into
smaller problems.

With the progress in practical FV algorithms during the last 5 years,
sequential equivalence checking has made inroads into the methodology
of real projects. Figure 11.23 shows one of the advanced schemes that
have worked well for the verification of functional processing units.

11.3 Functional FV—Property Checking 469

DUV
Design outputsDesign inputs

^

Checker
logic

Checker
states

Failure conditions

Checker FSM

■ FIGURE 11.22

A checker finite state machine (FSM) connects via inputs to the design under verification (DUV) (inputs,
outputs, internal signals/state), keeps track of its own state, and generates a failure condition bit per
property that it checks.

In the example described in Jacobi et al., the verification team created
an extremely simplified RTL reference model of a floating-point unit,
which acts as a specification for the implementation model [83]. The ref-
erence RTL is less than 1/30th the size of the pipelined implementation
and much easier to keep correct.

The verification team added a number of delay stages to the reference
model to adjust the timing of its outputs to that of the implementation
model, which pipelines its operations internally. In addition, the inputs
of both models connect to an operand/operator input generator. This
block creates all legal scenarios expected by the DUV. Leaving the model
inputs open would be equivalent to allowing (and checking) all possible
Boolean input values at all times, which is far more than the functional
specification for the DUV prescribes. Jacobi et al. show in detail how they
achieved a complete FV of the unit with this scheme [83].

11.3.2 The Myth of Complete Verification With FV
As usual for new technologies, exuberant proponents of formal methods
accompanied the introduction of FV into the mainstream of verification
with statements that created unrealistic expectations. A key promise
associated with FV is that FV of a DUV is complete verification.

470 Chapter 11 ■ Introduction to Formal Verification

Input
generator
(operators,
operands)

Pipeline stages

Pipelined
implementation
model

?=

Non-pipelined
reference

model

Delay stages

■ FIGURE 11.23

Application of sequential equivalence checking where the implementation of a pipelined execution unit
is verified against a simplified, nonpipelined reference model. The delay stages of the reference model
ensure that the time delay is the same for the outputs of the reference model and the implementation
model.

However, there are two main obstacles in the way of a complete veri-
fication with today’s FV tools. First, the completeness of FV is equal to
the completeness of the properties that the design and verification teams
specify. Property verification, where the properties are short of a com-
plete reference model, is bound to be incomplete. How many properties
make a complete specification? The question of what defines complete-
ness for a set of properties is still a topic of research [84]. It is important
to distinguish clearly between the completeness of the FV of properties
and complete verification. Successful FV means exhaustive verification
of a property or set of properties. Only a complete set of properties, for-
mally verified, means complete verification.

The second obstacle against complete verification with FV is the prac-
tical difficulty of proving properties against the state space explosion. To
circumvent the problem of exhausted memory or unlimited runtime
requirements, the FV team typically specifies constraints on the input
values and sequences the tool should pursue. If the DUV inputs are
unconstrained, the state exploration has to consider every possible input
value at every state. Clearly, the user must constrain the inputs to the
legal set of input sequences already to avoid false fails based on com-
pletely open inputs. This is the purpose of the FV input driver, which we
discuss below. In many cases, the reachable state space of a real-life DUV
is still too large for an exhaustive exploration even with the constrained
inputs. Therefore, it is common practice to constrain the inputs even
further and consider just a subset of the functionality per FV tool run.
We call this technique case splitting and discuss it further in Section
12.3.4. Figure 11.24 shows how the DUV state space is limited per one
FV tool run by input constraints. Eventually, the FV tool will run out of
resources, which also limits the state space that the FV covers exhaus-
tively even further.

In summary, simulation drives a single (possibly long) scenario and
checks multiple properties (Figure 11.5). FV in practice drives all possi-
ble input scenarios while only checking a single property at a time. Where
FV algorithms run freely over the reachable state space, checking is
exhaustive. Typically, however, the team has to partition the exhaustive
exploration into constrained subsets of the reachable state space within
which the verification coverage is complete. As a result, FV has the
strength of full exploration within a constrained state space, which is a
powerful method to gain absolute confidence in the correctness portions
of a design. It is the task of the verification team to select those portions
where complete verification is possible and desirable.

11.3.3 Properties for an Example Design
In this section, a small example is studied, the design called ARB in
Figure 11.25, to make the discussion of property checking more concrete.
ARB is a simple design that arbitrates the access to an unspecified

11.3 Functional FV—Property Checking 471

resource between three requestors. The requestors apply for resource
access by raising their assigned input bit of vector req[0 :2]. Once ARB
sees the input cmd asserted, it must grant the resource to one of the
requestors by raising their corresponding bit on ARB’s output vector
gnt[0 :2] after a fixed amount of cycles. Figures 11.25a–d lay out the
details of the specification for ARB.

In Figure 11.26 we translate the ARB input assumptions and behavior
specification into the topology of a DUV connected to a protocol checker
and a property checker. The purpose of the protocol checker is simply to
watch over the environment of the DUV and raise an error if the actual
signal interaction violates the input assumptions of Figure 11.25. The
main focus is on the property checker with its various inputs and the

472 Chapter 11 ■ Introduction to Formal Verification

Input s
ignal c

onstr
aints

Out of runtime resources

In
pu

t s
ign

al
co

ns
tra

int
s

DUV
state space

Initial
state

Bug

Bug

Bug

Bug

Bug

■ FIGURE 11.24

Practical limitations against a complete state space traversal with formal verification (FV) technologies.
The state space exploration starts with an initial state and proceeds from there through all reachable
states while checking a property. The concentric rings starting at the initial state mark the consecutive
exploration steps. To circumvent the problem of state space explosion, the scope of the traversal is con-
strained. Arrows illustrate how constraining the design under verification (DUV) inputs limits the state
space considered by the traversal. The user specifies which input sequences should not be considered.
The example shows the exploration to exhaust the available runtime resources after four steps. We high-
light one property violation as a detected bug (white star).

11.3 Functional FV—Property Checking 473

A
R

B

gn
t[
0:
2]

(a
) A

R
B

 I/
O

’s

cm
d

re
q[

0:
2]

in
t0

a b

(c
) A

R
B

 E
xa

m
pl

e
Ti

m
in

g
D

ia
gr

am

cm
d

re
q[

0:
2]

gn
t[

0:
2]

(d
) A

R
B

 B
eh

av
io

r
S

pe
ci

fic
at

io
ns

A
R

B
 b

eh
av

io
r

sp
ec

ifi
ca

tio
n:

(1
)

(2
)

(3
)

gn
t[
0:
2]

 is
 v

al
id

 (
on

e-
ho

t)
 tw

o
cl

oc
k

cy
cl

es
 a

fte
r
cm
d

w
as

 a
ct

iv
e

an
d

‘0
00

’ a
t a

ll
ot

he
r

tim
es

.

T
he

 v
al

id
 g
nt
[0
:2
]

m
us

t c
or

re
sp

on
d

to
 o

ne
 o

f t
he

 r
eq
[0
:2
]

si
gn

al
s

th
at

 w
er

e
ac

tiv
e

w
he

n
cm
d

w
as

 a
ct

iv
e.

T
he

 in
te

rn
al

 s
ig

na
ls
 a
 a

nd
 b

 c
an

no
t b

e
on

 a
t t

he
 s

am
e

tim
e.

(b
) A

R
B

 in
pu

t A
ss

um
pt

io
ns

In
pu

t a
ss

um
pt

io
ns

:

(1
)

(2
)

(3
)

(4
)

cm
d

is
 a

n
ac

tiv
e-

hi
gh

 p
ul

se
 th

at
 c

an
 o

cc
ur

 a
t m

os
t e

ve
ry

 tw
o

cl
oc

k
cy

cl
es

.

If
cm
d

is
 a

ct
iv

e,
 r
eq
[0
:2
]

is
 n

ot
 “

00
0”

.

re
q[
0:
2]
 i

s
va

lid
 o

nl
y

w
he

n
cm
d

is
 a

ct
iv

e.

If
gn
t[
i]
=‘
1’

, r
eq
[0
:2
]

m
us

t b
e

‘0
00

’.

■
FI

GU
RE

 1
1.

25

S
pe

ci
fic

at
io

n
of

 t
he

 A
R

B
 e

xa
m

pl
e

D
U

V.
 (

a)
 T

he
 i

np
ut

/o
ut

pu
t

pi
n

sp
ec

ifi
ca

ti
on

.
(b

)
Th

e
as

su
m

pt
io

ns
 a

bo
ut

 t
he

 e
nv

ir
on

m
en

t
dr

iv
in

g
A

R
B

 o
n

it
s

in
pu

ts
.

(c
)

Th
e

be
ha

vi
or

 o
f

A
R

B
 w

it
h

an
 e

xe
m

pl
ar

y
ti

m
in

g
di

ag
ra

m
.

(d
)

Th
e

sp
ec

ifi
ca

ti
on

 A
R

B
’ s

 e
xp

ec
te

d
be

ha
vi

or
 b

ot
h

on
 t

he
 o

ut
pu

ts
 a

s
w

el
l

as
 o

n
so

m
e

in
te

rn
al

 o
bs

er
va

ti
on

 p
oi

nt
s.

four fails() output signals. Every fails() bit represents one of the four
properties that we check.

If verification finds any legal way to stimulate ARB such that one of
the fails() bits turn active, a property violation and therefore a design bug
is identified.

In Figure 11.27, we finally translate the property specification for ARB
into an HDL checker. The module has two always blocks. The first always
block tracks cmd’s presented at the inputs of ARB and counts the cycles
after every such event. Two state bits indicate the significant intervals
needed for the check of the property condition: two and four cycles after
cmd was active. The second always block simply uses these interval
marker bits to initiate the correct Boolean checks at the right time and
raise the corresponding fails() bit if the check fails.

The first three properties are all temporal in nature. They depend on
a specific state indication as provided by the first always block. The last
property (fails[3]) is a static property because it is checked every cycle
regardless of whether ARB is processing a cmd or not. The checker FSM
encoded in the first always block captures the time boundaries for the
activation of the temporal properties of arb_property_checker. In this
example, the state machine is relatively simple because we can naturally
encode the state in a cycle counter. For more complex output protocols,
it is necessary to implement several FSMs, which might all be more
elaborate.

474 Chapter 11 ■ Introduction to Formal Verification

ARB

gnt[0:2]

cmd

req[0:2]

int0

a

b

ARB property specification:

Two cycles after cmd is on, gnt is one-hot

Internal signals A and B are never on at the same time

Property
checker

Input
protocol
checker

protocol_violation

fails(0)
fails(1)
fails(2)

fails(3)

Two cycles after cmd is off, gnt[] is “000”

Two cycles after cmd is on, the gnt bit active, corresponds
to one of the req bit that was active

■ FIGURE 11.26

This model connects an input protocol and a property checker block to the DUV (ARB). The outputs of
the property checker represent the four properties written out in English language and connected next
to their corresponding fails() bits. The fails() bit turns on if the DUV violates the specification.

It is an option for the verification team to drive an FV effort with
arb_ property_checker or to instantiate that module into a simulation
model. Obviously, if the FV effort can prove that any or even all of the
fails[] bit can never be on, we have a much stronger statement, one of
true verification, compared with running many simulation cycles.

11.3 Functional FV—Property Checking 475

module arb_property_checker(clk, cmd, req, gnt, a, b, fails);
 output req [0:3] fails;
 input cmd; input [0:2] req; input [0:2] gnt;

 reg [0:2]counter; reg [0:2]save_req; reg cmd_pending;

 reg two_after_cmd; reg two_after_cmd_down;

 initial begin counter = 0; cmd_pending = 0; end;

 always @(posedge clk) begin

 if (cmd==1) begin
 cmd_pending = 1; save_req = req;
 end

 if (cmd_pending && (counter < 3)) counter = counter + 1;
 else begin
 counter = 0;
 cmd_pending = 0;
 end

 if (counter==2) two_after_cmd = 1; else two_after_cmd = 0;
 if (counter==3) two_after_cmd_down = 1; else two_after_cmd_down = 0;
end

always @(posedge clk) begin

 fails = 4'b0000;

 /* property 0 */
 if ((two_after_cmd) && (gnt != 3b'001) && (gnt != 3b'010) && (gnt != 3b'100)) begin
 fails[0] = 1;
 end

 /* property 1 */
 if ((two_after_cmd_down) && (gnt != 3b'000) begin
 fails[1] = 1;
 end

 /* property 2 */
 if ((two_after_cmd) && ((gnt & save_req) ==0) begin
 fails[2] = 1;
 end

 /* property 3 */
 if (a& b) fails[3] = 1;

end
endmodule

■ FIGURE 11.27

Verilog implementation of the ARB property checker.

A closer study of the Verilog checker shows that the code clearly takes
into account that the inputs of ARB follow a specific protocol correctly.
For example, if cmd stays on for more than one cycle, the first always
block in Figure 11.27 will not work correctly. This is a perfectly valid way
to code the property checker, as long as either the environment guaran-
tees conformant behavior by the driver or the protocol checker is in
place. HDL assertions or an explicit input protocol checker, like the one
shown in Figure 11.26, protects the checker from overly constrained
assumptions on the DUV input interface.

This example, as simple as it is, should demonstrate that the specifi-
cation of properties in an HDL could be quite tedious and error-prone.
Four sentences in English turned into almost a page of Verilog code. This
overhead is one of the reasons for the development of property specifica-
tion languages. Such languages, because they are domain-specific, can be
much more concise and therefore a real productivity boost for property
specification tasks. Even more importantly, a concise specification in
such a language can be easier to understand and maintain and therefore
safer for the FV process overall. We discuss property specification lan-
guages in more detail in Chapter 12.

11.3.4 DUV Drivers for FV
Like simulation-based verification, FV needs a model for the environ-
ment of the DUV. If the inputs of the DUV are open, which means no
source drives them, the FV process must assume any input value com-
bination at any time is legal and possible. This is necessary because FV’s
goal is to exhaustively check or prove the properties. Open inputs imply
that the customer could plug the DUV into any context with any tempo-
ral behavior. We say that in this case the inputs are unconstrained.

In practice, it is rare that a DUV can really function correctly in a
totally unconstrained environment. As with in simulation, however, it is
desirable to consider as few constraints on the DUV inputs as possible.
The proof of a property for a DUV is stronger if fewer constraints are
assumed on the inputs. For example, assume the DUV block of Figure
11.26 would still function correctly even if the environment supplied new
requests every cycle. We would not encode into the property checking
implementation the constraint that cmd can be on at most every other
cycle. As a result, the FV team would have to prove all three temporal
properties under fewer constraints, which would make the DUV itself
more robust for diverse environments.

In Figure 11.26, we protect the FV environment from false input
behavior with a protocol checker. This is only a passive function. In addi-
tion, just like in simulation, the FV effort needs the specification of an
active driver that provides stimulus to the DUV inputs. The driver’s role
is to drive all possible input stimuli into the DUV but constrain the input
values enough so that the property checker does not report false fails. A

476 Chapter 11 ■ Introduction to Formal Verification

false fail is a DUV bug report created by an input stimulus that will never
occur in the DUV’s real target environment.

Figure 11.28 shows how the complete functional FV environment
creates a closed model with a driver on the DUV inputs and the property
checker connected to the outputs. The whole purpose of the FV effort is
to prove that the fails() signals are always “0.”

If this exhaustive proof via FV is successful, we have 100% confidence
that the DUV is without bugs for the properties specified. This is a veri-
fication result with the highest confidence possible. However, it is impor-
tant to understand the caveats of this statement! As mentioned above,
the completeness of the verification is dependent on the completeness
of the set of properties. We also see it is dependent on the completeness
of the FV driver. FV drivers must be as complete as possible in their
specification of all legal inputs stimuli over time—otherwise the purpose
of FV is defeated.

The most effective way to gain completeness for the input stimuli
is to leave the value unspecified. An unspecified value for an input implies
all possible values. For a bit-level signal, this means both 0 and 1 are
specified, and an exhaustive method must use both values. Even though
FV algorithms must explore simultaneously all possible values of an
unspecified signal, we call such signal non-deterministic. A non-
deterministic signal assumes all values in FV, whereas, if used in a sim-
ulation model, a simulation driver would chose a random value from the
legal value set.

Non-determinism is a powerful means to specify FV drivers. A signal
can be set to a non-deterministic value for all times or for a specific time.
Figure 11.29 shows two different views of how to use non-determinism
to specify all possible inputs to the ARB DUV in Figure 11.26. The flow-
chart specification (Figure 11.29a) makes the two random choices an
operation of the driver. First, a random number 1 to n is chosen as the
cycle delay before generating a new cmd signal value of 1. Second, there
is a random selection of eight choices for all the possible bit-pattern for

11.3 Functional FV—Property Checking 477

DUV
FV

driver
Property
checker

fails()

■ FIGURE 11.28

The complete functional formal verification (FV) environment creates a closed model. The FV driver sup-
plies all possible input stimuli. The property checker traces inputs, internal states, and stimulus over
time and asserts every cycle via the fails() signals, whether the DUV complies with the properties of the
functional specification.

the req[] vector. We can view Figure 11.29a as the operational specifica-
tion of an ARB driver. The state-diagram (Figure 11.29b) specifies a non-
deterministic state-machine for the ARB driver. States 1 through 8 supply
all possible req[] patterns to the DUV input. The non-determinism means
that the driver FSM is in all states 1 to 8 at the same time. When applied
to our FV problem, the exhaustive state exploration will have to explore
states 1 to 8 in conjunction with any legal state the ARB can be in at the
same time.

In summary, we use non-determinism to express concisely all possible
combinations of stimulus. A simulation run chooses one random value
at a time; an FV tool exhaustively visits all possible choices.

Just as we used HDL to specify properties above, it is possible to
specify an FV driver using HDL constructs. Mostly, the FV driver is a
standard FSM. The only new construct needed is a function that selects
non-deterministically from a range of possibilities. Such a function
would allow operations similar to the ones described in Figure 11.29a.
VHDL is sufficiently powerful to define such a function. The System
Verilog extension of Verilog provides similar capabilities. The standard
simulation semantics of either HDL indeed executes a random selection.
If such a specification is the input to an FV tool, the tool applies the
broader, all-choices-at-the-same-time interpretation.

478 Chapter 11 ■ Introduction to Formal Verification

(a) Driver flowchart (b) Driver FSM

Wait random{#} cycles
where #=[1..n]

Choose random{#} req[0:2]
where #=one of [000,001,010,011...,111]

1

2

3

4

5

6

7

8

0 9

req=000

req=001

req=010

req=011

req=100

req=101

req=110

req=111

■ FIGURE 11.29

Two equivalent ways to specify the nondeterministic generation of all possible requests on the ARB
(Figure 11.26) input interface. (a) Flowchart that uses random selection for the req[] input. (b) Non-
deterministic state diagram.

The property specification language PSL has a modeling layer that con-
tains extensions to Verilog, which serve exactly the purpose to specify FV
drivers as described here [81].

11.3.5 State Space Traversal and Temporal Logic
Temporal properties assert specific behavior to the DUV relative to the
DUV’s progression through its reachable state space. Temporal logic
is a system of specification that allows the expression of relationships
between assertions at different times. There are different versions of tem-
poral logic, and there is much in-depth literature about the topic [58].
We start the discussion with a simple example DUV.

Figure 11.30 shows the state diagram and the input/output signal def-
initions. The encoding of the states, which is identical to the value of the
output vector of the block, exhibits the behavior defined for Gray encod-
ing: For every up- or down-count transition, only one bit of the state
vector changes. From the initial starting state, the counter steps up or
down one Gray encoding word at a time. If we draw out the progression
of all states that the counter can possibly visit, we arrive at the unfolded,
expanded state, transition diagram of Figure 11.31.

We defined temporal logic as a way to express assertions over time.
The following bulleted list shows queries that are examples for such
assertions, which can be answered using the unfolded state transition
diagram of Figure 11.31.

11.3 Functional FV—Property Checking 479

(a) Gray Counter Block Diagram (b) Gray Counter State Diagram

000

001 010

011

100

101

110

111Gray code
counter

count_up

clock

g(0)

g(1)

g(2)

count_up=1

count_up=0

■ FIGURE 11.30

A simple gray counter as a basis for the discussion of temporal logic. (a) The input/output signals of
the counter. (b) The counter’s state diagram. For simplicity, the state encoding is identical with the
encoding of the output vector g(0) to (2). The state transition in the counterclockwise direction occurs
if the “count_up’’ input is 0 and “count_up=1’’ results in the clockwise direction. A thick arrow marks
the initial power-on state “000.’’ Again, for simplicity of the discussion, no reset line is specified on
the gray counter’s input side.

■ Is there a path from the initial state that reaches the value
g()=“111’’?

■ Starting at state g()=“100’’, is it possible to return to that state in
five cycles?

■ For every state transition, does the value of the vector g() always
change in one bit?

As the state space unfolds in Figure 11.31, it becomes apparent that we
do not encounter any new states or state transitions after time step 5. A
state exploration, which follows this expanded diagram, is said to have
reached a fix point when it only continues to repeat transitions that were
encountered before.

The graph in Figure 11.31 represents a tree (turned side-ways in this
figure). In fact, we can represent every state exploration in this tree
format. If the FSM has several possible initial states, all these states will
be roots of the tree.

One variant of temporal logic, called linear time logic (LTL) has oper-
ators that let us specify properties based on sequences of time steps. If

480 Chapter 11 ■ Introduction to Formal Verification

000

001

010

011

100

101

110

111

000 000 000

101

111

100

001

100

001

011

110

011

101

010

Time
0 1 2 3 4 5 6

■ FIGURE 11.31

Expansion of all possible state transitions of the gray counter from Figure 11.30 over time. Every time
step represents a cycle (from left to right), starting with the initial state “000.’’ Every arrow that leaves
a state in the upward direction represents the state transition for “count_up=1’’; every array going in
the downward direction indicates “count_up=0.’’

p is a basic static property or assertion (e.g., “vector v is one-hot
encoded”), then the formula “Operator p” specifies a temporal property.
Figure 11.32 illustrates several LTL operators [85]. p typically is a
Boolean formula.

A more powerful type of temporal logic, called computation tree logic
(CTL), allows specification of properties based sets of paths through the
exploration tree. CTL pairs the LTL operators from Figure 11.32 with
operators that specify a set of paths. Figure 11.33 shows some CTL exam-
ples using a graphic notation. The set operators, or path quantifiers [62],
that are part of CTL are

■ A: for all future paths in tree

■ E: there exist some future paths in the tree

The FV jargon includes a popular classification of types of properties
that we discuss briefly here. We call properties based on Fp operator

11.3 Functional FV—Property Checking 481

Time

p p p p pp p

Gp

p Gp is true at time t, if p is true from t on in the future

Time

p p p ppp

Time

p p p ppp

Time

p p p pp qp

(a) Global Operator

(b) Future Operator

Fp is true at time t, if p is true at some times in the future

Fp

(c) NeX t Operator

Xp

Xp is true at time t, if p is true at the next cycle t+1

(d) Until Operator

pUp is true at time t, if from then on p is true until q is true

pUq

■ FIGURE 11.32

A selection of temporal operators of linear time logic (LTL). These operators allow specification of prop-
erties that bind the base property p to a relationship with events in the future. (a) The G (Global) oper-
ator that specifies a time from when p is true for all future times. (b) Example of F (Future), the operator
that specifies a time from when p is true sometimes in the future. (c) NeXt operator that specifies p is
true during the next cycle. (d) Example of the Until operator.

liveness properties. A liveness property expresses a desirable state that
occurs eventually at some future time. Safety properties, based on the Gp
operator, are those that specify that the DUV never violates the property.

These two classes are important because their computational com-
plexity is dramatically different. The search space for a liveness property
is potentially unbounded. A tool can prove a liveness property only if the
algorithm used to traverse the reachable state space can actually find a

482 Chapter 11 ■ Introduction to Formal Verification

(a) EG Operator

(b) AF Operator (d) AG Operator

(c) EF Operator

EGp there exists a path where
p is true for all the future times

EFp there exists a path where
p is true at some future time

AFp for all paths p is true
at some future time

AGp for all paths p is true
at all future times

■ FIGURE 11.33

Computation tree logic operators specify properties for sets of paths in the state exploration tree. The
dark shaded circles represent states for which the property p is true. (a) The existence of one path
through the tree for which p is true at all times. (b) All paths have at least one time step were p is true.
(c) The condition that there is at least one time step in one exploration step where p is true. (d) Appli-
cation of the operator pair that requires p to be true all the time.

fix point, which indicates it can contain the full reachable state space in
the computer’s memory. For many DUVs in practice, a liveness property
might not be solvable (or provable) because of the state space explosion.
On the other hand, a tool can check a safety property at every state that
it is able to explore. If the tool cannot explore all states, the proof is
limited to those states that are containable within the computers memory
or are reachable in a reasonable time. However, even if a full exploration
is not possible, the tool produces results for all the explored states.

In practice, we often can transform liveness properties into safety
properties by limiting the amount of cycles that the tool is supposed to
explore into the future. For example, instead of specifying that eventu-
ally a grant follows a request, we can specify that every grant follows a
request after at most x cycles. This limits the checking of the property to
at most x cycles and makes the problem more tractable.

The practical use of these LTL and CTL notations is limited. In fact,
the authors of Sugar chose the name for the PSL/Sugar property speci-
fication language to allude to the syntactic sugaring of CTL—deliberately
done to make temporal expressions more intuitive and user friendly [82].
However, it is important to understand the underlying concepts of how
property languages cast the specification of time systematically into the
description of paths and sets of paths through the state space.

After a little experimentation with these operators, it becomes clear
how the temporal logic can specify properties far more concisely than
the manual implementation of the checker FSM as used, for example, in
Figure 11.27. Table 11.1 applies CTL operators to express two properties
of the Gray counter of Figure 11.30. In Chapter 12 we do not use CTL
directly because it has lost most of its practical value in the field.
For complex temporal properties, CTL formulas tend to become quite
complex, which makes them hard to maintain and error-prone. The
modern property specification languages apply a much more user-
friendly, intuitive syntax. The principles of the temporal logic, introduced
by LTL and CTL, however, remain the basic foundation of property
specification.

11.3.6 Functional FV Tool Flow
Now we have all the ingredients necessary to discuss the nature of
functional FV tools. An RTL model represents the DUV. We express

11.3 Functional FV—Property Checking 483

TABLE 11.1 ■ Two Properties of the Gray Counter Example of Figure 11.30

There is a path from the initial state that EF (g() = “111”)
eventually reaches the value g() = “111”

Starting at state g() = “100,” there is a path that AG(g() = “100”Æ
returns to that same state in five cycles? EX(EX(EX(EX(EX(g() = ‘100’)))))

properties in temporal logic. In addition, most DUVs require their inputs
to follow a specific protocol and cannot tolerate the inputs to take on any
possible value at all times. Therefore, the third input element necessary
for functional FV is the input driver. Figure 11.34 shows the general flow
for a functional FV tool.

The outputs of the FV tool are traces for the error and the success
case. In the case of a property violation, the error trace shows one
example of signal values and state space traversal that leads to the error.
A welcome benefit of FV algorithms is that in most instances the algo-
rithms produce the shortest possible trace that leads to the error.

Even in the case that the tool finds no property violation, the user will
find a witness trace very helpful for analysis. A witness is a trace that
shows one example where the property was true. The value of this trace
is that it allows a user to see the actual effect and interpretation of the
abstract property for the actual DUV. Temporal properties can be very
compact, and therefore it is easy to overlook subtleties in the timing
behavior of the property. The witness trace gives the user a different view-
point on the property, showing it in a procedural behavior whereas the
specification uses a declarative formula unless HDL checkers are used.
The witness trace shows the user whether the tool interpreted the prop-
erty in the intended fashion or not.

11.4 SUMMARY

In this chapter we introduce the reader to the basic concepts of FV. All
previous chapters described verification methods that addressed the
finite amount of state exploration that limits simulation. The generation

484 Chapter 11 ■ Introduction to Formal Verification

Functional formal verification tool

Correct?
No Yes

Error trace Witness trace

RTL model FV driver
Property

specification

■ FIGURE 11.34

General flow for a functional formal verification (FV) tool.

of stimulus and the methods of functional coverage are all techniques
that attempt to drive simulation into interesting areas of the design—
areas thought to be complex and error prone.

FV starts with a bold premise that we can do much better than simu-
lation. This premise states that we can use exhaustive state space explo-
ration and mathematical methods to prove that a design is correct for
all conditions.

The first part of this chapter introduced an important an imminently
practical method of FV, equivalence checking, especially BEC. We
learned about different classes of algorithms that all have a role in what
is the fundamentally intractable problem of proving that two represen-
tations of the same DUV are equivalent. In the end, it is necessary to use
a whole collection of these algorithms synergistically because no single
one works in all cases.

Functional FV is an even harder problem. It entails either sequential
equivalence checking or property checking. Using high-level specification
and equivalence checking with the RTL implementation for pipelined
execution units is an emerging promising field of FV.

We base property checking on a similar framework as in simulation.
There is a need for an input driver to constrain the stimulus that the FV
algorithms evaluate on the DUV inputs. We can implement the proper-
ties in basic form as checker FSMs in HDL. However, more powerful and
concise methods are available to specify temporal properties.

In the next chapter, we discuss practical property specification lan-
guages and applicable algorithms that are the basis for functional FV
tools. As with the equivalence-checking problem in this chapter, the key
to success lies in the application of several algorithms together to prove
properties. The algorithms used there are remarkably similar to the one
we use for equivalence checking here.

11.5 EXERCISES

1. Assume one full simulation cycle for the ARB DUV of Figure 11.25
takes 1msec. How long does it take to use simulation to drive ARB
through all possible input patterns? If the number of requestors
grows from 3 to 16, how much longer would a complete simulation
take?

2. Implement the protocol checker of Figure 11.26 in HDL.

3. Re-write the property checker of Figure 11.27 in VHDL. Implement
the protocol checker of Figure 11.26 as VHDL assertions that are
integrated into the VHDL checker code.

4. Implement a random stimulus generator for the ARB DUV of Figure
11.26 in VHDL.

11.5 Exercises 485

5. One possible implementation of a Gray code counter (Section 11.3.4,
DUV Drivers for FV) uses a binary counter and combinational logic,
which translates binary code to gray code. Implement a Verilog
version of such a Gray counter implementation. Implement an HDL
checker with three fail signals that encodes the three example Gray
code counter properties of Section 11.3.4.

6. Define the combinational function that transforms a 3-bit binary
code into Gray code in two ways: first using a truth table and second
using a Karnaugh-Veitch diagram. Translate both into a BDD and
show the Boolean equivalence between the two equation sets devel-
oped using the two methods.

7. List additional Gray code counter properties that were omitted from
the list of examples in Section 11.3.4.

486 Chapter 11 ■ Introduction to Formal Verification

Chapter 11 introduced functional formal verification (FV) as a method
that uses exhaustive state exploration to prove properties of a design
under verification (DUV) and find bugs in the design. The mathematical
rigor of Boolean and temporal logic is the basis for the specification of
properties. A complete FV environment includes the model of the DUV
itself, the formal specification as a set of properties, and an FV driver,
which specifies all possible input stimuli for the DUV. Figure 11.28 shows
a block diagram with all basic elements of a complete FV environment:
the DUV, the property checker, and the FV driver.

The discussion now turns to the more practical side of FV. A design
and verification team needs productive mechanisms to use the formal
technology. This includes all components of the FV environment. For
the DUV model, the focus is exclusively on the register transfer level
(RTL) representation, because it plays the main role in the verification
cycle. Chapter 14 introduces high-level modeling and its FV application
for the pre-RTL phase of the design. The arrival of well-designed, intu-
itive, property specification languages makes the specification of pro-
perty checkers accessible to verification teams as well as designers.
Property specification has matured to the point where it is subject to
industry standardization, and in the case of PSL it also covers the field
of FV drivers.

Whereas the electronic design automation (EDA) industry converges
on standardized languages for the FV environment, the FV tools and
algorithms are still heavily evolving and the focus of much advanced
research. Any practical FV tool has to address the main roadblock of
this discipline, the state space explosion. There are two main goals of
research and development addressing this problem. First, there is devel-
opment of new algorithms to extend the frontier where the actual DUV
state space exceeds a tool’s capacity. Improvements in this area lead to
an improved baseline of tools usable for FV. Second, there is focus on
user-friendly ways to let the engineers specify which areas of the state
space are more “relevant” to explore than other areas. This approach
accepts the inevitable capacity limit and addresses ways to let the user
guide the power of exhaustive state exploration into areas where the DUV
has higher complexity and bug rates.

C H A P T E R 1 2

USING FORMAL VERIFICATION

This chapter has three parts. First, a review of an approach to embed
property specifications into the realm of hardware design languages
(HDLs) by encapsulating classes of properties into HDL library blocks
that the user can simply instantiate into the DUV where properties need
to be checked. Then an overview of the property specification language
PSL, which is the most developed stand-alone property specification
language in the industry at this time. We do not expect the reader to be
conversant in PSL after this introduction. It is more important to build
a conceptual framework that positions PSL such that it is easy to study
the wealth of further material that is available in specialized books
and on the Web. In the third part, we discuss current FV algorithms
and their strengths and weaknesses as well as the evolving discipline of
semi-FV.

The focus on PSL in this chapter is a good example for a property
specification language. At the time of this writing, PSL has moved further
through the maturation and standardization process of the industry. The
upcoming alternative to PSL is SystemVerilog, which has many attri-
butes that parallel PSL [86]. We expect the reader will be able to project
the discussion of PSL with relative ease to SystemVerilog, especially since
the underlying FV technologies are the same.

12.1 PROPERTY SPECIFICATION USING AN HDL LIBRARY

Although it is possible to specify properties with pure HDL constructs,
the approach is not very productive (see Figure 11.27). Coding of prop-
erties more complex than a simple Boolean assertion and especially tem-
poral conditions is very error-prone because it is hard to decipher the
original intent from a sequence of implemented HDL code.

On the other extreme, property specification with computation tree
logic (CTL) or linear time logic (LTL) was standard practice for FV engi-
neers in the 1990s. However, the very abstract mathematical character
of these formalisms did prevent a broader use of FV techniques by design
and verification teams. As the assertion-based methodology became more
popular, it became important to have notations that are more productive
to lower the entry barrier to these new technologies.

We demonstrate the middle ground between plain HDL coding and
the use of mathematical formulas by discussing two projects whose goal
it is to define a concise, easy-to-learn property specification method for
designers and verification engineers. The two projects are the Open Ver-
ification Library (OVL) and the Property Specification Language (PSL),
both of which are products of the EDA consortium Accellera [87]. We
discuss OVL in the next section and reserve The Property Specification
Language PSL completely for the overview of PSL.

488 Chapter 12 ■ Using Formal Verification

12.1.1 The OVL
The OVL project groups classes of properties, which occur often in
typical design situations, into a library of assertions that can be instan-
tiated in standard HDLs (Verilog/ VHDL). The authors implemented OVL
as a pure HDL library that is freely accessible on the Internet; it is usable
by any project and all tools that support the host HDL can automatically
work with this library. This means that OVL is useful both in a simula-
tion and in an FV flow.

OVL contains a set of Verilog modules and VHDL entity/architectures,
one for each property class. These OVL elements are assertion monitors
marked with the name prefix assert. The engineer specifies a property by
instantiating such a monitor in the HDL of the DUV or the test bench.
Every monitor has a set of ports that probe the DUV and feed the DUV
state to check logic inside the monitor.

Currently, OVL consists of 31 library elements. The standard uses a
consistent interface for all these assertion monitors. Figure 12.1 shows
the scheme OVL assertions are instantiated in both Verilog and VHDL.
The parameters (generics in VHDL) personalize specific aspects of an
instance of an assertion monitor, like the error message to be printed,
a severity level to be associated with a violation of the assertion, and
options for FV tools. Naturally, the ports are the means by which an
assertion monitor connects to the logic of the design in which it is instan-
tiated. Parameters are always constants passed into the monitor, whereas
the ports provide the variable state of DUV that the assertion checks every
cycle. Figure 12.3 shows a fully developed example of instantiated OVL
assertions in Verilog.

Each OVL assertion has four main elements that define its function-
ality (Table 12.1). The first three elements use signals connected via the
ports of the assertion instance. The parameters of the instantiation
supply the reporting element.

The port name for the triggering event is clk to indicate that the primary
intention is to synchronize assertion checking with a clock in the DUV.
Most OVL monitors have the port clk. Assertion and event sampling
always occurs with the positive edge of clk. Every monitor instance spec-
ifies a control signal, the enabling condition, which can enable or disable

12.1 Property Specification Using an HDL Library 489

VERILOG: assertion_name #(parameters) instance_name (arguments);
VHDL: instance_name : assertion_name generic map (parameters) port map (arguments);

■ FIGURE 12.1

All Open Verification Library assertion monitors are instantiated using the same scheme. The asser-
tion_name denotes the name of the specific assertion monitor in the library. The parameters specify
severity level and assertion error message among other controls of the assertion behavior. The argu-
ments are the signal ports of the assertion element that connect the checking logic to the DUV.

the assertion at any time. The OVL documentation uses the port name
reset_n for this signal. This name designate one intended use of this port
is to indicate that an initial reset phase has finished during which the
assertion check should not be active and assertion violations are expected
and not an error. A zero value for reset_n implies the assertion is active.
In addition, OVL provides a global variable that allows overall control of
all assertions in the RTL model. This gives the model environment, for
example, a test bench, global control over all assertions.

Table 12.2 lists all assertion monitors that the OVL standard currently
defines, together with a short explanation of their function. Actual usage
examples follow in Figure 12.3.

The simplest monitor types check combinational conditions
(assert_always, assert_never, assert_always_on_edge, assert_even/
odd_parity, assert_one_hot/cold assert_zero_one_hot). They exist primarily
to provide a base assertion infrastructure with the convenience of a pack-
aged functionality that can be tedious to code directly in an HDL. An
instance of assert_one_hot conveys the intent of the check more directly
than a series of equations that implement the “one hot” condition.

All other OVL monitor types specify sequential properties. They
sample and capture DUV states and express conditions expected to occur
over time. The complexity of the specified sequential conditions ranges
from checks for simple value transitions (assert_transition, assert_incre-
ment/decrement, assert_no_underflow/overflow) to the synchronization
of two dependent events (assert_implication, assert_handshake, various
window assertions) and finally to complex general event sequences
(assert_cycle_sequence) that approach the generality of LTL properties as
described in Chapter 11.

The OVL evolved from an assertion-based simulation methodology.
The library’s greatest strength is that it came from a real project envi-
ronment with its features grounded in the needs of real design and ver-
ification engineers. The interface to the library elements is systematic.
Ports and parameters with the same names have the same semantics and
always occur in the same sequence.

A very clear strength of OVL is the support for infrastructure provi-
sions concerning clocking and control of the assertions. When OVL

490 Chapter 12 ■ Using Formal Verification

TABLE 12.1. ■ Main defining elements of an OVL assertion

Triggering Event A specific event like a clock synchronizes the checking of
the assertion condition.

Enabling Condition Assertions have an individual condition that
enables/disables the monitoring.

Tested Condition This is the asserted condition that is checked each time
the triggering event occurs.

Reporting Message and severity used to report an assertion violation.

12.1 Property Specification Using an HDL Library 491

TABLE 12.2. ■ OVL assertion monitors

Name Ports Semantics

assert_always clk, reset_n, test_expr Continuously assert test_expr.

assert_always_on_edge clk, reset_n, sampling_event, Continuously monitor test_expr at every
test_expr specified edge of sampling_event

(edge type specified by parameter).

assert_change clk, reset_n, start_event, Continuously monitor start_event. Once
test_expr start_event occurs, check for change in

test_expr within specified number of
clk edges (parameter).

assert_cycle_sequence clk, reset_n, event_sequence event_sequence is a concatenated
(n :0) vector (n, . . . , 0). Monitor starting

event (vector index n). Once starting
signal is true, check for events (vector
indices n-1 to 1) to occur in
subsequent cycles of clk. If the
starting signal occurs again, the
sequence is re-started. A parameter
defines whether the assertion checks
(a) that all events must follow once
monitoring starts or (b) that the last
event (vector index 0) must occur once
all previous events did occur.

assert_decrement clk, reset_n, test_expr Assert value of test_expr will never
decrease more than parameter value.

assert_delta clk, reset_n, test_expr Assert test_expr will always change
within the bounds of two parameter
values.

assert_even_parity clk, reset_n, test_expr Assert test_expr always has an even
number of bits asserted.

assert_fifo_index clk, reset_n, push, pop Monitor and accumulate number of
push and pop values over time. Assert
that the accumulated value stays
within the range specified by a
parameter value.

assert_frame clk, reset_n, start_event, When start_event is true, test_expr
test_expr must be true within minimum and

maximum cycle range specified by
parameters.

assert_handshake clk, reset_n, req, ack Highly parameterized monitor for req
and ack signal pair; asserting (a) no
multiple req’s without an ack (b) no
ack without a req (c) no multiple
ack’s for one active req.

assert_implication clk, reset_n, antecedent, If antecedent condition then assert
consequene consequence condition will occur.

492 Chapter 12 ■ Using Formal Verification

assert_increment clk, reset_n, test_expr Assert test_expr never increases more
than parameter value.

assert_never clk, reset_n, test_expr Assert test_expr is false.

assert_next clk, reset_n, start_event, Assert test_expr is true a
test_expr parameterized number of cycles after

start_expr is true. Supports overlapping
sequences where a new start_event
occurs before the previous sequence is
finished.

assert_no_overflow clk, reset_n, test_expr Assert test_expr never changes from
max value to a value greater than
max or reach a value less than or
equal to a min value. Max and min are
parameters of the instance.

assert_no_transition clk, reset_n, test_expr, Assert test_expr never changes value
start_state, next_state from start_state to next_state. Note the

flexibility because start_state and
next_state are variable expressions.

assert_no_underflow clk, reset_n, test_expr Assert test_expr never changes from
min value to a value less than min or
greater than a max value. Max and min
are parameters of the instance.

assert_odd_parity clk, reset_n, test_expr Assert test_expr always has odd
number of bits asserted.

assert_one_cold clk, reset_n, test_expr Assert test_expr has at most one bit
off or inactive state with all zero bits
or all one bits depending on
parameter.

assert_one_hot clk, reset_n, test_expr Assert test_expr has always exactly one
bit on.

assert_proposition reset_n, test_expr Assert test_expr at all times; there is
no clock or triggering event for
synchronization.

assert_quiescent_state clk, reset_n, state_expr, Assert that state_expr equals
check_value, sample_event check_value when sample_event

is true.

assert_range clk, reset_n, test_expr Assert test_expr never has a value
outside a min/max range, inclusive.
Min and max are parameters of the
instance.

assert_time clk, start_event, test_expr Assert test_expr is true for at least a
parameter-specified number of cycles
after start_expr is true.

TABLE 12.2. ■ Continued

Name Ports Semantics

emerged in public, typical FV property specification languages still
simply assumed a single centralized clock in the DUV, which made the
specification of a synchronizing clock unnecessary. However, many
designs have multiple synchronous clock domains, which make the spec-
ification of a reference clock for sequential properties important. A
simulation environment usually drives the DUV through phases where it
initializes the DUV, at which time the checking of functional assertions
(e.g., bus collisions) would trigger false assertion fails. Therefore, it is of
great practical importance that assertions have a global enable/disable
mechanism such as OVL provides.

Figure 12.2 illustrates how OVL assertions, which are instantiated in
the DUV or in the test bench driving the DUV, can be used as targets for
FV tools.

The example DUV in Figure 12.2 has two clock domains. It is neces-
sary that each internal assertion have a provision to specify to which of

12.1 Property Specification Using an HDL Library 493

assert_transition clk, reset_n, test_expr, Assert test_expr, once its value
start_state, next_state reaches start_state, always changes to

next_state. Note the flexibility because
start_state and next_state are variable
expressions.

assert_unchange clk, reset_n, start_event, Assert test_expr stays unchanged once
test_expr start_event occurred. Check that the

value remains unchanged for the
number of cycle specified by
parameter.

assert_width clk, reset_n, test_expr Once enabled, assert test_expr holds
between min and max number of
cycles. Min and max are parameters
of the instance.

assert_win_change clk, reset_n, start_event, Assert that once start_event occurs,
test_expr, end_event test_expr changes its value at least

once before or at the cycle when
end_event becomes true.

assert_win_unchange clk, reset_n, start_event, Assert test_expr does not change
test_expr, end_event between occurrence of start_event

and end_event.

assert_window clk. reset_n, start_event, Assert test_expr holds between
test_expr, end_event occurrence of start_event and

end_event.

Assert_zero_one_hot clk, reset_n, test_expr Assert test_expr has always has at
most one bit on.

TABLE 12.2. ■ Continued

Name Ports Semantics

the two clock domains it belongs. The assertions use their clocks for two
purposes. First, the design clock domain itself updates its state machines
with this clock and the assertion logic needs to sample the DUV logic
synchronously. Second, this same clock updates the internal state mon-
itoring machine, which implements the sequential assertion tracking.
Figure 12.2 shows three instantiated assertions that are target for FV
tools to prove. The assertion on the input signals is a constraint. The
user specifies with an instantiation parameter whether an assertion is a
constraint or not (Figure 12.3). Constraints on input signals specify
behavior that the FV tool can assume to be illegal and therefore never
to occur.

494 Chapter 12 ■ Using Formal Verification

FV

target

FV

constraint

FV

target

FV

target

assert_..

Global enable

assert_..
Global enable

assert_..
Global enable

assert_..
Global enable

Clock1
Clock2

DUV logic

■ FIGURE 12.2

Instantiation of OVL assertion monitors in a design under verification (DUV). The design has two sepa-
rate clock domains driven by their own oscillators. Each of the three DUV internal assertions connects
to their respective clocks (dashed arrows) for synchronization. The stylized state diagram inside the
assertion boxes indicates that all assertions can be sequential and need to use the clock of their design
target clock domain. A global enable signal controls when the assertions are active. The three internal
assertions define target properties for formal verification (FV) tools. A supported OVL parameter declares
the assertion on the DUV inputs as a constraint. FV tools use constraints as assumptions of behavior
that does not occur.

12.1.2 Using OVL to Specify Properties
We now return to the example design of Chapter 11 (see Section 11.3.2)
the arbiter ARB. For quick reference, we repeat the input assumptions
(constraints) and properties specified in Figures 11.25 and 11.26 here in
Table 12.3.

Again, we assume a Verilog implementation where we separate the
DUV from the property checker code. Please note that this is not neces-
sary if we can implement the assertions exclusively as instances of OVL
assertion monitors. The OVL elements are internally marked “verifica-
tion only” to be excluded from logic synthesis or Boolean equivalence
checking and therefore do not pose a problem for the implementation
process of the DUV because they are excluded there.

In Figure 11.26, we separated the input protocol checker from the
property checker. Because all OVL assertion monitors have a parameter
that lets the instance specify whether it is a real assertion or whether it
is meant to be used as a constraint, we can group the four constraints
that define the input protocol into the property checker for convenience.
This grouping is useful for the case of the ARB design where the input
protocol checker mostly needs the same input signals as the property
checker.

Figure 12.3 shows the complete Verilog code for the combined input
protocol and property checker arb_property_checker. We add another
input signal, reset_n, which lets the environment that instantiates the
checker decide when to arm the assertions. All other inputs are identi-
cal to the plain Verilog checker of Figure 11.27. We name the constraints
and assertions after their entries in Table 12.3 and we use exclusively
OVL assertion monitors to implement them. Constraint 3 actually mul-
tiplies out into three separate assertions, one for each bit of the req and
gnt vectors.

Every assertion monitor instance has its associated parameter values
as well as the port connections. We use comments to clarify the seman-

12.1 Property Specification Using an HDL Library 495

TABLE 12.3. ■ Input Constraints and Properties of the ARB Design

Constraint 0 cmd is active high and can occur at most every two clock cycles
Constraint 1 If cmd is active, req[0 :2] is not “000”
Constraint 2 req[0 :2] is “000” when cmd is not active
Constraint 3 req[i] is “0” when gnt[i] is ‘1’
Assertion 0 gnt[0 :2] is valid, one-hot, two cycles after cmd was active
Assertion 1 gnt[0 :2] is “000” two cycles after cmd turns inactive
Assertion 2 the valid gnt[i] must correspond to one of the req[i] that were active

when cmd was active
Assertion 3 The internal signals a and b are never on at the same time

module arb_property_checker(clk, reset_n, cmd, req, gnt, a, b);
 input cmd; input [0:2] req; input [0:2] gnt; input reset_n;

 reg [0:2] savereq;

 // parm 1 = severity
 // parm 2 = number of cycles that test_expr must be true after start_expr
 // parm 3 = restart flag
 // parm 4 = assertion is constraint for FV tool
 // parm 5 = fail message
 assert_time #(30, 1, 0, 1, "cmd is active more than once cycle")
 constraint0 (clk, reset_n, cmd == 1, cmd == 0);

 // parm 1 = severity
 // parm 2 = assertion is constraint for FV tool
 // parm 3 = message

 assert_implication #(30, 1, "cmd active without valid request")
 constraint1 (clk, reset_n, cmd == 1, req != 3b'000);

 assert_implication #(30, 1, "request is on while cmd is off")
 constraint2 (clk, reset_n, cmd == 0, req == 3b'000);

 assert_implication #(30, 1, "req[0] is on when gnt[0] is on")
 constraint30 (clk, reset_n, gnt[0] == 1, req[0] == 0);
 assert_implication #(30, 1, "req[1] is on when gnt[1] is on")
 constraint31 (clk, reset_n, gnt[1] == 1, req[1] == 0);
 assert_implication #(30, 1, "req[2] is on when gnt[2] is on")
 constraint32 (clk, reset_n, gnt[2] == 1, req[2] == 0);

 // save the last request
 always @(posedge clk) begin
 if (cmd==1)begin
 savereq = req;
 end
 end

 // parm 1 = severity
 // parm 2 = number of events to be checked
 // parm 3 = check all events in sequence not just first and last
 // parm 4 = assertion is constraint for FV tool
 assert_cycle_sequence #(30, 3, 1, 0, "gnt not one-hot two cycles after cmd")
 assertion0 (clk, reset_n,
 { cmd==1, 1b'1, ((gnt==3b'100) || (gnt==3b'010) || (gnt==3b'001)) });

 assert_cycle_sequence #(30, 3, 1, 0, "gnt is non-zero during off time")
 assertion1 (clk, reset_n,
 { cmd==0, 1b'1, (gnt != 3b'000)};

 assert_cycle_sequence #(30, 3, 1, 0, "illegal gnt result")
 assertion2 (clk, reset_n, { cmd==1, 1b'1, (gnt & savereq) != 0 };

 // parm 1 = severity
 // parm 2 = option for FV
 // parm 3 = fail message
 assert_never #(30, 0, "a and b on at the same time!")
 assertion3 (clk, reset_n, a && b);

endmodule

■ FIGURE 12.3

Verilog version of arb_property_checker using the Open Verification Library. In addition to the property
checks, this version of arb_checker includes all the input protocol checks, which ensure that the envi-
ronment drives the design under verification with the correct stimuli.

tics of each parameter, because their positional specification in Verilog
does obscure their meaning. It is certainly one of the disadvantages of
Verilog OVL that the parameters and port connections do not indicate
their intent easily. The named association of generic maps and port maps
in VHDL allow a clearer specification of the intent.

We chose a severity level 30 for all assertions, assuming this value
has a specific meaning for the simulation or FV tool that will process the
DUV and the property checker. It certainly is a welcome flexibility that
OVL lets the user specify the error message string and the severity code
as part of the instance specification.

Whereas the input protocol constraints make heavy use of
assert_implication, the main mechanism to specify the property
checks is the assert_cycle_sequence. We need to use the sequence
assertion construct because the ARB specification defines most pro-
perties using a timing relationship (two cycles) to the incoming ARB
cmd.

The arb_property_checker of Figure 12.3 has no output signals like the
plain Verilog version of Figure 11.27. The Verilog-only version needed a
convention (signals of a fails output vector) to indicate which conditions
are targets for FV tools. OVL assertions do not provide explicit output
signals, and their result valuation over time is an implicit target for FV
tools, as Figure 12.2 indicates.

The example in Figure 12.3 highlights the powerful conciseness that
OVL provides in the specification of assertions, especially sequential
ones. Even with the inclusion of all input protocol checks and heavy com-
menting to explain the instance parameters, the source text of Figure 12.3
is about the same size as the source text of Figure 11.27. More impor-
tantly, every check takes two lines only, is purely declarative, and is not
dependent on another check. This makes maintenance of the property
checker overall much easier. In the Verilog-only version, all checks
depend on a sequence of code and variable assignments in an always
block. Any change to this code sequence for one assertion can have
unforeseen side effects for another assertion. This interdependency of
pieces of sequential checking code makes the checker of Figure 11.27
hard to maintain. In contrast, it is possible to change or even delete any
of the constraints or assertions in Figure 12.3 and the remaining code
would still work correctly.

The OVL property checker of Figure 12.3 still needs one always block
to store the original request vector at the time a cmd is issued. This value
(savereq) is needed to enable the check of the gnt[0:2] result two cycles
later. It is a simple example for the general case where assertions and
property checks need access to scoreboard information. OVL has much
stronger provisions to check sequences or windows of specific events
than for the capture of data values and their correlation. If an assertion
needs to access current data and correlate it with some prior data in any
way, the user needs to create HDL helper processes or always blocks that

12.1 Property Specification Using an HDL Library 497

capture or scoreboard this data. The FV literature sometimes calls such
helper processes satellites [88].

The lack of score-boarding facilities is very common for current prop-
erty specification languages because they focus more on the control flow
aspects of a DUV.

The first two events of assertion0 and assertion2 in Figure 12.3 check
for the same leading sequence (two cycles after cmd), which means that
the logic implementing both assertions is similar and partially redun-
dant. The trade-off here is whether to keep the two assertions separate
to ease long-term maintenance or whether it is better to optimize the
amount of logic inserted into the model for assertion checking purposes.
There are good arguments for both sides, and a project should make a
conscious decision which aspect is more important.

It is the clear contribution of OVL to enable assertion-based property
checking for both simulation and FV within the bounds of the standard
HDLs. Before OVL, property specification languages were only applica-
ble to FV tool sets. This meant that FV engineers wrote properties in a
formal language and the non-FV verification team wrote the test bench
checkers in a simulation language, thus creating two camps and two
separate activities. After the arrival of OVL, there is no question whether
there are two separate property-checking activities that are legitimately
redundant. The team writes specifications for properties and assertions
only once for both simulation and FV. Only this synergy between the two
verification disciplines makes the successful introduction of FV technol-
ogy affordable and ultimately possible.

The restriction to encode all assertions as module instances in OVL
also has clear disadvantages. Probably the biggest disadvantage is the
necessity to use parameters and port maps to provide the necessary input
to an assertion monitor. Unless the user knows the positional parameters
and arguments extremely well, the instances of the assertion monitors
appear cryptic and hard to maintain without a constant cross-reference
with the OVL reference manual. It is certainly possible to envision a more
user-friendly notation for the encoding of properties.

Another problem, which stems from the restriction to fit OVL fully
compatibly into the host HDLs, is the restriction that it is not possible
to nest OVL assertions. For example, assertion0 in Figure 12.3 could be
much more concise if it was possible to use assert_one_hot as the last
event in the event sequence. However, Verilog does not allow nesting of
a module instance in the port map of another module instance. The same
restriction is true for VHDL.

We introduced OVL as a bridge between pure HDL methods and
custom property specification languages. OVL exploits the capabilities of
the existing HDLs to the limit. FV tools and property languages first
developed separately from the rest of the verification tool set. For this
technology to break out of its niche status in product verification method-
ologies, it was necessary to combine the practical value of OVL and its

498 Chapter 12 ■ Using Formal Verification

applicability to simulation as well as FV with the strong mathematical
foundation and sense of completeness of the FV languages. The Accellera
effort to standardize one property specification language for FV and sim-
ulation has the goal to accomplish this objective with one single prop-
erty specification language.

12.2 THE PROPERTY SPECIFICATION LANGUAGE PSL

The property specification language PSL, also known as PSL/Sugar, is
the result of a standardization effort by the industry consortium
Accellera. Sugar originates from IBM Research, and FV projects have
used it since 1994 as the main property specification language in an
industrial setting inside and outside IBM. Initially, Sugar was very close
to CTL and merely provided “syntactic sugar” to make CTL more user-
friendly. The content of Sugar grew through practical use in several
industry projects. Finally, Accellera selected Sugar as the basis for its
property language standard. Through the standardization effort, which
included a systematic collection of requirements for such a language,
Sugar evolved into PSL in its current form [89].

Even though we discuss PSL as part of FV, most of the language is
usable equally well in a simulation methodology. The part of PSL that
only applies to FV is marked very explicitly by the language design team
in the language reference manual LRM [89].

PSL belongs to the class of domain specific languages. It is independent
of any other language or HDL and its single purpose is property specifica-
tion. There are two modes to use PSL. First, it can be used stand-alone,
which means that the user can group PSL specifications into their own
files. Obviously, the user has to have a way to link or anchor the properties
to the areas of the design they target and connect to. PSL provides such a
mechanism, and we discuss it later in this section. The second mode to
use PSL is the embedded mode. In embedded mode, designers write PSL
properties and assertions directly into the HDL files of the DUV.

The intended user base for the embedded mode is obviously the
designer community because they own the DUV HDL files. The em-
bedded mode attempts to motivate an assertion-based design style,
where the designers treat assertions and properties as constructs that are
equally important as the DUV implementation and handle these specifi-
cations at the same time as they make design implementation decisions.
Designers use embedded PSL constructs typically for simpler assertions.
More complicated properties that take more space and more time to
develop, especially if they need supporting HDL satellites, will likely be
maintained external to the HDL files. The user base for the stand-alone
PSL mode is both the design and the verification team. However, the ver-
ification team usually maintains the more complicated properties. We
discuss both modes to use PSL below.

12.1 Property Specification Using an HDL Library 499

12.2.1 Overview
PSL has four different parts that build on each other and that the LRM
therefore calls layers. Table 12.4 shows this structure with the more basic
layers at the bottom of the table.

Whether we embed PSL directly into the target HDL file or use the
stand-alone mode, there is a strong motivation to use the same syntax
for signal, vector, and signal-type references in Boolean expressions as
we use in the HDL. For example, the Boolean equation to express the
assertion that the gnt vector is one-hot appears very different in VHDL
or Verilog (Table 12.5).

It is quite obvious from Table 12.5 that it would be very helpful if a
PSL assertion would conform to the basic syntax style of the host (in case
of embedded PSL) or target (in case of stand-alone PSL) HDL. With this
motivation, it is understandable that the developers of PSL decided on a
language that has different syntactic flavors.

PSL has four flavors at this point: VHDL, Verilog, SystemVerilog, and
GDL (a language, which we will not discuss further here).1 This means
that some constructs of PSL borrow their syntax from the associated
HDL, used for the DUV or the modeling layer, which we call the host
HDL.

500 Chapter 12 ■ Using Formal Verification

1 GDL currently is a placeholder for a future version of EDL environment modeling lan-
guage that is part of IBM’s RuleBase system and is not yet specified in the PSL LRM [86].

TABLE 12.4. ■ Bottoms-up specification of the four PSL layers

Modeling Layer Use to model FV or simulation drivers, scoreboards, satellites
Verification Layer Directives to direct the use of properties towards verification

tasks like assertion or coverage. Directives to link
standalone PSL properties to the target DUV areas.

Temporal Layer The core of PSL: constructs to specify temporal, sequential
properties. Any multi-cycle property uses the elements of
this layer.

Boolean Layer Boolean expressions are the building blocks for all the layers
above this layer.

TABLE 12.5. ■ One-hot assertion in VHDL and Verilog

VHDL Verilog

(gnt(0 to 2)=”100”) or ((gnt[0:2]==3b’100) ||
(gnt(0 to 2)=”010”) or (gnt[0:2]==3b’010) ||
gnt(0 to 2)=”001”)) (gnt[0:2]==3b’001))

The differences in the flavors are most apparent in the Boolean expres-
sion syntax: PSL uses the expression syntax of the host HDL. In the tem-
poral and verification layer, the HDL language influence is less apparent
and limited to some syntactic details, like the use of the specification “is”
in the VHDL flavor. The host HDL colors the modeling layer of the chosen
PSL flavor prominently.

The modeling layer provides the capability to specify FV and simula-
tion test bench drivers, scoreboard modules, and satellites analogous to
the always block in Figure 12.3. PSL uses the synthesizable subset of
VHDL, Verilog, and SystemVerilog for the modeling layer with some
extensions. These extensions are necessary to express non-determinism,
as we describe in Chapter 3 (see Section 11.3.3).

PSL flavors make the language flexible and easy to use in the context
of a particular HDL. On the other hand, PSL properties used in the
context of one host HDL are not easily portable to another host HDL.

12.2.2 The Boolean Layer of PSL
Any property or assertion in PSL makes a statement about events and
states in the DUV. It is necessary to reference signals, registers, and vari-
ables or, in general, HDL facilities in PSL statements. For this, regard-
less whether in its embedded or stand-alone form, PSL makes the host
HDL expression language available to the user. This is the base layer of
PSL flavoring.

Any valid Boolean expression of the host HDL is a valid Boolean
expression of PSL. The expression operators of the PSL flavor as well as
the syntax for the DUV facility references are the same as for the host
HDL. For example, the one-hot property expressions in Table 12.5
directly show the VHDL (left) and Verilog (right) flavors of PSL.

In addition, PSL offers a number of its own constructs, operators,
built-in functions, and declarations that go beyond what the host HDL
has available for Boolean expressions. These additions exist either for
convenience or to satisfy needs of the specific application field of PSL.
Table 12.6 lists the added PSL operators and built-in functions.

Five built-in functions are labeled as temporal in Table 12.6. These
functions evaluate over time the expression passed in as their argument.
Any evaluation over time needs a reference clock as the basis for the
sampling of expression values. If not specified otherwise, PSL leaves the
time base for the temporal clock to the tool that evaluates the expres-
sions. This applies not only to the temporal built-in functions but also to
the properties of the temporal layer of PSL. On one hand, this keeps the
granularity of the time resolution to the evaluating tool and therefore
keeps PSL very flexible. In some situations, however, this default behav-
ior does not deliver the desired results because it leads to ambiguities.
The interpretation of the same PSL specification for a VHDL event-driven
simulator is different from an FV tool, which uses a cycle-based evalua-

12.2 The Property Specification Language PSL 501

tion of the DUV. For the example in Figure 12.4, the simulator evaluates
the expression stable(a) using VHDL’s delta-time approach, thus reacting
to the sub-cycle changes of signal a in cycle 4. These changes are not
visible for the cycle-based evaluation, which therefore returns a different
result.

To give the user explicit control over the event and state sampling
times, PSL provides a construct to specify a sampling clock for expres-
sion evaluation. Every property in PSL can be associated with an explicit
clock expression. When the clock expression, which can be any Boolean
expression usable as the if condition in the host HDL, returns true, the
associated properties are evaluated. The clock expression is the sampling
condition for PSL properties. We discuss associated clock expressions
below as part of the temporal layer of PSL.

The Boolean layer contains a default clock declaration that defines a
clock expression used by all properties and temporal expressions that
appear in PSL directives (see Section 12.2.4), which do not have an
explicit clock associated with themselves. For the example in Figure 12.4,
we could use the default clock declaration of Table 12.7 that specifies
explicitly that the sampling time for stable(a) should be the time when
the signal c_clk has a rising edge. The default clock declaration applies
to all properties that do not have an explicit clock expression.

502 Chapter 12 ■ Using Formal Verification

TABLE 12.6. ■ PSL built-in functions and “union” operator

Built-in Function or Operator Explanation

expr1 -> expr2 Implication: if expr1 is true, then expr2 is true.
prev(expr[,num]) Temporal: previous value of expression passed in. Optional num

(constant) selects the expression value num number
of cycles back.

next(expr) Temporal: next cycle’s value of expression passed in.
stable(expr) Temporal: Boolean result, true if current value is the same of

previous cycle value.
rose(expr) Temporal: Boolean result, true of single bit input expression

passed in changed from 0 to 1.
fell(expr) Temporal: Boolean result, true of single bit input expression

passed in changed from 1 to 0.
isunknown(expr) Boolean result, true if bitvector expression passed in has any

values other than 0 or 1.
countones(expr) Return integer value for number of bits on in bitvector

expression passed in.
onehot(expr) Boolean result, true if bitvector expression passed in has

exactly one bit on.
onehot0(expr) Boolean result, true if bitvector expression passed in has

exactly one bit on or is zero.
expr1 union expr2 Both input expression must be same type.

Non-deterministically returns either expr1 or expr2.

Two of the constructs in Table 12.6 are unique: next() and union. Both
are only usable in the modeling layer of PSL because they can only occur
on the right-hand side of an assignment statement. The union operator
supports a non-deterministic assignment of a variable in a test bench
driver. For a simulation test bench, the non-determinism can be inter-
preted as a random choice, whereas for the FV driver the assignment
signifies true non-determinism. The random choice between the two
operands of the operator satisfies the minimum requirement to express
non-determinism. The built-in function next() allows access to the
next state value of an expression, which is especially useful in the test
bench environment in a situation where test bench code needs access to
the next-state value randomly chosen of a variable driven by a union
expression.

12.2 The Property Specification Language PSL 503

c_clk

a

stable(a) [event]

stable(a) [cycle]

Cycle
1
0

1
1

1
2

1
3

5
09876543210

■ FIGURE 12.4

The same expression stable(a) returns different results when evaluated by different tools. Signal a is
constantly on over time with the exception of a drop to 0 in cycle 4. The period of the clock signal
c_clk defines the clock cycle. The cycle-based evaluation of stable(a) (marked [cycle]) returns a con-
stant value of 1 during all cycles, whereas the event-driven evaluation (marked [event]) reacts to the
two value changes during cycle 4.

TABLE 12.7. ■ Default clock declarations in VHDL and Verilog flavor of PSL that make the
evaluation of the expression stable(a) independent from the interpretation of time of a given
verification tool

PSL VHDL Flavor PSL Verilog Flavor

default clock is default clock = (posedge c_clk);
(c_clk’event and c_clk = ‘1’);

12.2.3 The Temporal Layer of PSL
The temporal layer of PSL defines how to construct properties that define
behavior of the DUV over time. The key language element added here are
sequential expressions, which, besides Boolean expressions, are the core
constructs to specify properties. Where Boolean expressions evaluate the
DUV state in a given single cycle, sequential expressions make a state-
ment about DUV states across several cycles.

SEREs: Sequential Extended Regular Expressions

SEREs are the base building block to create sequential expressions. In
its simplest form, a SERE is a sequence of Boolean expressions that
specify the DUV state over a sequence of cycles.

Figure 12.5 shows an example of the simplest SERE with two ele-
ments, which describes a sequence of events where the values of two
expressions turn true in subsequent time steps. The comma-separated
list enumerates a sequence of events that the verification tools seek to
match against actual events in the DUV. Such a sequence is a property
by itself, and it can also be a building block to express more complex
properties. There is a set of operators to combine two SEREs with each
other. Table 12.8 shows two examples.

SEREs, like Boolean expressions, can have associated clock expres-
sions and then become clocked SEREs. Table 12.9 shows the general
syntax and simple examples for clocked SEREs.

SERE1 and SERE2 in Table 12.9 use the Boolean value true, which
matches all DUV states trivially. The effect of true is simply to sequence
to the next cycle.

Figure 12.6 illustrates the differences caused by different clock expres-
sions using a set of example waveforms. We assume that the tool, which

504 Chapter 12 ■ Using Formal Verification

{ expr1; expr2 }

■ FIGURE 12.5

Simple sequential extended regular expression (SERE) that specifies a sequence of states where expr2
follows expr1 in the next cycle.

TABLE 12.8. ■ SEREs can be concatenated or fused together

Some operations on SEREs

{ expr1; expr2 } ; { expr3; expr4} Use ; for concatenation of sequence
{ expr1; expr2 } : { expr3; expr4} Fusion - use : for overlapping

Concatenation, such that expr2 and
expr3 occur in the same cycle

evaluates the two SEREs from Table 12.9 on this waveform, uses a cycle-
based algorithm similar to a cycle-based simulation engine. SERE1,
which synchronizes with clk in all its parts, does match twice, between
cycles 6 and 10 and again between cycles 16 and 20. SERE2 yields only
a single match. The first time a is active at the same time as clk2 (cycle
8), b turns on in cycle 10 when clk is active. This matches the true expres-
sion in SERE2, but in cycle 12, where SERE2 tries to match b, b is off

12.2 The Property Specification Language PSL 505

TABLE 12.9. ■ SEREs or sub-elements of SEREs can have explicit clock expressions to
control the sampling time of the events. When clock expressions are nested, the inner clock
expression takes precedence over outer clock expressions. An outer clock expression applies
to all non-clocked sub-elements. SERE1 uses the same clock for all parts of the SERE
whereas SERE2 applies a different clock to sample signal a

Clocked SEREs

{ SERE } @ clock_expr General syntax used to associate an explicit clock
expression with a SERE.

{ a; true; b} @clk b follows a after one clk cycle delay (SERE1)
{a @ clk2; true, b} @clk Sample a at clk2 not clk like the rest of the

SERE.(SERE2)

clk

clk2

a

b

Cycle
1
0

1
1

1
2

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

2
59876543210

■ FIGURE 12.6

Waveform with two clocks (clk and clk2) and several configurations where signal a switches on, followed
by an active signal b. In cycle 6 a turns on for six cycles, overlapping b, which turns active in cycle
10. The activity of a in cycle 16 does not overlap with b’s active state in cycle 20. We use this wave-
form trace to illustrate the matching rules for the clocked sequential regular extended expressions of
Table 12.9.

already, which makes the sequence fail. Starting in cycle 16, SERE2 does
match exactly.

It is important to recognize that every step of a sequence evaluates
only the signals referenced in the current cycle. Any signal not referenced
has no influence on the matching progress and can therefore assume
any of its possible values. This is illustrated by the application of SERE1
starting in cycle 3. SERE1 matches the waveform, even though signal a
stays active for the next two cycles.

New users of PSL often make the wrong, intuitive assumption that
SERE1 would only match the waveform for a and b that starts at cycle
8. Figure 12.7 shows a tightened sequence specification with SERE3 that
does match only the sequence where a and b are turned on for a single
cycle only.

The name SERE alludes to regular expressions as used in other
languages [90]. Usually, programming languages or user interfaces use
regular expressions to specify patterns to match an input stream. Here,
the input stream for SEREs is the sequence of states and events in the
DUV. The simple enumeration of fixed consecutive sequences used in the
figures above is interesting but not flexible enough to express matching
rules needed for designs in practice.

SERE Repetition Operators

Another set of constructs, which make SEREs more applicable to real-
life designs, are the repetition operators. There are three different repeti-
tion operators. The consecutive repetition operator specifies that a SERE
or a sub-sequence should repeat several times consecutively. The non-
consecutive repetition operator allows the repeating sequence to occur
with gaps in between. The GOTO repetition operator is similar to the
non-consecutive operator but forces the sequence to end exactly with the
last repetition of the sequence. Table 12.10 shows different applications
of the three repetition operators. We use the simple model of a telephone
call as the basis for the examples.The repetition operators allow the user
to specify complex SEREs that are able to match whole classes of pos-
sible waveforms.

In addition to the full specification of a sequence as part of a property,
PSL supports the concept of named sequences. Named sequences can be
instantiated in multiple properties, thus supporting the concept of re-use.

506 Chapter 12 ■ Using Formal Verification

{ a & !b; !a & !b; !a & b } @clk

■ FIGURE 12.7

SERE3—a sequence specified to match exactly the waveform of a and b that starts at cycle 8 in Figure
12.6.

Because named sequences can have parameters, it is possible to create
general sequence patterns as building blocks that the user can adapt to
a specific design configuration at instantiation time. A related concept is
the endpoint. An endpoint is a Boolean variable that indicates when an
associated sequence completes. Like a named sequence, the user declares
an endpoint with possible parameters and instantiates it later inside
property specifications. For further details on named sequences and end-
points, we refer to the PSL reference manual [89].

PSL Properties

The user specifies properties using the building blocks described so
far, Boolean expressions and sequences, combining them with temporal
operators.

Table 12.11 shows an overview of many temporal operators available
to define properties. We refer again to the PSL reference manual for
the complete definition of the many varieties of temporal operators sup-
ported by PSL [89].

As shown in Table 12.11, the user can declare properties using the
keyword property followed by a name and optionally a set of parameters
to personalize the property differently for every instance.

12.2 The Property Specification Language PSL 507

TABLE 12.10. ■ SERE repetition operators introduced by example. The DUV has three signals named
dial, ring and answer, which we use to represent the starting sequence of events for a telephone call

Consecutive repetition operator [*]

{dial; ring[*]; answer} dial, followed any number of rings, until answer
{dial; ring[*1:4]; answer} dial, followed by ring for at least 1, max 4 cycles (Verilog flavor

range syntax) before answer
{dial; ring[+]; answer} dial, followed by at least one, possible many rings until answer
{dial; [*]; answer} dial, followed by any number of cycles before answer; no

specification for signal ring, therefore the SERE will match
with or without any ring between dial and answer

Non-consecutive repetition operator [=]

{dial; ring[=3]; answer} dial, followed by three, possibly non-consecutive, rings then
answer, possibly non-consecutive

{dial; ring[=1 to 4]; answer} dial, followed by between one and four, possibly
non-consecutive rings, answer possibly non-consecutive
(VHDL flavor)

GOTO repetition operator [->]

{dial; ring[->5]; answer} dial, followed by five rings, possibly non-consecutive, then
answer in the very next cycle

{dial; ring[->1:3]; answer} dial, followed by between one and three, possibly
non-consecutive rings, then answer in the very next cycle

This discussion of PSL’s temporal operators and their use in the
context of property specification completes the survey of the temporal
layer of PSL. As mentioned several times, PSL is a larger language than
we have room to illustrate here. This is especially true in the area of
temporal operators where PSL offers a plethora of different variations,
all serving the goal to capture typical needs in practical designs with a
set of concise constructs.

12.2.4 The Verification Layer of PSL
The verification layer of PSL provides constructs called directives, which
specify the purpose of the properties that the user defined using the
temporal layer of the language. From the larger set of directives, we just
select a few typical ones for this discussion.

508 Chapter 12 ■ Using Formal Verification

TABLE 12.11. ■ Overview of temporal operators used to specify PSL properties. With the
exception of property ortho2 all properties are declared using the Verilog flavor of PSL

Always

property Sub-property (a!=b) holds at all times
ortho1 = always (a!=b); (Verilog flavor)

Never

property Sub-property (a=b) never occurs
ortho2 is never (a=b); (VHDL flavor)

Next

property Property that holds in the next cycle
call1 = always(dial -> next ring);

property next[i] specifies i cycles later
call2=always(dial-> next[3]ring);

property Cascading implication and next: assert
call3 = always(dial-> dial, followed by no ring, followed by

next(!ring-> two cycles of ring
next(ring->

next ring)));

sequence suffix implication |->, |=>

property If left-hand side (lhs) of |->,
call4 = always(|=> holds, right-hand side (rhs) must

{dial} |-> ring[*1:3]; answer}); hold, too.
|-> : last cycle of lhs = first cycle of

rhs (overlap)
|=> : no overlap

property call4 : dial and first ring in same cycle.
call5 = never({dial} |=> {ring; call5 : ring in next cycle after dial.

ring; ring});

Assert

The assert directive instructs the verification tool to check that the prop-
erty holds for the first cycle. It is up to the tool how much of the DUV
state space it covers when it checks the assertion. FV is supposed to check
the complete reachable state space, whereas simulation only checks
those areas of the state space that the test bench stimuli reach.

The assert directive either instantiates a named property or specifies
the property directly (Table 12.12). Optionally, an assertion includes a
message to use for the reporting of an assertion violation.

Assume

The assume directive is useful to specify input constraints of the DUV;
these are the input behaviors that the verification tool should exclude
when it evaluates the design for the asserted properties. There is no oblig-
ation for the verification tool to prove the assumption. For simulation-
based verification, assume possibly instructs the test generator to only
create tests that agree with the assumed property.

For FV the assume directive is a filter that prevents the tool to
navigate the DUV into states that cannot occur given these input con-
straints. A simulator can treat the assume directive exactly like an assert
directive, thus flagging test bench behavior that violates the DUV’s input
constraints.

Assume_guarantee

The assume_guarantee directive is similar in intent to the assume direc-
tive: to communicate to the FV tool evaluating the DUV properties that
certain input conditions are illegal and will therefore never happen. In
addition, assume_guarantee instructs the verification tool to verify that
the assumed property does indeed never happen, like an assert, for
example, when the DUV is instantiated into an enclosing DUV.

Tables 12.13 and 12.14 use one of the input constraints defined for the
ARB design as an example for the usage of the assume directive (refer to
Figure 12.3 for the OVL version of this).

12.2 The Property Specification Language PSL 509

TABLE 12.12. ■ Two examples of the PSL assert directive

assert always (req -> next ack); unnamed property, directly specified
as part of assert

assert call1 instantiation of named property
report “no ring in the cycle after dial”; (Table 12.11) with error message

string

Cover

The cover directive instructs the verification tool to log the occurrence of
a property as a coverage event. Like the assert directive, the cover direc-
tive has an optional message string associated that the tool can print out
when coverage of the verification is reported.

Verification Units

The purpose of a verification unit is to group a set of properties and
verification directives and link them to the associated DUV. Verification
units are the PSL constructs that let the user define stand-alone PSL
checkers. In addition to properties and directives, a verification unit can
also contain statements and declarations that are part of the modeling
layer.

PSL supports several types of verification units. We discuss only the
vunit here, which is the most general verification unit available to the
user.

A verification unit is explicitly bound to a module (or entity/architec-
ture in VHDL) or to an instance of such. With this binding, the vunit has
access to the scope of the module it refers to, which means that all signals
visible in the module are visible and accessible to the vunit.

Table 12.15 shows an example of a vunit that refers to the ARB DUV
module. We use the Verilog flavor of the PSL construct.

510 Chapter 12 ■ Using Formal Verification

TABLE 12.15. ■ Example vunit ARB_CHECKER for the ARB design

vunit ARB_CHECKER(ARB) { Bound to module ARB
default clock = (posedge clk);
property always ({cmd}|=> ... clk, cmd are ARB internal signals; vunit
assert ... binding makes ARB the vunit scope
...

}

TABLE 12.14. ■ Example of a PSL cover directive

cover {(cmd=’1’ and req(0)=’1’)} Coverage event for legal req(0) request
report “req bit 0 occurred”; on ARB design

TABLE 12.13. ■ Example of a PSL assume directive

property constraint0 is always Named property for constraint0 in ARB design
({cmd=’1’} |=> {cmd=’0’}); (Figure 12.3)

assume constraint0; Instantiation of constraint0

Embedded PSL

As discussed above, PSL supports stand-alone mode (using the vunit
construct) and some commercial tools support an embedded mode. Put-
ting PSL assertions right into the DUV HDL satisfies the desire to drive
an assertion-based methodology where the designers specify as many
assertions as possible when they write the HDL implementation.

The current PSL standard does not specify syntax for the embedded
mode [89]. However, several EDA vendors have taken the lead and have
implemented a mutually compatible pseudo-standard, which Table 12.16
shows in example form for Verilog and VHDL. The user places PSL state-
ment into the source of the DUV HDL using formalized comments to
hide the added PSL from the HDL compilers. This ensures that the DUV
still uses the standard HDL and compiles correctly for an HDL tool set
that does not support PSL yet. PSL-aware HDL compilers read the com-
ments and parse everything between the keyword psl and the closing
semicolon as a PSL construct.

The examples in Table 12.16 also highlight again the adaptive nature
of PSL, always assuming the syntax flavor of the host HDL to blend in
with the style of HDL coding around the embedded properties.

In the VHDL standard committee discussions have apparently begun
with how to include PSL directly into the VHDL language, which shows
the still somewhat fluid nature of property language development in the
industry.

12.2.5 The Modeling Layer of PSL
PSL supports a modeling layer to allow the specification environment
components: drivers and checkers. This comes from the realization that
PSL constructs target mainly the specification of sequences of events over
time. The data flow and correctness aspect of checking usually needs
scoreboards to keep data over many cycles, data that later need to be cor-
related and checked to assess correctness of the DUV. Synthesizable

12.2 The Property Specification Language PSL 511

TABLE 12.16. ■ Examples of embedded PSL for Verilog and VHDL. The PSL statements
are comments in the host HDL. An embedded statement must start with the keyword psl
and ends with the semicolon, possibly crossing several lines. Every facility (signal, vari-
able, etc.) of the host module is accessible to the embedded PSL statements

Embedded PSL in Verilog Embedded PSL in VHDL

// psl assert always (a & b) – psl assert always (a and b)
// @(posedge clk); – @(clk’event and clk=’1’);

// psl property p1 = – psl property p1 is
// never ((opcode==‘LOAD)-> – never ((opcode=LOAD)->
// next (opcode==‘LOAD)); – next (opcode=LOAD));
// psl assume p1; – psl assume p1;

HDLs are well suited to specify the behavior of all these functions. In
addition, the hardware interpretation of synthesizable HDLs lets tools
transform such drivers and checkers into a finite state machine (FSM)
view, which is required to apply the FV algorithms (see Section 12.3).

PSL supports both synthesizable VHDL and Verilog on the modeling
layer. In this context, wherever an HDL expression can appear in the
HDL, any PSL Boolean expression can appear as well, extending the host
HDL with PSL. In addition, PSL extends its Verilog flavor with higher-
level constructs like integer ranges and struct. As mentioned previously,
verification units support the use of modeling layer constructs.

12.2.6 Using PSL to Specify Properties
We now want to apply PSL to the ARB design example used in Chapter
11. The purpose of the repeated implementations of the checker for
ARB is to compare and contrast the use of PSL with the other methods
of property specification available, like the use of pure HDL or OVL
checkers.

We return to the table of constraints and assertions for the ARB design
(Table 12.3). Figure 12.8 shows a verification unit in PSL that encodes
all the constraints and assertions specified in Table 12.3.

We define a default clock to avoid the syntactical clutter and redun-
dancy that occurs when using the same clock expression everywhere. The
first three constraints use implication much like the OVL constraints
do in Figure 12.3. constraint3 uses a construct of the temporal layer that
was not introduced previously: the forall iteration operator. The use of
forall is intuitive; it is a shorthand operator that defines a whole group
of properties that all have the same structure using a syntax template like
a macro. The obvious advantage of forall is the conciseness achieved by
compressing a repetitive pattern into a single property declaration. It is
notable that there are more efficient implementations of forall than a
straight macro-like expansion with all its replication. Still, users should
use forall cautiously, because the downside of this power is that it
becomes easy to specify a large number of possibly redundant proper-
ties quickly. The verification team needs to make conscious trade-offs
here.

We use the assume_guarantee directive for the input constraint check-
ing that will instruct the verification tool about the input constraints, but
will also check for violations of these from the test bench or if the DUV
is instantiated into a larger DUV.

Three of the four assertions are sequential. assertion0 uses implication
and the next operator with the number argument to specify the required
value of gnt two cycles after cmd is active. assertion1 and assertion2 use
sequence suffix implication to specify the expected behavior of ARB two
and three cycles after the cmd signal is active. If we needed to maximize
conciseness, we could even merge these two assertions into a single one,

512 Chapter 12 ■ Using Formal Verification

because the sequences specified do overlap. However, the specification
listed assertion1 and assertion2 as separate, both with their own error
message. For maintenance and debug reasons it is also better to keep the
two assertions separate. assertion1 uses a constant repetition operator to
specify a dead cycle for which there is no value evaluation. assertion2
shows the power of the prev built-in function. Being able to capture the
value of the req vector from two cycles before the value check occurs
avoids the creation of a score board always block as we needed in the
OVL and Verilog implementations.

Finally, assertion3 illustrates the use of hierarchical signal references
in Verilog. Because the vunit of Figure 12.8 binds to the arb module, all
signals of the module are in the vunit’s scope and directly accessible
without explicit declaration. This includes access into instances nested
inside arb (see Figure 11.25).

Overall, Figure 12.8 proves the value of PSL’s dedicated role as a
domain-specific language for property specification. Once through the

12.2 The Property Specification Language PSL 513

vunit arb_property_checker(arb) {

 default clock = (posedge clk);

 property constraint0 = always (cmd –> next !cmd);

 property constraint1 = always (cmd –> req != 3b'000);

 property constraint2 = always (!cmd –> req==3b'000);

 property constraint3 = forall i in 0:2 : always (gnt[i] –> !req[i]);

 property assertion0 = always (cmd –> next[2] (onehot(gnt));

 property assertion1 = always ({cmd, !cmd} |=> {[1]; gnt==3b'000});

 property assertion2 = always ({cmd, !cmd} |=> {(gnt && prev(req,2))!=0 };

 property assertion3 = never (int0.a & int0.b);

 assume_guarantee constraint0 report "cmd is active more than once cycle";
 assume_guarantee constraint1 report "cmd active without valid request";
 assume_guarantee constraint2 report "request is on while cmd is off";
 assume_guarantee constraint3 report "req[i] is on when gnt[i] is on";

 assert assertion0 report "not one-hot two cycles after cmd";
 assert assertion1 report "gnt is non-zero during off time";
 assert assertion2 report "illegal gnt result";
 assert assertion3 report "a and b on at the same time!";
}

■ FIGURE 12.8

PSL version of the arb_property_checker with the same functional content as the OVL version of the
checker in Figure 12.3.

initial investment to learn PSL, the user can specify properties very
clearly and concisely, which has obvious advantages as a documentation
vehicle as well as for the longer-term maintenance of the PSL code.

There is a large selection of introductory material and examples avail-
able [91]. Cohen et al. and Foster et al. are additional resources for
further study [92, 93].

12.2.7 Advanced PSL Topics and Caveats
It is very possible to make good use of PSL even after a short learning
effort. However, deeper study reveals that PSL is quite a complex lan-
guage, and it is important to understand its semantics in more detail
before it is possible to write complex, unambiguous properties. This
section serves as an introduction into some of the advanced topics and
attempts to create a sense of caution and a motivation to dig deeper into
the complex areas of PSL before committing a larger project with only
an intuitive understanding of the language.

Implicit Property Sampling

The importance of explicit clock expressions was expressed above. Unless
a property has an associated explicit clock, the sampling and checking
of the property is up to the verification tool used. Besides the problem
of portability from tool to tool of properties without clock expressions,
there is the deeper problem of incompletely defined semantics. For
example, a simple assert with an unclocked Boolean expression will be
evaluated by a simulator whenever it evaluates a change in one of the
signals that participate in the expression. If the simulator detects glitches
in these signal values, this can lead to an assertion violation. However, if
the evaluation sequence of the simulator happens to leave the glitch
undetected, no assertion violation occurs. The user can control the exact
time when to evaluate a property only using explicit clock expressions.

First-Cycle Only Properties

New users easily overlook the problem of properties that inadvertently
only check the DUV once during the very first cycle. Table 12.17 shows
examples of such first-cycle only properties.

PSL semantics define that the verification tool checks a property when-
ever an implicit or explicit repetition requires it. The obvious operators
that imply continuous repetition are always and never.

For the corrected call6 in Table 12.17 (lower left), the explicit use of
the infinite repetition operator [*] specifies that the sequence does not
begin in the first cycle only. There can be a sequence of unlimited cycles
before dial turns true. This requires PSL to check in every cycle whether
the [*] repetition ended and the next step, dial, did occur. Obviously, the

514 Chapter 12 ■ Using Formal Verification

use of the always operator (lower right in Table 12.17) fixes this problem
as well.

Overlapping Properties

For a new user the issue of re-starting or overlapping properties is very
surprising. Because PSL must evaluate repeating properties at every
sampling time, it can occur that a temporal property, whose evaluation
started in a previous cycle already, re-starts its evaluation again. This
does not mean that the previous evaluation stops, it merely means that
another instance of the evaluation starts.

Although this feature of PSL allows the checking of overlapping or
pipelined transactions, the user must take great care and fully under-
stand all the implications of re-starting sequence properties. This is
arguably the most complex area of PSL and the user needs to understand
it well. Otherwise, surprising and confusion property checking results
will be difficult to debug.

Figure 12.9 shows an example of the re-starting behavior of a PSL
property. The sequence specified can have a maximum number of three
parallel matches. Every match evaluates the full sequence by itself, and
a lack of the correct event occurrences would lead to a failing property.
It is easy to extrapolate the re-starting behavior of the re-starting
sequence in this example because the sequence, once started, has a fixed
length and there are no ambiguities in the interpretation of the events in
the trace of the DUV.

Figure 12.10 uses a variable length sequence as the example property.
This gives a glimpse of how difficult the assessment of even relatively
simple sequences can get.

12.2 The Property Specification Language PSL 515

TABLE 12.17. ■ First-cycle only properties ortho3 and call6, and two possible
corrected versions

Accidental First-Cycle Only Properties

property ortho3 ((a&b)!=0); ortho3 has no repetition or always/never
assert ortho3; operator

property call6 {dial} |=>
{ring; ring; answer }; call6 has no always/never or [*]

assert call6;

Corrected Properties Alternate Corrections

property ortho3 always ((a&b)!=0); property ortho3 never (a&b);
assert ortho3; assert ortho3;

property call6 {[*]; dial} |=> property call6 always ({dial} |=>
{ring; ring; answer }; {ring; ring; answer });

assert call6; assert call6;

516 Chapter 12 ■ Using Formal Verification

req

bus

ack

{req; bus; ack}

1

0

0

1

1

0

1

1

1

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

Time

3 different sequence matches

■ FIGURE 12.9

An example of a restarting, overlapping sequence. The text box shows the example property as a
PSL sequence definition. A trace of the three signals affecting the property over time is shown. The
property implies that three overlapping matches of the specified sequence occur.

ring

answer

hang_up

{ring; ring} |=> {answer[+]; hang_up}

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

1

1

0

1

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Time

3 different
sequence matches

15141312119 10876543210 16

■ FIGURE 12.10

Second example for a restarting, overlapping sequence. This example uses a variable length sequence.

12.2 The Property Specification Language PSL 517

ring

answer

hang_up

{ring; ring} |=> {answer[+]; hang_up}

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

1

0

1

1

0

0

1

0

0

1

1

1

1

0

1

1

0

0

1

0

0

1

1

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Time

3 different
sequence matches

15141312119 10876543210 16

■ FIGURE 12.11

A different trace from the DUV with the same sequence property as Figure 12.10. The different timing
of the hang_up signal in cycle 8 (versus 7) and cycle 15 (versus 11) creates ambiguity. Instead of inter-
preting the sequence as overlapping (dashed arrows) or even nested (not shown), the first active hang_up
leads to a finish of both early matches of the sequence.

We return to the class of telephone call examples. The property spec-
ified checks for sequences of calls on the receiver end. A normal sequence
consists of two rings, an answering action over several cycles, and even-
tually the hang-up of the phone. Now, it is possible that another ring
occurs before the hang-up completes the previous call (think of an
advanced call-waiting feature with a depth of more than one). This is the
situation where another match of the sequence property starts.

The matches drawn in Figure 12.10 are correct for very subtle reasons.
The property, as written, expects at least one cycle with answer active
after the two rings and before hang_up can legally turn active. In cycle 7
this leads to the unambiguous interpretation that the hang_up signal
closes the first call (= match of the sequence). The same happens again
at cycle 11 where the second match of the sequence finishes. Clearly,
the association of sequence elements, while overlapped, occurs on a
first-in, first-out basis. Because the given trace in Figure 12.10 does not
allow any other interpretation, the result of the property checking is
unambiguous.

The trace in Figure 12.11 changes slightly compared with Figure 12.10,
and this causes totally unexpected behavior of the property checks for
the uninitiated user. The way the property is written, given the seman-
tics of PSL, allow for sequence matches that might surprise the user. In
cycle 8 the hang_up signal turns active. Both currently active matches of
the property interpret this event as the closing event of their sequence.
After this occurs, no uncompleted match of the property tracks the event

trace of the DUV. In the next cycle 94, another sequence starts. The set
of ambiguities continues in cycle 12 when the third instance of the
sequence finishes successfully, leaving the remaining cycles with answer
active and the final hang_up in cycle 15 dangling and unchecked. If the
complete set of properties for this example DUV checked for a sequence
of non-requested answer and hang_up signals, the trace from cycle 13 to
15 would trigger a failing property.

There are two possible better interpretations for the trace in Figure
12.11. The one most similar to the interpretation of Figure 12.10 would
finish the first sequence in cycle 8 but keep the second match going. The
same would then have to occur in cycle 12, where only the second match
would finish, whereas the final, third sequence would continue until cycle
15. The second alternate interpretation of the trace would allow for
nested sequences in a LIFO scheme (last-in, first-out). Possibly, sequence
instance 1 would start in cycle 1 and continue all the way until cycle 15.
The second sequence would start with the double ring in cycle 5 and
finish in cycle 8, whereas the third, and again nested, sequence would
run from cycle 9 to cycle 12. Staying with the analogy of the call-waiting
scheme, this would signify a long phone call, with two shorter ones that
interrupt the first.

What is the real source of the problems with these properties in
Figures 12.10 and 12.11? Clearly, these examples tell a cautionary tale,
showing the new user that even simple sequences can bear surprising
complications and surprises. The core of the problem, however, is that
the properties, as written, do not have access to enough knowledge about
the design to allow the correct interpretation. Besides the three DUV
signals, there is need for more temporal information to be able to dis-
ambiguate the trace in the intended way. The simplest solution is to add
information to the property that contains data about which instance of
the sequence is active at any given point. The modeling layer of PSL can
provide this added data. Figure 12.12 shows one possible implementa-
tion of a more complete checker.

The checker in Figure 12.12 hard-codes the interpretation of a LIFO
scheme for incoming calls. Every new call will be finished first, before
returning and ultimately finishing the previous call that was active when
the current call started. A different, more complex, call-nesting scheme
will need a more complex supporting model surrounding the property
check. The core of the solution of Figure 12.12 does circumvent com-
pletely the notion of multiple instances of the same sequence by creat-
ing one unique sequence property per possible call sequence in the DUV.
The disadvantage of this scheme is that there now is a fixed upper limit
for the number of active sequences in the vunit.

False Positives

Properties that produce false negatives are a hassle but usually not a
problem for the verification effort. False negatives are failing properties

518 Chapter 12 ■ Using Formal Verification

that inadvertently flag an event in the design as wrong when there is actu-
ally no problem. The typical reason for false negatives is that a property
defines allowable events too narrowly and does not account for window
conditions that are actually legal in the DUV. The verification team has
to clean up and correct false negatives to make sure only real DUV bugs
lead to failing properties in FV or simulation.

False positives are a much more severe problem because they give the
verification team a wrong sense of security. False positives are properties
that do not fail on DUV errors because they are constructed wrongly and
do not really check what their authors intended to check. We describe
two typical classes of false positives with examples of assertions using
implication: false positives where the pre-condition of the implication is
not reachable and such properties where the postcondition is always triv-
ially true. Figure 12.13 shows both classes.

The pre-condition of property p1 in Figure 12.13 will never trigger,
because the constraint in the assume_guarantee clause excludes exactly
this condition. Obviously, the example is an extremely contrived one,
using a blatant contradiction in two adjacent properties. However, in real
projects with many properties and constraints, it is easy to overlook
subtle contradictions, especially those of temporal nature. The literature
calls this class of false positives vacuous properties. Interestingly, it is
possible to apply the same algorithms used to explore the state space for

12.2 The Property Specification Language PSL 519

vunit phone_checker(phone) {

 default clock = (posedge clk);

 reg call_count;
 initial call_count = 0;

 always @(posedge clk) begin
 if (posedge ring) call_count += 1;
 if (hang_up) call_count –= 1;
 end

 assert

 forall COUNT in 0:15 :
 always ({ring && (call_count==COUNT); ring} |=>
 {answer[+]; hang_up && (call_count==COUNT)});
}

■ FIGURE 12.12

A more elaborate version of the phone sequence checker. This vunit keeps track of the number of nested
call sequences by updating the variable call_count. With a hard-coded limit of 16 possible nested call
sequences, the assert construct uses a forall template to prepare for 16 different instances of the prop-
erty sequence, each of which is distinguished by its associated value of call_count. Because a sequence
only finishes when the call_count is still the same value compared with when the sequence started,
this implementation enforces a last in, first out scheme.

property violations also to prove the absence of such contradictions or
vacuities. Many available tools support vacuity checking.

The problem with property p2 is that the infinite repetition operator
[*] allows for the sequence to never finish. This means that in cases where
the done signal never turns active, p2 still never fails, and the post-
condition sequence never finishes.

Figure 12.14 fixes the problem of p2 with a different construct, the
strong sequence, identified with the ! operator. PSL requires that a strong
sequence finishes once started, thus avoiding the problem of a false posi-
tive. There is a whole set of the strong variety operators in PSL that we
do not have the space to discuss here in detail but refer the interested
reader again to the EDA Web site [89].

We now come to a close of our overview of PSL and the end of the
discussion on property specification. As the discussion evolved from pure
HDL through OVL and into the special-purpose language PSL, the goal
stayed the same: to give the reader an overview of the main concepts
relevant to property specification. Every one of these languages, includ-
ing the property specification part of the newer and still emerging
SystemVerilog, has different constructs on the syntactical surface to deal
with the same essence of property specification: the specification of
events and their relationship over time in the DUV [86]. The syntax and
the lingo might be different for the different languages, but the base
mechanisms are largely the same.

We now expect the reader to see through the outside packaging of
these mechanisms in any of the above languages and have a grasp on

520 Chapter 12 ■ Using Formal Verification

property p2 = always ({a} |=> {[*], done}!);

■ FIGURE 12.14

Turning the sequence property from Figure 12.13 into a strong (operator !) sequence property requires
PSL to guarantee the sequence finishes or fails otherwise.

vunit checker(design) {

 assume_guarantee always (a!=b);

 property p1 = always ({(a==b)} |=> {blip; blip});

 property p2 = always ({a} |=> {[*], done});

 assert p1;
 assert p2;
}

■ FIGURE 12.13

PSL checker example for false positives. Both properties p1 and p2 never fail.

their particular strengths and weaknesses. With the base concepts of
property specification in mind, it should be possible to apply either lan-
guage successfully after a moderate learning effort.

12.3 PROPERTY CHECKING USING FV

After the deep excursion into the topics of property specification, we now
return to the discussion of using FV to prove the absence of property vio-
lations by the DUV implementation.

12.3.1 Property Re-Use Between Simulation and FV
It is important to keep in mind that for the languages and mechanisms
of property specification that we surveyed, the principle of re-use is
extremely important. Both simulation and FV are able to check these
properties (see Figure 10.12). However, if FV tools are able to prove prop-
erties of the DUV, there might be the question why simulation needs to
care about them. It was the original position of FV research and devel-
opment that FV properties are for FV tools and have no place in simu-
lation. At that early stage, the ultimate promise of proof with FV was so
powerful that developers did not see a need to invest energy making their
specification languages re-usable for simulation and FV. This led to a sep-
aration of disciplines and to the creation of the special verification sub-
team within the overall verification team.

The separation itself creates problems in an industrial project envi-
ronment. The design team now faces two teams, using different lingo,
each wanting to extract specifications from the designers for verification.
In an environment of exploding design complexity and shrinking project
schedules, this double load on the design team is very problematic and
often not practical. This is the first reason why re-use of property speci-
fications across simulation and FV is vital for the overall verification team
to succeed.

The second reason to make property re-use a central requirement for
verification is the fact that the big promise of FV overtaking property ver-
ification altogether remained unachieved. FV algorithms, like all other
verification approaches, face the brick wall of the state-space explosion
problem. FV tools cannot practically prove all properties that specify
the behavior of an industrial-size DUV. It is certainly desirable to get
the strongest possible assertion of properties that tools technology can
achieve. A formal proof is the most desirable verification of a property.
However, there is a strong need for a back-off strategy when state-space
explosion makes the FV proof impossible. As far as the FV tools can drive
the state space traversal successfully, they cover that portion of the state
space completely and can identify bugs, even if the algorithms cannot
complete a proof. If all else fails for the true verification of a property,

12.3 Property Checking Using FV 521

simulation must be available to get at least some assurance about the
validity of the properties.

12.3.2 Model Compilation
We know from Chapter 11 (Figure 11.22), that the FSM view is the ulti-
mate representation needed to do FV on the combination of DUV,
properties, and FV driver, which all together define the environment for
property checking. Many but not all FV algorithms operate on the FSM
view of the combined Formal Model. The tool flow for functional FV in
Figure 12.15 shows that an FV tool needs to translate all three sources
of specification into this view before the FV algorithms can then evalu-
ate the overall model.

As Figure 12.15 also shows, the FSM logic that checks the properties
ends up driving a set of fails signals. For this transformed and assembled
Formal Model, correctness means that starting from any legal initial
state, the model can never reach a state where a fail signal is active.

Although this translation is necessary for all discussed property spec-
ification mechanisms, the pure HDL and the OVL approach have the
advantage that they rely on the HDL implementation of the properties.

522 Chapter 12 ■ Using Formal Verification

DUV
FV

driver
(environment)

FV
checker

(properties)

Compiler

State

Boolean
logic Fails

Formal
verification

tool

Formal model

■ FIGURE 12.15

The flow of model compilation for formal verification (FV). The compiler translates all three components,
driver, DUV, and properties, into the finite state machine view. The resulting Formal Model is the rep-
resentation on which the FV algorithms operate.

Therefore, for these we can re-use the HDL compilers/synthesizers,
which exist for the DUV HDL already, and use them for the translation
of the properties as well.

For property languages, which support CTL or LTL temporal logic
constructs (like PSL), the translation is more complicated. There is much
research work devoted to the problem of efficiently generating the FSM
view of properties. Aberbanel et al. describes such an effort for the prop-
erty language Sugar, the pre-cursor of PSL [94]. In fact, the paper dis-
cusses the tool FoCs (formal checkers), which now supports a subset of
PSL and is available for download on the Internet [96]. FoCs not only
generates an internal FSM view of the properties, but also even writes
out the translated properties to VHDL and Verilog. The resulting HDL is
usable in many HDL simulators and therefore makes PSL re-usable
between FV and simulation.

The amount of reachable state of the DUV and the FV test bench in
the generation of the Formal Model is the main measure of the transla-
tion efficiency because, as we know from the discussions in Chapter 11,
the main limiting factor for FV is the size of the reachable state space.
It is important to realize that this state space is not just dependent on
the DUV alone, but also on the driver and checker logic, all of which the
model compilation assembles.

It is the task of the FV tool to apply exhaustive verification algorithms
effectively against the fully assembled model to prove that there are no
states, where the property fail signals are active. We discuss some of the
functional verification algorithms next.

12.3.3 Formal Functional Verification Algorithms
An FV algorithm that attempts to prove the absence of failing properties
needs an internal representation of the state graph defined by the FSM
of the Formal Model of Figure 12.15. In principle, we can think of the
exhaustive proof as a process that walks the state graph from a defined
set of initial states explicitly checking the properties at every state on the
way. Of course, the capacity of FV tools and algorithms is limited. Typi-
cally, the user has to guide and control the tools very directly to apply
the power of exhaustive verification in the critical areas of industrial-
sized DUVs. To support the users in the effective application of this
technology, we discuss some of the different approaches that implement
this FSM traversal when checking of properties.

Model Checking

Key concepts for the state space traversal described above are reachable
states and reachability analysis. A state is a reachable state when there is
a legal input sequence that leads the model to it from an initial state.

12.3 Property Checking Using FV 523

Reachability analysis is the process that successively proceeds from every
reached state to every state reachable in the next step.

Model checking is the established academic term for what we described
as the FSM traversal and check for properties [95]. Explicit model check-
ing uses a direct, explicit representation of the states as data in a graph.
The checking process starts from the set of legal states and proceeds
forward, always applying all legal inputs to the DUV. This reachability
analysis progresses cycle by cycle, enumerates all reached states explic-
itly, and checks every state for property violations.

Figure 12.16 illustrates the reachability algorithm’s progression from
a set of legal initial states through the combined state space of the DUV
and the FV environment (Formal Model). Cycle by cycle, there is a fron-
tier of already reached states from which the algorithm proceeds to the
set of next states, applying the logic of the FSM and all legal input
combinations, thus defining the next frontier of states to be checked for
property violations. By definition and baring any resource limitations,
the algorithm eventually covers the complete state space and therefore
uncovers all bugs.

524 Chapter 12 ■ Using Formal Verification

Initial
state

Bug

Bug

Bug

Bug

Bug

DUV and FV
environment
state space

■ FIGURE 12.16

Starting with the set of possible initial states, model checking proceeds in a breadth-first way through
the reachable state space of the Formal Model. The arrows and the boundaries illustrate the progres-
sion from any given set of states to the frontier of the set of states reachable in the next cycle. Using
the exhaustive breadth-first method, all five bugs are reachable within a maximum of seven cycles.

For small FSMs, explicit model checking is very runtime efficient,
which makes it a favorite candidate for model checking of higher-level
design representations with a smaller, abstracted state space. The biggest
problem for this algorithm is the state-space explosion, which results in
a corresponding explosion of the explicit state data the tool needs to
manage. Explicit model checking scales well up to a state space of several
million reachable states. Consider the fact that a DUV with 32 state
bits already spans a potentially reachable state space of four billion.
The explicit representation of such a small FSM already exhausts the
virtual address of 32-bit workstations. This shows that the practical
limits of explicit model checking are clearly in the smaller state space
domain.

Symbolic Model Checking

During the early 1990s, FV research received a big boost by the inven-
tion and rapid development of symbolic model checking [97, 98]. The
characteristics of the FSM are stored symbolically using binary decision
diagrams (BDDs). As discussed in Chapter 11, BDDs are a compact rep-
resentation of Boolean functions. Symbolic model checkers represent the
next state functions and the property fail functions using BDDs. In addi-
tion, BDDs also encode the states symbolically. Rather than explicitly
enumerating every single state, like in explicit model checkers, symbolic
model checkers use BDDs to specify sets of states in the form of Boolean
functions. With this help of BDDs, it is possible to create algorithms that
perform reachability analysis and state machine traversal with much
more memory efficiency than explicit model checking.

Most FV tools in practice today use a symbolic model checker at least
as one component. Still, the practical limit of pure symbolic checking
are DUVs with 100 to 300 state bits, which constrains the applicability
of this technology to smaller designs.

Bounded Model Checking

The idea of bounded model checking (BMC) is to limit (bound) the length
of the path taken during FSM traversal to an integer n [99]. If the veri-
fication tool finds a property violation, a bug, up to that point, the tool
stops and reports a counter-example trace to the user. Otherwise, the tool
increases n to a higher value, until the state space explosion prevents the
tool from progressing. The BMC approach acknowledges the fact that in
many practical cases model checking cannot complete a proof but can
be extremely useful as a bug-finding tool.

Surprisingly, once researchers accepted the premise of BMC to limit
the number of cycles over which to operate the model checking state tra-
versal, they found much more efficient algorithms to implement it. The
most popular solution reduces the sequential FSM traversal problem

12.3 Property Checking Using FV 525

down to a pure combinational problem, as we illustrate in Figure 12.17.
The tool accomplishes this reduction by replicating the Boolean logic of
the Formal Model once per cycle for which it needs to perform the prop-
erty check. In the end, a chained combinational circuit replaces the FSM
for n cycles. We call this transformation unrolling.

The goal of BMC remains to prove that the set of fail signals never
turns active. Given the unrolled circuit’s combinational structure, for
some algorithms this problem is much simpler to solve than the original
FSM verification problem. We can now apply many of the techniques
that applied to equivalence checking as discussed in Chapter 11. In
particular, the FV tool can use the satisfiability testing (SAT) and auto-
matic test pattern generation (ATPG) algorithms to generate input
sequences that activate a property fail. The unrolling of the FSM trans-
forms the model checking problem, which is memory limited, into a
problem that now is only time-limited. It is up to the tool and the user
to limit the time spent attempting to create a counterexample for the
asserted property.

526 Chapter 12 ■ Using Formal Verification

State

Boolean
logic Fails

Boolean
logic Fails

Boolean
logic Fails2

State1
State0

Outputs1

State2

Outputs2

Formal model

Unroll

■ FIGURE 12.17

Unrolling a sequential circuit for bounded model checking with SAT. Unrolling the finite state machine
(FSM) into a combinational circuit reduces the sequential problem to a combinational problem. The
example in this figure unrolls an FSM twice. For every cycle, we replicate the Boolean logic. Every repli-
cation represents the values of the FSM logic in a given cycle. The signal names carry a subscript to
denote their respective cycle. We replace the state-holding elements with wires between the replicas.
This makes the initial state state0. The results of the cycle1 replication feed the cycle2 replication and
so on.

Because of its good scalability and applicability on larger DUVs,
BMC has evolved into one of the primary algorithms for FV tools. Clearly,
BMC cannot prove the absence of bugs; it is useful mainly for bug
hunting. Because BMC misses the attribute of guaranteed exhaustive
verification, it is our first example of a class of approaches called semi-
formal algorithms, which we discuss further below (see Section 12.3.5).

12.3.4 Solutions to Address the Problem of State
Space Explosion

The primary element driving FV capacity limits is the size of the reach-
able state space in the Formal Model. Because, in the first approxima-
tion, the state space grows exponentially with the number of state bits,
optimizing the number of state bits of the model is the most powerful
lever to shrink the problem size down to make FV tool application fea-
sible. The list of solutions to address the problem of state space explo-
sion contains a number of techniques the verification engineer can use
as well as optimizations that modern FV tools do automatically. The fol-
lowing list is by no means a complete enumeration of the state of the art
in state-space reduction techniques but contains some of the more com-
monly known approaches.

Serial Application of Properties

Temporal properties translate into FSM logic that is part of the Formal
Model in Figure 12.15. Typically, if the user only applies one property at
the time, the combined state space of DUV and environment is smaller.
Clearly, this is a trade-off between increased runtime and the need of
multiple runs versus the number of state bits for the individual run. The
overall process is more tedious, includes bookkeeping about which prop-
erties have passed the verification cycle already, and potentially implies
an overall longer turn-around time. However, application of the proper-
ties one-by-one might be the only way to avoid the state space explosion,
which results in inconclusive proofs.

Typically, the graphic user interface of modern FV tools contains selec-
tion and bookkeeping mechanisms that make the serial application of
multiple properties for a DUV convenient.

Case-Splits: Constraining the DUV or the Environment

Case-splits are another technique to limit the state space of a single FV
tool run, replacing the full proof with a series of less comprehensive
partial proofs.

We explain the concept of case-splits using the example of a primary
input vector that provides an op-code to an ALU. Assuming there are 256

12.3 Property Checking Using FV 527

possible op-codes, the design verification tool needs to account for 256
independent possibilities at every cycle where the environment of the
DUV can apply a new op-code. In the case where DUV plus environment
becomes unmanageable for the FV tool because of state space explosion,
a possible alternate way to drive the tool is to run the verification with
one op-code at a time. This constraint on the inputs cuts down the
number of cases that the FV tool needs to consider in parallel and there-
fore limits the state space considered. However, the verification team has
to select the constraints carefully, to not accidentally eliminate scenar-
ios, and to keep hidden bugs undetected. For example, verifying one
op-code at a time on the ALU above does eliminate any scenarios of
sequential dependencies between the different cases from consideration.

Again, modern FV tools offer facilities to ensure correct bookkeeping
of the selected constraints to avoid or highlight uncovered cases at the
end of the verification cycle.

The application of selective constraints for case splitting does not only
apply to primary inputs of the DUV. Another technique is the selective,
iterative constraining of internal signals of the DUV to a subset of their
possible values. This limits the DUV state space considered in a single
run of the tool. It is critical for the user to ensure that iteratively the
superset of all constraint runs equals the full set of possibilities the DUV
implements.

Clearly, the techniques of sub-setting inputs or internal operations to
manage the state space brings the verification with FV tools closer in
style to simulation-based verification. We apply one set of case-split and
overriding constraints per execution of the FV tool. Only the combina-
tion of all runs, covering all possible sets of constraints, provides com-
plete verification. A single FV run appears analogous to a simulation
test case. However, in simulation we always execute one single path or
pattern at a time. FV-based verification, on the other hand, still consid-
ers all possibilities of DUV and FV test bench inside the space limited by
the manual constraints and overrides. Therefore, the FV-based approach
usually provides much better verification coverage per verified property
even if manual constraints and serial verification were used to get around
the state-space explosion problem.

Manual Reduction of Data Path Widths

The reduction of vectored data paths to a smaller vector size is a popular
manual method to decrease state space of the DUV without significant
loss of verification coverage.

Staying with the ALU example from above, assume that the ALU uses
a 64-bit data path. This means internal registers typically have a vector
width of 64 as well. It is obvious that very quickly, such a DUV accumu-
lates a set of state variables of hundreds or thousands of bits, pushing
the state space easily beyond the grasp of FV algorithms. It is possible

528 Chapter 12 ■ Using Formal Verification

to reduce the data path width drastically and therefore the associated
state space with loss of significant control logic verification. This is espe-
cially easy to do if the designers prepare the HDL of the design for the
reduction by using symbolic parameters instead of hard-coded vector
sizes. The simple re-definition of the vector size parameter reduces the
state space dramatically and improves the reach of FV algorithm for
control logic properties.

Cone-of-Influence Reduction

The most powerful automatic technique to cut down the state space of
the Formal Model is the cone-of-influence reduction. This reduction does
a topological analysis to eliminate all logic, combinational or sequential,
that does not contribute to a particular property under verification. Prop-
erties not influenced by sequential logic at all or influenced only by a
narrow subset of the whole DUV benefit greatly from this optimization.
The FV tool can prune all parts of the DUV and FV environment not
directly connected with these properties from the model before the actual
verification algorithms starts, thus possibly shrinking the state space of
the verification dramatically. Very often, this optimization makes the dif-
ference between a manageable state space and the inconclusive run of
the FV tool that exhausts all available memory.

The cone-of-influence reduction is particularly successful when
applied to designs that make heavy use of the assertion-based design
style. Many of the implementation assertions do not need a deep state
traversal because their range into the surrounding logic is typically quite
shallow (e.g., one-hot property).

Localization

Localization is one example of a class of model transformations that
modern FV tools do automatically under the covers. The idea is to elim-
inate sequential logic that drives signals internal to the DUV and replace
it with purely random drivers. Figure 12.18 shows the principle of this
transformation.

With localization, the FV disconnects a part of the DUV logic that
drives a property and replaces it with randomly driven signals. If the tool
can prove that the property holds despite the unconstrained behavior on
the artificial internal boundary, by inference the property holds for the
real DUV as well. If the property fails, no result can be reported, because
the unconstrained boundary signals may have behaved in illegal ways
that the real DUV logic would not have allowed. Most likely, the error
report would consist of false fails. Usually, the FV tools attempt a differ-
ent localization operation after a failed attempt and proceed until it finds
a boundary for which it can prove compliance of the DUV with the prop-

12.3 Property Checking Using FV 529

erty. If not successful after several iterations, the FV tool gives up local-
ization and pursues other algorithms.

12.3.5 Semi-Formal Verification
Because of the exponential complexity of the FV problem, all modern FV
tools provide a collection of the optimizations discussed above under
their covers. In addition to the application of these transformations,
these tools alternate the application of different bug-finding algorithms.
Figure 12.19 shows the principles of this hybrid approach.

Previously we discussed the first algorithm that bridged the space
between exhaustive FV and random simulation. BMC provides full FV-
like coverage only for a subsection of the DUV state space. Semi-formal
verification tools drive this concept much further. They alternate exhaus-
tive state-space search algorithms with BMC, localization, and random
simulation algorithms. The assumption is that the overall DUV state
space is too large for exhaustive algorithms. Therefore, the semi-formal
tool uses random simulation to drive the DUV into interesting portions
of the state space where it then applies exhaustive search for property

530 Chapter 12 ■ Using Formal Verification

Property fails()

Property fails()

Automatic transformation(a) Original DUV

(b) Transformed DUV after Localization

Random
driver

■ FIGURE 12.18

Localization optimization for formal verification application. (a) The original DUV where a set of sequen-
tial logic drives a property fails signal. Localization selects a logic boundary inside the DUV where it
replaces the original DUV logic driving the boundary signals with randomly driven signals. This trans-
formation allows the disregard of all the driving logic and can disconnect that portion of the DUV before
further verification. If the tool can prove that the fails signal cannot turn active under the completely
unconstrained driving conditions using random stimulus, the proof for the property under the more con-
strained conditions of the real DUV logic is accomplished.

12.3 Property Checking Using FV 531

bug

bug

bug

bug

bug

bug

bug

bug

bug

(b) Exhaustive Search

(c) Alternating between Exhaustive Search and Random Simulation

(a) Random Simulation

■ FIGURE 12.19

The advantages of hybrid semi-formal verification (FV) systems, which alternate between different
approaches. (a) The verification coverage gained by the application of pure random simulation. (b) The
exhaustive coverage of FV for a subset of the overall design under verification (DUV) state space. The
state space of practical DUVs is too large for FV tools to cover it successfully in its completeness; there-
fore, FV in practice only covers a portion of the DUV state space. (c) The alternating application of
random simulation and exhaustive search, which provides the largest verification coverage of all
alternatives.

violations there. Once the tool reaches the limit of manageable state
space, it turns again to random simulation.

One variant of the semi-formal paradigm uses actual traces provided
by traditional random simulation to seed the semi-formal tools and drive
the exhaustive application of FV from that starting point.

Semi-Formal verification attempts to combine the strengths of
random simulation and FV in a synergistic, new way. This approach has
high promise to improve the overall verification coverage dramatically
but is still in heavy research and early application. This new approach
is certainly the most exciting development in verification research at
this time.

One important lesson already emerges very clearly out of the devel-
opment of semi-formal technology. It will be vital in the future that the
disciplines of traditional random simulation and semi-formal verification
can share the mechanisms for property checking and input constraint
declarations. The verification team of the future will need to apply either
technology wherever appropriate, and it will be vital to have input spec-
ifications that are portable between the different technologies.

12.3.6 EDA Vendors Supplying Formal and Semi-Formal
Verification Tools

Table 12.18 provides the names of several EDA vendors together with the
name of the tools they provide in the FV and semi-formal verification
space. Because this is a highly dynamic space of research and develop-
ment, the list is by no means complete or representative and readers
should use it merely as a starting point.

12.4 SUMMARY

In this chapter we extend the discussion of FV technology begun in
Chapter 11 further to property specification and checking.

The center of the first half covers tools and languages for property
specification. Besides the use of pure HDL, the OVL provides a library
of HDL building blocks to make property specification easier.

532 Chapter 12 ■ Using Formal Verification

TABLE 12.18. ■ Starting point for an exploration of the com-
mercial Formal and Sem-Formal Verification space

Cadence: FormalCheck Synopsys: Magellan
Mentor: 0-In Archer Averant: Solidify
Real Intent: Verix @HDL: @Verifier
IBM: RuleBase PE

PSL is a full-blown property specification language. It is the basis for
an important industry standard in this space, and in this chapter we use
it as the primary example to discuss all major aspects of property spec-
ification. Besides the productivity-enhancing concise surface of PSL,
there is a coherent set of constructs that allow the concise definition of
powerful temporal properties.

Functional FV today is enabled mostly by a variety of tools that use
symbolic model checking at their core. In addition to the exhaustive
verification by model checkers, practical FV tools use a number of opti-
mizations that tackle the problem of state space explosion. The variety
of different heuristics to enable FV in the mode of bug finding leads to
new hybrid FV tools that allow the user to select many different
approaches to apply FV.

The newest evolution of FV technology combines the scaling of
random simulation with exhaustive coverage of FV in the new technol-
ogy semi-formal verification.

Once considered applicable only in the academic domain, FV tech-
nology has been successful in many industry projects and continues to
increase in importance in any modern verification methodology.

12.5 EXERCISES

1. Create the top-level model RTL for the ARB design of Using OVL
to Specify Properties in a module called top that instantiates the
arb_property_checker and the design arb. Use the arb_checker that
implements the assertions using OVL.

2. Explain why exercise 1 cannot be implemented in VHDL with the
same model hierarchy.

3. Specify properties for the Gray counter (Chapter 11, DUV Drivers for
FV) using PSL.

4. Use the ARB design of exercise 1 and use the PSL properties of
Using PSL to Specify Properties to gain experience with PSL in a
commercial tool environment.

5. Use the ARB checker of Figure 12.12 and add coverage directives that
ensure assertion coverage for the following events:

(a) Ensure that all requests have been exercised
(b) Ensure that all grants have been asserted
(c) Ensure that arbiter corner cases have been exercised (e.g.,

two requests at the time)

6. Specify PSL properties for calc1 and exercise them using simulation
and / or FV tools available

12.5 Exercises 533

7. Modify the checker in Figure 12.12 to switch the checking from a
LIFO sequence to a first in, first out sequence.

8. Use Table 12.18 as a starting point to assemble an up-to-date list of
the main commercial FV and Semi_FV tools and their capabilities.

534 Chapter 12 ■ Using Formal Verification

P A R T I V

Functional
Specification

Designer
Implements
Functional

Specification

Pe
rfo

rm

Es
ca

pe

An
aly

sis

Environment

HDL andDebug

Create
Verification

Plan

Tests

Regression

Run

Verification
Cycle

Develop

Verification

Environm
ent

H
ardw

are
Fabricated

D
ebug

Form
al Verification

System
s

Test

Stim
ulus, C

heckers,

HDLHDLHDL
Tape Out

Readiness

CHECKPOINT

Lessons
Learned

CHECKPOINT
Plan

Review

CHECKPOINT

With a solid understanding of functional verification techniques for creating robust envi-

ronments, the next steps in the Verification Cycle are the regression stage, the tape-out

readiness checkpoint, debugging the fabricated hardware, and escape analysis. These

stages provide a backdrop for the verification team to reflect upon the strengths and

weaknesses of their environments, both before tape-out and after receiving hardware

results. Chapter 13 focuses on these parts of the Verification Cycle.

The most complex designs require advanced functional verification techniques.

These techniques include high-level model verification before register transfer level

implementation, bootstrapping simulation efforts, and coverage directed stimulus

generation. These are the topics of Chapter 14.

C O M P R E H E N S I V E V E R I F I C A T I O N

The verification team spends most of their effort in the first half of the
verification cycle. Weeks of planning lead to a sound verification plan
that, in turn, yields a robust verification environment. Building that
environment and debugging the DUV take the lion’s share of the verifi-
cation effort. As the team completes the environment, they focus their
efforts on sweeping the design of the last bugs before initial hardware
fabrication. However, the verification cycle continues well beyond fabri-
cation, as the design team tests the fabricated hardware and prepares for
final manufacturing.

Before hardware tape-out, the verification team completes sections of
their test plans as they verify the entire chip or system’s functional spec-
ification. In most complex systems that require hierarchical verification,
lower level test plans complete before system levels. In addition, across
a single level of the hierarchy, functional testing proceeds in waves,
with the verification team creating initial tests before moving on to more
complex scenarios. As the bug rate declines on the initial tests and the
lower levels of the hierarchy, cursory testing of these functions contin-
ues under regression, where the verification team ensures that new func-
tions and features do not break previously verified functions.

The verification team considers bug rates when using the regression
system and also for deciding when their work is nearing completion. To
measure bug rates, the verification team must use a problem-tracking
tool to monitor the uncovered bugs. These problems can be early in the
process or late during regression. Either way, the problem-tracking tool
allows the verification team to track the bug rates and status efficiently.

Before long, the bug rate falls for all functional verification, and the
design enters the final stages of circuit layout, timing correction, and
physical implementation. This is the time for the verification team to take
stock in their work, analyze their environments, and study their cover-
age data. The team scrutinizes their work, proving to themselves that
they have covered all the necessary functions and showing that the design
is functionally ready for fabrication.

At some point, the design team must make a decision to commit
the chip or system to fabrication. Part of this decision comes from the

C H A P T E R 1 3

COMPLETING THE VERIFICATION CYCLE

verification team. The verification team needs to know when to give their
approval, signaling that the design is functionally correct. During the
hiatus between tape-out and receiving fabricated hardware, the verifica-
tion team continues to run regression cycles.

The entire design team eagerly awaits arrival of the first samples of
hardware. Upon arrival, it is time to check the fabricated chips in a real
operating environment. This is an intimidating point in time for the ver-
ification team, because the speed of the fabricated hardware outpaces
the sum of all the simulation cycles in a matter of seconds. This is also
the point at which the verification team gets their evaluation.

Despite all their efforts, verification teams working on complex chips
and systems cannot detect all bugs before hardware fabrication. How-
ever, the team must meet certain expectations, such as flawless chip
initialization (reset scenarios) and basic functionality. However, at giga-
hertz speeds running customer applications, it is all too likely that the
hardware will come across dozens of scenarios never encountered during
verification. When a functional flaw exists in any of these new scenarios,
the verification team again jumps into action, performing the last stage
of the verification cycle: escape analysis. Here, the team investigates the
missed scenario, categorizes the design flaw, and updates the verification
environment. This process ensures that the verification team learns from
the “escaped” flaw and improves their capabilities for the next genera-
tion of hardware.

This chapter discusses these latter stages of the verification cycle, from
regression to escape analysis. These activities provide key structures for
a complete and robust verification effort.

13.1 REGRESSION

As the design project progresses from its preliminary phases, verification
moves from initial, simple tests to the more complex scenarios. At the
same time, verification that started at the lower levels of the design hier-
archy continues up to units, chip, and system levels until all parts of the
verification team are active at the same time.

On large engineering projects like chip design and verification, it is
vital to enable work in parallel in most disciplines. A serialized progres-
sion would lead to unacceptably long project durations. Parallelism
allows work downstream to start before a preceding process step is fin-
ished. Like an assembly-line operation, this pipeline process compresses
the overall project schedule.

13.1.1 Regression in the Verification Flow
The verification team can start work on the level of functional units as
soon as the design RTL has enough content and design level simulation

540 Chapter 13 ■ Completing the Verification Cycle

is mature enough to make the unit work productive. The design team
can hand off a new set of RTL design sources to the unit simulation team
at this time. We call this repeated delivery of a packaged set of HDL that
contains a certain level of functionality a design drop. As soon as all the
units of a chip have reached a maturity level that allows the chip verifi-
cation team to make enough forward progress, they receive the first
design drop of the whole chip. Subsequently, the system simulation team
can start their work in parallel when the chip-level teams assert a first
health-level of the chip simulations.

Figure 13.1 illustrates the parallel progress between the design team
and verification teams on three different verification levels: unit, chip,
and system.

The “Chip Simulation Start” block in Figure 13.1 is the beginning of
the chip level verification effort. The chip level verification team would
receive a design drop from all the lower levels of verification (1 in Figure
13.1). This team would then perform their testing on that collection of
design drops. During their initial testing they may encounter bugs that
the lower levels did not find. When this occurs the design must be fixed;
therefore, the simulation is handed over to the designer to look at (2 in
Figure 13.1). Once the designer attempts a fix, it is handed to the unit
level of simulation so they can regress the fix to ensure nothing else is
affected by the fix (3 in Figure 13.1). The unit team then regresses this
new design drop. If during the regression of this new design drop the
unit verification team encounters other issues, they feed this back to the

13.1 Regression 541

Design start

Design progress

Unit regression

Unit simulation
start

Unit sim

Chip regression

Chip simulation
start

Chip sim

System regression

System simulation
start

System sim

1

23

5

4

6

Design drop

Bug feedback

■ FIGURE 13.1

Design and verification cycles on different hierarchy levels proceed in parallel after the initial design
drop from the design team. At various intervals, the design process and the bug feedback from verifi-
cation leads to design changes and new design drops. On every verification level, an inserted regres-
sion step ensures previously reached verification maturity is retained in the new design drop.

designer (4 in Figure 13.1). The designer again attempts another fix and
does another drop to the unit verification team (5 in Figure 13.1). Even-
tually, the unit team validates the fix via the regression. At this point, the
unit team then performs a drop to the chip verification team so they may
progress (6 in Figure 13.1).

In general, after the first design drop has moved from units all the way
to the system level, all parts of the verification team can work in paral-
lel and feed bug reports back to the design team. As the design team
releases new design drops to the verification team in return, it is neces-
sary to merge the changed design into the running process without
disrupting the already made progress. The worst case would be a reset
of the process that requires a re-working of all previously completed
verification.

The verification team performs a regression simulation on every veri-
fication hierarchy level to assess that previously asserted design correct-
ness still applies to the new design drop. The regression ensures that the
bug fixes work and that the fixes and newly added design functions
do not break the DUV in unintended ways. If the regression completes
successfully, the verification teams can proceed quickly to verify the
new functional content and the overall process makes forward progress.
In the more general case, we speak of a regression verification, which
includes both simulation and formal verification. Regression verification
prevents the functionality of new DUV drops to backslide to some earlier
buggy state.

A regression environment is a set of HDL models, test bench configu-
rations, test cases, and formal properties that have to run successfully to
assert sufficient quality of a new design drop and let the verification team
proceed productively forward. We call the execution of the regression
environment a regression run. This regression environment could be the
complete current environment meaning the regression run uses all exist-
ing tests.

There are two main concerns that a regression environment must
address. First, there must be measurable quality criteria to ensure the
effectiveness of a regression for the iterative verification cycle. Second,
it is important to minimize the time it takes to complete a regression
run (which is why you usually do not use the complete set of tests in
the regression environment). Being able to turn around regressions
quickly makes them a key tool to improve productivity in the parallel
design and verification cycle. The following sections discuss each of these
concerns.

13.1.2 Regression Quality
On any hierarchical verification level, regression runs must establish
baseline quality criteria for every new design drop. Regression verifica-
tion is selective re-testing of the DUV. The test selection must regard two

542 Chapter 13 ■ Completing the Verification Cycle

main sources for the regression runs: tests that previously failed and tests
that broadly cover the base functionality implemented thus far by the
design team. Both classes of tests collected together form a regression
suite.

A regression must re-run the specific tests that failed on the earlier
design drop to ensure that the design team did indeed fix the problems.
Initially, these tests can be very specific and deterministic to be able to
hit the exact error scenario uncovered before. Afterward, it is very effec-
tive to remove the constraints on the randomization parameters and
directives of these tests to cover the DUV state space around the previ-
ous specific error scenario. Such an extension of the static re-run sce-
nario ensures that the bug fix was a real error resolution, not just a
specific patch; in addition, it further stresses an obviously error-prone
area of DUV.

The power of formal verification comes to play strongly if the required
regression tests are actually property checks that previously failed using
formal verification technology. The formal verification ensures the ex-
haustive proof of the property against all DUV inputs and behavior that
the regression environment allows.

The second class of tests in a regression suite contains static and
dynamic tests that cover as much as possible of the currently imple-
mented functionality of the DUV. The team selects the tests based on
functional content and coverage metrics that were measured during prior
runs of the tests. For the static tests, the functional coverage remains
stable from one design drop to the next. This is true as well for property
checks applied with formal verification tools. For the dynamic tests,
however, the coverage metric is a probabilistic measure because of the
random nature of the environment.

Ultimately, the utility of a regression suite is determined by its success
to identify low-quality design drops, thus preventing a backward slide in
DUV quality between successive design drops.

The goal to reach comprehensive re-verification coverage with a
regression suite is in direct conflict with the goal to run a regression very
quickly over a new design drop and then return to the main process of
the DUV verification. The verification team must find a pragmatic com-
promise between the two objectives to create a regression suite that is
both comprehensive and fast enough.

13.1.3 Regression Efficiency
A regression suite can become a bottleneck of the verification cycle. This
occurs when the verification team runs out of productive work on the
current design drop and must wait for the regression run to complete on
the next design drop. Switching to a new design drop becomes a neces-
sity when bugs, which the design team fixed in the next drop, become
the main obstacle to progress on the current drop.

13.1 Regression 543

There are two ways to improve the turn-around time for regression
suites. The first approach, test case harvesting, optimizes the test selec-
tion such that tests with higher coverage are preferred. This minimizes
the number of tests contained in the regression suite. Second, the team
can split the overall suite into separate jobs and run them in parallel on
several computers, typically referred to as a workstation farm.

Test Case Harvesting

Minimizing the size of the regression suite requires the use of functional
coverage metrics. Every test case records its coverage using the same cov-
erage criteria. Over the full sequence of tests, the regression environment
checks whether a test has hit coverage points that prior tests did not visit
before. Test by test, the environment accumulates the overall coverage
high water mark. If a test does not hit a new coverage point, it does not
contribute to the purpose of the regression, and therefore the verifica-
tion team can eliminate the test from the regression suite.

Figure 13.2a illustrates this technique, which we call simple harvest-
ing. There is a sequence of seven tests and a record of the coverage
achieved by each test shown as a mark in the 4 ¥ 4 matrix of a simple
example coverage space. After each test completes, the newly hit cover-
age events accumulate to a total coverage score for all tests so far. Below
each test case’s coverage matrix, Figure 13.2a shows the accumulated
coverage of the regression suite up to this test. In the end, the regression
suite is not able to cover the whole coverage space. However, every new
test hits a new coverage event. Using the simple harvesting scheme does
not yield a reduction of this regression suite. The regression suite does
yield high coverage of the overall space, but with simple harvesting we
need to run all the tests to achieve this.

Simple harvesting has the advantage of very low runtime overhead on
top of the coverage data collection. This technique can eliminate redun-
dant tests efficiently when applied over large sets of tests and a limited
coverage space, especially in cases where the individual tests trigger only
few coverage events each.

However, the disadvantage of the method is the limited optimization
potential governed by the simple incremental test-by-test analysis. The
example in Figure 13.2 shows this drawback because a more complex
method, shown in Figure 13.2b, can cut the number of tests almost in
half while retaining the high overall coverage achieved by the now much
shorter regression suite.

Complex test case harvesting is a process where the regression envi-
ronment keeps the coverage results for each test case and does a global
analysis over all tests of the regression suite. The goal of the analysis
is to find the minimum number of tests required to hit all coverage
points that the whole regression suite covers. Figure 13.2b shows that
the example achieves this with four instead of seven tests.

544 Chapter 13 ■ Completing the Verification Cycle

The underlying optimization problem is the set cover problem in the
academic literature, and its complexity is exponential with the number
of tests [100]. The set cover problem is not verification specific. In its
mathematical definition it is a set of sets whose union has all members
of the union of all sets. For a regression suite with a large number of
tests, complex test case harvesting requires the use of approximate algo-
rithms because an attempt to do full optimization exceeds any reason-
able time limits and defeats the purpose of the regression verification.
Recently, the problem has attracted new research [101].

Whether using the simple or complex test case harvesting techniques,
the reduction of tests in the regression suite will lead to higher regres-
sion quality as those tests that are running exercise the necessary func-
tion with little overlap.

13.1 Regression 545

1

x x

2

x x

3

x x

x

4

x

x

5

x

x

x

x

x x

x x

6

x x

x x

x x

7

x x

x x

Time

x x

x x

x

x

x

x

x

x

x

x x

x x

x x

x x

x x

x x

x x

Accumulate

2

x x

5

x

x

x

x

x x

x x

6

x x

x x

x x

7

x x

x x

Accumulate

(a) Accumulated Coverage over Sequence of 7 Testcases

x x

x x

x x

x x

x

x x

x

x

x

x x

x

x

x

x

x

x

x

x

x x

x xx

x

x

x

x

x

x x

x x

x x

x x

x x

x x

x

x

x

x x

x x

x x

x

x

x

x x

x x

x

x x

x

x

x

x

Marks newly covered
state in accumulation

(b) Accumulated Coverage over Minimized Sequence of Testcases

■ FIGURE 13.2

Example for efficient test case harvesting. The matrix of 16 coverage points is shown as a table. (a) A
sequence of seven test cases, each represented by its table marked with the coverage points that it
reached. Below that sequence is a set of matrices marked to show how the overall coverage of the
regression suite accumulates. After each accumulation, the summary highlights the newly hit coverage
points. (b) How a shorter sequence of tests selected from the original seven in a can accumulate the
same set of coverage points.

Workstation Farm—Simulation Grid

The second way to optimize the runtime of a regression suite is the appli-
cation of parallel processing. Splitting the suite into test cases that each
can run on a different computer is trivial if the tests are independent of
each other. A workstation farm is a set of workstations connected via a
local-area network. A batch control environment allows the verification
team to launch compute jobs into the workstation farm.

As Figure 13.3 shows, a workstation farm typically consists of a large
number of compute servers, which process the individual regression
simulation jobs. Model build and formal verification usually need faster,
high-end machines with a large main memory footprint. Workstations
with large disk capacity store the prepared simulation models that they
ship to the compute servers over the network. The data servers are also
the place to store coverage and regression result data.

A workstation farm that is used for regression runs is managed by
batch control software that monitors which compute servers are avail-
able and transfers individual regression runs to them. At the completion
of a single regression test, the compute server transfers the results back
to one of the data servers. One popular solution package to manage work-
station farms used by electronic design automation vendors is the Load
Sharing Facility [102].

546 Chapter 13 ■ Completing the Verification Cycle

Compute
servers

Local area
network

Model build
serversData

servers

Compute
servers

Local area
network

Model build
serversData

servers

Wide area
network

■ FIGURE 13.3

Efficient regression suite processing uses a workstation farm to distribute the verification tests across
a large number of computer servers. The farm can be spread across several local-area network clusters,
which are connected via fast wide-area network. In addition to the compute servers, the farm uses
dedicated high-performance machines to build simulation models or to run formal verification tasks.
Data servers with large disk capacity host the simulation models, coverage data, and regression results.

Because simulation is usually a processor-bound application with little
input/output (I/O), the compute servers can easily be shared with an
interactive user. This allows the population of desktop workstations of
designers and verification engineers to be part of the pool of compute
servers and typically extends the capacity of the workstation farm dra-
matically. Now, when the workforce is not utilizing the processors on the
desktop (they go home for the day), the workstation farm kicks in and
utilizes these processors.

During the last few years, the concept of grid computing has gained
popularity and support with a groundswell of supporting software [103].
A computing grid is a distributed collection of computers, managed
together as one large compute resource. It is possible at any time to com-
mission applications into this combined resource. Simple applica-
tions can run on a single computer of the grid, whereas parallel, cooperat-
ing applications use the network to tie several machines dynamically
together to form a parallel machine. The one application that pushed grid
computing into the public consciousness was NASA’s SETI@Home, an
application that allows millions of personal computers on the Internet
to participate in analyzing radio telescope data to find signs of extra-
terrestrial life.

This description shows the great similarity between verification work-
station farms and on-demand computing grids. We expect that typical
regression verifications will soon be grid-computing applications.

Long Tests Versus Short Tests

One basic requirement for effective use of workstation farms is a method-
ology that keeps regression tests to a relatively short duration.

If a complete regression contains 10 long test cases, the paralleliza-
tion of the regression run can only use up to 10 compute servers. The
turn-around time for the regression suite is as long as it takes to com-
plete the slowest test. If that test is 10 hours long, no workstation farm
can cut the regression time below 10 hours, even if the total time to run
all tests in sequence is just 15 hours. However, if we can limit the length
of the longest individual test to 1 hour, a workstation farm of 15 servers
can take down the regression time to 1 hour, an order of magnitude faster
than before. Over the course of a project, the accumulated acceleration
of regression runtime has a strong, positive impact on product time-to-
market.

Smaller tests also have the advantage that in case of an error that
occurs late in the test, the re-run and debug will not require a long start-
up time. On the other hand, how can short tests create enough stimuli
to run the DUV deep into interesting corners of its state space? Common
sense dictates that it takes a longer test to set up the interesting window
conditions that reveal the bugs in the design.

The solution to this problem is to let the test case driver support an
intelligent setting of the initial state of the DUV. Regression tests do not

13.1 Regression 547

need to start with the power-on-reset simulation. A single, separate sim-
ulation can ensure that power-on-reset works (as described in Chapter
9). Instead, it is very productive to reset the DUV at the beginning of a
regression test into a known legal state that is a snapshot of an interest-
ing state at which point the DUV executes the test case stimulus under
duress. Obviously, this scheme requires more work in defining interest-
ing starting states for the test case driver (Chapter 14 contains more
information on this). The payback in speedup of regression testing,
however, is well worth the effort.

13.2 PROBLEM TRACKING

Any problem that is encountered throughout the project impacts the
team. Every problem must be resolved. The problem areas might deal
with HDL logic bugs, verification environment bugs, timing, synthesis,
and tool problems. We focus on the first two—HDL logic bugs and veri-
fication environment bugs. Some of the most common problems related
to these pertain to the specification, defects (either in the DUV and
the verification environment), and enhancements to the verification
environment.

One key to resolving all the problems is to track them. This ensures
that no problem goes unresolved, because there is documentation of all
problems that have occurred during the course of the project. In addi-
tion to ensuring that all problems are resolved, the tracking also allows
the management team to stay informed on the progress of the overall
project.

Many teams overlook tracking problems that deal with the specifica-
tion. Because this is the source for the design and verification effort,
any problem associated with the specification is worth tracking. Find-
ing ambiguities within the specification is common. By tracking these
ambiguities, it ensures a clear and concise specification. If they go unno-
ticed, it can lead to misinterpretation of the specification. In other cases,
details are just missing from the specification. In either case, the verifi-
cation team needs to ensure they correctly understand the intended
behavior.

In Chapter 8 we discussed the debug of problems (within the DUV and
the verification environment). What was not covered is the tracking of
such problems. Logging and tracking of any problems then ensures
resolution. The verification team should track any problem encountered
within the verification environment (to include the DUV).

In addition to problems within the verification environment, the ver-
ification team should also track any type of enhancement request. These
enhancements could be to the HDL or to the verification environment.
By tracking these enhancements, the team creates a list of items to con-
sider acting on if time permits. If time does not permit for the current

548 Chapter 13 ■ Completing the Verification Cycle

release, then it becomes a list of items that need to be resolved for the
next release of the chip. It can be something as simple as changing the
arbitration scheme within the design or as drastic as rewriting a verifi-
cation component for re-use.

Now that we know what to track, what has to be decided next is how
to track the problems or enhancements (both referred to as issues). Chip
design is a large hardware project that uses software concepts and
constructs as a skeleton for creating the hardware. Many of the same
project issues plaguing hardware engineers also plague software engi-
neers. Problem tracking is one of those concepts that the hardware
community needs to adopt from the software community. The software
community has used formalized tools to perform the tracking of issues.
There exist many commercially and freely available issue-tracking tools.
(A search on “Problem Tracking” on the Web will result in hundreds of
hits.) Some functions that are mandatory for these issue-tracking tools
are subscription capability, query capability, and report generation.

Subscription capability gives users the ability to subscribe to cate-
gories or classes of issues. The tool notifies all subscribers when the
status of these issues changes (see below on the life cycle of an issue).
This relieves some of the burden of having to review each issue for
any change manually. Manual checking for updates to issues when a
verification engineer may have hundreds of open issues hinders
productivity.

Query capability is another productivity booster. The query capability
allows the verification engineer an efficient way to search the database
based on different criteria. Because of the nature of chip design, the ver-
ification engineer may be working with levels of logic that are not the
most current. Because of this fact, when the verification engineer finds
a bug he or she needs to ensure that this is not an already known bug
and subsequently fixed in another release of the logic. Without this capa-
bility on big projects, it may take a long time just to check to see whether
this issue is a new issue.

The last mandatory function is report generation. When we discuss
metrics, we will see that this is the mechanism of how to create the bug
closure rates. Again, this is a productivity booster. If this function did not
exist, a verification engineer would manually create the bug closure rates.
In most cases, this is a waste of a valuable resource.

With the advent of these issue-tracking tools, the tracking of problems
and enhancements becomes more manageable. These tools allow track-
ing of an issue throughout its life cycle. The life cycle of an issue is the
phases a problem or enhancement goes through between when it is con-
ceived and when the problem or enhancement is resolved. Most of the
tools are configurable to meet the team’s needs. Figure 13.4 shows the
life cycle of an issue for a typical chip design project.

The life cycle of an issue determines how to track an issue. Every issue
contains a status field as well as numerous other fields such as owner,

13.2 Problem Tracking 549

issue number, description, date opened, date closed, unit, and issue type.
These fields are just an example, and any given project is subject to
creating their own that are pertinent to the project. However, the status
field is an important feature because it defines where an issue is in its
life cycle.

When a verification engineer opens an issue, its status is new (1 in
Figure 13.4). At this point, the tool assigns an owner to the issue based
on other fields defined within the project (such as unit or class). For spec-
ification issues, the tool assigns the author of the specification as the
owner. For design issues, the tool assigns the issue based on the unit. The
same would be true for verification. The owner then looks at it and reas-
signs it to another owner based on investigation of the issue (2 in Figure
13.4). In this case the status remains new. Or the owner changes the
status to either started (3 in Figure 13.4) or resolved (4 in Figure 13.4).
By classifying it as started, the owner acknowledges that it requires
further study. However, by marking it resolved, the owner may already
know the resolution of the issue (the problem may already be resolved
in a newer version of the logic or verification component).

When an issue gets to the started state, it means that the tool assigned
the issue to the proper person for resolution. The owner, on further inves-
tigation, may find that their piece (logic or verification component) does
not cause the problem described by the issue. Some other upstream piece
may be the cause of the problem. At this point, the owner would re-assign
the issue to another person by changing the owner (and hence changing
the status from started to new) (5 in Figure 13.4). If this is not the case
and the owner determines the resolution, the issue is then changed to
resolved (6 in Figure 13.4).

An issue in the resolved state indicates that the owner (designer
for logic bugs, verification engineer for verification environment issues,
architect or designer for specification issues) understands the problem

550 Chapter 13 ■ Completing the Verification Cycle

Started

New

Reopened

Resolved

Closed

Verified

Issue entered

2
1

3 5 6

4

11

11

8

7
9

10

■ FIGURE 13.4

Issue life cycle from the creation to the closure of an issue.

or has decided on a course of action for resolution of the issue. The type
of action the owner takes may be one of many. The following list shows
some of the actions the owner may choose to take:

■ Fixed: A fix for the problem is available.

■ Defer: The fix to the problem or enhancement is not put into this
version of the product.

■ Duplicate: Someone else already found this issue. The owner
should document the original issue number so that the originator
can find the resolution to the issue.

■ Not reproducible: The owner could not reproduce the problem. If
this problem reappears, then reopen the issue.

In any case, the originator of the issue must validate that the resolution
is satisfactory. The owner of this issue cannot close it until completing
this step. If the resolution was not satisfactory, the originator would then
re-open the issue. If the resolution is satisfactory, then the resolved issue
is marked as either verified or closed. The determination of whether to
mark the issue as verified or closed depends on the resolution action (as
listed above). In all cases but “fixed”, the issue becomes closed (7 in
Figure 13.4). If the resolution is “fixed”, then the issue must go to the ver-
ified state (8 in Figure 13.4).

Marking the issue as verified means the originator of the issue has
viewed the resolution action and agrees with it. For issues that pertain
to logic or verification components, the issue remains in this state until
the originator receives the fix. Once the originator receives the fix, the
issue is then marked closed (9 in Figure 13.4). In the case of a specifica-
tion problem, the verification engineer would validate that the updated
documentation matches the intended behavior.

When a user determines that a closed issue is not resolved, they reopen
that issue. At this point, the tool marks the previously closed issue as
reopened (10 in Figure 13.4), which indicates that the issue requires
further action. The individual who marked it resolved (now the owner)
must revisit the issue and decide what to do with it. The owner would
then make a decision on how to proceed. Depending on the course of
action, the issue may be marked as either started or resolved (the deci-
sion on what to do is similar to when an issue is in the new state) (11 in
Figure 13.4).

The closed state indicates the end of the life cycle for the issue
(meaning that the resolution action to the issue is correct). However, a
previously closed issue can be reactivated by changing the status back to
reopened (10 in Figure 13.4). This may occur because the original reso-
lution was inappropriate. For example, a user may reopen an issue pre-
viously classified as “not reproducible” based on new information. This
is also the case when a deferral resolution on an issue is no longer

13.2 Problem Tracking 551

applicable, that is, management reprioritizes deferred functionality to
the current release of the chip.

Now that we understand the life cycle of an issue, we need to deter-
mine what types of issues are worthy of tracking. Tracking all issues is
ideal. Realistically, we should only track those items that are worth the
effort. The rule of thumb is that an issue is not worth tracking if the effort
involved in creating the issue is greater than the effort to resolve the
issue. However, this is just the rule of thumb. Every project has different
guidelines.

13.3 TAPE-OUT READINESS

To this point, we discussed most of the verification cycle—verification
plans, verification environments, simulation based verification, debug-
ging of the environment, formal based verification, and regressions. That
brings us to the question of when is the design ready to commit to man-
ufacturing. Before sending a design to manufacturing, the entire design
team must meet the established tape-out criteria. Tape-out criteria is a
series of checklists that indicate the completion of planned work for a
chip before release to manufacturing. Tape-out criteria has many
components, verification being one of them. In this section, we discuss
verification-related completion criteria.

However, before getting to completion criteria, we need to discuss
metrics. Keep in mind that every company has its own set of tape-out
criteria and metrics. The purpose of this section is not to discuss every
metric that is used, but to discuss some of the metrics and their rele-
vance to tape-out readiness.

13.3.1 Metrics
Metrics allows the engineering team to assess the overall progress of
the project. By keeping metrics, the project’s managers can assist the
development process by shifting resources and evenly distributing work
among engineers and skill groups. They do these tasks based on the
metrics and feedback from the team (including the verification teams).

The most common verification metrics are bug closure rates and cov-
erage closure. These two metrics assess the progress of the verification
effort and dovetail with common design metrics such as HDL comple-
tion and timing closure.

Bug Rates

The bug rate shows the pace at which the verification team discovers
bugs and designers fix them. This is an indication of progress for the
team. The verification team tracks two separate bug rates. The first is

552 Chapter 13 ■ Completing the Verification Cycle

when the verification team logs a bug (bug discovery rate). This occurs
when the verification team creates a new issue in the problem-tracking
tool. The other is when the owner of the bugs fixes them (bug closure
rate). This again is determined from the problem-tracking tool; it is when
the issue has been closed by the originator. Both are important so that
the team can tell if the designers are keeping up with the bugs. If the
number of open issues each week remains constant (the number of new
bugs equal the number of fixed bugs, but not necessarily the same ones),
then the project is well balanced. If the number of open issues grows
from week to week and the designers are not keeping up with them, then
the team needs to take corrective actions. Figure 13.5 shows an example
of bug discovery rates.

Notice that the bug discovery rate follows the shape of an “S.” The
team typically expects bug discovery rates to follow this path. In the
beginning the environment is too unstable; thus, the verification team
finds few bugs. As the environment matures and the verification team
begins running valid test scenarios, the bug discovery rate rises sharply.
Then near the end, the discovery rate levels off as the verification team
finds fewer and fewer bugs [105].

Another metric to track when it comes to bug closure rates are the age
of the open issues. The team does not want a series of old bugs hanging
around. These bugs hold up testing until the designers release the fixes
to the verification team. By not providing fixes in a timely fashion, the
verification team cannot progress because they constantly are running
into the same bug. Age issues can also be a sign that the design needs to
be “re-micro-architected.” It could be that the fix is so complex that it
takes weeks to fix.

Bug discovery rates do not fall off overnight. The verification team can
use this rate to predict the trend over the upcoming weeks. Figure 13.6
shows an example of bug discovery and closure rates.

13.3 Tape-Out Readiness 553

N
um

be
r

of
 b

ug
s

160

140

120

100

80

60

40

20

0

Bugs
‘S’ curve

7 16 281 13 254 10 2219

Week

■ FIGURE 13.5

Bug discovery rate.

For this example we assume the project is well balanced—the number
of bugs found in a week is close to the number of bugs fixed. In the begin-
ning of the verification effort the bug rate is zero, and the verification
team finds no bugs because the environment is not yet functional (weeks
1 to 3). As the environment becomes stable, bugs are uncovered (in both
the logic and the verification components). As the verification team pro-
gresses, the bug rate increases (weeks 4 to 11). Eventually, the bug rate
flattens out as the design becomes more stable and mature (weeks 12 to
16). As verification progresses, the bug rate drops (weeks 17 to 29). As
the end of the verification for a given unit nears, the team focuses on the
last coverage items (corner case tests). During this time, the design team
is feverishly closing the last remaining bugs (weeks 30 to 34). Note that
in these weeks the last remaining bugs are not closed as fast as previ-
ously. Typically, these last remaining bugs are the corner case bugs that
take more time to analyze and fix (as well as regress to ensure that
nothing else is broke). Finally, every function is covered and all tests pass
successfully in regression (week 35).

Another good item to track is the location (what logic piece) where
the verification team finds the bugs. If a particular HDL unit has an inor-
dinate share of the bugs (compared with other equally complex units),
then this may indicate that the unit (or portions of the unit) needs to be
re-designed.

Coverage Closure

Although the bug rate metric measures closure on problems found by
the verification team, the coverage closure rate measures how the envi-
ronment does against its functional testing criteria. Coverage closure
means that the verification team has met their defined coverage goals.
The closure on coverage is for both functional as well as structural (code

554 Chapter 13 ■ Completing the Verification Cycle

7 15 29

30

25

20

15

10

5

0
1 35253 11 21

Open
Fixed

9 17 19 3113 275 3323

■ FIGURE 13.6

Example of bug discovery and closure rate.

coverage). Functional and structural coverage closure measures the
overall effectiveness of the test scenarios.

As mentioned in Section 6.2, functional coverage targets semantic
aspects of the test generation or design implementation. Functional
coverage metrics assists in determining whether the verification envi-
ronment exercised all the identified coverage items. The key here is “iden-
tified,” because the verification environment may not have exercised
functions not identified in the coverage or test plans. If there is no cov-
erage item for a function or logic condition, then no one can measure if
it was exercised or not. If the stimulus component does not exercise
certain function, then the checking components can not identify a failure
within that function (remember the yin-yang). Figure 13.7 illustrates the
closure of functional coverage over time (the verification effort).

When the environment is in its infancy and discovering basic envi-
ronmental component and logic bugs, the team turns off coverage col-
lection. Measuring coverage is a distraction; the most basic test scenario
must first run successfully (weeks 1 to 4 in Figure 13.7). As the tests start
exercising more logic function, coverage collection commences (weeks 5
to 19). The closure on coverage slows dramatically once the team has
verified most mainstream function. At this point only the corner cases
remain, and the verification team focuses on creating the stimulus con-
ditions required for these difficult scenarios. Once these final tests pass,
functional coverage reaches 100% (weeks 20 to 31).

The curve shown in Figure 13.7 shows a typical functional coverage
graph for many projects. It illustrates the progression of functional cov-
erage of the verification effort of a unit. Every week the verification team
measures their functional coverage and charts that against their func-
tional coverage goals (from the verification plan). Later we discuss how
this is important to completion criteria.

13.3 Tape-Out Readiness 555

7 16

Week

28

%
 C

ov
er

ag
e

100
90
80
70
60
50
40
30
20
10
0

1 13 254 10 2219

% Coverage

■ FIGURE 13.7

Example of functional coverage closure.

You may notice a correlation between bug rates and functional cov-
erage closure. Figure 13.8 shows the correlation of bug rates to func-
tional coverage closure.

Note at the apex of the bug rate curve is when coverage starts to
increase dramatically. At this point (week 11), the design becomes more
stable and the bug rate decreases from an increasing rate to a constant
rate. Coverage continues to increase dramatically as the bug rate starts
to decline (up to week 17). Now, as the bug rate starts to flatten out as
the verification team finds fewer and fewer bugs week to week, the cov-
erage flattens out as well. As mentioned previously, this is when the ver-
ification team is addressing the corner-cases. At the end of the verification
effort, note how functional coverage becomes 100%, whereas the verifi-
cation team discovers no new bugs.

It is unlikely that the bug rate will drop before the coverage curve
approaches its final apex. If the bug rate drops off when functional
coverage is only 50% complete, the team should investigate this strange
anomaly immediately!

In addition to functional coverage, the verification team should also
consider structural coverage metrics. Structural coverage analysis points
out holes of uncovered areas in the design (see Chapter 6). The verifica-
tion team gathers structural coverage metrics near the end (when func-
tional coverage is nearly 100%). As already mentioned, the gathering of
structural coverage is typically “for free” in that no additional work is
necessary from the verification team except having to enable it in their
tool sets. There are numerous types of structural coverage; most of them
(excluding statement) are subjective to the logic implementation. Using

556 Chapter 13 ■ Completing the Verification Cycle

7 16

Weeks

28

%
 C

ov
er

ag
e

100

90

80

70

60

50

40

30

20

10

0
1 13 254 10 22198 17 292 14 265 11 23209 183 15 276 12 2421 30

B
ug

 c
lo

su
re

 r
at

e

30

25

20

15

10

5

0

■ FIGURE 13.8

The relationship of bug closure rates to the percentage of functional coverage.

structural coverage as a metric depends on the project and coding style
of the RTL. For those projects where the coding style lends itself to
structural coverage, using statement coverage is a minimum require-
ment. This is because any absence of activity in areas of the HDL model
highlights omissions in the tests. The other limitation of statement cov-
erage is the missing semantic insight; the fact that an HDL statement
has been executed results in no knowledge about the correctness of the
content of the statement. This is why structural and functional coverage
go hand-in-hand.

13.3.2 Completion Criteria
A design team does not want to send the design to manufacturing until
verification completes its validation of the logic. With deterministic tests,
the verification team completes its criteria when all tests have completed
successfully. However, random-based verification environments are dif-
ferent. Every test scenario with a new random seed might exercise dif-
ferent areas of design (which is exactly the reason why verification teams
use it). With the large state space problem, how does the verification team
ensure that their verification suite covers enough of this state space to
ensure a quality design?

The metrics discussed earlier are all contributing factors to the answer
of this question. Bug closure rates, functional coverage, structural cov-
erage, and open issues are all factors that influence completion criteria.
In addition to those metrics, two other items are crucial in determining
the answer to the question. The first item is a verification review for each
unit and level of hierarchy. The second is a pre-determined period of bug-
free regression. Figure 13.9 shows the diagram that the verification team
must follow when deciding when to ship the design to fabrication.

Functional coverage metrics are one of the first things the verification
team must do when assessing how close to done the team is. If functional
coverage is below 100%, then the verification team requires more effort
(more work in front of them). The team must continue to regress and
enhance the test scenarios to close out those last remaining coverage
items.

Not only should the verification team look at functional coverage, they
should also look at structural coverage. Structural coverage is a critical
metric because it can indicate areas of logic that the test scenarios did
not exercise (specifically statement coverage). Ideally, if the verification
team defined functional coverage properly, statement coverage will be at
100%. However, in many circumstances statement coverage is less than
100%. If this is the case, then the verification team, together with the
designer, must review the areas not covered. If the designer finds logic
that the verification teams test scenarios should have exercised, then
the verification team must enhance the functional coverage metrics to
accommodate the new function within the area of the code that the
testing suite did not exercise.

13.3 Tape-Out Readiness 557

If coverage is okay, then the verification team needs to scrutinize the
bug discovery rate. The rate at which the verification team finds bugs
gives an indication of how close to completion the verification team is.
If the verification team finds bugs daily, it indicates that the logic is still
in flux. Until the design stabilizes and the verification team does not find
any bugs, it is not ready for fabrication.

If the team deems the bug discovery rates have dropped significantly
and the coverage items are okay, then the verification team must review
the open issues. Open issues indicate if any outstanding problems or
enhancements exist (see Section 13.2). If any open issues are due to bugs,

558 Chapter 13 ■ Completing the Verification Cycle

No

Yes

“Ship it!”

Regress

Coverage
complete?

No

Yes

Bug rate
dropped?

No

Yes

No open
issues?

No

Yes

Verification
and design

review?

No YesClean
regression?

■ FIGURE 13.9

Deciding when the verification team is done is a series of decision points that typically start with ana-
lyzing coverage.

it indicates that the logic may change unless the resolution action is to
defer. The owners of all open issues must close the issues before sending
the chip to fabrication. This means that all issues have an acceptable res-
olution associated with them. The resolution may be to defer to the next
release. Nevertheless, a resolution that the team agreed on exists.

If the verification team gets to the point where coverage, bug rates,
and all issues have an acceptable resolution, then the next step is to have
a verification review. This review scrutinizes the verification test bench
and test plan. For every unit that contains a verification plan, the team
holds a formal review of the plan and its associated test bench. The audi-
ence of review includes that unit’s verification and logic design team, the
verification and logic design teams of any unit it interfaces to, and the
architecture team. The topics of the review are as follows:

■ How the stimulus components work (especially random aspects)

■ What functions the verification components check

■ A review of what the functional coverage items are

This review is a quality statement. It allows the other team members to
provide input on how the neighboring units really work and allows the
architects to give input on the intent. At the conclusion of the review, any
work items need to be logged and assessed for risk. Any high-risk items
indicate more work for the verification team.

The last step in the completion criteria list is to have a clean regres-
sion suite of tests for a pre-determined period after the verification team
achieves their coverage goal. This is a safety net. Because of the nature
of random simulation, the verification team should continuously run
the regression suite for a certain amount of time. This allows random
simulation to explore other areas of the state space that the verification
and design teams may have missed when creating the tests and coverage
goals. There is no scientific formula for the duration of this time.
However, if the verification team uncovers a bug at any time during this
period, the bug is fixed and the regression time resets. The verification
team should analyze the new defect, update the coverage goals, and
test plan.

The metrics discussed above may show a false positive. Inevitably, the
final answer to the question on whether the team sends the chip to man-
ufacturing is a decision based on risk.

13.4 ESCAPE ANALYSIS

Escapes refer to problems not detected using the methods used in
verification. Figure 13.1 illustrated that the higher levels of verification
progress with their effort and bugs may be found. The lower level

13.4 Escape Analysis 559

verification team, to ensure the bug fix is correct, re-creates these bugs
within their verification environment. For the team to do this, they must
analyze the bug and determine why their team did not find the bug first.
The missing of the bug by the lower level verification team is classified
as an escape; however, this type of escape is handled in the normal flow
of the verification cycle before tape-out and is not discussed here.

The escapes that occur during systems test, where the DUV is the fab-
ricated hardware, are the most costly because it may require a re-spin of
the hardware. These logic bugs “escaped” detection on all levels of veri-
fication, from designer simulation through system simulation. Although
the purpose of verification is to avoid escapes to fabrication, the reality
is that today’s chips and systems are too complex to uncover every bug
in pre-silicon verification. In most cases, the verification team could have
caught an escape to systems test using simulation or formal verification
at one or more levels of the verification hierarchy.

Any escape indicates a blind spot somewhere in the verification
environment. The blind spot is a hole in the stimulus or checking
components—or both. The purpose of escape analysis is to pinpoint
environment blind spots and fix them for future generations of hardware
[106].

This stage of the verification cycle dictates that the verification team
analyzes all verification escapes. This analysis includes a description
of the current methodology (at all verification levels that could have
found the bug), the changes made to the methodology to plug the hole,
and a full bug classification. The purpose of this stage of verification is
to learn from current problems and to ensure that the verification envi-
ronments improve from generation to generation. Much like history,
teams that fail to study the past are doomed to repeat it. The entire hard-
ware design team’s attitude is a key part of the escape analysis process.
It might be easy to view escape analysis as a punishment or as finger
pointing. It is not. Escapes occur on every complex product, and escape
analysis is merely the means to understand and improve for the next
generation. The design team and management must take a positive view
of an introspective and direct analysis of the verification environment
failures. The only unacceptable behavior is when the verification team
allows an escape to occur a second time. Thorough escape analysis
avoids this.

Escape analysis proceeds in two stages. The first stage occurs as the
design team uncovers any bugs on the test floor hardware. At this time,
the escape analysis process examines the individual bug, focusing on a
real-time fix for the hardware and the verification environment. The
second stage occurs later, as the hardware enters manufacturing and
ships to customers. At this time, the process dictates that the team looks
at all the bug escapes together, searching for trends and signatures in the
escape data.

560 Chapter 13 ■ Completing the Verification Cycle

13.4.1 Individual Bug Analysis
The foundation of escape analysis lays in the study and investigation of
individual escapes to systems test hardware. A major characteristic of
the early part of this stage is the sense of urgency required to understand
the bug and reproduce it in verification. Later, after the team applies the
fix to the hardware, the individual bug analysis continues with an in-
depth look at why the bug escaped.

Figure 13.10 shows the timeline for the individual bug analysis stage.
The stage starts when the team finds an anomaly in the hardware. An
anomaly occurs when the expected results from the application or
systems test exerciser do not match the actual results. This could be data
miscompare, a control signal mismatch, or an unexpected error condi-
tion. At first, the team must probe the hardware and associated data to
discover the source of the miscompare. Failures in the hardware may be
functional but may also come from physical flaws or circuit timing prob-
lems. As with functional verification, the failure could be a result of a
test exerciser or application problem that expected the wrong result (and
the hardware got it right!).

If the anomaly turns out to be a functional problem, the verification
team kicks into action. Unfortunately, the next step in the process, finding
the source of the bug, may be quite difficult and time consuming because
these functional problems are complex in nature. Bugs found in the hard-
ware are often due to multiple overlapping conditions and unusual data
or control patterns. After all, if the problem was not a complex scenario,
surely the verification team would have found it!

A key enabler to understanding the source of the bug is the collection
of data about the failure. This entails dumping hardware logs, including
latch states (see Section 9.3.1) and collecting information about what the
application or test exerciser was doing when the bug occurred. Using this

13.4 Escape Analysis 561

Anomaly found
in hardware

Time

Anomaly determined
to be a functional

problem

Reproduce the
bug in simulation

or formal verification

Look for
related bugs

Collect data
and theorize on
the bug source

Verification team
validates fix

Design team
determines fix

Analyze and
categorize the

escape

Fix applied
to hardware

■ FIGURE 13.10

The order of activities for the individual bug analysis stage of escape analysis.

data about the failure extracted from the hardware, the design and ver-
ification teams theorize about the source of the bug. Often, initial theo-
ries on the bug source do not pan out.

In any case, the design and verification teams cannot prove any theory
true until they create the failure in a verification environment. Here, the
design team compares the data points from the systems test hardware to
that of the verification environment. The design team can consider the
failure understood only when the verification environment trace data
exactly matches the hardware environment data. Again, collecting a large
amount of data from the hardware is important in this step. Not only
does the data assist the engineering team in theorizing the source of the
bug, but also it is critical to have as much data as possible to confirm
that the team correctly understands the failure. The more collaborating
data on the bug, the more likely it is that the bug reproduction in verifi-
cation points to the exact conditions.

Bug reproduction in verification is no simple task. The symptoms
and the theories about the bug point to specific environmental settings
for the verification components. Verification teams use both determinis-
tic and random environments to reproduce the failure, depending on the
theory. Initial attempts at bug reproduction often fail, requiring multiple
revisions to the environmental settings, probability tables, stimulus
generation, and checking. With each revision, the design and verification
team hone in on the bug, learning more about the symptoms. Finally,
when the verification test case matches the test floor scenario, the
checker fires and the team has reproduced the bug.

In the quest for reproducing a bug in verification, there are cases
where the verification environment finds a different bug than the one
found on the systems test hardware. Verification teams call these cousin
bugs because of the similarity to the bug found in the hardware. Cousin
bugs have similar characteristics to the original flaw in that the envi-
ronmental settings and the functional area are related. The team must
take care not to declare success in reproducing the original bug when
discovering a cousin bug. The only way to tell the original from a cousin
is by matching the hardware data to the verification environment.

As part of the escape analysis process, the verification team may dis-
cover cousin bugs after reproducing the original bug. Escape analysis
requires an introspective look on the verification plan and environment
after reproducing each bug. The team may decide that a certain complex
area of the design needs more verification. Systems test hardware escapes
bring a different perspective—call it hindsight—to the verification team.
This perspective leads the team to add interactions to their environments,
changing the scenarios and possibly uncovering cousin bugs.

After reproducing the hardware bug in the verification environment,
the design team gains full knowledge of the problem. They develop a fix
for the bug and implement it in the HDL. The verification team, armed
with a test case that reproduced the bug, re-runs the scenario using the

562 Chapter 13 ■ Completing the Verification Cycle

updated design as the DUV to prove that the fix works. All checkers and
monitors remain active in the environment, guarding against breakage
in other areas of the design. Collateral damage to other parts of the
design is, in fact, a major concern to the design and verification teams.
A fix to a complex area of the design may plug one hole but open another.
For this reason, the verification team runs a full regression against the
entire design.

This fix, and any other fixes, goes through the entire design and veri-
fication process before the team releases it as an engineering change to
the fabrication facility. Both the time and cost of re-spinning the hard-
ware demonstrate the importance of quality verification. Initial quality
in verification prevents drastic hardware redesigns, and robust escape
analysis ensures that the applied change fixes the original bug as well as
any cousin bugs.

The worst-case scenario is to fabricate an engineering change and find
that the original flaw still exists. This possibility stresses the importance
of robust data collection from the hardware systems test and attention
to detail in the reproduction of the bug in the verification environment.

Having found, analyzed, reproduced, and re-verified the bug, the crisis
phase passes, allowing the verification team to step back and complete
the escape analysis. During this final phase, the verification team takes
an in-depth look at why the verification environment missed the bug. Was
a stimulus component incomplete? Did a checking component fail to
detect certain flaws? It is even possible that both the stimulus and check-
ing components have shortcomings that the verification team must fix.
Finally, the team categorizes the failure and captures key metrics about
the bug.

It is important for all leaders in design, verification, and especially
management to guard against defensive behavior during the analysis
phase of the design. Finger pointing and politics are detrimental to the
entire process, causing the verification team to run for cover rather than
performing an unbiased analysis. This is when true leaders rise to the
occasion, maintaining their technical integrity during the most stressful
of times. Verification leaders have a marvelous chance to show their
strength, conviction, and leadership capabilities during escape analysis.
The best verification leaders reflect on all hierarchical levels of the envi-
ronment and then perform unbiased and thoughtful analysis. This lead-
ership delivers insights into improvements required to maintain pace
with the ever-increasing design complexity.

The final stage of individual bug escape analysis feeds the overall
project-wide escape analysis, which occurs later when the product ships
to customers. Aside from correcting the stimulus and checking compo-
nents, the verification team categorizes the bug and then documents key
metrics about the escape. These metrics classify the bug’s characteristics
from both the verification team’s point of view and the designer’s point
of view.

13.4 Escape Analysis 563

For each individual escape, the verification team classifies and docu-
ments the following categories:

■ Time-to-understanding

■ Bug level of difficulty

■ Area of bug

■ Work-around capability

■ Designer’s classification

Time-to-Understanding

Time-to-understanding is a simple metric. For each bug, time-to-
understanding is the number of elapsed days from the first encounter of
the anomaly on the hardware to the reproduction of the problem in ver-
ification. Collecting this metric gives the design and verification teams
insight into future improvements for bug isolation in the hardware. Pro-
longed time-to-understanding negatively affects time-to-market, one
of the key project metrics. Engineering teams can add debug capability
features to next generation hardware designs based on the information
collected on the time-to-understanding. By collecting this data, the team
can analyze the correlation between bug type, bug area, and time-to-
understanding and then use this data to improve time-to-market on
future systems.

Bug Level of Difficulty

The bug level of difficulty is an appraisal of the bug’s complexity. Verifi-
cation teams may struggle when documenting this metric. Initial
thoughts may evoke an emotional reaction that “if the bug escaped the
verification cycle, clearly it was difficult to find.” A qualitative approach
to assessing bug difficulty varies from verification engineer to verifica-
tion engineer, depending on experience. Additionally, certain bugs are
more difficult to find depending on the level of verification hierarchy.
Therefore, evaluating a bug’s level of difficulty requires a structured,
quantitative approach.

The quantitative assessment process for evaluating the bug’s level of
difficulty starts by checking existing verification data: the verification
plan and coverage results. The person doing the assessment should note
whether the verification plan specified test cases or parameters that could
have led to finding the bug in verification. If not, the bug analysis should
call for a new section of the verification plan for future systems. Next,
the assessor should note which levels of verification hierarchy could have
encountered the bug in their environment.

564 Chapter 13 ■ Completing the Verification Cycle

Analysis of coverage results leads to a conclusion as to how close the
verification environments came to encountering the bug. This conclusion
only speaks to the stimulus generation capabilities of the environment,
not to the checking. It is conceivable that the verification environment
created the exact scenario, but the checking components failed to iden-
tify the design flaw. Other possibilities in analyzing the coverage data
range from the verification environment having nearly hit the failing sce-
nario to not having come close at all. Another possible conclusion from
coverage data analysis could be that future systems require a new set of
coverage metrics. This occurs when the current coverage metrics do not
contain data necessary to assess how close the verification environment
came to hitting the bug.

After analyzing the verification plan and coverage metrics, the quan-
titative assessment of the bug’s level of difficulty continues. At this stage,
the verification team assigns a rating to five separate categories. The five
categories span the realm of possible reasons for a verification environ-
ment to miss finding a bug. The assessor assigns each category a number
between 0 and 3, indicating the category’s contribution to the verifica-
tion environment missing the bug. A score of 0 indicates that this
category has no bearing on creating the bug in simulation. A score of 3
indicates that this category greatly affects the creation of this bug in ver-
ification. Within the categories, the verification teams should set guide-
lines for the 0 to 3 scale to maintain consistency in the assessments of
all the bugs. After scoring each category, the sum of the five categories
indicates the bug’s overall level of difficulty, with the more complex bugs
having scores above 7 and 8 (out of 15) and the least complex having
scores closer to 0. Many bugs require a combination of multiple cate-
gories to capture the bug.

The five categories are cache or memory set-up, configuration depen-
dency, cycle dependency, sequence dependency, and expected results.

The category for cache or memory set-up indicates whether the bug
required an obscure initialization of a DUV memory component. A high
score in this category means that the memory needs to be in a strange
state to reproduce the bug. Examples include the bug requires the
memory data to equal the memory address and the bug requires uncor-
rectable errors in specific memory locations.

Configuration dependency denotes the DUV components needed for
the bug to occur. If the bug occurs in normal DUV configurations,
this category receives a 0 score. On the other hand, if the bug requires
certain components to be off-line or disabled and this is not a normal
configuration, then the analysis awards a higher score to this category.
An example is when the bug occurs only when half of the cache is
disabled.

Cycle dependency indicates that two or more events align in a small
window of cycles. This category often scores high, because many escapes

13.4 Escape Analysis 565

occur because of overlapping micro-architectural events. Another name
for cycle dependency is window condition. An example is when the bug
occurs when a specific interrupt reaches the DUV exactly one cycle before
the in-buffer fills.

The sequence complexity category indicates that multiple events must
occur in a specific order for the bug to occur. This category often corre-
lates to the cycle dependency category, because many bugs require a spe-
cific sequence of events in a small window of cycles. An example is when
the bug occurs in a microprocessor when an interrupt comes between a
branch-on-zero instruction and a multiply instruction.

The expected results category indicates the difficulty in creating the
checkers that flag the erroneous behavior. The other four categories
speak to the stimulus generation. A high score in this category means
that it is hard to identify when this bug occurs. An example is when the
bug is a corruption in a queue’s pointer such that the DUV remains func-
tional but loses some performance.

Area of the Bug

Area of the bug describes the type of function under which the defect
occurs. Traditional categories include mainline testing, resets, specifica-
tion, and recovery or error injection. However, these categories are not
fixed and vary based on the type of design under test. The team should
add other design specific categories as appropriate.

The area of the bug classification is easy to record. Simply note the
type of testing required to find the bug. However, even such a simple
denotation yields insightful results when the overall escape analysis com-
pletes. Then, the team can see if a verification weakness exists in one of
these categories, based simply on the number of escapes in the category.
For example, the team would want to bolster their reset verification effort
if 50% of the escapes were in this category.

Work-Around Capability

Designers often build “escape routes” for bypassing difficult areas of the
design just in case they find a debilitating bug in the hardware. Complex
systems often contain multiple disable and work-around paths just for
this situation. Good work-around capability highlights the design’s ver-
satility and the system architect’s foresight into the difficulties of getting
a system to market on time. The design team can enable a hardware
work-around in multiple fashions, including direct disablement of func-
tion or with a code work-around in a processor. Occasionally, a system
may even ship to customers with a work-around path enabled. In any
case, under escape analysis, the verification team documents how easy
or difficult it is to make hardware testing progress by bypassing the bug
once the team discovers it in the hardware.

566 Chapter 13 ■ Completing the Verification Cycle

Work-around capability falls into four categories. The first category,
called tolerate, indicates that the bug occurs rarely. Additionally, to fall
into the tolerate category, it must be easy for the design team to recog-
nize that the flaw occurred. In this case, the bug does not hamper hard-
ware test progress and requires no work-around. If the bug were to
become more persistent, the design team would need to identify a
work-around.

Designers use the second category, direct and non-gating, for cases
where a work-around fixes the exact problem and does not hinder further
hardware testing. In this case, the bug may occur often, but a work-
around exists that completely avoids the failing scenario. This category
requires that the work-around does not inhibit testing of any other area
of the hardware.

The third category, indirect or functional disable, indicates that there
is a work-around but enablement of the work-around turns off additional
functions or scenarios. The granularity of the work-around is such that
other cases beyond the bug may take the work-around path or that the
work-around inhibits some other functional testing.

Design teams hope to avoid the final category, none or major function
disabled. This category means either that the bug completely halts
hardware testing progress or that the designers cannot exercise a major
portion of the logic until new, fixed hardware reaches the test systems.
This could take weeks and has a detrimental impact on time-to-market.

It is incredibly important to continue to make testing progress after a
bug’s discovery, yet it is not always easy to do. Often, a bug may inhibit
further testing progress or hide other downstream bugs. Therefore, cat-
egorizing and tracking the work-around capability yields learning toward
areas of the design that need enhancement for future systems to become
“immune” to difficult bugs.

Designer’s Classification

The bug level of difficulty classification views the escape from a verifica-
tion engineer’s perspective. It illustrates what type of updates the team
needs to make to the drivers and checkers to plug the hole that allowed
the escape. On the other hand, the designer’s classification of the escape
examines the bug from the design implementation point of view. This
classification describes the specifics of the design bug.

Designer’s classification has three categories: specification, high-level
design, and HDL. Additionally, the HDL category, the most common of
the three, has multiple sub-qualifiers to describe the type of HDL coding
error.

A specification error occurs when the design documentation incor-
rectly describes the intended behavior of the chip or system. The result
is that both the design and verification team create their code based on
the specification’s erroneous description. This case occurs infrequently

13.4 Escape Analysis 567

because the number of people who review the specification is great
enough to catch most specification errors.

A high-level design escape arises because of incorrect or, more
commonly, overlooked assumptions about the design microarchitecture.
Escapes occur in this category when the base design fails to account
for all cases or when the microarchitecture cannot properly handle all
scenarios.

The HDL category accounts for most escapes. These are implementa-
tion escapes where the designer’s code did not perform correctly. There
are many possible reasons for an HDL escape, leading to the need for
sub-qualifiers to describe the escape. The sub-qualifiers are assignment,
checking, data algorithm, control algorithm, synchronization, interface,
and association.

The assignment qualifier signifies a failure to initialize or set correctly
a latch or array value in the design. Designers may also use this quali-
fier to identify failures to tie input signals. An escape due to an assign-
ment failure is often the result of a coding oversight. Examples include
failures to reset latches to the appropriate value or, if during an assign-
ment, the HDL loads invalid data into a register.

The second qualifier, checking failures, occurs when the HDL fails to
appropriately validate control or data signals. Basic checking, such as
parity or check-sum bits, falls into this category. Additionally, this cate-
gory covers failures where the HDL omits checking an input error signal,
causing the design to operate upon data that it should drop.

Designers qualify escapes as data algorithm failures when the HDL
does not handle properly a scenario based on specific data. Often, certain
input data signifies special cases to the control logic. If the design fails
to identify the special data code, the designers classify the failure as a
data algorithm escape. Simple examples might include cases of overflow
or underflow in an arithmetic logic unit (ALU), where the data should
signal specific control logic overrides.

The next qualifier, control algorithm escapes, signifies cases where the
logic did not perform correctly on specific, non-data-related cases. These
failures occur when a designer omits logic to handle special cases or
groups cases together inappropriately.

Synchronization failures indicate that two portions of logic failed to
manage resources together. This may occur when independent portions
of the logic are required to operate simultaneously based on control or
data inputs. Synchronization failures also include cases where logic
vying for shared resources fails to operate under the set assumptions.
Synchronization errors often lead to race conditions, premature reset-
ting of data, or late resetting of data.

Designers use the interface qualifier to denote escapes based on
communication or assumption differences between design units. These
escapes occur when a design fails to utilize a signal in its intended

568 Chapter 13 ■ Completing the Verification Cycle

manner or when the HDL fails to set an input to a specified value for the
condition. Designers also use the interface qualifier for protocol viola-
tions between units. Because verification does focus on these areas, inter-
face errors usually occur on esoteric cases.

The final qualifier, association, occurs when a control structure fails
to maintain a relationship between itself and specific data. Association
escapes occur most often when two different units use different assump-
tions about the same data.

The designer’s classification is important to the escape analysis process
because it helps hone future verification environments for the most
common error types. The classification also assists designers in improv-
ing their coding styles, communication, and even future micro architec-
tural designs.

13.4.2 Escape Examples
Finding good escape examples proved to be challenging. Access to hun-
dreds of escape write-ups existed, but a few examples with the right level
of complexity were needed. Too simple an escape and the reader would
ask “How could this simple bug escape?” On the other hand, too complex
a bug requires intimate knowledge of the chip structure and architec-
ture. Four escape examples are described here.

Example: Microprocessor’s Compression Engine

The first example is from a microprocessor’s compression engine (Table
13.1). It is a corner case where an instruction stream fills a buffer in the
hardware and the controls are set to a maximum value. This example has
a substantial sequence complexity.

Example: Pack Instruction Gives Wrong Answer

The second example deals with a mainline microprocessor instruction
sequence (Table 13.2). This case also has a high sequence complexity and
introduces a cycle dependency complexity because the pack instruction
must follow a specific instruction within one cycle. This escape shows
how the verification team can plug the hole in the test case generation
methodology by creating a new template that targets the symptoms of
the failure.

Example: Extended Address Bits on I/O Adapter Interface Not
Handled Correctly by Storage Controller

The third escape illustrates the importance of the verification team fol-
lowing the design specification rather than the designer’s description of

13.4 Escape Analysis 569

570 Chapter 13 ■ Completing the Verification Cycle

TABLE 13.1 ■ Microprocessor’s compression engine

Escape Name Compression Miscompare

Description Compression engine writes output-buffer shadow-register at the
wrong time. This only happens if the data-buffer is completely
full and the Expansion Character Entry Size is set to the max of
260 bytes but the operation only utilizes in the range of 2 to 20
bytes.

Time-to-understanding 2 days

Level of difficulty Cache Cycle Config Sequence Expected
Setup Dependency Dependency Complexity Results
0 0 0 2 0

Area of bug Mainline

Work-around capability Direct, non-gating

Designer classification HDL—control algorithm

Current verification Unit Simulation Chip Simulation
methodology There was no unit simulation The test case generator can

test case that had the generate Expansion
combination of Expansion Character Entry Sizes from 0 to
Character Entry Sizes 260. It can be a fixed number,
needed for creating this but then every Character Entry
problem scenario. has the size of 260. Otherwise,

the generator can randomly
choose the size.

Verification methodology Unit Simulation Chip Simulation
change We created a unit test case Improvement of the performance of

out of the test case P1710. generating compression test
cases to get higher simulation
coverage in this area. We now
can request two ranges for the
Expansion Character Entry.

TABLE 13.2 ■ Pack instruction gives wrong answer

Escape Name Pack Instruction Gives Wrong Answer

Description A pack instruction follows a MVC (move character) instruction. The
pack instruction stored into its own instruction stream does not
clean up properly and results in a wrong answer. The problem
occurs if one pack instruction executes conditionally on a branch
path and that branch is resolved wrong and a different pack
instruction immediately executes on the resolved branch path.

The HDL is not resetting a latch properly for the pack operation. The
latch name is pack_hdw_zd_q and it represents that the high
double word is zero. There are two things that can set it: 1)
fxu_e2 cycle and aim_dw_zd and 2) pack and (not r2_fld(0)). The
r2_fld holds the L2 field, and this indicates there is no second
double word if the L2 field is less than 8. The hold path of this

13.4 Escape Analysis 571

TABLE 13.2 ■ Continued

Escape Name Pack Instruction Gives Wrong Answer

latch is the only part that is degated by kill (dly_kill_dec_q) or
endop (dec_ctl_rst_q). So on a store in its instruction stream that
modifies the R2 field, the pack first appears as though it needs
only 1 double word of data, then it gets killed but this latch does
not reset. Then the pack reissues with the true R2 field that
indicates that it needs to store two double words. The failure is
that only the first double word is stored.

The fix is to clear the latch completely, including hot setting paths
and hold paths. Here is the logic:

OLD:
pack_hdw_zd ‹ ((pack and aim_dw_zd and fxu_e2) and
(not fxu_hold)) or

(pack and (not r2_fld(0))) or
(pack_hdw_zd_q and (not dly_kill_dec_q) and (not dec_ctl));

NEW:
pack_hdw_zd ‹ (((pack and aim_dw_zd and fxu_e2) and
(not fxu_hold)) or

(pack and (not r2_fld(0))) or
(pack_hdw_zd_q and (not dly_kill_dec_q) and (not

dec_ctq))
) and (not dly_kill_dec_q);

Time-to-understanding 2 days

Level of difficulty Cache Cycle Config Sequence Expected
Setup Dependency Dependency Complexity Results
0 1 0 3 0

Area of bug Mainline

Work-around capability Tolerable

Designer classification HDL—logic hole

Current verification Unit Simulation Chip Simulation
methodology There was no unit simulation At the chip simulation level,

test case that created this millions of test cases were run
problem scenario. with the combination of pack

and branch wrongs. We never hit
the particular window (e.g., pack
with a certain R2 field that gets
executed conditionally or overlaid
by its own store).

Verification methodology Unit Simulation Chip Simulation
change We have written new test None

case generation templates
to stress the problem. The
new templates produced
test cases that reproduced
the exact problem. All
these test cases are now
part of our regression.

the logic (Table 13.3). In this case, the verification engineer committed a
fundamental transgression by not requiring an immediate specification
update upon discovering the flaw in the documentation.

Example: Storage Controller Deadlock Caused by Synchronous
Load Loop

The last escape is a complex deadlock condition that occurred in a multi-
processor server system (Table 13.4). This escape illustrates the difficulty
in creating deadlocks in random environments because deadlocks are
often caused by repeating sequences of activity.

13.4.3 Escape Analysis Trends
During the individual escape analysis phase, the verification team focuses
on verifying the bug fix and plugging holes in the environment related to
the escape. In the best cases, few bugs escape and the product ships to
customers ahead of schedule. However, any time there are more than a
few escapes, the verification team must step back and look at all the
escapes together, searching for escape trends. This is the overall escape
analysis phase.

The key concept of the overall escape analysis is to search for areas of
weakness in the environment. By identifying weaknesses, the verification
team can improve the environment for future products. Individual
escapes always point to very specific deficiencies in the verification envi-
ronment or test case suite. By looking at all the escapes together, the team
can observe signatures—strengths and weaknesses.

Verification teams should look for trends in two areas. First, they
should look for hierarchical deficiencies. Second, the team analyzes the
escapes for functional deficiencies. The individual escape classification
work, described above in the bug level of difficulty section, steers the
overall bug analysis activity.

Hierarchical deficiencies point to levels of the verification hierarchy
that need strengthening. During the individual bug analysis phase, the
verification team updated portions of the environment at one or more
verification hierarchical levels. If a particular level required re-work for
many escapes, the team should evaluate whether or not that level needs
an overhaul in strategy.

A common outcome of the hierarchical analysis is the decision to
change the environment from a deterministic strategy to an automated
or random driven environment. This occurs when the volume and com-
plexity of the escapes indicate that the verification team cannot create
all the deterministic test cases required to cover the state space of the
DUV at a particular level of the hierarchy. The environment needs rework
to create a component strategy that utilizes parameters and automation,
along with coverage metrics, to create the broad swathe of scenarios
required by the DUV’s complexity level.

572 Chapter 13 ■ Completing the Verification Cycle

13.4 Escape Analysis 573

TABLE 13.3 ■ Extended address bits on I/O adapter interface not handled correctly by storage controller

Escape Name Extended Address Bits on IO Adapter Interface Not Handled Correctly by
Storage Controller

Description During Logical Partition testing on the system level hardware, we
found that the HDL code picks up extended address bits from the
wrong bits on the I/O adapter interface. The I/O adapter transfers
2 double words, bytes 0–3 and 4–7. The storage controller HDL
picks up all extended address bits from byte 3, but the Storage
Controller Workbook and the I/O adapter interface specification
both show the least significant extended address bit coming from
byte 4 bit 0. The storage controller does not obey the interface
specification. This means I/O cannot address correctly above 2-GB
storage.

Time-to-understanding 1 day

Level of difficulty Cache Cycle Config Sequence Expected
Setup Dependency Dependency Complexity Results
0 0 1 0 1

Area of bug Mainline

Work-around capability Indirect with functional disable (cannot use addresses above 2 GB)

Designer classification HDL—interface

Current verification The chip level verification environment extensively covers the
methodology address on the I/O adapter interface. However, in this case the

checking component expected what the Storage Controller
designer coded instead of what the interface documents specified.
Because the storage controller design agreed with what the
simulation was expecting, the checking component detected no
error. The original I/O adapter interface specification contained an
error showing too many address bits. For clarification, the
verification team consulted the Storage Controller designer rather
than the I/O adapter designers. This allowed the verification team
to test to the incorrect interface description. The architects later
updated the I/O adapter specification to correct the number of
address bits, but the verification team missed the change.

Verification methodology The I/O macro and I/O interface checking code have been updated
change to check for the corrected interface description. This does not

ensure that the description is correct only that the implementation
follows the description. A system model with a real I/O bridge and
Storeage Controller that was sensitive to the address bits being
correct and executing I/O ops would be required to fully verify this
in simulation. The designer has verified with the I/O bridge team
that we have the address bits correctly identified now. The team
also updated the system level simulation environment to include
this adapter and all addresses, including those above 2GB.

574 Chapter 13 ■ Completing the Verification Cycle

TABLE 13.4 ■ Storage controller deadlock caused by synchronous load loop

Escape Name Storage Controller Deadlock Caused by Synchronous Load Loop

Description Root cause is a synchronous loop in the Storage Controller pipeline,
which is causing an I/O adapter operation to time out. The cause
of the loop is multiple processor load requests trying to send
cross-invalidate requests to another set of processors. However,
the processor continually receives cross-invalidate reject
responses. The reject responses are due to the other processors
waiting for an entry in their respective Storage Controller Store
Stack (the Storage Controller maintains a stack of outstanding
store requests from each processor) to become available so that
the processors can release stores in their L1 Cache’s Store
Buffers. The Storage Controller logic locks the Store Stack
requests out of the pipeline due to a combination of selecting the
higher priority loads ahead of them and cache interleave conflicts
caused by these loads.

We are much more likely to see this problem on two I/O adapter
systems than in four I/O adapter systems because one pipe in
each cluster is always available for stores each cycle. This makes
it more difficult to fill the Store Stacks. It is also more likely to
hit this bug on systems with large numbers of processors, which
can more easily generate the load traffic needed to lock out the
stores.

Time-to-understanding 1 day

Level of difficulty Cache Cycle Config Sequence Expected
Setup Dependency Dependency Complexity Results
1 3 2 3 0

Area of bug Mainline

Work-around capability Tolerate

Designer classification HDL—control algorithm

Current verification In the Storage Controller chip simulation environment, we never
methodology created a case where the processor sent a long stream of

cross-interrogate reject responses. This is because of the random
nature of the processor stimulus component’s cross-invalidate
response generation. The stimulus component periodically sends
cross-invalidate reject responses based on a percentage
probability. Normally, this percentage is in the range of 3–7%,
which is not sufficient to create the hang condition.

Verification methodology We generated special configuration and program changes to cause
change infinite cross-invalidate reject response streams from processors.

This change readily reproduced the deadlock in greater than 60%
of the random test cases. We needed program changes to allow
for the fact that processor load commands that require invalidates
would never complete during the test case and the storage
controller would never quiesce (still trying to send cross
invalidates) by the end of the test case.

A second conclusion of hierarchical analysis may be that the environ-
ment’s parameter structure or internal algorithms are ill suited for the
DUV’s function at a particular level of the hierarchy. In this case, escapes
may have occurred because the constraint solving structure fails to
hit key scenarios in the DUV inputs. Alternatively, escapes may have
occurred because the parameter table needs expansion to hit all the
scenarios.

The above cases point to deficiencies in the stimulus components.
However, if the individual bug analysis work shows that multiple escapes
occurred because of missed checks in the components, then the verifi-
cation team must focus on the checking components. In this case, the
environment may require the scoreboard and monitors to capture more
information or new algorithms to create additional checks in the check-
ing components.

After analyzing the environments for weak levels of the hierarchy, the
verification team should look for trends in functions. If multiple escapes
occurred in a specific functional area, then all levels of hierarchy need
to upgrade their stimulus and checking capabilities with respect to this
function.

Weak functional areas occur in complex functions. Again, the bug level
of difficulty classifications steer the team toward these areas. If the indi-
vidual escape analysis concludes that multiple escapes had high scores
in the cycle dependency or sequence complexity areas and these escapes
all pertained to a single function, then the verification environment
requires enhancement for that function. In this case, multiple levels of
the verification hierarchy require these enhancements.

13.5 SUMMARY

As the verification team nears its completion of its test plan, regression
becomes important. A regression test suite allows for the verification
teams at the different levels of the hierarchy to work in parallel. By uti-
lizing the regression test suite, the verification team verifies a certain level
of function for the next level of verification, and this level of function is
stable for all future drops. This ensures that the verification team at the
higher level are not impacted by any new function because the regres-
sion suite of tests provides quality assurance. Another aspect of regres-
sion is the ability to allow the verification team to be efficient in their
testing. By performing test case harvesting, the verification team creates
an optimized suite of tests to cover the targeted functions. By utilizing
this new regression suite in a workstation farm, the verification utilizes
a “grid computing” environment to cut down the overall time it takes to
perform the regression.

13.5 Summary 575

However, the regression step in the overall verification cycle keys off
a reduction in bug rate. The verification team calculates the bug rate by
observing the problem-tracking tool where any issue that is found within
the verification realm is logged. This same problem-tracking tool also
assists in the decision of when to send the design to fabrication.

Before the team sends the design to fabrication, they must decide
when enough functional simulation cycles have been run such that the
chip performs flawlessly in the customers system. This requires an analy-
sis of many different aspects of verification. The first thing that the ver-
ification team must analyze is coverage—both functional and structural.
If the analysis determines that the verification team achieved its test plan
goals, then the team must look at the bug rates. The bug rates assist in
determining how stable the design is. If the bug rates are high, history
tells us that it is unlikely for the rate to drop off suddenly. Bug rates drop
off over time; thus, seeing high bug rates means that more verification
is necessary. After looking at the bug rates, the team needs to look at any
issues that still need to be resolved. By looking at the issues, the team
has insight to what problems still exist. While the team looks at the open
issues, they can prepare and host a review of all the verification envi-
ronments. This peer review allows the whole team (designers, verifiers,
and architects) to analyze the individual verification environments to
ensure a cohesive and comprehensive test plan. Even after the verifica-
tion team finishes the analysis of coverage and bug rates and reviews any
open issues and verification environments, there still exists one last item.
The verification team must ensure a clean regression due to the nature
of random simulation.

Escape analysis is the final process in the verification cycle for a single
system or product. The activity calls for a careful introspective view of
the months or even years of work devoted to creating the components
and test cases. The escape analysis activities occur in two phases. First,
the frenzied phase of fixing an individual escape requires the verification
team to participate in solving and understanding the bug found in the
hardware. During this phase, the verification team evaluates the escape
and environment deficiencies. Later, the verification team looks at the
forest rather than the trees and searches for large-scale improvements
required for future products.

By performing escape analysis, the verification team hones their
skills and environments. If the team works on follow-on products, escape
analysis provides direct feedback to the next generation of product. This
improves time-to-market and saves re-fabrication costs. Even if the ver-
ification team disbands to other unrelated products, the insights and
learning gained from escape analysis improves their work on compo-
nents and strategies in these other areas.

576 Chapter 13 ■ Completing the Verification Cycle

13.6 EXERCISES

1. It is close to sending the design to fabrication, and the verification
team has classified its work for a unit as “done.” A designer then
changes some HDL. The designer claims that the change was purely
cosmetic—that is, it was to comment some of the logic for mainte-
nance reasons. What course of action should you take in terms of
verification?

2. What are the stages of individual escape analysis?

3. Why is it important to perform overall escape analysis based on the
learning from the individual escape analysis?

4. What is the significance of searching for cousin bugs?

13.6 Exercises 577

So far, this book has focused in-depth on those mainstream topics in
functional verification that are common for most industrial projects.
During this detailed walk-through, a few evolving and less established
areas for any modern methodology have been left out. This chapter
returns to these areas, describes their relevance, gives a short overview
of available solutions, and points out which direction the industrial prac-
tice is currently headed.

Given the inherent complexity of the verification task and the problem
of state space explosion, the verification cycle relies on a lot of compute
power. Many projects use whole farms of workstations that run simula-
tion and formal verification (FV) 24 ¥ 7. Although powerful workstations,
fast simulation engines, and intelligent test benches have greatly im-
proved the efficiency of simulation, the question of the quality of the ver-
ification cycles is always looming in the background. Chapter 6 discussed
how coverage metrics and coverage data collection allow us to gauge the
progress of the verification cycle with the goal to drive testing into yet
uncovered areas of the DUV function. Chapter 13 introduced the tech-
niques of test case harvesting that enable the verification to create the
smallest set of regression tests that achieve the highest possible cover-
age. All these methods ensure fast traversal of as much of the interesting
state space as possible. Even with all these general tools at hand, it is
still very possible that subsequent tests in the verification of a DUV spend
much time re-visiting the same part of the state space repeatedly before
each one extends its activity into new domains. The first part of this
chapter discusses verification techniques that skip such redundant cycles
using directed methods that save precious verification cycles for the
testing of unique scenarios.

The different abstraction levels usable to specify hardware function
was discussed in Chapter 5. The predominant abstraction level used in
today’s real-life projects is the Register Transfer level (RTL). Most of the
design community has a complete working and intuitive understanding
of the properties and requirements of an RTL specification. The indus-
try has assembled a large infrastructure of tools around this notion.
However, RTL specification also originally developed as an abstraction,
leaving behind the gate-level specifications that designers had used

C H A P T E R 1 4

ADVANCED VERIFICATION TECHNIQUES

before. For the last few years, the quest for the next abstraction level
has been under way. Again, the promise of more abstraction is the avail-
ability of a usable design specification earlier in the design cycle and an
improved productivity for design and verification teams. The currently
most prevalent ideas and approaches to high-level modeling are dis-
cussed in the second section of this chapter.

Coverage-directed test generation appears to be the next step in the
development of simulation environment tools. There are two threads
in the discussion of this topic in the third section of this chapter. One
method is reactionary in nature, when the process adjusts the stimulus
generation using coverage measurements collected after running test
cases. New research investigates the use of automation in the feedback
loop. Algorithms harvest the coverage data and then change the test
case parameters to achieve higher coverage for the subsequent tests. For
the second method, the stimulus component or test generator uses
an abstract model during the process of test generation. Using this
model, the generator is constantly able to analyze the effects of subse-
quent steps of a current test case, thus being able to generate the next
test step with the coverage metrics in mind. This new breed of test
generators is able to create tests with good coverage by construction
rather than measuring coverage after the actual execution of the test on
the DUV model.

Given the wide variety of these advanced techniques, the level of dis-
cussion is introductory with the intention to give the readers a basic
framework of understanding, enough to continue a deeper study of these
fields on their own.

14.1 SAVE VERIFICATION CYCLES—BOOTSTRAPPING THE
VERIFICATION PROCESS

It is possible to gain dramatic improvements in verification efficiency
using a technique called the bootstrapping the verification process. The
idea is to short-cut verification cycles that normally would be part of
many or even all tests. It is not necessary to iterate through the same
redundant cycles repeatedly many times. Instead, the verification team
performs such redundant testing only once and lets the verification envi-
ronment skip over it for all other tests.

14.1.1 Separating Power-On-Reset and Mainline Verification
A good introductory example for the bootstrapping technique is the
power-on-reset (POR) verification. As discussed for the reset-line verifi-
cation in Section 9.1.1, the team does not have to perform the POR
sequence of a DUV at the beginning of every mainline test. Instead, the
team can run the sequence once, take a checkpoint snapshot of the reset

580 Chapter 14 ■ Advanced Verification Techniques

state of the DUV, and use a checkpoint-restart shortcut at the beginning
of every mainline test. Using this technique, the verification team saves
the amount of time spent in the POR sequence for every mainline test
case they run. Assuming this occurs many thousands of times and for
most of the test cases run by the verification project, the savings by elim-
inating redundant cycles can be quite substantial.

Figure 14.1 illustrates this technique. Assuming that the loading of the
DUV POR checkpoint state does take significantly less time than running
the POR sequence, the savings in verification cycles is the number of test
cases multiplied with the number of cycles needed to reset the DUV. This
technique is not only applicable to simulation-based verification but also
to FV. It is a significant shortcut for FV to be able to start from a single
defined initial state after POR and pursue the state exploration from that
point instead of doing the state exploration from a whole range of

14.1 Save Verification Cycles—Bootstrapping the Verification Cycle 581

Power-on-reset

Power-on-reset

Mainline test

Mainline test0

Mainline test1

0 r m+r

Number
of cycles

(a) POR for every mainline test

(b) POR once for many mainline tests

Checkpointr

Restart

Restart
m0

m1

Number
of cycles

Number
of cycles

•
•
•

•
•
•

■ FIGURE 14.1

(a) If the DUV starts verification in a random initial state (or “x” state), power-on-reset (POR) cycles
need to precede the mainline test to initialize the DUV correctly according to the design specification.
(b) The smarter use of resources executes the POR sequence only once and uses a much faster check-
point-restart scheme to load the DUV state after POR quickly at the beginning of every mainline test.
For n mainline tests and r cycles needed to run through the POR sequence, the overall savings is n
times r verification cycles. In reality, the POR verification occurs more than just once. Still, the accu-
mulated savings of not verifying POR with every test can be tremendous.

possibly undefined initial states. Given the exponential dependency of the
FV algorithm on the number of states, the start from the defined POR
state may be the deciding factor, making FV algorithms applicable to a
given DUV.

The technique to de-couple POR reset verification from mainline
verification has the additional advantages of separating tasks, which the
verification teams can pursue in parallel. The time savings from this de-
coupling become more important as the reset sequence of the DUV
becomes more complicated. The two efforts can proceed in parallel with
the mainline bug discovery and turn-around time rarely affecting POR
verification progress as well as POR logic bugs never gating mainline
verification.

Obviously, there is the question how it is possible to use a POR check-
point while POR verification proceeds in parallel. Figure 14.2 shows how
at first mainline verification uses the initial-value reset specification that
the designers define in their hardware description language (HDL) code.
In the Verilog HDL, initial values are typically defined in initial blocks;
in VHDL, the designers achieve the same thing using initial value
assignments.

Once the teams separate POR and mainline verification, they can
optimize the methods of verification according to the special require-
ments of each discipline. For example, it is advisable to utilize multiple-
value (“x”-state) simulation for the POR task to ensure that the POR
cleanly affects all state elements of the DUV. As a result, mainline simu-

582 Chapter 14 ■ Advanced Verification Techniques

Mainline verification
from defined POR state

Manual
specification
POR-state

in HDL
init

state

POR
checkpoint

file

Power-on-reset
verification

Time

POR
checkpoint

file

POR
checkpoint

file

POR
checkpoint

file

■ FIGURE 14.2

Mainline verification at first takes the initial state of the design under verification from the HDL spec-
ification. In parallel, power-on-reset (POR) verification starts and, over time, provides verified POR check-
points to mainline verification at regular intervals.

lation can take advantage of a much faster two-value simulation for most
of the logic, except special areas of concern like tristate buses.

14.1.2 Bootstrapping the DUV Into High-Potential States
It is possible to generalize this technique of starting the DUV in a POR
checkpoint state to bootstrapping of the DUV into any interesting state.
Such an interesting or high-potential state is a starting condition that is
close to a stress situation for the DUV, one where subsequent verification
runs the DUV likely into window conditions. The reasoning behind such
a strategy is that DUVs typically contain more and more complicated
bugs around window conditions. Furthermore, it is assumed it is non-
trivial to reach such high-potential states during the normal verification
cycle because they are deep inside the DUV’s state space, far away from
the POR state and typically defined by the occurrence of co-dependent
corner conditions. A good example is the near-full condition of several
resources inside the DUV.

Figure 14.3 shows an illustration of the bootstrapping function driven
by an initializer component that is part of the verification environment.
Similar to the discussed POR checkpoint-restart technique described
above, the initializer component can apply a previously saved checkpoint
file to force the DUV into the high-potential state. Of course, a previous
verification run has to encounter the high-potential state and save it to
a checkpoint file. The alternative to re-starting from a checkpoint is to
use a piece of deterministic driver code that overrides all necessary state
variables in the model of the DUV and sets them consistent with the high-
potential state. Verification engineers can write such a specialized driver
only if they have detailed knowledge about all the necessary state set-
tings that constitute the high-potential state.

It is the advantage of this bootstrapping technique that the DUV can
be fast-forwarded efficiently close to potential bugs rather than letting
the environment’s stimulus component drive the DUV over many cycles
into such a high-potential state using a constrained random driver strat-
egy with some relatively unknown probability.

The easiest method to obtain checkpoint files for high-potential states
is to use the functional coverage instrumentation (see Chapter 6) of the
DUV. Whenever the environment detects that the coverage instrumenta-
tion indicates reaching a high-potential state of the DUV, it checkpoints
the DUV state to file for later re-load.

Although this method is very powerful in making verification more
efficient and avoiding redundant verification cycles, there is a significant
caveat. When the DUV is set directly into a high-potential state, the ver-
ification environment, all stimulus and checking components including
the scoreboards, have to be able to tolerate and support this. Ideally, the
whole test bench itself would be part of the checkpoint file. This would
ensure that any transactions currently in flight inside the DUV would be

14.1 Save Verification Cycles—Bootstrapping the Verification Cycle 583

contained in the test bench data structures and reinstated by the initial-
izer component, to be in the correct context when the initialization com-
ponent hands control to the test bench. This support for checkpoints of
the whole test bench has to be part of its architecture from the start
because it is impossible to retrofit it once the verification team has
written large portions of the code. As an alternative, the team can provide
special environment initializer code that puts the test bench into a state
consistent with the DUV bootstrap state.

For an example of this bootstrap method, return to the cache design
from Chapter 3. A very practical technique to fast-forward this design
into a high-potential state is the technique called cache warm loading. As
the name indicates, an initializer component pre-loads the cache quickly
at the beginning of the verification to represent states that normally only
occur after the cache has serviced many requests (Figure 14.4).

With a near-full cache, for example, the DUV will soon have to delete
cache lines to accommodate new requests from main memory. Setting
up the near-full condition is much more efficient than running through
a series of requests that fill up the cache to such a state. This is also an

584 Chapter 14 ■ Advanced Verification Techniques

bug

bug

bug

DUV
state space

High-potential state

Simulation path

Verification
environment

Stimulus components
Checker components

Scoreboards

Initialize

Initializer
code

High-potential
checkpoint

file High-potential
checkpoint

file

Initializer component

■ FIGURE 14.3

An initializer component uses checkpoint files from previous verification runs or dedicated code to boot-
strap the DUV into high-potential states. The main property of these states is that they put the DUV
close to window conditions, which are likely to contain design bugs. Three different tests with three dif-
ferent starting conditions are shown. In this example, only one of the checkpoint file initializations
results in a simulation path that hits a bug. The third simulation, starting from an initial state driven
by dedicated driver code, also exposes a bug successfully. The initializer component also needs to ini-
tialize the verification environment consistently with the DUV’s state.

example how the initializer component must set the test bench into the
corresponding correct state. The warm loader must synchronize the
scoreboard with the cache contents it loads into the DUV. This is neces-
sary to enable the scoreboard to provide correct content tracking infor-
mation to the checker component during the subsequent verification
cycles.

This bootstrapping technique is similar to the process outlined in
Section 12.3.5, where semi-formal verification tools switch between dif-
ferent state-exploration algorithms. Taking a checkpoint from one veri-
fication run to another can be an effective method to seed the verification
cycle very directly toward bug-prone areas.

14.1.3 Manipulating the DUV Specification Provoking States
of Resource Conflict

An effective alternative to the bootstrapping techniques of the above
section should be briefly mentioned. It is often possible to adjust the HDL

14.1 Save Verification Cycles—Bootstrapping the Verification Cycle 585

Main store
responder

Checker

Generation
component

Protocol
component

Initiator stimulus

Cache
warm load component

Scoreboard

Cache
design

Monitor

Cache pre-load
patterns

CMD_VLD(0)

CMD(0:3)

DATA_IN(0:31)

CMD_TAG_IN(0:7)

CMD_ADR(0:31)

RESP_VLD(0)

RSP(0:2)

DATA_OUT(0:31)

CMD_TAG_OUT(0:7)

CM
D(

0:
1)

DA
TA

(0
:6

4)

AD
R(

0:
21

)

RE
SP

(0
:1

)

DA
TA

(0
:6

4)
■ FIGURE 14.4

The cache warm load component is a special-purpose initializer component. It loads from a selection
of predefined cache contents (preload patterns) directly into the DUV model to set the DUV into high-
potential state. Examples are near-to-full cache or cache content that likely triggers specific corner case
conditions given the underlying microarchitecture of the design under verificaiton. The warm load com-
ponent also must set up the scoreboard to enable correct checking during the subsequent verification.

specification artificially to limit the amount of resources a DUV provides.
For example, it is possible to artificially lower buffer sizes in the DUV
just for focused verification runs that should more likely encounter the
condition where the buffers are full. Assuming that such a provocation
of resource conflicts in the DUV generates more likely corner cases and
error conditions, this method amounts to an effective directive for the
verification effort.

This method works equally well for simulation and FV. In addition,
there is again a similarity to the discussion explaining how FV efforts
can artificially limit the state space for FV tools to circumvent the state
explosion successfully. Manipulating resource sizes in the DUV is analo-
gous to the artificial restriction of data path widths discussed in Section
12.3.4, Solutions to Address the Problem of State Space Explosion.

Obviously, the verification team must take the utmost care in mani-
pulating the DUV HDL in this way to eliminate any possibility of an acci-
dental change that changes the semantics of the design specification.

14.2 HIGH-LEVEL MODELING: CONCEPTS

High-level modeling is a concept only discussed in passing so far (see
Chapter 11). A taxonomy of the hardware specification domain was
defined in Chapter 5 but turned our attention quickly to the most preva-
lent specification levels used in the industry today: RTL- and gate-level.
This is where 90% to 95% of the design and verification activities in the
industry presently occur. All these DUV specifications are exact imple-
mentations down to the individual state elements (latches or flip-flops).
One of the advantages of this level of abstraction as the main workhorse
for verification is the ability to prove Boolean equivalence with the imple-
mentation down to a transistor-level netlist (see Chapter 11).

Chapter 1 and Figure 1.1 position high-level design (HLD) of chips in
the overall project flow. It is during that first phase of the design, with
no RTL model available yet, where a high-level model is useful to for-
malize early design decisions and make them available in the form of an
executable model.

Given that there is no well-established definition of this field in aca-
demia or industry, it is almost easier to define high-level modeling by
what it is not: an RTL specification of the DUV. The RTL requires too
much detail and needs too much maintenance effort as the design team
explores major design alternatives during HLD. The requirement to
support easy adaptability to major design changes is one of the main
reasons to use a higher abstraction level than RTL for a high-level model.
What exactly constitutes that abstraction level is at the center of diverse
approaches currently pursued by many in the field.

Before some of the more prominent approaches to high-level model-
ing are discussed, the different applications of a high-level model should
be focussed on. Figure 14.5 defines its role in the design flow.

586 Chapter 14 ■ Advanced Verification Techniques

14.2.1 Applications of the High-Level Model
There are three main application areas for a high-level model. Each area
has its own strong reasons to demand a model as the basis for early
analysis.

Early Performance Evaluation

Besides the function that a DUV provides, the performance executing this
function is a crucial property of a design. It is critical during HLD to
ensure that the chosen design point satisfies the requirements. Therefore,
performance evaluation is necessary during HLD. If a high-level model
is available, the team can base the analysis of performance properties
on this model. Typical performance properties are the amount of cycles
necessary to complete a DUV transaction or the sustained peak execu-
tion of series of transactions. The associated metrics are latency and
bandwidth.

14.2 High-Level Modeling—Concepts 587

High-level design

New model update Physical
structure
changes

Performance changes

Functional
changes

High-level
model

Early
performance
evaluation

Early
functional
verification

Early
physical design

Logic implementation

End of
high-level design

RTL
model

■ FIGURE 14.5

The high-level model formalizes design specifications and decisions made during the high-level design
(HLD) phase. The model has three different applications during HLD. First, the team assesses the per-
formance of the design to ensure the design point satisfies the customer’s performance requirements.
Second, the verification team takes advantage of the model by performing early verification. Third, the
model drives early physical design decisions where the team uses structural model elements to perform
early floor planning, placement, and wiring. The model analysis of each of these three activities can
drive changes into the HLD process (dashed arrows), which result in changes in the high-level model.
After all early analysis concludes with satisfying results, HLD ends and the implementation of the design
under verification begins.

Traditionally, the performance domain uses its own dedicated per-
formance model as described in Mukherjee et al. [107]. Such models are
normally extremely abstract models, which have performance analysis
as their only objective. Popular approaches are abstract queuing or
transaction models that represent the major DUV data flow elements as
managed resources. On this basis, such models specify the operations of
the DUV in form of transactions. Transactions define the execution of
operations on data as it flows through the design. Performance analysis
collects statistics about the flow of these transactions, individually and
as an average over large numbers of them. A pure performance model
usually does not need to implement the processing of the data that
accompanies the transactions. It is important how many clock cycles the
number crunching in a functional DUV unit takes but not what the cal-
culated result is. Data processing results are only necessary where the
control flow depends on decisions that stem from data content. This
relative independence of data results allows pure performance models to
abstract away the data processing implementation of large parts of a
DUV.

A high-level model as defined in this section must be more detailed
than a pure performance model. The analysis of the time spent by oper-
ations or transactions flowing through the DUV is the core task of per-
formance prediction during HLD. However, the other two disciplines of
the HLD analysis triad, functional verification and physical design (PD),
require more detail in the high-level model.

A key requirement for performance analysis is a high-speed model.
Projects use pure performance models early and sometimes in addition
to a high-level specification model because of the need for the highest
possible speed. Performance benchmarks for hardware designs usually
require the performance model to run through a large number of oper-
ations. Because design parameters change during the course of HLD,
these benchmarks have to be run many times, and it is vital to react and
validate these changes quickly.

Thus, using a high-level model for early performance analysis creates
two main requirements: high execution speed (100 to 1,000 faster than
the speed of an RTL model) and model instrumentation or analysis that
supports the collection of transaction timing information.

Early PD

PD uses the physical attributes expressed in a DUV specification. PD is
the process that places partitions of the design, placeable objects, onto
the rectangular area of the chip and routes the wire connections between
these. During HLD, major functional partitions or units of the chip define
the granularity of placeable objects known up to this point in the design
process. It is the task of the design team to specify the estimated dimen-
sions of these partitions and the positions of the signal interface pins on

588 Chapter 14 ■ Advanced Verification Techniques

the partition shapes. Given the area and pin number estimates of the par-
titions and the partition interconnect structure, the PD process can start
with early placement and wiring studies that ensure even during HLD
that the DUV will fit the chip size and it is possible to route wires suc-
cessfully for all partition-to-partition and partition-to-chip input/output
(I/O) connections.

Figure 14.6 illustrates the early partitioning of a chip during HLD and
compares it with the final chip layout.

If the high-level model for early PD is to be used, it is necessary that
the partitions and their I/O interconnects can be extracted from the
model. This requirement defines the need for the model to represent the
partitions as explicit objects. Only then is it possible for the designer to
attach area information to a partition. It is not necessary but very natural
for the designers to also explicitly specify I/Os on partitions and speci-
fy how the partitions are interconnected. Alternatively, a partition can
define its I/Os implicitly. For example, whenever a partition references a
signal from another partition, an early PD analysis program could infer
a partition I/O.

14.2 High-Level Modeling—Concepts 589

U2

U5

U4
U7

U1

U6
U3

(a) Early DUV Floorplan (b) Physical Chip Layout

■ FIGURE 14.6

Comparison of early partitioning of the DUV during high-level design (HLD) and the final chip layout.
(a) The abstract partitions of the DUV as they are known during HLD (pins and wires are not shown).
The design team splits the DUV into seven partitions with dimension estimates. Using the partitions’
area and interconnect structure, the early physical design process can define a chip floor plan and run
placement/wiring analysis to ensure the chip can be manufactured. (b) The final detailed layout of the
chip implementation for comparison.

Regardless to which extent the designers specify partitions and inter-
connects explicitly, the early PD analysis of the DUVs requires the high-
level model to contain enough information about the physical structure
of the implementation. This requirement imposes a structure on the
high-level model itself. For this reason, a pure performance model does
not satisfy our definition of a high-level model for HLD.

Early Functional Verification

The verification team is the one that probably has most to gain from the
use of a high-level model as part of HLD. Rather than letting the design
team work with informal documents, white-boards, and napkins, a high-
level model forces an explicit specification of the DUV’s functionality
early.

The verification team can use the model for three important purposes.
First and most obvious, the model can build a solid basis to learn the
design itself. Many times, one of the critical bottlenecks in a project is
the knowledge gap between the design and the verification team. Having
an explicitly coded and, preferably, executable model usable in FV or
simulation allows the verification team hands-on learning of the design
specification. The second advantage is the ability of the team to use the
high-level model to bring up the verification environment much earlier.
Unlike a traditional flow, where stimulus and checker components are
developed in parallel with the RTL implementation, an HLD phase with
a high-level model allows this work to start much earlier. This gives the
verification team a chance to have the basic environment ready for the
very first RTL delivery from the design team. Of course, the third major
goal is the verification of the high-level model itself. Because the high-
level model encodes many design decisions, running the model with the
first level of checkers and stimulus generators allows the team to verify
the major aspects of the DUV’s functionality in this early project phase.
Results of this verification are important drivers into the change feed-
back loop of the design during HLD.

Clearly, the high-level model is an abstraction of what the RTL design
specification implements. It likely is not exact enough to encode many
detailed window conditions, exceptions, and corner cases. However, it
should specify the major mainline functional features of the DUV and
can therefore be the target for an effective first approximation of a veri-
fication environment.

14.2.2 High-Level Modeling Styles
The main goal of HLD is to define the major design decisions early. It is
the phase of the project where it must be possible to discover major flaws
in the concepts. The process must support major re-definitions of the
DUV without much penalty and re-work. Some of the requirements and

590 Chapter 14 ■ Advanced Verification Techniques

principles that make a high-level model valuable for the three major
design disciplines under consideration were outlined above.

It is important to keep in mind two bounding conditions for the devel-
opment of such a model. First, it must support several of the disciplines
equally well. As discussed, there are goal conflicts between the different
areas, which means the team has to strike a compromise to make each
area as successful as possible (Figure 14.7). Shaping the model for one
of the design disciplines at the expense of the others diminishes the
overall value of the model. Second, the teams have to keep in mind that
the model is only a first approximation of the real DUV implementation
and, as such, is incomplete and abstract. Only those design aspects con-
tained in the model are the subject to HLD analysis. On the other hand,
it is not affordable to encode all design implementation decisions into
the high-level model, because that defeats the purpose of HLD, which is
to evaluate and quickly change the design, and therefore the model,
without major effort and penalty.

14.2 High-Level Modeling—Concepts 591

High-level
model

Early
physical
design

Early
functional
verification

Early
performance
evaluation

Less structure,
focus on each model
transaction separately

More detailed
function

More detailed
physical structure

■ FIGURE 14.7

The three design disciplines have conflicting goals that drive the development of a high-level model.
Although performance evaluation needs a fast model that focuses on model transactions separately to
allow quick adjustments of the model, the areas of functional verification and physical design (PD) strive
to have as much details about their domains in the model as possible. The more the model represents
physical structure, the more accurate the early PD analysis. Similarly, early verification is more
complete if the model contains more of the detailed function. A design project must set the rules
for a productive compromise between these goals early on to be able to utilize the high-level model
successfully.

If a project decides to use a high-level model as the vehicle to drive
HLD, it has to set the goals and their implication to these bounding con-
ditions up front to be successful.

In the following, different possible approaches to high-level modeling
are characterized. Many factors drive the decision about which of these
approaches a project selects. Some of these factors are the available skills
on the team and the actual balance the project places between the three
early design analysis disciplines.

HLD Languages

As discussed in Chapter 3, the HDLs are designed to cover some of the
needs of high-level modeling. In particular, VHDL and the newly devel-
oped SystemVerilog have capabilities to support abstract modeling [108].

The clear advantage of using VHDL or SystemVerilog for this task is
the familiarity of the language to the design team. These languages are
strong in expressing physical structure, supporting the specification
of partitions and interconnect between those as first-class constructs of
the language. Their behavioral modeling constructs allow the coding of
abstract algorithms as opposed to a detailed logic implementation. In
addition, at the end of high-level design, the team can seamlessly refine
an HDL high-level model down to the implementation level. This
approach is attractive because the team never changes the modeling lan-
guage, just the abstraction level. Where an abstract behavioral algorithm
defines a functional unit at first, a detailed structural implementation can
replace it during the implementation phase. It is even possible to have
the implementation of the different partitions proceed on different sched-
ules. The full model analysis can then proceed with a mixed-level model,
where some partitions use their high-level model specification, whereas
other partitions, which are further in the implementation phase already,
use the implementation HDL.

Unlike for models written in a programming language, it is possible
to translate many behavioral constructs of the HDLs into an equivalent
finite state machine representation, which support early FV on the high-
level model. If a team carefully chooses the relevant subset of the HDL
used for high-level modeling, FV can provide significant strength to the
early verification cycle.

The main disadvantages of using an HDL for high-level modeling are
the resulting difficulties for performance analysis with such models. HDL
models tend to be slower than models written in a general-purpose pro-
gramming language. The inherent overhead of the signal change proto-
col in an event-driven simulation engine (see Chapter 3) slows down the
model execution in comparison with simple function calls to execute
model operations in a pure performance model. Performance analysis
also depends on the ability to instrument the model to measure the
impact of design decisions. It is easier to add such instrumentation,

592 Chapter 14 ■ Advanced Verification Techniques

which provides trace information over long model runtimes, into a model
implemented in a programming language.

In addition, the familiarity of the design team with the HDLs has the
inherent danger that the team adds too much detail too early in the design
cycle. If there are no clear guidelines up front as to which function is
part of the high-level model and which part to abstract out, the design-
ers likely start implementing detailed logic. This defeats the goals of a
fast high-level model and the ability to accommodate major re-design
decisions efficiently during HLD.

Programming Languages

Many design projects, especially those where the DUV implements algo-
rithmically intense function, use C/C++ language modeling as the strat-
egy to drive HLD. This approach is very typical in the area of graphics
processing chips [109].

Using C/C++ provides the team with much flexibility in the implemen-
tation of the high-level model. The execution speed of such models is
typically very high. In addition, the integration of the model into other
software components, like transaction stream generation and instrumen-
tation for performance analysis, is easily accomplished. A main attraction
of C/C++ modeling is that the model is extremely portable to a variety of
compute platforms and there is no need to pay license fees for a special-
purpose simulation engine during the early phase of the project.

Although supporting the performance analysis area well, the downside
of C/C++-based modeling is the lack of structural insight that PD and
functional verification can have into the model. This is most severe for
PD, which depends on the specification of structural partitions and their
interconnecting wires. If the C/C++ model just uses function calls to
transfer data values from one partition to another, there are no good
analysis tools to extract the structural interpretation out of the encoded
model. The ability of the functional verification team to create early unit
stimulus and checker components depends on the team’s ability to use
the C/C++ model’s modular structure in the setup of the simulation envi-
ronment. The more programming language modularity exists, the more
the simulation team can tie their code into these structures with the
expectation that the design team will preserve this structure as physical
partitions when it switches to the HDL-based implementation later.
There is no hope to utilize FV effectively on a pure C/C++ model.

SystemC

The biggest disadvantages of a pure C/C++ model are the missing explicit
structure of partitions and the need to code a control flow algorithm (how
does control pass from partition to partition at runtime?) for every new
project.

14.2 High-Level Modeling—Concepts 593

The popularity of C/C++ modeling and the need for a standardized
simulation framework that is re-usable for many projects led to the devel-
opment of the Open SystemC Initiative (OSCI) [114]. OSCI provides an
open-source implementation of a simulation framework entirely based
on C++. The framework offers the foundation for high-level modeling.
SystemC supports the specification of modules and interfaces as well as
the obvious capability to implement the behavioral function of a design
partition in the C++ programming language using process constructs.
Part of the framework is a simulation engine that supports the execution
of a model written in SystemC.

SystemC encapsulates the structural aspects of the high-level model
in C++ classes. More and more model analysis tools appear in the
commercial electronic design automation vendor offerings that target
SystemC, enabled by the standardized definition of the structural aspects
of the framework.

Other Approaches and Languages

One sign that the field of high-level modeling is still emerging and no
single methodology has convinced the industry up to this time shows in
the wide variety of alternate approaches. In Table 14.1 some of the more
well-known projects and offerings are listed. This list is by no mean com-
plete as the area is still very much in flux.

Overall, with exploding design sizes and complexities and with indus-
trial projects that had enough practical success with high-level model-
ing, this area of early design methodology gained increasing attention in
research and development. It is clear that HLD as well as the related
system-level design are areas of major promise and investment of the
industry.

For further study of the different directions in high-level modeling, the
reader is referred elsewhere [115–117].

594 Chapter 14 ■ Advanced Verification Techniques

TABLE 14.1. ■ Selection of widely known alternate approaches to high-level modeling

SpecC C/C++-based modeling framework focusing mostly on System-
On-a-Chip high-level modeling [110].

Handel-C C-based modeling, with proprietary extensions. Focus in
synthesizable hardware modeling [111].

Bluespec Proprietary high-level modeling language [112].

Murphi High-level specification language using a concept called guarded
commands, which specify the functional behavior of hardware.
Highly focused on application in early formal verification. [113]

14.3 COVERAGE-DIRECTED GENERATION

The collection of coverage information during simulation is a necessary
activity to gauge the success of random-biased stimulus generation and
to avoid that the verification team verifies areas of the DUV and its
architecture insufficiently. Figure 14.8 illustrates the coverage feedback
loop.

As is the purpose of any controlling feedback loop, coverage feedback
improves the quality of verification. There are two main disadvantages
to the scheme in Figure 14.8. First, the feedback involves human inter-
action, which makes the analysis and the tuning of the stimulus genera-
tion very labor intensive and therefore quite expensive. Second, the
reaction of the overall verification flow occurs after the fact. We simulate
first and then find out that the stimulus driver did not hit new interest-
ing design aspect, and only then do we adjust the stimulus.

There has been much research in recent years to improve the effec-
tiveness of this coverage feedback loop. All the different approaches can
be subsumed under the title coverage-directed generation (CDG). CDG
comes in several different flavors. They can be categorized based on
where they place the coverage feedback loop in a new, adjusted flow.

Dynamic Coverage-controlled Stimulus Generation

Modern high-level verification languages (HVLs) (see Chapter 6) support
coverage collection constructs, which instruct the HVL runtime frame-
work to collect coverage information [118, 119]. Usually, the verification
cycle accumulates the coverage measurements from each individual run

14.3 Coverage-Directed Generation 595

Stimulus
parameters
and biases

Stimulus
generation

Simulation
Accumulated

coverage
data

Coverage
analysis

■ FIGURE 14.8

Feedback of coverage measurements taken during simulation runs lets the verification engineer tune
the parameters and biases of the stimulus generation to reach so far unverified areas of the design.

to external files and data structures. Subsequent simulations use the
accumulated coverage information to improve their effectiveness.

Dynamic coverage-controlled stimulus components, however, use con-
structs that make the coverage data of the current simulation directly
available to the HVL environment (Figure 14.9). The stimulus compo-
nent can now use information about events that did occur during the
current simulation and can make decisions about subsequent stimulus
during the same simulation run.

The capability to access coverage information at runtime gives the
verification engineer immediate feedback about the results of previous
stimuli applied and enormous control over the next simulation steps. The
downside of this very tight feedback loop is the limitation of the cover-
age insight to the current simulation run only.

Model-based Coverage-driven Test Generation

The model-based generation process is less applicable to biased-random
stimulus generation but to the generation of biased-random test cases.
Figure 14.10 shows the position of this technology in the simulation flow.

The verification team creates an abstract model of the DUV’s micro-
architecture, which enables the test generator to use micro-architecture
conditions and constraints during the generation of test cases. The idea

596 Chapter 14 ■ Advanced Verification Techniques

Stimulus
parameters
and biases

Stimulus
generation

Simulation
Accumulated

coverage
data

Dynamic
coverage

data

Coverage
analysis

Dynamic
coverage
control
code

■ FIGURE 14.9

Dynamic coverage-controlled stimulus generation collects coverage data during an individual simulation
run and makes it directly available to the stimulus generator (dark gray elements). It is the respon-
sibility of the code in the stimulus generator to make the appropriate choices based on this feedback.

behind this scheme is to generate test cases that have a known, high cov-
erage by construction. Using the micro-architecture model to provide the
coverage metric for the test cases during their generation lets the verifi-
cation know how well the tests cover the DUV even without running the
tests on the model at all.

There are a few examples of approaches in this emerging field
[120–122]. At this time, there are no commercial tools available in this
domain.

Automated Coverage-controlled Generation

This newest scheme attempts to address the human component in Figure
14.9 and replaces it with an automated component that uses machine-
learning algorithms (Figure 14.11).

The base technologies applied in this area are Bayesian networks,
which have proven very successful in other areas of machine learning
and artificial intelligence [123, 124]. The idea is that over time and over
many simulations, the coverage feedback program changes the stimulus
parameters and biases slightly and collects the subsequent changes of

14.3 Coverage-Directed Generation 597

Stimulus
parameters
and biases

Simulation
Accumulated

coverage
data

Testcase

Coverage
analysis

Constraint-
based

generation

Micro-architecture
model

Coverage

Test generator

■ FIGURE 14.10

Model-based coverage-driven test generation. The test generator includes a model of the design under
verification’s microarchitecture. In addition to the stimulus parameters and biases from the verification
engineer, the generator uses constraints coming from the internal microarchitecture model to generate
test cases, which have a high coverage by construction.

coverage during simulation. Based on the reactive behavior of the
system, the machine-learning component of the feedback program accu-
mulates probabilistic sensitivity information that lead to an ability to
target so far uncovered areas of the DUV.

Applying machine learning to the coverage feedback loop certainly
points to one of the frontiers and possible high productivity gain areas
that verification research attacks currently.

14.4 SUMMARY

This chapter reviewed advanced techniques in verification that go beyond
the standard verification curriculum.

Bootstrapping verification provides us with techniques to circumvent
the redundant re-execution of the same verification cycles many times
over again, thus making the verification cycle more efficient.

High-level modeling is an emerging practice that lets projects formal-
ize design decisions during HLD and starts many design analysis
processes earlier than the traditional paper-and-pencil HLD. It also ac-
celerates the start of the verification cycle because it gives the verifica-
tion team a chance to develop their infrastructure earlier and bootstrap
the teams learning of the design.

CDG is the newest research frontier in the attempt to improve the effi-
ciency of simulation. Three different approaches in different states of
maturity were shown. Dynamic coverage-controlled stimulus generation
is the technique available to many verification engineers today, because
it uses coverage feedback inside a test bench where the stimulus gener-
ator can react directly to the activity seen in the simulation model.

598 Chapter 14 ■ Advanced Verification Techniques

Stimulus
parameters
and biases

Stimulus
generation

Simulation
Accumulated

coverage
data

Coverage
analysis

Machine
learning

algorithms

■ FIGURE 14.11

Replacing the human analysis in Figure 14.9 with a machine-learning program addresses the costly
component of the traditional coverage feedback loop with automation.

Model-based CDG and automated CDG are still in the research phase but
show promising results already.

This chapter discussed all the advanced topics in an introductory style
to give the reader an entry-level understanding and enough preparation
for further study as these technologies evolve further into the main-
stream of verification practice.

14.5 EXERCISES

1. Using Calc2 as the example, how would you apply some of the boot-
strapping techniques of Section 14.1?

2. For each of the sections 14.2 and 14.3 of this chapter, select one of
the references listed under “Chapter 14” in the References sections
at the end of the book, and explore and summarize the information.

14.5 Exercises 599

P A R T V

A major theme within the Verification Cycle is learning from previous verification efforts.

Within the Verification Cycle, escape analysis and the feedback loop enable this learn-

ing. However, experience is also critical for success. Therefore, this chapter presents

three case studies from our own verification efforts.

The Line Delete, Branch History Table (BHT), and Network Processor examples

vary in approach and focus. However, together, these case studies provide valuable

lessons on creating verification environments, following the Verification Cycle, provid-

ing robust drivers and checkers, hierarchical verification, and re-use techniques.

C A S E S T U D I E S

The verification cycle has been discussed in its entirety. Along the way,
many examples were presented. In this chapter we discuss three indus-
try case studies that illustrate the principles presented.

These case studies illustrate the yin and yang of stimulus and check-
ing components from Chapter 2, coverage and its usage to bias test cases
from Chapters 5 and 7, error-handling verification from Chapter 9,
system verification and verification component re-use from Chapter 10,
and finally regressions and escape analysis from Chapter 13.

15.1 THE LINE DELETE ESCAPE

This case study helps illustrate the strategies of verification as described
in Chapter 2 as well as error-handling verification as described in Chapter
9. It shows how the marriage of drivers and checkers is required to
perform verification successfully. Other references to Chapter 2 include
the verification cycle and levels of verification hierarchy. It also demon-
strates the ability to mimic real-world scenarios (hard errors as described
in Chapter 9) in the simulation engine.

15.1.1 Background
In September 1990, IBM delivered the Enterprise System 9000 to cus-
tomers as the latest in the family of bi-polar technology mainframe com-
puters [125]. The system set new highs in performance, reliability, and
serviceability. The microprocessor, storage controller, and input/output
subsystem design features included multiple execution pipelines, out-of-
order execution, and nearly 100% error detection and fault isolation,
giving customers confidence that their data were correct and their system
had negligible downtime.

IBM developed the technology used to fabricate the 3090 system in
parallel with the design. With aggressive goals set for the technology, the
engineers expected to exercise many of the system’s reliability features
as soon as the first hardware systems were manufactured for early
systems test (on the fabricated hardware). A leading concern was the

C H A P T E R 1 5

CASE STUDIES

ability to manufacture and yield level 1 (L1) cache arrays with no imper-
fections. The expectation was that the early systems test hardware would
have to contend with partial-good L1 arrays. Partial-good arrays are ones
in which portions of the cache array do not contain physical defects and
thus can be used.

To this end, the design team integrated the capability to work around
physical defects from manufacturing in the array segments during
normal system operation. The hardware could detect any of these bad
array segments and mark the segment as defective, inhibiting any further
use of that portion of the array. The smallest denomination of the L1
array that the design could remove from service was a line of data (128
bytes). Hence, this function was dubbed line delete.

To enable the line delete function, the designers built specialized fea-
tures into the system. Later, the team utilized these features to increase
total system reliability in the customers’ environment. A key utility was
the appending of error correction codes (ECCs) to each double word (64
bytes) of data in the cache. A single byte of ECC allows for single-bit
error correction and double-bit error detection when coupled with each
double word of data [126]. Data in the L1 cache were stored with
appended ECCs, and the hardware checked the data upon retrieval from
the cache. If a bit of data was corrupted during its time in the cache, due
to either a bad array cell (hard error) or a transient particle (soft error),
it would be corrected when it was fetched from the cache, maintaining
data integrity. The hardware then trapped all data corrections, tracking
and recording repetitive failures from a given line of the array. If failures
from a particular location in the cache in the array exceeded a preset
threshold, the hardware would raise a flag to the service code indicating
that a line delete action was required.

The service code intervention served two purposes. First, it logged the
line delete action so that failing hardware could be tracked. Second, it
directed the hardware to perform the required line delete action by
writing to the appropriate control register in the L1 cache control logic.

When the system took a line of data out of service, the hardware would
read the data from the bad location, make corrections using ECCs, and
mark the line as defective, preventing any future storage to that location
in the array. Because the L1 cache was a four-way associative design,
deactivating a single line resulted in only slight performance degrada-
tion. Figure 15.1 depicts the line delete scenario.

Verification of the line delete function required verification engineers
to perform tests at different levels of the design hierarchy (verification
hierarchy from Chapter 2). At the unit component level, full validation
of the ECC logic and the threshold logic was essential (this included
injecting errors as described in Chapter 9). At the chip level, the verifi-
cation engineers validated the line delete action and retirement of the
line. Finally, at the system level, the team verified the entire function,

604 Chapter 15 ■ Case Studies

including the interaction with the service code (hardware/software co-
verification from Chapter 10).

15.1.2 The Verification Environments
The first function that the team verified was the ECC generation and
checking logic. Here, it was necessary to confirm that the hardware could
detect and correct a flipped bit in every position of the double word,
including the ECC bits (all 72 bits). The simulation environment included
only the ECC generation logic at the input to the array, the array itself,
and the ECC detection and correction logic at the output of the array.
Test cases stored 72 double words of random data into each of the four

15.1 The Line Delete Escape 605

ECC logic

Line delete
control

Data in

.

.

.

05 L1 cache array

Data out

Counters

Threshold

Service
controller

Control
registers

ECC logic

■ FIGURE 15.1

Line delete system level view. All the components used in the line delete case study are shown. The
shaded area in the L1 cache array indicates a line of data where a double word has a double-bit error.
The line delete function should take this sector of the array (address 05, congruence class C) out of
service.

congruence classes at various locations in the array. The ECC generation
logic appended 8-bit codes to the 64 bits of random data and stored the
data. The test cases methodically injected a single-bit error into the array
location in each of the 72 double words in each congruence class. Injec-
tions were done on each of the 72 bits. Finally, the test case individually
accessed the data locations from the array, verifying that the ECC logic
on the output of the array corrected every injected error. The verification
team repeated the unit level test with dual errors injected into the array,
and the ECC logic correctly flagged that the data had uncorrectable, dual-
bit errors.

At the next level of verification (in this case it was above unit but below
chip—the verification team combined many units and called this element
level), the team verified ECCs, threshold, and line delete action as part
of the mainline program environment. The mainline environment con-
sisted of running long instruction streams against the processor logic
[127]. When merged with the line delete verification environment, the
mainline instruction stream test was expected to run to successful com-
pletion whenever single-bit error injection was performed on the L1
array. The test validated that the ECC logic cleaned up the injected errors
and the instruction stream ran as if there were no injections. The team
added checkers to the mainline environment to monitor the threshold
counters to ensure that the counters incremented when expected (based
on knowledge of where the injections were made in the array). The tests
also validated that the hardware raised the appropriate interrupt when
it reached the threshold. However, the service code was not invoked until
system-level simulation. Instead, at element level, the test case overwrote
a value into the hardware control latch that orders a line delete (this was
done in the same fashion as discussed in Section 14.1.2, “Bootstrapping
the DUV Into High-Potential States). This was an approximate emula-
tion of the service code function on the hardware.

To validate the double-bit error scenario, the team ran similar element
level mainline tests with two injections into “bad lines” in the array. Once
again, the test expected the instruction stream to run to successful com-
pletion. However, the test would take more simulation cycles because the
line of data was required to be re-fetched from the L2 cache behavioral
based on the uncorrectable errors detected on the output of the array.
Until the threshold was met, the uncorrectable data were discarded by
the logic, which caused this re-fetch action. Once again, when the thresh-
old was met, the service code was emulated by writing the control reg-
ister that invoked the line delete function.

At the system level, the verification team simulated the entire line
delete action during functional tests in conjunction with the real service
code. Longer instruction streams were run with the hardware model of
the storage controller (including the L2 and main memory) and the
processor. Single- and double-bit injections caused threshold detection
and line delete actions. Re-fetches from the L2 or main memory occurred

606 Chapter 15 ■ Case Studies

after appropriate detection of double-bit errors. The tests verified that
the service code wrote the appropriate control registers back into the
hardware after raising the threshold interrupts, and, in the end, the test
instruction streams ran to successful completion.

15.1.3 The Escape
When the engineering team performed initial tests on the fabricated
hardware, the L1 arrays were, as predicted, plagued by physical defects.
The system enabled the line delete function to flag sectors of the array
that had multiple instances of dual (uncorrectable) errors, and the
service code trapped thresholds flagged by the ECC counters. Software
traces of the service code showed that the system invoked the appropri-
ate code and that it was initiating line delete actions upon the proper
congruence class lines back in the hardware. Yet uncorrectable ECC
errors persisted from the same bad lines despite the appearance that the
system removed the bad lines from service. What had happened?

Escapes can occur whenever there is a deficiency in either a driver or
a checker (the yin yang of verification from Chapter 2). In the case of the
line delete, the drivers were initially creating the scenarios needed to
verify the function. However, the drivers and checkers failed to close the
loop on the key verification question “how will I know when the func-
tion is failing?”

The tests described above fully validated both the ECC logic and the
threshold logic; there were no problems there. The service code was per-
forming as expected, and it was writing the proper control registers back
to the hardware, as confirmed by scan traces of the hardware. However,
when the software updated the hardware’s control registers, the L1
control logic continued to use bad array locations, causing tests to fail
because of a continuous stream of uncorrectable ECC errors.

As the engineering team debugged the problem on the test floor, the
team also initiated reviews of the simulation environments in a parallel
effort to understand the problem. That effort paid off. The team found
two flaws in the tests—one in the driver and one in the checker—either
of which would have discovered the problem.

The flaw in the driver was at both the element and system levels. The
error injections that the test case made to specific cells worked correctly,
causing the hardware to meet the preset thresholds. However, once the
threshold logic caused an interrupt, the test case ceased to inject into the
set location in the L1 cache. This action by the test case driver did not
correctly imitate the logic, because the bad cells in the real hardware
would be persistent. The verification engineer stopped injecting errors,
assuming that the line delete action would disable the bad line and that the
program data would go to other lines in the congruence class.

The second flaw was in the checking code of the simulation environ-
ment. Here, the code did not ensure that the hardware never used a

15.1 The Line Delete Escape 607

disabled line in the array. Appropriate checking would have put
“garbage” data into the proper line in the array after the line delete
action. This would ensure that any access to the bad line would result in
a failing test case due to the hardware reading garbage data from the
array. The verification engineer failed to cover the case of “how will I
know if the bad array location ever gets used again?” It would also have
been appropriate to add a second check at the end of the test case to
make sure that the hardware never overwrote the garbage data in the
bad section of the array.

The actual bug in the hardware was that the designer failed to wire
the line delete controls to the line delete control register. This prevented
the invocation of line delete logic at the array inputs, despite the thresh-
old interrupts and the proper service code update of the control regis-
ters. After reproducing the bug in the simulation environment, the team
created a fix in the next release of the hardware, verified it with updated
test cases, and the line delete function worked correctly thereafter. This
action of re-creating the failure in simulation and regressing the fix was
discussed in Chapter 13.

15.2 BRANCH HISTORY TABLE

This case study helps illustrate the usage of verification levels as des-
cribed in Chapter 2, stimulus components and test case generation des-
cribed in Chapter 7, coverage usage as described in Chapters 5 and 7,
and checking components as described in Chapter 8.

The unit was verified in its own environment because the higher levels
of verification would not be sufficient. The case study also shows how
in some situations a completely random, on-the-fly stimulus approach
will not work. What is created is a unique combination of both pre-
determined and on-the-fly paradigms to solve the conflicting require-
ments of broad coverage and repeatable instruction streams that is
needed to validate the logic. It also illustrates how a cycle accurate ref-
erence model is used for checking the logic and how the stimulus must
manipulate both the logic and the cycle accurate reference model to
perform the verification. Finally, the case study illustrates how the veri-
fication team used coverage models to focus the biasing of the tests to
hit cases not seen in the cumulative simulation jobs.

15.2.1 Background
The IBM CMOS S/390 Parallel Enterprise Server G5 System (G5) more
than doubled the performance of the previous (G4) server. It was the
first single system image to break the 1 billion-instructions-per-second
barrier. One of the many performance enhancements incorporated into
G5 was the addition of a branch history table (BHT). Because G5’s per-

608 Chapter 15 ■ Case Studies

formance improvement relied greatly on this addition to the micro-
architecture, the verification team focused on the BHT’s architectural
compliance as well as its performance enhancements.

In the previous generation IBM CMOS S/390 Parallel Enterprise
Server (G4), there were no hardware-specific mechanisms for branch
performance. Instead, the logic used a static algorithm to “guess” which
direction a branch would take. The algorithm simply states that all con-
ditional branches are guessed not taken and “usually taken branches” are
guessed taken. Branches such as Branch-on-Count are “usually taken”
because the instruction is often used at the end of a loop to branch back
to the top of the loop. In average workloads, the G4’s static algorithm
results in about two of three branches being guessed correct.

Verification of the BHT logic required a specialized effort. Aside from
integration into the processor level of the verification hierarchy, the
verification team created a stand-alone BHT unit-level verification envi-
ronment (verification hierarchy as discussed in Chapter 2). This envi-
ronment used unique stimulus components and test case generation
techniques (as discussed in Chapter 7). The environment also used
microarchitectural checkers for enhanced bug detection and perfor-
mance verification (checking aspects as described in Chapter 8). Finally,
the team exploited coverage models to direct the test case generation
and to ensure the stimulus touched interesting portions of the design
(discussed in Chapter 7).

15.2.2 BHT Purpose and Logic Design
The purpose of a BHT is to improve the performance of a micropro-
cessor. A BHT accomplishes this in two major ways: pre-fetching the
branch-target instruction stream and accurate prediction of branch
direction.

Pre-Fetching the Branch-Target Instruction Stream

To keep a constant flow of instructions through the pipeline, micro-
processors maintain multiple instruction buffers. Instruction buffers
hold a contiguous set of instructions, as illustrated in Figure 15.2. In
Figure 15.2, the microprocessor has eight instruction buffers. Each
buffer holds eight contiguous single byte instructions. Normal instruc-
tion execution proceeds from one instruction to the next. As execution
reaches the end of an instruction buffer, the microprocessor switches exe-
cution to a new instruction buffer that holds the next instruction. Each
instruction buffer contains control information, including a valid bit and
the starting address.

This ordered processing might be broken by a branch instruction.
Before a branch executes, the branch-target instruction stream must be
loaded into a new instruction buffer. Without a BHT, this operation

15.2 Branch History Table 609

occurs after the decode of the branch instruction during the address res-
olution stage of the microprocessor pipe. This delays the execution of the
branch (pipeline stall) until the microprocessor loads the branch target
instruction stream into an available instruction buffer. But with a BHT,
the microprocessor loads the target instruction stream before decode
(“pre-fetch”), allowing the branch to immediately proceed and avoiding
pipeline stalls.

For example, the microprocessor previously encountered address
“012345684”X and identified it as a branch instruction. The next time the
executing instruction address gets close to this address, the BHT identi-
fies an upcoming branch. Using the target-address saved in the BHT, the
microprocessor pre-fetches the previous targets of the branch at address
“012345684”X. By the time instruction execution reaches the branch, the
microprocessor has already loaded the target-address instruction stream
into an available instruction buffer.

Accurate Prediction of Branch Direction

When a branch is decoded, the processor must choose a direction to con-
tinue decoding. The choice is between continuing to decode down the
current instruction address path or jumping to the target of the branch.
This guess will be proven correct or incorrect when the branch executes,
a few cycles after decoding the instruction. If the processor guesses
wrong, the microprocessor must flush the pipeline and restart at the
correct instruction. The BHT increases the probability that the proces-
sor guesses the correct direction to decode after the branch by record-
ing information about each branch that the microprocessor encounters.

610 Chapter 15 ■ Case Studies

opcode 1

I-Buf 1
valid bit

.

.

.

Single byte instruction

Instruction buffer 1

Address 012345680

opcode 2 opcode 3 opcode 4 opcode 5 opcode 6 opcode 7 opcode 8

Address 012345684

1

I-Buf 1
address

012345680

opcode 1Instruction buffer 2 opcode 2 opcode 3 opcode 4 opcode 5 opcode 6 opcode 7 opcode 8 1 36F2758C

opcode 1Instruction buffer 3 opcode 2 opcode 3 opcode 4 opcode 5 opcode 6 opcode 7 opcode 8 0 --------

opcode 1Instruction buffer 4 opcode 2 opcode 3 opcode 4 opcode 5 opcode 6 opcode 7 opcode 8 1 7CBDE238

opcode 1Instruction buffer 8 opcode 2 opcode 3 opcode 4 opcode 5 opcode 6 opcode 7 opcode 8 1 521D3904

.

.

.

■ FIGURE 15.2

Instruction buffers hold a contiguous set of instructions.

The G5 microprocessor’s BHT records previously taken branches in
the BHT array. This allows the BHT control logic to scan ahead in the
instruction stream, searching for upcoming branches. The algorithm
used by the logic improves the percentage of correctly guessed branches
by about 7%. More importantly, the BHT enables the microprocessor to
pre-fetch the target instruction stream, avoiding pipe stalls once the
branch is decoded.

The BHT control logic scans the array ahead of the decoding instruc-
tion address searching for upcoming branches, initiates pre-fetches for
upcoming branches found in the array, and informs the microprocessor’s
decode logic when a decoding branch has already been pre-fetched. Fur-
thermore, the BHT control logic must write to the BHT array after a
branch executes to maintain the branch’s history.

Figures 15.3 through 15.5 demonstrate the effects of a pipeline stall
and a guessed wrong direction on a branch.

Figure 15.3 shows the effect of the pipeline stall as the branch instruc-
tion completes the decode stage.

The SUB instruction could be the instruction that follows the branch
or the first instruction at the target of the branch. In either case, Figure
15.4 shows the case where the microprocessor guessed the correct direc-
tion after the branch instruction. If the microprocessor guesses the
wrong direction, the pipeline would purge the SUB instruction before it
completes and then restart the pipeline with the correct instruction after
the branch. Figure 15.5 shows the case of the “guessed wrong direction.”

With an optimally functioning BHT, the microprocessor avoids the
pipeline stall and pipeline purge. The BHT avoids the pipeline stall by
pre-fetching the branch-target instruction stream many cycles before

15.2 Branch History Table 611

Pipeline

C
yc

le
s

Address
access

Decode Execute Put-away

ADD

ADDSUB

SUB ADD

ADDSUB

SUB

1

2

3

4

5

■ FIGURE 15.3

Two instructions in a simple microprocessor pipeline. Two contiguous instructions are shown, an ADD
followed by a SUB, passing through a four-deep microprocessor pipeline. It takes the microprocessor
five cycles to complete both instructions. This is optimal instruction throughput for this pipeline.

612 Chapter 15 ■ Case Studies

Pipeline

C
yc

le
s

Address
access

Decode Execute Put-away

Branch

BranchSUB

SUB Branch

BranchSUB

SUB

1

2

3

4

5

6

7

■ FIGURE 15.4

Branch with no pre-fetch causes a pipeline stall. The pipeline stall occurs because the processor must
calculate the branch target address and then fetch that instruction address into the instruction buffers.
In a best-case situation, this takes just two cycles (as shown). The two instructions complete in seven
cycles.

Pipeline

C
yc

le
s

Address
access

Decode Execute Put-away

Branch

BranchSUB

SUB Branch

BranchSUB

1

2

3

4

5

6

7

8

9

10

ADD

ADD

ADD

ADD

■ FIGURE 15.5

Branch with no pre-fetch causes a pipeline stall and the branch direction to be wrong. In this case, the
microprocessor takes 10 cycles to complete two instructions.

decoding the branch. When the microprocessor decodes the branch, the
BHT assists in choosing the correct direction to continue execution. In
this case, the branch and following instruction complete in just five
cycles, the optimal throughput shown in Figure 15.3.

The G5 BHT consists of the branch-history array logic and the sur-
rounding control logic. Figure 15.6 shows the BHT’s communication
with other parts of the processor pipeline.

The BHT control logic receives multiple signals from other parts of
the microprocessor. Those signals include the current decode address
and actual branch results. The BHT uses the current decode address to
direct the array search for upcoming branches. The control logic uses
the actual branch results to update the contents of the array with new
branch information or updates to the array control bits. The control bits
include information on how often the branch has been taken and
whether or not the branch target remains stable.

The BHT control logic drives signals to the microprocessor pipeline
as well. Those signals include pre-fetch controls and decode alerts. The
pre-fetch controls initiate instruction buffer fetches to the target of
upcoming branches. The decode alerts occur when the pipeline decodes
a branch instruction for which the BHT pre-fetched the target address.
It informs the pipeline that the BHT already loaded the branch target
address into the instruction buffers and that there is no need to stall the
pipeline.

15.2 Branch History Table 613

Pipe Address
access

Decode Execute Put-away

BHT
control
logic

Branch
history
array

(2 entries ¥
1024 deep)

Decode

control

Branch

prefetches
Current

decode address

A
ct

ua
l b

ra
nc

h

re
su

lts

BHT logic

■ FIGURE 15.6

BHT logic design. The format of the BHT array is 1,024 entries deep and two partitions wide, allow-
ing the microprocessor to store data for up to 2,048 branches. The main pieces of data held for each
entry in the array is bits 8:30 of the branch target address, bits 12:17 and 28:30 of the branch instruc-
tion address, and control bits. Bits 18:27 of the instruction address are used to index into the 1,024
deep array.

15.2.3 BHT Verification
Although chip and systems level testing verifies architectural compliance
of the BHT, it does not catch problems where the BHT logic fails to
perform as intended. This is because the architectural results of a test
where a branch is initially guessed wrong are the same as the results of
the same test where the branch is guessed correct. The guessed wrong
test just takes longer to execute because the processor pipeline has to
recover from decoding the wrong instruction path. Therefore, verifying
the G5 BHT logic required a new unit-level approach that monitored per-
formance and architectural compliance.

The unit-level design under verification (DUV) included just the BHT
logic shown inside the box in Figure 15.6. Therefore, the verification envi-
ronment abstractly modeled all other parts of the microprocessor to
which the BHT interacts, including the pipeline. The checking compo-
nents were required to independently model the BHT array and certain
controls to catch performance related BHT bugs (a reference model
approach as described in Chapter 8).

The requirements for the unit verification environment were as
follows:

■ The verification driver code must maintain run-time control of the
instruction stream and the branch resolution to manipulate the
BHT logic.

■ Full independent checking of the control and array logic must
occur to catch performance problems.

■ Certain code portions, such as the BHT array pre-loader, must work
at the unit level and at higher levels of verification.

One of the most interesting concepts in writing the stimulus components
for the BHT is that a completely random, on-the-fly stimulus approach
does not work. This is simply because the BHT works on “history,”
meaning that the stimulus must repeat previous instruction addresses to
invoke action from the design. For the BHT array to have “a hit” and
initiate a pre-fetch operation, the current instruction address, fed to
the BHT environment by the stimulus component, must be a close pre-
decessor to a previously established branch address. Choosing instruc-
tion addresses at random does not drive enough instruction stream
repetition to exercise the BHT. Furthermore, the environment must recall
where it previously established branch addresses and maintain those
instruction addresses as branches (in some cases). Otherwise, the BHT
predicts branches that the stimulus components later identify as
non-branch instructions, continually causing the BHT to invoke pipeline
flushes and resets. At the same time, a deterministic approach could
never reach all the cases in such a complex function.

614 Chapter 15 ■ Case Studies

Therefore, the verification plan required constrained automation to
hit a broad range of scenarios while maintaining the look and feel of
repeatable instruction streams. The verification team chose a unique
combination of both pre-determined and on-the-fly paradigms to solve
the conflicting requirements of broad coverage and repeatable instruc-
tion streams.

Because of the requirement for repeatability of the instruction
streams, the environment used pre-determined randomization to estab-
lish multiple instruction streams for a long-running test case. The veri-
fication team encapsulated this code in the environment’s Instruction
Stream Generator, shown in Figure 15.7. The verification environment
called the instruction stream generator once at the start of each test
case.

Although the environment used pre-determined instruction stream
generation, the instruction unit and pipeline stimulus components (also
shown in Figure 15.7) relied upon on-the-fly randomization to exercise
the wide range of possible paths that a given instruction stream might
take. On-the-fly randomization controls included decisions on

■ Whether a branch was taken or not taken

■ The accuracy (correct or incorrect) of the BHT predicted branch
target address

■ Whether a predicted branch turned out to be a branch instruction
when the instruction address finally decodes

The stimulus components, modeling the processor pipeline, made all
these decisions on-the-fly during the simulation test case.

15.2 Branch History Table 615

BHT array
loader (unit

and chip sim)

Unit sim
instruction

stream generator

BHT checking
component
including

BHT shadow array

BHT control logic
and BHT array

(DUV)

Instruction
unit and pipe

stimulus
components

■ FIGURE 15.7

The BHT verification environment.

Rather than start test cases with an empty BHT array, the verification
environment used a BHT array loader to initialize the array. This allowed
the test case to create interesting stimulus right from the start of simu-
lation. The BHT array loader used the input from the instruction stream
generator to intelligently generate data to stick in the array. The inputs
to the loader were generic enough that other levels of verification could
also preload the BHT array using the same code. The array loader simul-
taneously initialized the BHT array in the DUV as well as the shadow
copy used by the environment for checking.

The BHT checking component maintained an independent copy of the
contents of the BHT array. The checking component used this data to
predict when the BHT logic should take action. Checking included veri-
fying that

■ The DUV made appropriate pre-fetch requests

■ The DUV updated its array with correct data

■ The BHT correctly interacted with the pipeline logic

Instruction Stream Generation

The instruction stream-generation for the BHT logic was one of the novel
approaches used in the BHT verification. The following section describes
the algorithm used to create the pre-determined instruction streams.

It is important to note that from the BHT logic’s perspective, only two
pieces of data are important for each instruction: the instruction address
and whether the instruction at that address is a branch.

The unit simulation random instruction-stream generator used a
pseudo-random number generator and a parameter table to create the
instruction streams. The parameter table dictated the probabilities of
certain key decisions that influence the characteristics of the instruction
stream. The first action based on the parameter table is the decision on
how many blocks of entries within the BHT array the instruction streams
use. Figure 15.8a shows this.

A block is a set of contiguous entries in the array. The length of each
of these blocks is variable and is based on another parameter. Because
it is desirable to cause branches to overlay other branches in the BHT
array during the test cases, the number of entries used by the instruc-
tion stream was restricted to only the blocks chosen. A small number of
blocks cause the BHT to “thrash” or cast-out many BHT entries during
the simulation. A larger number of blocks reduces the number of cast-
outs and increases the efficiency of the BHT logic.

The next decision, shown in Figure 15.8b, was how many separate
instruction streams to create. Each instruction stream can be of varying
length and can have multiple branch instructions throughout the stream.
Each of the streams is terminated with an always-taken branch to a
restricted area (address 7FFFFFFCx), which is manipulated throughout

616 Chapter 15 ■ Case Studies

run-time to branch to the start of another instruction stream. Each
instruction stream has a unique starting instruction address used to iden-
tify the instruction stream.

Finally, the instruction stream generator created each instruction. The
generator used the parameter table to decide whether each individual
instruction is a branch or not. Because the BHT logic was not privy to

15.2 Branch History Table 617

BHT array

Partition A Partition B

Randomly choose congruence
class blocks within the BHT to
use for an individual testcase.
Using few numbers of blocks will
increase castouts and contention
within the BHT.

Choose the number of instruction
streams and the length of each
instruction stream.

Create each i-stream, using a
random bias to decide if each
instruction is a branch, and if it is,
whether or not it’s conditional and
a loop. For each branch,
recursively create the branch
path i-stream. All i-streams end
with a branch to address
7FFFFFFC.

1.

2.

3.

(a)

1 42 53 6

(b)

I-stream N

Each of the instructions in I-stream N
are mapped from the chosen congruence
classes in step 1. If the instruction were a
branch, the BHT would record it into one
of the shaded areas.

(c)

■ FIGURE 15.8

Instruction stream generation algorithm.

the actual opcodes, only instruction addresses needed to be generated.
For instruction addresses that are designated as branch instructions, the
generator created the type of branch (usually-taken or conditional) using
the parameter table. If the generator chose an instruction to be a branch,
it spawned a new stream starting at the target of the branch instruction.
Figure 15.8c shows this activity. All these instructions addresses lie
within the range of blocks chosen in the first step (Figure 15.8a).

It is important to note that once the generator designated an address
as containing a branch instruction, it would not change for the duration
of the test case. This allowed the BHT array to have a history of branch
addresses. The exception to this rule was for rare, devious stimulus occa-
sions, which resulted in the BHT predicting a branch, only to find out
on decode that the address did not contain a branch instruction.

BHT Array Loader

When instruction stream generation completes, the BHT array loader
uses this information to preload the DUV and the shadow array with a
subset of the branch instruction addresses. The loader has various modes
that affect the efficiency of the BHT control logic. The modes vary the
correctness of the preloaded data with respect to the simulated instruc-
tion streams. The modes range from “loading all correct data for the
upcoming instruction stream” to “loading random data” (nearly equiva-
lent to not preloading the array at all). In between these two cases are
modes that load partially good data. Partially good data might be a
correct branch instruction address, but the branch target address is
incorrect. Another variation would be to preload the array with branch
information at an instruction address where there is no branch. The par-
tially good data cases cause the BHT control logic to incorrectly predict
branches during the test case, putting the processor pipe through appro-
priate recovery action. These types of devious cases are important to
verify early in the design cycle.

On-the-Fly Stimulus Components

The stimulus component includes an instruction unit and pipeline behav-
ioral. It is the main control code used to drive the BHT logic. The stim-
ulus component provides the instruction stream to the BHT as it would
be presented if the entire processor were in the model. It also provides
execution completion data to the BHT control logic in the same manner
as the execution unit. The execution completion data consists of “end-
of-operation” pulses for all instructions as well as branch direction and
guessed correct or incorrect data for branch instructions. Therefore, this
code controls whether or not the BHT logic predictions are correct.
Because the instruction stream is entirely under the control of the stim-
ulus component (and is not checked for architectural correctness), it uses

618 Chapter 15 ■ Case Studies

the parameter table to vary the probability of a correct or incorrect
response from the execution unit.

This methodology is a very powerful way to stress the BHT logic.
Because the BHT is not privy to the instructions opcodes (and therefore
there is no need to create real instructions, only instruction addresses),
the stimulus component can jump around these pseudo-instruction
streams in whatever way the probabilities fall. Hence, the parameter
table gives the stimulus component the ability to focus on corner condi-
tions in the logic, allowing for better logic coverage in the test cases.

BHT Checking Component

With the stimulus component having full control over the instruction
stream and the branch results, the most difficult task is checking for cor-
rectness. To perform the checking, the component uses the BHT shadow
array as the cycle accurate reference model. Still, the verification pro-
grammed all the knowledge about the BHT function into the checking
component, including appropriate actions in corner cases. The correct
actions were verbally cross-checked with the other instruction unit and
execution unit designers.

However, the checking component did not have to duplicate the entire
BHT logic to verify the test cases. This is because the stimulus compo-
nent is in control of the upcoming sequence of events and can therefore
“cheat” to predict the proper BHT results. Because the components know
whether or not a branch is going to be taken based on the probability
table, the code has the advantage of being able to “see into the future”
of the pipeline, avoiding the need for all the logic that the BHT controls
must carry.

Example Test Case

The following example demonstrates the flow of a single test case. This
test case was a typical successful simulation job, meaning that it ran to
completion without flagging any errors.

Before the test case simulates cycles, the code invokes the instruction
stream generator. As detailed in Figure 15.9(1), this test case started by
choosing to restrict the BHT array addresses to just four blocks, each of
varying length. This choice of a relatively small number of blocks affects
the cast-out rate of the BHT array as the test case proceeds, because all
the instructions generated have instruction address bits 18:27 in the
range of 037x-03Dx, 0A2x-0A3x, 120x-132x, or 204x-22Ax. If a larger
number of BHT blocks have been used, the average cast-out activity in
the test case would likely decrease.

After choosing the BHT blocks, the instruction stream generator uses
the parameter table probabilities to choose the number of instruction
streams and their lengths (Figure 15.9[2]). In this case, seven instruction

15.2 Branch History Table 619

streams are to be generated, each of length six, seven, or eight instruc-
tions deep. The depth refers to the number of instructions in the first
path, which terminates with a branch to address 7FFFFFFCx. All instruc-
tion stream stubs created from each branch have less depth than the
prior instruction stream.

Finally, the generator creates each instruction stream. The first one,
shown in Figure 15.9(3), has a depth of seven instructions. In this
example, the generator uses a probability of 25% to decide whether an
instruction is a branch. Hence, 3 of the 12 instructions created for this
stream were branches. Other probabilities, as shown in Figure 15.9(3),

620 Chapter 15 ■ Case Studies

BHT array

Partition A Partition B

1. Randomly choose
 4 blocks and lengths.

2. Randomly choose to have
 7 I-streams of length 6, 7,
 and 8 instructions deep

3. Create 7 I-streams. The first one, 7 instructions deep, is shown here:

Starting ia: 12341224
Probability instruction is a branch: 25%
Probability branch is a loop: 50%
Probability branch is conditional: 50%
For clarity, all instructions are 2 bytes long.

1K entries

037
03D

132

204

0A2
0A3

120

22A

24

26

28

2A

2C

2E

30

Branch to 123A0A28

28

Conditional branch to 123F21E

Loop to 12341226

1E

20

22

24

■ FIGURE 15.9

Example of a test case flow.

resulted in 1 of the 3 branches being a loop (the branch target is upward
in the instruction stream) and 1 of 3 branches being a conditional
branch. All instructions addresses (bits 18:27) reside in the blocks of the
BHT chosen in Figure 15.9(1).

The generator creates six other instruction streams using the same
process. Figure 15.9 does not show these other instruction streams.

The preloading of the BHT array and shadow array with data follows
the instruction generator. The array loader chooses branches from the
seven instruction streams to load into the array. If more than two
branches have identical instruction address bits 18:27, then the array
loader chooses only two to preload. The others make their way into the
array when encountered during the normal execution of the test case.
The array loader changes some of the target addresses to cause incorrect
branch prediction early in the test case.

After preloading the arrays, the test case begins to clock cycles. The
first action taken by the pipe stimulus component is to randomly choose
one of the seven instruction streams as the initial instruction address.
The component chooses the instruction stream shown in Figure 15.9c
first and then drives the inputs to the BHT with a current instruction
address of “12341224”x. The stimulus component proceeds to fill the
decode-to-execute pipeline with the instruction addresses. In the mean-
time, the BHT logic looks ahead in the array and correctly identifies
the first upcoming branch because it was preloaded into the array.
That branch, located at address “12341228”x, has its target address,
“123F21E”x, pre-fetched by the BHT logic. The pipe behavioral in the
stimulus component responds to the BHT logic request for pre-fetch. As
the stimulus component emulates the pipeline, it decodes the branch
instruction. The BHT logic correctly signals that the branch target
instruction address has already been pre-fetched and that pipeline decod-
ing should continue down the branch target path (guess taken). As the
stimulus component drives the BHT logic inputs to simulate the move-
ment of the pipe, the branch instruction reaches execution. In this case,
the behavioral chooses to respond with “guessed correct” in the execu-
tion cycle, and no pipeline recovery is required. In the meantime, the
BHT logic has not pre-fetched the upcoming branch (loop back to
“12341226”x) because it was not preloaded into the array. As the stimu-
lus component’s pipeline encounters this instruction, it imitates a pipe
stall that fetches the target address. The branch is guess-taken as it is not
a conditional branch, and the decoding continues back at the target of
the loop.

Simulation continues in this fashion until reaching the last in-
struction in the stream. As stated, the last instruction in the stream is
always a branch to address “7FFFFFFC”x. This address holds a second
branch that has a target address of the initial instruction in one of the
seven instruction streams. The stimulus component overwrites this
address into the array with a new target after every encounter of the

15.2 Branch History Table 621

“7FFFFFFC”x address. This mechanism allows the test case to complete
one instruction stream and then jump to another randomly chosen
instruction stream. The test case continues to run until a predetermined
quiesce cycle. Upon reaching the quiesce cycle, the test case completes
the current instruction stream and performs a final consistency check of
the BHT array versus the shadow array.

This particular test case simulated 10,000 cycles, executing a combi-
nation of the seven instruction streams 191 times, each with differing
permutations based on the contents of the array and the random
numbers generated for probabilities. Had the checking code flagged an
error, the environment would halt simulation and print the error message
detailing the miscompare to the results file. An example of a miscompare
might be the failure of the BHT logic to pre-fetch a target address that
the checking component indicates should be pre-fetched.

Aside from collecting error data, the results file contains a cycle-by-
cycle record of the activities of the BHT and pipe behavioral. This infor-
mation is invaluable for quick problem determination. The verification
team can also use the results file to collect coverage information, pro-
viding feedback for parameter table adjustments. These adjustments
enable the stimulus components to exercise more logic function in the
following test cases.

BHT Coverage

The verification team used functional coverage metrics (as described in
Chapters 5 and 7) to assess the BHT environment and adjust the proba-
bility tables. The team defined six coverage models to track the amount
of logic touched by the simulation environment. We detail two of these
models here.

The simpler of the models indicated the usage of the control bit states
in the BHT array. The verification team defined this model using four
pieces of data:

Model: (WriteType, EvenOdd, OldControlBits, NewControlBits)
The environment collected data from the test cases after each write to

the array. The first piece of data, WriteType, indicated one of three pos-
sible scenarios that initiated a write to the BHT array:

■ A new write to the array over top of an invalid entry

■ A new write to the array over top of a valid entry, or

■ A write to the array that is updating an entry (write over itself)

The next piece of data collected for this model is whether the write was
to the even or odd side of the array. The third and fourth pieces of data
indicated the transition from the old control bits to the new control bits.
The control bits (of length 2 bits) have values of 00, 01, 10, or 11. Control
bits indicate information about the data in the particular array position.

622 Chapter 15 ■ Case Studies

The decoded values meant “invalid entry,” “strongly taken branch,”
weakly taken branch,” and “wrong target.” Strongly taken versus weakly
taken indicated the confidence level in the branch being taken the next
time it was encountered.

The following cross product defines the size of the state space for this
model:

(3 ¥ 2 ¥ 4 ¥ 4) = 96

However, the design placed restrictions on the actual number of legal
cases. For example, because the control bit value of 00 indicates an
invalid entry in the array, if the WriteType field is “a new write over an
invalid entry,” then the OldControlBits field must be 00. Restrictions such
as this bring the number of legal combinations down to 30. Over the
course of multiple simulations, the environment encountered all 30 cases
(100%).

The second model is a far more complex example. It deals with all the
possible permutations that can occur to a single branch. The model def-
inition is

Model: (Bt, Tp, Tact, Pwtar, In, CC, SA, CB, K, C1-3, C3-5, C5-7,
C7-9) where

Bt = Branch type (certain or always taken)

Tp = Taken prediction (predicted taken or not predicted)

Tact = Taken actual (not taken or taken)

Pwtar = Predicted wrong target (correct target or incorrect target
predicted)

In = In array at decode (in array or not in array)

CC = Number of valid entries in the array congruence class at
decode (0, 1, or 2)

SA = Branch came from system area (in system area or not)

CB = Control bits in array at decode (00, 01, 10, or 11)

K = Pipeline stage that branch was at when pipe recovery
occurred (0 = no recovery, 1–9)

C1-3 through C7-9 = The number of cycles that the branch was in
a stage of the pipe (0, 1, 2, or more cycles)

The cross product of this model yields 622080 possible coverage states.

(2 ¥ 2 ¥ 2 ¥ 2 ¥ 2 ¥ 2 ¥ 3 ¥ 4 ¥ 10 ¥ 3 ¥ 3 ¥ 3 ¥ 3) = 622080

However, less than one-third of these are legal states.
The verification team used these models to focus the biasing of the

parameter table to hit cases not seen in the cumulative simulation jobs.
For example, the branch permutation model might have originally shown

15.2 Branch History Table 623

that the stimulus components never created cases of Tact = 1 & Pwtar =
0 during simulation. This would indicate that every time a branch was
actually taken, the BHT logic supplied the correct target address. To fix
this deficiency, the verification engineer would adjust the biasing in para-
meter table item “Result of Branch.” This item dictated the probability
that a branch was taken, not taken, or taken but to a different target
address. In this case, coverage results would indicate the need to raise
the biasing on the different target address. This action would raise the
probability that when the BHT logic identified a branch, the stimulus
component’s pipeline behavioral would return a “wrong target address”
after executing the branch.

The verification team analyzed all models that did not hit 100% cov-
erage for trends. In large models, the verification team does not expect
100% coverage. The team analyzes the data, searching for large gaps in
the cross-product results.

15.2.4 Results
The BHT unit simulation effort was a success. The unit environment
uncovered 18 BHT bugs before processor level verification. Of the 18
problems, 6 were architectural and 12 were performance problems.
Although the architectural bugs would have been found at the processor
level, finding the problems earlier in the design cycle was beneficial in
that the problems were easier to debug and regress the fixes before
getting to the next level of verification (as discussed in Chapter 8 and 13).

The focus on coverage directly attributed to finding 3 of the 18 prob-
lems. The verification team discovered these bugs after adjusting the
parameter table due to holes shown by the coverage metrics.

The processor and system level verification efforts uncovered three
additional BHT logic problems. These problems were all beyond the
bounds of the unit verification effort, because they depended on micro-
code interactions.

The prototype hardware was a resounding success, because the hard-
ware test uncovered no BHT related bugs in the CMOS chips. The BHT
was fully functional on the first pass, assisting in the time-to-market con-
cerns that surround releasing servers.

15.3 NETWORK PROCESSOR

This last case study illustrates the strategies involved at the chip and
system level of verification. It is a look at how a network processor was
verified at the chip and system levels. Specifically, it demonstrates the
complexities of re-use as described in Chapter 10 and details how mul-
tiple test benches were created to handle chip level simulation perfor-
mance issues.

624 Chapter 15 ■ Case Studies

15.3.1 System Overview
A network processor is a processor that has been customized for net-
working applications. A typical processor (like the Intel Pentium or the
IBM PowerPC) is built to serve a general purpose: It allows its users to
apply it to any number of things-word processing, transaction process-
ing for banks, various internet applications, and so on. A network proces-
sor is a specialized processor that targets one specific application-routing
network traffic efficiently. It might be to route traffic from one network
type to another or to perform higher-level functions such as voice-over
Internet protocol processing. The network processor is architected to
handle the specific tasks associated with networking. Figure 15.10 illus-
trates a network processor system.

The system is composed of two main components-a backplane and a
blade. The backplane contains the switching fabric that routes packets
between the “N” blades. “N” varies depending on the configuration. A
fully populated system has 64 blades. Each blade contains a network
processor, memory, and the physical network interfaces (PNIs) such as
Ethernet.

Figure 15.11 shows a high level diagram of the composition of a
network processor.

The network processor has five subsystems comprised of many units-
a PNI subsystem, a processing complex subsystem, an ingress control
unit, an egress control unit, and a switch interface (SIF) subsystem. The
network processor acts as two independent flows, ingress and egress. The

15.3 Network Processor 625

Switch

Network
processor

Backplane

M
em

or
y

Blade 1

Physical
interface

M
em

or
y

Physical
interface

...

Network
processor

M
em

or
y

Blade N

Physical
interface

M
em

or
y

Physical
interface

...
.........

■ FIGURE 15.10

System-level example of a network processor verification environment.

two flows share the processing complex. The ingress flow is as follows:
The PNI subsystem receives network traffic, strips off the cyclic redun-
dancy check (CRC) from the packet, and places that data into memory
via the ingress control. The ingress control subsystem notifies the pro-
cessing complex that data are in memory to be processed. The process-
ing complex then uses that data and performs many different operations
on them. Once the processing complex has finished, it notifies ingress
control subsystem that the data are ready to be sent out of the chip via
the SIF subsystem. The SIF subsystem then segments that data into
smaller packets, called cells, and sends those to the switch with the
appropriate switch routing information.

The egress flow is similar except that the SIF and PNI subsystems
reverse roles and the egress control subsystem replaces the ingress
control subsystem. The SIF subsystem receives the cells from the switch
and places them into memory; when it receives all the switch cells that
comprise a complete data packet, it reassembles the cells into the data
packet and then notifies the egress control subsystem that then notifies
the processing complex. Once the processing complex finishes with a
data packet, the egress control subsystem then notifies the PNI subsys-
tem to send the data out of the chip onto the network. At this time the
PNI overlays correct CRC at the end of the packet.

The PNI connects to different physical interface chips to support dif-
ferent protocols-up to ten 10/100MB Ethernet, one 1GB Ethernet, four
OC-12 ATM, or one OC-48. Each PNI chip connects to the network
processor differently. In a system, one blade may have five 10/100MB
Ethernet physical interface chips, and on another blade, an OC-48 ATM
physical interface chip is used.

Within a system, one blade is dedicated as the control point. This
control point blade is no different from any other blade except for some

626 Chapter 15 ■ Case Studies

Processing
complex

Egress
control

Ingress
control

Switch
interface

Physical
network
interface

M
em

or
y

M
em

or
y

■ FIGURE 15.11

Network processor internal composition.

additional functionality-an embedded microprocessor (not shown in
Figure 15.11). The network processor has a mode to enable the control
point function (enabling the internal microprocessor). When the network
processor is acting as a control point, the internal microprocessor is
responsible for configuring (initializing) and maintaining the system.
Regardless of whether the network processor is functioning as a control
point or not, it is always processing network packets.

The network processor initialized itself in various ways. When the
network processor was in a non-control point mode, a boot state machine
loaded the processor complex with the code it will run to perform the
processing of the packets. The boot components consisted of the proces-
sor complex and a boot state machine. The boot state machine simply
read the contents of an attached electrically erasable programmable read
only memory (EEPROM) via an inter-integrated circuit (I2C) interface
and loaded an internal instruction memory in the processor complex.
Once the loading of the memory was complete, the boot code then sig-
naled the processor complex to start executing the instructions.

When it was in a control point mode, the boot state machine loaded
the embedded microprocessor with control point boot code instead of
the processor complex. Upon completing the code load, the boot state
machine then instructed the embedded processor complex to start exe-
cuting. The code that was loaded in the microprocessor was required to
load the processor complex with its instructions.

One additional function that the embedded processor could perform
was to be able to create ingress packets that could be sent to the other
network processors in the system to configure them as well.

15.3.2 Verification Effort
The overall verification effort on a network processor required unit level,
chip level, and system level, all with dedicated simulation efforts (test
benches, verification components, and re-use). The chip and system ver-
ification teams did not create any additional verification components
because they re-used the appropriate components from the unit levels.

This added complexity as the unit level verification engineers had to
consider both chip and system level functionality when creating some of
the verification components.

PNI Unit Verification Test Bench

The PNI unit verification environment was very similar to what is pre-
sented in Chapters 2, 7, and 8. However, a good degree of re-use was
accomplished because the whole system is designed around routing
packets or frames depending on the network protocol. Because of this,
most verification environments contained a frame formatter verification
component that was responsible for generating frames.

15.3 Network Processor 627

Figure 15.12 shows the unit verification environment for the PNI.
Notice how both the ingress and egress flows utilize the frame formatter.
As mentioned earlier, the ingress and egress flows are independent. For
ingress test scenarios, the PNI stimulus component called on the frame
formatter to get a list of frames that would be sent into the DUV. Depend-
ing on the protocol configured for the port (recall that the PNI supports
multiple protocols), the PNI stimulus generation component would call
the frame formatter to get different lists of frames to be sent into the
DUV. For the ingress flow, the frame formatter had to support generat-
ing a packet that had a correct CRC as the last byte in the packet. One
function that the PNI unit performed was discarding packets that had
incorrect CRC appended. To simulate a packet being corrupted, the
frame formatter would be called with an appropriate parameter indicat-
ing how many of the packets it was generating would contain invalid
CRC. In these cases, the Ingress Control checker would validate that only
the cells with correct CRC were indeed passed through the DUV.

On the egress side, the opposite occurred. The Egress Control stimu-
lus component would call on the frame formatter, and it did not want
correct CRC because it would be appended onto the packet by the DUV.
The PNI checker would check that every packet was appended with
correct CRC.

628 Chapter 15 ■ Case Studies

Physical
network
interface

PNI
scoreboard
and checker

PNI stimulus
protocol component

PNI stimulus
generation component

Egress control stimulus
generation component

Egress control stimulus
protocol component

Ingress
control

scoreboard
and checker

Egress
monitor

PNI
monitor

Frame
formatter

■ FIGURE 15.12

PNI unit verification test bench. The ingress flow and egress flow both use the frame formatter for gen-
erating data.

SIF Unit Verification Test Bench

The SIF unit verification was similar to the PNI, except it dealt with cells
instead of packets. All the data that the SIF passed were in a cell format.
A packet was comprised of numerous cells, and a cell was exactly 64
bytes. Six bytes of every cell contained switch routing information and
cell integrity information.

The ingress side of the SIF would take a packet and split it into cells
with the last cell being padded to 64 bytes. The SIF would insert the
correct switch routing information and cell integrity (much like the
egress PNI). As indicated in Figure 15.13, the Ingress Control stimulus
generation component would call the frame formatter to receive a list of
packets that would be sent into the DUV. The ingress control monitor
passed the packets that are sent into the DUV to the Ingress Switch
checking component, which would segment the packet into the appro-
priate cells and ensure the DUV sent the correct cells with the appropri-
ate switch header information.

The egress flow was the reverse. It called the frame formatter to get a
list of packets, and it would then segment the packet into cells and send
those cells into the DUV. However, it did not include any switch routing
information; in this case it was random. As with the PNI, it did insert

15.3 Network Processor 629

Switch
interface

Egress control
scoreboard
and checker

Ingress control stimulus
protocol component

Ingress control stimulus
generation component

Egress switch stimulus
generation component

Egress switch stimulus
protocol component

Ingress
switch

scoreboard
and checker

Switch
monitor

Ingress
control
monitor

Frame
formatter

■ FIGURE 15.13

SIF unit verification test bench. The ingress flow would take a packet and segment it into 64 byte switch
cells. The egress flow would capture the numerous switch cells into memory.

both correct and incorrect switch integrity information to ensure the SIF
would handle them correctly. The SIF did not perform the reassembly of
the cells. That function was left up to the Egress Control unit. The SIF
just stored the data into memory buffers that the egress control unit
passed to the SIF. The Egress Control checking components validated
that the correct data was received.

Chip Verification Test Bench

Figure 15.14 illustrates the chip level simulation test bench. Every dark
gray box is a verification component (or set of them) re-used from the
PNI and SIF unit verification environments.

Because the two unit teams were already using the frame formatter to
obtain the correct packet information, the chip team just had to re-use
the components from the unit levels. However, the frame formatter had
to be enhanced to handle chip simulation. Because the core of the
network processor had specialized hardware designed to handle differ-
ent types of network protocols like Apple Talk, IEEE 802.3, and IEEE
802.5, the frame formatter now had to generate correct network packets
for the different protocols, not only from the physical interface level but

630 Chapter 15 ■ Case Studies

r
generation component

r
generation component

monitor
monitor

Network
processor

Switch
scoreboard
and checker

Switch stimulus
generation component

Switch stimulus
protocol component

Switch
monitor

M
em

or
y

Frame
formatter

PNI
monitor

M
em

or
y

PNI
scoreboard
and checker

PNI stimulus
protocol component

PNI stimulus
generation component

■ FIGURE 15.14

Network processor chip test bench.

also from an encapsulation type. This was a different function than what
the PNI and SIF unit verification teams needed. Each of these units only
required data that met the physical protocol. However, the other func-
tions relating to CRC and switch cell integrity was still required to ensure
error recovery on these interfaces.

Another required change to the unit verification components was to
change the monitor functions. At the unit levels, the PNI and SIF sent
the expected data to different verification components than what was
required at the chip level. At the chip level, the monitors and checking
components now must communicate. Special hooks were implemented
in the unit monitors to communicate to the correct scoreboard when the
units were contained in the chip test bench.

Another change to the unit verification components was required in
the scoreboard. Both the PNI and SIF units sent out the data as it was
received (first in, first out). At a chip level, this paradigm breaks down
because the core processing engine may send things in a different order
from what was received. Because of the ability to receive things out of
order, the scoreboard functions for both the PNI and SIF had to contain
a mode.

This caused for churn at the unit levels when the chip verification team
was trying to get tests to pass. The unit verification teams had to define
a function in the scoreboard to handle the fact that at the chip level,
packets may be received out-of-order.

Chip Test Bench Configurations

One issue to contend with was the numerous configurations that a blade
supports. The PNI supports different networking chips from different
vendors. The unit level verification team verified that the PNI works cor-
rectly with the various interface standards. Because of the sheer number
of vendors that supply these interface chips, it was not feasible to create
configurations for every existing network chip. Instead, the chip level ver-
ification environment focused on the differences in micro-architectural
features for each of the configurations. For instance, one 1-GB Ethernet
port fills up the memory buffers much faster than one 10/100-MB
Ethernet port. Therefore, the verification team created various test
bench configurations to mimic these scenarios.

The chip level simulation scenarios were categorized into five areas:

■ Initialization

■ Ingress

■ Egress

■ Control point

■ Wrap

15.3 Network Processor 631

The verification team used the initialization tests to verify the micro-
architecture and the connectivity of the boot components of the network
processor. The boot components consisted of the processor complex and
a boot state machine. The boot state machine simply reads the contents
of an attached EEPROM via an I2C interface and loaded an internal
instruction memory in the processor complex. Once the loading of the
memory was complete, the boot state machine then signaled the proces-
sor complex to start executing the instructions.

The verification team created a test bench that was different from the
one presented in Figure 15.14. For these tests, the verification team
created a test bench that only contained the chip and an EEPROM model.

The verification team had created the EEPROM model such that it
would provide an instruction set that would do a very specific task. The
instructions loaded were to simply allow the processor to write an inter-
nal register. The verification team had an internal monitor that would
observe this internal register. On seeing this register written with a spe-
cific value, the monitor would indicate the test was complete. Because
of the nature of the I2C interface, the test took a long time in simulation
to complete. The verification team performed this test only when the
logic changed. It was a directed test and did not require any random-
ization because the software performs the rest of the initialization of the
network processor.

In addition to the above initialization test for the processor complex,
the verification team also created a similar test that used the embedded
processor to load the internal instruction memory.

Ingress tests focused on the ingress flow-the flow of network packets
to the switch. These tests validated the micro-architecture and the con-
nectivity of the ingress components.

The tests constrained the PNI stimulus verification components to
send in various network packets. As previously discussed, the PNI veri-
fication components used from the unit level verification environments
required a mode to enable it to notify the switch scoreboard rather than
communicate with the ingress PNI scoreboard. This was a simple hook
for the unit verification team to add because the design funnels all
network traffic to one switch. The PNI stimulus generation component
did a function call to the frame formatter to generate a list of packets to
be sent into the network processor. The frame formatter generated the
list of packets based on constraints that the PNI stimulus generation
component passed to it. Some of these constraints included the follow-
ing: destination ports, packet type, and packet sizes. It also generated a
unique signature for every packet. This ensured accountability for every
packet within the system. The PNI stimulus generation component then
sent the packet into the DUV via the PNI stimulus protocol component.
The PNI stimulus protocol component interfaced differently to the DUV
based on the packet type. When the packet was sent to the DUV, the PNI
monitor inspected the packet, calculated the expect data, and then placed

632 Chapter 15 ■ Case Studies

the packet into the switch scoreboard queue. The switch monitor verifi-
cation component observed the DUV outputs. For every cell that came
out of the DUV, the monitor stored it. Once receiving all the cells for a
packet, the monitor then sent the received packet to the scoreboard for
checking. The checker, on receiving a packet from the monitor, would
search through its queues for a packet that matched the signature. If the
expected match was received, the checker would remove the list from its
queues. This would continue until the end of the test.

Once all packets were sent into the DUV, the test case would end after
some latency time. This latency time was to ensure that all packets had
a chance to be processed and sent to the switch. Once this time had
expired, the checker would make one last check to ensure all packets sent
into the DUV were received on the switch side.

There were two conditions where the number of packets sent into the
DUV would not match the number of packets received at the switch. One
was when a packet was to be discarded, and the other was when the
processor was to inject a packet (create a packet and then send it as if it
was received at the PNI). In these cases, the verification team had to
monitor internal facilities of the DUV so that the verification environ-
ment could accurately predict the behavior.

Egress tests focused on the egress flow—the flow of switch cells to the
network. These tests validated the interaction and connectivity of the
egress components. The egress is similar to the ingress except the roles
are reversed. Now the switch generation component called the frame for-
matter for a list of packets to send. Again, the frame formatter generated
these with unique signatures. The switch protocol component then seg-
mented the packets into cells and sent those into the DUV. At this time,
the switch monitor notified the correct PNI scoreboard of the expected
packet. The PNI monitor observed the outputs of the DUV and, on receiv-
ing a packet, checked it against what was in the PNI scoreboard. Again,
the unit verification team added a mode to the switch verification
component to allow it to transfer the expect packet to one of the “N” PNI
scoreboards. An internal monitor also was used to predict when packets
would be injected or discarded.

In addition to the ingress test scenarios, the verification team used the
ingress test bench to verify the control point test scenarios. These test
scenarios verified the ability of the processing complex to communicate
with the microprocessor and vice versa. All these tasks are not in
any mainline test and are considered both connectivity and micro-
architecture in nature. The embedded processor was enabled in these
tests so that it would create network packets in memory and then in-
struct the processing complex to send those packets to the switch. In
these tests, an internal monitor was used to monitor this interface, be-
cause the test would fail because the switch checker would not be able
to find this injected packet in its queues. This internal monitor would
observe these created packets and notify the switch scoreboard.

15.3 Network Processor 633

The wrap test scenarios combined the ingress and egress tests. This
combination became a complete test suite for a single blade system. In
this test scenario, all packets originated from the ingress. The same
mechanism was followed as in the ingress scenario. However, once
checked, the packet was queued into the switch stimulus protocol com-
ponent (as opposed to the frame formatter generating it). At this point,
the egress flow occurred.

The verification team needed to run the ingress, egress, and wrap tests
against the various PNI configurations. The team could have run the
complete (or a subset) suite of tests against the various bench configu-
rations to ensure the different physical network chips worked with the
DUV. Instead of creating multiple test benches, the verification team used
randomness to their advantage; they allowed the PNI stimulus compo-
nent to randomly choose a physical network chip to emulate. Based on
this emulation mode, the PNI stimulus component would then configure
internal registers of the network processor so that the two would work
together. Because the total number of physical network protocols was
limited, this was feasible. Using coverage, it was easy to analyze what
physical network configurations were used. Because of the sheer number
of test scenarios that were run, no configurations were missed.

Test Bench Performance

The overall performance of any of the above test scenarios was slow,
especially in the wrap scenarios. To improve overall performance, the
chip verification team used some methods described in Chapter 10. The
verification team removed internal units that did not affect the flow of
the specific test scenarios.

As shown in Figures 15.15 and 15.16, for ingress and egress test sce-
narios, internal components were removed to increase the simulation
performance. The HDL language was VHDL, so the verification team
created different architectures to replace some of the internal units. The
only requirement was that these architectures were to drive all outputs
to an inactive state, and if the unit had to respond on some internal bus,
it would respond with a “no resource available.” These architectures
were then selected via VHDL configurations (consider these as new test
benches).

One could consider that there were four test benches: ingress, egress,
full configuration, and initialization test benches. The ingress test sce-
narios were run with the ingress test bench configuration, the egress test
scenarios with the egress configuration, the wrap tests used the full con-
figuration, and the initialization tests used the initialization test bench.
The ingress and egress test scenarios were run most often. The initial-
ization, control point, and wrap test scenarios were kept to a minimum.
Because the initialization and control point test scenarios were directed,
it only made sense to run these once the logic was changed. The wrap

634 Chapter 15 ■ Case Studies

test scenarios were slow and they were run for completeness, because
the ingress and egress exercised the same function.

Systems Test Bench

The only difference between the system level simulation test bench and
the chip level test bench was that the switch was no longer a verification
component. The real switch chip was now contained in the environment
and with multiple blades attached. The verification team did it this way
primarily to validate the connectivity and interaction of the system with

15.3 Network Processor 635

Processing
complex EmptyIngress

control

Switch
interface

Physical
network
interface

M
em

or
y

■ FIGURE 15.15

Ingress test bench with egress control subsystem “stubbed out.” For performance reasons, tests that
only focused on ingress flow used a test bench where the egress components were not instantiated in
the chip.

Processing
complex

Egress
controlEmpty

Switch
interface

Physical
network
interface

M
em

or
y

■ FIGURE 15.16

Similar to the ingress scenarios, the egress scenarios “stubbed-out” internal components to achieve
better simulation performance.

the real switching fabric, thus validating any assumptions made when
the switch behavioral verification component was created. This was not
done with the physical interface chips because of the sheer number of
chips that could be used within the system. The network processor was
designed to interface to any number of physical interface chips that
support an industry standard protocol. The switch chip is proprietary;
thus, there was only one. Therefore, a system level effort that used the
real switch chip was feasible (Figure 15.17).

Not many things changed in the system environment versus the wrap
scenario environment. The PNI components, as in the wrap environment,
inspected the signature that is part of the packet to determine the desti-
nation port. Then, instead of the expect data being sent to the switch
scoreboard for checking, the expect data were sent to the receivers PNI
scoreboard. Everything else functioned as a normal wrap test.

As before, at the end of every test, the checking components verified
that all the queues were empty. This included the DUV queues as well as
the verification components (scoreboards and stimulus components).
This validated that all the network traffic sent had been received and that
the system was in a clean state.

636 Chapter 15 ■ Case Studies

r
generation component

r
generation component

monitor
monitor

Network
processor

M
em

or
y

PNI
monitor

M
em

or
y

PNI
scoreboard
and checker

PNI stimulus
protocol component

PNI stimulus
generation component

Switch

Frame
formatter

r
generation component

r
generation component

PNI
scoreboard
and checker

PNI stimulus
protocol component

PNI stimulus
generation component

monitor
monitor

PNI
monitor

Network
processor

M
em

or
y

M
em

or
y

■ FIGURE 15.17

System level test bench where a real switch chip was used to route traffic to another network
processor.

Emulation Environment

In addition to a simulation-based environment, the network processor
also had a complex emulation environment as well. The main purpose
was so that some of the boot and mainline software that was written for
the processor was exercised and debugged before receiving fabricated
hardware (hardware/software co-simulation).

The emulation team faced several complexities. First, they had to slow
down all the interfaces to match what the chip could support. Second,
because the emulation team could run so many more packets through
the system than the verification teams could, they could not do any data
reliability checking. This was because the tools available to them for
emulation did not support this (mainly because of data storage prob-
lems). All they could do was check that the number of packets injected
into the chip matched the number received. They had to rely on the sim-
ulation verification teams to ensure no data corruption.

Emulation started just as the chip and system verification teams were
starting. As emulation progressed, and some of the real system software
was being developed and debugged, situations were encountered that
required the software team to interlock with the hardware team to get a
better understanding of the interaction. This allowed the software team
to optimize their code for the system. Also, after receiving the fabricated
hardware, the system bring-up team had the entire system up and oper-
ational running with product level software in about 2 weeks, so the
investment in emulation proved to be worthwhile.

An Escape

During the system bring-up in the lab, there was one bug that proved to
be catastrophic. The bug presented itself in that a particular PNI port
would hang-no packets would be received or transmitted. After weeks of
debugging the problem, the lab bring-up team could reliably cause the
failure. The team found that by plugging and unplugging the network
cable, they could hang the port.

The unit PNI verification and design team was called on to understand
and re-create the problem in simulation (as discussed in Chapter 13).
After many intense weeks in the lab, they found that the problem was
that the PNI unit would get itself into a hang state when the network
interface was configured for Ethernet and the input packet it received
was less than 64 bytes.

The unit team then ran all their tests that were labeled as “short
packet,” that is, tests where some of the packet lengths were less than 64
bytes. The entire test suite passed, hinting that something else was going
on. Because this team did not implement functional coverage, the team
started investigating what could be wrong. The team picked one test that
was supposed to only deal with short packets. On looking at a waveform
of the simulation, they found all packets were exactly 64 bytes.

15.3 Network Processor 637

The team now knew they had a stimulus component error. On looking
at the verification code for these stimulus components, they noticed that
if the constraint for the test was less than 64 bytes, the frame formatter
should be called with a length equal to 64 bytes. The comment in the
code hinted to the fact that the designer had informed a verification engi-
neer that packets less than 64 bytes were illegal. So the verification engi-
neer had decided that because they were illegal, they could never occur.
The engineer did not think of the fact that if a network cable was to be
unplugged, the size could not be guaranteed.

On fixing the stimulus component, many tests now failed, thus re-
creating the hardware bug. The bug was fixed in the HDL, the new
HDL was regressed, and new chips where produced without the bug.

15.3.3 Results
System level simulation may affect functions contained within re-usable
unit verification components. The unit level models had to support
system level functionality. Specifically, they had to support the commu-
nication to various scoreboards based on the test benches being used.
The chip and system verification team could have created separate veri-
fication components, thus adding to the overall cost of chip and system
simulation (in terms of either schedule or resource).

In addition to re-using the verification components from the unit
environments, the chip and system verification team had to manage
various test bench configurations. This was primarily due to performance
reasons. They needed to run more tests, and the full chip configuration
was not allowing enough tests to run. So the team was faced with either
acquiring (purchase, borrow, rent, or lease) more computer hardware
and then finding additional funds for licenses for that hardware or
finding some other mechanism to push the simulation through. They
then looked at the test scenarios that needed to be run the most and
then maximized their performance. They removed unnecessary logic
(by creating alternate VHDL architectures) to achieve better per-
formance. The drawback was that they had to now manage more
configurations.

The verification strategy also used emulation technology. The teams
planned to use emulation to perform hardware/software co-verification.
The emulation strategy was a success: Using emulation to validate the
system software proved to be worth the effort. Once the lab bring-up
team received the fabricated parts, they had the chips mounted on boards
and were performing basic tests in a matter of weeks.

Even with all the re-use and with the validation of the system soft-
ware, all it takes is one false assumption to throw everything into a tail-
spin. The false assumption regarding packet sizes incapacitated the chip
when a network cable was unplugged. This was an expensive lesson that
the whole verification team learned from.

638 Chapter 15 ■ Case Studies

15.4 SUMMARY

In this chapter we presented three studies that illustrated different com-
plexities that verification teams encounter. The first was the usage of ver-
ification levels within the verification teams. Different verification teams
decided what levels were required to validate certain functions.

In the line delete case study, different levels were required to validate
different functions. A unit level verification environment was created to
isolate the individual functions that comprised the line delete function.
A chip level verification environment was used to validate assumptions
that the unit’s teams had in terms of the behavior of the stimulus com-
ponents. The system verification team followed the chip effort to validate
the software that was to use the function.

In the BHT case study, the verification teams decided that the chip and
system levels were not the place to validate the function because they
could not guarantee that the function was actually used. The teams
decided that to correctly validate this function, a unit level environment
was required.

The network processor case study illustrated that the different levels
were used to validate different functions. This team utilized unit, chip,
system, and an emulation environment to validate the required
functions.

Stimulus component robustness was also illustrated in this chapter. In
the line delete and the network processor case studies, the stimulus com-
ponents were not robust enough. In one case, the stimulus component
did not drive the appropriate scenarios. In the other case, the verifica-
tion engineer made an assumption and automatically corrected the con-
straints for the stimulus component, thus not allowing it to drive the
correct scenario. The BHT case study illustrated how the verification
team had to rely on both pre-generation and on-the-fly generation to
ensure they could hit the scenarios efficiently. Had they not chosen to do
a combination of the two approaches, they would not have been able to
drive the proper scenarios to hit the state space. Most of the tests would
not exercise the function.

In addition to the stimulus component robustness, checking compo-
nent robustness can also affect the verification effort. The line delete case
study illustrated how the checker had missed a function. This simple
escape caused a bug to make it to the test floor. The BHT verification
team was required to implement a cycle accurate reference model due
to the function that was being validated. The BHT function was a per-
formance enhancement. The verification team needed to accurately val-
idate that it was performing as intended. Their best approach was to
model DUV with a cycle accurate reference model.

In this chapter we also illustrated how coverage assists the verification
team. The BHT verification team used their coverage results from their

15.4 Summary 639

regression. They analyzed areas of the DUV that were not exercised. This
analysis then yielded new biasing parameters that were applied in the
form of new test cases. After adding these test cases to the regression
suite, they continually analyzed the coverage to ensure these new areas
of function were now being exercised. This process repeated until they
had a high confidence in their coverage.

As discussed in Chapter 10, re-use causes additional requirements on
the verification teams. The network processor verification team desired
a high degree of re-use. They architected a verification environment
where most unit and the chip and system verification test benches relied
on a common verification component-the frame formatter. In addition,
the chip and system teams relied on the units to promote their stimulus,
monitor, and checking components to the chip and system verification
test benches. This drove additional modes and functions into the various
verification components.

In addition to re-use, in Chapter 10 we also discussed how the appli-
cation of different configurations can assist the verification team. The
network processor verification team used multiple configurations to
speed up simulation time. They used the knowledge that the DUV had
some independent flows contained within it, so they carved out units and
replaced them with “null” units that drove inactive signals. This created
a simulation environment that had less activity (less events) and a smaller
memory footprint. These two reductions allowed for a faster simulation.

The last item illustrated in this chapter is how verification teams can
bootstrap a test bench to put the DUV into a state that is easier to vali-
date, as discussed in Chapter 14. The line delete verification team uti-
lized this technique to emulate how the software in the system would use
the hardware. By doing this, they did not need the real software. The
BHT verification team used this technique to put both the DUV and the
checking component (because it was cycle accurate) into a state that had
higher potential to cause corner conditions than if the bootstrapping had
not occurred.

640 Chapter 15 ■ Case Studies

A

ABIST: [Array Built-In Self Test] An automated engine inside of a
chip that sends patterns through an array for testability and for array
initialization. [Chapter 9]

Acceleration: Utilization of a high-speed simulation engine to run large
system models. The simulation engine, or “accelerator”, is a hardware
system made specifically for simulations. Relative to a cycle-based sim-
ulation engine (which runs on a general-purpose computer or work-
station), the accelerator can run 1000s of times faster on a given model
size. [Chapter 10] See also: Cycle Simulation, Emulation

Architectural tests: Verification suites or test cases written with the
intent of proving that the design-under-test conforms to the intended
instruction set or published design specification. These tests can be deter-
ministic, random, or created by a test case generator. The alternative to
architectural tests is microarchitectural tests, which are written with the
intent of verifying a specific implementation of the hardware design,
such as a queue or state machine. [Chapter 2] See also: Architecture,
Microarchitecture

Architecture: Architecture refers to the instruction set and system
level definitions by which the system MUST abide. Architecture covers
all instructions, interrupts, exceptions, cache coherency protocols, IO
operations, error handling and resets within the system. Architecture
does NOT describe how the design is implemented to comply with the
architecture; that is described in the “microarchitecture”. [Chapter 1]

ASIC: [Application-Specific Integrated Circuit] A customized microchip
designed for a specific system application. ASICs follow a well-defined
tools flow for implementation. [Chapter 1]

Assertion: Comment-like statements within the DUV that describe prop-
erties within the DUV. These assertions are used by the verification team
to assist in debug or for formal verification. These assertions formalize

VERIFICATION GLOSSARY

assumptions about conditions inside the design that are supposed to hold
true at all verification levels and at all times. [Chapter 3]

Assertion based Verification: A technique utilizing assertions to
perform verification. [Chapter 3]

Asynchronous: Within verification, asynchronous refers to an interface
between two logical units whose source clocks run off a different oscil-
lator. Asynchronous interfaces are especially challenging to verify
because the signal arrival times from one unit to the other may cross
local cycle boundaries unpredictably. [Chapter 5]

B

Behavioral: [Also called Stimulus Responder] A behavioral is a verifica-
tion component which models a piece of HDL or function that neighbors
the design-under-verification. The behavioral is designed to respond to
stimulus from the DUV, and may drive stimulus back into the DUV.
[Chapter 3]

Biasing: A method to provide intended probability to decisions made by
stimulus components. Biasing allows the verification engineer to adjust
probabilities of specific events without recompiling the verification com-
ponent. [Chapter 7]

Binary Decision Diagram (BDD): A data structure to represent Boolean
functions. BDDs build a compact, tree-like graph providing a basis for
efficient algorithms for the reasoning on Boolean functions. [Chapter 11]

Black box testing: Black Box Testing refers to a verification philosophy
where the drivers and checkers only utilize the external interfaces of the
design-under-verification. True black box testing will base all predictions
(checks) on the stimulus sent in by the drivers and will not look at any
internal latches or signals of the design. [Chapter 2]

Boolean Equivalency Check: Boolean Equivalency Checking is a type
of Formal Verification where a tool is used to mathematically prove that
two different designs are combinatorial equal. Equivalence checking ver-
ifies exhaustively, for all legal input patterns, that a design representa-
tion is still functionally equivalent to the design specification even after
many manual or automated design transformations. [Chapter 11]

Bug: Functional verification’s term for a flaw in the design. The objec-
tive of functional verification is to remove all bugs from the design prior
to chip fabrication. [Chapter 1]

Bug Curve: The rate of bugs found versus time, usually displayed in a
chart, and used for tracking design and verification progress. [Chapter 1]

642 Verification Glossary

C

Checking Component: The portion of the verification environment that
observes the behavior of the DUV and flags deviations from the expected
behavior. Checking components receive direct orders from the test case,
or communicate with the scoreboard and other stimulus components to
calculate the DUV’s expected behaviors. [Chapter 3,8]

Chip Level Verification: One of multiple levels of hierarchical verifica-
tion. Chip level verification creates a verification environment at the
physical boarders of the chip. [Chapter 2]

Clock Domain: A grouping of latches or flip-flops fed from the same
clock tree. Designs may have multiple clock domains. See Clocking.
[Chapter 5]

Clocking: Toggling of the physical clock tree that enables latch function.
Portions of the logic can have clocking enabled or disabled, which, in
turn, turns on or off the functionality. Logic connected to different
clock trees can be either synchronous or asynchronous, depending
on the frequency and the origin of the clock tree generation logic.
[Chapter 5]

Computational Tree Logic (CTL): A form of temporal logic used in
formal verification that supports the specification sequences of system
states over time. CTL formulas operate of a tree graph representing all
unfolded states future of a finite state machine [Chapter 11]

Cone of Influence: Using the graph representation of the logic of a DUV,
the cone of influence of a signal is the complete portion of logic that
drives it, starting from the DUV inputs [Chapter 11]

Constraints: Restrictions on the inputs of the design-under-verification
derived from the set of legal signal values and their inter-relationships.
There is a range of possible values for each input. However, choosing a
particular value for one input may restrict the realm of possible values
for another variable. [Chapter 7]

Constraint Solver: A mechanism to resolve input value restrictions so
that stimulus components send legal inputs as defined by the specifica-
tion. Constraint solvers may be complex, general purpose engines built
into a verification language, or may be application specific code written
for a single interface specification. [Chapter 7]

Corner cases: Unusual design-under-verification input scenarios that fall
outside the mainstream cases. These scenarios may be a combination of
events that align in an unusual manner, or may be edge conditions on a
single event. These scenarios are especially interesting for stimulus gen-
eration because bugs often lurk in corner cases. [Chapter 7]

Verification Glossary 643

Co-simulation: The mechanism of coordinating and running two or
more different simulation technologies together to yield a single simula-
tion run. [Chapter 10]

Coverage: The process of quantifying the amount of verification stimu-
lus performed. There are two major types of coverage, structural and
functional. Coverage is one metric that is used to gauge verification
completeness. See Functional Coverage and Structural Coverage.
[Chapter 3]

Cross Product Coverage: A type of functional coverage whereby the ver-
ification team tracks the relationship of single DUV events with respect
to each other. The motivation behind cross product analysis is the
interest in the occurrence of a group of events in relation to each other.
[Chapter 6]

Cycle Accurate Reference Models: A test bench where the reference
model calculates all expected outputs on a cycle-by-cycle basis. The ref-
erence model re-implements the function of the DUV, and the checking
component compares the outputs of both the DUV and the reference
mode every cycle. [Chapter 8]

Cycle-based Simulation: Logic simulation algorithm that evaluates the
model of a DUV once per clock cycle [Chapter 5]

Cycle Time: The speed in which the clock to the logic toggles once. Func-
tional verification considers this a single cycle. [Chapter 5]

D

Deadlock: A condition where the logic cannot make forward progress
due to conflicting resource constraints. Deadlock conditions usually indi-
cate a flaw in the logic, as the effected parts of the logic are bogged down
or totally blocked. [Chapter 7]

Debug: The process of locating and correcting problems in the DUV or
test bench. [Chapter 8]

Degraded Mode testing: Verification of conditions where a system
must bypass a portion of failing logic and still maintain operations.
[Chapter 9]

Design Automation Tools: Software that assists the engineer (and
verification engineer) in designing the product. Design automation
tools provide productivity enhancements to verification, timing, test-
ability, physical design, and most other electronic design disciplines.
[Chapter 1]

Design Intent: The anticipated behavior of the design. Typically, this is
described in the design specification. This is different from the HDL,

644 Verification Glossary

which describes the implementation. Verification ensures that the imple-
mentation matches the intent. [Chapter 1]

Designer Level Verification: The earliest level of hierarchical verifica-
tion, where the DUV is a single portion of HDL. This may be simply a
“smoke test” type of environment. The engineer may use this level
to “certify” the HDL for the next levels of the verification hierarchy.
This level of verification ensures that the basic functions are correct.
[Chapter 2]

Deterministic test cases: A highly constrained test case that targets a
specific scenario in the DUV. Verification teams use deterministic test
cases predominantly early in the verification cycle to prove basic DUV
functionality. [Chapter 3]

Design-under-Verification (DUV): The HDL targeted by the verification
environment. The DUV can be any portion of the logic design, from a
single HDL file up to the entire system. The verification environment
surrounds the DUV in order to find bugs in it. [Chapter 1]

Driver: Another name for stimulus component within the verification
environment. A driver “drives” inputs into the DUV. [Chapter 2]

E

Electronic Design Automation (EDA): The software and hardware tool
industry surrounding chip design and manufacturing. EDA tools provide
productivity and efficiency gains to engineers and electronics developers.
[Chapter 1]

Element Level Verification: A middle level of the verification hierarchy
where the verification effort focuses on a functional component, such as
a processor core, storage, or IO component. [Chapter 2]

Emulator: Special-purpose hardware device that allows such a fast sim-
ulation of a DUV that it can replace the DUV in the target system as an
early prototype (also in-circuit emulator). [Chapter 10]

End-of-test-case checking: Checking performed at the completion of
the simulation test, either within the simulation or in a separate program
or script. [Chapter 8]

Error Checkers: (hardware error checkers): Logic within the design
that activates when it detects specific illegal conditions. This logic in-
cludes monitor signals to read parity signals or detect if a soft or hard
error has flipped a bit. Other error checker logic monitors the functional
logic for illegal conditions in the state machines or invalid command
values. [Chapter 9]

Verification Glossary 645

Error Injection: A verification activity that tests that internal error
checkers work properly. Under error injection, the verification engineer
flips bit values in the design and observes the logics behavior surround-
ing the injection. [Chapter 9]

Escape: Escapes refer to problems that verification engineers did not
detect and thus are found in the fabricated hardware. These logic bugs
“escaped” detection on all levels of verification, from designer simulation
through system simulation. [Chapter 1]

Escape Classification: A formal schema with a set of attributes used to
characterize problems found in the fabricated hardware (escapes).
[Chapter 13]

Event Simulation: A simulation algorithm that evaluates the model of
a DUV as a series of events over time. Event-based simulation engines
maintain a queue of events over model time. As the engine processes
events from the queue, resulting changes to the model create new events.
The event-driven engine evaluates only those portions of a model where
changes occur during event processing. [Chapter 5]

F

Fencing: Gating off interface signals to a portion of logic. Fencing is used
during recovery or reset operations to prevent propagation of uninten-
tional signal values. [Chapter 9]

Formal Checkers: The portion of the formal verification environment
that encodes the properties of the DUV, which represent the specification
of the design. The properties are the proof target for formal verification.
[Chapter 11]

Formal Verification: A segment of the field of functional verification that
relies on mathematical methods to prove the correctness of a DUV
exhaustively against its specification. [Chapter 11]

Formal Proof Engine: A software program that implements a specific
algorithm used in a formal verification tool. In the process to prove func-
tional correctness of a DUV, formal verification tools typically employ a
set of different proof engines each optimized for different design and
property types. [Chapter 11]

Functional Coverage: A type of coverage that focuses on the semantics
of the stimulus (test scenario) or the design implementation. The envi-
ronment gathers this coverage across all the test scenarios to determine
whether the verification environment has exercised all the identified cov-
erage items. See Coverage. [Chapter 3]

646 Verification Glossary

Functional Verification: The job of ensuring that the logical design of
a chip or system performs the intended task. Functional verification
engineers make sure that the logic design obeys the functional specifi-
cation. [Chapter 1]

Functional Specification: The functional specification describes the
desired product. It contains the specification of the interfaces with which
it communicates, the function that it must perform, and the conditions
that affect the design. [Chapter 1]

G

Gate Level Model: A model of the DUV, which is exclusively structural
that only uses instances of a fixed set of elementary Boolean function
library blocks. [Chapter 5]

Golden Vector: An environment where some knowledge base of valid
output vectors is known prior to running a simulation. At the beginning
of the simulation run, the knowledge is loaded into the scoreboard and
the checking component compares the DUV results to this knowledge
base by calling the scoreboard and requesting the expected vectors, either
on every cycle or every transaction. [Chapter 8]

Grey Box Verification: A combination of both black box and white box
verification styles. Some verification components monitor internal
signals that assist in validating the black box level functional specifica-
tion, which utilizes only the external interfaces as defined by the speci-
fication. [Chapter 3]

H

Hangs: Cases where the logic design does not complete an operation.
A hang may be caused by a deadlock or livelock condition, or an error
in the design which causes it to inadvertently drop a command or
operation. [Chapter 7]

Hard error: A condition in the hardware where a circuit or wire
is broken, causing the hardware to persistently give bad results.
[Chapter 9]

Hardware-Software Co-verification: An environment intended to
analyze the entire system, bringing together hardware and firmware for
the first time in a single verification environment. [Chapter 10]

HDL (Hardware Description Language): Formalized, computer-
readable language for the specification of hardware design. [Chapter 5]

Verification Glossary 647

Hierarchical Design and Verification: The practice of breaking down
the design and verification tasks into smaller, more manageable pieces,
then building the pieces back together at multiple intervals until the
entire system comes together. Hierarchical design and verification not
only makes the two jobs manageable, but also enables re-usable design
and verification. [Chapter 2]

HLM (High Level Model): Abstract, implementation independent spec-
ification of a hardware design. A high-level model contains a functional
specification of a DUV and additionally can cover specifications of phys-
ical DUV properties like area, timing and electrical power consumption.
[Chapter 14]

HLD (High Level Design): Early chip or system design phase. All
requirements for the DUV that are relevant for a high-level model are
finalized during HLD. [Chapter 1]

HVL (High-Level Verification Language): Domain-specific computer
language targeted to support the authoring of simulation environments
consisting of stimulus, checking and monitor components. [Chapter 6]

I

Initiator: A type of stimulus component used to drive new commands
into the design under verification. [Chapter 3]

Interface Monitor: A verification component that observes the inputs or
outputs of the design under verification. An interface monitor may flag
protocol and simple errors, or may place observed commands and data
into the scoreboard for future checking. [Chapter 3]

Irritators: A class of stimulus components used to drive miscellaneous
signals into the design under verification. [Chapter 3]

Issue: An item that needs to be investigated and resolved. It can be a
situation where the specification is unclear or ambiguous on a technical
matter, an error that must be fixed, or scenarios and functions that must
be tested. An issue is anything that needs to be tracked during the chip
development cycle. [Chapter 13]

J

K

Knowledge-based test case generation: A software program that
creates test cases for a specific type of design. The software has complete

648 Verification Glossary

understanding of the design’s architecture (the knowledge base) which it
uses to create functionally correct test cases. [Chapter 3]

L

LBIST: [Logic Built-In Self Test] An automated engine inside of a chip that
sends patterns through the circuits for at-speed testability. [Chapter 9]

Livelock: A condition in a chip or system when processing appears to
move forward, but irresolvable contention for a shared resource con-
tinually causes processing to retry or loop back to an earlier state.

Liveness properties: A desirable property of a DUV, expressed in tempo-
ral logic that will occur eventually at some future time. There is no bound
on the timeframe until which the property will hold. [Chapter 11]

M

Mainline function: Normal chip or system operations. All other chip or
system functions are pervasive. [Chapter 9]

Microarchitecture: The internal structures of the design that implement
the specification [Chapter 1]

Miscompare: A condition when a value in the design under verification
does not match the value predicted by the test case or by the verification
environment. [Chapter 2]

Model Build: Part of the HDL translation that turns a computer-
readable specification of a DUV into a simulation model executable by a
simulation engine. [Chapter 5]

Model Checking: A method of formal verification that verifies algorith-
mically that a model of a DUV satisfies the formal specification of prop-
erties. At the core of a model checker is usually a FSM model of the DUV.
[Chapter 12]

Monitor Component: A verification component that observes the inputs,
outputs, or internals of the design under verification. A monitor may flag
protocol and simple errors, or may place observed commands and data
into the scoreboard for future checking. [Chapter 3]

N

Netlist: A design representation that is the input to the manufacturing
process of the VLSI chip. It provides specific information about the chip;

Verification Glossary 649

including gates, placement and wiring data. Netlists may be at the
transistor-level, switch-level, or gate-level. [Chapter 3]

O

Observation Point: Sites used by monitor and checking components to
verify the DUV’s behavior. These observation points may be on external
outputs (black box), internal signals (white box), or both (grey box).
[Chapter 3]

On-the-fly: A style of test case where the verification environment gener-
ates stimulus or calculates expected results on a cycle-by-cycle basis while
the simulation engine runs against the design under test. On-the-fly test
cases use input constraint directives to create stimulus and make decisions.

Open Verification Library (OVL): Standardized, vendor-independent,
openly accessible library of assertion monitors implemented in Verilog
and VHDL. [Chapter 12]

P

Package: 1. A self-contained structure for the verification components
including all design and verification components and documentation
that the verification team requires to bring the verification component
into production seamlessly. The “complete package” encapsulates the
re-usable components (stimulus, monitor, scoreboard, and checker) into
one package that behaves differently based on constraints. The “inde-
pendent component package” has each verification component packaged
separately. [Chapter 10] 2. A card or board design which connects
attached chips together. [Chapter 2]

Parameters: A set of biasing controls used with pseudo-random number
generation to control the directing of stimulus components. [Chapter 6]

Pervasive function: Operations beyond the normal chip or system
operations. Pervasive functions include the resetting of the hardware,
Built-in Self Test (automated, hardware driven diagnostics), recovery
scenarios, chip level testability, low power modes, and all hardware
debug mechanisms. [Chapter 9]

Physical Design: The actual latch, wiring, and circuit layout of a chip.
Also, refers to the act of creating a chip circuit layout, using EDA tools
for placement, wiring, and chip integration. [Chapter 1]

Power-on-reset: The method for returning the chip or system logic to a
known-good state after initially applying power to the hardware.
[Chapter 9]

650 Verification Glossary

Pre-generated test cases: Test cases where the input stimulus and
output checking exist prior to running the simulation job. [Chapter 7]

Properties: Specification of assertions, static or temporal, that the
implementation of DUV has to honor. [Chapter 11]

Property checking: Verification that a DUV fulfills its specification,
which is formalized with properties. Static property checking uses formal
verification technology to prove the compliance of a DUV implementa-
tion with its property specification [Chapter 11]

PSL: Industry standard property specification language; computer-
readable domain-specific language for the specification of functional
properties of DUVs. [Chapter 12]

Q

Quiesce: Ceasing the initiation of new commands or operations. Under
verification, quiesce inhibits the on-the-fly stimulus components from
sending in new stimulus. [Chapter 7]

Quiesce Cycle: A pre-determined cycle where the on-the-fly stimulus
components stop sending new commands or operations. [Chapter 7]

R

Random Driver: A constraint driven, on-the-fly stimulus component that
uses biasing parameters and a pseudo-random number generator to
derive legal operations to initiate to the design under verification.
[Chapter 7]

Recovery: A series of actions that puts the logic into a working func-
tional state after detecting an error in hardware operations. [Chapter 9]

Reference Model: A model implemented by the verification team to
make predictions of the test case results based on the test case inputs.
It crosschecks the behavior against the design intent. See also: Cycle
Accurate Reference Model. [Chapter 1]

Regression: A set of test cases run at a predetermined rate (nightly,
weekly, release to manufacturing time, etc.) to verify that HDL changes
(fixes or new functions) have not broken any existing function that has
previously been verified. As a new function is verified on a DUV, the test
cases used to verify it are added to a “regression bucket.” [Chapter 13]

Reset: Putting logic into a known-good state. May apply to an entire
chip or system, as in Power-on-reset, or to a portion of the logic after
recovery. [Chapter 9]

Verification Glossary 651

Re-use: A technique to leverage verification components across the ver-
ification hierarchy. The concept of “create once, use in many places”
results in reduced workload and schedule. [Chapter 10]

Re-usable IP: The process of enabling intellectual property (IP), either
verification components or design blocks, from another group or vendor
in a verification environment. The re-use of this IP has unique issues
regarding verification and debug. [Chapter 10]

RTL (Register Transfer Level): An RTL model specifies a DUV in
terms of state-holding dataflow elements (registers and storage
arrays) and the action that update the DUV state between clock cycles.
[Chapter 5]

S

Safety properties: A desirable property of a DUV, expressed in tempo-
ral logic that will always hold true. The model time during which a safety
property holds is unlimited. However, safety properties are useful even
if the verification only cover limited model time because any violation of
a safety property is a bug in the DUV. [Chapter 11]

Scanning: Reading or writing the latches in a chip by shifting values
throughout by toggling alternative clocks that gate the inputs to the
latches. Used for initializing chips under reset, debugging chips, and for
testability. [Chapter 9]

Scan Ring: A loop of latches that may be read or written by shifting
values by toggling alternative clocks that gate the inputs to the latches.
[Chapter 9]

Scoreboard: A temporary holding location for information that the
checker will use to perform its function. It can receive its information in
various ways: an input monitor component, a stimulus component, or
loaded at the beginning of a simulation in a golden vectors environment.
[Chapter 3]

Seed: A value used to initialize a pseudo-random number generator that
stimulus components use to make input value decisions. Using the same
seed allows the verification engineer to re-create “random” test cases.
[Chapter 7]

Semi-Formal Verification: Any verification method that ensures con-
sistency of a DUV with the specification for all possible inputs. Semi-
Formal verification tools are those that bridge the gap between
simulation and formal verification. [Chapter 12]

Service Element: A code-driven engine that supports bring-up and
maintenance of robust systems. [Chapter 9]

652 Verification Glossary

Simulation: The portion of functional verification where a simulation
engine is used. [Chapter 5]

Simulation Engine: A software program that implements a simulation
algorithm (like event-driven or cycle-based simulation) and evaluates the
HDL specification of a DUV over time. [Chapter 5]

Specification: A document that defines the expected performance
(function, behavior, and outputs) for the chip based on inputs. This
document should define valid inputs and valid applications for the
chip. The verification team verifies the chip against this document.
[Chapter 1]

SOC (System-on-a-Chip): An embedded system that is self-contained
within one chip, potentially including an embedded processor, memory,
Ethernet PHY, USB port, and other application specific logic. [Chapter
10]

Soft Error: A condition in the hardware where a latch or array value
is compromised causing the hardware to give bad results on a single
instance (temporarily). [Chapter 9]

State Space: The set of all reachable states of a finite state machine spec-
ification of a DUV. [Chapter 11]

State Space Traversal: The algorithmic exploration of the reachable
state space of the finite state machine specification of a DUV. [Chapter
11]

Stick: Changing the value of a data object in the design under verifica-
tion in a simulation environment. Sticking a data object to a value will
cause it to hold that value until it is stuck to a different value or unstuck.
[Chapter 6]

Stimulus Component: A portion of the verification environment that
drives inputs or manipulates values inside the design under verification.
Also called drivers, behaviorals, irritators, responders. [Chapter 3]

Structural Coverage: A type of coverage that focuses on the represen-
tation of the implemented design. This type of coverage is always derived
from the composition of the design HDL. A tool gathers the metrics
versus a verification engineer having to specify it as in functional cover-
age. Different sub-types exist for structural coverage. The most popular
types are: toggle, statement or line, branch or conditional, and path. See
Coverage. [Chapter 3]

Synchronous: Within verification, synchronous refers to an interface
between two logical units whose source clocks run off the same
oscillator. [Chapter 5]

Verification Glossary 653

System Level Verification: A late level in the verification hierarchy
where the verification team focuses on the entire system, including all
previously verified components of the design. [Chapter 2]

Systems Test: The part of the verification process where the engineer-
ing team brings-up, evaluates, and runs applications on the fabricated
hardware. [Chapter 1]

T

Tape-Out: A reference to an archaic process when the design team stored
the chip’s physical design information onto magnetic tape, and sent it to
the fabrication facility. [Chapter 1]

Tape-Out Criteria: A checklist of physical and logical items that the
design team must complete prior to releasing a chip to the fabrication
facility. [Chapter 1]

Temporal Checks: Verification of temporal properties of a DUV.
[Chapter 11]

Test and Testability: Manufacturing test checks whether a physical chip
functions according to its gate-level specification. Manufacturing test
patterns are sets of stimuli designed to expose manufacturing defects in
a chip based on a specific metric (stuck-at fault testing). Testability is a
measure of how complete the set of test patterns is to expose all possible
stuck-at faults. [Chapter 6, Chapter 9]

Test Case: A single verification job using a simulation engine. Test
cases vary widely in stimulus and checking approaches and methods.
[Chapter 2]

Test case generator: A method for creating multiple verification jobs
utilizing a software engine that contains knowledge about the targeted
design under verification. [Chapter 2]

Testcase Harvesting: Collection of test cases for regression purposes in
a way that tests with higher coverage are preferred, thus minimizing the
number of tests contained in the regression suite. [Chapter 13]

Test Matrix: A list of all the test scenarios that will serve to verify the
design. The verification team lists the basic required tests first in the
verification plan, and then builds upon it throughout the verification
process. The plan groups tests with similar features to form test scenar-
ios, whose descriptions designate the targeted function. Last on the
matrix is a cross reference to the functional requirements and coverage
goals. [Chapter 4]

654 Verification Glossary

Testbench: Set of programs that implement components of a verifica-
tion environment (stimulus, checking, monitor components) of written
in HDLs or high-level verification languages [Chapter 6]

Theorem Proving: Sub-discipline of formal verification with the purpose
to prove mathematical theorems with the help of computer algorithms.
[Chapter 11]

Trace: An output from a simulation engine that shows the behavior
within the design. Trace behavior can be used to determine unwanted
behavior within a design or verification environment. Also known as a
wave form. [Chapter 5]

Trace-back (wave viewer capability): Method for looking at the cone
of logic feeding a portion of a design. [Chapter 5]

Transaction: An abstracted view of the inputs and outputs to a DUV.
Instead of viewing the inputs and outputs as bits, the verification engi-
neer defines a transaction that is a grouping of bits over time. Examples
of transactions would be PCI bus transactions (read, write, burst read,
burst write, etc) or Ethernet packets. [Chapter 3]

Transaction Based checking: An environment used for verifying a DUV
that has identifiable transactions. The environment acts upon commands
and data and forwards them to appropriate output signal checkers,
enabling a structured environment based on the transaction nature of
the DUV. This type of environment uses a scoreboard to track commands
and data driven on the inputs of the DUV. [Chapter 3]

U

Unit Level Verification: An early level in the verification hierarchy where
the verification team focuses on a small portion of logical function. Unit
level verification usually brings together a few designers’ pieces of logic.
[Chapter 2]

V

Vacuity: Trivial satisfaction of a formal property typically caused by an
error in the specification of a property. For example, the specification
that every request is eventually followed by a grant is true even if the
system, for example the stimulus component, never generates request.
[Chapter 12]

Verilog: Industry standard hardware description language. [Chapter 5]

Verification Glossary 655

Verification Engineer: A professional engineer whose role is to uncover
problems in the logical design of chips and systems prior to hardware
fabrication. [Chapter 1]

Verification Environment: Test cases and software code components
surrounding the design under verification. The verification environment,
written by verification engineers, is the supporting infrastructure that
drives stimulus and checks outputs. [Chapter 2]

Verification Plan: A plan that defines both the functions that the verifi-
cation team must attack and how they will do their work. It is a living
document owned by the entire design team, and enhanced throughout
the verification cycle. It covers the verification levels, required tools, risks
and dependencies, functions to be verified, specific tests and methods,
coverage requirements, test case matrix, resource requirements, and
schedule details. [Chapter 4]

VHDL: Industry standard hardware description language. [Chapter 5]

W

Waveform: Graphical representation of the value of one or more signals
of a DUV over time. [Chapter 5]

White Box Verification: An environment that has a full insight into
the implementation (internal structures) of the DUV. The checking is
typically done by observing internal signals. This environment will flag
a bug at its source. It is tightly integrated with implementation, so high
maintenance levels are required. [Chapter 3]

Window conditions: Obscure cases within the logic design that occur
when multiple microarchitectural edge conditions align within a short
number of cycles. Window conditions often occur when multiple corner
cases align. These scenarios are especially interesting for stimulus
generation because bugs often lurk in window conditions. [Chapter 7]

X

Y

Z

656 Verification Glossary

[1] H. Foster, A. Krolnik, D. Lacey. Assertion-Based Design, 2nd ed. Kluwer
Academic Publishers, New York, NY.

[2] M. Kantrowitz, L. Noack. 1996. “I’m Done Simulating; Now What?: Verifica-
tion Correctness Checking of the DECchip 21164 Alpha microprocessor.” Proc.
Design Automation Conference, pp. 325–330.

[3] S. Taylor, et al. 1998. “Functional Verification of a Multi-Issue Out-of-Order,
Superscalar Alpha Processor-the DEC Alpha 21264 microprocessor.” Proc.
Design Automation Conference, pp. 638–643.

[4] Accellera home page, http://www.accellera.org.

[5] Accellera OVL Technical Committee, Open Verification Library, http://www.
eda.org/ovl.

[6] P.J. Ashenden, 2002. The Designer’s Guide to VHDL, 2nd ed. Morgan Kaufman,
San Francisco, CA.

[7] D.E. Thomas, P.R. Moorby, 2002. The Verilog Hardware Description Language,
Kluwer Academic Publishers, New York, NY.

[8] IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076–2002).

[9] IEEE Standard Description Language Based on the Verilog™ Hardware
Description Language (IEEE Std. 1364–2001).

[10] H. Foster, A. Krolnik, D. Lacey, 2004. Assertion-Based Design, 2nd ed. Kluwer
Academic Publishers, New York, NY.

[11] J. Bergeron, 2003. Writing Testbenches: Functional Verification of HDL Models,
2nd ed. Kluwer Academic Publishers, New York, NY.

[12] Property Specification Language Reference Manual. Accellera, http://www.eda.
org/vfv/docs/PSL-v1.1.pdf.

[13] SystemVerilog home page, http://www.systemverilog.org.

[14] Standard Performance Evaluation Corporation home page, http://www.
spec.org/.

[15] John Darringer et al. 2000. “EDA in IBM: Past, Present, and Future”, IEEE
Transaction on Computer Aided Design of Integrated Circuits and Systems,
19(12).

[16] C. Schepens, 2004. “Unified co-verification breaks HW/SW bottlenecks”,
EEDesign, http://www.eedesign.com/article/showArticle.jhtml?articleId=
17601270.

REFERENCES

[17] Z. Barzilai, I. L. Carter, B.K. Rosen, J.D. Rutledge, 1987. “HSS: A High-Speed
Simulator,” IEEE Transaction on Computer Aided Design of Integrated Circuits
and Systems, 6(4), pp. 601–616.

[18] P. Maurer, Z.C. Wang, 1989. “LECSIM: A Levelize Event Driven Compiled Logic
Simulator,” Technical Report Number DA-20, Baylor University, Waco, TX.

[19] P. Maurer, J.S. Lee, 1995. “MDCSIM: A Compiled Event-Driven Multi-Delay
Simulator,” Technical Report Number DA-30, Baylor University, Waco, TX.

[20] Advanced Processor Technologies Group home page, http://www.cs.man.ac.uk/
apt/tools/gtkwave/.

[21] VHDL-200x, IEEE, http://www.eda.org/vhdl-200x/.

[22] J. Bergeron, 2003. Writing Testbenches: Functional Verification of HDL Models,
2nd ed. Kluwer Academic Publishers, New York, NY.

[23] P.J. Ashenden, 2002. The Designer’s Guide to VHDL, 2nd ed. Morgan Kaufman,
San Francisco, CA.

[24] VHDL Random Number Generation Package, http://www.eda.org/rassp/vhdl/
models/math/rng2.txt.

[25] Object-Oriented VHDL Study Group, http://www.eda.org/oovhdl/.

[26] SystemVerilog home page, http://www.systemverilog.org.

[27] IEEE Standard Description Language Based on the Verilog™ Hardware
Description Language (IEEE Std. 1364–2001).

[28] ModelSim VHDL Foreign Language Interface, http://www.model.com.

[29] IEEE DASC VHDL PLI Task Force, http://www.eda.org/vhdlpli.

[30] OpenVera home page, http://www.open-vera.com.

[31] A.V. Aho, R. Sethi, J.D. Ullman, 1987. Compilers. Addison Wesley, Boston, MA.

[32] F. Imdad-Hague, 2001. “The Art of Verification with Vera,” Verification Central.

[33] Verisity home page, http://www.verisity.com.

[34] IEEE, P1647, http://www.ieee1647.org/.

[35] Y. Hollander, M. Morley, A. Noy, 2001. “The e Language: A Fresh Separation
of Concerns,” Technology of Object-Oriented Languages and Systems, Zurich,
Switzerland, pp. 41–50.

[36] S. Palnitkar, 2003. Design Verification with e. Prentice Hall, Upper Saddle River,
NJ.

[37] SystemC home page, http://www.systemc.org.

[38] Test Builder home page, http://www.testbuilder.net.

[39] The Perl Scripting Language, http://www.perl.org.

[40] The TCL Scripting Language, http://tcl.sourceforge.net/.

[41] The Python Scripting Language, http://www.python.org.

[42] B. Wile, “Designer-level verification using TIMEDIAG/GENRAND”, IBM
Journal of Research and Development, 41(4/5), p. 581.

[43] Aldec home page, http://www.aldec.com.

[44] TransEDA home page, http://www.transeda.com.

[45] M. Kantrowitz, L. Noack, 1996: “I’m done simulating; Now what?”, Proceed-
ings 33rd Design Automation Conference.

658 References

[46] D. Dill, S. Tasiran, “Simulation Meets Formal Verification”, embedded
Tutorial at ICCAD 99, http://chicory.stanford.edu/talks.html.

[47] J.M. Galey, R.E. Norby, J.P. Roth, 1961. “Techniques for the diagnosis of
switching circuit failures,” Foundations of Computer Science, pp. 152–160.

[48] R. Grinwald, E. Harel, M. Orgad, S. Ur, A. Ziv, 1998. “User Defined Coverage:
A Tool Supported Methodology for Design Verification”, Design Automation
Conference, pp. 158–163.

[49] Property Specification Language Reference Manual. Accellera, http://www.
eda.org/vfv/docs/PSL-v1.1.pdf.

[50] O. Lachish, E. Marcus, S. Ur, A. Ziv, 2002. “Hole Analysis for Functional
Coverage Data,” Design Automation Conference, pp. 807–812.

[51] A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B. Rosen, M. Mullen,
J. Yoon, R. Armoni, D. Geist, Y. Wolfsthal, 1995. “AVPGEN-A Test Generator
for Architecture Verification,” IEEE Trans. Very Large Scale Integration (VLSI)
Syst. 3, No. 2, pp. 188–200.

[52] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. Metzger, M.
Molcho, G. Shurek, 1995. “Test Program Generation for Functional Verification
of PowerPC Processors in IBM,” Proceedings of the 32nd ACM/IEEE Conference
on Design Automation Conference, San Francisco, CA, pp. 279–285.

[53] Eyal Bin, Roy Emek, Gil Shurek, Avi Ziv, 2002. “Using a constraint satisfaction
formulation and solution techniques for random test program generation,”
IBM Systems Journal, 41(3).

[54] E. Fujiwara, M. Hamada, “Single b-Bit Byte Error Correcting and Double Bit
Error Detecting Codes for High Speed Memory Systems,” Proceedings of the
1992 IEEE International Symposium on Information Theory, pp. 494 ff.

[55] John Darringer et al., “EDA in IBM: Past, Present and Future,” IEEE Transac-
tions on Computer Aided Design of Integrated Circuits and Systems, Vol. 19, No.
12, Dec. 2000, pp. 1476–1496.

[56] Juergen Haufe, Peter Schwarz, Thomas Berndt, Jens Grosse, “Accelerated
Simulation Using Protoype Boards,” Design, Automation and Test in Europe,
Paris, 1998, pp. 183–189.

[57] Edger W. Dijkstra, “Notes on Structured Programming,” 1970, http://www.
cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[58] C. Kern, M. Greenstreet, “Formal Verification in Hardware Design: A Survey.”
ACM Transactions on Design Automation of Electronic Systems, Vol. 4, April
1999, pp. 123–193.

[59] Rolf Drechsler (Ed.), “Advanced Formal Verification,” Kluwer 2004.

[60] Hans Eveking, “Verifikation digitaler Systeme,” Teubner 1991 (in German).

[61] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, “Introduction to
Automata Theory, Languages and Computability,” 2nd edition. Pearson
Addison Wesley 2000.

[62] K. L. McMillan, “Symbolic Model Checking: an Approach to the State Explo-
sion Problem,” CMU Tech. Rpt. CMU-CS-92–131.

[63] D. Russinoff, “A Mechanically Checked Proof of IEEE Compliance of the
Floating-Point Multiplication, Division, and Square Root Algorithms of the

References 659

AMD-K7* Processor,” London Mathematical Society Journal of Computation
and Mathematics, 1, December 1998, pp. 148–200.

[64] http://www.cs.utexas.edu/users/moore/acl2.

[65] http://www.cl.cam.ac.uk/Research/HVG/HOL.

[66] http://pvs.csl.sri.com.

[67] A. Kuehlmann, A. Srinivasan, D. P. LaPotin, “Verity-A Formal Verification
Program for Custom CMOS Circuits,” IBM Journal of Research and Develop-
ment, Vol. 39, No. 1/2, January/March 1995, pp. 149–165.

[68] Wolfgang Kunz, Dominik Stoffel, “Reasoning in Boolean Networks,” Kluwer
Academic Publishers, 1995.

[69] Randall Bryant, “Graph-based Algorithms for Boolean Function Manipula-
tion,” IEEE Transactions on Computers, Vol. C-35, No. 8, pp. 677–691.

[70] M. Davis, G. Logemann, D. Loveland, “A Machine Program for Theorem
Proving,” Communications of the ACM, Vol. 5, No. 7, pp. 394–397, 1962.

[71] A. Kuehlmann, M. Ganai, V. Paruthi, “Circuit-based Boolean Reasoning,” Pro-
ceedings of the 38th Design Automation Conference, pp. 232–237.

[72] A. Briere, W. Kunz, “SAT and ATPG: Boolean Engines for Formal Hardware
Verification,” Proceedings of the 2002 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD 2002), pp. 782–785.

[73] http://www.satlive.org.

[74] J. Silva, K. Sakallah, “GRASP-A New Search Algorithm for Satisfiability,”
Proceedings of the International Conference on Computer Aided Design (ICCAD),
pp. 220–227, 1996.

[75] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” Proceedings of 38th Design Automation Conference,
pp. 530–535, 2001.

[76] E. Goldberg, Y. Novikov, “BerkMin: A Fast and Robust SAT-Solver,” Pro-
ceedings of the Design Automation and Test in Europe Conference, 2002,
pp. 142–149.

[77] C. L. Berman, L. H. Trevillyan,”Functional Comparisons of Logic Designs for
VLSI Circuits,” Digest of Technical Papers of IEEE Intl. Conference on Computer-
Aided Design, IEEE, Nov. 1989, pp. 456–459.

[78] http://www.synopsys.com/products/verification/formality_ds.html.

[79] http://www.cadence.com/products/digital_ic/conformal/index.aspx.

[80] http://mentor.com/products/fv/formal_verification/formal_pro/index.cfm.

[81] http://www.accellera.com.

[82] http://www.pslsugar.org.

[83] Christian Jacobi, Kai Weber, Viresh Paruthi, Jason Baumgartner, “Automatic
Formal Verification of Fused-Multiply-Add Floating Point Units,” Proceedings
DATE 05 Conference 2005.

[84] Hana Chockler, Orna Kupferman, Moshe Y. Vardi, “Coverage Metrics for
Formal Verification,” CHARME 2003, pp. 111–125.

[85] K. L. McMillan, “Lecture Notes for NATO Summer School on Verification of
Digital and Hybrid Systems,” http://www.cad.eecs.berkeley.edu/~kenmcmil/
tutorial/toc.html

660 References

[86] http://www.systemverilog.org.

[87] http://www.accellera.org/ovl.

[88] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, M. Yoeli, “Methodology and
System for Practical Formal Verification of Reactive Hardware,” Lecture Notes
in Computer Science, Vol. 818, pp. 182–193, 1994.

[89] http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

[90] J. Friedl, “ Mastering Regular Expresssions,” 2nd edition. O’Reilly, 2002.

[91] http://www.pslsugar.org.

[92] B. Cohen, S. Venkataraman, A. Kumari, “ Using PSL/Sugar for Formal and
Dynamic Verification,” 2nd edition. VhdlCohen Publishing, 2004.

[93] H. Foster, A. Krolnik, D. Lacey, D. Lacey, “Assertion-Based Design,” 2nd edition.
Kluwer, 2004.

[94] Y. Aberbanel, I. Beer, L. Gluhovsky, S. Keidar, Y. Wolfsthal, “FoCs—Automatic
Generation of Simulation Checkers from Formal Specifications,” CAV, 2000,
pp. 538–532.

[95] O. Coudert, C. Berthet, J. Madre, “Verification of Synchronous Sequential
Machines Based on Symbolic Execution,” Automatic Verification Methods for
Finite State Systems, International Workshop, Vol. 407, Lecture Notes in Com-
puter Science, Springer, 1989.

[96] http://www.alphaworks.ibm.com/tech/FoCs.

[97] H. Touati, H. Savoj, B. Lin, R. Brayton, A. Sangiovanni-Vincentelli, “Implicit
State Enumeration of Finite State Machines Using BDDs,” ICCAD, Proceedings
of the International Conference on Computer Aided Design, November 1990,
pp. 130–133.

[98] J. Burch, E. Clarke, D. Long, K. MacMillan, D. Dill, “Symbolic Model Check-
ing for Sequential Circuit Verification,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No. 4, pp. 401–424, 1994.

[99] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, “Symbolic Model Checking Without
BDDs,” Proceedings of the Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS, Springer, 1999.

[100] S. Skiena, “The Algorithm Design Manual,” Springer-Verlag, New York, 1997.

[101] S. Fine, S. Ur, A. Ziv, “Probabilistic Regression Suites for Functional Verifica-
tion,” Proceedings IEEE 41st Design Automation Conference, San Diego, 2004.

[102] http://www.platform.com.

[103] http://www.globus.org.

[104] http://www.cmcrossroads.com.

[105] M. Bartley, D. Galpin, T. Blackmore, “A Comparison of Three Verification Tech-
niques: Directed Testing, Pseudo-Random Testing and Property Checking,”
Proceedings IEEE 39th Design Automation Conference, New Orleans, 2002.

[106] B. Bentley, “Validating the Intel Pentium 4 Microprocessor,” Proceedings IEEE
38th Design Automation Conference, Las Vegas, 2001.

[107] S. S. Mukherjee, S. V. Adve, T. Austin, J. Emer, P. S. Magnusson, “Performance
Simulation Tools,” IEEE Computer, Vol. 35, No. 2, pp. 38–39, 2002.

[108] http://www.systemverilog.org

References 661

[109] A. Habibi, S. Tahar, “A Survey on System-On-a-Chip Design Languages,”
Proceedings of the 3rd IEEE Intl. Workshop on System-on-Chip for Real-Time
Applications.

[110] http://www.specc.org

[111] http://www.celoxica.org

[112] http://www.bluespec.com

[113] http://verify.stanford.edu/dill/murphi.html

[114] http://www.systemc.org

[115] J. Schoen, “Performance and Fault Modeling with VHDL,” Prentice Hall,
1992.

[116] D. Gajski, “Specification and Design of Embedded Systems,” Prentice Hall,
1994.

[117] T. Grotker, S. Liao, G. Martin, S. Swan “System Design with SystemC,” Kluwer
Academic Publishers, 2002.

[118] http://www.openvera.org

[119] http://www.verisity.com

[120] S. Ur, Y. Yadin, “Micro Architecture Coverage Directed Generation of
Test Programs,” Proceedings of 36th Design Automation Conference, 1999,
pp. 175–180.

[121] P. Mishra, N. Dutt, “Architecture Description Language Driven Functional Test
Program Generation for Microprocessors using SMV,” CECS Technical Report
#02-26, University of California, Irvine.

[122] http://www.haifa.il.ibm.com/dept/svt/simulation.html

[123] http://en.wikipedia.org/wiki/Bayesian_networks

[124] S. Fine, A. Ziv, “Coverage Directed Test Generation for Functional Verification
Using Bayesian Networks”, Proceedings of 40th Design Automation Conference,
2003, pp. 286–291.

[125] J. S. Liptay, “Design of the IBM Enterprise System/9000 High-end Processor,”
IBM Journal of Research and Development, Vol. 36, No. 4, July 1992,
pp. 713–731.

[126] C. L. Chen, N. N. Tendolkar, A. J. Sutton, M. Y. Hsiao, D. C. Bossen, “Fault-
tolerance Design of the IBM Enterprise System/9000 Type 9021 Processors,”
IBM Journal of Research and Development, Vol. 36, No. 4, July 1992,
pp. 765–779.

[127] D. F. Ackerman et al., “Simulation of IBM Enterprise System/9000 Models 820
and 900,” IBM Journal of Research and Development, Vol. 36, No. 4, July 1992,
pp. 751–764.

662 References

Page numbers followed by “f” indicate figures. Page numbers followed by “t” indicate tables.

Behavioral, defined, 642
BFM. See Bus Functional Model (BFM)
Biasing, defined, 642
Big-O notation, 443–444, 444f
Binary decision diagram (BDD), 456, 457f,

458f
defined, 642

Black box, checking of, in verification, 55–59,
56f, 57t, 58f, 59f

Black box verification
Black box testing, defined, 642
in verification environment, 86–87

Board- and system-level verification, 37f, 40
Boolean algebra applications, in formal

verification, 446–447, 447f
Boolean equivalence checking

combinational, 451–454, 452f, 453f
core algorithms for, 454–465, 455f–458f,

460f, 462f, 464f, 465f
defined, 642
in formal verification, 448–467, 449f,

451f–453f, 455f–458f, 460f–462f,
464f–466f

blueprint of modern equivalence checking
tool, 465–467, 466f

described, 448
elements of, 450–451, 451f
in VLSI design flow, 449–450, 449f

sequential, 451–454, 452f, 453f
Boolean layer of PSL, 500–503, 501f, 502f
Boolean logic, 147
Boolean-equation level, 172
Bounded model checking, 525–527, 526f
Branch coverage, 248
Branch history table, case study of, 608–624,

610f–613f, 615f, 617f, 620f
Bug(s)

closure rate, 553, 554f
costs of, 44–45
curve, defined, 642
defined, 642
discovery rate, 552–553, 553f, 554f

SUBJECT INDEX

A
ABIST, defined, 641
ABIST engine, 367
Acceleration

defined, 641
in system simulation, 421–427, 421t,

422f–425f, 427f
Accuracy, speed vs., in HDLs, 160–162, 161f
Architectural tests, defined, 641
Architecture, 18, 641
ASIC, defined, 641
Assert, in verification layer of PSL, 507–508,

509f
Assertion(s)

in assertion-based verification
classification of, 94–95
design intent expressed by, 92–94, 93f

in debugging process, 342–343
defined, 641–642
importance of, 90–92

Assertion re-use, 410–412, 410f, 411f
Assertion-based verification, 89–95

assertions in
classification of, 94–95
design intent expressed by, 92–94, 93f
importance of, 90–92

defined, 642
overview of, 89–90, 89f–91f

Assume, in verification layer of PSL, 508–509
Assume_guarantee, in verification layer of

PSL, 509, 510f
Asynchronous, defined, 642
ATPG, 459–463, 460f–462f
Automated coverage-controlled generation,

597–598, 598f
Automatic theorem provers, 447

B
Base infrastructure layer, 214–216
BDD. See Binary decision diagram (BDD)
Behavior(s), incorrect, detection of, challenge

of, 12–14, 13t

664 Subject Index

in escape analysis in verification cycle
area of, 566
level of difficulty of, 564–566

rates
in verification, 42–44, 43f, 44f
in verification cycle, 552–554, 553f, 554f

Bus Functional Model (BFM), 79

C
Cache warm loading, 584, 585f
Calc1, verification plan of, 121–136. See also

Verification plan, example of, Calc1
Calc2

checking strategies applied to, 322–334,
323t, 324f, 325f, 327f–329f, 331f,
332f

coverage for Calc2, 333–334
cycle accurate reference model test

bench, 331–333, 332f
golden vectors test bench for, 324–328,

325f, 324f, 328f
transaction-based test bench, 328–330,

329f, 331f
coverage for, 333–334
overview of, 260–270, 261f, 261t, 262f, 265t,

266t, 268t
re-use applied to, 405–409, 406f–409f
stimulus generation application to, 277–294,

277f, 278f, 280f–283f, 285f–289f,
292f, 293f

deterministic test cases, 279–281, 280f,
281f

with on-the-fly generation, 281–284,
282f, 283f

on-the-fly random test cases, 290–294,
292f, 293f

pregenerated random test cases, 284–290,
285f–289f

strategies for stimulus generation and,
269–270

Calc2 verification plan, 263–269, 265t, 266t,
268t

coverage requirements, 268–269
dependencies in, 264
environment in, 265–267
functions to be verified in, 264–265, 265t,

266t
methods in, 265–267
resource requirements, 269
risks in, 264
schedule details, 269
test(s) in, 265–267
test scenarios in, 267–268, 268t
tools in, 264
verification levels, 263–264

Canonical form, in Boolean equivalence
checking, 454–459, 455f–458f

Case splitting, 471

Case studies, 603–640
C/C++ libraries, as test bench writing tool,

207–230
architecture of, 207, 208f
base infrastructure layer, 214–216
integrated, 209–212, 210f, 211f
layers of, 207, 208t
separated, 212–214, 212f, 214f, 215t
simulation engine abstraction layer,

207–214, 210f–212f, 214f, 215t
CDG. See Coverage-directed generation (CDG)
Checking component

defined, 643
in verification environment, 82–83, 84f
for verification strategies, 50–55, 51f–53f

architecture of design–related, 54–55
context of design–related, 51–52, 52f
inputs- and outputs-related, 50–51, 51f
microarchitecture rules of design–related,

52–54, 53f
Checker finite state machine (FSM), 469, 469f
Checking

output, in Calc1 verification plan example,
130

in verification plan, 115
Chip design process, 6, 6f

verification in, 5–33
Chip verification test bench, in network

processor verification case study,
630–631, 630f

configurations of, 631–634
Chip-level verification, 37f, 39–40

defined, 643
Clock cycle, 146
Clock domain, defined, 643
Clock domains, in cycle-based simulation,

189–190, 190f
Clock expression, 501
Clocking, defined, 643
CNF. See Conjunctive normal form (CNF)
Combinational Boolean equivalence, 453, 453f
Combinational Boolean equivalence checking,

core algorithms for, 454–465,
455f–458f, 460f, 462f, 464f, 465f

ATPG, 459–463, 460f–462f
canonical forms, 454–459, 455f–458f
DUV partitioning, 463–465, 464f, 465f
SAT solving, 459–463, 460f–462f
structural analysis, 463–465, 464f, 465f

Complete verification, with functional formal
verification, myth of, 470–471

Complex test case harvesting, in regression,
544–545, 545f

Composite values, 146
Computational complexity, in formal

verification, 443–445, 444f
Computational tree logic (CTL), 481, 482f

defined, 643

Subject Index 665

Cone of influence
defined, 643
reduction, 529

Configurable logging of messages, in re-use,
396–397

Conjunctive normal form (CNF), 455
Connectivity, in system simulation, 414–418
Constraint solving

defined, 643
in random environments, 297–301

described, 297–298
sequence of, importance of, 298

in stimulus components, 298–301
Continuous mathematical functions, 147
Continuous time, 146
Core-level verification, 37f, 39
Corner cases, 75

defined, 643
Co-simulation, 392

in system simulation, 430–433, 431f, 432f
Co-simulation environment, in verification

plan, 108
Cost(s)

bug-related, 44–45
in verification process, 15, 16f, 17f, 20–23

engineering costs, 20–21
Co-stimulation, defined, 644
Cover, in verification layer of PSL, 509
Coverage, See alsofunctional coverage

coverage bulk data collection and
management, 254–255, 255f

cross product coverage, defined, 644
defined, 644
described, 243–244
functional coverage, 251–254, 252f, 253f
functional verification test coverage vs.

manufacturing test coverage,
246–247

overview of, 244–246, 245f, 246f
right coverage analysis strategy, 255,

256t
structural coverage, 247–251, 249f. See also

Structural coverage
verification coverage analysis, 199

Coverage bulk data collection and
management, 254–255, 255f

Coverage closure, in verification cycle,
554–557, 556f

Coverage-controlled generation, automated,
597–598, 598f

Coverage-controlled stimulus generation,
dynamic, 595–596

Coverage-directed generation (CDG), 595–598,
596f–598f

automated coverage-controlled generation,
597–598, 598f

dynamic coverage-controlled stimulus
generation, 595–596

model-based coverage-driven test
generation, 596–597, 597f

Coverage-driven test generation, model-based,
596–597, 597f

Co-verification, hardware/software, 40,
420–421

defined, 647
layered verification, 429–430
in system simulation, 420–421, 421t,

428–430, 429f
Create verification plan, in verification cycle,

25f, 26–27
Critical delay path, 183
CTL. See Computational tree logic (CTL)
Current_model_time, 175
Cycle accurate reference model(s)

Cycle accurate reference model test bench,
320, 321f

for Calc2, 331–333, 332f
defined, 644

Cycle time, defined, 644
Cycle-based simulation, 182–182

algorithm, 184–188, 185f, 186f
clock domains in, 189–190, 190f
defined, 644
described, 182–183
engines, extensions to, 188–191, 190f
hybrid simulation algorithms in, 191
multi-valued signal support in, 188–189
synchronous design in, 183–184, 184f

D
DA tools. See Design automation (DA) tools
DAG. See Directed acyclic graph (DAG)
Data abstraction, 146
Deadlock

defined, 644
stimulus generation of, 306–310, 308f, 309f

Debug
areas requiring, 335
defined, 644
described, 334–336
in end-of-case and on-the-fly checking,

351–352
in on-the-fly generated test cases, 351
in pregenerated test cases, 350
process of, 336–349, 336f, 344f–349f, 350t

assertions in, 342–343
described, 336–340
memory debuggers in, 346–349,

347f–349f, 350t
printing in, 341–342
waveform viewers in, 343–346, 344f–346f

in simulation-based verification, 334–352
test benches effects on, 349–352
verification components–related, 419–420

Debug trace file generation, as test bench
writing tool, 205

666 Subject Index

Debugger(s), memory, in debugging process,
346–349, 347f–349f, 350t

Default clock declaration, 501
Degraded mode testing, defined, 644
Design automation (DA) tools, 6–7, 21–22

defined, 644
Design cycle, verification cycle and, in

verification plan, 104, 105f
Design drop, 541
Design intent, defined, 644–645
Design reuse, 392, 392f
Design under verification (DUV), 74–103

constraining of, in formal verification in
property checking, 527–528

defined, 645
drivers, for functional formal verification,

476–479, 477f, 478f
in verification environment, 85–86
partitioning, 463–465, 464f, 465f

Designer-level verification, 37f, 38
defined, 645

Designer’s classification, in escape analysis in
verification cycle, 567–569

Deterministic stimulus generation, random
stimulus generation vs., 271–272,
272f

Deterministic test cases, 279–281, 280f,
281f

defined, 645
Deterministic-leaning test cases, 273
Develop environment, in verification cycle,

25f, 27
Directed acyclic graph (DAG), 185
Directed network, 164
Discrete time, 146
Disjunctive normal form (DNF), 455
Diver, defined, 645
DNF. See Disjunctive normal form (DNF)
Domain specific languages, 498
Driving principles, in verification, 45–50, 46f,

48f, 49t. See also Verification,
strategy of, driving principles in

DUT. See Device under test (DUT)
DUV. See Design under verification (DUV)
Dynamic mapping of signals into verification

components, in re-use, 399–400,
400f

E
“e,” 235–238, 235f–238f
EDA vendors supplying formal and semi-

formal verification tools, in
property checking, 532, 532f

Electronic design automation (EDA), 22
defined, 645

Element level verification, defined, 645
Emulation, in system simulation, 421t,

427–428

Emulation environment, in network processor
verification case study, 637

Emulator, defined, 645
End-of-test case checking, 314

debugging, 351–352
defined, 645
on-the-fly checking vs., 314–320, 315f, 317f,

318f, 321f
combining of, 319–320, 321f

Endpoint, 507
Engineering costs, in verification process,

20–21
Entity(ies), defined, 149
Environment(s)

in Calc2 verification plan, 265–267
constraining of, in formal verification in

property checking, 527–528
co-simulation, in verification plan, 108
debugging of, in verification cycle, 25f,

27–28
developing of, in verification cycle, 25f,

27
emulation, in network processor verification

case study, 637
layered, 414
random. See also Constraint solving, in

random environments; Random
environments

regression, 542
simulation. See Simulation environments
transaction-based, in self-checking of test

benches, 100–101, 100f
verification, 73–86, 74f, 75f, 77f, 78f, 80f,

81f, 84f. See also Verification
environment

Equivalence checking tool, modern, blueprint
of, 465–467, 466f

Error and degraded mode handling, in
pervasive function verification,
368–380, 370f, 373f, 374f, 377f,
379f. See also Pervasive function
verification, error and degraded
mode handling in

Error checkers, defined, 645
Error injection, defined, 646
Escape, defined, 646
Escape analysis, 540

in verification cycle, 25f, 29–30, 559–575,
561f, 570t–571t, 573t, 574t

escape analysis in
designer’s classification in, 567–569
work-around capability in, 566–567

examples of, 569–572, 570f–571f, 573f,
574f

individual bug analysis, 561–569, 561f
area of bug in, 566
bug level of difficulty in, 564–566
described, 561–564, 561f

Subject Index 667

time-to-understanding in, 564
trends in, 572, 575

Escape classification, defined, 646
Event-driven simulation, 162–178

defined, 646
described, 162–163
event-driven control, in model evaluation,

167–172, 168f, 170t, 171f, 171t,
172f–174f

hierarchical model network in, 163–165,
164f–166f

implementation sketch of, 172, 175–178,
175t, 176f–178f

model evaluation
event-driven control of, 167–172, 168f,

170t, 171f, 171t, 172f–174f
over time, 165–167, 166t, 167f

properties of, 170, 170t
Execution control, test bench, 221–225,

222f–224f

F
False fails, 476–477
Fencing, defined, 646
FFT design. See Fournier-transformation

(FFT) design
Finite state machine coverage, 249–250
Finite state machine model of an RTL

specification, 152–153, 153f
Firmware, 356
First-cycle only properties, of PSL, 514–515,

515f
Formal Boolean equivalence checking, in

formal verification, 448–467, 449f,
451f–453f, 455f–458f, 460f–462f,
464f–466f. See also Boolean
equivalence checking, in formal
verification

Formal checkers, defined, 646
Formal functional verification algorithms,

523–527, 524f, 526f
Formal proof engine, defined, 646
Formal verification, 14, 68

Boolean algebra applications in, 446–447,
447f

Boolean equivalence checking in. See also
Boolean equivalence checking, in
formal verification

computational complexity of, 443–445, 444f
defined, 646
design correctness in, 441–442, 441f, 443f
design specifications in, 441–442, 441f, 443f

high-level models, 441–442, 4441f
properties, 442

formal Boolean equivalence checking in,
448–467, 449f, 451f–453f,
455f–458f, 460f–462f, 464f–466f

foundations of, 440–442, 441f, 443f

functional, 467–484, 469f, 470f, 472f–475f,
477f–482f, 483t, 484f

complete verification with, myth of,
470–471

DUV drivers for, 476–479, 477f, 478f
properties for example design, 470–476,

472f–475f
state space traversal and temporal logic,

479–483, 479f–482f, 483t
tool flow in, 483–484, 484f

introduction to, 439–486
mathematical proof methods in, 446–448,

447f
myth of linear scaling of simulation in,

445–446, 445f, 446f
promise of, 439
property checking using, 521–532, 522f,

524f, 526f, 530f–532f. See also
Property checking, formal
verification in

simulation and, property re-use between,
521–522

uses of, 487–534. See also specific use e.g.,
Hardware design languages library,
property specifications using

described, 487–488
PSL, 498–521, 499f, 501f–506f, 508f–511f,

513f, 515f–517f, 519f, 520f
Fournier-transformation (FFT) design, 148
Functional block(s), 148
Functional coverage, 251–254, 252f, 253f

defined, 646
Functional dimension, 147
Functional formal verification, 467–484, 469f,

470f, 472f–475f, 477f–482f, 483t,
484f. See also Formal verification,
functional

Functional specification
defined, 647
in verification cycle, 25–26, 25f

Functional verification
defined, 647
early, high-level modeling in, 590
introduction to, 5–8, 6f, 8f

Functional verification test coverage,
manufacturing test coverage vs.,
246–247

G
Gate and wire delays, 146
Gate level model, 149–150, 150f

defined, 647
General simulation environment, in

verification, 61–62, 62f
Golden vector

defined, 647
in self-checking of test benches, 98–99,

98f

668 Subject Index

Golden vector test bench, 319
for Calc2, 324–328, 325f, 324f, 328f

GOTTO repetition operator, 506, 506f
Grey box verification

defined, 647
in verification environment, 88–89

Grid computing, 547

H
Hangs, defined, 647
Hard error, defined, 647
Hardware debug assists, verifying, 380–384,

382
Hardware description languages (HDLs), 7,

141–198
as test bench tools, 201–207, 202f–204f. See

also Test bench writing tools,
hardware design languages as

debugging of, in verification cycle, 25f,
27–28

defined, 647
event-driven simulation in, 162–178. See

also Event-driven simulation
library, property specifications using,

488–497, 489f–495f
described, 488
OVL project, 489–493, 489f–493f, 495f

methodology choices with, 162
modeling levels, 143–153, 144f, 145f,

147f–153f
design intent, 154–155
dimensions in, 144–149, 145f, 147f–149f
finite state machine model of an RTL

specification, 152–153, 153f
gate level model, 149–150, 150f
register-transfer model, 150–152, 151f,

152f
test benches, 155–159, 155f–158f

simulation engines, 159–162, 161f
speed versus accuracy, 160–162, 161f
verification aspects of, 153–159, 155f–158f

Hardware fabrication
debugging of, in verification cycle, 25f, 29
in verification cycle, 25f, 28–29

Hardware/software co-verification, 40,
420–421

defined, 647
layered verification, 429–430
in system simulation, 420–421, 421t,

428–430, 429f
total system simulation, 430

HDLs. See Hardware description languages
(HDLs)

Hierarchical design and verification, defined,
35–45, 648

Hierarchical model network, 163–165,
164f–166f, 166t

High-level design (HLD), defined, 648

High-level design (HLD) languages, high-level
modeling in, 592

High-level modeling (HLM), 586–594, 587f,
589f, 591f, 594f

applications of, 587–590, 589f
approaches to, 594, 594f
concepts related to, 586–594, 587f, 589f,

591f, 594f
defined, 648
described, 586, 587f
in early functional verification, 590
in early performance evaluation, 587–588
in early physical design, 588–590, 589f
in HLD languages, 592–593
in programming languages, 593
styles of, 590–594, 591f, 594f
in SystemC, 593–594

High-level verification languages (HVLs),
230–241

defined, 648
features of, 230–232

automatic garbage collection, 231
constrained random generation, 231
coverage collection, 231
interpretation vs. compilation, 231–232
temporal expressions, 230

HLM. See High-level modeling (HLM)
Horizontal re-use, 392, 393f, 403–404
HVLs. See High-level verification languages

(HVLs)
Hybrid simulation algorithms in, in cycle-

based simulation, 191

I
Initiator(s)

defined, 648
in verification environment, 76–79, 77f, 78f

Instruction set simulator (ISS), 430
Instruction stream generation, in branch

history table verification case study,
616–618, 617f

Interface monitor, defined, 648
Irritator(s), defined, 648
ISS. See Instruction set simulator (ISS)
Issue, defined, 648

K
Knowledge-based test case generation,

defined, 648–649

L
Language(s). See also specific type, e.g.,

Property Specification Language
(PSL)

domain specific, 498
high-level verification, 230–241. See also

High-level verification languages
(HVLs)

Subject Index 669

HLD, high-level modeling in, 592–593
programming, high-level modeling in, 593
scripting, 241–242
test cases, 64

Language reference manual (LRM), 159
Layered environment, 414
Layered verification, 429–430
LBIST, defined, 649
LBIST engine, 365–367, 366f
Library(ies), C/C++, as test bench writing tool,

207–230. See also C/C++ libraries
Line delete escape, case study of, 603–608,

605f
background of, 603–605, 604f
escape in, 607–608
verification environments in, 605–607

Linear scaling of simulation, myth of, in
formal verification, 445–446, 445f,
446f

Linear time logic (LTL), 480–481, 481f
Livelock(s)

defined, 649
stimulus generation of, 306–310, 308f, 309f

Liveness properties, 482
defined, 649

Load Sharing Facility, 546
Logic emulation, 420
Low-power mode verification, in pervasive

function verification, 384–389, 386f
LRM. See Language reference manual (LRM)
LTL. See Linear time logic (LTL)

M
Mainline function, 355

defined, 649
Mainline verification, power-on-reset vs.,

580–583, 581f, 582f
Manufacturing test coverage, functional

verification test coverage vs.,
246–247

Mathematical proof methods, in formal
verification, 446–448, 447f

Memory debuggers, in debugging process,
346–349, 347f–349f, 350t

Metrics, in verification cycle, 552–557,
553f–556f

bug rates, 552–554, 553f, 554f
coverage closure, 554–557, 556f

Microarchitecture, 18, 52–53
defined, 649

Miscompare, defined, 649
Model build, defined, 649
Model checking, 524–525, 524f

bounded, 525–527, 526f
defined, 649
symbolic, 525

Model network, 163
Modeling layer of PSL, 511–512

Module(s), defined, 149
Monitor component

defined, 649
in verification environment, 80–82, 81f

Multiple state machine coverage, 250
Multi-valued signal support, in cycle-based

simulation, 188–189

N
Named sequences, 507
Netlist, defined, 649–650
Network processor, case study of, 624–638,

625f, 626f, 628f–630f, 635f, 636f
described, 624
system overview in, 625–627, 626f
verification effort in, 627–638, 628f–630f,

635f, 636f
chip verification test bench in, 630–631,

630f
configurations of, 631–634

emulation environment in, 637
escape in, 637–638
PNI unit verification test bench in,

627–628, 628f
results of, 638
SIF unit verification test bench in,

629–630, 629f
systems test bench in, 635–636, 636f
test bench performance in, 634–635,

635f
Non-consecutive repetition operator, 506–507

O
Oblivious simulation algorithm, 186
Observation point, defined, 650
On-the-fly, defined, 650
On-the-fly checking, 313–314

debugging, 351–352
end-of-test case checking, 314–320, 315f,

317f, 318f, 321f
end-of-test case checking vs., 319–320,

321f
On-the-fly generated test cases

debugging, 351
pregenerated test cases vs., 321–322

On-the-fly random test cases, 290–294, 292f,
293f

On-the-fly stimulus components, in branch
history table verification case study,
618–619

Open Verification Library (OVL) project,
489–493, 489f–493f, 495f

defined, 650
in specifying properties, 493–497, 493f–495f

OpenVera, 232–235, 232f–234f
Ordered BDD, 457, 457f
Output checking, in Calc1 verification plan

example, 130

670 Subject Index

Overlapping properties, of PSL, 515–518, 516f,
517f, 519f

OVL. See Open verification library (OVL)

P
Package, defined, 650
Packaging verification components, in re-use,

400–402
Param, 226–229, 227f–229f
Parameter(s), defined, 650
Parameterization, as test bench writing tool,

205
Path coverage, 248, 249f
Pervasive function verification, 355–390

defined, 650
described, 355–356
error and degraded mode handling in,

368–380, 370f, 373f, 374f, 377f,
379f

self—healing hardware–related, 372–380,
373f, 374f, 377f, 379f

hardware degradation, 379–380
hardware reject, 372–373, 373f
hardware retry, 373–375, 374f
software-assisted recovery, 375–379,

377f, 379f
error injection function, 376
fence test probes, 377–379, 379f
step-by-step recovery actions,

376–377, 377f
verifying error detection in, 368–371, 370f

error reporting–related, 371
hardware pinpointing erroneous source

logic–related, 371
monitoring logic–related, 369–371, 370f
steps in, 369–371, 370f

low-power mode verification in, 384–389,
386f

power savings through cycle-time
degradation, 387–389

power savings through disabling
functional units, 385–387, 386f

reset line initialization in, 357–361, 358f,
360f

system reset and bring-up in, 356–367, 357t,
358f, 360f, 362f, 366f

ABIST engine in, 367
built-in self—test in, 363–367, 366f
LBIST engine in, 365–367, 366f
rest line initialization in, 357–361, 358f,

360f
verification of, 358–361, 360f

scan initialization in, 361–363, 362f
testability of, 363–367, 366f

verifying hardware debug assists in,
380–384, 382

verifying scan ring dumps, 381–384, 382f
Physical design, defined, 650

Physical netlist, 149, 449, 449f
PNI unit verification test bench, in network

processor verification case study,
627–628, 628f

Power-on-reset
defined, 650
mainline verification vs., 580–583, 581f,

582f
Pre-generated test cases

debugging, 350
defined, 651
on-the-fly generated test cases vs., 321–322
on-the-fly test case generation vs., 272–275,

274f
Printing, in debugging process, 341–342
Problem tracking, 546–552, 550f
Product-of-sums, 455
Programming languages, high-level modeling

in, 593
Property(ies)

defined, 651
in design specifications in formal

verification, 442
for example design, in functional formal

verification, 471–476, 472f–475f
liveness, 482

defined, 649
PSL, 507, 508f
safety, 482

defined, 652
specification of

OVL project in, 493–497, 493f–495f
PSL in, 512–514, 513f

Property checking
defined, 467, 651
in formal verification, 467–484. See also

Formal verification, functional
vs. sequential equivalence checking,

468–470, 469f, 470f
formal verification in, 521–532, 522f, 524f,

526f, 530f–532f
bounded model checking, 525–527, 526f
case splits, 527–528
cone-of-influence reduction in, 529
constraining DUV in, 527–528
constraining environment in, 527–528
EDA vendors supplying tools for, 532,

532f
formal functional verification algorithms,

523–527, 524f, 526f
localization in, 529–530, 530f
manual reduction of data path widths in,

528–529
model checking, 524–525, 524f
model compilation, 522–523, 522f
property re-use between simulation and

formal verification, 521–522
serial application of properties in, 527

Subject Index 671

solutions to address problem of state
space explosion, 527–530, 530f

symbolic model checking, 525
semi-formal verification in, 530–532, 531f

EDA vendors supplying tools for, 532,
532f

Property specification(s), using HDL library,
488–497, 489f–495f

Property Specification Language (PSL), 476,
498–521, 499f, 501f–506f,
508f–511f, 513f, 515f–517f, 519f,
520f

advanced topics related to, 514–521,
515f–517f, 519f, 520f

Boolean layer of, 500–503, 501f, 502f
described, 498
embedded, 510–511, 511f
false positives with, 520f, 529–521
first-cycle only properties of, 514–515, 515f
implicit property sampling with, 514
modeling layer of, 511–512
overlapping properties of, 515–518, 516f,

517f, 519f
overview of, 498–500, 499f
properties of, 507, 508f
in specifying properties, 512–514, 513f
temporal layer of, 503–507, 503f–506f, 508f

SERE(s) in, 503–505, 503f–505f
SERE repetition operators in, 505–507,

506f
verification layer of, 507–511, 509f–511f

assert in, 507–508, 509f
assume in, 508–509
assume_guarantee in, 509, 510f
cover in, 509
verification units in, 509–510, 510f

PSL. See Property Specification Language
(PSL)

defined, 651
PSL/Sugar, 498–521. See also Property

Specification Language (PSL)

Q
Quiesce, defined, 651
Quiesce cycle, defined, 651

R
Random environments

constraint solving in, 297–301. See also
Constraint solving, in random
environments

coverage techniques in, 301–303, 302t, 303t
Random stimulus generation, deterministic

stimulus generation vs., 271–272,
272f

Random driver, defined, 651
Random test cases, seeding of, 294–297,

296f

Randomization, as test bench writing tool,
205–207

Randomization controls, in Calc1 verification
plan example, 128

Random-leaning test cases, 273
Reachability analysis, 524
Reachable state, 524
Reachable state space, 439
Recovery, defined, 651
Reduced ordered BDD (ROBDD), 457, 458f
Reference model

defined, 651
in self—checking of test benches, 99–100,

99f
Register transfer level (RTL), 7

defined, 652
Register transfer model, 150–152, 151f, 152f
Regression, 540–548, 541f, 545f, 546f

complex test case harvesting in, 544–545,
545f

defined, 539, 651
efficiency of, 543–548, 545f, 546f
environment, 542
quality of, 542–543
run, 542
simplex harvesting in, 544–545, 545f
simulation, 542
suite, 543, 544
test case harvesting in, 544–545, 545f
in verification cycle, 25f, 28
in verification flow, 540–542, 541f
workstation farm–simulation grid in,

546–548, 546f
Repetition operators, SERE, in temporal layer

of PSL, 505–507, 506f
Reset, defined, 651
Reset line initialization, in pervasive function

verification, 357–361, 358f, 360f
Responder(s), in verification environment,

76–77, 79–80, 80f
Results checking

in simulation-based verification
pregenerated test cases vs. on-the-fly

generated test cases, 321–322
strategies for, 313–353

application to Calc2, 322–334, 323t,
324f, 325f, 327f–329f, 331f, 332f

types of, 313–334
Re-usable IP, defined, 652
Re-usable verification IP, 394
Re-use

defined, 652
horizontal, 392, 393f
vertical, 393, 394f

Re-use strategies, 391–412
assertion, 410–412, 410f, 411f
in Calc2, 405–409, 406f–409f
configurable logging of messages, 396–397

672 Subject Index

described, 392–395, 392f–394f
documentation, 402–403
dynamic mapping of signals into

verification components, 399–400,
400f

generic scoreboard components, 397–399,
398f

guidelines for, 395–403, 396f, 398f–400f
horizontal, 403–404
independent stimulus components, 395–396,

396f
packaging verification components,

400–402
verification components–related, 418–419
vertical, 404–405

ROBDD. See Reduced ordered BDD
(ROBDD)

RTL. See Register transfer level (RTL)

S
Safety properties, 482

defined, 652
SAT solving, 459–463, 460f–462f
Scan initialization, in pervasive function

verification, 361–363, 362f
Scan ring, 361–362, 362f

defined, 652
Scan ring dumps, verifying, 381–384, 382f
Scan ring reset, verification of, 363
Scanning, defined, 652
Schedule(s), in verification process, 15, 16f,

17f
Scheduling, defined, 166
Scoreboard

defined, 652
in re-use, 397–399, 398f
in verification environment, 83–85, 84f

Scripting languages, 241–242
SDF file. See Standard delay format (SDF) file
Seed, defined, 652
Self—checking, of test benches, 97–100,

98f–100f
Semantic structure, 154
Semi-formal algorithms, 527
Semi-formal verification

defined, 652
property checking using, 530–532, 531f

Sequential equivalence checking, 453
in formal verification, vs. property checking,

468–470, 469f, 470f
Sequential extended regular expressions

(SERE(s), in temporal layer of PSL,
503–505, 503f–505f

SERE repetition operators, in temporal layer
of PSL, 505–507, 506f

Service element, 356–357, 361, 375–380, 377f,
379f

defined, 652

SIF unit verification test bench, in network
processor verification case study,
629–630, 629f

Simple harvesting, in regression, 544–545,
545f

Simulation
cycle-based, 182–191. See also Cycle-based

simulation
defined, 652
event, defined, 646
event-driven, 162–178. See also Event-driven

simulation
formal verification and, property re-use

between, 521–522
linear scaling of, myth of, in formal

verification, 445–446, 445f, 446f
regression, 542
total system, 430

Simulation accelerators, 420
Simulation backplane, 433
Simulation engine(s), 141–198

abstraction layer, 207–214, 210f–212f, 214f,
215t

defined, 653
test bench and, relationship between, 200f
waveform viewers, 191–196, 192f–196f

Simulation environments
creation of, 199–258

test bench writing tools in, 200–243. See
also Test bench writing tools

general, in verification, 61–62, 62f
verification coverage, 243–255. See also

Verification coverage
Simulation farm, 182
Simulation model, 143, 144f
Simulation throughput, improving of,

178–182, 179t–181t
Simulation-based verification, 14, 73–102. See

also Verification environment
assertion-based verification, 89–95. See also

Assertion-based verification
described, 139
environment of, 73–86. See also Verification

environment
fundamentals of, 73–102
observation points in, 86–89, 88f
strategies for, results checking, 313–353. See

also Results checking
debug, 334–352

test benches in, 95–101, 96t, 97f–100f. See
also Test bench(es), in simulation-
based verification

SoC. See System on a chip (SoC)
Soft error, defined, 653
Specification

defined, 653
functional specification, 25–26

Speed, accuracy vs., in HDLs, 160–162, 161f

Subject Index 673

Standard delay format (SDF) file, 172
State space

defined, 653
scale of, challenge of, 9–12, 11f

State space explosion, solutions to address
problem of, 527–530, 530f

State space traversal, 439
defined, 653
temporal logic and, in functional formal

verification, 479–483, 479f–482f,
483t

Statement coverage, 247–248
Stick, defined, 653
Stimulus components

algorithms for, 275–276, 276f
constraint solving in, 298–301
defined, 653
in verification environment, 74–80, 75f, 77f,

78f, 80f
independent stimulus components, in re-

use, 395–396, 396f
Stimulus generation, simulation-based,

strategies for, 260–311
algorithms for stimulus components,

275–276, 276f
deterministic vs. random stimulus

generation, 271–272, 272f
pregenerated test cases vs. on-the-fly test

case generation, 272–275, 274f
strategies for, 295–311

Calc2 and, 269–270, 277–294, 277f, 278f,
280f–283f, 285f–289f, 292f, 293f

CalC2 overview, 260–270
constraint solving in random

environments, 297–301. See also
Constraint solving, in random
environments

coverage techniques in random
environments, 301–303, 302t,
303t

deadlock-related, 306–310, 308f, 309f
livelocks-related, 306–310, 308f, 309f
making rare events occur, 303–306
seeding random test cases, 294–297,

296f
types of, 270–275, 272f, 275f

Structural analysis, 463–465, 464f, 465f
Structural coverage, 247–251, 249f

branch coverage, 248
defined, 653
finite state machine coverage, 249–250
models of, discussion of, 250–251
multiple state machine coverage, 250
path coverage, 248, 249f
statement coverage, 247–248
structural coverage models, discussion of,

250–251
toggle coverage, 247

Structural dimension, 147–148
Sum-of-products, 455
Switch-level elements, 147
Symbolic model checking, 525
Synchronous, defined, 653
Synchronous clock, 183
Synchronous clock domains, 189
System level verification, defined, 653
System on a chip (SoC), 391

defined, 653
System simulation, 412–420

challenges of, 420–433, 421t, 422f–425f,
427f, 429f, 431f, 432f

acceleration, 421–427, 421t, 422f–425f,
427f

direct implementation–programmable
hardware, 426–427, 427f

indirect implementation–hardware
simulator, 422–426, 422f–425f

co-simulation, 430–433, 431f, 432f
described, 420–421, 421t
emulation, 421t, 427–428
hardware/software co-verification, 421t,

428–430, 429f. See also
Hardware/software co-verification

connectivity in, 414–418
interaction of units in, 414–418
systems test bench, 412–414
total, 430
verification challenges in re-usable IP world,

418–420
debug, 419–420
re-use of verification components,

418–419
SystemC, 238–241, 239f–241f

high-level modeling in, 593–594
Systems test, defined, 653
Systems test bench, 412–414

in network processor verification case study,
635–636, 636f

T
Tape-out, 28

defined, 654
Tape-out criteria, 28

defined, 654
Tape-out readiness, 552–559, 553f, 556f,

558f
in verification cycle

completion criteria, 557–559, 558f
metrics, 552–557, 553f–556f

Temporal checks, defined, 654
Temporal dimension, 144, 146
Temporal layer of PSL, 503–507, 503f–506f,

508f
Temporal logic, state space traversal and, in

functional formal verification,
479–483, 479f–482f, 483t

674 Subject Index

Test and testability, defined, 654
Test bench(es), 73–86, 74f, 75f, 77f, 78f, 80f,

81f, 84f, 155–159, 155f–158f. See
also Verification environment

chip verification, in network processor
verification case study, 630–631,
630f

configurations of, 631–634
debugging effects of, 349–352
defined, 654
in network processor verification case

study, performance of, 634–635,
635f

PNI unit verification, in network processor
verification case study, 627–628,
628f

SIF unit verification, in network processor
verification case study, 629–630,
629f

simulation engine and, relationship
between, 200f

in simulation-based verification, 95–101,
96t, 97f–100f

deterministic test benches, 95–97, 96t,
97f

self—checking of, 97–100, 98f–100f
golden vectors in, 98–99, 98f
reference model in, 99–100, 99f
transaction-based environment,

100–101, 100f
systems, 412–414

in network processor verification case
study, 635–636, 636f

transaction-based, 319–320
for Calc2, 328–330, 329f, 331f

Test bench building block objects, 216–221,
217f, 218f, 220f

components, 216–221, 217f, 218f, 220f
params, 226–229, 227f–229f

Test bench components, 216–221, 217f, 218f,
220f

Test bench execution control, 221–225,
222f–224f

components in, 223–224
execution phases, 225, 226f
multiple tests, 224–225

Test bench modularity, 225–226
Test bench performance, 229–230
Test bench writing tools, 200–243

C/C++ libraries, 207–230. See also C/C++
libraries

HDLs, 201–207, 202f–204f
debug trace file generation, 205
parameterization, 205
randomization, 205–207

scripting languages, 241–242
waveform editors, 242–243

Test case, defined, 654

Test case drivers, 66–68, 67f
Test case generator, 66–68, 67f

defined, 654
Test case harvesting

complex, in regression, 544–545, 545f
defined, 654
in regression, 544–545, 545f

Test cases languages, 64
Test matrix, defined, 654
Theorem proving, defined, 654
Time, in verification process, 22–23
Time complexity, 443
Time-to-understanding, in escape analysis in

verification cycle, 564
Toggle coverage, 247
Tool(s), in verification plan, 107–108
Tool freeze, 109
Trace, defined, 654–655
Trace-back, defined, 655
Transaction, defined, 655
Transaction-based checking, defined,

655
Transaction-based environment, in self—

checking of test benches, 100–101,
100f

Transaction-based test bench, 319–320
for Calc2, 328–330, 329f, 331f

Trivial parallelization, 181–182

U
Unit under test (UUT), 85–86
Unit-level verification, 37f, 38

defined, 655
Unrolling, 526
UUT. See Unit under test (UUT)

V
Vacuity, defined, 655
Value(s)

composite, 146
Tick’s, 170

Verification
advanced techniques in, 579–599

coverage-directed generation, 595–598,
596f–598f

described, 580
high-level modeling, 586–594, 587f, 589f,

591f, 594f. See also High-level
modeling

saving verification cycles, 580–586, 581f,
582f, 584f, 585f. See also
Verification cycles, saving of

areas of, 23–24
assertion-based, 89–95. See also Assertion-

based verification
black box, 86–87
board- and system-level, 37f, 40
bug rates in, 42–44, 43f, 44f

Subject Index 675

case studies, 603–640. See also specific
example, e.g., Line delete escape,
case study of

branch history table, 608–624, 610f–613f,
615f, 617f, 620f. See also Branch
history table, case study of,
verification in

line delete escape, 603–608, 605f
network processor, 624–638, 625f, 626f,

628f–630f, 635f, 636f. See also
Network processor, case study of

challenge for, 8–14, 11f, 13t
in chip design process, 5–33
chip-level, 37f, 39–40

defined, 643
complete, with functional formal

verification, myth of, 470–471
comprehensive, described, 537
core-level, 37f, 39
costs in, 15, 16f, 17f, 20–23. See also

Cost(s), in verification process
design under, 74–103
designer level, 37f, 38

defined, 645
deterministic, in Calc1 verification plan

example, 131–136, 132f–135f
element level, defined, 645
formal, 14, 68. See also Formal verification
functional

early, high-level modeling in, 590
introduction to, 5–8, 6f, 8f

goals of, 14–19, 16f, 17f
grey box, 88–89

defined, 647
hardware/software co-verification, 40
in HDLs, 153–159, 155f–158f
layered, 429–430
levels of, 36–40, 36f, 37f

selection criteria, 41–45, 42f–44f
low-power mode, in pervasive function

verification, 384–389, 386f
mainline, power-on-reset vs., 580–583, 581f,

582f
mission of, 14–19, 16f, 17f
in network processor case study, 627–638,

628f–630f, 635f, 636f
pervasive function, 355–390. See also

Pervasive function verification
quality in, 15–18
re-use, 394
schedule in, 15, 16f, 17f
semi-formal

defined, 652
property checking using, 530–532,

531f
simulation-based, 14, 73–102. See also

Simulation-based verification
system level, defined, 653

time in, 22–23
types of

in Calc1 verification plan example, 128
in verification plan, 112

unit level, defined, 655
unit-level, 37f, 38
white box, 87–88, 88f

defined, 656
Verification cycle(s), 24–31, 25f

bootstrapping of, 580–586, 581f, 582f, 584f,
585f

breakdowns in, 30–31
completion of, 539–577
create verification plan in, 25f, 26–27
debug HDL and environment, 25f, 27–28
design cycle and, in verification plan, 104,

105f
develop environment in, 25f, 27
escape analysis in, 25f, 29–30, 559–575,

561f, 570t–571t, 573t, 574t. See also
Escape analysis, in verification
cycle

fabricated hardware in, 25f, 28–29
debugging of, 25f, 29

functional specification in, 25–26, 25f
problem tracking in, 546–552, 550f
regression in, 25f, 28
saving of, 580–586, 581f, 582f, 584f, 585f

bootstrapping DUV into high-potential
states, 583–585, 584f, 585f

manipulating DUV specification
provoking states of resource
conflict, 585–586

separating power-on-reset and mainline
verification, 580–583, 581f, 582f

stages of, 35
tape-out readiness in, 552–559, 553f–556f,

558f. See also Tape-out readiness,
in verification cycle

Verification engineer
defined, 655
“musts” for, 18–19

Verification environment, 73–86, 74f, 75f, 77f,
78f, 80f, 81f, 84f

black box in, 86–87
checker in, 82–83, 84f
deciding what to model in, 76–77
defined, 655
design under verification in, 85–86
grey box in, 88–89
initiators in, 76–77
in line delete escape case study, 605–607
monitor in, 80–82, 81f
responders in, 79–80, 80f
scoreboard in, 83–85, 84f
stimulus component in, 74–80, 75f, 77f, 78f,

80f
white box in, 87–88, 88f

676 Subject Index

Verification flow, 35–72
regression in, 540–542, 541f

Verification hierarchy, 35–45, 36f, 37f, 42f–44f
Verification layer of PSL, 507–511, 509f–511f
Verification levels description, in verification

plan, 106–107
Verification methodology evolution, 62–68,

63f, 65f, 67f
coverage and formal verification, 68
test benches evolve into test cases, 64–66,

65f
test case generators and test case drivers,

66–68, 67f
Verification plan, 103–136

abstraction level in, 113–115, 114f
checking in, 115
contents of, 106–120, 114f, 119f, 120f
coverage requirements in, 115–116
defined, 656
dependencies associated with, 108–109
design cycle in, 104, 105f
evolution of, 104–106, 105f
example of, Calc1, 121–136

abstraction level in, 128–130, 129f, 130f
coverage requirements in, 131
creation of, 125–131, 126t, 127t, 129f,

130f
dependencies associated with, 126
design description, 121–124, 122f,

122t–124t, 123f
deterministic verification, 131–136,

132f–135f
functions to be verified, 126, 126t, 127t
methods in, 126
output checking in, 130
randomization controls in, 128
resource requirements for, 131
risks associated with, 126
schedule details, 131
tests in, 126, 126t, 127t

scenarios of, 126, 126t, 127t
tools in, 125
verification levels in, 125
verification strategy in, 128
verification type in, 128

functional specification of, 103–104
functions to be verified in, 109–111
methods in, 111–115, 114f
random aspects in, 113
resource requirements for, 117–118
risks associated with, 108–109

schedule details in, 118–120, 119f, 120f
test case scenarios in, 116–117
tests in, 111–115, 114f
tools in, 107–108
verification cycle in, 104, 105f
verification levels description in, 106–107
verification strategy in, 112–113
verification type in, 112

Verification strategy, 45–68
in Calc1 verification plan example, 128
checking black box in, 55–59, 56f, 57t, 58f,

59f
checking of, 50–55, 51f–53f. See also

Checkers, for verification strategies
driving principles in, 45–50, 46f, 48f, 49t
general simulation environment in, 61–62,

62f
methodology evolution in, 62–68, 63f, 65f,

67f
putting it all together, 59–61, 61f
in verification plan, 112–113

Verification team, independent, in verification
process, 20–21

Verification units, in verification layer of PSL,
509–510, 510f

Verilog, 7, 144, 148, 149
defined, 655

Vertical re-use, 393, 394f, 404–405
VHDL, 7, 144, 148–149, 149f

defined, 656
VLSI design flow, Boolean equivalence

checking in, 449, 449f

W
Wave viewer capability, defined, 655
Waveform

defined, 656
editors, 242–243
in debugging process, 343–346, 344f–346f
viewers, 191–196, 192f–196f

White box verification, 87–88, 88f
defined, 656

Window conditions, defined, 656
Witness trace, 484
Work-around capability, in escape analysis in

verification cycle, 566–567
Workstation farm–simulation grid in,

546–548, 546f

Z
Zero delay, 169, 169f

	0127518037
	FOREWORD
	PREFACE
	ACKNOWLEDGEMENTS
	PART I: INTRODUCTION TO VERIFICATION
	CHAPTER 1: VERIFICATION IN THE CHIP DESIGN PROCESS
	1.1 INTRODUCTION TO FUNCTIONAL VERIFICATION
	1.2 THE VERIFICATION CHALLENGE
	1.2.1 The Challenge of State Space Explosion
	1.2.2 The Challenge of Detecting Incorrect Behavior

	1.3 MISSION AND GOALS OF VERIFICATION
	1.3.1 Verification Engineer “Musts”

	1.4 COST OF VERIFICATION
	1.4.1 Engineering Costs and the Need for an Independent
Verification Team
	1.4.2 DA Tools
	1.4.3 Time

	1.5 AREAS OF VERIFICATION BEYOND THE SCOPE OF THIS BOOK
	1.6 THE VERIFICATION CYCLE: A STRUCTURED PROCESS
	1.6.1 Functional Specification
	1.6.2 Create Verification Plan
	1.6.3 Develop Environment
	1.6.4 Debug HDL and Environment
	1.6.5 Regression
	1.6.6 Fabricate Hardware
	1.6.7 Debug Fabricated Hardware (Systems Test)
	1.6.8 Escape Analysis
	1.6.9 Common Verification Cycle Breakdowns

	1.7 SUMMARY
	1.8 EXERCISES

	CHAPTER 2: VERIFICATION FLOW
	2.1 VERIFICATION HIERARCHY
	2.1.1 Levels of Verification
	2.1.2 What Level To Choose?

	2.2 STRATEGY OF VERIFICATION
	2.2.1 Driving Principles
	2.2.2 Checking Strategies
	2.2.3 Checking the Black Box
	2.2.4 Putting It All Together
	2.2.5 The General Simulation Environment
	2.2.6 Verification Methodology Evolution

	2.3 SUMMARY
	2.4 EXERCISES

	CHAPTER 3: FUNDAMENTALS OF SIMULATION-BASED VERIFICATION
	3.1 BASIC VERIFICATION ENVIRONMENT: A TEST BENCH
	3.1.1 Stimulus Component
	3.1.2 Monitor
	3.1.3 Checker
	3.1.4 Scoreboard
	3.1.5 Design Under Verification

	3.2 OBSERVATION POINTS: BLACK-BOX, WHITE-BOX, AND GREY-BOX VERIFICATION
	3.2.1 Black Box
	3.2.2 White Box
	3.2.3 Grey Box

	3.3 ASSERTION-BASED VERIFICATION: AN OVERVIEW
	3.3.1 The Importance of Assertions
	3.3.2 Assertions Express Design Intent
	3.3.3 Classification of Assertions

	3.4 TEST BENCHES AND TESTING STRATEGIES
	3.4.1 Deterministic Test Benches
	3.4.2 Self-Checking Test Benches

	3.5 SUMMARY
	3.6 EXERCISES

	CHAPTER 4: THE VERIFICATION PLAN
	4.1 THE FUNCTIONAL SPECIFICATION
	4.2 THE EVOLUTION OF THE VERIFICATION PLAN
	4.3 CONTENTS OF THE VERIFICATION PLAN
	4.3.1 Description of Verification Levels
	4.3.2 Required Tools
	4.3.3 Risks and Dependencies
	4.3.4 Functions to be Verified
	4.3.5 Specific Tests and Methods: Environment
	4.3.6 Coverage Requirements
	4.3.7 Test Case Scenarios: Matrix
	4.3.8 Resource Requirements
	4.3.9 Schedule Details

	4.4 VERIFICATION EXAMPLE: CALC1
	4.4.1 Design Description
	4.4.2 Creating the Verification Plan for Calc1
	4.4.3 Deterministic Verification of Calc1

	4.5 SUMMARY
	4.6 EXERCISES

	PART II: SIMULATION-BASED VERIFICATION
	CHAPTER 5: HARDWARE DESCRIPTION LANGUAGES AND SIMULATION ENGINES
	5.1 HARDWARE DESCRIPTION LANGUAGES
	5.1.1 HDL Modeling Levels
	5.1.2 Verification Aspects of HDLs

	5.2 SIMULATION ENGINES: INTRODUCTION
	5.2.1 Speed Versus Accuracy
	5.2.2 Making the Right Methodology Choices

	5.3 EVENT-DRIVEN SIMULATION
	5.3.1 Hierarchical Model Network
	5.3.2 Model Evaluation Over Time
	5.3.3 Event-Driven Control of Model Evaluation
	5.3.4 Implementation Sketch of an Event-Driven Simulation Engine

	5.4 IMPROVING SIMULATION THROUGHPUT
	5.5 CYCLE-BASED SIMULATION
	5.5.1 Synchronous Design
	5.5.2 The Cycle-Based Simulation Algorithm
	5.5.3 Extensions to Basic Cycle-Based Simulation Engines

	5.6 WAVEFORM VIEWERS
	5.7 SUMMARY
	5.8 EXERCISES

	CHAPTER 6: CREATING ENVIRONMENTS
	6.1 TEST BENCH WRITING TOOLS
	6.1.1 HDL Languages as Test Bench Tool
	6.1.2 C/C++ Libraries
	6.1.3 High-Level Verification Languages
	6.1.4 Other Test Bench Tools

	6.2 VERIFICATION COVERAGE
	6.2.1 Overview
	6.2.2 Functional Verification Test Coverage Versus Manufacturing Test Coverage
	6.2.3 Structural Coverage
	6.2.4 Functional Coverage
	6.2.5 Coverage Bulk Data Collection and Management
	6.2.6 The Right Coverage Analysis Strategy

	6.3 SUMMARY
	6.4 EXERCISES

	CHAPTER 7: STRATEGIES FOR SIMULATION-BASED STIMULUS GENERATION
	7.1 CALC2 OVERVIEW
	7.1.1 Calc2 Verification Plan
	7.1.2 Calc2 and the Strategies for Stimulus Generation

	7.2 STRATEGIES FOR STIMULUS GENERATION
	7.2.1 Types of Stimulus Generation
	7.2.2 General Algorithms for Stimulus Components
	7.2.3 Applying the Four Types of Stimulus Generation to Calc2
	7.2.4 Seeding Random Test Cases
	7.2.5 Constraint Solving in Random Environments
	7.2.6 Coverage Techniques in Random Environments
	7.2.7 Making Rare Events Occur
	7.2.8 Stimulus Generation of Deadlocks and Livelocks

	7.3 SUMMARY
	7.4 EXERCISES

	CHAPTER 8: STRATEGIES FOR RESULTS CHECKING IN SIMULATION-BASED VERIFICATION
	8.1 TYPES OF RESULT CHECKING
	8.1.1 On-the-Fly Checking Versus End-of-Test Case Checking
	8.1.2 Pregenerated Test Cases Versus On-the-Fly Generated Test Cases
	8.1.3 Applying the Checking Strategies to Calc2

	8.2 DEBUG
	8.2.1 Debug Process
	8.2.2 How Different Types of Test Benches Affect Debug

	8.3 SUMMARY
	8.4 EXERCISES

	CHAPTER 9: PERVASIVE FUNCTION VERIFICATION
	9.1 SYSTEM RESET AND BRING-UP
	9.1.1 Reset Line Initialization
	9.1.2 Scan Initialization
	9.1.3 Testability and Built-In Self-Test

	9.2 ERROR AND DEGRADED MODE HANDLING
	9.2.1 Verifying Error Detection
	9.2.2 Verifying Self-Healing Hardware

	9.3 VERIFYING HARDWARE DEBUG ASSISTS
	9.3.1 Verifying Scan Ring Dumps

	9.4 LOW-POWER MODE VERIFICATION
	9.4.1 Power Savings Through Disabling Functional Units
	9.4.2 Power Savings Through Cycle-Time Degradation

	9.5 SUMMARY
	9.6 EXERCISES

	CHAPTER 10: RE-USE STRATEGIES AND SYSTEM SIMULATION
	10.1 RE-USE STRATEGIES
	10.1.1 Guidelines for Re-Use
	10.1.2 Horizontal Re-Use
	10.1.3 Vertical Re-Use
	10.1.4 Applying Re-Use to Calc2
	10.1.5 Assertion Re-Use

	10.2 SYSTEM SIMULATION
	10.2.1 Systems Test Bench
	10.2.2 Connectivity and Interaction of Units
	10.2.3 Verification Challenges in a Re-Usable IP World

	10.3 BEYOND GENERAL-PURPOSE LOGIC SIMULATION
	10.3.1 Acceleration
	10.3.2 Emulation
	10.3.3 Hardware/Software Co-verification
	10.3.4 Co-simulation

	10.4 SUMMARY
	10.5 EXERCISES

	PART III: FORMAL VERIFICATION
	CHAPTER 11: INTRODUCTION TO FORMAL VERIFICATION
	11.1 FOUNDATIONS
	11.1.1 Design Correctness and Specifications
	11.1.2 Computational Complexity
	11.1.3 The Myth of Linear Scaling of Simulation
	11.1.4 Mathematical Proof Methods in FV

	11.2 FORMAL BOOLEAN EQUIVALENCE CHECKING
	11.2.1 The Role of Equivalence Checking in the VLSI Design Flow
	11.2.2 Main Elements of an Equivalence Checker Tool
	11.2.3 Sequential and Combinational BEC
	11.2.4 Core Algorithms for Combinational Equivalence Checking
	11.2.5 Blueprint of a Modern Equivalence Checking Tool

	11.3 FUNCTIONAL FV—PROPERTY CHECKING
	11.3.1 Property Checking Versus Sequential Equivalence Checking
	11.3.2 The Myth of Complete Verification With FV
	11.3.3 Properties for an Example Design
	11.3.4 DUV Drivers for FV
	11.3.5 State Space Traversal and Temporal Logic
	11.3.6 Functional FV Tool Flow

	11.4 SUMMARY
	11.5 EXERCISES

	CHAPTER 12: USING FORMAL VERIFICATION
	12.1 PROPERTY SPECIFICATION USING AN HDL LIBRARY
	12.1.1 The OVL
	12.1.2 Using OVL to Specify Properties

	12.2 THE PROPERTY SPECIFICATION LANGUAGE PSL
	12.2.1 Overview
	12.2.2 The Boolean Layer of PSL
	12.2.3 The Temporal Layer of PSL
	12.2.4 The Verification Layer of PSL
	12.2.5 The Modeling Layer of PSL
	12.2.6 Using PSL to Specify Properties
	12.2.7 Advanced PSL Topics and Caveats

	12.3 PROPERTY CHECKING USING FV
	12.3.1 Property Re-Use Between Simulation and FV
	12.3.2 Model Compilation
	12.3.3 Formal Functional Verification Algorithms
	12.3.4 Solutions to Address the Problem of State Space Explosion
	12.3.5 Semi-Formal Verification
	12.3.6 EDA Vendors Supplying Formal and Semi-Formal Verification Tools

	12.4 SUMMARY
	12.5 EXERCISES

	PART IV: COMPREHENSIVE VERIFICATION
	CHAPTER 13: COMPLETING THE VERIFICATION CYCLE
	13.1 REGRESSION
	13.1.1 Regression in the Verification Flow
	13.1.2 Regression Quality
	13.1.3 Regression Efficiency

	13.2 PROBLEM TRACKING
	13.3 TAPE-OUT READINESS
	13.3.1 Metrics
	13.3.2 Completion Criteria

	13.4 ESCAPE ANALYSIS
	13.4.1 Individual Bug Analysis
	13.4.2 Escape Examples
	13.4.3 Escape Analysis Trends

	13.5 SUMMARY
	13.6 EXERCISES

	CHAPTER14: ADVANCED VERIFICATION TECHNIQUES
	14.1 SAVE VERIFICATION CYCLES—BOOTSTRAPPING THE VERIFICATION PROCESS
	14.1.1 Separating Power-On-Reset and Mainline Verification
	14.1.2 Bootstrapping the DUV Into High-Potential States
	14.1.3 Manipulating the DUV Specification Provoking States of Resource Conflict

	14.2 HIGH-LEVEL MODELING: CONCEPTS
	14.2.1 Applications of the High-Level Model
	14.2.2 High-Level Modeling Styles

	14.3 COVERAGE-DIRECTED GENERATION
	14.4 SUMMARY
	14.5 EXERCISES

	PART V: CASE STUDIES
	CHAPTER 15: CASE STUDIES
	15.1 THE LINE DELETE ESCAPE
	15.1.1 Background
	15.1.2 The Verification Environments
	15.1.3 The Escape

	15.2 BRANCH HISTORY TABLE
	15.2.1 Background
	15.2.2 BHT Purpose and Logic Design
	15.2.3 BHT Verification
	15.2.4 Results

	15.3 NETWORK PROCESSOR
	15.3.1 System Overview
	15.3.2 Verification Effort
	15.3.3 Results

	15.4 SUMMARY

	VERIFICATION GLOSSARY
	REFERENCES
	SUBJECT INDEX

