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Preface

Solid-state electronics has been a familiar technology for almost a half century, 
yet some circuit ideas, like the transresistance method of fi nding amplifi er gain 
or identifying resonances above an amplifi er’s bandwidth that cause spurious 
oscillations, are so simple and intuitively appealing that it is a wonder they are 
not better understood in the industry. I was blessed to have encountered them 
in my earlier days at Tektronix but have not found them in engineering text-
books. My motivation in writing this book, which began in the late 1980s and 
saw its fi rst publication in the form of a single volume published by Academic 
Press in 1990, has been to reduce the concepts of analog electronics as I know 
them to their simplest, most obvious form, which can be easily remembered and 
applied, even quantitatively, with minimal effort.

The behavior of most circuits is determined most easily by computer simula-
tion. What circuit simulators do not provide is knowledge of what to compute. 
The creative aspect of circuit design and analysis must be performed by the 
circuit designer, and this aspect of design is emphasized here. Two kinds of 
reasoning seem to be most closely related to creative circuit intuition:

1. Geometric reasoning: A kind of visual or graphic reasoning that applies to 
the topology (component interconnection) of circuit diagrams and to graphs 
such as reactance plots.

2. Causal reasoning: The kind of reasoning that most appeals to our sense of 
understanding of mechanisms and sequences of events. When we can trace 
a chain of causes for circuit behavior, we feel we understand how the circuit 
works.

These two kinds of reasoning combine when we try to understand a circuit by 
causally thinking our way through the circuit diagram. These insights, obtained 
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by inspection, lie at the root of the quest. The sought result is the ability to write 
down accurate circuit equations by inspection. Circuits can often be analyzed 
multiple ways. The emphasis of this book is on development of an intuition into 
how circuits work with a perspective that can be applied more generally to cir-
cuits of the same class.

The previous three volumes of this Analog Circuit Design series, Designing
Amplifi er Circuits, Designing Dynamic Circuit Response, and Designing High-
Performance Amplifi ers, are primarily concerned with amplifi cation. This fourth 
volume widens coverage to other kinds of analog and analog-digital (or “mixed-
signal”) circuits in two chapters. The fi rst starts with a solid-state coverage of 
voltage references, mainly bandgap references. Much is also made of various 
current source circuits, then light coverage of fi lters, hysteretic switches (Schmitt 
triggers), clamps and limiters, monostable multivibrators (MMVs) and timing 
circuits – a mix of circuitry that appears repeatedly in electronics. Analysis of 
some of this familiar circuitry is taken in directions largely unfamiliar, such as 
what affects the frequency of astable MMV oscillators. Capacitance and resis-
tance multiplier circuits are less common though exhilarating in how they func-
tion. Some oscilloscope-specifi c circuitry appears; trigger generators also fi nd 
application in digital synchronizing circuits. Ramp and sweep generators can 
be used in other kinds of instruments such as mass spectrometers, as can the 
class of function-generating circuits that include logarithmic and exponential 
amplifi ers and power-series generators. Triangle-wave generators continue a test 
instrument theme as the core of function generators. Absolute-value or preci-
sion rectifi er circuits and peak detectors close out the wide range of different 
circuits with which the competent analog circuit designer must be familiar.

The second and last chapter is mainly about analog-digital conversion, both 
A/D and D/A, beginning with some characterizing concepts that are then 
applied to a catalog presentation of DACs followed by ADCs. Voltage-to-
frequency converters are also included as a kind of ADC. All of these circuits 
receive analysis resulting in equations useful for design. The chapter continues 
with the mathematically oriented theory of time- and frequency-domain sam-
pling theory. I try to present it with an emphasis on what the equations mean 
rather than to engage in math for its own sake. Sampling circuits follow, and 
the volume closes with a brief mention of switched-capacitor circuits. While 
sampling is not covered to the extent that a digital-signal processing (DSP) 
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textbook would, the basic concepts are laid out as they apply to circuit design. 
From what is presented here, the reader should be better prepared to access 
both digital control theory and DSP literature.

Much of what is in this book must be credited in part to others from whom 
I acquired essential ideas about circuits at Tektronix, mainly in the 1970s. I am 
particularly indebted to Bruce Hofer, a founder of Audio Precision Inc.; Carl 
Battjes, who founded and taught the Tek Amplifi er Frequency and Transient 
Response (AFTR) course; Laudie Doubrava, who investigated power supply 
topics; and Art Metz, for his clever contributions to a number of designs, some 
extending from the seminal work on translinear circuits by Barrie Gilbert, also 
at Tek at the same time. Then there was Jim Woo, who, like Battjes, was another 
oscilloscope vertical amplifi er designer; Ian Getreu and Bob Nordstrom, 
from whom I learned transistors; and Mike Freiling, an artifi cial intelligence 
researcher in Tektronix Laboratories whose work in knowledge representation 
of physical systems infl uenced my broader understanding of electronics.

In addition, in no particular order, are Fred Beckett, Lee Jalovec, Wayne 
Kelsoe, Cal Diller, Marv LaVoie, Keith Lofstrom, Peter Starič, Erik Margan, Tim 
Sauerwein, George Ermini, Jim Geddes, Carl Hollingsworth, Chuck Barrows, 
Dick Hung, Carl Matson, Don Hall, Phil Crosby, Keith Ericson, John Taggart, 
John Zeigler, Mike Cranford, Allan Plunkett, Neldon Wagner, and Paul Magerl. 
These and others I have failed to name have contributed personally to my 
knowledge as an engineer and indirectly to this book. Most of all, I am indebted 
to the creator of our universe, who made electronics possible. Any errors or 
weaknesses in this book, however, are my own.
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1
Waveform-Processing Circuits

Besides amplifi cation and multiplication, various other waveform-processing 
functions are a part of the analog circuit design repertoire. Most of these are 
nonlinear. This chapter surveys a wide variety of waveform-processing circuits, 
where a waveform is an electrical function of time.

VOLTAGE REFERENCES

Stable and accurate voltage sources are needed as references for measurement 
circuits and power supplies. The Zener diode is a simple voltage-reference 
device. Although it has been in use a long time, it is still the most stable kind 
of reference available (other than reference standards such as temperature-
controlled batteries or superconducting quantum-effect devices). A simple 
Zener-based reference is shown below.

+V

R

VZ

CVZ

Zener diodes combine two mechanisms, tunneling and avalanche breakdown. 
Tunneling has a negative temperature coeffi cient (TC), and avalanche has a 
positive TC. At around 5 V the mechanism TCs cancel, but the tolerance for 
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5 V Zeners is not good, making selection necessary for low TC. The TC of Zeners 
increases reliably with Zener voltage VZ above about 6 V at about 1 mV/°C per 
volt, or 0.1%/°C. At a VZ of 5.6 V, the TC is that of a forward-biased diode, about 
−2 mV/°C. Placing a diode in series with a 5.6 V Zener results in a zero-TC 6.3 V 
Zener reference diode. Manufacturers’ literature shows that low-TC diodes are 
around 6.3 V. Low-TC Zeners at higher voltages are also possible by stacking 
more diodes in series, but tracking makes repeatable manufacture of zero-TC 
devices more diffi cult.

Zener diodes are noisy, especially at low currents. Consequently, they are 
bypassed with a capacitor, as shown above. In integrated circuits (ICs), high-
performance Zeners are built below the IC surface as subsurface Zeners, which 
are less noisy because surface effects are eliminated. Lateral ion-implanted 
Zeners have low-tolerance voltages (typically less than 1%) and are commonly 
used as references in IC circuits. With a substrate temperature controller on the 
same chip, monolithic references with 1 ppm/°C are commercially available.

A minimum TC also depends on Zener current IZ, typically 5 to 10 mA. The 
circuit shown above is subject to IZ variation with the voltage supply. The resistor 
supplying IZ can be bootstrapped with an operational amplifi er (op-amp).

+

R

Rf

VZ

–

Ri

VR

The op-amp output,

V
R
R

VR
f

i
Z= +



 ⋅1
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supplies a stable Zener current of (VR − VZ)/R. This reference requires a starting 
circuit for the Zener, when power is fi rst applied. A simpler bootstrap circuit, 
shown below, uses a transistor b-e junction as the Zener diode, for which VZ is 6 
to 7 V, with a TC of around 2 mV/°C.

RB

Q2

VR

R

+V

Q1

The Zener Q1 is in series with the forward-biased b-e junction of Q2. The com-
bination forms a reference Zener and has a low TC. Q2 provides shunt regulation 
to reduce output resistance. Zener diodes have dynamic resistances of around 
10 Ω, increasing with VZ to 100 Ω. Thus, their load regulation is unacceptable 
for high stability and must be buffered. Another disadvantage to Zeners is that 
a smaller reference voltage is desired for monolithic 5 V regulators and other 
devices, such as analog-to-digital converters (ADCs) and digital-to-analog con-
verters (DACs), which operate from 5 V.

A newer kind of voltage reference is based on the temperature characteristics 
of PN junctions themselves. Junction voltage has a negative TC of about 
−2 mV/°C. The differential voltage across two matched junctions (as for a dif-
ferential amplifi er [diff-amp]) is

∆V V
I
I

kT
q

I
I

T
e

= ⋅ = ⋅ln ln2

1

2

1
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When the current ratio is held constant, ∆V has a positive, linear TC of

TC
V
C

∆V
k
q

I
I

I
Ie

( ) = ⋅ = 



 ⋅ln . ln2

1

2

1

86 17
µ
°

By scaling ∆V and adding it to junction voltage V, the output is

V V g V V g V
I
I

O T= + ⋅ ( ) = + ⋅∆ ln 2

1

where g is the gain required to amplify ∆V so that its TC is opposite that of 
V. If the junction areas of Q1 and Q2 are not equal, the more general form 
of ∆V is

∆V V
J
J

V
I
I

A
A

T T= ⋅ = ⋅ 



 ⋅ 










ln ln2

1

2

1

1

2

where J is current density, and A is the b-e junction area: J = I/A. The TC of VO

is

TC V
dV
dT

dV
dT

g
d V
dT

O
O( ) = = + ⋅ ∆

We can substitute for the TC of V and ∆V, set TC(VO) to zero, and solve for 
the gain g. To fi nd TC(V), we fi rst differentiate V:

dV
dT

d
dt

V
I
I I

dI
dT

V
V
TI

T
S S

S
T= 



 = − ⋅



 ⋅ + ≅ −ln

1
2

mV
C°

The expression

TC% I
I

dI
dT

S
S

S( ) = ⋅





1

is the fractional TC(IS).
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From semiconductor physics, saturation current is

I q A
D p

L
D n

L
k T A n

L N L N
S e

h no

h

e po

e
i

h

h D

e

e A

= ⋅ ⋅ +



 = ⋅ ⋅ ⋅ ⋅ +





2 µ µ


where D are diffusion coeffi cients, L are diffusion length constants, pno and npo

are the equilibrium minority hole and electron concentrations, respectively, N
are the ion doping concentrations, m are the carrier mobilities, and ni is the 
intrinsic carrier concentration, where

n p no o i⋅ = 2

and no and po are the equilibrium electron and hole concentrations, respectively. 
In the IS equation, m and n2

i are temperature dependent; the other constants are 
fi xed by geometry, doping, or materials properties. Delving deeper into solid-
state physics,

n T ei
E kTgo2 3∝ −

where Ego is the semiconductor bandgap energy, linearly extrapolated to 0 K. 
For silicon it is

Ego Si eV( ) = 1 205.

Because VT = kT/qe, the previous equation can be expressed as

n T T ei
V Vgo T2 3( ) ∝ −

IS also depends on m(T). For silicon, m(T) ∝ T −2.6. With this value, it follows 
from IS that

I T T T e T eS
V V V Vgo T go T∝ ⋅ ⋅ =− − −2 6 3 1 4. .
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By taking the derivative and dividing it by IS,

TC% I
I

dI
dT

V V
T

S
S

S go T( ) = ⋅ =
+1 1 4.

TC%(IS) can now be expressed, at 300 K,

TC% C C CKI S T( ) = + ==300 15 53 0 47 16. % . % %° ° °

The dominant effect on TC%(IS) with temperature is the fi rst term, involving 
the bandgap. The mobility (second term) affects it only about 3%.

Returning to dV/dTI and solving,

dV
dT I

dI
dT

V
V
T

V V V
TI S

S
T

go T= − ⋅



 ⋅ + =

− − ⋅1 1 4.

At 300 K and IS = 10−14 A, for I = 1 mA, V = 0.655 V, and

dV
dT

= − ≅ −1 95 2 0. .
mV

C
mV

C° °

While we are calculating TCs, the fractional TC of I is

TC% I
I

dI
dT

I
I

dI
dT T

V
VV

V S

S

T

( ) = ⋅ = ⋅ − ⋅1 1

At 300 K and V = 0.655 V, as before,

TC% C C CI V( ) = − ≅16 8 44 8% . % %° ° °

It is already established that

TC% V
V

dV
dT T

T
T

T( ) = ⋅ =1 1

At 300 K, TC%(VT) = 0.33%/°C.
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Returning to TC(VO), we must yet fi nd

d V
dT

V
T

J
J

T∆ = ⋅ ln 2

1

Substituting dV/dTI and the above equation into TC(VO),

dV
dT

V
T I

dI
dT

V g
J
J

V
T

O

I S

S
T

T= − ⋅



 ⋅ + ⋅ 





⋅ 



1 2

1

ln

From dV/dTI, this can also be expressed in Vgo as

dV
dT

V I I g J J
T

O

I

T S=
⋅ ( ) + ⋅ ( ) −( ) −ln ln .2 1 1 4 Vgo

For TC(VO) = 0, the required gain is

g
I dI dT T V V

J J
V T I I

J J
S S T go T S= ( )⋅ ( ) ⋅ − ( )

( ) =
− ( ) −( )

(
1 1 4

2 1 2 1ln
ln .

ln ))

The constraint on achieving a zero TC is that I be held constant.

Example: Bandgap Reference Design

The CA3086 bipolar junction transistor (BJT) array has IS = 10−15 A at 300 K. Let 
I be 1 mA. Then V = 0.715 V, and from dVO/dTI,

dV
dT

g
J
J

O ≅ − + 



 ⋅ ⋅2 38 4 14 86 17 2

1

. . . ln
mV

C
mV

C
V
C° °

µ
°

The fi rst two terms have a combined TC of −1.76 mV/°C. The gain required to 
null this TC is, from the formula for g,

g
J J J J

= ( )⋅ ( ) − ( ) ( )
( ) = ( )

0 16 300 0 715 25 87 20 4

2 1 2 1

. . .
ln

.
ln

K K V mV
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Finally, from VO,

V VO T= + ( ) ⋅ = + =0 175 20 4 0 715 0 527 1 242. . . . .V V V V

The result for VO is curiously close to Vgo. Substituting g into VO, then

V V VO go T= + =1 4 1 242. . V

A concise expression for VO, in terms of g, follows from substituting ∆V into
VO:

V V
I
I

g V
J
J

V
I
I

J
J

O T
S

T T
S

= ⋅ 



 + ⋅ ⋅ 





= ⋅ 



 ⋅ 


ln ln ln2

1

2

1
















g

Substituting g, this reduces to the previous equation for VO.
The gain formula of g can be expressed more simply using ∆V as

g
V V V

V
go T=

+ ⋅ −1 4.
∆

This simpler formula for g is expressed entirely in static circuit voltages.

R1

VQ1

R3

Q2

R2∆
+

–

V

Q3

VO

I0

+

–
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This simple bandgap circuit is the Widlar bandgap reference, after Bob 
Widlar (pronounced “Wide-ler”), who invented the bandgap concept. R1 sets 
current I1 through Q1. The current, or current density, of Q1 must be larger than 
that of Q2 to create a positive ∆V across R2. Assuming a = 1 for Q2, the 
gain is VR3/∆V = R3/R2. The application of the equation for VO involves VR3

and VBE3:

V V V V
I
I

R
R

V
J
J

O BE R T
C

S
T= + = ⋅ + 



 ⋅ ⋅3 3

3

3

3

2

1

2

ln ln

This must equal the previous expression for VO above. The junction currents 
are kept constant by bootstrapping their sources from the stable output, sup-
plied by I0. Q3 also shunt regulates the output. In this analysis, a error has been 
ignored, and biasing constrains VBE3 > VBE1 to keep from saturating Q2. Conse-
quently, I2 < I1 < I3 for equal areas. The topology places a limit on how large ∆V
can be made.

Example: Widlar Bandgap Reference

Based on the topology of the Widler circuit shown above and the pre -
vious example, IE3 = 1 mA and VBE3 = 0.715 V. The output voltage is 
VO = 1.242 V. Then

V V VR O BE3 3 0 527= − = . V

We must set I1 < IE3 to reverse-bias the b-c junction of Q2 and for ∆V = VR2 > 0, I2

< I1. For maximum I1/I2, let VCB2 = 0 V, the same as VCB1. At low currents, the 
drop across r′c is negligible, and saturation of Q2 is avoided. Then

V V I IBE E1 3 1 3= ⇒ =
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By choosing I1, we choose ∆V as

∆V V
I
I

T
C= ⋅ ln 3

2

Let I2 = 100 µA. Then

∆V V
I
I

T= ⋅ =ln .1

2

59 6 mV

and

g
V V

V
O= − =
∆

8 85.

Furthermore,

R
V V

I
O

3
2

0 527= − = =. V
100 A

5.27 k
µ

Ω

R
R
g

2
3 595= = Ω

Then

R
V V

I
O

1
1

1

0 572
527= − = =. V

1 mA
Ω

Total current is 2.1 mA, considerably less than the zero-TC current of typical 
Zeners. Much lower currents are also feasible.
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The Widlar reference has the disadvantage of a fi xed output voltage that is 
not optimal for many applications. A bandgap reference with arbitrary output 
would be better.

The differential bandgap circuit shown above, invented by Paul Brokaw at 
Analog Devices, Inc., has output VR that is set by Rf and Ri. Q2 has a higher 
current density than Q1, making ∆V the difference of the VBE voltages;

∆V I R V V V V
I
I

V
J
J

BE BE T
S

T= ⋅ = − = − ⋅ = ⋅1 2 1
1 2

1

ln ln

The op-amp inputs are kept at the same voltage by feedback so that

I R I R1 1 2 2⋅ = ⋅

V

R1

Q1

∆
+

–

R2

+

–

+V

VR

Rf

Ri

Q2 VB

V0

R0

V
+

–

R
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If J2/J1 and I1 are chosen, then ∆V is determined by R. By choosing the b-e junc-
tion areas, we also determine I2. Thus, R1 and R2 are determined. Then

V I I R0 1 2 0= +( )⋅

is set by R0. The base voltage is then

V V V V
I
I

R
R

I
I

V
J
J

B T
S

T= + = ⋅ 



 + 



 ⋅ +



 ⋅ ⋅ 




0
2 0 2

1

2

1

1ln ln


Finally, the output is

V V
R
R

R B
f

i

= ⋅ +



1

For zero TC(VR), we must have TC(VB) = 0. For this circuit, VB has the form 
of VO, the basic bandgap-reference equation. VB is VO, V0 corresponds to g ⋅∆V,
and

g
V
V

R
R

I
I

= = 



 ⋅ +





0 0 2

1

1
∆

For TC(VB) = 0, g must satisfy the g formula, or

V V V g VB0 = − = ⋅ ∆

The TC(V0) > 0 and is linear with absolute temperature.
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Example: Differential Bandgap Reference

R0

Q2Q1
9

10

V∆

+

–

R1 R2

0.54 V

825 Ω

V0

12

13

11
14CA 3086

1.00 kΩ

45.3
k Ω

4.53
 kΩ

43 k 2

1

Q3 Q4

3

5

4

Q5 Q6

2N3906 2N3906

4.3 V
3.2 V Q7

8

6

7
VR = 2.50 V

Rf 1.00 kΩ

VB
25Ω cermet

2.5 V adj.

1.24 V

Ri 1.00 kΩ

RE 75.0 kΩ

V

+

–
= 0.70 V

+5 V +5 V

+5 V

Ω

2.2 V

R

The circuit sketched above is based on a fi ve-transistor CA3086 array of matched 
transistors with equal areas. The goal is to design a 2.50 V reference. For CA3086 
BJTs,

I S = −10 15 A

For this design, let

J
J

I I2

1
1 210 60 600= = =, A, Aµ µ
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Then

R
V

I
VT= = ⋅ ( ) = = ⇒ ±∆ Ω Ω

1

10
60

59 56
992 1 00

ln .
.

µ µA
mV

60 A
k 1%

Now proceed to fi nd R0 by fi rst calculating V:

V V VBE T= = ⋅ 





=−2 15

600
0 702ln .

µA
10 A

V

Then, from Ohm’s law and the expression for V0,

V R0 0 660 1 242 0 702 0 541= ⋅ ( ) = − =µA V V V. . .

Solve for R0:

R0 819 825 1= ⇒ ±Ω Ω %

Now calculate R1 and R2 from the IR equation. This is a ratio requiring another 
constraint to determine actual values. Note that VCB of Q1 and Q2 are in series 
with that of Q3 and Q4. VC3 is a junction drop down from the supply of 5 V, or 
about 4.3 V. But VC4 is less; it is a junction drop up from the output of 2.5 V or 
3.3 V. And VB = 1.242 V. Split the voltage difference between the series b-c junc-
tions so that

V VB B3 4
3 3 1 24

1 24 2 3= = − + =. .
. .

V V
2

V V

Then

R1
5 2 3

45 1= − = ⇒ ±V V
60 A

k 45.3 k
.

%
µ

Ω Ω

and
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R
R

2
1

10
4 5 4 53 1= = ⇒ ±. . %k kΩ Ω

To compensate the diff-amp for bias current, set the source resistances equal. 
This requires a base resistor for Q3 of

RB3 45 3 4 53 40 8 43= − = ⇒. . .k k k kΩ Ω Ω Ω

The diff-amp emitter bias current is set by RE. If we choose it to be 20 µA, then 
base current for b ≅ 100 is about 100 nA, a small fraction of 60 µA. The emitter 
voltage is a junction drop down from VB3, or about 1.5 V. Then

RE = =1 5
75

. V
20 A

k
µ

Ω

Finally, the feedback divider is

R
R

f

i

+ = =1
2 500

2 013
.

.
V

1.242 V

Choose Ri = 1.00 kΩ, 1%, a convenient value. Then Rf = 1.013 kΩ. To 
allow adjustment of the output to correct for parts tolerances, place a trim-pot 
(screwdriver-adjusted potentiometer) in series with

R f = ±1 00 1. %kΩ

having twice the remaining resistance, to center the pot, or

Radj = ⋅ −( ) = ⇒2 1 013 1 00 25 8 25. . .k kΩ Ω Ω Ω

A cermet pot has a low TC, required for the application, but such a low value 
may not be available in cermet, and Rf must be reduced to make the trim-pot 
larger.
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All parts values have now been determined, and the circuit can be “proto-
typed” to verify performance. A prototype was built with the following 
deviations:

R R R1 2 049 9 1 4 99 1 820 5= ± = ± = ±. % . % %k , k ,Ω Ω Ω

The supply measured 5.01 V, V0 was 0.540 V, and VB was 1.242 V. These measure-
ments were taken on a warm spring evening in a building without air condition-
ing; the temperature was approximately 300 K. The CA3086 was then heated to 
about 50°C above ambient temperature with a soldering iron, and VB became
1.237 V. The circuit was then cooled with circuit cooler (an aerosol); VB was then 
1.248 V. A rough calculation indicates that TC(VB) is roughly 100 ppm, about 
the same TC as the metal-fi lm 1% resistors. In a refi ned design, this discrete 
implementation should have all 1% metal-fi lm resistors (no 5% composition 
resistors). Better yet, it should be an integrated circuit. But for the 30 minutes 
it took to build, it demonstrated the validity of the derived design equations.

Q1

R0

Ri

Q5

Q4

Rf

Q3

R

Q2

+V

VR
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In integrated form, a simple differential bandgap reference can have the 
topology shown above, in which an emitter-area ratio other than one is used, 
where A1 > A2. Q3 is a current mirror, and Q4 and Q5 form a Darlington buffer 
to the output.

R2

R

+

–

+V

VR

Rf

V
+

–

Q2
VB

R1

Q1

V0

Ri

V

+

–

∆

This third bandgap-reference topology uses an op-amp with inputs from the 
emitter (instead of collector) circuit of the bandgap cell, Q1 and Q2. The analysis 
is similar to the previous one. Equations for ∆V and VR are valid. So are the IR
equation and VO, where V0 equals I1R1 = I2R2. The equation for VB is slightly 
modifi ed:

V V V V
I
I

I R V
I
I

R
R

VB T
S

T
S

T= + = ⋅ 



 + ⋅ = ⋅ 



 + 



 ⋅ ⋅0

2
1 1

2 1ln ln lnn
J
J

2

1







By comparison,

g
V
V

R
R

= =0 1

∆

and the previous expression for VO also applies.



18  Chapter 1

Besides these three popular bandgap circuits, various other topologies have 
been used in commercial ICs.

RB

RL

+

–

+V

VL

VB

VD

VO

In some designs, a very simple voltage reference is needed that does not 
require a low TC. A shunt-feedback voltage source is shown above. We want VO

to be insensitive to the temperature and supply voltage V for good power-supply
rejection (PSR).

This circuit has no closed-form static solution but can be designed without 
iteration, given V, VO, and IS. Assume that the diode and BJT are matched. The 
supply current is IE; choose IE. Then

V V
I

I
B T

E

S

= ⋅ ⋅
ln

α

By Kirchhoff’s voltage law (KVL),

V V I R V V I R V
I

I
O E L D E L T

E

S

= − ⋅ − = − ⋅ − ⋅ ⋅
ln

α

where VD equals VB. Then

R
V V V

I
L

O B

E

= − +( )
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KVL is again applied to the base circuit:

V I R V
R

IE L B

B

E− ⋅ − =
+β 1

Solving for RB yields

R
V V

I
RB

B

E
L= +( ) ⋅ −



 −





β 1

The PSR is expressed in small-signal quantities as vo/v.

rin
rin RL+

v

RL

rinRL +

rin

 rd
vo

vl

RL
rin RL+

β– o



The fl ow graph, shown above, reduces to

v
v

r
r R

R r
R r r

r
r R

ro in

in L

L in

L in d

in

in L
d=

+ +( ) ⋅
⋅

+
≅

+ +( ) ⋅
≅

β β1 1
0,

≅
−

≅V
V V

rO

B
e, 0

where

r R rin B e= + +( )⋅β 1

PSR is often expressed as the PSR ratio (PSRR):

PSRR ≡ ⋅20 log
v
vo
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The TC of the shunt-feedback reference largely depends on TC(b). The output 
voltage is

V V V I R V V
I

RO B D B B B D
E

B= − + ⋅ = −( ) +
+

⋅
β 1

Because the junctions nearly cancel, the fi rst term is negligible. In the second 
term, IB(T ) varies with b(T ) at about 1%/°C. Less base current is required to 
sustain VL with increasing b. Thus, VO has a negative TC. For small changes in 
VO and constant V, vo varies inversely with b.

Feedback reduces the dynamic output resistance to

r
r R
R r R

r
R

r R
r v

v
out

in L

L in L
in

L

in L

in o≅
+ ⋅ +( )

= ⋅
+ +( )

=
+

⋅ −
1 1 1
1

β β β



≅
+

⋅ −
−







≅R V V
V V

rB L

B
eβ 1

0,

Example: Shunt-Feedback Voltage Reference

The shunt-feedback reference circuit has the following design parameters:

I V VS O= = = =−10 99 5 2 515 A, , matched junctions, V, Vβ .

Let IE = 1 mA. This value is chosen so that any load current is negligible in 
comparison. Applying VB, RL, and RB yields

V VB T= ⋅ =−ln .
1

0 715
15

mA
10 A

V

RL = − +( ) = ⇒5 2 5 0 715
1

1 79 1 8
V V V

mA
k k

. .
. .Ω Ω

RB = ( ) ⋅ − −





= ⇒100
5 0 715

1 79 250 240
V V

1 mA
k k k

.
. Ω Ω Ω
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The PSR is calculated as follows:

rin = + ( )⋅ ( ) =240 100 26 243k kΩ Ω Ω

v
v

o =
+ ( )⋅ ( ) =243

243 100 1 8
0 57

k
k k

Ω
Ω Ω.

.

This does not amount to much power-supply rejection. As a PSRR, it is only 
4.8 dB. The dynamic output resistance is reduced to

rout = ( )⋅ ×( ) =−243 4 26 10 1 033k kΩ Ω. .

In this example, the shunt-feedback voltage reference rout has only about a × 2 
advantage over a resistive divider because RL is not very large relative to rin.

R1 +

–

I

V

R2

A simple voltage source that is easily fl oated is the VBE multiplier, shown above. 
When driven by a current source, it behaves as a shunt-feedback amplifi er with 
voltage,

V R I V
R
R

B BE= ⋅ + ⋅ +



1

1

2

1

= ⋅
+

+ ⋅ +





+ → ∞I R
V

R
R

R RBE
1 1

2
1 2

1
1

β
,

= ⋅ +





→ ∞V
R
R

BE 1 1

2

, β
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where I is the total current. Its main advantage over a current-driven resistor is 
its dynamic resistance,

r R R r r
R R r

R r
out m= +( ) ⋅ +



1 2

1 2

2
π

π

π

where rm is the BJT transresistance of re/a and rp = (b + 1)re. The fi rst shunt 
resistance is the divider resistance, and the second is the equivalent BJT resis-
tance. If the resistive-divider loading is negligible, then

r r
V

V
V
I

V
V I I

V I
I I

out m
BE

T

E T S S

≅ 



 = ⋅ ⋅

⋅ ( ) =
⋅ ( )

1
α αln ln

The numerator is the value of a current-driven resistor; the denominator is the 
improvement factor due to the BJT.

The voltage source driving this circuit is VBE, which drifts with temperature. 
From V,

dV
dT

I R
TC

R
R

V TC VBE BE= − ⋅
+

⋅ ⋅ ( ) + +





⋅ ⋅ ( )1 1

21
1

β
α β% %

assuming TC(a) ≅ 0. The fractional TC of junction voltage with constant I,
which is found for VBE = V on p. 6 from dV/dTI, is

TC V
V

dV
dT V

V V V
T T

V
BE I

BE

BE

I BE

BE go T go%( ) = ⋅ = ⋅
− + ⋅( ) = −

+1 1 1 4 1
1

1 4.
.

. ⋅⋅





V
V

T

BE

Then dV/dT, with a typical VBE = 0.7 V, at 27 °C, becomes

typical C V C
dV
dT

I R R
R

= − ⋅
+

⋅ °( ) − +





⋅ ( ) ⋅ °( )1 1

21
1 1 0 7 0 26

β
% . . %
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and the TC(V ) < 0. This circuit is commonly used in the base circuit of comple-
mentary common-collector (CC) buffers, as an alternative to a voltage drop 
across a resistor driven by a current source. It can be designed so that its TC 
tracks the CC output BJTs in “Complementary Emitter-Follower Output Ampli-
fi er” in Designing High-Performance Amplifi ers.

R2

+

–

V

R1 R3

Q1

Q2

A VBE multiplier with an additional gain stage is shown above. The circuit 
below is the general form of the VBE multiplier.

R + –

VR
+

Gm

The voltage source VR drives the shunt transconductance amplifi er across R.
With a current of I, the voltage across R is
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V I V G R
G

R m
m

= + ⋅( ) ⋅ 





1

The incremental dynamic resistance is

r R
G

out
m

= 1

Without the amplifi er, it is R. For large Gm, it approaches zero.

CURRENT SOURCES

V∆
+

–

I0

Q2

I0

14 I0

R

Q1

I

Gm

The three-terminal current-source IC, based on the National Semiconductor 
LM334, has a bandgap cell Q1, Q2, and a transconductance amplifi er with an 
output of 14I0. Each BJT conducts I0, and the area of Q1 is 14 times that of Q2,
or A1 = 14A2. With the same current,

J
J

2

1

14=
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The terminal current at 25°C is

I I
V
R

V
R

T= ⋅ = ⋅ 



 = 



 ⋅ ⋅ ( ) =

( ) ⋅ ( )
16 16

15
16
15

14 1 067 67 77
0

∆ ln . . mV
RR R

=
72 3. mV

The data book specifi es that the voltage across R is 67.7 mV. I varies with VT and 
has a TC of 0.336%/°C at 25°C. A shunt RD combination in series with this part 
adds a negative TC. If the shunt R is chosen properly, the TC can be set to 
zero.

RL

+ –
K

VR

+

VL

R

I

V

A current source based on the VBE-multiplier concept is shown above. The 
amplifi er has voltage gain K. Otherwise, the topology is the same as the VBE-
multiplier voltage source. The circuit equations are

V K V V VR L= ⋅ +( ) −[ ]

or

V
K

K
V VR L=

+




 ⋅ +( )

1
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Substituting for V,

V I R RL= ⋅ +( )

Also,

V I RL L= ⋅

Then solving for I,

I

K
K

V

R R K

R

L

= +

 ) ⋅

+ +( )
1

1

For an op-amp, K → ∞, and

I
V
RK

R
→∞ =

I is independent of the load, as desired. The dynamic output resistance, which 
ideally is infi nite, is

r
dV
dI

dV
dV

dV
dI

R
R R

KR K R Rout
L L L

L
L= − = − ⋅ = −

+




 ⋅ −( ) = ( ) ⋅ ( )

As K → ∞, rout → ∞, as desired. R should be made as small as feasible to maintain high 
rout for small RL. RL begins to affect I signifi cantly as it approaches the value of R.

V+

R

RC

Q1

Q2

V

I
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A BJT realization of the VBE-multiplier current source is shown above. VR is 
VBE of Q1, and K is the loop gain with VBE1 as input:

K
v

v
R r R r R

rbe

C e L

e

= = ⋅ +( ) ⋅ + +( )[ ]
1

2 1

1

1α β π

R should be made small for load insensitivity and RC large for high K. I ∝ VR =
VBE1 and TC(VBE) ≅ −2 mV/°C,

TC% TC%I VBE( ) = ( )1

In the BJT current source, the diff-amp input is the b-e junction of Q1, and IE1

also contributes to I, or

I I IE C≅ +1 2

If IC1 is chosen, then VBE1 is determined and R is calculated from

R
V I I

I I
T C S

E

= ⋅ ( )
−

ln 1

1

Next, RC must be chosen to satisfy static constraints. Given RL and V, and with 
BJT parameter IS, then

I I I
I

I IE E
E

E2 1
1

1
1

= − +
+

= − ⋅
β

α

and

V V
I
I

BE T
C

S
2

2= ⋅ ln

Then the current through RC, corrected for IB2, is

I I
I I I

RC E
E E= ⋅ +
+

=
+( )[ ]⋅ +

+
α

β
β β

β1
2

2
1

1
1

1
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With these calculated values,

R
V V V I R

I
C

BE BE L

RC

= − + + ⋅( )2 1

Example: VBE-Multiplier Current Source

The current source shown above has a 1 kΩ nominal load to ground and 
V = 5 V. Choose I to be 1 mA. The BJTs have b = 99 and IS = 10−15 A. Then, if 
we let

IC1 100= µA

V VBE T1 15

100
0 655= ⋅ =−ln .

µA
10 A

V

it follows that

R =
−

= ⇒0 655
1 100

728 750
. V

mA Aµ
Ω Ω

From the equation for IE2, IE2 = 0.901 mA, and VBE2 = 0.712 V. IRL = 1 V. Next, 
IRC = 10.80 µA, and fi nally, from RC,

RC = − = ⇒5 2 367
24 4 24

V V
10.80 A

k k
.

.
µ

Ω Ω

K is calculated to be 80. This makes rout = 342 kΩ. The dynamic output resistance 
is positive, though the static resistance is negative because the output terminal is 
that of a source. Because R ≅ RL, this design could be improved by a choice of 
smaller IE1, causing R to be smaller. Because IE1 is already a tenth IE2, we are at a 
point of diminishing improvement. An op-amp realization would get around the 
lower limits on R .
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This circuit is quite sensitive to the value of R. It was built using a 750 Ω, 5% 
resistor; the resulting I was about 7% low. With a trim-pot adjusted to 728 Ω,
the error was about 0.2%. Therefore, a 1% value of 732 Ω would be a better 
choice for R.

IV

II

+

–
–

+

RL
I

R2

Ri

VL

VL

R3

OV

L

An op-amp-based current source was invented in 1963 by Brad Howland at 
the Massachusetts Institute of Technology (MIT). It is the Howland current source,
shown with a fl oating voltage source input. This circuit has positive feedback to 
the noninverting input. With a suffi ciently large load resistance, the circuit 
becomes unstable. The positive feedback provides a bootstrap effect that keeps 
the load current IL constant.

The op-amp keeps its inputs at the same voltage; both are at the load voltage 
VL. The same voltage appears at both ends of the input branch through which 
fl ows the input current,

I
V
R

I
I

i

=
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This current fl ows through R2, causing

V I R V
R
R

V VO I L
i

I L= ⋅ + = ⋅ +2
2

VO is thus established. It causes a current through R3; applying Kirchhoff’s 
current law (KCL) at the load node and substituting VO,

I I
V V

R
V
R

R
R R

V
R R

R R
L I

O L I

i i
I

i

= + − = + 



 ⋅ 


 ⋅ = +



3

2

3

2 3

3

1 ⋅⋅VI

The cancellation of VL in the numerator manifests bootstrapping. VO tracks VL,
keeping IL independent of VL and hence the circuit behaves as a current source.

–

+

V1

IL

R2

VL R4

OV

R1

R3

V2

Floating voltage sources are usually inconvenient. A more general Howland 
circuit, shown above, has two voltage inputs, V1 and V2, with differential input

V V VI = −2 1

What is different is that the currents in R1 and R3 can be different. The circuit 
is solved similar to the previous one. VO from the inverting side is

V V I R V
V V

R
R

R
R

V
R
R

VO L L
L

L= + ⋅ = + − ⋅ = −



 ⋅ + +



 ⋅2 2

1

1
2

2

1
1

2

1

1
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On the noninverting side, applying KCL and substituting for VO,

I
V V

R
V V

R
R

R R
V

V
R

R
R R R

L
L O L= − + − = −

⋅




 ⋅ + +

⋅
−





2

3 4

2

1 4
1

2

3

2

1 4 3

1
 ⋅VL

This general expression for IL is not independent of VL, as required of a current 
source. The coeffi cient of VL is set to zero under the condition

R
R R R

R
R

R
R

R
R

R
R

2

1 4 3

2

4

1

3

2

1

4

3

1
⋅

= ⇒ = =or

Under this condition, IL reduces to

current source I
V V

R
V
R

L
I= − =2 1

3 3

The output resistance is found by regarding the static quantities of IL as vari-
ables, and then differentiating and inverting

r
V
I

R
R R R

R
R R R R

out
L

L

= =
⋅

−



 =

−
∂
∂

1
12

1 4 3

4

2 1 4 3

Under the current-source conditions, rout is infi nite.

–

+

V1

R2

VL

Vo

R4

R1

R3

V2

V–

V+

+

– IL

R5
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The modifi ed Howland source above has an additional resistor R5 and a buffer 
between the load and noninverting input. This increases compliance (load-
voltage range) and load-current range because R5 can be made small while R4

satisfi es the gain requirement of a current source. If IR4 << IL, the buffer can be 
omitted and R4 connected to R5. For this circuit, assume fi nite op-amp gain K
and apply superposition to the op-amp inputs:

V
R

R R
V

R
R R

VO− =
+





 ⋅ +

+




 ⋅1

1 2

2

1 2
1

V
R

R R
V

R
R R

VL+ =
+





 ⋅ +

+




 ⋅3

3 4

4

3 4
2

The op-amp output voltage is

V K V V
K

R R R K
VO O K= ⋅ −( ) =

+( )[ ] +
⋅ ( )+ − →∞

1 2 1

when K → ∞, VO is

V
R R

R
R

R R
V

R
R R

V
R

R
O K →∞ = +



 ⋅

+




 ⋅ −

+






⋅ +1 2

1

4

3 4
2

2

1 2
1

3

3 ++




 ⋅



R

VL
4

The load current then is

I
V V

R
L

O L= −
5

Substituting VO for infi nite K yields an expression in V1, V2, and VL. When the 
coeffi cient of VL is set to zero, the current-source condition results. Not surpris-
ingly, it is the same as the previous conditions because the feedback topology is 
the same as the previous circuit. Then
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I
R
R

V
R

R
R

V
R

L
I I= 



 ⋅ = 



 ⋅2

1 5

4

3 5

where VI = V2 − V1.
When the buffer is omitted (shorted), IL is reduced by IR4. The incremental 

gain of the noninverting loop is calculated as follows. For ∆IL = 0, the change 
in current through R5 must equal that through R3 and R4, or

v v
R

v
R R

o L L− =
+5 3 4

or

v
v

R R
R R R

L

o

= +
+ +

3 4

3 4 5

The noninverting loop gain to vL must be that of a current source and is

v
v

v
v

v
v

R
R R

R R
R

R R
R R RL

o L

o

+

+
⋅ ⋅ =

+




 ⋅ +



 ⋅ +

+ +



3

3 4

1 2

1

3 4

3 4 5





For the noninverting loop gain to be 1,

R
R

R R
R

2

1

4 5

3

= +

Then the differential of the load current is

dI
I
V

dV
I
V

V
V

dV
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L
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L
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i
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
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

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


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⋅
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∂
∂

∂
∂
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where Av ⋅dVi = dVo. For a current source, only dVi (not dVL) can 
change IL.

–

+

R1

R2

OV

IO

II

The fi gure above shows an inverting current-gain amplifi er that uses positive 
feedback, a variation on the Howland topology. With the voltages at the op-amp 
inputs kept equal, R1 and R2 drop the same voltage. It then follows that

I
I

R
R

O

I

= 1

2

II

– +
R1 R2

DAC
–

+

Rf

OV

R2
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This application of the inverting op-amp current amplifi er reverses the DAC 
output-current polarity and scales it for input to the inverting op-amp. The 
voltage output is negative. Of signifi cance is the DAC output node, which is kept 
at the same voltage as the virtual ground (inverting input) of the op-amp, 
meeting the constraint of a limited-compliance DAC.

R

II

+

–

1
R2

IO

The noninverting current amplifi er above applies to R2, through the ×1
buffer, the same voltage that is across R1. The current gain is

I
I

R
R

O

I

= +1 1

2

kR

R

IO

A

+

–

Shown above, this current amplifi er is used to boost the output current IO of an 
amplifi er by k times.
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By reversing the buffer, as shown above, current is attenuated instead, in this 
precision fl oating current shunt. This circuit is similar to a previous current 
source; VR is removed, and R is driven by II instead. The current gain is the 
current divider formula,

I
I

R
R R

O

I

=
+

2

1 2

Example: Bipolar Simulated Resistance

II R
+

–

2

IO

R1

–

+

VO

R 2′

R 4′

R1

R3

V+

V–

Ri
VI

II

R

(1 –   ) R

x

x

A circuit with similar topology to the Howland current source provides a preci-
sion, adjustable, bipolar input resistance and can be used in the one-op-amp 
diff-amp in place of the grounded resistor. This is sometimes necessary due to 
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unavoidable parasitic resistance in the ground return path. Applying KCL twice 
gives

R
V
I

R
R
R

RI
I

I

= = ⋅ +



 −1

4

3
21

where R2 and R4 include the trim-pot resistances. When R1 = R3 = R , then

R R R Ri = + −( )4 2

When the trim-pot is centered, R2 = R4, and Ri = R . If we set R ′2 = R ′4, the trim-
pot allows adjustment of Ri around R as center value.

Example: Inverting Howland Current Source

vI

–

+

R
–

–

+

R – RS

v1
–1

v2

vL

RS

iL

The goal in this example is to design an op-amp current source based on the 
bootstrapping behavior of the Howland source but with an inverted output. The 
×(−1) amplifi er can be an inverting op-amp. Then

v v v
R

R R
v v

R
R R

v
R R

I
S

L I
S

L
S

2 1
2= − = − −

−




 ⋅ −( )





=
−





 ⋅ − ⋅ −

RR R
v

S
I−





 ⋅

The load current is, by KCL,

i
v v

R
v v
R R

L
L

S

L I

S

= − − −
−

2
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Substituting for v2 and reducing, we fi nd that the coeffi cient of vL is zero, as 
required for a current source. Then iL depends only on vI:

i
v

R
L

I

S

= − 2

This circuit therefore functions as a current source.

+

–

IO

R

IV

–

+

A common way to generate a current IO from a given voltage VI is to use an 
op-amp voltage-to-current (V/I ) converter, shown above. The op-amp keeps VI

across R so that

I
V
R

O
I=

The fi eld-effect transistor (FET) can be replaced by a BJT or Darlington, though 
it avoids error due to a loss. This circuit need not be grounded. Ground can 
be replaced by −VEE or, for the complementary V/I converter using the opposite 
polarity of transistor, by +VCC.

The current mirrors in Designing Amplifi er Circuits, “Current Mirrors”, are 
current-gain amplifi ers and can be used as current-driven current sources.
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For high precision, the Wilson current mirror shown above should have a junc-
tion in the collector of Q2 for electrical symmetry between Q1 and Q2, especially 
if R1 and R2 are not used, as shown below.

II IO

Q3

Q2 Q1

R

Wilson current mirror

1R2

Q4

II IO

Q1

Q3

Q2
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An application for the complementary form of this current mirror, shown 
below, is similar to that of the current-inverter circuit except that the output is 
a bipolar current. The total DAC output current is

I I Ifs = +1 2

D1 keeps Q3 out of saturation when D2 conducts.

Q4

Q1

Q3

Q2

V+

R R

D1

D2

DAC

I1

I2 IO

FILTERS

Filters are characterized generally by their transfer functions in the complex-
frequency domain. As rational functions of s, numerator and denominator can 
be factored into fi rst- and second-order factors. Higher-order fi lter polynomials 
are products of these lower-order factors. Filter responses can be categorized 
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broadly as low-pass (LP), high-pass (HP), or band-action fi lters, which are either 
band-pass (BP) or band-reject (or “notch”) fi lters.

In Designing Dynamic Circuit Response, amplifi er analysis assumed a low-pass 
response. In Designing High-Performance Amplifi ers, some use of high-pass fi lters 
in composite amplifi ers was demonstrated. In radio communications, highly 
resonant, or tuned, circuits are used as band-pass fi lters. These circuits have low 
z or high Q (Q = 1/2 ⋅z ). Their complex poles are very underdamped and have 
dominant imaginary components. That is, they lie near the jw-axis.

jω

σ

p1

s jω≈

jωd ≈ jωn

jω p2– 

p2

ω
n

jω p1– 

The conjugate pole-pair p1 and p2 is

p j j
Q

j
Q

d n n
n

n1 2
2

21
2

1
1

2
, = − ± = − ⋅ ± ⋅ − = −

⋅
± ⋅ −

⋅( )
α ω ζ ω ω ζ ω ω

For Q >> 1, the poles have imaginary component ±jwd ≅ ±jwn. The steady-state 
sinusoidal (or jw-axis) response is found (as in “s-Plane Frequency Response” 
in Dynamic Circuit Response) from the zero-vector lengths divided by the pole-
vector lengths. Note that jw − p1 varies signifi cantly in both magnitude and angle 
around jwn, where peaking of the magnitude response occurs. At jwd ≅ jwn,
jw − p1 is minimum and the band-pass transfer function is maximum. There, 
∠( jw − p1) passes through 0°, an indication of resonance. From the geometry 
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of the above fi gure, variations in jw around jwd have little effect on the length 
or orientation of the conjugate pole vector,

j p j j j j jn n n nω ω ω ω ω ω− ≅ − −( ) = ≅2 2 ,

Similarly, the zero at the origin effects little change, and the net effect of the 
conjugate pole and zero is

j
j p j j n

ω
ω ω ω−

≅
≅2

1
2

These narrowband approximations assume that the poles are near ±jwn and that 
the frequency range for jw is around jwn. The second-order resonant response 
is consequently reduced to a fi rst-order approximation of the pass-band 
response:

s
s p s p j p

n

s j

n

n

ω ω
ωω−( )⋅ −( ) ≅ ⋅

−≅1 2 1

1
2

Application of the narrowband approximations effects a band-pass to low-pass 
fi lter transformation. The fi rst-order result is the response centered around jwn

instead of the s-plane origin.

p1

+ωd αj ( )

ωdj

α

α

–ωd αj ( )

45°

α

2 α

α2

A critical parameter of tuned circuits is their bandwidth relative to their reso-
nant frequency. The less damped a resonant circuit is, the narrower its band-
width and the more selective its response to a particular frequency channel. 
On the above plot, a closer view of the s-plane near p1 is shown. As previously 
defi ned, bandwidth is the frequency at which the magnitude of the response 
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rolls off to 1 2  of its low-frequency value. In this case, two frequencies are 
centered about jwd where roll-off to 1 2  occurs. For bandpass response, band-
width is defi ned by those frequencies. The magnitude of the passband response 
rolls off to bandwidth magnitude when j pω − =2 2. At this vector length, the 
pole angles are 45°, and by geometry the bandwidth frequencies are j(wd + a)
and j(wd −a). Under the narrowband approximation, the bandwidth frequen-
cies are

j j nω ω α≅ ±( )

The bandwidth is consequently

ω ω α ω αbw n= +( ) − =

And the width of the passband is

∆ω ω α ω α α ω= +( ) − −( ) = ⋅ = ⋅n n bw2 2

From the pole roots,

α ω ω
α

ω
ω

=
⋅

⇒ =
⋅

=n n n

Q
Q

2 2 ∆

In this formula, the signifi cance of expressing z as Q is made explicit; Q is the 
selectivity. The larger Q is, the narrower the bandpass width relative to the center 
frequency.

A geometric interpretation (Angelo 1969) in the s-plane also eases locating 
the frequency of maximum magnitude or gain wm for a complex pole-pair. When 
the pole vectors form a right angle at f, the vertex on the jw axis is at jwm.
Let the vectors be r1 and r2, as shown. Then the goal is to maximize the mag-
nitude response,

ω
ρ ρ

n
2

1 2⋅
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It is maximum when r1⋅ r2 is minimum. From geometry, the area of the tri-
angle that is formed by r1, r2, and the vertical (dashed) line between the poles, 
of length 2 ⋅wd, is

A d= 1 ⋅ ⋅ ⋅( )
2

2α ω

= ⋅α ωd

= ⋅ ⋅1
2

1 2ρ ρ φsin

As the jw vertex moves, the area remains constant. The magnitude response is 
thus

ω
α ω

φ ω
α

φ φn

d

n Q
2

2 2⋅ ⋅
⋅ ≅

⋅
⋅ = ⋅sin sin sin

When f = 90°, sin f is maximum as is the response. At wm, the peak magnitude 
is Q. From the Pythagorean theorem,

ω ω αm d
2 2 2= −

The triangles themselves are not physically signifi cant but are a mnemonic 
device for reasoning in the s-plane.

jω

σ

p1

jωm

p2

φ

ρ1

ρ2
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Cascaded stages of identical tuned circuits improve selectivity. This scheme 
of synchronous tuning has a bandwidth reduction factor previously derived 
in Designing High-Performance Amplifi ers, “Mutliple-Stage Response.” The factor, 
for n stages, is

2 11 n −

In this case, bandwidth reduction is desirable because it improves selectivity.
A shunt RLC is a parallel resonant circuit with an impedance of

Z
sL

s LC s L R
s C

s s RC LC
p =

+ ( ) +
=

+ ( ) +2 21 1 1

with parameters

ωn
n

nL C Q
R C
L C

R
Z

Z
L
C

= ⋅ = ⋅
⋅

= =1 , ,

The band-pass width is ∆w = 1/RC and is not affected by L. Thus L can be 
adjusted to tune the circuit without affecting ∆w. These parameters describe a 
circuit in which Zp is driven by a current source. For example, it can be a col-
lector or drain load of a tuned amplifi er stage.

A more accurate model of an LC parallel-resonant (“tank”) circuit, commonly 
found in radios, includes the series resistance of the inductor, Rs. We then have 
three parallel branches with admittance,

Y sC
sL R Rs p

= +
+

+1 1

Solving for Z = 1/Y gives

Z R R
s L R

s LC s L R R C
s p

s

p s

= ( ) ⋅ ( ) +
( ) + ( ) +[ ] +

1
12
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As usual, ωn LC= 1 , but Q is now

Q
L C R R L Cp s

=
+
1

Q is infi nite when Rp is infi nite and Rs is zero.
For large Q, the parallel-resonant circuit parameters suggest that L must be 

small or C large. Parasitic elements associated with components limit the practi-
cal range of values of L or C. Also, interstage loading resistance can be too small 
to allow high Q. In these cases, impedance transformation in the resonant 
circuit is often the solution.

C L

Rp

n2

n −1
n

turns

1
n

turns

A tapped inductance transforms load resistance Rp/n2 to Rp across the shunt 
LC. The inductor is an autotransformer with a high coupling coeffi cient (k ≅
1). The mutual inductance causes the LC voltage to be n times that across the 
resistance, where n is the turns ratio of the total to bottom windings. The capaci-
tor current is increased n times, causing Rp to appear 1/n2 times smaller across 
the lower winding.

L C

Rp
nn

n – 1

C
n

C

C1

C2
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A capacitive divider is used in a similar way except that the capacitors do not 
have a mutually coupled fi eld. The impedance across the inductor terminals is, 
for w >> 1/(Rp/n) ⋅ (C1 + C2),

Z
sC sC

R
n s C C

R
n

C C
C

p p= + =
( )

⋅ +





1 1 1

1 2 1 2

1 2

1

The impedance shunting L is a series C1C2 branch shunting Rp. If the equivalent 
shunt LC resistance is Rp, as assumed, then n must be

n
C C

C
= +





1 2

1

Two of the most popular op-amp second-order fi lters are the Sallen-Key and 
multiple-feedback fi lters.

R1 R2

C2

C1

Vo+K

V

+

–

i

The Sallen-Key LP fi lter, shown above, can be analyzed as a feedback amplifi er 
for voltage gain or by application of KCL and divider formulas. The transfer 
function is

V
V

K
s R R C C s K R C R R C

o

i

=
( ) + −[ ]⋅ ⋅ + +( ) ⋅{ } +2

1 2 1 2 1 1 1 2 21 1
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Let the amplifi er be a ×1 buffer. Then the transfer function collapses to

V
V s R R C C s R R C

Ko

i

=
( ) + +( ) ⋅ +

=1
1

1
2

1 2 1 2 1 2 2

,

An op-amp need not be used for the buffer; in some cases, an emitter-follower 
is good enough. The resonant frequency is at

ωn
R R C C

= 1

1 2 1 2

and

Q
R R C

R R C
= ( )⋅

+( ) ⋅
1 2 1

1 2 2

For minimal waveform distortion, a Bessel or maximally fl at envelope 
delay (MFED) response requires a Q corresponding to a pole angle of 30° 
(ζ = 3 2) or

Q MFED( ) = ≅3
3

0 577.

and, from wn and Q, (R1R2) ⋅C1/(R1 + R2) ⋅C2 = 1/3.

C1 C2

R2

R1

Vo+K

V

+

–

i

This high-pass fi lter (above) has the general topological form of the low-pass, 
but with transfer function
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V
V

K
s R R C C

s R R C C s R C K K R C
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For K = 1,

V
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Compared with the LP fi lter, wn is the same and

Q
R C
R C

= 2 2

1 1

Vi

–

+

R1

Vo–
R2

R3

C1

K

C2

The multiple-feedback topology has two feedback paths, as in the LP fi lter 
shown above. For infi nite op-amp gain, the LP fi lter transfer function is

V
V

R
R s R R C C s R C

R
R

R R C

o

i

= − ⋅
+ + +



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1
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For the BP fi lter, shown below,

V
V

sR C R R R C
s R R R C C s R R C C

o

i

= − ⋅ ( ) ⋅
( ) ⋅ + ( ) ⋅ +( ) +

1 1
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2
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These circuits cannot achieve high Q values without appreciable attenuation of 
the input signal, but they provide a simple second-order fi lter with good phase 
linearity. In the multiple-feedback topology, all elements affect both wn and Q.
In practice, Q is limited to about 20.

Vi

–

+

R1

Vo– K

R2

R3C1

C2

iV LPVA Σ–

–

–

HPV BPV ω n
s–s–

ωn

Q
– 1

The state-variable fi lter topology gets around the design diffi culty of interact -
ing fi lter parameters at the expense of additional circuitry. This scheme is that 
of the analog computer; cascaded integrators output state variables that are 
weighted, combined, and fed back or output. The block diagram shown above 
produces HP, BP, and LP outputs, with corresponding op-amp implementation 
below.
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A quad op-amp IC suffi ces for gain blocks. Op-amp A is an input summing 
block, B and C are op-amp integrators, and D is a scaling feedback block. The 
transfer functions for the three fi lter outputs are

V
V

A
s Q si

vo
n n

LP = ⋅
( ) + ( ) +

1

1 12ω ω

V
V

A
s

s Q si
vo

n

n n
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ω
ω ω2 1 1

V
V
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In the characteristic equation, RQ occurs in the linear term but not in the qua-
dratic term, thus leaving it free for adjustment of Q independent of wn. Its 
adjustment has the locus of a semicircle centered at the origin.
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State-variable fi lters can achieve a high Q relative to multiple-feedback 
fi lters.

j
RQ increasing
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σ
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A similar fi lter topology is the biquad fi lter (above), named for the biquadratic 
form of the transfer function

s ds e
s bs c

2

2

+ +
+ +

It is similar in form to state-variable fi lters, but damping is adjusted within the 
cascaded loop of blocks at A in the block diagram above. This topology, like the 
state-variable fi lter, has multiple fi lter outputs; both BP and LP are available. By 
weighting and combining outputs from two or three of the op-amps in a fourth 
op-amp output stage, additional fi lters can be realized.



Waveform-Processing Circuits  53

For the biquad fi lter,
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The fi lter parameters are then

ω ωn n
R R

R R C C
Q R C= =4 3

2 5 1 2
1 1,

The biquad fi lter has an advantage over previous fi lter topologies in that the 
band-pass ∆w is adjustable independent of center frequency wn. From the expres-
sion for Q above,

∆ω ω= =n

Q R C
1

1 1

Because wn is independent of R1, it independently adjusts ∆w. The band-pass 
function can be simplifi ed to

V
V

R
R

sR C

s R C s R C R Ri

f

i

f

f f f

BP = − ⋅
( ) + ( )[ ] +2 2

1 1

where

R R R R R C C Cf2 5 4 3 1 2= = = = =, ,

Gain is independently set by Ri, and ∆w by R1.
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+
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One other fi lter, shown above, is an all-pass fi lter that operates as a phase 
shifter. Its transfer function is
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2
1

1
1
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The delay time through the fi lter is

t R Cd = ⋅ ⋅2

Phase can be adjusted by adjusting R . This can be done electronically using a 
CMOS DAC or FET.

HYSTERETIC SWITCHES (SCHMITT TRIGGERS)

Comparators are usually inadequate for providing a single output transition 
when the input polarity changes. Slowly changing input signals with some noise 
cause the output to “dither”: to alternate between the high and low states 
near the input threshold. This dithering is reduced or eliminated by an 
input deadzone or deadband, an input range around the threshold where no 
output change can occur. Furthermore, if the deadzone is state dependent, 
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The accompanying circuit is an inverting hysteretic comparator, or Schmitt trigger 
circuit. The state dependence is achieved by use of positive feedback. In effect, 
the Schmitt trigger is a bistable memory device.

Ov

IvHVLV

UV

DV

–

+

Ri

Rf

Ov

R2

V

R1

+

v+
Iv

–

+

the effect is called hysteresis. The fi gure below shows a characteristic square hys-
teresis loop.
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Assume that the output is in the high state; then vO = VU. Thevenize the divider 
R1, R2 so that its Thevenin voltage is VT, the threshold voltage, and its resistance 
is Ri:

V
R

R R
V R R RT i=

+




 ⋅ =2

1 2
1 2,

With vO high, v+ is set from the feedback divider Rf, Ri. When vI increases 
to where the comparator inputs are equal, the output changes to a low state. 
This input voltage is VH, the upper hysteresis threshold. By setting v+ = VH, by 
superposition,
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Once vO is low, then vI must decrease to VL, the lower threshold, before vO

becomes high. By letting v+ = VL and again applying superposition,
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The deadzone size is the width of the hysteresis loop. This hysteresis window is
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A noninverting form of hysteretic comparator, shown above, has a similar 
hysteresis loop, but it is traversed in the counterclockwise direction. The circuit 
has a positive feedback divider and can be analyzed by superposition. When vO

is either high or low, the threshold for v+ is fi xed at VT.
Hence, we must solve for VL and VH after applying superposition. The results 

are
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with the following input hysteresis window:
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A two-transistor discrete realization of a hysteresis comparator is the emitter-
coupled Schmitt trigger, shown above. This is a diff-amp with positive feedback 
from the collector of Q1 through a voltage translator VZ to the base of Q2 return-
ing to the emitter of Q1. The hysteresis loop goes clockwise. The additional 
inversion at the collector of Q2 reverses the direction of the loop at vO. VZ pro-
vides an additional degree of freedom in setting the thresholds.

This circuit introduces another aspect of hysteretic comparators: As the input 
approaches the threshold, the diff-amp transconductance increases. Away 
from the threshold, one of the diff-amp transistors is cut off, and diff-amp trans-
conductance is low. As a result, loop gain is low. But when the threshold is 
approached, the cut-off transistor begins to conduct, and loop gain increases. 
When it reaches one, the positive-feedback loop becomes unstable and transi-
tions to the other state. To fi nd the threshold voltages accurately, an iterative 
solution is required since diff-amp gain changes with input voltage. In other 
words, a large-signal analysis is necessary using the diff-amp transconductance 
equation.

The hysteretic comparator is a positive-feedback amplifi er and is inherently 
unstable. This instability must be controlled in the design; instability is allowed 
only for changing state. If the loop gain has peaking, then as the input voltage 
approaches the threshold, a loop gain of one is reached fi rst at wm, the frequency 
at which the loop-gain magnitude peaks. Before the output changes, the loop 
oscillates with frequency wm. Therefore, otherwise stable loops require a loop 
gain without peaking.

DISCRETE LOGIC CIRCUITS

Even analog designs are likely to require some logic functions. In discrete 
designs, it is often unnecessary to add logic ICs to perform simple logic func-
tions. The circuits below are a variety of diode and BJT logic circuits using only 
two diodes or one transistor.
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In the fi gure below, two more circuits are shown, using four transistors, 
to realize an exclusive-nor and an and-or-invert (AOI) gate below it.
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These circuits have no particular merits other than their simplicity. Discrete 
realization of logic circuits is sometimes advantageous among analog circuitry 
when BJTs (or circuit-board space) are left over in an array and a gate or two is 
required.

CLAMPS AND LIMITERS

Nonlinear circuits that modify waveforms in some manner involving limits are 
clamps or limiters. Depending on the particular application, they might have 
other names.

A     B⊕

V+

A B

DB

A C

V+

AB    CD+
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In (a), diodes are used to limit the range of vI by “clipping” the signal outside 
the range of ±V. This circuit is commonly used as an input protection circuit in 
MOS ICs and oscilloscope trigger inputs. It is sometimes called a clipping circuit.
Figure (b) shows a type of clamp that establishes a waveform at a given voltage 
level. An application is as a baseline restorer in video signal processing. The nega-
tive extremes (sync tips) are established near ground by the clamp diode.

An important application of clamps is to keep transistors from saturating. 
Small-signal saturated transistors have excess charge in their base from being 
overdriven. This charge must be removed to turn the transistor off, and with 
limited base-current drive the base storage time increases. This causes a delay 
in turn-off. Falltime is not signifi cantly affected.

In large-signal (power) transistors, although excess base charge is a 
storage-time factor, another effect dominates, causing fall times of unclamped 
transistors to be larger. With large collector currents, a BJT operates in the 
high-level injection region, where the collector minority-carrier concentration 
(majority carriers from the base) approaches that of the collector majority 
concentration.

+V

–V

vI
–V

+V

0 V

–0.6 V

(a)

(b)
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Under high-level injection, the collector side of the b-c junction actually 
inverts in charge polarity due to a dominance of carriers from the base. This 
Kirk effect causes conductivity modulation of the base, causing the base width to 
effectively increase. This effect occurs at a vCE just above saturation, in the qua-
sisaturation region, and causes excess rounding in the collector family of curves 
at low vCE (of a few volts). (A related effect, called crowding, is due to ohmic vBE

drop laterally across the base, which causes less conduction in the center of the 
base than in the outer ring closer to the base contact.) Conductivity modulation 
also affects the fall time. As excess charge is swept out of the base, the excess 
base width begins to decrease, and turn-off commences. By decreasing excess 
base drive, conductivity modulation also decreases, along with both storage and 
fall times.

D2

D1

The Baker clamp prevents saturation by adding two diodes to a BJT. 
The b-c junction is a diode in series with D1. Together, they conduct with a voltage 
drop of two junctions. D2 shunts them and conducts at a lower voltage, with one 
junction drop. Thus, D2 clamps the D1-b-c path and keeps it from conducting.

Quantitatively, by KVL,

v v v v vCE BE D D BE≅ + − ≅1 2

For approximately equal diode voltage drops, vCE is clamped at vBE or with 
vCB ≈ 0 V. Transistors with appreciable r ′c or large collector current may require 
an additional diode in series with D1 to clamp vCB at about a junction drop.
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The disadvantage of the Baker clamp is the higher on-state vCE, typically a half 
volt. The Schottky clamp has reduced vCE(on). It is a variation of the Baker clamp 
and is very simple: A Schottky diode, with forward voltage of about 0.4 V, shunts 
the b-c junction. When vC decreases to 0.4 V below the base voltage, the Schottky 
diode turns on, clamping vCE at about 0.3 V. In Schottky logic output stages, this 
clamp prevents hard saturation while allowing lower vCE(on) than a standard 
Baker clamp.

D2

D1

D3

As D1 is in series with the b-e junction, no turn-off path exists without a shunt b-e
resistor or, as shown above, a diode shunting D1 and reversed (or antiparallel) 
relative to D1.

Q1

Q2

Q3

If a complementary CC driver is used to drive the clamped transistor, as shown 
above, only one added diode is required for the Baker clamp. The b-e junction 
of Q1 takes the place of D1 in the previous circuit and the b-e junction of Q3 for 
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A second emitter is added to the transistor to operate as a clamp. This anti-
saturation emitter is connected back to the base. Because the b-c junction, as a 
diode, also points outward (as does the emitter arrow), the second emitter can 
be regarded as a second collector, as shown. It is more heavily doped than the 
collector and shunts current from it at low vBC. When the collector voltage 
decreases to near saturation, the second emitter dominates; for the same reverse 
bias, it has more minority carriers to inject into the base. As a result, the b-c
junction does not conduct heavily in the forward direction, avoiding hard 
saturation.

In the Murphy clamp, Q3 avoids saturation by its second emitter. This emitter 
is reverse-biased by vBE2, allowing vCB3 to decrease to vBE2 before the anti-satura-
tion emitter takes effect. In addition, the shunted collector current is taken from 
the input drive current. The current gain of Q2 amplifi es this limiting action, 
resulting in a “sharp” limiting response.

Q1

Q2

Q3

D3. The diodes themselves also must have suitably fast turn-off recovery 
capability.

The feedback clamp scheme shown below, used in ICs, is a form of the Murphy
clamp.
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Diodes and op-amps are combined in these precision clamps. They use the op-
amp input as a comparator when the loop is open and diode nonconducting: 
in (a), when vI <VL, and in (b), when vI >VH. For the input ranges where the 
diodes conduct, the op-amps operate as ×1 buffers. In effect, these clamps are 
half-wave rectifi ers with programmable limiting voltages.
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A common limiter in power supply circuits is the foldback current limit, with one 
realization of it shown above. As load current iL increases, the voltage drop 
across RS increases until the b-e junction of Q1 is turned on. The transistor con-
ducts, diverting base drive from the series regulator Darlington. The current is 
limited to

maxi
v v R R R

R
L

BE S

S

= ( ) + ⋅ +( )[ ]on 1 1 2

where vBE(on) is the vBE1 value for which the loop gain is barely suffi cient to sustain 
the limiting value of iL. The maximum current depends on vS, graphed below.

R2

R1 R2+

R1
R1 R2+(          )

RS

vS⋅ vBE (on)

Rs

vBE (on)
R2

R1 R2+
⋅

vBE (on)
Rs

iL
max

The current limit decreases or “folds back” with reduced voltage so that a short 
conducts reduced current and thus power dissipation in the Darlington BJTs. 
As the short “clears” (load resistance increases), more current is allowed.

MULTIVIBRATORS AND TIMING CIRCUITS

Multivibrators (MVs) are positive-feedback (or regenerative) switching circuits with 
analog timing of switching behavior. They can be bistable, having two stable states 
(as Schmitt trigger circuits have); monostable, having one stable state; or astable,
having no stable states. Monostable multivibrators (MMVs) are also called “one-
shots”; they change output state upon input of a trigger signal. This quasistable 
state lasts for a timed interval (until the MMV “times out”), at which time it 
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reverts to its stable state. MMVs are used to generate a triggered pulse of a given 
duration. Astable MVs are digital oscillators, or clock generator circuits, and some-
times are called “free-running” MVs.

C1

Q1

R1

Q2

RL1

C2

R2

RL2

V+

The two-BJT astable MV topology consists of two capacitively coupled common-
emitter (CE) stages. When vC 2 goes low, the negative transition is coupled 
through C1, cutting off Q1. R1, C1 form an RC differentiator, and vB1 begins to 
increase exponentially as C1 charges through R1. (Assume that the b-e junction 
of Q1 is not in reverse breakdown.) When vB reaches vBE1(on), Q1 conducts, 
causing its collector to transition to near ground. This cuts off Q2 for the second 
half-cycle of oscillation in the same way Q1 was cut off. For identical CE stages, 
the duty-ratio,

D
t

t t
t
T

on

on off

on=
+

=

is 50%. When Q1 turns on and drives Q2 off, vC2 goes high (to +V), and C1 is 
charged in the other direction through RL2 and the b-e junction of Q1. This 
recharging time constant must be shorter (at least by 1/5) than R1C1 to fully 
recharge the capacitor. Therefore, R1, R2 must be at least fi ve times RL1, RL2.

MV frequency is increased by reducing coupling capacitor C. To analyze the 
effect of Cbe on timing, assume that the base timing resistor R is a current source 
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I instead. This assumption is valid for off-times that are much less than the time 
constant RC when the exponential base voltage can be approximated as linear. 
Then C and Cbe form a capacitive voltage divider so that a negative input step 
of −V causes vB to step down to

v V
C

C C
vB

be
BE0 0+( ) = − ⋅

+




 + ( )

Without the effects of Cbe, the timing ramp of vB has a slope of I/C and times 
out at

t
C
I

V1 = ⋅

With Cbe,

v t
I

C C
t v tBE

be
B( ) =

+




 ⋅ − ( ) >+0 0,

t

vB

vBE(0)

vBE (0) – V

t1
Cbe   0

Cbe = 0

≠

The offset of vBE(0) does not affect timing since it is also the voltage threshold 
for determining t1. Set vBE(t1) = vBE (0) and solve for t1; it is the same as the pre-
vious t1. Therefore, Cbe does not affect timing.

The previous analysis assumed zero fall time of the negative input step. To 
examine this assumption, consider the effect of switching time on timing by 



Waveform-Processing Circuits  69

approximating the negative transition at the collector with a linear approxima-
tion to the waveshape and its average slope m.

t1
t

tf
vB

vBE(0)

vBE (0) – V

vBE (0) – vf

Input transition

m
I

C

Let the transition time be tf. Then, from the above v-t graph, the slower the 
transition, the smaller the negative excursion of the timing voltage, −vf ; thus,

t t
C
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v
I
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m tf f= − +



 ⋅

with m = −V/tf. Substituting and solving for t1,
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Therefore, when tf < t1, the falltime has no effect on timing.

t1
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I
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∆
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I
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rc = 0
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The fi nal timing analysis determines the effect of collector resistance rc of the 
conducting transistor. From the above graph, although the slope of vB(t) is 
independent of rc, the initial step size is not. With rc, I causes an opposing step 
of I ⋅ rc that translates into a time error of

∆t
I r
I C

r Cc
c1 = ⋅ = ⋅

The fractional error is I ⋅ rc/V. Consequently, to minimize rc, the BJTs must be 
driven well into saturation by R1 and R2.

The two-BJT astable MV timing is independent for each half-cycle. This makes 
adjustment of half-cycle timing easy, but since the period depends on both half-
cycles, each can contribute to period error. Two separate timing circuits are not 
necessary.

vO

+

–

1R

2R

C R

fR

RL

iR

+V

+V

The astable MV above, based on an open-collector comparator such as the 
LM393, has only one timing capacitor. This single-supply clock generator uses 
regenerative feedback through Rf to effect a hysteretic comparator while the 
timing is done by R and C. When vO = VU (high state), the timing waveform 
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at v− is increasing and crosses VH at the v+ input. Then vO goes low (to VD), and 
the timing waveform decreases toward it while v+ = VL. When it reaches VL, vO

switches high again.
For single-supply operation, R1 and R2 set a voltage around which the input 

hysteresis limits of VL and VH are chosen. When vO = VU, the timing resistance 
is

R R R R R R R RU L f i i= + +( ) =, 1 2

VU and VH are calculated from the divider formed by RL, Rf, and Ri. The timing 
voltage v− begins at VL and heads for VU. The high-state time duration is

t R C
V V
V V

H U
U L

U H

= ⋅ ⋅ −
−





ln

During the low output state, vO = VD and v+ = VL. The comparator BJT saturates, 
and VD ≅ 0 V. Then v− decreases from VH toward VD, and

t R C
V V
V V

R C
V
V

L
H D

L D

H

L

= ⋅ ⋅ −
−





 ≅ ⋅ ⋅ 



ln ln

Finally, the output period is:

T t tH L= +

One of the most versatile MV circuits is the timer, notably the 555 bipolar and 
7555 CMOS ICs, with block diagram shown below. This timer is mainly applied 
as a MMV or clock generator. It consists of two comparators with trigger (/TR) 
and threshold (TH) inputs. The other inputs are taken from a resistive divider 
from the supply, VCC. For the bipolar version, R = 5 kΩ; for the CMOS version 
it is R > 100 kΩ.
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The threshold-comparator input threshold voltage is

V VH CC= ⋅2
3

The trigger-comparator voltage is

V VL CC= ⋅1
3

The comparator outputs drive a NOR-gate RS fl ip-fl op (FF). The trigger input 
overrides the threshold input for control of the output. When /TR is asserted 
[v(/TR) < VL], the output is forced high. The reset input (/RES), however, 
overrides all other inputs. A separate transistor (BJT in 555, MOSFET in 7555) 
with open collector (or drain) marked /DIS (for discharge) is an alternative 
output for MV control.

An astable MV circuit using the timer is shown below. Initially, /TR is low and 
the output is high. The discharge transistor is off. C charges through R1 and R2
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until the timing voltage crosses VH. The output goes low, /DIS sinks current, 
and C discharges to ground through R2. When the timing voltage crosses VL, the 
cycle repeats.

1R

2R

C

TR

DIS

TH OUT

2

6 3

1

4 8

+5 V

7

The time duration for a high output is

t R R C
V V
V V

R R C RH
CC L

CC H

= +( )⋅ ⋅ −
−





 = +( )⋅ ⋅ ≅ ( ) ⋅1 2 1 2 12 0 693ln ln . ++( )⋅R C2

For a low output,

t R C
V
V

R C R CL
H

L

= ⋅ ⋅ 



 = ⋅ ⋅ ≅ ( ) ⋅ ⋅2 2 22 0 693ln ln .

The period is therefore

T t t R R C R R CH L= + = +( )⋅ ⋅ ≅ ( ) ⋅ +( ) ⋅1 2 1 22 2 0 693 2ln .
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with duty-ratio

D
R R

R R
= +

+ ⋅
1 2

1 22

Given tL < tH, a duty-ratio of D < 0.5 is not possible with this circuit. An alterna-
tive circuit achieves a longer tL by placing an additional resistor in series with 
/DIS. A CMOS alternative with accurate 50% duty-ratio is shown below.

R

C

TR

TH OUT

The output is used instead of /DIS to control timing, and the timing elements 
are the same for both half-cycles. The period is

T R C RC= ⋅ ⋅ ⋅ = ⋅2 2 1 386ln .

A timer-based MMV, (a) below, is triggered by a negative-going pulse. It sets 
the output high, and C begins to charge through R. The initial voltage on C is
0 V, and it charges to VH. The time-out is thus

t R C
V
V

R C R CH
H

CC

= − ⋅ ⋅ −



 = ⋅ ⋅ ( ) ≅ ⋅ ⋅ln ln .1 3 1 1

If the trigger pulse duration exceeds tH, the output is kept high until the trigger 
goes high, as in (b).
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A MMV that begins its time-out after the trigger pulse goes high is shown 
above. The additional PNP transistor keeps C discharged until the trigger 
releases. This MMV is retriggerable in that the output remains high as long as 
trigger pulses continue to occur before time-out. Each new pulse resets the 
timing and retriggers the MMV.

+VCC

R

C

DIS

TR

TH OUT

OUT

TR

(a) (b)

+VCC

R

C

DIS

TR

TH OUT

+VCC

R

C

DIS

TR

3

+VCC

R1

R1

C1

FM
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The FM terminal (pin 5) allows control of the comparator thresholds, where a 
positive transition on the FM terminal triggers the MMV. The /TR input is 
biased at VCC/4. The trigger-comparator divider voltage is raised by the positive 
step of the trigger to where the step exceeds VCC/2 and starts the time-out.

For long time-outs, a large R, a large C, or both are needed. For a large R,
timer-comparator bias currents can cause timing error. The bipolar timer has 
an NPN diff-amp input stage in its threshold comparator and a PNP stage for 
the trigger comparator. The bias currents IB place a limit on the minimum 
charging current. For large C, electrolytic capacitors are likely to be used. Their 
limitation is their leakage current. Aluminum electrolytics typically leak at 
20 nA/µF; tantalum leaks at 5 nA/µF. If C is placed as shown below, its leakage 
current IL path is modeled by a shunt resistance Rp, shunting the timing resistor 
R. The maximum limit on R is thus set by Rp. This circuit has less timing noise 
( jitter) because the target voltage of C is 0 V instead of VCC, the same voltage to 
which Rp would discharge C. When C is ground-based, Rp opposes charging 
instead of aiding it.

+VCC

R

DIS

TR

TH

IL

Rp

C
+

IB

IB

CAPACITANCE AND RESISTANCE MULTIPLIERS

Timing circuits with long time-outs often require large capacitors. For accurate 
timing, these capacitors are plastic. Large-value plastic capacitors are volumetri-
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cally large and expensive. The capacitance multiplier is a circuit that uses gain to 
make a small capacitor appear electrically large. One realization is shown 
below.

vO   1

C

iR

fR

×
vCvI

iI

Here, a current source drives the C multiplier to generate a ramp waveform. 
The ×1 buffer causes Ri and Rf to form a current divider because it keeps the 
voltage across Rf the same as across Ri. The charging current is a fraction of the 
input current, or

i
i

R
R R

C

I

f

f i

=
+

The equivalent capacitance Ceq is based on the relation

i C
dv
dt

i
C

dv
dt

i
C

I eq
O I

eq

O C= ⋅ ⇒ = =

The last equality follows because vO = vC. Applying the current fraction,

C
i
i

C
R
R

Ceq
I

C

i

f

= 



 ⋅ = +







⋅1

This is a “transcapacitance” multiplier because vO is not across the same termi-
nals that iI fl ows through. The input is Ceq in series with Rf Ri.
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A true capacitance multiplier (above) can be based on the Miller effect. The ×1
buffer drives an inverting op-amp with a gain of −Rf/Ri. Applying Miller’s 
theorem,

C
R
R

Ceq
f

i

= +



 ⋅1

Above the bandwidth of the amplifi er branch, the input is no longer purely 
capacitive but also has a shunt RL in series with Ceq.

Example: Timer with Capacitance Multiplier

–

+

C

fR

iR
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Ceq

Ri

+ –

vC
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Rf

R

+V

Ri TH

DIS

TR
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The threshold-terminal bias current of a 555 timer limits its useful timing range 
as an MMV. A current-divider capacitance multiplier is used to extend the time-
out tH by connecting it as shown above. The TH input is now driven by the op-
amp output, eliminating bias-current error from TH but introducing op-amp 
offset current and voltage error. An equivalent circuit shown below is derived 
as follows.

vC

C

R

+V

+

–

– +
VOS

VOS

TH

Ri
Rf Ri+(          )VOS

Rf Ri

Ri
Rf(         )+ 1

Rf

The op-amp circuit with Rf and Ri is Thevenized and fl oated on vC. The op-
amp offset voltage VOS is divided by the resistors so that its Thevenin voltage is

V
R

R R
OS

i

f i

⋅
+







in series with Rf Ri. Because the op-amp has ×1 gain, VOS also is in series with 
the TH input. In addition, VOS at the op-amp output contributes VOS/Rf to the 
timing current. From this model, timing error is calculated.

For signifi cant multiplication of C, Ri >> Rf. The series Thevenin voltage 
source is then about VOS, and the IOS term in the error current dominates.

Capacitance multiplication is achieved in the preceding circuits by applying 
bootstrapping to a current divider. The idea can be extended to resistance 
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multiplication. A basic instance is the bootstrapped CC or FET CD stage (in 
“The Effect of Base-Emitter Shunt Resistance” of Designing Amplifi er Circuits).

A more deliberate and precise resistance multiplier, shown above, uses an 
op-amp buffer instead of a CC or common source (CS) amplifi er. Solving the 
circuit for rin,

r R
R
R

Rin = ⋅ +



 +1

3

2
31

TRIGGER GENERATORS

A trigger generator is a kind of precision synchronizer. In television defl ection 
systems, horizontal and vertical scans or sweeps of the CRT are synchronized to 
the video signal by perturbing a free-running oscillator with the synchronization 
(or sync) signal, forcing it to lock to the sync frequency. The sync pulse also 
corrects the phase each cycle.

In synchronous digital systems, asynchronous events must be synchronized to 
the system clock. This is usually done using a fl ip-fl op (or fl op) clocked by the 
system clock; the asynchronous pulse is the data input to the fl op. The problem 
with this scheme is that if the data pulse changes state too soon before the active 
edge of the clock, the fl op setup time is insuffi cient and the output state is 
indefi nitely indeterminate. A second fl op cascaded with the fi rst can reduce the 
indeterminate time skew at the expense of one clock period of delay. Of course, 

+

−

1R

2R

3R

rin
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the fi rst fl op output may remain indeterminate for longer than one clock 
period, but the probability diminishes rapidly with time.

This synchronizing problem is especially acute in oscilloscopes. The vertical 
waveform is fed to an event processor. On a selected slope and at the voltage of 
the trigger-level control, a comparator generates an event, an output transition 
that is used to start the sweep. When the sweep reaches the right end of the 
CRT screen, the CRT beam is turned off, and the beam retraces back to the left 
side, where it settles to the same starting position.

During sweep retrace, a hold-off pulse keeps input waveforms from fi ring the 
sweep until it is settled in its starting position. This hold-off pulse is asynchro-
nous with the trigger events. If an event occurs while hold-off is releasing, time 
skew occurs in starting the sweep; this trigger jitter causes successive traces to be 
horizontally misaligned; the trace appears fuzzy, and multiple traces can be 
observed.

HO
TR

D
C

A
Q D

C
B

Q GATE

The trigger generator above reduces jitter by synchronizing the trigger events, 
TR , and hold-off pulses, HO. The circuit consists of two D fl ip-fl ops and a delay 
device, such as a digital delay-line or the propagation delay of some logic 
devices. The fl ops are clocked on positive (rising) edges by TR. The sweep 
gate is asserted low (as /GATE) and enables the sweep generator. The negative 
(falling) edge of /GATE must occur consistently at a fi xed delay time relative 
to the rising edge of TR. Assume HO is low; TR clocks fl op A. As its Q 
output settles, TR is delayed and then clocks fl op B. If the delay is long enough, 
fl op A output becomes valid and sets up the D input of fl op B for its setup 
time. Then when the delayed TR clocks B, the output edge time is determinate. 
Most of the time, HO does not violate fl op A D input setup time, but when it 
does, fl op B is required to synchronize its release with the trigger event. This 
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trigger generator is adequate for oscilloscopes of up to about 50 MHz 
bandwidth.

For higher performance, the faster trigger generator shown above is imple-
mented as an IC with ECL logic. The comparators are ECL gates. The D fl ops 
of the previous scheme are replaced with faster RS fl ops or latches: a gate latch 
(corresponding to fl op B) and an arm latch (corresponding to fl op A). The 
trigger waveform drives both trigger and arm comparators. The trigger event 
out of the trigger comparator sets the gate latch high (GATE is high) if arm 
latch output A was low. If so, the sweep runs, and its end is detected, causing 
HO to assert. HO forces reset of the arm latch; A is forced high. This forces 
GATE low and resets the gate latch. When HO goes low, before GATE can assert 
again, A must be asserted low by setting the arm latch from the arm comparator. 
Then the gate latch is “armed” and can be set by the trigger comparator.

Input
signal

Trigger
comparator Delay

Hysteresis
adj.

Arm
comparator

3

Arm
latch

1

A

Gate
latch

2 GATE

4
5

Auto-defeat
gate

T

HO
GATE
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The detailed sequence of events is shown above. HO has become low. When 
the input waveform goes below the arm-comparator threshold VA, the arm latch 
is set (A is low) through gate 3. The range of time when arming can occur is 
shown as the negative half-cycle of the input waveform. It crosses the trigger-
comparator threshold VT, is delayed, and attempts to set the gate latch by assert-
ing T high. If A has been low long enough, GATE goes high without jitter.

The hysteresis is the difference in comparator thresholds. Because the wave-
form has a fi nite slope, a time delay is generated between the latest possible 
arming A and earliest trigger T. The additional gate delay in the trigger path 
lets A settle to a valid level at the gate latch input.

The relative time delay of the trigger and arm paths is critical to proper 
synchronization. Otherwise, two trigger anomalies can occur: trigger jitter and 
double triggering.

Consider fi rst the case where the trigger-path delay is too short relative to the 
arm path. A low logic level at A must be established through the arm path pre-
ceding trigger-path assertion at T (of a high level). With insuffi cient delay in 
the trigger path, T could assert before A is settled. This occurs when the 
input, on its positive slope, is crossing VA just as HO releases at the latest possible 
arming time. Gate 3 of the arm latch will be driven by a quick pulse, barely 
enough to cause the arm latch to change state after some time. This leaves A

VT

VA

Hysteresis Input waveform

T Trigger input

A Arm input

to gate latch

Trigger path
delay time

Must go low before arming 
waveform arrives

Earliest
arming

Arming waveform
must settle before
trigger arrives

Latest arming
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indeterminate. When the trigger-path input to gate 2 goes low, A causes an 
uncertain starting edge at GATE. Trigger jitter is the result.

Now consider the case in which the trigger-path delay is too long relative to 
the arm path. When the negative slope of the input signal decreases through 
VT, the trigger path propagates a low level at T. Meanwhile, the arm path also 
propagates, through the arm latch, a low level at A. This arming of the gate 
latch must be preceded by a low level at T. If the trigger-path delay is excessive, 
the release of the gate latch at A occurs while T is still high, causing GATE to
go high. This produces an extra GATE or double trigger. Under correct opera-
tion, only the positive slope asserts GATE. Double triggering occurs when HO
releases just as the input signal crosses the arm comparator threshold at the 
earliest possible arming. On the screen, the waveform appears to be triggering 
on both slopes.

The optimal delay between the paths is somewhere between these two 
extremes. Delay-time tolerance is provided by the comparator threshold hyster-
esis and fi nite slope (or slew rate) of the input waveform. Because the trigger 
path to gate 2 is one gate longer than the arm path, the hysteresis delay on the 
negative slope of the waveform must be at least one gate delay, tpd, to avoid 
double triggering. An approximate maximum tpd can be calculated by assuming 
a maximum amplitude sinusoidal input of frequency fmax. The gate propagation 
delay must be

t
V V

V f
pd

T A

fs

< = −
⋅ ⋅

hysteresis
slew rate 2π max

A hysteresis adjustment of the comparator threshold on the trigger comparator 
allows the trigger generator to be adjusted for maximum-frequency fault-free 
triggering.

Trigger jitter can be observed on an oscilloscope screen. Spurious traces to 
the left of the main trace are caused by late triggering. A waveform that is 
advanced in phase (hence, late) appears shifted to the left. This may seem 
counterintuitive since later time is to the right on the screen. But it is GATE that
is late relative to the waveform. If the sweep gate had started on time, the wave-
form would not have advanced as far in phase.
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Slew-rate limiting of the input to the trigger system causes it to shift in time on 
the screen as the trigger level is adjusted. The limited waveform is time distorted, 
and its phase error varies with amplitude relative to the vertical signal. A time-
domain test of trigger-generator performance is to let the input be a pulse of 
varying width. The minimum width that achieves a stable trigger is an index of 
generator speed capability.

In the trigger-generator circuit diagram, the function of gate 5 has not 
yet been described. The auto trigger mode causes the sweep to run at a low rate 
(typically < 50 Hz) to display a trace on the screen when no signal is present (or 
when the trigger controls are not adjusted properly). An auto-mode retrigger-
able MMV is driven by GATE. If the sweep has not run for a while, the auto-MMV 
times out and gates the sweep on directly. When a triggered gate occurs, the 
MMV is reset and the free-run mode turned off. Now, if HO were the input to 
gate 4, at high sweep speeds, it would be diffi cult to get out of the free-run mode 
without gate 5.

At high sweep rates, HO has a large duty-ratio. That is, it takes much longer 
to retrace and recover from a sweep than the sweep time. If a slow trigger wave-
form is applied with a period much greater than the sweep time (when HO is
unasserted), the probability is low that during the sweep the signal would cross 
the hysteresis window. To escape the free-run mode, a GATE pulse is needed to 
reset the auto-MMV. The auto-defeat gate (gate 5) is added to provide the 
pulse.

When HO unasserts during free run of the sweep, if the trigger signal is below 
VA, the arm-latch output A goes low. Since the sweep was run by the auto-gate 
waveform, GATE is low, /GATE is high, and gate 5 thus blocks HO from resetting 
the arm latch. This allows the input time to cross VT and set the gate latch on 

Late

Early

GATE

t
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its next half-cycle. If it does while HO is low, a triggered gate is asserted and 
the auto-MMV is reset. More likely, if HO is high, gate 5 allows /HO to reset the 
arm latch, and A goes high, resetting the gate latch low. GATE is high for the 
propagation time around the loop of gates 2-5-4-3-2. This is a few nanoseconds, 
enough time to reset the auto-MMV.

Another approach to auto triggering, autolevel, is to generate a triangle wave 
with a counter and DAC and sum it with the trigger-level control output. The tri-
angle wave scans the level through the input range. When it intersects the input 
waveform, a trigger event is generated, and triggering then occurs. If no input is 
present, it autogenerates a trigger when the set trigger level is crossed.

An alternative approach to automatic triggering, peak-to-peak auto, uses positive 
and negative peak detectors to generate voltages at the extrema of the input 
signal. The trigger-level potentiometer is then placed between these peak volt-
ages so that its control range is always within the signal range.

RAMP AND SWEEP GENERATORS

Oscilloscope time-base systems consist of a trigger generator followed by a sweep 
generator. The sweep generator is a gated ramp or sawtooth generator that 
drives the horizontal defl ection amplifi er. Ramp generators are also used in 
magnetically defl ected CRT display systems to generate defl ection-coil currents, 
in mass spectrometers, and in pulse-width modulators.

A bootstrap ramp generator uses the bootstrapping technique to maintain a con-
stant voltage across a timing resistor R . As C charges, the top end of R follows
it, driven by a buffer. The result is a linear ramp output.

K

V

c

R

V

+

C Ri

Ro
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With fl oating voltage source V, the ramp slope is

dv
dt

V R
C

V
R C

= =
⋅

This perfect scheme is spoiled by shunt resistance Ri (of the capacitor and buffer 
input), buffer output resistance, Ro, and buffer gain deviation from unity. Let V
be gated on at t = 0 as

v t V u t V s V s( ) = ⋅ ( ) ⇒ ( ) =

Then solving the circuit in s,

V s
V s

R
R R K R s

R R
K

R C

c i

o i o
i

( )
( )

=
+ + −( ) ⋅

⋅ +
−


 )





⋅ +1
1

1
1

where K is a buffer voltage gain near one. The bootstrap effect appears as the 
increase in effective resistance of R + Ro by 1/(1 − K) times. With very large Ri,
this increases the time constant by the same factor. In effect, the ramp is gener-
ated as the initial segment of a long exponential curve. K, Ro and Ri all contrib-
ute to the time-constant deviation from RC.

+

–

R

C

Vo−K

V(s)
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Another approach to ramp generation is to use an op-amp integrator. This 
Miller ramp generator has a transfer function of

V s
V s

K
s K R C

o( )
( )

= − ⋅
+( ) ⋅ ⋅ +

1
1 1

For an op-amp, K → ∞, and the transfer function approaches −1/sRC, an ideal 
integrator. With fi nite gain, the output is an exponential with time constant 
multiplied by (1 + K); the early part of the curve is approximately linear. The 
fractional deviation, e, from linear response is

ε
τ

≅
⋅

=
⋅ ⋅ ⋅ +( )

t t
R C K2 2 1

where t is the effective time constant. The fractional nonlinearity was derived 
by series-expanding the response exponential to the quadratic term, subtracting 
the (ideal) linear and constant terms, and dividing by the linear term. Error 
grows with time as the exponential becomes increasingly sublinear. This error 
formula applies to both bootstrap and Miller ramp generators; the responses of 
both are exponentials.

Finite gain also causes a slope error in the Miller integrator. In the transfer 
function, let V(s) be that of V/s. Then the transfer function corresponds to the 
normalized time-domain response of

dv t V
dt

o( )

Applying the initial value theorem,

dv t V
dt

s K
s

s K R C
K

K RCt s

0

0

1
1 1 1

1( ) = − ⋅
+( ) ⋅ ⋅ +







= −
+





 ⋅

= →∞
lim

The initial slope of the ideal ramp response, −1/sRC, is −1/RC. Thus,

fractional slope error =
+
K

K1
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Fast Miller ramp generators are driven by an input current source instead of a 
voltage source and R. This produces a more linear response and reduces the 
effect of input impedance. The ideal response of −1/sC is only approximate. 
More precisely,

V s
I s

sC
K s

K s

K s
K s sC

o

i

( )
( )

=
⋅ + ( )

( )






= ( )
+ ( )







⋅1
1 1

1

The ideal response is multiplied by the s-domain equivalent of the fractional 
slope error. To approach the ideal, the op-amp must maintain high gain at high 
frequencies. This is a major limitation, especially since the op-amp output 
impedance gyrates inductively. For

K s
K

s
o

bw

( ) =
+τ 1

K s
K s

K
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
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+( )[ ] +
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+




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+1 1
1

1 1 1
1

τ τ 11

The op-amp adds an additional pole at its unity-gain frequency fT.
An improved ramp generator is based on the simplicity of a gated current 

source charging a capacitor, followed by a buffer amplifi er. Feedback loops are 
avoided, and the step response is faster than for the previous two schemes.

Ii

C

(a)

Ii

C

(b)
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Bruce Hofer recognized the topological equivalence of this current-source 
ramp generator (b) with the Miller generator (a). The difference is in where 
ground is placed. In the Miller, the BJT is a CE; in the current-source, it is a 
CC. In the Miller, any anomalous switching voltage at the FET gate is coupled 
through C to the output; in the current-source generator, it is bypassed by C to
ground.

LOGARITHMIC AND EXPONENTIAL AMPLIFIERS

iI

–

+
vO

Logarithmic amplifi ers are useful for compressing a wide dynamic-range wave-
form, for multiplying, and for function generation. This simple log-amp is based 
on the BJT b-e (diode) junction v-i relationship:

i I e i IS
v V

S
T= ⋅ >>,

The input current iI is the BJT collector current and the output voltage,

v v V
i
I

V
i
I

O BE T
C

S
T

I

S

= − = − ⋅ 



 = − ⋅ 



ln ln

This log-amp refl ects the temperature sensitivity of the b-e junction and drifts 
due to both VT and IS.

Detailed expressions for iC and iE (Gibbons and Horn 1964) indicate that 
several error terms vanish when vCB is zero. The logarithmic relation extends to 
lower currents for iC (because vCB = 0 and vBE ≠ 0) and is accurate over about 
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nine decades. The high end (typically 10 mA) is limited by ohmic voltage drops 
in series with vBE and at the low end (typically 100 pA) by IS. From vO,

v V i V IBE T C T S= ⋅ + ⋅ln ln

The slope of vBE versus ln iC is linear with a slope of

dv
d i

dv
d i

d i
d i

V
e
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C
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C
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log ln
ln

log log
.( ) =

( )
⋅ = ⋅ =1

59 56
mV
dec

For each decade of change in iC, vBE changes by about 60 mV at 300 K over typi-
cally nine decades of iC.
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The effect of IS can be eliminated with a matched pair of BJTs, as in the log-ratio
amplifi er above. Assuming equal IS,
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The output is vB2 scaled by the divider, or
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The second op-amp B functions like A in keeping iC2 = IR, a reference current. 
For iI < IR, vO > 0. Op-amp B controls the emitter currents iI + IR, whereas op-
amp A controls vB2 to keep iC1 = iI. RE is selected so that the output voltage range 
of B can span the range of iI + IR.

This circuit eliminates dependence on IS but is dependent on VT. The 
0.33%/°C TC of vB2 is sometimes compensated by making R1 a positive TC 
(PTC) thermistor. Its TC is found by differentiating vO with respect to T, setting 
it to zero, and solving for dR1/dT. The fractional TC equation is
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When TC%(vO) = 0,
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
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Example: Log-Amp Design

A log-amp based on the log-ratio circuit requires an input range of 0.1 µA to 
1 mA with minimal temperature drift. The output must be 0 V at an input of 
1 mA (fs) and 4 V at 0.1 µA (zs).

The scaling is 4 V per four decades or 1 V/dec of iI. The divider must be

R
R

2

1

1
1

60
16 8+



 = =V dec

mV dec
.

PTC thermistors with 1 kΩ values are available, so let R1 = 1 kΩ. Then from the 
divider ratio, R2 = 15.8 kΩ. The TC of R1 must be

TC% C CR1 0 33
16 8
15 8

0 35( ) = ( ) ⋅ 

 =( ). %

.

.
. %° °
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For vO = 0 V at 1 mA input, IR = 1 mA. This can be supplied from a voltage refer-
ence of 5 V through a 4.99 kΩ, 1% resistor. When iI is supplied from vI through
a 100 kΩ, 1% resistor, the input range is 10 mV to 100 V. Finally, for a minimum 
op-amp B output voltage of about −4.7 V, RE = 4 V/2 mA = 2 kΩ.

Op-amp input capacitance Ci can destabilize the log-amp. A feedback capaci-
tor Cf forms a pole with collector resistance rc. The loop gain is

GH
K

s
r
r

sr C
sr C Cbw

c

M

M f

c f i

=
+

⋅ ⋅
⋅ +

⋅ +( ) +τ 1
1

1

where K and tbw are op-amp open-loop gain and bandwidth, and rc is collector 
resistance:

r rc o= +( ) ⋅β 1

Also,

r
r r

r
r

M
e e

m
e= + ′ = + ′

α α

The zero depends on rM, which varies with iC. For stability, the poles must be 
separated and the zero placed for lead compensation near a loop gain of one.

vI

R2

R1

Q1 Q2

RE

IR

A
–

B
+

–

Rf

vO

+
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The inverse function, exponentiation, is achieved by modifying the log-amp. 
In this exp-amp (or antilog-amp), op-amp A maintains a constant iC1 = IR.
Then

v
R

R R
v v v V

I
i

B I BE BE T
R

C
1

1

1 2
1 2

2

=
+





 ⋅ = − = ⋅ 



ln

and at the output,

v R iO f C= ⋅ 2

Solving for iC2 in vB1 and substituting yields

v R I
R

R R
v
V

O f R
I

T

= ⋅ ⋅
+





 ⋅ 


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
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


exp 1

1 2

Temperature compensation is also required for VT.

v

i1

i2

1
+

–

2
+

–

Q2 4
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–

+

–

3

i3

Q

Q1 3Q

4

i4 fR

O

Log-amps, exp-amps, and amplifi ers combine to form function-generating 
circuits. Four op-amps and matched BJTs combine in the circuit diagram above 
to form a multiplier or divider based on the relation
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xy x y x y= +( ) = +( )−log log log exp log log1

The BJTs are connected with b-e junctions in series so that

V
i
I

V
i
I

V
i
I

V
i
I

T
S

T
S

T
S

T
S

⋅ 



 + ⋅ 



 = ⋅ 



 + ⋅ ln ln ln ln1 2 3 4





or
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i
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3

= ⋅

In practice, the basic log-amp is stabilized, and voltage input and offset (for 
bipolar operation) are provided, as shown below.

VOS

vI

RI

ROS

+

–

RI ROS

RE
vO

Cf

VT can be temperature compensated with a thermistor, but a more exacting 
approach uses two log-ratio amps and a divider. The fi rst log-amp has inputs iI

and IR, and the second is a temperature compensator; it has inputs of IR and
k ⋅ IR, where k is a scale factor. The log output is the quotient of the two log-ratio 
amp outputs:

V i I
V kI I

i I
k

T I R

T R R

I R⋅ ( )
⋅ ( ) = ( )ln
ln
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A log-ratio amplifi er with output,

v V
i
i

O T
X

Z

= ⋅ 



ln

and an exp-amp with output,

i i e i
v
V

O Y
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Y
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T
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( ) exp

are combined with an amplifi er of gain k in the fi gure above. The output is

i i
i
i

O Y
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Z

k

= ⋅

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For k < 1, the amplifi er is replaced by a voltage divider. This function is quite 
versatile; scaled powers of ratios include squares, cubes, square roots, and trun-
cated power series of transcendental functions. For example,

sin
.
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π

With fractional powers, a better approximation is (see Sheingold 1974)
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Also,
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The inverse function f −1(x), of a function circuit f(y), can be realized by 
placing f(y) in the feedback path of an op-amp. The output,

y K x f y= ⋅ − ( )( )

or

x
y
K

f y= + ( )

For infi nite K, x = f(y), or y = f −1(x). This is useful for generating functions 
implicitly.

f(y)

Σ K yx +
–

K yx +

–

Σ

Π

x=

y2

(a)

x a
b

a
b

y x=

(b)

In (a), a multiplier (indicated by the Π symbol) is in the feedback path of a 
noninverting op-amp. The circuit outputs the square root of the input:

y K x y
y
K

x y= ⋅ −( ) ⇒ = −2 2
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For infi nite K, x = y2 or y = x . Implicit function generation, as in (b), is often 
more accurate for the same complexity of function blocks because the range 
over which intermediate variables must maintain accuracy is reduced.

This is especially true of the commonly used root sum of squares (rss) func-
tion, the vector magnitude function or Pythagorean formula:

y xk
k

n

=
=

∑ 2

1

The range of x 2
k can be large but need not be if computed implicitly. An implicit 

formula is derived from y. Squaring each side, adding y ⋅xn, factoring, and 
dividing,
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In this formulation of y, it is fed back to divide x 2
k, thus reducing the required 

input dynamic range.
A function describing the output of a bridge circuit with a sensor in one 

branch is

y
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x
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More generally,
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Finally, a two-term power series with y(0) = 0 is

y A x x B x C y
A x B x
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FUNCTION GENERATION

Function generation by log-amp circuits is based on the logarithmic nature of 
BJT junctions. The translinear cell is also a basis for function generation. The 
basic cell can be generalized by placing an arbitrary number of junctions in 
series on either the input or output side of the cell. For example, the current 
squarer shown below has two junctions in series on the input side.

iI iO

Q 3

Q1

Q2

As in translinear-cell analysis, assume that b is infi nite. The output current is 
derived from the circuit equations

v V
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i I
v
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O S
BE

T

I

S

= ⋅ 



 =exp 3

2

More generally, m series input junctions results in im
I output. The translinear cell 

is not dependent on IS as this circuit is.
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In the above circuit, the improved current squarer adds Q3, biased at a constant 
current I3. Its additional junction drop provides the needed correction for IS:
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v v V
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i
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3

The squarer circuit concept can be extended to m input diodes and m − 1 stages 
like Q3 with currents I1 to Im−1. The output current is then

i
i

I I I
O

I
m

m

=
⋅ −1 2 1

iI
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IR
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1×



Waveform-Processing Circuits  101

A more general scheme is shown above. Here, two stacks of diode junctions 
drive the BJT. The stack biased by IR is buffered to keep BJT current separate 
from IR. Applying KVL to the loop and eliminating VT ⋅ ln,
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Fractional powers result by exchanging iI and iO, as shown below, with 
appropriate modifi cations. The BJT is moved to the former input string, and 
its fi rst diode is now at the new input. Applying KVL and discarding VT ⋅ ln,
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Example: Square-Root Circuit

An example of a square-root circuit used in a medical laser is shown below to 
compensate for the quadratic (square-law) behavior of the fl ashlamp. A transis-
tor array is used to provide matched BJTs.
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The BJT with base pin 9 corresponds in function to Q3 of the current-squarer. 
The circuit function is
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where Rf = R5, Ri = R1, and IR = 5.83 µA is set by R8. The circuit has a ×10 gain 
at full scale. The transistor array has IS = 10−15 A.
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A rss circuit, shown above, based on a generalized translinear cell can be 
extended to three or more inputs. The voltage at the emitter, across the common 
diode, is

v V
i i
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Applying KVL and removing VT ⋅ ln results in
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The output current is
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A log-antilog scheme for an rss circuit (above) has common output 
current,

i i iO = +1 2
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and two loops to which KVL is applied:
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These equations reduce to
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Adding them results in

i i i i i i i i iO O X Y O X Y⋅ +( ) = = + ⇒ = +1 2
2 2 2 2 2

An rms circuit similar to these rss circuits consists of three cascaded blocks: 
a squarer, averager (integrator), and square-root block. The rms circuit requires 
the intermediate averaging function.

The Analog Devices AD534 cleverly implements the rms function implicitly, 
using a current-squarer circuit and making use of its inherent divider capability. 
By feeding back the output as a divisor, the circuit implements the rms 
function,

v avg vo i= ( )2

or

v avg vo i
2 2= ( )

by implementing the equivalent expression,

v
avg v

v
o

i

o

=
( )2

The scheme is shown below. The fi rst stage is an absolute-value circuit that 
drives the squarer-divider with iC3. The Q3 collector voltage is vi/R2. An ampli-
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fi er, U3, is used to drive the emitter of Q9 with the voltage required for it to 
conduct iC5.

R2
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Writing the loop equation for the squarer,
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This reduces quickly to
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The current mirror (Q5, Q6, and Q8) replicates the squarer output current, iC10,
as rms output current, iC8, and feeds a copy of it back to the divider as iC9. The 
squarer output current is averaged by R5, C. Q7 is driven with a reference current, 
IR. Then its emitter voltage is related to iC9, the output current, by

v V i Ie T o R7 = ⋅ ( )ln

With proper scaling of vi and IR, ve7 is a log-rms (or dB-rms) output.
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TRIANGLE-WAVE GENERATORS

Function generators are a low-cost and versatile signal source. Their oscillator 
is a kind of multivibrator combined with a dual-slope ramp generator. This 
triangle-wave generator (TWG) outputs both triangle and square waves. TWGs are 
voltage-controlled oscillators (VCOs); their frequency can be accurately con-
trolled over several decades by an input voltage, designated voltage-controlled 
frequency (VCF) or voltage-controlled generator (VCG) on commercial func-
tion generator (FG) instruments. This makes them useful for frequency sweep-
ing or modulation. An external phase-locked loop (PLL) can make them 
accurate frequency sources as well.

Frequency ×1
R C

–

+

An early approach to triangle-wave generation coupled a Miller ramp genera-
tor with a bistable MV or Schmitt trigger. The bipolar square-wave from the 
switch is integrated by the op-amp, producing a triangle wave. For a symmetric 
(50% duty-ratio) output, the magnitudes of the square-wave levels must be equal 
for equal triangle-wave slopes. The frequency can be adjusted, as shown, by 
varying the amplitude of the square-wave input to the integrator. Like ramp 
generators using an op-amp integrator, this approach is both speed- and 
precision-limited. For a VCF range of three decades and a full-scale square-
wave amplitude of 10 V, at zero scale (the low-frequency end) the square-wave 
amplitude is 10 mV. For 1% waveform symmetry, the integrator input offset 
error must be less than 100 µV.
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Speed-wise, for a high-frequency limit of 1 MHz, triangle-wave amplitude of 
10 V, and triangle nonlinearity of less than 1%, the slope magnitude is

dv
dt

V
RC

V
T

TW SQ TW= = =
4

10 V
250 ns

where VSQ and VTW are square-wave and triangle-wave amplitudes and T their
period. VSQ is also 10 V, and RC = 250 ns. The integrator op-amp gain require-
ment for the specifi ed nonlinearity is calculated from the ramp fractional non-
linearity, which is

ε
τ

≅
⋅

−
⋅ ⋅ ⋅ +( )

t t
R C K2 2 1

The integrator fractional nonlinearity and required gain are

ε
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=
⋅ +( ) ⋅ ⋅

⇒ =
⋅ ⋅ ⋅

−T
K R C

K
T
R C

2
2 1 4

1

K must be at least 999 at 1 MHz, an almost 1 GHz unity-gain bandwidth.

A B

C

I

×1

I
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To achieve better performance, current-source ramp generation is used with 
a bipolar current source. Two matched current sources are used to achieve 
bipolar charging of C. The positive (source) and negative (sink) currents are 
alternately switched into C each half cycle. This scheme is much faster and more 
precise than the fi rst one but requires matching of current sources for time 
symmetry and symmetric hysteresis thresholds for voltage symmetry.

+V

Q3

I

I

–V

D3 D4

D1 2D

RE

C

R

–V

–V

Q2Q1

Q4

R2

R1

RL2RL1

+V

0

A more concrete circuit realization (above) is a fast TWG, capable of over 
100 MHz triangle-wave frequency. The hysteresis-switch and current-switch 
driver Q1–Q4 can be implemented with a single ECL NOR gate. The diode bridge 
is switched by Q3 and is limited mainly by diode shunt capacitance. Sometimes 
a Faraday shield is placed between the left and right halves of the diode bridge 
to decouple the square-wave node vE3 from the triangle-wave node at C. The 
input resistance of the Schmitt trigger is not high, resulting in appreciable 
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A variation on the bipolar current supply uses only one current source for 
charging C. This eliminates the matching problem between sources. The Signet-
ics NE565 FG and NE566 PLL both have TWGs of the above design. Q1 and Q2

form a current source or V/I converter with input vF, the VCF input. It gener-
ates I through R, the timing resistor. Switching of I is controlled by Q5. When it 
is off, D2 conducts I, and C charges (positive). When Q5 is on, vC3 < vC4, and D1

conducts I through Q3, where it is replicated in Q4 as −I. Thus, C is discharged 
with the same magnitude of current as it is charged. Symmetry depends on 
current-mirror matching.

+V

R

Q1

Q2

vF

D1 D2

Q3 Q4

Q5

C

nonlinearity. By adding a good buffer, its additional delay slows the loop. Speed 
and precision are, as usual, in confl ict.
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It is not necessary to switch both current sources. To simplify switching, the I-2I
scheme is used. Only one current switch is required, but now the I and 2I sources
must be matched at an accurate ratio of 2.

A more recent approach to better symmetry is to control one current 
source based on the triangle-wave slope generated by the other. In the differ-
ential TWG, instead of connecting triangle-wave node A (page 107) to ground, 
it charges  a second capacitor of the same value from −I while the node B capaci-
tor charges from +I. Its triangle wave is inverted relative to the one at node B. 
The two waveforms are then summed. Ideally, the sum is zero, but any differ-
ence is an error voltage that is applied to one of the current sources to correct 
the slope of the waveform it is generating to match the other. This scheme 
increases symmetry enough at low currents to extend the VCF range an extra 
decade.

I

C

2I
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A conceptually similar scheme is used in the Exar XR2206 FG IC, shown in 
simplifi ed form above. The triangle wave is developed differentially across C and
requires a diff-amp pick-off. Q1–Q4 are the timing-current switches, but there is 
only one timing-current source. Q1, Q2, Q7, and Q8 are the hysteresis switch. The 
b-e junctions of Q1–Q2 sense the waveform and switch on when vE is reduced 
suffi ciently. On one half-cycle, Q1 and Q4 conduct; on the other half-cycle, Q2

and Q3 conduct. ISW sets the hysteresis thresholds. If the RSW are matched, the 
levels are symmetric. A disadvantage in this scheme is that the switching voltage 
is added to the capacitor ramp voltage at nodes A and B, as shown. It is diffi cult 
for a diff-amp to common-mode reject these fast switching edges, and some 
“glitches” appear in the triangle-wave output.

RL

RSW RSW

+V

Q7 Q8

Q1 Q2

C
A B

Q3 Q4

Q5 Q6

–V –V

ISW I

Q1 on Q1 off

Q2 onQ2

vA
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RL

off
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The performance of a TWG loop depends on the subsystems within the loop. 
The timing capacitor must be of suffi cient quality (plastic), and for multiple 
frequency ranges, a matched set is usually required. The triangle-wave buffer 
must be fast, have low input-voltage offset and bias current, and high input 
resistance. The current switches must be fast and have low current leakage when 
off. Transistors are generally superior to diodes in both leakage and switching 
characteristics and are used as switches as shown in the TWG loop above. A 
minimum of two switches is required in a balanced two-source scheme, as shown. 
The switching scheme here consists of complementary diff-amps. Two BJTs 
switch the current-switch BJTs.

The timing-current generators also must be capable of operating accurately 
over as many decades of current as the VCF range because output frequency is 
proportional to timing current. Complementary V/I converters are commonly 
used to supply both polarities of current. These converters must be driven by 
precision circuitry that establishes symmetric voltages at their inputs. These cir-
cuits need only the bandwidth required of the FM VCF signal. Sometimes BJTs 
are used as the current-source transistors in V/I converters instead of FETs for 
their higher output impedance. When a source is supplying the timing current 

+V

I

Q1 Q2

Q3 Q4

I
–V

C
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through a diode bridge, the triangle wave is at its output. Whatever parasitic 
output capacitance the current source has affects the timing. The additional 
isolation offered by a BJT switch over a diode minimizes this problem.

+

–

+

–VH Q

QVL

Within the TWG loop is the hysteresis switch. Schmitt triggers of the regen-
erative MV kind are sometimes used, but their thresholds are often not accurate 
enough. The dual-level comparator circuit (above) is more accurate. The com-
parator outputs are asserted (high) only momentarily as the ramp crosses a 
threshold at a peak. The RS fl op, made of NOR gates, is set to alternating states. 
This is not the fastest circuit since it consists of several stages of processing and 
can be used up to about 20 MHz.

Not only must the thresholds be symmetric; a hysteresis switch must also have 
little delay because the total loop delay determines the maximum operating 
frequency. As loop delay time td becomes an appreciable fraction of the period 
T, the ramp increases in magnitude beyond the threshold before the slope 
changes. The triangle-wave amplitude thus begins to increase with frequency.

VM

ωω  

vM

d
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The effect is graphed. VM is the low-frequency triangle amplitude and hysteresis 
threshold. Because of delay, it increases to vM( f ). For a ramp slope of m,

v V m tM M d= + ⋅

where the slope is

m
v
T

v
T

M M= =
4

4

Substituting into vM,

v V
v
T

t
V

t T
V

t
M M

M
d

M

d

M

d
d

d

= + ⋅ =
− ( ) =

− ( ) =4
1 4 1 2ω ω

ω π
,

Using the approximation

1
1

1 1
−

≅ + <<
x

x x,

then

v VM M
d

d≅ ⋅ +



 <<1

ω
ω

ω ω,

This equation also results from assuming the low-frequency slope of

m
V
T

M= 4

in vM. The period increases over its low-frequency value by 4 ⋅ td. From the vM

approximation, wd is like a zero break frequency for vM, but from the exact 
expression, vM is vertically asymptotic at wd. As w approaches wd, td dominates 
T. A td of 10 ns breaks at
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f
t

d
d

= 1
4

or 25 MHz.
Because vM(w) is nonlinear, a nonlinear compensator is required to make 

vM(w) = VM. Transfer-function compensation is based on linear analysis, requir-
ing another approach. This is an adaptive control problem; a parameter VM must 
be varied to achieve ideal compensation. The amplitude error is

∆v v V
V

v v
f
f

M M M
M d

d
M

d
M

d

= − = ⋅ ( )
− ( ) = ⋅ 


 = ⋅ 





ω ω
ω ω

ω
ω1

If VM is replaced by VM − ∆vM or if the triangle wave itself, vTW, is modifi ed to vTW

+ ∆vM, then vM becomes a constant VM. Because the TWG frequency is deter-
mined by the VCF voltage vF, frequency information can be derived from it to 
set the comparator thresholds. The slope of vTW is I/C. If I is generated by a V/I
converter by VCF voltage vF across timing resistor R, then,

m
v
RC

F=

For w << wd, the low-frequency slope applies. Equating to m above,

f
v

R C V
F

M

=
⋅ ⋅ ⋅4

and the adaptive VM is

adaptive V V v V
V

V v RC t
V v

t
RC

M M M M
M

M F d
M F

d→ − = − ( )( ) −
≅ − ⋅


∆

1

This is an instance of model-reference adaptive control and is based on a priori 
knowledge of the circuit-model f. When R or C are switched to change frequency 
ranges, the model changes. Switching of RC in the adaptive VM is required for 
the model to represent the circuit.
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Another approach to TWG-loop compensation is to place in the loop a time 
advance to cancel td. In the s-domain, the delay is e −std and a compensating 
advance is e std. Time advances are not realizable in physical (causal) systems, and 
this form of compensation can be only approximated. The power-series expan-
sion of the time delay is

e st
s t s t

st
st

st
d

d d
d

d

d− = − + − + ≅ − ≅
+

1
2 6

1
1

1

2 2 3 3

The single-pole approximation to a time delay suggests that a phase-lead com-
pensator with zero at 1/td and higher-frequency pole provides approximate 
compensation.

A rational approximation to the time advance is the Padé approximation. A 
fi rst-order approximation is

e
st
st

st d

d

d ≅ +
− +

2 1
2 1

It is a nonminimum-phase transfer function. A second-order Padé approxima-
tion is

e
s t st
s t st

st d d

d d

d ≅ + +
− +

2 2

2 2

6 12
6 12

It can be factored, which results in

z
t

j p
t

j
d d

1 2 1 2
1

3 3
1

3 3, ,= 



 ⋅ ±( ) = 



 ⋅ − ±( ),

The pole-zero placement is symmetric about the origin and represents an all-
pass fi lter. This is consistent with the delay function in that it effects only a shift 
in time with no amplitude change. The pole and zero pairs have an angle of

φ = ≅−tan 1 3
3

30°
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Besides being rational approximations, these delay compensators are linear 
whereas the circuit is nonlinear. Frequency-domain analysis assumes sinusoids, not 
triangle waves. For w << wd, the nonlinearity is not too severe and can be approxi-
mated as linear, and the phase error in the rational approximations is minimal.

f

FC

IFMMV

TWG

τ

vF

The versatility of the FG is due partly to its wide VCF range. For frequency-
response or Bode magnitude plots, a logarithmically swept VCF directly pro-
duces a log-frequency plot on an oscilloscope display. A simple way of producing 
a logarithmic sweep is shown above. On each cycle of the FG output, the MMV 
is triggered. It gates on a current source for a fi xed time, transferring a fi xed 
charge to the VCF capacitor CF. This increments vF by a fi xed amount, causing 
the output frequency to increment. As the frequency increases, the rate of 
increase of vF increases along with it and is exponential. The resulting frequency 
sweep, when displayed, is stepwise logarithmic.

Quantitatively, let the MMV time-out be t < T = 1/f. During a given time 
interval ∆t, n periods of the output occur. Then

∆
∆
v
t

n I C
n T

f
I
C

F F F F

F

= ⋅ ( )
⋅

= ⋅ ⋅





τ τ

In the limit, for small ∆vF or infi nite n,

lim
n

F F F

F

v
t

dv
dt

I
C

f
→∞

= = 



 ⋅∆

∆
τ

As a voltage-to-frequency (V/F ) converter (VFC),

f k vF F= ⋅
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Substituting into the limit equation and solving,

v v eF F
I C k tF F F= ( ) ⋅ ⋅ ⋅ ⋅( )0 τ

The sweep-rate constant is (IF ⋅t/CF) ⋅kF, and the sweep time is

t
f f

I C k
SWP

F F F

= ( )( )
⋅( )⋅

ln 0
τ

where f(0) is the starting frequency and f the ending frequency. The VFC con-
stant kF can be found from the TWG parameters. For triangle-wave amplitude 
of VM, the slope is

V
T

I
C

v R
C

f
RC V

v k
RC V

M F

M
F F

M4
1

4
1 1

4
1= = ⇒ = ⋅



 ⋅ ⇒ = ⋅

Besides VCF, the TWG current sources can be individually controlled for 
variable symmetry or duty-ratio. A voltage-controlled symmetry (VCS) input allows 
pulse-width modulation (PWM) of the output waveforms.

  /2

VM

π

v

VM

4
T t

A third waveform available on FGs is the sine wave. This function is not gen-
erated by the TWG loop but by a sine converter circuit. Most commonly, this is 
a multiple-diode clamp that performs a piecewise-linear waveform shaping of 
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the triangle wave. Commonly used shapers use diode bridges for symmetry and 
diode drift cancellation. The initial part of the triangle and sine waves has the 
same slope. For sine amplitude of VA, the slopes are equated:

V
T

V
V
V

M
A

M

A4 2
1 57= ⋅ ⇒ = ≅ω π
.

The most signifi cant anomaly of these sine shapers is the triangle-wave peaks in 
the sinusoid. At the peaks, the derivative of the triangle wave is discontinuous 
and is diffi cult to remove entirely from the sine wave. Typically, three-break-
point sine shapers produce less than 0.25% total harmonic distortion (THD) 
in the audio range.

Another scheme uses the hyperbolic tangent function of the BJT 
diff-amp as an approximate sine converter. This results in somewhat more dis-
tortion than the multiple-clamp circuit. MOS diff-amps have a quadratic transfer 
function and also approximate a sine output with adjusted parameters.

I
120

I
6

I
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i3 i4

i2
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A more elegant approach is to return to the translinear cell concept. By stack-
ing diodes with diff-amp pick-offs, arbitrary power series expansions can be 
realized, as in the above circuit for three terms of a sine expansion. The Taylor-
series expansion is

sin sin
i
i

x x
x x1

2

3 5

6 120
= = − +

The truncation error is less than 0.07%. For two terms, the error is 0.14%, still 
favorable relative to the other schemes. This sine converter operates over an 
input range of x from 0.5 to 2.

I2 Q

i3 i4

Q5 Q6
Q3 Q4

Q1 Q2

D2

i2i1

D1

VB

The two-term sine shaper sketched above has a topology similar to a Gilbert 
gain cell. It passes the linear term through Q5–Q6 while Q1–Q2 develop the 
second term of the output. Together,

i i
I I

i I
O I

Q I

l I

= ⋅ −
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where

i i i i i i I i i I i iI O I Q C C= − = − = + = +1 2 3 4 1 2 1 2, , ,

The ratio 2IQ/II is adjusted for minimum THD of less than 0.1% when the ratio 
is about 1.5.

ABSOLUTE-VALUE (PRECISION RECTIFIER) CIRCUITS

A full-wave rectifi er performs the absolute-value function

x
x x

x x
=

≥
− <





,

,

0

0

A half-wave rectifi er performs the function

f x
x x

x
( ) =

≥
<





,

,

0

0 0

Half-wave rectifi cation is mainly applied as a bipolar to unipolar (ac-to-dc) con-
version technique in low-power power supplies or AM demodulators. Rectifi ers 
can be designed to output either polarity; the positive outputs of x or f(x)
could instead be −x or −f(x). For waveform processing involving mathematical 
functions, x is more commonly needed.

Iv

+

–

Ov

+

–

A single diode can half-wave rectify (above).
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Two diodes are used for full-wave rectifi cation with a ground-based differential 
input (above) and a diode bridge for a fl oating input (below).

Ov

2
vI

+

–

2
vI

+

–

Iv

+

–

Ov

+

–

A more recent addition to rectifi er circuits is the synchronous rectifi er. It uses active 
devices, usually MOSFETs, that are switched by the input itself. These circuits 
are associated with power conversion and are commonly found in power sup-
plies, both linear and switched. The precision clamps of “Clamps and Limiters” 
are half-wave rectifi ers.
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Absolute-value circuits can be designed many ways. The common constraint 
is that the gain magnitude for vI < 0 be the same as for vI ≥ 0, so that −Av− = Av+.
A common absolute-value circuit is shown above. It has similar frequency 
responses for positive and for negative inputs. On the positive half-cycle, D1

conducts, and op-amp A operates in the inverting confi guration. Op-amp B 
converts this output to a single-ended signal vO. The gain expressions are

A
R
R

R
R

A
R R R

R
R

R R
v v+ −= −



 ⋅ −



 = − +( )



 ⋅

+
2

1

5

4

3 2 4

1

5

2 4

; ++



1

Equating Av+ to −Av−, the constraint on resistor values is

R R R R3 5 2 4= =,

Because R1 is unconstrained, it can set the gain. Op-amp B must have a fast 
large-signal response to follow the discontinuities in the waveform it amplifi es.

+

–
R1

A

vI

–

+

R3–

+

–
B vO

R2

This circuit uses only one diode. Op-amp A functions for negative inputs as 
the fi rst stage of gain in the forward path, cascaded with op-amp B, a ×1 buffer. 
The gain is

A
R
R

v− = − 2

1
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For positive inputs, op-amp A is disconnected from B, and vI is applied directly 
to the input of B through R3. The value of R3 does not affect gain; its purpose 
is to limit current from op-amp A when the diode conducts. Thus, positive 
inputs bypass A and are merely buffered by B with a gain of Av+ = 1. The con-
straint is simply that Av− = −1:

R R1 2=

The positive-gain path involves only one op-amp and has a faster response than 
the negative-gain path for negative inputs.

+

vI

+

D1

vO

–

D3

I

D2

R1

I

R2

–

A similar kind of circuit with only one op-amp requires matched diodes D1

and D2 and current sources as a trade-off for fewer components. In IC form, this 
is attractive. The positive-gain path is through D1 and the op-amp, with a gain 
of one. D2 also conducts, causing the inverting op-amp input to follow the input. 
For negative inputs, D1 is off, D3 is on to satisfy the current source, and the op-
amp inverts with a gain of −R2/R1. D2 conducts all the time to balance D1 or D3.
The constraint is

R R1 2=
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Another variation on this theme, which allows adjustment of gain at the 
output by means of R4, is shown above. The gains are

A
R
R

A
R R

R
v v+ −= + = +



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4

2

4 2

1

1,

The constraint again applies. R4 is not constrained and can be used to set the 
gain. D2 clamps op-amp A input to virtual ground for positive signals so that R1

does not affect Av+.
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This absolute-value circuit has a high-impedance input but is constrained to 
a gain of one. For Av+ = 1 then

A
R
R

R
R

R
R

R R
R R

v− = +



 ⋅ −



 + +



 = − ⋅

⋅
2

1

4

3

4

3

2 4

1 3

1 1 1

The constraint is

R
R R

R
4

1 3

2

2= ⋅ ⋅

One combination of resistors satisfying the constraint is

R R R R1 2 3 42= = ⋅ =
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This absolute-value circuit also has a high-impedance input, with gains

A
R R

R
A

R
R

v v+ −= + + = −2 3

1

3

2

1,



Waveform-Processing Circuits  127

and with the constraint

R
R

R R
R R
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3 2

3 2

1
1
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Implicit in the constraint equation is the additional constraint that R3 > R2.
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The absolute-value circuit shown above is essentially that used in the AD534 
root mean square (rms) circuit. The transistors and resistors must match for 
accuracy. For positive vI, the BJTs are cut off, and input current fl ows in the 
lower path through Ri to the input of U2. For negative vI, both BJTs conduct 
and present the same voltage at their emitters. Q1 completes the path back to 
the U1 input while Q2 conducts half that current through the lower Ri via R/2
to vI. This causes the output op-amp to conduct the same amount of current as 
in Ri, and the circuit transfer function is

v
v

R
R

O

I

f

i

= −

As with most other absolute-value circuits, the path for one polarity (positive vI

in this case) is faster than for the other polarity. Also, design of the above circuit 
should take into account the reverse b-e breakdown-voltage limitation, typically 
around 5 V to 7 V. This limits not only the U1 negative output saturation voltage 
for positive inputs but also the positive range of vI. A single-supply op-amp with 
grounded negative supply terminal allows for maximum positive vI range.
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Not all absolute-value circuits must be designed by matching gains of positive- 
and negative-gain paths. This circuit resembles an instrumentation amplifi er 
but its output current is unipolar. For vI > 0, D1 and Q2 conduct. D1 reverse-biases 
Q1. The negative-gain path is through D2 and Q1. The circuit is symmetric and 
has output current

i
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Finally, this circuit has a rectifi er section similar to the fi rst absolute-value 
circuit but with gain set by R5. The positive-gain path is through A, then B; the 
negative-gain path is through R3 and B. For negative inputs, D2 conducts through 
R6, a current-limiting resistor, forcing the inverting input to virtual ground. R4

and R2 then shunt the input of B, but this does not affect the gain.
Some op-amps have inherently unipolar outputs and can be fashioned 

into precision rectifi ers. When current mirrors, CMOS inverters, and other 
elemental circuits are also used, the collection of absolute-value circuits 
becomes extensive.

PEAK DETECTORS

Peak detectors are a class of circuits that extract the extrema of waveforms. They 
are essentially rectifi er circuits with a memory. A simple example is the rectifi er-
fi lter combination of power supplies.

Ov

Iv

+

–

+

–

The diode conducts to charge the fi lter capacitor whenever the source-circuit 
voltage exceeds the capacitor voltage. The capacitor charges to the peak input 
voltage.

Iv
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Ov > 0 Iv
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C

C
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Fast, simple detectors (shown above) of maxima (positive peaks), (a), and 
minima (negative peaks), (b), use a CC stage that charges C.

Slower, more precise peak detectors, shown below, are reset through FETs 
that discharge the capacitors. Ideally, after C has been charged to the peak 
voltage, it retains its charge indefi nitely. (In this respect, peak detectors are 
similar to S/H circuits.) The capacitor must have low leakage (high insulation 
resistance) to minimize the discharge rate. It must also have low dielectric 
absorption so that when reset, it retains 0 V until recharged by the input wave-
form. These requirements suggest a plastic or mica capacitor.

Reset
C

Iv

+

–

+

–
Ov > 0

(a)

ResetC

Iv

+

–

+

–
Ov >0

(b)

This applies also to its load, including the reset FET, and to the op-amp 
bias current. For the circuit below, load leakage is minimized by using a high-
impedance buffer with low input bias current. When it drives the input op-amp, 
its offset-voltage error is compensated by being in the loop. The feedback loop 
also effectively reduces the time constant rout ⋅C by the loop gain, where rout is
the resistance in series with the diode. Fast peaks are thus detected more 
accurately.
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To avoid overcharging, the feedback response must not be underdamped or 
overshoot occurs. Op-amp B must be faster than A to minimize loop delay and 
avoid overshoot. That is, a single dominant pole in the loop due to A yields a 
damped response. Because of the output loading of C and the additional pole 
it causes, op-amp A usually must be frequency compensated.

If op-amp A has limited output current, a CC buffer can replace the diode. 
This increases charging current by the b of the transistor and slew-rate increases 
by b.

D2 and R are added to keep op-amp A from being driven into saturation when 
D1 is off. R limits D2 current. This enables the op-amp to respond more quickly 
as its output now follows the input. This also keeps its output from quickly 
switching to its saturation limits when D1 cuts off, thus minimizing transient 
feed-through to the hold capacitor via D1 shunt capacitance.
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+
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To further minimize bias-current error, a similar capacitor can be placed 
around op-amp B. Both capacitors are charged by the bias current, resulting in 
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the same ∆v across each. The error voltage on the feedback capacitor subtracts 
from the hold-capacitor voltage, thus compensating its error. The feedback 
capacitor, however, must also be reset; two reset switches are required.

Iv

+

–

D1

C

Reset

vO

R
D2

A
+

– B
+

–

D3

1

R2

Finally, the diode must have a low reverse saturation current to minimize 
leakage when off. Reverse current varies with reverse voltage and is minimized 
by minimizing the voltage across the nonconducting diode. This can be done 
by, again, using the versatile technique of bootstrapping. D3 and R2 have been 
added to the fi rst two-op-amp peak detector. vO follows the capacitor voltage 
when holding, and R2 applies this voltage to the anode of D3, reducing its voltage 
to zero. D1 blocks this node from the varying output of op-amp A, but its leakage 
is not critical for low values of R2. When C is charging, R2 isolates the diode node 
from the output of op-amp B. With this approach, special low-leakage diodes 
can be avoided in most applications. An alternative is to replace D1 of the origi-
nal peak detector with a junction fi eld-effect transistor ( JFET). Its gate-source 
junction typically has lower leakage than discrete diodes.

The bootstrapping technique of leakage decoupling can be applied to the reset 
switch also. Two switches are placed in series, with a resistor from the output 
connected to their series connection. Both switches are driven by the Reset 
signal.

Bootstrapping can also decrease acquisition time if input impedance is not 
critical. In the fi rst two-op-amp peak detector, add a resistor in series with vI and
a bootstrap diode from output to the op-amp A noninverting input so that it 
conducts from output to input. Then the fi rst fast peak charges C. Through the 
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bootstrap diode, the output of op-amp A is now driven to this voltage, which is 
near the peak. The next fast peak has less voltage over which to slew the output 
to further charge C.

Most of the charging time occurs when op-amp A output is near the peak 
voltage because it is not required to supply the large slew-rate-limited currents 
that a large voltage difference causes. Feedback then increases response time if 
rout ⋅C corresponds to frequencies at which the loop gain is still high.

The hold capacitor size is chosen as a trade-off between hold time and acqui-
sition time. For fast peaks, a small C is preferred for faster charging. But a 
smaller capacitor develops hold error at a higher rate than a larger C. Therefore, 
C is chosen as a compromise between acquisition and hold-time requirements. 
A two-stage peak detector mitigates the trade-off. The fi rst stage is optimized to 
be fast, whereas the second stage has a long hold time.
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ELECTRICAL QUANTITIES BOTH ENCODE AND REPRESENT INFORMATION

An electrical quantity in time x(t) is a signal when it encodes information. The 
information is interpreted according to a representational theory, such as logic 
theory for digital signals or transforms based on analogy for analog signals. The 
theory of representation is independent of the encoding scheme. In communi-
cations theory, encoding is called modulation. What the modulating signal rep-
resents is independent of its encoding. A thermometer output, for example, can 
be encoded in analog or digital form but represents temperature, regardless.

Another way to think about information encoding is as two levels of 
representation. The encoding scheme is a representation at the electrical level, 
and the encoded information represents a quantity that is independent of elec-
tricity. This “more abstract” level of representation has to do with the applica-
tion. Consequently, electronics is useful in domains that have nothing to do with 
electronics because both signals and their processing operations have meaning-
ful interpretations for the application.

Information can be encoded as discrete or continuous functions of either an 
electrical quantity (usually voltage or current) or of time. The information to 
be encoded and the encoding scheme can be either discrete or continuous. The 
compatibility of an encoding scheme with the encoded information is a design 
consideration. For example, discrete functions are often best represented by 
digital encoding. Engineers sometimes differ over the relative merits of discrete 
versus continuous encoding and processing of information. The difference 
between discrete, or digital, and continuous, or analog, encoding is so important 
that each constitutes a major subdiscipline within electronics.
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A digital signal is discrete in both x and t. Binary encoding is by far the domi-
nant digital encoding of x, where x ∈ {XL, XH}. These two values or “levels” are 
named low (XL) and high (XH) and represent binary logic states of false and true,
or, in Boolean algebra, 0 and 1. Whether the low level represents true or false
depends on the polarity of the logic; a low level is false in positive logic and true 
in negative logic. Digital encoding can have more than two levels. The number 
of levels equals the modulus or base of the number representation. For example, 
decimal numbers can be encoded in a 10-level scheme. As the modulus increases, 
the representation approaches a continuous form.

An example is the output of digital-to-analog converters (DACs). For an 8-bit 
DAC, 256 discrete levels may adequately approximate a continuous function in 
some applications. The DAC could, however, be considered an encoder of base-
256 numbers. In this sense, continuous waveforms are of infi nite modulus, and 
analog engineers are actually digital engineers who specialize in infi nite-base 
encoding.

Discrete functions can also be encoded in time. Frequency-shift keying, a kind 
of binary FM used in modems, is one approach. More common to computer 
electronics is synchronous and asynchronous serial encoding of alphanumeric 
characters in ASCII. Many other purely digital encoding schemes make digital 
encoding and communications a specialty in itself.

Continuous functions can also be encoded purely in time as the width of a 
(binary) pulse (pulse-width modulation [PWM]) or by its time difference rela-
tive to another event in the signal (pulse-position modulation) or simply by the 
pulse frequency, as is the output of voltage-to-frequency converters (VFCs).

Finally, waveforms that are continuous in x and discrete in t are sampled wave-
forms. These waveforms are of great importance in association with analog-to-
digital (A/D) and digital-to-analog (D/A) conversion and with sampled-data 
systems in general, systems that contain discrete-time waveforms, such as a motor 
servo controller with a digital position encoder, or any system with sample-and-
hold circuits.

DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog converters convert digital input codes to output voltages or 
currents. The transfer curve for a unipolar three-bit DAC has discrete voltages 
at the discrete (integer) values of the digital input code d.
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The digital code is an ordered set of bits that represent integers. Various number 
representations are possible, but the most common are shown in the table for 
three bits.

Integer Offset Binary
Two’s

Complement Sign-Magnitude

3 111 011 011 +fs

2 110 010 010

1 101 001 001

0 100 000 000 100 zs

−1 011 111 ↑ 101 ↑

−2 010 110 0+ 110 0−

−3 001 101 111

−4 000 100 ↑ −fs↵

 inverted MSB    

↵

  (sign) 

MSB 1 ⇒ −

These are signed (bipolar) representations of integers. The most common 
number representations are two’s complement and offset binary. They differ 
only in the polarity of their sign bit. Binary-coded decimal (BCD) is also some-
times used, in which the fi rst 10 binary numbers represent a decimal number.

In the above table, the positive full-scale (fs) value is 3, and the negative fs 
value is −4, one greater in magnitude. This asymmetry results from assigning a 
state to zero. Sign-magnitude coding is symmetric, but it has two zero states. In 
general, for n bits, there are 2n states. The transfer characteristic for a unipolar 
n-bit DAC is

1 2 3 4 5 6 7 d0

Vfs

VR

vO

VLSB
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v V
d

O R n
= ⋅


2

where VR is the DAC reference voltage. The fs voltage is less than VR because 
the

maximum d n= −2 1

Accordingly,

V V V
V

V Vfs R

n

n R
R
n R= ⋅

−





= − = −
2 1

2 2
LSB

That is, the fs output is less than VR by VLSB, the quantum voltage: the voltage 
difference corresponding to a difference of one input state. Because VLSB is the 
smallest output voltage difference of the DAC, it is also its resolution, its minimum 
∆vO.

The DAC input often represents a continuous function, but because it is 
discrete (or quantized), for values between integers the DAC output remains 
constant. In the plot shown above, vO is zero over the interval [0, 1). (This is 
the least-integer function). At 1−, infi nitesimally below 1, vO = 0 V, though the 
correct value is infi nitesimally less than VLSB. The output is in error by VLSB at 1−

and has no error at zero. The magnitude of the error can be split so that the 
error range is ±1/2 VLSB by offsetting vO by 1/2 VLSB. Then the DAC output fs 
magnitudes are also equal.

1 2 30

2

–2–3–4

Vfs +

vO

VLSB

Vfs –

d
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Quantization error causes quantization noise, which is a sawtooth function that 
cycles between −VLSB/2 and +VLSB/2 between each state (∆d = 1). The rms value 
of this noise vn is

rms LSB LSB
LSBv

d
V

d
d d d

V
Vn d

d= ⋅



 ⋅ ( ) = ≅ ⋅−

+
∫

1
12

0 3
2

2

2

∆ ∆∆

∆
.

A signal-to-noise ratio (SNR) defi nition for n bits is

SNR
rms

LSB

LSB

= =
⋅

= ⋅ ≅ ⋅V
v

V

V
R

n

n
n n2

12
12 2 3 46 2.

In decibels, this is

SNR dB( ) = ⋅ ⋅( ) = ⋅ + ⋅ ⋅ ≅ + ⋅20 12 2 20 12 20 2 10 8 6 02log log log . .n n n

The dynamic range is about 6 ⋅n dB, and quantization noise is about 10.8 dB 
independent of the number of bits. Each additional bit increases the range by 
×2, an octave, and this is 6 dB/octave, the slope of a Bode plot zero.

A different characterization of the SNR is as the ratio of rms signal to rms 
noise for a sinusoid. The rms value of a sine of amplitude V is 2 2( )V . Then

SNR
rms sine

rms noise
LSB

LSB

= =
( )⋅( )⋅

= ⋅






≅
2 2 2 2

12
2

6
2

1 23
n

n
V

V
. ⋅⋅2n

In dB scaling, this is

SNR dB( ) = ⋅






+ ⋅ ≅ +20
6

2
20 2 1 76 6 02log log . .n n

The dynamic range remains the same under this defi nition of SNR, but the 
signal is less relative to the noise. This explains why the constant term of 1.8 dB 
is less than in the fi rst SNR(dB).
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In actual DACs, the step size of quantum VLSB is not constant, which affects 
the linearity of vO/d. A measure of this nonlinearity is the differential linearity 
error (DLE), or differential nonlinearity, the amount a step differs from VLSB:

DLE LSB= −∆v Vstep

If DLE exceeds VLSB, the transfer curve is nonmonotonic, decreasing in output 
value with increasing d. This behavior can cause limit-cycle oscillation in control 
system applications. DACs also have offset and scaling (gain) errors, but these 
are nulled by external adjustment; the DLE cannot be.

DACs often output functions of time, vO(t); their dynamic response is impor-
tant. This is characterized by the settling time to within ½ VLSB of error. A dynamic 
anomaly of DACs is that when a large number of bits change in d, the effects 
of individual bits on the output are not exactly synchronized. At the output, 
momentary pulses or “glitches” appear until all the bits settle. This phenomenon 
is especially evident at midscale, when d changes from 011 to 100 (for a three-bit 
DAC). The change in most-signifi cant bit (MSB) must be canceled by the com-
bined changes of all the other bits, to within VLSB, the correct ∆vO.

When glitches are unacceptable, as in CRT display systems, the DAC is fol-
lowed by a deglitcher. These are either hf limiters or samplers with a delay. In 
delayed samplers, the DAC output is allowed to settle. Then it is sampled, and 
this value is output. The sampling control signal is delayed from the clock that 
changes DAC input states.

2R

4R

8R

R
Q3

Q2

Q1

Q0

Rf

–

+

4
d

4-bit CMOS register

vO

Rf
8

15 R
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DAC designs are categorized as either bipolar junction transistor (BJT) or 
complementary metal-oxide semiconductor (CMOS). Both achieve binary 
weightings of voltage or current for each bit by a resistive network. Unless the 
number of bits is few (≤4), these are R-2R or resistive ladder networks. Otherwise, 
a set of binary-weighted resistors suffi ce. A four-bit binary-weighted resistor DAC 
is shown, voltage-driven by a CMOS register. The output is a function of each 
of the bits bi of d:

v R
V
R

b
V
R

b
V

R
b

V
R

b
R
R

VO f
R R R R f

R= − ⋅ ⋅ + ⋅ + ⋅ + ⋅



 = − 



 ⋅ ⋅ −

3 2 1 0
2 4 8

2 ii
i

i
b⋅( )−

=
∑ 3

0

3

where b0 is the least-signifi cant bit (LSB) and VR is the CMOS register supply 
voltage, the DAC voltage reference. (CMOS digital outputs accurately approach 
the supply rails.) The resistors must have suffi cient precision to minimize DLE. The 
resistor requiring the most precision is at the MSB, R, since it must be within

∆R
R

R
R

n n= ± ⋅ = ± ⋅ = ±− −( ) −1
2

1
2

2 21

LSB

A four-bit DAC must have a tolerance on R of 6.3%. A 5% resistor suffi ces. For 
eight bits, the tolerance is 0.4%. This is diffi cult to achieve in monolithic form 
when the resistor values have such a wide range.

2R

Q3

Q2

Q1

Q0

Rf

–

+

4
d

4-bit CMOS register

vO

RfR

2R

2R

2R

R

R

R

2R
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A standard alternative is the voltage-switching R-2R network, another four-bit 
DAC.

In general, the binary weighting,

W d bi
n i

i

n

( ) = ⋅−
−

=
∑ 2

0

is the essence of DAC function. This weighting is achieved in the R-2R network. 
Beginning with b0, if it is 1, Q0 output is VR; if it is 0, then the output is 0 V. For 
b0 = 1, the Thevenin equivalent circuit is shown below.

+VR

b0
1

0

R2

R

R2

R2

VR
2

At each stage of an R-2R network, the input resistance is 2R and the voltage of 
the previous stage is halved. From the input end of the network, the b0 voltage 
is consequently halved four times. At the output, the op-amp is driven by a 
source resistance of R (another series R was not added to the network to make 
it 2R) and voltage of W(d)VR.

VR

R2 R2 R2 R2 R2

R R R
I R

iO′

iO R

+

–
vO

LSBMSB
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CMOS DACs are typically designed as shown above, with CMOS switches at 
the output and VR at the input. This reversal does not change the operation 
except that the DAC outputs must be kept at ground (or virtual ground, as 
shown) to avoid errors in output current. This current-switching R-2R network 
is still voltage-driven, and the output is −WVR with op-amp feedback resistor R.
Integrated circuit DACs often include this resistor to ensure its match with those 
in the network. The outputs are complementary currents that sum to a full-scale 
current,

i i I
V V

R
O O fs

R+ ′ = =
− LSB

Switch resistance must be minimum (or binary-ratioed) for minimum network 
error. MOSFET switch areas are scaled to achieve equal voltage drops across all 
switches.

CMOS DAC output impedance changes with d. The two extremes are with all 
zero and all one bits (next page) for an AD7520, a 10-bit DAC with R = 10 kΩ
and leakage current IL of 200 nA. Response compensation for op-amp input 
capacitance can be based only on an average or worst-case input state. Because 
output resistance varies extremely, op-amp bias-current compensation is also 
suboptimal.

–

+

RR

VR

IR

R

VEE–
R R

VB

16 A 8 A

R2

IR

IR
2

4 A

R2

IR
4

2 A

R2

IR
8

R

2 A

R2

IR
8

A

R2

IR
16

A

R2

 = 
IR
16LSB

iO′

Current switches
4

d

MSB LSB
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Typical BJT DAC design is based on a current-switching R-2R network. An input 
op-amp establishes a reference current IR in one of several BJTs with emitters 
connected to an R-2R network. The emitter areas are ratioed with the current 
each conducts, to maintain the same VE for all BJTs. The BJT collectors drive 
current switches. These can be differential amplifi ers (diff-amps) with logic-
compatible inputs. Their collectors are connected to either the iO or iO′  outputs. 
CMOS DAC outputs have no voltage compliance, but the BJT current outputs 
from collectors need not be held at a fi xed voltage.

IL
200 nA 37 pF

iO

120 pF

iO

IR
n2

IL

200 nA

VR
≈10 k Ω

d = 0000

120 pF

iO

IR
n2

IL

200 nA

VR
≈10 k Ω

′

IL
200 nA 37 pF

iO′

(a)

(b)

d = 1111
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The R-2R network is not switched but is a multiple binary current divider. The 
voltage in the series-R string doubles at each successive stage toward the termi-
nation at the LSB. The reference current is established by the op-amp circuit 
as VR/RR. The output is

i W d IO R= ( )⋅

and the complementary output is

′ = − =
−





⋅ −i I i I iO fs O

n

n R O
2 1

2

The equation for Ifs applies here. The relationship between IR and Ifs is the same 
as for the CMOS DAC:

I I I Ifs

n

n R R=
−





⋅ = −
2 1

2
LSB

The complementary output current is also related to W(d) as

′ = ( )⋅i W d IO R

where

W d b b bi
n i n i n i

i

n

( ) = ⋅ =−
− − −

=
∑ 2

0
, logical complement of

That is, W
—

 is the complementary weighting, the result of the bit-wise negation 
(or one’s complement) of d.

Monotonicity among the LSBs, achieved with the scaled-emitter technique 
shown below, is used with the ladder network. The LSB terminating current of 
the ladder network, instead of being grounded, is fed to a second branch of 
emitter-scaled BJTs that switch the three LSBs. Monotonicity is ensured by 
branching.



146  Chapter 2

2 A A A

R-2R network
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A2 A2 A A4 AA
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-bit DACm
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decoder

R

VEE–
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R
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2

For DACs with a large number of bits, the branching idea can be realized in 
a different topology. The segmented DAC, shown above for a two-bit segmenta-
tion, does current weighting with two networks. The input network is driven by 
a reference current as before. The two MSBs are decoded by a segment decoder. 
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They switch four equal currents to either output or to the branching input of 
an R-2R network of the remaining m LSBs. A segment decoder successively 
switches more segments with larger MSB codes to iO as the m LSBs divide the 
current from one segment (s1 in the fi gure) between iO and iO′ . The remaining 
segment currents go to iO′ . For m = 2, when d ≤ 0011, all segments except s0 are 
switched to iO′ . When d = 0100, s0 switches to iO, and s1 switches to drive the 
branch DAC, as shown. The remaining switches stay on iO′ .

Although the branching effect assures monotonicity, the transfer curve 
linearity can be much worse than the DLE. But in many applications, the DLE 
is all that matters for linearity. The match of the segment currents does not 
determine DLE, only the overall linearity. The segmented DAC uses fewer resis-
tors since each segment requires only one resistor, not two as in a ladder 
network.

A very simple DAC design is the serial-output DAC, easily realized by one 
fi ltered output line of a computer. A PWM generator, either in hardware or 
software, drives a low-pass fi lter with break frequency far below the PWM 
frequency. The average output voltage is proportional to the duty-ratio. 
The disadvantage of this scheme is that it is slow and inherently noisy due to 
ripple from the fi ltered pulse. But if the pulse amplitude is accurate and the 
transitions are fast, a high-resolution output is achievable in direct trade-off with 
response time.

The ripple amplitude varies with pulse duration, which depends on the duty-
ratio D. For high or low D, ripple is least and is highest at D = 50%. In steady-
state, the ripple extends from vL to vH around the average, DV. The ripple 
amplitude,

∆v v vH L= −

is derived from the decaying exponential, when the pulse is low:

v v
v

v
v

e
v

DV
H L

H H

D T−
= = ≅− −( )⋅∆ ∆1 τ

The approximation assumes that ripple is small relative to average output voltage 
and that vH ≅ D ⋅V. Also, t is the fi lter time constant. Solving for the ratio of 
PWM frequency to fi lter break frequency for 1 LSB of ripple,
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f
f

D
D

v V
bw

n
PWM

LSB≅ −
⋅ −( )
−( ) =−

2 1
1 2
π

ln
, ∆

For four bits, fPWM must be 23.5 fbw at D = 0.5 and 401 fbw for eight bits. At 10% 
duty-ratio for four bits, the frequency ratio is only 5.8 and is 8.7 for 90%. (At 
the extremes of D, the approximation fails. At D = 2−n and D = 1, the ratio is 0.) 
Other pulse waveforms from rate-multipliers or statistically biased digital pseudo-
random noise have less ripple for the same clock-to-fi lter frequency ratio but 
are harder to generate.

VR

C1

S1

S2

S3

C2

vO

A serial-input DAC is shown above, with three switches and two equal capaci-
tors C1 = C2. A serial digital input begins with the LSB. The DAC operates in two 
phases for each successive bit. On phase 1, switch S3 is open, and a serial input 
bit closes either S1 (for b = 1) or S2 (for b = 0), charging C1 to

q C b Vi i R= ⋅ ⋅

On phase 2, S1 and S2 are open, and S3 is closed. C2 contains the net charge 
from previous cycles. On the ith bit on phase 1, this charge is

q C vi i− −= ⋅1 1

On phase 2, S3 closes, and

v
q q

C
V

b
v

i
i i R

i
i=

+
⋅

= 



 ⋅ +− −1 1

2 2 2
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For n bits, the voltage is

v
V

b
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b
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R
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R
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This iterative equation reduces to the closed form of

v b V W d Vn
i

n i
i

n

R R= ⋅



 ⋅ = ( )⋅−

−
=
∑2

1

After n bits, vn is the converted voltage. It must be stored separately for output 
during the next conversion. The number of bits of monotonic conversion is 
limited by capacitor matching and switch leakage.

DIGITAL-TO-ANALOG CONVERTER CIRCUITS

In the fi gure below, a digital-to-analog converter is used as a component in a 
converter circuit. The DAC schematic symbol is used, with a small circle at iO′
to indicate the complementary output, after the convention of logic symbols. 
The op-amp output is bipolar and is offset by IR/2 by a resistor of 2R, where 
R is the current-reference resistor. Without this offset, vO is unipolar, ranging 
from 0 V to Ifs ⋅Rf. By shifting iO down by IR/2, vO at negative fs is one VLSB greater 
in magnitude than positive fs. IR/2 corresponds to the midscale or zero state 
of d.

–
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vO

iO
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DAC
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The offset-binary output is

v i
I

R W I RO O
R

f R f= −



 ⋅ = −



 ⋅ ⋅

2
1
2

Some output values for a four-bit d are tabulated below.

d W - ½

1111 7/16

1000 0

0111 −1/16

0000 −1/2

A two’s complement coding of d produces the same results when the MSB is 
inverted.

In the following DAC circuit, the output range is symmetric about zero. The 
op-amp is driven differentially by the DAC output so that

v i R i R i i R W W I R i I RO O O O O R O fs= ⋅ − ′ ⋅ = − ′( )⋅ = −( )⋅ ⋅ = ⋅ −( )⋅2

The expression for vO in terms of W follows from the equations for iO and iO′ .

–

+

R

vO

iO

iO′

DAC

R

= ( –     )iO RiO′

Compared with the offset-binary output, the symmetric-offset output range 
and step size are twice as large because iO′  is used. The last expression of vO,
compared with the offset-binary vO, has twice the gain (2 ⋅ iO) and a comparable 
offset difference of
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I I IR fsLSB

2 2 2
= −

This leaves the symmetric vO with a VLSB/2 positive offset relative to the offset-
binary output. Some four-bit output values are the following:

d W - W
—

1111 15/16

1000 1/16

0111 −1/16

0000 −15/16

The extreme states have outputs of equal magnitude while zero is offset by 
VLSB/2. An inverted output results from exchanging the DAC outputs.

Q4

Q1

Q3

Q2

V+

R R

D1

D2

DAC

I1

I2 IO
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A DAC bipolar current source with a current mirror is shown above, taken 
from “Current Sources.”

Another circuit, one that does not require a current mirror, is shown below. 
It has similar topology to a Howland current source but is simpler in 
operation.

i L
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The load current is
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O O S= 

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 ⋅ − ′( ) = +1

1 2,

The differential current output from the DAC is converted into a bipolar single-
ended current output.

Because CMOS DACs are passive, switched ladder networks, they can be used 
“backward” as shown below. The reference voltage is applied across the iO ter-
minals, and the voltage output is taken from where the reference voltage is 
normally applied. This scheme is similar to that of the discrete CMOS DAC 
without the op-amp. The CMOS switches are driven from the supply voltage VCC,
and minimum switch resistance (and linearity error) results by keeping VR well 
below VCC.
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DACs can be combined with op-amps to provide programmable gain. 
The programmable-gain amplifi er (PGA) in (a) above has a wide gain but can 
have signifi cant voltage offset errors, whereas in (b) the op-amp gain is limited 
to ×2. In both circuits, R is included in the DAC IC and matches and tracks the 
ladder resistances. The noninverting confi gurations are similar in concept. For 
applications in which the digital input is a dynamic waveform and not merely a 
scale factor, it is multiplied by vI; the DAC multiplies a digital by an analog 
quantity.
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vO
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PARALLEL-FEEDBACK ADCS

The inverse function of D/A conversion is analog-to-digital conversion, per-
formed by A/D converters (ADCs). We consider here four categories of ADCs, 
which include many variations. Approximate ranges for conversion rate and 
precision are given below.

ADC Type Conversion Rate Precision, Bits

Integrating 0.1 Hz–100 Hz 14–22

Cyclic (serial) 1 kHz–100 kHz 10–16

Parallel-feedback 50 kHz–10 MHz  8–12

Parallel (fl ash) 10 MHz–1 GHz  4–8

Parallel-feedback converters are based on a concept similar to that of placing 
a function block in the feedback loop of an op-amp to achieve the inverse 
function.
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The fi gure above shows a digital realization of the ramp converter. A counter 
driven by a clock generates a digital sawtooth output. It drives a voltage-output 
DAC that outputs the ramp in analog form. When it crosses vX, the comparator 
output clocks the register and holds the digital count. When the counter over-
fl ows, the DAC output resets to its minimum value, and the comparator output 
goes low, completing the cycle. The comparator output is also an end-of-
conversion signal indicating valid register data.
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In the analog realization shown above, the same concept uses an analog 
current-source ramp generator. The counter overfl ow turns on the reset switch, 
discharging the capacitor at the end of the conversion cycle. The analog circuit 
is subject to errors in ramp slope relative to the clock frequency. The digital 
form, although not having these timing errors, must have an accurate DAC 
reference voltage.

A third realization of the ramp converter makes use of a microcomputer (µC)
(or any computer) and minimal additional hardware: an n-bit DAC and a com-
parator. The µC must have one digital input bit from the comparator and n
output bits to drive the DAC. The software algorithm for ramp conversion uses 
software variable, VX, to hold the digitized value of vX, and OUT to hold the 
DAC output value.
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The ramp ADC procedure is as follows:

0. Ramp ADC

1. Set OUT to zero: OUT ← 0.

2. Input the IN bit.

3. If IN = 0, then VX ← OUT; go to 1.
 Else increment OUT: OUT ← OUT + 1.

4. Output OUT; go to 2.

Conversion time is usually limited by the µC; however, for many applications, it 
is fast enough, and the few additional components are an advantage. The ramp 
ADC is a poor technique and is seldom used. The conversion time varies but 
can take up to 2n clock periods.
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DAC
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Ramp ADC: counter
Tracking ADC: up/down counter
Successive-approximation ADC: SAR

Parallel-feedback converters have a generalized topology. The type of logic 
block used determines the type of converter. The ramp ADC uses a simple 
counter. A slightly better ADC is the tracking converter. Its logic is a bidirectional 
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(up/down) counter. As vX changes, the comparator output causes the counter 
to count up if the DAC input d is low and down if it is high. The counter servos 
the DAC to minimize input error at the comparator. Since the counter counts 
either up or down, the error is always ±1 LSB. For a constant input, a converged 
counter dithers by one state around the correct value; the comparator output 
alternates logic levels each clock cycle.

The tracking ADC is an improvement over the ramp ADC because it can be 
used to follow an input waveform, digitizing it as it occurs (that is, in real time).
For small input changes, the counter must change only a few states. This is done 
in a few clock periods, and conversion is fast. For large input changes, such as a 
square-wave step, the converter shows slew-rate limitations and a longer conver-
sion time. The DAC output tracking slew-rate, if limited by the counting rate, is

dW
dt

V
ffs

n
= ⋅

2
CLK

The clock frequency is limited by the loop delay time: the DAC settling time, 
comparator delay time, and counter clock-to-output time. For a sinusoidal 
input,

v t
V

tX
fs( ) = ⋅ ⋅( )

2
sin ω

its maximum slew-rate is w ⋅Vfs/2 = p ⋅ f ⋅Vfs. Equating to the tracking slew-rate 
and solving for the maximum fs sine frequency,

max fs sine CLKf f
n

=
⋅







⋅1
2π

The tracking converter can be implemented with the same hardware as the 
ramp converter. The general µC-based parallel-feedback ADC also applies gen-
erally to parallel-feedback converters. Instead of hardware logic, the software 
logic distinguishes among parallel-feedback ADC types. A tracking ADC proce-
dure, based on the same software variables as the ramp ADC, is given below:
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0. Tracking ADC

1. Output OUT.

2. Input IN.

3. If IN = 0, then decrement OUT: OUT ← OUT − 1.
 Else, increment OUT: OUT ← OUT + 1.

4. Set VX to OUT: VX ← OUT.

5. Go to 1.

This procedure is not more complicated than that for the ramp converter but 
has the performance advantages of the tracking ADC.

The tracking ADC is useful as a track-and-hold (T/H) circuit. The digital 
output follows the input signal until the clock is gated off or the count clocked 
into another register. Then the input value, in digital form, is held indefi nitely; 
no analog hold circuit can do this. As for sampling circuits, and also for peak 
detectors, a capacitor can accurately maintain its charge for only a limited 
time.

–

+

R
vX

Oi

DAC

Parallel-feedback ADCs compare DAC voltage to vX at the comparator input, 
as shown previously. Current-output DACs require an additional I-to-V converter 
stage. In the ADC scheme above, a current-output, bipolar or CMOS, DAC forms 
a voltage difference with vX by dropping iO ⋅R in series with it. The comparator 
now senses this difference against 0 V. This current-mode comparison works with 
bipolar inputs. The inputs of the comparator must be reversed from voltage-
mode comparison, or the complementary current output of the DAC must be 
used instead.
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A third parallel-feedback converter is the successive-approximation (SA) 
converter, a very common conversion technique and the most popular of the 
parallel-feedback converters. It takes n + 1 clock cycles to convert n bits using a 
bit-wise iterative algorithm. It determines one bit per clock cycle after an initial-
ization cycle.

The parallel-feedback ADC logic block is a successive-approximation register
(SAR). This register can be realized by an n-bit shift register (SR) and n latches. 
(A latch is a kind of fl op with a level-sensitive clock input. When the clock is 
asserted [high], its output follows its input. When the clock is unasserted [low], 
the output remains the value at the falling edge of the clock.) At the start of 
conversion, the SR bits are cleared, and the MSB is set. The latch feeds this 
digital midscale value to the DAC. If vX is larger than midscale, the comparator 
output is high. When the clock goes low, the MSB is latched. The next clock 
edge shifts the 1 bit in the SR to the n − 1 bit position, and the cycle is repeated. 
In effect, beginning with the MSB, n decisions are made, each of which narrows 
the range of possible values for vX by half. The convergence rate of this proce-
dure is on the order of log2(n), and the conversion time is independent of vX.

C SR

SARCarry bit

Shift register

SA latch

The generic µC-based hardware is again used to implement a µC-based SA 
ADC. The procedure is only slightly more complicated than previous ones but 
is usually well worth the speed increase. Besides the IN and OUT address loca-
tions, the software model is shown above. SAR is a variable that emulates the 
SAR latch. Variable SR emulates the shift register, which has an additional “carry-
bit” stage that is included in the shift loop, as shown. This formulation suggests 
the effi ciency of assembly-language programming because most µCs have a carry 
bit and a rotate instruction that includes the carry bit (C). Both software vari-
ables can be held in µC registers.
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In the following procedure, bit-wise logic operations of AND, OR, and NOT 
(logic negation) are used and are µC instructions. For µCs without a NOT 
instruction, X is complemented by using the exclusive-OR (EOR or XOR) 
instruction with binary 1111  .  .  .  (all binary ones, a two’s-complement −1, or 
hexadecimal FFF  .  .  .) and X.

0. Successive-approximation ADC

1. Clear SR and SAR: SR ← 0; SAR ← 0.
 Set C to one: C ← 1.

2. Rotate SR right.

3. If C = 1, then return.

4. SAR ← SAR OR SR

5. Output SAR to OUT: OUT ← SAR.

6. Input from IN.

7. If IN = 1, then go to 2.

 Else, set SAR to SAR AND S
—
R : SAR ← SAR AND (NOT SR).

 (Alternative: SAR ← SAR AND (SR EOR 1111  .  .  .).

8. Go to 2.

The 1 bit, initially in C, is shifted right, into SR, one bit per iteration. When 
it gets back to C (step 3 checks this), the procedure is done. Step 4 sets the SR 
1 bit in the SAR. If the comparator (IN) is high, vX is still greater than the SAR 
value, and this test bit is left set. If IN is low, the set bit made SAR too large, 
and it is cleared in step 7. Each bit, beginning at the MSB, is tested and then 
left set or cleared in SAR.

A speed enhancement for SA converters is to increase the clock rate after the 
fi rst or second bit is determined. These bits have the most range and require 
the most slew time of the loop hardware. The less-signifi cant bits cause less 
comparator voltage change and can be determined more quickly, allowing an 
increased clock frequency at the expense of more digital hardware.

The ramp and SA converters do not function correctly unless vX is constant 
during conversion. For dynamic inputs, a sample-and-hold (S/H) circuit must 
precede the ADC.
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INTEGRATING ADCS
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A second category of ADC integrates vX and outputs its average value over the 
conversion period. The dual-slope ADC shown above is an instance. The input 
to an op-amp integrator is switched between input vX < 0 and positive voltage 
reference VR. The integrator output zero-crossing is detected by a comparator, 
and the count of a free-running counter is clocked as the digitized output. The 
conversion starts when the counter is reset and vX is switched into the integrator. 
The ramp output has a slope of −vX/RC and ramps up until the counter over-
fl ows. For an n-bit counter, this phase lasts 2n clock cycles or T amount of time. 
In the second phase, the reference is integrated instead. Because its polarity is 
opposite that of vX, the slope changes polarity, as shown in the graph below.

v∆

t XT

O

vO

VR
RC

vX
RC

––



162  Chapter 2

When the integrator output crosses zero, the comparator latches the count. The 
second phase lasts for tX time. The converter then begins another cycle.

The change in integrator output voltage, ∆vO, is the same for both phases:

∆v
v
RC

T
V
RC

t t
v
V

TO
X R

X X
X

R

= ⋅ = ⋅ ⇒ = 



 ⋅

For a constant-frequency clock, the counts relate to the times by

N f t= ⋅CLK ∆

Therefore, the output count is

N
v
V

X
X

R

n= 



 ⋅2

Dual-slope converter accuracy is not dependent on long-term drift in R, C, or 
fCLK, only VR. What this analysis assumes is a perfect op-amp and comparator. 
Their input offsets and delay times degrade converter accuracy.
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+

–

vO

+

–

Most actual dual-slope converters correct for offset by introducing a third 
auto-zero phase before phase 1. In addition, for digital voltmeters (DVMs), a 
high input impedance is desired, and a buffer amplifi er is added before the 
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integrator. An alternative is the noninverting integrator shown above. If the 
DVM ground is “fl oating” (not connected) to the measured source, then the ×1
buffer provides high input impedance as it supplies the charging current for C
through R.

Bipolar inputs require another reference, −VR. Reference selection is deter-
mined by the comparator output at the end of phase 1. Another design option 
for bipolar inputs is to exchange the input terminals by switching. This scheme, 
however, has diffi culty with vX near zero. Offsets can cause the readings for +vX

and −vX to have different magnitudes. More signifi cantly, when offsets dominate 
the input, the converter can integrate with the wrong (shallow) slope. When 
the reference is integrated, it is of the same polarity, and vO never crosses zero. 
To avoid switching in the wrong polarity of reference, hysteresis around zero is 
sometimes added. But all of this is avoided with two references.

Another input circuit is a V/I converter and a current reference. This elimi-
nates R from the integrator and could also eliminate the op-amp in some 
designs.

The accuracy of the dual-slope ADC is extended by the triple-slope ADC. An 
additional comparator senses that vO is approaching 0 V and switches in a 
smaller reference and another counter. The slope magnitude decreases for this 
next phase and the time duration is extended. The extra counts contribute 
additional LSBs.
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At somewhat less speed, the simpler modifi ed dual-slope converter uses only one 
switch and integrates the input during both phases. In phase 1, the negative 
reference −VR is integrated along with the input. If VR > vX, the integrator 
output has a positive slope. When it reaches comparator threshold voltage VC,
the reference is switched off, and vX integrates until the counter overfl ows at T.
The integrator voltage, vO, at this time depends on vX. The next conversion cycle 
thus begins at a different initial vO.

t
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t X

T

vO (   + 1)i

v X –∝ v X∝

The conditions for convergence of vO (and a steady digitized value) are found 
by solving for vO(i) where i is the cycle index. For the new cycle,

v i v i u t i d T t iO O X X+( ) = ( ) + ⋅ ( ) + ⋅ − ( )[ ]1

where the slopes are
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t i
V v i

u
V v i
V v

RCX
C O C O

R X

( ) =
− ( )

=
− ( )
−

⋅



Digitizing and Sampling Circuits  165

Substituting for tX in vO(i + 1) gives

v i
d
u

v i V
d
u

dT a v i bO O C O+( ) = 



 ⋅ ( ) + ⋅ −



 +





= ⋅ ( ) +1 1

This difference equation is solved by expanding several iterations, beginning 
with i = 0. The resulting recursion equation for i + 1 = n is
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and is attained by using the geometric-series formula
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The series converges only when z decreases with increasing k. For the con-
verter, the convergence condition is

d
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That is, vX must not exceed half the reference voltage VR. Or, in time, tX < T/2.
The converged (steady-state) value of vO can be found by letting n go to infi nity 
in vO(n) or by setting

v i v iO O+( ) = ( )1

in vO(n + 1) and solving for vO:

v V
u d

u d
TO C= +

⋅
−





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where the second term is always negative, as required for vO < VC. With vO, the 
steady-state tX from tX(i), is
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t
d

u d
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
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But this is the same as the previous tX, and the digital output is expressed by NX.
The modifi ed dual-slope converter has the same transfer characteristic as the 
dual-slope ADC, though its dynamic response is fi rst-order and takes a few cycles 
to converge.

In this realization of the modifi ed dual-slope ADC, the Rs must match. VC

need not be accurate – only stable during convergence. Both Rs can be elimi-
nated by driving the integrator with a V/I converter for vX and replacing R and 
−VR with IR. The switch must then be a current switch. This can be accomplished 
by letting the fl op output divert IR through a diode. For low leakage, a transistor 
is used instead. The RS fl op consists of two cross-coupled NOR gates. The other 
two gates in a quad NOR-gate IC implement the clock generator.

Because tX must be kept less than T/2 for stability, the fs tX is set at T/4 by 
adding two additional bits to the counter (for n + 2 bits total). This wastes 50% 
of the available integration time but is easy to implement (by a dual-fl op IC) 
and gives the converter a near-100% overrange capability, an additional half-
digit. Besides the register and counter, the total parts count is less than a dozen 
to implement a three-digit DVM. (A featureless converter such as this is usually 
called a digital panel meter [DPM].)
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Dual-slope ADCs require a large vO range to achieve precision. An idea that 
is the digital analog of the virtual ground is realized in the charge-balancing (or 
quantizing or sigma-delta, Σ-∆) ADC, shown above. The circuit topology is very 
similar to the modifi ed dual-slope ADC, but it works differently. The big circuit 
difference is that the fl op driven by the comparator is clocked, a D-type fl op 
instead of an RS fl op.

On a given cycle of the clock, the reference is switched in or out of the inte-
grator to keep vO near ground. The comparator output gives the sign of the 
error. In other words, vO is nulled by discrete-time feedback. The number of 
clock cycles that the fl op was high, NX, over the total number of conversion 
counts N, indicates vX.

The transfer characteristic is calculated by constructing the charge-balance 
equation for the total charge from vX and −VR input to the integrator. For 
vO = 0, they must be equal, or

Q QX R=

These charges are the sums of the per-cycle charges:

q
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T q
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R
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

 ⋅CLK CLK,

The total charge of each depends on the number of cycles each is integrated. 
Then
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Then substituting into QX and solving for the output,
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for an n-bit conversion-time counter. This result is, again, the same as for the 
previous converters.
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The charge-balancing circuit is also used as a modulator for serial digital 
telecommunications (in CODECs) and in audio and speech processing.

An advantage of the integrating ADC is its measurement of the average vX.
By integrating, it has inherent noise rejection and does not need a S/H circuit. 
The noise rejection capability is quantifi ed by beginning with a constant VX with 
sinusoidal noise added:

v V V tX X N N= + ⋅sinω

The integrator averages vX over the conversion period T, so that

avg v
T
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The normal-mode rejection (NMR) of the noise is
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For wN = 2p ⋅ fN, and 1 − cos(2x) = 2 ⋅ sin2 x, then
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⋅ ⋅

⋅ ⋅( )
π

π
f T
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In the decibel scale this is

NMR dB NMR( ) = ⋅ = ⋅ ⋅ ⋅( ) − ⋅ ⋅( )[ ]{ }20 20 2log log log sinπ πf T f TN N

NMR is plotted below on a log-log graph, for T = 1/60 Hz, and fN from 0.1 Hz 
to 1 kHz.
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At fN = n/T, for whole-number n, NMR is infi nite. In practice it is typically 
about 60 dB of rejection. An exact number of noise cycles fi t the integration 
interval T, and the sum of the areas of their positive and negative half-cycles 
cancel, as in (a) below.
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As fN varies from n/T, the half-cycles of noise at the ends of the interval are 
truncated and contribute some fraction of a half-cycle. Figure (b) shows the 
second worst case after that of fN = 0.5/T, in which an entire extra positive half-
cycle is integrated at fN = 1.5/T. For rejection of power-line noise, fN is often 
chosen to be a multiple of the power-line frequency.

More signifi cant are the NMR minima of p ⋅ fN ⋅T. They occur midway between 
the maxima, at fN = 1.5 ⋅n/T. As fN increases, according to NMR(dB), the NMR 
minima increase at 20 dB/dec. At noise frequencies of about n times 1/T, about 
n cycles of noise occur during T. The more half-cycles, the less each contributes 
to the integrated total. Thus, a fraction more of a half-cycle contributes less 
error the higher fN is. Note that NMR is the reciprocal of the integrator fre-
quency response, which rolls off at 20 dB/dec with periodic notch fi lters.

SIMPLE mC-BASED S-D ADCS

Microcontrollers (µCs) often contain a comparator that can implement a precise 
ADC with the addition of only an external resistor and capacitor. The technique 
is to implement a charge-balancing or Σ-∆ (or ∆-Σ) ADC. The basic scheme uses 
a comparator that outputs µC input bit IN and requires one µC output bit, OUT. 
The circuit is shown below.

+

–

C

OUT

INXV

cV

R

In µC software, the ADC routine is best implemented as an interrupt routine, 
driven by a timer of period tINT, the interrupt period. In the circuit above, the 
ADC reference voltage is the µC supply (VR = VCC). This assumes that the µC has 
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CMOS output bits, so that the outputs for negligible current are near 
the rails:

OUT bit CMOS levels:
V ground0 0

1

→ ( )
→



 VCC

If greater accuracy than VCC is required, instead of driving R directly from OUT, 
use it to switch accurate analog switches between reference ground (for 0) and 
an accurate VR (for 1). If the OUT-bit voltage levels are close enough to the 
rails, then an accurate VCC can be supplied as the reference.

S-D RC Constraint for n-Bit Accuracy

The charge-balance voltage waveform on the capacitor is a constant voltage 
with a small exponential ripple riding on it, at the frequency of the OUT switch-
ing. If this varying voltage becomes too large, the ADC will not be linear enough 
for n-bit conversion. The larger is the RC time constant, the smaller the ripple. 
How large must RC be to ensure n bits of linearity? The ripple voltage,
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where vH and vL are the maximum and minimum of vC. At full scale, vH = VR
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For tINT = 1 ms, and n = 8 bits, then R ⋅C ≥ 256 ms. For n = 10, R ⋅C ≥ 1.024 s. 
The allowable measurement rate is comparable to that of DMMs.

S-D Algorithm

The ADC algorithm, coded as part of the interrupt routine, sets or clears OUT 
to keep vC = vX. In other words, charge balance is maintained on C so that 
∆q = 0. This can be expressed using ∆q = i ⋅∆t, where i = v/R:

V v
R

N
v
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N NR X
X

X
X

−
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N
N

v
V

X X

R

=

where N is the number of tINT cycles during the measurement. After N intervals, 
the measurement ends, and the NX accumulated during this measurement inter-
val is related to vX by N and VR:

v
V
N

NX
R

X= 



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N is a software parameter and VR = VCC of the µC. For each interrupt, the fol-
lowing routine is executed:

If IN = 1: OUT ← 1; increment NX

If IN = 0: OUT ← 0

At the end of the measurement, after N interrupts (or intervals of tINT), then 
execute:

measured NX ← NX

Reset NX ← 0
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Unmatched RU and RL

A refi nement that can be brought to the minimalist ADC is to account for dif-
ferent resistance values in series with the OUT switches. Let RU be the series 
resistance when OUT = 1 (high) and RL when it is 0 (low). Then

V v
R

N
v
R

N NR X

U
X

X

L
X

−
⋅ = ⋅ −( )

Given the two switch resistance values, the measured voltage, as a fraction of 
the reference voltage is

v
V

R
R

N

N
R
R

N

X

R

L

U
X

L

U
X

=





 ⋅

− −



 ⋅1

This equation presents the onerous µC task of division, despite the pre-
calculated constant, RL/RU. This refi nement is best left for DSPs, which usually 
facilitate division. As µCs become like DSPs, this improvement becomes feasible 
to implement.

Auto-Calibration

A more elegant method of producing an accurate measurement without 
external reference switching can be applied to systems in which multiple chan-
nels are multiplexed into the ADC. If two additional MUX inputs are available 
and the ADC is linear, two-point calibration can be applied. Two reference volt-
ages, which can be 0 V and VR, are applied to the ADC, resulting in NX(0 V) =
N0 and NX(VR) = NR. A plot of vX versus NX will then have two known points on 
it, corresponding to the known input voltages. The equation for the calibration 
line is

v
V V
N N

N VX
R os

R
X os=

−
−







⋅ +
0
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where the expression in parentheses is the slope of the line. In general, the 
offset voltage, Vos, can be of either polarity, requiring negative NX. To get around 
this, two precision resistors forming a divider from VR can provide instead a 
known accurate voltage of a ⋅VR, where a is the attenuation ratio of the divider. 
For this more general case, the equation of the line can be written by equating 
slope expressions

v V
N N

V V
N N

X R

X

R R

R

− ⋅
−

=
− ⋅

−
α α

α α

Solving for vX,

v
N N
N N

V m VX
X

R
R R=

−
−







⋅ −( ) +




⋅ = ⋅ −( ) +[ ]⋅α

α
α α α α1 1

By making a = 1/2, then m must be divided by two, a right-shift instruction. To 
add ½ to it for rounding, increment m before right-shifting. The resulting 
number is the fraction of VR that is vX.

Inverting S-D ADC

An inverting Σ-∆ converter uses one additional resistor, as shown below.

+

–
X

C

IN

OUT

V

RV

RR

XR
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The RC time constants must still be much greater than tINT; a low OUT is 0 V, 
and a high level is VCC = a ⋅VR. Charge balance on the capacitor is maintained 
by the ADC algorithm, keeping VC = VR. This results in ∆Q = 0 C:

v V
R

N
V V

R
N

V
R

N NX R

X

CC R

R
X

R

R
X

−
⋅ +

−
⋅ = ⋅ −( )

or

v
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R
R

a
N
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X

R

X

R

X= ⋅ − ⋅



 +1 1

For RX = RR, and a = 2, then

v
V

N
N

X

R

X= ⋅ −



2 1

The following chart summarizes the transfer function.

NX vX

0 2 ⋅ VR = VCC

N/2 VR

N 0 V

The interrupt routine for the ADC is given below:

If IN = 1: OUT ← 0; increment NX

If IN = 0: OUT ← 1

At the end of the measurement, after N interrupts (N intervals of tINT), then 
execute the following routine:

measured NX ← NX

Reset NX ← 0
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These minimal-component ADCs are often adequate for slow, low- to medium-
precision, µC-based ADC requirements. Besides few components, other 
advantages of the Σ-∆ ADC are that it does not need an anti-aliasing fi lter or 
S/H circuit preceding its input. Its integrating function reduces noise band-
width of the measurement. It is an optimal solution for many µC-based
applications.

The inverting Σ-∆ ADC input circuit could be extended to have a second-
order, cascaded RC fi lter using the same software routine, with a total of 
four external resistors and two capacitors. This adumbration is left to the imagi-
nation of the reader. With suffi ciently low tINT, which is achievable on faster 
µCs and DSPs, high precision can be attained with a medium-performance 
comparator.

VOLTAGE-TO-FREQUENCY CONVERTERS

A special kind of integrating ADC converts input voltage or current to a pulse 
frequency. It is a kind of linear voltage-controlled oscillator (VCO) or FM modu-
lator with digital output. The topology of the voltage-to-frequency (V/F) converter 
is similar to previous integrating ADCs.

VC

–

+
–

+
vfMMV

vO

–VR

R

vX

CR
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As with parallel-feedback converters, the topological variations among inte-
grating ADCs is in the logic block driven by the comparator. For the asynchronous
VFC, a MMV replaces the fl op of the charge-balancing converter.

vO

VC

t

vf

t

∆vO
u d

Operation resembles the modifi ed dual-slope ADC. When the integrator output 
vO goes below VC, the comparator output goes high, triggering the MMV and 
turning on the reference switch. The MMV time-out is th, the time that the 
output pulse vf is high. During th, vO ramps up with a slope of u. When the MMV 
times out, the reference is switched out, and vX > 0 causes vO to ramp down with 
slope d. Slopes u and d are the same as those for the modifi ed dual-slope ADC. 
The change in vO over one cycle is

∆v u t
V v

R C
tO h

R X
h= ⋅ =

−
⋅

⋅

From this,

t
v
d

V
v
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O R

X
h= − = −



 ⋅∆

1
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The output period is the sum of the half-cycles, or

T t t
V
v

t t
V
v

th l
R

X
h h

R

x
h= + = −



 ⋅ + = ⋅1

Finally, the output frequency is

f
T

v
V t

X

R h

= = 



 ⋅1 1

This formula is similar to that of previous integrating ADCs except that it 
depends on th, the MMV time-out duration, instead of a counter overfl ow period. 
Because th is typically set by an RC circuit, asynchronous VFC accuracy is limited 
by it. The accuracy also depends on the matching of the R , but the analysis 
could have been based on an input current iX and reference current IR instead. 
The resistors are implementation-dependent and not fundamental to the oper-
ating principle.

The LM331 is an eight-pin VFC IC, shown below in (a). Instead of using an 
op-amp integrator, it avoids op-amp error by integrating with a shunt RC that is 
maintained at vX. The shunt RC voltage vO must be kept small to avoid nonlin-
earity. If the exponential waveforms of vO (b) have a time constant RC that is 
much larger than th, they are approximately linear.

By keeping vO ≅ vX, the LM331 performs charge balancing at vO. The charge 
through R over T must be the reference charge during T, or

v
R

T
v
R

T I t t RCO X
R h h⋅ ≅ ⋅ = ⋅ <<,

Solving for f = 1/T,

f
v

R I t
t RCX

R h
h=

⋅




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⋅ <<1
,

Also, IR ≅ 1.9 V/RR.
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This result is also valid for a charge-balancing VFC with a linear integrator 
but without the constraint. The typical fs frequency is 10 kHz at an output duty-
ratio of 50%. Unlike the modifi ed dual-slope ADC, no convergence condition 
exists, but as tl approaches zero, the fs frequency asymptotically approaches 1/th
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of 20 kHz. When the MMV timing is based on a threshold voltage of (2/3) ⋅ VCC,
then

t R C R Ch h h h h= ⋅ ⋅ ≅ ⋅ ⋅ln .3 1 1

A more precise analysis, calculated from the exponential vO, yields a 
period of

T R C
I R
v
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t R Ch= ⋅ ⋅
⋅



 ⋅ −( ) +
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

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For th << RC,
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Apply the approximations
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This period is consistent with the asynchronous-VFC f. For applications in which 
a compressed scale for vX is desired, the nonlinearity of this converter can be 
advantageous, thereby invoking the adage, “If you can’t fi x it, feature it.”

The VFC is most sensitive to noise at zero scale (zs), when the down-slope d
is shallowest, causing comparator output jitter among crossings of its threshold 
and thereby jittering f. However, the VFC is an integrating type of ADC because 
a frequency measurement requires counting vf over a known period. This count-
ing function is the digital equivalent of integration. The longer the count inter-
val, the more the input is averaged, the greater the precision, and also the slower 
the conversion rate. For faster conversion at the same precision, the fs frequency 
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must be increased. By changing count intervals, we can make speed-precision 
trade-offs without a converter change.

The drift in MMV th can be averted by using a digital timer with an accurate 
clock. Then th would, on the average, be accurate. Because the clock is asyn-
chronous with the comparator output, the timer has phase jitter and the time-
out varies up to a complete clock cycle. Elaborate schemes have been devised 
to synchronize a digital counter with an asynchronous trigger to produce an 
accurate time-out. One simpler scheme combines an analog ramp generator 
with a counter. The ramp slope is set to VC/TCLK, where VC is a comparator 
threshold. The trigger starts the ramp. It runs up until the active clock edge 
occurs. The ramp output is held constant until the counter overfl ows. (More 
likely, it is a down counter that underfl ows.) The ramp is restarted. When it 
crosses VC, the comparator signals the time-out. The counter counts one less 
cycle than is required for the time-out because the ramp generator adds a cycle. 
Its slope error affects the time-out as an error in only one clock period.

CLK

Q

Q

D

C

VC

vO
VR

Switch

Comparator
output

CLK

Q

(a)

(b)

–

+

Instead of substituting a clocked timer for the MMV, the synchronous (or 
clocked) VFC (fi gure a) operates similar to the charge-balancing ADC 
except that the reference is turned on for only one clock cycle at a time. The 
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comparator output switches the reference only at the active clock edge (b). The 
D-fl op input is gated to enable its output to be high for the cycle, thus generat-
ing the output pulse. In commercial synchronous VFCs, the fl op output triggers 
a MMV that sets the output pulse width.

Comparator
output

CLK

φ

vO φ delay = 0+

φ delay = (2  )–

π– 2

0

π

The dual-slope waveform of vO is synchronous with the clock only at discrete 
values of vX. For vX between these quantum levels, the average level of vO slowly 
drifts due to accumulating phase error. The comparator edge drifts relative to 
the clock, causing the reference on-time to change linearly. This causes the 
average level of vO to ramp up or down. When the phase between comparator 
and clock outputs drifts by a full clock cycle (or 2p radians of phase), the 
comparator and clock are again in sync; vO has drifted to a quantum level 
where the phase error is zero. Comparator and clock edges can coincide, and 
the output can be indeterminate for some time, causing frequency jitter. A 
trigger-generator circuit is required for synchronizing edges, for higher 
performance.

PARALLEL AND RECURSIVE CONVERSION TECHNIQUES

The fastest ADCs are parallel or fl ash converters. They have a resistive-divider 
string of 2n resistors for an n-bit converter. Each resistor drops VLSB and sets the 
reference input on one of 2n latching comparators that drive an encoder. A 
clock stores the data as 2n decisions are made simultaneously: 2n − 1 for n bits 
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of conversion plus one for overrange detection. No S/H function is required. 
Because the circuit complexity grows exponentially with the number of bits, 
these converters trade off cost, simplicity, and low power for speed. Also with 
complexity comes a loss of precision because many parts must meet design tol-
erances. Integration on a single chip helps alleviate the burden of matching 
parts.

Parallel ADC power is reduced by CMOS implementation. Switched-capacitor 
comparators designed from CMOS logic inverters reduce power over BJT com-
parators and can be easily auto-zeroed. But for many applications, the optimum 
criteria are less complexity and more precision at somewhat reduced speed. This 
has led to conversion topologies that use m-bit parallel ADCs to digitize n > m
bits by iteration.

Σ

DAC

–

m
vX

ADC2

m

n – m

MSBs

LSBs

ADC1

× 2m
+

The multistage or subranging fl ash converter has two stages of fl ash ADCs. The 
fi rst ADC converts m bits. These MSBs drive a DAC. Its output is subtracted from 
the input. This remainder or residue is a fraction of one VLSB of the fi rst con-
verter. It is the difference between vX and the m-bit quantized vX. The second 
ADC converts this remainder for the remaining n − m LSBs. If its input range 
is the same as ADC1, then each VLSB (each step) of ADC1 spans the input range 
of ADC2, and the remainder must be multiplied by 2m for correct scaling. Con-
sequently, ADC1 must have n-bit accuracy in the placement of its voltage levels 
or steps. Also, to avoid misalignment in time, or phase error, subtraction from 
vX requires that vX be delayed by the same amount as the path delay of ADC1 
and the DAC.
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This idea can be taken further. To save on ADCs and DACs, the recursive sub-
ranging ADC has a feedback topology instead of the feedforward topology of 
the multistage fl ash ADC. In effect, it is a parallel-feedback converter with an 
m-bit comparator (the ADC) instead of the usual one-bit comparator. It requires 
n/m iterations or cycles for n-bit conversion. For each iteration, beginning with 
the m MSBs, the ADC output is stored in m bits of an n-bit output register. The 
multiplexer (MUX) directs the bits. The PGA gain is increased by 2m each itera-
tion. This ADC technique requires a hold circuit for vX.

Σ ADC
+

–

vX
n

PGA MUX REG
m

DAC
n

+

–

Σ +

–

× 2
+

–

Σ × 2

0 V

VR
2

bn–1
(MSB)

vX

+
–

bn–2

VR
2

VR
2

The multistage idea can be taken to its limits by converting one bit per stage. 
In this n-stage fl ash ADC, each ADC is a comparator designed to have accurate 
output levels of 0 V and VR/2. Instead of iterating in time, this design iterates 
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hardware stages. It needs no hold on vX since vX ripples through the stages, 
being processed as it goes, much like a distributed amplifi er. Because it is a bit-
wise converter, it implements the SA algorithm in space (hardware) instead of 
in time as the SA ADC does:

v v b
V

i i i
R= ⋅ − ⋅








+ +2

2
1 1

where vn = vX.

Σvi + 1 v × 2

+

–
b i + 1

vi

VR

+

–

This same idea has been used recursively in John Fluke Co. DVMs, called the 
recirculating-remainder or cyclic converter, shown above. It follows a similar recur-
sive equation:

v v Vi i R= ⋅ −+2 1

where vn = vX. In the n-stage fl ash ADC, the remainder passed to the next stage 
is always positive. Here, the error is bipolar; its sign determines the bit. It is 
made positive by v, amplifi ed by two and then subtracts VR. The block diagram 
above can be repeated, like the n-stage fl ash, or a S/H can hold the output for 
recirculation n times.

The serial bit output is ordered MSB fi rst, but the encoding is in Gray
code. This code is commonly used in mechanical shaft position encoders because 
only one bit changes between adjacent states. If the bit outputs are misaligned, 
an error of only ±1 LSB occurs. Gray-code encoders are used in fast fl ash 
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converters for the same reason: Any time-skew among output bits between two 
successive outputs results in at most 1 LSB of error. Gray code is converted to 
offset binary by the formula

b b gi i i= ⊕+1

where bi are output offset-binary bits, gi are input Gray-code bits, and ⊕ is the 
exclusive-OR logic operation.

TIME-DOMAIN SAMPLING THEORY

The explanation of A/D conversion assumes that a voltage at one point in time 
is converted. For a dynamic input, some means of sampling a voltage at an 
instant and holding this voltage constant is essential to the conversion process. 
Even fl ash converters require that all comparators sense vX at the same instant. 
Delays in the latching clock and the inputs among comparators causes this time 
instant to be instead a time interval ta, called the aperture uncertainty or aperture
jitter. Besides this, there is delay from the clock edge to when the input is actu-
ally sampled, or aperture delay.

Aperture jitter limits the maximum sine frequency of vX that can be digitized. 
For a frequency f, all comparators must settle within one VLSB or 2−n ⋅Vfs for n
bits. The sine slew-rate is 2p ⋅ f ⋅Vfs for the worst case. Then ta must be less than 
the time taken to slew 1 LSB, or VLSB; that is,
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The maximum sine frequency for a given aperture jitter is thus

max sine f
tn
a

=
⋅ ⋅+

1
2 1 π

An eight-bit converter with 100 ps aperture jitter has a maximum digitizing 
bandwidth of about 6 MHz. By its nature, aperture jitter is a statistical quantity, 
leading to root mean square (rms) values of the quantities calculated with it.
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ADCs that require their input to be held constant over their full conversion 
period must be preceded by a sampling circuit that then holds the sampled 
value constant. These are S/H circuits. DACs are inherently digital hold circuits. 
They hold the sampled output constant and effect a zero-order hold (ZOH). A S/H 
variation is the track-and-hold (T/H) circuit. Its output follows the input in the 
tracking mode. S/H theory also applies to T/H circuits.

S/H circuits are based on an underlying theory that has general application 
to discrete-waveform (or sampled-data) systems. Its development in the time 
domain begins with the step (a) and impulse (b) functions, shown below.

1

t∆
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The step function is derived by taking the limit of v(t) in (a) as ∆ → 0. Then 
for t < 0, u(t) = 0, but at t = 0+, it is 1. Similarly, the impulse function (in a limit-
ing sense) is derived in (b) as the derivative of v(t). As ∆ → 0, the width of the 
rectangular pulse goes to zero, but the amplitude goes to infi nity. The area 
remains constant in the limiting process and is the value or “amplitude” of the 
impulse. In the limit,
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⋅ =∫

0 0

1
1dt
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The unit impulse has unit value at t = 0 and is zero elsewhere so that

δ t dt( )⋅ =−∞

+∞
∫ 1

Now multiply d(t) by a continuous function, v(t), in the integral. Because d is 
nonzero only at zero, v(0) effectively weights d(t), and

v t t dt v( )⋅ ( )⋅ = ( )
−∞

+∞
∫ δ 0

More generally, if d is shifted in time by k ⋅T, then

v t t kT dt v kT( )⋅ −( )⋅ = ( )
−∞

+∞
∫ δ

This can also be expressed as an integral with t as upper bound:

v kT d v kT t kT
C

t τ δ τ τ( )⋅ −( )⋅ = ( ) >∫ ,

The impulse function is central to sampling theory. A periodic sequence (or 
“train”) of impulses conveniently characterizes the sampling process. A repeti-
tive d(t) with period Ts is the sum of an infi nite number of time-shifted impulses 
spaced Ts apart, or

δ δP s
k

t t kT( ) = −( )
=−∞

∞

∑

When v(t) is multiplied by dP(t), a sampled form of v(t), or v*(t), results. (v(t)
is real and thus v*(t) does not designate a complex conjugate.) For t ≥ 0,

v t v t t v t t kT v kT t kTP s s s
kk

*( ) = ( )⋅ ( ) = ( )⋅ −( ) = ( )⋅ −( )
=

∞

=

∞

∑∑δ δ δ
00

The resulting function is nonzero only where the impulses occur, with values 
determined by v(t).



Digitizing and Sampling Circuits  189

The amplitudes of the impulses, though infi nite, graphically represent their 
area values, which are determined by v(t). This is the behavior of the ideal
sampler, a switch that closes only for an instant.
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Two graphic representations of the sampled v(t) are shown below.
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From v(kT), the discrete v(t) for t = kTs in (a) are the integral of each weighted 
impulse of (b). v*(t) represents the sampled v(t) as a sum or series, whereas 
v(kTs), k = 0, 1,  .  .  .  represents the sampled v(t) as a sequence and dP(t) can also 
be interpreted as a series from a sequence of unit impulses.

FREQUENCY-DOMAIN SAMPLING THEORY

In the frequency domain, sampling is impulse modulation; v(t) amplitude-
modulates the impulse train. The Laplace transform and Fourier series reveal 
another perspective on sampling and lead to important design criteria.
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To derive the Laplace transform of v*(t), begin with d(t) and apply

v t t dt v( )⋅ ( )⋅ = ( )
−∞

+∞
∫ δ 0

First,

L δ δt t e dt est( ){ } = ( )⋅ ⋅ = =−∞
∫ 0
0

1

Second, the Laplace transform of dP is
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P
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∞

∑ ∆
0

where Ts is the sampling period. One period of a function f1(t), such as a single 
cycle of a sinusoid, can be made repetitive as the series
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Applying the formula,
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This is now applied to dP:

L δP P sT
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Finally, the Laplace transform of v*(t) is
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This infi nite series of exponentials in s makes V *(s) nonalgebraic and is unwieldy 
for linear systems analysis. It does, however, resemble the Laplace transform of 
v(t) for t = kTs. It is simplifi ed by a change of variable,

z e sTs≡

Solving for s,

s
T

z
s

= ⋅1
ln

and substituting for s yields

V s v t v kT zs T z s
k

k
s

*( ) = ( ){ } = ( )⋅=( )
−

=

∞

∑1
0

ln Z

The operator Z is the Z transform. The Z transform of v(t) is written as V(z), with 
the understanding that this is not V(s) with z substituted for s. Note that z is
a shifting variable; z−k shifts v(kT) by k periods. The Z transform is used in 
sampled-system analysis the way that the Laplace transform is used with continu-
ous functions. The s-domain offers a continuous view of discrete signals and the 
z-domain a discrete view of continuous signals.

Now v*(t) is expressed using the Fourier series. Repetitive v(t) with frequency 
ws can be expressed as the sum of sinusoids at integer multiple frequencies (or 
harmonics) of ws:
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v t
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and for the exponential Fourier series,

c
T
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The two representations are equivalent and are related by

c a b
b
a

n n n n
n

n

= ⋅ + = { }−1
2

2 2 1, tanϑ

Even functions of time have no sine terms; odd functions have no cosine terms. 
Some v(t) can be made odd by subtracting an average offset. The odd function 
is then transformed and the offset is added as a constant term.

t

( )tv

A

–T T
τ
2

– τ
20 s

In actual samplers, the sampling waveform is an approximation to an impulse 
train. It has fi nite amplitude and time duration. The effect this has on sampling 
can be found by assuming the sampling waveform to be a pulse train with ampli-
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tude A and pulse width t. Let wn = n ⋅ws. As v(t) is centered around t = 0, it is 
an even function, and

a
A

T
t dt

A
T

n

a n

n
s

n
s

n

n

n

= ⋅ ⋅ =
⋅ ⋅

⋅ ( )
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2

2
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,

,

ω τ ω τ
ω ττ

τ
 even

 odd

where the discrete an have the continuous envelope of the form

sinc x
x

x
≡ sin

It is shown below for x = wnt/2 = n ⋅p ⋅ (t/Ts). Instead of an impulse, sinc(x) is 
the result of fi nite-width sampling pulses.

f
τ
1– τ

1
τ
2

τ
3

1

sinc

v(f)

f

As t → 0, the pulse train approaches an impulse train. The separation of an(w)
decreases in frequency. If instead we let Ts increase, then the effect is the same; 
harmonic frequency separation decreases. As Ts → ∞, the an merge into a con-
tinuous sinc function with a continuous frequency spectrum:

lim lim lim
T

n
T s s T ss s s

n
T

n
T T→∞ →∞ →∞

=
⋅ +( )

−
⋅



 = =∆ω π π π2 1 2 2

0

As Ts → ∞, the function becomes aperiodic, and the Fourier series becomes the 
Fourier transform:

F v t V j v t e dtj t( ){ } = ( ) ≡ ( )⋅ ⋅−
−∞

+∞
∫ω ω
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In the limit, the Fourier series of v(t) undergoes these changes:

→ → ( ) → →
=−∞

∞

−∞

+∞∑ ∫
n

n sc V j n t dt, , ,ω ω ω ∆

Except for the lower limit of integration, the Fourier transform is a special case 
of the Laplace transform when s = jw. The unit step and impulse functions have 
no Fourier series, but they have Fourier transforms.

As Ts increases (or t decreases), the sinc response broadens until, in the limit, 
it is constant over all frequencies. Thus, the frequency response of an impulse 
is independent of frequency, as is the Laplace transform of d(t).

The frequency spectrum for dP is

c
T

t kT e dt
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n
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s
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1 1
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2 δ ω

This spectrum is also fl at for all frequencies, with a constant amplitude of 1/Ts.
It differs from the spectrum for d(t) in that it is discrete. The Fourier series of 
the impulse train is

δ δ ω πω
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The waveforms of dP in both the time and frequency domains are shown 
below.
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This representation of dP leads to a different expression for L{v*(t)} from that 
derived previously:

L v t v t
T

e e dt
s

jn t

n

sts*( ){ } = ( )⋅

 ⋅ ⋅−∞

∞

=−∞

∞
−∫ ∑1 ω

The index n is independent of t allowing the summation to be removed from 
the integral:

1 1
T

v t e e dt
T
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∞
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The resulting integral is the Laplace transform, V(s − jnws). Thus,

V s
T

V s jn
s

s
n

*( ) = ⋅ −( )
=−∞

∞

∑1 ω

This expression for V* has a geometric interpretation in the s-domain. The 
transform of V(s) is periodic in ws so that

V s V s j s* *( ) = −( )ω

V(s) repeats along the jw-axis at intervals of jws.
Previously, dP(t) was expressed as a series of complex sinusoids with amplitude 

1/Ts and frequencies of n ⋅ws. The frequency spectrum of v(t) is convolved (or 
heterodyned) in the frequency domain with the spectrum of dP(t), as shown 
below.
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Multiplication in one domain corresponds to convolution in the other. The 
sine and cosine terms in v(t) multiply by the terms of dP to produce sum and 
difference frequencies according to the trigonometric formulas

cos cos cos cosα β α β α β⋅ = −( ) + +( )1
2

1
2

cos sin sin sinα β α β α β⋅ = +( ) − −( )1
2

1
2

The frequency-domain plots are the magnitude envelopes of the complex 
Fourier coeffi cients, the amplitudes of the harmonics. For V *( jw), the spectrum 
of v(t) is centered around harmonics of ws. Thus, the effect of sampling is to 
generate frequency-shifted copies (or bands) of V(jw) centered around harmon-
ics of ws.
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THE SAMPLING THEOREM (NYQUIST CRITERION)

The sampling theorem gives a criterion for recovery of v(t) from v*(t). If ws is
greater than twice the highest frequency in V( jw), then the frequency-shifted 
bands of V( jw) do not overlap and can be separated by fi ltering.

ωωs2– ωs– ωs ωs2

(  )ω*V

ωa

ω1
ωs
2

(  )ω–1V (  )ωV (  )ω1V (  )ω2V

ωa =Alias frequency = ω1 – ω s

–

The Nyquist criterion for recoverability of the original continuous signal is

ω ωs h> ⋅2

where wh is the highest frequency component of V(jw). The original signal is 
recoverable from its sampled form when the highest frequency component is 
less than the Nyquist frequency, ws/2. In the plot above, the band V1(jw) is a replica 
of V(jw) centered at ws. It has frequency components below ws that overlap with 
the positive frequency components of V(jw). These are negative frequencies in 
V(w) shifted up in frequency by ws.

The signifi cance of negative frequency components in V(jw) is that they are 
inverted (180° phase-shifted) from their corresponding positive counterparts. 
The magnitude of V(jw) is symmetric around w = 0; it is an even function and 
V(−jw) = V(jw). The phase, however, is an odd function and is negative for w <
0; for negative n, the angle of cn is J = −n ⋅ws ⋅ t. Then J(−n) = −J(n).

In the plot, V(jw) and V1(jw) are symmetrical around the Nyquist frequency. 
In effect, V has been folded over at ws/2. The larger wh is, the further 
back toward lower frequencies the folding extends. These folded frequency 
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components from V1 are alias frequencies in v*(t) and have a frequency of wa

relative to ws.

t

ω– a

The signifi cance of an alias frequency in the time domain is that a sequence 
of samples has more than one frequency interpretation. In the fi gure above, 
V(jw) has one frequency component at w = (3/4) ⋅ws. The samples also fi t 
a sinusoid of w = −(1/4) ⋅ws, an alias frequency within the band of V(jw). The 
alias sinusoid is inverted relative to that of V1 because its frequency is 
negative.

More generally, if w1 of V(jw) is sampled at ws, then from the fi rst plot,

ω ω ω ω ω1 = − −( ) = +s a s a

and

alias frequency = = −ω ω ωa s1

In the plot above, sinusoids of both w1 of V and wa of V1 fi t the sample points. 
The discrete samples of v(t) are too few per cycle to eliminate wa and v(t) is 
undersampled. The sampling theorem requires more than two samples per cycle 
for recovery of v(t). Such a v(t) is oversampled.

Recovery of V(jw) from V*(jw) for oversampled signals is achieved by a low-
pass fi lter (LPF) that passes only V(jw). The ideal fi lter magnitude, H(jw), is 
shown below.
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It has an immediate cutoff just above wh. The ideal maximum-bandwidth fi lter 
has a cutoff at the Nyquist frequency.

t

( )th

t

*
sinc

t

( )tvv*(t)

In the time domain, this fi lter function transforms into a sinc function. 
Nonzero sinc values extend to t = −∞, resulting in a noncausal function that can 
only be approximated by physical (thus causal) circuits. The pulse shape of the 
ideal LPF transforms into a sinc function in t just as a pulse in the time domain 
does in w. H( jw) is multiplied by V *( jw) in w to recover V( jw). In t, h(t) is 
convolved with v*(t) to produce v(t). For bandlimited v(t),

v t v kT t kTs
s
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,

The sinc function operates as an interpolator, fi lling in the missing values of 
v(t).
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The fi nal derivation of general usefulness is the spectrum of a zero-order hold. 
This is the frequency response of a S/H circuit. In the time domain, this is a 
voltage step turned off Ts later:

ZOH:v t u t v t T u t Ts s( )⋅ ( ) − −( )⋅ −( )

In the s-domain, a ZOH can be regarded as an integrator of weighted impulses, 
producing v̂(t), as shown above. This is the typical output waveform from a S/H 
or DAC.

The integrated waveform is periodic at the sampling rate. An integrator in s
is 1/s. When it is normalized to be unitless, then it is 1/s ⋅Ts. A periodic integra-
tor is constructed by integrating for Ts. The Laplace transform of this expression 
is H0(s). The normalized ZOH transfer function is thus
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s T s T

e
e
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sT
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s

s
s

0
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−
⋅

⋅ = −
⋅

−
−

The frequency response of H0(s) is found by letting s = jw. Then
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The magnitude and phase are
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

 ∠ ( ) =

− ⋅
sinc ,

Once again, the sinc function appears. The magnitude plot of the frequency 
response is shown below.
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The phase response is linear and only time-shifts the output. The phase delay 
can be seen in the time plot by noting that a best-fi t of v(t) to v̂(t) requires v(t)
to be shifted to the right (delayed in time) by half a step, or by −Ts/2, in agree-
ment with ∠H0(jw). Ideal recovery of v(t) from v̂(t) requires an inverse sinc 
fi lter, or sinc compensator. This compensator can be implemented in either digital 
or analog form. It is digital if it precedes a DAC or follows an ADC and analog 
if it follows a DAC or precedes an ADC.

SAMPLING CIRCUITS

Sample-and-hold or track-and-hold circuits are switched between the sample or 
track state and hold state by a digital control line. Ideally, the input voltage at 
the instant of switching to HOLD is retained as a constant at the output of the 
S/H. T/Hs are similar to S/Hs; in the non-held state, the output follows the 
input. In a S/H this is not necessarily so, though most S/Hs are actually T/Hs. 
The sampling impulse of sampling theory corresponds to the active edge of the 
HOLD signal.

The speed of a S/H is determined by the acquisition time, the time from when 
sampling or tracking of the input begins to when a settled, held output is avail-
able. This time has two terms. The fi rst is the time from when tracking begins 
to the time when the hold capacitor follows the input waveform. A large initial 
difference between vI and vC requires slewing time before tracking is accurate. 
The second term is the setting time at vC when the hold state begins. In addition 
to acquisition time, aperture delay and jitter also apply to S/H circuits.

Several errors are associated with S/H circuits, and their design consider-
ations are closely related to those of peak detectors. Errors occur in the sampling 
process or in the hold state. The fi rst are dynamic sampling errors. Digital delay 
causes the effective sampling instant to be delayed. For a rising input, this trans-
lates into a voltage error of

v
dv
dt

tI
dε = 



 ⋅

where the digital delay time td is multiplied by the waveform slew-rate. The 
second cause of error is analog advance. If the input is delayed instead, an 
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effective negative delay occurs in sampling since the waveform lags behind 
where it should be when sampling occurs. A rising input waveform is below 
where it should be and a negative error occurs. It is equivalent to sampling the 
waveform in advance of the actual sampling instant.

R

C

vO

+

–

vI
K 1×

The dominant cause is a voltage lag on the hold capacitor. Its charging always 
lags somewhat behind the source. This is largely due to charging-source resis-
tance R in the S/H circuit shown above. By closing the loop with an op-amp 
input, we reduce the charging time constant RC by K + 1. The diodes around 
the op-amp keep its output from saturating when in the hold state. Waveform 
advance is the major cause of delay error and is compensated by delaying the 
sampling command.

C

vO1×

Cs

1×vI

vC

A third dynamic error is due to stray capacitance Cs between the hold capaci-
tor C and the sampling command line. When this line switches, it causes charge 
to fl ow through Cs into C. If the capacitor voltage vC is plotted against a range 
of constant-voltage inputs, the plot is linear. Its slope represents a hold gain. As 



Digitizing and Sampling Circuits  203

the input voltage vI increases, the step of extra voltage on C grows in size because 
the voltage between the hold line vH and vC varies linearly with vI. As the differ-
ence between the sample level, Vs, of vH, and vC increases, Cs is charged more, 
and this charge is transferred to C when vC changes to the hold state. The hold 
step, or pedestal, thus increases with vI.

vO+

1×vI vC

C

–

Cs

A circuit that avoids this problem is shown above. The hold capacitor is the 
feedback C of the op-amp. The op-amp isolates vC from the switch node by 
holding it at virtual ground. Then the voltage across Cs is independent of vI

and the same amount of charge is transferred to C on switching. The charge 
on Cs is Cs ⋅Vs. The hold gain varies somewhat as Cs varies with voltage as do 
semiconductor junctions.

The hold capacitor dielectric absorption must be low to avoid recovery effects 
during the hold state. Its leakage causes static sampling error during the hold 
state. Any other leakage paths for capacitor charge contribute to leakage error. 
The buffer amplifi er and sample switch must be low in leakage. A leakage 
compensator is shown below.

vO+

1×vI

C

–

R
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The leakage decoupler R has the same function as in peak detectors. It keeps 
the voltage across the switch near zero, thus minimizing leakage through it.

vI

C Cs s C

vC
Q1 Q2

Another hold-step compensator places another switch similar to Q1 in series 
with it. This additional switch is shorted, but its Cs (CGS for a MOSFET) connects 
to the same node. It is driven with an opposite polarity edge so that its stray 
charge cancels that of Q1.

   1 +

–C

vI ×

C2

Q1

1

Q2

RGS

D1

D2

RGS

vO

A
B

In this S/H, a JFET switch Q1 passes the waveform through its channel, con-
nected to the buffer A. When the control line goes low, Q1 cuts off. D1 conducts 
a small amount of current through RGS to keep the gate reverse-biased. At the 
same time, Q2 is also cut off by a similar circuit. The capacitor C2, equal to C1,
is a bias-current compensator for the op-amp (as with a previous peak detector). 
As the hold capacitor C1 charges with IB, so does C2. The differential voltage is 
canceled at the output. Of course, offset current is not compensated.
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Finally, very fast S/Hs have the additional error of signal leakage through 
shunt switch capacitance Cs during hold. This circuit uses a diode sampling bridge.
The bridge has two Css in series for each leg of the bridge, or an equivalent of 
one Cs from input to output. It is current-switched for speed. To reduce addi-
tional input-to-output bridge capacitance, the diodes are fed through a metal 
sheet which functions as a Faraday shield. Sampling bridges of this kind have 
commonly been used in sampling oscilloscope front ends. The practical limita-
tion in their switching time is often the switching speed of their drivers.

SWITCHED-CAPACITOR CIRCUITS

Switched-capacitor circuits replace resistors with capacitors and switches. In ICs, 
diffusion resistors, made by connecting to the ends of a diffused area, are not 
optimal since their values are hard to control and they have large areas (their 
relative values are much better; they match well). Large-value resistors take up 
so much area that they are often impractical. When accuracy is not important, 
a kind of resistor made of a thin layer of, say, n material between two p layers – a 
pinch resistor – can be made large but with a ±20% accuracy. NiCr (nichrome) 
resistors are very good but costlier to make and trim.

i v

R
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–
C

S

v
i

C

1
v

S i 2S

   1vI ×

C

   1×

I

I
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vO+

C

–

f

Ci

S1

S2

vI

This limitation makes switched-capacitor resistors an attractive alternative. 
The equivalent resistance is shown above. It is a single-pole, double-throw 
(SPDT) switch S and a capacitor. The SPDT switch is equivalent to two single-
pole, single-throw (SPST) switches, synchronized as shown. When S is switched 
to the input, it charges to the input voltage v with a charge of C ⋅v. When 
it switches to an output held at ground, it delivers this charge. The output is 
typically the virtual ground of an op-amp.

If the switching rate is fs, then the charge delivered per unit time, or current, 
is

i C f v r
C f

T
C

s
s

s= ⋅ ⋅ ⇒ =
⋅

=1

The equivalent resistance follows directly and is subject to the Nyquist crite-
rion due to switching. The bandwidths of switched-capacitor circuits must be 
well within the Nyquist frequency for accurate equivalence.

vO+

C

–

f

v

Ci

I
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vO+

C

–

f

Ci

S1 S2

v
I

+

–

This switching scheme inverts vI. Ci charges with switches in the position 
shown. When switched, charge fl ows out of the op-amp input to ground. In 
effect, the two-switch circuit is a negative R.

With drive to the grounded side of S1 from the input instead, the two terminal 
voltages of vI subtract upon switching. The differential voltage vI determines the 
charges.

CLOSURE

The world of digital electronics merges with analog electronics in digitizing and 
sampling circuits, but the merged areas – mainly ADCs, DACs, and switched-
capacitor and sampling circuits – do not involve logic design. Instead, the 
underlying theory is an extension of that for continuous functions. The mathe-
matics is similar; difference equations replace differential equations. Sampled 
circuits also include commutating and switched-capacitor fi lters and digital 
signal processing, but the full story, including dithering, FFTs, DSP fi lters, and 
windowing, is left for other books.
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