
December 19, 2004

®

Logic Equivalence Checking with Conformal

Version 5.0

14/04/2006 2Advanced Logic Equivalence Checking with Conformal

December 19, 2004

®

Using Conformal for Logic Equivalence Check

14/04/2006 4Advanced Logic Equivalence Checking with Conformal

Starting and Exiting Conformal LEC
Starting Conformal LEC

GUI mode: UNIX% lec

Non-GUI mode: UNIX% lec -nogui

Switch GUI & non-GUI modes
LEC> set gui [on | off]

Batch mode:
UNIX % lec -dofile <batch_file> -nogui

LEC> dofile <batch_file>

Exiting Conformal LEC

LEC> exit -force

LEC automatically closes all windows upon exit

14/04/2006 5Advanced Logic Equivalence Checking with Conformal

Conformal GUI Environment

Golden Revised

Mode

Conformal
window

Design
hierarchy

Messages

Read lib Read design

Transcript
window

Command Entry window

Read Design
window

File list area

Selected file area

Browser

File
filter

Design type

14/04/2006 6Advanced Logic Equivalence Checking with Conformal

Command: 3-2-1 Convention
You can abbreviate most three-word commands
Example:

SETUP> add pin constraint 0 scan_en

can be written as
SETUP> add pi c 0 scan_en

If the 3-2-1 convention does not produce a unique command, you can
add more letters

add in cADD INstance Constraint

add pi cADD PIn Constraint

set lo fSET LOg File

3-2-1 conventionCommands

14/04/2006 7Advanced Logic Equivalence Checking with Conformal

Command: Add/Delete/Report Convention
For every ADD command, there is a corresponding REPORT and
DELETE command

For example, if you specify:

SETUP> ADD PIn Constraint 0 scan_en

To report all pin constraints:

SETUP> REPort PIn Constraint

To remove the added constraint:

SETUP> DELete PIn Constraint scan_en

14/04/2006 8Advanced Logic Equivalence Checking with Conformal

Convenient Features
Rerun the previous command

Up and down arrow keys help avoid retyping previous commands

Alias

Alias command usage: add alias <name> <string>

Example alias in .conformal_lec file:

add alias setup set system mode setup

Initial command files, .conformal_lec, executed in the following order:
1. Verplex install directory: $VERPLEX_HOME/lib/.conformal_lec

2. Home directory: ~/.conformal_lec

3. Current working directory: ./.conformal_lec

14/04/2006 9Advanced Logic Equivalence Checking with Conformal

Online Help and Documentation
Access location of the PDF format manuals:

Commands: List of all command options, usage, examples, and related
commands

Reference Manual: PDF format file of command reference with detailed
command usage and definitions

User Manual: PDF format file with information related to the product (for
example; installation, process flow, and GUI)

Directory location of the PDF format manuals:

$VERPLEX_HOME/doc

14/04/2006 10Advanced Logic Equivalence Checking with Conformal

December 19, 2004

®

Running Conformal with Flat Compare
Method

14/04/2006 12Advanced Logic Equivalence Checking with Conformal

Conformal LEC Modes of Operation
SETUP mode

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

LEC mode
Mapping process
Comparing process
Reporting run statistics

14/04/2006 13Advanced Logic Equivalence Checking with Conformal

Switching Modes of Operation
GUI: click

Command: set system mode [lec | setup]

14/04/2006 14Advanced Logic Equivalence Checking with Conformal

Conformal LEC Flow

No
EquivalenceEquivalence
establishedestablished

Differences ?Differences ?

Yes

All mapped ?All mapped ?

Specify constraintsSpecify constraints
& other parameters& other parameters

GoldenGolden

AnalyzeAnalyze

Yes
DebugDebug

Fix designFix design

No

RevisedRevised

Map key pointsMap key points

Compare key pointsCompare key points

ASIC
Lib

ASICASIC
LibLib

SETUP mode

LEC mode

December 19, 2004

®

Flat Compare Method:
Set Up Before Reading Library and Design Files

14/04/2006 16Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 17Advanced Logic Equivalence Checking with Conformal

Saving Conformal Transcript to a Log File

Specify the name of the log file:

Or

set log file logfile -replace
...
set log file logfile -replace
...

set log file logfile.$LEC_VERSION -replace
...
set log file logfile.$LEC_VERSION -replace
...

14/04/2006 18Advanced Logic Equivalence Checking with Conformal

Black Box
Module types

RAM, ROM, analog, behavioral, or

Any module you don’t want to verify

Allows wildcard(*) specification

Black box connections are verified

RAM

ALU CTRL

14/04/2006 19Advanced Logic Equivalence Checking with Conformal

Specifying Black Boxes
Execute black boxing command before module is read in

For missing module, create one with just input/output declaration

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/verilog/

add notranslate module *ram* hstm –library -both

...

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/verilog/

add notranslate module *ram* hstm –library -both

...

module sram1(in1, in2, out2, out2);
input in1, in2;
output out1, out2;

//empty
endmodule

module sram1(in1, in2, out2, out2);
input in1, in2;
output out1, out2;

//empty
endmodule

14/04/2006 20Advanced Logic Equivalence Checking with Conformal

Reporting Black Boxes
SETUP> report black box

Check for unbalanced black boxes in the Golden and Revised designs

SETUP> report black box

SYSTEM: (G R) ram8x256
SYSTEM: (G R) hstm

SETUP> report black box

SYSTEM: (G R) ram8x256
SYSTEM: (G R) hstm

Transcript window

December 19, 2004

®

Flat Compare Method:
Reading Library and Design Files

14/04/2006 22Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 23Advanced Logic Equivalence Checking with Conformal

Supported Formats
Library

Verilog (standard simulation libraries)

SystemVerilog subset

Liberty™

Design (Synthesizable RTL, gate)

Verilog

SystemVerilog subset

VHDL

SPICE
SPICE is supported in Conformal Ultra and Conformal Custom

14/04/2006 24Advanced Logic Equivalence Checking with Conformal

Reading Verilog Library & Design: Syntax
Read library:
REAd LIbrary <filename …>

[-VErilog | -VERILOG2K | SYStemverilog | -Liberty]

[-REPlace | -APPend]

[-Both | -Golden | -Revised]

Read design:
REAd DEsign <filename …>

[-file <verilog_command_file>]

[-VErilog | -VERILOG2K | -SYStemverilog]

[-Golden | -Revised]

14/04/2006 25Advanced Logic Equivalence Checking with Conformal

Reading Verilog Library & Design: Method 1
Read files by using the command line

Allows wildcard (*) specification

Allows search path specification

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/

read design cpu_rtl.v -verilog -golden
read library $LIB/*.v -verilog -revised
read design cpu_gate.v -verilog -revised
...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/

read design cpu_rtl.v -verilog -golden
read library $LIB/*.v -verilog -revised
read design cpu_gate.v -verilog -revised
...

add search path /user1/lib/verilog/ -lib -revised
read library *.v -verilog -revised
add search path /user1/lib/verilog/ -lib -revised
read library *.v -verilog -revised

14/04/2006 26Advanced Logic Equivalence Checking with Conformal

Reading Verilog Library & Design: Method 2
Read files by using the Verilog command file

Conformal reads only the library cells being instantiated

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/
read design cpu_rtl.v -verilog –golden

read design -file verilog.vc -verilog -revised
...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/
read design cpu_rtl.v -verilog –golden

read design -file verilog.vc -verilog -revised
...

-y $LIB
cpu_gate.v

-y $LIB
cpu_gate.v

Content:

General syntax:

<File>... Design Data File
-v <File>... List of Library Files
-y <Directory>... Library Directory(s)
+incdir+<dir_name>... Include Directories
+libext+<extension>... File Extension e.g ".v"
-yd <Directory>... Design Directory(s)

<File>... Design Data File
-v <File>... List of Library Files
-y <Directory>... Library Directory(s)
+incdir+<dir_name>... Include Directories
+libext+<extension>... File Extension e.g ".v"
-yd <Directory>... Design Directory(s)

Syntax:

14/04/2006 27Advanced Logic Equivalence Checking with Conformal

Reading VHDL Design: Syntax
REAd DEsign -VHdl <filename …>

[-Map <library_name> <library_path>]

[-MAPFile <library_name> <filename …>]

[-Golden | -Revised]

-Map: read in library files from the specified

library_path for the specified

library_name

-MAPFile: read in the specified library files

for the specified library_name

Multiple -map and -mapfile options are allowed

14/04/2006 28Advanced Logic Equivalence Checking with Conformal

Reading VHDL Design: Example

read design -vhdl RTL/mb_lock.vhd –golden \
-map MB_LIB /user1/lib/vhdl/ \
-mapfile DP_LIB ./vhdl_lib/misc_pkg.vhd

...

read design -vhdl RTL/mb_lock.vhd –golden \
-map MB_LIB /user1/lib/vhdl/ \
-mapfile DP_LIB ./vhdl_lib/misc_pkg.vhd

...

LIBRARY MB_LIB;
LIBRARY DP_LIB;
USE MB_LIB.ATTRIBUTES.ALL;
USE DP_LIB.MISC_PKG.ALL;
...

LIBRARY MB_LIB;
LIBRARY DP_LIB;
USE MB_LIB.ATTRIBUTES.ALL;
USE DP_LIB.MISC_PKG.ALL;
...

Content of mb_lock.vhd:

14/04/2006 29Advanced Logic Equivalence Checking with Conformal

Reading Mixed Languages
Mixed-languages: Libraries

Mixed-languages: Designs

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden

read library $LIB/vhdl/*.lib -liberty -append -golden

...

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden

read library $LIB/vhdl/*.lib -liberty -append -golden

...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden
read design RTL/core.vhd -vhdl -noelab -golden
read design RTL/top.v -verilog -golden
...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden
read design RTL/core.vhd -vhdl -noelab -golden
read design RTL/top.v -verilog -golden
...

14/04/2006 30Advanced Logic Equivalence Checking with Conformal

HDL Rule Checks
Violation message

To see what a message means:

SETUP> help <message_name>

Example:

SETUP> help RTL2.3

// Command: read design src/PCI.v -gold
// Check out vlg 3.0 license
// Parsing file src/PCI.v ...
// Golden root module is set to ‘PCI’
// Warning: (RTL2.3) externally defined signal reference not supported
// Warning: (RTL5.1) overlapped case items in parallel case statement

...

// Command: read design src/PCI.v -gold
// Check out vlg 3.0 license
// Parsing file src/PCI.v ...
// Golden root module is set to ‘PCI’
// Warning: (RTL2.3) externally defined signal reference not supported
// Warning: (RTL5.1) overlapped case items in parallel case statement

...

Transcript window

14/04/2006 31Advanced Logic Equivalence Checking with Conformal

HDL Rule Checks (continued)

Locate the source that causes a message.

Non-GUI mode

SETUP> report rule check <message_name> -verbose

GUI mode

Click to open
the HDL Rule
Manager

December 19, 2004

®

Flat Compare Method:
Specify Design Constraints

14/04/2006 33Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 34Advanced Logic Equivalence Checking with Conformal

Design Constraints
What are design constraints?

User’s inputs to control part of a design’s logic

Purpose of constraints

To disable test logic (for example; scan and JTAG)

To specify one-hot or one-cold conditions

To specify relationships between pins

To constrain undriven signals

Example of constraints

Pin constraint

Instance constraint

Pin equivalence

Tied signal

Undriven signal

14/04/2006 35Advanced Logic Equivalence Checking with Conformal

Specify the mode of circuit operation under which comparison will take
place (for example, functional vs. scan operation).

Pin Constraint

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
...

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
...

Golden Revised

U1

DFF
D Q

CLK

scan_in

scan_en (0)
CLK

0

1 s

U1

DFF
D Q

14/04/2006 36Advanced Logic Equivalence Checking with Conformal

Instance Constraint
Apply to any internal DFF or D-latch output to logic-0 or logic-1 (for
example; JTAG registers).

...
add instance constraint 0 U1 -revised
...

...
add instance constraint 0 U1 -revised
...

U1

DFF
D Q

CLK

Ties U1 DFF
output to 0

0
U1

DFF
D Q

CLK

14/04/2006 37Advanced Logic Equivalence Checking with Conformal

Pin Equivalence
Specify the relationship (equivalent or inverted equivalent) between
two or more primary input pins.

...
add pin equivalence CLK –invert CLK_n -revised
...

...
add pin equivalence CLK –invert CLK_n -revised
...

CLK_n

U1

DFF
D Q

CLK

U2

DFF
D Q

U1

DFF
D Q

CLK

U2

DFF
D Q

14/04/2006 38Advanced Logic Equivalence Checking with Conformal

Tied Signal

...
add tied signal 0 GND -net -revised
...

...
add tied signal 0 GND -net -revised
...

U1

DFF
D Q

CLK

SET
GND

U1

DFF
D Q

SET

CLK

Specify floating nets or pins to be tied to Logic-0 or Logic-1 (for example;
equate GND to 0 or VDD to 1).

14/04/2006 39Advanced Logic Equivalence Checking with Conformal

Undriven Signals

...
set undriven signal 0 -revised
...

...
set undriven signal 0 -revised
...

U1

DFF

Z

CLK

D

U1

DFF

0

CLK

D

Specify the global behavior of floating signals in the designs (for example,
ties all floating signals to a constant).

December 19, 2004

®

Flat Compare Method:
Specifying Modeling Directives

14/04/2006 41Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 42Advanced Logic Equivalence Checking with Conformal

Modeling Directives
In SETUP mode, you can specify directives to influence the way
Conformal LEC models the design.

Modeling directives are needed to handle modeling styles specific to
vendors’ libraries or synthesis tools.

Examples of modeling options:

Latch folding

Gated-clock

Sequential redundancy

Sequential constant

Latch transparent

Sequential merge

14/04/2006 43Advanced Logic Equivalence Checking with Conformal

Latch Folding: Problem
Library cell uses 2 D-latches (master/slave) to model a DFF.

Causes mapping problem!

Golden Revised

CLK

latch
D Q

latch
D Q

CLK

DFF

CLK

14/04/2006 44Advanced Logic Equivalence Checking with Conformal

Latch Folding: Solution
Fold the 2 D-latches into a DFF.

...
set flatten model -latch_fold

...

...
set flatten model -latch_fold

...

Revised

CLK

latch
D Q

latch
D Q

CLK

DFF

Golden

D Q

CLK

DFF

14/04/2006 45Advanced Logic Equivalence Checking with Conformal

Gated-Clock: Problem
Power optimization tools create a latch-based gated clock circuit.

Causes compare problem!

Golden Revised

latch
en

CLK

D Q
DFFD Q

CLK

DFF
en

14/04/2006 46Advanced Logic Equivalence Checking with Conformal

Gated-Clock: Solution
Enable gated-clock learning.

...

set flatten model –gated_clock
...

...

set flatten model –gated_clock
...

Golden Revised

latch
en

CLK

D
Q

DFFD
Q

CLK

DFF
en

D
Q

CLK

DFF
en

14/04/2006 47Advanced Logic Equivalence Checking with Conformal

Sequential Redundancy: Problem
A redundant AND gate is introduced so that the reset signal takes
effect right away.

Causes comparing problem!

Golden Revised

D

CLK
DFF

RST

D

RST

DFF
CLK

PO PO

14/04/2006 48Advanced Logic Equivalence Checking with Conformal

Sequential Redundancy: Solution
Remove sequential redundancies.

...

set flatten model –seq_redundant
...

...

set flatten model –seq_redundant
...

Golden Revised

D

CLK
DFF

RST

D

CLK
DFF

RST

D

RST

DFF
CLK

PO PO PO

14/04/2006 49Advanced Logic Equivalence Checking with Conformal

Revised

in1

1’b1 PO

Golden

1’b1

in1

DFF
CLK

PO

Sequential Constant: Problem
Occurs due to the way the circuit is designed or a designer’s
preference to constrain the data port.

Causes comparing problem!

14/04/2006 50Advanced Logic Equivalence Checking with Conformal

Convert a DFF or a D-latch to a ZERO/ONE gate if the data port is set to
0/1.

...

set flatten model –seq_constant
...

...

set flatten model –seq_constant
...

Golden Revised

in1

1’b1

in1

1’b11’b1

in1

DFF
CLK

PO PO PO

Sequential Constant: Solution

14/04/2006 51Advanced Logic Equivalence Checking with Conformal

Latch Transparent: Problem
Designer’s choice is to have a D-latch with its clock always
enabled as a buffer (transparent latch).

Causes comparing problem!

Golden Revised

IN OUT
OUT

1’b1
latch

IN

14/04/2006 52Advanced Logic Equivalence Checking with Conformal

Latch Transparent: Solution
Remodel D-latches whose clock ports are always enabled into buffers
(transparent latches).

...
set flatten model –latch_transparent
...

...
set flatten model –latch_transparent
...

Golden Revised

IN OUT
OUT

1’b1
Latch

IN
IN OUT

14/04/2006 53Advanced Logic Equivalence Checking with Conformal

Sequential Merge: Problem
Duplicated register in the clock and/or data logic cone

Causes comparing problem!
Different supporting key points for RegC (RegA vs RegA1)

Golden Revised

RegC
D0

RegA

RegA1

D0
RegB

RegA

RegB

RegC

14/04/2006 54Advanced Logic Equivalence Checking with Conformal

Sequential Merge: Solution

Golden Revised

...
set flatten model –all_seq_merge
...

...
set flatten model –all_seq_merge
...

RegC

RegA

RegA1

D0
RegB

RegA

RegB

RegC RegCRegA

RegB

D0D0

Merge equivalent sequential elements into one.

Merge RegA1 into RegA in the Revised

14/04/2006 55Advanced Logic Equivalence Checking with Conformal

December 19, 2004

®

Flat Compare Method:
Mapping Process and Using Renaming Rules

14/04/2006 57Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 58Advanced Logic Equivalence Checking with Conformal

Switching to LEC Mode
When change mode from SETUP to LEC

Golden and Revised designs are flattened

Circuit modeling is performed

Automatic key point mapping take places after circuit modeling

All of the steps above happen through one command

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
set system mode lec
...

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
set system mode lec
...

14/04/2006 59Advanced Logic Equivalence Checking with Conformal

Messages

To report modeling messages
LEC> report messages -model

// Command: set system mode lec
// Processing golden ...
// Modeling golden ...
// Warning: converted 78 X assignment(s) as don’t care(s)
// Processing revised ...
// Modeling revised ...
// Folded 340 DLAT(s) into 170 DFF(s)

// Command: set system mode lec
// Processing golden ...
// Modeling golden ...
// Warning: converted 78 X assignment(s) as don’t care(s)
// Processing revised ...
// Modeling revised ...
// Folded 340 DLAT(s) into 170 DFF(s)

Transcript window

Modeling Messages

14/04/2006 60Advanced Logic Equivalence Checking with Conformal

Example of reported messages

To see what a message means
LEC> help <message_name>

Example: LEC> help F5

Note: Modeling messages are documented in the User Guide

To view instances affected by a particular message
LEC> report message -model -rule <message_name> -verbose

Modeling Messages (continued)

LEC> report messages
// Command: report messages
Report modeling message for Golden
F34: converted X assignment(s) as don’t care(s) (Occurrence: 78)
Report modeling message for Revised
F5: Folded DLAT(s) into DFF(s) (Occurrence: 340)

LEC> report messages
// Command: report messages
Report modeling message for Golden
F34: converted X assignment(s) as don’t care(s) (Occurrence: 78)
Report modeling message for Revised
F5: Folded DLAT(s) into DFF(s) (Occurrence: 340)

Transcript window

14/04/2006 61Advanced Logic Equivalence Checking with Conformal

Mapping Process - Outline
Understanding mapping process

What are key points?

What is key point mapping?

Why is key point mapping necessary?

How is key point mapping done?

Resolve mapping issues

Mapping takes too long

Incomplete mapping

14/04/2006 62Advanced Logic Equivalence Checking with Conformal

What Are Key Points?
Key points are defined as:

Primary inputs(PI)

Primary outputs(PO)

D Flip-Flop

D Latches

The design consists of combinational logic cones bounded by key
points.

Black boxes (BBOX)

TIE-Z gates

TIE-E gates

CUT gates

Logic cones

Key points

14/04/2006 63Advanced Logic Equivalence Checking with Conformal

What Is Key Point Mapping?
Pairing corresponding Golden/Revised key points:

G R

PI PI

PO PO

DFF DFF

DLAT DLAT

BBOX BBOX

CUT CUT

Z Z

Golden Revised

Key points
Combinatorial logic

14/04/2006 64Advanced Logic Equivalence Checking with Conformal

So that corresponding combinational logic cones are correctly paired.

Golden Revised
Key points
Combinatorial logic

Why Is Mapping Necessary?

14/04/2006 65Advanced Logic Equivalence Checking with Conformal

Name-based

Function-based

/core/fd0 /core/fd0

/core_fd[0]/core/fd0

Golden Revised

Golden Revised

DFF
D

CK

A

BBDFF
D

CK

A

B

DFF
D

CK

A

BDFF
D

CK

A

B

How Is Mapping Done?

14/04/2006 66Advanced Logic Equivalence Checking with Conformal

Mapping Options
Command for mapping options:

Syntax: SET MApping Method <mapping_option>

Can be applied in both SETUP and LEC modes

Available mapping options:

-noname
function-based-name guide

name-based

-name first (default)

-name only

name-based

function-based

function-based

name-based

Execute mapping method Followed by Mapping options

14/04/2006 67Advanced Logic Equivalence Checking with Conformal

...
// Command: set system mode lec
// Processing Golden ...
// Modeling Golden ...
// Processing Revised ...
// Modeling Revised ...
// Mapping key points …
// Warning: more than 1/3 of the key points have mis-matched names
// Warning: please use renaming rules if automatic mapping fails
// to finish

...
// Command: set system mode lec
// Processing Golden ...
// Modeling Golden ...
// Processing Revised ...
// Modeling Revised ...
// Mapping key points …
// Warning: more than 1/3 of the key points have mis-matched names
// Warning: please use renaming rules if automatic mapping fails
// to finish

Transcript window

Mapping Messages
SETUP> set system mode lec

Message during mapping:

14/04/2006 68Advanced Logic Equivalence Checking with Conformal

Analyze Mapping Messages: Mapping Takes Too Long

Problem: Mapping takes too long

Mapping seems to hang and Conformal LEC displays this message

Default mapping

Name-based followed by function-based mapping

Function-based mapping is taking a long time

...
// Warning: more than 1/3 of the key points have mis-matched names
...

...
// Warning: more than 1/3 of the key points have mis-matched names
...

Transcript window

14/04/2006 69Advanced Logic Equivalence Checking with Conformal

Analyze Mapping Messages: Mapping Takes Too Long
Solution:

Interrupt the mapping process: Ctrl-C on UNIX terminal

Remap using the "name only“ method:

LEC> delete mapped points -all

LEC> set mapping method -name only

LEC> map key points

14/04/2006 70Advanced Logic Equivalence Checking with Conformal

...
// Mapping key points …
// Warning: Golden has 144 unmapped key points
// Warning: Revised has 144 unmapped key points
...
Unmapped points:
==
Golden:
--
Unmapped points DFF Total
--
Not-mapped 144 144
==
Revised:
--
Unmapped points DFF Total
--
Not-mapped 144 144
==
// Warning: Key point mapping is incomplete

...
// Mapping key points …
// Warning: Golden has 144 unmapped key points
// Warning: Revised has 144 unmapped key points
...
Unmapped points:
==
Golden:
--
Unmapped points DFF Total
--
Not-mapped 144 144
==
Revised:
--
Unmapped points DFF Total
--
Not-mapped 144 144
==
// Warning: Key point mapping is incomplete

Transcript window

Mapping Messages
Message after mapping:

14/04/2006 71Advanced Logic Equivalence Checking with Conformal

Analyze Mapping Messages: Incomplete Mapping
Problem: Incomplete mapping

Message after mapping

Unmapped points must be resolved

Solution: Add renaming rule

Determine renaming rules from the Mapping Manager

...
// Warning: Key point mapping is incomplete
...

...
// Warning: Key point mapping is incomplete
...

Transcript window

14/04/2006 72Advanced Logic Equivalence Checking with Conformal

Add Renaming Rule
Command usage:

ADD REnaming Rule <rule_id> <search_string> \
<replacement_string> [-Golden | -Revised]

Renaming rule structures

%d - matches 1 or more digits (0-9)

#(expr) - expr evaluates to a constant integer

%s - matches 1 or more alpha-numeric characters

Refer to the Reference Manual for more renaming structures

Special characters in search_string

% . * ^ $ | () [] / \

Needs to be preceded by the escape character, "\“

14/04/2006 73Advanced Logic Equivalence Checking with Conformal

Add Renaming Rule: Example

Matching the Revised key points to the Golden:
add renaming rule R1 "%d__reg\[%d\]" "reg[@1][@2]" -revised

Unmapped points in Golden
/fifo_reg[0][0]
/fifo_reg[0][1]
/fifo_reg[0][2]

Unmapped points in Revised
/fifo_0__reg[0]
/fifo_0__reg[1]
/fifo_0__reg[2]

14/04/2006 74Advanced Logic Equivalence Checking with Conformal

LEC
window

Unmapped
Points

Mapped
Points

Compared
Points

Mapping
Manager

Mapping Manager

14/04/2006 75Advanced Logic Equivalence Checking with Conformal

Categories of Unmapped Points

Note: To view a list of unmapped points, enter:
LEC> report unmapped points

Extra: Key point that exists in only the Golden design or in
only the Revised design, but does not affect the circuit
functionality. Example: scan_in, scan_out

Unreachable: Key point that is not propagated to any
observable point. Example: spare flops

Not-mapped: Key point that has no correspondence on the
other side. May be resolved with renaming rules
(red-filled circle)

14/04/2006 76Advanced Logic Equivalence Checking with Conformal

Resolving Incomplete Mapping

Using Mapping Manager
to create renaming rules.

Tips

Preference Sort
by name

Class Disable All
Not-Mapped

14/04/2006 77Advanced Logic Equivalence Checking with Conformal

Mapping Is an Iterative Process
Iterative process

Add rules incrementally

Continue the mapping process with command:

LEC> map key point

Note: LEC will skip the existing mapped points

Example:
LEC> add renaming rule rule1 ...
LEC> map key points
...
LEC> add renaming rule rule3 ...
LEC> add renaming rule rule4 ...
LEC> map key points
...

14/04/2006 78Advanced Logic Equivalence Checking with Conformal

Test Renaming Rule

Test a renaming rule before adding it .
Syntax:
TESt REnaming Rule <test_string | -GATE_id <gate_id>> \
-NEw_rule <search_string> <replace_string>

Example:
LEC> test re r abc -new "abc$" "xyz"

Add the rule when the intended result is achieved:
LEC> add re r rule0 "abc$" "xyz" -revised

Transcript window
===
Original string Substituted string Result

abc

abc$ xyz xyz
===

===
Original string Substituted string Result

abc

abc$ xyz xyz
===

14/04/2006 79Advanced Logic Equivalence Checking with Conformal

Test Renaming Rule (continued)

Test all added renaming rules.
Syntax:

TESt REnaming Rule <test_string | -GATE_id <gate_id>>

Example:

LEC> add re r rule1 "xyz$" "C" -map -revised

LEC> test re r abc -revised

Rules are order dependant.

Transcript window
==

Original string Substituted string Result
--

abc
rule0 abc xyz xyz
rule1 xyz C C
==

==
Original string Substituted string Result

--
abc

rule0 abc xyz xyz
rule1 xyz C C
==

14/04/2006 80Advanced Logic Equivalence Checking with Conformal

Built-in Renaming Rules
Built-in renaming rules resolve the following renaming rule issues:

Array delimiters: [], _ _, < >, ()

Hierarchical separator: _, /

Extraneous digits: reg%d_%d
Multiple always blocks

14/04/2006 81Advanced Logic Equivalence Checking with Conformal

Renaming Rule GUI Window
You can add, test, and edit rules in the Renaming Rule GUI window.

14/04/2006 82Advanced Logic Equivalence Checking with Conformal

Exercise
Define renaming rules to match the following Golden/Revised key points
pairs

Golden
/u0/u1/c_reg[5]

Revised
/u0/c_reg(5)/I1/U$1

answer: add renaming rule r1 "u1\/" "" -golden
Note: Trailing characters for library cells are truncated automatically (/I1/U$1)

Golden
/u0/u1/c_reg[1]

Revised
/u0_u1_c_.ram1_reg

answer: add renaming rule ___

Golden
/u0/b_reg[24]

Revised
/u0/b_2_reg[22]

answer: add renaming rule

1

2

3

For solutions, please see next page.

14/04/2006 83Advanced Logic Equivalence Checking with Conformal

Exercise Answers

1. Add re r r1 "u1\/" "" -gold /u0/c_reg[5]

2. Add re r r2 "c_\.ram%d_reg" "c_reg[@1]" -rev /u0_u1_c_reg[1]

3. Add re r r3 "b_%d_reg\[%d\]" "b_reg[#(@1+@2)]" -rev /u0/b_reg[24]

Final namesRenaming rules

14/04/2006 84Advanced Logic Equivalence Checking with Conformal

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
add renaming rule rule0 "abc" "xyz" -map -revised
add renaming rule rule1 "xyz" "C" -map -revised
set system mode lec
...

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
add renaming rule rule0 "abc" "xyz" -map -revised
add renaming rule rule1 "xyz" "C" -map -revised
set system mode lec
...

Summary
Once you are satisfied with the mapping results, you can incorporate all
renaming rules into your dofile.

December 19, 2004

®

Flat Compare Method:
Compare Process

14/04/2006 86Advanced Logic Equivalence Checking with Conformal

A Typical Session (Flat Compare Method)

Saving Conformal transcript to a log file

Specifying black boxes

Reading libraries and designs

Specifying design constraints

Specifying modeling directives

Mapping process

Resolving unmapped key points

Compare process

Debugging non-equivalent key points

Report run statistics

LEC

SETUP

14/04/2006 87Advanced Logic Equivalence Checking with Conformal

Compare Process - Outline
Understanding the compare process:

How is the state element handled?

What are the compare points?

What is being compared?

Debugging non-equivalent key points

14/04/2006 88Advanced Logic Equivalence Checking with Conformal

D Q

How Is the State Element Handled?
No input and output connection

Think of a D-latch or a DFF being cut in halves

Input and output are verified separately

14/04/2006 89Advanced Logic Equivalence Checking with Conformal

Compare points are:

Sink points of logic cones

Primary outputs, cut gates, DFFs, D-latches, and black boxes

D Q
DFF

/fd0

IN_0
IN_1

OUT_0
OUT_1

BLACK BOX

/bb0

PO

What Are Compare Points?

14/04/2006 90Advanced Logic Equivalence Checking with Conformal

Corresponding combinational logic cones

Two designs are equivalent when all corresponding cones are
equivalent

Golden Revised

What Is Being Compared?

14/04/2006 91Advanced Logic Equivalence Checking with Conformal

Only mapped points can be compared

Comparison is an iterative process
Conformal remembers points already compared equiv/non-equiv

Can interrupt with "Ctrl-c"
Enter "compare“ to continue comparing

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
add renaming rule rule0 "abc" "xyz" -map -revised
add renaming rule rule1 "xyz" "C" -map -golden
set system mode lec
add compare points -all
compare
...

set log file logfile.$LEC_VERSION -replace
add notranslate module *sram* -library -both
read design cpu_rtl.v -verilog -golden
read design -file verilog.vc -verilog -revised
add pin constraint 0 scan_en -revised
set flatten model -latch_fold
add renaming rule rule0 "abc" "xyz" -map -revised
add renaming rule rule1 "xyz" "C" -map -golden
set system mode lec
add compare points -all
compare
...

Comparison

14/04/2006 92Advanced Logic Equivalence Checking with Conformal

Comparison Results
Message after compare:

...
// Command: compare
==
Compared points PO DFF DLAT BBOX Total
--
Equivalent 2 146 2 1 151
--
Non-equivalent 0 2 0 0 2
==

...
// Command: compare
==
Compared points PO DFF DLAT BBOX Total
--
Equivalent 2 146 2 1 151
--
Non-equivalent 0 2 0 0 2
==

Transcript window

14/04/2006 93Advanced Logic Equivalence Checking with Conformal

Comparison Results in GUI
Filtering comparison results on the Mapping Manager

14/04/2006 94Advanced Logic Equivalence Checking with Conformal

Equivalent: Key points proven to be equivalent (green-filled
circle)

Inverted-Equivalent: Key points proven to be
complementary (divided green-filled circle)

Non-Equivalent: Key points proven to be different (red-filled
circle)

Abort: Key points not yet proven equivalent or non-
equivalent due to timeout or other system parameters
(yellow-filled circle)

Not-Compared: Key points not yet compared

Categories of Comparison Results

LEC> report compare data -class [...]

December 19, 2004

®

A Typical Debugging Session

14/04/2006 96Advanced Logic Equivalence Checking with Conformal

Conformal LEC Flat Compare Flow

No
EquivalenceEquivalence
establishedestablished

Differences ?Differences ?

Yes

All mapped ?All mapped ?

Specify constraintsSpecify constraints
& other parameters& other parameters

GoldenGolden

AnalyzeAnalyze

Yes
DebugDebug

Fix designFix design

No

RevisedRevised

Map key pointsMap key points

Compare key pointsCompare key points

ASIC
Lib

ASICASIC
LibLib

SETUP mode

LEC mode

14/04/2006 97Advanced Logic Equivalence Checking with Conformal

Flat Compare – Sample dofiles

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/

read design –file cpu_rtl.vc -verilog –golden
read design -file verilog.vc -verilog –revised

add pin constraint 0 scan_en –revised
set flatten model –seq_constant –gated_clock
set system mode lec

add compare point –all
compare

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/

read design –file cpu_rtl.vc -verilog –golden
read design -file verilog.vc -verilog –revised

add pin constraint 0 scan_en –revised
set flatten model –seq_constant –gated_clock
set system mode lec

add compare point –all
compare

14/04/2006 98Advanced Logic Equivalence Checking with Conformal

Reading Mixed Languages
Mixed-languages: Libraries

Mixed-languages: Designs

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden

read library $LIB/vhdl/*.lib -liberty -append -golden

...

set log file logfile.$LEC_VERSION –replace

setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden

read library $LIB/vhdl/*.lib -liberty -append -golden

...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden
read design RTL/core.vhd -vhdl -noelab -golden
read design RTL/top.v -verilog -golden
...

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/

read library $LIB/verilog/*.v -verilog -golden
read design RTL/core.vhd -vhdl -noelab -golden
read design RTL/top.v -verilog -golden
...

14/04/2006 99Advanced Logic Equivalence Checking with Conformal

HDL Rule Checks
Violation messages after reading libraries/designs

To see what a message means:

SETUP> help <message_name>

Example:

SETUP> help RTL2.3

// Command: read design src/PCI.v -gold
// Check out vlg 3.0 license
// Parsing file src/PCI.v ...
// Golden root module is set to ‘PCI’
// Warning: (RTL2.3) externally defined signal reference not supported
// Warning: (RTL5.1) overlapped case items in parallel case statement

...

// Command: read design src/PCI.v -gold
// Check out vlg 3.0 license
// Parsing file src/PCI.v ...
// Golden root module is set to ‘PCI’
// Warning: (RTL2.3) externally defined signal reference not supported
// Warning: (RTL5.1) overlapped case items in parallel case statement

...

Transcript window

14/04/2006 100Advanced Logic Equivalence Checking with Conformal

HDL Rule Checks (cont'd)

Locating the source that causes a message

Non-GUI mode

SETUP> report rule check <message_name> -verbose

GUI mode

Click to open
the HDL Rule
Manager

Right click and
select Source Code

14/04/2006 101Advanced Logic Equivalence Checking with Conformal

HDL Rule Check Categories
You can specify the severity level for each category: "Error", "Warning",
"Note", or "Ignore" with the SET RUle Handling command

Directives: Synthesis and Verplex directives

Hierarchy: Rules apply to hierarchical design

Ignored: Redundant constructs or statements are not supported
and are ignored by LEC

RTL: RTL-level Verilog or VHDL rules

UDP: User-defined primitives

Verilog: Designs written in Verilog language

14/04/2006 102Advanced Logic Equivalence Checking with Conformal

Modeling messages are generated after you change mode to LEC.

// Command: set system mode lec
// Processing golden ...
// Modeling golden ...
// Processing revised ...
// Modeling revised ...
// Remodeled 1048 gated-clock DFF/DLAT(s)
// Converted 116 DFF/DLAT(s) to ZERO/ONE
// Converted 13 DFF/DLAT(s) to ZERO/ONE
// Warning: Golden and Revised have different numbers of key points:
// Golden key points = 51704
// Revised key points = 51319

// Command: set system mode lec
// Processing golden ...
// Modeling golden ...
// Processing revised ...
// Modeling revised ...
// Remodeled 1048 gated-clock DFF/DLAT(s)
// Converted 116 DFF/DLAT(s) to ZERO/ONE
// Converted 13 DFF/DLAT(s) to ZERO/ONE
// Warning: Golden and Revised have different numbers of key points:
// Golden key points = 51704
// Revised key points = 51319

Transcript window

Modeling Messages

14/04/2006 103Advanced Logic Equivalence Checking with Conformal

Report Modeling Messages
To get a list of modeling messages and their rule number, enter:

LEC> report message –model

To see what a message means use:
LEC> help <message_name>

To display the detail of a message, i.e message F18:
LEC> report message -model -rule F18 -verbose

Transcript window

// Command: report message –model
// Report modeling message for Golden
// F18: Converted DFF/DLAT(s) to ZERO/ONE (Occurrence: 116)
// Report modeling message for Revised
// F14: Remodeled gated-clock DFF(s) or DLAT(s) to mux-feedback

(Occurrence: 1048)
// F18: Converted DFF/DLAT(s) to ZERO/ONE (Occurrence: 13)

// Command: report message –model
// Report modeling message for Golden
// F18: Converted DFF/DLAT(s) to ZERO/ONE (Occurrence: 116)
// Report modeling message for Revised
// F14: Remodeled gated-clock DFF(s) or DLAT(s) to mux-feedback

(Occurrence: 1048)
// F18: Converted DFF/DLAT(s) to ZERO/ONE (Occurrence: 13)

14/04/2006 104Advanced Logic Equivalence Checking with Conformal

// Command: set system mode lec
... (modeling messages)
// Mapping key points …
==
Mapped points: SYSTEM class
--
Mapped points PI PO DFF Z BBOX Total
--
Golden 221 196 50741 150 10 51318
--
Revised 221 196 50741 150 10 51318
==
Unmapped points:
==
Golden:
--
Unmapped points DFF Total
--
Unreachable 386 386
==
Revised:
--
Unmapped points DFF Total
--
Unreachable 5 5
==

// Command: set system mode lec
... (modeling messages)
// Mapping key points …
==
Mapped points: SYSTEM class
--
Mapped points PI PO DFF Z BBOX Total
--
Golden 221 196 50741 150 10 51318
--
Revised 221 196 50741 150 10 51318
==
Unmapped points:
==
Golden:
--
Unmapped points DFF Total
--
Unreachable 386 386
==
Revised:
--
Unmapped points DFF Total
--
Unreachable 5 5
==

Transcript window

Mapping Messages
Mapping key points is automatic after modeling is done

Example message for a successful mapping (no “Not-mapped”):

14/04/2006 105Advanced Logic Equivalence Checking with Conformal

// Command: set system mode lec
... (modeling messages)
// Mapping key points …
==
Mapped points: SYSTEM class
--
Mapped points PI PO DFF Z BBOX Total
--
Golden 221 190 50741 150 10 51312
--
Revised 221 190 50741 150 10 51312
==
Unmapped points:
==
Golden:
--
Unmapped points PO DFF Total
--
Unreachable 0 386 386
Not-mapped 6 0 6

==
Revised:
--
Unmapped points PO DFF Total
--
Unreachable 5 5 5

Not-mapped 6 0 6
==
// Warning: Key point mapping is incomplete

// Command: set system mode lec
... (modeling messages)
// Mapping key points …
==
Mapped points: SYSTEM class
--
Mapped points PI PO DFF Z BBOX Total
--
Golden 221 190 50741 150 10 51312
--
Revised 221 190 50741 150 10 51312
==
Unmapped points:
==
Golden:
--
Unmapped points PO DFF Total
--
Unreachable 0 386 386
Not-mapped 6 0 6

==
Revised:
--
Unmapped points PO DFF Total
--
Unreachable 5 5 5

Not-mapped 6 0 6
==
// Warning: Key point mapping is incomplete

Transcript window

Mapping Messages
Example of unsuccessful mapping:

14/04/2006 106Advanced Logic Equivalence Checking with Conformal

Resolving Unsuccessful Mapping
Not-mapped key points are not compared and cause NEQ
(not unreachable and extra unmapped types)

Add renaming rules to map by name

Sequential Constant modeling

Black box merging

add renaming rule <rule_name> <string> <string> [-Golden | -Revised]

14/04/2006 107Advanced Logic Equivalence Checking with Conformal

Sequential Constant Options

Model sequential constant registers to constant

Sequential constant options :

-seq_constant

-seq_constant_feedback

Once register is 0, it will always be 0

14/04/2006 108Advanced Logic Equivalence Checking with Conformal

Sequential Constant Options(cont)

Sequential constant options :

-seq_const_dc

-seq_constant_x_to [0|1]

1'bx

1'bx

14/04/2006 109Advanced Logic Equivalence Checking with Conformal

Remodel

Designed to resolve mis-compares due to keypoint issues

Performed in LEC mode

Applies to unmapped points only

Can takes a set of key points and attempts to remodel them

Only works if number of unmapped points is less than the MAX_UNMAP
limit

Default is 5,000 unmapped points
Use remodel –max_unmap <N> to change limit
Useful to skip remodel until mapping is fairly complete

14/04/2006 110Advanced Logic Equivalence Checking with Conformal

Sequential constant optimization flow

Example Script1

set flatten model –seq_constant –seq_constant_x_to 0
set system mode lec
remodel –seq_constant –seq_constant_feedback –repeat
map key point

Example Script2

set flatten model–seq_constant_x_to 0
set mapping method –name only
set system mode lec
remodel –seq_constant –seq_constant_feedback –repeat
set mapping method –name first
map key point

Requirement :

Good name mapping
Might need to use "add renaming rule"

14/04/2006 111Advanced Logic Equivalence Checking with Conformal

Black Box Merging
set flatten model -bbox_merge

Same black box module
Can use module renaming rules

Same inputs (simple buffering, constants allowed)

Equivalent inputs not handled yet

Modeling message F51 printed

foo: i0

foo: i1

foo: i0

foo: i1

14/04/2006 112Advanced Logic Equivalence Checking with Conformal

Compare Results
A successful compare result

A compare result with NEQ failure

// Command: compare
==
Compared points PO DFF Z BBOX Total
--
Equivalent 196 50741 150 10 51097
--
Inversed-Equivalent 0 41 0 0 41
==

// Command: compare
==
Compared points PO DFF Z BBOX Total
--
Equivalent 196 50741 150 10 51097
--
Inversed-Equivalent 0 41 0 0 41
==

Transcript window

// Command: compare
==
Compared points PO DFF Z BBOX Total
--
Equivalent 190 50741 150 0 51081
--
Non-equivalent 6 0 0 10 16

==

// Command: compare
==
Compared points PO DFF Z BBOX Total
--
Equivalent 190 50741 150 0 51081
--
Non-equivalent 6 0 0 10 16

==

Transcript window

14/04/2006 113Advanced Logic Equivalence Checking with Conformal

How Do I Debug NEQs?
Use the diagnosis managers below to debug:

Mapping Managers

Diagnosis Manager

Schematic Viewer

Hierarchical Browser

Source Code Manager

Gate Manager

Diagnosis managers are integrated.

14/04/2006 114Advanced Logic Equivalence Checking with Conformal

Mapping Manager

Main
window

Unmapped
Points

Mapped
Points

Compared
Points

Mapping
Manager

14/04/2006 115Advanced Logic Equivalence Checking with Conformal

Mapping Manager (continued)

Find/filter key points Filter key point.
Example:
dst_eg

Find key points
with partial
name or ID

14/04/2006 116Advanced Logic Equivalence Checking with Conformal

Mapping Manager (continued)

Display only non-equivalent results

Select:

1. Disable All

2. Non-equivalent

14/04/2006 117Advanced Logic Equivalence Checking with Conformal

Mapping Manager (continued)

Sort key points
by size to
diagnose
smaller point
first

Smaller size on
top of the list

1. Left click on a compared
point

2. Right click

3. Sort by …

14/04/2006 118Advanced Logic Equivalence Checking with Conformal

Mapping Manager
Link to the Hierarchical Browser

14/04/2006 119Advanced Logic Equivalence Checking with Conformal

Mapping Manager
Invoke the Diagnosis Manager to debug

14/04/2006 120Advanced Logic Equivalence Checking with Conformal

Compared Point

Diagnosis Point (Active)

Diagnosis Points

Corresponding Support

Non-corresponding Support

Error Patterns Error Candidates

Non-corresponding,
and not mapped (red)

Non-corresponding, but
mapped (yellow with M)

M

Diagnosis Manager

14/04/2006 121Advanced Logic Equivalence Checking with Conformal

Diagnosis Information
Compared Point: Non-equivalent compared point

Diagnosis Point (Active): Point at which diagnosis failed. Simulation value is shown in
parenthesis ()

Diagnosis Point (Inputs): Lists all the fanin diagnosis points for the compare point

Corresponding Support: Displays the mapped points that are in the fanin cone of the
diagnosis point of both the Golden and Revised designs. Simulation values of the
corresponding support points are shown along with the key point names

Non-corresponding Support: Displays the mapped or unmapped points that are in the
fanin cone of the diagnosis point for either the Golden or Revised designs. Simulation
values of the non-corresponding support points are shown along with the key point
names

Error Pattern: Test vector proving the diagnosis point to be non-equivalent

Error Candidate: Gates in the Revised designs with highest probability of causing
non-equivalence

14/04/2006 122Advanced Logic Equivalence Checking with Conformal

0

0

seq0
Q

DFF
CP

D Q
1 1

1
1

1
GOLDEN

DFF
CP

D Q

seq0
Q

D
1

1

1
1 0 0

1

1REVISED
DFF

CP

D Q

DFF
CP

D Q

1

1

Diagnosis Information

rqst

rqst

dat_B

Compare Points

14/04/2006 123Advanced Logic Equivalence Checking with Conformal

0

0

seq0
Q

DFF
CP

D Q
1 1

1
1

1
GOLDEN

DFF
CP

D Q

seq0
Q

D
1

1

1
1 0 0

1

1REVISED
DFF

CP

D Q

DFF
CP

D Q

1

1

Diagnosis Information

rqst

rqst

dat_B

Diagnosis Input

14/04/2006 124Advanced Logic Equivalence Checking with Conformal

0

0

seq0
Q

DFF
CP

D Q
1 1

1
1

1
GOLDEN

DFF
CP

D Q

seq0
Q

D
1

1

1
1 0 0

1

1REVISED
DFF

CP

D Q

DFF
CP

D Q

1

1

Diagnosis Information

rqst

rqst

dat_B

Corresponding supports

14/04/2006 125Advanced Logic Equivalence Checking with Conformal

0

0

seq0
Q

DFF
CP

D Q
1 1

1
1

1
GOLDEN

DFF
CP

D Q

seq0
Q

D
1

1

1
1 0 0

1

1REVISED
DFF

CP

D Q

DFF
CP

D Q

1

1

Diagnosis Information

rqst

rqst

dat_BNon-corresponding
support

14/04/2006 126Advanced Logic Equivalence Checking with Conformal

Diagnosis Inputs
A key point might have more than one input points being NEQ

Example: clock cone

14/04/2006 127Advanced Logic Equivalence Checking with Conformal

Diagnosis Inputs
Example: data cone

14/04/2006 128Advanced Logic Equivalence Checking with Conformal

Schematic Viewer
Invoke from Diagnosis Manager

14/04/2006 129Advanced Logic Equivalence Checking with Conformal

Schematic Viewer
By default, cones are trimmed to show non-equivalent
(simulation mismatch at diagnosis input)

1

0

14/04/2006 130Advanced Logic Equivalence Checking with Conformal

Schematic Viewer: Trimming Fanin Gates
Select gate to trim all (or a net) fanin

Short cut = ‘x’ on keyboard

14/04/2006 131Advanced Logic Equivalence Checking with Conformal

Schematic Viewer: Expanding Fanin Gates
Select gate to expand all (or a net) fanin

Short cut = ‘o’ or ‘r’ on keyboard

14/04/2006 132Advanced Logic Equivalence Checking with Conformal

Show Library Boundary

1. Select Preference
2. Select Show Library Level Cells

14/04/2006 133Advanced Logic Equivalence Checking with Conformal

Purple Gates
Purple gates are intermediate equivalent points

14/04/2006 134Advanced Logic Equivalence Checking with Conformal

Schematics Tool Bar
Last View: Return to the previous schematic view

Trace Driver: Highlight the drivers in yellow

Trace Load: Highlight the loads in red

Zoom to Full: Display all the contents of the schematic

Trace 2 Points: Trace path between 2 points in the schematic

Prove: Prove equivalency between 2 points in the schematic

Find: Find and highlight the specified object

14/04/2006 135Advanced Logic Equivalence Checking with Conformal

Schematic Viewer
Previous slides showed

Flattened schematic
Schematic after flattening/modeling applied

Opened from Mapping/Diagnosis/Gate Managers

Next …

Hierarchical schematic
Before flattening/modeling applied

Opened from Hierarchical Browser

14/04/2006 136Advanced Logic Equivalence Checking with Conformal

Hierarchical Browser
Show design hierarchy and allow access to any module

14/04/2006 137Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
Can be open from Hierarchical Browser
Open schematic for any module

1. Left click to select a module
2. Right click and select Schematic

14/04/2006 138Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
Can also be opened from flatten schematic

14/04/2006 139Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
Double click an instance to view its content

14/04/2006 140Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic

1. Click on an
instance to select it

2. Right-click and
select Open Next
Level Instance
View

Instance content can
also be displayed
using the Next Level
Instance View feature:

14/04/2006 141Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
To color code a net

1. Click to highlight the net
2. Press ‘c’ on keyboard, then choose a color from pop-up color wheel

14/04/2006 142Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
To trace a driver:

1. Click to select the net.
2. Click the Driver icon.

14/04/2006 143Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
To trace load:

1. Click to select the net.
2. Click the Load icon.

14/04/2006 144Advanced Logic Equivalence Checking with Conformal

Hierarchical Schematic
To open a net fanin cone

1. Click to select the net
2. Right click to select Trace Fanin Cone

14/04/2006 145Advanced Logic Equivalence Checking with Conformal

Source Code Manager
Select Source Debug from the Diagnosis Manager (annotated source code)

14/04/2006 146Advanced Logic Equivalence Checking with Conformal

Source Code Manager
To trace a signal driver:
1. Double click on the signal.
2. Click the Driver icon.

14/04/2006 147Advanced Logic Equivalence Checking with Conformal

Gate Manager
Trace signal connectivity
Can be invoked from Mapping Manager

14/04/2006 148Advanced Logic Equivalence Checking with Conformal

Gate Manager - Example
Trace the source of ‘0’ from the NOR gate

1. Right click a gate
2. Select Report Gate
3. Trace signal from pop-up

Gate Manager

14/04/2006 149Advanced Logic Equivalence Checking with Conformal

Drag and Drop feature available for

Key Points from Mapping/Diagnosis Manager Schematic/Source
Code Manager

Gates from Schematic Mapping/Source Code Manager

Click and hold the middle mouse button to drag a key point/gate to
destination

It will appear in a light yellow box

Release the middle mouse button to drop

Yellow box will change to black in a droppable area

Drag and Drop Feature

14/04/2006 150Advanced Logic Equivalence Checking with Conformal

Drag and Drop: To Schematic
Key points can be dragged from Mapping Manager and dropped into
the Schematic.

The
selected
key point
will be
highlighted

14/04/2006 151Advanced Logic Equivalence Checking with Conformal

Drag and Drop: To Source Code
Gates or key points can be dragged from the Schematic and dropped
into the Source Code Manager.

The selected gate or key
point will be highlighted
in the source code.

December 19, 2004

®

Typical Causes of Non-Equivalence

Module 2

14/04/2006 153Advanced Logic Equivalence Checking with Conformal

Module Objectives
In this module, you will

Learn the typical causes of non-equivalence

Debug typical non-equivalent cases using the diagnosis tools

14/04/2006 154Advanced Logic Equivalence Checking with Conformal

What Can Cause Non-Equivalences (NEQ) ?
NEQ key points can be caused by the following:

Unqualified library

Incorrect version of RTL and Gate netlist

Incomplete design constraints

Unspecified modeling options

Incomplete & incorrect mapping

Unbalanced black-boxes

ECO/Design bug/Synthesis bug

14/04/2006 155Advanced Logic Equivalence Checking with Conformal

Incorrect Version of RTL and Gate Netlist
Be sure to use the correction design version

Helpful Conformal commands for checking :
report design data

report primary input

report primary output

report module

14/04/2006 156Advanced Logic Equivalence Checking with Conformal

NEQ: Unqualified Library
Problem:
Verilog/VHDL simulation library vs synthesis Liberty format library

Conformal recommends using a simulation library for logical
equivalence checking

Design verification sign-off on Verilog/VHDL simulation library (.v)

Synthesis tool uses synthesis Liberty library (.lib, .db)

Solution:
Qualify library to ensure correctness between synthesis library and
simulation through Conformal LEC

Conformal LEC commands :
read design slow.lib –liberty -golden

read design slow.v –verilog -revised

write hierarchical dofile validate_lib.do –all –replace

dofile validate_lib.do

14/04/2006 157Advanced Logic Equivalence Checking with Conformal

Design Constraints
What are design constraints?

User inputs to control part of a design’s logic

Purpose of constraints:

To disable test logic (for example; scan and JTAG)

To specify one-hot or one-cold conditions

To specify relationships between pins

To constrain undriven signals

Examples of constraints:

Pin constraint

Instance constraint

Pin equivalence

Tied signal

Undriven signal

14/04/2006 158Advanced Logic Equivalence Checking with Conformal

Example of Design Constraints - Test logic
Problem:

NEQ can be caused by one design having test logic while the other
design doesn’t

Solution:

Constrain away test logic to avoid false NEQ
Scan

JTAG

14/04/2006 159Advanced Logic Equivalence Checking with Conformal

Another Example of Design Constraint
NEQ due to floating signal

Command “set undriven signal” should be carefully used. Generally
recommended to tie off floating pins in RTL

Golden non-corresponding support
‘Z’ gate (Revised netlist optimized
away Z)

14/04/2006 160Advanced Logic Equivalence Checking with Conformal

Example of Constraining Commands

add pin constraint
add instance constraints
add net constraints
add output stuck_at
add tied signals
add instance equivalences
add pin equivalences
set undriven signal

14/04/2006 161Advanced Logic Equivalence Checking with Conformal

Modeling Options
Problem:

Modeling style and optimization can lead to false NEQ unless handled
properly

Examples
Gated clock

Sequential optimization

Sequential replicate/merge

Solution:

Use the “set flatten model …” command to choose modeling
style and enable optimization.

14/04/2006 162Advanced Logic Equivalence Checking with Conformal

Example: Gated Clock
Power optimization tools create latch-based gated clock circuit

Causes compare problem

Golden Revised

latch
en

CLK

D Q
DFFD Q

CLK

DFF
en

14/04/2006 163Advanced Logic Equivalence Checking with Conformal

Example: Gated Clock
Information on the Diagnosis Manager

Use “set flatten model –gated_clock” to resolve

Diagnose NEQ on clock coneDiagnose NEQ on data cone

14/04/2006 164Advanced Logic Equivalence Checking with Conformal

Revised

in1

1’b1 PO

Golden

1’b1

in1

DFF
CLK

PO

Example: Sequential Constant
Occurs due to the way the circuit is designed or a designer’s
preference to constrain the data port

Causes comparing problem!

14/04/2006 165Advanced Logic Equivalence Checking with Conformal

Example: Sequential Constant
Mapping Manager Diagnosis Manager

Use “set flatten model -seq_constant” to optimize registers

14/04/2006 166Advanced Logic Equivalence Checking with Conformal

Sequential Constant (cont’d)

“remodel –seq_constant” can also be used to solve a sequential
constant problem

A command in LEC mode

Can be used in conjunction with
set flatten model –seq_constant

Works best after mapping is done

...
// Command: set system mode lec
// Command: remodel –seq_constant
// Command: map key point
// Command: add compare point –all
// Command: compare
...

...
// Command: set system mode lec
// Command: remodel –seq_constant
// Command: map key point
// Command: add compare point –all
// Command: compare
...

Transcript window

14/04/2006 167Advanced Logic Equivalence Checking with Conformal

Modeling Command
SET FLatten Model

[-NOLATCH_Fold | -LATCH_Fold]

[-NOLATCH_Transparent | -LATCH_Transparent]

[-NOALL_SEQ_Merge | -ALL_SEQ_Merge]

[-NOALL_INV_SEQ_Merge | -ALL_INV_SEQ_Merge]

[-NOSEQ_Redundant | -SEQ_Redundant]

[-NOLIB_SEQ_Redundant | -LIB_SEQ_Redundant]

[-NOSEQ_Constant | -SEQ_Constant]

[-SEQ_FEEDBACK_CONSTant | -NOSEQ_FEEDBACK_CONSTant]

[-DFF_TO_DLAT_FEEDBACK | -NODFF_TO_DLAT_FEEDBACK]>

[-NOLOOP_AS_DLAT | -LOOP_AS_DLAT]

[-AUTO_MODELING | -NOAUTO_MODELING]

…

14/04/2006 168Advanced Logic Equivalence Checking with Conformal

Mapping
NEQ can be caused by

Incomplete mapping of key points

Incomplete mapping of black box pins

Incorrect mapping
Incorrect pairing

Phase map

14/04/2006 169Advanced Logic Equivalence Checking with Conformal

Mapping Problem: Incomplete Mapping
Incomplete mapping causes NEQ (except Unreachable & Extra)

Mapping Manager Diagnosis Manager

14/04/2006 170Advanced Logic Equivalence Checking with Conformal

Resolving Incomplete Mapping
Use the command “add renaming rule” to complete mapping

14/04/2006 171Advanced Logic Equivalence Checking with Conformal

Mapping Problem: Incomplete Pin Mapping
Black box pins not mapped due to name differences

Diagnose BBOX NEQ

NEQ pins

14/04/2006 172Advanced Logic Equivalence Checking with Conformal

Reporting Black Box Pin Mapping
Check to make sure black box pins are mapped (unless not to be
compared)

LEC> report mapped point <BBOX> -input

LEC> report mapped point I_a -input
// Command: report mapped point I_a -input
Mapped point for

(G) + 13 BBOX /I_a
is

(R) + 13 BBOX /I_a
---------- input mapping ----------
[INPUT] pair

(G) + 23 BUF /I_a/ck
(R) + 23 BUF /I_a/ck

[INPUT] (no correspondence)
(G) 24 BUF /I_a/d1

[INPUT] (no correspondence)
(G) 25 BUF /I_a/d2

[INPUT] (no correspondence)
(R) 24 BUF /I_a/d_Z1

[INPUT] (no correspondence)
(R) 25 BUF /I_a/d_Z2

LEC> report mapped point I_a -input
// Command: report mapped point I_a -input
Mapped point for

(G) + 13 BBOX /I_a
is

(R) + 13 BBOX /I_a
---------- input mapping ----------
[INPUT] pair

(G) + 23 BUF /I_a/ck
(R) + 23 BUF /I_a/ck

[INPUT] (no correspondence)
(G) 24 BUF /I_a/d1

[INPUT] (no correspondence)
(G) 25 BUF /I_a/d2

[INPUT] (no correspondence)
(R) 24 BUF /I_a/d_Z1

[INPUT] (no correspondence)
(R) 25 BUF /I_a/d_Z2

Transcript window

Pins not mapped

14/04/2006 173Advanced Logic Equivalence Checking with Conformal

Resolving Incomplete Pin Mapping
Apply the renaming rule command to map the pins, as follows:

add renaming rule name_name <search_string>\

<replace_string> -pin -bbox <module_name> \

[-golden|-revised]

14/04/2006 174Advanced Logic Equivalence Checking with Conformal

Mapping Problem: Incorrect Mapping
Symptom of incorrect pairing of key points

14/04/2006 175Advanced Logic Equivalence Checking with Conformal

Resolving Incorrect Mapping
Remap the incorrectly mapped pair with “delete mapped point
…” and “add map point …”

Or use “add renaming rule” to control how key points should be
mapped

14/04/2006 176Advanced Logic Equivalence Checking with Conformal

RST

D Q

R

S
IN OUT

CLK

U1_reg

RST

D Q

R

S
IN OUT

CLK

U1_reg

Mapping Problem: Phase Inverted Mapping
DFF/DLAT implemented with phase inverted library cells (inverted
data, set/reset swapping)

Instance U1_reg must be phase-mapped

Golden

Revised

14/04/2006 177Advanced Logic Equivalence Checking with Conformal

Mapping Problem: Phase Inverted Mapping
Symptom of phase mapping problem

Combination of set/reset/data cones
non-equivalence

14/04/2006 178Advanced Logic Equivalence Checking with Conformal

Resolving Phase Inverted Mapping
Enable phase map method

Faster if phase map only applies to phase-inverted cells

read design cpu_rtl.v -verilog -golden
read design cpu_netlist.vg -verilog -revised
set mapping method -phase
set system mode lec
...

read design cpu_rtl.v -verilog -golden
read design cpu_netlist.vg -verilog -revised
set mapping method -phase
set system mode lec
...

read design cpu_rtl.v -verilog -golden
read design cpu_netlist.vg -verilog -revised

add mapping model <cell_name* …> -invert –revised

set mapping method -phase

set system mode lec

...

read design cpu_rtl.v -verilog -golden
read design cpu_netlist.vg -verilog -revised

add mapping model <cell_name* …> -invert –revised

set mapping method -phase

set system mode lec

...

14/04/2006 179Advanced Logic Equivalence Checking with Conformal

On-the-fly Method to Resolve Mapping Problem
During diagnosis, try the method below if you think some key points might
be incorrectly mapped, or need to be phase-mapped

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/
read design –file cpu_rtl.vc -verilog –golden
read design -file verilog.vc -verilog –revised
add pin constraint 0 scan_en –revised
set flatten model –seq_constant –gated_clock
set system mode lec
add compare point –all
compare
//compare result has non-equivalences
delete mapped point –noneq
set mapping method –phase
map key point
add compare –all
compare

set log file logfile.$LEC_VERSION –replace
setenv LIB /user1/lib/verilog/
read design –file cpu_rtl.vc -verilog –golden
read design -file verilog.vc -verilog –revised
add pin constraint 0 scan_en –revised
set flatten model –seq_constant –gated_clock
set system mode lec
add compare point –all
compare
//compare result has non-equivalences
delete mapped point –noneq
set mapping method –phase
map key point
add compare –all
compare

14/04/2006 180Advanced Logic Equivalence Checking with Conformal

NEQ Due to Black Boxes
Problem:

Not evenly black boxing both designs

Solution:

Check for unbalanced black boxes in the Golden and Revised , then
black box both designs evenly
SETUP> report black box

SETUP> report black box
SYSTEM: (G R) ram8x256
SYSTEM: (G R) hstm
SYSTEM: (G) astm

SETUP> report black box
SYSTEM: (G R) ram8x256
SYSTEM: (G R) hstm
SYSTEM: (G) astm

LEC window

Find out why the
Revised module
‘astm’ is not black
boxed

14/04/2006 181Advanced Logic Equivalence Checking with Conformal

ECO/Design bug/Synthesis bug
Non-equivalences can be a real bug.

Use the diagnosis tools to debug.

14/04/2006 182Advanced Logic Equivalence Checking with Conformal

December 19, 2004

®

Resolving Aborts

Module 3

14/04/2006 184Advanced Logic Equivalence Checking with Conformal

Module Objectives
In this module, you will

Learn what causes aborts

Learn how to resolve abort key points

14/04/2006 185Advanced Logic Equivalence Checking with Conformal

Module Overview
What are abort points?

Why aborts?

What to do if compare aborts:
Ensure that the dofile is set up properly

Increase compare effort

Perform hierarchical compare

14/04/2006 186Advanced Logic Equivalence Checking with Conformal

What are Abort Key Points?
Inconclusive comparison result. You need to resolve the aborts

GUI: yellow-filled circle on Mapping Manager

Non-GUI: LEC> rep compare data -class abort

Abort key points
are shown with
yellow-filled circle

14/04/2006 187Advanced Logic Equivalence Checking with Conformal

Why Abort?
Complex datapath

Large number of don’t cares (X)

Large logic cone size

14/04/2006 188Advanced Logic Equivalence Checking with Conformal

Complex Data Path: Operators Tree
Different logical structures

a b c d

×

×

×

z

a b c d

×

×

×

z

RTL ordering Netlist ordering
z = a * b * c * d; (a * b) * (c * d);

14/04/2006 189Advanced Logic Equivalence Checking with Conformal

Combine addition-based operators into carry-save tree

+, -, *, <, >, <=, >=, ==, !=

Example: y = a * b + c

Intermediate value not computed (a*b)

Use Conformal Ultra command “analyze datapath –merge”

Complex Data Path: Operators Merging

a b c

y

X

+

a b c

y

Merged
Operator

14/04/2006 190Advanced Logic Equivalence Checking with Conformal

Don’t Cares
Please see RTL coding guideline section

Don’t cares

Use Conformal LEC to report don’t cares in logic cone:

“report map point <abort_point> -property”

Full case/parallel case/x-assignments

Re-coding RTL to get rid of don’t cares might help

Hierarchical compare might help too. Please refer to hierarchical compare
(Module 5)

14/04/2006 191Advanced Logic Equivalence Checking with Conformal

Handling Aborts
Ensure that the dofile is set up properly

Increase compare effort

Perform hierarchical compare

Adding CUT points

Use Partition Keypoint flow

14/04/2006 192Advanced Logic Equivalence Checking with Conformal

Resolving Aborts: Set Up the Dofile Properly
Check if RTL has multipliers

LEC> report design data

Please refer to Multiplier Handling (Module 4)

Design with complex datapath
Use “analyze datapath” command in Conformal Ultra

...

------ word-level --------------------------
ADD * 55 0
MULT * 3 0

BBOX 2 2
--
Total 1058 1058

...

------ word-level --------------------------
ADD * 55 0
MULT * 3 0

BBOX 2 2
--
Total 1058 1058

Transcript window

14/04/2006 193Advanced Logic Equivalence Checking with Conformal

set log file logfile.$LEC_VERSION -replace
read design cpu_rtl.v -verilog -golden
read design -f verilog.vc -verilog -revised
set system mode lec
add compare points -all

compare
//”set compare effort auto” will automatically switch to
//super compare effort to aborted key points
report compare data -abort
set compare effort super
compare
...

set log file logfile.$LEC_VERSION -replace
read design cpu_rtl.v -verilog -golden
read design -f verilog.vc -verilog -revised
set system mode lec
add compare points -all

compare
//”set compare effort auto” will automatically switch to
//super compare effort to aborted key points
report compare data -abort
set compare effort super
compare
...

Resolving Aborts: Increase Compare Effort
Default effort: low

Change effort to high or super
For any abort cases, higher compare effort can certainly help, but not
guaranteed to solve all abort cases.

Should be used after low effort run is completed (to avoid "expensive"
methods used on easy compare points)

14/04/2006 194Advanced Logic Equivalence Checking with Conformal

Resolving Aborts: Hierarchical Compare
Narrows down abort modules

Reduces logic cone size
Generally helps the tool to compare designs easier

Please refer to the Hierarchical Compare section

14/04/2006 195Advanced Logic Equivalence Checking with Conformal

Resolving Aborts: Adding CUT Points

Adding CUT points is an effective method to resolve aborts

At multiplexor select nets

To partition datapath operators

Adding CUT points can help in diagnosis and error isolation

Difficulties in adding CUT points

Need to find corresponding points in both designs

Need to switch between LEC and SETUP mode

Need to find and specify the correct net

Need to resolve false-negatives

Specification in SETUP mode is sometimes not accurate

14/04/2006 196Advanced Logic Equivalence Checking with Conformal

Approach for Adding CUT Points
// Identify golden cut points
// Identify revised cut points
SETUP> add cut point ...
SETUP> set system mode LEC
LEC> add compare points –all ; compare
// Investigate NEQ or need for more cut points
LEC> set system mode SETUP
SETUP> Delete cut point ...
SETUP> Add cut point …
SETUP> set system mode LEC
// Check mapping of CUT points
LEC> add compare point –all; compare
. . . .

14/04/2006 197Advanced Logic Equivalence Checking with Conformal

Iteration 1
AB = 00

0
0

0
1

1
0

1
1

Iteration 2
AB = 01

Iteration 3
AB = 10

Iteration 4
AB = 11

Key Point Partitioning
Divide-and-conquer approach to verifying large logic cones

Key points are selected by Conformal LEC or users

Conformal LEC automatically generates a dofile that executes the
above iterations

14/04/2006 198Advanced Logic Equivalence Checking with Conformal

read design cpu_rtl.v -verilog -golden
read design -f verilog.vc -verilog -revised
set system mode lec
add compare points -all
compare
report compare data -abort

set system mode setup
add partition key_point -pin a b
write partition dofile partition.dofile -replace
dofile partition.dofile

...

read design cpu_rtl.v -verilog -golden
read design -f verilog.vc -verilog -revised
set system mode lec
add compare points -all
compare
report compare data -abort

set system mode setup
add partition key_point -pin a b
write partition dofile partition.dofile -replace
dofile partition.dofile

...

Key Point Partitioning
Criteria in selecting key points:

Support points of aborted cones

Key points that are already proven equivalent

14/04/2006 199Advanced Logic Equivalence Checking with Conformal

// Iteration 1
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 0 a -golden
add pin constraint 0 a -revised
add pin constraint 0 b -golden
add pin constraint 0 b -revised
set system mode lec
add compare points -all
compare
set system mode setup
//
// Iteration 2
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 0 a -golden
add pin constraint 0 a -revised
add pin constraint 1 b -golden
add pin constraint 1 b -revised
set system mode lec
add compare points -all
compare
set system mode setup

// Iteration 1
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 0 a -golden
add pin constraint 0 a -revised
add pin constraint 0 b -golden
add pin constraint 0 b -revised
set system mode lec
add compare points -all
compare
set system mode setup
//
// Iteration 2
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 0 a -golden
add pin constraint 0 a -revised
add pin constraint 1 b -golden
add pin constraint 1 b -revised
set system mode lec
add compare points -all
compare
set system mode setup

// Iteration 3
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 1 a -golden
add pin constraint 1 a -revised
add pin constraint 0 b -golden
add pin constraint 0 b -revised
set system mode lec
add compare points -all
compare
set system mode setup
//
// Iteration 4
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 1 a -golden
add pin constraint 1 a -revised
add pin constraint 1 b -golden
add pin constraint 1 b -revised
set system mode lec
add compare points -all
compare

// Iteration 3
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 1 a -golden
add pin constraint 1 a -revised
add pin constraint 0 b -golden
add pin constraint 0 b -revised
set system mode lec
add compare points -all
compare
set system mode setup
//
// Iteration 4
//
delete pin constraint a -golden
delete pin constraint a -revised
delete pin constraint b -golden
delete pin constraint b -revised
add pin constraint 1 a -golden
add pin constraint 1 a -revised
add pin constraint 1 b -golden
add pin constraint 1 b -revised
set system mode lec
add compare points -all
compare

Contents of partition.dofile

December 19, 2004

®

Handling Multipliers

Module 4

14/04/2006 201Advanced Logic Equivalence Checking with Conformal

Module Objectives
In this module, you will

Learn how to compare designs with multipliers

14/04/2006 202Advanced Logic Equivalence Checking with Conformal

Multipliers
Multiplier logic is complex and hard to compare

Can lead to long runtime or abort

14/04/2006 203Advanced Logic Equivalence Checking with Conformal

DC Synthesized Multipliers
DesignCompiler uses DesignWare components to implement arithmetic
operators, comparators, etc.

assign z = a * b;

<mod>_DW02_mult U1 (.A(a), .B(b), .TC(1’b0), .PRODUCT(z));

Three DW multiplier architectures

Carry Save Adder (CSA): DW Basic

Wallace Tree (WALL): DW Foundation required

Non-Booth Wallace Tree (NBW): DW Foundation required

Report architectures from DC command

dc_shell>report_resources

14/04/2006 204Advanced Logic Equivalence Checking with Conformal

Instantiated Multiplier or Divider
Multiplier or divider instantiated in RTL

DW02_mult #(Awidth, Bwidth) U1 (.A(a), B(b), .TC(1’b1),

.PRODUCT(z);

DW02_divide #(Awidth, Bwidth, TCmode) U2(.A(a), .B(b), .TC(tc),
.DIVIDE_BY_0(div_by_0),

.QUOTIENT(result));

Conformal LEC has a built-in representation for DW02_mult and
DW02_divide

Do not read in the simulation models (for example: DW02_mult.v)

14/04/2006 205Advanced Logic Equivalence Checking with Conformal

Long Runtime Due to Multipliers?
Check to see if there are any multipliers in the design

LEC> report design data

Unmatched multiplier architectures can lead to long runtime or abort

...

------ word-level --------------------------
ADD * 55 0
MULT * 3 0

BBOX 2 2
--
Total 1058 1058

...

------ word-level --------------------------
ADD * 55 0
MULT * 3 0

BBOX 2 2
--
Total 1058 1058

Transcript window

14/04/2006 206Advanced Logic Equivalence Checking with Conformal

Static Multipliers
CSA, NBW, WALL, RCA, and BKA architectures

CSA, NBW, and WALL for DC

BKA for BuildGates (but not BGX)

Conformal ASIC capability

Automatically analyze and resolve unmatched architectures

No user input required to handle static multipliers

14/04/2006 207Advanced Logic Equivalence Checking with Conformal

Dynamic Multipliers
Dynamic multipliers with module boundary

Conformal ASIC can analyze and resolve unmatched architectures
Use command “analyze multiplier” in LEC mode

Or use “set multiplier option –auto” in SETUP mode

...
// Command: set system mode lec
// Command: analyze multiplier
...

...
// Command: set system mode lec
// Command: analyze multiplier
...

Transcript window

...
// Command: set multiplier option -auto
// Command: set system mode lec
...

...
// Command: set multiplier option -auto
// Command: set system mode lec
...

Transcript window

14/04/2006 208Advanced Logic Equivalence Checking with Conformal

Dynamic Multipliers (continued)

Ungrouped (flattened) dynamic multipliers

Conformal Ultra is required

Analyze and resolve unmatched architectures with command
“analyze datapath”

...
// Command: set system mode lec
// Command: analyze datapath
...

...
// Command: set system mode lec
// Command: analyze datapath
...

Transcript window

14/04/2006 209Advanced Logic Equivalence Checking with Conformal

Still Long Runtime Because of Multipliers?
Isolating to compare multiplier modules and compare them separately
can help the compare process

Two ways to isolate multiplier modules

Flat compare: black box multiplier modules and compare separately

Hierarchical compare: please refer to the Hierarchical Compare section

December 19, 2004

®

Hierarchical Compare

14/04/2006 211Advanced Logic Equivalence Checking with Conformal

1) Set root module to U1 Compare U1 Save U1 Result Black Box U1

2) Set root module to U2 Compare U2 Save U2 Result Black Box U2
3) Set root module to U3 Compare U3 Save U3 Result Black Box U3
4) Set root module to U4 Compare U4 Save U4 Result Black Box U4
5) Set root module to TOP Compare TOP Save TOP Result

Note: Modules U4 and their sub-modules will be compared flat.

Flow

Golden Revised

TOP

U3

U1 U2

U4

A B

TOP

U3

U1 U2

U4

X

14/04/2006 212Advanced Logic Equivalence Checking with Conformal

Hier Compare Command and Options
write hier dofile hier.do -prepend_string strings \
-append_string strings -threshold <value> -module \
<golden_module revised_module> -usage -replace \
-noexact_pin_match -constraint

-prepend_string: append commands to the hier dofile script before key point
comparison of each module
-append_string: append commands to hier dofile script after key point
comparison of each module
-threshold: minimum number of primitives within a module that will be written
to hier dofile script. Default value is 50
-module: create dofile for this module and below, only
-noexact_pin_match: attempt to write out modules even if pin names are not
exact
-usage: append the usage command after each module comparison
-replace: overwrite the existing hier.do file
-constraint: propagate top-level constraints to lower level modules
For more options, please refer to the Reference manual

14/04/2006 213Advanced Logic Equivalence Checking with Conformal

Module Name Mismatch
Module names change due to uniquification during synthesis or
back-end flow

Make module names match to include them in hierarchical compare

Use command “uniquify –all –nolibrary -golden” to
have Conformal uniquify the Golden modules so that module
names match with the Revised.

ABC

Golden Revised
TOP

XYZ XYZ

ABC_scan

TOP

XYZ_0 XYZ_1

14/04/2006 214Advanced Logic Equivalence Checking with Conformal

Hierarchical Compare Result

// Command: report hier_compare result

Total Equivalent modules = 3
Total Non_equivalent modules = 1

Hierarchical compare : Non-equivalent
// Command: report hier_compare result -Non_equivalent
Status Golden Revised
--
Non_equivalent: arbr4 arbr4
Total Non_equivalent modules = 1
// Command: report hier_compare result -Abort
// Command: report hier_compare result -Uncompared

// Command: report hier_compare result

Total Equivalent modules = 3
Total Non_equivalent modules = 1

Hierarchical compare : Non-equivalent
// Command: report hier_compare result -Non_equivalent
Status Golden Revised
--
Non_equivalent: arbr4 arbr4
Total Non_equivalent modules = 1
// Command: report hier_compare result -Abort
// Command: report hier_compare result -Uncompared

Transcript window

14/04/2006 215Advanced Logic Equivalence Checking with Conformal

Debug NEQ Modules

…
// Command: report hier_compare result

Total Equivalent modules = 3
Total Non_equivalent modules = 1

Hierarchical compare : Non-equivalent
// Command: report hier_compare result -Non_equivalent
Status Golden Revised
--
Non_equivalent: arbr4 arbr4
Total Non_equivalent modules = 1
// Command: report hier_compare result -Abort
// Command: report hier_compare result –Uncompared
SETUP> set root module arb4 –both
SETUP> set system mode lec
LEC> add compare point –all
LEC> compare

…
// Command: report hier_compare result

Total Equivalent modules = 3
Total Non_equivalent modules = 1

Hierarchical compare : Non-equivalent
// Command: report hier_compare result -Non_equivalent
Status Golden Revised
--
Non_equivalent: arbr4 arbr4
Total Non_equivalent modules = 1
// Command: report hier_compare result -Abort
// Command: report hier_compare result –Uncompared
SETUP> set root module arb4 –both
SETUP> set system mode lec
LEC> add compare point –all
LEC> compare

Transcript window

14/04/2006 216Advanced Logic Equivalence Checking with Conformal

What can go wrong?

Manual efforts needed to resolve false NEQ
Diagnose the modules causing non-equivalence

Manually add NOBLACK BOXes

Regenerate dofile and rerun comparison

Want more module comparisons without false NEQ

Difficult to handle aborted modules
Regenerate the dofile script for each of the aborted modules

Modify dofile with different compare options to resolve abort

Need better control of the run
Cannot interrupt and continue hierarchical comparison

Hierarchically compare retimed modules only

Stop at the first non-equivalent or abort result

14/04/2006 217Advanced Logic Equivalence Checking with Conformal

Non-Compatible Instantiation: Problem
Conflicting instantiation: will skip module foo

foo: i_0

foo: i_1

foo_0: i_0

foo_1: i_1

Golden Revised

...
// Warning: Module ’foo’ and ’foo_0’ have non-compatible instantiations
// Warning: Module ’foo’ and ’foo_1’ have non-compatible instantiations

...
// Warning: Module ’foo’ and ’foo_0’ have non-compatible instantiations
// Warning: Module ’foo’ and ’foo_1’ have non-compatible instantiations

Transcript Window

SETUP> write hier dofile hier.dofile -constraint -noexact

14/04/2006 218Advanced Logic Equivalence Checking with Conformal

Non-Compatible Instantiation: Solution
Use the “uniquify” command.

Module foo is replaced by foo_0 and foo_1

Determine names by looking at the other design

read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -ver -rev
add pin constraint 0 scan_en -revised
uniquify foo -golden
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -ver -rev
add pin constraint 0 scan_en -revised
uniquify foo -golden
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

Transcript Window

foo: i_0

foo: i_1

foo_0: i_0

foo_1: i_1

Golden Revised

foo_0: i_0

foo_1: i_1

14/04/2006 219Advanced Logic Equivalence Checking with Conformal

Unbalanced Instantiation: Problem
Hierarchical script will skip module B

A
B

B
C

// Warning: Module ’B’ used in Golden module ’A’ 1 times, but in Revised
module ’A’ 2 times (non-balance). Skip ’B’
...
1 modules are not output for hierarchical compare due to non-balanced
instantiations
...

// Warning: Module ’B’ used in Golden module ’A’ 1 times, but in Revised
module ’A’ 2 times (non-balance). Skip ’B’
...
1 modules are not output for hierarchical compare due to non-balanced
instantiations
...

A
B

B

Golden Revised

SETUP> write hier dofile hier.dofile -constraint -noexact

Transcript Window

14/04/2006 220Advanced Logic Equivalence Checking with Conformal

Unbalanced Instantiation: Solution

read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -ver -rev
add pin constraint 0 scan_en -revised
resolve C -golden
write hier dofile hier.dofile -constraint -replace
dofile hier.dofile

read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -ver -rev
add pin constraint 0 scan_en -revised
resolve C -golden
write hier dofile hier.dofile -constraint -replace
dofile hier.dofile

Golden

Revised

A
B

B
C

A
B

B

B
B

A

14/04/2006 221Advanced Logic Equivalence Checking with Conformal

Cross-Boundary Optimization

Logic moved across module boundary

False negative during hierarchical compare
Miscompare U2 at point A and U1 at point B

Two forms of logic rearrangement:
Simple inverter

All other cases

Golden

U2

U1

Revised

A

B
U1

AU2

TOP TOP

14/04/2006 222Advanced Logic Equivalence Checking with Conformal

Logic Rearrangement - Case 1: Simple Inverter

Inverters moved across module boundary

Must set naming rule before read library/design

Conformal LEC maintains inversion relationship

U2
U1

Golden

A

Revised

U2
U1

A_BAR

set log file hier.log -replace
set naming rule _BAR -inverted_pin -golden
read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -revised
add pin constraint 0 scan_en -revised
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

set log file hier.log -replace
set naming rule _BAR -inverted_pin -golden
read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -revised
add pin constraint 0 scan_en -revised
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

TOPTOP

14/04/2006 223Advanced Logic Equivalence Checking with Conformal

Logic Rearrangement - Case 2: Random Logic

Block of logic moved across module boundary

User specifies no compare at U2 level

Logic of U2 is considered at U1 level

TOP

U2
U1

Golden Revised
TOP

A A

set log file hier.log -replace
read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -revised
add pin constraint 0 scan_en -revised
add noblack box U2 –both
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

set log file hier.log -replace
read design rtl.v -verilog -golden
read design -file verilog.vc gate.v -revised
add pin constraint 0 scan_en -revised
add noblack box U2 –both
write hier dofile hier.dofile -constraint -noexact -replace
dofile hier.dofile

U2
U1

14/04/2006 224Advanced Logic Equivalence Checking with Conformal

Dynamic Hierarchical Comparison

A new method for performing hierarchical comparison

New command:
SETUP> RUN HIER_compare <dofile>

Available in LEC version 5.2

Requires Ultra license

Provides advanced capabilities and is easy to use

Generate dofile only once

Automatically add noblack box

Easy to compare any sub-module

Can interrupt with Control-C and continue

Stop at the first non-equivalent or abort result

Integrated with analyze abort

14/04/2006 225Advanced Logic Equivalence Checking with Conformal

New Hierarchical Comparison Flow

Old Flow
write hier_compare dofile hrc.do

dofile hrc.do

// Diagnose cause of NEQ

add noblack box bad_module

write hier_compare dofile hrc.do -rep

dofile hrc.do

// Check for aborted modules

// Edit hrc.do or generate new dofile

dofile hrc.do.abort

New flow
write hier_compare dofile hrc.do

run hier_compare hrc.do

run hier_compare hrc.do <more options>

14/04/2006 226Advanced Logic Equivalence Checking with Conformal

Command Syntax

SETUP> RUN HIER_COMPARE <dofile>

[-DYNamic_hierarchy | -NODYNamic_hierarchy]

[-ROOT_module <golden module> <revised module>]

[-ANALYZE_abort] [-RETIMED_modules]

[-NOREStart | -REStart]

[-BREAK_NONEQ] [-BREAK_ABORT]

<dofile> is generated using the command:
WRITE HIER_COMPARE dofile

14/04/2006 227Advanced Logic Equivalence Checking with Conformal

December 19, 2004

®

Using Conformal for Complex Datapath
Verification

14/04/2006 229Advanced Logic Equivalence Checking with Conformal

Difficulties in Datapath Design Verification
Compare Issues – abort or long runtimes

Multipliers

Expressions - Operator Merging

Advanced EC Issues – Non-equivalent in static EC

Pipeline retiming
Designs have different number of state elements

Logic cones of pipelined registers are different

14/04/2006 230Advanced Logic Equivalence Checking with Conformal

Multipliers
Unmatched multiplier architectures can lead to abort

Static multipliers
CSA, RCA, NBW, WALL, and PKA
Can be handled by Conformal ASIC

Dynamic multipliers
Multiplier with module boundary can be handled by Conformal ASIC
Flattened multipliers require Conformal Ultra

14/04/2006 231Advanced Logic Equivalence Checking with Conformal

Combine addition-based operators into a carry-save tree

+, -, *, <, >, <=, >=, ==, !=

Example: y = a * b + c

Intermediate a*b result not required

Expressions – Operator Merging

a b c

y

X

+

a b c

y

Merged
Operator

14/04/2006 232Advanced Logic Equivalence Checking with Conformal

Expression – Operator Merging (continued)

Use the Conformal Ultra datapath analysis command:

“analyze datapath –merge”

...
// Command: set system mode lec
// Command: analyze datapath –merge
...

...
// Command: set system mode lec
// Command: analyze datapath –merge
...

Transcript window

14/04/2006 233Advanced Logic Equivalence Checking with Conformal

Pipeline retiming is non-equivalent in static EC
Different number of state points

Simple pipeline retiming
Can be handled with Conformal ASIC

Advanced pipeline retiming
Required Conformal Ultra

Pipeline Retiming

14/04/2006 234Advanced Logic Equivalence Checking with Conformal

Guideline for simple pipeline retime circuit

All data must move from register stage to register stage

All paths must have the same number of stages

All pipeline registers must have the same clock

Sequential loops or latches are prohibited

Asynchronous set and reset should be disabled

Stalls should be disabled

Compatible with DC’s pipeline_design command

Simple Pipeline Retiming

Golden Revised

14/04/2006 235Advanced Logic Equivalence Checking with Conformal

Handling Simple Pipeline Retiming Circuit
Pipeline retimed module must be root module

Can use Conformal ASIC command
add module attribute <module> –pipeline_retime [-
dff2buffer] [-golden | -revised]

// ...
// Command: set root module ocd_cs_r2c –both
// Command: add pin constraint 0 stall -both
// Command: add module attribute ocd_cs_r2c –pipeline_retime -golden
// Command: set system mode lec
// ...
// Modeling Golden ...
// Pipeline-retimed 50 DFF(s) as 50 DFF(s) in 3 stages
// Modeling Revised ...
// Pipeline-retimed 362 DFF(s) as 50 DFF(s) in 3 stages

// ...
// Command: set root module ocd_cs_r2c –both
// Command: add pin constraint 0 stall -both
// Command: add module attribute ocd_cs_r2c –pipeline_retime -golden
// Command: set system mode lec
// ...
// Modeling Golden ...
// Pipeline-retimed 50 DFF(s) as 50 DFF(s) in 3 stages
// Modeling Revised ...
// Pipeline-retimed 362 DFF(s) as 50 DFF(s) in 3 stages

Transcript window

14/04/2006 236Advanced Logic Equivalence Checking with Conformal

Conformal Ultra license required
Supports

Each part of the module has different number of stages

Some forms of set and reset (1 async signal, set or reset)

Sequential feedback

MUX enable, but not MUX stall

Latches that are not retimed

Advanced Pipeline Retiming

14/04/2006 237Advanced Logic Equivalence Checking with Conformal

Example dofile (Flat Compare)

// Read libraries and designs
read library …
read design golden.v –golden
read design revised.v –revised

// Specify design constraints, pipeline retime
module
add pin constraint 0 stall –both
add module attribute ocd_cs_r2c –pipeline_retime

// To automate modeling and mapping process
set system mode lec

// To specify datapath analysis
analyze datapath –merge

// To invoke key points comparison
add compare point –all
compare

// Read libraries and designs
read library …
read design golden.v –golden
read design revised.v –revised

// Specify design constraints, pipeline retime
module
add pin constraint 0 stall –both
add module attribute ocd_cs_r2c –pipeline_retime

// To automate modeling and mapping process
set system mode lec

// To specify datapath analysis
analyze datapath –merge

// To invoke key points comparison
add compare point –all
compare

14/04/2006 238Advanced Logic Equivalence Checking with Conformal

Hierarchical Compare
Use

set datapath option –auto -merge

instead of analyze datapath -merge

analyze datapath is used in flat compare in LEC mode

-auto: Call analyze datapath during set system mode lec

-merge: Use merge option for analyze datapath

14/04/2006 239Advanced Logic Equivalence Checking with Conformal

Example dofile (Hierarchical Compare)

// Read libraries and designs
read library …
read design golden.v –golden
read design revised.v –revised

// Specify design constraints, pipeline retime module
add pin constraint 1 hold –both
add module attribute ocd_cs_r2c –pipeline_retime

// To specify datapath analysis
set datapath option -auto
write hier dofile hier.do –noexac_pin_match –constraint –replace
dofile hier.do

// Read libraries and designs
read library …
read design golden.v –golden
read design revised.v –revised

// Specify design constraints, pipeline retime module
add pin constraint 1 hold –both
add module attribute ocd_cs_r2c –pipeline_retime

// To specify datapath analysis
set datapath option -auto
write hier dofile hier.do –noexac_pin_match –constraint –replace
dofile hier.do

December 19, 2004

®

RTL Coding Guidelines for Easy Equivalence
Checking

14/04/2006 241Advanced Logic Equivalence Checking with Conformal

Module Objectives
In this module, you will

Be introduced to coding guidelines that make equivalence checking
easier

14/04/2006 242Advanced Logic Equivalence Checking with Conformal

Introduction
The following RTL coding guidelines can be used to improve the
performance of the equivalence checking process:

Keep difficult arithmetic blocks separate.

Assign known values to all cases in a case statement.

Use more assign statements.

Avoid combinatorial feedback loops.

If you follow the above guidelines it will reduce problems during the EC
process.

14/04/2006 243Advanced Logic Equivalence Checking with Conformal

Keep Difficult Arithmetic Blocks Separate
Arithmetic blocks such as multipliers tend to produce longer runtime,
more difficult mapping, abort points (more than random logic blocks)

Complexity dramatically increases when these multipliers are buried
within a flattened design

When kept in their own hierarchy, verification stands a much better
chance of completion through module-based (hierarchical) comparison
mode

14/04/2006 244Advanced Logic Equivalence Checking with Conformal

Assign Known Value to All Cases: Problem
Applying synthesis full_case directive or X assignments on
incompletely specified case statements creates "don’t care" (DC)
conditions in Conformal LEC

Conformal LEC creates DC circuitry to ignore comparison of
unspecified states

Starting from version 4.3.0.a, Conformal creates E gate for X in Revised design

DC circuitry grows with greater numbers of unspecified states

Bigger DC circuitry leads to longer Conformal LEC runtime

Module xyz (sm, out);
input [1:0] sm;
output out;
reg out;
always @(sm)
case (sm) //synopsys full_case

2’b00: out = 2’b01;
2’b01: out = 2’b10;
2’b11: out = 2’b00;

endcase
endmodule

DC
01
10

00

11

14/04/2006 245Advanced Logic Equivalence Checking with Conformal

Assign Known Value to All Cases: Solution
Use "default" with known value to catch all unspecified conditions

If you use default with the known value it does not necessarily impact
synthesis performance in area/speed optimization

Note: Refer to an Esnug paper on "full_case parallel_case", the Evil

Twins of Verilog Synthesis by Cliff Cummings, Sunburst Design, Inc.

Module xyz (sm, out);
input [1:0] sm;
output out;
reg out;
always @(sm)
case (sm)

2’b00: out = 2’b01;
2’b01: out = 2’b10;
2’b11: out = 2’b00;
default = 2’b00;

endcase
endmodule

0 0
01
10

00

11

14/04/2006 246Advanced Logic Equivalence Checking with Conformal

Using More assign Statements
Break down the size of logic cones

Improve compare performance with smaller intermediate cones

Easier to diagnose with more intermediate similarity points

assign pmo = (((x * y) & mask) + offset);

assign p = (x * y);

assign pm = (p & mask);

assign pmo = (pm + offset);

Golden Revised

Golden Revised

Before

After

14/04/2006 247Advanced Logic Equivalence Checking with Conformal

Avoid Combinatorial Feedback
Combination feedback loops can hinder verification process

Conformal LEC must insert cut gate to break the loops

Hard to match point of cut in the Golden and the Revised loops

For difficult cases, you must specify where to insert cut gate

14/04/2006 248Advanced Logic Equivalence Checking with Conformal

