E+=#: AVerilog-AITITAREERESHE
Lecture 13: Behavior Modeling and Simulation

with Verilog-A

Zuochang Ye
2011/12/21

2012/12/20
{: Il

Outline
» Basic of Verilog-A (Verilog-AMS)

* Modeling Analog Components

 Modeling PLLs

Motivation: Simulating Phase
Noise of PLL

* In many circumstances, An RF simulator, such as SpectreRF,
can be directly applied to predict the noise performance of a

PLL.

» To make this possible, the PLL must at a minimum have a
periodic steady state solution.

» To perform a noise analysis, SpectreRF must first compute the
steady-state solution of the circuit with its periodic steady state
(PSS) analysis.

e In practice, it is not always feasible
e The circuit may not have a periodic solution.

e Direct simulation is too expensive.

2012/12/20

Introduction

Verilog-AMS: analog and mixed signal extensions to Verilog

An earlier language standard was called Verilog-A (Verilog with
Analog extensions)

o Verilog-Ais a subset of Verilog-AMS

Important extensions of Verilog-AMS over Verilog-A
e Both digital and analog signals can be included in same module

e User-defined conversions modules are automatically inserted in
netlist if analog signal connected to digital signal or vice-versa

e More freedom in accessing digital/analog signals within a module
Much of the same terminology used in VHDL-AMS

2012/12/20

/

The Relationship

¢ | Verilog-HD

Verilog-A 10

2012/12/20

/

Application of Verilog-AMS

* Model components,

Create test benches,

Accelerate simulation,

Verify mixed-signal systems, and
Support the top-down design process.

2012/12/20

/

: Description for Mixed-Signal
Systems

.

L

Circuit level Macro Model

+ VgupeLy

JhHil

inout vin_p,vin_n;
output vout;

analog begin

!

I(vin_p) <+0.0;
I(vin_n) <+0.0;

end
endmodule

- VSUF’PLY

Compromising between Accuracy and Complexity

module opamp (vout,

V(vout) <+ V(vin_

Analog Behavioral

vin_p, vin_n);

electrical vin_p, vin_n, vout;

P, vin_n) *Av;

2012/12/20

/

Mixed-Signal Design
* When designing mixed-signal circuits Verilog-AMS is very useful

as it allows both digital and analog circuits to be described in a
way that is most suitable for each type of circuit.

e With digital circuits, either gate- or behavioral-level Verilog-HDL
IS used.

» With analog circuits, either transistor- or behavioral-level Verilog-
A/MS is used.

2012/12/20

/

Verilog-A at a Glance

module V integrator(in,out);
Port direction

nput ig: -

utput’ out; (input,output,inout)
(voltage in,out;

// integration coefficient Port diSC?P]il7e

parameter real ki=1.0 exclude 0;
parameter)real dcval = 0; - ————— Module parameters,

o can specify initial

@kl; S values, other limits.
initial k1 = 1/ki; ~ ——T——m— .
«— Local variable
-
analog . Executed at
V(out) <+ k1*i in) ,dcval) ; simulator startup
endmodule T

Behavior specified

_ in analog block
Voltage assignment _
Branch assignment

———.12/20

/

Conservative System v.s. Signal-
Flow System

e A conservative system obeys Kirchoff’'s laws
e Nodes have both potential and flow

* A signal-flow system has only flow or potential associated with a
node
e Verilog-A supports modeling of signal-flow systems.
e Verilog-A supports mixing of conservative and signal-flow nodes

* Physical systems are conservative systems
» Abstract systems can use a signal-flow graph model

* View potential as across a component (voltage, temperature,
velocity)

* View flow as through a component (current, force, heat flow rate)

2012/12/20

~

/

Signal-Flow System

» Adiscipline may specify two nature bindings, potential and flow,
or it may specify only a single binding, potential.

» Disciplines with two natures are know as conservative disciplines
because nodes which are bound to them exhibit Kirchhoff’'s Flow
Law

» Adiscipline with only a potential nature is known as a signal flow
discipline.

Pin Pout=F(Pin)
—> System —>

2012/12/20

/

Example of a Signal-Flow

System

module shiftPlus5(in, out):;

input in;
output out;
voltage 1n, out;

analog begin

//voltage is a signal flow
//discipline compatible with
//electrical, but having a
//potential nature only

V(out) <+ 5.0 + V(in):;

end
endmodule

2012/12/20

/

Conservative systems

* An important characteristic of conservative systems is that there

are two values associated with every node
e Potential
e Flow

potential

2012/12/20

/

Kirchhoff’s Laws

' +

20
4
| - Pl + I

Pi+Py+P3+P4=0
Kirchhoff's Potential Law

p g S

Fl + F2 - F3 =0
Kirchhoff’s Flow Law

2012/12/20

/

Branches

e Branch is a path between nodes
e Can only be declared within a module
e Currents summed at branch node

0 ERLN

Diode Model

| cathode

Detfine two different branch currents

2012/12/20

/

Branches in Diode Model

module diode (a, ¢) ; Special branch (port
electrical a, c ; branch), used to monitor

branch (a, c) diOde:;Eﬂi’L”///,
rrent through por
branch (a,a) anode; current t ough po t

parameter real rs = 0, is=1le-14, tf=0, c¢jo=0, imax=1l, phi=0.7

analog begin

I(diode) <+ is*($limexp((V(diode) -rs*I (anode)/$vt) - 1)

.
r

I(cap) <+ ddt(tf*I(diode) - 2 * cjo *

sqrt(phi * (phi * V(cap)))) :

if (I(anode))\> imax) // Checks current through port

Sstrobe (arning: diode is melting!")
end Thermal
endmodule voltage
Branch currents summed st
language
builtin
2012/12/20

.
I

/

Assignments

Procedural assignments, used to modify integer, reals

e sum = a + b

Branch contribution statement
* V(nl,n2) <+ exprl;

Multiple branch assignments can be applied to same node

V(nl, n2) <+ exprl;
V(nl, n2) <+ expr2;

is equivalent to:

V(nl,n2) <+ exprl + expr2;

2012/12/20

More on branch assignments

e Simulation of a branch assignment
e Simulator evaluates right hand expression

e Simulator adds the value of the right hand expression to any
Previously retained value for the node (a summation)

e At end of simulation cycle, summed value assigned to source branch

* Any branch, either explicit or implicit, is a source branch if either
the potential or the flow of that branch is assigned a value by a
contribution statement anywhere in the module.

e |tis a potential source if the branch potential is specified and is a flow
source if the branch flow is specified.

e A branch cannot simultaneously be both a potential and a flow
source, although it can switch between them.

¢ |f assigning a flow quantity, and previously assigned value was a
potential, then potential value is discarded (and vice versa)

2012/12/20

/

Relay as a Switch Branch

// Ideal relay s
“include “disciplines.vams” P e— \ J_'*)P

// Ideal diode
‘include “disciplines.vams”
module diode (a, ¢);

inout a, c;
electrical a, c;

analog begin
@(cross((V(a,c) + I(a,c)), 0))
if (V(a,c) +1(a,c)) > 0)
V(a,c) <+ 0;
else
I(a,c) <+ 0;
end
endmodule

2012/12/20

/

Attribute, Nature and Discipline

o Attributes define the value of certain quantities which
characterize the nature.

e A nature is a collection of attributes.

» Adiscipline description consists of specifying a domain type and
binding any natures to potential or flow.

2012/12/20

/

Natures and Disciplines

* A nature 1s a collection of attributes

— Attributes characterize quantities solved for during simulation

nature Mycurrent Example nature, attributes
«

units = "A" ; predefined by Cadence (see
access = 1 Cha 4)
idt_nature‘:ﬁzgzzﬁa“r~aﬁﬁﬁh~ P

abstol = le-12 ; Name of the access
huge = leb6 ; function for this nature

endnature

Nature to apply when 1dt
(time integral) or 1dt mod 1s

Maximum allowed change applied

1n timeste
P Tolerance for convergence

2012/12/20

/

Some Pre-defined Natures

nature Current nature Voltage

units = WAV, units = Byn.
access = I; access = V;
idt nature = Charge; idt nature = Flux;
endnature endnature
nature Charge nature Flux
units = "coul"; units = "Wb";
access = Q; access = Phi;
ddt nature = Current; ddt nature = Voltage;
endnature" endnature™®

Defined 1n “discipline.h” include file

@ 2012/12/20

Disciplines

» Disciplines used to bind natures with potential and flow

discipline voltage
potential Voltage;
enddiscipline

4—

discipline current
potential Current;
enddiscipline

discipline electrical

potential Voltage; g
flow Current;
enddiscipline

Discipline with single
nature called signal-flow

/ discipline

Discipline with multiple
natures called
conservative discipline.
Nature bound to
potential must be
different from nature
bound to flow.

2012/12/20

/

Analog Operations

e Built-in functions that operate on more than just the current

» value of their arguments — they maintain internal state
e Limited Exponential function ($limexp)
e Time derivative operator (ddt)
e Time Integral operator (idt)
e Circular integrator operator (idtmod)
e Delay operator (delay)
e Transition filter (transition)
o Slew filter (slew)

o Laplace transform filters (laplace_zp, laplace zd, laplace np,
laplace _nd)

o Z-transform filters (zi_zp, zi_zd, zi_np, zi_nd)

@ 2012/12/20

/

Time derivative

Operator

Comments

ddt(expr)

Returns i&(f) :
dt

the time-derivative of x, where x is expr.

ddt(expr, abstol)

Same as above, except absolute tolerance 1s specified explicitly.

ddt(expr, nature)

Same as above, except nature 1s specified explicitly.

2012/12/20

Example of Time Derivative

module opamp (out, pin, nin);
output out;
input pin, nin;
voltage out, pin, nin;
analog
V(out) <+ idt(V(pin,nin)):
endmodule

2012/12/20

/

Time Integral

Operator

Comments

idt(expr)

7
Returns J) HOdivé,
0

where x(7) 1s the value of expr at time T, #; 1s the start time of the simulation. 7 1s
the current tume, and ¢ 1s the mitial starting point as determined by the simulator
and 1s generally the DC value (the value that makes expr equal to zero).

idt(expr.ic)

T
RemmsL x(t)dt e,
0

where 1n this case ¢ 1s the value of ic at 7,

idt(expric,assert)

.
RetumsL xt)dt +o,
a

where ¢ 1s the value of ic at 7,, which 1s the tume when assert was last nonzero or 7,
if assert was never nonzero.

idt(expric,assert,abstol)

Same as above, except the absolute tolerance used to control the error in the
numerical mtegration process is specified explicitly with abstol.

idt(expric,assert,nature)

Same as above, except the absolute tolerance used to control the error in the
numerical mtegration process 1s take from the specified nature.

2012/12/20

Example of Time Integral

module opamp (out, pin, nin);
output out;
input pin, nin;
voltage out, pin, nin;
analog
V(out) <+ idt(V(pin,nin)):;
endmodule

 In this case the initial condition for the integrator is found by the
simulator, generally the DC operating point is used.

» Forcing the output of the integration operator to be a particular
value at start of the simulation using something like

V(out) <+ idt(V(pin,nin), 0);

2012/12/20

/

Expression

Derivative operator

ddx (expr , unknown quantity)

e expr is the expression for
which the symbolic
derivative needs to be
calculated.

e unknown_qguantity is the
branch probe (voltage or
current probe) with
respect to which the
derivative of the
expression needs to be
computed.

module diode(a,c):;
inout a, ©;
electrical a, c:
parameter real IS = 1.0e-14;
real idio;
(*desc="small-signal conductance"*)
real gdio;
analog begin

idio = IS * (limexp(V(a,c)/$vt) - 1);

gdio = ddx(idio, V(a)):
Lia;e) <t 1diog
end
endmodule

2012/12/20

~

/

Transistion

transition smooths out piece-wise constant waveforms. The
transition filter is used to imitate transitions and delays on digital
signals.

This function provides controlled transitions between discrete
signal levels by setting the rise time and fall time of signal
transitions. transition stretches instantaneous changes in signals
over a finite amount of time, as shown below, and can delay the
transitions.

input_expression(t) output_expression(t)
- S
] —d_i -
' | k. | 4y
tO ty r f

2012/12/20

/

Analysis dependent functions

* The analysis() function takes one or more string arguments and
returns one (1) if any argument matches the current analysis

type. Otherwise it returns zero (0).

Name Analysis description
"ac" AC analysis
"de" .OP or .DC analysis (single point or dc sweep analysis)
"noise" NOISE analysis
“tran® TRAN analysis
o Foo The mitial-condition analysis which precedes a transient analysis.

if (analysis("ic"))
V(cap) <+ 1initial value;
else

I(cap) <+ dAdt(C*V (cap)):
2012/12/20

/

Noise

o Several functions are provided to support noise modeling during
small-signal analyses.

» To model large-signal noise during transient analyses, use the
$random() or $arandom() system tasks.

 NOTICE: build-in noise are only available for small signal
analysis.

2012/12/20

/

White Noise

* White noise processes are those whose current value is
completely uncorrelated with any previous or future values. This
Implies their spectral density does not depend on frequency.

white noise (pwr|[, name])

T(a,b) <+ V(a,b)/R +

white noise(4 * ‘P K * Stemperature/R, "thermal"):;

2012/12/20

/

Flicker Noise

* The flicker_noise() function models flicker noise. The general
form is:

flicker noise (pwr , €xXp[, name |)

which generates pink noise with a power of pwr at 1Hz which
varies in proportion to 1/,

2012/12/20

/

Noise Table

* The noise_table() function interpolates a set of values to model
a process where the spectral density of the noise varies as a

piecewise linear function of frequency.

* The general form is:

noise table (input[, name])

noise table input.tbl

Example of input file format for noise table

#
#

freq

.0e0
.0el
.0e2
.0e3
.0ed
.0eb
.0e6

e T S S S S

R OONEFEP O W

pwr

«057580e~-23
« 31a3160e=23
. 636320e=23
.326064e-22
oD21l28e—22
» 3042566~22
.060851e—-21

2012/12/20

/

Noise Model for Diode

* The noise of a junction diode could be modelled as shown in the
following example.

I(a,c) <+ is*(exp(V(a,c) / (n * Svt)) - 1)
+ white noise(i**E O¥] {<a>)})
+ flicker noise (kf*pow(abs (I (<a>)), af), ef);

2012/12/20

/

Analog Events

e An event is an occurrence of a particular change in the state of
the circuit. They are detected by setting up a statement that
looks for the desired change.

e When the event occurs, an action is taken.

@ (event-expression)
action,

* The analog behavior of a component can be controlled using
analog events.

2012/12/20

/

Analog Events

* The analog behavior of a component can be controlled using
analog events.

module bitErrorRate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;

integer bits, errors ;

= 0 ;

errors
end

@ (timer (0, period)) begin
> thresh) != (V(ref) > thresh))

errors = errors + 1 ;
bits = bits + 1 ;
end

@(final step)

obe{"bit error rate = %£f%%", 100.0 * errors / bits)

I

.
!

end
\ endmodule 2012/12/20

/

Global Events

e initial_step and final _step generate global events on the first
and the last point in an analysis respectively.

Examples:
@(initial step("ac", "dc")) // active for dc and ac only
@(initial_step("tran")) // active for transient only

2012/12/20

/

cross() Function

» The cross function is used for generating a monitored analog
event to detect threshold crossings in analog signals.

module sh (in, out, smpl) ;
output out ;
input in, smpl ;
electrical in, out, smpl ;
real state ;

analog begin
@(cross (V(smpl) - 2.5, +1))
state = V(in) ;
V(out) <+ transition(state, 0, 10n) ;
end
endmodule

2012/12/20

/

Timing of event relative to
threshold crossing

time tol

B e ——

\ event

expr_tol

==

threshold

AN

actual crossing

» The event shall occur after the threshold crossing, and while the
signal remains in the box defined by actual crossing and expr_tol
and time_tol.

2012/12/20

/

timer() Function

» The timer function is used to generate analog event to detect
specific points in time.

module bitStream (out) ;
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(timer (0, period))
X = $random + 0.5 ;
V(out) <+ transition(x, 0.0, period/100.0) ;
end
endmodule

2012/12/20

/

Event OR operator

* The “OR-ing” of events indicates the occurrence of any one of
the events specified shall trigger the execution of the procedural
statement following the event.

For example,

analog begin
@(initial step or cross(V(smpl)-2.5,+1))
V(out) <+ 0 ;
end

Here, initial_step is a global event and cross() returns a monitored
event. V(out) is set to O when one of the two events occur.

2012/12/20

/

Modeling Circuit Components

* Resistor

e Capacitor

* Inductor

* \oltage source

e Current source

» \oltage controlled voltage source

2012/12/20

/

Resistor

* Equation

| = gV

// Linear resistor (conductance formulation)

P

“include “disciplines.vams” + v = V(p,n)
module conductor (p, n); y * - i =1(p,n)

parameter real g=0; // conductance (Siemens) i=gv

inout p, n; n

electrical p, n;

analog

I(p,n) <+ g V(p,n);

endmodule

@ 2012/12/20
N /

o

Capacitor

* Equation

|=C—V
dt

/I Linear capacitor
"include “disciplines.vams”

module capacitor (p, n);
parameter real c=0; // capacitance (F)
inout p, n;
electrical p, n;

analog
l(p,n) <+ ¢ = ddt(V(p,n));
endmodule

v = Vip,n)

[= i(p,n)
. dv
i = c—
dt
2012/12/20

/

Inductor

* Equation

V=L—I
dt

// Linear inductor p
“include “disciplines.vams” ” V = Vip,n)
module inductor(p, n); i ¢ v t=lpn)

parameter real |1=0; // inductance (H)

inout p, n;

electrical p, n;

analog

V(p,n) <+ | = ddt(l(p,n));
endmodule

@ 2012/12/20
\. Y,

Voltage Source

// DC voltage source p

"include “disciplines.vams” + v = Vip,n)
module vsrc (p, n); ‘ ¢ ¥ i =I(p,n)
parameter real dc=0; // dc voltage (V) V= Ve

output p, n; n
electrical p, n;

analog
V(p,n) <+ dc;
endmodule

2012/12/20

/

Current Source

// DC current source
‘include “disciplines.vams”

module isrc (p, n);
parameter real dc=0; // dc current (A)
output p, n;
electrical p, n;
analog

l(p,n) <+ dc;
endmodule

o

v = V(p,n)
[=1(p,n)
i = idC

2012/12/20

/

: Voltage Controlled Voltage
Source

// Voltage-controlled voltage source O ——

“include “disciplines.vams” %
Vin Vout
module vcvs (p, n, ps, ns); -
parameter real gain=1; // voltage gain (V/V) Rps—
outputp, n; Vout = %Vin
input ps, ns;

electrical p, n, ps, ns;

analog
V(p,n) <+ gain=V(ps,ns);
endmodule

@ 2012/12/20
N /

: Connecting Components within

Verilog-A

//A simple circuit

Include “disciplines.vams”
‘include “vsrc.vams”
‘include “resistor.vams”

module smpl_ckt;
electrical n;
ground gnd;

vsrc #(.dc(1)) V1(n, gnd);
resistor #(.r(1k)) R1(n, gnd);
endmodule

©

Vi
de=1

2012/12/20

~

/

Series RLC Circuit

// Series RLC
‘include “disciplines.vams”

module series_tlc (p, n);
parameter real r=0;
parameter real |=0;

parameter real c=1p exclude O;

inout p, n;
electrical p, n;

analog begin
V(p,n) <+ rd(p,n);
V(p,n) <+ l=ddt(l(p,n));
V(p,n) <+ idt(l(p,n))/c;
end
endmodule

2012/12/20

/

Shunt RLC Circuit

// Shunt RLC
‘Include “disciplines.vams”

module shunt_rlc (p, n);
parameter real r=1 exclude 0;
parameter real I=1n exclude O;
parameter real c=0;
inout p, n;
electrical p, n;

analog begin
(p,n) <+ V(p,n)/r;
l(p,n) <+ cxddt(V(p,n));
l(p,n) <+ idt(V(p,n))/;
end
endmodule

2012/12/20

/

Modeling PLL

e VCO
o Jitter

OSC

Jin

FD

fre f

PFD

Y v

&

VCO >

Jout

ﬁb|_>

2012/12/20

/

o

Modeling VCO

/I Voltage-controlled oscillator /l/l/ /V\l

‘include “disciplines.vams” W ¢ =
" " . v mod ZnH sin(+)]—v
include “constants.vams " out

module vco (out, in);

parameter real Vmin=0; //minimum input voltage (V)
parameter real Vmax=Vmin+1 from (Vmin:inf); /maximum input voltage (V)
parameter real Fmin=1 from (0O:inf); /#/minimum output freq (Hz)
parameter real Fmax=2:+Fmin from (Fmin:inf); /maximum output freq (Hz)
parameter real ampl=1; // output amplitude (V)

input in; output out;
voltage out, in;
real freq, phase;

analog begin
//compute the freq from the input voltage
freq = (V(in) — Vmin)*(Fmax — Fmin) / (Vmax — Vmin) + Fmin;

//bound the frequency (this is optional)

if (freq > Fmax) freq = Fmax;

if (freq < Fmin) freq = Fmin;

//phase is the integral of the freq modulo 2n
phase = 2+ M_Pl+idtmod(freq, 0.0, 1.0, -0.5);

//generate the output
V(out) <+ sin(phase);

//bound the time step
$bound_step(0.1/ freq);
end
endmodule

2012/12/20

/

Jitter Metrics

» Define {ti} as the sequence of timer S
for positive-going threshold
crossings, henceforth referred to a: >[5
transitions, that occur in vn. Variou:
jitter metrics characterize the statis
tics of this sequence.

» Edge-to-edge jitter assumes an —I I—
input signal, and so is only defined B koyles It
for driven systems. r r

]

* Cycle-to-cycle jitter assumes an
input signal, and so is only defined J |_
for driven systems.

2012/12/20

/

Modeling Jitters

Trigger 1

)

e Synchronous Jitter
e Accumulating Jitter

(L

=

Trigger 79 D

2012/12/20

/

Synchronous Jitter

» Blocks such as the PFD, CP, and FD are driven, meaning that a
transition at their output is a direct result of a transition at their
input.

» The jitter exhibited by these blocks is referred to as synchronous
jitter, it is a variation in the delay between when the input is
received and the output is produced.

e The transition() function can be used to model synchronous
jitter.

le

Av

N

Threshold \ $ Histogram

Sl

Jitter Histogram

2012/12/20

- Modeling Synchronous Jitter In
Divider

‘include “disciplines.vams”
modaule divider (out, in);
input in; output out; electrical in, out;

parameter real Vio=—1, Vhi=1;

parameter integer ratio=2 from [2:inf);

parameter integer dir=1 from [-1:1] exclude 0; / dir=1 for positive edge trigger
// dir=—1 for negative edge trigger

parameter real tt=1n from (0:inf);

parameter real td=0 from (0:inf);

parameter real jitter=0 from [0:td/5); // edge-to-edge jitter

parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer count, n, seed;
real dt;

analog begin
@(initial_step) seed = -311;

@(cross(V(in) = (Vhi + Vlo)/2, dir, ttol)) begin
// count input transitions
count = count + 1;
if (count >= ratio)

count =0;
n = (2*count >= ratio);
// add jitter
dt = jitter=$rdist_normal(seed,0,1);

end
V(out) <+ transition(n ? Vhi : Vlo, td+dit, tt);

end
@ endmodule 2012/12/20

Modeling Synchronous Jitter In
PFD/CP

 PFD/CP can be implemented as a finite-state machine with a
three-level output, —lout, 0 and +lout.

* On every transition of the VCO input in direction dir, the output is
Incremented. On every transition of the reference input in the
direction dir, the output is decremented.

 If both the VCO and reference inputs are at the same frequency,
then the average value of the output is proportional to the phase
difference between the two, with the average being negative if
the reference transition leads the VCO transition and positive
other-wise.

* The times of the output transitions are randomly dithered by dt to
model jitter. The output is modeled as an ideal current source
and a finite transition time provides a simple model of the dead
band in the CP.

2012/12/20

~

/

- Modeling Synchronous Jitter In

PFD/CP

‘include “disciplines.vams”
module pfd_cp (out, ref, vco);
input ref, vco; output out; electrical ref, vco, out;

parameter real lout=100u;
parameter integer dir=1 from [-1:1] exclude 0;

parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5);
parameter real ttol=1p from (0:td/5);

integer state, seed;
real dt;

analog begin
@(initial_step) seed = 716;

@(cross(\V(ref), dir, ttol)) begin

if (state > —1) state = state — 1;

dt = jitter=$rdist_normal(seed,0,1);
end

@(cross(V(vco), dir, ttol)) begin

if (state < 1) state = state + 1;

dt = jitter=Srdist_normal(seed,0,1);
end

I(out) <+ transition(lout=state, td + dt, tt);

end
@ endmodule

// dir=1 for positive edge trigger
// dir=1 for negative edge trigger

// edge-to-edge jitter
// recommend ttol << jitter

2012/12/20

/

Accumulating Jitter

e Blocks such as the OSC and VCO are autonomous.

» They generate output transitions not as a result of transitions at
their inputs, but rather as a result of the previous output
transition.

I__\L__I

* Generally, the jitter produced by the OSC and VCO are well
approximated by simple accumulating jitter if one can neglect
flicker noise.

* The delay argument of the transition() function cannot be used
to model accumulating jitter because of the unbounded nature of
this type of jitter.

e User timer() to model accumulating jitter.
2012/12/20

/

- Spectrum of Synchronous and

-

Accumulating Jitters

:

5
10 T T \ \] 105
4
10+ E 10" -
3
10+ E 10" -
2 2
10 w 10° |
|
10" 10" MU\
0 0
10 E 10 +
-1 -1
10 1 1 1 1 10
0 200 400 600 800 1000 0
Synchronous

|
200

| | |
400 600 800 1000

Accumulating
2012/12/20

~

Modeling Accumulating Jitter

‘include “disciplines.vams”
module osc (out);
output out; electrical out;

parameter real freq=1 from (0:inf);

parameter real Vio=-1, Vhi=1;

parameter real tt=0.01/freq from (0:inf);

parameter real jitter=0 from [0:0.1/freq); // period jitter

integer n, seed;
real next, dT;

analog begin
@(initial_step) begin
seed = 286;
next = 0.5/freq + $abstime;
end

@(timer(next)) begin
n=ln;
dT =jitter=$rdist_normal(seed,0,1);
next = next + 0.5/freq + 0.707=dT,
end

V(out) <+ transition(n ? Vhi : Vio, 0, tt);
end
endmodule

2012/12/20

/

-

Jitters in a PLL

* Assume that the PLL has a closed-loop bandwidth of fL, and that
1, = 1/2xf_, then for k such that kT << ¢, jitter from the VCO
dominates and the PLL exhibits simple accumulating jitter equal

to that produced by the VCO.

o Similarly, at large k (low frequencies), the PLL exhibits simple
accumulating jitter equal to that produced by the OSC.

» Between these two extremes, the PLL exhibits simple
synchronous jitter. The amount of which depends on FDs and

the PFD/CP.
A

Accumulating jitter
from VCO

Accumulating jitter
from OSC

/

log(J3)

/}ﬂldﬂ(}ﬂOtlS jitter from
J . PFD/CP, FDs

0 T

log(k)

2012/12/20

/

Efficiency of the Models

* Conceptually, a model that includes jitter should be just as
efficient as one that does not because jitter does not increase the
activity of the models, it only affects the timing of particular

events.

* However, if jitter causes two events that would normally occur at
the same time to be displaced so that they are no longer

coincident.

» For this reason, it is desirable to combine jitter sources to the

degree possible.

FD | Jret
OSC |—»| v =
_> fé)ut
Jio —
=N B
2012/12/20 /

o

Jitters

‘include “disciplines.vams”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf);

parameter real ratio=1 from (0:inf);

parameter real Vlo=-1, Vhi=1;

parameter real tt=0.01x*ratio/freq from (0:inf);

parameter real accJitter=0 from [0:0.1/freq); // period jitter
parameter real synclJitter=0 from [0:0.1=ratio/freq); / edge-to-edge jitter

integer n, accSeed, syncSeed;

real

next, dT, dt, accSD, syncSD;

analog begin

end

@(initial_step) begin
accSeed = 286;
syncSeed = 459;
accSD = acclitter=sqrt(ratio/2);
syncSD = synclitter;
next = 0.5/freq + $abstime;
end

@(timer(next + dt)) begin
n=In;
dT = accSD*$rdist_normal(accSeed,0,1);
dt = syncSD+*$rdist_normal(syncSeed,0,1);
next = next + 0.5*ratio/freq + dT;

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt);

endmodule

: Merging OSC and FD/PFD/CP

2012/12/20

/

Merging the VCO and FDN

 If the output of the VCO is not used to drive circuitry external to
the synthesizer, if the divider exhibits simple synchronous jitter,
and if the VCO exhibits simple accumulating jitter, then it is
possible to include the frequency division aspect of the FDN as
part of the VCO by simply adjusting the VCO gain and jitter.

 If the divide ratio of FDN is large, the simulation runs much faster
because the high VCO output frequency is never gener-ated.

Jr

osc »] O 1.
.]rill -

—

PFD CP > LF P VCO

J
FD
-

=N

'
f;)ut

* Recall that the synchronous jitter of FDM and FDN has already
been included as part of OSC, so the divider model incorporated
into the VCO is noiseless and the jitter at the output of the

noiseless divider results only from the VCO jitter.
2012/12/20

/

-

Merging the VCO and FDN

e Since the divider outputs one pulse for every N pulses at its
input, the variance in the output period is the sum of the variance
in N input periods.

e Thus, the period jitter at the output, J-p, is times larger than the
period jitter at the input, J,~, Or

JFD — '\/NJVCO

* Thus, to merge the divider into the VCO, the VCO gain must be
reduced by a factor of N, the period jitter increased by a factor of

ﬁ and the divider model removed.

2012/12/20

/

Post Processing

o After simulation, it is necessary to refer the computed results,
which are from the output of the divider, to the output of VCO,
which is the true output of the PLL.

Frequency Jitter Phase Noise

S, = NS
dvco ¢rp

Sl

f vVCO - A‘if FD 4 VCO

* See Ken Kundert , Predicting the Phase Noise and Jitter of PLL-Based
Frequency Synthesizers, 2006

a 2012/12/20
N /

Summary

» Basic of Verilog-A
* Modeling PLL with Verilog-A

2012/12/20

/

