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Outline
 Basic of Verilog-A (Verilog-AMS)

 Modeling Analog Components

 Modeling PLLs



Motivation: Simulating Phase 
Noise of PLL
 In many circumstances, An RF simulator, such as SpectreRF, 

can be directly applied to predict the noise performance of a 
PLL. 

 To make this possible, the PLL must at a minimum have a 
periodic steady state solution. 

 To perform a noise analysis, SpectreRF must first compute the 
steady-state solution of the circuit with its periodic steady state 
(PSS) analysis. 

 In practice, it is not always feasible 
 The circuit may not have a periodic solution.
 Direct simulation is too expensive.
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Introduction
 Verilog-AMS: analog and mixed signal extensions to Verilog 
 An earlier language standard was called Verilog-A (Verilog with 

Analog extensions)
 Verilog-A is a subset of Verilog-AMS

 Important extensions of Verilog-AMS over Verilog-A
 Both digital and analog signals can be included in same module
 User-defined conversions modules are automatically inserted in 

netlist if analog signal connected to digital signal or vice-versa
 More freedom in accessing digital/analog signals within a module

 Much of the same terminology used in VHDL-AMS
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The Relationship
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Application of Verilog-AMS
 Model components,
 Create test benches,
 Accelerate simulation,
 Verify mixed-signal systems, and
 Support the top-down design process.
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Description for Mixed-Signal 
Systems
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Mixed-Signal Design
 When designing mixed-signal circuits Verilog-AMS is very useful 

as it allows both digital and analog circuits to be described in a 
way that is most suitable for each type of circuit.

 With digital circuits, either gate- or behavioral-level Verilog-HDL 
is used. 

 With analog circuits, either transistor- or behavioral-level Verilog-
A/MS is used.
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Verilog-A at a Glance
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Conservative System v.s. Signal-
Flow System
 A conservative system obeys Kirchoff’s laws

 Nodes have both potential and flow
 A signal-flow system has only flow or potential associated with a 

node
 Verilog-A supports modeling of signal-flow systems.
 Verilog-A supports mixing of conservative and signal-flow nodes

 Physical systems are conservative systems
 Abstract systems can use a signal-flow graph model
 View potential as across a component (voltage, temperature, 

velocity)
 View flow as through a component (current, force, heat flow rate)
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Signal-Flow System
 A discipline may specify two nature bindings, potential and flow, 

or it may specify only a single binding, potential.
 Disciplines with two natures are know as conservative disciplines 

because nodes which are bound to them exhibit Kirchhoff’s Flow 
Law

 A discipline with only a potential nature is known as a signal flow 
discipline.
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Example of a Signal-Flow 
System
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Conservative systems
 An important characteristic of conservative systems is that there 

are two values associated with every node
 Potential
 Flow
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Kirchhoff’s Laws
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Branches
 Branch is a path between nodes
 Can only be declared within a module
 Currents summed at branch node
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Branches in Diode Model
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Assignments
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More on branch assignments
 Simulation of a branch assignment

 Simulator evaluates right hand expression
 Simulator adds the value of the right hand expression to any 

Previously retained value for the node (a summation)
 At end of simulation cycle, summed value assigned to source branch

 Any branch, either explicit or implicit, is a source branch if either 
the potential or the flow of that branch is assigned a value by a 
contribution statement anywhere in the module.
 It is a potential source if the branch potential is specified and is a flow 

source if the branch flow is specified. 
 A branch cannot simultaneously be both a potential and a flow 

source, although it can switch between them. 
 If assigning a flow quantity, and previously assigned value was a 

potential, then potential value is discarded (and vice versa)
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Relay as a Switch Branch
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Attribute, Nature and Discipline
 Attributes define the value of certain quantities which 

characterize the nature.
 A nature is a collection of attributes.
 A discipline description consists of specifying a domain type and 

binding any natures to potential or flow.
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Natures and Disciplines
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Some Pre-defined Natures
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Disciplines
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 Disciplines used to bind natures with potential and flow



Analog Operations
 Built-in functions that operate on more than just the current
 value of their arguments – they maintain internal state

 Limited Exponential function ($limexp)
 Time derivative operator (ddt)
 Time Integral operator (idt)
 Circular integrator operator (idtmod)
 Delay operator (delay)
 Transition filter (transition)
 Slew filter (slew)
 Laplace transform filters (laplace_zp, laplace_zd, laplace_np, 

laplace_nd)
 Z-transform filters (zi_zp, zi_zd, zi_np, zi_nd)
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Time derivative
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Example of Time Derivative
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Time Integral
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Example of Time Integral

 In this case the initial condition for the integrator is found by the 
simulator, generally the DC operating point is used.

 Forcing the output of the integration operator to be a particular 
value at start of the simulation using something like
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Expression Derivative operator

 expr is the expression for 
which the symbolic 
derivative needs to be 
calculated.

 unknown_quantity is the 
branch probe (voltage or 
current probe) with 
respect to which the 
derivative of the 
expression needs to be 
computed.
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Transistion
 transition smooths out piece-wise constant waveforms. The 

transition filter is used to imitate transitions and delays on digital 
signals. 

 This function provides controlled transitions between discrete 
signal levels by setting the rise time and fall time of signal 
transitions. transition stretches instantaneous changes in signals 
over a finite amount of time, as shown below, and can delay the 
transitions.
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Analysis dependent functions
 The analysis() function takes one or more string arguments and 

returns one (1) if any argument matches the current analysis 
type. Otherwise it returns zero (0).
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Noise
 Several functions are provided to support noise modeling during 

small-signal analyses.
 To model large-signal noise during transient analyses, use the 

$random() or $arandom() system tasks.
 NOTICE: build-in noise are only available for small signal 

analysis.
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White Noise
 White noise processes are those whose current value is 

completely uncorrelated with any previous or future values. This 
implies their spectral density does not depend on frequency.
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Flicker Noise
 The flicker_noise() function models flicker noise. The general 

form is:

which generates pink noise with a power of pwr at 1Hz which 
varies in proportion to 1/fexp.
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Noise Table
 The noise_table() function interpolates a set of values to model 

a process where the spectral density of the noise varies as a 
piecewise linear function of frequency. 

 The general form is:
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Noise Model for Diode
 The noise of a junction diode could be modelled as shown in the 

following example.
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Analog Events
 An event is an occurrence of a particular change in the state of 

the circuit. They are detected by setting up a statement that 
looks for the desired change. 

 When the event occurs, an action is taken.

 The analog behavior of a component can be controlled using 
analog events.
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Analog Events
 The analog behavior of a component can be controlled using 

analog events.
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Global Events
 initial_step and final_step generate global events on the first 

and the last point in an analysis respectively.
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cross() Function
 The cross function is used for generating a monitored analog 

event to detect threshold crossings in analog signals.
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Timing of event relative to 
threshold crossing

 The event shall occur after the threshold crossing, and while the 
signal remains in the box defined by actual crossing and expr_tol
and time_tol.
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timer() Function
 The timer function is used to generate analog event to detect 

specific points in time.
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Event OR operator
 The “OR-ing” of events indicates the occurrence of any one of 

the events specified shall trigger the execution of the procedural 
statement following the event.

Here, initial_step is a global event and cross() returns a monitored 
event. V(out) is set to 0 when one of the two events occur.
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Modeling Circuit Components
 Resistor
 Capacitor
 Inductor
 Voltage source
 Current source
 Voltage controlled voltage source
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Resistor
 Equation 
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Capacitor
 Equation
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di C v
dt





Inductor
 Equation
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dv L i
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Voltage Source
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Current Source
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Voltage Controlled Voltage 
Source
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Connecting Components within 
Verilog-A
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Series RLC Circuit
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Shunt RLC Circuit
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Modeling PLL
 VCO
 Jitter
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Modeling VCO
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Jitter Metrics 
 Define {ti} as the sequence of times 

for positive-going threshold 
crossings, henceforth referred to as 
transitions, that occur in vn. Various 
jitter metrics characterize the statis-
tics of this sequence.

 Edge-to-edge jitter assumes an 
input signal, and so is only defined 
for driven systems. 

 Cycle-to-cycle jitter assumes an 
input signal, and so is only defined 
for driven systems. 
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Modeling Jitters

 Synchronous Jitter
 Accumulating Jitter
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Synchronous Jitter
 Blocks such as the PFD, CP, and FD are driven, meaning that a 

transition at their output is a direct result of a transition at their 
input. 

 The jitter exhibited by these blocks is referred to as synchronous 
jitter, it is a variation in the delay between when the input is 
received and the output is produced. 

 The transition() function can be used to model synchronous 
jitter.
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Modeling Synchronous Jitter in 
Divider 

2012/12/2059



Modeling Synchronous Jitter in 
PFD/CP
 PFD/CP can be implemented as a finite-state machine with a 

three-level output, –Iout, 0 and +Iout. 
 On every transition of the VCO input in direction dir, the output is 

incremented. On every transition of the reference input in the 
direction dir, the output is decremented. 

 If both the VCO and reference inputs are at the same frequency, 
then the average value of the output is proportional to the phase 
difference between the two, with the average being negative if 
the reference transition leads the VCO transition and positive 
other-wise.

 The times of the output transitions are randomly dithered by dt to 
model jitter. The output is modeled as an ideal current source 
and a finite transition time provides a simple model of the dead 
band in the CP. 
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Modeling Synchronous Jitter in 
PFD/CP
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Accumulating Jitter 
 Blocks such as the OSC and VCO are autonomous. 
 They generate output transitions not as a result of transitions at 

their inputs, but rather as a result of the previous output 
transition. 

 Generally, the jitter produced by the OSC and VCO are well 
approximated by simple accumulating jitter if one can neglect 
flicker noise. 

 The delay argument of the transition() function cannot be used 
to model accumulating jitter because of the unbounded nature of 
this type of jitter.

 User timer() to model accumulating jitter.
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Spectrum of Synchronous and 
Accumulating Jitters
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Modeling Accumulating Jitter 
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Jitters in a PLL
 Assume that the PLL has a closed-loop bandwidth of fL, and that 
τL = 1/2πfL, then for k such that kT << τL, jitter from the VCO 
dominates and the PLL exhibits simple accumulating jitter equal 
to that produced by the VCO. 

 Similarly, at large k (low frequencies), the PLL exhibits simple 
accumulating jitter equal to that produced by the OSC. 

 Between these two extremes, the PLL exhibits simple 
synchronous jitter. The amount of which depends on FDs and 
the PFD/CP. 
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Efficiency of the Models 
 Conceptually, a model that includes jitter should be just as 

efficient as one that does not because jitter does not increase the 
activity of the models, it only affects the timing of particular 
events. 

 However, if jitter causes two events that would normally occur at 
the same time to be displaced so that they are no longer 
coincident.

 For this reason, it is desirable to combine jitter sources to the 
degree possible. 
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Merging OSC and FD/PFD/CP 
Jitters 
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Merging the VCO and FDN 
 If the output of the VCO is not used to drive circuitry external to 

the synthesizer, if the divider exhibits simple synchronous jitter, 
and if the VCO exhibits simple accumulating jitter, then it is 
possible to include the frequency division aspect of the FDN as 
part of the VCO by simply adjusting the VCO gain and jitter. 

 If the divide ratio of FDN is large, the simulation runs much faster 
because the high VCO output frequency is never gener-ated. 

 Recall that the synchronous jitter of FDM and FDN has already 
been included as part of OSC, so the divider model incorporated 
into the VCO is noiseless and the jitter at the output of the 
noiseless divider results only from the VCO jitter. 
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Merging the VCO and FDN 
 Since the divider outputs one pulse for every N pulses at its 

input, the variance in the output period is the sum of the variance 
in N input periods. 

 Thus, the period jitter at the output, JFD, is times larger than the 
period jitter at the input, JVCO, or

 Thus, to merge the divider into the VCO, the VCO gain must be 
reduced by a factor of N, the period jitter increased by a factor of

, and the divider model removed. 
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Post Processing
 After simulation, it is necessary to refer the computed results, 

which are from the output of the divider, to the output of VCO, 
which is the true output of the PLL. 

 See Ken Kundert , Predicting the Phase Noise and Jitter of PLL-Based 
Frequency Synthesizers, 2006
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Summary
 Basic of Verilog-A
 Modeling PLL with Verilog-A
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