
Zuochang Ye
2011/12/21

第十三讲：用Verilog-A进行行为级建模与仿真
Lecture 13: Behavior Modeling and Simulation

with Verilog-A

2012/12/201

Outline
 Basic of Verilog-A (Verilog-AMS)

 Modeling Analog Components

 Modeling PLLs

Motivation: Simulating Phase
Noise of PLL
 In many circumstances, An RF simulator, such as SpectreRF,

can be directly applied to predict the noise performance of a
PLL.

 To make this possible, the PLL must at a minimum have a
periodic steady state solution.

 To perform a noise analysis, SpectreRF must first compute the
steady-state solution of the circuit with its periodic steady state
(PSS) analysis.

 In practice, it is not always feasible
 The circuit may not have a periodic solution.
 Direct simulation is too expensive.

2012/12/203

Introduction
 Verilog-AMS: analog and mixed signal extensions to Verilog
 An earlier language standard was called Verilog-A (Verilog with

Analog extensions)
 Verilog-A is a subset of Verilog-AMS

 Important extensions of Verilog-AMS over Verilog-A
 Both digital and analog signals can be included in same module
 User-defined conversions modules are automatically inserted in

netlist if analog signal connected to digital signal or vice-versa
 More freedom in accessing digital/analog signals within a module

 Much of the same terminology used in VHDL-AMS

2012/12/204

The Relationship

2012/12/205

Application of Verilog-AMS
 Model components,
 Create test benches,
 Accelerate simulation,
 Verify mixed-signal systems, and
 Support the top-down design process.

2012/12/206

Description for Mixed-Signal
Systems

2012/12/207

Mixed-Signal Design
 When designing mixed-signal circuits Verilog-AMS is very useful

as it allows both digital and analog circuits to be described in a
way that is most suitable for each type of circuit.

 With digital circuits, either gate- or behavioral-level Verilog-HDL
is used.

 With analog circuits, either transistor- or behavioral-level Verilog-
A/MS is used.

2012/12/208

Verilog-A at a Glance

2012/12/209

Conservative System v.s. Signal-
Flow System
 A conservative system obeys Kirchoff’s laws

 Nodes have both potential and flow
 A signal-flow system has only flow or potential associated with a

node
 Verilog-A supports modeling of signal-flow systems.
 Verilog-A supports mixing of conservative and signal-flow nodes

 Physical systems are conservative systems
 Abstract systems can use a signal-flow graph model
 View potential as across a component (voltage, temperature,

velocity)
 View flow as through a component (current, force, heat flow rate)

2012/12/2010

Signal-Flow System
 A discipline may specify two nature bindings, potential and flow,

or it may specify only a single binding, potential.
 Disciplines with two natures are know as conservative disciplines

because nodes which are bound to them exhibit Kirchhoff’s Flow
Law

 A discipline with only a potential nature is known as a signal flow
discipline.

2012/12/2011

System
Pin Pout=F(Pin)

Example of a Signal-Flow
System

2012/12/2012

Conservative systems
 An important characteristic of conservative systems is that there

are two values associated with every node
 Potential
 Flow

2012/12/2013

Kirchhoff’s Laws

2012/12/2014

Branches
 Branch is a path between nodes
 Can only be declared within a module
 Currents summed at branch node

2012/12/2015

Branches in Diode Model

2012/12/2016

Assignments

2012/12/2017

More on branch assignments
 Simulation of a branch assignment

 Simulator evaluates right hand expression
 Simulator adds the value of the right hand expression to any

Previously retained value for the node (a summation)
 At end of simulation cycle, summed value assigned to source branch

 Any branch, either explicit or implicit, is a source branch if either
the potential or the flow of that branch is assigned a value by a
contribution statement anywhere in the module.
 It is a potential source if the branch potential is specified and is a flow

source if the branch flow is specified.
 A branch cannot simultaneously be both a potential and a flow

source, although it can switch between them.
 If assigning a flow quantity, and previously assigned value was a

potential, then potential value is discarded (and vice versa)

2012/12/2018

Relay as a Switch Branch

2012/12/2019

Attribute, Nature and Discipline
 Attributes define the value of certain quantities which

characterize the nature.
 A nature is a collection of attributes.
 A discipline description consists of specifying a domain type and

binding any natures to potential or flow.

2012/12/2020

Natures and Disciplines

2012/12/2021

Some Pre-defined Natures

2012/12/2022

Disciplines

2012/12/2023

 Disciplines used to bind natures with potential and flow

Analog Operations
 Built-in functions that operate on more than just the current
 value of their arguments – they maintain internal state

 Limited Exponential function ($limexp)
 Time derivative operator (ddt)
 Time Integral operator (idt)
 Circular integrator operator (idtmod)
 Delay operator (delay)
 Transition filter (transition)
 Slew filter (slew)
 Laplace transform filters (laplace_zp, laplace_zd, laplace_np,

laplace_nd)
 Z-transform filters (zi_zp, zi_zd, zi_np, zi_nd)

2012/12/2024

Time derivative

2012/12/2025

Example of Time Derivative

2012/12/2026

Time Integral

2012/12/2027

Example of Time Integral

 In this case the initial condition for the integrator is found by the
simulator, generally the DC operating point is used.

 Forcing the output of the integration operator to be a particular
value at start of the simulation using something like

2012/12/2028

Expression Derivative operator

 expr is the expression for
which the symbolic
derivative needs to be
calculated.

 unknown_quantity is the
branch probe (voltage or
current probe) with
respect to which the
derivative of the
expression needs to be
computed.

2012/12/2029

Transistion
 transition smooths out piece-wise constant waveforms. The

transition filter is used to imitate transitions and delays on digital
signals.

 This function provides controlled transitions between discrete
signal levels by setting the rise time and fall time of signal
transitions. transition stretches instantaneous changes in signals
over a finite amount of time, as shown below, and can delay the
transitions.

2012/12/2030

Analysis dependent functions
 The analysis() function takes one or more string arguments and

returns one (1) if any argument matches the current analysis
type. Otherwise it returns zero (0).

2012/12/2031

Noise
 Several functions are provided to support noise modeling during

small-signal analyses.
 To model large-signal noise during transient analyses, use the

$random() or $arandom() system tasks.
 NOTICE: build-in noise are only available for small signal

analysis.

2012/12/2032

White Noise
 White noise processes are those whose current value is

completely uncorrelated with any previous or future values. This
implies their spectral density does not depend on frequency.

2012/12/2033

Flicker Noise
 The flicker_noise() function models flicker noise. The general

form is:

which generates pink noise with a power of pwr at 1Hz which
varies in proportion to 1/fexp.

2012/12/2034

Noise Table
 The noise_table() function interpolates a set of values to model

a process where the spectral density of the noise varies as a
piecewise linear function of frequency.

 The general form is:

2012/12/2035

Noise Model for Diode
 The noise of a junction diode could be modelled as shown in the

following example.

2012/12/2036

Analog Events
 An event is an occurrence of a particular change in the state of

the circuit. They are detected by setting up a statement that
looks for the desired change.

 When the event occurs, an action is taken.

 The analog behavior of a component can be controlled using
analog events.

2012/12/2037

Analog Events
 The analog behavior of a component can be controlled using

analog events.

2012/12/2038

Global Events
 initial_step and final_step generate global events on the first

and the last point in an analysis respectively.

2012/12/2039

cross() Function
 The cross function is used for generating a monitored analog

event to detect threshold crossings in analog signals.

2012/12/2040

Timing of event relative to
threshold crossing

 The event shall occur after the threshold crossing, and while the
signal remains in the box defined by actual crossing and expr_tol
and time_tol.

2012/12/2041

timer() Function
 The timer function is used to generate analog event to detect

specific points in time.

2012/12/2042

Event OR operator
 The “OR-ing” of events indicates the occurrence of any one of

the events specified shall trigger the execution of the procedural
statement following the event.

Here, initial_step is a global event and cross() returns a monitored
event. V(out) is set to 0 when one of the two events occur.

2012/12/2043

Modeling Circuit Components
 Resistor
 Capacitor
 Inductor
 Voltage source
 Current source
 Voltage controlled voltage source

2012/12/2044

Resistor
 Equation

2012/12/2045

i gv

Capacitor
 Equation

2012/12/2046

di C v
dt

Inductor
 Equation

2012/12/2047

dv L i
dt

Voltage Source

2012/12/2048

Current Source

2012/12/2049

Voltage Controlled Voltage
Source

2012/12/2050

Connecting Components within
Verilog-A

2012/12/2051

Series RLC Circuit

2012/12/2052

Shunt RLC Circuit

2012/12/2053

Modeling PLL
 VCO
 Jitter

2012/12/2054

Modeling VCO

2012/12/2055

Jitter Metrics
 Define {ti} as the sequence of times

for positive-going threshold
crossings, henceforth referred to as
transitions, that occur in vn. Various
jitter metrics characterize the statis-
tics of this sequence.

 Edge-to-edge jitter assumes an
input signal, and so is only defined
for driven systems.

 Cycle-to-cycle jitter assumes an
input signal, and so is only defined
for driven systems.

2012/12/2056

Modeling Jitters

 Synchronous Jitter
 Accumulating Jitter

2012/12/2057

Synchronous Jitter
 Blocks such as the PFD, CP, and FD are driven, meaning that a

transition at their output is a direct result of a transition at their
input.

 The jitter exhibited by these blocks is referred to as synchronous
jitter, it is a variation in the delay between when the input is
received and the output is produced.

 The transition() function can be used to model synchronous
jitter.

2012/12/2058

Modeling Synchronous Jitter in
Divider

2012/12/2059

Modeling Synchronous Jitter in
PFD/CP
 PFD/CP can be implemented as a finite-state machine with a

three-level output, –Iout, 0 and +Iout.
 On every transition of the VCO input in direction dir, the output is

incremented. On every transition of the reference input in the
direction dir, the output is decremented.

 If both the VCO and reference inputs are at the same frequency,
then the average value of the output is proportional to the phase
difference between the two, with the average being negative if
the reference transition leads the VCO transition and positive
other-wise.

 The times of the output transitions are randomly dithered by dt to
model jitter. The output is modeled as an ideal current source
and a finite transition time provides a simple model of the dead
band in the CP.

2012/12/2060

Modeling Synchronous Jitter in
PFD/CP

2012/12/2061

Accumulating Jitter
 Blocks such as the OSC and VCO are autonomous.
 They generate output transitions not as a result of transitions at

their inputs, but rather as a result of the previous output
transition.

 Generally, the jitter produced by the OSC and VCO are well
approximated by simple accumulating jitter if one can neglect
flicker noise.

 The delay argument of the transition() function cannot be used
to model accumulating jitter because of the unbounded nature of
this type of jitter.

 User timer() to model accumulating jitter.
2012/12/2062

Spectrum of Synchronous and
Accumulating Jitters

2012/12/2063

0 200 400 600 800 1000
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

0 200 400 600 800 1000
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Synchronous Accumulating

Modeling Accumulating Jitter

2012/12/2064

Jitters in a PLL
 Assume that the PLL has a closed-loop bandwidth of fL, and that
τL = 1/2πfL, then for k such that kT << τL, jitter from the VCO
dominates and the PLL exhibits simple accumulating jitter equal
to that produced by the VCO.

 Similarly, at large k (low frequencies), the PLL exhibits simple
accumulating jitter equal to that produced by the OSC.

 Between these two extremes, the PLL exhibits simple
synchronous jitter. The amount of which depends on FDs and
the PFD/CP.

2012/12/2065

Efficiency of the Models
 Conceptually, a model that includes jitter should be just as

efficient as one that does not because jitter does not increase the
activity of the models, it only affects the timing of particular
events.

 However, if jitter causes two events that would normally occur at
the same time to be displaced so that they are no longer
coincident.

 For this reason, it is desirable to combine jitter sources to the
degree possible.

2012/12/2066

Merging OSC and FD/PFD/CP
Jitters

2012/12/2067

Merging the VCO and FDN
 If the output of the VCO is not used to drive circuitry external to

the synthesizer, if the divider exhibits simple synchronous jitter,
and if the VCO exhibits simple accumulating jitter, then it is
possible to include the frequency division aspect of the FDN as
part of the VCO by simply adjusting the VCO gain and jitter.

 If the divide ratio of FDN is large, the simulation runs much faster
because the high VCO output frequency is never gener-ated.

 Recall that the synchronous jitter of FDM and FDN has already
been included as part of OSC, so the divider model incorporated
into the VCO is noiseless and the jitter at the output of the
noiseless divider results only from the VCO jitter.

2012/12/2068

Merging the VCO and FDN
 Since the divider outputs one pulse for every N pulses at its

input, the variance in the output period is the sum of the variance
in N input periods.

 Thus, the period jitter at the output, JFD, is times larger than the
period jitter at the input, JVCO, or

 Thus, to merge the divider into the VCO, the VCO gain must be
reduced by a factor of N, the period jitter increased by a factor of

, and the divider model removed.

2012/12/2069

Post Processing
 After simulation, it is necessary to refer the computed results,

which are from the output of the divider, to the output of VCO,
which is the true output of the PLL.

 See Ken Kundert , Predicting the Phase Noise and Jitter of PLL-Based
Frequency Synthesizers, 2006

2012/12/2070

Summary
 Basic of Verilog-A
 Modeling PLL with Verilog-A

2012/12/2071

