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Abstract— Passive RC polyphase filters (PPF) are analyzed in 

details in this paper. First, a method to calculate the output 
signals of an n-stage PPF is presented. As a result, all relevant 
properties of PPFs, such as amplitude and phase imbalance, and 
loss, are calculated. The rules for optimal pole frequency planning 
to maximize the image-reject ratio provided by a PPF are given. 
The loss of PPF is divided into two factors, namely the intrinsic 
loss caused by the PPF itself and the loss caused by termination 
impedances. Termination impedances known a priori can be used 
to derive such component values, which minimize the overall loss. 
The effect of parasitic capacitance and component value deviation 
are analyzed and discussed. The method of feeding the input 
signal to the first PPF stage affects the mechanisms of the whole 
PPF. As a result, two slightly different PPF topologies can be 
distinguished, and they are separately analyzed and compared 
throughout this paper. A design example is given to demonstrate 
the developed design procedure. 
 

Index Terms—Image reject, loss, passive polyphase filter, 
quadrature generation, transceivers. 
 

I. INTRODUCTION 
uadrature signal generation is an essential part of modern 
telecommunication RF front-end signal processing. 

Nowadays commonly used direct-conversion and low-IF 
receivers, see e.g. [1-3], require two local oscillator (LO) 
signals in quadrature. Three commonly applied methods for in-
phase (I) and quadrature-phase (Q) signal generation are the 
use of phase shifter, divide-by-two circuit, and coupled 
oscillator, see e.g. [4]. It’s a manifold matter to select among 
these. All are relevant and selection depends on targeted 
system, selected radio architecture, and applied IC process. 
Amplitude and phase balance of the generated I and Q signals 
affect strongly on the image rejection of the receiver and thus 
on the quality of reception.  

Sequence asymmetric polyphase RC networks [5] are 
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commonly used for I/Q generation, and also for IF-signal 
phase shifting and summing in analog-IF domain [1]. 
Somewhat surprisingly, despite of their vast popularity in RF 
IC implementations, detailed analyses in open forums remain 
limited [6-16] and explicit formulas given do not cover all 
relevant issues. The aim of this paper is to thoroughly analyze 
the characteristics of an n-stage polyphase RC network, and 
based on this analysis we will present design guidelines for 
optimum configuration and dimensioning. Since the 
motivation for this work originates from practical RF IC 
development, we will also consider the impact of device 
tolerances and the effect of parasitic capacitance, thus keeping 
in mind realization limits of actual monolithic capacitors and 
resistors.  

The paper is occupied with some intense mathematical 
analysis, and therefore we will here briefly introduce the 
content for guiding the reader. The analysis presented in this 
paper is mainly focused to PPFs with maximum of three 
stages, because the PPFs implemented on IC seldom have 
more stages. The equations can be derived for higher order 
PPFs too with the methods presented in this paper. Section II 
describes the basic structure of a passive RC polyphase filter 
and introduces two types of signal feeding techniques. 
According to input configuration we call the variants Type I 
and Type II PPF. These are depicted in Figures 1 and 2. Since 
this slight change on input feeding has significant impact on 
the PPF performance, we carry out the analysis of both 
variants throughout the text. The transfer functions, and 
consequently frequency response, and gain and amplitude 
imbalance, are also derived here. Section III focuses on image 
rejection and bandwidth issues, and Section IV is devoted to 
intrinsic loss analysis. The impact of input and output 
impedance and port termination are covered in Section V. 
Since device’s parasitic capacitance and deviation from 
nominal value are inherent to any actual IC implementation, 
these are studied in Sections VI and VII, respectively. In 
Section VIII we summarize the results of mathematical 
analysis in plain words and provide design guidelines together 
with a design example. 

II. INTRODUCTION TO THE ANALYSIS OF POLYPHASE FILTERS 
The analysis of polyphase filters is started by calculating the 

output signals and the frequency responses of a single PPF 
stage. An nth stage of a polyphase filter is shown in Fig. 3a. 
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The output is loaded with impedance ZLn representing the input 
impedance of the following stage. This can be a next PPF 
stage, a mixer switch, or an amplifier input. When a balanced 
input signal is applied to I input, the Q input nodes are virtual 
grounds whatever the source impedance is, and vice versa. 
This is proven in Appendix A. When the load is the next PPF 
stage, the load impedance ZLn is presented with an equivalent 
circuit shown in Fig. 3b. The output voltages of nth PPF stage 
shown in Fig. 3a can be calculated by voltage division and 
superposition rules. For example, the output node voltage 
Iout+,n is calculated as follows 

( )
( ) ( )

1

, , ,1 1

|| ||
|| ||

n Ln n Ln
Iout n Iin n Qin n

n n Ln n n Ln

sC Z R ZV V V
R sC Z sC R Z

−

+ + −− −= +
+ +

.(1) 

The first right-hand side term is achieved by applying the 
voltage signal to the input node Iin+,n and grounding all the 
other inputs. Thus, the capacitor Cn connected to the input 
node Qin-,n is in parallel with the load impedance ZLn of the 
output node Iout+,n. The resulting output signal is calculated 
with voltage division. The other output voltages can be 
calculated similarly. In a general case, when each output node 
is loaded with impedance ZLn, the differential I- and Q-output 
signals are 
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respectively. Equations (2) and (3) are then represented in an 
useful matrix notation 

, .

, .

1
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.(4) 

When the nth PPF stage is followed by a next PPF stage, the 

input impedance of stage n+1 acts as the load ZLn. From Fig. 
3b the equivalent load impedance ZLn for stage n can be 
calculated as 
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n n Ln

R Z sC R Z
Z

sC R Z
+ + + + +

+ + +

+ +
=

+ +
. (5) 

Rn+1, Cn+1, and ZLn+1 are the resistor values, capacitor values, 
and the load impedance of the n+1th stage, respectively.  

A. About PPF Topologies, Terminology, and Notation 
The manner of feeding the input signal to the first stage 

affects the operation of the PPF. In the case shown in Fig. 1, 
the Q-inputs of the first stage are signal grounds, i.e.       
∆VQin,1 = 0. In Fig. 2 the input signal is injected in a dual-feed 
manner, i.e. ∆VQin,1 = ∆VIin,1. For the rest of this paper, the 
former topology is called as Type I PPF and the latter topology 
is Type II PPF. In following equations, the upper index I or II is 
used to indicate the type of the PPF. 

B. PPF Frequency Responses and Balances 
The output voltages of an n-stage PPF can be calculated by 

multiplying the matrix (4) of each PPF stage, and by using (5) 
when taking into account the effect of load of the next stage. 
At first, differential output voltages of a single-stage PPF Type 
I are calculated as 
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I IL
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The ratio between I and Q output signals is  

 
( )
( ) 1 1

1I
Iout
I

Qout

V s
sR CV s

∆
=

∆
. (8) 

According to (8), the output signals have exactly the same 
magnitude at the single angular frequency of ω1=1/R1C1. 
Furthermore, (8) is purely imaginary (s = iω). Thus, the phase 
difference between I and Q outputs is exactly 90° with all 
frequencies and with all R1 and C1 values. In addition, the 
result is independent of the load impedance if identical load 
impedance at every output node is assumed.  

A wider amplitude balance with Type I PFF is achieved by 
cascading several stages. For example, the transfer functions of 

 
Fig. 3. a) An nth PPF stage with output load impedance ZLn, b) load 
impedance of nth PPF stage, when the load is a next PPF stage. ZLn+1 
represents the loading of the n+1th stage. 

 
Fig.1.  Type I polyphase filter. 

 
Fig. 2. Type II polyphase filter. 
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I and Q channels of a two-stage Type I PPF are calculated with 
(4): 

( ) ( )
( )( )
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The amplitude balance then becomes 
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Thus, unity gain balance is achieved at ω1=1/R1C1 and 
ω2=1/R2C2. In addition, the phase balance is always 90° at all 
frequencies, R and C values, and load impedances. For higher 
order PPFs the transfer functions can be calculated similarly. 

Next, we will repeat the previous analysis for Type II PPF. 
The output voltages can be calculated in a similar manner as 
for Type I PPF but in this case the Q input signals are      
VQin=VIin+ and VQin-=VIin- for the first stage. The transfer 
functions of the single-stage Type II PPF are 
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The ratio of I and Q outputs is 
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Thus, the amplitude balance is unity with all component R1 and 
C1 values, all frequencies, and load impedances but the phase 
is exactly 90° only at ω1=1/R1C1. For a two-stage Type II PPF 
the transfer functions are 
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The ratio between I and Q outputs is 
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The previous analyzes can be extended for higher order PPFs 
as well. It turns out that Type II PPF has always unity 
amplitude balance and the phase is 90° only at each RC pole. 
Respectively, Type I PPF has ideal phase balance and 
amplitude balance is unity at each RC pole frequency. 

III. IMAGE-REJECT RATIO 
In this section, image-rejection ratios (IRR) of both PPF 

topologies are studied. In receiver context IRR is defined as a 

relation of the desired sideband to the suppression of image 
sideband. The IRR was first calculated by Norgaard [16] and it 
is expressed as 
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In (18) Abal and ∆θ define the amplitude ratio of I and Q 
outputs and phase deviation from an ideal 90° between I and Q 
branches, respectively. If the IRR is separately defined with 
magnitude balance (IRRgain) and phase deviation (IRRphase) 
factors, (18) simplifies to 
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Thus, the amount of phase and amplitude imbalance provided 
by a PPF can be converted into equal IRR. Such IRR is a 
figure-of-merit for a PPF used for I/Q generation. 

This section is divided in two parts. The IRR performances 
of both PPF topologies with equal and unequal RC pole 
frequencies are studied separately. In the former case, equal 
component values are utilized in all filter stages and in the 
latter case the resistor and capacitor values of different stages 
are adjusted separately. 

A. Equal RC Poles 
Type I PPF has ideal phase response resulting IRR=IRRgain. 

Based on (8), the amplitude balance is simply Abal=ω1/ω, where 
ω1=1/R1C1. According to (19), the IRR becomes 

 
2

1
,1

1

I
gain stgIRR ω ω

ω ω−

 +
=  − 

. (21) 

Respectively, Type II PPF has ideal gain balance. Therefore, 
IRR = IRRphase and solving the phase of (14) and using the 
definition of (20), the IRRphase becomes 
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ωω−
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. (22) 

It can be proven with trigonometric functions that (22) equals 
to (21), i.e. the IRR performance is equal for both PPF types. 
That holds for multi-stage PPFs, too. Although both PPF 
topologies have equal IRR performance, the choice of PPF 
type may be eventually constrained by amplitude and phase 
imbalance specifications required by the system.  

According to (21) and (22), IRR depends only on pole 
frequency. Therefore, the IRR of a passive polyphase network 
cannot be improved by the choice of the topology. For the 
following IRR analysis, (21) is used.  

PPF stages with equivalent R1 and C1 values can be 
cascaded. The IRR of an n-stage PPF with equal poles is 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CAS-I 5126 Kaukovuori  
 

 
2

1
,

1

n

gain n stgIRR ω ω
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. (23) 

The IRRs of PFFs with 1 to 4 stages are shown in Fig. 4, 
where the frequency axis is scaled with respect to ω1. The 
relative bandwidth BWrel, which defines the ratio of maximum 
and minimum frequencies where a specific IRR is achieved, is 
shown in Fig. 4 and is defined as 

 max

min
relBW ω

ω
= . (24) 

The BWrel for an n-stage PPF is calculated as 
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As a result, the IRR as a function of BWrel becomes 
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Equation (26) directly relates the targeted IRR, BWrel, and the 
number of PPF stages together. The IRRs of PPFs with 1 to 4 
stages are shown in Fig. 5 as a function of relative bandwidth. 
For example, if the designed PPF should have a BWrel of 2, the 
minimum IRR increases approximately 15 dB per PPF stage. 

B. Two-Stage PPF with Unequal RC Poles 
The IRR for a two-stage PPF calculated with (11) and (19) 

is given by 

 
2 2

1 2
2
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where ω1=1/R1C1 and ω2=1/R2C2. The corresponding curve is 
plotted in Fig. 6. For the following analysis, without losing any 
generality, the pole frequency ω1 is assumed to be higher than 
ω2. Fig. 6 depicts that with unequal RC poles there is a 
minimum IRR (IRRmin) locating between ω1 and ω2. The 
minimum IRR frequency is ωIRR,min=1/√R1C1R2C2. To simplify 
the following calculations, the ratio of RC poles ω1 and ω2 is 
defined with a pole-splitting factor k2 as follows: 

 1 2 2
2

2 1 1

1
R Ck
R C

ω
ω

= = > . (28) 

Then, the minimum IRR of a two-stage PPF between ω1 and 
ω2  is expressed as 

 
2

2
min,2

2

1
1stg

k
IRR

k−

 +
=   − 

. (29) 

According to (27) the IRR depends only on the RC pole 
frequencies and according to (29) the minimum IRR is defined  
by the ratio of RC pole frequencies. In a case of equal RC 
poles (k2 =1), (29) goes to infinity, since there is no inter-pole 
minimum. The corner frequencies ωc,min and ωc,max define 
points, where IRR equal to IRRmin is achieved (see Fig. 6) 
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As a result, the relative bandwidth BWrel, where the minimum 
IRR is reached, is given by 
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Therefore, if BWrel is known, k2 can be expressed as  
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The relation between BWrel and mimimum IRR according to 
(29) for a two-stage PPF is  

  
( )
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rel stg
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When comparing (33) to (25), it can be noted that the BWrel of 
a 2-stage PPF with unequal poles is always wider compared to 
PPF with equal poles. However, the difference decreases if a 
high IRR is required, because then small pole splitting factor 
k2 is required. For example, with IRR target of 30 dB and 40 
dB the BWrel of unequal poles is approximately 36% and 18% 
larger than with equal poles, respectively.  

 
Fig. 4. IRR of equal RC pole PPFs with 1 to 4 stages as a function of 
frequency. The frequency axis is scaled with respect to ω1=1/R1C1. 

 
Fig. 5. IRR vs. relative bandwidth for 1- to 4-stage PPFs with equal RC 
pole frequencies. 
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C. Three-Stage PPF with Unequal RC Poles 
For a three-stage PPF, the IRR as a function of frequency is 
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. (34) 

Similarly as in two-stage case, the following analysis assumes 
ω1 >ω2 >ω3. The RC poles ω2 and ω3 are related to ω1 with pole 
splitting factors k2 and k3. k2 is defined as in (28) and k3 is  

 3 31
3

3 1 1

1
R C

k
R C

ω
ω

= = > . (35) 

When (34) is plotted, two IRR minimum notches between ω3 
and ω1 are obtained as is shown in Fig. 7. First, such a relation 
between k2 and k3 is calculated, that the minimum IRR (IRRmin) 
of the two notches are equivalent. The IRRmins are not located 
at geometric average frequencies of √ω1ω2 and √ω2ω3, but at 

( ) ( )( )( ) ( )( )
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1 2 3 2 2 3 3 1 2 3 2 31
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2 3 2 2 3 3
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where 

 ( ) ( ) ( )1 2 3 2 2 3 2 3 2 3 3, 1 1F k k k k k k k k k k= + + + + + . (37) 

To achieve equivalent IRRmins at those frequencies, there are 
actually three optimum relations between k2 and k3: 

 3
2

1k
k

= , 3 2k k= , and 2
3 2k k= . 

Based on definitions of pole locations, we must have k3 > k2 
and only the last result always obeys this. From here on, the 
relation according to (38) is used in all calculations. 

 2
3 2k k= . (38) 

The exact IRRmin formula at frequencies according to (36) 
becomes far too complicated to present here, though it can be 
calculated and included into a design formula set. To simplify 
the calculations, IRR minimum presented here is calculated at 
geometric average of RC poles to achieve simpler equation. As 
a result, an IRR minimum of a three stage PPF is 
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Equation (39) slightly overestimates the IRR compared to the 
exact calculated IRR minimum. The maximum error is 
approximately 0.23 dB when k2 is close to unity and decreases 
with larger k2. Thus, the error is insignificant and (39) can be 
used to calculate k2 if IRR target is known. Due to the lack of 
closed-from solution of quintic formula, k2 can not be 
analytically solved from (39). Therefore, a rough value for k2 
can be sketched from Fig. 8 or k2 can be calculated 
numerically. 

Next, the relative bandwidth of a 3-stage PFF is calculated. 
The frequencies ωc,min and ωc,max shown in Fig. 7 present 
corners frequencies, where the IRRmin is achieved and are 
given as  
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where ω1=1/R1C1, ω3=ω1/k2
2, and 

 ( ) 4 7 8
2 2 2 2 2 21 4 10 4F k k k k k= + − + + . (42) 

The relative bandwidth calculated with (40) and (41) is 
approximated with the following formula, so that k2 can be 
easily solved if BWrel is known  

 2
,3 2 22 1.9 0.9rel stgBW k k− ≈ − + . (43) 

Equation (43) predicts the exact relative bandwidth with an 
accuracy better than 1.5 % when k2 < 2.8. The IRRmin and the 
relative bandwidth, where IRRmin is covered, are shown as a 
function of k2 in Fig. 8. For example, to achieve better than  
40-dB IRR, k2 shall not exceed 1.84. Then, the BWrel becomes 
approximately 4.2, which is a significant improvement 
compared to the BWrel of a two-stage PFF (1.78) with the same 
IRR. IRR as a function of relative bandwidth for 2-, 3-, and 4-
stage PPFs is shown in Fig. 9.  

 
Fig. 6.  IRR of a 2-stage PPF. According to (29), an IRR of 40 dB is 
achieved with pole splitting factor k2 = 121/81. 

 
Fig. 7. IRR of a 3-stage PPF. An IRR of 40 dB is achieved with pole 
splitting factor k2 ≈ 1.84 and k3 = k2

2 ≈ 3.39. 
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D. Optimal Pole Splitting of Higher Order PPFs 
An n-stage PPF with unequal RC poles has n-1 IRR 

minimum notches. When equivalent IRRmins are targeted, the 
optimum RC pole frequencies for PFFs having more than three 
stages are not achieved with a generic formula of kn/kn-1=k2 
(n>3). For example, the calculation of an optimal four-stage 
PPF is presented in Appendix B.  

IV. INTRINSIC PPF LOSS 
When PPFs are used for quadrature signal generation in the 

LO signal path, the loss due to PPF is usually compensated 
with on-chip buffers. Often, the current consumption of the LO 
buffers becomes a remarkable part of RF front-end power 
budget. Therefore, it is crucial to be aware of the methods to 
minimize the PPF loss. As a thumb of rule, the loss due to PPF 
is usually estimated to be 3 dB/stage. That holds, when all PPF 
stages have equal RC poles, the loss is calculated at ω=1/RC, 
and the PPF is terminated with infinite load impedance.  

The previous section described the optimization of IRR 
bandwidth. The analysis showed that there was no difference 
in IRR performance between Type I and II PPFs. In this 
section, the loss of both PPF types is analyzed as a function of 
number of stages and pole splitting factor. In addition, in a 
case of multi-stage PPF, the optimal device scaling is 

discussed. In the following analysis, the source impedance is 
assumed zero and the termination impedance of the last PPF 
stage is infinite. This section discusses the loss caused by the 
PPF only, i.e. intrinsic loss. The effect of the finite input and 
output impedances are considered in Section V.  

A. Loss of Single-Stage PPFs 
The differential output signals of a single-stage PPF is 

calculated from (4) by setting ZL1=∞. In a case of Type I PPF, 
I and Q output voltages have low-pass and high-pass frequency 
characteristics, respectively. The outputs have an equal 
magnitude at ω1=1/R1C1 calculated as  
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1 ,
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1 1 11
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which corresponds to 3-dB loss. For the Type II PPF the loss 
at ω1 is given by 
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which is 3 dB less than the loss of Type I PPF.   

B. Loss of Two-Stage PPFs 
The loss for two-stage Type I PFF can be calculated by 

cascading (4) for n=1 and n=2 and by applying 
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sC R Z sC→∞
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 (46) 

for the load impedance ZL1 of the first PPF stage. The last form 
of (46) is used in the following analysis, because ZL2 is infinite. 
In the case of Type I PFF, the I-output has a loss maximum 
and the Q-output has a loss minimum at the geometric average 
of the RC poles, i.e. ω=1/√R1C1R2C2, as is shown in Fig. 10. 
At that frequency, the I and Q output losses become 
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1 1 2 1 2 2
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1 2 1 2

2
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+ +
= , (47) 
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respectively. In the case of equal RC poles, (47) and (48) will 
lead to 6-dB loss (i.e. 3 dB/stage) at both outputs. However, in 
a general case, RC poles are not equal. It is possible to design 
the pole ω2 to the wanted frequency with the pole splitting 
parameter k2 by scaling either the value of R2 or C2 or both. 
Since the minimum (or maximum) loss is a function of R1, C1 , 
R2, and C2 as is shown in (47) and (48), there are optimal 
component values, which minimize the PPF loss. To calculate 
the optimum device scaling, the parameter k2 is further divided 
into two parts 
 2 2 2R Ck k k= , (49) 

where k2R and k2C denote the ratio of the first and second stage 
resistors and capacitors, i.e. k2R=R2/R1 and k2C=C2/C1. 
Equation (47) can be modified into 

 
Fig. 8. IRR and relative bandwidth BWrel as a function of pole splitting 
factor k2. The optimum pole splitting is calculated according to (38) and 
(B.5) for 3- and 4-stage PPFs, respectively. 

 
Fig. 9.  IRR as a function of relative bandwidth BWrel for 2-, 3-, and 4-stage 
PPFs with unequal RC pole frequencies. 
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According to the last form, if k2 is fixed, for example due to 
IRR requirement, the loss is minimized when k2C is as small as 
possible. In other words, when the component values of the 
lower pole ω2 are chosen, the resistor value should be larger 
and capacitor value smaller compared to the component values 
of the higher pole ω1 (i.e. R2>R1 and C2<C1). This holds also 
for higher order PPFs. In practice, when a PPF with unequal 
RC poles is designed, it is beneficial to dimension all the 
capacitors with a fixed value. Then, k2C=1 and the pole 
splitting factor k2 is defined by the resistor ratio k2R only. The 
following analysis is performed for cases, where equal 
capacitor values are used in all stages, i.e. k2C=1 if not 
otherwise mentioned. Then, the losses for Type I PPF I and Q 
outputs as a function of k2 are achieved by 
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respectively. The losses of both outputs are plotted in Fig. 11 
as a function of k2. With equal RC poles (k2=1), both (51) and 

(52) lead to loss of 6 dB. In addition, it is observed, that k2≥1 
is required to minimize the losses. Therefore, the RC poles 
should be placed such that the highest RC pole is the first stage 
in the signal path, i.e. the impedance level increases along with 
signal path. Then, the average loss is less than 3 dB/stage.  

Next, the similar analysis is carried out for Type II PPF. 
According to (17), I and Q outputs of a two-stage Type II PFF 
always have balanced amplitude. As is shown in Fig. 10, the 
maximum loss is achieved at ω=1/√R1C1R2C2 and it is 

( ) ( )2 2
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2 1 2
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cII
stg

C R C R R C k k
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. (53) 

The loss is minimized by choosing the capacitor scaling factor 
k2C as small as possible. The loss of Type II PPF is plotted in 
Fig. 11 as a function of k2, and k2C=1. When k2=1, the loss 
becomes 3 dB. The loss does not have optimum point as a 
function of k2 and it approaches 0 dB when k2 increases. 

C. Loss of Three-Stage PPFs 
The losses of three-stage PPFs as a function of frequency 

are shown in Fig. 12, where k2=k2R=2, and k3C=k2C=1. Both the 
I and Q outputs of Type I PPF have loss maximums between 
ω1 and ω3. The frequencies of loss maximums are too lengthy 
to present here as closed-form formulas. Therefore, the loss of 
3-stage PPF is calculated at ω2=1/R2C2, which is the geometric 
average of ω1 and ω3. At that frequency the loss becomes 

 
Fig. 11. Maximum loss of both PPF types as a function of pole splitting 
factor k2. Equal capacitor values are used in both stages. For Type I PPF, 
both the I and Q outputs are shown separately. 

 
Fig. 13. Loss of three-stage PPF at ω2 as a function of pole splitting factor 
k2. Loss of PPF types I and II are calculated according to (54) and (55), 
respectively. The simulated minimum loss of PPF Type I is also shown. 

 
Fig. 12. Loss of three-stage PPFs as a function of frequency. Loss is shown 
for both PPF types. The pole splitting factor k2=2. 

 
Fig. 10. Loss of two-stage PPFs as a function of frequency. The loss is 
shown for both PPF types. Here, the pole splitting factor k2=3 (k2R=3 and 
k2C=1) was chosen since it is a typical value in a practical PPF. 
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The calculated and simulated loss minimums are plotted in 
Fig. 13 as a function of k2. Loss is reduced with increased pole 
splitting. When k2<2, (54) predicts the loss of Type I with an 
accuracy better than 0.1 dB.  

The PPF Type II has a loss minimum exactly at ω2 and it is 
expressed as 
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Comparison of (54) and (55) reveals that the intrinsic loss of 
Type II PPF is 3 dB smaller than that of Type I at ω2. The      
3-dB difference in loss between PPF types is achieved at every 
pole frequency independent of the number of stages.  

V. THE EFFECT OF TERMINATION IMPEDANCES 
In this section the effects of input and output impedances to 

the PPF loss are analyzed. Finite termination impedances 
cause voltage division both at the input and output of the PPF. 
In previous sections the optimal pole frequencies and device 
scaling were analyzed. The analysis so far, however, does not 
define, which resistor and capacitor values should be chosen 
for the PPF. This chapter shows how the impedance level of 
the PPF should be chosen to minimize the overall loss if finite 
source (ZS) and load impedances (ZL) are known a priori. In 
addition, the optimum impedance level depends on the PPF 
topology and on the number of stages.  

A. Optimum Component Values for a Single-Stage PPF 
 The differential input impedance of a Type I PPF is 
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where ZL1 is the load impedance of a single output node (see 
Fig. 3a). The output impedance can be calculated with (56) by 
replacing ZL1 with ZS. In a case of PPF Type I, the differential 
input and output impedance simplifies to R1+1/sC1 at the pole 
frequency of ω1=1/R1C1. The result is independent of ZL1 or ZS.  

In a general case, the signal loss due to voltage division at 
the input and output are calculated as 
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where Zin,PPF and Zout,PPF are differential input and output 
impedances of the PPF and ZS and ZL are differential source 
and load impedances, respectively. When ZS is finite, the 
voltage division at the input is minimized by maximizing the 
value of R1. However, for the minimal voltage division at the 
output the value of R1 should be minimized when ZL is finite. 

Thus, there is an optimum PPF impedance level, which 
minimizes the overall loss. The absolute values of ZS and ZL 
are related to the resistor value R1 of the first PPF stage with 
parameters kS and kL: 

 1
S

S

RZ
k

= ,   1L LZ R k= . (59) 

A parameter kZ is used to relate the output and input 
impedances. 

 L
S L Z

S

Z
k k k

Z
= =  (60) 

As was shown earlier, the intrinsic PPF loss does not depend 
on the component values. Therefore, for a single-stage PPF, 
the optimum impedance level can be calculated by setting 
voltage divisions Linput and Loutput equal. For Type I PPF the 
optimum output impedance relation kL becomes 

 , ,1 2 2I L
L opt stg Z

S

Zk k
Z− = = . (61) 

The optimum R1 can then be calculated using (59). It should be 
noticed that Zin,PPF, Zout,PPF, ZS, and ZL are differential, when 
using equations above. 

Due to the dual feed structure, the input impedance of the 
PPF Type II is half of input impedance of (56). When the 
analysis is repeated, the optimum kL becomes 

 , ,1
II
L opt stg Zk k− = . (62) 

The optimum impedance level of Type I PPF is √2 times 
larger than of Type II PPF. Therefore, if kZ is known, the 
resistor value R1 of Type II PPF should be √2 times larger than 
in PPF Type I. Accordingly, to maintain pole frequency ω1 the 
capacitor value C1 of PPF Type II is √2 smaller than in PPF 
Type I. 

The total losses of single-stage Type I and Type II PPFs 
taking into account both the intrinsic PPF loss and termination 
losses are expressed as a function of kZ as 
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, (63) 

 
Fig. 14.  Overall loss of a single-stage PPF. Loss is shown for both PPF 
types as a function of kZ (ratio of output and input impedances). In right 
y-axis, the difference of the losses is shown. 
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respectively. The total losses and the difference of the losses 
are plotted as a function of kZ in Fig. 14. Due to finite input 
and output impedances, the difference between loss 
performance of PPF types is less than 3 dB.  

B. Optimum Component Values for Multiple-Stage PPFs 
The optimization of a two-stage Type I PPF is first 

considered. When the input and output impedances are 
calculated, it turns out that the differential input impedance of 
PPF Type I at ω1 is R1+1/sC1 regardless of the number of PPF 
stages. With multi-stage PFF, the input impedance at ω2 is  
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At ω2 the output impedance of PPF Type I (Zout,ω2) is R2+1/sC2 
and at ω1 the output impedance Zout,ω1 can be achieved with 
(65) by switching R1↔R2 and C1↔C2.  

In the analysis of intrinsic PPF loss we learnt that it is 
favorable to perform the pole splitting by scaling the resistor 
values to minimize the loss. Therefore, k2 is again divided into 
two parts (k2=k2Rk2C) to find both optimal component values 
and scaling ratio when finite termination impedances are taken 
into account. The optimum loss is found by making overall 
input and output voltage divisions at ω1 and ω2 equal. This 
results in the following equation:     
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. (66)  

For simplicity, termination impedances ZS and ZL are assumed 
frequency independent. Equation (66) results an optimum kL as 

 , ,2 22I
L opt stg R Zk k k− = , (67) 

Similar analysis can be derived for Type II PFF too, and then  

 , ,2 2
II
L opt stg R Zk k k− = . (68) 

When the overall PPF loss is calculated with the result given 
by (67), the analysis again shows that pole splitting is 
beneficial to perform by increasing the resistor values. 
Therefore, the loss of the whole two-stage PPF is shown in 
Fig. 15 in a case, where k2C = 1, and resistor values (k2R) are 
increased from 1 to 3. The Type II PPF has typically 1-2 dB 
lower loss than Type I PPF and the difference between PPF 
losses decreases with small kZ values.  

Finally, the loss of a three-stage PPF is considered. For a 
Type I PPF, the I and Q outputs signals are balanced at ω1, ω2, 
and ω3. The optimum component values are achieved when 
voltage divisions due to termination impedances are equal at 
ω1 and ω3 similarly as in (66). Then, the optimum kL values for 
Type I and II PPFs are calculated with 

 , ,3 2 2I
L opt stg R Zk k k− = , (69) 

 , ,3 2
II
L opt stg R Zk k k− = , (70) 

respectively. Therefore, the optimum input impedance of PPF 
Type II is √2 smaller than of Type I PPF for 1-, 2-, and 3-stage 
PPFs. The optimal total loss of a 3-stage PPF as a function of 
kZ is shown Fig. 16 for both filter types. The loss is shown in a 
case, where k2C = 1, and resistor values (k2 = k2R) of 1, 2, and 3.  

VI. THE EFFECT OF PARASITIC CAPACITANCE 
The realistic monolithic components always have parasitic 

capacitance to the substrate. For simplicity, in the following 
analysis the parasitic capacitances of the PPF components are 
combined into a single parasitic capacitor Cpar. In addition, it 
is assumed that the value of Cpar is equal for each PPF node. 
Precisely speaking, this is not exactly true since larger resistors 
of small-valued devices implemented using several parallel 
resistors introduce more parasitic capacitance. However, the 
main contributor of parasitic capacitance is the capacitor of the 
RC pole, and in a well-designed PPF these are equal in each 

 
Fig. 15. Overall loss of a two-stage PPF. Loss is shown for both PPF types 
as a function of termination impedance ratio kZ. The pole splitting factor k2 
has values of 1, 2, and 3. The arrow shows the direction of increasing k2. 

 
Fig. 16. Overall loss of a three-stage PPF. Loss is shown for both PPF types 
as a function of kZ. The pole splitting factor k2 has values 1, 2, and 3. The 
result k2=1 for Type II overlaps with k2=2 for Type I. The arrow shows the 
direction of increasing k2. 
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stage. Thus, the error introduced by setting Cpar fixed is small.  
The output signals of nth PPF stage are now expressed as 
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 (71) 
The load impedance ZLn is calculated from a network depicted 
in Fig. 17 and the corresponding formula is given in (72). 
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 (72) 
The Cpar is in parallel with the load impedance ZL. As was 

calculated in (8) and (14), the load impedance does not have 
an effect on IRR. If the value of Cpar is equal at each PPF 
node, it does not affect the IRR either. Therefore, only the loss 
caused by the parasitic capacitance Cpar needs to be studied in 
this section. The amount of extra loss due to Cpar is similar for 
both I and Q outputs of Type I PPF. It can be noted that Cpar 
causes the same amount of loss for both PPF types, too. The 
effects of Cpar on intrinsic loss and voltage division due to 
finite termination impedances are considered separately. 
Furthermore, how the Cpar affects on optimal device values is 
briefly discussed. 

A. Single-Stage PPF 
For a single-stage PPF the additional intrinsic loss at 

ω1=1/R1C1 is 
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where 
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For example, a 10-% relative parasitic capacitance causes 
approximately 0.45-dB additional loss. In addition, Cpar 
decreases the input impedance of PPF at ω1. Due to lower PPF 
input impedance, the voltage division at the input increases. 
Additional loss caused by voltage division at the input is 
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where kS denotes the relation between R1 and differential 
source impedance according to (59). For example, with kS =1 a 

10-% relative parasitic capacitance causes less than 0.1 dB 
additional loss at input. In practice, kS >1 and therefore LCpar,in 
has an insignificant effect compared to (73).  

The parasitic capacitance decreases also the output 
impedance, which improves the voltage division at the output. 
The additional output voltage division due to Cpar is less than 1 
according to  
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In (76) kL is defined according to (59). Also (76) is quite 
insignificant compared to (73) if kL>10. Actually, by using 
optimal kL values given by (61) and (62), it can be shown that 
when the effect of losses LCpar,out and LCpar,in are combined, the 
result is always less than unity, i.e. parasitic capacitance 
decreases the termination losses. Therefore, as a worst case, 
the loss due to Cpar can be predicted by (73).  

B. Effect on Optimal Device Values 
In addition to the increased loss, the Cpar modifies the 

optimal component values calculated with (61) and (62). The 
analysis of the optimal component values due to Cpar using 
closed-form expressions is complicated. Therefore, the effect 
of Cpar is presented by simulation results. First, the Cpar is 
divided into dependent and independent parts of C1 as 
 1par fixedC C Cθ= + . (77) 

θ denotes the relative parasitic capacitance of C1 (per plate) 
and Cfixed presents the fixed parasitic capacitance of resistors 
and metal wiring of the layout etc. The effect of Cpar was 
studied in two extreme cases: Cpar is dependent only on C1 or 
Cpar is independent of C1. In the former case, decreasing the 
value of C1 and increasing the value of R1 minimizes the 
overall PPF loss. This is quite understandable because then 
Cpar minimizes along with C1. In the latter case, it is optimal to 
increase the value of C1 and decrease the value of R1. This 
results from (73), which suggest that the value of C1 should be 
increased compared to Cpar to minimize the kpar and additional 
intrinsic loss. In a realistic case, Cpar has both independent and 
dependent parts of C1 and thus a starting point for finding the 
optimal component values are given by (61) and (62). This 
holds for the higher order PPFs, too. 

C. Multi-Stage PPFs 
The loss caused by parasitic capacitance to a two-stage PPF 

is considered next. Only the intrinsic PPF loss is analyzed. As 
was shown for the single-stage PPF, it gives the worst case 
assumption. The additional loss as a function of frequency can 
be calculated with 

( )
( )

( )

2 2
2 2 2 2

2 2 2
1 1

,2 2 4
2 2

2 2 2
1 1

1 9 2 4

1

1 9 4

par par

Cpar stg

k k k k k

L

k k k

ω ω
ω ω

ω
ω ω
ω ω

−

    
 − + + +   
     = +

   
+ + + +   

   

,(78) 

where ω1=1/R1C1 and kpar is calculated according to (74). In 

 
Fig. 17. The equivalent load network for calculation of PPF with parasitic 
capacitance. 
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Fig. 18 (78) is plotted in two cases as a function of frequency. 
In the first case, no pole splitting is utilized (k2=1, double RC 
pole at ω1) and in the second case pole splitting with k2=3 was 
utilized. Fig. 18 was plotted with Cpar values being 5%, 10%, 
15%, and 20% of C1. The figure depicts that the additional 
intrinsic loss of the PPF increases along with the frequency. In 
addition, the pole splitting enhances the additional loss. The 
following analysis concentrates on calculating the loss at the 
highest pole ω1, where the worst-case results are achieved. 

At ω1 and without pole splitting (k2=1) the additional loss 
due to Cpar is 

 ( )
1 2

22
,2 , , 1

1 1
4Cpar stg k parL kω ω− = = = + , (79) 

which is familiar from (73). Actually, it can be calculated that 
the loss of an n-stage PPF at ω1 and with equal RC poles is 

 ( )
1 2

2
, , , 1

1 1
2

n

Cpar n stg k parnL kω ω− = = = + . (80) 

Taking into account k2>1, the additional loss for a two-stage 
PPF at ω1 can be calculated as  

  ( )
1 2

2 2 2
2 2 22

,2 , , 1 2
2 2

9 2 411 1
2 5 2

par
Cpar stg k par

k k k k
L k

k kω ω− = >

+ + +
= + −

+ +
. (81) 

For the higher-order PPFs similar equations become quite 
lengthy and only simulated result is presented. The additional 
loss due to Cpar at ω1 is shown in Fig. 19 as a function of k2 for 
2- and 3-stage PPFs. The parasitic capacitance has values of 
5%, 10%, 15%, and 20% of C1. The loss of 3-stage PPF 
worsens quite badly along with pole splitting. 

D. Summary of Effect of Parasitic Capacitance 
In this section, the effect of parasitic capacitance was 

analyzed with some simplifying assumptions. It was found, 
that if there is equal parasitic capacitance at each PPF stage 
output node, it does not affect the IRR performance. Because 
Cpar modifies the input and output impedances of PPF, the 
optimal component values also change in a minor way. In 
addition, Cpar increases the intrinsic loss, which worsens at 
higher frequencies and with pole splitting.  

VII. COMPONENT VALUE DEVIATION 
This section analyzes the effect of the resistor and capacitor 

value deviation. In a typical PPF the resistors and capacitors 
are in close proximity and the mismatch among resistor and 
capacitor values is usually well controlled in most IC 
processes. Therefore, the component mismatch is neglected in 
this analysis and only the minimum and maximum component 
deviations are considered. The effect of component mismatch 
is analyzed in [7] and [8], for example.  

The relative maximum (∆Rmax) and minimum (∆Rmin) 
resistor value deviation from the typical value (Rtyp) are 
defined in the following way: 

 ( )max
max max max1typ

typ
typ

R R
R R R R

R
−

∆ = → = + ∆ , (82) 

 ( )min
min min min1typ

typ
typ

R R
R R R R

R
−

∆ = → = − ∆ . (83) 

The capacitor deviation is defined in a similar manner. 
Typically, the component deviation is symmetrical, i.e. 

 max minR R R∆ ≈ ∆ = ∆ . (84) 

Therefore, the resistor Rn of the nth PPF stage could be 
replaced with Rn → Rn(1±∆Rn) in all presented equations. The 
same can be done for the capacitors, too, Cn → Cn(1±∆Cn).  
Clearly, the pole frequencies shift due to the device value 
variation.  

 
( ) ( )

1 1 1
1 1n n n n n nR C R R C C

→
± ∆ ± ∆

. (85) 

It is possible that the pole frequency remains unchanged, 
because resistor and capacitor variations do not track each 
other. In the worst case, both the capacitor and resistor values 
vary in the same direction, i.e. only ´+´ or ´−´ signs apply. 
However, the pole splitting factor remains nearly unchanged, if 
the relative deviation is independent of the original component 
value. That holds, when all the devices are made of the same 
material and have similar geometry. For example, in a case of 

 
Fig. 19. Additional loss due to Cpar of a 2- and 3-stage PPFs at ω1 as a 
function of pole splitting factor k2. The parasitic capacitance used in figure 
were 5%, 10%, 15%, and 20% of C1. 

 
Fig. 18. Additional loss due to Cpar of a two-stage PPF as a function of 
frequency. In the first case, no pole splitting is utilized (double RC pole at 
ω1) and in the second case PPF was designed with pole splitting of k2=3. 
The Cpar values used in plotting were 5%, 10%, 15%, and 20% of C1. 
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two stage-PPF, if ∆R1 ≅ ∆R2 and ∆C1 ≅ ∆C2, the pole splitting 
factor k2 is 

 
( )
( )

( )
( )

2 2 2 22 2
2 2

1 1 1 1 1 1

1 1
1 1

R R C CR Ck k
R C R R C C

± ∆ ± ∆
= → ≈

± ∆ ± ∆
. (86) 

The unchanged pole splitting factor holds for the higher order 
PPFs, too. As a result, overall IRR remains unchanged but it 
shifts in the frequency domain. To achieve the required IRR 
over the whole wanted bandwidth and taking into account the 
device variation, the relative frequency BWrel, defined as 
ωmax/ωmin, as in (25), (33), and (43), should be multiplied by 
bandwidth deviation factor (BWdev) defined as: 

 ( )
( )

( )
( )

max maxmax max

min min min min

1 1
1 1dev

R CR C
BW

R C R C
+ ∆ + ∆

= =
− ∆ − ∆

. (87) 

Therefore, the efficient relative factor BWrel,eff is defined: 
 ,rel eff rel devBW BW BW= . (88) 

For example, a typical 25% ∆R and ∆C variation leads to 
BWdev= 2.78. Therefore, the required relative bandwidth BWrel 
nearly triples.  

A. Geometric Center Frequency Deviation 
When the PPF minimum (ωmin) and maximum (ωmax) 

operational frequencies are known, the geometric center 
frequency ωc can be calculated as 

 max
min max minc rel

rel

BW
BW
ω

ω ω ω ω= = = . (89) 

The center frequencies of 1-, 2-, and 3-stage PPFs are         
ωc,1-stg=ω1, ωc,2-stg=ω1/√k2, and ωc,3-stg=ω1/k2=ω2, respectively.  

IRR performance of a 2-stage PPF (k2=2) with minimum 
(RCmin), typical (RCtyp), and maximum (RCmax) component 
values (∆R = ∆C = 0.25) are plotted in Fig. 20. The frequency, 
where IRRs with minimum and maximum deviations overlap, 
slightly differs from the geometric center frequency of a PPF 
with typical values. In a general case, the relative center 
frequency deviation can be calculated as 

 ,

,

c RCtyp
RCdev

c RCdev

ω
ω

ω
∆ = . (90) 

In (90) ωc,RCtyp is the geometric center frequency of the PPF 
with typical component values, ωc,RCdev is the geometric center 

frequency due to device variations, and thus ∆ωRCdev becomes 

 ( ) ( )( )( )min max min max1 1 1 1RCdev R R C Cω∆ = −∆ +∆ −∆ +∆  

                  ( )( )2 21 1R C≈ − ∆ −∆ . (91) 

The last form of (91) holds when device value deviation is 
symmetrical according to (84). For example, with 25 % device 
variation, ∆ωRCdev is approximately 0.94. All the original pole 
frequencies ωn of PPF with nominal device values should be 
multiplied by a factor ∆ωRCdev to achieve the required IRR over 
the whole wanted bandwidth and taking into account the 
device variation. 

VIII. SUMMARY AND DESIGN EXAMPLE 
In this section we summarize the results and provide a 

design example to clarify the design procedure. Below is a list 
of major design principles of an optimum PPF. Reasoning for 
each item is given in the analysis, and for sake of brevity, is 
not repeated here. A well-designed multi-stage PPF obeys the 
following rules: 
• RC poles are split. 
• Optimal pole splitting is calculated according to BWrel,eff. 
• The capacitors are of equal value in each stage. 
• The impedance level (i.e. resistor values) increase along 

the signal chain. 
• Component value deviation is taken into account, when 

the effective relative bandwidth BWrel,eff is calculated. 
• The resistor values are calculated taking into account the 

termination impedances. 
• Parasitic capacitance is kept equal in each node of a PPF 

stage. 
For the design example given next, we have 40-dB IRR 

requirement, the wanted relative bandwidth BWrel is 1.5, and 
component deviation ∆R = ∆C = 0.25. The source impedance 
(ZS) is 100 Ω differentially and the load (ZL) is a buffer with 
differential input impedance of 2 kΩ. The maximum corner 
frequency ωc,max is scaled to 1. Then, the minimum corner 
frequency ωc,min=0.666.  

The design of a PPF starts by checking the needed number 
of stages. That depends on the IRR requirement and device 
value variation. 
1. Effective Relative Bandwidth: According to (87), the 

bandwidth deviation BWdev is 2.78. Therefore, the effective 
required bandwidth (88) becomes 4.17.  

2. Equal RC Poles: According to (26), when BWrel,eff = 4.17, 
the n-stage PPF with equal RC poles offers approximately 
n⋅9.31-dB IRR performance. Therefore, a 5-stage PPF  
would be needed.  

3. Unequal RC Poles: According to (32), in a two-stage PPF 
k2 = 2.69 is needed to fulfill BWrel,eff requirement leading to 
less than 25-dB IRR (29). When 3-stage PPF is utilized 
instead, with (43) k2 can be solved to be 1.838. (39) gives 
IRR of 40.2 dB, which is adequate. The requirement for 
number of stages could be quickly checked from Fig. 9. 

 
Fig. 20. IRR of a two-stage PPF with 25% component variation. 
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When the number of PPF stages is known, the pole frequencies 
are calculated. The effect of component deviation is also taken 
into account. The design values are given for a 3-stage PPF. In 
addition, the references to equations to evaluate corresponding 
design values for a 2-stage PPF are given in parenthesis. 
4. Pole Frequencies: The geometric center frequency ω2 can 

be calculated with (89), ω2≈0.816. The other poles, ω1 and 
ω3, are achieved with (28), (35), and (38): ω1≈1.501, 
ω3≈0.444. (2-stage PPF: (89), (28)) 

5. Pole Shifting: The device value deviation causes the 
geometric center frequency deviation. According to (91), 
the relative center frequency shift factor ∆ωRCdev=0.9375. 
Therefore, all the pole frequencies are shifted to lower 
frequencies by that factor. The final pole frequencies are 
therefore ω1 ≈1.407, ω2 ≈0.765, and ω3 ≈0.416. 

When termination impedances are known, the optimal device 
value can be calculated. In addition, the choice of PPF type is 
done. 
6. Optimal Device Values: Based on termination impedance 

relation (60) kz=20. The capacitor values are assumed to 
have only one value thorough the whole PPF, and therefore 
pole splitting is done by scaling the resistor values only. 
The optimum kL-values are given by (69) and (70), and 
they are kI

L,opt = 9.714 and kII
L,opt = 6.869 for Type I and 

Type II PPFs, respectively. Therefore, the R1 values 
calculated with (59) are 233 Ω and 330 Ω for Type I and 
Type II PPFs, respectively. The other resistor values are 
calculated with (28) and (35), i.e. R2 and R3 are 429 Ω and 

788 Ω for Type I PPF, and 606 Ω and 1115 Ω for Type II 
PPF, respectively. The capacitor values are finally 
dimensioned with the pole frequencies defined in Step 5. 
C1 = C2 = C3 = 1/ω1R1 i.e. 3.05 mF and 2.15 mF for Type I 
and Type II, respectively. (2-stage PPF: (60), (67), (68), 
(59), (28)) 

7. Loss: The loss without the effect of parasitics can be 
checked from Fig. 16. When kz=20 and k2≈1.838, the 
overall loss of Type I and Type II PPFs are approximately 
10 dB and 8.4 dB, respectively. Therefore, it is optimal to 
choose Type II PPF to minimize the LO signal loss if the 
system allows frequency deviation of 1.15°.  

8. The Effect of Parasitics: With modern IC processes, the 
bottom plate capacitance of capacitors is rather small, less 
than 10%. According to Fig. 19, the additional loss at ω1 is 
approximately 2 dB with three-stage PPF with k2 of 1.838 
regardless of PPF type. 

APPENDIX A: PROOF OF VIRTUAL GROUND 
In this appendix is proven, that when I-inputs are excited 

with a balanced signal then Q-inputs are virtual grounds. This 
also applies vice versa, i.e. when Q-inputs are excited with a 
balanced signal then I-inputs are virtual grounds. A single 
polyphase filter stage is shown in Fig. 21. The input 
impedances of I-input and Q-inputs are ZS,I and ZS,Q, 
respectively. Different input impedances for I and Q-inputs are 
utilized to show that the virtual grounds at Q-inputs do not 
dependent on ZS,I and virtual grounds exist whatever the ZS,Q 
is. The load impedance is ZL. For the convenience, the PPF 
also is redrawn into a circular form and the signal source VS is 
formed to a Norton equivalent.  

 

The Proof. 
The PPF is analyzed with a nodal method, i.e. by solving the 

equation Y · V = I, where admittance matrix Y presents the 
circuit, the voltage vector V includes the voltages associated to 
each node, and the current vector I includes the currents at 
eact node. Y, V, and I for a PPF stage shown in Fig. 21b are 
given in (A.1). The voltage at node Iin+ is marked with VIin+ 
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Fig. 21. Single-stage PPF in a a) conventional, b) circular form. In b), the 
voltage source is replaced with Norton equivalent. 
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etc. For example, when the voltage at node Qin+ is being 
solved, the third column of admittance matrix Y is replaced 
with the current source vector I. The resulting matrix is Y*, 
see (A.2). Next, VQin+ is solved by calculating the determinants 
of the matrices Y and Y* and dividing them: 

 Det[Y*]
Det[Y]QinV + = . (A.3) 

Since the numerator equals to zero, the node Qin+ is a virtual 
ground. The same could be repeated for Qin-, as well. Since 
nodes Qin+ and Qin- are virtual grounds, equivalent load shown 
in Fig. 3 (b) results. To prevent division by zero, i.e. 
Det[Y]≠0, ℜ(ZS,I)>0, ℜ(ZS,Q)>0, R>0, and ℜ(ZL)≥0 are 
required, which in practice is so.  

 APPENDIX B: ANALYSIS AND OPTIMIZATION OF 4-STAGE PPF 
The optimum pole splitting is calculated for a four-stage 

PPF. First, the pole splitting factor k4 is defined as the ratio of 
the pole frequencies ω1 and ω4. Due to symmetry reasons, the 
pole ratio between ω3 and ω4 is the same as the pole ratio 
between ω1 and ω2. Thus, k4 is determined by k2 and k3 

 31 1
4 3 2

4 3 4

k k kωω ω
ω ω ω

= = = . (B.1) 

The minimum IRRs are achieved at three frequencies given by 

 1
,min 2

2 3
IRR k k

ω
ω = , (B.2) 

( ) ( )2 2 21
,min1,3 3 2 3 3 2 3 2 3

2 3

, , 4
2IRR F k k F k k k k

k k
ω

ω = ± − , (B.3) 

where 

 ( ) ( ) ( )2 2
3 2 3 2 3 3 2 2 3, 1 1 2F k k k k k k k k= − + − + . (B.4) 

The IRR minimums at ωIRR,min1 and ωIRR,min3 are always equal. 
To achieve equal IRR with ωIRR,min2, too, k3 is calculated as 

  ( ) ( ) ( )
( )

5 22
3 2 2 2 4 2 3

2 4 2

1 11 cos arccos
3 3

F k
k k k k F k

k F k

   
   = + − +

      
, (B.5) 

where 

 ( ) ( )5 4 3 2
4 2 2 2 2 2 2 22 2 5 4 3F k k k k k k k= + − − + + , (B.6) 

 ( ) ( )( )( )32 3 2
5 2 2 2 2 2 24 9 9 2 1F k k k k k k= − + − + − + + . (B.7) 

Equation (B.5) is quite tedious for hand calculations. 
Therefore, an approximate formula for k3 calculation given as  

 2
3 2 21.2 0.17 0.37k k k≈ + −  (B.8) 

will predict (B.5) with an maximum error of 1.1% when k2<3. 
At ωIRR,min2 the amplitude balance becomes 

 ( ) ( )
( )( )

2 2
2 3 3 2

,4
2 3 2 3

1 1
2 1 1bal stg

k k k k
A

k k k k−

+ + +
=

+ +
, (B.9)  

from where the IRR can be calculated with (19). The corner 
frequencies ωc,min and ωc,max, where the minimum IRR is 
achieved, can be calculated with 
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kkc
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 (B.10) 
where the ‘+’ or ‘–’  -sign of F6 is chosen according to 

 ( ) ( ) ( )2 2
6 2 3 2 3 3 2, 1 1F k k k k k k± = ± + ± . (B.11) 

The relative bandwidth, where the IRRmin is achieved, is  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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, , 2 , ,
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+ +
=

+ −
. (B.12) 

Equation (B.12) can be approximated with better than 1.0-% 
accuracy with 

 3 2
,4 2 2 22.73 3.63 2.9 1rel stgBW k k k− ≈ − + − , (B.13) 

when k2<3. The minimum IRR and relative bandwidth with 
optimum pole splitting are shown in Fig. 8. 

If the IRR is calculated for a 4-stage PPF by using (B.5), 
quite complicated equations are achieved. To get a simple 
equation for 4th-order PPF IRR, the generic formula kn+1/kn=k2 
is used to calculate pole splitting factors k3 and k4. As a result, 
the IRR at the frequency given by (B.2) becomes 

 
4 2

2 2 2
min,4

2 2 2

1 1
1 1stg

k k k
IRR

k k k−

   + − +
=       − + +   

. (B.14) 

Compared to other two IRR minimums at frequencies given by 
(B.3), IRR of (B.14) is approximately 5 dB higher when k2 is 
close to unity. This is shown in Fig. 22, where the IRR of a 4th 
order PPF is shown. With a solid line, a BW-optimized PPF is 
shown. In that case, k3 is calculated with (B.5). With a dashed 
line, k3 is calculated as k2

2. In both cases k2 = 1.6 and k4 is 
calculated as in (B.1). 
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