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ABSTRACT
This book targets engineers and researchers familiar with basic computer architecture concepts
who are interested in learning about on-chip networks. This work is designed to be a short
synthesis of the most critical concepts in on-chip network design. It is a resource for both un-
derstanding on-chip network basics and for providing an overview of state of-the-art research
in on-chip networks. We believe that an overview that teaches both fundamental concepts and
highlights state-of-the-art designs will be of great value to both graduate students and industry
engineers. While not an exhaustive text, we hope to illuminate fundamental concepts for the
reader as well as identify trends and gaps in on-chip network research.

With the rapid advances in this field, we felt it was timely to update and review the state
of the art in this second edition. We introduce two new chapters at the end of the book. We
have updated the latest research of the past years throughout the book and also expanded our
coverage of fundamental concepts to include several research ideas that have now made their
way into products and, in our opinion, should be textbook concepts that all on-chip network
practitioners should know. For example, these fundamental concepts include message passing,
multicast routing, and bubble flow control schemes.

KEYWORDS
interconnection networks, topology, routing, flow control, deadlock, computer ar-
chitecture, multiprocessor system on chip
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Preface
This book targets engineers and researchers familiar with many basic computer architecture con-
cepts who are interested in learning about on-chip networks. This work is designed to be a short
synthesis of the most critical concepts in on-chip network design. We envision this book as a
resource for both understanding on-chip network basics and for providing an overview of state-
of-the-art research in on-chip networks. We believe that an overview that teaches both funda-
mental concepts and highlights state-of-the-art designs will be of great value to both graduate
students and industry engineers. While not an exhaustive text, we hope to illuminate funda-
mental concepts for the reader as well as identify trends and gaps in on-chip network research.

With the rapid advances in this field, we felt it was timely to update and review the state
of the art in this second edition. We introduce two new chapters at the end of the book, as will
be detailed below. Throughout the book, in addition to updating the latest research in the past
years, we also expanded our coverage of fundamental concepts to include several research ideas
that have now made their way into products and, in our opinion, should be textbook concepts
that all on-chip network practitioners should know. For example, these fundamental concepts
include message passing, multicast routing, and bubble flow control schemes.

The structure of this book is as follows. Chapter 1 introduces on-chip networks in the
context of multi-core architectures and discusses their evolution from simple point-to-point
wires and buses for scalability.

Chapter 2 explains how networks fit into the overall system architecture of multi-core
designs. Specifically, we examine the set of requirements imposed by cache-coherence protocols
in shared memory chip multiprocessors, and contrast that with the requirements in message-
passing multi-cores. In addition to examining the system requirements, this chapter also de-
scribes the interface between the system and the network.

Once a context for the use of on-chip networks has been provided through a discussion of
system architecture, the details of the network are explored. As topology is often a first choice in
designing a network, Chapter 3 describes various topology trade-offs for cost and performance.
Given a network topology, a routing algorithm must be implemented to determine the path(s)
messages travel to be delivered throughout the network fabric; routing algorithms are explained
in Chapter 4. Chapter 5 deals with the flow control mechanisms employed in the network; flow
control specifies how network resources, namely buffers and links, are allocated to packets as
they travel from source to destination. Topology, routing, and flow control all factor into the
microarchitecture of the network routers. Details on various microarchitectural trade-offs and
design issues are presented in Chapter 6. This chapter includes the design of buffers, switches,
and allocators that comprise the router microarchitecture. Although power consumption can
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be addressed through innovations in all areas of on-chip networks, we focus our new power
discussion in themicroarchitecture chapter as this is wheremany such optimizations are realized.

New Chapter 7 covers the nuts and bolts of modeling and evaluating on-chip networks,
from software simulations to RTL design and emulation on FPGA, to architectural models
of delay, throughput, area, and power. The chapter also guides the reader on useful metrics for
evaluating on-chip networks and ideal theoretical yardsticks for comparing against.

With the plethora of industry and academia on-chip network chips now available, we
dedicate a new Chapter 8 to a survey of these. The chapter provides the reader with a sweeping
understanding of how the various fundamental concepts presented in the earlier chapters come
together, and the implications of the design and implementation of such concepts.

Finally in Chapter 9, we leave the reader with thoughts on key challenges and new areas
of exploration that will drive on-chip network research in the years to come. Substantial new
research has clearly surfaced, and here we focus on various significant trends that highlight the
cross-cutting nature of on-chip network research. Emerging new interconnects and devices sub-
stantially change the implementation tradeoffs of on-chip networks, and in turn prompt new de-
signs. Newly important metrics such as resilience, due to increasing variability in the fabrication
process, or quality-of-service that is prompted by multiple workloads running simultaneously
on many-cores, will add new dimensions and prompt new research ideas across the community.

Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh
May 2017
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Introduction
Since the introduction of research into multi-core chips in the late 1990s [40, 271, 336], on-
chip networks have emerged as an important and growing field of research. As core counts
increase, and multi-core processors emerge in diverse domains ranging from high-end servers
to smartphones and even Internet of Things (IoT) gateways, there is a corresponding increase
in bandwidth demand to facilitate high core utilization and a critical need for scalable on-chip
interconnection fabrics. This diversity of application platforms has led to research in on-chip
networks spanning a variety of disciplines from computer architecture to computer-aided design,
embedded systems, VLSI, andmore. Here, we provide a synthesis of critical concepts in on-chip
networks to quickly bootstrap students and designers into this exciting field.

1.1 THEADVENTOFTHEMULTI-COREERA
The combined pressures from ever-increasing power consumption and the diminishing returns
in performance of uniprocessor architectures have led to the advent of multi-core chips. With a
growing number of transistors available at each new technology generation, coupled with a re-
duction in design complexity enabled by the modular design of multi-core chips, this multi-core
wave looks set to stay. Recent years have seen every industry chip vendor releasing multi-core
products with increasing core counts.This multi-core wave may lead to hundreds and even thou-
sands of cores integrated on a single chip. We have already seen multi-core products targeting
HPC with more than 50 cores on-die, and research prototypes with more than 100 cores. Het-
erogeneity is now common place in many market segments, in terms of the types of components
that are integrated on-chip, which further ups the complexity of the on-chip interconnection
fabric. Increasingly, besides processor cores, the on-chip fabric has to interconnect embedded
memories, accelerators such as DSP modules, video processors, and graphics processors.

1.1.1 COMMUNICATIONDEMANDSOFMULTI-CORE
ARCHITECTURES

As the number of on-chip cores increases, a scalable low-latency and high-bandwidth com-
munication fabric to connect them becomes critically important [43, 44, 95, 290]. Up to four
or eight cores, buses and crossbars are the dominant interconnect. Buses are shared multi-bit
physical channels that every core connects to and listens to, while one core can transmit at a
time. Buses provide low-latency but poor bandwidth. Crossbars, which are described in more
detail later in Chapter 6, are switches providing non-blocking connectivity between any pair of
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cores. They have high-bandwidth and fairly low delays, but scale poorly in terms of area and
power. As a result, on-chip networks are fast replacing buses and crossbars to emerge as the per-
vasive communication fabric in many-core chips. Such on-chip networks have routers at every
node, connected to neighbors via short local on-chip links; multiple communication flows are
multiplexed over these links to provide scalability and high bandwidth. This evolution of inter-
connection networks as core count increases is clearly illustrated in the choice of a flat crossbar
interconnect connecting all eight cores in the Sun Niagara (2005) [199], four packet-switched
rings in the 9-core IBM Cell (2005) [173], and five packet-switched meshes in the 64-core
Tilera TILE64 (2007) [356].

Multi-core and many-core architectures are now commonplace in a variety of computing
domains. These architectures will enable increased levels of server consolidation in data centers
[25, 116, 241]. Desktop applications, particularly graphics are already leveraging the multi-
core wave [227, 312]. High-bandwidth communication will be required for these throughput-
oriented applications. Communication latency can have a significant impact on the performance
of multi-threaded workloads; synchronization between threads will require low-overhead com-
munication in order to scale to a large number of cores. In multiprocessor systems-on-chip
(MPSoCs), leveraging an on-chip network can help enable design isolation: MPSoCs utilize
heterogeneous IP blocks1 from a variety of vendors; with standard interfaces, these blocks can
communicate through an on-chip network in a plug-and-play fashion.

1.2 ON-CHIP VS. OFF-CHIPNETWORKS
While on-chip networks can leverage ideas from prior multi-chassis interconnection net-
works2 used in supercomputers [12, 127, 132, 311], clusters of workstations [31], and Inter-
net routers [84], the design requirements facing on-chip networks differ starkly in magnitude;
hence, novel designs are critically needed. Fortunately, by moving on-chip, the I/O bottlenecks
that faced prior multi-chassis interconnection networks are alleviated substantially: the abun-
dant on-chip wiring supplies bandwidth that is orders of magnitude higher than off-chip I/Os
while obviating the inherent delay overheads associated with off-chip I/O transmission.

On the other hand, a number of stringent technology constraints present challenges for
on-chip network designs. Specifically, on-chip networks targeting high-performance multi-core
processors must supply high bandwidth at ultra-low latencies, with a tight power envelope and
area budget. With multi-core and many-core chips, caches and interconnects compete with the
cores for the same chip real estate. Integrating a large number of components under tight area
and power constraints poses a significant challenge for architects to create a balance between
these components.

Innovations in on-chip networks have led to communication latency that is competitive
with crossbars leading to widespread adoption. Furthermore, although on-chip networks require
1IP blocks are intellectual property in the form of soft macros of reusable logic.
2Also referred to as off-chip interconnection networks.
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much less power than buses and crossbars, they need to be carefully designed as on-chip network
power consumption can be high [43, 352]. For example, up to � 30% of chip power is consumed
by Intel’s 80-core TeraFLOPS network [167, 344] and 36% by the RAWon-chip network [335].
Therefore, it is essential that power constraints be considered. For example, innovations in the
Intel Single-chip Cloud Computer [160] lead to power consumption representing only 10% of
total chip power. Despite improvements, power continues to be a significant concern moving
the field forward. This new edition features a more in-depth discussion of power in Chapter 6.

1.3 NETWORKBASICS: AQUICKPRIMER
In the next few sections, we lay a foundation for terminology and topics covered within this book.
Subsequent chapters will explore many of these areas in more depth as well as state-of-the-art
research for different components of on-chip network design. Many fundamental concepts are
applicable to off-chip networks as well with different sets of design trade-offs and opportunities
for innovation in each domain.

Several acronyms have emerged as on-chip network research has gained momentum.
Some examples are NoC (network-on-chip), OCIN (on-chip interconnection network) and

NoC
OCINOCN (on-chip networks), with NoC emerging as the pervasive acronym.
OCN

1.3.1 EVOLUTIONTOON-CHIPNETWORKS
An on-chip network, as a subset of a broader class of interconnection networks, can be viewed
as a programmable system that facilitates the transporting of data between nodes.3 An on-chip
network can be viewed as a system because it integrates many components including channels,
buffers, switches and control.

With a small number of nodes, dedicated ad hoc wiring can be used to interconnect them.
However, the use of dedicated wires is problematic as we increase the number of components
on-chip: the amount of wiring required to directly connect every component will become pro-
hibitive.

Designs with low core counts can leverage buses and crossbars. In both traditional multi-
processor systems and newer multi-core architectures, bus-based systems scale to only a modest
number of processors. This limited scalability is because bus traffic quickly reaches saturation as
more cores are added to the bus, so it is hard to attain high bandwidth. The power required to
drive a long bus with many cores tapping onto it is also exorbitant. In addition, a centralized
arbiter adds arbitration latency as core counts increase. To address these problems, sophisticated
bus designs incorporate segmentation, distributed arbitration, split transactions, and increas-
ingly resemble switched on-chip networks.

Crossbars address the bandwidth problem of buses, and have been used for on-chip in-
terconnects for a small number of nodes. However, crossbars scale poorly for a large number
3A node is any component that connects to the network, e.g., core, cache, memory controller, etc.
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of cores; they require a large area footprint and consuming high power. For instance, the Sun
Niagara 2’s flat 8 � 9 crossbar interconnecting all cores and the memory controller has an area
footprint close to that of a core. In response, hierarchical crossbars, where cores are clustered
into nodes and several levels of smaller crossbars provide the interconnection, are used. For the
16 cores in Sun’s Rock architecture, if the same flat crossbar architecture is used, it will require
a 17 � 17 crossbar that will take up at least 8� more area than the final hierarchical crossbar
design chosen: a 5 � 5 crossbar connecting clusters of four cores each [340]. These sophisticated
crossbars resemble multi-hop on-chip networks where each hop comprises small crossbars.

On-chip networks are an attractive alternative to buses and crossbars for several reasons.
First and foremost, networks represent a scalable solution to on-chip communication, due to
their ability to supply scalable bandwidth at low area and power overheads that correlate sub-
linearly with the number of nodes. Second, on-chip networks are very efficient in their use of
wiring, multiplexing different communication flows on the same links allowing for high band-
width. Finally, on-chip networks with regular topologies have local, short interconnects that
are fixed in length and can be optimized and built modularly using regular repetitive structures,
easing the burden of verification.

1.3.2 ON-CHIPNETWORKBUILDINGBLOCKS
The design of an on-chip network can be broken down into its various building blocks: its topol-
ogy, routing, flow control, router microarchitecture and design, and link architecture. The rest
of this book is organized along these building blocks and we will briefly explain each in turn
here.

Topology. An on-chip network is composed of channels and router nodes. The network
topology determines the physical layout and connections between nodes and channels in the
network.

Routing. For a given topology, the routing algorithm determines the path through the
network that a message will take to reach its destination. A routing algorithm’s ability to balance
traffic (or load) has a direct impact on the throughput and performance of the network.

Flow control. Flow control determines how resources are allocated to messages as they
travel through the network. The flow control mechanism is responsible for allocating (and de-
allocating) buffers and channel bandwidth to waiting packets. In contrast to off-chip networks
based on Ethernet technology, most on-chip networks are considered to be lossless by design.

Routermicroarchitecture.A generic router microarchitecture is comprised of the follow-
ing components: input buffers, router state, routing logic, allocators, and a crossbar (or switch).
Router functionality is often pipelined to improve throughput. Delay through each router in the
on-chip network is the primary contributor to communication latency. As a result, significant
research effort has been spent reducing router pipeline stages and improving throughput.

Link architecture. Most on-chip network prototypes use conventional full-swing logic
and repeated wires. Full-swing wires transition from 0 V (ground) to the supply voltage when
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transmitting a 1, and back to ground when transmitting a 0. Repeaters (inverters or buffers) at
equal intervals on a long wire are an effective technique to reduce delay, enabling delay to scale
linearly with number of repeaters instead of quadratically with length.

1.3.3 PERFORMANCEANDCOST
As we discuss different on-chip design points and relevant research, it is important to consider
both the performance and the cost of the network. Performance is generally measured in terms of
network latency or accepted traffic. For back-of-the-envelope performance calculations, zero-
load latency is often used, i.e., the latency experienced by a packet when there are no other

zero-load
latencypackets in the network. Zero-load latency provides a lower bound on average message latency.

Zero-load latency is found by taking the average distance (given in terms of network hops) a
message will travel times the latency to traverse a single hop.

In addition to providing ultra-low latency communication, networks must also deliver
high throughput. Therefore, performance is also measured by its throughput. A high satura-
tion throughput indicates that the network can accept a large amount of traffic before all pack- saturation

throughputets experience very high latencies, sustaining higher bandwidth. Figure 1.1 presents a latency
vs. throughput curve for an on-chip network illustrating the zero-load latency and saturation
throughput.
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Figure 1.1: Latency vs. throughput for an on-chip network.

The two primary costs associated with an on-chip network are area and power. As men-
tioned, many-core architectures operate under very tight power budgets. The impact of differ-
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ent designs on power and area will be discussed throughout this book, delved in more detail in
Chapter 6 on Router Microarchitecture.

1.4 THIS BOOK—SECONDEDITION
This book targets engineers and researchers familiar with many basic computer architecture con-
cepts who are interested in learning about on-chip networks. This work is designed to be a short
synthesis of the most critical concepts in on-chip network design. We envision this book as a
resource for both understanding on-chip network basics and for providing an overview of state-
of-the-art research in on-chip networks. We believe that an overview that teaches both funda-
mental concepts and highlights state-of-the-art designs will be of great value to both graduate
students and industry engineers. While not an exhaustive text, we hope to illuminate funda-
mental concepts for the reader as well as identify trends and gaps in on-chip network research.

With the rapid advances in this field, we felt it was timely to update and review the state-
of-the-art in this second edition. We introduce two new chapters at the end of the book, as will
be detailed below. Throughout the book, in addition to updating the latest research in the past
years, we also expanded our coverage of fundamental concepts to include several research ideas
that have now made their way into products and in our opinion, should be textbook concepts
that all on-chip network practitioners should know. For example, these fundamental concepts
include message passing, multicast routing and bubble flow control schemes.

The structure of this book is as follows. Chapter 2 explains how networks fit into the over-
all system architecture of multi-core designs. Specifically, we examine the set of requirements
imposed by cache-coherence protocols in shared memory chip multiprocessors, and contrast
that with the requirements in message-passing multi-cores. In addition to examining the sys-
tem requirements, this chapter also describes the interface between the system and the network.

Once a context for the use of on-chip networks has been provided through a discussion of
system architecture, the details of the network are explored. As topology is often a first choice in
designing a network, Chapter 3 describes various topology trade-offs for cost and performance.
Given a network topology, a routing algorithm must be implemented to determine the path(s)
messages travel to be delivered throughout the network fabric; routing algorithms are explained
in Chapter 4. Chapter 5 deals with the flow control mechanisms employed in the network; flow
control specifies how network resources, namely buffers and links, are allocated to packets as
they travel from source to destination. Topology, routing, and flow control all factor into the
microarchitecture of the network routers. Details on various microarchitectural trade-offs and
design issues are presented in Chapter 6. This chapter includes the design of buffers, switches
and allocators that comprise the router microarchitecture. Although power consumption can
be addressed through innovations in all areas of on-chip networks, we focus our new power
discussion in themicroarchitecture chapter as this is wheremany such optimizations are realized.

New Chapter 7 covers the nuts and bolts of modeling and evaluating on-chip networks,
from software simulations to RTL design and emulation on FPGA, to architectural models
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of delay, throughput, area, and power. The chapter also guides the reader on useful metrics for
evaluating on-chip networks and ideal theoretical yardsticks for comparing against.

With the plethora of industry and academia on-chip network chips now available, we
dedicate a new Chapter 8 to a survey of these. The chapter provides the reader with a sweeping
understanding of how the various fundamental concepts presented in the earlier chapters come
together, and the implications of the design and implementation of such concepts.

Finally in Chapter 9, we leave the reader with thoughts on key challenges and new areas
of exploration that will drive on-chip network research in the years to come. Substantial new
research has clearly surfaced, and here we focus on various significant trends that highlight the
cross-cutting nature of on-chip network research. Emerging new interconnects and devices sub-
stantially change the implementation tradeoffs of on-chip networks, and in turn prompt new de-
signs. Newly important metrics such as resilience, due to increasing variability in the fabrication
process, or quality-of-service that is prompted by multiple workloads running simultaneously
on many-cores, will add new dimensions and prompt new research ideas across the community.
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C H A P T E R 2

Interface with System
Architecture

Over the course of the last 15 years, single-processor-core computer chips have given way to
multi-core chips. These multi-core and many-core systems have become the primary building
blocks of computer systems, marking a major shift in the way we design and engineer these
systems.

Achieving future performance gains will rely on removing the communication bottleneck
between the processors and the memory components that feed these bandwidth-hungry many-
core designs. Increasingly, efficient communication between execution units or cores will become
a key factor in improving the performance of many-core chips.

In this chapter, we explore three major types of computer systems where on-chip networks
form a critical backbone: shared-memory chip multiprocessors (CMPs) in high end servers and

CMP: chip
multiprocessorembedded products, message passing systems andmultiprocessor SoCs (MPSoCs) in themobile

consumer market. A brief overview of general architectures and their respective communication
requirements is presented.

2.1 SHAREDMEMORYNETWORKS INCHIP
MULTIPROCESSORS

Parallel programming is extremely difficult but has become increasingly important [30]. With
the emergence of many-core architectures, parallel hardware is now pervasive across a range of
commodity systems.The growing prevalence of parallel systems requires an increasing number of
parallel applications. Maintaining a globally shared address space alleviates some of the burden
placed on the programmers to write high-performance parallel code.This is because it is easier to
reason about a global address space than it is for a partitioned one. A partitioned global address
space (PGAS) is common in modern SMP designs where the upper address bits choose which

SMP: symmetric
multiprocessorsocket the memory address is associated with.

In contrast, the message passing paradigm explicitly moves data between nodes and ad-
dress spaces, so programmers have to explicitly manage communications. A hybrid approach
that utilizes message passing (e.g., MPI) between different shared-memory nodes with a par-
titioned address space is common in massively parallel processing architectures. We focus the
bulk of our discussion on shared-memory CMPs since they are widely expected to be the main-
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stream multi-core architecture in the next few years. Like SMPs, CMPs typically have a shared
global address space; however unlike SMPs, CMPs may exhibit non-uniform memory access
latencies. Exceptions to the use of a shared-memory paradigm do exist. For example, the IBM
Cell processor uses explicit messaging passing for DMA into local memory. The Intel SCC es-
chews on-chip cache coherence in favor of a message passing architecture. We will provide a
brief overview of message passing systems in Section 2.2.

With the shared-memory model, communication occurs implicitly through the loading
and storing of data and the accessing of instructions. As a result, the shared-memory model is
an intuitive way to realize this sharing. Logically, all processors access the same shared memory,
allowing each to see the most up-to-date data. Practically speaking, memory hierarchies use
caches to improve the performance of shared memory systems. These cache hierarchies reduce
the latency to access data but complicate the logical, unified view of memory held in the shared
memory paradigm. As a result, cache coherence protocols are designed to maintain a coherent
view of memory for all processors in the presence of multiple cached copies of data. Caches are
designed to be transparent to the programmer.They improve performance by keeping frequently
accessed data close to the processor but the programmer bears no responsibilities for managing
them. This transparency is also desirable in multiprocessor systems; however, the presence of
multiple caches can lead to correctness problems if different versions of the same address can
reside in multiple locations at once. Cache coherence protocols are designed to solve this chal-
lenge without burdening the programmer. Cache coherence protocols maintain a single-writer,
multiple-reader invariant. Cache coherence protocols manage access to shared data such that
only one processor can write a cache line at one time. Multiple processors can simultaneously
read a cache line without any problem. A full discussion of cache coherence and its many differ-
ent flavors is outside the scope of this lecture. Interested readers are referred to Sorin et al. [325].
Therefore, it is the cache coherence protocol that governs what communication is necessary in
a shared memory multiprocessor.

Figure 2.1 depicts a typical shared memory multiprocessor consisting of 64 nodes. A node
contains a processor, private level 1 instruction and data caches and a second level cache that may
be private or shared. Beyond the second level of cache, a third level may be incorporated on chip.
This third level of cache is most commonly shared by all processors on the chip.The processor to
network interface (discussed later in this chapter) and the router serve as the gateway between
the local tile and other on-chip components.

Two key characteristics of a shared memory multiprocessor shape its demands on the
interconnect: the cache coherence protocol that makes sure nodes receive the correct up-to-date
copy of a cache line, and the cache hierarchy.
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Figure 2.1: Shared memory chip multiprocessor architecture.

2.1.1 IMPACTOFCOHERENCEPROTOCOLONNETWORK
PERFORMANCE

Cache coherence protocols typically enforce a single-writer, multiple-reader invariant. Any
number of nodes may cache a copy of memory to read from; if a node wishes to write to that
memory address, it must ensure that no other nodes are caching that address. The resulting
communication requirements for a shared memory multiprocessor consist of data requests, data
responses and coherence permissions. Coherence permission needs to be obtained before a node
can read or write to a cache block. Depending on the cache coherence protocol, other nodes may
be required to respond to a permission request.

Multiprocessor systems generally rely on one of two different types of coherence protocols:
broadcast or directory, as shown in Figure 2.2. Each type of protocol results in different network
traffic characteristics. Here we focus on the basics of these coherence protocols, discussing how
they impact network requirements. For a more in-depth discussion of coherence, we refer the
readers to other texts [85, 152, 325].

With a broadcast protocol, coherence requests are sent to all nodes on chip resulting in
broadcast
protocolhigh bandwidth requirements. Data responses are of a point-to-point nature and do not require

any ordering; broadcast systems can rely on two physical networks: one interconnect for ordering
and a higher bandwidth, unordered interconnect for data transfers. Alternatively, multiple virtual
channels can be used to ensure ordering among coherence traffic; requests and responses can flow
through independent virtual channels [166, 200]. Figure 2.2a shows a read request resulting in
a cache miss that is (1) sent to an ordering point, (2) broadcast to all cores, and then (3) receives
data.

An alternative to a broadcast protocol is a directory protocol. Directory protocols do not
directory protocol
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Figure 2.2: Coherence protocol network request examples.

rely on any implicit network ordering and can be mapped to an arbitrary topology. Directory
protocols rely on point-to-point messages rather than broadcasts; this reduction in coherence
messages allows this class of protocols to provide greater scalability. Rather than broadcast to
all cores, the directory contains information about which cores have the cache block. A single
core receives the read request from the directory in Figure 2.2b resulting in lower bandwidth
requirements.

Directories maintain information about the current sharers of a cache line in the system
and coherence state information. By maintaining a sharing list, directory protocols eliminate
the need to broadcast invalidation requests to the entire system. Addresses are interleaved across
directory nodes; each address is assigned a home node, which is responsible for ordering and han-
dling all coherence requests to that address. Directory coherence state is maintained in mem-
ory; to make directories suitable for on-chip many-core architectures, directory caches are used.
Going off-chip to memory for all coherence requests is impractical. By maintaining recently
accessed directory information in on-chip directory caches, latency is reduced.

2.1.2 COHERENCEPROTOCOLREQUIREMENTS FORTHEON-CHIP
NETWORK

Cache coherence protocols require several types of messages: unicast, multicast and broadcast.
Unicast (one-to-one) traffic is from a single source to a single destination (e.g., from a L2 cache
to a memory controller). Multicast (one-to-many) traffic is from a single source to multiple
destinations on chip (e.g., cache line invalidation messages from the directory home node to
several sharers). Lastly, broadcast traffic (one-to-all) sends a message from a single source to all
network destinations on chip.
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With a directory protocol, the majority of requests will be unicast (or point-to-point). As

a result, this places lower bandwidth demands on the network. Directory-based protocols are
often chosen in scalable designs due to the point-to-point nature of communication; however,
they are not immune to one-to-many or multicast communication. Directory protocols send out
multiple invalidations from a single directory to nodes sharing a cache block.

Broadcast protocols place higher bandwidth demands on the interconnect as all coherence
requests are of a one-to-all nature. Broadcast protocols may be required to collect acknowledg-
ment messages from all nodes to ensure proper ordering of requests. Data response messages
are point-to-point (unicast) and do not require ordering.

Cache coherent shared memory chip multiprocessors generally require two message sizes.
The first message size is for coherence requests and responses without data.These messages con-
sist of a memory address and a coherence command (request or response) and are small in size.
In a cache coherence protocol, data is transferred in full cache line chunks. A data message con-
sists of the entire cache block (typically 64 bytes) and the memory address. Both message types
also contain additional network-specific data, which will be discussed in subsequent chapters.

2.1.3 PROTOCOL-LEVELNETWORKDEADLOCK
In addition to the message types and sizes, shared memory systems require that the network be
free from protocol-level deadlock. Figure 2.3 illustrates the potential for protocol level deadlock.

protocol-level
deadlockIf the network becomes flooded with requests that cannot be consumed until the network inter-

face initiates a reply, a cyclic dependence can occur. In this example, if both processors generate
a burst of requests that fill the network resources, both processors will be stalled waiting for re-
mote replies before they can consume additional outstanding requests. If replies utilize the same
network resources as requests, those replies cannot make forward progress resulting in deadlock.

Core/Cache Interconnection Network Core/Cache

Cache
Controller

Cache
Controller

Reply Q

Request Q

Request Q

Reply Q

Figure 2.3: Protocol-level deadlock. Figure adapted from [294].

Protocols can require several different message classes. Each class contains a group of co- message
classesherence actions that are independent of each other; that is, a request message in one class will

not lead to the generation of another request message in the same class, but can trigger a message
of a different class. Deadlock can occur when there are resource dependences between messages
of different classes [322]. Here we describe three typical classes: requests, interventions, and
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responses. Request messages include loads, stores, upgrades, and writebacks. Interventions are
messages sent from the directory to request modified data be transferred to a new node. Exam-
ples of response messages include invalidation acknowledgments, negative acknowledgments
(indicating a request has failed) and data messages.

Multiple virtual channels can be used to prevent protocol-level deadlock. The Alpha
21364 [254] allocates one virtual channel per message class to prevent protocol-level deadlock.
By requiring different message classes to use different virtual channels, the cyclic dependence
between requests and responses is broken in the network. Virtual channels and techniques to
deal with protocol-level deadlock and network deadlock are discussed in Chapter 5.

2.1.4 IMPACTOFCACHEHIERARCHY IMPLEMENTATIONON
NETWORKPERFORMANCE

Node design can have a significant impact on the bandwidth requirements for the on-chip net-
work. In this section, we examine the impact of the cache hierarchy and look at how many
different entities will share the injection/ejection port to the network. These entities can include
multiple levels of cache, directory coherence caches, and memory controllers. Furthermore, how
these entities are distributed throughout the chip can have a significant impact on overall net-
work performance.

Caches are employed to reduce the memory latency of requests. They also serve as filters
for the traffic that needs to be sent into the interconnect. For the purpose of this discussion,
we assume a two-level cache hierarchy. Level 1 (L1) caches are split into instruction and data
cache and the level 2 (L2) cache is the last level cache and is unified. The trade-offs discussed
here could be extrapolated to cache hierarchies incorporating more levels of caching. Current
chip multiprocessor research employs either private L2 caches, shared L2 caches, or a hybrid
private/shared cache mechanism.

Each of the tiles in Figure 2.1 can contain either a private L2 cache for that tile or a
bank of shared cache. With a private L2 cache, an L1 miss is first sent to that processor’s local

private L2
private L2 cache; at the L2, the request could hit, be forwarded to a remote L2 cache that
holds its directory, or access off-chip memory. Alternatively, with a shared L2 cache, an L1 miss

shared L2 will be sent to an L2 bank determined by the miss address (not necessarily the local L2 bank),
where it could hit in the L2 bank or miss and be sent off-chip to access main memory. Private
caches reduce the latency of L2 cache hits on chip and keep frequently accessed data close to
the processor. A drawback to private caches is the replication of shared data in several caches on
chip. This replication causes on-chip storage to be used less effectively. With each core having
a small private L2 cache, interconnect traffic between caches will be reduced, as only L2 cache
misses go to the network; however, interconnect traffic bound off chip is likely to increase (as
data that do not fit in the private L2 cache will have to be evicted off chip). With a private
L2 cache, the on-chip network will interface with just the L2 cache at each node as shown in
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Figure 2.4a; the injection and ejection ports of the router are only connected to one component
within the tile and do not need to be shared.

Core CoreL1 I/D
Cache L1 I/D Cache

Tags Data

ControllerController

Logic Logic

Router RouterPrivate L2 Cache Shared L2 Cache

(a) Private L2 (b) Shared L2

Figure 2.4: Private and shared caches.

Figure 2.5 provides two walk-through examples of a many-core design configured with
private L2 caches. In Figure 2.5a, the load of A misses in L1, but hits in the core’s private L2
cache, and after step 3, the data are returned to the L1 and the core. However, in Figure 2.5b,
the load of A misses in the private L2 cache and must be sent to the network interface (4),
sent through the network to the memory controller (5), sent off chip, and finally re-traverse the
network back to the requestor (6). After step 6, the data are installed in the L2 and forwarded to
the L1 and the core. In this scenario, a miss to a private L2 cache requires two network traversals
and an off-chip memory access.

Alternatively, the L2 cache can be shared amongst all or some of the cores. Shared caches
represent a more effective use of storage as there is no replication of cache lines. However, L2
cache hits incur additional latency to request data from a different tile. Shared caches place
more pressure on the interconnection network as L1 misses also go into the network, but more
effective use of storage may reduce pressure on the off-chip bandwidth to memory. With shared
caches, more requests will travel to remote nodes for data. As shown in Figure 2.4b, the on-chip
network must attach to both the L1s and the L2 when the L2 is shared; both levels of cache
share the injection and ejection bandwidth of the router.

Figure 2.6 provides two walk-through examples similar to those in Figure 2.5 but with a
many-core system configured with a shared L2 cache. In Figure 2.6a, the L1 cache experiences
a miss to address A. Address A maps to a remote bank of the shared L2, so the load request
must be sent to the network interface (3) and traverse the network to the appropriate node. The
read request arrives at the remote node (4) and is serviced by the L2 bank (5). The data are sent
to the network interface (6) and re-traverse the network back to the requestor (7). After step 7,
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Figure 2.5: Private L2 caches walk-through example.

the data are installed in the local L1 and sent to the core. Here, an L2 hit requires two network
traversals when the address maps to a remote cache (e.g., addresses can be mapped by a function
A mod N , where N is the number of L2 banks).

In Figure 2.6b, we give a walk-through example for an L2 miss in a shared configuration.
Initially, steps 1-4 are the same as the previous example. However, now the shared L2 bank
misses to address A (5). The read request must again be sent to the network interface (6), for-
warded through the network to the memory controller and sent off chip (7), returned through
the network to the shared L2 bank and installed in the L2 (8) and then sent through the network
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back to the requestor (9). Once the data have been received (9), it can be installed in the private
L1 and sent to the core. This shared miss scenario requires four network traversals to satisfy the
read request.

2.1.5 HOMENODEANDMEMORYCONTROLLERDESIGN ISSUES
With a directory protocol, each address statically maps to a home node.The directory information

directory
home node resides at the home node which is responsible for ordering requests to all addresses that map to

this home node. The directory either supplies the data from off chip, either frommemory or from
another socket, or sends intervention messages to other nodes on chip to acquire data and/or
permissions for the coherence request. For a shared L2 cache, the home node with directory
information is the cache bank that the address maps to. From the example in Figure 2.6, the
directory is located at the tile marked A for address A. If remote L1 cache copies need to be
invalidated (for a write request to A), the directory will send those requests through the network.
With a private L2 cache configuration, there does not need to be a one-to-one correspondence
between the number of home nodes and the number of tiles. Every tile can house a portion of the
directory (n home nodes), there can be a single centralized directory, or there can be a number of
home nodes in between 1 and n. Broadcast protocols such as the Opteron protocol [81] require
an ordering point similar to a home node from which to initiate the broadcast request.

In a two-level cache hierarchy, L2 cache misses must be satisfied by main memory. These
requests travel through the on-chip network to the memory controllers. Memory-intensive
workloads can place heavy demands on the memory controllers making memory controllers
hot-spots for network traffic. Memory controllers can be co-located with processor and cache
tiles. With such an arrangement, the memory controllers will share a network injection/ejection
port with the cache(s), as depicted in Figure 2.7a. Policies to arbitrate between the memory
controller and the local cache for injection bandwidth are needed in this design. Alternatively,
memory controllers can be placed as individual nodes on the interconnection network; with
this design, memory controllers do not have to share injection/ejection bandwidth to/from the
network with cache traffic (shown in Figure 2.7b). Traffic is more isolated in this scenario; the
memory controller has access to the full amount of injection bandwidth. In current designs,
memory controllers are often placed on the perimeter of the chip to allow close access to I/O
pads.

2.1.6 MISS ANDTRANSACTIONSTATUSHOLDINGREGISTERS
A processor-to-network interface is responsible for formatting network messages to handle
cache misses (due to a load or store), cache line permission upgrades, and cache line evictions.
Figure 2.8 depicts a possible organization for the processor-to-network interface. When a cache
miss occurs, a miss status handling register (MSHR) is allocated and initialized. For example,miss status

handling register
(MSHR)

on a read request, the MSHR is initialized to a read pending state and the message format block
will create a network message. The message is formatted to contain the destination address (in
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Figure 2.7: Memory controllers.

the case of a directory protocol, this will be the location of the home node as determined by the
memory address), the address of the cache line requested and the message request type (e.g.,
Read). Below the message format and send block, we show several possible message formats
that may be generated depending on the type of request. When a reply message comes from the
network, the MSHR matches the reply to one of the outstanding requests and completes the
cache miss actions. The message receive block is also responsible for receiving request messages
from the directory or another processor tile to initiate cache-to-cache transfers; the protocol
finite state machine takes proper actions and formats a reply message to send back into the net-
work. Messages received from the network may also have several different formats that must be
properly handled by the message receive block and the protocol finite state machine.

Thememory-to-network interface (shown in Figure 2.9) is responsible for receivingmem-
ory request messages from processors (caches) and initiating replies. Different types and sizes transaction status

handling register
(TSHR)

of messages are received from the network and sent back into the network as shown above the
message format and send block and the message receive block. At the memory side, transaction
status handling registers (TSHRs) handle outstanding memory requests. If memory controllers
are guaranteed to service requests in order, the TSHRs could be simplified to a FIFO queue.
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However, as memory controllers often reorder memory requests to improve utilization, a more
complicated interface is required. Once a memory request has been completed, the message
format and send block is responsible for formatting a message to be injected into the network
and sent back to the original requester. A network interface employing MSHRs and TSHRs is
similar to the design utilized by the SGI Origin [215].

2.1.7 BRIEF STATE-OF-THE-ART SURVEY
Interaction of on-chip caches and on-chip network andmemory system. Intel’s Larrabee ar-
chitecture [312] features a shared L2 cache design; each core has fast access to its own L2 subset
and utilizes a ring network to communicate with remote L2 caches. The dynamic non-uniform
cache architecture (NUCA) [182] utilizes an on-chip network among banks of a large shared
cache to move data quickly to the processor. TRIPS employs both a scalar operand network and
an on-chip cache network [138]. Traffic bound to and from memory represents a substantial
fraction of overall NoC traffic and requires careful consideration [96, 317]. Memory controller
placement can lead to network hotspots andmust be carefully considered in large many-core sys-
tems [13]. NoC designs specifically tailored to memory traffic have also been proposed [112].

Interactions between cache coherence protocols and NoCs. To maintain a coherent
view of memory, all nodes must observe memory requests in the same order. This ordering
is typically achieved through implicit ordering intrinsic to the interconnect (e.g., bus, ring) or
through the use of an ordering point (e.g., AMD Opteron [81]). Inherent ordering properties
within the topology can also be beneficial for chip multiprocessor. Work by Marty and Hill
[240] exploits the partial ordering of a ring to ease the implementation of coherence solutions.
Support for multicast, broadcast and collective operations has become increasingly important
considering their important role in coherence protocols [114, 206, 234]. Cache coherence pro-
tocols that leverage on-chip network properties or are embedded in-network have been explored
as a way to further optimize communication energy and performance [15, 16, 111, 115], with
the MIT SCORPIO chip (Chapter 8) demonstrating in-network ordering.

Traffic characterization and prioritization.Understanding NoC traffic characteristics is
critical to facilitating traffic prioritization and designing quality of service (QoS) mechanisms.
Recent work considers the relative importance of different coherencemessages, bandwidth vs. la-
tency sensitivity of messages and system-level behavior [98, 317, 375]. Quality of service mecha-
nisms for on-chip networks have been studied [142, 217]. Tailored handling of differentmessage
sizes leads to improved performance and energy-efficiency in cache coherent on-chip networks
which are typically characterized by having bimodal distribution of short control messages and
long data messages [68, 226, 235, 237]. Performance isolation of traffic from different applica-
tions in the context of server consolidation workloads has also been explored [233, 236].
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2.2 MESSAGEPASSING
The message passing paradigm requires explicit communication between processes. User com-
munication is performed through operating system and library calls. Software must be written
with matching send and receive calls to facilitate data transfer from one process to another.
Through message passing, communication and synchronization between an arbitrary set of co-
operating processes can be achieved.

Here we focus on the relationship between message passing and network design. In a
shared memory paradigm, identifying or naming shared data is easily enabled by one globally
shared address space. In message passing, the owning process of the data must be identified in
order to request the data. Message types and sizes are very flexible in message passing. This can
lead to a lot of overhead; it falls on software to decode and process themessages. Flexiblemessage
lengths can also complicate buffer management. Interrupts may be required so that software
can temporarily store messages. In shared memory, storage of messages throughout the network
and at the receiving processor is transparent to software and is completely hardware managed.
Message passing attempts to amortize overheads and latencies associated with communication
by communicating large chunks of data. The hardware cost and design complexity of message
passing are generally considered lower than that of shared memory; implementing and verifying
cache coherence protocols bring tremendous complexity to the design process. However, there
are numerous trade-offs and message passing does introduce additional complexities elsewhere
in the system.

Communication performance inmessage passing is often easier tomodel and reason about
since communication happens explicitly. Programmers have clear guidelines and understanding
of the cost of their communication; namely, messages are expensive so they should be sent infre-
quently. Shared memory is more challenging as communication occurs implicitly both through
loads and stores but also through cache conflicts that will require additional communication not
obvious at the software level.

Blockingvs. non-blocking.Blocking or synchronousmessage passing requires the sender
to stall until the receiver has acknowledged themessage. Although conceptually simple, blocking
message passing must carefully account for deadlock, e.g., two processes issue send commands
and stall. Neither process is able to proceed to the receive command and will wait indefinitely.
Non-blocking or asynchronous message passing allows the sender to proceed immediately af-
ter sending the message. This removes deadlock-related complications but leads to additional
complexities in storing messages until the receiver is ready to process them.

Message storage. Several different strategies can be employed for sending and storing
messages. Messages can be written directly to dedicated registers or message buffers or can be
stored in memory via memory mapped I/O. Receiving processors can be notified on messages
via interrupts or by polling on memory-mapped locations. We will explore the various strategies
employed by message-passing on-chip network chips in Chapter 8.
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2.2.1 BRIEF STATE-OF-THE-ART SURVEY
In addition to the emergence of on-chip networks for cache-coherent chip multiprocessors, tiled
microprocessors also leverage on-chip networks for scalar operand networks. A tiled micropro-
cessor distributes functional units across multiple tiles; these designs mitigate problems of wire
delay present in large superscalar architectures. Instructions are scheduled across available tiles.
Architectures such as TRIPS [308], RAW [335], and Wavescalar [331] use operand networks
to communicate register values between producing and consuming instructions. The result of
an instruction is communicated to consumer tiles which can then wake up and fire instructions
waiting on the new data. While we focus primarily on shared-memory CMPs here, several in-
terconnection networks rely on message passing, including on-chip [145, 158, 335, 356] and
off-chip designs [91, 127, 207, 221]. Additional details are given in Chapter 8.

2.3 NOC INTERFACE STANDARDS
On-chip networks have to adhere to standardized protocols so that they can plug-and-play with
IP blocks that were also designed to interface with the same standard. Such standardized pro-
tocols define the rules for all signaling between the IP blocks and the communication fabric,
while permitting configuration of specific instances. Several widely used standards for on-chip
communications in SoCs today are ARM’s AMBA [27], ST Microelectronics’ STBus [246],
Sonics’ OCP [324], and OpenCores Wishbone [358]. Here, we will discuss some features that
are common across these standards, using ARM’s AMBA AXI [26] as the specific protocol for
illustration.We refer interested readers to Pasricha and Dutt [289] that goes through all existing
on-chip bus-based protocols in detail.

Bus-based transaction semantics. First, as current SoCs predominantly use buses as the
on-chip interconnects, these standard interfaces have bus-based semantics where nodes con-
nected to the interconnect are defined as masters or slaves, and communicate via transactions.
Masters start a transaction by issuing requests; slaves then receive and subsequently process
the request. The transaction is completed when the slave responds to the original request. This
request-response transaction model matches those used in buses, making it easier to design net-
work interface wrappers around IP blocks that were originally designed to interface with buses.
For instance, a processor core will be a master that initiates a new transaction through issuing
a write request to a memory module, while the memory module will be the slave that executes
the write request and responds with an acknowledgment response.

Every transaction in the AMBA AXI protocol sends address and control information on
the address channel, while data are sent on the data channel in bursts. Writes have an additional
response channel. These channels are illustrated for AXI reads and writes in Figure 2.10. The
sizes of these channels can range from 8 to 1024 bits, with a particular size instantiated for each
design. So an NoC that interfaces using the AXI protocol has to have these three channels. A
write from the master node will lead to its network interface encapsulating and translating the
address in the address channel to the slave’s node destination address in the message header,
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and the data in the write data channel encoded as the body of the message. The message will
then be broken down into packets and injected into the injection port of the attached router.
At the destination, the packets will be assembled into a message, and the address and control
information extracted from the header and fed into the AXI write address channel, while the
data are obtained from the body and fed into the AXI write data channel. Upon receipt of the
last flit of the message, the network interface will then compose a write response message and
send it back to the master node, feeding into the AXI write response channel at the master.
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Figure 2.10: AXI read and write channels [26].

Out-of-order transactions.Many of the latest versions of these standards relax the strict
ordering of bus-based semantics so point-to-point interconnect fabrics such as crossbars and
on-chip networks can be plugged in, while retaining backward compatibility to buses, such as
OCP 3.0 [297], AXI [26], and STNoC [245].

For instance, AXI relaxes the ordering between requests and responses, so responses need
not return in the same order as that of requests. Figure 2.11 illustrates this feature of AXI which
allows multiple requests to be outstanding and slaves to be operating at different speeds. This
allows multiple address and data buses to be used, as well as split-transaction buses (where a

Data

Address A11

D11D31D21

A21 A31

Figure 2.11: The AXI protocol allows messages to complete out of order: D21 returns data prior to
D11 even though A11 occurred prior to A21.
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transaction does not hold on to the bus throughout, but instead, requests and responses of the
same transaction separately arbitrate for the bus), and ultimately, on-chip networks. In on-chip
networks, packets sent between different pairs of nodes can arrive in different order from the
sending order, depending on the distance between the nodes and the actual congestion level. A
global ordering between all nodes is difficult to enforce. So out-of-order communication stan-
dards are necessary for on-chip network deployment.

Coherence. System-wide coherence support is provided by AMBA 4 ACE (AXI Co-
herency Extensions) and the more recent AMBA 5 CHI (Coherent Hub Interface) [26]. This
is in the form of additional channels to support various coherence messages, snoop response
controllers, barrier support, and QoS. This allows multiple processors to share memory for ar-
chitectures like ARM’s big.LITTLE.

2.4 CONCLUSION
This chapter introduces several system-level concepts that provide an important foundation and
context for our discussion of on-chip networks. We provide a high level overview of how various
architectural choices can impact on-chip network traffic. We also present a brief overview of
interface standards. We will revisit the impact of architectural design choices in Chapter 7 on
evaluation and in Chapter 8 where we present case studies of recent academic and industrial
designs that feature on-chip networks.
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C H A P T E R 3

Topology
The on-chip network topology determines the physical layout and connections between nodes
and channels in the network. The effect of a topology on overall network cost-performance is
profound. A topology determines the number of hops (or routers) a message must traverse as
well as the interconnect lengths between hops, thus influencing network latency significantly. As
traversing routers and links incurs energy, a topology’s effect on hop count also directly affects
network energy consumption. Furthermore, the topology dictates the total number of alternate
paths between nodes, affecting how well the network can spread out traffic and hence support
bandwidth requirements. The implementation complexity cost of a topology depends on two
factors: the number of links at each node (node degree) and the ease of laying out a topology on
a chip (wire lengths and the number of metal layers required).

One of the simplest topologies is a bus which connects a set of components with a single,
busshared channel. Each message on the bus can be observed by all components on the bus; it is

an effective broadcast medium. However, buses have limited scalability due to saturation of the
shared channel as additional components are added.

In this chapter, we will focus on switched topologies, where a set of components is con-
nected to one another via a set of routers and links. We first describe several metrics that are very
useful for developing back-of-the-envelope intuition when comparing topologies. Next, we will
describe several commonly used topologies in on-chip networks and compare them using these
metrics.

3.1 METRICS

Since the first decision designers have to make when building an on-chip network is, frequently,
the choice of the topology, it is useful to have a means for quick comparisons of different topolo-
gies before the other aspects of a network (such as its routing, flow control andmicroarchitecture)
are even determined. Here, we describe several abstract metrics that come in handy when com-
paring different topologies. Figure 3.1 shows three commonly used on-chip topologies used to
illustrate these metrics.

1Note that the figure illustrates the 2-D version of meshes and tori.
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Figure 3.1: Common on-chip network topologies.1

3.1.1 TRAFFIC-INDEPENDENTMETRICS
We first define a set of design-time metrics that are agnostic to the traffic flowing through the
network.

Degree.The degree of a topology refers to the number of links at each node. For instance,
degree for the topologies in Figure 3.1, a ring topology has a degree of two since there are two links

at each node, while a torus has a degree of four as each node has four links connecting it to
four neighboring nodes. Note that in the mesh network, not all switches have a uniform degree.
Degree is useful as a proxy for the network’s cost, as a higher degree requiresmore ports at routers,
which increases implementation complexity and adds area/energy overhead at each router. The
number of ports per router is referred to as the router radix.

Bisection bandwidth. The bisection bandwidth is the bandwidth across a cut that parti-
bisection
bandwidth tions the network into two equal parts.2 For example, in Figure 3.1, two links cross the bisection

for the ring, three for the mesh and six for the torus. This bandwidth is often useful in defining
worst-case performance of a particular network, since it limits the total data that can be moved
from one side of the system to the other. It also serves as a proxy for cost since it represents the
amount of global wiring that will be necessary to implement the network. As a metric, bisec-
tion bandwidth is less useful for on-chip networks as opposed to off-chip networks, since global
on-chip wiring is considered abundant relative to off-chip pin bandwidth.

Diameter.The diameter of the network is the maximum distance between any two nodes
diameter in the topology, where distance is the number of links in the shortest route. For example, in

Figure 3.1 the ring has a diameter of four, the mesh has a diameter of four and the torus has a
diameter of two. The diameter serves as a proxy for the maximum latency in the topology, in the
absence of contention.

2If there are multiple such cuts possible, it is the minimum among all the cuts.
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3.1.2 TRAFFIC-DEPENDENTMETRICS
Next, we define a set of metrics that depends on the traffic (i.e., source-destination pairs) flowing
through the network.

Hop count.The number of hops a message takes from source to destination, or the num-
ber of links it traverses, defines hop count. This is a very simple and useful proxy for network
latency, since every node and link incurs some propagation delay, even when there is no con-
tention. The maximum hop count is given by the diameter of the network. In addition to the

maximum hop
countmaximum hop count, average hop count is very useful as a proxy for network latency. It is given
average hop
count

by the average hops over all possible source-destination pairs in the network.
For the same number of nodes, and assuming uniform random traffic where every node

uniform random
traffichas an equal probability of sending to every other node, a ring (Figure 3.1a) will lead to higher

hop count than a mesh (Figure 3.1b) or a torus [93] (Figure 3.1c). For instance, in the figure
shown, assuming bidirectional links and shortest-path routing, the maximum hop count of the
ring is four, that of a mesh is also four, while a torus improves the hop count to two. Looking at
average hop count, we see that the torus again has the lowest average hop count (11

3
). The mesh

has a higher average hop count of 17
9
. Finally, the ring has the worst average hop count of the

three topologies in Figure 3.1 with an average of 22
9
. The formulas for deriving these values will

be presented in Section 3.2.
Maximum channel load. This metric is useful as a proxy for estimating the maximum

bandwidth the network can support, or the maximum number of bits per second (bps) that can
be injected by every node into the network before it saturates: maximum

channel loadMaximum Injection Bandwidth = 1 / Maximum Channel Load.

Intuitively, it involves first determining which link or channel3 in the network will be the most
congested given a particular traffic pattern, as this link will limit the overall network bandwidth.
For uniform random traffic, this link is often on the bisection cut. Next, the load on this channel
is estimated. Since at this early stage of design, we do not yet know the specifics of the links we are
using (how many actual interconnects form each channel, and each interconnects’ bandwidth
in bps), we need a relative way of measuring load. Here, we define it as being relative to the
injection bandwidth. So, when we say the load on a channel is two, it means that the channel is
loaded with twice the injection bandwidth. So, if we inject a flit every cycle at every node into
the network, two flits will wish to traverse this specific channel every cycle. If the bottleneck
channel can handle only one flit per cycle, it constrains the maximum bandwidth of the network
to half the link bandwidth, i.e., at most, a flit can be injected every other cycle. Thus, the higher
the maximum channel load, the lower the network bandwidth.

3We use link to refer to the physical set of wires connecting routers in an on-chip network, and channel to refer to the
logical connection between routers in the network. In most designs, the link and channel are identical and can be used
interchangeably.
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Channel load can be calculated in a variety of ways, typically using probabilistic analysis.

If routing and flow control are not yet determined, channel load can still be calculated assuming
ideal routing (the routing protocol distributes traffic amongst all possible shortest paths evenly)
and ideal flow control (the flow control protocol uses every cycle of the link whenever there is
traffic destined for that link).

Here, we will illustrate this with a simple example, but the rest of the chapter will just show
formulas for the maximum channel load of various common on-chip network topologies rather
than walking through their derivations. Figure 3.2 shows an example network topology with
two rings connected with a single channel. First, we assume uniform random traffic where every
node has an equal probability of sending to every other node in the network including itself. To
calculate maximum channel load, we need to first identify the bottleneck channel. Here, it is the
single channel between the rings, shown in bold. We will assume it is a bidirectional link. With
ideal routing, half of every node’s injected traffic will remain within its ring, while the other half
will be crossing the bottleneck channel. For instance, for every packet injected by node A, there
is 1=8 probability of it going to either B, C, D, E, F, G, H, or itself. When the packet is destined
for A, B, C, D, it does not traverse the bottleneck channel; when it is destined for E, F, G, H,
it does. Therefore, 1=2 of the injection bandwidth of A crosses the channel. So does 1=2 of the
injection bandwidth of the other nodes. Hence, the channel load on this bottleneck channel is
2. As a result the network saturates at 1=2 the injection bandwidth. Adding more nodes to both
rings will further increase the channel load, and thus decrease the bandwidth.

A B

C D

E F

G H

Figure 3.2: Channel load example with two rings connected via a single channel.

Path diversity. A topology that provides multiple shortest paths (jRsrc�dstj > 1, where
R represents the path diversity) between a given source and destination pair has greater path
diversity than a topology where there is only a single path between a source and destination pair

path diversity (jRsrc�dstj D 1). Path diversity within the topology gives the routing algorithm more flexibility
to load-balance traffic which reduces channel load and thus increases throughput. Path diversity
also enables packets to potentially route around faults in the network. The ring in Figure 3.1a
provides no path diversity (jRj D 1), because there is only one shortest path between pairs of
nodes. If a packet travels clock-wise between A and B (in Figure 3.1a), it traverses four hops;
if the packet goes counter-clockwise, it traverses five hops. More paths can be supplied only
at the expense of a greater distance traveled. With an even number of nodes in a ring, two
nodes that are half-way around the ring from each other will have a path diversity of two due
to two minimal paths. On the other hand, the mesh and torus in Figures 3.1b and c provide a
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wider selection of distinct paths between source and destination pairs. In Figure 3.1b, the mesh
supplies six distinct paths between A and B, all at the shortest distance of four hops.

3.2 DIRECTTOPOLOGIES: RINGS,MESHES, ANDTORI
A direct network is one where each terminal node (e.g., a processor core or cache in a chip

direct networkmultiprocessor) is associated with a router; all routers act as both sources/sinks of traffic and as
switches for traffic from other nodes. To date, most designs of on-chip networks have used direct
networks since co-locating routers with terminal nodes is oftenmost suitable in area-constrained
environments on a chip.

Direct topologies can be described as k-ary n-cubes, where k is the number of nodes along
k-ary n-cubeseach dimension, and n is the number of dimensions. For instance, a 4 � 4mesh or torus is a 4-ary

2-cube with 16 nodes, a 8 � 8 mesh or torus is a 8-ary 2-cube with 64 nodes, while a 4 � 4 � 4

mesh or torus is a 4-ary 3-cube with 64 nodes. This notation assumes the same number of nodes
on each dimension, so total number of nodes is kn. Practically speaking, most on-chip networks
utilize 2-D topologies that map well to the planar substrate as otherwise, more metal layers will
be needed; this is not the case for off-chip networks where cables between chassis provide 3-D
connectivity. In each dimension, k nodes are connected with channels to their nearest neighbors.
Rings fall into the torus family of network topologies as k-ary 1-cubes.

With a torus, all nodes have the same degree; however, with a mesh, nodes along the edge
of the network have a lower degree than nodes in the center of the network. A torus is also edge-
symmetric (a mesh is not), this property helps the torus network balance traffic across channels.

edge symmetryDue to the absence of edge-symmetry, a mesh network experiences significantly higher demand
for center channels than for edge channels.

Next, we examine the values for the torus and the mesh in terms of the abstract metrics
given in Section 3.1. A torus network requires two channels in each dimension or 2n. So for a
2-D torus, the degree would be four and for a 3-D torus, the degree would be six. The degree
is the same for a mesh, although some ports on the edge of the network will go unused. The
average hop count for a torus network is found by averaging the minimum distance between all
possible node pairs. This gives

Havg D
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Without the wrap-around links of a torus, the average minimum hop count for a mesh is
slightly higher and is given by
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The maximum channel load across the bisection of a torus under uniform random traffic
with an even k is k=8 limiting the maximum injection throughput to 8=k flits/node/cycle. For a
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mesh, the channel load increases to k=4 and lowers the maximum injection throughput to 4=k

flits/node/cycle.
Both mesh and torus networks provide path diversity for routing messages, compared to

a ring. As the number of dimensions increase, so does the path diversity.

3.3 INDIRECTTOPOLOGIES: CROSSBARS,
BUTTERFLIES, CLOSNETWORKS, ANDFATTREES

Indirect networks connect terminal nodes via one or more intermediate stages of switch nodes.
indirect network Only terminal nodes are sources and destinations of traffic, intermediate nodes simply switch

traffic to and from terminal nodes.
The simplest indirect topology is known as a crossbar. A crossbar connects n inputs to

crossbar
m outputs via n � m simple crosspoint switch nodes. It is called non-blocking as it can always
connect a sender to a unique receiver. Crossbars will be discussed further as components of router
microarchitectures in Chapter 6.

The butterfly network is an example of an indirect topology. Butterfly networks can be
described as k-ary n-flies. Such a network would consist of kn terminal nodes (e.g., cores, mem-

k-ary n-fly ory), and comprises n stages of kn�1 k � k intermediate switch nodes. In other words, k is the
degree of the switches, and n is the number of stages of switches. Figure 3.3 illustrates a 2-ary
3-fly network; source and destination nodes are shown as logically separate in this figure with
source nodes on the left and destination nodes on the right.

Next, we analyze the butterfly using the metrics given in Section 3.1. The degree of each
intermediate switch in a butterfly network is given as 2k. Unlike the mesh or the torus where the
hop count varies based on source-destination pair, every source-destination pair in a butterfly
network experiences the same hop count given by n � 1 (assuming that the source and desti-
nation nodes are also switches). With uniformly distributed traffic, the maximum channel load
for the butterfly is 1, leading to a peak injection throughput of 1 flit/node/cycle. Other traffic
patterns that require significant traffic to be sent from one half of the network to the other half
will increase the maximum channel load, lowering the injection throughput.

The primary disadvantages of a butterfly network are the lack of path diversity and the
inability of these networks to exploit locality. With no path diversity, a butterfly network per-
forms poorly in the face of unbalanced traffic patterns such as when each node in one half of the
network sends messages to a node in the other half.

A folded version of the butterfly, known as Flattened Butterfly [186] folds all intermediate
switches along a row into one switch, converting the indirect version of the topology to a direct
version. Each 2 � 2 switch now becomes a higher-radix switch. The 4 � 4 version is shown in
Figure 3.4 where every router has 7 ports (including the one from the core which is not shown
in the figure). Each destination can be reached with a maximum of two hops. However, minimal
routing can do a poor job of balancing the traffic load, so non-minimal paths have to be selected,
thereby increasing the hop count.



3.3. INDIRECTTOPOLOGIES 33

0

00 10 20

01 11 21

02 12 22

03 13 23

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 3.3: A 2-ary 3-fly butterfly network.

Figure 3.4: A 4 � 4 flattened butterfly network.

A symmetric Clos network is a three-stage4 network characterized by the triple, .m; n; r/
closwhere m is the number of middle stage switches, n is the number of input/output ports on each

input/output switch (first and last stage switches), and r is the number of first/last stage switches.
When m > 2n � 1, a Clos network is strictly non-blocking, i.e., any input port can connect to
any unique output port, like a crossbar. A Clos network consists of r � n nodes. A 3-stage Clos
has a hop count of four for all source destination pairs. A Clos network does not use identical
switches at each stage. The degree of the first and last stage switches is given by n C m while
the degree of the middle switches is 2r . With m middle stages, a Clos network provides path
diversity of jRsrc�dst j D m. A disadvantage of a Clos network is its inability to exploit locality

4A Clos network with a larger number of odd stages can be built by recursively replacing the middle switches with a 3-stage
Clos.
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between source and destination pairs. Figure 3.5 depicts a 3-stage Clos network characterized
by the triple .5; 3; 4/.

r = 4 n × m

m = 5 r × r

r = 4 m × n
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Figure 3.5: An .m D 5; n D 3; r D 4/ symmetric Clos network with r D 4n � m input-stage
switches, m D 5r � r middle-stage switches, and r D 4m � n output-stage switches. Crossbars form
all switches.

A Clos network can be folded along the middle set of switches so that the input and
output switches are shared. In Figure 3.6b, a 5-stage folded Clos network characterized by the
triple .2; 2; 4/ is depicted. The center stage is realized with another 3-stage Clos formed using
.2; 2; 2/ Clos network. This Clos network is folded along the top row of switches.

(a) A Binary Fat Tree (b) A Folded Clos

Figure 3.6: A fat tree network.
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A fat tree [222] is logically a binary tree network in which wiring resources increase for

fat treestages closer to the root node (Figure 3.6a). A fat tree can be constructed from a folded Clos
network, as shown in Figure 3.6b giving path diversity over the tree network in Figure 3.6a. The
Clos is folded back on itself at the root, logically giving a 5-stage Clos network. In a fat tree,
messages are routed up the tree until a common ancestor is reached and then routed down to the
destination; this allows the fat tree to take advantage of locality between communicating nodes.
Each switch in the fat tree has a logical degree of four, although the links in higher-level nodes
are much wider than those in the lower levels.

3.4 IRREGULARTOPOLOGIES
MPSoC design may leverage a wide variety of heterogeneous IP blocks; as a result of the het-
erogeneity, regular topologies such as a mesh or a torus described above may not be appropriate.
With these heterogeneous cores, a customized topology will often be more power efficient and
deliver better performance than a standard topology.

Often, communication requirements ofMPSoCs are known a priori. Based on these struc-
tured communication patterns, an application characterization graph can be constructed to cap-
ture the point-to-point communication requirements of the IP blocks. To begin constructing
the required topology, the number of components, their size, and their required connectivity as
dictated by the communication patterns must be determined.

An example of a customized topology for a video object plane decoder is shown in Fig-
ure 3.7. The MPSoC is composed of 12 heterogeneous IP blocks. In Figure 3.7a, the design is
mapped to a 3 � 4 mesh topology requiring 12 routers (R).When specific application character-
istics are taken into account (e.g., not every block needs to communicate directly with every other
block), a custom topology is created (Figure 3.7b). This irregular topology reduces the number
of switches from 12 to 5; by reducing the number of switches and the links in the topology,
significant power and area savings are achieved. Some blocks can be directly connected without
the need for a switch, such as the VLD and run length decoder units. Finally, the degree of
the switches has changed; the mesh in Figure 3.7a requires a switch with 5 input/output ports
(although ports can be trimmed on edge nodes). The 5 input/output ports represent the four
cardinal directions: north, south, east and west plus an Injection/Ejection port. All of these
ports require both input and output connections leading to 5 � 5 crossbars. With a customized
topology, not all blocks need both input and output ports; the largest switch in Figure 3.7b is a
4 � 4 switch. Not every connection between links coming into and out of a router is necessary
in the customized topology resulting in smaller switches; connectivity has been limited because
full connectivity is not needed by this specific application.

3.4.1 SPLITTINGANDMERGING
Two types of techniques have been explored for customizing a topology: splitting and merging.
With splitting, a large crossbar connecting all nodes is first created and then iteratively split into
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Figure 3.7: A regular (mesh) topology and a custom topology for a video object plane decoder
(VOPD) (from [47]).

multiple small switches to accommodate a set of design constraints. Alternatively, a network
with a larger number of switches such as a mesh or torus can be used as a starting point. From
this starting point, switches are merged together to reduce area and power.

Splitting. One technique for arriving at a customized network topology is to begin with
splitting a large fully connected switch (crossbar). Such a large crossbar will likely violate the design

constraints and must iteratively be split into smaller switches until design constraints are satis-
fied [157]. When a switch is split into two smaller switches creating a partition, the bandwidth
provided between the two switches must satisfy the volume of communication that must now
flow between partitions. Nodes can be moved between partitions to optimize the volume of
communication between switches.

Merging. An alternative to iteratively splitting larger switches into smaller switches is tomerging
begin with large number of switches and merge them [295, 326]. By merging adjacent routers
in the topology, power and area costs can be reduced. In this type of design flow, floorplanning
of the variousMPSoC components is done as the first step. Floorplanning can be done based on
the application characterization graph, e.g., nodes that communicate heavily should be placed in



3.4. IRREGULARTOPOLOGIES 37
close proximity during floor planning. Next, routers are placed at each of the channel intersection
points, where three or more channels merge or diverge. The last step merges adjacent routers if
they are close together and if merging will not violate bandwidth or performance constraints
and given that there is some benefit from such merging (e.g., power is reduced).

3.4.2 TOPOLOGY SYNTHESIS ALGORITHMEXAMPLE
Topology synthesis and mapping is an NP-hard problem [295]; as a result, several heuristics
have been proposed to find the best topology in an efficient manner. In this section, we provide
an example of one such application-specific topology synthesis algorithm for a MPSoC from
Murali et al. [258]. This algorithm is an example of a splitting algorithm; they begin with an
application communication graph showing the bandwidth required between the various appli-
cation tasks as shown in Figure 3.8a.
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Figure 3.8: Topology synthesis algorithm example.

Thealgorithm synthesizes a number of different topologies, starting with a topology where
all IP cores are connected through one large switch to the other extreme where each core has its
own switch. For each switch count, the algorithm tunes the operating frequency and the link
width. For a given switch count i , the input graph (Figure 3.8a) is partitioned into i min-cut
partitions. Figure 3.8b shows a min-cut partition for i D 3. The min-cut partition is performed
so that the edges of the graph that cross partitions have lower weights than the edges within
partitions. Additionally, the number of nodes assigned to each partition remains nearly the same.
Such a min-cut partition will ensure that traffic flows that have high bandwidth use the same
switch for communication.

Once the min-cut partitions have been determined, routes must be restricted to avoid
deadlocks. We discuss deadlock avoidance in Chapter 4. Next, physical links between switches
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Figure 3.9: Hierarchical topologies.

must be established and paths must be found for all traffic flows through the switches. Once
the size of the switches and their connectivity is determined, the design can be evaluated to
see if power consumption of the switches and hop count objectives have been met. Finally, a
floorplanner is used to determine the area and wire lengths of a synthesized design.

3.5 HIERARCHICALTOPOLOGIES

Up to this point, we have assumed a one-to-one correspondence between network nodes and
terminal nodes. We have also assumed a uniform topology across the entire system. However,
these need not be the case. In real systems, multiple nodes might be clustered together in one
topology, and these clusters connected together via another topology, building a hierarchical
design.

The simplest form of a hierarchical topology is one where multiple cores share the same
router node using concentrators. Figure 3.9a shows such a concentrated mesh, where four ter-concentration
minal nodes (cores, caches, etc) share a network router. The use of concentration reduces the
number of routers needed in the network, thereby reducing the hop count and the size (area) of
the network. This also helps scale networks to larger sizes. In Figure 3.9a concentration allows
a 3 � 3 mesh to connect 36 nodes with only 9 routers, instead of 36. However, on the flip side,
concentration can increase network complexity. The concentrator must implement a policy for
sharing injection bandwidth.This policy can dynamically share bandwidth or statically partition
bandwidth so that each node gets 1

c
the injection bandwidth, where c is the concentration factor.

Another drawback of using concentration is that during periods of bursty communication, the
injection port bandwidth can become a bottleneck.

Another hierarchical topology is shown in Figure 3.9b. A 32-core chip is partitioned into
8 clusters. Each cluster is built by connecting eight cores with a bi-directional ring. The four
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rings are connected together via another ring. The challenge in such a hierarchical topology is
the arbitration for bandwidth into the central ring.

3.6 IMPLEMENTATION
In this section, we discuss the implementation of topologies on a chip, looking at both physical
layout implications, and the role of abstract metrics defined at the beginning of the chapter.

3.6.1 PLACE-AND-ROUTE
There are two components of the topology which require careful thought during the physical
design: links and routers.

The links are routed on semi-global or global metal layers, depending on the channel
widths and the distance they need to traverse. Wire capacitance tends to be an order of mag-
nitude higher than that of transistors, and can dominate the energy of the network if not opti-
mized well. The target clock frequency determines the size of and distance between repeaters5
that need to be inserted to meet timing. Thicker wires with larger spacing between wires can
be employed to lower the wire resistance and coupling capacitance, thus increasing speed and
energy efficiency. However, metal layer density rules and design rules checking (DRC) can limit
how much one can play around with these parameters. In terms of area, the core to core links
can be routed over active logic, mitigating any area overheads apart from those of the repeaters.
But care needs to be taken since active switching of transistors can introduce cross talk in the
wires. Similarly, routing toggling links over sensitive circuits such as SRAMs which operate at
low voltages could introduce glitches and errors, leading to the area over caches usually being
blocked from wiring. Hence, the floorplanning of the entire chip needs to carefully consider
where router links lie relative to processor cores, caches, memory controllers, etc.

When implementing routers, the node degree (i.e., the number of ports in and out of
the router) determines the overhead, since each port has associated buffering and state logic,
and requires a link to the next node. As a result, while rings have poorer network performance
(latency, throughput, energy and reliability) when compared to higher-dimensional networks,
they have lower implementation overhead as they have a node degree of two while a mesh or
torus has a node degree of four. Similarly, high-radix topologies such as the 4 � 4 flattened
butterfly discussed in Section 3.3 have lower latency and higher throughput than a mesh for
the same channel width, but the seven ported routers add a higher area and energy footprint,
especially due to the larger crossbar switch whose area grows as a square of the number of ports.

The 2-Dfloorplan of the logical topology can also often lead to implementation overheads.
As an example, the torus from Figure 3.1 has to be physically arranged in a folded form to

folded torusequalize wire lengths (see Figure 3.10) instead of employing long wrap-around links between
edge nodes. As a result, wire lengths in a folded torus are twice that in a mesh of the same size, so
5An inverter or a pair of inverters.
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per-hop latency and energy are actually higher. Furthermore, a torus requires twice the number
of links which must be factored into the wiring budget. If the available wire tracks along the
bisection is fixed, a torus will be restricted to narrower links than a mesh, thus lowering per-link
bandwidth, and increasing transmission delay. From an architectural comparison on the other
hand, a torus has lower hop count (which leads to lower delay and energy) compared to a mesh.
These contrasting properties illustrate the importance of considering implementation details in
selecting between alternative topologies.

Similarly, trying to create an irregular topology optimized for an application’s commu-
nication graph could end up having many criss-crossing links. These would show up as wire
congestion during place-and-route forcing the automated tools or the designer to route around
congested nets adding delay and energy overheads.

Figure 3.10: Layout of a 8 � 8 folded torus.

3.6.2 IMPLICATIONOFABSTRACTMETRICS
We introduced various abstract metrics at the beginning of this chapter, and used them to com-
pare and contrast various common topologies. Here, we will discuss the implications of these
simple metrics on on-chip network implementation, explaining why they are good proxies for
on-chip network delay, area, and power, while highlighting common pitfalls in the use of these
metrics.
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Node degree is useful as a proxy for router complexity, as higher degree implies greater port

count. Adding a port in a router leads to additional input buffer queue(s), additional requestors
to the allocators, as well as additional ports to the crossbar switch, all major contributors to
a router’s critical path delay, area footprint, and power. While router complexity is definitely
increased for topologies with higher node degree, link complexity does not correlate directly
with node degree. This is because link complexity depends on the link width, as link area and
power overheads correlate more closely with the number of wires than the number of ports. So if
the same number of wires is divided amongst a 2-port router and a 3-port router, link complexity
will be roughly equal.

Hop count is a metric that is widely used as a proxy for overall network latency and power.
Intuitively, it makes sense, since flits typically have to stop at each hop, going through the router
pipeline followed by the link delay. However, hop count does not always correlate with network
latency in practice, as it depends heavily on the router pipeline length and the link propagation
delay. For instance, a network with only two hops, a router pipeline depth of 5 cycles, and long
inter-router distances requiring 4 cycles for link traversal, will have an actual network latency of
18 cycles. Conversely, a network with three hops where each router has a single-cycle pipeline
and the link delay is a single cycle, will have a total network latency of only six cycles. If both
networks have the same clock frequency, the latter network with the higher hop count will
instead be faster. Unfortunately, factors such as router pipeline depth are typically not known
until later in the design cycle.

With topologies typically trading off node degree and hop count, i.e., a topology may
have low node degree but high average hop count (e.g., a ring), while another may have high
node degree but low average hop count (e.g., a mesh), comparisons between topologies become
trickier. Implementation details have to be factored in before an astute choice can be made.

Maximum channel load is another metric that is useful as a proxy of network performance
and throughput. Here, it is a good proxy for network saturation throughput and maximum
power. The higher the maximum channel load on a topology, the greater the congestion in the
network caused by the topology and routing protocol, and thus, the lower the overall realizable
throughput. Clearly, the specific traffic pattern affects maximum channel load substantially and
representative traffic patterns should be used in estimating maximum channel load and through-
put. Since it is a good proxy for saturation, it is also very useful for estimating peak power, as
dynamic power is highest with peak switching activity and utilization in the network.

Bisection bandwidth is typically used as the metric to define the bandwidth of the net-
work. The channel load on the bisection links determines the peak achievable throughput of the
network for uniform random traffic. For instance, for a 8 � 8 mesh, the channel load on the
bisection links, as discussed in Section 3.2, is 8=4 D 2, setting the peak injection throughput
to 1=2 D 0:5 flits/node/cycle. However, the actual throughput achieved by the network will be
lower than this due to imperfect load balance. Imperfect load balance results from inefficiencies
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in the routing and flow-control protocols which determine the actual amount of data that can
use the bisection links every cycle; these issues will be discussed in later chapters.

3.7 BRIEF STATE-OF-THE-ART SURVEY
Significant research exists into all of the topologies discussed in this chapter. Much of this re-
search has been conducted with respect to off-chip networks in the past [86, 110, 294], but
fundamental concepts apply to on-chip networks as well.

The majority of on-chip network proposals gravitate toward either ring or mesh topolo-
gies. For example, the IBMCell processor, the first product with an on-chip network, used a ring
topology, largely for its design simplicity, its ordering properties and low power consumption.
Four rings are used to boost the bandwidth and to help alleviate the latency (halving the average
hop count). Similarly, the proposed Intel Larrabee [312] also adopted the two-ring topology.
Another simple, regular topology, the mesh, has also been adopted. The MIT Raw chip, the
first chip with an on-chip network has four meshes. Chapter 8 elaborates further.

In Balfour and Dally [38], a comparison of various on-chip network topologies including
a mesh, concentrated mesh, torus, and fat tree, is presented. Furthermore, cost (including power
and area) and performance are considered in this design space exploration. Balfour andDally also
suggest potential benefits for employing multiple parallel networks (all of the same topologies)
to improve network throughput. Multiple meshes have been used in the MIT Raw chip and
its follow-on commercialization into the Tilera TILE64 chip [356]. Each parallel network is a
mesh topology and different types of traffic are routed over the distinct networks. Multiple mesh
networks have also been proposed to improve energy efficiency of the network [100]. Multiple
rings have been used in the IBM Cell [293] and the proposed Intel Larrabee [312].

Novel topologies have also been proposed for on-chip networks, focusing on the unique
properties of on-chip networks such as the availability of large number of wiring tracks as well as
the irregularity of MPSoC’s traffic demands. Examples include the flattened butterfly [186], the
dragonfly [187], a hierarchical star [218], the dodec [368], and the spidergon [83]. Hierarchical
combinations of topologies, as well as the addition of express links between non-adjacent nodes
have also been proposed [23, 88, 97, 141], and tailored to the MPSoC domain where there is
prior knowledge of on-chip network bandwidth demands and connectivity [156, 268]. General
purpose topologies tailored to specific characteristics of memory traffic have been proposed for
GPUs [35] and for scale-out datacenter workloads [230]. Recent work also explores scaling
on-chip network topologies to hundreds, thousands of cores [10, 142].

In the MPSoC domain, a variety of topologies have been explored. SPIN [22] proposes
using a fat tree network. BothÆthereal [135] and xpipes [169] leverage irregular topologies cus-
tomized for specific application demands. The Nostrum design relies on a mesh [247]. Bolotin
et al. [53] propose trimming unnecessary links from a mesh and leveraging non-uniform link
bandwidth within the mesh.
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Routing
After determining the network topology, the routing algorithm is used to decide what path a
message will take through the network to reach its destination. The goal of the routing algo-
rithm is to distribute traffic evenly among the paths supplied by the network topology, so as
to avoid hotspots and minimize contention, thus improving network latency and throughput.
All of these performance goals must be achieved while adhering to tight constraints on imple-
mentation complexity: routing circuitry can stretch critical path delay and add to a router’s area
footprint. While energy overhead of routing circuitry is typically low, the specific route cho-
sen affects hop count directly, and thus substantially affects energy consumption. In addition,
the path diversity enabled by the routing algorithm is also useful for increasing resiliency in the
presence of network faults.

4.1 TYPESOFROUTINGALGORITHMS

In this section, we briefly discuss various classes of routing algorithms. Routing algorithms are
generally divided into three classes: deterministic, oblivious and adaptive.

While numerous routing algorithms have been proposed, the most commonly used rout-
ing algorithm in on-chip networks is dimension-ordered routing (DOR) due to its simplicity.

dimension-order
routing (DOR)Dimension-ordered routing is an example of a deterministic routing algorithm, in which all
deterministic
routing

messages from node A to B will always traverse the same path. With DOR, a message tra-
verses the network dimension-by-dimension, reaching the ordinate matching its destination
before switching to the next dimension. In a 2-D topology such as the mesh in Figure 4.1,
X-Y dimension-ordered routing sends packets along the X-dimension first, followed by the
Y-dimension. A packet travelling from (0,0) to (2,3) will first traverse 2 hops along the X-
dimension, arriving at (2,0), before traversing 3 hops along the Y-dimension to its destination.

Another class of routing algorithms are oblivious ones, where messages traverse different
oblivious routingpaths from A to B, but the path is selected without regard to network congestion. For instance,

a router could randomly choose among alternative paths prior to sending a message. Figure 4.1
shows an example where messages from (0,0) to (2,3) can be randomly sent along either the
Y-X route or the X-Y route. Deterministic routing is a subset of oblivious routing.

A more sophisticated routing algorithm can be adaptive, in which the path a message
adaptive routingtakes from A to B depends on network traffic situation. For instance, a message can be initially

following the X-Y route and see congestion at (1,0)’s east outgoing link. Due to this congestion,
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DOR Oblivious Adaptive

(2,3)

(0,0)

Figure 4.1: DOR illustrates an X-Y route from (0,0) to (2,3) in a mesh, while Oblivious shows
two alternative routes (X-Y and Y-X) between the same source-destination pair that can be chosen
obliviously prior to message transmission. Adaptive shows a possible adaptive route that branches
away from the X-Y route if congestion is encountered at (1,0).

the message will instead choose to take the north outgoing link toward the destination (see
Figure 4.1).

Routing algorithms can also be classified as minimal and non-minimal. Minimal routing
algorithms select only paths that require the smallest number of hops between the source and

minimal routing the destination. Non-minimal routing algorithms allow paths to be selected that may increase
non-minimal
routing the number of hops between the source and destination. In the absence of congestion, non-

minimal routing increases latency and also power consumption as additional routers and links
are traversed by a message. With congestion, the selection of a non-minimal route that avoids
congested links, may result in lower latency for packets.

Before we get into details on specific deterministic, oblivious, and adaptive routing algo-
rithms, we will discuss the potential for deadlock that can occur with a routing algorithm.

4.2 DEADLOCKAVOIDANCE
In selecting or designing a routing algorithm, not only must its effect on delay, energy, through-
put and reliability be taken into account, most applications also require the network to guarantee
deadlock freedom. A deadlock occurs when a knotted1 cycle exists among the paths of multi-

routing deadlock ple messages. Figure 4.2 shows four gridlocked (deadlocked) messages waiting for links that are
currently held by other messages, preventing any message from making forward progress. The
packet entering router A from the South input port is waiting to leave through the East output
port, but another packet is holding onto that exact link while waiting at router B to leave via the

1In adaptive routing, cycles are necessary but not sufficient condition for deadlocks, as there could exist a cycle but there is a
way out of this cycle, such as through an escape path. Knotted cycles more precisely define deadlock situations [347, 348].
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South output port, which is again held by another packet that is waiting at router C to leave via
the West output port and so on.

Deadlock freedom can be ensured either in the routing algorithm, by preventing cycles
among the routes generated by the algorithm, or in the the flow control protocol, by preventing
router buffers from being acquired and held in a cyclic manner [110, 294]. The former will be
discussed in this chapter, while the latter will be discussed in Chapter 5.6.

A B

D C

Figure 4.2: A classic network deadlock where four packets cannot make forward progress as they
are waiting for links that other packets are holding on to.

4.3 DETERMINISTICDIMENSION-ORDEREDROUTING
A routing algorithm can be described by which turns are permitted. Figure 4.3a illustrates all
possible turns in a 2-D mesh network while Figure 4.3b illustrates the more limited set of per-
missible turns allowed by DOR X-Y routing. Allowing all turns results in cyclic resource depen-
dencies, which can lead to network deadlock. To prevent these cyclic dependencies, certain turns
should be disallowed. As you can see, no cycle is present in Figure 4.3b. Specifically, a message
traveling east or west is allowed to turn north or south; however, messages traveling north and

(a) All turns (b) X - Y turns

Figure 4.3: Possible routing turns for a 2-D Mesh.
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south are permitted no turns. Two of the four turns in Figure 4.2 will not be permitted, so a
cycle is not possible.

Alternatively, Y-X routing can be usedwheremessages traveling north or south are allowed
to turn east or west but once a message is traveling East or West, no further turns are permitted.
Depending on the network dimensions, i.e., whether there are more nodes along X or Y, one
of these routing algorithms will balance load better with uniform random traffic since channel
load is higher along the dimension with fewer nodes.

Dimension order routing is both simple and deadlock-free; however, it eliminates path
diversity in a mesh network and thus lowers throughput. With dimension order routing, exactly
one path exists between every source and destination pair. Without path diversity, the routing
algorithm is unable to route around faults in the network or avoid areas of congestion. As a result
of routing restrictions, dimension order routing does a poor job of load balancing the network.

4.4 OBLIVIOUSROUTING
Using an oblivious routing algorithm, routing paths are chosen without regard to the state of
the network. By not using information about the state of the network, these routing algorithms
can be kept simple.

Valiant’s randomized routing algorithm [342] is one example of an oblivious routing algo-
Valiant’s routing
algorithm rithm. To route a packet from source s to destination d using Valiant’s algorithm, an intermediate

destination d’ is randomly selected. The packet is first routed from s to d’ and then from d’ to d.
By routing first to a randomly selected intermediate destination before routing to the final des-
tination, Valiant’s algorithm is able to load balance traffic across the network; the randomization
causes any traffic pattern to appear to be uniform random. Load balancing with Valiant’s algo-
rithm comes at the expense of locality; for example, by routing to an intermediate destination,
the locality of near neighbor traffic on a mesh is destroyed. Hop count is increased, which in
turn increases the average packet latency and the average energy consumed by the packet in the
network. Besides, not only is locality destroyed with Valiant’s algorithm, the maximum channel
load can also be doubled, halving the network bandwidth.

Valiant’s routing algorithm can be restricted to support only minimal routes [259], by
restricting routing choices to only the shortest paths in order to preserve locality. In a k-ary
n-cube topology, the intermediate node d’ must lie within the minimal quadrant; the smallest
n-dimensional sub-network with s and d as corner nodes bounding this quadrant.

With Valiant’s routing whether considering minimal or non-minimal selection of d’, di-
mension order routing can be used to route from s to d’ and from d’ to d. If DOR is used, not all
paths will be exploited but better load balancing is achieved than deterministic routing from s
directly to d. Figure 4.4 illustrates a routing path selected using Valiant’s algorithm and minimal
oblivious routing. In Figure 4.4a, Valiant’s algorithm randomly selects an intermediate destina-
tion d’. The random selection can destroy locality and significantly increase hop count; here, the
hop count is increased from three hops to nine hops. To preserve locality, minimal oblivious
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routing can be employed as in Figure 4.4b. Now, d’ can only be selected to lie within the min-
imal quadrant formed by s and d, preserving the minimum hop count of three. One possible
selection is highlighted (two other paths are possible for this source-destination pair as shown
with dashed lines).

d 

s s

d d ’

d ’

(a) Valiant’s Routing Algorithm (b) Minimal Oblivious Routing Algorithm

Figure 4.4: Oblivious routing examples.

Valiant’s routing algorithm and minimal oblivious routing are deadlock free when used
in conjunction with X-Y routing. An example of an oblivious routing algorithm that is not
deadlock free is one that randomly chooses between X-Y or Y-X routes.The oblivious algorithm
that randomly chooses between X-Y or Y-X routes is not deadlock-free because all four turns
from Figure 4.2 are possible leading to potential cycles in the link acquisition graph.

4.5 ADAPTIVEROUTING
Amore sophisticated routing algorithm can be adaptive, i.e., the path a message takes fromA to
B depends on the network traffic situation. For instance, a message can be going along the X-Y
route, see congestion at (1,0)’s east outgoing link and instead choose to take the north outgoing
link toward the destination (see Figure 4.1).

Local or global information can be leveraged tomake adaptive routing decisions. Adaptive
routing algorithms often rely on local router information such as queue occupancy and queu-
ing delay to gauge congestion and select links [89]. The backpressure mechanisms used by flow
control (discussed in the next chapter) allow congestion information to propagate from the con-
gestion site back through the network.

Figure 4.5 shows all possible (minimal) routes that a message can take from Node (0,0)
to Node (2,3). There are nine possible paths. An adaptive routing algorithm that leverages only
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(2,3)

(0,0)

Figure 4.5: Adaptive routing example.

minimal paths could exploit a large degree of path diversity to provide load balancing and fault
tolerance.

Adaptive routing can be restricted to taking minimal routes between the source and the
destination. An alternative option is to employ misrouting, which allows a packet to be routedmisrouting
in a non-productive direction resulting in non-minimal paths. When misrouting is permitted,
livelock becomes a concern. Without mechanisms to guarantee forward progress, livelock can

livelock occur as a packet is continuously misrouted so as to never reach its destination. We can combat
this problem by allowing a maximum number of misroutes per packet and giving higher priority
to packets than have been misrouted a large number of times. Misrouting increases the hop
count but may reduce end-to-end packet latency by avoiding congestion (queueing delay).

With a fully adaptive routing algorithm, deadlock can become a problem. For example,
the adaptive route shown in Figure 4.1 is a superset of oblivious routing and is subject to poten-
tial deadlock. Planar-adaptive routing [73] limits the resources needed to handle deadlock by
restricting adaptivity to only two dimensions at a time. Duato has proposed flow control tech-
niques that allow full routing adaptivity while ensuring freedom fromdeadlock [109].Deadlock-
free flow control will be discussed in Chapter 5.

Another challenge with adaptive routing is preserving inter-message ordering as may be
needed by the coherence protocol. If messages must arrive at the destination in the same order
that the source issued them, adaptive routing can be problematic. Mechanisms to re-order mes-
sages at the destination can be employed or messages of a given class can be restricted in their
routing to prevent re-ordering.
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ADAPTIVETURNMODELROUTING
We introduced turn model routing earlier in Section 4.3 and discussed how dimension order
X-Y routing eliminates two out of four turns (Figure 4.3). Here, we explain how turn model
can be more broadly applied to derive deadlock-free adaptive routing algorithms. Adaptive turn

turn model
routingmodel routing eliminates the minimum set of turns needed to achieve deadlock freedom while

retaining some path diversity and potential for adaptivity.
With dimension order routing only four possible turns are permitted of the eight turns

available in a 2-D mesh. Turn model routing [131] increases the flexibility of the algorithm by
allowing six out of eight turns. Only one turn from each cycle is eliminated.

In Figure 4.6, three possible routing algorithms are illustrated. Starting with all possible
turns (shown in Figure 4.6a), the north to west turn is eliminated; after this elimination is made,
the three routing algorithms shown in Figure 4.6 can be derived. In Figure 4.6a, the west-first
algorithm is shown; in addition to eliminating the North toWest turn, the South toWest turn is
eliminated. In other words, a message must first travel in the West direction before traveling in
any other direction.The North-Last algorithm (Figure 4.6b) eliminates both the North toWest
and the North to East turns. Once a message has turned North, no further turns are permitted;
hence, the North turn must be made last. Finally, Figure 4.6c removes turns fromNorth toWest
and East to South to create the Negative-First algorithm. A message travels in the negative
directions (west and south) first before it is permitted to travel in positive directions (east and
north). All three of these turn model routing algorithms are deadlock-free. Figure 4.7 illustrates
a possible turn elimination that is invalid; the elimination of North to West combined with the
elimination of West to North can lead to deadlock. A deadlock cycle is depicted in Figure 4.7b
that can result from a set of messages using the turns specified in Figure 4.7a.

(a) West First Turns (c) Negative First Turns(b) North Last Turns

Figure 4.6: Turn model routing.

Odd-even turn model routing [74] proposes eliminating a set of two turns depending on
whether the current node is in an odd or even column. For example, when a packet is traversing
a node in an even column,2 turns from East to North and from North to West are prohibited.
For packets traversing an odd column node, turns from East to South and from South to West
are prohibited. With this set of restrictions, the odd-even turn model is deadlock free provided

2A column is even if the dimension-0 coordinate of the column is even.
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(a) Illegal Turn Model Routing (b) Resulting Deadlock Cycle

Figure 4.7: Turn model deadlock.

(a) Exploiting Path Diversity (b) No Path Diversity

(2,3)

(2,0)

(0,3)

(0,0)

Figure 4.8: Negative-first routing example.

180ı turns are disallowed. The odd-even turn model provides better adaptivity than other turn
model algorithms such as West-First. With West-First, destinations to the West of the source,
have no flexibility; with odd-even routing, there is flexibility depending on the allowable turns
for a given column.

In Figure 4.8, we apply the Negative-First turn model routing to two different source
destination pairs. In Figure 4.8a, three possible routes are shown between (0,0) and (2,3) (more
are possible); turns from North to East and from East to North are permitted allowing for
significant flexibility. However, in Figure 4.8b, there is only one path allowed by the algorithm
to route from (0,3) to (2,0).The routing algorithm does not allow the message to turn from East
to South. Negative routes must be completed first, resulting in no path diversity for this source-
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destination pair. As illustrated by this example, turn model routing provides more flexibility and
adaptivity than dimension-order routing but it is still somewhat restrictive.

4.6 MULTICASTROUTING
So far, we have focused on unicast (i.e., one-to-one) routing algorithms. However, there often
occur scenarios where a core needs to send the same message to multiple cores. This is known as
a broadcast (if all cores in the system need to be signaled) or a multicast (if a subset of the cores in
the system need to be signaled). In shared memory cache coherent systems, examples of this are
seen in broadcast-based and in limited directory-based coherence protocols. In message passing
systems, this is required by routines like MPI_Bcast. A naïve implementation of multicasts is
to simply send multiple unicasts, one per destination. But this increases traffic in the network
substantially, leading to poor network latency and throughput [114].

There have been a few proposals to support multicast routing on-chip. Virtual Circuit
Tree Multicasting (VCTM) [114] adds small routing tables at every router. For every multicast,
one unicast setup packet per destination is sent out before the multicast to configure the routing
tables along the XY route. All setup packets for the same multicast destination set carry a unique
VCT ID, which corresponds to the index in the routing table. Each setup packet appends its
output port to the VCT ID entry in the routing table, thus setting up the directions out of which
the multicast flit should get forked. All subsequents multicasts to this destination are injected
with this VCT ID and get appropriately forked at the routers in the network. Whirl [206] is
a routing algorithm optimized for broadcasts, that tries to create load-balanced broadcast trees
on the fly, allowing broadcasts to use different combinations of links, thereby increasing link
utilization and throughput. In both of these designs, the router needs to support forking of the
same flit out of multiple directions.

4.7 ROUTINGON IRREGULARTOPOLOGIES
The discussion of routing algorithms in this chapter has assumed a regular topology such as a
torus or a mesh. In the previous chapter, the potential for power and performance benefits of
using irregular topologies for MPSoCs composed of heterogeneous nodes was explored. Irreg-
ular topologies can require special considerations in the development of a routing algorithm.
Common routing implementations for irregular networks rely on source table routing or node-
table routing [54, 123, 169]. Care must be taken when specifying routes so that deadlock is not
induced. Turn model routing may not be feasible if certain connectivity is removed by the pres-
ence of oversized cores in a mesh network, for example. Up*/Down* [310] routing is a popular
deadlock-free routing algorithm for irregular topologies, that marks each link as either Up or
Down, starting from a root node. All flits can only transition from a Up link to a Down link,
but never the opposite, which guarantees deadlock freedom.
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4.8 IMPLEMENTATION
In this section, we discuss various implementation options for routing algorithms. Routing algo-
rithms can be implemented using look-up tables at either the source nodes or within each router.
Combinational circuitry can be used as an alternative to table-based routing. Implementations
have various trade-offs, and not all routing algorithms can be achieved with each implementa-
tion. Table 4.1 shows examples for how routing algorithms in each of the three different classes
can be implemented.

Table 4.1: Routing algorithm and implementation options

Routing Algorithm Source Routing Combinational Node Table

Deterministic

DOR Yes Ye s Ye s

Oblivious

Valiant’s Yes Yes Yes

Minimal Yes Yes Yes

Adaptive No Yes Yes

4.8.1 SOURCEROUTING
Routing algorithms can be implemented in several ways. First, the route can be embedded in
the packet header at the source, known as source routing. For instance, the X-Y route in Fig-
ure 4.1 can be encoded as < E; E; N; N; N; Eject >, while the Y-X route can be encoded as
< N; N; N; E; E; Eject >. At each hop, the router will read the leftmost direction off the route
header, send the packet toward the specified outgoing link, and strip off the portion of the header
corresponding to the current hop.

There are a few benefits to source routing. First, by selecting the entire route at the source,
latency is saved at each hop in the network since the route does not need to be computed or
looked up. The per-router routing hardware is also saved; no combinational routing logic or
routing tables are needed once the packet has received its route from the source node. Second,
source routing tables can be reconfigured to deal with faults and can support irregular topologies.
Multiple routes per source-destination pair can be stored in the table (as shown in Table 4.2)
and selected randomly for each packet to improve load balancing.

The disadvantages of source routing include the bit overheads required to store the routing
table at the network interface of each source and to store the entire routing path in each packet;
these paths are of arbitrary length and can grow large depending on network size. For a 5-port
switch, each routing step is encoded by a 3-bit binary number. Just as the packet must be able to
handle arbitrary length routing paths, the source table must also be designed to efficiently store
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Table 4.2: Source routing table at Node (0,0) for the 2 � 3 mesh in Figure 4.1

Destination Route 0 Route 1

00 X X

10 EX EX

20 EEX EEX

01 NX NX

11 NEX ENX

21 NEEX ENEX

02 NNX NNX

12 ENNX NENX

22 EENNX NNEEX

03 NNNX NNNX

13 NENNX ENNNX

23 EENNNX NNNEEX

different length paths. Additionally, by choosing the entire route at the source node, source-
based routing is unable to take advantage of dynamic network conditions to avoid congestion.
However, as mentioned, multiple routes can be stored in the table and selected either randomly
or with a given probability to improve the load distribution in the network.

4.8.2 NODETABLE-BASEDROUTING
More sophisticated algorithms are realized using routing tables at each hop which store the
outgoing link a packet should take to reach a particular destination. By accessing routing infor-
mation at each hop (rather than all at the source), adaptive algorithms can be implemented and
per-hop network congestion information can be leveraged in making decisions.

Table 4.3 shows the routing table for the west-first turn model routing algorithm on a
3-ary 2-mesh. Each node’s table would consist of the row corresponding to its node identifier,
with up to two possible outgoing links for each destination. Ejection is indicated by an X. By
implementing a turn model routing algorithm in the per-node tables, some adaptivity can be
achieved.

Compared to source routing, node-based routing requires smaller routing tables at each
node. Each routing table needs to store only the routing information to select the next hop for
each destination rather than the entire path. When multiple outputs are included per destina-
tion, node-based routing supports some adaptivity. Local information about congestion or faults
can be used to bias the route selection to the non-congested link or to a non-faulty path. Node-
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Table 4.3: Table-based routing for a 3 � 3 mesh with west-first turn model algorithm

TO

From 00 01 02 10 11 12 20 21 22

00 X - N - N - E - E N E N E - N E N E

01 S - X - N - E S E - E N E S E - E N

02 S - S - X - E S E S E - E S E S E -

10 W - W - W - X - N - N - E - E N E N

11 W - W - W - S - X - N - E S E - N E

12 W - W - W - S - S - X - E S E S E -

20 W - W - W - W - W - W - X - N - N -

21 W - W - W - W - W - W - S - X - N -

22 W - W - W - W - W - W - S - S - X -

based routing tables can also be programmable. By allowing the routing tables to be changed,
the routing algorithm is better able to tolerate faults in the network.

Themost significant downside to node routing tables is the increase in packet delay. Source
routing requires a single look-up to acquire the entire routing path for a packet.With node-based
routing, the latency of a look-up must be expended at each hop in the network.

4.8.3 COMBINATIONALCIRCUITS
Alternatively, the message can encode the ordinates of the destination and use comparators
at each router to determine whether to accept (eject) or forward the message. Simple routing
algorithms are typically implemented as combinational circuits within the router due to the low
overhead.

With source routing, the packet must contain space to carry all the bits needed to specify
the entire path. Routing using combinational circuits requires only that the packet carry the
destination identifier. The circuits required to implement the routing algorithm can be quite
simple and executed with very low latency. An example circuit to compute the next hop based
on current buffer occupancies in a 2-D mesh is shown in Figure 4.9. Alternatively, the route
selection could implement dimension order routing rather than make a selection based on queue
lengths.

By implementing the routing decision in combinational circuits, the algorithm is specific
to one topology and one routing algorithm. The generality and configurability of table-based
strategies are sacrificed. Despite the speed and simplicity of using a circuit to compute the next
hop in the routing path, this computation adds latency to the packet traversal when compared
to source-based routing. As with node-routing, the next output must be determined at each hop
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Figure 4.9: Combinational routing circuit for 2-D mesh.

in the network. As will be discussed in Chapter 6, this routing computation can add a pipeline
stage to the router traversal.

4.8.4 ADAPTIVEROUTING
Adaptive routing algorithms need mechanisms to track network congestion levels, and update
the route. Route adjustments can be implemented by modifying the header, by employing com-
binational circuitry that accepts as input these congestion signals, or by updating entries in a
routing table. Many congestion sensitive mechanisms have been proposed, with the simplest
being tapping into information that is already captured and used by the flow control protocol,
such as buffer occupancy or credits [89, 319].

The primary benefit of increasing the information available to the routing circuitry is adap-
tivity. By improving the routing decision based on network conditions, the network can achieve
higher bandwidth and reduce the congestion latency experienced by packets.

The disadvantage of such an approach is complexity. Additional circuitry is required for
congestion-based routing decisions; this circuitry can increase the latency of a routing decision
and the area of the router. Although the leveraging of information already available at the router
is often done to make routing decisions, increasing the sophistication of the routing decision
may require that additional information be communicated from adjacent routers.This additional
communication could increase the network area and energy.
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4.9 BRIEF STATE-OF-THE-ART SURVEY
In this section, we provide a brief overview of current routing algorithm and implementation
research in on-chip networks.

Algorithms. Many on-chip network chip prototypes utilize dimension order routing for
its simplicity and deadlock freedom (see Chapter 8); however, other routing techniques have
been proposed.

Various oblivious routing algorithms [13, 75, 193, 313, 320] have been explored to push
bandwidth without the added complexity of adaptive routing. Adaptive routing algorithms have
also been investigated [74, 125, 137, 190, 233, 301, 319], with various papers focusing on the
implementation overhead of adaptive routing given the tight design constraints of on-chip net-
works [137, 233, 236, 301]. Routing algorithms that dynamically switch between adaptive and
deterministic have been proposed [162]. Ætheral employs source-based routing and relies on
the turn model for deadlock freedom [135]. Flattened butterfly [186] is an example of an on-
chip network that uses non-minimal routing to improve load balancing in the network; non-
minimal routes are also employed in a bufferless on-chip network to prevent packets from being
dropped [252]. Deflective routing [262] attempts to route packets to a free virtual channel along
the minimal path but will misroute when this is not possible. Customized routing can be spec-
ified for application-specific designs with well understood communication patterns [163, 257].

This chapter has focused most of its discussion of routing algorithms on unicast rout-
ing, that is routing a packet from a single source to a single destination. Recent research has
also explored the need to support for routing of collective communication including multicast
routing [2, 114, 206, 234, 304, 354] and many-to-one routing [206, 234].

Implementation. Various table-based implementations of routing algorithms have been
explored for on-chip networks. Node table-based routing is proposed for regular topologies [124,
304], while table-based routing for irregular topologies have also been explored [54, 123, 169,
278]. Multicast routing has been proposed using a table-based implementation [114, 304] or a
circuit-based implementation [206, 234, 354].

Fault-tolerant Routing.There has been a recent interest in designing routing algorithms
for on-chip networks where certain links might fail due to soft/hard errors. These designs add
routing tables into each router and reconfigure these upon fault detection with deadlock-free
routes [20, 216].
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C H A P T E R 5

FlowControl
Flow control governs the allocation of network buffers and links. It determines when buffers
and links are assigned to messages, the granularity at which they are allocated, and how these
resources are shared among the many messages using the network. A good flow control proto-
col lowers the latency experienced by messages at low loads by not imposing high overhead in
resource allocation, and drives up network throughput by enabling effective sharing of buffers
and links across messages. In determining the rate at which packets access buffers (or skip buffer
access altogether) and traverse links, flow control is instrumental in determining network energy
and power consumption.The implementation complexity of a flow control protocol includes the
complexity of the router microarchitecture as well as the wiring overhead required for commu-
nicating resource information between routers.

5.1 MESSAGES, PACKETS, FLITS, ANDPHITS
When a message is injected into the network, it is first segmented into packets, which are then message

packetdivided into fixed-length flits, short for flow control units. For instance, a 128-byte cache line
flitsent from a sharer to a requester will be injected as a message, and if the maximum packet size

is larger than 128 bytes, the entire message will be encoded as a single packet. The packet will
consist of a head flit that contains the destination address, body flits, and a tail flit that indicates

head, body and
tail flitsthe end of a packet. Flits can be further broken down into phits, which are physical units and
phitscorrespond to the physical channel width. The breakdown of messages to packets and packets to

flits is depicted in Figure 5.1a. Head, body, and tail flits all contain parts of the cache line and the
cache coherence command. Each flit also contains certain control information such as flit type
and virtual channel number. For instance, if flit size is 128 bits, the 128-byte packet will consist
of 8 flits: 1 head, 6 body, and 1 tail, ignoring the extra bits needed to encode the destination and
other information needed by the flow control protocol. In short, a message is the logical unit
of communication above the network, and a packet is the physical unit that makes sense to the
network. A packet contains destination information while a flit may not, thus all flits of a packet
must take the same route.

Due to the abundance of on-chip wiring resources, channels tend to be wider in on-chip
networks, so messages are likely to consist of a single packet. In off-chip networks, channel
widths are limited by pin bandwidth; this limitation causes flits to be broken down into smaller
chunks called phits. To date, in on-chip networks, flits are composed of a single phit and are the
smallest subdivision of a message due to wide on-chip channels. Additionally, as illustrated in
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Message

Packet

Cache Line

Coherence
Command

Flit Type VCID

Type VCID Addr Bytes 0–15 Bytes 16–31 Bytes 32–47 Bytes 48–63RC

Type VCID Addr CmdRC

Route Seq#

Header

Head Flit

Head, Body, Tail,
Head & Tail

Phit

Body Flit Tail Flit

Head Flit Body Flit

Head & Body Flit

Tail Flit

Payload

(a) Message Composition

(b) Cache Line Packet

(c) Coherence Command Packet

Figure 5.1: Composition of message, packets, flits: Assuming 16-byte wide flits and 64-byte cache
lines, a cache line packet will be composed of 5 flits and a coherence command will be a single-flit
packet. The sequence number (Seq#) is used to match incoming replies with outstanding requests,
or to ensure ordering and detect lost packets.

Figure 5.1, many messages will in fact be single-flit packets. For example, a coherence command
need only carry the command and the memory address which can fit in a 16-byte wide flit.

Flow control techniques are classified by the granularity at which resource allocation oc-
curs.We will discuss techniques that operate on message, packet and flit granularities in the next
sections with a table summarizing the granularity of each technique at the end.

5.2 MESSAGE-BASEDFLOWCONTROL

We start with circuit-switching, a technique that operates at the message level, which is the
coarsest granularity, and then refine these techniques to finer granularities.
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Figure 5.2: Circuit-switching example from Core 0 to Core 8, with Core 2 being stalled. S: Setup
flit, A: Acknowledgement flit, D: Data message, T: Tail (deallocation) flit. Each D represents a
message; multiple messages can be sent on a single circuit before it is deallocated. In cycles 12 and 16,
the source node has no data to send.

5.2.1 CIRCUIT SWITCHING
Circuit switching pre-allocates resources (links) across multiple hops to the entire message. A
probe (a small setup message) is sent into the network and reserves the links needed to trans-
mit the entire message (or multiple messages) from the source to the destination. Once the
probe reaches the destination (having successfully allocated the necessary links), the destina-
tion transmits an acknowledgement message back to the source. When the source receives the
acknowledgement message, it releases the message which can then travel quickly through the
network. Once the message completes its traversal, the resources are deallocated. After the setup
phase, per-hop latency to acquire resources is avoided. With sufficiently large messages, this la-
tency reduction can amortize the cost of the original setup phase. In addition to possible latency
benefits, circuit switching is also bufferless. As links are pre-reserved, buffers are not needed
at each hop to hold packets that are waiting for allocation, thus saving power. While latency
can be reduced, circuit switching suffers from poor bandwidth utilization. The links are idle be-
tween setup and the actual message transfer and other messages seeking to use those resources
are blocked.

Figure 5.2 illustrates an example of how circuit-switching flow control works. Dimension
order X-Y routing is assumed with the network shown in Figure 5.2a. As time proceeds from left
to right (Figure 5.2b), the setup flit, S constructs a circuit from Core 0 to Core 8 by traversing
the selected route through the network. At time 4, the setup flit has reached the destination and
begins sending an acknowledgement flit, A back to Core 0. At time 5, Core 2 wants to initiate a
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transfer to Core 8; however, the resources (links) necessary to reach Core 8 are already allocated
to Core 0. Therefore, Core 2’s request is stalled. At time 9, the acknowledgment request is
received by Core 0 and the data transfers, D can begin. Once the required data are sent, a tail flit,
T is sent by Core 0 to deallocate these resources. At time 19, Core 2 can now begin acquiring the
resources recently deallocated by the tail flit. From this example, we see that there is significant
wasted link bandwidth. During the setup time and when links have been reserved but there is no
data that needs to be transmitted these links are idle but unavailable to other messages (wasted
link bandwidth is shaded in grey). Core 2 also suffers significant latency waiting for resources
that are mostly idle.

Asynchronous transfer mode (ATM) [102] establishes virtual circuit connections; before
data can be sent, network resources must be reserved from source to destination (like circuit
switching). However, data are switched through the network at a packet granularity rather than
a message granularity.

5.3 PACKET-BASEDFLOWCONTROL
Circuit-switching allocates resources to messages and does so across multiple network hops.
There are several inefficiencies to this scheme; next, we look at schemes that allocate resources
to packets. Packet-based flow control techniques first break down messages into packets, then
interleave these packets on the links, thus improving link utilization. Unlike circuit switching,
the remaining techniques will require per-node buffering to store in-flight packets.

5.3.1 STOREANDFORWARD
With packet-based techniques, messages are broken down into multiple packets and each packet
is handled independently by the network. In store-and-forward flow control [86], each node
waits until an entire packet has been received before forwarding any part of the packet to the
next node. As a result, long delays are incurred at each hop, whichmakes them unsuitable for on-
chip networks that are usually delay-critical. Moreover, store and forward flow control requires
that there be sufficient buffering at each router to buffer the entire packet. These high buffering
requirements reduce store and forward switching’s amenability to on-chip networks.

In Figure 5.3, we depict a packet traveling from Core 0 to Core 8 using store and forward
switching. Once the tail flit has been buffered at each node, the head can then allocate the next
link and depart for the next router. Serialization delay is paid for at each hop for the body and

serialization delay tail flits to catch up with the head flit. For a 5-flit packet, the latency is 5 cycles to transmit the
packet at each hop.

5.3.2 VIRTUALCUT-THROUGH
To reduce the delay packets experience at each hop, virtual cut-through flow control [180] allows
transmission of a packet to proceed to the next node before the entire packet is received at the
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Figure 5.3: Store and forward example.

current router. Latency experienced by a packet is thus drastically reduced over store and forward
flow control, as shown in Figure 5.4a. In Figure 5.3, 25 cycles are required to transmit the entire
packet; with virtual cut-through, this delay is reduced to 9 cycles. However, bandwidth and
storage are still allocated in packet-sized units. Packets still move forward only if there is enough
storage at the next downstream router to hold the entire packet. On-chip networks with tight
area and power constraints may find it difficult to accommodate the large buffers needed to
support virtual cut-through when packet sizes are large (such as 64- or 128-byte cache lines).

In Figure 5.4b, the entire packet is delayed when traveling from node 2 to node 5 even
though node 5 has buffers available for 2 out of 5 flits. No flits can proceed until all 5 flit buffers
are available.
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Figure 5.4: Virtual cut through example.

5.4 FLIT-BASEDFLOWCONTROL
To reduce the buffering requirements of packet-based techniques, flit-based flow control mech-
anisms exist. Low buffering requirements help routers meet tight area or power constraints on-
chip.
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5.4.1 WORMHOLE
Like virtual cut-through flow control, wormhole flow control [93] cuts through flits, allowing
flits to move on to the next router before the entire packet is received at the current location.
For wormhole flow control, the flit can depart the current node as soon as there is sufficient
buffering for this flit. However, unlike store-and-forward and virtual cut-through flow control,
wormhole flow control allocates storage and bandwidth to flits rather than entire packets. This
allows relatively small flit buffers to be used in each router, even for large packet sizes. While
wormhole flow control uses buffers effectively, it makes inefficient use of link bandwidth.Though
it allocates storage and bandwidth in flit-sized units, a link is held for the duration of a packet’s
lifetime in the router. As a result, when a packet is blocked, all of the physical links held by
that packet are left idle. Since wormhole flow control allocates buffers on a flit granularity, a
packet composed of many flits can potentially span several routers, which will result in many
idle physical links. Throughput suffers because other packets queued behind the blocked packet
are unable to use the idle physical links.

In the example in Figure 5.5, each router has 2 flit buffers. When the head flit experiences
contention traveling from 1–2, the remaining two body and tail flits are stalled at Core 0 since
there is no buffer space available at Core 1 until the head moves to Core 2. However, the channel
is still held by the packet even though it is idle as shown in grey.
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Figure 5.5: Wormhole example.

Wormhole flow control reduces packet latency by allowing a flit to leave the router as
soon as a downstream buffer is available (in the absence of contention, the latency is the same
as virtual cut through). Additionally, wormhole flow control can be implemented with fewer
buffers than packet-based techniques. Due to the tight area and power constraints of on-chip
networks, wormhole flow control is the predominant technique adopted thus far.
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5.5 VIRTUALCHANNELS
Virtual channels have been explained as the “swiss-army knife” of interconnection networks [86].
They were first proposed as a solution for deadlock avoidance [87], but have also been applied to
mitigate head-of-line blocking in flow control, thus extending throughput. Head-of-line block-
ing occurs in all the above flow control techniques where there is a single queue at each input;

head-of-line
blockingwhen a packet at the head of the queue is blocked, it stalls subsequent packets that are lined up

behind it, even when there are available resources for the stalled packets.
Essentially, a virtual channel (VC) is basically a separate queue in the router; multiple VCs

virtual channelshare the physical wires (physical link) between two routers. By associating multiple separate
queues with each input port, head-of-line blocking can be reduced. Virtual channels arbitrate
for physical link bandwidth on a cycle-by-cycle basis. When a packet holding a virtual channel
becomes blocked, other packets can still traverse the physical link through other virtual channels.
Thus, VCs increase the utilization of the physical links and extend overall network throughput.

Technically, VCs can be applied to all the above flow control techniques to alleviate head-
of-line blocking, though Dally first proposed them with wormhole flow control [87]. For in-
stance, circuit switching can be applied on virtual channels rather than the physical channel, so
a message reserves a series of VCs rather than physical links, and the VCs are time-multiplexed
onto the physical link cycle-by-cycle, also called virtual circuit switching [128]. Store-and-
forward flow control can also be used with VCs, with multiple packet buffer queues, one per VC,
VCs multiplexed on the link packet-by-packet. Virtual cut-through flow control with VCs work
similarly, except that VCs are multiplexed on the link flit-by-flit. However, as on-chip network
designs overwhelmingly adopt wormhole flow control for its small area and power footprint,
and use virtual channels to extend the bandwidth where needed, for the rest of this book, when
we mention virtual channel flow control, we assume that it is applied to wormhole, with both
buffers and links managed and multiplexed at the granularity of flits.

A walk-through example illustrating the operation of virtual channel flow control is de-
picted in Figure 5.6. Packet A initially occupies VC 0 and is destined for Node 4, while Packet B
initially occupies VC 1 and is destined for Node 2. At time 0, Packet A and Packet B both have
flits waiting in the west input virtual channels of Node 0. Both A and B want to travel outbound
on the east output physical channel. The head flit of Packet A is allocated virtual channel 0 for
the west input of router 1 and wins switch allocation (techniques to handle this allocation are
discussed in Chapter 6). The head flit of packet A travels to router 1 at time 1. At time 2, the
head flit of packet B is granted switch allocation and travels to router 1 and is stored in virtual
channel 1. Also at time 2, the head flit of A fails to receive a virtual channel for router 4 (its next
hop); both virtual channels are occupied by flits of other packets. The first body flit of A inherits
virtual channel 0 and travels to router 1 at time 3. Also at time 3, the head flit of B is able to
allocate virtual channel 0 at router 2 and continues on. At time 4, the first body flit of packet B
inherits virtual channel 1 from the head flit and wins switch allocation to continue to router 1.
By time 7, all of the flits of B have arrived at router 2, the head and body flits have continued
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Figure 5.6: Virtual channel flow control walk-through example. Two packets A and B are broken
into 4 flits each (H: head, B: Body, T: Tail).
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on and the tail flit remains to be routed. The head flit of packet A is still blocked waiting for a
free virtual channel to travel to router 4.

With wormhole flow control using a single virtual channel, packet B would be blocked
behind packet A at router 1 and would not be able to continue to router 2 despite the availability
of buffers, links and the switch to do so. Virtual channels allow packet B to proceed toward its
destination despite the blocking of packet A. Virtual channels are allocated once at each router
to the head flit and the remainder of flits inherit that virtual channel. With virtual-channel flow
control, flits of different packets can be interleaved on the same physical channel, as seen in the
example between time 0 and 2.

Virtual channels are also widely used to break deadlocks, both within the network (see
Section 5.6), and for handling system-level or protocol-level deadlocks (see Section 2.1.3).

The previous sections have explained how different techniques handle resource allocation
and utilization. These techniques are summarized in Table 5.1.

Table 5.1: Summary of flow control techniques

Links Buff ers Comments

Circuit-Switching Messages N/A (buff er-less) Requires setup and acknowledgment

Store and Forward Packet Packet Head fl it must wait for entire packet 

before proceeding on next link

Virtual Cut � rough Packet Packet Head can begin next link traversal before 

tail arrives at current node

Wormhole Packet Flit Head of line blocking reduces effi  ciency 

of link bandwidth

Virtual Channel Flit Flit Can interleave fl its of diff erent packets on 

links

5.6 DEADLOCK-FREE FLOWCONTROL
Deadlock freedom can be maintained either through the use of constrained routing algorithms
that ensure no cycles ever occur (see Chapter 4), or through the use of deadlock-free flow control
which allows any routing algorithm to be used.

5.6.1 DATELINEANDVCPARTITIONING
Figure 5.7 illustrates how two virtual channels can be used to break a cyclic deadlock in the
network when the routing protocol permits a cycle. Here, since each VC is associated with a
separate buffer queue, and every VC is time-multiplexed onto the physical link cycle-by-cycle,
holding onto a VC implies holding onto its associated buffer queue rather than locking down a
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physical link. By enforcing an order on these VCs, so that lower-priority VCs cannot request and
wait for higher-priority VCs, there can be no cycle in resource usage. In Figure 5.7, all messages
are sent through VC 0 until they cross the dateline. After crossing the dateline, messages are

dateline assigned to VC 1 and cannot be allocated to VC 0 at any point during the remainder of their
network traversal [94]. This ensures that the channel dependency graph (CDG) [94] is acyclic.

D
ateline

A0

A1

D0 D1 B1 B0

C1

C0

Figure 5.7: Two virtual channels with separate buffer queues denote with white and grey circles at
each router are used to break the cyclic route deadlock in Figure 4.2.

The same idea works across various oblivious/adaptive routing algorithms that allow all
turns and are thus deadlock-prone. A routing algorithm that randomly chooses between X-Y
and Y-X routes can be made deadlock-free by enforcing all X-Y packets to use VC 0 and all
Y-X packets to use VC 1. Similarly, routing algorithms that wish to allow all turns for path
diversity can be made deadlock-free by implementing a certain turn model in VC 0 and another
turn model in VC 1, and not allowing packets in one VC to jump to the other throughout the
traversal.

At the system level, messages that can potentially block each other can be assigned to
different message classes that are mapped to different virtual channels within the network, such
as request and acknowledgment messages of coherence protocols. These designs scale to mul-
tiple VCs by dividing all available VCs into multiple classes, and enforcing the ordering rules
described above across these classes. Within each class, flits can acquire any VC. Implementa-
tion complexity of virtual channel routers will be discussed in detail next in Chapter 6 on router
microarchitecture.
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5.6.2 ESCAPEVCS
The previous section discussed the benefits of enforcing ordering between VCs to prevent dead-
locks. However, enforcing an order on VCs lowers their utilization, affecting network through-
put when the number of VCs is small. In Figure 5.7, all packets are initially assigned VC 0 and
remain on VC 0 until they cross the dateline. As a result, VC 1 is underutilized. Escape VCs
have been proposed to address this by Duato [108]. Duato proved that the requirement of an
acyclic CDGwas a sufficient condition for a deadlock-free routing algorithm but not necessary;
even if the CDG is cyclic, as long as there is an acyclic sub-part of the CDG, it can be used
to escape out of the cyclic-dependency. This acyclic connected sub-part of the CDG defines
a escape virtual channel. Hence, rather than enforcing a fixed order/priority between all VCs,

escape VCthat so long as there is a single escape VC that is deadlock-free, all other VCs can use fully
adaptive routing with no routing restrictions. This escape VC is typically made deadlock-free
by using a deadlock-free routing function within it. For instance, if VC 0 is designated as the
escape channel, all traffic on VC 0 must be routed using dimension-ordered routing, while all
other VCs can be routed with arbitrary routing functions. Explained simply, so long as access
to VCs is arbitrated fairly, a packet always has a chance of landing on the escape VC, and thus
of escaping a deadlock.1 Escape VCs help increase the utilization of VCs, or permits a higher
throughput with a smaller number of VC, making for leaner routers.

In Figure 5.8a, we illustrate once again how unrestricted routing with a single virtual
channel can lead to deadlock. Each packet is trying to acquire resources to make a clockwise
turn. Figure 5.8b utilizes two virtual channels. Virtual channel 1 serves as an escape virtual
channel. For example, Packet A could be allocated virtual channel 1 (and thus dimension order
routed to its destination). By allocating virtual channel 1 at router 4 for packet A, all packets
can make forward progress. The flits of packet A will eventually drain from VC 0 at router 1,
allowing packet B to be allocated either virtual channel at router 1. Once the flits of packet B
have drained, packet D can continue on virtual channel 0 or be allocated to virtual channel 1
and make progress before packet B has drained. The same goes for the flits of packet C.

5.6.3 BUBBLE FLOWCONTROL
An alternate idea to avoid deadlocks, without requiring multiple VC classes, is to ensure that a
closed cyclic-dependency between buffers is never created at runtime. k-ary, n-cubes are dead-
lock prone due to the presence of a ring network in each dimension.This ring network inherently
produces a cyclic dependence even when deadlock-free routing such as DOR is used. Bubble
Flow Control [298] is used in combination with virtual cut-through to provide deadlock free-
dom in k-ary, n-cube networks. Packets currently traveling within a particular dimension are
handled as normal by virtual cut through flow control. Packets needing to be injected into the
network or change dimensions are handled based on bubble flow control which controls the
1If minimal routing is used, a packet is allowed to hop in and out of an escape VC. But for non-minimal routes, a packet that
gets into an escape VC has to continue in it to provide deadlock-freedom.
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Figure 5.8: Escape virtual channel example. Virtual Channel 1 serves as an escape virtual channel
that is dimension order XY routed.

injection into the ring to make sure a closed cyclic dependency is not created. A packet can only
be injected if there is empty buffer space in the ring to accommodate two packets. Requiring
empty buffer space for two packets guarantees that if the packet is injected, there will still be one
empty packet buffer in the ring. This empty buffer, referred to as a bubble, ensures that at least
one packet in the ring will be able to make forward progress, thus preventing the cycle to close.
Figure 5.9 shows an example where R1 has two empty bubbles which will allow Packet P1 to
be injected. The remaining routers only have one free bubble each preventing the injection of
Packets P0 and P2. The rule same applies for packets changing dimensions which is considered
as injection into a new dimension.

VC0
R0

P0 P1 P2

VC1
R1 VC2

R2 VC3
R3

Occupied packet-size bubble Free packet-size bubble

Figure 5.9: Bubble flow control example.

Due to the complexity associated with searching all buffers in a ring, bubble flow con-
trol requires there be two empty packet buffers in the local queue in order for a packet to be
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injected [298]. This increases the minimum buffer sizes requirements which can be undesirable
for maintaining a low area and power footprint in on-chip networks. Recent work has explored
adapting bubble flow control to wormhole switching to reduce the buffering requirements and
make it more compatible with on-chip networks [68, 147, 237, 355].

5.7 BUFFERBACKPRESSURE
As most on-chip network designs cannot tolerate the dropping of packets, there must be buffer
backpressure mechanisms for stalling flits. Flits must not be transmitted when the next hop will
not have buffers available to house them. The unit of buffer backpressure depends on the spe-
cific flow control protocol; store-and-forward and virtual cut-through flow control techniques
manage buffers in units of packets, while wormhole and virtual channel flow control manage
buffers in units of flits. Circuit switching, being a bufferless flow control technique, does not
require buffer backpressure mechanisms. Two commonly used buffer backpressure mechanisms
are credits and on/off signaling.

Credit-based. Credits keep track of the number of buffers available at the next hop, by
credit
backpressuresending a credit to the previous hop when a buffer is vacated (when a flit/packet leaves the

router), and incrementing the credit count at the previous hop upon receiving the credit. When
a flit departs the current router, the current router decrements the credit count for the appropriate
downstream buffer.

On/off. On/off signaling involves a signal between adjacent routers that is turned off to
on-off
backpressurestop the previous hop from transmitting flits when the number of buffers drop below a threshold.

This threshold must be set to ensure that all in-flight flits will have buffers upon arrival. Buffers
must be available for flits departing the current router during the transmission latency of the
off-signal. When the number of free buffers at the downstream router rises above a threshold,
the signal is turned on and flit transmission can resume. The on threshold should be selected so
that the next router will still have flits to send to cover the time of transmission of the on signal
plus the delay to receive a new flit from the current router.

5.8 IMPLEMENTATION
The implementation complexity of a flow control protocol essentially involves the complexity of
the entire router microarchitecture and the wiring overhead imposed in communicating resource
information between routers. Here, we focus on the latter, as Chapter 6 elaborates on router
microarchitectures and associated implementation issues.

When choosing a specific buffer backpressure mechanism, we need to consider its perfor-
mance in terms of buffer turnaround time, and its overhead in terms of the number of reverse
signaling wires.
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5.8.1 BUFFER SIZINGFORTURNAROUNDTIME
Buffer turnaround time is the minimum idle time between when successive flits can reuse a

buffer turnaround
time buffer. A long buffer turnaround time leads to inefficient reuse of buffers, which results in poor

network throughput. If the number of buffers implemented does not cover the buffer turnaround
time, then the network will be artificially throttled at each router, since flits will not be able to
flow continuously to the next router even when there is no contention from other ports of the
router. As shown in Figure 5.10, the link between two routers is idle for 6 cycles while waiting
for a free buffer at the downstream router.
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Figure 5.10: Throttling due to too few buffers. Flit pipeline stages discussed in Chapter 6. C: Credit
send. C-LT: Credit link traversal. C-Up: Credit update.

For credit-based buffer backpressure, a buffer is held from the time a flit departs the cur-
rent node (when the credit counter is decremented), to the time the credit is returned to inform
the current node that the buffer has been released (so the credit counter can be incremented
again). Only then can the buffer be allocated to the next flit, although it is not actually reused
until the flit traverses the current router pipeline and is transmitted to the downstream router.
Hence, the turnaround time of a buffer is at least the sum of the propagation delay of a data flit
to the next node, the credit delay back, and the pipeline delay, as is shown in Figure 5.11a.

In comparison, in on/off buffer backpressure, a buffer is held from the time a flit arrives
at the next node and occupies the last buffer (above the threshold), triggering the off signal to
be sent to stop the current node from sending. This persists until a flit leaves the next node and
frees up a buffer (causing the free buffer count to go over the threshold). Consequently, the on
signal is asserted, informing the current node that it can now resume sending flits. This buffer is
occupied again when the data flit arrives at the next node. Here, the buffer turnaround time is
thus at least twice the on/off signal propagation delay plus the propagation delay of a data flit,
and the pipeline delay, as shown in Figure 5.11b.
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If we have a 1-cycle propagation delay for both data flits and reverse signaling between

adjacent nodes, a 1-cycle pipeline delay for buffer backpressure signals, and a 3-cycle router
pipeline, then credit-based backpressure will have a buffer turnaround time of at least 6 cycles,
while on/off backpressure will have a buffer turnaround time of at least 8 cycles. Note that this
implies that this network using on/off backpressure needs at least 8 buffers per port to cover the
turnaround time, while if it chooses credit-based backpressure, it needs 2 fewer buffers per port.
Thus, buffer turnaround time also affects the area overhead, since buffers take up a substantial
portion of a router’s footprint.

Note that it is possible to optimize the buffer turnaround time by triggering the backpres-
sure signals (credits or on/off ) once it is certain a flit will depart a router and no longer need its
buffer, rather than waiting until the flit has actually been read out of the buffer.

5.8.2 REVERSE SIGNALINGWIRES
While on/off backpressure performs poorly compared to credit-based backpressure, it has lower
overhead in terms of reverse signaling overhead. Figure 5.12 illustrates the number of reverse
signaling wires needed for both backpressure mechanisms: credit-based requires logB wires per
queue (virtual channel), where B is the number of buffers in the queue, to encode the credit
count. On the other hand, on/off needs only a single wire per queue. With eight buffers per
queue and two virtual channels, credit-based backpressure requires six reverse signaling wires
(Figure 5.12a) while on/off requires just two reverse wires (Figure 5.12b).

In on-chip networks, where there is abundant on-chip wiring, reverse signaling overhead
tends to be less of a concern than area overhead and throughput. Hence, credit-based backpres-
sure will be more suitable.

5.9 FLOWCONTROL INAPPLICATIONSPECIFIC
ON-CHIPNETWORKS

Multiprocessor SoCs (MPSoCs) typically rely on wormhole flow control for the same reasons
that it has been adopted for more general purpose on-chip networks. Applications that run on
MPSoCs often have real-time performance requirements. Such quality of service requirements
can impact flow control design decisions. The network interface controller can regulate traffic
injected into the network to reduce contention and ensure fairness [262, 343]. The use of time
division multiplexing (TDM) that allocates a fixed amount of bandwidth to each node is one

time division
multiplexing
(TDM)

way to provide guaranteed throughput and avoid contention [135]. Time division multiplexing
schedules communications so that each communication flow has their own time slot on network
links. The size and number of time slots implemented governs the granularity at which network
resources can be allocated. As the TDMslots are allocated a priori, deviation in actual bandwidth
demands will lead to idling channels.
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(b) On/Off-based
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Figure 5.12: Reverse signaling overhead.

A custom network for an MPSoC may result in a heterogeneous set of switches; these
switches may differ in terms of number of ports, number of virtual channels, and number of
buffers [47]. For the flow control implementation, different numbers of buffers may be instan-
tiated at each node depending on the communication characteristics [164]. Buffering resources
will impact the thresholds of on/off flow control or the reverse signaling wires required by credit-
based flow control. Additionally, non-uniform link lengths in a customized topology will impact
the buffer turn-around time of the flow control implementation. Regularity and modularity are
sacrificed in this type of environment; however, the power, performance, and area gains can be
significant.

5.10 BRIEF STATE-OF-THE-ART SURVEY

Wormhole flow control is widely used in many on-chip network prototype chips, such as MIT
RAW [335], Tilera TILE64 [356], UTAustin TRIPS operand network (OPN) [138, 139], and
Princeton Piton [39]. All of these designs use multiple physical networks to boost bandwidth.
Layered switching [231] hybridizes wormhole and virtual cut-through flow control by allocating
resources to groups of data words which are larger than flits but smaller than packets. Virtual
Channels have also been used across on-chip network proposals and prototype multicore chips,
such as Intel TeraFLOPS [158], Intel SCC [159], and MIT SCORPIO [101].
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Other research into flow control for on-chip networks has targeted the unique opportuni-

ties and constraints in on-chip networks, not afforded by off-chip networks. For instance, several
works leverage the availability of upper metal layers and heterogeneous interconnect sizing to
harness links of different speeds and bandwidths in flow control [37, 290]. Others target the
tight power constraint faced by on-chip networks, and propose flow control protocols that allow
flits to bypass through router pipelines, lowering dynamic switching power at routers, while im-
proving buffer turnaround time and latency-throughput [209, 210], or dynamically scale down
the number of VCs needed to support the traffic demands [260]. SMART proposes a flow con-
trol mechanism to allow multiple hops in the network to be traversed in a single cycle [204].
Novel flow control techniques based on bubble flow control make efficient use of a small num-
ber of buffers to improve throughput without paying area and power penalties [68, 235, 237].
The theory behind bubble flow control—a bubble in a dependence ring can guarantee forward
progress—has been leveraged and extended recently to provide deadlock recovery in any de-
pendence ring that gets created at runtime in any irregular topology due to faults or dynamic
power-gating [302].

The overheads of fault tolerance for various flow control strategies have been ex-
plored [299]. Elastic buffer flow control [243] uses pipelined channels for buffering, eliminating
the need for virtual channel buffers. To avoid the area and power overheads of buffers, several
bufferless flow control techniques have been explored on chip [117, 148, 252]. A flow control
scheme that can adapt between bufferless and buffered routing to achieve the performance and
energy advantages of both has been proposed [168]. Several proposals aim to achieve the benefits
of both circuit and packet switching [18, 113, 357, 360].

Most commonly in on-chip networks, phits are the same size as flits; however, some work
explores using smaller flits than the physical channel width and develops mechanisms to allow
flits from multiple packets to share the channel simultaneously [353]. Decoupling flit and phit
width has also been explored to facilitate dynamic reconfiguration of channel bandwidth [75,
154, 214]

Flow control techniques have also been leveraged to provide quality of service [142, 143,
275]. Different packets can be given priority to access network resources such as buffers and
links to provide low latency or higher throughput for more critical packets. Recent QoS schemes
distinguish between latency sensitive and insensitive packets within a single application [99, 317]
and across multiple applications [98].
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C H A P T E R 6

RouterMicroarchitecture
Routers must be designed to meet latency and throughput requirements amid tight area and
power constraints; this is a primary challenge designers are facing as many-core systems scale.
Router complexity increases with bandwidth demands; very simple routers (unpipelined, worm-
hole, no VCs, limited buffering) with low area and power overheads can be built when high
throughput is not needed. Challenges arise when the latency and throughput demands on on-
chip networks are raised.

A router’s microarchitecture determines its critical path delay which affects per-hop delay
and overall network latency. The implementation of the routing, flow control, and the actual
router pipeline affect the efficiency at which buffers and links are used which governs over-
all network throughput. Router microarchitecture also impacts network energy—both dynamic
and leakage—as it determines the circuit components in a router and their activity. Finally, the
microarchitecture and underlying circuits directly contribute to the area footprint of the network.

6.1 VIRTUALCHANNELROUTER
MICROARCHITECTURE

Figure 6.1 shows the microarchitecture of a state-of-the-art credit-based virtual channel (VC)
router to explain how typical routers work. The example assumes a 2-D mesh, so the router
has five input and output ports corresponding to the four neighboring directions and the local
processing element (PE) port. The major components which constitute the router are the input
buffers, route computation logic, virtual channel allocator, switch allocator, and the crossbar
switch. Most on-chip network routers are input-buffered, in which packets are stored in buffers

input bufferedonly at the input ports, as input buffering permits the use of single-ported memories. Here, we
assumed four VCs at each input port, each with its own buffer queue that is four flits deep.

The buffers are responsible for storing flits when they enter the router, and housing them
throughout their duration in the router. This is in contrast to a processor pipeline that latches
instructions in buffers between each pipeline stage. If source routing is not used, the route com-
putation block will compute (or lookup) the correct output port for this packet. The allocators
(virtual channel and switch) determine which flits are selected to proceed to the next stage where
they traverse the crossbar. Finally, the crossbar switch is responsible for physically moving flits
from the input port to the output port.

Over the next few sections, we discuss the various components inside a router.
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Figure 6.1: A credit-based virtual channel router microarchitecture.

6.2 BUFFERSANDVIRTUALCHANNELS

Buffers are used to house packets or flits when they cannot be forwarded right away onto output
links. Flits can be buffered on the input ports and on the output ports. Output buffering occurs
when the allocation rate of the switch is greater than the rate of the channel. Crossbar speedup
(discussed in Section 6.3.2) requires output buffering since multiple flits can be allocated to a
single output channel in the same cycle.

All previously proposed on-chip network routers have buffering at input ports, as input
buffer organization permits area and power-efficient single-portedmemories.Wewill, therefore,
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focus our discussion on input-buffered routers here, dissecting how such buffering is organized
within each input port.

6.2.1 BUFFERORGANIZATION
Buffer organization has a large impact on network throughput, as it heavily influences how
efficiently packets share link bandwidth.

Single fixed-length queue. Figure 6.2a shows an input-buffered router where there is a
single queue in each input port, i.e., there are no VCs. Incoming flits are written into the tail of
the queue, while the flit at the head of the queue is read and sent through the crossbar switch
and onto the output links (when it wins arbitration). The single queue has a fixed length, so the
upstream router can keep track of buffer availability and ensure that a flit is forwarded only if
there is a free buffer downstream.

(a) Single fixed-length queue (b) Multiple fixed-length queues

(c) Multiple variable-length queues

VC 0 tail head

VC 1 tail head

Physical
Channels

Virtual
Channels

Figure 6.2: Buffer and VC organizations.
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Clearly, a single queue can lead to scenarios where a packet at the head of the queue is

blocked (as its output port is held by another packet), while a packet further behind in the queue
whose output port is available could not make forward progress as it has to wait for the head of
the queue to clear. Such unnecessary blocking is termed head-of-line blocking.

Multiple fixed-length queues.Having multiple queues at each input port helps alleviate
head-of-line blocking. Each of these queues is termed a virtual channel, with multiple virtual
channels multiplexing and sharing the physical channel/link bandwidth. Figure 6.2b shows an
input-buffered router where there are two separate queues in each input port, corresponding to
a router with 2 VCs.

Multiple variable-length queues. In the above buffer organization, each VC has a fixed-
length queue, sized at four flits in Figure 6.2b. If there is imbalance in the traffic, there could
be a VC that is full and unable to accept more flits when another VC is empty, leading to poor
buffer utilization and thus low network throughput.

To get around this, each VC queue can be variable-length, sharing a large buffer [334], as
shown in Figure 6.2c. This permits better buffer utilization, but at the expense of more complex
circuitry for keeping track of the head and tail of the queues. Also, to avoid deadlocks, one flit
buffer needs to be reserved for each VC, so that other VCs will not fill up the entire shared buffer
and starve out a VC, ensuring forward progress.

Minimum number of virtual channels. VCs serve two purposes in NoCs—deadlock
(protocol or routing) avoidance and performance improvement. For the former, a certain num-
ber of VCs would be required to avoid protocol deadlock (for instance requests vs. responses in
shared memory coherence protocols). These VCs are often known as virtual networks. Within
each virtual network, additional VCs may be required to serve as escape VCs to avoid routing
deadlock, as described earlier in Chapter 5.

Apart from these required VCs, additional VCs can be added to improve performance
by removing/mitigating head-of-line blocking. With the same total amount of buffering per
port, designers have the choice of using many shallow VCs or fewer VCs with deeper buffers.
More VCs further ease head-of-line blocking and thus improve throughput. It, however, comes
at the expense of a more complex VC allocator and VC buffer management. Furthermore, the
efficiency of many, shallow VCs vs. few, deep VCs will depend on the traffic pattern. With light
traffic, many shallow VCs will lead to under utilization of extra VCs. Under periods of heavy
traffic, few, deep VCs will be less efficient as packets will be blocked due to a lack of available
VCs.

Minimumnumberof buffers.For functional correctness, a router needs at least one buffer
per virtual channel to avoid deadlocks.This is because packets in two different VCs should never
indefinitely block one another. Beyond that, for sustaining full throughput, there needs to be a
minimum number of buffers (within each VC or in total, depending on the buffer organization)
to cover the buffer turnaround time, which was discussed in Chapter 5.
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6.2.2 INPUTVC STATE
Each Virtual Channel is associated with the following state for flits sitting in it.

Global (G): Idle/Routing/waiting for output VC/waiting for credits in output VC/Active.
Active VCs can perform switch allocation.

Route (R):Output port for the packet. This field is used for switch allocation.The output
port is populated after route computation by the head flit. In designs with lookahead routing
(described later in Section 6.5.2) or source routing, the head flit arrives at the current router with
the output port already designated.

Output VC (O): Output VC (i.e., VC at downstream router) for this packet. This is
populated after VC allocation by the head flit, and used by all subsequent flits in the packet.

Credit Count (C ): Number of credits (i.e., flit buffers at downstream router) in output
VC O at output port R. This field is used by body and tail flits.

Pointers (P ): Pointers to head and tail flits. This is required if buffers are implemented as
a shared pool of multiple variable-length queues, as described above.

6.3 SWITCHDESIGN
The crossbar switch of a router is the heart of the router datapath. It switches bits from input
ports to output ports, performing the essence of a router’s function.

6.3.1 CROSSBARDESIGNS
Aggressive design of crossbar switches at high frequencies and low power is a challenge in VLSI
design, such as the bit-interleaved or double-pumped custom crossbar used in the Intel Ter-
aFLOPs chip [158]. Here, we just provide some background on basic crossbar designs, and
discuss alternative microarchitectural organizations of crossbars.

Table 6.1 shows a Verilog module describing a crossbar switch, where input select signals
to each multiplexer set up the connections of the switch, i.e., which input port(s) should be
connected to which output port(s). Synthesizing this will lead to a crossbar composed of many
multiplexers, such as that illustrated in Figure 6.3. Most low-frequency router designs will use

multiplexer
crossbarsuch synthesized crossbars.

As designs push toward GHz clock and are faced with more stringent power budgets,
custom-designed crossbars tend to be used [158, 287, 315]. These have crosspoint-based orga-
nizations with select signals feeding each crosspoint, setting up the connection of the switch, crosspoint

crossbarlike that in Figure 6.4.
With either design, a switch’s area and power scale at O..pw/2/, where p is the number of

crossbar ports and w is the crossbar port width in bits. A router architect thus has to diligently
choosep, a function of the topology, andw, which affects flit size and thus overall packet energy-
delay.
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Table 6.1: Verilog of a 4-bit 5-port crossbar

module xbar (clk, reset, in0, in1, in2, in3, in4, out0, out1, out2

             out3, out4, colsel0, colsel1,colsel2, colsel3, colsel4);

input clk;

input reset;

input[‘CHANNELWIDTH:0] in0, in1, in2, in3, in4;

output[‘CHANNELWIDTH:0] out0, out1, out2, out3, out4;

input [2:0] colsel0, colsel1, colsel2, colsel3 colsel4;

reg [2:0] colsel0reg, colsel1reg, colsel2reg, colsel3reg, colsel4reg;

bitxbar bx0(in0[0],in1[0],in2[0],in3[0],in4[0],out0[0],out1[0],out2[0] out3[0],

           out4[0],colsel0reg,colsel1reg,colsel2reg,colsel3reg,colsel4reg,1’bx);

bitxbar bx1(in0[1],in1[1],in2[1],in3[1],in4[1],out0[1],out1[1],out2[1],out3[1],

           out4[1],colsel0reg,colsel1reg,colsel2reg,colsel3reg,colsel4reg,1’bx);

bitxbar bx2(in0[2],in1[2],in2[2],in3[2],in4[2],out0[2],out1[2],out2[2],out3[2],

           out4[2],colsel0reg,colsel1reg,colsel2reg,colsel3reg,colsel4reg,1’bx);

bitxbar bx3(in0[3],in1[3],in2[3],in3[3],in4[3],out0[3],out1[3],out2[3],out3[3]

           out4[3],colsel0reg,colsel1reg,colsel2reg,colsel3reg,colsel4reg,1’bx);

endmodule

module bitxbar(i0,i1,i2,i3,i4,o0,o1,o2,o3,o4,sel0,sel1,sel2,sel3,sel4,inv

input i0,i1,i2,i3,i4;

output o0,o1,o2,o3,o4;

[2:0] sel0, sel1, sel2, sel3, sel4;

input inv;

buf b0(i00, i0); //buff er for driving in0 to the 5 muxes

...

buf b4(i40, i4);

mux5_1 m0(i00, i10, i20, i30, i40, o0, sel0, inv);

...

mux5_1 m4(i00, i10, i20, i30, i40, o4, sel4, inv);

endmodule
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Figure 6.3: Crossbar composed of many multiplexers.
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Figure6.4: A 5 � 5 crosspoint crossbar switch. Each horizontal and vertical line isw bits wide (1 phit
width). The bold lines show a connection activated from the south input port to the east output port.

6.3.2 CROSSBAR SPEEDUP
A router microarchitect needs to decide on the crossbar switch speedup, i.e., the number of
input and output ports in the crossbar relative to the number of router input and output ports.
Figure 6.5 shows various alternative crossbar designs with different speedup factors: crossbars
with higher speedups provide more internal bandwidth between router input and output ports,
and thus ease the allocation problem and improving flow control. For instance, if each VC has its
own input port to the crossbar, a flit can be read out of every VC every cycle, somultiple VCs need
not contend for the same crossbar input port. A 10 � 5 crossbar (such as shown in Figure 6.5b)

input speedupwill achieve close to 100% throughput even with a simple allocator (allocators are discussed in
the next section). By providing more inputs to select from, there is a higher probability that each
output port will be matched (used) each cycle. The use of output speedup allows multiple flits

output speedupto be sent to the same output port each cycle, thus reducing the contention. A crossbar with
output speedup requires output buffers to multiplex flits onto single output port.
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Figure 6.5: Crossbars with different speedups for a 5-port router. (a) No crossbar speedup, (b) cross-
bar with input speedup of 2, (c) crossbar with output speedup of 2, and (d) crossbar with input and
output speedup of 2.

Crossbar speedup can also be achieved by clocking the crossbar at a higher frequency than
the rest of the router. For instance, if the crossbar is clocked at twice the router frequency, it can
then send two flits each cycle between a single pair of input-output ports, achieving the same
performance as a crossbar with input and output speedup of 2. This is less likely in on-chip
networks where a router tends to run off a single clock supply that is already aggressive.

6.3.3 CROSSBAR SLICING
With the crossbar taking up a significant portion of a router’s footprint and power budget, mi-
croarchitectural techniques targeted toward optimizing crossbar power-performance have been
proposed.

Dimension slicing a crossbar [265] in a 2-D mesh uses two 3 � 3 crossbars instead of
dimension slicing one 5 � 5 crossbar, with the first crossbar for traffic that remains in the X-dimension, and the

second crossbar for traffic remaining in the Y-dimension. A port on the first crossbar connects
with a port on the second crossbar so traffic that turns from the X to Y dimension traverses
both crossbars while those remaining within a dimension traverses only one crossbar. This is
particularly suitable for the dimension-ordered routing protocol where trafficmostly stays within
a dimension.

Bit interleaving the crossbar targets w instead. It sends alternate bits of a link on the two
bit interleaving phases of a clock on the same line, thus halving w. The TeraFLOPS architecture employs bit

interleaving, as will be discussed in Chapter 8.

6.4 ALLOCATORSANDARBITERS

An allocator matches N requests to M resources while an arbiter matches N requests to 1 re-
allocator: N to M source. In a router, the resources are VCs (for virtual channel routers) and crossbar switch ports.
arbiter: N to 1 In a wormhole router with no VCs, the switch arbiter at each output port matches and
switch arbiter
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grants that output port to requesting input ports. Hence, there are P arbiters, one per output
port, each arbiter matching P input port requests to the single output port under contention.

In a router with multiple VCs, we need a virtual-channel allocator (VA), which resolves
VC allocatorcontention for output virtual channels and grants them to input virtual channels, as well as a

switch allocator (SA) that grants crossbar switch ports to input virtual channels. Only the head
switch allocatorflit of a packet needs to access the virtual-channel allocator, while the switch allocator is accessed

by all flits and grants access to the switch on a cycle-by-cycle basis.
An allocator/arbiter that delivers high matching probability translates to more packets

succeeding in obtaining virtual channels and passage through the crossbar switch, thereby lead-
ing to higher network throughput. In most NoCs, the allocation logic in the router determines
cycle time. Thus allocators and arbiters must be fast and pipeline-able so they can work under
high clock frequencies.

6.4.1 ROUND-ROBINARBITER
With a round-robin arbiter, the last request to be serviced will have the lowest priority in the next
round of arbitration. Figure 6.6 shows the circuit required for a round-robin arbiter. If Granti
is high, PriorityiC1 becomes high in the next cycle and all other priorities become low.

Next priority 0

Next priority 1

Next priority 2

Priority 0

Priority 1

Priority 2

Grant 0

Grant 1

Grant 2

Figure 6.6: Round-robin arbiter.
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Next, we will walk through an example granting requests with a round-robin arbiter. A set

of requests from 4 different requestors are shown in Figure 6.7. Suppose the last request serviced
prior to this set of requests was from Requestor A. As a result, B has the highest priority at the
start of the example. With the round-robin arbiter, requests are satisfied in the following order:
B1, C1, D1, A1, D2, A2.

A2 A1

B1

C1

D1D2

Figure 6.7: Request queues for arbiter examples.

6.4.2 MATRIXARBITER
Amatrix arbiter operates so that the least recently served requestor has the highest priority [86].
The implementation of a matrix arbiter is shown in Figure 6.8. A triangular array of state bits
wij are stored to implement priorities, with wij D :wji8i ¤ j . When bit wij is set, request i has
a higher priority than request j . When a request line is asserted, the request is AND-ed with
the state bits in that row to disable any lower priority requests. Each time a request k is granted,
the state of the matrix is updated by clearing all bits in row k and setting all bits in column k.

Next, we will walk-through the same set of requests from the previous example (Fig-
ure 6.7).The initial state of the matrix arbiter is given in Figure 6.9a. Since there are 4 requesters
A,B ,C , andD, the matrix is 4 � 4.While only the upper triangle values of the matrix need to be
stored, all values are shown for clarity. As each request is granted, the updated matrix values are
shown. We can see from the initial state of the matrix that requestor D has the highest priority,
followed by C , followed by B , and followed by A. This is because bits [1,0], [2,0], [3,0], [2,1],
[3,1], and [3,2] are all set to 1. At T=1, D1 is granted. As a result, the bits in the 4th row are
cleared and bits in the 4th column are set (Figure 6.9b). C now has the highest priority. At T=2,
request C1 is granted and the 3rd row cleared and the 3rd column set, resulting in the matrix in
Figure 6.9c. Now B has the highest priority. Grants continue in this fashion with the resulting
grant order being D1, C1, B1, A1, D2, A2.

6.4.3 SEPARABLEALLOCATOR
To reduce the complexity allocators and make them pipeline-able, allocators can be built as a
composition of multiple arbiters. Recall that arbiters choose one out of multiple requests to a
single resource. For instance, a N W M allocator can be built by using N=k arbiters, each k W 1

in the first stage to get k candidates from the N initial requestors, followed by M arbiters, each
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Request 0
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Request 2
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1210
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Figure 6.8: Matrix arbiter. The boxes wij represent priority bits. When bit wij is set, request i has a
higher priority than request j .
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Figure 6.9: Matrix arbiter priority update for the request stream from Figure 6.7.
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N=k W 1 to generate M grants. k can be some parameter specific to the design. Figure 6.10 shows
an example; here a 3:4 separable allocator (an allocator matching 3 requests to 4 resources) is
composed of arbiters. For instance, consider a separable switch allocator for a router with four
ports, and three input VCs per input port. During the first stage of the allocator (comprised of
four 3:1 arbiters), each arbiter corresponds to an input port and chooses one of the three input
VCs as a winner. The winning VCs from the first stage then arbitrate for an output port in the
second stage (comprising three 4:1 arbiters). Each arbiter chooses one out of these input VCs
as a winner for the output port. Different arbiters have been used in practice, with round-robin
arbiters being the most popular due to their simplicity.

 

 

 

:

:

3:1

arbiter

4:1

arbiter

4:1

arbiter

4:1

arbiter

3:1

arbiter

3:1

arbiter

3:1

arbiter

Resource A granted to Requestor 1
Resource B granted to Requestor 1
Resource C granted to Requestor 1
Resource D granted to Requestor 1

Resource A granted to Requestor 3
Resource B granted to Requestor 3
Resource C granted to Requestor 3
Resource D granted to Requestor 3

Requestor 1
requesting for

resource A

Requestor 1
requesting for

resource D

Requestor 3
requesting for

resource A

Figure 6.10: A separable 3:4 allocator (3 requestors, 4 resources) which consists of four 3:1 arbiters
in the first stage and three 4:1 arbiters in the second. The 3:1 arbiters in the first stage decides which
of the 3 requestors win a specific resource, while the 4:1 arbiters in the second stage ensure a requestor
is granted just 1 of the 4 resources.

Figure 6.11 shows one potential outcome from a separable allocator. Figure 6.11a shows
the request matrix. Each of the 3:1 arbiters selects one value of each row of the matrix; these
first stage results of the allocator are shown in the matrix in Figure 6.11b. The second set of
4:1 arbiters will arbitrate among the requests set in the intermediate matrix. The final result
(Figure 6.11c) shows that only one of the initial requests was granted. Depending on the arbiters
used and the initial states, more allocations could result.



6.4. ALLOCATORSANDARBITERS 87

1

1

1

1

1

1

0

0

1

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

(a) Request Matrix (b) Intermediate Matrix (c) Grant Matrix

Figure 6.11: Separable allocator example.
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Figure 6.12: A 4 � 4 wavefront allocator. Diagonal priority groups are connected with bold lines.
Connections for passing tokens are shown with grey lines.

6.4.4 WAVEFRONTALLOCATOR
The challenge with separable allocators is often an inefficiency in matching requests to resources,
since the first stage is oblivious of the outcome of the second stage. A wavefront allocator per-
forms the entire allocation as one step and is much more efficient, while being implementable
in hardware. Figure 6.12 shows a 4 � 4 wavefront allocator [333] which is used in the SGI SPI-
DER chip [126] and the Intel SCC [159]. Non-square allocators can be realized by adding
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dummy rows or columns to create a square array. The 3 � 4 allocation example shown above
with a separable allocator requires a 4 � 4 wavefront allocator.

The execution of a wavefront allocator begins with setting one of the four priority lines
(p0: : :p3). This supplies row and column tokens to the diagonal group of cells connected to the
selected priority line. If one of the cells is requesting a resource, it will consume the row and
column tokens and its resource request is granted. Cells that cannot use their tokens pass row
tokens to the right and column tokens down. To improve fairness, the initial priority group
changes each cycle.

Using the same request matrix from Figure 6.11a, we next illustrate the function of a
wavefront allocator. Shaded in light grey are the requests from the request matrix. The first
diagonal wave of priorities starting with p0 is circled in Figure 6.13a. Entry [0,0] is the first
to receive a grant (highlighted in dark grey). Next, the wave propagates down and to the right
(shown in Figure 6.13b). Entry [0,0] consumed a token in the first stage when it received its
grant; therefore, as the wave propagates, [0,1] and [1,0] do not receive a token in the second
wave since it was already consumed. Entry [3,2] receives tokens from [3,1] and from [2,2] which
results in its request being granted (Figure 6.13c). Figure 6.13c shows the 3rd priority wave; the
remaining unused tokens are again passed down and to the right. Request [1,1] receives valid
tokens in this wave and receives a grant.

After the wavefronts have fully propagated, the grant matrix that results is shown in Fig-
ure 6.14.The wavefront allocator is able to grant three requests (as opposed to the single request
for this example with a separable allocator).

6.4.5 ALLOCATORORGANIZATION
Adaptive routing can complicate the switch allocation for flits. For a deterministic routing al-
gorithm, there is a single desired output port; the switch allocator’s function is simply to bid for
the single output port.With an adaptive routing function that returns multiple candidate output
ports, the switch allocator can bid for all output ports. The granted output port must match the
virtual channel granted by the virtual channel allocator. Alternatively, the routing function can
return a single candidate output port and then retry routing (for a different output port) if the
flit fails to obtain an output virtual channel.

The design of the virtual-channel allocator can depends on the implementation of the
routing function. The routing function can be implemented to return a single virtual channel.
This would lead to a virtual channel allocator that needs to arbitrate only between input vir-
tual channels contending for the same output virtual channel. If the routing implementation
is more general and returns multiple candidate virtual channels for the same physical channel,
the allocator needs to first arbitrate among v possible first stage requests before forwarding the
winning requests to the second stage (can be done with the separable allocator described above).
A routing function that returns all candidate virtual channels for all candidate physical channels
is the most general and requires more functionality from the virtual-channel allocator.
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With a speculative virtual channel router, non-speculative switch requests must have a

higher priority than speculative requests. One way to achieve this is to have two parallel switch
allocators. One allocator handles non-speculative requests, while the second handles speculative
requests. With the output of both allocators, successful non-speculative requests can be selected
over speculative ones. However, if there are no non-speculative requests in the router, then a
speculative switch request will succeed in allocating the desired output port. It is possible for a
flit to succeed in speculative switch allocation but fail in the parallel virtual channel allocation.
In this case the speculation is incorrect and the crossbar passage that was reserved by the switch
allocator is wasted. Only head flits are required to performVC allocation. As a result, subsequent
body and tail flits are marked as non-speculative (for their switch allocation) since they inherit
the VC allocated to the head flit.

6.5 PIPELINE
Figure 6.15a shows the logical pipeline stages for a basic virtual channel router, with all the
components discussed so far. Like the logical pipeline stages of a typical processor: instruction
fetch, decode, execute, memory and writeback, these are logical stages that will fit into a physical
pipeline depending on the actual clock frequency.

A head flit, upon arriving at an input port, is first decoded and buffered according to
its input VC in the buffer write (BW) pipeline stage. Next, the routing logic performs route

buffer write computation (RC) to determine the output port for the packet. The header then arbitrates forroute
computation a VC corresponding to its output port (i.e., the VC at the next router’s input port) in the VC

allocation (VA) stage. Upon successful allocation of a VC, the header flit proceeds to the switch
VC allocation allocation (SA) stage where it arbitrates for the switch input and output ports. On winning the
switch allocation output port, the flit is then read from the buffer and proceeds to the switch traversal (ST) stage,
switch traversal where it traverses the crossbar. Finally, the flit is passed to the next node in the link traversal

(LT) stage. Body and tail flits follow a similar pipeline except that they do not go through RC
link traversal and VA stages, instead inheriting the route and the VC allocated by the head flit. The tail flit,

on leaving the router, deallocates the VC reserved by the head flit.
A wormhole router with no VCs does away with the VA stage, requiring just four logical

stages. In Figure 6.1, such a router will not require a VC allocator, and will have only a single
deep buffer queue in each input port.

6.5.1 PIPELINE IMPLEMENTATION
The logical virtual channel pipeline consists of five stages. A router that is running at a low
clock frequency will be able to fit all five stages into a single clock cycle. For aggressive clock
frequencies, the router architecture must be pipelined. The actual physical pipeline depends on
the implementation of each of these logical stages and their critical path delay in that technology.
We discuss implementations of each of these stages later in this chapter.
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(a) Traditional 5-stage pipeline

(b) Lookahead routing pipeline

(c) Low-load bypass pipeline
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Figure 6.15: Router pipeline [BW: Buffer Write, RC: Route Computation, VA: Virtual Channel
Allocation, SA: Switch Allocation, ST: Switch Traversal, LT: Link Traversal].
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If the physical pipeline has five stages just like the logical stages, then the stage with

the longest critical path delay will set the clock frequency. Typically, this is the VC or Switch
allocation stage when the number of VCs is high, or the crossbar traversal stage with very wide,
highly ported crossbars.The clock frequency can also be determined by the overall system clock,
for instance sized by the processor pipeline’s critical path instead.

Increasing the number of physical pipeline stages increases the per-hop router delay for
eachmessage, as well as the buffer turnaround time which affects the minimum buffering needed
and affects throughput. Thus, pipeline optimizations have been proposed and employed to re-
duce the number of stages. Common optimizations targeting logical pipeline stages are explained
next. State-of-the-art router implementations can perform all actions within a single cycle.

6.5.2 PIPELINEOPTIMIZATIONS
The collective goal of all routers is to enable multiple flows to multiplex over shared resources
(links and buffers). Myriad pipeline optimizations have been proposed for on-chip routers to
help run various logical stages in parallel, shaving off cycles from some/all routers. This in turn
saves latency and energy. Shallow pipelines also lower buffer turnaround time, helping improve
network throughput.

LookaheadRouting [126] removes the RC stage from the critical path. The route of the
lookahead
routing packet is determined one hop in advance and encoded within the head flit, enabling incoming

flits to compete for VCs/switch immediately after the BW stage. The route computation for the
next hop can be performed in parallel with VC/switch allocation since it is no longer needed
to determine which output ports to arbitrate for. Figure 6.15b shows the router pipeline with
lookahead routing, which is also known as next route compute (NRC) or route pre-computation.

Low-load bypassing removes the BW and SA stages from routers that are lightly loaded.
low-load bypass Incoming flits are allowed to speculatively enter the ST stage if there are no flits ahead of it

in the input buffer queue. Figure 6.15c shows the pipeline where a flit goes through a single
stage of switch setup, during which the crossbar is set up for flit traversal in the next cycle
while simultaneously allocating a free VC corresponding to the desired output port, followed
by ST and LT. Upon a output port conflict however, the flit is written into the buffer (BW) and
subsequently performs SA.

Figure 6.16a shows an example of low-load bypass. At Time 1, A arrives at the South
input port and there are no buffered flits waiting in the input queue. The lookahead routing
computation is performed in the first cycle (1a) and the crossbar connection between the south
input and the east output is setup (1b). At Time 2, A traverses the crossbar and exits the router.
Buffering and allocation are bypassed. In Figure 6.16b, two flits arrive at Time 1 (A on the
South input and B on the North input); both have empty input queues and attempt to bypass
the pipeline. However, during the crossbar setup (1b), a port conflict is detected as both flits
attempt to setup the crossbar for the East output port. Now, both flits must be written into
input buffers (1c) and go through the regular pipeline.
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Speculative VA [254, 255, 292] removes the VA stage from the critical path. A flit enters

speculative VA the SA stage speculatively after BW and arbitrates for the switch port while at the same time
trying to acquire a free VC. If the speculation succeeds, the flit directly enters the ST pipeline
stage. However, when speculation fails, the flit must go through some of these pipeline stages
again, depending on where the speculation failed. Figure 6.15d shows the router pipeline with
the speculative pipeline (BASE + LA-RC + BY + S-VA).

In Figure 6.16b, during step 2, At time 2, both flits A and B perform virtual channel
and switch allocation in parallel (2a and 2b). Packet B successfully allocates an output virtual
channel and the switch and traverses the switch at Time 3. Packet A succeeds in virtual channel
allocation but fails in switch allocation. At Time 3, A will again attempt to allocate the switch.
A’s request is now non-speculative since it already obtained an output virtual channel (2a). A’s
request is successful and it traverses the switch and exits the router at Time 4.

VC selection [101, 208, 287] eliminates the VA stage from the router pipeline. The idea
VC select behind VC selection is that a full-fledged VA for multiple output VCs is unnecessary for the

buffered flits since only one flit can go out of an output port in any cycle. A queue of free VC
ids is maintained at every output port. The SA winner at each output port is assigned the VCid
at the head of the queue. A head flit enters SA only if the free VC queue at its output port is
non-empty (i.e., the input port at the next router has at least one free VC). Body and tail flits
can enter SA without this check. The update of the free VC queue occurs off the critical path.
If there are multiple message classes/virtual networks, free VC queues have to be maintained
per virtual network, and the SA stage might be stretched to accommodate the extra mux to
choose between the heads of each queue. The pipeline is the same as the speculative VC one
(Figure 6.15d) except that there is no speculation involved.

Lookahead bypass [101, 208, 209, 210, 287] leverages the above optimization to design
Lookahead
bypass a single-cycle router. It removes the BW and SA stages from the critical path of the flit traver-

sal. The idea is to perform SA for a flit at the next router while the flit is traversing the link
between the current and next router. This is implemented by sending a few bits in advance,
called lookaheads to the next router while the flit is in ST. These lookaheads are nothing but
the header information of the flit (route, VCid, etc.) allowing the channel bandwidth to simply
be re-apportioned without requiring extra wires. While the flit performs LT, its lookahead per-
forms SA at the next router. Successful arbitration by lookaheads allows its flit to bypass BW and
SA and directly go into ST, reducing its delay to two cycles at every hop (ST+LT).This is shown
in Figure 6.15e. This methodology not only saves latency but also buffer read/write power. If
the lookahead arbitration fails, the flit gets buffered and goes through the normal pipeline. Flits
that get buffered would pay the power cost anyway and just pay an additional latency penalty if
there is a competing lookahead or flit which gets higher priority.

Figure 6.17 shows an example where two lookaheads arrive at the router in Cycle 1. B’s
lookahead wins switch allocation and selects a VC; flit B bypasses buffering and directly enters
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Figure 6.17: Lookahead bypass example—Lookahead_B wins and B bypasses, A gets buffered.

the switch inCycle 2. SinceA’s lookahead loses, flit A gets buffered; A performs switch allocation
and VC selection in Cycle 2 and performs switch traversal in Cycle 3.

State-of-the-art networks can be designed today at modern technologies that spend a
State-of-the-artsingle-cycle for switch arbitration and VC selection in the router, and the subsequent cycle for

traversing both the switch and link [160, 287], while operating at GHz frequencies.This enables
two-cycles per-hop traversal (at no contention).

6.6 LOW-POWERMICROARCHITECTURE

Power consumption has been a challenge since the 1990s for both embedded and high-
performance chips. Since the mid-2000s, it has become the primary constraint in most designs.
Multicores were an answer to the power problem, and the resulting communication substrate,
namely the on-chip network, plays an active role in contributing to the total power consumption
of multicores today—both dynamic and leakage.

Figure 6.18a plots the power distribution for a state-of-the-art mesh router with four VCs.
These numbers are from chip measurements at 32 nm [64]. At low-loads, the dynamic power
component of the buffers and other state (VCs and credits) is primarily due to the clocked
latches, rather than the traffic itself. At saturation (i.e., high-loads), buffers contribute 55% of
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the dynamic power, while the crossbar and links contribute 34%. Static power contributes to
over 75% of the total power consumption within the router at low-loads, and 53% at high loads.
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Figure 6.18: Power and area of a 1-cycle mesh router at 32 nm [64].

In this section, we discuss the techniques used across on-chip networks to reduce power
consumption. We refer readers to the Synthesis Lectures on Computer Architecture Techniques for
Power Efficiency [179] for a more detailed description of low-power techniques used in cores and
caches.

6.6.1 DYNAMICPOWER
The equation for dynamic power consumption is P D ˛CV2f , where ˛ is the activity factor, C

is the capacitance being switched, V is the operating voltage, and f is the operating frequency.
To reduce power consumption, there are two classes of techniques.The first tries to reduce power
consumption by dynamically reducing V and f , while the second tries to reduce ˛ and C .

DVFS.Dynamic voltage and frequency scaling (DVFS) is the most popular design tech-
DVFS nique to reduce power consumption of digital circuits. DVFS can be applied to on-chip networks

by leveraging the idea that a router with less traffic can be made to operate at lower voltage-
frequency state without affecting the aggregate performance. Two key challenges with using
DVFS for on-chip network fabric are as follows.

(1) For multiple voltage-frequency islands, bi-synchronous FIFOs have to be used at the in-
terfaces of every pair of different voltage-frequency islands, incurring excess delays.

(2) Most existing proposals assume the use of multiple supply lines for accessing different
voltages. However, use of multiple voltage rails requires multiple voltage converters out-
side the chip along with the area overhead for multiple power distribution networks. The
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introduction of high bandwidth integrated voltage regulators can alleviate this problem by
allowing fast (sub 50 ns) voltage transitions.

As the on-chip network associated with a tile/core not only serves the flits injected from
that core, but also serves flits from different cores, the DVFS policy of the on-chip network
fabric has to be dealt with differently than for the cores.The existing literature on DVFS policies
for on-chip networks focuses on using static network parameters like average queue utilization,
average return time to memory requests, etc. to decide the new voltage-frequency (V-F) states
of the routers. Typically, a DVFS controller would perform the following tasks: namely monitor
a suitable network parameter, compute state feedback values based on previous states and target
value and update V-F state. Some recent papers on DVFS for on-chip networks are discussed
later in the bibliography of this chapter.

Power-EfficientDesigns.The second class of technique tries to reduce power consump-
tion by reducing capacitance or switching activity.

The dynamic power of on-chip networks can be reduced by reducing the effective capac-
itance being switched. Wires dominate network power since wire capacitance is much larger
than gate capacitance. Energy-efficient signaling in the form of low-swing [287] and equal-
ized links [314] has been studied in this regard. Router power can also be reduced by reducing
the number of pipeline stages, and optimizing the buffers, crossbar, and arbiter circuits/micro-
architecture. For instance, SRAMs are more energy-efficient than flip flops and register files
for implementing buffers, while matrix-style crossbars are often more efficient than mux-based
crossbars. Crossbars can be further segmented [351] or designed with low-swing links [287] to
reduce power consumption during traversals. Complex arbiters can be split into multiple simpler
arbiters [189, 291] to reduce power consumption further.

Lowering the switching activity is another technique to reduce dynamic power. Clock-
gating is a popular method to reduce the amount of switching activity of latches between inactive
circuits. For instance, the dynamic power at low-loads in Figure 6.18a is primarily due to the
clock, and not actual traffic, providing an opportunity to reduce power. Efficient encoding of
the bits being sent from one router to the other could also be exploited to reduce the number of
bit-toggles, and thereby dynamic power.

6.6.2 LEAKAGEPOWER
At sub-nm technologies, transistors are not ideal switches anymore and leak current even when
they are “off.” This leads to high power consumption even during periods of low or no activity.
Leakage power in on-chip networks has been shown to contribute significantly toward total
power consumption at modern technologies, as Figure 6.18a demonstrates. The reason is the
large number of latches/flip-flops/SRAMs used for implementing buffers, input VC state, and
output credit state.

Power-Gating. Leakage power can be mitigated by power gating. It is a standard tech-
Power-Gatingnique used across chips today. In this book, we will not go into the circuit details and implications
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of adding power-gating transistors to create power-domains. Instead, we will list some of the
challenges that on-chip network power gating solutions need to worry about.

• What should be the granularity of power-domains? Candidates for power-domains in an on-
chip network could be the various modules in a router (input ports, arbiters, crossbar),
or each router by itself, or the entire on-chip network. Fine-grained power gating would
be most effective, in principle, but adding power-gating circuitry to hundreds of modules
and controlling them is not practical.Most commercial chips today view the entire on-chip
network as one power-domain.

• How to decide which routers to turn on/off? If the tiles connected to routers are active, the
routers will have to be woken up very frequently, adding a lot of latency overhead. More-
over, turning off certain routers may lead to certain key IP blocks, such as the memory
controller, becoming inaccessible which is not allowed and something the power manage-
ment controller needs to take care of.

• How to handle deadlocks on irregular topologies? Turning off certain routers make the under-
lying topology irregular; this can lead to routing deadlocks since certain paths may become
inaccessible forcing flits to use other paths that cause cyclic dependencies.

Some recent papers on power gating for on-chip networks are discussed later in the bib-
liography of this chapter.

6.7 PHYSICAL IMPLEMENTATION
6.7.1 ROUTERFLOORPLANNING
A key step in the backend design flow of a router is floorplanning: determining the placement
of the different input and output ports of a router, along with the global allocator modules
and the crossbar switch. Figure 6.19 shows two alternative router floorplans for a fairly similar
microarchitecture: A 5-port router with virtual channel flow control.

Typically, the allocators (VA) or the crossbar switch traversal (ST) dictate the critical path.
Hence, both floorplans optimized their layouts in order to target these two components, but in
different ways. Both floorplans use the semi-global metal layers (typically M5, M6 in recent
processes) for router-to-router interconnects, but Figure 6.19a drops to the local metal layers for
intra-router wiring, such as the crossbar switch, with the inter-router link datapath continuing
on the upper metal. Figure 6.19b, on the other hand, has the crossbar switch continuing on the
semi-global metal layers.

This leads to a key difference apparent from the floorplan in the placement of the input
ports. The placement in Figure 6.19a is fairly intuitive: the north input port is placed close to
the north edge of the router, the east input port along the east edge and so on. The placement
in Figure 6.19b puts all input ports side by side, on the left side of the switch, to free up the M5
and M6 layers for the crossbar wiring, while ensuring fast access to the allocators.
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(a) Router Layout from Kumar et al. [208]. BF: Buffer, BFC: Buffer Control,

VA: VC Allocator, SA: Switch Allocator. P0: North port; P1: East; P2: West;

P3: South; P4: Injection/Ejection.

(b) Router Layout from Balfour and Dally [38]. M5 and M6 indicate the

metal layers used.
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Figure 6.19: Two router floorplans.

To target allocator delay, Figure 6.19a replicates the allocators at every input port, so allo-
cator grant signals will not incur a large RC delay before triggering buffer reads, and the crossbar
can also be setup more quickly as control signals now traverse a shorter distance. This comes at
the cost of increased area and power. Allocator request signals still have to traverse through the
entire crossbar height and width, but their delay is mitigated as that router uses a pipeline opti-
mization technique, advanced bundles, to trigger allocations in advance. Figure 6.19b, however,
leverages their use of the semi-global metal layers for the crossbar to place the allocators in the
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middle, in the active area underneath the crossbar wiring, to lower wire delay to the allocators
without replication.

Here, we just aim to illustrate the many possible back-end design decisions that can be
made at floorplanning time to further optimize the router design. Note that as routers are just a
component of a many-core chip, its floorplan also needs to be done relative to the positions of
the network interfaces (NICs), cores and caches.

Wewill revisit floorplanning inNoCprototypes inChapter 8.Most recent chip prototypes
with NoCs [39, 72, 101] synthesize the entire router as one module rather than hierarchically,
letting the CAD tools automatically place the various components of the router within the speci-
fied area. For instance, Figure 6.18b plots the area distribution for a state-of-the-art mesh router
with 4 VCs at 32 nm [64], designed by letting the CAD tools perform the place-and-route. The
buffers and crossbar contribute to over 70% and 20% of the area. In other designs, the router’s
buffers and arbiters are synthesized and then laid out as one module, leaving aside area for the
crossbar which is custom-designed and integrated during final place-and-route [287].

6.7.2 BUFFER IMPLEMENTATION
Router buffer cells can be implemented using flip-flops or generated memory cells (SRAM
or register file), depending on the buffer size and access timing requirements. For very small
buffers, flip flops suffice and can be readily synthesized without requiring memory generators.
Flip flops, however, havemuch poorer area, power and delay characteristics compared to SRAMs
and register files. Between SRAMs and register files, at smaller buffer sizes, register file cells tend
to occupy a smaller footprint as they do not require differential sense amplifiers, and support
faster access times. However, at larger buffer sizes, SRAMs prevail. The crossover point depends
heavily on the specific process and memory cells used, so designers ought to carefully evaluate
the alternatives.

6.8 BRIEF STATE-OF-THE-ART SURVEY
Research in efficient NoC design—for performance and/or energy—naturally leads to modifi-
cations to the microarchitecture. In this section we discuss recent research that complements the
basic microarchitecture design features discussed in this chapter. Chapter 8 presents case studies
of NoC prototypes and discusses their choice of router microarchitecture.

Low-latency Routers. Many microarchitectural proposals try to reduce the number of
router pipeline stages in order to improve on-chip network latency. Ideas involving circuit-
switching [11, 113, 273, 372] and static resource allocation [135, 211] do not require rout-
ing and arbitration at every router, reducing router delay. The static resource allocation tech-
niques however add overhead in terms of tables to store the buffer and link bandwidth allo-
cations for every cycle, and only work when the traffic is known in advance, such as in MP-
SoCs. Flit reservation flow control [291] tries to recreate this benefit dynamically and reduces
buffer turnaround time by letting control flits go ahead on faster links to reserve buffers and



6.8. BRIEF STATE-OF-THE-ART SURVEY 101
free them faster. Static VC allocation [318] removes VC allocation from every router by per-
forming it statically at the source, at the cost of inefficiency in overall VC utilization. Simpler
pipelines [139, 185, 255] can be used to reduce the router delay of dynamic networks. Specu-
lative buffer bypassing [101, 208, 209, 210, 242, 285, 287] can be used to reduce delay further
by bypassing the buffering stage. All of these techniques also help reduce dynamic and leakage
power as there are fewer pipeline registers in each router.

EfficientManagement of VirtualChannels. Virtual Channels are precious resources in-
side each router. Implementing VCs as private vs. shared or shallow vs. deep, come with their
pros and cons as Section 6.2.1 discussed. DAMQ [334] and ViChaR [260] allow N buffer slots
to act as one deep VC or multiple shallow VCs, depending on the traffic. The challenge with
both these designs is that the control overhead of N VCs still needs to be paid, which still adds
the critical path, area and power overheads. Centralized buffers [146, 147] instead of per input-
port have also been studied to efficiently manage storage within each router, at the cost of adding
an additional crossbar at the input stage to drive flits at each input port to the right buffer slots.

Novel Flow Control. There has been research on new flow control protocols for NoCs
that demand major modifications to the microarchitecture. Some examples include the use of a
ring as the switching fabric within a router rather than a crossbar [3], adding support for multi-
casts [114, 206], cache coherence support within network routers [16, 111], ability to setup by-
pass paths acrossmultiple hops [204], and so on.Optimizations to allocation have been proposed
including simplifying allocation [149, 367], improving fairness [220] and improving allocation
quality [62, 244]. In application-specific MPSoCs, router microarchitectures can also be cus-
tomized; examples are custom buffer allocation [164], time-slot tables inside routers [135, 211],
and asynchronous routers [41, 178].

NovelCircuits.A few papers have proposed novel circuits for microarchitectural compo-
nents. Low-swing links inside crossbars [287] have been proposed to reduce power consumption.
Arbitration support within the crossbar has also been proposed [315]. Both these crossbars have
been prototyped with test chips and will be discussed in Chapter 8. Novel micro-architectures
and circuits for buffers have also been proposed in the form of elastic buffers [243] to improve
bandwidth and reduce power consumption.

Low Power Routers. Wang et al. [351] present circuit and micro-architectural opti-
mizations such as a write-through buffer and a segmented crossbar to reduce router power.
RoCo [189] decouples traffic going along X and along Y, effectively splitting the arbiters
and crossbar into smaller and simpler units, that are more power efficient. Bufferless rout-
ing [148, 253] makes a case for bufferless on-chip networks with either mis-routing in case
of contention or packet dropping. These help reduce on-chip power consumption as long as
the number of mis-routes or dropped packets, which increases power consumption of links, is
not too high. Considering novel buffer organizations such as centralized buffers can also reduce
router power consumption [146]. Simplified routers have been designed to enable lower power
and area consumption [185].
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DFVS in NoCs. Research on DVFS in NoCs has explored various heuristics for V-F

assignment. One set of works use NoC metrics to tune voltage and frequency, such as target
throughput [58, 71], buffer utilization [51, 250], energy consumption [269], and errors [24].
Another set uses runtime performance of application workloads for V-F assignment. This is
done by observing system-level metrics such as coherence messages [153], L1/L2 misses [52,
369], and memory-access density [370]. Online learning is also being employed to predict V-F
settings [361].

Power Gating of NoC Routers. Power gating of NoC routers has been studied re-
cently [67, 69, 70, 100, 283, 306].While turning off the router provides benefits in terms of leak-
age energy reduction, it can lead to routing deadlocks due to absence of certain paths and requires
additional support in the form of deadlock-free Up/Down routing within the NoC [67, 306].
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C H A P T E R 7

Modeling and Evaluation
Modeling all aspects of the on-chip network architecture (topology, routing, flow-control, and
router-microarchitecture) either in simulation, or in real-design, is crucial for the design-space
exploration and validation of on-chip networks. The resulting on-chip network is evaluated for
performance (with synthetic and/or real traffic), power, and area.

7.1 EVALUATIONMETRICS
On-chip networks are typically characterized/evaluated by their performance (latency and
throughput), energy consumption, and area footprint.

7.1.1 ANALYTICALMODEL
Latency. The latency of every packet in an on-chip network can be described by the fol-

lowing equation:

TNetwork D Twire C Trouter C Tcontention

D H � twire C .H C 1/ � trouter C

HC1X
hD1

tcontention.h/;

where H is the average hop count through the topology, trouter is the pipeline delay through
a single router, twire is the wire delay between two routers, and tcontention.h/ is the delay due to
contention between multiple messages competing for the same network resources at a router
h-hops from the start. A factor of H C 1 is considered for router power and contention since a
packet traverses the input router prior to the first hop through the network. trouter accounts for
the time each packet spends in various stages at each router as the router coordinates between
multiple packets; depending on the implementation, this can consist of one to several pipeline
stages as discussed in Chapter 6. trouter and twire are design-time metrics. They can be used to
determine a lower-bound on the latency of any packet. H and tcontention.h/ are runtime metrics
that depend on traffic.

Throughput.Thebisection bandwidth, defined earlier in Chapter 3, is a design-timemet-
ric for the throughput of any network. As a reminder, it is the inverse of themaximum load across
the bisection channels of any topology. Ideal throughput assumes perfect flow control and per-
fect load balancing from the routing algorithm. The actual throughput at saturation, however,
might vary heavily, depending on how routing and flow control interact with runtime traffic.
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Throughput higher than the bisection bandwidth can be achieved if traffic does not go from one
end of the network to the other over the bisection links. However, often times, the achieved sat-
uration throughput is lower than the bisection bandwidth. A deterministic routing algorithm,
such as XY, might be unable to balance traffic across all available links in the topology in re-
sponse to network load. Heavily used paths will saturate quickly, reducing the rate of accepted
traffic. On the other hand, an adaptive routing algorithm using local congestion metrics could
lead to more congestion in downstream links. The inability of the arbitration schemes inside
the router to make perfect matching between requests and available resources can also degrade
throughput. Likewise, limited number of buffers and buffer turnaround latency can drive down
the throughput of the network.

Energy. The energy consumed by each flit during its network traversal is given by:

ENetwork D H � Ewire C .H C 1/ � Erouter

D H � Ewire C .H C 1/ � .EST C EBW C EBR C ERC/C
HC1X
hD1

tcontention.h/ � .EVA C ESA/;

where EBW , ERC, EVA, ESA, EBR, and EST is the energy consumption for buffer write, route
computation, VC arbitration, switch arbitration, buffer read, and switch traversal, respectively.
ERC and EVA are only consumed by the head flit. The relative contribution of these parameters
is topology and flow control specific. For instance, a high-radix router might have a larger EST

and Ewire, but lower H . Similarly, a wormhole router will not consume EVA. Contention at
every router determines the number of times a flit may need to perform VA and SA before
winning both and getting access to the switch. EVA and ESA depends on the specific allocator
implementation.

Area. The area footprint of an on-chip network depends on the area of routers.

ANetwork D N � .Arouter/

D N � .p � v � AVC C p � ARouteUnit C p � AArbiter_inport C p � AArbiter_outport

C ACrossbar/;

where N is the number of routers (assuming all of them are homogeneous input buffered de-
signs), p is the number of ports, and v is the number of VCs per input port. AVC is the area
consumed by the buffers and control for each VC, which in turn depends on its implementation,
as Chapter 6 discussed. This equation assumes a separable switch allocator design; AArbiter_inport

represents the area of all the arbiters at each input port, and AArbiter_outport represents the area of
all the arbiters at each output port.

Wires do not directly contribute to the area footprint as they are often routed on higher
metal layers above logic; the link drivers are embedded within the crossbar while the link receiver
is within the input VC.
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7.1.2 IDEAL INTERCONNECTFABRIC
Ideal latency. The lowest latency (or ideal latency) that can be achieved by the intercon-

nection network is one that is solely dedicated to the wire delay between a source and destination.
This latency can be achieved by allowing all data to travel on dedicated pipeline wires that di-
rectly connect a source to a destination. Wire latency assumes the optimal insertion of repeaters
and flip-flops. The latency of this dedicated wiring would be governed only by the average wire
length D between the source and destination (assumed to be the Manhattan distance), packet
size L, channel bandwidth b, and propagation velocity v:

Tideal D Twire D
D

v
C

L

b
:

The first term corresponds to the time spent traversing the interconnect, while the second
corresponds to the serialization latency for a packet of length L to cross a channel of bandwidth
b. Ideally, serialization delay could be avoided with very wide channels. However, such a large
number of wires would not be feasible given the projected chip sizes.

Ideal throughput.The ideal throughput depends solely on the bandwidth provided by the
topology. It can be computed by calculating the load across all links in the topology for a par-
ticular traffic pattern with a specific routing algorithm, and taking the inverse of the maximum
load link.

Ideal energy. The energy expended to communicate data between tiles should ideally be
just the energy of interconnect wires as given by

Eideal D Ewire D
L

b
� D � Ewire;

where D is again the distance between source and destination and Ewire is the interconnect
transmission energy per unit length.

7.1.3 NETWORKDELAY-THROUGHPUT-ENERGYCURVE
We simulate a state-of-the-art virtual channel 8 � 8 mesh network using the Garnet [14]
network-on-chip simulator. The routers implement some of the pipeline optimizations dis-
cussed in Chapter 6, namely lookahead routing, VC selection, and lookahead bypass, leading
to a single-cycle router pipeline at every hop (2-cycles per hop) in the best case. The full set
of network parameters is given in Table 7.1. We plot the average latency vs. injection rate for
two synthetic traffic patterns: uniform random traffic and bit-complement traffic in Figure 7.1.
These patterns are described later in Table 7.2. We send 1-flit packets at increasing injection
rates from each node. The saturation throughput is defined as the injection rate where latency
becomes 3� that at low loads. We also plot the ideal latency and throughput lines on these
graphs. For the ideal latency, we assume a dedicated repeated wire between each pair of tiles
with a propagation velocity v = tile_size/cycle, i.e., 1 cycle to cross each tile (i.e., hop). The av-
erage value for ideal latency is simply the average hop count for each traffic, plus an additional
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Table 7.1: State of the art network simulation parameters

Parameter Value

Technology 45 nm

Vdd 1.0 V

Frequency 2 GHz

Topoloty 8-ary 2-mesh

Routing Dimension-ordered (DOR)

Traffi  c Uniform Random and Bit Complement

Router pipeline depth 1

Number of router ports 5

VCs per port 4

Buff ers per port 4 (1-per VC)

Flit size (channel width) 128 bits

Link length 1 mm

On-Chip Network

Ideal

On-Chip Network

Ideal
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Figure 7.1: Latency vs. injected traffic for a 8 � 8 mesh on-chip network.

hop to get from the final router to the destination NIC.The ideal throughput is computed using
maximum channel load at the bisection links.

At low-loads, the state-of-the-art design is close to the ideal latency, the gap is due to the
additional 1-cycle router delay at every hop in the former. This small gap is due to the pipeline
optimizations incorporated into the design. A 5-stage pipeline at every router would increase
this gap significantly, leading to system-level performance penalties. At very high loads, the gap
increases due to contention.The state-of-the-art VC router delivers about 80% throughput of the
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Table 7.2: Synthetic traffic patterns for k � k mesh

Source (binary coordinates): ( k–1, k–2,…, 1, 0, k–1, k–2, …, 1, 0)

Traffi  c Pattern Destination

(binary coordinates)

Avg Hops

(for k + 8)

! roughput

(for k = 8)

(fl its/nodes/cycle)

Bit-Complement ( k–1, k–2, …, 1, 0,

k–1, k–2, …, 1, 0)

8 0.25

Bit-Reverse ( 0, 1, …, k–2, k–1,

0, 1, …, k–2, k–1)

5.25 0.14

Shuffl  e ( k–2, k–3, …, 0, k–1,

k–2, k–3, …, 0, k–1)

4 0.25

Tornado ( k–1, k–2, …, 1, 0,

k–1 + [  ] – 1, …, [  ] –1)

3.75 0.33

Transpose ( k–1, k–2, …, 1, 0,

k–1, k–2, …, 1, 0)

5.25 0.14

Uniform Random  ) 5.25 0.5

k

2

k

2

ideal for both traffic patterns.The 20% gap is due to inefficiencies in routing and arbitration that
lead to a loss in link utilization at high loads. Simpler router designs will increase this throughput
gap significantly; wormhole flow control without virtual channels will saturate much earlier than
the curve shown. A small number of buffers will also reduce the saturation throughput.

Figure 7.2 plots the energy consumption of an ideal network and a state-of-the-art base-
line network, using the DSENT [328] energy models. This baseline architecture incorporates
many energy-efficient microarchitectural features but still significantly exceeds the energy con-
sumed solely by wires. This gap exists due to the additional buffering, switching, and arbitration
that occurs at each router; the gap widens until the network saturates.

7.2 ON-CHIPNETWORKMODELING INFRASTRUCTURE
There are several on-chip network modeling infrastructures developed by computer architecture
and network-on-chip researchers, that can be used to study novel network topologies, routing
algorithms, flow-control methods, router microarchitectures, and emerging link technologies.
Some of these exist as standalone tools, while others are part of larger full-system simulators
that model CMPs or MPSoCs, as described earlier in Chapter 2 to drive real traffic.
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Figure 7.2: Network energy with uniform random traffic in a 8 � 8 mesh on-chip network.

7.2.1 RTLANDSOFTWAREMODELS
Modeling on-chip networks in RTL and using Cadence/Synopsys/MentorGraphics tools for
RTL simulation gives the most accurate network implementation, and the most cycle-accurate
timing information.The on-chip network RTL serves as both a model as well as the final design
and is a common design space exploration methodology in industry.

The increased on-chip logic andmemory capacities ofmodern FPGAs allow the entire on-
chip system to be implemented on a single device. Compared to software, FPGA-based on-chip
network emulators can reduce simulation time by several orders of magnitude [129, 201, 359].
These dramatic speedups are possible because the emulator is constructed by laying out the entire
on-chip network on the FPGA, allowing the hardware to exploit all available fine and coarse
grain parallelism between the emulated events in the on-chip network.

Once the end points of the on-chip network, namely themulticore system is also included,
simulating this entire system in RTL becomes highly intractable. As a result, software (e.g.,
C++) simulators are used extensively for design space exploration for network design, as well as
co-design of the network with the rest of the memory sub-system.

The topology, routing algorithms, flow-control, and router microarchitecture can be mod-
eled in various degrees of detail, trading-off accuracy for simulation time. It is not recommended
to fudge the network model however, especially in large multicore simulations, since on-chip
network latency and bandwidth might directly affect the performance of the full distributed
CMP/MPSoC, and can only be captured by modeling cycle-by-cycle contention within the
network.

Section 7.6 summarizes some of the state-of-the-art on-chip network simulators.

7.2.2 POWERANDAREAMODELS
Power consumption is a first-order design constraint in systems today. Early-stage estimation
of on-chip network power is becoming crucial in order to budget power across the various sub-
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systems. The key contributors to on-chip network power are the buffers, crossbar switches, and
the tile-to-tile links, as discussed earlier in Chapter 6.

RTLmodels of routers [118, 281] can be synthesized, placed, and routed for accurate area
estimates. The resulting netlists can be back-annotated with activities from a RTL simulation,
to give accurate power estimates. However, this rigorous approach often becomes complex and
even infeasible when modeling a full CMP, with cores, caches, and the on-chip network. The
reasons include unavailability of RTL for every component, access to standard cells for advanced
nodes and simulation speed. Thus, researchers have developed detailed software models for the
energy consumption and area footprint of various network components to enable designers to
size or optimize these at design-time to fit within the power and area budgets for the expected
input activities.

DSENT [328] is a timing-driven on-chip network area and power modeling tool for both
electrical and optical on-chip networks. It provides a technology-portable set of standard cells
from which larger electrical components such as router buffers, arbiters, crossbars, and links are
constructed. Given a foundry’s process design kit (PDK) and the design’s frequency constraint,
DSENT applies (1) timing optimization to size gates for energy-optimality and (2) expected
transition propagation to accurately gauge the power consumption. DSENT is available for
download as a standalone tool [251] and is also released as part of gem5 [49]. It replaces the
older Orion 2.0 [174]model whichmodeled on-chip network components characterized against
post-layout implementations at 65 nm. McPAT [224] is an integrated power, area, and timing
modeling tool for multicores that models the power of the processors, caches and the intercon-
nect. It is validated against published chips in 180 nm, 90 nm, and 65 nm, and uses DSENT
for the on-chip network power models.

7.3 TRAFFIC

The traffic through the on-chip network depends on the kind of system it has been plugged
into and the overlaying communication protocol. Some of the common communication proto-
cols were described in detail in Chapter 2. Here we discuss how the communication protocol
prescribes the modeling and evaluation of on-chip networks. For the purpose of illustration, we
consider shared memory systems where the on-chip network interconnects the memory subsys-
tem (L1, L2, directory, memory controllers, etc.) and transfers cache-coherence traffic.

7.3.1 MESSAGECLASSES, VIRTUALNETWORKS,MESSAGE SIZES, AND
ORDERING

MessageClasses.The overlaying coherence protocol defines various message classes. For
instance, in most protocols there are at least two message classes: request and response. Directory-
based cache coherence protocols often use four message classes: request, forward, response, and
unblock.
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Virtual Networks. A potential deadlock can occur in the protocol if a request for a line

from a L2 cache is unable to enter the network because the L2 is waiting for a response for a
previous request, while the response is unable to reach the L2 since all queues in the network are
full of such waiting requests. To avoid such deadlocks, protocols require messages from different
message classes to use different set of queues/buffers within the network. This is implemented
by using virtual networks (vnets) within the physical network. Virtual networks are identical
to VCs in terms of their implementation: all vnets have separate buffers but multiplex over the
same physical links. In fact many works on coherence protocols use the term virtual channels to
refer to virtual networks. However, in this book we will strictly adhere to using the term virtual
networks or vnets to refer to protocol-level message classes. The number of vnets is thus fixed
by the protocol. Each vnet, on the other hand, can have one or more VCs within each router, to
avoid head-of-line blocking or routing deadlocks, as discussed earlier in Chapter 5.

Message Sizes. The size of each message depends upon the protocol and the message
type. Control messages, such as requests/forwards/unblocks, are often shorter as they need to
carry the address and some header information, while data messages, such as responses, are
cache-line sized with some extra header information. On-chip networks often try to set the
channel sizes such that control messages fit within one flit, while data messages might fit in one
or more flits. For example, suppose a cache-coherent system uses 64 b addressing, 64 B cache
lines, and 16 b headers; if the on-chip network’s channel width is 128 bits, then control packets
would fit within 1-flit, while data packets would fit in 5-flits.

Point-to-Point Ordering. Certain message classes (and thus their vnets) require point-
to-point ordering in the network for functional correctness. This means that two messages in-
jected from the same source, for the same destination, should be delivered in the order of their
issue. On-chip networks can implement point-to-point ordering for flits within ordered vnets
by (i) using deterministic routing and (ii) using FIFO/queuing arbiters for switch arbitration at
the input port at each router. The first condition guarantees that two messages from the same
source do not use alternate paths to the same destination as that could result in the older mes-
sage getting delivered after the newer one if the former’s path has more congestion. The second
condition guarantees that flits at a router’s input port leave in the order in which they came in.

7.3.2 APPLICATIONTRAFFIC
In MPSoCs, an application’s communication task graph, such as the one shown earlier in Fig-
ure 3.8a, determines the traffic flows between various IPs connected via an on-chip network.
Traffic models can be extracted based on average traffic flowing between cores [156, 161]. This
helps drive customized network topologies and mapping algorithms [256] for traffic from the
class of applications the MPSoC runs. The edges on the task graph determine the throughput
requirement from network links while the physical number of routers between communicat-
ing IPs on chip and the contention between flows mapped over the same links determines the
network latency.
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In multicore systems, which are typically shared memory, the sharing behavior of the

application and the kind of coherence protocol used (snoopy vs. limited-directory vs. full-bit
directory) determines the traffic through the network. For an N-core chip, the communica-
tion patterns of protocols can be classified into 1-to-1, 1-to-M, and M-to-1 where M refers to
multiple sources or destinations (1 < M <D N). 1-to-1 or unicast communication occurs in uni-
cast requests/responses exchanged between cores. 1-to-M or multicast communication occurs in
broadcasts and multicast requests. M-to-1 or reduction communication occurs in acknowledge-
ments or token collection in protocols to maintain ordering. Full-bit directories track the state
of every sharer and use unicasts and precise multicasts to maintain coherence. Snoopy proto-
cols and limited-directory (i.e., directory protocols with limited tracking of sharers) protocols
trade-off directory storage for higher network traffic in the form of broadcasts, multicasts and
reductions.

Network traffic from an application also depends on cache sizes and cache hierarchies,
and how much of the application’s working set fits. L1 and L2 sizes determine their miss rates
which in turn determines injection rates into the network. Distributed shared L2s also have
higher network traffic compared to private L2s per core since every L1 miss has to traverse the
on-chip network to reach the home node in the former. Memory bound traffic also traverses
the on-chip network to reach memory controllers, and can lead to Quality of Service issues if
certain cores are always able to get faster access to the memory controller.

Faithfully modeling these different aspects of on-chip network traffic is important for
properly evaluating on-chip network performance and power consumption. On-chip network
traffic can be injected either by using traces, or by running full-system simulations.

Trace-driven Simulation. Researchers often use traces of network injections from ap-
plications running on a real system or a full-system simulator. Network traces provide a fairly
realistic way of exploring the effectiveness of proposed on-chip network designs, but clearly, it
should be noted that their characteristics depend heavily on the simulated many-core platform.
The number of cores/IP blocks, the memory hierarchy, the number of memory controllers, etc.
significantly influence the network trace.The lack of feedback effects when using network traces
also impacts the accuracy. For instance, faster on-chip networks than the ones on which traces
were collected could lead to pathological scenarios such as responses getting delivered before
their requests were injected. Tracking or inferring dependencies between packet is important to
being able to replay the trace correctly [263]. Netrace [155] is a set of tools and traces designed
to enhance the performance and fidelity of traditional trace-based on-chip network simulations
by adding dependency tracking within the trace-based simulation framework.

Full-systemSimulation. Full-system evaluations provide the most accurate traffic move-
ment within the network, as they model the entire system (cores, caches, coherence protocol,
network, and memory) in detail and boot an OS on which the application is run. However,
these simulations take up substantial simulation time. Benchmark suites exist for sharedmemory
and MPI applications, which in turn stress the on-chip network to varying degrees depending
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on the application thread mapping across cores, sharing pattern, coherence protocol (if shared
memory), cache sizes, core model (in-order or out-of-order), and so on during the full-system
simulation. Examples include SPLASH-2 [362], PARSEC [48], and Rodinia [63].

7.3.3 SYNTHETICTRAFFIC
Synthetic traffic patterns help in characterizing and debugging on-chip networks. In most stan-
dard synthetic patterns, all sources inject with a uniform random injection rate (without bursts),
while the destination coordinates depend on the traffic pattern. Table 7.2 lists some common
synthetic traffic patterns used for studying a mesh network, along with their average hop-counts
and theoretical throughput with XY routing. The theoretical throughput or capacity is the in-
jection rate at which some link(s) in the mesh is (are) sending 1 flit every cycle.1 These values are
computed using the maximum channel load procedure described earlier in Chapter 3. For each
traffic pattern, the load across all links is calculated assuming XY routing. The link that is the
most heavily loaded is determined. The theoretical throughput is the inverse of this load. This is
the best a topology can do, with perfect routing, flow control and microarchitecture.

Synthetic traffic patterns are useful for characterizing the latency and throughput of the
on-chip network, by plotting the latency vs. throughput graphs for the proposed on-chip net-
work and comparing them with those of the baseline and an ideal. Design-space explorations
can be done with this data to see if the desired latency and throughput can be met with fewer
buffers, VCs, flit sizes, channel widths and so on.

Beyond traditional synthetic traffic patterns, there are also synthetic traffic generators that
mimic application and cache coherence traffic. SynFull [34] focuses on synthetically reproducing
the traffic dependences in cache coherence traffic and the fluctuations in traffic volume across
different phases of an application for general-purpose CMP workloads. APU-SynFull [371]
extends this work to focus on heterogeneous CPU-GPU architectures with more complex co-
herence patterns and more bursty traffic.

In general, a combination of synthetic traffic flows, which exercise and test the limits of a
proposed approach; real network traces, which give an idea of the effectiveness of an approach;
and full-system simulations, which more accurately evaluate the approach in a specific system;
should be used to have a good understanding of the pros and cons of a proposed technique.

7.4 DEBUGMETHODOLOGY
There is a very tight set of dependencies between the distributed resources (buffers, VCs, and
links) of an on-chip network. Even if only one VC or buffer gets indefinitely blocked due to an
incorrect flow-control handshake, it can easily bring the entire on-chip network to a standstill in
a matter of cycles due to a cascading effect on other dependent VCs, which in turn would crash
the entire system. Most bugs manifest as an on-chip network deadlock and it becomes difficult
1Table 7.2 shows that uniform random traffic offers the highest throughput, since it saturates when the bisection links of the
mesh are fully occupied. For traffic patterns that saturate other links, throughput is lower.
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to decipher where the problem is. We list a set of tips for novice researchers for debugging
on-chip network optimizations.

• Once you add your desired topology/routing/flow-control/microarchitecture optimiza-
tion, run your simulator in a standalone mode and make sure one flit is successfully de-
livered from the a fixed source to a fixed destination. Most bugs can be found and fixed
here by probing the intermediate routers and states.

• Repeat the same experiment for multiple flits from fixed/variable sources and destinations.
This can be done by running one of the standard synthetic traffic patterns, system traces,
or a user-specified pattern.

• Once the on-chip network is robust across the synthetic traffic patterns, it can be plugged
into a full-system with real traffic. Common errors at this stage include incorrect order-
ing or virtual network violations within the on-chip network, which leads to flits getting
delivered without the on-chip network deadlocking, but may lead to coherence protocol
violations.

• To characterize the effectiveness of the technique, it is often useful to also plot the ideal
behavior of the on-chip network as well, which can be modeled by implementing an im-
practical but ideal fully connected network giving the lowest delay and highest throughput
without contention.

7.5 NOCGENERATORS
NoC RTL generators are provided by commercial vendors and academic researchers for plug-
and-play into CMPs and/or MPSoCs. These generators use a library of modularized compo-
nents to build routers with varying number of ports, data widths, and buffer depths. Some of
these provide application-specific synthesis for heterogeneous SoCs, while some generate ho-
mogeneous NoCs for multicores with different topology and routing algorithms. Detailed in-
formation on application-specific NoC synthesis can be found in Benini and De Micheli [45].

Commercial. ARM’s CoreLink [28] interconnect generates buses and mesh networks
tailored to ARM Cortex and Mali cores in both cache-coherent CMPs and mobile SoCs.
FlexNoC [29] by Arteris is a proprietary NoC generation tool to connect IPs implementing any
combination of AMBA®ACETM, ACE-Lite, AXITM, AHBTM, AHB-Lite, APBTM, OCP,
and PIF protocols. It lets the designer specify a task graph which translates into a network
topology. The designer can then add “links” to share multiple flows. A library of RTL compo-
nents is used to create the actual NoC. Functional and timing simulations can be performed on
the designs. The tool flow also performs automated pipelining to meet timing. SonicsGN [323]
is similarly a configurable NoC generator from Sonics for heterogeneous SoCs. It scales from
high-throughput networking chips operating in GHz to low-power and low-latency IoT wear-
ables operating at MHz frequencies.
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Academic. �pipes [169, 327] is a NoC generator in SystemC, with a library of config-

urable NoC components. It performs topology synthesis [256] based on the target application.
DRNoC [202] and Connect [281] are NoC generators optimized for FPGAs. DRNoC gener-
ates application-specific NoCs taking the communication task graph as an input. Connect uses
Bluespec System Verilog (BSV) [261] for the implementation and generates synthesizable Ver-
ilog of user-specified topologies and design parameters. It supports a web-based graphical user
interface so that users can obtain network designs with various topologies easily. The generated
verilog is available for users, but not the BSV source code due to licensing issues. Open SoC
Fabric [118] provides an NoC generator written in Chisel [33]. This generator supports 2-D
mesh and flattened butterfly networks of arbitrary sizes. The source code is open, and users can
freely edit the source code and re-compile it because Chisel is an open-source language. The
NoC System Generator [59] receives a specification of NoCs in an XML file format and pro-
duces VHDL for this specification. It supports 2-D and 3-D mesh topologies. OpenPiton [39]
is an open-source many-core system generator, and it has used for fabricated ASIC chips and
an FPGA implementation that runs full-stack Linux. OpenPiton contains a NoC structure to
support the cache coherence, memory, and inter-core interrupt traffic of the SPARC cores it
employs. OpenSMART [213] is a recent open-source NoC generator that provides both BSV
and Chisel implementations for mesh and SMART [204] routers.

7.6 BRIEF STATE-OF-THE-ART SURVEY
Many tools are available to designers and researchers today to model, evaluate, and refine on-
chip network designs. In the MPSoC domain, Æthereal [134] and Nostrum [211] provide high
level models that allow for iterative design refinement, while cycle-accurate simulators such as
MPARM [42] can be used to do design space exploration. In the CMPdomain, many open soft-
ware simulation frameworks exist for modeling on-chip networks, either in a standalonemanner,
or as part of a full-system. There also exist on-chip network modeling frameworks in RTL—
either Verilog, or higher level languages like Bluespec System Verilog [261] and Chisel [33].
Table 7.3 lists some of the state-of-the-art frameworks that provide cycle-accurate on-chip net-
work simulation. An evolving list of simulators is also maintained by Cristinel Ababei (Mar-
quette University), Partha Pande (Washington State University), and Sudeep Pasricha (Col-
orado State University) [272]. Some full-system simulators such as SESC [303], zsim [307]
and others do not model on-chip networks in a cycle-accurate manner for simulation speed,
and instead use fixed or probabilistic delays. Apart from simulators, analytical models for on-
chip network performance analysis across various topologies and microarchitectures have also
been designed [266, 292].
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Table 7.3: State-of-the-art on-chip network simulators

Simulator Language Environment

Garnet [14, 203] C++ Standalone + Full-System (gem5 [49])

Booksim2 [170] C++ Standalone + Full-System (gpgpusim [36])

Topaz [1] C++ Standalone

Flexsim1.2 [144] C++ Standalone

SuperSim [277] C++ Standalone

NOCulator [264] C++ Standalone

OpenSMART [213] BSV, Chisel Standalone

OpenSoC [118] Chisel Standalone

CONNECT [281] BSV Standalone (optimized for FPGA)

NoCem [309] VHDL Standalone (optimized for FPGA)

Agate [66] C++ Network-only (with Garnet) + Full-System (gem5 [49])

NoCGEN [59] VHDL Standalone

DART [349, 350] Verilog Standalone
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C H A P T E R 8

Case Studies
Over the past decade, on-chip networks have been driving real multicore chips across commer-
cial products and research prototypes. We discuss a few of them here as case studies, focusing on
the system they are interconnecting and the design specifications. We highlight the topology,
routing algorithm, flow control and router microarchitecture and relate these designs back to
fundamental concepts presented in earlier chapters; however, in some cases, limited public infor-
mation is available about these chips so their treatment may not be complete. Table 8.1 summarizes
the features of all the chips discussed in this chapter. Case studies are presented in chronological
order starting with the most recent.

8.1 MITEYERISS (2016)

TheEyeriss ASIC fromMIT [72] is an accelerator for deep convolutional neural networks, with
168 processing elements connected via multiple NoCs. Convolutional neural networks (CNNs)
have demonstrated unprecedented levels of accuracy on vision-based machine learning tasks
such as object recognition and detection. Eyeriss is part of an emerging trend of accelerator
IPs being developed to provide orders of magnitude performance and energy benefits compared
to general purpose cores. This trend is fueled in part because of (a) the end of performance
scaling due to limits of Dennard’s scaling, (b) the dark silicon problem where chips have more
transistors than a system can fully power at any point in time, and (c) the emergence of new
classes of applications such as deep learning that require a lot of parallel big-data processing. For
instance, the computational complexity of CNN comes from the high-dimensional convolution
operations (i.e., multiply accumulates), which account for over 90% of the operations.

Eyeriss is built using 168 PEs that communicate with one another directly, rather than via
memory, and naturally requires an on-chip network. However, as the communication pattern
is known apriori for each layer of the CNN, a lightweight NoC with configurable switches is
used, instead of the general-purpose ones described so far in this book. The NoC and PEs are
configured before the start of each layer.

The diephoto of Eyeriss is shown in Figure 8.1a. Eyeriss has a global SRAM buffer (GB)
which multicasts input feature maps (ifmap) and filter weights to a set of PEs. The logical
dataflow is shown in Figure 8.1b: filter weights are multicast along the row, ifmaps are multicast
along the diagonal. and partial sums (psum) generated by each PE are sent to their immediate
neighbor above. Depending on how this logical dataflow is cut or folded to be mapped on the
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Table 8.1: Chip prototypes

Chip Year
Tech

Node
Topology Route

Flow

Control

Router

Stages

Eyeriss

(MIT) [72]
2016 65 nm 12×14 Mesh Source None 0

Piton

(Princeton) [39]
2015 32 nm 5×5 Mesh XY Wormhole 1, 2

Xeon Phi

(Intel) [321]

2015

2012

14 nm

22 nm

6×6 Mesh

Ring
YX Rotary † 1, 2

Anton 2

(DESRES) [338]
2014 40 nm

4×4 Mesh +

2 skip links

Y- → X+ →

X- → Y+
VCT

SCORPIO

(MIT) [101]
2014 45 nm 6×6 Mesh XY VC 3, 1

Sparc T5

(Oracle) [341]
2013 28 nm 8×9 Xbar NA NA NA

Swizzle Switch

(UMichigan) [315]
2012 45 nm 64×64 Xbar NA NA 4

Broadcast NoC

(MITY) [287]
2012 45 nm 4×4 Mesh XY Tree VC 3, 1

3D Maps

(Georgia Tech) [184]
2012 130 nm 8×8 Mesh Compiler None 0

Multicast NoC

(KAIST) [191]
2010 130 nm Hier. Ring Source Wormhole 4

4

Intel SCC

(Intel) [160]
2009 45 nm 6×4 Mesh XY VC 3

ASAP

(UC Davis) [339]
2009 65 nm 13×13 Mesh Source

Circuit

Switched
NA

TilePro 64

(Tilera)[356]
2008 90 nm 6 8×8 Meshes

XY

Source

Wormhole

Ckt-Switch
1, 2

STNoC

(ST) [82]
2008 65 nm Spidergon Across-First VC 1, 2

Intel Terafl ops

(Intel) [158]
2007 65 nm 8×10 Mesh XY VC 5

Cell

(IBM) [195]
2005 65 nm Ring Shortest Rotary† 1

†Rotary Rule: Traffi  c on the ring has higher priority than injected traffi  c.
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array, and the size of the filters, the multicast pattern may not be as uniform. It is, however,
static during the run of each CNN layer.

The Eyeriss NoC comprises three separate networks, shown in Figure 8.1c.
(1) Global Input Network (GIN): The GIN is optimized for a single-cycle multicast from the
GB to a group of PEs that receive the same filter, ifmap, or psum. The GIN is built using one
Y bus and 12 X buses, one per row. A separate GIN is implemented for each of the three data
types (filter, ifmap and psum) in order to provide sufficient bandwidth from the GB to the PE
array. The filter and psum GIN have a bus width of 64 b to deliver 4 contiguous words to a PE
in a cycle. The ifmap GIN has the data bus width of 16 b.
(2) Global Output Network (GON): The GON has the same architecture as the GIN, except
that it is used for reading psums from PEs and sending them to the GB.
(3) Local Network (LN): The LN is a set of point-to-point Y-directional links between the PEs
for transfer of psums.

Together these networks logically create a 14 � 12 mesh topology. The X-links of this
mesh are used to deliver data from the global buffer to the PEs, while the Y links are used
for local communication between the PEs. The GIN and the GON have a 5-bit tag field, in
additional to the data. A PE can get its input psums either from the psum GIN or LN. The
selection is static within a layer, which is controlled by the scan chain configuration bits and
only depends on the dataflow mapping of the CNN shape.

There is one route between any two communicating entities (GB to PE, PE to GB, and
PE to PE) in Eyeriss. Multicasts from the GB use a tree from the root (i.e., Y bus) to the leaf
PEs. PEs use the direct local Y link to send psums to their neighbor, or the X bus on the GON
to communicate with the GB. This is configured statically.

All PEs that need to receive the same data (filter or ifmap) during multicast are configured
with the same ID during the configuration phase. The GB tags each multicast message with the
ID of the receiving PEs. All switches/controllers on the GIN multicast the data to those PEs
whose IDsmatch the tag.Themulticast takes a single-cycle.This is shown in Figure 8.1d.On-off
flow-control is used. A multicast over the GIN is sent out only if all PEs have a buffer available.
Delivery to a subset of PEs is not allowed. On the GON, the GB sets the id of the PE it wants
to receive from in the tag field. Only this PE is allowed to send the psum. Unlike PEs that
receive filters and ifmaps, the PEs that generate output psums have unique ids, so there is never
a conflict. Thus no arbitration is required for any of the global buses in the networks since there
is only one sender at any point of time.

The switches in the NoC are configurable and bufferless. Their role is to simply pass the
data forward if the tag matches. Figure 8.1c shows the microarchitecture.

8.2 PRINCETONPITON (2015)
TheOpenPiton Processor fromPrinceton [39] is a manycore research framework; it was demon-
strated with a 25-core tiled processor ASIC prototype called Piton at 32 nm, running at 1 GHz.
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The manycore processor uses OpenSPARC T1 cores, and provides a memory subsystem inter-
connected via three NoCs. A high level overview is shown in Figure 8.2.
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Figure 8.2: Princeton Piton manycore processor: 6 � 6 mesh [39].

The interface to theOpenSPARCT1’s L1 is theOpenSPARCCCX (CPU-Cache Cross-
bar) interface. An inclusive L2 cache is distributed across all the tiles. The memory subsystem
maintains cache coherence with a directory-based MESI coherence protocol. It adheres to the
TSO memory consistency model used by the OpenSPARC T1. OpenPiton adds a new L1.5
cache to transduce CCX messages to the coherence protocol messages. Coherent messages be-
tween L1.5 caches and L2 caches communicate through three NoCs. A chip bridge connects
the tile array to the chipset, through the upper-left tile, for serving memory and I/O requests.
OpenPiton also includes an AXI4-Lite bridge that provides connectivity to a wide range of I/O
devices by interfacing memory mapped I/O operations from the NoCs to AXI-Lite.

Three NoCs transport messages across the various message classes of the coherence pro-
tocol. NoC1 transports requests from L1.5 to the L2s; NoC2 transports responses and requests
from the L2 to the cores and the memory controller respectively; NoC3 transports writebacks
from the L1.5 and responses from the memory controller to the L2. To ensure deadlock-
freedom across the message classes, the priority order among the NoCs is NoC3 > NoC2 >

NoC1. This ensures that responses are always drained. The NoCs also maintain point-to-point
ordering.

All NoCs use 64-bit bi-directional links. Each NoC uses wormhole routers without any
virtual channels. The design essentially uses multiple physical networks instead of multiplexing
multiple VCs over the same physical links. Dimension-ordered XY routing is used to avoid
routing and protocol deadlocks. Each wormhole router takes one cycle when routing along the
same dimension, and two cycles at turns. In the ASIC prototype, the NoC routers consume less
than 3% of the entire chip area, which is dominated by the cores and caches.
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8.3 INTELXEON-PHI (2015)
Intel’s Xeon Phi [321] line of processors is targeted for High Performance Computing (HPC)
workloads and contain tens of cores. The first iteration, called Knights Corner was released in
2012. It is implemented in 22 nm and operates at 1–1.2 GHz. It contains 61 P54C (Pentium
Pro) cores, interconnected by a bi-directional ring.The same ring is used in Intel’s Xeon products.
To get high-bandwidth and ring scalability, Intel uses 10 separate rings, 5 in each direction. The
5 rings are: one BL (64-byte for data), two AD (address), and two AK (acknowledgment and
other coherence messages). All rings are of a different width, optimized for their traffic type. All
packets are 1-flit wide, and each ring takes a cycle to deliver packets between ring stops. Apart
from the cores, there are ring stops for eight memory controllers, PCIe controllers, and a few
others for bookkeeping.

The second iteration, called Knights Landing was released in 2015. It is implemented in
14 nm and has 36 tiles, each with 2 silvermont (Atom) cores. A high level overview is shown in
Figure 8.3. There are 38 physical tiles, of which 36 are active; the remaining 2 tiles are for yield
recovery. Each tile comprises two cores, two vector processing units (VPUs) per core, a 1-Mbyte
level-2 (L2) cache that is shared between the two cores, and a slice of the distributed directory.
The NoC is a 6 � 6 mesh. There are four parallel meshes, each for delivering different types of
traffic. The mesh can deliver greater than 700 GB/s of total aggregate bandwidth. There are no
VCs within each mesh. The mesh is organized into rows and columns of “half ” rings that fold
upon themselves at the end points. In other words, the output link at the edge of an edge tile is
connected to the input link at the same edge. All packets use YX routing: a packet first traverses
the Y links to reach the right row, and then turns along the X to reach the destination. It takes

(a) Overview (b) 2D Mesh

Figure 8.3: Intel Xeon Phi (knights landing): 6 � 6 mesh [321].
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one cycle for every hop in the Y-direction, and two cycles for every hop in the X-direction. This
is because the tile is wider on the X-direction than in the Y-direction. The mesh is derived from
the rings in previous Xeon Phi generations and hence uses the same rotary rule for arbitration:
traffic already on an X or Y ring always takes higher priority over traffic wanting to enter the
ring from the injection or turning port.

The interconnect transports MESIF cache coherence traffic.The network can be operated
in three cluster modes: all-to-all, quadrant, and sub-NUMA clustering. In all-to-all, addresses
are hashed uniformly across all distributed directories, and there is no affinity between the tile,
directory, or memory. In quadrant, the chip is divided into four virtual quadrants; the address is
hashed to a directory in the same quadrant as the memory controller. In sub-NUMA clustering,
each quadrant (cluster) is exposed as a separate NUMA domain to the OS; the system looks
analogous to a 4-socket system and requires software to NUMA optimize to get benefit.

8.4 DE SHAWRESEARCHANTON 2 (2014)
Anton 2 [338] from D E Shaw Research is a massively parallel special-purpose supercomputer
designed to accelerate molecular dynamics (MD) simulations. Each Anton 2 node is an ASIC
comprising 16 “Flex” and two “High-Throughput Interaction” compute subsystems. Hundreds
of these nodes are connected as a 3-D torus to model 3-DMD systems, with two physical chan-
nels along each direction. The ASIC is implemented in 40 nm technology and runs at 1.5 GHz.
Each ASIC has a 4 � 4 mesh NoC that serves two purposes: (a) connectivity between the com-
pute systems and (b) switch for the torus channels. The mesh has two “skip channels” which are
express links between the first and last router on the two rows connecting to the torus’s X chan-
nels to mitigate latency.The topology is presented in Figure 8.4. All mesh links are 192-bit wide,
capable of carrying 24-byte flits within a cycle. Eachmesh channel has a bandwidth of 288Gb/s,
which is enough to route the torus bandwidth of 179 Gb/s, with substantial bandwidth left over
for intra-node traffic.

Since both intra-node and inter-node traffic share the mesh, the routing algorithms on
the mesh are optimized such that the NoC appears as a high bandwidth switch. The following
direction-ordered route is reported to work best: Y-, X+, X- followed by Y+. The routers use
4 VCs each in the request and reply traffic classes (8 VCs in total) to avoid routing deadlocks. A
VC is incremented every time a packet crosses a torus dimension, or crosses a dateline. Virtual-
cut through (VCT) flow control is used. The network also supports table-based multicast to
an arbitrary set of destinations. The routers have a 4-stage pipeline: route computation (RC),
virtual channel allocation (VA), input switch arbitration (SA1) and output switch arbitration
(SA2). Each takes about 0.7 ns in the design. The VC queues contribute to 46% of the entire
router area.

In the Anton 2 network, the choice of a unified network for both intra-chip and inter-
chip communication creates a fairness challenge, since each inter-chip hop is implemented as
sequence of on-chip routing decisions, providing multiple opportunities for the introduction of
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Figure 8.4: D E Shaw Research Anton 2: 4 � 4 mesh with skip channels [338].

unfairness. This is addressed by statically programming weights in the arbiters to provide service
proportional to load, also known as EoS (equality of service).This static programming is possible
since the class of MD applications running on the system is known.

8.5 MIT SCORPIO (2014)
The MIT SCORPIO chip [101] is a research prototype demonstrating snoopy coherence over
an unorderedmesh. It comprises 36 Freescale e200 Power Architecture cores, each with a private
L1, connected by a 6 � 6 mesh. The core IPs have an AMBA AHB interface to a private L2,
and the L2 has a AMBA ACE interface to a NoC. Two Cadence DDR2 memories attach
to four unique routers along the chip edge, with the Cadence IP complying with the AMBA
AXI interface, interfacing with the Cadence PHY to off-chip DIMM modules. All other IO
connections go through an external FPGA board with the connectors for RS-232, Ethernet,
and flash memory. The chip is fabricated in IBM 45 nm SOI and operates at 833 MHz. The
chip layout is shown in Figure 8.5a.

The NoC is a 6 � 6 mesh. It implements sequential consistency by providing global or-
dering support, i.e., it guaranteees that snoop requests from cores are delivered to all destination
cores in the exact same order. The SCORPIO NoC decouples message delivery and ordering
by using 2 networks: a latency-bound bufferless broadcast network called a notification network
to perform ordering and a main network to deliver the messages.

The notification network is a 36-bit mesh, where each bit corresponds to a source. For
every coherence request injected on the main network, a one-hot encoding of the source node’s
ID (SID) is broadcast on the notification network. Broadcasts by multiple sources are merged
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by OR-ing the bit-vectors. The OR gates are hard-wired to implement an XY-tree routing al-
gorithm. The contention-less design ensures a maximum latency bound for every broadcast.
SCORPIO maintains synchronized time windows based on this bound; NICs send notifica-
tions at the beginning of the time window and process the notifications received at the end to
the time window. Based on the notifications received within the time window, the correspond-
ing requests are ordered in an ascending order of SIDs, thus enforcing the same global order.
The actual requests can arrive over the main network in any order; the NICs deliver them to the
coherence controllers in the global order. The NIC uses an expected source ID (ESID) register to
keep track of the request it is waiting for. Once this request is received, it is sent to the controller
and the ESID points to the next SID in the global order.

There is no flow control between the notification network switches since there is no buffer-
ing; however if the main network is slow, the notification network buffers at the destination
NICs could fill up. This is handled by having an end-to-end flow control: a stop bit on the no-
tification network is turned on by a NIC if it cannot receive any further notifications, and all
senders wait until it is cleared.

The main network is a 6 � 6 mesh with broadcast support within the routers. All broad-
casts use an XY-tree route. There are 4 VCs for the globally ordered broadcast requests, and
2 for the unicast responses. The former are 1-flit deep, and the latter 3-flit deep, and can each
hold a full packet (i.e., virtual cut-through). At each NIC and router, one of the globally ordered
VCs is reserved for the request whose SID matches the ESID that the NIC is waiting for. This
ensures that at any time the request that the NICs are waiting for has reserved buffers all along
the route and there are no deadlocks. The router in the main network has a 3-stage pipeline:
buffer write + input VC arbitration, output port arbitration + VC selection, followed by switch
traversal. Lookahead-bypass is also implemented and allows the pipeline to shrink to 1-cycle in
the case of a successful bypass.

8.6 ORACLE SPARCT5 (2013)

The Oracle Sparc T5 [341] is a server chip optimized for database applications. The chip is
implemented in 28 nm technology and runs at 3.6 GHz. It contains 16 cores, each 8-way multi-
threaded, with a private L1 and a private L2. Each chip has a shared L3, which is 8-way banked.
The NoC is a 8 � 9 crossbar, that interconnects 8 pairs of L2s to the 8 L3 banks and the IO
controller (for off-chip accesses). The crossbar offers a bandwidth of 1 TB/s. Figure 8.6 presents
the die photo of the chip. The crossbar area is about 1.5� the size of a L3 bank.

8.7 UNIVERSITYOFMICHIGANSWIZZLE SWITCH (2012)

TheSwizzle Switch [315] from theUniversity ofMichigan is an energy- and area-efficient cross-
bar topology that scales to high-radices. A 45 nm prototype is demonstrated for a radix-64 (i.e.,
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Figure 8.6: Oracle Sparc T5: 8 � 9 crossbar [341].

64 � 64) crossbar with 128-bit links. It operates at around 500 MHz delivering a throughput of
4.5 Tb/s. Figure 8.7 shows the chip floorplan.

The key idea in the Swizzle Switch is to re-use the data wires for arbitration, obviating
the need for a separate control plane for arbitration which adds lot of area and delay penalties
in crossbars due to the high fanout which in turn limits scalability. At each crosspoint, there is
a vector of priority bits which specify which input ports this particular input port inhibits, i.e.,
has higher priority over. Each input port repurposes a particular bit of the horizontal input bus
to assert a request, and a particular bit of the output bus to use as an inhibit line. Every output
channel operates independently in two modes, arbitration and data transmission.

During the arbitration phase, all inhibit lines are pre-charged to 1. If an input channel
has active data, it discharges the inhibit lines corresponding to the input ports it inhibits. For
every output port, its highest priority input port wins arbitration and the result gets latched in
a Granted Flip Flop to setup the connection for data transmission. During data transmission,
the output buses are pre-charged to 1. At crosspoints where Granted Flip Flop is 1, the output
remains charged or gets discharged based on the input. The Granted Flip Flop uses a thyristor-
based sense amplifier to set the enabled latch, which only enables the discharge of the output
bus for a short period of time, reducing the voltage swing on the output wire.This reduced swing
coupled with the single-ended sense amplifier helps to increase the speed, reduce the crosstalk,
and reduce the power consumption of the Swizzle-Switch.

The Swizzle Switch is proposed as a high-radix single-stage interconnect for a 64-core
topology. It takes four cycles to use the Swizzle Switch: one cycle for the signals to reach the
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Figure 8.7: University of Michigan Swizzle Switch [315].

crossbar, one cycle for arbitration, one for data transmission, and one to reach the destination
core.

8.8 MITBROADCASTNOC (2012)
The Broadcast NoC [287] from MIT is a 16-node research prototype demonstrating a NoC
with a single-cycle per-hop datapath optimized for broadcasts. The goal is to approach the la-
tency, throughput and energy of an ideal broadcast fabric. The ideal metrics are derived and
presented in the paper. The NoC is fed by on-chip traffic generators, which inject flits into the
network according to a Bernoulli process of rate R, to a random, uniformly distributed destina-
tion for unicasts, and from a random, uniformly distributed source to all nodes for broadcasts.
The injection rate, and the traffic mode (broadcast-only, unicast-only, or mix) is scanned in via
input pins.The chip operates at 1 GHz and is implemented in 45 nm SOI CMOS. An overview
of the chip is presented in Figure 8.8.

Each traffic generator connects to a NIC, which connects to a router. The routers are
connected as a 4 � 4 mesh with 64-bit links. Broadcasts are routed over XY-trees and unicasts
use XY. The design implements two message classes: requests and responses. Request packets,
representing coherence requests and acknowledgments, are 1-flit wide, and could be broadcasts
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Figure 8.8: MIT Broadcast NoC: 4 � 4 mesh [287].

or unicasts. Response packets, representing cache lines, are 5-flits wide. There are 6 VCs in each
router: four 1-flit deep for requests, and two 3-flit deep for responses.

The router implements two key features to approach the ideal latency, throughput and
energy limits. The first is a multicasting crossbar, with low-swing links, which are designed to
optimize both energy and latency. The links swing at 300 mV which leads to a 48.3% power
reduction compared to an equivalent full-swing crossbar. It provides a single-cycle switch + link
traversal (ST + LT) unlike conventional designs which spend a cycle each in the crossbar and
the link. The crosspoints of the crossbar allow flits to get forked out of multiple output ports.
The second feature of the router is the bypassing of pipeline stages to allow flits to arbitrate for
multiple ports in one cycle and traverse the crossbar and links in the next, without having to stop
and get buffered. This is implemented by sending 15 b lookaheads from the previous router to
try and pre-arbitrate for one (or more) ports of the crossbar, one cycle before the actual flit. The
arbiter is separable, the first stage (called mSA-I) arbitrates between input VCs at every input
port, while the second stage (called mSA-II) arbitrates between input ports at every output
port. The lookaheads have higher priority over local flits at each input port, and bypass mSA-I
to directly enter mSA-II. If the lookahead wins arbitration for all ports, the incoming multicast
flit is forked within the crossbar and not buffered at all. If the lookahead wins some or none of
its output ports, the incoming flit is buffered and subsequently re-arbitrates for the remaining
ports; partial grants are allowed. The regular router pipeline is three cycles: BW + mSA-I + VA
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in the first, mSA-II + lookahead traversal in the second, and ST+LT in the third. Successful
arbitration by the lookaheads leads to the datapath becoming a single-cycle per-hop (ST+LT)
low-swing traversal.

8.9 GEORGIATECH 3D-MAPS (2012)
The 3D-MAPS (3D Massively Parallel Processor with Stacked Memory) chip from Georgia
Tech [183] is a 2-tier 3-D chip with a 64-core processor on one layer, and SRAM on the other.
An overview is shown in Figure 8.9. Each core communicates with its dedicated 4 KB SRAM
block using face-to-face bond pads, which provide negligible data transfer delay between the
core and the memory tiers. The maximum operating frequency is 277 MHz.

One Core

2D Mesh
Network

Computation Pipeline
Data

Memory

Memory Pipeline

Instruction
Memory

Register File

Figure 8.9: Georgia Tech 3D-MAPS: 3-D chip with 8 � 8 2-D mesh on logic tier [184].

Each core runs a modified version of MIPS, and implements an in-order dual-issue
pipeline. A 2D mesh is used to connect the cores together, controlled by explicit communi-
cation and synchronization instructions. However there are no routers; explicit instructions are
provided to move data generated by a core to its N, S, E, or W neighbor. The memory tier also
has an 8 � 8 array of SRAM tiles, although these are not interconnected, and are private to each
core.

8.10 KAISTMULTICASTNOC (2010)
The Multicast-NoC (MC-NoC) [191] from KAIST was developed as part of an application-
specific chip for object recognition to be used in mobile robots.The SoC comprises 21 IP blocks:
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a neural perception engine (NPE) for pre-processing, a task manager (TM) for scheduling,
16 SIMD processor units (SPU), a decision processor (DP) for post-processing, and 2 external
interfaces (EXT). All IPs operate at 200MHz.The IPs connect via a NoC that operates at twice
the IP frequency, i.e., at 400 MHz. The chip was fabricated in 0.13 um CMOS.

The NoC topology is a hierarchical star-ring (HS-R) shown in Figure 8.10. The SPUs are
grouped in clusters of 4.The clusters are connected together by a ring. A 7 � 7 local switch within
each cluster connects the 4 SPUs and the two directions of the ring to a system network switch.
The 9 � 10 system network switch connects together the NPE, TM, DP, EXTs, and the four
clusters. There are two ports into the DP; one is dedicated for aggregating N-to-1 notification
packets from the SPUs. The combined topology of the MC-NoC provides 118.4 GB/s total
bandwidth with a maximum of 3 switch traversals for any packet.

H-star
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System Switch

7 × 7
Local Switch

16 SPUs

7 × 7
Local Switch

Ring topology

Multi-casting route

Multi-casting
IPs

STM

DP

2 EXTs

NPE

Figure 8.10: KAIST MC-NOC: Hierarchical star-ring [191].

Source-routing is used for both unicasts and multicasts. The header flits carry 16 bits of
routing information that is used to specify the route for unicasts, and the destination SPU set for
multicasts. The header also carries a 4-bit burst length for data bursts of up to 8 flits per packet,
and a 2-bit priority for quality-of-service.

There are no VCs; wormhole flow control is used. Each router has a 4-stage pipeline. In
the first stage, an incoming flit’s header is parsed and it is buffered in a 8-depth FIFO that
manages synchronization for heterogeneous clock domains within the IPs and the NoC. In the
second stage, active input ports send request signals to each output port arbiter. The arbiters
perform round-robin scheduling according to the priority levels of the requests. In the third
stage, the grants are received. For multicasts, a grant checker is used to check if all requesting
output ports were granted or not. If they were, the flit is dequeued and broadcast out of the
crossbar in the fourth stage. If not, the flit retries next cycle for all ports as partial grants are not
allowed. A variable strength driver is employed at every input port of the crossbar to provide
sufficient driving strength for multicasting.
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8.11 INTEL SINGLE-CHIPCLOUD (2009)

The Intel SCC [160] is a 48-core research prototype to study many-core architectures and their
programmability. All 48 IA-cores boot Linux simultaneously.The chip is implemented in 45 nm
CMOS and operates at 2 GHz. There is no hardware cache coherence; instead software main-
tains coherence using message passing protocols such as MPI and OpenMP. The SCC has
24 tiles, each housing 2 cores and a private L1 and L2 per core. The tiles are connected by a
6 � 4 mesh NoC offering a bisection bandwidth of 256 GB/s. Figure 8.11 shows an overview
of the chip.
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Figure 8.11: Intel Single-Chip Cloud: 6 � 4 mesh [160].

The routers have 5 ports with each input port housing five 24-entry queues, a route pre-
computation unit, and a virtual-channel (VC) allocator. Route pre-computation for the outport
of the next router is done on queued packets. The links are 16 B wide, with 2 B sidebands.
Sideband signals are used to transmit control information. XY dimension-ordered routing is
enforced. There are a total of 8 VCs, two reserved for the request and response message classes
and the rest in a free pool. Credit-based flow control is used between the routers. Input port and
output port arbitrations are done concurrently using a wrapped wave front arbiter. The router
uses virtual cut-through flow control and performs crossbar switch allocation in a single clock
cycle on a packet granularity. The router has a 3-cycle pipeline: Input Arbitration, Route Pre-
Compute + Switch Arbitration, followed by VC allocation. This is followed by a 1-cycle link
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traversal to the next router. A packet consists of a single flit or multiple flits (up to three) with
header, body and tail flits.

The die is divided into 8 voltage islands, and 28 frequency islands to allow the V/F of each
island to be independently modulated by software. The complete 2D mesh is part of one V/F
domain. The NoC contributes to 5% and 10% of the total power at low-power (0.7 V, Cores
- 125 MHz, Mesh - 250 MHz) and high-power (1.14 V, Cores - 1 GHz, Mesh - 2 GHz)
operation, respectively.

8.12 UCDAVIS ASAP (2009)
The Asynchronous Array of simple Processors (AsAP) [339] from the University of California
at Davis is a programmable array of processors and accelerators. The first generation chip which
is in 0.18 um contains 36 cores, and operates at over 610 MHz at 2 V. The second generation
chip which is fabricated in ST Microelectronics 65 nm low-leakage CMOS process comprises
164 RISC processors, three fixed-function accelerators (FFT, Viterbi decoder, and Motion Es-
timation), and three 16KB shared memory modules. A high-level overview of the chip is shown
in Figure 8.12a. At 1.3 V, the programmable processors can operate up to 1.2 GHz. The con-
figurable FFT and Viterbi processors can run up to 866 MHz and 894 MHz, respectively.

The cores are connected to their nearest neighbors via two sets of links, forming two
separate 2-Dmesh networks. Applications are mapped on to the array, and circuit-switched paths
are created between each communicating pair of cores. Having two meshes eases the mapping
job for programmers. The clock is distributed in a globally asynchronous, locally synchronous
(GALS) manner by sending the source clock along with the data and using it to latch the data
at the destination FIFO.This obviates the need for a global clock distribution tree over the chip.
The destination core uses its own internal clock to read data out of the FIFO.

The connection between two cores can pass through multiple intermediate switches de-
pending on the mapping. This interconnection is established by configuring the multiplexers in
the intermediate switches prior to runtime which fixes this communication path; thus, this static
circuit-switched interconnect is guaranteed to be independent and never shared. As long as the
destination processor’s FIFO is not full, a very high throughput of one data word per cycle can
be sustained.

The number of “cycles” taken for data communication depends on the distance between
the communicating cores. Since data is not latched at intermediate switches, the entire path is
a repeated link connecting the source processor’s FIFO with the destination processor’s FIFO
with pre-configured 4:1 muxes at each “switch.”Multiple switches can thus be traversed within a
single clock cycle. A typical communication path is shown in Figure 8.12b.The latency observed
(in simulation) is less than 2.5 cycles at 90 nm and less than 1.7 cycles at 22 nm at the peak
operating frequency for each technology, regardless of distance.
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8.13 TILERATILEPRO64 (2008)
The Tilera TILEPro64 [356] is a multicore SoC targeting embedded applications across net-
working and digital multimedia. It comprises 64 tiles connected by multiple independent 8 � 8

meshes collectively called iMesh, as shown in Figure 8.13. Each mesh consists of 32-bit unidi-
rectional links. Each tile features a processor engine, cache engine, and switch engine. The core
is a 64-bit VLIW engine, capable of running SMP Linux, with a private L1-D, L1-I, and L2
cache. The cache engine is a distributed shared L3 slice. The switch engine houses the routers
for the various networks.
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Figure 8.13: Tilera TILEPro64: 6 8 � 8 mesh [356].

At the chip frequency of 1 GHz, iMesh provides a bisection bandwidth of 320 GB/s.
Actual realizable throughput depends on the traffic and how it is managed and balanced by the
flow control and routing protocols.

The iMesh has sophisticated network interfaces supporting both sharedmemory andmes-
sage passing paradigms. There are six physical networks: Memory Dynamic Network (MDN),
Tile Dynamic Network (TDN), User Dynamic Network (UDN), Static Network (STN), and
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I/O Dynamic Network (IDN), and inValidation Dynamic Network (VDN). Traffic is statically
divided across the six meshes. The caches and memory controllers are connected to the MDN
and TDNwith inter-tile shared memory cache transfers going through the TDN and responses
going through theMDN, providing system-level deadlock freedom through two separate phys-
ical networks. The UDN supports user-level messaging, so threads can communicate through
message passing in addition to the cache coherent shared memory. Upon message arrivals, user-
level interrupts are issued for fast notification. Message queues can be virtualized into off-chip
DRAM in case of buffer overflows in the NIC. The STN is used for routing large streaming
data. I/O and system messages use the IDN. The TILE64 contains these five networks; the
VDN was introduced in the TILEPro64 for invalidation traffic to accelerate cache coherence.

The five dynamic networks (UDN, IDN, MDN, TDN, and VDN) use the dimension-
ordered routing algorithm, with the destination address encoded in X-Y coordinates in the
header. The static network (STN) allows the routing decision to be pre-set. This is achieved
through circuit switching: a setup packet first reserves a specific route, the subsequent message
then follows this route to the destination.

The dynamic networks use simple wormhole flow control without virtual channels to lower
the complexity of the routers, trading off the lower bandwidth of wormhole flow control by
spreading traffic over multiple networks. Credit-based buffer management is used. The static
network uses circuit switching to enable the software to pre-set arbitrary routes while enabling
fast delivery for the subsequent data transfer; the setup delay is amortized over long messages.

Buffer management in each network is varied. On the MDN, a conservative end-to-end
approach is used, where in every node communicating with DRAM is allocated a slot at the
memory controller. This guarantees that traffic on the MDN is always drained, without causing
any congestion. Acknowledgments are issued when the DRAM controller processes a request.
The storage at the memory controller is sized to cover the acknowledgment latency and allow
multiple in-flight memory requests. On the TDN, the link-level flow control is used. As long as
theMDNdrains (due to the end-to-end flow control), the TDNcanmake forward progress.The
IDN and UDN are software accessible and implement mechanisms to drain into the DRAM,
and refill, to avoid deadlocks. In addition, the IDN utilized pre-allocated buffering with explicit
acknowledgments when communicating with I/O devices. The UDN can employ multiple end-
to-end buffer management schemes depending on the programming model.

The iMesh’ wormhole networks have a single-stage router pipeline during straight por-
tions of the route, and an additional route calculation stage when turning. Only a single buffer
queue is needed at each of the five router ports, since no VCs are used. Only three flit buffers
are used per port, just sufficient to cover the buffer turnaround time. This emphasis on simple
routers results in a low area overhead of just 5.5% of the tile footprint.
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8.14 STMICROELECTRONICS STNOC (2008)
ST Microelectronic’s STNoC [82] aims to provide a programmable on-chip communication
platform on top of a simple network for heterogeneous multicore platforms. It encapsulates sup-
port for communication and synchronization primitives and low-level platform services within
what it calls the Interconnect Processing Unit (IPU). Examples of communication primitives are
send, receive, read and write, while synchronization primitives are test-and-set and compare-
and-swap. The aim is to have a library of different IPUs that support specific primitives so
MPSoC designers can select the ones that are compatible with their IP blocks. For instance,
IP blocks that interface with the old STBus require read-modify-write primitives that will be
mapped to appropriate IPUs. Currently STNoC supports two widely used SoC bus standards
fully: the STBus and AMBA AXI [27], and plans to add IPUs for other programming models
and standards.

The STNoC proposes a novel pseudo-regular topology, the Spidergon, that can be readily
tailored depending on the actual application traffic characteristics, which are known a priori.
Figure 8.14 sketches several variants of spidergons. Figure 8.14a shows a 6-node spidergon that
can havemore links added to cater to higher bandwidth needs (Figure 8.14b). Figure 8.14c shows
a maximally connected 12-node spidergon, where most links can be trimmed off when they are
not needed (Figure 8.14d). The pseudo-regularity in STNoC permits the use of identical degree
three router nodes across the entire range of spidergon topologies, which simplifies design and
makes it easier for a synthesis algorithm to arrive at the optimal topology. A regular layout is
also possible, as Figure 8.14e illustrates.

The STNoC can be routed using regular routing algorithms that are identical at each
node, leveraging the ring-like topology of the spidergon. For instance, the Across-First routing
algorithm sends packets along the shortest paths, using the long across links that connect non-
adjacent nodes in STNoC only when that gives the shortest paths, and only as the first hop. For
instance, in Figure 8.14f, when going from Node 0–4, packets will be routed from Node 0–3 on
the long across link, then from 3–4 on the short link, leading to a 2-hop route. Note though that
here, clearly, link length differs significantly and needs to be taken into account. Despite a low
hop count, long link traversals cycles may increase the packet latency for Across-First routing.
The Across-First routing algorithm is not deadlock-free, relying on the flow control protocol to
ensure deadlock freedom instead.

STNoC routing is implemented through source routing, encoding just the across link
turn and the destination ejection, since local links between adjacent rings are default routes. The
Across-First algorithm can be implemented within the network interface controller either using
routing tables or combinational logic.

STNoC uses wormhole flow control, supporting flit sizes ranging from 16–512 bits de-
pending on the bandwidth requirements of the application. Virtual channels are used to break
deadlocks, using a dateline approach similar to what has been discussed, with the variant that
nodes that do not route past the dateline need not be constrained to a specific VC, but can in-
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stead use all VCs. Buffer backpressure is tracked using credits. Actual flit size, number of buffers,
and virtual channels are determined for each application-specific design through design space
exploration.

Since the STNoC targets MPSoCs, it supports a range of router pipelines and microar-
chitectures. Here we summarize the key attributes that are common across all STNoC routers.
AsMPSoCs do not require GHz frequencies, STNoC supports up to 1 GHz in 65 nm ST tech-
nology. Since the degree is three, the routers are four-ported, to left, right, across links as well as
the NIC to IP blocks. Low-load bypassing is used to lower the latency. Buffers are placed at in-
put ports, statically allocated to each VC, with the option of also adding output buffer queues at
each output port to further relieve head-of-line blocking. Round-robin, separable allocators are
used. Extra ports or links that are trimmed off are not instantiated at design time. The crossbar
switch is fully synthesized.

8.15 INTELTERAFLOPS (2007)
The Intel TeraFLOPS chip [158] was one of the first many-core industry prototypes. It was built
in 65 nm, and could run at up to 5 GHz. It houses 80 single-precision, floating point cores. The
chip details are shown in Figure 8.15a.

The processing engine (PE) in each tile contains two independent, fully pipelined, single-
precision floating-point multiply-accumulator (FPMAC) units; 3 KB of single-cycle instruc-
tion memory (IMEM); and 2 KB of data memory (DMEM). A 96-bit very long instruction
word (VLIW) encodes up to eight operations per cycle. Applications are hand-mapped over
the PEs, with communication managed via explicit message passing send/receive instructions
in the ISA. Any tile can send/receive to any other tile, and send/receive instructions have laten-
cies of two cycles (within a tile’s pipeline), and five cycles of router pipeline along with a cycle
of link propagation for each hop. The 2-cycle latency of send/receive instructions is the same
as that of local load/store instructions. In addition, there are sleep/wakeup instructions to allow
software to put entire router ports to sleep for power management. These instructions trigger
sleep/wakeup bits in the packet header to be set, which can turn on/off 10 sleep regions in each
router as they traverse the network.

The topology is a 8 � 10 mesh, with each channel composed of two 38-bit unidirectional
links. It runs at an aggressive clock of 5 GHz on a 65 nm process. This design gives it a bi-
section bandwidth of 380 GB/s or 320 GB/s of actual data bisection bandwidth, since 32 out
of the 38 bits of a flit are data bits; the remaining 6 bits are used for sideband. Each tile has a
mesochronous interface (MSINT) which allows for scalable clock phase-insensitive communi-
cation across tiles and synchronous operation within each tile.

The network uses source table-based routing, with each hop encoded as a 3-bit field cor-
responding to the 5 possible output ports a packet can take at each router. The packet format
supports up to 10 hops (30 bits for route information), with a chained header bit that when
set, indicates that routing information for more hops can be accessed in the packet data. Source
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(a) Chip Overview (b) Router Microarchitecture and Pipeline

(c) Double-pumped Crossbar Circuit (d) Router Layout

Figure 8.15: Intel TeraFLOPS: 8 � 10 mesh [158].

routing enables the use of many possible oblivious or deterministic routing algorithms or even
adaptive routing algorithms that chooses a route based on network congestion information at
injection point. This enables the TeraFLOPS to tailor routes to specific applications.

The TeraFLOPS has a minimum packet size of two flits (38-bit flits comprised of 6 bits
of control data and 32 bits of data), with no limits placed on the maximum packet size by the
router architecture. The network uses wormhole flow control with two virtual channels (called
“lanes”), although the virtual channels are used only to avoid system-level deadlock, and not for
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flow control, as packets are pinned to a VC throughout their network traversal. This simplifies
the router design since no VC allocation needs to be done at each hop. Buffer backpressure is
maintained using on/off signaling, with software programmable thresholds.

The high 5 GHz (15 FO4s) frequency of the TeraFLOPS chip mandates the use of ag-
gressively pipelined routers.The router uses a five-stage pipeline: buffer write, route computation
(extracting the desired output port from the header), two separable stages of switch allocation,
and switch traversal. The pipeline is shown in Figure 8.15b. It should be noted that single hop
delay is still just 1 ns. Each port has two input queues, one for each VC, that are each 16 flits
deep. The switch allocator is separable in order to be pipelineable, implemented as a 5–1 port
arbiter followed by a 2–1 lane arbiter. The first stage of arbitration within a particular lane es-
sentially binds one input port to an output port, for the entire duration of the packet, opting
for router simplicity over the flit-level interleaving of multiple VCs. Hence, the VCs are not
leveraged for bandwidth, but serve only deadlock avoidance purposes.

The crossbar switch is custom-designed, using bit-interleaving, or double pumping, with
alternate bits sent on different phases of a clock, reducing the crossbar area by 50%.The crossbar
is fully nonblocking, with a total bandwidth of 100 Gbytes/s. The crossbar circuit is shown in
Figure 8.15c. The layout of the router is custom, with the crossbar at the center, and the queues,
control, and arbiters for each VC (lane) on either side.

The maximum frequency of the router ranges from 1.7 GHz at 0.75 V to 5.1 GHz at
1.2 V. The corresponding measured on-chip network power per tile with all router ports active
ranges from 98–924 mW, consuming 39% of the tile power. Clock gating and sleep transistors
at every port help reduce dynamic and leakage power respectively, and can lower the total power
to 126 mW, a 7.3� reduction.

8.16 IBMCELL (2005)
The IBM Cell Broadband engine [195] is a multicore chip that drives Sony’s PlayStation 3. It
was built in 65 nm, and runs at 3.2 GHz It includes one POWER Processing Element (PPE)
and eight Synergistic Processing Elements (SPEs). An Element Interconnect Bus (EIB) inter-
faces with the the PPE, the SPEs, the memory controller, and two I/O interfaces in and out of
the chip. A high-level overview is presented in Figure 8.16.

TheEIB consists of four unidirectional rings, two in each direction, and operates at half the
processor-clock speed, i.e., at 1.6 GHz. Each ring can simultaneously send and receive 16 bytes
of data every bus cycle. The EIB’s maximum data bandwidth is limited by the rate at which
addresses are snooped across all units in the system, which is one address per bus cycle. Each
snooped address request can potentially transfer up to 128 bytes, so in a 3.2 GHz Cell processor,
the theoretical peak data bandwidth on the EIB is 128 bytes � 1.6 GHz D 204.8 Gbytes/s.

As the Cell interfaces with the EIB through DMA bus transactions, the unit of com-
munications is large DMA transfers in bursts, with flow control semantics of buses rather than
packetized networks. Resource allocation (access to rings) is guarded by the ring arbiter, with
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Figure 8.16: IBM Cell: 4 rings [195].

highest priority given to the memory controller so requestors will not be stalled on read data.
Other elements on the EIB have equal priority and are served in a round-robin manner.

The IBM Cell uses explicit message passing as opposed to a shared-memory paradigm. It
is designed to preserve DMA over split-transaction bus semantics, so snoopy coherent transfers
can be supported atop the four unidirectional rings. In addition to the 4 rings, these 12 elements
interface to an address-and-command bus that handles bus requests and coherence requests.The
rings are accessed in a bus-like manner, with a sending phase where the source element initiates
a transaction (e.g., issues a DMA), a command phase through the address-and-command bus
where the destination element is informed about this impending transaction, then the data phase
where access to rings is arbitrated and if access is granted, data are actually sent from source to
destination. Finally, the receiving phase moves data from the NIC (called the Bus Interface
Controller (BIC)) to the actual local or main memory or I/O.

8.17 CONCLUSION
As evident by the case studies in this chapter, there has been a significant uptick in commercial
design and research prototypes featuring on-chip networks. Although meshes remain the most
common topology, rings, and crossbars continue to be optimized. Dimension-ordered routing
is widely favored across the designs studied due to its simplicity and deadlock freedom. Wider
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variation is seen in both flow control methods and router pipeline stages. Finally, these commer-
cial design and prototypes highlight the importance of considering the entire system; supporting
cache coherence protocols, message passing, and broadcasting/multicasting features in many of
the designs. Although common attributes have emerged as the field of on-chip networks ma-
tures, we anticipate exciting new research in all aspect of on-chip networks to drive the field in
the next decade.
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C H A P T E R 9

Conclusions
The study of on-chip networks is a relatively new research field. Conference papers addressing
them began appearing only in the late 1990s and on-chip networks have only recently began
appearing in products in sophisticated forms. In this concluding chapter, we reflect on emerging
research challenges in this field, surveying the state of the art and summarizing several key
opportunities.

9.1 BEYONDCONVENTIONAL INTERCONNECTS
On-chip networks are inherently comprised of underlying devices that drive network router logic
and interconnects that enable the transfer and switching of control and data signals through the
network. With communications as its main functionality, on-chip networks are naturally driven
by research advancements in interconnects.

Throughout this lecture, we intentionally omitted interconnect design, focusing on router
architecture and design instead.This is because to date, all industry chips with on-chip networks
used conventional repeated wires at full voltage swing. Conventionally, upper metal levels such
as M5 or 6 are used for the longer links of on-chip networks, and repeaters are automatically
inserted during back-end layout, appropriately trading off delay with energy [274]. Recent years
have seen significant progress in alternative interconnects for on-chip networks which we will
briefly survey and discuss below.

Low-power interconnect I/O circuit design. To drive on-chip network power down,
power-efficient link designs can be used to lower transmission energy. Researchers have explored
leveraging off-chip link I/O techniques [92], such as low voltage swing signaling, equalization
and differential signaling for on-chip transmission lines [60, 61, 165, 171, 181, 219, 229, 288].
Designers have to carefully trade off the benefits in energy, delay or bandwidth with the much
tighter area/power budgets for on-die networks. For instance, while low swing signaling has been
demonstrated within on-chip network research chip prototypes [219, 288], the reliability of such
links still needs to be rigorously evaluated in advanced technology nodes where supply voltages
decrease and the headroom for low swing signaling narrows. These sophisticated interconnects
have also prompted novel architectures that leverage their unique characteristics of fast cross-
chip delay, or a global shared medium interconnect [56, 57, 205, 270].

A key impediment to the adoption of power-efficient link circuits within NoCs lies in the
disconnect between these custom designed low-power transmitter/receiver (TX/RX) cells and
the VLSI CAD flow that is essential for handling the complexity of the many-core NoC chips.
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Recent research has targeted this problem in CAD for NoCs, proposing toolchains that enable
the embedding of custom-designed TX/RX cells automatically within the commercial CAD
flow [65], paving the way for such advanced interconnects to be part of mainstream NoCs.

Photonics NoCs. Optical fibers have already effectively replaced electronic cables for
inter-chassis interconnections within data centers, and optical backplanes are emerging as a
viable alternative between racks of a chassis [121]. Recently, researchers have also proposed that
photonics offer promise for shorter interconnects, from off-die I/O to DRAM, to even on-die
interconnects for on-chip networks. Miller [248] projected that electrical on-chip networks will
be unable to achieve the bandwidth demands and tight power envelope of future chips, detail-
ing how the physical characteristics of optics and the progress in optical device research can
potentially solve that. Research into photonics materials and devices has advanced significantly
in the last decade [46, 228, 232, 249, 329], demonstrating increasingly robust photonics devices
with good power-performance on silicon-compatible materials. Key progress lies in increasing
compatibility with commercial foundries, a major stumbling block in the incorporation of pho-
tonics into many-core NoC chips. A working microprocessor chip with opto-electronic off-die
processor-memory links to DRAM was demonstrated in an IBM 45 nm SOI CMOS process
with an external laser, showing that working photonics devices can be achieved in a commercial
silicon process [329]. On-die photonics may be within reach, if the energy per bit can be driven
further down to compete with on-die copper interconnects.

While photonics device and materials research has to be the driving force behind research
into on-chip photonics, multi-disciplinary research is needed into a whole range of areas, span-
ning from circuits and CAD to architecture. In materials and device research, realizing on-die
photonics will prompt further investigation into on-die lasers and light sources, processed at
large scale in a manner compatible with commercial silicon processes. Electrical circuits that
interface to the photonics devices need to not only push the power envelope down to few fJ/bit
but also deliver that in the face of emerging photonics devices with significant variance in device
performance due to limited characterization as compared to mature CMOS devices. A photon-
ics CAD flow will have to be built from ground up to enable VLSI-scale design of photonics
devices. Several multidisciplinary groups have already made significant progress: on-die lasers
and LEDs have been recently demonstrated [376], low-power opto-electronic link circuits have
been fabricated [330, 373], photonics CAD flow that is compatible with existing CAD tools
have been researched [55, 78, 79, 104, 150, 346], and alternative optical on-chip network archi-
tectures inspired by photonics advances in light sources, modulators, detectors and even photonic
switches have been looked into [77, 172, 194, 197, 198, 212, 225, 279, 280, 316, 345, 379].

Wireless NoCs. Millimeter (mm)-wave wireless networks-on-chip are being researched
for providing low-latency high-bandwidth long-distance on-chip communication [103, 192].
Wireless NoCs also mitigate layout challenges for long electrical links. A key benefit of these
links is their inherent broadcast capability, which can be used for efficient coherence [5] and syn-
chronization [4]. Research into transceiver and antenna design for wireless NoCs and a demon-
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stration of a robust functioning prototype is a key for this emerging technology to be used in a
more widespread manner.

Off-die I/Os.With off-chip I/O being constrained by the number of pins and link band-
width, on-chip network researchers have also explored alternatives to off-die I/O and the im-
plications on on-chip network architecture and design. 3-D stacking has matured rapidly in the
past years and provides a viable option for very high bandwidth off-chip I/O. 3-D stacking,
leading not only to a substantial increase in the demand for on-chip bandwidth, but also im-
pacting the design of on-chip networks. Off-die memory controllers that conventionally have to
be placed on the borders of chips need no longer be constrained, affecting on-die network traffic
flows spatially. The large bandwidth enabled by 3-D stacking naturally affects the temporal flow
of traffic to the on-chip network, affecting topology significantly, prompting several research
works in architecture and circuits forums [112, 175, 176, 188, 223, 286, 337, 365, 366]. The
3D-Maps processor chip from Georgia Tech discussed in our earlier chapter on case studies
showcases the realization of a 3-D many-core chip and the impact of 3-D stacking on on-chip
network design. Wireless inductive-coupling links for connecting multiple die on package are
also being explored [332].

9.2 RESILIENTON-CHIPNETWORKS

As technology scales toward deep sub-micron lithographies, an on-chip network that is ar-
chitected and designed assuming perfect, zero-fault fabrication and operation will no longer
suffice. This is aggravated by the system overlaid atop the on-chip network typically assuming
always-correct communication. For instance, a cache-coherent shared-memory CMP is archi-
tected assuming that every message will be delivered correctly to the designated destination,
with no packets dropped mid way through transmission. Similarly, a MPSoC assumes that ev-
ery transaction through the on-chip network is successfully completed.

Shrinking gate lengths will lead to manufacturing defects and variability, with the large
die sizes of many-core chips making post-fabrication faults highly likely [32]. When combined
with errors that are likely to occur during chip operation, such as soft errors and wearout errors,
it will be critical to design on-chip networks that are resilient and continue correct operation in
the face of many faults/errors.

Fault-tolerant routing has been investigated substantially in the past, in the domain of
clusters of workstations [110, 294, 374] and large-scale, multi-chassis, multi-computers [90],
and can be leveraged. In on-chip networks, resilient mechanisms have to be designed under
very tight power and area constraints, and yet work in the face of many faults. In recent years,
substantial research has been done in this area [300], from resilient routing that reconfigures
around faults [105, 119, 120, 122, 196, 282], to fault-tolerant router microarchitectures with
built-in redundancy [80]. There have also been research into resilient link designs that trade off
link power and reliability [363], and NoC fault modeling tools for characterizing how advanced
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processes can impact NoC operation [19]. The testing community has also looked extensively
into NoC testing in the face of faults [140, 284, 296].

9.3 NOCSAS INTERCONNECTSWITHIN FPGAS
Communication is becoming a bottleneck given the large and increasing size of FPGAs.Modern
FPGAs integrate fixed function IPs such as DSPs, processors, memory and high speed I/O with
a large reconfigurable fabric.The fine-grained bit-level control over individual signals within the
FPGA fabric creates significant design challenges for engineers as they must orchestrate com-
munication and iterate over their design to ensure timing closure. To ease these burdens, recent
work has proposed embedding a NoC within the FPGA fabric. The NoC provides the high
performance communication substrate while allowing designers to focus on implementation of
computational blocks.

Given the flexible and reconfigurable nature of an FPGA, one of the key questions re-
garding the implementation of a NoC for FPGAs is whether that NoC should be soft, i.e., built
out of the FPGA fabric itself or hardened, i.e., implemented in dedicated silicon alongside the
FPGA fabric. Soft NoCs provide improved design modularity and better scalability without
requiring large scale changes to the FPGA hardware itself [106, 177, 281, 305]. Such research
looks at how to efficiently implement a NoC out of a reconfigurable fabric. However, soft NoCs
can suffer from large area overheads and low operating frequencies.This motivates the consider-
ation of hardened NoC architectures for FPGAs [6, 7, 8, 9, 76, 130, 133, 239]. These hardened
NoCs can deliver higher performance and greater efficiency while only requiring a small frac-
tion of silicon area. Beyond the architecture of the NoC itself, their use in FPGA require their
integration into the CAD flow so that designers can easily make use of the bandwidth and
performance that they offer.

9.4 NOCS INACCELERATOR-RICHHETEROGENEOUS
SOCS

As performance and energy benefits from technology scaling have started to diminish, there is an
emergence of a new class of on-chip SoCs: heterogeneous accelerator-based architectures. CPU-
GPU architectures were the first to emerge in this class of devices.There has been relatively little
work exploring NoC architectures for GPUs. When considering these types of systems, one has
to be cognizant of the different memory access patterns seen inside GPUs, most notably the
asymmetry in requests (many-to-few from L1 to L2 banks) and responses (few-to-many from
L2 banks to L1s). Tailoring the network to the specific memory traffic behavior can lead to
more efficient designs [35, 372, 378]. Additional work exploring the integration of emerging
technologies such as photonics NoCs inside GPU NoCs is also being explored [136, 377].

Moving beyond GPU-based accelerators, we anticipate a wider array of accelerator-rich
SoC architectures. Such SoCs fall in between the traditional application-specific MPSoCs and
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fully general-purpose homogeneous CMPs.The design of NoCs connecting heterogeneous IPs,
each with unique latency/bandwidth requirements across time, is an important research ques-
tion.The design of the NoCwithin an accelerator is also an open question. Accelerators are built
using tiny compute elements, and often operate in dataflow style, where the delivery of a piece of
data triggers some action in the compute element.Thismakes theNoC critical to the throughput
of such accelerators. Recent accelerator prototypes for deep neural networks [72, 107], spiking
neural networks [21], databases [364], and graph processing [17] all use customized NoCs.
NoCs for accelerator-based systems is expected to become an active area of research going for-
ward.

9.5 ON-CHIPNETWORKSCONFERENCES
Research into on-chip networks is appearing in many venues spanning several disciplines. Ta-
ble 9.1 highlights some major conferences in Architecture, CAD, VLSI, and NoCs that publish
innovative research into on-chip networks. This list is not exhaustive; in addition to major con-
ferences, recent years have seen workshops specifically focused on on-chip networks at many of
these conferences.

Table 9.1: On-chip network conferences

Field Conference

Architecture

International Symposium on Computer Architecture (ISCA)

International Symposium on Microarchitecture (MICRO)

International Symposium on High Performance Computer Architecture

     (HPCA)

International Conference on Parallel Architectures and Compilation

     Techniques (PACT)

International Conference on Architectural Support for Programming

     Languages and Operating Systems (ASPLOS)

CAD

International Conference on Computer-Aided Design (ICCAD)

Design Automation Conference (DAC)

Design Automation and Test in Europe (DATE)

VLSI
International Conference on VLSI (VLSI)

International Solid State Circuits Conference (ISSCC)

Network on Chip International Network on Chip Symposium (NOCS)
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9.6 BIBLIOGRAPHICNOTES
Finally, we refer the reader to other summary and overview papers [44, 50, 151, 238, 267, 276]
to help guide them in further study of on-chip networks.
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