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1 INTRODUCTION

Welcome to the world of Verilog! Once you read this book, you will join the ranks
of the many successful engineers who use Verilog.

I have been using Verilog since 1986 and teaching Verilog since 1987. I have seen
many different Verilog courses and many approaches to learning Verilog. This book
generally follows the outline of the Verilog class that I teach at the University of
California, Santa Cruz, Extension.

The Verilog language has been updated with the IEEE standardization in 1995, and
now the update to the standard in 2001. In learning Verilog, it is important to
current with the standards, however it should be noted that the Verilog language
itself has changed little compared to the tools, workstations and techniques used by
designers today vs. 1985. This third edition of Verilog Quickstart has been updated
to reflect the current best practices in use today.

This book does not take a “cookie-cutter” approach to learning Verilog, nor is it a
completely theoretical book. Instead, it describes some of the formal Verilog syntax
and definitions, and shows practical uses. Once we cover most of the constructs of
the language, the book examines how style affects the constructs you choose while



2 Verilog Quickstart

modeling your design. This text is not intended as a complete and exhaustive
reference on Verilog. For a comprehensive Verilog reference, I suggest one of the
reference manuals from IEEE, Open Verilog International (OVI) or your tool
vendor.

This book does not cover 100% of the Verilog language; it focuses on the 90% of
Verilog that is used 90% of the time by designers who want to speed up their design
cycle by verifying their designs in simulation and rapidly producing them through
synthesis.

What is Verilog? In 1985, Automated Integrated Design Systems (renamed
Gateway Design Automation in 1986) introduced a product named Verilog. It was
the first logic simulator to seamlessly incorporate both a higher-level language and
gate-level simulation. Before Verilog, there were many gate-level simulators and
several higher-level language simulators, but there was no way to make them work
together easily. About the same time, Gateway added the -XL algorithm to its
product, creating Verilog-XL. It was the addition of this algorithm that put Verilog
on the map.

The XL algorithm sped up gate simulation, thus making Verilog the fastest software
gate-level simulator of the time. It was even faster than some of the then-current
hardware accelerators. Today, there are several simulators that use the Verilog
language.

Why were hardware description languages (HDLs) created? Verilog was invented as
a simulation language. There were other simulation languages in use when Verilog
was created, but Verilog was more complete and easier to use than its predecessors.

There is another key reason why HDLs were created. The United States Department
of Defense (DOD) realized that they had a lot of electronics designed and built for
them, and their products had a long life span. In fact, DOD might use equipment
for upwards of twenty years. Over such periods semiconductor technology changed
quite a bit. DOD realized they needed a technology-independent way to describe
what was in the semiconductors they were receiving. Through a joint effort of the
DOD and several companies, VHDL was created as a hardware description
language to document DOD technology. VHDL and Verilog were developed at the
same time, but independently.

Thus, two of the reasons HDLs were invented are simulation and documentation.
Yet there is another common use for HDLs: Synthesis. Even before Verilog and
VHDL were developed, the makers of programmable array logic (PAL) chips had
created simple languages and tools (such as PALASM) to burn these chips. These
languages accepted only simple equations and could create the correct bit pattern to
make the chip reflect the functionality described in the language. Today, synthesis
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tools are much more robust and Verilog or VHDL may be used to describe many
types of chips.

Why would you want to use an HDL? The simplest reason is to be more productive.
An HDL makes you more productive in three ways:

1.

2.

3.

Simulation By allowing you to simulate your design, you can see if the design
works before you build it, which gives you a chance to try different ideas.

Documentation This feature lets you maintain and reuse your design more
easily. Verilog's intrinsic hierarchical modularity enables you to easily reuse
portions of your design as “intellectual property” or “macro-cells.”

Synthesis You can design using the HDL, and let other tools do the tedious
and detailed job of hooking up the gates.

This book focuses on the first two reasons because when you do these steps
correctly, the third—synthesis—is an easily attainable goal. (Chapter 12 covers
some synthesis specifics). I believe that if you truly understand Verilog, synthesis is
not a problem. Furthermore, I think it is fine if not all your code is immediately
synthesizable.

FRAMING VERILOG CONCEPTS

This section reviews some concepts you should already know. Some reflection on
these concepts will help you learn Verilog by understanding how Verilog supports
and opposes concepts you already understand.

The Design Abstraction Hierarchy

A circuit can be described at many levels. Figure 1-1 lists a few of them, from the
abstract to the detailed. (Please note that many of these terms may mean different
things to different people.)
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Which of these levels do you think Verilog can be used for? The answer to this
question varies, but Verilog can definitely be used from the system level down to
switches. However, Verilog is most commonly used from behavioral through gate
levels. This book focuses on this commonly used range of design abstraction.

Types of Simulation

There are two types of simulation: Discrete (or event-driven), and continuous.
Continuous simulation consists of a system of equations that represents the design
problem. Simulators such as SPICE use continuous simulation.

However, Verilog (like most digital simulators) is an event-driven simulator.
Simulation is considered event-driven when a change on an input causes a change
on an output, which causes a further change on another input—In other words,
event-driven simulation involves a chain of cause and effect.

Types of Languages

There are two types of HDLs: Loosely typed, and strongly typed. Without going into
too much detail, some of the characteristics of each kind of HDL are described here.

A loosely typed language allows automatic type conversion, which lets you put the
value 137 on an 8-bit bus. A strongly typed language would not permit you to do
this because it would consider 137 to be an integer; an 8-bit bus is an array of 8 bits,
and would not allow you to put an integer into an array.
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Each type of language has its advantages; A loosely typed language will do what
you mean most of the time. A strongly typed language will not allow you to make a
mistake by combining the wrong types of objects. Strongly typed languages have
conversion functions, so you could put the value 137 on an 8-bit bus by calling the
integer to 8-bit array conversion function.

Verilog is a loosely typed language, whereas VHDL is a strongly typed language.
But this fact does not make one language better than the other. If we look at the
implicit type conversions as they take place, we gain an understanding of what
Verilog is doing. Engineers know how to put the value 137 on an 8-bit bus.
Implicitly, we convert the to and put each of the bits on the bus in
the correct order. For many engineers, a loosely typed language that does what they
mean is just what they want.

Simulation versus Programming

Here is a not-so-simple question: If you assign A an initial value of 3, and B an
initial value of 4 and execute the code below, what happens? What are the final
values of A and B?

A = B
B = A

There are two possible answers. The final values are both 4, or they swap and A
ends up with a final value of 4 and B ends up a final value of 3. How is this
possible? We don't have enough information about the statements. We don't know
whether they are sequential or concurrent. One key difference between a simulation
language and a typical programming language is that in simulation we need a way
to model both sequential and concurrent behavior. To do this, simulators introduce
a notion of time.

HDL Learning Paradigms

There are two ways to learn an HDL: Start at the abstract and work toward the gate
level, or start at the gate level. Example 1-1 shows an abstract example; Example 1-
2 shows a gate-level example.

Example 1-1 Abstract Model of a Phone

/* Abstract behavioral system describing a telephone */
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module office_phone;
parameter min_conversation=1, max_conversation=30,

false=0, true=!false;
event ring, incoming_call, answer, make_call, busy;
reg off_hook;
integer seed, missed_calls;
initial begin
seed=43; // seed for call duration
missed_calls=0;
end

always @ incoming_call
if (! off_hook) -> ring;
else begin

// someone tries to call us
// if not on the phone it rings

-> busy; // else they get a busy signal
$display($time," A caller got a busy signal");
missed_calls = missed_calls + 1;

end

always @ring begin
$write($time," Ring Ring");
if ($random & 'b110) begin
-> answer;
off_hook = true;
$display(" answered");

// phone is ringing . . .
//do we want to answer it?
// yes we will answer it

end
else begin
missed_calls

// no we do not want to answer
// this phone call

= missed calls + 1;
$display(" not answered missed calls =%d",

missed_calls);
end

end

always @make_call
if (off_hook)

$display($time," cannot make call phone in use");
else
begin

$display($time," making call");
off_hook = true;

end
always wait(off_hook == true)

#($dist_uniform(seed,

begin //we are on the phone
// wait the call duration

// a uniform distribution
min_conversation,max_conversation))
off_hook = false;
$display($time," off phone");

end
// might wait about 2 hours between making calls
always #($random & 255) -> make_call;

// someone might call in within 4 hours
always #($random & 511) -> incoming_call;
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// Simulate two days worth of calls
initial #(60*24*2) $finish;

endmodule

Example 1-2 Verilog for Gate-Level Mux

module mux(OUT, A, B, SEL);
output OUT;
input A,B,SEL;

not I5 (sel_n, SEL);

and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_b);

endmodule

Most engineers have an easier time with the mux description in Example 1-2 than
with that for the phone model in Example 1-1. Therefore, the approach of this book
is to start with some gate-level modeling and work toward the constructs needed to
create the phone model.

WHERE TO GET MORE INFORMATION

This book teaches you the Verilog language and some general techniques for
modeling and debugging. Some information you want might be outside the scope of
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this book. Some of the other sources are simulator reference manuals; and the
comp.lang.verilog usenet news group.

Reference Manuals

The IEEE standard for Verilog is 1364, and the IEEE standard may also be used as
a reference. Verilog documentation falls into two categories: Reference manuals and
user guides. Reference manuals provide details of a command or construct. User
guides show you how to use a tool. This book falls in between: It teaches you the
Verilog language, shows you how to model in Verilog, and describes the basics of
using Verilog simulators. Verilog 2001 - A guide to the new features of Verilog by
Stuart Sutherland (Kluwer Academic Publishers, ISBN 07923-7568-8) summarizes
changes in the 2001 standard.

Usenet

The usenet is great source for information. There is a news group just for Verilog,
called comp.lang.verilog. This news group sometimes has tips on modeling or news
about Verilog tools. There is also a comp.cad.cadence news group that has news
about Verilog-XL and other tools from Cadence Design Systems, Inc. The
comp.cad.synthesis news group has news about synthesis tools for both Verilog and
VHDL. As with most news groups there is a lot of banter, complaining, and
philosophy mixed in with the occasional good tip. Perhaps the best single piece of
information on the usenet regarding Verilog is the Frequently Asked Questions
(FAQ) about Verilog. This document is updated and posted frequently and lists
currently available tools and publications about Verilog.



2 INTRODUCTION TO THE VERILOG LANGUAGE

This chapter we looks at some of the formal definitions of the Verilog language:
identifiers, white space, comments, numbers, text macros, modules, value set, and
strengths.

IDENTIFIERS

Identifiers are the names Verilog uses for the objects in a design. Identifiers are the
names you give your wires, gates, functions, and anything else you design or use.
The basic rules for identifiers are as follows:

May contain letters (a-z, A-Z), digits (0-9), underscores (_), and dollar signs
($).
Must start with a letter or underscore.
Are case sensitive (unless made case insensitive by a tool option).
May be up to 1024 characters long.
Other printable ASCII characters may be used in an escaped identifier.
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What this means is that you are not limited to eight or sixteen characters to name
things. You have over a thousand characters to use in the name of an identifier, so
use names that make sense to you. Because names can start with a letter or
underscore, and can contain letters and digits, you have quite a bit of flexibility.

Verilog does not have a standard notation for negated or active low signals. In this
book, the standard for active low signals will be the name of the signal followed by
_n. We use this notation to indicate active low signals because the notation is
compatible with both Verilog and VHDL. (VHDL does not allow either leading or
trailing underscores in names.) We make this recommendation to emphasize good
habit from the beginning: Try to use naming conventions that will work both in
Verilog and VHDL. It is likely that you will work with both VHDL and Verilog, so
having one naming convention for negated signals is easier to remember.

Verilog is case sensitive, but VHDL and other tools are not. While you are
establishing good habits for naming conventions consider using only one case.
Using a single case for your identifiers will eliminate possible errors of disconnects
when you type a wire name using different capitalization in Verilog, or a short
when you move to a tool that does not consider case if you intend to have similar
names with different capitalization.

Escaped Identifiers

Escaped identifiers allow you to use characters other than those noted above. The
primary use of escaped identifiers is with automated tools and with translators that
take a design from a format that allows names not legal in Verilog and converts the
design and names to Verilog. Escaped identifiers follow these rules:

Must start with a backslash (\).
Must end with white space.

In Verilog the expression carry/borrow is not an identifier. It is an expression that
says divide carry by borrow. If you want to use an identifier that would not
normally be legal in Verilog, such as carry/borrow or 3sel, you should form an
escaped identifier. An escaped identifier is any sequence of printable characters that
starts with a backslash (\) and ends with white space, so the identifiers \3sel and
\carry/borrow are legal in Verilog.
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WHITE SPACE

White space is the term used to describe the characters you use to space out your
code to make it more readable. Verilog is not a white-space-sensitive language.
Generally speaking, you can insert white space anywhere in your source code. The
white-space characters are space, tab, and return (or new line). The only place that
Verilog is sensitive to white space is inside quotes. You cannot have a new line
inside quotes. For example, the code in Example 2-1, Example 2-2, and Example 2-
3 is legal:

Example 2-1 Simple Hello Module

module hello1;
initial $display("Hello Verilog");
endmodule

Example 2-2 Hello Module without White Space

module hello2; initial $display("Hello Verilog");endmodule

Example 2-3 Hello Module with Extra White Space

module
hello3;
initial
$display(
"Hello Verilog"

)

endmodule

The code in Example 2-4 is illegal in Verilog because there is a new line inside the
quotes:

Example 2-4 Illegal Use of White Space

module hello4;
initial $display("
Hello Verilog

");
endmodule

;



12 Verilog Quickstart

COMMENTS

Verilog has two formats for comments: Single-line and block. Single-line comments
are lines (or portions of lines) that begin with “//” and end at the end of a line.
Block comments begin with “/*”, end with “*/”, and may span multiple lines.
Verilog does not allow nested block comments.

Example 2-5 Comments

// this is a comment
/* this is also a comment
that spans multiple lines
*/

NUMBERS

If you have the number 10, do you know what base it is? Is it How
many bits are needed to hold it? In Verilog, the default is base ten, so the answer is

In hardware modeling you might want to represent numbers of different bases and
different bit widths. Why does it matter how many bits are used to hold the number?
In simulation, the number of bits may matter for some operations. But for synthesis,
the size of numbers becomes more important. You would not want synthesis to
produce 32 bits of hardware where 8 bits would do, so it is a good habit to tell
Verilog how many bits you want.

You just learned that you need to know the base (or radix) and the number of bits
used to represent a number. You also need to know the value, so there are three
pieces of information needed to form a number: The number of bits, the radix, and
the value. Figure 2-1 shows the notation used in Verilog to fully represent a
number.

Example 2-6 shows some fully specified numbers.
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Example 2-6 Numbers

8'b10100101
16'habcd

The number of bits and radix are optional. The default radix is decimal. The default
number of bits is implementation dependent, but is usually 32 bits. In this book we
will assume the default number of bits is always 32.

The letters used for the radix are b for binary, d for decimal, h for hexadecimal, and
o for octal. White space is allowed in numbers, so 1 ‘b 1 is legal, but no space is
allowed between the apostrophe and the radix mark. The radix specifiers are not
case sensitive.

TEXT MACROS

Verilog provides a text macro substitution facility. This is useful to define opcodes
or other mnemonics you wish to use in your code. This is done with the grave
accent key (backwards apostrophe) and the define keyword.

Example 2-7 Specifying a Text Macro

`define mycode 47

In Example 2-7, we defined the macro mycode to be 47. To implement the macro,
we use the accent as shown in Example 2-8.

Example 2-8 Using a Text Macro

b = `mycode;
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MODULES

The main building block in Verilog is the module. You create modules using the
keywords module and endmodule. You build circuits in Verilog by interconnecting
modules and the primitives within modules. Chapter 3 will introduce Verilog
primitives. Thus far in the book you have seen three modules: the phone module,
the mux module, and the hello module.

SEMICOLONS

Each Verilog statement ends with a semicolon. The only lines that do not need
semicolons are those lines with keywords that end a statement themselves, such as
endmodule.

Let’s look at the mux example we used before and explain each line.

Example 2-9 Gate-Level Mux Verilog Code

1
2
3
4
5
6
7
8
9
10

module mux(OUT, A, B, SEL);
output OUT;
input A,B,SEL;

not I5 (sel_n, SEL) ;
and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_b);
endmodule

Line 1: module mux(OUT, A, B, SEL);
This line declares the module name and its list of ports.
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Line 2: output OUT;
This line tells Verilog the direction of the port OUT. OUT is the port name;
output is a Verilog keyword used to declare port directions.
Line 3: input A, B, SEL;
This line tells Verilog the direction of the ports A, B, and SEL.
Line 5: not I5 (sel_n, SEL);
This line creates an instance of the built-in primitive not. The first port, sel_n,
is the output, and the signal SEL is connected to the input of this NOT gate. I5
is the instance name of this primitive.
Lines 6 and 7: and I6 (sel_a, A, SEL); and I7 (sel_b, sel_n, B);
These lines create instances of the built-in primitive AND gate. These gates
have the instance names I6 and I7.
Line 9: or I4 (OUT, sel_a, sel_b);
This line creates an instance of the built in primitive OR gate.
Line 10: endmodule
This line signals the end of the module.

VALUE SET

For logic simulation, we need more values than just zeroes and ones. You also need
values to describe unknown values and high impedance (not driving). Verilog uses
the values x to represent unknown and z to represent high impedance (not driving).
Any bit in Verilog can have any of the values 0, 1, x, or z.

STRENGTHS

Strengths are necessary in switch-level modeling. In Verilog, strengths are
represented in a range from 0 (high impedance) to 7 (supply). There are four driver
strengths: supply, strong, pull, and weak. There are three capacitive strengths:
large, medium, and small. The capacitive strengths are used for storage nodes in
switch-level circuits. This text is not focused on switch-level modeling and
simulation. For more information on these topics, see an OVI or Cadence Verilog
language reference. The strengths and values combine internally in Verilog to
create a set of 120 possible states for a signal in Verilog.

Where do these 120 possible states come from? Consider the circuit in Figure 2-3.
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If data is 1 and enable is 1, what is output? (Answer: 1.)

If data is 0 and enable is 1, what is output? (Answer: 0.)

If data is 1 and enable is 0, what is output? (Answer: z.)

If data is 1 and enable is x, what is output? (Answer: 1 or z.)

How is this last answer possible? We can all agree that the answer to the last
question is not 0. Some of you might have chosen x. Consider the circuit in Figure
2-4.

What is output? The final output should be 1, but if the top gate’s output were x, the
result would be x. So the 120 other states are used to express ambiguities and make
the simulation more optimistic.

Numbers, Values, and Unknowns

Is x a number? How do you set a signal to the value unknown? x by itself is an
identifier. If we want the value x we need to make it into a number. To make a
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number we need a number of bits, a radix, and a value. Therefore 1’bx is a number
with the value x.

There are a few more rules about numbers and values. Verilog does not sign extend
values. It extends all values with zero, except those with x or z in the most
significant place. Numbers with x and z in the most significant place extend with x
and z, respectively.

Table 2-2 shows examples of numbers and their binary representation.
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3 STRUCTURAL MODELING

One of the easiest ways to model designs in Verilog is with structural modeling,
which is simply connecting devices. Even complex models can exhibit elements of
structural modeling. Whether you are connecting a cache to a processor, or an
inverter to an AND gate, you interconnect the models the same way. This chapter
shows you how to connect your models. By the end of this chapter, you should be
able to model and simulate simple circuits.

Structural modeling is often automated by capturing schematics and writing out
netlists. Using structural modeling, you can model many circuits.

PRIMITIVES

Verilog has a set of twenty-six built-in primitives. These primitives represent built-
in gates and switches. These built-in primitives are listed in Table 3-1
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The primitives and, nand, or, nor, xor, and xnor represent simple logic functions
with one or more inputs and one output. Buffers, inverters, and three-state
buffers/inverters are represented by buf, not, bufif1, bufif0, notif1, and notif0. The
pullup and pulldown primitives have a single output and no inputs, and are used to
pull up or pull down a net. MOS-level unidirectional and bidirectional switches are
represented by the remaining primitives.

Appendix A explains each of the primitives in more detail and provides a truth table
for each.

Note that there are no built-in muxes or flip-flops. This is because there are too
many different types of these to include them all, so Verilog provides user-defined
primitives to model these. User-defined primitives are explained in Chapter 13.

PORTS

Ports in Primitives

The Verilog terminology for a connection or "pin" is port. All the built-in
primitives (gates) have ports. The pullup and pulldown primitives have only one
port. The first port of each of the built-in primitives (gates) is the output. This
allows you, for example, to use the same and primitive to represent a 2-input or 4-
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input AND gate. The only built-in primitives that can have more than one output
port are the buf and not primitives, which can have many outputs, with the last
terminal being the input.

Example 3-1 Verilog Code for the 2-lnput and 4-lnput AND Gates

and ( Y, A, B ) ;
and ( Y, A, B, C, D ) ;

All of the multiple-input primitives may have as many inputs as you need, so you
could have a 100-input AND gate if you needed it. However, not all Verilog clone
simulators support this.

Ports in Modules

Modules can have ports. Two of the modules you have seen thus far (the phone and
hello modules) did not have ports, but the mux module did. In general, if you are
modeling a self-contained system, you will not have ports. But if you are modeling
something that needs to be connected to something else, you will need ports to make
those connections.

Verilog supports three port directions: input, output, and inout (the keyword for bi-
directional ports). In Verilog, you must declare the ports in two places: First, as part
of the port list in the module. Second, for the direction and size of all the module’s
ports using the input, output, and inout keywords. The 2001 standard allows you to
combine the portlist and direction into a single declaration, as shown in Chapter 19.
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INSTANCES

The word instance is not a Verilog keyword. Rather, it is the word we use to mean
make a copy of, or use. When you use a built-in primitive, you make an instance or
copy of the built-in gate and list its connections. When you make an instance of a
built-in gate, you have the option to give it a unique name called an instance name.
When you make an instance of a module you are required to give it an instance
name.

Example 3-2 Verilog for Gate-level Mux

module mux(OUT, A, B, SEL);
output OUT;
input A,B,SEL;

not I5 (sel_n, SEL);

and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_b);

endmodule

As you can see from the mux example, there are four gates in the schematic. The
Verilog code shows four instances, each one corresponding to a gate in the
schematic.

HIERARCHY

We can connect modules inside other modules, creating hierarchy. For example, if
you want to have a 2-bit mux, you can create it by using two 1-bit muxes from
Example 3-2, as shown in Figure 3-3.
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Example 3-3 Hierarchical 2-Bit Mux

module mux2(OUT, A, B, SEL);
output [1:0] OUT;
input [1:0] A,B;
input SEL;

mux hi (OUT[1], A[1], B[1], SEL);
mux lo (OUT[0], A[0], B[0], SEL);

endmodule

You can make an even more hierarchical 4-bit mux by connecting two of these 2-bit
muxes, as shown in Figure 3-4.



24 Verilog Quickstart

The Verilog for connecting two 2-bit muxes as shown in Figure 3-4 is shown in
Example 3-4.

module mux4(OUT, A, B, SEL);
output [3:0] OUT;
input [3:0] A,B;
input SEL;

mux2 hi (OUT[3:2], A[3:2], B[3:2], SEL);
mux2 lo (OUT[1:0], A[l:0], B[1:0], SEL);

endmodule

You can use this technique of making primitive instances and module instances to
model most circuits. This technique is sometimes called netlist modeling or
structural modeling. In more complex circuits, you can still use this technique to
connect modules that contain constructs other than instances.

HIERARCHICAL NAMES

Figure 3-5, shows the 4-bit mux hierarchically expanded. There are four copies of
the mux module. Each of the mux modules contains four gate instances, four ports,
and three internal wires. Each of the four copies of the module has a unique

Example 3-4 Hierarchical 4-Bit Mux
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hierarchical name. With hierarchical names, we can distinguish the copies so it is
possible to uniquely identify each gate, port, and wire.

A hierarchical name can reference any object in a simulation. Hierarchical names
have two forms: A downward path from the current module, or a name that starts at
a top-level module and provides a complete path. Verilog uses the dot (.) to separate
the elements in the path of a hierarchical name. Example 3-5 shows some
hierarchical names.
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Example 3-5 Hierarchical Names

lo.lo.sel_n
mux4.lo.lo.sel_n

Connect by Name

All of the hierarchy built by module instances in Example 3-3 and Example 3-4 are
built by matching the port declaration order to the used to create the connections.
This type of instantiation is called connect by order since the port order must be
known and matched. Verilog also supports a connect by name syntax, where the
port order does not need to be known, but the port names must be known. The
connect by name syntax uses the hierarchical name for the ports to make the
connects. Example 3-6 shows Example 3-4 re-written to use the connect by name
syntax.

Example 3-6 Mux Connected by Name

module mux4cbn(OUT, A, B, SEL);
output [3:0] OUT;
input [3:0] A, B;
input SEL;

mux2 hi( .A(A[3:2]), .B(B[3:2]), .SEL(SEL), .OUT(OUT[3:2]) );
mux2 lo( .A(A[1:0]), .B(B[1:0]), .OUT(OUT[1:0]), .SEL(SEL) );

endmodule

Figure 3-6 clarifies the syntax for connect by name. The net to be connected to the
port is in the parenthesis.
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Top-Level Modules

When the Verilog simulator finishes compiling your modules, the first thing it
reports is which module or modules are “Highest-level modules.” Highest-level or
top modules are modules that no other module has made an instance of. These non-
referenced modules are considered to be at the top of the hierarchy. Usually there is
only one top-level module, the test bench for your circuit. The test bench module is
used to provide inputs or stimulus to a design. Chapter 18 discusses test benches.

Each instantiated module has a unique instance name. Since a top-level module is
not instantiated, it has no instance name. Verilog automatically assigns an instance
name to top-level modules. The instance name of a top-level module is the name of
the module itself.

For example, because there is no test bench module for the mux4, it will be a top-
level module.
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You Are Now Ready to Run Your First Simulations

We will take a break now and do some exercises using Verilog.

Exercise 1 The Hello Simulation

As a simple test to see if your Verilog simulator works correctly, enter the code in
Example 3-7 into a file called hello.v.

module hello;
initial $display("Hello Verilog");
endmodule

To run a simulation with most Verilog simulators, you simply type the name of the
simulator and the name(s) of the Verilog file(s).

To run the hello simulation, type verilog hello.v. You should get the results as
shown in Example 3-7 Results.

Example 3-7 Results

Compiling source file "hello.v"
Highest level modules:
hello

Hello Verilog

Verify that you are able to enter a simple Verilog model and run the simulator. If
you have trouble running the simulator, consult the documentation for the
simulator. Once the hello simulation is complete, you are ready to move on to a
more challenging exercise.

Exercise 2 The 8-Bit Hierarchical Adder

Now that you know that your Verilog simulator works, try to create some modules.
Use the schematic in Figure 3-7 to create a module adder using the built-in
primitives listed in Table 3-1.

Example 3-7 Hello Verilog
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When you write the Verilog for the adder you will need to decide on names for the
three internal wires. You can use any names you prefer, but your wire names must
be legal identifiers. Some suggested wire names are half_carry_ab, for the output of
the top AND gate, half_sum for the output of the first EXCLUSIVE-OR, and
half_carry_cin for the output of the second AND gate.

Next, connect two of your adders to create an adder2 as shown in Figure 3-8. You
will need an extra signal, internal_carry, to connect the carry_out of your low-order
adder to the carry_in of your high-order adder. You will also need instance names
for the two adder modules. The simplest instance names to use are hi and lo.

Connect two of the adder2s together to form a 4-bit adder as shown in Figure 3-9.
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Connect two of the adder4s together to form a 8-bit adder as shown in Figure 3-10.

Finally, simulate your 8-bit adder with the provided test bench test_adder.v shown
in Example 3-8. You should get the results as shown in Example 3-8 Results.
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Example 3-8 Adder Test Module

module test_adder;
reg [7:0] a,b;
reg carry_in ;
wire [7:0] sum;
wire carry_out;

adder8 dut(carry_out, sum, a,b, carry_in);

initial begin
a = 0; b = 0; carry_in = 0;
# 100 if (sum !== 0) begin

$display("sum is wrong");
$finish;
end

a = 1; b = 0; carry_in = 0;
# 100 if (sum !== 1) begin

$display("sum is wrong");
$finish;
end

a = 0; b = 0; carry_in = 1 ;
# 100 if (sum !== 1) begin

$display("sum is wrong");
$finish;
end

a = 5; b = 6; carry_in = 1;
# 100 if (sum !== 12) begin

$display("sum is wrong");
$finish;
end

a = 200; b = 55; carry_in = 1;
# 100 if (sum !== 0) begin

$display("sum is wrong");
$finish;

end

a =18; b = 200; carry_in = 1;
# 100 if (sum !== 219) begin

$display("sum is wrong");
$finish;
end

$finish ;

end
endmodule
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Note that the results of this simulation, shown in Example 3-8 Results, did not give
us any meaningful results other than the fact that it finished at time 600. In this
case, this is the correct result for the simulation because if the simulation had
finished at a time before 600, there was an error in one of the adders.

Example 3-8 Results, Output from Exercise 2

Compiling source file "test_adder.v"
Compiling source file "adder8.v"
Highest level modules:
test_adder

L51 "test_adder.v": $finish at simulation time 600

Chapter 4 examines the parts of Verilog used for modeling test inputs and
collecting results. It explains what the lines in test_adder.v mean and how to
improve this test bench to print out some results.



4 STARTING PROCEDURAL MODELING

Using the structural modeling technique from Chapter 3, you can model many
different types of circuits. One of the reasons that Verilog gained popularity was the
ease with which it allowed mixing behavioral modeling techniques with structural
modeling. Before Verilog, there were both structural modeling and simulation tools,
and there were even behavioral languages and tools, but no one tool combined both
behavioral and structural modeling.

Before the creation of Verilog, you needed to know three languages: One for the
netlist (as in the structural modeling covered in Chapter 3); one to create the
stimulus for your circuit; and one to process the output from the simulation. Using
Verilog is more efficient than older simulators: You only need to learn one
language. In Verilog, you use the same language for structural modeling, behavioral
modeling, creating the stimulus, and analyzing results.

Hopefully you have taken the time to run the simple hierarchical 8-bit adder at the
end of Chapter 3. You will note that the results of that simulation give no indication
of the inputs and outputs of the circuit, so it is difficult to tell if the circuit really
works correctly. Therefore, the first behavioral aspects of the Verilog language we
will look at are the parts of the language you use to print results.
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STARTING PLACES FOR BLOCKS OF PROCEDURAL CODE

Procedural Verilog code is like programming in a computer language—with one
large exception: Procedural Verilog code adds a concept of time. With a
programming language, code is started at a particular location, for example, at the
first line or main function. In Verilog, code starts running in one of two places: at
the initial statement and at the always statement. Do not assume that you can have
only these two statements in your code. You can have as many initial statements
and always statements as you want in your simulation or module. However, if all the
code is started at the initial and always statements, how can you know the order in
which the statements will run? This is where the model of time comes into effect.

The initial Keyword

Verilog interprets the initial keyword to mean “start here at time 0.” Do not let the
keyword throw you off track. Sometimes people think the initial keyword is used
only for initialization. The keyword initial is used not only for initialization, but
also as a place for starting code. Look at the test bench for the 8-bit adder. It has an
initial statement with several statements to apply the stimulus and check the results
from the adder.

Verilog starts all initial statements at time 0. The time at which the statements
finish depends on the code in the initial block. When the statements finish, the
initial block is done. However, it is possible to have an initial block that never
finishes.

Example 4-1 An initial Block

initial $display("Hello Verilog");

The most simple initial block was shown in the hello simulation. Example 4-1
repeats this simple initial block that starts at time 0 and prints out the message
“Hello Verilog.” This initial block is then finished. If you want to do more than one
operation in an initial block, you will need to use a begin-end block or fork-join
block, covered later in this chapter.

The always Keyword

The always keyword is similar in behavior to the initial keyword. Verilog also
begins to run always statements at time 0. The difference between initial and always
statements is what happens when the statements finish running. The always block
starts again when it finishes. An always block is like an initial block with an
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infinite loop. If we change the hello simulation from an initial to an always as
shown in Example 4-2, the simulation would continue to print until we kill the
simulation. Simulation time would remain stuck at time 0.

Example 4-2 An always Block

always $display("Hello Verilog");

Remember that always statements can create infinite loops. Some infinite loops are
useful, but we will consider it an error to have a zero-delay always loop.

Just as the initial statement should be remembered as “start here at time 0,”
remember the always statement as “start here at time 0, and when done, start
again.”

Delays

Every statement in Verilog may have a delay before it is run. If we have three initial
statements as in the module in Example 4-3, we know they will all start at time 0.
But they must run in some order: Which one will run first? There is really no way to
tell. Not only is there no way to tell, if you run this module on another simulator,
that simulator might run this module in a different order.

Example 4-3 Three Initial Statements

module three_initial;

initial $display("Initial Statement 1");

initial $display("Initial Statement 2");

initial $display("Initial Statement 3");

endmodule

The model in Example 4-3 creates a race condition at time 0. If it is important to
have the statements run in a particular order, you can introduce delays to control the
order in which the statements are executed.
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Example 4-4 Three Initial Statements with Delay

module three_initial_with_delay;

initial #1 $display("Initial Statement 1");

initial $display("Initial Statement 2");

initial #2 $display("Initial Statement 3");

endmodule

In Example 4-4, all of the initial statements are started at time 0, but now the first
one waits one time unit before it continues. In the meantime, the second statement
(which also started at time 0 and has no delay) prints out the message “Initial
Statement 2” and is finished. The third statement has a delay of two time units, so it
waits even longer. At time 1, the first statement finishes running, and then at time 2
the third statement finishes running, and the whole simulation is done.

The “ # ” symbol is the delay operator in Verilog. The best way to think of # is to
remember that # means “wait for some amount of time.”

begin-end Blocks

Initial and always can have only one statement. However, you will often need more
than a single statement in your design. The begin-end block allows a set of
sequential statements to follow an initial or always statement. Example 4-5 shows a
simple begin-end block.

Example 4-5 Simple begin-end Block

module initial_begin;

initial
begin

$display("Statement 1");
$display("Statement 2");
$display("Statement 3");

end
endmodule

The statements in the begin-end block are sequential so we know the statements
will execute in the order you would expect. The begin-end block in Example 4-5 has
no delays in it, so this initial statement still finishes at time 0. In begin-end blocks,
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delays are additive. Example 4-6 shows what happens when we change the block
and introduce delays.

Example 4-6 begin-end Block with Delay

module initial_begin_with_delay;

initial
begin

#1 $display("Statement 1");
$display("Statement 2");
#2 $display("Statement 3");

end

endmodule

Like all initial statements, the initial statement in Example 4-6 starts at time 0. The
begin-end block starts, and the first statement has a delay, so this block waits until
time 1. At time 1, the delay expires, and “Statement 1” is printed. The next
statement has no delay, so at time 1, “Statement 2” is also printed. The third
statement has a delay of two time units. The delay is encountered at time 1.
Therefore, the simulator waits until time 3 before continuing (1 + 2 = 3). At time 3,
“Statement 3” is printed, the begin-end block will be done, and the initial block will
finish.

To gain a better understanding of the sequence statements, consider the situation of
two begin-end blocks that are started from separate initial statements, as shown in
Example 4-7.

Example 4-7 Multiple begin-end Blocks

module initial_two_begin;

initial
begin

#1 $display("Statement 1");
$display("Statement 2");
#2 $display("Statement 3");

end

initial
begin

$display("Block 2 Statement 1");
#2 $display("Block 2 Statement 2");
#2 $display("Block 2 Statement 3");

end

endmodule
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Example 4-7 Results shows the output from the simulation of the model in Example
4-7.

Example 4-7 Results 1

Block 2 Statement 1
Statement 1
Statement 2
Block 2 Statement 2
Statement 3
Block 2 Statement 3

Does Example 4-7 Results 1 show the results you expected? Why did we get these
results? The best way to understand the sequence of statements in Example 4-7 is to
trace the sequence of events in the simulator.

Both initial blocks start at the same time. However, the first initial block encounters
a delay, so the first event that occurs is the $display in the second block. To give
you a step-by-step description of what happens, Verilog has a trace mode. Example
4-7 Results 2 shows the results of running the simulation with the trace mode.

Example 4-7 Results 2

L3
L4
L4

"i2b.v"
"i2b.v"
"i2b.v"

(i2b):
(i2b):
(i2b):

INITIAL
BEGIN
#1

L10
L11
L12

"i2b.v"
"i2b.v"
"i2b.v"

(i2b):
(i2b):
(i2b):

INITIAL
BEGIN
$display ("Block 2 Statement 1")

Block 2 Statement 1
L11 "i2b.v" (i2b): #2
SIMULATION TIME IS 1
L4
L5

"i2b.v"
"i2b.v"

(i2b):
(i2b):

#1 >>> CONTINUE
$display ("Statement 1")

Statement 1
L6 "i2b.v" (i2b): $display ("Statement 2")
Statement 2
L4 "i2b.v" (i2b): #2
SIMULATION TIME IS 2
L11
L13

"i2b.v"
"i2b.v"

(12b):
U2b) :

#2 >>> CONTINUE
$display ("Block 2 Statement 2")

Block 2 Statement 2
L11 "i2b.v" (i2b): #2
SIMULATION TIME IS 3
L4
L7

"i2b.v"
"i2b.v"

(i2b):
(i2b):

#2 >>> CONTINUE
$display ("Statement 3")

Statement 3
L8 "i2b.v" (i2b): END
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SIMULATION TIME IS 4
L11
L14

"i2b.v"
"i2b.v"

(i2b):
(i2b):

#2 >>> CONTINUE
$display ("Block 2 Statement 3")

Block 2 Statement 3
L15 "i2b.v" (i2b): END

You activate the Verilog trace option either with the -t command line option, or by
using the $settrace system command. However, tracing large designs is not very
practical. As you can see, the trace option produces extensive output even for a
simple test case.

fork-join Blocks

The fork-join block is similar to the begin-end block: It is also used to group
statements. In begin-end blocks, the statements are sequential, and the delays are
additive. In fork-join blocks, the statements are concurrent, and the delays are
independent, or absolute from the time the fork-join block starts.

If the code in Example 4-7 is changed by substituting two fork-join blocks for
begin-end blocks, the behavior will be different, as shown in Example 4-8.

Example 4-8 fork-join Blocks

module 12f;

initial
fork

#1 $display("Statement 1");
$display("Statement 2");
#2 $display("Statement 3");

join

initial
fork

$display("Block 2 Statement 1");
#2 $display("Block 2 Statement 2");
#2 $display("Block 2 Statement 3");

join

endmodule

Both initial statements still start at time 0, and each initial statement has a fork-join
that starts at time 0. The first statement to run in the first block is the “Statement 2”
line because it has no delay. The “Block 2 Statement 1” also runs at time 0. In this
example there are two statements to be run at time 0, and three statements to be run
at time three. The results shown are only one possible result. There is no guarantee
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of order when multiple statements need to be run at the same time. Sample results
of this run are shown in Example 4-8 Results 1.

Example 4-8 Results 1

Statement 2
Block 2 Statement 1
Statement 1
Statement 3
Block 2 Statement 2
Block 2 Statement 3

Example 4-8 Results 2 shows the sample results with the trace option.

Example 4-8 Results 2

L3
L4
L4
L6

"i2f.v"
"i2f.v"
"i2f.v"
"i2f.v"

(i2f):
(i2f):
(i2f):
(i2f):

INITIAL
FORK
#1
$display ("Statement 2")

Statement 2
L4
L10
L11
L12

"i2f.v" (i2f): #2
"i2f.v"
"i2f.v"
"i2f.v"

(i2f):
(i2f):
(i2f):

INITIAL
FORK
$display ("Block 2 Statement 1")

Block 2 Statement 1
L11
L11

"i2f.v"
"i2f.v"

(i2f):
(i2f):

#2
#2

SIMULATION TIME IS 1
L4
L5

"i2f.v"
"i2f.v"

(i2f):
(i2f):

#1 >>> CONTINUE
$display ("Statement 1")

Statement 1
SIMULATION TIME IS 2
L4
L7

"i2f.v"
"i2f.v"

(i2f):
(i2f):

#2 >>> CONTINUE
$display ("Statement 3")

Statement 3
L8
L11
L13

"i2f.v" (i2f): JOIN
"i2f.v"
"i2f.v"

(i2f):
(i2f):

t2 >>> CONTINUE
$display ("Block 2 Statement 2")

Block 2 Statement 2
L11
L14

"i2f.v"
"i2f.v"

(i2f):
(i2f):

#2 >>> CONTINUE
$display ("Block 2 Statement 3")

Block 2 Statement 3
L15 "i2f.v" (i2f): JOIN

As you can see from Example 4-8 Results 2, a fork-join block finishes when its last
statement finishes.
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Note that fork-join and begin-end blocks are themselves single statements. You can
nest fork-join and begin-end blocks. You can also nest begin-end blocks within
begin-end blocks; fork-join blocks within fork-join blocks; and begin-end blocks
within fork-join blocks.

Although there are four possible ways to nest these blocks, two of the combinations
are generally impractical. Nesting begin-end blocks within begin-end blocks has no
benefit because all the statements are sequential already. When begin-end blocks are
nested, it is usually for control flow, such as in the adder test module at the end of
Chapter 3, in which the inner begin-end blocks contain the statements controlled by
the if. Nesting a fork-join block in a fork-join block is impractical unless there is a
delay outside the inner fork-join block.

Example 4-9 contains two initial blocks and an always block. The first initial block
has only one statement in it: a delay of 50 time units and a $finish keyword. The
first initial statement is necessary to make the simulation terminate; without this
statement, the always block would keep the simulation running forever.

Example 4-9 Combining begin-end and fork-join Blocks

module befjia;
initial #50 $finish;
initial begin

#l
#1

$display(" b 1");
fork
#1 $display(" b 1 f 1");
$display(" b 1 f 2") ;
#5
#2

$display(" b 1 f 3");
begin
$display(" b 1 f 4 b 1");
#1 $display(" b 1 f 4 b 2");
$display(" b 1 f 4 b 3");

end
join
$display(" b 2");

end

always fork
# 3 $display(" f 1");
begin

#1
#2
#3

$display("
$display("
$display("

f 2 b 1");
f 2 b 2");
f 2 b 3");

end

begin
#10
#9
#8

$display("  f 3 b 1");
$display("
$display("

f 3 b ");
f 3 b 3") ;
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end

# 5 fork
#1
#2
#3

$display("
$display("
$display("

f 4 f 1");
f 4 f 2") ;
f 4 f 3") ;

join
# 1 $display(" f 5");

join

endmodule

Notice that the always block repeats when the fork-join block finishes running. Can
you can calculate the time at which each of the statements will print out?

Example 4-9 Results 1 shows possible results of simulating the code in Example 4-
9. It is possible that different simulators might execute the statements scheduled for
the same time unit in a different order.

Example 4-9 Results 1

b 1

f

f

b

f
f

f 2 b 1
5
b 1 f 2
1
f 2 b 2
b 1 f 1
b 1 f 4
b 1 f 4
b 1 f 4
f 2 b 3
f 4 f 1
b 1 f 3
2
f 4 f 2
f 4 f 3
f 3 b 1
f 3 b 2
f 3 b 3
f 2 b 1
5
1
f 2 b 2
f 2 b 3
f 4 f 1
f 4 f 2
f 4 f 3
f 3 b 1

b 1
b 2
b 3
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f 3 b 2
L2 "befjia.v": $finish at simulation time 50

Example 4-9 Results 2 shows the results of the simulation of Example 4-9 with
tracing, so you can see when each statement executes.

Example 4-9 Results 2 Trace Output from Combined begin-end and
fork-join Blocks

L2
L2
L3
L3
L4
L18
L18
L19
L20
L21
L26
L27
L32
L38

"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":

initial
#50
initial
begin
#1
always
fork
#3
begin
#1
begin
#10
#5
#1

SIMULATION TIME IS 1
L4
L4

"befjia.v":
"befjia.v":

#1 >>> CONTINUE
$display(" b 1");

b 1
L5
L21
L21

L22
L38
L38

f

"befjia.v": #1
"befjia.v":
"befjia.v":
f 2 b 1
"befjia.v":
"befjia.v":
"befjia.v":
5

#1 >>> CONTINUE
$display(" f 2 b 1");

#2
#1 >>> CONTINUE
$display(" f 5");

SIMULATION TIME IS 2
L5
L5
L6
L7

L8
L9

"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
b 1 f 2
"befjia.v":
"befjia.v":

#1 >>> CONTINUE
fork
#1
$display(" b 1 f 2");

#5
#2

SIMULATION TIME IS 3
L19
L19

f
L22
L22

L23

"befjia.v":
"befjia.v":
1
"befjia.v":
"befjia.v":
f 2 b 2
"befjia.v":

#3 >>> CONTINUE
$display(" f 1");

#2 >>> CONTINUE
$display(" f 2 b 2");

#3



44 Verilog Quickstart

L6
L6

"befjia.v":
"befjia.v":
b 1 f 1

#1 >>> CONTINUE
$display(" b 1 f 1");

SIMULATION TIME IS 4
L9
L9
L10

L11

"befjia.v":
"befjia.v":

#2 >>> CONTINUE
begin

"befjia.v":
b 1 f 4 b 1
"befjia.v":

$display(" b 1 f 4 b 1");

#1
SIMULATION TIME IS 5
L32
L32
L33
L34
L35
L11
L11

L12

L13

"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
b 1 f 4 b 2
"befjia.v":
b 1 f 4 b 3
"befjia.v":

#5 >>> CONTINUE
fork
#1
#2
#3
#1 >>> CONTINUE
$display(" b 1 f 4 b 2");

$display(" b 1 f 4 b 3");

end
SIMULATION TIME IS 6
L23
L23

L24
L33
L33

"befjia.v":
"befjia.v":
f 2 b 3
"befjia.v":
"befjia.v":
"befjia.v":
f 4 f 1

#3 >>> CONTINUE
$display(" f 2 b 3");

end
#1 >>> CONTINUE
$display(" f 4 f 1");

SIMULATION TIME IS 7
L8
L8

L14
L15
b

L16
L34
L34

"befjia.v":
"befjia.v":
b 1 f 3
"befjia.v":
"befjia.v":
2
"befjia.v":
"befjia.v":
"befjia.v":
f 4 f 2

#5 >>> CONTINUE
$display(" b 1 f 3");

join
$display(" b 2");

end
#2 >>> CONTINUE
$display(" f 4 f 2");

SIMULATION TIME IS 8
L35
L35

L37

"befjia.v":
"befjia.v":
f 4 f 3
"befjia.v":

#3 >>> CONTINUE
$display(" f 4 f 3") ;

join
SIMULATION TIME IS 10
L27
L27

L28

"befjia.v":
"befjia.v":
f 3 b 1
"befjia.v":

#10 >>> CONTINUE
$display(" f 3 b 1") ;

#9
SIMULATION TIME IS 19
L28
L28

"befjia.v":
"befjia.v":
f 3 b 2

#9 >>> CONTINUE
$display(" f 3 b 2");
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L29 "befjia.v" #8
SIMULATION TIME IS 27
L29
L29

L30
L39
L18
L18
L19
L20
L21
L26
L27
L32
L38

"befjia.v":
"befjia.v":
f 3 b 3
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":

#8 >>> CONTINUE
$display( f 3 b 3");

end
join
always
fork
#3
begin
#1
begin
#10
#5
#1

SIMULATION TIME IS 28
L21
L21

L22
L38
L38

f

"befjia.v":
"befjia.v":
f 2 b 1
"befjia.v":
"befjia.v":
"befjia.v":
5

#1 >>> CONTINUE
$display(" f 2 b 1");

#2
#1 >>> CONTINUE
$display(" f 5");

SIMULATION TIME IS 30
L19
L19

f
L22
L22

L23

"befjia.v":
"befjia.v":
1
"befjia.v":
"befjia.v":
f 2 b 2
"befjia.v"

#3 >>> CONTINUE
$display(" f 1");

#2 >>> CONTINUE
$display(" f 2 b 2");

#3
SIMULATION TIME IS 32
L32
L32
L33
L34
L35

"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":
"befjia.v":

#5 >>> CONTINUE
fork
#1
#2
#3

SIMULATION TIME IS 33
L23
L23

L24
L33
L33

"befjia.v":
"befjia.v":
f 2 b 3
"befjia.v":
"befjia.v":
"befjia.v":
f 4 f 1

#3 >>> CONTINUE
$display(" f 2 b 3");

end
#1 >>> CONTINUE
$display(" f 4 f 1");

SIMULATION TIME IS 34
L34
L34

"befjia.v":
"befjia.v":
f 4 f 2

#2 >>> CONTINUE
$display(" f 4 f 2");

SIMULATION TIME IS 35
L35
L35

"befjia.v":
"befjia.v":
f 4 f 3

#3 >>> CONTINUE
$display(" f 4 f 3");
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L37 "befjia.v": join
SIMULATION TIME IS 37
L27
L27

L28

"befjia.v":
"befjia.v":
f 3 b 1
"befjia.v":

#10 >>> CONTINUE
$display(" f 3 b 1") ;

#9
SIMULATION TIME IS 46
L28
L28

L29

"befjia.v":
"befjia.v":
f 3 b 2
"befjia.v":

#9 >>> CONTINUE
$display(" f 3 b 2") ;

#8
SIMULATION TIME IS 50
L2
L2
L2

"befjia.v":
"befjia.v":
"befjia.v":

#50 >>> CONTINUE
$finish;
$finish at simulation time 50

Summary of Procedural Timing

One of the most important concepts in Verilog modeling is knowing when a
procedural statement will be run. The preceding section introduced most of the key
words and symbols used to control when a procedural statement will be run. A
common cause of incorrect model behavior and even of syntax errors is incorrectly
specifying, or omitting, statements that control when your code should be run. If
you don't know when your code should be run, perhaps the simulator or synthesis
tool will have the same problem.

Table 4-1 Summarizes the keywords presented to determine procedural timing. This
list is expanded as more concepts are introduced.



5 SYSTEM TASKS FOR DISPLAYING RESULTS

The hello simulation and the previous chapter’s examples gave you a preview of
one way to print out information: The $display system task. All of the commands to
print out results are relatives of the $display system task.

What Is a System Task?

As you learn the Verilog language, you will see that Verilog is a flexible language
for modeling. There are some special built-in commands for system functions such
as printing messages or reading and writing files. The special commands are called
system tasks and they all begin with the “$” symbol. The “$” symbol is also used to
indicate system functions.

$display and Its Relatives

Using the $display system task is the basic way to print out results. The simplest
form of $display is shown in the hello simulation in Chapter 2 and is repeated in
Example 5-1.
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Example 5-1 Displaying a String

$display("Hello Verilog");

This simple form of $display simply prints the string between the quotation marks,
followed by a new line.

Example 5-2 Displaying a Single Value

$display(a);

The form of $display shown in Example 5-2 prints out the value of a in the default
radix, which is decimal. This is a common way to debug a simulation interactively.
You can use the $display command in your source code or as an interactive
command.

Example 5-3 Displaying Multiple Values

$display(a, b);
$display(a, , b);

The two lines in Example 5-3 show the values of both a and b. In the first line, the
values a and b are run together, as in 1234. The extra comma in the second
$display line is not a typo: It adds an extra space in the output. Verilog is not white-
space-sensitive, so the language defines the extra comma as a command to insert
extra space in the printout. Use this capability to improve the readability of your
output. Thus, if the first line in Example 5-3 were to yield the possibly ambiguous
value 1234, the second line would eliminate ambiguity by yielding the values 123
and 4.

Example 5-4 Using Format Specifiers with $display

$display("The value of a is %b, The value of b is %b", a, b);

Example 5-4 shows the most common form of the $display system task. This form
uses format specifiers—in this case, the format specifier %b— and then assigns a
value to the format specifiers. In Example 5-4, the value of a is assigned as binary
for the first %b and the value of b as binary for the second %b. (Readers familiar
with C programming will notice the similarity to the printf function.) This form of
$display is most common because of its flexibility to print in any radix and combine
the printing of text with the values.
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The general form for $display is

$display([optional format specifier],[value],[value...]);

The $display command can be used to print out binary, decimal, hexadecimal, or
octal values. The radix is controlled with format specifiers. The most common
format specifiers are listed in Table 5-1.

Other Commands to Print Results

The $display command has several relatives: $write, $strobe, and $monitor. $write
and $strobe are very similar to $display, and $monitor is a special, more powerful
command.

$write is similar to $display: They both print results when encountered. The only
difference between the two is that $display automatically puts in a new line at the
end of the results, whereas $write does not. If you need to print many results on a
line and need to use more that a single $display statement, use $write statements for
the first part(s) of the line and then a $display for the rest of the line. You could
decide never to use $display, and just use $write and put a new line in manually.

Example 5-5 Two $display Statements

module two_display;
initial
begin

$display("first half ");
$display("second half");

end
endmodule
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Example 5-5 Results

first half
second half

Example 5-6 Combining $write and $display

module write_display;
initial
begin
$write ("first half ");
$display(" second half");

end
endmodule

Example 5-6 Results

first half second half

What happens in the case of a value that changes while you are printing it out?
Does Verilog display the old value or the new? If you are using $display, an
alternative is to put more delay before the $display statement. However, there is a
special form of $display called $strobe. If you want to print out your results only
after all values are finished changing at the current time unit, use $strobe. $strobe
waits until just before time is going to advance, then it prints. With $strobe you
always get the new value.

If you want to print results as they change, use the $monitor system task. Unlike
$display, which prints only once, $monitor automatically prints out whenever any
of the signals it is printing changes, so you only need to call it once. Only one
$monitor can be active at a time. If you want to change what is being printed, just
execute another $monitor system task and the new $monitor becomes the active
print-on-change system task.

Because $monitor can produce a lot of output, there are two more special system
tasks for stopping and restarting $monitor. To stop the $monitor from printing, use
the $monitoroff command. To restart the $monitor, use the $monitoron command.
Remember that there can be only one $monitor active in your simulation at a time.
The last one executed is the only one in effect.
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Writing to Files

By default, Verilog puts all the output that goes to your screen into a log file called
verilog.log. You can view the results of your simulation by looking at the log file.
Chapter 21 provides details on the log file.

Along with sending output to the screen and log file, Verilog can write up to thirty-
one additional files at the same time. File output is accomplished by declaring an
integer that is used to represent the file and then opening the file. Once the file is
opened, output commands similar to the ones previously described may be used to
write to the file.

Example 5-7 Writing to a File

module f1;
integer f;
initial begin

f = $fopen("myFile");
$fdisplay(f, "Hello Verilog File");

end
endmodule

Example 5-7 opens a file called myFile and prints the message “Hello Verilog File”
into it. The file is closed automatically at the end of simulation. Since only thirty-
one files can be opened at a time, the $fclose function can be called to close a file.

For each of the commands covered so far, there is an f prefixed version of the
command for printing data to files. All the file output commands require the first
argument to be the file integer. The other command arguments are just like those
for $display. Table 5-2 lists the screen and file output commands.

Even though the addition of files may imply that you can have thirty-two $monitors,
you cannot. There still can only be one $monitor active in a simulation.
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The integers used to represent the files have exactly one bit set in them. A single
$fdisplay command can write to more than one file. The trick is to use the
symbol to connect the file numbers, as shown in Example 5-8. One other trick is the
numbering of the files: 1 is reserved for the screen and log file, so the first file
opened will be 2 and the next, 4. Example 5-8 shows how to write to multiple files.

Example 5-8 Writing to Multiple Files

module f2;
integer file1, file2;
initial begin

file1 = $fopen("file1");
file2 = $fopen("file2");
$display("The number used for file 1 is %0d", file1);
$display("The number used for file 2 is %0d", file2);
$fdisplay(file1, "Hello File 1");
$fdisplay(file2, "Hello File 2");
$fdisplay(file1 file2, "Hello both files");
$fdisplay(file1   file2 | 1, "Hello files and screen");
$fdisplay(file1, "Good Bye File 1");
$fdisplay(file2, "Good Bye File 2");
$fclose(file1);
$fclose(file2);

end
endmodule

The resulting output in file1 is shown in Example 5-8 Results 1 in file 1.

Example 5-8 Results 1 in file1

Hello File 1
Hello both files
Hello files and screen
Good Bye File 1

The resulting output in file2 is shown in Example 5-8 Results 2 in file 2.

Example 5-8 Results 2 in file2

Hello File 2
Hello both files
Hello files and screen
Good Bye File 2

The output on the screen and in the log file are shown in Example 5-8 Results 3.
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Example 5-8 Results 3 Output on Screen and in Log File

The number used for file 1 is 2
The number used for file 2 is 4
Hello files and screen

Advanced File IO Functions

Subsequent chapters describe Verilog memories and how to read a file into a
memory. Until the 2001, standard there was no way to read a file into Verilog other
to load data into a memory. The 2001 standard greatly enhances file input and
output capabilities.

The 2001 standard defines $ferror, $fflush, $fgetc, $fgets, $fread, $fscanf, $fseek,
$fsscanf, $ftel, $rewind, $sformat, $swrite, $swriteb, $swriteh, $swriteo and
$ungetc, as new system functions. These functions work on files opened with
$fopen ,  when $fopen is called with a "mode" similar to the ANSI C fopen function
call. Each of these new functions works similar to the ANSI C functions by the
same name. The details of these functions are not explained in this Quick-Start
book. These functions are similar to the ANSI standard and documentation can be
found in your C and Verilog vendors documentation.

Setting the Default Radix

All of the commands for formatting output can be used with or without format
specifiers. When you use a format specifier, the radix for each value printed out is
set individually. If you do not use a format specifier, the default radix is decimal.
Often it is desirable to print out values without having to use a format specifier.
When debugging, it is inconvenient to have to use a format specifier just to see a
value in a different radix. Thus, Verilog provides four types of each of the output
functions with a different default radix. Table 5-3 shows the output commands and
their default radixes.
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Special Characters

You have already seen a few of the special characters used for formatting output.
This section lists a few more that are useful to format output. To print a percent
character, use %%. The hierarchical name where the $display command is being
executed can be printed using %m. The %% and %m format specifiers do not have a
companion argument in the comma separated value list following the format string.
Table 5-4 lists the format specifiers in Verilog.
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%e real in exponential format

%g real in the shorter of %f or %e

%% The % character

\n New line

The Current Simulation Time

The current simulation time can be printed by calling the system function $time or
$realtime. Example 5-10 shows a simple way to print the current simulation time.

The simulation time is normally unit-less, but you can assign time units and
precision. See Appendix A for details on the `timescale directive. $time and
$realtime can be printed out using those units and precision using the $timeformat
system task.

Example 5-9 shows how to use $timeformat, and the results show the differences
between $time and $realtime. When the time scale allows non integer delays,
$timeformat specifies the number of decimal places to print. $time will have only
the integer portion of the time, but $realtime contains the fractional time units.

Example 5-9 Printing out the current time with units

`timescale 1ns/10ps
module timeformat;
initial
begin
$timeformat(-9, 2, "ns", 7);
#50 $display("It is now %t (time).",$time);

$display("It is now %t (realtime).",$realtime);
#1.01 $display("It is now %t (time).",$time);

$display("It is now %t (realtime).",$realtime);
#50 $display("It is now %t (time).",$time);

$display("It is now %t (realtime).",$realtime);
#1000 $display("It is now %t (time).",$time);

$display("It is now %t (realtime).",$realtime);
end

endmodule

Figure 5-1 Shows the definition of the arguments to the $timeformat system task
call.
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Example 5-9 Results

It is now 50.00ns (time).
It is now 50.00ns (realtime).
It is now 51.00ns (time).
It is now 51.01ns (realtime).
It is now 101.00ns (time).
It is now 101.01ns (realtime).
It is now 1101.00ns (time).
It is now 1101.01ns (realtime).

Suppressing Spaces in Your Output

Verilog allocates space in your output to accommodate the largest possible value for
the item you are trying to print. This section shows you how to suppress leading
spaces in your output.

When you try to print out the time value using the $display command, as shown in
Example 5-10, you may not get the desired result.

Example 5-10 $display with $time

$display("time = %d", $time);

The output has many leading spaces, as shown in Example 5-10 Results.

Example 5-10 Results

time = 100
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Why is there so much space between the equal sign and the time value? How can
you avoid that white space?

Consider Example 5-11 and its results.

Example 5-11 Leading Spaces in $monitor with $time

initial
$monitor($time,
"reset: %b clk: %b load %b: up/^dn: %b data: %h",

reset, clk, ldena, up, data);

Example 5-11 Results

100 reset: 1 clk: 1 load 0: up/^dn: 1 da ...

Note that the time value, which is the first item in the $monitor list, is drastically
indented, which could cause the data to wrap to the next line. This may make the
results harder to read. How can you make the $monitor message start at the left
margin?

You know the size of objects in your design from whatever Verilog code you have
written. Consider the Verilog code in Example 5-12 and the results of that code.

Example 5-12 Spaces Used To Print an 8-Bit Value

reg [7:0] a;
initial begin
a=3;
$display(
"Decimal a='%d', Hex a='%h', Octal a='%o', Binary a='%b'.",
a, a, a, a) ;

Example 5-12 Results

Decimal a=' 3', Hex a='03', Octal a='003', Binary
a='00000011'.

Note the single quotes (included in both the Verilog code and the output) that allow
you to see the exact sizes of the results.
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Consider the “Decimal” results first. a is an 8-bit register. In Verilog, registers are
always unsigned. Because the largest 8-bit number is 255, three spaces are needed
to print the highest value for a. Note that %d does not print leading zeroes.

In the “Hex” results, each character represents 4 bits; therefore two spaces are
needed to display the value for a. Hex provides leading zeroes.

For the “Octal” results, each character represents 3 bits. Thus, three spaces are
needed to display the value for a. Octal provides leading zeroes.

Finally, for the “Binary” results, each character represents 1 bit, so eight spaces are
need to display the value for a. Binary provides leading zeroes.

We can extend this to an explanation of time. Time is a 64-bit unsigned value.
Therefore, the largest value that can be displayed is 18446744073709551615, or
twenty digits. That is why the examples in this section have so many extra spaces.

Now that we know the reason for the extra spaces, we can create a solution. Change
the code in Example 5-12 to the format shown in Example 5-13, and note the
results.

Example 5-13 Suppressing Leading Spaces and Zeroes

$display("Dec '%0d', Hex '%0h', Oct '%0o', Bin '%0b'",
a ,a, a, a);

Example 5-13 Results

Dec. '3', Hex '3', Oct '3', Bin '11'

There are two points to remember here:

1)

2)

Verilog normally uses fixed-width fields, which makes creating columnar
output easy.

We can override the leading spaces and zeroes by inserting a 0 between % and
the radix code in the format specifier.

PERIODIC PRINTOUTS

The $monitor system task prints automatically when any signal changes, however it
is often deceiving to read the output from $monitor, since many signals can change
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in a short period of time, or there may be long periods with no changes. It is often
desirable to print results in a periodic format. You can combine the always, a delay,
and the $display to create a periodic printout. Example 5-14 provides a simple
example of a periodic printout.

Example 5-14 Periodic Printout

always #100 $display(" ...",  ... ) ;

When to printout results

If you are printing results periodically, you need to choose a good time to print the
results. Think about the basic timing. When do inputs change? When are the
outputs stable? For example, a system with a clock period of 100 with the clock
rising on the even 100's (100, 200, etc.) would likely have signals changing at or
just after the even 100's, so printing out just before the clock would be ideal to
capture stable values from the previous cycle.

Example 5-15 Periodic Printout Before the Clock

always
begin

#99 $display ("...", ...);
#1 ; // rounds out the cycle to 100

end

A FINAL SYSTEM TASK

With an always block as shown in Example 5-14 or Example 5-15, you might
wonder when the simulation will ever stop. Although the $finish system task is not
directly used to print results, it is mentioned here. When a $finish system task is
encountered, simulation terminates, so all periodic printouts will cease. The $finish
task can be issued as $finish; $finish(1); or $finish(2); The difference between the
three versions is the amount of simulation statistics printed.

Exercise 3 Printing Out Results from Wires Buried in the Hierarchy

Now that you know the basics of $display, initial, and always, you can modify the
test bench from Exercise 2 to print out a message at the start of simulation.
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You may merely want to print a simple message such as “start of adder testing,” or
column headings for the data you will be printing. Hint: you can do this by
modifying the existing initial block or by adding a new initial block of your own.

Next, modify the test bench by adding some statements to print results every 50 time
units. Use $display to print the results from all the inputs (a, b, and cin) and outputs
(sum and carry_out). How are the results different if you use $strobe? Hint: You
will need to add an always block to do this. You need not worry if your results fail
to print at time 0 or time 600: As long as you print your results every 50 time units
and have results appearing between 50 to 550 time units, the exercise is successful.

Now that you are printing the top-level signals correctly, try and print out some
signals buried in the hierarchy. Modify the $display or $strobe statements to
include printing out the values from internal carries between the 2-bit adders. There
are three carry signals between the 2-bit adders.

You have now successfully added $display statements to a module. This is one of
the easiest ways to debug a design. With your practice at hierarchical names in
Chapter 3, you can print out any signal in the design from the test bench.
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DATA OBJECTS IN VERILOG

This chapter introduces the different types of data you can work with in Verilog:
Nets, regs, integers, times, parameters, events, and strings.

Nets

Nets (sometimes called wires) are the most common data object in Verilog. Nets are
used to interconnect modules and primitives, as discussed in Chapter 3. You used
nets in Exercise 2. There are net types representing wired OR, wired AND, storage
nodes, pullups, and pulldowns. The default net type is a plain wire with no special
properties.

The net types are listed in Table 6-1.
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wire is the default net type. You can change the default net type to one of the other
types, but most nets are of type wire. wire and tri are the same type of net. The
reason for having two names for this type of net is that some people may want to
distinguish in their designs those nets that are expected to tri-state from those that
do not. You can use tri to distinguish a net that you expect to have high impedance
values or multiple drivers. If two drivers are driving a net of type wire or tri and one
driver has the value 1 and the other has the value 0, the result will be x.

wand and triand are wires that represent wired AND logic. Wired AND logic is
similar to open-collector TTL logic. If any driver on the net is 0, the resulting value
is 0. Verilog does not distinguish between wand and triand. The different names are
only for use in documenting your model.

Wired OR logic is represented with the wor and trior net types. With these net
types, if any driver is a 1, the result is 1. As with the previous net types, wor and
trior are equivalent.

If nothing is driving a wire in TTL logic, the inputs default to 1. You can use the
tril net type to model this situation. If nothing is driving a net of type tril, the
default value is 1. As with tril, if nothing is driving a net of type tri0, the value is 0.

Use the supply1 and supply0 net types to model power supply nets. These nets are
always 1 or 0 with a strength of supply. Even if you drive something onto these nets,
they always retain their distinct values.

The trireg net type is used in switch-level modeling for storage nodes. The trireg
net has a capacitive size associated with it. Because trireg is an abstraction of a
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storage node, the capacitors never decay. See appendix A for the interaction
between capacitive size and gate drive strength.

In Verilog, a wire can be 1 bit wide or much wider. A wire that is more than 1 bit
wide is called a vector in Verilog. (Although such a wire is also known as a bus,
this book uses the term vector for a wire wider than 1 bit.) To declare a wire more
than one bit wide, a range declaration is used.

Ranges

Ranges specify the most-significant and least-significant indexes of a vector. The
maximum width of a vector is dependent on the simulator being used. The IEEE
1364 standard states that a simulator must support at least 1024-bit wide vectors.
Verilog-XL supports vectors up to one million (1,000,000) bits wide, though some
simulators have no limit on width.

You specify the number of bits in a wire with a bit range. The range [7:0] is an 8-bit
range, as is [0:7]. Ranges can be either ascending or descending. Furthermore,
ranges do not need to be zero-based: The range [682:690] is a 9-bit range.

Example 6-1 shows several net declarations.

Example 6-1 Net Declarations

wire a, b, c; // Three 1-bit nets of type wire.
wire [7:0] d, e, f; // Three 8-bit vectors.
supply1 vcc;
supply0 gnd;
trior [26:2] data_bus; // A 25-bit vector.

Each net declaration can declare several nets of the same type and size. The range is
associated with the net type declaration, not the net name. Therefore, Example 6-2
is incorrect. The 2001 Verilog standard includes multi-dimensional arrays, which
makes Example 6-2 legal. Since this is a change to the language, individual tool
support of this feature may vary. While the Syntax may now be legal, it is
considered wrong since it is an array of 1 bit wires, vs. the desired 8 bit bus.

Example 6-2 Incorrect Net Declaration

wire a[7:0]; // WRONG although syntax ok in IEEE1364-2001

The left-most index is always the most significant bit. Verilog is only concerned
with the number of bits in the range. Use of ascending and descending ranges is
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entirely up to you and your conventions. Verilog does not need the ranges to be
zero- or one-based.

Implicit Nets

In the mux and adder examples, in chapter 3, nets were used even though none were
declared. Verilog implicitly declares nets for every port declaration. Every
connection made in a module instance or primitive instance is also implicitly
declared as a net, if it is not already declared. Nets implicitly declared from a port
declaration carry the size and name of the port and are the default net type, usually
wire. Nets that are implicitly declared because they are part of an instance are 1 bit
wide and of the default net type. If you need a net to be more than 1 bit wide, you
must explicitly declare it.

You can set the default net type by using the Verilog compiler directive
`default_nettype. This compiler directive sets the net type for all implicitly declared
nets. Compiler directives start with the grave accent key, not the apostrophe.
Example 6-3 shows two settings the default net type.

Example 6-3 Setting Default Net Type

`default_nettype tril;
`default_nettype wand;

Ports

Ports were introduced in Chapter 3 with structural modeling. A port declaration
implies a net of the default type and the same range as port. Ports can be re-declared
as a different net type if desired, however the ranges must match. Example 6-4
shows port declarations and re-declarations.

Example 6-4 Port Declarations

module portexample( a, b, c, d);
input [7:0] a; // implies wire [7:0] a;
input [3:0] b;
tril [3:0] b; // if b is not driven it wil be 4'b1111
inout [7:0] c;
triand [7:0] c; // multiple drivers on c will be anded
output [5:0] d;
wire [7:0] d; // Wrong the ranges dont match!
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Regs

Regs are used for modeling in procedural blocks. The next chapter explains usage of
the reg. The reg data type does not always imply modeling of a flip-flop, latch, or
other form of register. The reg data type can also be used to model combinatorial
logic. A register can be 1 bit wide or declared a vector, just as with nets. Vector
registers can be accessed a bit at a time or a part at a time. Example 6-5 shows some
register declarations.

Example 6-5 Reg Declarations

reg a, b, c; // Three 1-bit registers.
reg [8:15] d, e, f; // Three 8-bit registers.

Part of a reg can be referenced or assigned to by using a bit- or part-select notation.
Remember that the leftmost bit is the most significant, regardless of how the range
is declared. When you select a part or slice of a register, be sure the range of the
part matches the range direction (ascending or descending) of the original register.
Also, if you select a range that is not within the original register, the result will be
x, and is not an error.

Example 6-6 Selecting Bits and Parts of a Reg

e[15] // Refers to the least significant bit of e.
d[8:ll] // Refers to the four most significant bits of d.

Memories

Memories are arrays of registers. A memory declaration is similar to a reg
declaration with the addition of the range of words in the memory. The range of
words can be ascending or descending, as with the range of a vector. The range of
words does not need to be zero- or one-based; it can start anywhere. It is usually
most convenient to declare a memory as zero-based with an ascending range.
Verilog uses 2 bits of computer memory for each bit of simulated memory because a
bit of simulated memory may contain the values 0, 1, x, or z. When referencing a
memory, you can access only the entire word of memory, not the individual bits.

Example 6-7 Memory and Register Declarations

reg [7:0] a, b[0:15], c[971:960];
reg d, e[8:13];
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In Example 6-7, a is an 8-bit register, b is a memory of sixteen 8-bit words, and c is
a memory of twelve 8-bit words. The second reg declaration declares d as a 1-bit
register and e as a 1-bit wide memory of six words.

It can be difficult to distinguish memory word references from the reference of a bit
of a register. There is no direct way to reference a bit of a memory. Therefore, word
references in a memory (which look exactly like bit references in a word) can only
be distinguished if you know the data type of the referenced element. Refer to the
declaration to determine whether you are referencing a bit or a word. Example 6-8
shows selecting bits in regs and words in memories.

Example 6-8 Selecting Bits in Regs and Words In Memories

a[3] // Refers to bit three of the register a.
b[3] // Refers to the fourth 8-bit word in the memory b.
b[3][3] // This is not legal through 1995 standard.

Initial Value of Regs

The initial value of a reg or array of regs is 'bx (unknown). IEEE1364-2001 defines
a method to initialize a reg as part of the declaration. Example 6-9 shows the
declaration of five regs, a, b, c, d, and e: Regs a and c are not given initial values
and default to unknown. As with the other IEEE1364-2001 changes tool support for
these language features may not be immediate or complete. The standard does not
specify an order of evaluation of these initial values versus an initial block with a
procedural assignment to the same reg.

Example 6-9 Reg Declaration with Initialization

reg [7:0] a; // initial value will be 8'bx;
reg [7:0] b = 8'd3; // initial value will be 3
reg [3:0] c, d=3, e=4;

Integers and Reals

Integers in Verilog are usually 32 bits wide. Strictly speaking, the number of bits in
an integer is machine-dependent. Verilog was created when 36-bit machines were
common, so a 36-bit machine would have an integer of 36 bits. Today most
machines work with 32-bit integers. For this book, we assume that integers are 32
bits wide.
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Integers are signed; regs are unsigned. If you want to do signed arithmetic, use an
integer. Otherwise an integer is similar to a 32-bit reg. Note that it is possible to do
signed math using nets and registers, but your modeled logic must explicitly model
the sign extension.

Integers, reals, and 32-bit registers each physically hold a 32-bit value. The
difference between them is in their interaction with operators and what the data
means.

A reg merely represents bits and is treated as an unsigned integer. An integer is
signed and can hold a negative number. A real holds a floating-point number in
IEEE format.

Integers are declared with the integer keyword, not int as in the C programming
language.

Like integers, reals are 32-bit floating-point values. Integers and reals are difficult
to pass through ports because in Verilog, ports are always bits or bit vectors. Reals
are declared with the real keyword.

Example 6-10 shows how to declare integers and reals.

Example 6-10 Declaring Integers and Reals

integer i, j, k;
real x, y;

Time and Realtime

Verilog uses the time keyword to represent the current simulation time. time is
double the size of an integer (usually 64 bits) and is unsigned. If your model uses a
timescale you can use realtime to store the simulation time and time units. You can
declare variables of type time or realtime in your models for timing checks, or in
any other operations you need to do with time. See Appendix A.

The built in functions $time and $realtime return the current simulation time.

Example 6-11 Declaring Variables of Type time

time t1, t2;
realtime rt1, rt2;
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initial begin
#50 t1 = $time;

rt1 = $realtime;
#50 t2 = $time - $t1;

rt2 = $realtime - rt1;
end

Parameters

Parameters are run-time constants that take their size from their value
automatically. The default size of a parameter is the size of an integer (32 bits). For
backwards compatibility, you can declare parameters with ranges to make them
bigger or smaller than their default size. Parameters are chiefly useful in creating
modules with adjustable sizes or delays. Even though parameters are run-time
constants, their values can be updated at compilation time. Each instance of a
module with parameters can have different values for those parameters at run time.
Unlike the declarations of net, reg, integer, real, and time, when you declare
parameter, it is assigned a default value. Parameters may be strings. Parameters
may be used in subsequent declarations.

Example 6-12 Parameters

parameter message = "Hello Verilog";
parameter size =8;
parameter delay =3;
parameter prog = size * delay;
parameter msb = size -1;
parameter low = 0;
wire [msb:0] a; // parameter msb +1 determine width of a
reg [size-1:low] b; // size and low determine width

Events

Events were first used in the phone example in Chapter 1. They are usually used in
very abstract models. An event does not represent any real hardware. Events have
no value or duration. They are used to signal that something has occurred to trigger
something else to happen. Events cannot be passed through ports.

Example 6-13 Events

event birth;
event acknowledge, parity_error;
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Strings

Verilog does not have a unique string data type. Rather, strings are stored in long
registers using 8 bits (1 byte) to store each character. When declaring a register to
store a string, you must declare a register of at least eight times the length of the
string. Constant strings are treated as long numbers, as shown in Example 6-14.

Example 6-14 Strings

module string1;
reg[8*13 : 1] s;
initial begin

s = "Hello Verilog";
$display("The string %s is stored as %h", s, s);

end
endmodule

The result is shown in Example 6-14 Results.

Example 6-14 Results

The string Hello Verilog is stored as
48656c6c6f20566572696c6f67

Multi-Dimensional Arrays

The 2001 IEEE Verilog standard removes some old restrictions and adds new
functionality for multi-dimensional arrays. Example 6-2 becomes legal with the
2001 standard, and the last line of Example 6-8 becomes the selection of a bit
within a word.

Example 6-15 Multi-Dimensional Arrays of nets

wire [7:0] a; // old style array of wires (bus)
wire [7:0] b[7:0]; // New array of array of wires
wire c[7:0]; // Array of wires.
wire d[7:0][7:0]; // two dimensional array of wires

Example 6-15 shows many possible declarations for single and multi-dimensional
arrays now possible with the IEEE 1364-2001 standard. Support for multi-
dimensional arrays as with any of the language features may be tool specific.
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Example 6-16 shows declarations of three objects: bus, rom and screen. The
declaration of bus is a single 8-bit reg, this declaration is equivalent to the
declarations in Example 6-5. The declaration of rom is an array of 256 regs, 8-bits
wide, equivalent to Example 6-7. The final declaration of screen is a two
dimensional array of 8-bit words.

Example 6-16 Multi-Dimensional Arrays of Regs

reg [7:0] bus, rom[0:255], screen[0:1023][0:767];

Accessing Words and Bits of Multi-Dimensional Arrays

The addition of multi-dimensional arrays adds a much needed syntax to the Verilog
language that also enables selecting a bit from a word in a memory. You can access
a word of a multi-dimensional array, or a bit of a word, but you can not access a
range of words.

Example 6-17 Accessing Multi-Dimensional Arrays

rom [5] // an 8 bit word from rom
rom [5] [6] // A bit of one of the rom words
screen [1][2] // an 8 bit word of screen
screen [1] [2] [3] // a bit from screen
screen [1] // not legal

PORTS AND REGS

Up to this point, examples of ports have been nets going through ports. As you
move towards procedural modeling in Verilog, you may want to have ports that are
regs. It is legal to declare only output ports as registers. It is a common error to
declare input or inout ports as registers.

Because the only way to get a value into a regs is with a procedural assignment,
which will be explained in the next chapter, it neither makes sense nor is legal in
Verilog to have a reg as an input port on the inside of a module.

However, a reg may drive an output port, so it is legal for an output port to be a reg.

input and inout ports must always be nets, but output ports can be reg. To make an
output port a reg, first declare it as an output then declare it again as a reg. A
simple example is shown in Example 6-18.
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Example 6-18 Output as a Reg

`define REG_DELAY 1
module dff(q, clk, d);
input clk, d;
output q;
reg q;

always @(posedge clk) q <= #(`REG_DELAY) d;

endmodule

Figure 6-1 shows the possible relationships of ports and regs. In procedural
modeling, you will often want to declare an inout port as a reg, but this will not
work. An internal reg is needed along with a method to connect the reg to the inout
port. Chapter 12 shows how to connect a reg to an inout port.
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7 PROCEDURAL ASSIGNMENTS

The data types reg, integer, real, and time can only be assigned values in procedural
blocks of code. These assignments are called procedural assignments. They are
similar to variable assignments in other programming languages. When the
statement is executed, the variable on the left-hand side of the assignment receives a
new value.

The destination of a procedural assignment is never a wire. The procedural
assignment is one of three types of assignments you will learn in Verilog. For now,
just remember that the left-hand side of a procedural assignment is a reg. The left-
hand side can contain an integer, time, or real, but these data types can be thought
of as abstractions of regs.

There are three varieties of the procedural assignment: The simple procedural
assignment, the procedural assignment with an intra-assignment delay, and the
nonblocking procedural assignment, all of which are described in this section.
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Example 7-1 Simple Procedural Assignments

module ia;
integer i, j;
reg [7:0] a, b;
initial begin

i = 3;
j = 4;
a = i + j;
b = a + 1;
#10 i = a;
j = b;

end
endmodule

In Example 7-1, the first four assignments occur at time 0, followed by a delay of 10
time units, and then the last two assignments take place. This example shows how
an assignment can have no delay or have a delay before the assignment.

Example 7-2 Procedural Assignments with fork-join

module iaf1 ;
integer i, j;

initial begin
i = 3;
j = 4;
fork

#1 i = j;
#1 j = i;

join
end
endmodule

In module iaf1, what are the final values of i and j? The answer is indeterminate. At
time 0, i and j are assigned the values 3 and 4. At time 1, j is sampled and its value
assigned to i, and the value of i is sampled and applied to j. Even though the
module contains a fork-join block and the changes should happen at the same time,
we don’t know the result because both values are sampled and changed at the same
time. If the code is changed to use an intra-assignment delay, we can be sure they
will exchange values.

The intra-assignment delay is a special form of the procedural assignment with a
delay in the middle. With the delay on the right-hand side of the equal sign, the
right-hand side is evaluated immediately, but the assignment is delayed. The
operation of a procedural assignment with an intra-assignment delay is sample the
values on the right had side, delay, then assign.
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Example 7-3 fork-join with Intra-assignment Delays

module iaf2;
integer i, j;

initial begin
i = 3;
j = 4;
fork

i = #1 j;
j = #1 i;

join
end
endmodule

With the intra-assignment delay, the values of i and j are sampled at time 0. (They
are sampled at time 0 because there are no delays between them and the initial
statement, which started at time 0). Then there is a delay of 1 and i and j are
assigned their new values. Adding intra-assignment delay creates a special form of
the procedural assignment – with a delay in the middle. With the delay on the right-
hand side of the equal sign, the right-hand side is evaluated immediately, but the
assignment is delayed. The operation of a procedural assignment with an intra-
assignment delay is sample the values on the right had side, delay, then assign.

In Example 7-3, the fork-join block is started at time 0 and finished at time 1
because a fork-join block finishes when the last statement in the fork-join block is
completed. In this case, both statements take one time unit to complete.

Example 7-4 fork-join with Multiple Delays

module iaf3;
integer i, j;

initial begin
i = 3;
j = 4;
fork

#1 i = #1 j;
#1 j = #1 i;

join
end
endmodule

Delays can be added before the assignments. Even with these additional delays, they
still exchange values. In Example 7-4, i and j are sampled at time 1 and assigned
their new values at time 2. The module finishes running at time 2. This model is
exactly the same as the one in Example 7-5.
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Example 7-5 fork-join with Simplified Delays

module iaf4;
integer i, j;

initial begin
i = 3;
j = 4;
#1 fork

i = #1 j;
j = #1 i;

join
end
endmodule

The intra-assignment delays do not change the amount of time taken to run the
statement—they merely insert a delay between the sampling and the assignment.
This is more easily visible in Example 7-6.

Example 7-6 Effect of Intra-assignment Delays on Time Flow

module iab;
integer i, j;

initial begin
i = 3;
j = 4;
begin

#1 i = #1 j;
#1 j = #1 i;

end
end
endmodule

Simulation is started at time 0 at the initial statement, when i and j get their first
values, 3 and 4. Simulation continues until the first #1 and waits until time 1. At
time 1, j is sampled (having the value 4); at time 2, the value 4 is assigned to i, and
the statement is completed.

At time 2, simulation continues to the #1 j = # 1 i statement, when the simulation
waits until time 3, based on the first #1 in that statement.

At time 3, i is sampled (with the value 4); at time 4 the value 4 is assigned back to j.
Without the fork-join block, the statements are sequential and i and j do not
exchange values. Although the extra begin-end blocks add some clarity to your
code, they have no effect on this design and could be removed.
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There is one more form of the procedural assignment, the nonblocking assignment.
The nonblocking assignment uses a different assignment operator and changes the
amount of time the statement takes to execute. The nonblocking assignment allows
the next statement (in sequential code) to commence sooner, and defers when the
assignment will take place. Example 7-7 shows nonblocking assignments.

Example 7-7 Nonlocking Assignments

module ianb;
integer i, j;

initial begin
i = 3;
j = 4;
begin

i <= #1 j;
j <= #1 i;

end
end
endmodule

With the nonblocking assignment, the intra-assignment delay does not block. The
delay in the assignment is hidden. This is the new sequence of events: At time 0, i
and j receive their values, and the inner begin-end block starts. In the first
nonblocking assignment, j is sampled at time 0, and the value 4 is scheduled to be
assigned to i at time 1 (based on the #1).

The assignment statement finishes at time 0. However, the assignment of j to i is
deferred to time 1, because it is a nonblocking assignment. Then the second
nonblocking assignment statement starts at time 0, i is sampled, and the value 3 is
scheduled to be assigned to j at time 1. The begin-ends finish at time 0, but the
behavior does not complete until time 1 when the assignments are completed. The
nonblocking assignment breaks the normal flow of Verilog execution and schedules
the assignment to take place at a later time.

PROCEDURAL ASSIGNMENTS, PORTS AND REGS

The previous chapter ended with the relationship of ports and regs. Now that
procedural assignments have been introduced, the relationship should be more
clear. The left hand side or destination of a procedural assignment must be a reg.
Procedural assignments are a powerful way to create combinatorial or sequential
logic. Chapter 9 will describe how to create combinatorial and sequential logic.
Remember if you want to use the power of the procedural assignment to create
logic, the output of the assignment, and the module will need to be a reg.
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BEST PRACTICES WITH PROCEDURAL ASSIGNMENTS

The examples presented up to this point have been abstract, and have shown the
details of the workings of the procedural assignment. The procedural assignment is
the main component of procedural modeling, therefore learning best practices will
minimize errors. The procedural assignment can be used to model two types of
hardware: Combinatorial logic and sequential logic.

Procedural Assignment for Combinatorial Logic

When modeling combinatorial logic it is recommended to use the blocking
procedural assignment with no delays. Example 7-8 shows some combinatorial
logic. Remember that although the reg must be used as the destination of a
procedural assignment, the reg can still be used to model combinatorial logic.

`define IO_ADDRESS 16'h1234
`define REG_ADDRESS 16'h5678
module addressdecoder(address, wr, rd, reg_rd, reg_wr,

io_rd, io_wr);
input [15:0] address; // address from processor
input rd, wr; // read and write signals
output reg_rd, reg_wr; // signals to register block
output io_rd, io_wr; // signals to Io block
reg reg_rd, reg_wr; // declared as reg as required
reg io_rd, io_wr; // for procedural assignments
reg io_sel, reg_sel; // internal signals
always @(address or rd or wr)
begin
io_sel = (address == 'IO_ADDRESS) ;
reg_sel = (address == `REG_ADDRESS);
io_rd = io_sel & rd;
io_wr = io_sel & wr;
reg_rd = reg_sel & rd;
reg_wr = reg_sel & wr;

end
endmodule

Procedural Assignment for Sequential Logic

Sequential logic, flip-flops, registers, state machines, etc., are quite natural to model
with the procedural assignment and reg. The best practice to model sequential logic
is to use the non blocking assignment with an intra-assignment delay. Example 7-9
shows a register created with a sequential procedural assignment

Example 7-8 Combinatorial Procedural Assignments
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Example 7-9 Sequential Procedural Assignment

`define REG_DELAY 1
module addressregister(clk, reset, address, reg_address);
input clk, reset;
input [15:0] address;
output [15:0] reg_address;
reg [15:0] reg_address;

always @(posedge clk)
if(reset)
reg_address <= #(`REG_DELAY) 16'h00;

else
reg_address <= #(`REG_DELAY) address;

endmodule

Philosophy of Intra-assignment Delays for Sequential Assignments

In Example 7-9, the intra-assignment delay is shown as a text macro. This allows
the delay to be zero, one, random, or any other value desired. The delay should be
non-zero, but much shorter than the clock period. Unfortunately some code
checking tools (lint tools) may flag intra-assignment delays for sequential logic as a
warning since synthesis tools ignore these delays. These false warnings should
always be ignored. The more important warning is when the delays are omitted
from sequential logic that is modeled with non-blocking procedural assignments.

One of the benefits of the intra-assignment delay is the visibility and clarity it adds
to a waveform. You can easily tell if a signal arrived in time for the clock and
determine which signals are created as a result of the clock.

One of the most important reasons for using a delay is matching pre-synthesis and
post-synthesis simulations. The clock-to-out delay of flip-flops is non-zero. With the
intra-assignment delay, the clock-to-out delay is modeled. In a pre-synthesis
simulation with gated clocks or generated clocks it is possible that data will be seen
on the wrong edge if the delays are omitted.

Finally, a word about event ordering and bad practices. In general, event ordering
can not be predicted with the exception of a sequence of statements in a single
begin-end block. Different simulators may execute the same code in slightly
different order. A simulation that depends on event ordering rather than timing is
likely to be plagued by zero delay race conditions and may give different results on
different simulators. It may have difficulties matching pre-and post-synthesis
results. Users have been known to use '#0' to nudge event ordering. The '#0' should
be avoided and seen as an error. The non-blocking assignment without a delay is
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equivalent to '<= #0', since the assignment takes place in this time unit but later.
Therefore, the non-blocking without a delay should be considered an error.

Conventions Moving Forward

The remainder of the book uses the blocking with no delays for combinatorial logic,
and the non-blocking with a text macro for an intra-assignment delay for sequential
logic. You should follow this practice as well with all your hardware models. The
only violations of this convention you will find are either abstract examples or test-
benches.
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Operators in Verilog can be divided into several categories. One way to categorize
the operators is by the number of operands they take. For example, the + symbol
takes two operands, as in a + b. When an operator takes two operands, it is called a
binary operator. Verilog, like most programming languages, has many binary
operators. Verilog also includes unary operators (which take only one operand), and
a ternary operator (which takes three operands).

Another way to group the operators is by the size of what they return. Some
operators, when operating on vectors, return a vector. But two types of operators
return a single-bit value even if they are passed vectors. The operators that return
only a single bit are either reduction or logical operators.

BINARY OPERATORS

Most of the operators in Verilog take two operands, and fall into the category of
binary operators. This includes a set of arithmetic, bit-wise, and logical operators.
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The definitions of the arithmetic operators are similar to other programming
languages. IEEE 1364-2001 adds the power operator that was previously not part of
Verilog.

The bit-wise     &, and ^ operators typically will be used with two operands of the
same size, and return a value of the same size. The shift operators can end up
creating a larger (left shifts) or smaller (right shifts) result. All of the shift operators
except signed shift right >>> zero fill. The signed shift right fills with whatever the
most significant bit of the right left hand operator was.

All the binary operators take two arguments that are 1 or more bits long and return
a result of 1 or more bits. Logical operators return a one bit result. There are no size
restrictions on the operands or results. For example, you can add two 8-bit values
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and put the result into 4 bits and you would have the four least significant bits. You
could also put the result of that addition into a 9-bit result and you would have the
carry along with the result.

Example 8-1 Using Operators

reg [7:0] a, b, r8;
reg [3:0] r4;
reg [8:0] r9;

r4 = a + b ; // Gets the four least significant bits.
r9 = a + b; // Gets the whole result plus a carry out.
r4 = a >> b; // a shifted right by b bits,

// four least significant bits of the result.
// msb's are filled with zeros

r8 = a >>> b; // a shifted right by b bits,
// msb's are filled with a[7]

r8 = r4 | r9; // all right justified, msb lost.

UNARY OPERATORS

The unary operators take only one operand to their right for input and consist of
negation operators and reduction operators. The unary negation operators are shown
in Table 8-4.

The bit-wise negation operator can be combined with the bit-wise AND, reduction
AND, reduction OR, and exclusive OR operators to make even more bit-wise
functions.

Example 8-2 shows the difference between the bit-wise and logical negations. Bit-
wise operators return a value of the same size as the operand. Logical operators
return only a 1-bit value. Example 8-2 and Example 8-8 show the difference
between bit-wise and logical operators.
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Example 8-2 Distinguishing between Bit-wise and Logical Operators

module uop;
reg [7:0] a, b, c;
initial begin

a=0;
b='bl0100101;
c='b1100xxzz;
$display("Value %b Bitwise '~' %b logical '!' %b",a,~a,!a);
$display("Value %b Bitwise '~' %b logical '!' %b",b,~b,!b);
$display("Value %b Bitwise '~' %b logical '!' %b",c,~c,!c);

end
endmodule

Example 8-2 Results

Value 00000000 Bitwise '~' 11111111 logical '!' 1
Value 10100101 Bitwise '~' 01011010 logical '!' 0
Value 1100xxzz Bitwise '~' 0011xxxx logical '!' 0

Other languages such as C, include other unary operators. For example, “++” and “-
-”. Verilog does not include these unary operators.

REDUCTION OPERATORS

Reduction operators are a special case of the bit-wise operators. The reduction
operators act like unary operators in that they take only one operand. The reduction
operators act on a multiple-bit operand and reduce it to a single bit.

Example 8-3 shows the usage of some of the reduction operators. Reduction
operators operate on a vector and return a single bit. Example 8-3 Results shows the
results of various reduction operators.



Operators 85

Example 8-3 Using Reduction Operators

module redop;
reg [7:0] example[1:5];
integer i;
initial begin
example[1] = 0;
example[2] = 'hff;
example[3] = 'bl0l0ll0l;
example[4] = 'bll00llzz;
example[5] = 'blllllllx;
$display("reduction operators");
for(i=l; i<=5; i=i+l)

$display("Value %b, & = %b, | = %b, ^ = %b",
example[i], &example[i], |example[i], ^example[i]);

end
endmodule

Example 8-3 Results

reduction operators
Value
Value
Value
Value
Value

00000000,
11111111,
10101101,
1100llzz,
lllllllx,

& = 0,
& = 1,
& = 0,
& = 0,
& = x,

= 0,
= 1,
= 1,
= 1,
= 1,

^ = 0
^ = 0
^ = 1
^ = x

^ = x

TERNARY OPERATOR

The ternary operator takes three operands and uses the question mark (?) and colon
(:) to indicate the operation. A ternary operation is essentially an if-then-else
statement in an expression. The first operand is logically evaluated. If it is true, the
second operand is returned. If the first operand is not true, the third operand is
returned.

Example 8-4 Ternary Operator

result = a ? b : c ;



86 Verilog Quickstart

The ternary operator is useful for describing 2-to-l muxes and three-state buffers.

Example 8-5 Using the Ternary Operator for a Three-State Buffer

module buf16(out,in,enable); // 16 bit three-state buffer
input [15:0] in;
output [15:0] out;
input enable;
assign out = enable ? in : 16'bz; // This is a continuous

// assignment. It will be
// explained next chapter.

endmodule

EQUALITY OPERATORS

The set of operators used to determine equivalence, greater than, and less than is
similar to other languages you might know, with a few additions. Because Verilog
includes the values of unknown x, and high impedance z, it provides some special
equivalence checks. Because one of the operands in an equality check may be
unknown, the result may also be unknown. Table 8-7 lists the equality operators,
and is followed by truth tables for all the equality operators.
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The === and !== operators are special in that they will never return x; their output
is always 0 or 1.

A rule of thumb for equivalence vs. literal equivalence operators is based in
hardware. In hardware there is no x, it would be 1 or 0. Therefore use == and != for
synthesizable hardware. Test benches should test and catch x and z. Test benches
should use === and !==.

The truth tables for all of the equality operators are shown in Table 8-8 through
Table 8-15.
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If you are not sure of how an operator works, you could write a simple Verilog
module to test it. Example 8-6 shows such a module.

Example 8-6 Module To Test an Operator

/* module to test operators */
module test_op;
reg a,b,result;
reg [1:4] values;

'define op ==

integer i,j;

initial begin
values = 4'b01xz; // all possible values

$display(" A == B = " ) ;
$display (" ") ;

for(i=1; i<=4; i=i+1)
for(j=1; j<=4; j=j+1) begin
a = values[i];
b = values[ j];
result = a ` op b;
$display(" %b %b %b",a,b,result);

end
end
endmodule

CONCATENATIONS

You can make larger operands with concatenations. Concatenations are legal both
as a result on the left-hand side of the equals and as operands on the right-hand side
of the equals. The concatenation is indicated with curly braces {}.
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The repeat operator is a special case of the concatenation, and is indicated with two
sets of curly braces and a number to indicate how many times the value is to be
repeated.

One word of caution: It is illegal to have an unsized number in a concatenation.
Because you use a concatenation to create a specific number of bits, it would be
pointless not to size a constant in a concatenation. However, if you have not
established the habit of sizing the constants in your Verilog code, you will have
problems with concatenation.

Concatenation can be used on both sides of an assignment. You can use
concatenation to create a larger place for a result.

Example 8-7 Concatenations

// This is an incomplete example.
// The register declarations are
// included so you can see the size of
// these operands.
reg [3:0] a, b; // Some 4-bit registers.
reg [7:0] c, d; // Some 8-bit registers.
reg [11:0] e, f; // Some 12-bit registers.

c = {a,b}; // The most significant bit of c is the most
significant bit of a.
e = {b,a,b};
f = {3{a}}; // Three copies of a make 12-bits.
b = {4{e==f}} // Make a 4-bit mask of e==f.
f = {a,d}; // 4 bits + 8 bits = 12 bits.
e = {2{1'b1,a,1'b0}} // = 1aaaa01aaaa0,

// aaaa is the value of a.
{a,b} = d;
{a,b,c,d,e,f} = {f,e,d,b,c,a} + 1;
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LOGICAL VERSUS BIT-WISE OPERATIONS

The set of logical operators includes all the relational operators: The logical AND
(&&), logical OR (| |), and negation (!). What distinguishes the logical operators
from the bit-wise operators is the size of the value returned.

Bit-wise operators return a vector of the size of the operands (or destination,
whichever is largest); logical operators return a single-bit value. The logical
negation and relational operators have already been demonstrated in Example 8-2.
The more confusing operators to look at are the logical OR ( | | ) and logical AND
(&&). Example 8-8 compares bit-wise and logical operators.

Example 8-8 Bit-wise and Logical Operations

Bitwise
10101011

& 01010101

00000001

Logical
10101011

&& 01010101

?

 ==========

===========
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To solve the logical AND operation in Example 8-8, first convert the vector values
to logical values. To convert a vector value to a logical value, ask this question: Is
the value true or false? For a value to be true, it must have at least one bit that is 1.

In Verilog (as in other languages), only 0 is false. Because Verilog also includes
unknown x and high impedance z as values, a logical value can also be unknown. If
the vector contains x’s or z’s but no 1s, then the logical value of the vector would be
unknown. The convert-to-logical implicit conversion is similar to the reduction OR.
See the reduction OR operation in Example 8-3 for some examples of convert-to-
logical.

The logical AND operation from Example 8-8 is completed as follows:

Example 8-8 Results

10101011 converted to logical 1
&& 01010101 converted to logical 1

1

OPERATIONS THAT ARE NOT LEGAL ON REALS

The following operators are not legal on reals. Because a real is not treated as a
vector of bits, several operators that work on bits and vectors of bits are not legal for
use with reals. These operators are listed in Table 8-17.

===
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WORKING WITH STRINGS

Strings are stored in long registers. Each character in the string takes 8 bits. All the
operators that work on registers also work on strings. Example 8-9 demonstrates the
addition and concatenation of strings.

Example 8-9 Operators and Strings

module string2;
reg[8*13 : 1] sl,s2,s3;
initial begin

s1 = "Hello";
s2 = " Verilog";
s3 = "abb";
s3 = s3 + 1;
if ( {s1,s2} != "Hello Verilog") begin

$display("%s != %s", {s1,s2},
"Hello Verilog");

$display("%h != %h", {s1,s2},
"Hello Verilog");

end
$display("s3 = %s is stored as %h",

s3, s3);
end
endmodule

As you can see from the results shown in Example 8-9 Results, when you
concatenate two strings, the zero padding that was in the string remains in the
resulting concatenation. Because strings are merely stored in long registers,
addition to strings will increment the characters in the string, as shown in Example
8-9 Results.

Example 8-9 Results

Hello Verilog != Hello Verilog
000000000000000048656c6c6f000000000020566572696c6f67 !=
48656c6c6f20566572696c6f67
s3 = abc is stored as 00000000000000000000616263

COMBINING OPERATORS

You may be wondering why we are emphasizing exclusive NOR in Example 8-10.
For two reasons: First, you can do things many ways in Verilog and this applies also
to the exclusive NOR. The other reason why these examples are interesting is the
order of precedence and sizing of the expressions.
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Example 8-10 Combinations of Operators for Exclusive NOR

reg [7:0] a, b; // Some eight-bit registers.
reg [8:0] r9; // a nine-bit register
r9 = ~ (a ̂  b ) ; // Exclusive NOR of a and b
r9 = a ^~b ; //most significant bit is '1'.
r9 = a ~^b ;
r9 = ~a ^ b;

SIZING EXPRESSIONS

The most significant bit of all the exclusive NOR examples in Example 8-10 is 1.
This is because 0 XNOR 0 = 1 . The sizing of the expression is done by first
expanding all of the operands to the largest size of the operands and destination.
Once all the operands have been expanded, the value is computed. If the destination
is smaller than the size of the computed value, the value is truncated. Verilog never
zero fills after computing the result. So, in Example 8-10, the two 8-bit values a and
b are expanded to 9-bit values with the most significant bit 0. Finally, Verilog
performs the operations to generate the 9-bit result.

SIGNED OPERATIONS

Nets, regs, and times in Verilog are unsigned; only integer and real types are
signed by default. The IEEE 1364-2001 standard enhances net, reg, port and
constant declarations to allow signed values other than integer and real. An
operation is sign extended when the operands involved are signed. Example 8-11
shows the signed key word added to various declarations. Signed values use 2's
complement format.

Example 8-11 Signed Declarations

module signunsign(a,b,c,d);
input [7:0] a; // unsigned
input signed [7:0] b; // signed
output [7:0] c; // unsigned
output signed [7:0] d; //signed

wire signed [7:0] e; // signed.
reg signed [7:0] f; // signed.
reg [7:0] g; // unsigned

endmodule
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Signed Constants

Chapter 2 introduced the syntax for specifying the radix of constants in Verilog.
The ability to use signed math dictates the need for signed constants. The letter S
can be added between the apostrophe and radix letter to indicate a signed constant
as with the radix specifiers of Chapter 2, the S may be lower case or capitol.

Example 8-12 Signed Constants

4'shf // '-1'
8'sb11111111 // '-1'
8'sb01111111  //127
-4'sb1111 // 1 because -(-1)

Table 8-18 shows all radix specifiers. The effect of signed constants can be seen in
Example 8-13.

Example 8-13 shows three ways to write the expression "minus 12 divided by 3."
Note that -12 and -'d12 both evaluate to the same 2's complement bit pattern, but, in
an expression, the -'d12 loses its identity as a signed negative number.

Example 8-13 Effect of Signed Constants

integer I;
I = -12 / 3; // The result is -4.
I = -'d 12 / 3; // The result is 1431655761.
I = -'sd 12 / 3; // The result is -4
I = -4'sd 12 / 3; // -4'sd12 is the negative of

// the 4-bit quantity 1100,
// which is -4. - (-4) = 4 .
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9 CREATING COMBINATORIAL AND SEQUENTIAL
LOGIC

So far you have learned structural modeling and enough high level code to apply
stimulus and to display results from your circuits. You have also read about
Verilog’s rich set of operators and data objects to use as operands. In this chapter
you will learn how to use the operators to model circuits at a higher level of
abstraction than merely structural. At the end of this chapter is an exercise based on
the operators introduced in Chapter 8, and the high level constructs presented in
this chapter.

CONTINUOUS ASSIGNMENT

The continuous assignment is the simplest of the high level constructs. A
continuous assignment is just like a gate: It drives a value out onto a wire. A
continuous assignment is different from a procedural assignment in a few ways.
First, the destination (left-hand side, or LHS) is always a wire. Second, the
continuous assignment is automatically evaluated when any of the operands change.
Unlike a procedural assignment, the continuous assignment cannot occur in a block
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of sequential code. The continuous assignment is always a module item by itself.
Finally, a continuous assignment always models combinatorial logic. It is true that
you can create logic that feeds back into itself and mimics storage, but still it is
combinatorial.

Example 9-1 shows a simple 16-bit, three-state buffer using a continuous
assignment.

Example 9-1 Three-State Buffer Using a Continuous Assignment

module buf16(out,in,enable); // 16-bit, three-state buffer
input [15:0] in;
output [15:0] out;
input enable;
assign out = enable ? in : 16'bz; // Continuous assignment
endmodule

In Example 9-1, the wire out gets either in or z depending on the value of enable.
Whenever enable or in changes, the continuous assignment is evaluated and a new
value for out is calculated.

The continuous assignment can be used with all the operators to create a result of
any size. A single continuous assignment can quickly model large combinatorial
circuits. For example consider, the small modules in Example 9-2 and Example 9-3

Example 9-2 A 128-Bit Adder In a Continuous Assignment

module add128(cout, sum, a, b, cin);
// 128 bit adder

input [127:0] a, b;
input cin;
output [127:0] sum;
output cout;
/* This continuous assignment models hundreds

of gates. The MSB of the add, carry is
assigned to cout by making the addition
in 129 bits using a concatenation on the LHS.

*/
assign {cout,sum) = a + b + cin;
endmodule

The continuous assignment in Example 9-2 uses a concatenation on the left-hand
side of the assignment to catch the carry-out bit.



Creating Combinatorial and Sequential Logic 99

Example 9-3 Continuous Assignment Multipiler

module mul64(prod, a, b); // Simple multiplier
input [31:0] a, b;
output [63:0] prod;
assign prod = a * b; // Thousands of gates !!!
endmodule

The continuous assignment is a quick and easy way to model when the
combinatorial logic can be expressed as a simple equation. A simple buffer (for
example, assign a=b;), a mux using the ternary operator, an arithmetic function, or
a complex set of Boolean operators. These can all be modeled using the continuous
assignment.

Before leaving the continuous assignment, see Table 9-1 to compare the two types
of assignments you’ve learned so far.

The continuous assignment can be used to connect a register or several registers to a
net. Consider Figure 9-1.

Connecting four registers to wires as shown in Figure 9-1 can easily be modeled in
Verilog, as shown in Example 9-4.
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Example 9-4 Connecting Four Registers to a Wire

module regnet;
reg a, b, c, d;
wire w;

assign w=a;
assign w=b;
assign w=c;
assign w=d;

endmodule

An alternate form of the continuous assignment may be written when a wire is
declared. Example 9-5 shows a simple continuous assignment where the wire c has
the value a | b.

Example 9-5 Alternate Form of Continuous Assignment

module aca;
reg a, b; .
wire c = a | b; // shorthand continuous assignment
endmodule

Continuous assignments may also have delays. Multiple continuous assignments
may be combined in one statement and separated by commas. Example 9-6 shows a
few more combinations of continuous assignments.

Example 9-6 Many forms of Continuous Assignments

module mca;
reg a, b, c, d;
wire y, yb, a1, a2;
wire [3:0] bus = {a, b, c, d};
wire #(3,2) parity = ^bus;
assign #1 a1 = a & b,

a2 = c & d,
y=a1|a2,
yb = ~y;

endmodule

Example 9-6 shows a continuous assignment as a wire declaration that combines
the four registers into a bus. The next continuous assignment generates parity on the
bus with a rise delay of 3 and a fall delay of 2. The final set of continuous
assignments forms an AND-OR-INVERT gate with a total a-to-y delay of 3 because
each of the continuous assignments has a delay of 1.


