Tessent® TestKkompress®
User’s Manual

Software Version 2014.2
June 2014

This manual is part of a fully-indexed Tessent documentation set.

ﬁ To search across all Tessent manuals, click on the “binocular” icon
or press Shift-Ctrl-F. Note that this index is not available if you are
viewing this PDF in a web browser.

© 2001-2014 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth
in the license agreement provided with the software, except for provisions which are contrary to
applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
Getting Started e 11
Tessent TeSIKOMPIESS. . . .o 11
EDT TeChnologyo e 13
TestKompress CompresSioN LOGIC . . . oo v v et ettt e e 16
TestKompress FIOW OVErVIEW e e e e 22
Tessent Shell User Interfaceot e 24
Chapter 2
TheCompressed Pattern FIOWS.o e e 27
Top-Down Design FIOWS. oo 30
The Compressed Pattern FIOWSo e 31
Design Requirements for a Compressed Pattern Flow 32
Compressed Pattern External Flow. 33
Compressed PatternInternal FIow 35
Chapter 3
Scan Chain SynNthesis 37
DeSIgN Preparation.o 38
SCan Chain INSErtioNo e e 39
ATPG Basaline Generationt 44
Chapter 4
Creation Of tNEEDT LOQIC. . ..t v ittt et et ettt a7
CompPression ANalYSISt e 48
ANAlYZING COMPIESSION. . . o ot ottt et et e e e e e e e e 48
Preparation for EDT LOQIC Creation vttt et e e 52
Parameter Specification for the EDT LOQIC.ot e 54
Dual Compression Configurationst e e 55
Defining Dual Compression Configurations, 58
Asymmetric Input and Output Channels. 60
Bypass SCan Chainsot 60
Latch-Based EDT 1OQIC. . .. oo ittt e e e e e e et et e e 61
COMPAC O TY P . o vttt e e e 61
Pipeline Stagesinthe Compactor. 61
Pipeline StagesAdded totheChannel 61
Longest Scan Chain RanNge. oottt e 62
EDT LOQIC RESEL. . . . oot 62
EDT ArchiteCture VEISION oottt 62
Specifying Hard MaCros.o e e e 63
Pulse EDT Clock Before Scan Shift Clocks. 64
Reporting of the EDT Logic Configuration.o ... 64
Tessent TestKompress User’'s Manual, v2014.2 3

June 2014

Table of Contents

EDT Control and Channel PiNS. e e 65
Functional/EDT PiNn Sharingccii e e et e 67
Shared Pin Configuration i e e e e 69
Connectionsfor EDT Pins(Internal Flowonly). 72
Internally Driven EDT PINSo e 73
Structure of the Bypass Chains.t 75
Decompressor and Compactor CONNECLIONS.o v it e e 75

Design Rule Checks. 76

Creationof EDT LOQICFIlES. o e e e e 78

TheEDT LOogiCFIlES. . ..o e e e e e e 79

Inserting EDT Logic During Synthesis. e 91
Synthesis Script that Inserts/SynthesizesEDT LogiC.o oo v 92
Creation of a Reduced Netlist for Synthesis. i 98

Chapter 5
Synthesizingthe EDT LOgIC. oot it e e 101

The EDT Logic Synthesis SCript.ot e e e e 102

Synthesisand External EDT LOQICt e e 102

Synthesisand Internal EDT LOQIC.o i it et e 104

SDCTiming File Generation. e 104
EDT Logic/CoreInterface Timing Files. et 105
Scan Chainand ATPG Timing Files e 109

Chapter 6
Generating/Verifying Test Patterns e 111

Preparation for Test Pattern Generationttt 111
Updating Scan Pinsfor Test Pattern Generation, 114

Verification of the EDT LOQIC.ot e e et 117
Design RulesChecking (DRC).o oot e 117
EDT Logicand Chain TeStingov it e 117
Reducing Serial EDT Chain Test SimulationRuntime 121

Generating Test Palterns 121
Compression Optimizationttt e 124
Savingof the Patterns. 124

Post-Processing of EDT Patterns.t e e et e 125

Simulation of the Generated Test Patterns. e 126

Chapter 7
Modular Compressed ATPG o 129

Understanding Modular Compressed ATPG.ot 132

Development of aBlock-Level Compression Strategy oo i i i 133
Balancing Scan ChainsBetweenBlocks i i 134
Sharing Input Scan Channelson Identical EDT Blocks. 134
Channel Sharing for Non-ldentical EDT Blocks 136
Generating Modular EDT Logic for aFully Integrated Design. 143
Estimating Test Coverage/Pattern Count for EDT Blocks. 144

Connecting EDT Signals From Corestothe TopLevel 144
Creating aTop-level Test ProcedureFile. i 145

4 Tessent TestKompress User’'s Manual, v2014.2

June 2014

Table of Contents

Creatingthe Top-level Netlist. e 152
Legacy ATPG FlOWo e e e 157
Generation of Top-level TestPatterns i e 157
Chapter 8

SpECial TOPICS . . vttt 163
LOW-PoWer Test. . ..o 163
Low-Power Shift. 164
Setting Up Low-Power TeSto 168
Low PinCount Test Controller e 171
LPCT Controller DECISION Treeottt et e e e e 172
LiMItatioNS . ..ot 180
LPCT Controller TYPES. . oottt e e e 181
LPCT Configuration Examples.o e 192
Compression BypasSLOgICo ot 208
Structure of the BypasSLOgIC. oot 209
Generating EDT Logic When Bypass Logic is Defined inthe Netlist. 210
Dual Bypass Configurations.o ittt et e 211
Generation of Identical EDT and Bypass Test Patterns.. 212
Use of Bypass Patternsin Uncompressed ATPG.ot 214
Bypass Pattern Flow Example 214
Creating Bypass Test Patternsin Uncompressed ATPG, 216
Uncompressed ATPG (External Flow) and Boundary Scan 218
FLOW OVEIVIBW . . o e e e e e e 218
Boundary Scan CoexistingWithEDT LOQICot 218
Driving Compressed ATPG withthe TAPController 222
Use of Pipeline Stagesinthe Compactor. e 223
Use of Pipeline Stages Between Pads and Channel Inputsor Outputs 223
Channel Output Pipeliningt e e e e e 224
Channel Input Pipelining e 224
Clocking of Channel Input PipelineStages 224
Clocking of Channel Output PipelineStages. 225
Ensuring Input Channel Pipelines Hold Their Value During Capture. 226
DRC for Channel Input Pipelining e 226
DRC for Channel Output Pipelining. e 227
Input/Output Pipeline Examples. e 227
Change Edge Behavior inBypassandEDTModes ..., 228
Understanding Lockup Cells. o e 229
Lockup Cell INSertiono 229

Lockup Cell Analysis For Bypass Lockup Cells Not Included as Part of the EDT Chains 230
Lockup Cell Analysis For Bypass Lockup Cells Included as Part of the EDT Chains ... 237

L ockups Between Channel Outputs and Output PipelineStages. 246
Performance Evaluation. 247
Establishment of aPointof Reference i 248
Performance Measurementttt e 249
Performance Improvement 250
Understanding Compactor OptioNSo vttt 252
Understanding Scan Chain Masking inthe Compactor. 255
Tessent TestKompress User’'s Manual, v2014.2 5

June 2014

Table of Contents

Fault AlIasing.o 258
ReOrdering Patternsot 259
Handling of Last Patterns.t et et 260
Chapter 9
Integrating Compression at theRTL Stage.o ... 261
Aboutthe RTL StageFlow 261
Skeleton Design Input and Interface Files. i 263
Skeleton Design Input File. 264
Skeleton Design Interface File 267
Creating EDT Logicfor aSkeleton Design.ot e 267
Longest Scan Chain RangeEstimate e, 268
Integrating the EDT LogicintotheDesign. i, 269
Skeleton Flow Example.o 270
INPUL File. . 270
Appendix A
GattiNg HEID .o 277
DOCUMENTALION.ottt e e e e e e 277
Mentor GraphiCs SUPPOIT.ot e e e 278
Appendix B
EDT LogiC SPeCifiCations.ottt e e 279
Appendix C
Troubleshootingo 291
Debugging Simulation MisSmatChes. 291
ReSOIVING DRC ISSUES oot e e 293
K19 through K22 DRC ViIOlationS.ot e 293
Debugging Best PractiCeS.ot 294
MISCEIIANEOUS o 314
I ndex

Third-Party Information

End-User License Agreement

6 Tessent TestKompress User’'s Manual, v2014.2
June 2014

List of Figures

Figure1-1. EDT asSeenfromtheTester 14
Figure 1-2. Tester ConnectedtoaDesignWithEDT. oo i.., 15
Figure 1-3. EDT logic Located Outside the Core (External Flow) 17
Figure 1-4. EDT logic Located Within the Core (Internal Flow) 18
Figure 2-1. Top-Down Design Flow - External. 28
Figure 2-2. Top-Down Design Flow - Internal 29
Figure 2-3. Compressed Pattern External Flow. i i, 34
Figure 2-4. Compressed Pattern Internal Flow i 36
Figure 3-1. Scan Chain Insertion and SynthesisProcedure. 37
Figure4-1. EDT LogiC Creation PrOCESS.o ittt 47
Figure 4-2. Default EDT Logic Pin Configuration with Two Channels. 66
Figure 4-3. Example of aBasic EDT Pin Configuration (Internal EDT Logic) 67
Figure 4-4. Example with Pin Sharing Shown in Table 4-1(External EDT Logic). 72
Figure 4-5. Internally Driven edt_update Control Pin. 74
Figure 4-6. Contents of the Top-Level Wrapper 80
Figure 4-7. Contents Of the EDT LOQIC. oo oot e 81
Figure 4-8. Design Netlist with Internal ConnectionNodes. 99
Figure 5-1. Contents of Boundary Scan Top-Level Wrapper 103
Figure 6-1. Test Pattern Generation and Verification Procedure 111
Figure 6-2. Sample EDT Test Procedure Waveforms. 112
Figure 6-3. Example Decoder Circuitry for Six Scan Chainsand One Channdl. 118
Figure 6-4. Circuitry in the Pattern Generation Phase.o ... 123
Figure 7-1. Modular Designwith Five EDT blocks 132
Figure 7-2. Non-Separated Control Datalnput Channels. 137
Figure 7-3. Separated Control Datalnput Channels 137
Figure 7-4. Channel Sharing Example. e 138
Figure 7-5. Non-Channel Sharing e 140
Figure 7-6. Channel Sharing Scenariol e 140
Figure 7-7. Channel Sharing Scenario 2 e 141
Figure 7-8. Creating the Top-level Test ProcedureFile 145
Figure 7-9. Creating aTop-level Timeplate 146
Figure 7-10. Creating a Top-level Load unload Procedure 147
Figure 7-11. Creating a Top-level Shift Procedure it 148
Figure 7-12. Before Top-level ConnectionsareCreated., 154
Figure 7-13. After Top-level ConnectionsareCreated, 156
Figure 7-14. Netlist with Two Cores Sharing EDT Control Signals. 158
Figure 8-1. Low Power Controller LogiC 167
Figure8-2. LPCT DeSIgN PrOCESSo oottt et e 171
Figure 8-3. LPCT Controller DeciSIoN Treet e e 172
Figure 8-4. Clock Gater for Sharing LPCT Clock with Top-Level ScanClock 173
Tessent TestKompress User’'s Manual, v2014.2 7

June 2014

List of Figures

Figure 8-5. Type 1 LPCT Controller Configurationc.iiiiina... 175
Figure 8-6. Type 2 LPCT Controller Configuration 177
Figure 8-7. Type 3 LPCT Controller Configuration oo .. 179
Figure 8-8. Type 1 LPCT Controller Operation, 182
Figure 8-9. Signal Waveformsfor Type 1L LPCT Controller. 183
Figure 8-10. LPCT Controller with TAP. e 184
Figure 8-11. Signal Waveformsfor TAP-based LPCT Controller 185
Figure 8-12. After EDT and LPCT Controller Logic, 186
Figure8-13. Scan Test Pattern Timingot e 189
Figure8-14. Chain Test Pattern TIMINGo oot e e n 189
Figure8-15. Type 2 LPCT DesignExample. 208
Figure 8-16. BypassMode CirCUItrYottt 209
Figure 8-17. Scan Chain and Bypass Lockup CellsNot inthe EDT Scan Chain. 240
Figure 8-18. Scan Chain and Bypass Lockup Cellsinthe EDT ScanChain. 241
Figure8-19. TECLK tO TE CLK ... oo e e 244
Figure8-20. LECIKtO TECIK o e 244
Figure8-21. LECIKLtoLE CIK2 Overlappingo oo e 245
Figure8-22. LECIKSTOTECIKD oo e 245
Figure 8-23. CIkSto CIkD, Both Clocks Later ThanEDT Clock. 246
Figure8-24. Evaluation FIOW 248
Figure 8-25. BasiC COMPACIOrottt e e e 253
Figure 8-26. Xpress COMPAaCIOr.o vttt e e e et et e et 254
Figure 8-27. X-Blockinginthe Compactor 255
Figure 8-28. X Substitution for UnmeasurableValues. 256
Figure 8-29. Exampleof ScanChainMasking oo, 257
Figure 8-30. Handling of ScanChainMasking. 257
Figure 8-31. Exampleof Fault Aliasingt 259
Figure 8-32. Using Masked Patternsto Detect Aliased Faults 259
Figure 8-33. Handling Scan Chains of Different Length. 260
Figure 9-1. EDT IP Creation RTL StageFlow ot 262
Figure 9-2. Create_skeleton_design Inputsand OUtpuUtS. oo, 264
Figure C-1. Flow for Debugging Simulation Mismatches. 292
Figure C-2. Order of Diagnostic Checksby the KIODRC.............. 295
Figure C-3. Order of Diagnostic Checksby the K22DRC........... 306

Tessent TestKompress User’'s Manual, v2014.2
June 2014

List of Tables

Table1-1
Table4-1
Table 4-2

Table 5-1.
Table 7-1.
Table 7-2.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.

. Supported Scan Architecture Combinations 12
Example PinSharing . ..o 69
.Default EDT PINNaMESo e 70
Timing FileVariables 105
Modular Flow Stage DesCriptionst 131
Modular Compressed ATPG Command Summary 160
LPCT Controller Type 1 Commandsand Switches 176
LPCT Controller Type 2 Commandsand Switches 178
LPCT Controller Type 3 Commandsand Switches 179
Lockup Cells Between Decompressor and Scan Chainlnputs 231
Lockup Cells Between Scan Chain Outputs and Compactor 232
BypassLockup Cellso 234
EDT Lockup and Scan Chain Boundary LockupCells 238
Lockup Insertion Between Channel Outputs and Output Pipeline 247
Summary of Performancelssues 250

Tessent TestKompress User’'s Manual, v2014.2
June 2014

List of Tables

10

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Chapter 1
Getting Started

This manual describes how to integrate Tessent® TestK ompress® into your design process.
More information can be found in the following manuals:

® Tessent Shell Reference Manual — Contains information on Tessent TestK ompress
commands and information for all DRCs including the Tessent TestK ompress-specific
EDT Rules.

®* Tessent Shell User’s Manual— Contains information about the Tessent Shell
environment in which you use Tessent TestKompress.

For acomplete list of Mentor Graphics Tessent-specific terms, including Tessent
TestKompress-specific terms, refer to the Tessent Glossary.

Tessent TestKompress

Tessent TestKompressisaDesign-for-Test (DFT) product that creates test patterns and
implements compression for the testing of manufactured | Cs. Advanced compression reduces
ATE memory and channel requirements and reduced data volume results in shorter test
application times and higher tester throughput than with traditional ATPG. TestKompress also
supportstraditional ATPG.

Tessent TestkK ompress creates and embeds compression logic (EDT logic) and generates
compressed test patterns as follows:

® Test patterns— Compressed test patterns are generated and |oaded onto the Automatic
Test Equipment (ATE).

®* Embedded logic— EDT logic is generated and embedded in the IC to:
a. Receive the compressed test patterns from the ATE and decompress them.
b. Deliver the uncompressed test patterns to the core design for testing.
c. Receive and compress the test results and return them to the ATE.

Tessent TestKompress is command-line driven from Tessent Shell:

® ThelP Creation phase of Tessent TestKompressis executed in the Tessent Shell
“dft -edt” context.

® The Pattern Generation phase of Tessent TestKompress is executed in the Tessent Shell
“patterns -scan” context.

Tessent TestKompress User's Manual, v2014.2 11
June 2014

Getting Started
Tessent TestKompress

Supported Test Patterns
Tessent TestKompress supports all types of test patterns except:

® Random pattern generation.
* Tessent FastScan™ MacroTest. Y ou can only apply MacroTest patternsto a design with
Tessent TestkKompress by accessing the scan chains directly, bypassing the EDT logic.
Supported Scan Architectures

Tessent TestKompress logic supports mux-DFF and LSSD or a mixture of the scan
architectures aslisted in Table 1-1.

Table 1-1. Supported Scan Architecture Combinations

EDT Logic Supported Scan Architectures
DFF-based LSSD, Mux-DFF, and mixed
L atch-based LSSD

Tessent TestKompress Inputs

Y ou need the following components to use Tessent TestkK ompress:

® Scan-inserted gate-level Verilog netlist.
® Synthesistool.

® Compatible Tessent cell library of the models used for your design scan circuitry. If
necessary, you can convert Verilog libraries to acompatible Tessent cell library format
with the LibComp utility. For more information, see“Using LibComp to Create Tessent
ATPG Models’ in the Tessent Cell Library Manual.

® Timing ssimulator such as ModelSim.

Potential Affects of Tessent TestKompress on the Design

Depending on the configuration and placement of the EDT logic, your design may be affected
asfollows:

® Extralevel of hierarchy — If you place the EDT logic outside the core design, you
must add a boundary scan wrapper which adds a level of hierarchy.

®* Minimal physical space — The size of the EDT logic is roughly about 25 gates per
internal scan chain. The following examples can be used as guidelines to roughly
estimate the size of the EDT logic for adesign:

12 Tessent TestKompress User's Manual, v2014.2
June 2014

Getting Started
EDT Technology

o For aonemillion gate design with 200 scan chains, the logic BIST controller
including PRPG, MISR and the BIST contraller, is 1.25 times the size of the EDT
logic for 16 channels.

o For aonemillion gate design configured into 200 internal scan chains, the EDT
logic including decompressor, compactor, and bypass circuitry with lockup cells
requires less than 20 gates per chain. The logic occupies an estimated 0.35% of the
area. The size of the EDT logic does not vary significantly based on the size of the
design.

o For 8 scan channels and 100 internal scan chains, the EDT logic was found to be
twice aslarge asa TAP controller, and 19% larger than the MBIST™ controller for a
1k x 8-bit memory.

EDT Technology

Embedded Deterministic Testing (EDT) is the technology used by Tessent TestKompress. EDT
technology isbased on traditional, deterministic ATPG and uses the same fault modelsto obtain
similar test coverage using afamiliar flow. EDT extends ATPG with improved compression of
scan test data.and a reduction in test time.

Tessent TestkKompress achieves compression of scan test data by controlling a large number of
internal scan chains using asmall number of scan channels. Scan channels can be thought of as
virtual scan chains because, from the point of view of the tester, they operate exactly the same

astraditional scan chains. Therefore, any tester that can apply traditional scan patterns can apply
compressed patterns as described in the following topics:

® Scan Channels
® Structure and Function

®* Test Patterns

Scan Channels

With Tessent TestKompress, the number of internal scan chainsis significantly larger than the
number of external virtual scan chainsthe EDT logic presentsto thetester. Figure 1-1 illustrates
conceptually how a design tested with EDT technology is seen from the tester compared to the
same design tested using conventional scan and ATPG.

Tessent TestKompress User's Manual, v2014.2 13
June 2014

Getting Started
EDT Technology

Figure 1-1. EDT as Seen from the Tester
Conventional ATPG

EDT
S h 1 | E—
can chains S >nternal Scan chains
d
Scan channels _[——1_

(virtual scan chains)—f=——1—

Under EDT methodology, the virtual scan chains are called scan channels to distinguish them
from the scan chains inside the core. Their number is significantly less than the number of
internal scan chains. The amount of compression is determined by two parameters:

® number of scan chainsin the design core
® number of scan channels presented to the tester
For more information on establishing a compression target for your application, see “Effective
Compression” on page 21 and “Compression Analysis’ on page 48.
Structure and Function

EDT technology consists of |ogic embedded on-chip, new EDT-specific DRCs, and a
deterministic pattern generation technique.

The embedded logic includes a decompressor |ocated between the external scan channel inputs
and the internal scan chain inputs and a compactor located between the internal scan chain
outputs and the external scan channel outputs. See Figure 1-2.

14 Tessent TestKompress User's Manual, v2014.2
June 2014

Getting Started
EDT Technology

Figure 1-2. Tester Connected to a Design with EDT

IC
el :C
C | —
ATE Scan | o1 19| | scan
Channel L —HM | Channel
Inputs — e cmEiiiars —P| | Outputs
p = ~ L | a
Compressed e A-Stan-CRaiRS 1
Patterns < — t
S] Tt
S e I——O
| — r
0 —{ |
T 1
Compressed = — =
Expected Response

Y ou have the option of including bypass circuitry for which athird block (not shown) is added.
No additional logic (test points or X-bounding logic) isinserted into the core of the design.
Therefore, EDT logic affects only scan channel inputs and outputs, and thus has no effect on
functional paths.

Figure 1-2 shows an example design with two scan channels and 20 short internal scan chains.
From the point of view of the ATE, the design appears to have two scan chains, each aslong as
the internal scan chains. Each compressed test pattern has a small number of additional shift
cycles, so the total number of shifts per pattern would be slightly more than the number of scan
cellsin each chain.

Note
The term additional shift cyclesrefersto the sum of the initialization cycles, masking bits
(when using Xpress), low-power bits (when using alow-power decompressor), and user-
defined pipeline bits.

Y ou can use the following equation to predict the number of initialization cyclesthe tool addsto
each pattern load. (In this equation, cell indicates the ceiling function that rounds a fraction to
the next highest integer.) This equation applies except when you have very few channelsin
which case there are four extra cycles per scan load. (Note, this equation does not factor in
additional shift cycles added to support masking and low-power.)

Number of initialization cycles = cei |(decompressor S'ZG)

number of channels

Tessent TestKompress User's Manual, v2014.2 15
June 2014

Getting Started
TestKompress Compression Logic

For example, if adesign has 16 scan channels, 1250 scan cells per chain, and a 50-bit
decompressor, we can cal culate the number of initialization cycles as 4 by using the above
formula. Since each chain has 1,250 scan cells and each compressed pattern requires four
initialization cycles, the tester sees adesign with 16 chains requiring 1,254 shifts per pattern.

Note
D The EDT IP creation phase and ATPG generation phase may report a different number of

initialization cycles depending on whether low power is enabled. Enabling low power
increases the number of initialization cyclesin the EDT IP creation phase.

Test Patterns

Tessent Shell generates compressed test patterns specifically for on-chip processing by the EDT
logic. For agiven testable fault, a compressed test pattern satisfies ATPG constraints and avoids
bus contention, similar to conventional ATPG.

A set of compressed test patternsis stored on the ATE and each test pattern applies data to the
inputs of the decompressor and holds the responses observed on the outputs of the compactor.
The ATE applies the compressed test patterns to the circuit through the decompressor, which
lies between the scan channel pins and the internal scan chains. From the perspective of the
tester, there are relatively few scan chains present in the design.

The compressed test patterns, after passing through the decompressor, create the necessary
values in the scan chains to guarantee fault detection. The functional input and output pins are
directly controlled (forced) and observed (measured) by the tester, same asin conventional test.
On the output side of the internal scan chains, hardware compactors reduce the number of
internal scan chains to feed the smaller number of external channels. The response captured in
the scan cellsis compressed by the compactor and the compressed response is compared on the
tester. The compactor ensures faults are not masked and X -states do not corrupt the response.

Y ou define parameters, such as the number of scan channels and the insertion of lockup cells,
which are also part of the RTL code. The tool automatically determines the internal structure of
the EDT hardware based on the parameters you specify, the number of internal scan chains, the
length of the longest scan chain, and the clocking of the first and last scan cell in each chain.
Test patterns include parallel and serial test benches for Verilog as well as parallel and serial
WGL, and most other formats supported formats.

TestKompress Compression Logic

Tessent TestkKompress generates hardware in blocksin VHDL or Verilog RTL. You integrate
the compression logic (EDT logic) into your design by using Tessent Shell with the core level of
the design. Thetool then generates the following three components:

® Decompressor — Feeds alarge number of scan chainsin your core design from a small
number of scan channels, and decompresses EDT scan patterns as they are shifted in.

16 Tessent TestKompress User's Manual, v2014.2
June 2014

Getting Started
TestKompress Compression Logic

The decompressor resides between the channel inputs (connected to the tester) and the
scan chain inputs of the core. Its main parts are an LFSM and a phase shifter.

® Compactor — Compacts the test responses from the scan chainsin your core design into
asmall number of scan output channels as they are shifted out.

The compactor resides between the core scan chain outputs and the channel outputs
connected to the tester. It primarily consists of spatial compactor(s) and gating logic.

® Bypass Module (Optional) — Bypassesthe EDT logic by using multiplexers (and
lockup cellsif necessary) to concatenate the internal scan chainsinto fewer, longer
chains. Enables you to access the internal scan chains directly through the channel pins.
Generated by default.

If you choose to implement bypass circuitry, the tool includes bypass multiplexersin the
EDT logic. Chapter 7, “Compression Bypass Logic,” discusses bypass mode. Y ou can
also insert the bypass logic in the netlist at scan insertion time to facilitate design
routing. For more information, see “Insertion of Bypass Chainsin the Netlist” on

page 40.

These three components are all contained within the EDT logic block that, by default, is
instantiated in atop-level “wrapper” module. The design coreis aso instantiated in the top-
level wrapper. Thisisillustrated conceptualy in Figure 1-3.

Y ou insert pads and /O cells on this new top level. Because the EDT logic is outside the core
design (that is, outside the netlist used in Tessent Shell), the tool flow you use to implement this
configuration is referred to as the external EDT logic location flow, or simply the “external
flow.”

Figure 1-3. EDT logic Located Outside the Core (External Flow)

edt_channels_in edt _channels_out Pls POs

|4 | A

' I edt_top * I
edt_clock—p» EDT Logic
edt_scan_in

edt_update —p» edt_ edt_

decompressor compactor

core
-— - = = — -

edt_bypass- — = | " 4 edt_scan_out

| bypass (opt.) |

L _ _1

Tessent TestKompress User's Manual, v2014.2 17

June 2014

Getting Started
TestKompress Compression Logic

Alternatively, you can invoke Tessent Shell and use adesign that already contains 1/0O pads. For
these designs, the tool enables you to insert the EDT logic block in the existing top level within
the original design. Thisis shown conceptually in Figure 1-4. Because the EDT logicis
instantiated within the netlist used in Tessent Shell, this configuration is referred to as the
internal EDT logic location flow or ssmply the “internal flow.”

Figure 1-4. EDT logic Located Within the Core (Internal Flow)
edt_channels_in edt _channels_out Pls POs

1 1 []}

core with 1/0O Pads

EDT Logic
edt_clock [

y

edt_scan_in
edt edt P> Module A

— — -
edt_update |:|_> decompressor| |compactor| | edt_scan_out

T edt edt_scan_in
edt_bypass[|- = | bypass (opt.) | -
L _ edt_scan_out Module B

By default, the tool automatically inserts lockup cells as needed in the EDT logic. They are
placed within the EDT logic, between the EDT logic and the design core, and in the bypass
circuitry that concatenates the scan chains. The section, “Understanding L ockup Cells,”
describes in detail how the tool determines where to insert lockup cells.

DRC Rules

Tessent TestkK ompress performs the same ATPG design rules checking (DRC) after design
flattening that Tessent FastScan performs. A detailed discussion of DRC isincluded in “ATPG
Design Rules Checking” in the Tessent Scan and ATPG User’s Manual.

In addition, Tessent TestKompress also runs a set of DRCs specifically for EDT. For more
information, see “Design Rule Checks’ on page 76.”

Internal Control

In many cases, it is preferable to use internal controllers (JTAG or test registers) to control EDT
signals, such as edt_bypass, edt_update, scan_en, and to disable the edt_clock in functional

18 Tessent TestKompress User's Manual, v2014.2
June 2014

Getting Started
TestKompress Compression Logic

mode. For detailed information about how to do this with boundary scan, refer to
“Uncompressed ATPG (External Flow) and Boundary Scan” on page 218.

Logic Clocking

The default EDT logic contains combinational logic and flip-flops. All the flip-flops, except
lockup cells, are positive edge-triggered and clocked by a dedicated clock signal that is different
from the scan clock. Thereis no clock gating within the EDT logic, so it does not interfere with
the system clock(s) in any way.

Y ou can set up the clock to be adedicated pin (named edt_clock by default) or you can share the
clock with afunctional non-clock pin. Such sharing may cause a decrease in test coverage
because the tool constrains the clock pin during test pattern generation. Y ou must not share the
edt_clock with another clock or RAM control pin for several reasons:

® |f shared with a scan clock, the scan cells may be disturbed when the edt_clk ispulsedin
the load_unload procedure during pattern generation.

® |f shared with RAM control signals, RAM sequentia patterns and multiple load patterns
may not be applicable.

® |f shared with anon-scan clock, test coverage may decline because the edt_clk is
constrained to its off-state during the capture cycle.

Because the clock used in the EDT logic is different than the scan clock, lockup cells can be
inserted automatically between the EDT logic and the scan chains as needed. The tool inserts
lockup cells as part of the EDT logic and never modifies the design core.

Note
D You can set the EDT clock to pulse before the scan chain shift clocks and avoid having

lockup cellsinserted. For more information, see “Pulse EDT Clock Before Scan Shift
Clocks’ on page 64.

Latch-based EDT logic uses two clocks (a master and a slave clock) to drive the logic. For
reasons similar to those listed above for DFF-based logic, you must not share the master EDT
clock with the system master clock. Y ou can, however, share the slave EDT clock with the
system slave clock.

Tessent TestKompress User's Manual, v2014.2 19
June 2014

Getting Started
TestKompress Compression Logic

Note

O

During the capture cycle, the system slave clock, which is shared with the Slave EDT
clock, is pulsed. This does not affect the EDT logic because the values in the master
latches do not change. Similarly, in the load _unload cycle, although the Slave EDT clock
is pulsed, the value at the outputs of the system slave latches is unchanged because the
slave latches capture old values.

In askew load procedure, when amaster clock is only pulsed at the end of the shift cycle
(so different values can be loaded in the master and slave latches), the EDT logicis
unaffected because the master EDT clock is not shared.

ASCIl and Binary Patterns

Compressed ATPG test patterns can be written out in ASCII and binary formats, and can also be
read back into the tool. As with uncompressed patterns, you use these formats primarily for
debugging simulation mismatches and archiving. However, there are some differences with
compressed and uncompressed patterns as follows:

Compressed and uncompressed ASCI| patterns are different in several ways. When you
create patterns with compression, the captured data is stored with respect to the internal
scan chains and the load data is stored with respect to the external scan channels. The
load data in the pattern fileis in compressed format—the same form it is fed to the
decompressor.

With the simulation of compressed patterns, Xs may not be due to capture; they may
result from the emulation of the compactor. For a detailed discussion of this effect and
how masking is done with compressed patterns, refer to “ Understanding Scan Chain
Masking in the Compactor” on page 255.

Fault Models and Test Patterns

For compression, the tool uses fault-model independent and pattern-type independent
compression algorithms. The compression technology supports all fault models (stuck-at,
transition, 1ddqg, and path delay) and deterministic pattern types (combinational, RAM
sequential, clock-sequential, and multiple loads) supported and/or generated by uncompressed
ATPG.

To summarize, the compression technology:

Accepts the same fault models as uncompressed ATPG.

Accepts the same deterministic pattern types as uncompressed ATPG with the exception
of MacroTest which is not supported.

Produces the same test coverage as uncompressed ATPG.

20

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Getting Started
TestKompress Compression Logic

Effective Compression

Effective compression is the actual compression achieved for a specific test application. The
effective compression is determined by balancing the EDT compression characteristics with the
test environment/design needs.

The effective compression is limited by many parameters, including the following:
® number of scan chainsin your design core
® number of scan channels presented to the tester

Use the following ratio to determine the chain to channel ratio for an application:

Chaintochannelratio = # of Scan Chains
~ # of Scan Channels

The effective compression achieved for adesign is always less than the chain to channel ratio
because the EDT technology generates more test patterns than traditional ATPG. With EDT
technology, compression is achieved by reducing the amount of data per test pattern and not by
reducing the number of test patterns generated. Consequently, additional test patterns require
additional shift cycles that reduce the overall compression.

Note
The term additional shift cyclesrefersto the sum of theinitialization cycles, masking bits

(when using Xpress), and low-power bits (when using alow-power decompressor).

It is also important to balance the compression target with the testing resources and design
needs. Using an unnecessarily large compression target may have an adverse affect on
compression, testing quality, and design layout as follows:

® Lower test coverage — Higher compression ratios increase the compression per test
pattern but also increase the possibility of generating test patterns that cannot be
compressed and can lead to lower test coverage.

® Decreasein overall compression — Higher compression ratios also decrease the
number of faults that dynamic compaction can fit into atest pattern. This can increase
the total number of test patterns and, therefore, decrease overall compression.

® Routing congestion — Thereisno limit to the number of internal scan chains, however,
routing constraints may limit the compression ratio. Most practical configurations will
not exceed the compression capacity.

For more information on determining the right compression for your design, see “Compression
Analysis’ on page 48.

Tessent TestKompress User's Manual, v2014.2 21
June 2014

Getting Started
TestKompress Flow Overview

TestKompress Flow Overview

This section describes the default Tessent TestKompress flow by briefly introducing the steps
required to incorporate EDT into a gate-level Verilog netlist. This summary isintended to
provide an overview of the three main phasesin the flow:

® Creatingthe EDT Logic
® Synthesizing the EDT Logic
® Generating Test Patterns

Creating the EDT Logic

1. Invoke Tessent Shell.

<Tessent_Tree_Path>/bin/tessent -shell -dofile edt_ip_creation.do \
-logfile ../transcripts/edt_ip_creation.log -replace

2. Provide Tessent Shell commands. For example:

0 Tip: The following commands can be located in the dofile used for invocation in step 1.

// Set context, read library, read and set current design
set_context dft -edt

read_verilog gatelevel_netlist.v

read_cell_library atpg.lib

set_current_design top

// Setup Scan Chains and Clocks

add_scan_groups grpl ../generated/atpg.testproc
add_scan_chains chainl grpl edt_sil edt_sol
add_scan_chains chain2 grpl edt_si2 edt_so2

add_scan_chains chainb5 grpl edt_si5 edt_sob5
analyze_control_signals -auto_fix

// Specify the number of scan channels.
set_edt_options -channels 1

// Flatten the design, run DRCs.
set_system_mode analysis

// Verify the EDT configuration is as expected.
report_edt_configurations -verbose

// Generate the RTL EDT logic and save it.
write_edt_files created -verilog -replace

// At this point, you can optionally create patterns (without saving them)
// to get an estimate of the potential test coverage.
create_patterns

22

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Getting Started
TestKompress Flow Overview

// Create reports
report_statistics
report_scan_volume

// Close the session and exit.
exit

Synthesizing the EDT Logic

1. Run Design Compiler.

Note
The Design Compiler synthesis script referenced in the following invocation lineis

output from “write_edt_files’ in preceding step 2.

dc_shell -f ../created_dc_script.scr |& tee ../transcripts/dc_edt.log

Generating Test Patterns
1. Invoke Tessent Shell.

Note
The netlist created edt_top gate.v referenced in the following invocation line is output

from Design Compiler (see the previous section, “ Synthesizing the EDT Logic”).

<Tessent_Tree_Path>/bin/tessent -shell -dofile edt_pattern_gen.do \
-logfile ../transcripts/edt_pattern_gen.log -replace

2. Provide Tessent Shell commands. For example:

// Set context, read library, read and set current design
set_context patterns -scan

read_verilog created_edt_top_gate.v

read_cell_library atpg.lib

set_current_design top

// Run the *_edt.dofile output from “write_edt_files” when creating
// the EDT logic.
dofile ../created_edt.dofile

// Flatten the design, run DRCs.
set_system _mode analysis

// Verify the EDT configuration.
report_edt_configurations

// Generate patterns.
Ccreate_patterns

// Create reports.
report_statistics
report_scan_volume

Tessent TestKompress User's Manual, v2014.2 23
June 2014

Getting Started
Tessent Shell User Interface

// Save the patterns in ASCII format.
write_patterns ../generated/patterns_edt.ascii -ascili -replace

// Save the patterns in parallel and serial Verilog format.

write_patterns ../generated/patterns_edt_p.v -verilog -replace -parallel
write_patterns ../generated/patterns_edt_s.v -verilog -replace -serial
-sample 2

// Save the patterns in tester format; WGL for example.
write_patterns ../generated/test_patterns.wgl -wgl -replace

// Close the session and exit.
exit

Tessent Shell User Interface

Tessent Shell isaUnix/Linux command line driven tool that provides access to Tessent
FastScan for uncompressed ATPG and to Tessent TestKompress for compressed ATPG.

Invocation

Y ou can invoke Tessent Shell from the command line as described in * TestK ompress Flow
Overview. To exit Tessent Shell and return to the operating system, type “exit” at the command
line:

prompt> exit

For more information on invoking Tessent Shell, see the tessent command in the Tessent Shell
Reference Manual.

Uncompressed and Compressed ATPG
For uncompressed ATPG, you use Tessent Shell in the “ patterns -scan” context.

For compressed ATPG, you use Tessent Shell in the “dft -edt” context to create the EDT logic,
and in the “ patterns -scan” context to generate compressed test patterns.

EDT must be on whenever you are creating test patterns or EDT logic. Y ou can use the
report_environment command to check the tool status. Y ou can use the set_edt_options
command to enable compression.

For more information about Tessent Shell and contexts, see “ Tessent Shell Introduction” in the
Tessent Shell User’s Manual.

Supported Design Format

For pattern generation, you can read in a scan-inserted gate-level Verilog netlist and a
compatible Tessent cell library of the models used for the scan circuitry.

24 Tessent TestKompress User's Manual, v2014.2
June 2014

Getting Started
Tessent Shell User Interface

For more information on the Tessent cell library, see “Creating ATPG Models’ in the Tessent
Cdl Library Manual.

Batch Mode

Y ou can run Tessent Shell in batch mode by using a dofile to pipe commands into the
application. Dofiles let you automatically control the operations of the tool. The dofileis atext
file you create that contains alist of application commands that you want to run, but without
entering them individually. If you have alarge number of commands, or acommon set of
commands you use frequently, you can save time by placing these commands in adofile.

If you place all commands, including the exit command, in adofile, you can run the entire
session as a batch process from the command line. Once you generate a dofile, you can run it at
invocation.

For example, to run a dofile as a batch process using the commands contained in the dofile
my_dofile.do, enter:

<Tessent_Tree_ Path>/bin/tessent -shell -dofile my dofile.do

The following shows an example Tessent Shell dofile:

// my_dofile.do
//
// Dofile for EDT logic Creation Phase.

// Execute setup script from Tessent Scan.
dofile edt_ip_creation.do

// Set up EDT.
set_edt_options -channels 2

// Run DRC.
set_system _mode analysis

// Report and write EDT logic.
report_edt_configurations

report_edt_pins

write_edt_files created -verilog -replace

// Exit.
exit

By default, if the tool encounters an error when running one of the commands in the dofile, it
stops dofile execution. However, you can turn this setting off or specify to exit to the shell
prompt by using the set_dofile_abort command.

Log Files

Log files provide a useful way to examine the operation of the tool, especially when you run the
tool in batch mode using a dofile. If errors occur, you can examine the log file to see exactly

Tessent TestKompress User's Manual, v2014.2 25
June 2014

Getting Started
Tessent Shell User Interface

what happened. Thelog file containsall DFT application operations and any notes, warnings, or
error messages that occur during the session.

Y ou can generate log files by using the -Logfile switch when you invoke the tool. When setting
up alog file, you can instruct Tessent Shell to generate a new log file, replace an existing log
file, or append information to alog file that already exists.

Y ou can also use the set_logfile_handling command to generate alog file during atool session.

Note
D A log file created during atool session only contains notes, warnings, and error messages

that occur after you issue the set_logfile_handling command. Therefore, you should enter
it as one of the first commands in the session.

UNIX Commands

Y ou can run UNIX operating system commands within Tessent Shell by using the “ system”
command. For example, the following command executes the UNIX operating system
command date within a Tessent Shell session:

prompt> system date

26 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 2
The Compressed Pattern Flows

The flows shown in the following figures compare the basic steps and tools used for an
uncompressed ATPG top-down design flow with the steps and tool s used to incorporate
compressed patterns in both an external and an internal flow. These flows primarily show the
typical top-down design process flow using a structured compression strategy.

This manual discusses the steps shown in grey in Figures 2-1 and 2-2; it also mentions certain
aspects of other design steps, where applicable. For more information on the ATPG flow, see
the Tessent Scan and ATPG User’s Manual; that information is not repeated in this section.

Tessent TestKompress User's Manual, v2014.2 27
June 2014

The Compressed Pattern Flows

Figure 2-1. Top-Down Design Flow - External

Uncompressed ATPG Create Initial Design Colén?ressleglATPG
J & Verify Functionality —l(xternal Flow)

Insert/Verify Insert/Verify
BIST Circuitry BIST Circuitry
Insert/Verify Synthesize/Optimize
Boundary Scan Design &
Circuitry Verify Timing
Insert
Insert I/O Pads Internal Scan
Circuitry

Synthesize/Optimize Create & Insert EDT

the Design Logic
Insert/Verify
Verify Timing Boundary Scan
Circuitry
Insert
Internal Scan Insert 1/0 Pads

Circuitry

Re-verify Timing
(opt.)

Synthesize/Optimize
Design Incrementally

Generate/Verify
Test Patterns

Generate (Pattern
Generation Phase) &
Verify EDT Patterns

L Hand off J

to Vendor

28

Tessent TestKompress User’'s Manual, v2014.2

The Compressed Pattern Flows

Figure 2-2. Top-Down Design Flow - Internal

Uncompressed ATPG

J

Create Initial Design
& Verify Functionality

Compressed ATPG

1 (Internal Flow)

Insert/Verify
BIST Circuitry

Insert/Verify
BIST Circuitry

Insert/Verify Insert/Verify
Boundary Scan Boundary Scan
Circuitry Circuitry

Insert 1/O Pads

Insert 1/O Pads

Synthesize/Optimize

Synthesize/Optimize Design &
the Design Verify Timing
Insert
Verify Timing Internal Scan
Circuitry
Insert Create/Insert
Internal Scan EDT Logic
Circuitry
Re-verify Timing tshyeng]((:ssigﬁ
(optional) Incrementally
Generate/Verify Generate &

Test Patterns

Verify EDT Patterns

|

Hand off
to Vendor

)

Tessent TestKompress User’'s Manual, v2014.2

June 2014

29

The Compressed Pattern Flows
Top-Down Design Flows

Top-Down Design Flows

Thefirst task in any design flow isto create theinitial register transfer level (RTL) design, using
whatever means you choose. If your designisin Verilog format and contains memory models,
you can add built-in self-test (BIST) circuitry to your RTL design. Y ou then choose to use either
an uncompressed or a compressed pattern flow.

Uncompressed ATPG Flow

Commonly, in an ATPG flow that does not use compression, you would next insert and verify
I/O pads and boundary scan circuitry. Then, you would synthesize and optimize the design
using the Synopsys Design Compiler tool or another synthesistool, followed by atiming
verification with a static timing analyzer such as PrimeTime.

After synthesis, you are ready to insert internal scan circuitry into your design using Tessent
Scan. In the uncompressed ATPG flow, after you insert scan, you could optionally re-verify the
timing because you added scan circuitry. Once you were sure the design is functioning as
desired, you would generate test patterns using Tessent FastScan and generate a test pattern set
in the appropriate format.

Compressed Pattern Flows

By comparison, a compressed pattern flow can take one of two paths:

® External Flow (External Logic Location Flow) — Differsfrom the uncompressed ATPG
flow in that you do not insert 1/O pads and boundary scan until after you run Tessent
Shell with the scan-inserted core to insert the EDT logic. The EDT logic is located
external to the design netlist.

® Internal Flow (Internal Logic Location Flow) — Similar to an uncompressed ATPG
flow, you may insert and verify I/0O pads and boundary scan circuitry before you
synthesize and optimize the design. The EDT logic isinstantiated in the top level of the
design netlist, permitting the logic to be connected to internal nodes (I/0 pad cells or an
internal test controller block, for example) or to the top level of the design. Typically,
the EDT logic is connected to the internal nodes of the pad cells used for channel and
control signalsand you would run Tessent Shell with the scan-inserted core that includes
I/O pads and boundary scan.

Choosing a Compressed Pattern Flow

Y ou should choose between the external and internal flows based on whether the EDT logic
signals need to be connected to nodes internal to the design netlist read into the tool (internal
nodes of 1/0 pads, for example), or whether the EDT logic can be connected to the design using
awrapper.

In the externa flow, after you insert scan circuitry the next step isto insert the EDT logic.
Following that, you insert and verify boundary scan circuitry if needed. Only then do you add

30 Tessent TestKompress User's Manual, v2014.2
June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

I/O pads. Then, you incrementally synthesize and optimize the design using either Design
Compiler or another synthesistool.

In the internal flow, you can integrate 1/0 pads and boundary scan into the design before the
scan insertion step. Then, after you create and insert the EDT logic, use Design Compiler with
the script created by Tessent Shell to synthesize the EDT logic.

In either flow, once you are sure the design is functioning as desired, you generate compressed
test patterns. In this step, the tool performs extensive DRC that, among other things, verifiesthe
synthesized EDT logic.

Y ou should also verify that the design and patterns still function correctly with the proper
timing information applied. Y ou can use Model Sim or another simulator to achieve thisgoal.
Y ou may then have to perform afew additional steps required by your ASIC vendor before
handing off the design for manufacture and testing.

Note
D It isimportant to check with your vendor early in your design process for requirements

and restrictions that may affect your compression strategy. Specifically, you should
determine the limitations of the vendor's test equipment. To plan effectively for using
EDT, you must know the number of channels available on the tester and its memory
limits.

The Compressed Pattern Flows
This section presents the requirements for a compressed pattern flow and then provides an
overview of the steps you follow in each of the two compressed pattern flows.
® Design Requirements for a Compressed Pattern Flow

® Compressed Pattern External Flow
® Compressed Pattern Internal Flow
The chapters that follow describe each of the stepsin the flow in detail.

Note
D Tessent Shell supports mux-DFF and LSSD scan architectures, or a mixture of the two,

within the same design. The tool creates DFF-based EDT logic by default. However, you
can direct the tool to create latch-based IP for pure LSSD designs. Table 1-1 on page 12
summarizes the supported scan architecture combinations.

Tessent TestKompress User's Manual, v2014.2 31
June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

Design Requirements for a Compressed Pattern
Flow

Before you begin a compressed pattern flow, you must ensure that your design satisfies a set of
prerequisites.

The prerequisites are:

Format — Y our design input must be in gate-level Verilog. Thelogic created by Tessent
TestKompressisin Verilog or VHDL RTL.

Pin Access — The design needs to allow access to all clock pins through primary input
pins. Thereis no restriction on the number of clocks.

I/0O Pads— 1/0 pad requirements for the two flows are quite different as described here:

o External Flow — Thetool createsthe EDT logic as acollar around the circuit (see
Figure 1-3). Therefore, the core design ready for logic insertion must consist of only
the core without /O pads. In this flow, the tool cannot insert the logic between scan
chains and 1/0 pads already in the design.

Note

Add the I/O pads around the collar after it is created, but before logic synthesis. The same
applies to boundary scan cells: add them after the EDT logic isincluded in the design.

The design may or may not have 1/0 pads when you generate test patterns. To
determine the expected test coverage, you can perform atest pattern generation trial
run on the core when the EDT logic is created before inserting 1/0 pads.

Note

Y ou should not save the test patterns generated when the EDT logic is created; these
patterns do not account for how 1/0O pads are integrated into the final synthesized design.

When producing the final patterns for awhole chip, run Tessent Shell on the
synthesized design after inserting the I/O pads. For more information, refer to the
procedure for managing pre-existing 1/0 pads in section “Preparation For the
External Flow” on page 38.

o Internal Flow — The core design, ready for EDT logic insertion, may include 1/0
pad cellsfor al the I/Osyou inserted before or during initial synthesis. The 1/0O pads,
when included, can be present at any level of the design hierarchy and do not
necessarily have to be at the top level. If the netlist includes 1/0 pads, there should
also be some pad cells reserved for EDT control and channel pins that are not going
to be shared with functional pins. Refer to “Functiona/EDT Pin Sharing” in
Chapter 4 for more information about pin sharing.

32

Tessent TestKompress User’'s Manual, v2014.2
June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

Note

The design may have /O pads; it is hot arequirement. When EDT logic isinserted in the
netlist, you can connect it to any internal design nodes or top level of the design netlist.

Compressed Pattern External Flow

The compressed pattern external flow isfocused on EDT logic creation and EDT pattern
generation.

Figure 2-3 expands the steps shown in grey in Figure 2-1, and shows the files used in the tool’ s
external flow. The basic stepsin the flow are summarized in the following list.

1
2.

Prepare and synthesize the RTL design.

Insert an appropriately large number of scan chains using Tessent Scan or a third-party
tool. For information on how to do this using Tessent Scan, refer to “Inserting Internal
Scan and Test Circuitry,” in the Tessent Scan and ATPG User’s Manual.

Optionally, perform an ATPG run on the scan-inserted design without EDT. Usethisrun
to ensure there are no basi ¢ issues such as simulation mismatches caused by an incorrect
library. If you want, you can run Tessent Shell in “patterns -scan” context to perform
this step.

Optionally, simulate the patterns created in step 3.
EDT Logic Creation Phase: Invoke Tessent Shell with the scan-inserted gate-level

description of the core without 1/0O pads or boundary scan. Create the RTL description of
the EDT logic.

Insert I/O pads and boundary scan (optional).
Incrementally synthesize the 1/0 pads, boundary scan, and EDT logic.

EDT Pattern Generation Phase: After you insert 1/0 pads and boundary scan, and
synthesize all the added circuitry (including the EDT logic), invoke Tessent Shell with
the synthesized top-level Verilog netlist and generate the EDT test patterns. Y ou can
write test patterns in avariety of formats including Verilog and WGL.

Simulate the compressed test patterns that you created in the preceding step 8. Asfor
regular ATPG, the typical practiceisto simulate all parallel patterns and a sample of
serial patterns.

Tessent TestKompress User's Manual, v2014.2 33
June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

Figure 2-3. Compressed Pattern External Flow

From

Synthesized Synthesis
Netlist

(no scan)

Insert Scan

D > Al
~a s

Create EDT logic

/

Insert I/O Pads
& JTAG

Synthesize
EDT logic & JTAG

Layout
Synthesized
Netlist with
/ EDT logic
Generate

- EDT Patterns
/
Sa

Sign-off
Simulation

34 Tessent TestKompress User's Manual, v2014.2
June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

Compressed Pattern Internal Flow

The compressed pattern internal flow is also focused on EDT logic creation and EDT pattern
generation.

Figure 2-4 details the steps shown in grey in Figure 2-2, and shows the files used in the tool’ s
internal flow. The basic stepsin the flow are summarized in the following list.

1

Prepare and synthesize the RTL design, including boundary scan and 1/0 pads cells for
all 1/0s. Provide I/O pad cellsfor any EDT control and channel pins that will not be
shared with functional pins.

Note

In this step, you must know how many EDT control and channel pins are needed, so you
can provide the necessary 1/0 pads.

2.

Insert an appropriately large number of scan chains using Tessent Scan or a third-party
tool. Be sure to add new primary input and output pins for the scan chainsto the top
level of the design. These new pins are only temporary; the signals to which they
connect will become internal nodes and the pins removed when the EDT logic is
inserted into the design and connected to the scan chains. For information on how to
Insert scan chains using Tessent Scan, refer to “Inserting Internal Scan and Test
Circuitry,” in the Tessent Scan and ATPG User’s Manual.

Note

Asthe new scan |/Os at the top level are only temporary, take care not to insert pads on
them.

3. Perform an ATPG run on the scan-inserted design without EDT (optional). Use thisrun
to ensure there are no basic issues such as simulation mismatches caused by an incorrect
library.

4. Simulate the patterns created in step 3. (optional).

5. EDT logic Creation Phase: Invoke Tessent Shell with the scan-inserted
gate-level description of the core. Create the RTL description of the EDT logic. Thetool
createsthe EDT logic, insertsit into the design, and generates a Design Compiler script
to synthesizethe EDT logic inside the design.

6. Runthe Design Compiler script to incrementally synthesize the EDT logic.

7. EDT Pattern Generation Phase: After you insert the EDT logic, invoke Tessent Shell
with the synthesized top-level Verilog netlist and generate the EDT test patterns. Y ou
can write test patternsin avariety of formats including Verilog and WGL.

8. Simulate the compressed test patterns that you created in the preceding step. Asfor
regular ATPG, thetypical practiceisto simulate all parallel patterns and a sample of
serial patterns.

Tessent TestKompress User's Manual, v2014.2 35

June 2014

The Compressed Pattern Flows
The Compressed Pattern Flows

Figure 2-4. Compressed Pattern Internal Flow

Insert I/O Pads
& JTAG

Synthesized From
Netlist Synthesis
(no scan) *
Insert Scan

D ")
~a s

Create EDT logic

\ Insert &
Synthesize EDT logic

Layout
Synthesized
Netlist with
/ EDT logic
Generate

EDT Patterns
C_ g
Sa

Sign-off
Simulation

36 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 3
Scan Chain Synthesis

For ATEs with scan options, the number of channelsis usually fixed and the only variable
parameter is the number of scan chains. In some cases, the chip package rather than the tester
may limit the number of channels. Therefore, scan insertion and synthesis is an important part
of the compressed ATPG flow.

Y ou can use Tessent Scan or another scan insertion product to insert scan chain circuitry in your
design before generating EDT logic. Y ou can also generate the EDT logic before scan chain
insertion. For more information, see the “Integrating Compression at the RTL Stage” on

page 261 of this document.

Figure 3-1. Scan Chain Insertion and Synthesis Procedure

Y

Synthesize
the Design

/ 1. Design Preparation
Insert Internal _ _
Scan/Test Circuitry, 2. Scan Chain Insertion
\ 3. ATPG Baseline Generation

Create
EDT logic

Y

This chapter discusses the tasks related to performing scan insertion that are outlined in
Figure 3-1.

Tessent TestKompress User's Manual, v2014.2 37
June 2014

Scan Chain Synthesis
Design Preparation

Design Preparation

As aprerequisite to reading this section, you should understand the information in * Inserting
Internal Scan and Test Circuitry” in the Tessent Scan and ATPG User’s Manual. The following
sub-sections assume you are familiar with that information and only cover the EDT-specific
issues you need to be aware of before you insert test structuresinto your design.

Preparation For the External Flow

®* Managing Pre-existing 1/0 Pads

Because the synthesized hardware is added as a collar around the core design, the core
should not have 1/0 pads when you create the EDT logic. If the design has /O pads, you
need to extract the core or remove the |/O pads.

Note
If you must insert I/O pads prior to or during initial synthesis, consider using the internal

flow, which does not require you to perform the steps described in this section.

If the core and the |/O pads are in separate blocks, removing the 1/0 padsis simpleto do
as described here:

a. Invoke Tessent Shell and read in the design.

b. Set the current design to the core module using the set_current_design command.
c. Write out the core using the write_design command.

d. Insert scan into the core and synthesize the EDT logic around it.

e. Reinsert the EDT logic/core combination into the original circuit in place of the core
you extracted, such that it is connected to the 1/0O pads.

If your design flow dictates that the 1/0O pads be inserted prior to scan insertion, you can
create a blackbox as a place holder that corresponds to the EDT block. Y ou can then
stitch the 1/0 pads and, subsequently, the scan chainsto this block. Once the RTL model
of the block is created, you use the RTL model as the new architecture or definition of
the blackbox placeholder. The port names of the EDT block must match those of the
blackbox already in the design, so only the architectures need to be swapped.

®* Managing Pre-existing Boundary Scan

If your design requires boundary scan, you must add the boundary scan circuitry outside
the top-level wrapper created by Tessent Shell. The EDT logic istypically controlled by
primary input pins and not by the boundary scan circuitry. In test mode, the boundary
scan circuitry just needs to be reset.

38 Tessent TestKompress User's Manual, v2014.2
June 2014

Scan Chain Synthesis
Scan Chain Insertion

Note
D If you must insert boundary scan prior to or during initial synthesis, consider using the

internal flow, which isintended for pre-existing boundary scan or 1/0O pads.

If the design already includes boundary scan, you need to extract the core or remove the
boundary scan. Thisis the same requirement, described in the preceding section, that
appliesto pre-existing I/0 pads. Use the procedure for managing pre-existing 1/0 pads
in section “ Preparation For the External Flow” on page 38 to do this.

Note
D Boundary scan adds a level of hierarchy outside the EDT wrapper and requires you to

make certain modifications to the generated dofile and test procedurefile that you use for
the test pattern generation.

For more complete information about including boundary scan, refer to “Boundary Scan” on
page 103.

® Synthesizing a Gate-level Version of the Design — As a prerequisite to starting the
compressed ATPG flow, you need a synthesized gate-level netlist of the core design
without scan. As explained earlier, the design must not have boundary scan or /O pads.
Y ou can synthesize the netlist using any synthesis tool and any technology.

Preparation For the Internal Flow

The EDT logic is connected between the I/O pads and the core so the core should have I/0 pad
cellsin placefor all the design 1/0s. Y ou must also add I/O pads for any EDT control and
channel pinsthat you do not want to share with the design’ s functional pins.

There are three mandatory EDT control pins. edt_clock, edt_update, and edt_bypass unless you
disable bypass circuitry during setup. There are 2n channel 1/0s where n is the number of
external channelsfor the netlist. Refer to “EDT Control and Channel Pins’ in Chapter 4 for
detailed information about EDT control and channel pins.

Scan Chain Insertion

Y ou should insert an appropriately large number of scan chains. For testers with the scan option,
the number of channelsis usually fixed, and the variable is the number of chains.

Scan configuration isan important part of the compressed ATPG flow. Refer to the next section
“Determining How Many Scan Chainsto Use” for more information.

The scan chains can be connected to dedicated top-level scan pins. In designs that implement
hierarchical scan insertion, the scan chains can be defined at internal pins on the block
instances. In such a case, thereis no need to bring these block scan chainsto dedicated scan pins
at the top level. For more information, see “ Scan Chain Pins’ on page 42.

Tessent TestKompress User's Manual, v2014.2 39
June 2014

Scan Chain Synthesis
Scan Chain Insertion

The following limitations exist for the insertion of scan chains:

® Only scan using the mux-DFF or LSSD scan cell type (or a mixture of the two) is
supported. Thetool creates DFF-based EDT logic by default; however, you can direct it
to create latch-based logic for pure LSSD designs. Table 1-1 on page 12 summarizesthe
EDT logic/scan architecture combinations the tool supports. For information about
specific scan cell types, refer to “ Scan Architectures’ in the Tessent Scan and ATPG
User’s Manual.

® Both prefixed and bused scan input and output pins are allowed; however, the buses for
bused pins must be in either ascending or descending order (not in random order).

® Unlike uncompressed ATPG, "dummy" scan chains are not supported in compressed
ATPG. Thisisbecause EDT logic is dependent on the scan configuration, particularly
the number of scan chains. Uncompressed ATPG performance is independent of the
scan configuration and can assume that all scan cells are configured into a single scan
chain when dummy scan chains are used.

Insertion of Bypass Chains in the Netlist

Tessent Shell can generate EDT logic for netlists that contain two sets of pre-defined scan
chains. This enables you to insert both the bypass chains for bypass mode and the core scan
chains for compression mode into the netlist with a scan-insertion tool before the EDT logicis
generated.

Y ou can use any scan insertion tool, but you must adhere to the following rules when defining
the scan chains:

® Scan chains and bypass chains must use the same 1/0O pins.

® |f the control pin used to select bypass or compression mode is shared with the
edt_bypass pin, the bypass chains must be active when the edt_bypasspinisat 1, and the
scan chains must be active when the edt_bypass pinisat 0.

® Test procedurefilefor the EDT logic must set up the mux select, so the shortened
internal scan chains can be traced.

Inserting bypass chains with a scan insertion tool ensures that lockup cells and multiplexers
used for bypass mode operation are fully integrated into the design netlist to allow more
effective design routing.

For more information, see “Compression Bypass Logic” on page 208.

Inclusion of Uncompressed Scan Chains

Uncompressed scan chains (scan chains not driven by or observed through EDT logic) are
permitted in adesign that also uses EDT logic. Y ou can insert and synthesize them like any
other scan chains, but you do not define them when creating the EDT logic.

40 Tessent TestKompress User's Manual, v2014.2
June 2014

Scan Chain Synthesis
Scan Chain Insertion

Y ou must define the uncompressed scan chain during test pattern generation using the
add_scan_chains command without the -Internal switch.

Y ou can set up uncompressed scan chains to share top-level pins by defining existing top-level
pins as equivalent or physically defining multiple scan chains with the same top-level pin. For
more information, see the add _scan_chains command in the Tessent Shell Reference Manual.

For additional information, refer to the following sections:

® “Preparation for EDT Logic Creation” on page 52
® “Test Pattern Generation Files’ on page 87
® “Preparation for Test Pattern Generation” on page 111

* “Each EDT block must have a discrete set of scan chains — Scan chains cannot be
shared between blocks.” on page 133

Determining How Many Scan Chains to Use

Although you generally determine the number of scan chains based on the number of scan
channels and the desired compression, routing congestion can create a practical limitation on
the number of scan chains a design can have. With avery large number of scan chains (usually
more than a thousand), you can run into problems similar to those for RAMS, where routing can
be a problem if several hundred scan chains start at the decompressor and end at the compactor.

Other reasons to decrease the number of scan chains might be to limit the number of
incompressible patterns and/or to reduce the pattern count. For more information, see Effective
Compression” on page 21.

For testers with a scan option, the number of channelsis usually fixed and the variable you
modify will be the number of chains. Because the effective compression will be slightly less
than the ratio between the two numbers (the chain-to-channel ratio), in most casesit is sufficient
to do an approximate configuration by using slightly more chains than indicated by the
chain-to-channel ratio. How many more depends on the specific design and on your experience
with the tool. For example, if the number of scan channelsis 16 and you need five times (5X)
effective compression, you can configure the design with 100 chains (20 more than indicated by
the chain-to-channel ratio). Thistypically resultsin 4.5 to 6X compression.

Scan Groups

EDT supports the use of exactly one scan group. A scan group is a grouping of scan chains
based on operation. For more information, see the “ Scan Groups” section of the Tessent Scan
and ATPG User’s Manual.

Tessent TestKompress User's Manual, v2014.2 41
June 2014

Scan Chain Synthesis
Scan Chain Insertion

Scan Chain Pins

When you perform scan insertion, you must not share any scan chain pins with functional pins.
Y ou can connect the inserted scan chains to dedicated pins you create for them at the top level.

If you use the external flow, these dedicated pins become internal nodes when the tool creates
the additional wrapper. If you use the internal flow, the dedicated pins are removed when the
EDT logicisinstantiated in the design and connected. Therefore, using dedicated pins does not
increase the number of pins needed for the chip package. To ensure the scan chains have
dedicated output pins, use the -Output New option with the insert_test_|ogic command in
Tessent Scan.

Y ou can also leave the scan chains anchored to internal scan pinsinstead of connecting them to
thetop level.

Note
D Y ou can share functional pins with the external decompressor scan channel pins.

Remember, these channels become the new “virtual” scan chains seen by the tester. You
specify the number of channels, aswell asany pin sharing, in alater step when you set up
Tessent Shell for inserting the EDT logic. Refer to “EDT Control and Channel Pins’ in
Chapter 4 for more information.

Note
D If ascan cell drives afunctional output, avoid using that output as the scan pin. If that
scan cell isthelast cell in the chain, you must add a dedicated scan output.

About Reordered Scan Chains

The EDT logic (including bypass circuitry) depends on the clocking of the design. When
necessary to prevent clock skew problems, the tool automatically includes lockup cellsin the
EDT logic. If, after you create the EDT logic, you reorder the scan chains incorrectly, the
automatically inserted lockup cells will no longer behave correctly. The following are potential
problem areas:

® Between the decompressor and the scan chains (between the EDT clock and the scan
clock(s))

® Between the scan chain output and the compactor when there are pipeline stages
(between the scan clock(s) and the EDT clock)

® Inthe bypass circuitry where the internal scan chains are concatenated (between
different scan clocks)

Y ou can avoid regenerating the EDT logic by ensuring the following are true after you reorder
the scan chains:

® Thefirst and last scan cell of each chain have the same clock and phase.

42 Tessent TestKompress User's Manual, v2014.2
June 2014

Scan Chain Synthesis
Scan Chain Insertion

To satisfy this condition, you should reorder within each chain and within each clock
domain. If both leading edge (LE) triggered and trailing edge (TE) triggered cells exist
in the same chain, do not move these two domains relative to each other. After
reordering, thefirst and last cell in achain do not have to be precisely the same cells that
occupied those positions before reordering, but you do need to have the same clock
domains (clock pin and clock phase) at the beginning and end of the scan chain.

® |f you use alockup cell at the end of each scan chain and if all scan cellsare LE
triggered, you do not have to preserve the clock domains at the beginning and end of
each scan chain.

When all scan cellsin the design are LE triggered, the lockup cell at the end of each
chain enables you to reorder however you want. Y ou can move clock domains and you
can reorder across chains. But if there are both LE and TE triggered flip-flops, you must
maintain the clock and edge at the beginning and end of each chain. Therefore, the
effectiveness and need of the lockup cell at the end of each chain depends on the
reordering flow, and whether you are using both edges of the clock.

For flows where re-creating the EDT logic is unnecessary, you still must regenerate patterns
(just asfor aregular ATPG flow). Y ou should also perform serial simulation of the chain test
and a few patterns to ensure there are no problems. If you include bypass circuitry in the EDT
logic (the default), you should aso create and serially simulate the bypass mode chain test and a
few patterns.

Scan Insertion Dofile Example

The scan chains must have dedicated pins. To ensure thisis the case for the outputs, you must
usetheinsert_test logic -Output New command and option in Tessent Scan (dft -scan context).
The following is an example dofile for inserting scan chains with Tessent Scan. Notice the use
of “-output new” (shown in bold font) and the single scan group:

// tscan.do
//
// Tessent Scan dofile to insert scan chains for EDT.

// Set context, read library, read and set current design, etc.

// Set up control signals.
add_clocks 0 clkl clk2 clk3 clk4 ramclk

// Define test logic for lockup cells.
add_cell_models inv02 -type inv

add_cell_models latch -type dlat CLK D -active high
set_lockup_cell on

// Set up Test Control Pins.
set_scan_insertion -sen scan_en

set_scan_insertion -ten test_en

// Set up scan chain naming.

Tessent TestKompress User's Manual, v2014.2 43
June 2014

Scan Chain Synthesis
ATPG Baseline Generation

set_scan_pins Input -prefix edt_si -initial 1 -modifier 1
set_scan_pins Output -prefix edt_so -initial 1 -modifier 1

// Flatten design, run DRCs, and identify scan cells.
set_system_mode analysis

report_statistics

run

// Insert scan chains and test logic.
insert_test_logic -edge merge -clock merge -number 16 -output new
// “-output new” is required to ensure separate scan chain outputs.

// Report information.
report_scan_chains
report_test_logic

// Write output files.
write_design my_gate_scan.v - verilog -replace

write_atpg_setup my_atpg -replace

exit

Y ou should obtain the following outputs from Tessent Scan:

Scan-inserted gate-level netlist of the design
Test procedure file that describes how to operate the scan chains

Dofile that contains the circuit setup and test structure information

ATPG Baseline Generation

Y ou can generate an ATPG baseline after scan chain insertion.
An ATPG baseline can be used to:

Estimate the final test coverage early in the flow, before you insert the EDT logic.

Obtain the scan data volume for the test patterns pre-compression. Y ou can then

compare the scan data volume for test patterns before and after compression to evaluate

the effects of compression.

Note

Directly comparing pattern counts is not meaningful because EDT patterns are much

smaller than ATPG patterns. Thisis because the relatively short scan chainsused in EDT

require many fewer shift cycles per scan pattern.

Provide additional help for debugging. Y ou can simulate the patterns you generate in

this step to verify that the non-EDT patterns simulate without problems.

Find other problems, such aslibrary errors or timing issuesin the core, before you create

the EDT logic.

44

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Scan Chain Synthesis
ATPG Baseline Generation

Note
If you include bypass circuitry, you also can run regular ATPG after you insert the EDT

logic.

Thisrunislike any ATPG run and does not have any special settings; the key is using the same
settings (pattern types, constraints, and so on) used to create the compressed test patterns.

The test procedure file used for this ATPG run can be identical to the one generated by scan
insertion. However, it should be modified to include the same timing, specified by the tester,
that is used to generate the compressed test patterns. By using the same timing information, you
ensure simulation comparisons are realistic. To avoid DRC violations when you save test
patterns, update the test procedure file with information for RAM clocks and for non-scan-
related procedures.

Use the report_scan volume command to report test data before and after compression and
compare the data to evaluate the effect of compression.

Save the patternsif you want to simulate them. Y ou can use any Verilog timing simulator.

Note
D This ATPG run isintended to provide test coverage and pattern volume information for

traditional ATPG. Save the patternsif you want to simulate them, but be aware that they
have no other purpose. The final compressed test patterns are generated and saved after
the EDT logic isinserted and synthesized.

Tessent TestKompress User's Manual, v2014.2 45
June 2014

Scan Chain Synthesis
ATPG Baseline Generation

46 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 4
Creation of the EDT Logic

This chapter describes how to create and insert EDT logic into a scan-inserted design.

Figure 4-1 shows the layout of this chapter as it appliesto the process of creating and inserting
the EDT logic.

Y

Insert Internal
Scan/Test Circuitry 1. Analyzing Compression
(dft -scan context)

Figure 4-1. EDT Logic Creation Process

2. Preparation for EDT Logic Creation

Create PFi At
EDT logic 3. Parameter Specification for the EDT
(dft -edt context) 4. Design Rule Checks

Synthesize \ 5. Creation of EDT Logic Files
EDT logic

(Design Compiler)

J

For more information on specific commands, see the Tessent Shell Reference Manual.

Tessent TestKompress User’'s Manual, v2014.2
June 2014

47

Creation of the EDT Logic
Compression Analysis

Compression Analysis

Y ou need to determine a scan chain to scan channel ratio (chain:channel ratio) for your
application before you create the EDT logic. The chain:channel ratio determines the
compression for an application.

Usually the number of scan channels are dictated by hardware resources such as test channels
on the ATE and the top-level design pins available for test. However, you can usually vary the
number of scan chains to optimize the compression for an application.

Y ou can determine the optimal chain:channel ratio for an application by varying the number of
scan channels or scan chains and then generating test patterns and evaluating the following
elements:

® Test coverage — Determineif the test effectivenessis adequate for the application.

® Datavolume — Determine how much test pattern datais generated after compression
and whether it is within the test hardware limitations.

* ATPG baseline (optional) — Compare the test data statistics for the ATPG baseline
with the compressed test pattern statistics. See “ATPG Baseline Generation” on

page 44.

Y ou can use the analyze compression command to explore the effects of different
chain:channel ratios on test data without making modifications to your design. For more
information, see “Effective Compression” on page 21 and “ Analyzing Compression” on
page 48.

Related Topics

Effective Compression Analyzing Compression

Analyzing Compression

Use this procedure to explore chain:channel ratios, test coverage, and test data volume for an
EDT application. Y ou can perform this procedure before or after the EDT logic is created and
on block-level or chip-level architecture designs.

Note
This procedure is used for analysis only and does not permanently alter design
configurations or produce any test patterns.

48 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Analyzing Compression

Prerequisites

® Scan-inserted gate-level netlist. Can be any scan chain configuration. The tool
disregards the configuration if other settings are specified for the analysis. For more
information, see the analyze _compression command.

® |tisrecommended to use the reset_state command to discard existing test patterns and
restore fault population before analyzing the design.

Procedure

1. Invoke Tessent Shell on your design. The tool invokesin setup mode. For more
information, see “ Supported Design Format” on page 24.

<Tessent_Tree Path>/bin/tessent -shell

2. Provide Tessent Shell commands. For example:

set_context patterns -scan
read_verilog my_gate scan.v
read_cell_library my_lib.aptg
set_current_design top

3. Define scan chains and add clocks using the add_scan chains and add_clocks
commands.

4. Analyze the design to determine the maximum chain:channel configurations that can be
used for your design. Use this step to analyze both chip-level and block-level designs.
For example:

set_fault_type stuck
set_fault_sampling 5
analyze_compression

Thetool analyzes the design and returns arange of chain:channel ratio values beginning
with the ratio where a negligible drop in fault coverage occurs and ending with the ratio
where a 1% drop in fault coverage occurs as follows:

// For stuck-at_faults

//

// Chain:Channel Ratio PredictedFaultCoverageDrop

Y A e e i
// 153 negligible fault coverage drop
// 154 0.01 % - 0.05 % drop

// 160 0.10 %

// 168 0.15 %

// 171 0.20

// CPU time is 155 seconds.

Thedesignisanalyzed for the fault type specified by the set_fault_type command before
the analyze_compression command is executed. The analyze compression command
uses the current fault population. If no faults are added, the tool operates on all faults or

Tessent TestKompress User's Manual, v2014.2 49
June 2014

Creation of the EDT Logic
Analyzing Compression

asubset of sampled faults that are determined by the fault sampling rate specified by the
“set_fault_sampling <rate>" command

For example, if you want to analyze transition faults with a 10% fault sampling rate, you
would use the following commands:

set_fault_type transition
set_fault_sampling 10
analyze_compression

For more information, see the analyze compression command.

5. Select achain:channel ratio from the list and calculate how many scan chains and scan
channelsto use for your first trial run. For more information, see “Compression
Analysis’ on page 48.

6. Depending on the chip architecture, specify the chain:channel ratios, emulate the EDT
logic, and generate test patterns as follows:

® Emulating avirtual single block EDT configuration

set_fault_type stuck
analyze_compression -chains 270 -channels 9

®* Emulating avirtual modular EDT configuration
If you are analyzing compression for a block-level design, you may need to
manually determine how to allocate chains and channels across blocksto achieve the
selected chain:channel ratio before you perform this step. For example:

set_fault_sampling 80

analyze_compression -Edt_block BLK1 -CHAINs 400 - CHANNELs 8
-Edt_block BLK2 -CHAINs 200 -CHANNELSs 4 -SHift_power_control
-SWitching_threshold_percentage 20

Thetool emulatesthe EDT logic with the specified sampling rate, fault type, and
chain:channel ratio, generates temporary test patterns, and displays a statistics report
similar to the following:

Statistics Report
Stuck-at Faults

Fault Classes #faults

(total)

FU (full) 2173901
UC (uncontrolled) 729 (0.03%)
UO (unobserved) 17523 (0.81%)
DS (det_simulation) 1696097 (78.02%)
DI (det_implication) 342047 (15.73%)
PU (posdet_untestable) 1099 (0.05%)
PT (posdet_testable) 633 (0.03%)
UU (unused) 12547 (0.58%)
TI (tied) 25920 (1.19%)
BL (blocked) 18120 (0.83%)
RE (redundant) 29870 (1.37%)

50 Tessent TestKompress User's Manual, v2014.2

June 2014

Creation of the EDT Logic
Analyzing Compression

AU (atpg_untestable) 29316 1.35%)
Untested Faults
AU (atpg_untestable)
PC (pin_constraints) 186 0.01%)
Unclassified 29130 1.34%
Uuc+uUoO
AAB (atpg_abort) 6619 0.30%
UNS (unsuccess) 11633 0.54%
Coverage
test_coverage 97.68%
fault_coverage 93.79%
atpg_effectiveness 99.15%
#test_patterns 2285
#basic_patterns 2108
#clock_po_patterns 3
#clock_sequential_patterns 174
#simulated_patterns 4544
CPU_time (secs) 4755.1
Note: The reported statistics are based on a 80% fault sample.
// CPU time to analyze_compression is 4751 seconds.
//
/] mm e
// Scan volume report.
/] mmmmmmmm e mmm -
// channels 12
// shift cycles 145
/] mmm e e
// pattern # test # scan volume
// type patterns loads (cell loads or unloads)
[/ mmmmmmm————————— —mmm———m mmmm oo o
// setup_pattern 2 2 3480
// chain_test 71 71 123540
// basic 2108 2108 3667920
// clock_po 3 3 5220
// clock_sequential 174 174 302760
[/ mmmmmmm————————— —mmm———m mmmm oo o
// total 2358 2358 4102920 (4.1M)
//
Power Metrics Min Average Max
WSA 0.08% 27.39% 46.28%
State Element Transitions 0.00% 30.48% 50.67%
Peak Cycle
WSA 0.08% 28.26% 46.28%
State Element Transitions 0.00% 31.55% 50.67%
Load Shift Transitions 7.32% 15.97% 19.91%
Response Shift Transitions 9.85% 33.69% 50.51%

Tessent TestKompress User’'s Manual, v2014.2

June 2014

51

Creation of the EDT Logic
Preparation for EDT Logic Creation

7. Review the statistics report to determine whether the chain:channel ratio is adequate as
follows:

® If the chain:channel ratio yields adequate results, insert the scan chains and create
the EDT logic. See “Scan Chain Synthesis’ on page 37 and “Preparation for EDT
Logic Creation” on page 52.

* |If the datavolume and/or test coverage is unacceptable, repeat steps 3, 4, and 5 until
you determine the optimal chain:channel ratio to use for your application.

Related Topics

analyze compression Compression Analysis
If Compression is Less Than Expected If Test Coverageis Less Than Expected

Preparation for EDT Logic Creation

Depending on your application, the following subsections discuss the steps needed to prepare
for creating/inserting EDT logic into your design.

Y ou can create the EDT logic immediately after you insert scan chains, or you can run
traditional ATPG and simulate the resulting patterns first, as described in the “ATPG Baseline
Generation” on page 44. EDT must be on whenever you are creating test patterns or EDT logic.

Y ou can use the report_environment command to check the tool status. Y ou can use the
set_edt_options command to enable compression.

Scan Chain Definition

Y ou must define the clocks and scan chain information. Y ou can include these commandsin a
dofile or invoke the dofile that Tessent Scan generates to define clocks and scan chains. For
example:

dofile my_atpg.dofile
The following shows an example setup dofile generated by Tessent Scan:

add_scan_groups grpl my_atpg setup.testproc
add_scan_chains chainl grpl edt_sil edt_sol
add_scan_chains chain2 grpl edt_si2 edt_so2
add_scan_chains chain3 grpl edt_si3 edt_so3

add_scan_chains chain98 grpl edt_si98 edt_sol4d
add_scan_chains chain99 grpl edt_si99 edt_solb
add_scan_chains chainl00 grpl edt_sil00 edt_sol6
add_write_controls 0 ramclk

add_read_controls 0 ramclk

add_clocks 0 clk

52 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Preparation for EDT Logic Creation

These commands are explained in “ Defining the Scan Data’ in the Tessent Scan and ATPG
User’s Manual.

Internal Scan Chains in Tessent Shell IP Creation

Y ou can add internal scan chainsin the EDT IP creation phase (dft -edt context). Internal scan
chains are scan chains where the scan input and output signals are not brought to the top level of
the design and connected to top-level pins. This supports the hierarchical scan insertion flow
and removes the requirement to bring core-level scan pinsto the top level.

Y ou use the add_scan_chains -internal command to define internal scan chains during IP
creation as shown in the following example. Note, the K4, K9, and K10 IP creation DRCs do
not apply to internal scan pins and are skipped. These DRCS will still be run for top-level scan
pins.

Note
TestKompress not invoked from Tessent Shell still requires top-level scan pinsduring IP
creation.

This example shows IP creation in adesign with three EDT blocks: cpu and alu have internal
scan chains, whereas TOP has top-level scan chains. Note, the scan pins for the cpu and alu
blocks are defined at the respective instance pins and not brought to the top level. The scan pins
for the TOP block are defined at the top level.

set_context dft -edt

add_clock 0 clk

add_scan_group grpl scan_setup.testproc

set_edt_options -location internal

//

// EDT block: cpu

add_edt_block cpu

add_scan_chain -internal cpu_chainl grpl /cpu/scan_inl /cpu/scan_outl

add_scan_chain -internal cpu_chainl00 grpl /cpu/scan_inl00 \
/cpu/scan_outl00

set_edt_options -channel 5

//

// EDT block: alu

add_edt_block alu

add_scan_chain -internal alu_chainl grpl /alu/scan_inl /alu/scan_outl

add_scan_chain -internal alu_chain60 grpl /alu/scan_in60 /alu/scan_out60
set_edt_options -channel 3

//

// EDT block: TOP

add_edt_block TOP

add_scan_chain TOP_chainl grpl scan_inl scan_outl

add_scan_chain TOP_chain20 grpl scan_in20 scan_out20
set_edt_options -channel 1

Tessent TestKompress User's Manual, v2014.2 53
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

//

//System mode transition - perform DRC
set_system_mode analysis

write_edt_files created -verilog -replace

Tessent Shell (dft -edt) supports internal scan chains during IP creation. However, non-Tessent
Shell TestKompress does not. If you were to define internal scan chains during IP Creation
using the following dofile commands in non-Tessent Shell TestKompress:

set_edt_options -location internal
add_scan_chains -internal chainl grpl /ul/scan_inl /ul/scan_outl
add_scan_chains -internal chain2 grpl /ul/scan_in2 /ul/scan_out2

set_system _mode atpg

The tool would infer the Pattern Generation phase and would possibly fail with pattern
generation DRCs like those shown here:

// Running EDT Pattern Generation Phase.

// Error: Defined pin "edt_clock" for EDT clock signal is not in design.

// Violation safe to ignore, correct operation verified by subsequent
DRCs. (K5-1)

// Error: Defined pin "edt_update" for EDT update signal is not in design.

// Violation safe to ignore, correct operation verified by subsequent
DRCs. (K5-2)

// Error: Defined pin "edt_channels_inl" for channel input 1 signal is not
in design. (K5-3)

// Error: Defined pin "edt_channels_outl" for channel output 1 signal is
not in design. (K5-4)

// Error: Defined pin "edt_channels_in2" for channel input 2 signal is not
in design. (K5-5)

// Error: Defined pin "edt_channels_out2" for channel output 2 signal is
not in design. (K5-6)

// Error: 6 defined EDT pin(s) not in design. (K5)

// EDT setup and rules checking aborted, CPU time=0.00 sec.

// Error: Rules checking unsuccessful, cannot exit SETUP mode.

Parameter Specification for the EDT Logic

You use the set_edt_options command to set parameters for the EDT logic. The two most
important parameters are the position of the EDT logic, internal or external to the design core,
and the number of scan channels.

For abasic run to create external EDT logic (the default), you only need to specify the number
of channels. For example, the following command sets up external EDT logic with two input
channels and two output channels:

set_edt_options -channels 2

54 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Other parameters specify whether to create DFF-based or latch-based EDT logic and whether to
include bypass circuitry in the EDT logic, lockup cells in the decompressor, and/or pipeline
stages in the compactor.

By default, Tessent Shell generates:

EDT logic external to the design core

DFF-based EDT logic

L ockup cells in the decompressor, compactor, and bypass logic
An Xpress compactor without pipeline stages

Bypass logic

For more information, seethe set_edt options command in the Tessent Shell Reference Manual.

The following topics describe other commonly used parameter settings:

Dual Compression Configurations

Defining Dual Compression Configurations
Asymmetric Input and Output Channels
Latch-Based EDT logic

Pipeline Stages in the Compactor
Compactor Type

Longest Scan Chain Range

EDT Logic Reset

EDT Architecture Version

Generating EDT Logic When Bypass Logic is Defined in the Netlist
Specifying Hard Macros

Pulse EDT Clock Before Scan Shift Clocks

Dual Compression Configurations

Using two compression configurations when setting up the EDT logic alows you to easily set
up and reusethe EDT logic for two different test phases. For example, wafer test versus package

test.

When two distinct configurations are defined, an additional EDT pin is generated to select the
active configuration: edt_configuration. For more information on EDT pins, see“EDT Control
and Channel Pins’ on page 65.

Tessent TestKompress User's Manual, v2014.2 55

June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Separate ATPG dofiles and procedure files are created for each configuration. A single dofile
and test procedure file is generated for the bypass mode. These ATPG files are then used to
generate test patterns for each configuration separately as you would with a single compression
configuration.

In the modular flow, you should coordinate compression configuration usage between design
groups to ensure the compression configurations are defined and set up properly for each block
asfollows:

* A maximum of two compression configurations can be defined for the entire design,
across all EDT blocks, although the configuration parameters can be different for
different EDT blocks belonging to that design.

® Channel parameters for each of the two configurations can vary from block to block.

In the following example, blocks b1 and b2 have the same config_high configuration
name but have different parameters: in b1, config_high has two input channels and 4
output channels parameters and, in b2, config_high has 1 input and 1 output channel:

set_current_edt_block bl
set_current_edt_configuration config_high
set_edt_options -input 2 -output 4
set_current_edt_configuration config_low
set_edt_options —-input 4 -output 5

set_current_edt_block b2
set_current_edt_configuration config_high
set_edt_options -input 1 -output 1
set_current_edt_configuration config_low
set_edt_options —-input 3 -—-output 3

® The configuration with the highest compression ratio must always have the highest
compression ratio for each of the EDT blocks.

®* Tocreate asingle compression configuration for ablock, only define parametersfor one
of the compression configurations.
Limitations

® A configuration with a higher number of input channels than the other configuration
must also have an equal or higher number of output channels than the other
configuration. For example:

The following configurations are valid because in each case the configuration with a
higher input channel count also has an equal or higher number of output channels:

Configl = 4 input channels and 2 output channels
Config2 = 2 input channels and 1 output channels

Configl = 2 input channels and 2 output channels
Config2 = 4 input channels and 2 output channels

56 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Thefollowing configurations are not valid because in each case the configuration with a
higher input channel count has alower output channel count:

Configl = 4 input channels and 1 output channels
Config2 = 2 input channels and 2 output channels

Configl = 2 input channels and 2 output channels
Config2 = 4 input channels and 1 output channels.

The channels for the high compression configuration cannot be explicitly specified. By
default, the high-compression configuration uses the first channels defined for the
low-compression configuration. This applies to both input and output channels.

Bypass mode is supported for the lowest-compression configuration only. Y ou can
define the number of bypass chainsin either of the configurations aslong as the
specified number does not exceed the number of input/output channels of the
lowest-compression configuration. For example,

Configuration 1 = 2 input channels and 2 output channels
Configuration 2 = 4 input channels and 4 output channels
The maximum number of bypass chains = 4

For more information on bypass mode, see “Compression Bypass Logic” on page 208.

Y ou cannot generate test patterns during EDT logic creation to determine the test
coverage. analyze compression does not support dual compression configurations.

The Basic compactor does not support more than one configuration. By default the tool
generates logic that contains the X press compactor. For more information on
compactors, see “Understanding Compactor Options’ on page 252.

There are no DRCs specific to dual compression configurations, so you must run DRC
on each configuration in the test pattern generation phase. For more information, see
“Generating Test Patterns’ on page 121.

Tessent TestKompress User's Manual, v2014.2 57

June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Defining Dual Compression Configurations

Use this procedureto create EDT logic with two compression configurations for asingle design

block.

Prerequisites

Scan chains must be defined. For more information, see “ Scan Chain Definition” on
page 52.

Procedure

Invoke Tessent Shell. For example:

<Tessent_Tree Path>/bin/tessent -shell
Tessent Shell invokes in setup mode.

Provide Tessent Shell commands. For example:

set_context dft -edt
read_verilog my_gate scan.v
read_cell_library my_lib.aptg
set_current_design top
Define the first compression configuration. For example:

add_edt_configurations configl
set_edt_options -input_channels 6 -output_channels 5

Define the second configuration. For example:

add_edt_configurations config2
set_edt_options -input_channels 3 -output_channels 3

To create a single compression configuration for ablock, only define parametersfor one
of the compression configurations.

Define the remaining parameters for the EDT logic. See “ Parameter Specification for

the EDT Logic” on page 54.

Run DRC and fix any violations. See “Design Rule Checks’ on page 76. Y ou must run
DRC on each configuration.

. Generatethe EDT logic. For more information, see “Creation of EDT Logic Files’ on

page 78. A separate dofile and procedure file is created for each configuration. The
configuration name is appended to the prefix specified with the write_edt files
command:

<filename_prefix>_<configuration_name>_edt.dofile
<filename_prefix>_<configuration_name>_edt.testproc

58

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Examples

The following example uses a dofile to create dual compression configurations for asingle
block.

set_context dft -edt
read_verilog my_gate_scan.v
read_cell_library my_lib.aptg
set_current_design top

// edt_ip_creation.do

//

// Dofile for EDT logic Creation Phase

// Execute setup script from Tessent Scan
dofile scan_chain_setup.dofile

// Set up EDT configurations
add_edt_configurations my_pkg test_config
set_edt_options -channels 16
add_edt_configurations my_wafer_test_config
set_edt_options -channels 2

// Set bypass pin
set_edt_pins bypass my_ bypass_pin

//set_edt_options configuration pin
set_edt_pins configuration my_configuration_pin
set_system_mode analysis

// Report and write EDT logic.
report_edt_configurations -all //reports configurations for all blocks.
report_edt_pins //reports all pins including compression configuration
// specific pins.
write_edt_files created -verilog -replace //Create dofiles and
//testproc files for both the
//configs and bypass mode

The following example shows a dofile that sets up modular EDT blocks with dual compression
configurations at the top-level.

// Set up dual compression configurations
add_edt_configuration manufacturing_ test
add_edt_blocks Bl

set_edt_options -pipe 2 -channels 4
add_edt_blocks B2

set_edt_options -channels 1
add_edt_blocks B3

set_edt_options -channels 2

add edt configuration system_ test
set_current_edt_block Bl
set_edt_options -channels 2
set_current_edt_block B2
set_edt_options -channels 1
set_current_edt_block B3
set_edt_options -channels 1

Tessent TestKompress User's Manual, v2014.2 59
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

// Set up top-level clocks and channel pins for each block
set_current_edt_block Bl

add_clocks 0 clk

add_clocks 0 reset

dofile scan/atpgl.dofile_top
set_edt_pins in 1 coreA_channel_inl
set_edt_pins out 1 coreA_channel_outl
set_edt_pins in 2 coreA_channel_in2
set_edt_pins out 2 coreA_channel_out2
set_edt_pins in 3 coreA_channel_in3
set_edt_pins out 3 coreA_channel_out3
set_edt_pins in 4 coreA_channel_in4
set_edt_pins out 4 coreA_channel_out4

set_current_edt_block B2

dofile scan/atpg2.dofile2

set_edt_pins in 1 coreB_channel_inl
set_edt_pins out 1 coreB_channel_outl

set_current_edt_block B3

dofile scan/atpg3.dofile3

set_edt_pins in 1 coreC_channel_inl
set_edt_pins out 1 coreC_channel_outl
set_edt_pins in 2 coreC_channel_in2
set_edt_pins out 2 coreC_channel_out

//Run DRC
set_system_mode analysis

//Report EDT configuration and generate EDT logic
report_edt_configurations -all -verbose

write_edt_files ./edt_ip/createdl_core_top -verilog -synth dc_shell
-replace -rtl_prefix chip_level

exit -force

Related Topics

add_edt_configurations report_edt_configurations
delete_edt_configurations set_current_edt_configuration

Asymmetric Input and Output Channels

Y ou can specify adifferent number of input versus output channels for the EDT logic with the
-Input_Channels and -Output_Channels switches of the set_edt_options command.

Bypass Scan Chains

You can usethe set_edt_options-BYPASS Chainsinteger to specify how many bypass chains
the EDT logic is configured to support. By default, the number of bypass chains created equals

60 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

the number of input/output channels. If the number of input and output channels differ, the
smaller number is used.

Y ou can only specify a number of bypass chains equal to or less than the number of bypass
chains created by default. For dual configuration applications, you can only specify the bypass
chains after both configurations are defined.

For more information on bypass mode, see “ Compression Bypass Logic” on page 208.

Latch-Based EDT logic

Tessent Shell supports mux-DFF and LSSD scan architectures, or a mixture of the two, within
the same design.

The tool creates DFF-based EDT logic by default. If you have a pure LSSD design and prefer
thelogic to be latch-based, you can use the -Clocking switch to get the tool to create latch-based
EDT logic.

Compactor Type

Use the -COMpactor _type switch to specify which compactor is used in the generated EDT
logic.

By default, the Xpress compactor is used. For more information, see “ Understanding
Compactor Options” on page 252.

Pipeline Stages in the Compactor

The EDT logic can be set up to include pipeline stages between logic levels within the
compactor.

The-Plpeline logic_levels in_compactor switch allows you to specify a maximum number of
logic levels (XOR gates) in a compactor before pipeline stages are inserted. By default, no
pipeline stages are inserted. For more information, see “Use of Pipeline Stagesin the
Compactor” on page 223.

Pipeline Stages Added to the Channel

When generating the EDT IP, if output channel pipeline stages will be added later, you must
specify “set_edt_pins-change _edge at_compactor_output trailing_edge” to ensure that the
compactor output changes consistently on the trailing edge of the EDT clock. Output channel
pipeline stages should then start with leading-edge sequential elements.

Tessent TestKompress User's Manual, v2014.2 61
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Longest Scan Chain Range

Sometimes, you may need to change the length of the scan chainsin your design after
generating the EDT logic. Ordinarily, you must regenerate the EDT logic when such a change
alters the length of the longest scan chain.

During setup, before you generate the EDT logic, you can optionally specify alength range for
the longest scan chain using the -Longest_chain_range switch. Aslong as any subsequent scan
chain modifications do not result in the longest scan chain exceeding the boundaries of this
range, you will not have to regenerate the EDT logic because of a shortening or lengthening of
the longest chain.

Note

D This applies only to scan chain length. Other scan chain changes, such as reordering the
scan chains may require EDT logic regeneration. For more information, see “About
Reordered Scan Chains’ on page 42"

EDT Logic Reset

The EDT logic may optionally include an asynchronous reset signal that resets all the sequential
elementsin thelogic.

Use“-reset_signal asynchronous” with the set_edt_options command if you want the EDT logic
to include thissignal. If you choose to include the reset, the hardware will also include a
dedicated control pin for it (named “edt_reset” by default).

EDT Architecture Version

To ensure backward compatibility between older EDT logic architectures (created with older
versions of thetool) and pattern generation in the current version of thetool, usethe-Ip_version
switch which enables you to specify the version of the EDT architecture the tool should expect
in the design.

Inthe EDT logic creation phase, the tool writes a dofile containing EDT-specific commands for
used for ATPG. Any set_edt options commands included in this dofile will also use this switch
to specify the EDT architecture version; therefore, you usually do not need to explicitly specify
this switch.

Note

D Thelogic version isincremented only when the hardware architecture changes. If the
software is updated, but the logic generated is still functionally the same, only the
software version changes.

Y ou can generate test patterns for the older EDT logic architectures, but by default, the EDT
logic version is assumed to be the currently supported version.

62 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Parameter Specification for the EDT Logic

Specifying Hard Macros

Y ou can specify the hard macros in a design so the tool recognizes and avoids modifying them
while tracing clock paths for EDT logic bypass mode.

When one of the specified hard macros are encountered, the tool uses tap pointsidentified from
the boundary of the macro cellsto drive the bypass lockup cell clocks.

In caseswhere localized clock gaters are used, atap point identified for one scan cell may not be
appropriate for another scan cell even when they use the same top-level clocks. So, in cases
where localized clock gaters are involved, the tool routes the clock pin of each scan cell
involved with bypass lockup cellsto the EDT logic to avoid clock skew.

For more information on EDT logic bypass mode, see “ Compression Bypass Logic” on
page 208.

Note
D This functionality does not effect the type or quantity of lockup cells inserted for bypass
mode.

Note
D Compression must be used to insert the EDT logic in the design core before synthesis.

Prerequisites

® Tessent Shell isinvoked with a design netlist containing hard macros.

Procedure

1. Setupthe EDT logic to be inserted internal to the design core. For example:

add_clocks 0 —internal pll/clkl

add_clocks 0 —internal pll/clk2

set_edt_options —location internal
add_scan_chains chainl grpl scan_inl scan_outl
add_scan_chains chain2 grpl scan_in2 scan_out2

2. Set up any additional EDT logic requirements for your test application.
3. Identify each hard macro inside the design. For example:
set_attribute_value SCBcgl SCBcg2 -name hard_macro -value true
4. Run DRC and fix any errors. For example:
set_system_mode analysis
5. Createthe EDT logic RTL and insert it in the design core netlist. For example:

write_edt_files created -replace

Tessent TestKompress User's Manual, v2014.2 63
June 2014

Creation of the EDT Logic
Reporting of the EDT Logic Configuration

Related Topics

Compressed Pattern Internal Flow
get_attribute value list

write_edt_files

Pulse EDT Clock Before Scan Shift Clocks

Y ou can set up the EDT clock to pulse before the scan chain shift clocks with the
-pulse_edt_before shift_clocks switch of the set_edt_options command.

By default, the EDT and scan chain shift clocks are pulsed simultaneously. Setting the EDT
logic up thisway makes it independent of the scan chain clocking and provides the following
benefits:

Makes creating EDT logic for adesign in the RTL stage easier because scan chain
clocking information is not required. For more information on creating EDT logic at the
RTL stage, see “Integrating Compression at the RTL Stage” on page 261.

Removes the need for lockup cells between scan chains and the EDT logic because
correct timing is ensured by the clock sequence. Only asingle lockup cell between pairs
of bypass scan chainsis necessary. For more information, see “ Understanding Lockup
Cells’ on page 229.

Simplifies clock routing because the lockup cells used for bypass scan chains are driven
by the EDT clock instead of a system clocks. This eliminates the need to route system
clocksto the EDT logic.

To use this functionality, the shift speed must be able to support two independent clock pulses
in one shift cycle, which may increase test time.

Reporting of the EDT Logic Configuration

Y ou can report the current EDT logic configuration with the report_edt_configurations
command. This command lists configuration details including the number of scan channels and
logic version.

For example:

//
//
//
!/
/7
/7

report_edt_configurations

IP version:2

External scan channels:2
Longest chain range:600 - 700
Bypass logic:0n

Lockup cells:0On
Clocking:edge-sensitive

64

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

Note

Because the report_edt_configurations command needs a flat model and DRC resultsto
produce the most useful information, you usually use this command in other than setup
mode. For an example of the command’ s output when issued after DRC, see “DRC when
EDT Pins are Shared with Functional Pins’ later in this chapter.

EDT Control and Channel Pins

EDT logic includes both control and channel pins.

EDT logic includes the following pins:

Scan channel input pins
Scan channel output pins
EDT clock

EDT update

Scan-enabl e (optional—included when any scan channel output pins are shared with
functional pins)

Bypass mode control

Reset control (optional—included when you specify an asynchronous reset for the EDT
logic)

EDT _configuration (optional—included when you specify multiple configurations)

Figure 4-2 shows the basic configuration of these pins for an example design when the EDT
logic isinstantiated externally and configured with bypass circuitry and two scan channels.
External EDT logic is awaysinstantiated in atop-level EDT wrapper.

Tessent TestKompress User's Manual, v2014.2 65
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

Design
Primary
Inputs
portain[7]
portain[6]
portain[5]
al

scan_enable

edt_bypass
edt_clock

edt_update

edt_channels_inl

edt_channels_in2

Figure 4-2. Default EDT Logic Pin Configuration with Two Channels

Wrappe Design
Core Outputs
portain[7] gl ql
portain[6] q2 g2
portain[5]

al

scan_enable

edt_channels_outl

edt_channels_out2

EDT logic
bypass

clock

update

ch.1 ch.1

input output
ch.2 ch. 2

input output

The default configuration consists of pinsfor the EDT clock, update, and bypass inputs. There
are also two additional pins (one input and one output) for each scan channel. If you do not
rename an EDT pin or share it with afunctional pin, as described in the “Functional/EDT Pin
Sharing” section, the tool assigns the default EDT pin names shown.

To see the names of the EDT pins, issue the report_edt_pins command:

report_edt_pins

!/
/7
/7
//
//
//
!/
/7
/7

Pin description

Clock

Update

Bypass mode
Scan channel 1

n n n

Scan channel 2

input
output
input
output

edt_clock
edt_update
edt_bypass

Inversion

edt_channels_inl -
edt_channels_outl -
edt_channels _in?2 -
edt_channels_out2 -

Figure 4-3 shows how the preceding pin configuration looks if the EDT logic isinserted into a
design netlist that includes I/O pads (internal EDT logic location). Notice that the EDT control
and channel 1/0 pins are now connected to internal nodes of 1/0 pads that are part of the core
design. Y ou set up these connections by specifying an internal node for each EDT control and
channel I/O pin. For more information, see Connectionsfor EDT Pins (Internal Flow only).

66

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic

EDT Control and Channel Pins

Figure 4-3. Example of a Basic EDT Pin Configuration (Internal EDT Logic)

Design - : Design

Primary Design Core with 1/0 pads Primary

Inputs Module A Outputs
portain[7] portain[7] ql ql
portain[6] portain[6] q2 q2

portain[5]
al
scan_enable

internal node
(I/O pad output)

portain[5]
al

scan_enable

EDT logic
edt_bypass bypass internal node
yP (I/O pad input)
edt_clock clock
edt_update update
; ch.1 ch.1
edt_channels_in1 E: fput output edt_channels_outl
. ch.2 ch. 2
edt_channels_in2 input output edt_channels_out2

Functional/EDT Pin Sharing

EDT pins can be shared with functional pins, with afew restrictions. Y ou use the set_edt_pins
command to specify sharing of an EDT pin with afunctional pin and to specify whether asignal
isinverted in the /O pad for the pin. For more information, see the set_edt_pins command.

When you share a channel output pin with afunctional pin, the tool inserts a multiplexer before
the output pin. Thismultiplexer is controlled by the scan_enable signal, and you must define the
scan_enable signal with the set_edt_pins command. If you do not define the scan_enable signal,
the tool defaultsto “scan_en”, and adds this pin if it does not exist. During DRC, all added pins
are reported with K13 DRC messages. Y ou can report the exact names of added pins using the
report_drc_rules command.

For channel input pins and control pins, you use the -Inv switch to specify (on aper pin basis) if
asignal inversion occurs between the chip input pin and the input to the EDT logic. For
example, if an 1/0 pad you intend to use for a channel pin inverts the signal, you must specify
the inversion when creating the EDT logic. The tool requires the pin inversion information, so
the generated test procedure file operates correctly with the full netlist for test pattern
generation.

If bypass circuitry isimplemented, you need to force the bypass control signal to enable or
disable bypass mode. When you generate compressed EDT patterns, you disable bypass mode

Tessent TestKompress User’'s Manual, v2014.2
June 2014

67

Creation of the EDT Logic
EDT Control and Channel Pins

by setting the control signal to the off state. When you generate regular ATPG patterns for
example, you must enable the bypass mode by setting the bypass control signal to the on state.
Thelogic level associated with the on or off state depends on whether you specify to invert the
signal. The bypass control pinisforced in the automatically generated test procedure.

Inall cases, EDT pins shared with bidirectional pins must have the output enable signal
configured so that the pin has the correct direction during scan. The following list describes the
circumstances under which the EDT pins can be shared.

Scan channel input pin — No restrictions.

Scan channel output pin — Cannot be shared with apin that isbidirectional or tri-state
at the core level. Thisis because the tool includes a multiplexer between the compactor
and the output pad when a channel output pin is shared, and tri-state values cannot pass
through the multiplexer. A scan channel output pin that later will be connected to a pad
and is bidirectional at the top level is allowed.

Note

Scan channel output pins that are bidirectional need to be forced to Z at the beginning of
theload_unload procedure. Otherwise, the tool islikely to issue a K20 or K22 rule
violation during DRC, without indicating the reason.

EDT clock — Must be defined as a clock and constrained to its defined off state. If
shared with abit of a bus, problems can occur during synthesis. For example, Design
Compiler (DC) does not accept a bit of abus being aclock. The EDT clock pin must
only be shared with a non-clock pin that does not disturb scan cells; otherwise, the scan
cellswill be disturbed during the load _unload procedure when the EDT clock is pul sed.
This restriction might cause some reduced coverage. Y ou should use a dedicated pin for
the EDT clock or share the EDT clock pin only with afunctional pin that controls a
small amount of logic. If any loss of coverage is not acceptable, then you must use a
dedicated pin.

EDT reset — Should be defined as a clock and constrained to its defined off state. If
shared with abit of a bus, problems can occur during synthesis. For example, DC does
not accept a bit of abus being aclock. The EDT reset pin must only be shared with a
non-clock pin that does not disturb scan cells. Thisrestriction might cause some reduced
coverage. Y ou should use a dedicated pin for the EDT reset, or share the EDT reset pin
only with afunctional pin that controls a small amount of logic. If any loss of coverage
is not acceptable, then you must use a dedicated pin.

EDT update — Can be shared with any non-clock pin. Because the EDT update pinis
not constrained, sharing it has no impact on test coverage.

Scan enable — Asfor regular ATPG, this pin must be dedicated in test mode;
otherwise, there are no additional limitations. EDT only uses it when you share channel
output pins. Because it is not constrained, sharing it has no impact on test coverage.

68

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

® Bypass (optional) — Must be forced during scan (forced on in the bypass test
procedures and forced off inthe EDT test procedures). It is not constrained, so sharing it
has no impact on test coverage. For more information on bypass mode, see
“Compression Bypass Logic” on page 208.

® Edt_configuration (optional) — The value corresponding with the selected
configuration must be forced on during scan chain shifting.

Note
RTL generation allows sharing of control pins. The preceding restrictions ensurethe EDT
logic operates correctly and with only negligible loss, if any, of test coverage.

Shared Pin Configuration

The synthesis methodology does not change when you specify pin sharing. Y ou do, however,
need to add a step to the EDT logic creation phase. In this extra step, you define how pins are
shared.

For example, you are using the external flow with two scan channels and you want to share
three of the channel pins, aswell asthe EDT update and EDT clock pins, with functional pins.
Assume the functiona pins have the names shown in Table 4-1.

Table 4-1. Example Pin Sharing

EDT Pin Description Functional Pin Name

Input 1 (Channel 1 input) portain[7]

Output 1 (Channel 1 output) edt_channels_outl (new pin, default name)
Input 2 (Channel 2 input) portain[6]

Output 2 (Channel 2 output) g2

Update portain[5]

Clock al

Bypass my_bypass (new pin, non-default name)

Y ou can see the names of the EDT pins, prior to setting up the shared pins, by issuing the
report_edt_pins command:

report_edt_pins

// Pin description Pin name Inversion
/] mmmmmmm———————— ————————
// Clock edt_clock -
// Update edt_update -
// Bypass mode edt_bypass -
// Scan channel 1 input edt_channels_inl -
// " " " output edt_channels_outl -
// Scan channel 2 input edt_channels_in2 -
Tessent TestKompress User's Manual, v2014.2 69

June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

// " " " output edt_channels_out2 -

You can use the set_edt_pins command to specify the functional pin to share with each EDT
pin. With this command, you can specify to tap an EDT pin from an existing core pin. Y ou can
also use the command to change the name of the new pin the tool creates for each dedicated
EDT pin. Figure 4-4 on page 72 illustrates both of these cases conceptually.

Note
D In the external flow, the specified pin sharing isimplemented in the wrapper generated

when the EDT logic is created. The “Top-level Wrapper” section contains additional
information about thiswrapper. In theinternal flow, the pin sharing isimplemented when
you create and insert the EDT logic into the design before synthesis.

If aspecified pin already exists in the core, the tool sharesthe EDT signal with that pin.

Figure 4-4 shows an example of thisfor the EDT clock signal. The command “set_edt_options
clock al”, will cause the tool to share the EDT clock with the al pin instead of creating a
dedicated pin for the EDT clock. If you specify a pin name that does not exist in the core, a
dedicated EDT pin with the specified name is created. For example, “set_edt_pins bypass
my_bypass” will cause the tool to create the new pin my_bypass and connect it to the EDT
bypass pin.

For each EDT pin you do not share or rename using the set_edt_pins command, if its default
name is unique, thetool creates a dedicated pin with the default name. If the default name isthe
same as a core pin name, the tool automatically sharesthe EDT pin with that core pin. Table 4-
2 liststhe default EDT pin names.

Table 4-2. Default EDT Pin Names

EDT Pin Description Default Name

Clock edt_clock

Reset edt_reset

Update edt_update

Scan Enable scan_en

Bypass mode edt_bypass

Scan Channel Input “edt_channels_in” followed by the index number of the channel
Scan Channel Output “edt_channels_out” followed by the index number of the channel
EDT configuration select | edt_configuration

When you share a pin between an EDT channel output and a core output, the tool includes a
multiplexer in the circuit together with the EDT logic, but in a separate module at the top level.
An exampleis shown in red in Figure 4-4 for the shared EDT channel output 2 signal, and the
core output signal g2. As previously mentioned, the multiplexer is controlled by the defined
scan enable pin. If a scan enable pin is not defined, the tool adds one with the EDT default

70 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

name, “scan_en.” Here are the commands that would establish the example pin sharing shown
in Table 4-1:

set_edt_pins input 1 portain[7]
set_edt_pins input 2 portain[6]
set_edt_pins output 2 g2
set_edt_pins update portain[5]
set_edt_pins clock al
set_edt_pins bypass my_bypass

If you report the EDT pins using the “report_edt_pins’ command after issuing the preceding
commands, you will see that the shared EDT pins have the same name as the functional core

pins. You will also see, for each pin, whether the pin’s signal was specified as inverted. Notice

that the listing now includes the scan enable pin because of the shared EDT output pin:

report_edt_pins

//
//
!/
/7
/7
//
//
//
!/
/7

Pin description

Update

Scan enable

Bypass mode

Scan channel 1 input
" " " output

Scan channel 2 input
" " " output

Pin name

al

portainl[5]
scan_enable
my_bypass
portain[7]
edt_channels_outl
portain[6]

a2

Inversion

Tessent TestKompress User’'s Manual, v2014.2

June 2014

71

Creation of the EDT Logic
EDT Control and Channel Pins

Figure 4-4. Example with Pin Sharing Shown in Table 4-1(External EDT Logic)

Design Wrapper Design
Primary PP Primary
Inputs Core Outputs
portain[7] portain[7] gl gl
portain[6] portain[6] g2
> q2
portain[5] portain[5]
al al
scan_enable scan_enable
EDT logic
my_bypass bypass
clock
update
i(:nhpiljlt gni;}ut edt_channels_outl
ch.2 ch.2
input output

After DRC, you can use the report_drc_rules k13 command to report the pins added to the top
level of the design to implement the EDT logic.

report_drc_rules k13

// Pin my_bypass will be added to the EDT wrapper. (K13-2)
// Pin edt_channels_outl will be added to the EDT wrapper.
(K13-3)

Connections for EDT Pins (Internal Flow only)

For the internal flow, you must specify the name of each internal node (instance pin name) to
connect each EDT control and channel pin. For more information, see the set_edt pins
command.

Note

D Before specifying internal nodes, you must specify internal logic placement with the
set_edt_options -location internal command.

72 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

For every EDT pin, you should provide the name of adesign pin and the corresponding instance
pin name for the internal node that correspondsto it. The latter isthe input (or output) of an 1/0
pad cell where you want the tool to connect the output (or input) of the EDT logic. For example:

set_edt_pins clock pi_edt_clock edt_clock_pad/po_edt_clock

The first argument “clock” is the description of the EDT pin; in this case the EDT clock pin.
The second argument “pi_edt_clock” is the name of the top-level design pin on the I/O pad
instance. The last argument is the instance pin name of the internal node of the pad. The pad
instance is “edt_clock pad” and the internal pin on that instanceis“po_edt_clock”.

If you specify only one of the pin names, the tool treatsit asthe I/O pad pin name. If you specify
an 1/0 pad pin name, but not a corresponding internal node name, the EDT logic is connected
directly to the top-level pin, ignoring the pad. This may result in undesirable behavior.

If you do not specify either pin name, and the tool does not find a pin at the top level by the
default name, it adds a new port for the EDT pin at the top level of the design. Y ou will need to
add a pad later that corresponds to that port.

For the internal flow, the report_edt pins command lists the names of the internal nodes the
EDT pins are connected. For example (note that the pin inversion column is omitted for clarity):

report_edt_pins

//

// Pin description Pin name Internal connection
// —mmmmmm—m—————= ———————= e
// Clock edt_clock edt_clock_pad/z

// Update edt_update edt_update_pad/Z

// Bypass mode edt_bypass edt_bypass_pad/Z

// Scan ch... 1 input edt_ch..._inl channels_inl_pad/Z
// " " " output edt_ch..._outl channels_outl_pad/z
// Scan ch... 2 input edt_ch..._in2 channels_in2_pad/Z
// " " " output edt_ch..._out2 channels_out2_pad/Z
//

Internally Driven EDT Pins

When an EDT control pinisdriven internally by JTAG or other control registers (as shownin
the following figure), you should use the set_edt_pins command to specify that no top-level pin
exists for the control pin.

Tessent TestKompress User's Manual, v2014.2 73
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

Figure 4-5. Internally Driven edt_update Control Pin

Design i _ Design
Frlmtary Design Core with 1/0O pads Primary
nputs Outputs
Module A P
portain[7] portain[7] q1l [1a1
portain[6] portain[6] q2 { 192
portain[5] portain[5]
al al
JTAG
scan_enable | | scan_enable

EDT logic L update_ctrl

edt_bypass [| bypass
edt_clock | | clock
update
in1 [} ch.1 ch.1 [edt_channels_outl
edt_channels_inl input output - X
. ch. 2 ch. 2
edt_channels_in2 input output edt_channels_out2

Specifying these types of pins prevents false K5 DRC violations. Y ou should specify internally
driven pinsin one of the following ways:

® EDT logic creation

a. Specify theinternal node that drives the control pin during logic creation. For
example:

set_edt_options -location internal
set_edt_pins update - JTAG/update_ctrl
set_system_mode analysis

write_edt_files my_design -verilog -replace

Where JTAG/update _ctrl isthe internal node driving the update control pin.

b. Edit the test procedure file to include any procedures or pin constraints needed to
drive the specified internal node (JTAG/update _ctrl) to the correct value.

® Pattern generation

a. Specify theinternally driven control pin has no top-level pin during test pattern
generation. For example:

74 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
EDT Control and Channel Pins

set_edt_pins update -
set_system_mode analysis
add_faults /my_design
create_patterns

Note
All input and output channels must have a corresponding top-level pin.

Structure of the Bypass Chains

When bypass logic is generated, the connections for each bypass chain are automatically
configured. These interconnections are fine for most designs.

However, you can specify custom chain connections with the set_bypass_chains command. For
more information, see “ Compression Bypass Logic” on page 208.

Decompressor and Compactor Connections

After you specify the number of scan channelsin the EDT logic, the tool automatically
determines which scan chain outputs to compact into each channel output.

For more information on specifying the number of scan channels, see “ Parameter Specification
for the EDT Logic.

Y ou can modify the tool’ s default connections using one of the following methods:

Note
Redefining compactor connections for achannel that has already been defined overwrites

the previous settings for that channel.

® Reorder the add scan chains commands — When generating the EDT IP, the tool uses
the sequence of add_scan_chains commands to connect the EDT hardware to the scan
chains. You can change the order of the add_scan_chains commands in your dofile to
change how they are connected to the decompressor and compactor. Note, this method
changes both the decompressor and compactor connections for a particular chain.

® Specify new connections using the set_compactor_connections command — Y ou can
use the set_compactor_connections command to override the tool’ s default connections
and explicitly define the connections between scan chains and compactor. This method
allows you to change the compactor connections without changing the default
decompressor connections to those chains.

If you have dual configurations, you can still define the compactor connections using the
set_compactor_connections command but only for the configuration that uses all scan
channels as shown in the following example. (set_compactor_connectionsis not tied to
a specific configuration since you only need to define connections once for each
channel.)

Tessent TestKompress User's Manual, v2014.2 75
June 2014

Creation of the EDT Logic
Design Rule Checks

set_current_edt_configuration config high
set_edt_options —-input 1 -output 1

set_current_edt_configuration config_low
set_edt_options -input 3 -output 3

set_compactor_connections —-channel 1 -chains ...
set_compactor_connections —-channel 2 -chains ...
set_compactor_connections -channel 3 -chains ...

Design Rule Checks

DRC is performed automatically when you leave setup mode by issuing the “set_system mode
analysis’ command.

Tessent Shell provides aclass of EDT-specific “K” rules. The section, “EDT Rules (K Rules)”
in the Tessent Shell Reference Manual provides reference information on each EDT-specific
rule.

Notice the DRC message describing the EDT rulesin the following example transcript. This
transcript is for the design with two scan channels shown in Figure 4-2, in which none of the
EDT pins are shared with functional pins:

// Begin EDT rules checking.

/] mmm e

// Running EDT logic Creation Phase.

// 7 pin(s) will be added to the EDT wrapper. (K13)

// EDT rules checking completed, CPU time=0.01 sec.

// All scan input pins were forced to TIE-X.

// All scan output pins were masked.

/] mmm e e

These messages indicate the tool will add seven pins, which include scan channel pins, to the
top level of the design. The last two messages refer to pins at both ends of the core-level scan
chains. Because these pins are not connected to the top-level wrapper (external flow) or the top
level of the design (internal flow), the tool does not directly control or observe them in the
capture cycle when generating test patterns.

To ensure values are not assigned to the internal scan input pins during the capture cycle, the
tool automatically constrains all internal scan chain inputsto X (hence, the “TIE-X" message).
Similarly, the tool masks faults that propagate to the scan chain output nodes. This ensures a
fault is not counted as observed until it propagates through the compactor logic. The tool only
adds constraints on scan chain inputs and outputs added within the tool as Pls and POs.

76 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Design Rule Checks

Note

To properly configure the internal scan chain inputs and outputs so that the tool can
constrain them as needed, you must use the -Internal switch with the add_scan_chains
command when setting up for pattern generation in the Pattern Generation phase. This
switch does, on internal scan nodes, the same thing that the add_primary_inputs and
add_primary_outputs commands do on non-EDT designs.

DRC when EDT Pins are Shared with Functional Pins

If you

specified to share any EDT pin with afunctional pin, DRC will include messages for K

rules affected by the sharing. Here is DRC output for the design shown in Figure 4-2, after it is
re-configured to share certain EDT pinswith functional pins, asillustrated in Figure 4-4:

//
//
/7
//

//
//
//
/7

Running EDT logic Creation Phase.

Warning: 1 EDT clock pin(s) drive functional logic. May
lower test coverage when pin(s) are constrained. (K12)

2 pin(s) will be added to the EDT wrapper. (K13)

EDT rules checking completed, CPU time=0.00 sec.

All scan input pins were forced to TIE-X.

All scan output pins were masked.

Notice only two EDT pins are added, as opposed to seven pins before pin sharing. Shared pins
can create atest situation in which a pin constraint might reduce test coverage. The K12
warning about the shared EDT clock pin points this out to you. For details, refer to
“Functiona/EDT Pin Sharing” on page 67.

If you

report the current configuration with the report_edt_configurations command after DRC,

you will get more useful information. For example:

report_edt_configurations

//
//

//
/7
//
//
//
//
//
/7
//

IP version: 1

Shift cycles: 381, 373 (internal scan length)
+ 8 (additional cycles)

External scan channels: 2

Internal scan chains: 16

Masking registers: 1

Decompressor size: 32

Scan cells: 5970

Bypass logic: Oon

Lockup Cells: On

Clocking: edge-sensitive

Compactor pipelining: Off

Notice that the number of shift cycles (381 in this example) is more than the length of the
longest chain. Thisis because the EDT logic requires additional cyclesto set up the
decompressor for each EDT pattern (eight in this example). The number of extracyclesis
dependent on the EDT logic and the scan configuration.

Tessent TestKompress User's Manual, v2014.2 77
June 2014

Creation of the EDT Logic
Creation of EDT Logic Files

Creation of EDT Logic Files

By default, the tool writes out the RTL filesin the same format as the original netlist.

Once you have specified the EDT logic parameters, you use the write_edt files command to
create the files that make up the EDT logic. For example:

write_edt_files created -replace

Where created is the name string prepended to the files and -replace is a switch that allows the
tool to overwrite any existing files with the same name.

Depending on the EDT logic placement, the following EDT logic files are created:

® created edt top.v (external EDT logic only) — Top-level wrapper that instantiates the
core, EDT logic circuitry, and channel output sharing multiplexers.

® created edt top rtl.v (internal EDT logic only) — Core netlist with an instance of the
EDT logic connected between I/O pads and internal scan chains but without a gate-level
description of the EDT logic.

® created_edt.v—EDT logic description in RTL.

® created core blackbox.v (external EDT logic only) — Blackbox description of the
core for synthesis.

® created dc_script.scr — DC synthesis script for the EDT logic.

® created rtlc_script.scr —RTL Compiler synthesis script for the EDT logic.

® created_edt.dofile—Dofilefor test pattern generation.

® created edt.testproc — Test procedure file for test pattern generation.

® created_bypass.dofile—Dofile for uncompressed test patterns (bypass mode)

® created_bypass.testproc — Test procedure file for uncompressed test patterns (bypass
mode)

Y ou can also use the write_edt_files command to create IJTAG files that describe the static
configuration inputs of the Testkompress I P. These static configuration inputs set, enable, or
disable certain features of the TestkKompress IP: edt bypass, single chain bypass, low power,
and edt configuration. For example:

write_edt_files created -IJTAG data_ports -replace

For details on how to use the IJTAG filesfor TestKompress ATPG, see “ Setting up EDT IP for
IJTAG Integration” in the Tessent IJTAG User’s Manual.

78 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
The EDT Logic Files

Specification of Module/Instance Names

By default, the tool prepends the name of the top module in the associated netlist to the names
of modules/instancesin the generated EDT logic files. This ensures that internal names are
unique, as long as al module names are unique.

If necessary, you can specify the prefix used for internal modules/instance namesin the EDT
logic with the write_edt_files-rtl_prefix prefix_string command. For example:

write_edt_files... -rtl_prefix corel

All internal modul €/instance names are prepended with corel instead of the top module name.

Note
D The specified string must follow the standard rules for Verilog or VHDL identifiers.

The EDT Logic Files

This section describes the files generated for the EDT logic.
The structure of the logic described in the tool-generated files depends on the following:

® Location of the EDT logic (internal or external with respect to the design netlist)
® Number of external scan channels
®* Number of internal scan chains and the length of the longest chain
® Clocking of thefirst and last scan cell in every chain (if lockup cells are inserted)
* Namesof the pins
Except for the clocking of the scan chain boundaries, which affects the insertion of lockup cells,

nothing in the EDT logic is dependant on the functionality of the core logic.

Note

D Generaly, you must regenerate the EDT logic if you reorder the scan chains and the
clocking of thefirst and last scan cell or the scan chain length is affected. See “ About
Reordered Scan Chains’ on page 42.

Tessent TestKompress User's Manual, v2014.2 79
June 2014

Creation of the EDT Logic
The EDT Logic Files

Top-level Wrapper

Figure 4-6 illustrates the contents of the new top-level netlist file, created_edt_top.v. The tool
generates thisfile only if you are using the external flow.

Figure 4-6. Contents of the Top-Level Wrapper

edt_top
edt_clock sl
edt_update
edt_bypass

> Scan channel ins Scan channel outs <I !

U

Scan chainins Scan chain outs

Scan chainin cole Scan chain out

H Functional Functional
! > [nput Output J !

H Pins Pins h‘

edt_pinshare_logic I
(optional) I

I

I

Thisnetlist containsamodule, “edt_top”, that instantiates your original core netlist and an “edt”
module that instantiates the EDT logic circuitry. If any EDT pins are shared with functional
pins, “edt_top” instantiates an additional module called “edt_pinshare logic” (shown asthe
optional block in Figure 4-6). The EDT pinsand al functional pinsin the core are connected to
the wrapper. Scan chain pins are not connected because they are driven and observed by the
EDT block.

Because scan chain pinsin the core are only connected to the “edt” block, these pins must not be
shared with functional pins. For more information, refer to “ Scan Chain Pins” on page 42. Scan
channel pin sharing (or renaming) that you specified using the set_edt pins command is
implemented in the top-level wrapper. Thisis discussed in detail in “Functional/EDT Pin
Sharing,” earlier in the chapter.

80 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
The EDT Logic Files

EDT Logic Circuitry
Figure 4-7 shows a conceptual view of the contents of the EDT logic file, created edt.v.

Figure 4-7. Contents of the EDT Logic
EDT logic

edt_decompressor

] Scan channel
From I } Inputs

I nput
Pins) —— edt_clock
edt_update Scan chain inputs
edt_bypass_logic = g,
edt_bypass Chain ! To core
Inputs I
From | , Scan chain Sean f— [©
Core Outputs Channel | Output
! Outputs & Pins
‘ ! edt_compactor ‘
Scan chain Scan
Outputs Channel
Outputs
— edt_clock
L— edt_update

The EDT logic file contains the top-level module and three main blocks:

® decompressor — connected between the scan channel input pins and the internal scan
chain inputs

® compactor — connected between the internal scan chain outputs and the scan channel
output pins

® bypasslogic — connected between the EDT logic and the design core. Bypasslogic is
optional but generated by default.

Core

Generated only when the EDT logic isinserted external to the design core, thefile
created_core_blackbox.v contains a black-box description of the core netlist. This can be used

Tessent TestKompress User's Manual, v2014.2 81
June 2014

Creation of the EDT Logic
The EDT Logic Files

when synthesizing the EDT block so the entire core netlist does not need to be loaded into the
synthesistool.

Note

Loading the entire design is advantageous in some cases as it hel ps optimize the timing
during synthesis.

Design Compiler Synthesis Script External Flow

Thetool generates a Design Compiler (DC) synthesis script, created_dc_script.scr. By default,
the script isin Tool Command Language (TCL), but you can get the tool to writeitin DC
command language (dcsh) by including a“-synthesis_script dc_shell” argument with the
write_edt files command.

The following is an example script, in the default TCL format, for a core design that contains a
top-level Verilog module named “cpu”:

#**

Synopsys Design Compiler synthesis script for created_edt_top.v
#

#**

Read input design files

read_file -f verilog created_core_blackbox.v
read_file -f verilog created_edt.v

read_file -f verilog created_edt_top.v

current_design cpu_edt_top

Check design for inconsistencies
check_design

Timing specification
create_clock -period 10 -waveform {0 5} edt_clock

Avoid clock buffering during synthesis. However, remember
to perform clock tree synthesis later for edt_clock
set_clock_transition 0.0 edt_clock

set_dont_touch_network edt_clock

Avoid assign statements in the synthesized netlist.
set_fix_multiple_port_nets -feedthroughs -outputs -buffer_constants

Compile design

uniquify

set_dont_touch cpu

compile -map_effort medium

Report design results for EDT logic

report_area > created_dc_script_report.out

report_constraint -all_violators -verbose >> created_dc_script_report.out
report_timing -path full -delay max >> created_dc_script_report.out
report_reference >> created_dc_script_report.out

82

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
The EDT Logic Files

Remove top-level module
remove_design cpu

Read in the original core netlist
read_file -f verilog gate_scan.v
current_design cpu_edt_top

link

Write output netlist
write -f verilog -hierarchy -o created_edt_top_gate.v

Design Compiler Synthesis Script for Internal Flow

The tool generates a Design Compiler (DC) synthesis script created_dc_script.scr that
synthesizes the EDT logic in the core netlist for the internal flow as shown in the following
example.

#**

Synopsys Design Compiler synthesis script for configl_edt.v
Tessent TestKompress version: v8.2009_3.10-prerelease
Date: Thu Aug 6 01:44:15 2009

#*~k~k****~k~k~k~k~k~k~k~k~k****~k~k~k~k~k~k~k~k~k****~k~k~k~k~k~k~k~k~k****~k~k~k~k~k*********************

Bus naming style for Verilog
set bus_naming_style {%s[%d]}

Read input design files
read_file -f verilog results/configl_edt.v

Synthesize EDT IP
current_design circle_edt

Check design for inconsistencies
check_design

Timing specification
create_clock -period 10 -waveform {0 5} edt_clock

Avoid clock buffering during synthesis. However, remember
to perform clock tree synthesis later for edt_clock
set_clock_transition 0.0 edt_clock

set_dont_touch_network edt_clock

Avoid assign statements in the synthesized netlist.
set_fix multiple_port_nets -feedthroughs -outputs -buffer_ constants

Compile design
uniquify
compile -map_effort medium

Report design results for EDT IP

report_area > results/configl_dc_script_report.out
report_constraint -all_violators -verbose >>
results/configl_dc_script_report.out

report_timing -path full -delay max >>
results/configl_dc_script_report.out

report_reference >> results/configl dc_script_report.out

Tessent TestKompress User's Manual, v2014.2 83
June 2014

Creation of the EDT Logic
The EDT Logic Files

write -f verilog -hierarchy -o results/configl_circle_edt_gate.v

Write output netlist
exec cat results/configl_ circle_edt_gate.v results/configl_edt_top_rtl.v
> results/configl_edt_top_gate.v

RTL Compiler Synthesis Script External Flow

Thetool generates an RTL Compiler synthesis script created rtlc_script.scr when the
-synthesis_script rtl_compiler option is used with the write_edt_files command as shown:

write_edt_files created -synthesis_script rtl_compiler

This script synthesizesthe EDT logic and the top-level wrapper that instantiates the core design
and EDT logic for the external flow as shown in the following example.

#**

Cadence RTL Compiler synthesis script for created_edt_top.vhd
Tessent TestKompress version: v9.l-snapshot_2010.08.19_05.02
Date: Thu Aug 19 14:07:25 2010

#**

Set RTL Compiler attributes
set_attribute hdl_auto_async_set_reset true

Read input design files

read_hdl -vhdl created_core_blackbox.vhd
read_hdl -vhdl created_edt.vhd

read_hdl -vhdl created_edt_top.vhd

Elaborate design

set_attribute hdl_infer_ unresolved_from_ logic_abstract true /
elaborate

cd /designs/core_edt_top

Check design for inconsistencies
check_design

Timing specification
define_clock -period 10000 -rise 0 -fall 50 edt_clock

Avoid clock buffering during synthesis.However, remember
to perform clock tree synthesis later for edt_clock
set_attribute ideal_network true edt_clock

Avoid reset signal buffering during synthesis.However, remember
to perform reset tree synthesis later for edt_reset
set_attribute ideal_network true edt_reset

Avoid assign statements in the synthesized netlist.
set_attribute remove_assigns true core_edt_top
set_remove_assign_options -preserve_dangling nets
-respect_boundary_optimization -verbose -design core_edt_top

Compile design
edit_netlist uniquify core_edt_top

84

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
The EDT Logic Files

synthesize -to_mapped -effort medium
change_names -verilog

Report design results for EDT IP

report_area > created_rtlc_script_report.out
report_design_rules >> created_rtlc_script_report.out
report_timing >> created_rtlc_script_report.out
report_gates >> created_rtlc_script_report.out

Read in the original core netlist
read_hdl -v1995 m8051_scan.v
elaborate

Write output netlist
write_hdl > created_edt_top_gate.v

RTL Compiler Synthesis Script for Internal Flow

The tool generates an RTL Compiler synthesis script created rtlc_script.scr when the
-synthesis_script rtl_compiler option is used with the write_edt_files command as shown:

write_edt_files created -synthesis_script rtl_compiler

This script synthesizesthe EDT logic in the core netlist for the internal flow as shown in the
following example.

#**

Cadence RTL Compiler synthesis script for created_edt.v
Tessent TestKompress version: v9.l-snapshot_2010.08.19_05.02
Date: Thu Aug 19 14:10:04 2010

#**

Bus naming style for Verilog
set_attribute bus_naming style {%s[%d]}

Read input design files
read_hdl -v1995 created_edt.v

Elaborate design
set_attribute hdl_infer_ unresolved_from_ logic_abstract true /
elaborate

Synthesize EDT IP
cd /designs/Bl_edt

Check design for inconsistencies
check_design

Timing specification
define_clock -period 10000 -rise 0 -fall 50 edt_clock

Avoid clock buffering during synthesis. However, remember
to perform clock tree synthesis later for edt_clock
set_attribute ideal_ _network true edt_clock

Avoid assign statements in the synthesized netlist.
set_attribute remove_assigns true Bl_edt

Tessent TestKompress User's Manual, v2014.2 85
June 2014

Creation of the EDT Logic
The EDT Logic Files

set_remove_assign_options -preserve_dangling nets
-respect_boundary_optimization -verbose -design Bl_edt

Compile design
edit_netlist uniquify Bl_edt
synthesize -to_mapped -effort medium

Report design results for EDT IP

report area > created_rtlc_script_report.out

report design_rules >> created_rtlc_script_report.out
report timing >> created_rtlc_script_report.out
report_gates >> created_rtlc_script_report.out
write_hdl > created_Bl_edt_gate.v

cd /designs/B2_edt

Check design for inconsistencies
check_design

Timing specification
define_clock -period 10000 -rise 0 -fall 50 edt_clock

Avoid clock buffering during synthesis. However, remember
to perform clock tree synthesis later for edt_clock
set_attribute ideal network true edt_clock

Avoid assign statements in the synthesized netlist.
set_attribute remove_assigns true B2_edt
set_remove_assign_options -preserve_dangling nets
-respect_boundary_optimization -verbose -design B2_edt

Compile design
edit_netlist uniquify B2_edt
synthesize -to_mapped -effort medium

Report design results for EDT IP

report area >> created_rtlc_script_report.out

report design_rules >> created_rtlc_script_report.out
report timing >> created_rtlc_script_report.out
report_gates >> created_rtlc_script_report.out
write_hdl > created_B2_edt_gate.v

Synthesize EDT multiplexor
cd /designs/core_edt_mux_2_to_1

Check design for inconsistencies
check_design

Compile design
synthesize -to_mapped -effort medium

Report design results for EDT mux

report area >> created_rtlc_script_report.out
report timing >> created_rtlc_script_report.out
write_hdl > created_core_edt_mux_2_to_1l_gate.v

Write output netlist

86

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Creation of the EDT Logic
The EDT Logic Files

exec cat created_core_edt_mux_2_to_1 gate.v created_B2_edt_gate.v
created_Bl_edt_gate.v created_edt_top_rtl.v >
created_edt_top_gate.v

Remove all temporary files
exec rm created_core_edt_mux_2_to_1 gate.v created_B2_edt_gate.v
created_Bl_edt_gate.v

Test Pattern Generation Files

The tool automatically writes a dofile and atest procedure file containing EDT-specific
commands and test procedure steps. As with the similar files produced by Tessent Scan after
scan insertion, these files perform basic setups; however, you need to add commands for any
pattern generation or pattern saving steps.

® Dofile— The dofile includes setup commands and/or switches required to generate test
patterns. An example dofile created_edt.dofile is shown below. The EDT-specific parts
of thisfile arein bold font.

/7
/7
/7
/7
//
//
/7

Define the instance names of the decompressor, compactor, and the
container module which instantiates the decompressor and
compactor. Locating those instances in the design allows DRC to
provide more debug information in the event of a violation. If
multiple instances exist with the same name, subtitute the
instance name of the container module with the instance’s
hierarchical path name.

set_edt_instances -edt_logic_top cpu edt_i
set_edt_instances -decompressor cpu_edt_decompressor_i
set_edt_instances -compactor cpu_edt_compactor_i

add_scan_groups grpl created_edt.testproc

add_scan_chains -intermnal chainl grpl /cpu_i/edt_sil /cpu_i/edt_sol
add_scan_chains -internal chain2 grpl /cpu_i/edt_si2 /cpu_i/edt_so2
add_scan_chains -intermnal chain3 grpl /cpu_i/edt_si3 /cpu_i/edt_so3
add_scan_chains -internal chaind grpl /cpu_i/edt_sid4 /cpu_i/edt_so4d
add_scan_chains -intermnal chain5 grpl /cpu_i/edt_si5 /cpu_i/edt_sob
add_scan_chains -internal chain6 grpl /cpu_i/edt_si6 /cpu_i/edt_sob
add_scan_chains -intermnal chain7 grpl /cpu_i/edt_si7 /cpu_i/edt_so7
add_scan_chains -intermnal chain8 grpl /cpu_i/edt_si8 /cpu_i/edt_so8

add_clocks 0 clk

add_clocks 0 edt_clock

add_write_controls 0 ramclk

add_read_controls 0 ramclk

add_input_constraints edt_clock -CO

// EDT settings.

Please do not modify.
// Inconsistency between the EDT settings and the EDT logic may
// lead to DRC violations and invalid patterns.

set_edt_options -channels 3 -ip_ version 3 -decompressor_size 12
-injectors_per_ channel 2

Tessent TestKompress User’'s Manual, v2014.2

87

Creation of the EDT Logic
The EDT Logic Files

Notice the -Internal switch used with the add scan _chains command. This switch must
be used for al compressed scan chains (scan chains driven by and observed through the
EDT logic) when setting up to generate compressed test patterns. The reason for this
requirement is explained in “Design Rule Checks,” earlier in the chapter.

Note

Be sure the scan chain input and output pin pathnames specified with the

add _scan_chains -Internal command are kept during layout. If these pin pathnames are
lost during the layout tool’ s design flattening process, the generated dofile will not work
anymore. If that happens, you must manually generate the add_scan_chains -Internal
commands, substituting the original pin pathnames with new, logically equivalent, pin
pathnames.

Note

If your design includes uncompressed scan chains (chains whose scan inputs and outputs
are primary inputs and outputs), you must define each such scan chain using the
add_scan_chains command without the -Internal switch when setting up for EDT pattern
generation. Y ou will need to add these commands to the dofile manually.

Other commandsin thisfile add the EDT clock and constrain it to its off state, specify
the number of scan channels, and specify the version of the EDT logic architecture. For
information about how you can use this dofile to generate compressed test patterns, refer
to “Preparation for Test Pattern Generation” on page 111.”

Test Procedure File— The tool aso writes atest procedure file for test pattern
generation. The tool takes the test procedure file used for EDT logic creation and adds
the test procedures necessary to drive the EDT logic.

The following exampleis atest procedurefile, created edt.testproc. The EDT-specific
parts of thisfile are shown in bold font. For complete details about the EDT-specific
functionality included in thisfile, refer to the “ Preparation for Test Pattern Generation”
on page 111.

//
set time scale 1.000000 ns ;
set strobe_window time 100 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 100 ;
pulse clk 200 100;
pulse edt_clock 200 100;
pulse ramclk 200 100;
period 400 ;

end;

procedure capture =
timeplate gen_tpl ;
cycle =

88

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
The EDT Logic Files

force_pi ;
measure_po ;
pulse_capture_clock ;
end;
end;

procedure shift =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force_sci ;
force edt_update 0 ;
measure_sco ;
pulse clk ;
pulse edt_clock
end;
end;

~e

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force clk 0 ;
force edt_bypass 0 ;
force edt_clock 0 ;
force edt_update 1 ;
force ramclk 0 ;
force scan_en 1 ;
pulse edt_clock ;
end ;
apply shift 26;
end;

procedure test_setup =
timeplate gen_tpl ;
cycle =
force edt_clock 0 ;
end;
end;

Bypass Mode Files

By default, the EDT logic includes bypass circuitry. To operate the bypass circuitry, an
additional dofile and test procedure file is created. The additional dofile and test procedure file
is then used with uncompressed ATPG to bypass the EDT logic and run regular ATPG.

For information on the options for creating files, see the write_edt_files command.
To disable the generation of bypass logic, see the set_edt_options command.

For improved design routing, the bypass logic can be inserted into the netlist instead of the EDT
logic. For more information, see “Generating EDT Logic When Bypass Logic is Defined in the
Netlist” on page 210.

Tessent TestKompress User's Manual, v2014.2 89
June 2014

Creation of the EDT Logic
The EDT Logic Files

* Dofile— Thisexampledofile, created bypass.dofile, enablesyou to run regular ATPG.
The dofile specifies the scan channels as chains because in bypass mode, the channels
connect directly to the input and output of the concatenated internal scan chains,
bypassing the EDT circuitry.

//

add_scan_groups grpl created_bypass.testproc
add_scan_chains edt_channell grpl edt_channels_inl
edt_channels_outl

add_clocks 0 clk
add_write_controls 0 ramclk
add_read_controls 0 ramclk

® Test Procedure File— Notice the line (in bold font) near the end of this otherwise
typical test procedure file, created_bypass.testproc. That line forcesthe EDT bypass
signal, “edt_bypass’ to alogic high in the load_unload procedure and activates bypass
mode.

//
set time scale 1.000000 ns ;
set strobe_window time 100 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 100 ;
pulse clk 200 100;
pulse ramclk 200 100;
period 400 ;

end;

procedure capture =
timeplate gen_tpl ;
cycle =
force_pi ;
measure_po ;
pulse_capture_clock ;
end;
end;
procedure shift =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force_sci ;
measure_sco ;
pulse clk ;
end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force clk 0 ;

90 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

force edt_bypass 1 ;
force ramclk 0 ;
force scan_en 1 ;
end ;
apply shift 125;
end;

Inserting EDT Logic During Synthesis

When the EDT logic is placed internal to the design core, the tool writes a core netlist with an
instance of the EDT logic connected between I/O pads and internal scan chains without the
gate-level description of the EDT logic.

Alternatively, you can use this procedure to create a DC synthesis script that both inserts and
synthesizes the EDT logic inside the core netlist with the write_edt_files -insertion dc option.
This DC script is more complex because it includes additional commands that help instantiate
the EDT logic within the design core and requires that the entire design be loaded into the
synthesis tool so the necessary connections can be specified.

Note
The order of the gate-level EDT logic modulesin the resulting design is different than

that written when the tool insertsthe EDT logic before synthesis.

Prerequisites
* Gate-level netlist.

Procedure

1. Invoke Tessent Shell and configurethe EDT logic parameters. See “Creation of the EDT
Logic” on page 47. You must set up the EDT logic insertion to be internal to the design
core with the set_edt_options command.

2. Run DRC and correct any errors. See “Design Rule Checks” on page 76.

3. Examine test coverage and data volume estimates and adjust EDT configurations if
necessary. See “Anayzing Compression” on page 48.

4. Createthe EDT logic files. For example:
write_edt_files created -insertion dc

The following files are created:

o created edt.v— EDT logic descriptionin RTL.

o created_dc_script.scr — DC synthesis script for the EDT logic.
o created_edt.dofile— Dofile for test pattern generation.

Tessent TestKompress User's Manual, v2014.2 91
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

o created_edt.testproc — Test procedure file for test pattern generation.
o created_bypass.dofile— Dofile for uncompressed test patterns (bypass mode).

o created bypass.testproc — Test procedure file for uncompressed test patterns
(bypass mode).

5. Synthesizethe EDT logic. See“ Synthesizing the EDT Logic” on page 101.
6. Generatetest patterns. See “ Generating/Verifying Test Patterns” on page 111.

Related Topics

Synthesis and Internal EDT Logic The EDT Logic Files
Creation of a Reduced Netlist for Synthesis Inserting EDT Logic During Synthesis

Synthesis Script that Inserts/Synthesizes EDT
Logic

The following DC synthesis script is an example of the script generated when the
write_edt_files-insertion dc option is used.

#**

Synopsys Design Compiler script for EDT logic insertion
#

#**

Initialize DC variables
set bus_naming_style {%$s[%d]}

Read input design files
read_file -f verilog results/created_edt.v
read_file -f verilog netlists/gate_scan_sco.v

Current design is the top-most level.
current_design retimetest

Create an instantiation of EDT logic within the top-level of the design.
create_cell retimetest_edt_i [find design retimetest_edt]

Create instantiation(s) of an EDT mux to support sharing of output
channel and core pins.

create_cell retimetest_edt_mux 2_to_1_il [find design
retimetest_edt_mux_2_ to_1]

Connect core scan inputs to EDT logic scan inputs.

set scan_inputs { "edt_sil" "edt_si2" "edt_si3" \
"edt_sid" "edt_sib5" "edt_si6" \
"edt_si7" "edt_si8" "edt_sio9" \
"edt_sil0" "edt_sill" "edt_sil2" \
"edt_sil3" "edt_sild" "edt_silbH" \
"edt_silée" }

set count 0

92

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

foreach 1 $scan_inputs {
set temp_net [all_connected [find port $il]
disconnect_net Stemp_net [find port $i]
set temp "retimetest_edt_i/edt_scan_in[Scount]"
connect_net Stemp_net [find pin $temp]
query_objects [all_connected [find net S$temp_net]]
incr count

}

Remove scan input ports from top-level.

set scan_inputs_to_delete { "edt_sil" "edt_si2" "edt_si3" \
"edt_sid" "edt_sib" "edt_si6" \
"edt_si7" "edt_si8" "edt_sio" \
"edt_si110" "edt_sill" "edt_sil2" \
"edt_si113" "edt_sil4d" "edt_silb" \
"edt_sileée" }

foreach i $scan_inputs_to_delete {

remove_port [find port $i]

}

Connect core scan outputs to EDT logic scan outputs.
set scan_outputs { "edt_sol" "edt_so2" "edt_so3" \
"edt_so4d" "edt_sob" "edt_so6" \
"edt_so7" "edt_so8" "edt_so9" \
"edt_sol0" "edt_soll" "edt_sol2" \
"edt_sol3" "edt_sold" "edt_sol5" \
"edt_solée" }
set count 0
foreach i $scan_outputs {
set temp_net [all_connected [find port $i]]
disconnect_net Stemp_net [find port $i]
set temp "retimetest_edt_i/edt_scan_out[Scount]"
connect_net Stemp_net [find pin Stemp]
query_objects [all_connected [find net S$temp_net]]
incr count

}

Remove scan output ports from top-level.

set scan_outputs_to_delete { "edt_sol" "edt_so2" "edt_so3" \
"edt_so4" "edt_sob" "edt_sob6" \
"edt_so7" "edt_so8" "edt_so9" \
"edt_sol0" "edt_soll" "edt_sol2" \
"edt_sol3" "edt_sol4d" "edt_sol5" \
"edt_solée" }

foreach 1 S$scan_outputs_to_delete {

remove_port [find port $i]

}
Connect EDT control pins to the top-level.

Route pin edt_clk_buf/Z to the EDT control pin
retimetest_edt_i/edt_clock.

set temp_net [all_connected [find pin edt_clk buf/Z]]
connect_net Stemp_net [find pin retimetest_edt_i/edt_clock]
query_objects [all_connected [find net S$Stemp_net]]

Route pin edt_update to the EDT control pin retimetest_edt_i/edt_update.
create_port edt_update -direction in

Tessent TestKompress User's Manual, v2014.2 93
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

create_net retimetest_edt_update_net

connect_net retimetest_edt_update_net [find port edt_update]
connect_net retimetest_edt_update_net [find pin
retimetest_edt_i/edt_update]

query_objects [all_connected [find net retimetest_edt_update_net]]

Route pin edt_bypass to the EDT control pin retimetest_edt_i/edt_bypass.
create_port edt_bypass -direction in

create_net retimetest_edt_bypass_net

connect_net retimetest_edt_bypass_net [find port edt_bypass]

connect_net retimetest_edt_bypass_net [find pin
retimetest_edt_i/edt_bypass]

query_objects [all_connected [find net retimetest_edt_bypass_net]]

Connect EDT input channel pins to the top-level.

Route pin edt_channels_inl to the EDT channel input pin
retimetest_edt_i/edt_channels_in[0].

create_port edt_channels_inl -direction in

create_net retimetest_edt channels _in0O_net

connect_net retimetest_edt_channels_in0O_net [find port edt_channels_inl]
connect_net retimetest_edt_channels_in0O_net [find pin
retimetest_edt_i/edt_channels_in[0]]

query_objects [all_connected [find net retimetest_edt_channels_in0_net]]

Route pin edt_channels_in2 to the EDT channel input pin
retimetest_edt_i/edt_channels_in[1].

create_port edt_channels_in2 -direction in

create_net retimetest_edt_channels_inl_net

connect_net retimetest_edt_channels_inl net [find port edt_channels_in2]
connect_net retimetest_edt_channels_inl_net [find pin
retimetest_edt_i/edt_channels _in[1]]

query_objects [all_connected [find net retimetest_edt_channels_inl_net]]

Connect EDT output channel pins to the top-level.

Route EDT channel output pin retimetest_edt_i/edt_channels_out[0] to
left/rcmd_fc_1 fromCore.

set temp_net [all_connected [find pin left/rcmd_fc_1_fromCorel]
disconnect_net Stemp_net [find pin left/rcmd_fc_1_fromCore]
connect_net S$Stemp_net [find pin retimetest_edt_mux_2_to_1_il/a_in]
create_net retimetest_edt_channels_outO_top_net

connect_net retimetest_edt_channels_out0_top_net [find pin

retimetest _edt_mux_2 to_ 1 il/b_in]

connect_net retimetest_edt_channels_out0O_top_net [find pin
retimetest_edt_i/edt_channels_out[0]]

create_net retimetest_edt_mux 2_to_1_il_out_net

connect_net retimetest_edt_mux 2_to_1 il out_net [find pin
retimetest _edt_mux_2 to_ 1 1l1/z_out]

connect_net retimetest_edt_mux 2_to_1_il_out_net [find pin
left/rcmd_fc_1_ fromCore]

set temp_net [all_connected [find pin scanen_buf/scan_en_out]]
connect_net S$Stemp_net [find pin retimetest_edt_mux_2_to_1_il/sel]

Route EDT channel output pin retimetest_edt_i/edt_channels_out[l] to
edt_channels _out2_buf/A.
create_net retimetest_edt_channels_outl_net

94 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

connect_net retimetest_edt_channels_outl_net [find pin
edt_channels_out2_buf/A]

connect_net retimetest_edt_channels_outl_net [find pin
retimetest_edt_i/edt_channels_out[1]]

query_objects [all_connected [find net retimetest_edt_channels_outl_net]]

Connect system clocks to the EDT logic bypass logic.

Route clock output clk2 to bypass logic.

set temp_net [all_connected [find port clk2]]
connect_net Stemp_net [find pin retimetest_edt_i/clk2]
query_objects [all_connected [find net S$temp_net]]

Synthesize EDT logic
current_design retimetest_edt

Check design for inconsistencies
check_design

Timing specification
create_clock -period 10 -waveform {0 5} edt_clock

Avoid clock buffering during synthesis. However, remember
to perform clock tree synthesis later for edt_clock
set_clock_transition 0.0 edt_clock

set_dont_touch_network edt_clock

Avoid assign statements in the synthesized netlist.
set_fix multiple_port_nets -feedthroughs -outputs -buffer_ constants

Compile design
unigquify
compile -map_effort medium

Report design results for EDT logic

report_area > results/created_dc_script_report.out
report_constraint -all_violators -verbose >>
results/created_dc_script_report.out

report_timing -path full -delay max >>
results/created_dc_script_report.out

report_reference >> results/created _dc_script_report.out

Synthesize EDT multiplexor
current_design retimetest_edt_mux_2_to_1

Check design for inconsistencies
check_design

Compile design
compile -map_effort medium

Report design results for EDT mux

report_area >> results/created_dc_script_report.out
report_timing -path full -delay max >>
results/created_dc_script_report.out

Write output netlist
current_design retimetest

Tessent TestKompress User's Manual, v2014.2 95
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

write -f verilog -hierarchy -o results/created_edt_top_gate.v

The preceding script performs the following EDT logic insertion and synthesis steps:

1

10.

Fixing the bus naming style — Because bus signals can be expressed in either bus form
(for example, foo[Q] or foo(0)), or bit expanded form (foo_0), this command fixes the
bus style to the bus form. Thisis particularly necessary during logic insertion because
the script looks for the EDT logic bus signals to be connected to the scan chains.

Read input files— Next, the input gate-level netlist for the core and the RTL description
of the EDT logic are read.

Set current design — The current design is set to the top-most level of the input netlist.

Instantiate the EDT logic and 2x1 multiplexer module — The EDT logic is instantiated
within the top-level of the design. If there is sharing between EDT channel outputs and
functional pins, a 2x1 multiplexer module (the description isincluded in the
created_edt.v file) is aso instantiated.

Connect scan chain inputs — As mentioned earlier, scan chain inputs should be
connected to the top level without any /O pads associated with them. This part of the
script disconnects the nets that are connected to the scan chain input ports and connects
them to the EDT logic.

Remove scan chain input ports — Remove the dangling scan chain input ports that are
not connected to any logic after preceding step 5.

Connect scan chain outputs — Same as step 5, except that now the scan chain outputs
are connected to the EDT logic.

Remove scan chain output ports— Scan chain output ports, which are left dangling after
step 7, are removed from the top level.

Connect EDT control pins— The EDT control pins are connected to the output of pre-
existing pads. Thisisdone only if you specified an internal node pin to which to connect
the EDT control signal. If not, a new port is created, and the EDT control pinis
connected to the new port. The script shows the connection for only the edt_clock
signal. Similar commands are necessary to connect each of the other EDT control pins.

Connect EDT channel input pins — The next set of commands create anew port for the
input channel pin and connect the EDT input channel pin to the newly created port. This
has to be repeated for each input channel pin. Thisis done only when no internal node
name was specified for the EDT pin. If an internal node name was specified, the script
would be the same asin step 9.

Note

Be aware you need to add an 1/O pad later for each new port that is created.

96

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

11.

Note

Connect EDT channel output pin to a specified internal node (or atop-level pin) that is
driven by functional logic — The output channel pinin this caseis shared with a
functional pin. Whenever the node is shared with functional logic or is connected to
TIE-X (ablackbox is assumed in such cases), a multiplexer isinserted. However, if the
specified internal node is connected to a constant signal value, the net is disconnected
and connected to the EDT channel output pin. This section of the script inserts a
multiplexer and connects the inputs from the EDT logic and the functional net to the
multiplexer inputs. The output of the multiplexer is connected to the input of the I/O pad
cell.

D The select input of the multiplexer is connected to the existing scan enable signal, as the
functional or scan chain output can be propagated through the multiplexer depending on
the shift and capture modes of scan operation.

12.

13.

14.

15.

Y ou should specify the name of the scan enable signal. If aname is not specified and a
pin with adefault name (scan_en) does not exist at the top level, anew scan_en pinis
created.

Connect EDT channel output pin to a non-shared specified internal node (or a top-level
pin) — in this case, the specified internal node is not shared with any functional logic.
The tool removes any net that is connected to the internal node. It creates a new net and
connectsit to the channel output pin.

Connect system clocksto EDT logic — For the bypass mode, scan chains are
concatenated so that the EDT logic can be bypassed and normal ATPG scan patterns can
be applied to the circuit. During scan chain concatenation, lockup cells are often needed
(especidly if the clocks are different or the clock edges are different) to guarantee
proper scan shifting. These “bypass’ lockup cells are driven by the clocks that drive the
source or the destination scan cells. As aresult, some system clocks have to be routed to
the bypass module of the EDT logic. Clock lines are tapped right before they fan out to
multiple modules or scan cells and are brought up to the topmost level and connected to
the EDT logic.

Synthesis of RTL code — At this point, the insertion of the EDT logic within the top-
level of the original core is complete. The subsequent parts of the script are mainly for
synthesizing the logic. This part of the script is almost the same as that of the external
flow, with the following exceptions: the EDT logic is synthesized first followed by the
EDT multiplexer(s). In both cases, the synthesisislocal to the RTL blocks and does not
affect the core, which is already at the gate level.

Write out final netlist — Once the synthesis step is completed, DC writes out a gate-
level netlist that contains the original core, the EDT logic, and any multiplexers the tool
added to facilitate sharing of output pins.

Tessent TestKompress User's Manual, v2014.2 97

June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

Creation of a Reduced Netlist for Synthesis

Intheinternal flow, the EDT logic isinstantiated within an existing pad-inserted netlist and
connections must be made from the pad terminals to the EDT logic pins.

When using DC to insert and synthesize the EDT logic as described in “Inserting EDT Logic
During Synthesis,” the entire netlist must be read into the synthesis tool, so the proper
connections can be specified which can cause problems.

Input netlists can be huge and it may take alot of time or perhaps not even be possible to run the
synthesistool. If your netlist isin this category, you can use the tool to write out a reduced-size
netlist especially for the synthesis run with the write_edt_files -reduced netlist command. The
reduced netlist includes only the modules required for the synthesis tool to make the necessary
connections between the pad terminals and EDT logic pins.

Y ou provide this smaller file to the synthesis tool instead of providing the entire input netlist.
The tool writes the rest of the input netlist into a second netlist file that excludes the modules
written out in the synthesis only file but includes everything else. Y ou then use the output netlist
from the synthesis run along with the second netlist as inputs for ATPG.

Note
Another option isto use thetool to insert the EDT logic into the core netlist before

synthesis. Thisisthe default behavior for the internal flow.

Figure 4-8 is aconceptual example of an input netlist. Each box represents an instance with the
instance_name/module_names shown. The small rectangles shaded with dots represent
instances of technology library cells. The black circles represent four internal EDT logic
connection nodes.

98 Tessent TestKompress User's Manual, v2014.2
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

Figure 4-8. Design Netlist with Internal Connection Nodes

TOP
ul/A = u4/C
cl/C1
al/ASUB
ul/ASUB1 @ @ P/AB
c2/C1
u2/ASUB2
U6/ACONT
u71/A c3/C3
P e
al/ASUB
ul/Asupl ~ ab/AB
u5/clkctrl ‘ u7/D
u2/ASUB2]
[] []
. P3|

When writing out the compression files with the -Reduced_netlist switch, the modules are
distributed between the two netlists as follows;

® <prefix>_reduced_netlist.v (for synthesis) —TOP, A, ASUB, clkectrl

* <prefix> rest_of netlist.v (rest of the netlist for ATPG) —ASUB1, ASUB2, A_B,
C, C1,C3,ACONT, D

Note
D The reduced netlist for synthesis does not include the technology library cells that have

EDT logic connection nodes because the port list is sufficient for making these
connections.

Tessent TestKompress User's Manual, v2014.2 99
June 2014

Creation of the EDT Logic
Inserting EDT Logic During Synthesis

100 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 5
Synthesizing the EDT Logic

After you create the EDT logic, the next step isto synthesize it. The tool creates abasic Design
Compiler (DC) synthesis script, in either desh or TCL format, that you can use as a starting
point. Running the synthesis script is a separate step in which you exit the tool and use DC to
synthesize the EDT logic. Y ou can use any synthesis tool; the generated DC script provides a
template for developing a custom script for any synthesis tool.

Tessent TestKompress User's Manual, v2014.2 101
June 2014

Synthesizing the EDT Logic
The EDT Logic Synthesis Script

The EDT Logic Synthesis Script

If you use DC to synthesize the netlist, you should examine the .synopsys _dc.setup file and
verify that it points to the correct libraries. Also, examine the DC synthesis script generated by
the tool and make any needed modifications.

Note

D Y ou should preserve the pin namesin the EDT logic hierarchy. Preserving pin names
ensures that pinsresolve when test patterns are created and increases the useful ness of the
debug information returned during DRC.

Note

D When using the external flow and boundary scan, you must modify this script to read in
the RTL description of the boundary scan circuitry. Refer to “Preparation for Synthesize
of Boundary Scan and EDT Logic” on page 218 for an example DC synthesis script with
modifications for boundary scan.

The following DC commands are included in the synthesis scripts created by the tool:

* set fix_multiple_port_nets -feedthroughs -outputs -buffer_constants

This command prevents DC from including assign statements in the Verilog gate-level
netlist to prevent problems later in the design flow.

® set clock transition 0.0 edt_clock
set_dont_touch_network edt_clock

These commands prevent buffering of the EDT clock during synthesis and preserves the
EDT clock network. However, you must perform clock tree synthesis later for the EDT
clock.

After you run DC to synthesize the netlist without any errors, verify the tri-state buffers were
correctly synthesized. In some cases, DC may insert incorrect references to ** TSGEN**. For
information on correcting these references, see“Incorrect Referencesin Synthesized Netlist” on
page 314.

For more information, see “The EDT Logic Files” on page 79.

Synthesis and External EDT Logic

Oncethe EDT logic is created but before you synthesize it, you should insert I/O pads and
(optionally) boundary scan. For designs that require boundary scan, you should insert the
boundary scan first, followed by I/O pads. Then, synthesize the 1/0 pads and boundary scan
together with the EDT logic.

102 Tessent TestKompress User's Manual, v2014.2
June 2014

Synthesizing the EDT Logic
Synthesis and External EDT Logic

Note
Y ou can add boundary scan and 1/0 pads simultaneously with a boundary scan tool.

Boundary Scan

Boundary scan cells cannot be present in your design before the EDT logic isinserted. To
include boundary scan, you perform an additional step after the EDT logic is created. In this
step, you can use any tool to insert boundary scan. As shown in Figure 5-1, the circuitry should
include the boundary scan register, TAP controller, and (optionally) 1/0 pads.

Figure 5-1. Contents of Boundary Scan Top-Level Wrapper

edt_top_bscan

edt_top
tap
edt
bsr_instance_1
core

pad_instance_ 1
(optional)

I/0O Pad Insertion

Y ou can use any method to insert 1/O pads after scan insertion and EDT logic creation. If you
need to integrate EDT logic after the I/O pads are inserted, see “Managing Pre-existing I/0
Pads’ on page 38.

If the core and pads are separated as described in * Managing Pre-existing 1/0O Pads’ on page 38,
you should reinsert the EDT logic-core combination into the original circuit in place of the

Tessent TestKompress User's Manual, v2014.2 103
June 2014

Synthesizing the EDT Logic
Synthesis and Internal EDT Logic

extracted core. When you reinsert it, ensure the EDT logic-core combination is connected to the
I/O pads. Add pads for any new EDT pins not shared with existing core pins.

If you need to insert 1/0O pads before scan insertion and you used the architecture swapping
solution described in the “Managing Pre-existing 1/0 Pads’ on page 38,” then I/O pads are
already included in your scan-inserted design and you can proceed to insert boundary scan.

Synthesis and Internal EDT Logic

The tool inserts and connects an instance of the EDT logic into the design netlist and creates a
DC script to synthesize the EDT logic.

Y ou may be able to run the script without modification if the following are true:

® DCisthe synthesistool.
®* Thedefault clock definitions are acceptable.
® Technology library files are set up correctly in the .synopsys_dc.setup file.

Note
D The syntax of the .synopsys_dc.setup file and the DC synthesis script differ depending on

which format, dcsh or TCL, they support. If the .synopsys dc.setup file does not exist,
you must add the library file references to the synthesis script.

Optionally, you can insert the EDT logic into the core during synthesis. See “Inserting EDT
Logic During Synthesis” on page 91.

SDC Timing File Generation

Y ou can use the tool to generate Synopsys Design Constraint (SDC) timing files for the static
timing analysis of the test logic.

Separate SDC files provide timing constraints for the EDT logic and the ATPG setups as
described in the following topics:

® EDT Logic/Core Interface Timing Files
® Scan Chainand ATPG Timing Files

Note
D The SDC files are generated from the timing specified in the test procedure file. The

generated SDC files should be used as templates and employed for static timing analysis
only after appropriate values are inserted to correspond with actual timing information.

104 Tessent TestKompress User's Manual, v2014.2
June 2014

Synthesizing the EDT Logic
SDC Timing File Generation

Thetiming files are formatted in the TCL programming language with multiple sections. This
allows you to select one or all sections depending on your needs.

Y ou can also set variables before the timing files are loaded to specify valuesin the timing files

as described in Table 5-1.

Table 5-1. Timing File Variables

Description

Variables

Parameters for system clocks

system_clock _latency min
system_clock_latency _max
system_clock_uncertainty _setup
system_clock _uncertainty hold

Parameters for EDT clocks

edt_clock latency _min

edt_clock_latency _max

edt_clock_uncertainty _set edt _clock unce
edt_clock _uncertainty hold

I/0O delay for EDT pins

edt_pins_input_delay
edt_pins_output_delay

EDT Logic/Core Interface Timing Files

Y ou can output timing files specific to the EDT logic and design core interface with the
write_edt_files-Timing_constraints command. Depending on the application, the following

timing files are written out:

* filename prefix_edt_shift_sdc.tcl — Specifies constraints for the EDT shift mode.

* filename_prefix_bypass shift_sdc.tcl — Specifies constraintsfor the EDT bypass shift

mode. Thisfileiswritten for applications that include a bypass configuration. By

default, the tool outputs an EDT bypass configuration.

* filename prefix_slow_capture_sdc.tcl — Specifies constraints for slow-capture mode.
Thisfileisonly written when stuck-at patterns or launch-off-shift capture patterns are

used.

* filename prefix_fast_capture sdc.tcl —Specifies constraints for fast-capture mode.
Thisfileis only written when launch-off capture transition patterns are used.

Timing files can also be generated for EDT logic with dual compression configurations. When

test patterns are applied, only one of the configurationsis active at any time. So, the paths

originating at edt_configuration are declared as multi-cycle paths to avoid the need to verify
each of theindividual configurations separately. For more information on dual configurations,
see “Dual Compression Configurations” on page 55.

Tessent TestKompress User’'s Manual, v2014.2
June 2014

105

Synthesizing the EDT Logic
SDC Timing File Generation

Note

O

When the EDT logic is placed inside the design and atop-level pin name is not specified
for acontrol pin, then the specified internal connection name is used for synthesisand in
the constraints. For more information, see the set_edt _pins - command.

EDT Shift Mode Clock Constraints

During shift, the EDT logic is clocked along with al the scan cells as new datais|loaded and the
captured data is unloaded from the scan chains. Therefore, the edt_clock and all the shift clocks
are declared follows:

create clock — Declaresall clocks used for scan chain shifting at the very beginning of
thefile. For example:

create_clock -—-name edt_clock -period 100 -waveform {50 90}
[get_ports edt_clock]

set_clock_latency —Describes the clock network latency for all clocks used during
shift. Clock latency for both the minimum and maximum operating conditionsis
specified. Because the tool has no timing information, adefault value of O isused for the
latencies. These default values can be changed to reflect the actual values as necessary.
For example:

set_clock_latency -min 0 [get_clocks edt_clock]
set_clock_latency —-max 0 [get_clocks edt_clock]

set_clock _uncertainty — Describes the uncertainty (skew) related to the setup and hold
times for the flops driven by specified shift clocks. For example:

set_clock_uncertainty -setup <def_value> [get_clocks edt_clock]
set_clock_uncertainty -hold <def_value> [get_clocks edt_clocks]

EDT Shift Mode Input/Output Pin Delay Constraints

During shift mode, the input and output delays for the EDT control and channel pins are
declared. For the edt_channel pins, the input delay is measured with respect to the force pi and
measure_po events in the test procedure. Default values can be changed to reflect the actual
values as necessary. For example:

set_input_delay — Specifies the arrival time of the signals relative to when the clock
edge appears. For example:

set_input_delay <def_value> -clock force_pi [get_ports edt_channel_in]

set_output_delay — Specifies the departure time of the signals relative to when the
clock edge appears. For example:

set_output_delay <def_value> -clock measure_po
[get_ports edt_channel_out]

106

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Synthesizing the EDT Logic
SDC Timing File Generation

EDT Shift Mode Static Constraints
During EDT shift mode, static values for certain EDT-specific signals are declared as follows:

®* EDT bypass mode signal — edt_bypass signal is constrained to O (off), when EDT
mode is enabled. For example:

set_case_analysis 0 edt_bypass

®* EDT reset signal — edt_reset signa is constrained to O (off). For example:

set_case_analysis 0 edt_reset

® Scan enable (SEN) signal — scan_en signal controls the select input of the muxes
when channel output pins are shared with functional pins. For example:

set_case_analysis <on_state> scan_en

® Dual configuration signal — edt_configuration signal is set to either a1 or O value by
the test patterns depending on the configuration being used. Instead of constraining the
edt_configuration signal, all paths originating from the pin are declared as multi-cycle
paths. For example:

set_multicycle_path <path_multiplier> -from edt_configuration

EDT Shift Mode Timing Exceptions

® Falseand multi-cycle paths — During shift, al pathsin the EDT logic are exercised,
so no false or multi-cycle paths are declared.

Bypass Shift Mode Constraints

In bypass shift mode, the EDT decompressor, compactor, and masking logic are completely
bypassed and the scan chains behave as uncompressed chains that operate with regular ATPG
patterns. The timing constraints for bypass shift mode are similar to those for regular scan
operation except as follows:

®* EDT bypasssignal — edt_bypass signal is constrained to 1 (on). For example:

set_case_analysis 1 edt_bypass

® Scan enable (SEN) signal — scan_en signal is asserted to its on state when an EDT
channel output pin is shared with afunctional output pin. The set_edt_pins command
specifies the scan_en pin. For example:

set_case_analysis <on_state> scan_en

® Clock constraints— All clocks used during bypass shift mode are declared using the
same commands as for EDT shift mode. See “EDT Shift Mode Clock Constraints’ on
page 106.

® Input and output delays— The input and output delays should be described for all
scan chain 1/Os. The input and output delay constraintsfor bypass shift are declared with

Tessent TestKompress User's Manual, v2014.2 107
June 2014

Synthesizing the EDT Logic
SDC Timing File Generation

the same commands as for EDT shift. See“EDT Shift Mode | nput/Output Pin Delay
Constraints’ on page 106.

EDT logic — In the bypass mode, the EDT logic is completely bypassed, and therefore,
any paths originating and ending in the EDT logic are declared as fal se paths as follows:

set_false_path —-from edt_clock
set_false_path -to edt_clock

Bypass/EDT Capture Mode Constraints

In the capture mode, the primary objective isto mimic the functional operation of the design,
but only timing constraints related to the test logic are written. Constraints related to the
functional mode of operation should be specified by the functional timing constraintsfile for the
design. Specifically, some of the timing constraints are as follows:

Note

Clock constraints— All clocks used during capture mode are declared using the same
commands asfor EDT shift. See“EDT Shift Mode Clock Constraints’ on page 106.

Input and output delays— The input and output delays are declared for al scan chain
[/Os using the same commands asfor EDT shift. See“EDT Shift Mode Input/Output Pin
Delay Constraints’ on page 106.

Static constraints— The edt_reset signal is constrained to its off (0) state during
capture. For example:

set_case_analysis 0 edt_reset

edt_bypass, edt_update, and edt_configuration could potentially be shared with
functional pins set by ATPG, so they are not constrained. During capture, the EDT clock
is not pulsed, so the values on these pins do not interfere with the EDT logic.

Inactive paths— The edt_clock is not pulsed during capture, so the following paths are
unused and need to be declared as fal se paths:

o Between the mask shift_reg and mask _hold reg.

o Between the mask hold reg and the output channels, pipeline cells, or lockup cells
(if they exist).

o Between thelockup cells at the output of the decompressor and the input of the scan
chains.

o Between the pipeline stages at the compactor and the EDT channel output pins.

False paths are declared for all these cases by declaring al paths originating from state
elements clocked by edt_clock as false paths. For example:

set_false_path -from edt_clock

108

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Synthesizing the EDT Logic
SDC Timing File Generation

Paths between the scan chain outputs and the compactor — The scan chain outputs
feeding the compactor are not active during capture. Therefore, all paths from the
decompressor outputs to the edt_channel _output or the lockup cellsin front of the
pipeline stages inside the compactor are declared as false paths.

If no pipeline stages or lockup cells exist, then the following constraints declare all EDT
channels as fal se paths. For example:

set_false_path -to <edt_channel_output>

If pipeline stages or lockup cells do exist, then all paths originating from state elements
clocked by edt_clock are declared as false paths. For example:

set_false_path —-from edt_clock

Slow and fast capture modes — The slow capture mode corresponds to stuck-at and
launch-off-shift patterns, and fast capture mode corresponds to launch-off-capture
(broadside) patterns.

o Slow capture mode — The scan_enable pin is unconstrained, so the scan path
could potentially be used by ATPG. For bypass patterns, the bypass chain
concatenation path through edt_bypass logic is unconstrained. For the EDT capture
mode this path is not used, but it is unconstrained so that both bypass and EDT
capture can share the same timing constraints.

o Fast capture mode — The bypass chain concatenation path through the
edt_bypass logic isnot used and is declared afalse path. For example:

create clock -period 100 { edt_i/sysclk }
set_false_path -to edt_i/sysclk
set_case_analysis 0 edt_i/edt_bypass

Scan Chain and ATPG Timing Files

Y ou can output timing files specific to the scan path and ATPG setup in the core with the
write_core_timing_constraints filename_prefix command. Depending on the application, the
following timing files are written out.

filename_prefix_core_shift_sdc.tcl — Specifies shift mode constraints.

filename_prefix_slow_capture _sdc.tcl — Specifies slow-capture mode constraints.
Thisfileisonly written when stuck-at or launch-off-shift capture patterns are used.

filename_prefix_fast_capture _sdc.tcl — Specifies fast-capture mode constraints. This
fileisonly written when launch-off capture transition patterns are used.

Tessent TestKompress User's Manual, v2014.2 109

June 2014

Synthesizing the EDT Logic
SDC Timing File Generation

Scan Chain and ATPG Core Constraints

The scan chain and ATPG constraints associated with the core are determined as follows:

For scan shift mode, the scan_en signal is constrained to its active value, so paths from
scan cell outputs to the functional logic are declared as false paths. Thisis done by
forcing the values found in the shift procedure.

For capture mode, all shift paths between successive scan cells are declared as false
paths, unless launch-off-shift (LOS) transition patterns are in effect. Thisis done by
forcing pin constraint values.

For at-speed testing, the hold_pi and mask _po constraints are trandlated into timing
constraints. A warning message is issued when writing out the fast capture mode timing
constraintsif hold_pi and mask _po are not specified.

Cell constraints specified for an ATPG run are declared during the capture mode.

Constraints specified using aform other than pin_pathname are converted into
structurally reachable pins at the boundary of library cellsthat contain the target
sequential element. Thisincludes all non-clock input pinsfor set_false path —to and all
output pinsfor set_false path —fromand set_case analysis.

Constraints specified using —clock and —chain are translated into individual sequential
elements. All constraints except TX are trandlated to set_false path —-from and
set_false path —to.

110

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Chapter 6
Generating/Verifying Test Patterns

This chapter describes how to generate compressed test patterns. In this part of the flow, you
generate and verify the final set of test patterns for the design.

Figure 6-1 shows the layout of this chapter and the processes involved.

Figure 6-1. Test Pattern Generation and Verification Procedure

\

Synthesize 1. Preparation for Test Pattern
EDT logic L]
(Design Compiler) 2. Verification of the EDT Logic
- 3. Generating Test Patterns
Generate/Verify
EDT Patterns 4. Compression Optimization

(patterns -scan context)

5. Saving of the Patterns

Hand off to Vendor 6. HDL Simulation Setup

Y

After you insert 1/0O pads and boundary scan and synthesizethe EDT logic, invoke Tessent Shell
with the synthesized top-level netlist and generate compressed test patterns.

7. Running the Simulation

Note
Y ou can write test patternsin avariety of formatsincluding Verilog and WGL.

Preparation for Test Pattern Generation

To preparefor EDT pattern generation, check that EDT ison, and configure the tool the same as
when you created the EDT logic. For example, if you create the EDT logic with one scan
channel, you must generate test patterns for circuitry with one channel.

Note
D Y ou can reuse uncompressed ATPG dofiles, with the addition of some EDT-specific

commands, to generate compressed patterns with the same test coverage as the original

uncompressed patterns. Y ou cannot directly reuse pre-computed, existing ATPG patterns.

Tessent TestKompress User's Manual, v2014.2 111
June 2014

Generating/Verifying Test Patterns
Preparation for Test Pattern Generation

Note
DRC violations occur if you attempt to generate patterns for a different number of scan
channels than what the EDT logic is configured for.

You must also add_scan_chainsin the same order they were added to the EDT logic. To reliably
add the correct number of chainsin the correct order in the Pattern Generation phase, you
should use the setup dofile generated when the EDT logic was created. Y ou can customize the
dofile as needed.

The report_scan_chains command lists the scan chains in the same order they were added
originally. For additional information, refer to the next section, “ The Generated Dofile and
Procedure File.”

Compared to when you generated uncompressed test patterns with the scan-inserted core design
(see““ ATPG Baseline Generation” on page 44”), there are certain differences in the tool setup.
One of the differences arises because in the Pattern Generation phase you need to set up the
patterns to operate the EDT logic. Thisis done by exercising the EDT clock, update and bypass
(if present) control signals asillustrated in Figure 6-2.

Figure 6-2. Sample EDT Test Procedure Waveforms

load_unload shift shift capture load_unload shift
scan enable ‘///////‘
scan clock | 1 LI | [L.
EDT update]
EDT clock I [L1 L
EDT bypass LT
EDT reset

Prior to each scan load, the EDT logic needs to be reset. Thisis done by pulsing the EDT clock
once while EDT update is high.

During shifting, the EDT clock should be pulsed together with the scan clock(s). In Figure 6-2,
both scan enable and EDT update are shown as 0 during the capture cycle. These two signals
can have any value during capture; they do not have to be constrained. On the other hand, the
EDT clock must be O during the capture cycle. The operation of these signalsis described in the
load_unload and shift proceduresin the test procedure file the generated with the EDT logic. An
example of thisfileisshown in ““Test Pattern Generation Files’ on page 87.”

112 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Preparation for Test Pattern Generation

On the command line or in adofile, you must do the following:

Identify the EDT clock signal as aclock and constrain it to the off-state (0) during the
capture cycle. This ensures the tool does not pulse it during the capture cycle.

Use the -Internal option with the add _scan_chains command to define the compressed
scan chains asinternal, as opposed to external channels. Thisdefinition isdifferent from
the definition you used to create the EDT logic because the scan chains are now
connected to internal nodes of the design and not to primary inputs and outputs. Also,
scan_in and scan_out are internal nodes, not primary inputs or outputs.

If your design includes uncompressed scan chains. Uncompressed scan chains are
chains not defined with the add_scan_chains command when setting up the EDT logic
and whose scan inputs and outputs are primary inputs and outputs. Y ou must define each
uncompressed scan chain using the add_scan_chains command without the -Internal
switch during test pattern generation.

If you add levels of hierarchy (due, for example, to boundary scan or 1/0 pads), revise
the pathnames to the internal scan pinslisted in the generated dofile. An example dofile
with this modification is shown “Modification of the Dofile and Procedure File for
Boundary Scan” on page 220.

The Generated Dofile and Procedure File

Thefirst two setups described in the preceding section are included in the dofile generated with
the EDT logic. For an example of this dofile, see “Test Pattern Generation Files’ on page 87.

The test procedure file also needs modifications to ensure the EDT update signal is activein the
load_unload procedure and the EDT clock is pulsed in the load_unload and shift procedures.
These modifications are implemented automatically in the test procedure file output with the
EDT logic asfollows:

The timeplate used by the shift procedure is updated to include the EDT clock.

In thistimeplate, there must be adelay between the trailing edge of the clock and the end
of the period. Otherwise, a P3 DRC violation will occur.

Theload unload procedureisset up toinitialize the EDT logic and apply shift anumber
of times corresponding to the longest “virtual” scan chain (longest scan chain plus
additional shift cycles) seen by the tester. The number of additional shift cyclesis
reported by the report_edt_configurations command.

Note

Additional shift cycles refersto the sum of the initialization cycles, masking bits (when
using Xpress), and low-power bits (when using alow-power decompressor).

The shift procedure is updated to include pulsing of the EDT clock signal and
deactivation of the EDT update signal.

Tessent TestKompress User's Manual, v2014.2 113
June 2014

Generating/Verifying Test Patterns
Preparation for Test Pattern Generation

®* TheEDT bypasssignal isforced to alogic low if the EDT circuitry includes bypass
logic.

For an example of thistest procedurefile, refer to “ Test Procedure File— Thetool also writesa
test procedure file for test pattern generation. Thetool takesthe test procedure file used for EDT
logic creation and adds the test procedures necessary to drive the EDT logic.” inthe“ Test
Pattern Generation Files’ section of Chapter 4.

Generated Bypass Dofile and Procedure File

The tool generates a dofile and an test procedure file you can use with Tessent FastScan to
activate bypass mode and run regular ATPG. Examples of these files are shown in “Bypass
Mode Files” on page 89.” If your design includes boundary scan and you want to run in bypass
mode, you must modify the bypass dofile and procedure file to work properly with the boundary
scan circuitry.

Updating Scan Pins for Test Pattern Generation

You can usethe set_edt_finder command to automatically find EDT logic and get updated scan
pininformation for test pattern generation. Use this procedure, before test pattern generation, to
get updated scan pin information when your design hierarchy changes after the EDT logicis
generated.

The set_edt_finder command identifies the EDT logic contained in the gate-level netlist and
updates the 1/0 pins associated with scan chains.

Note
If the design changes affect clock or constrained pins listed in the dofiles, you must
manually correct them. This limitation will be removed in future releases.

Prerequisites

® No scan chains are defined for test pattern generation. The set_edt_finder on command
must be used to enable this feature before setting up the scan chains for test pattern
generation.

® (Gate-level Verilog netlist or flat model containing EDT logic.

Note
D EDT Finder must be enabled before any internal scan chains are added and saved to the

flat model. Otherwise, the flat model cannot be used with the EDT Finder in subsequent
sessions.

Procedure

1. Invoke Tessent Shell. For example:

114 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Preparation for Test Pattern Generation

<Tessent_Tree Path>/bin/tessent -shell

Tessent Shell invokes in setup mode.
2. Provide Tessent Shell commands. For example:
set_context patterns -scan
read_verilog my_gate scan.v

read_cell_library my_lib.atpg
set_current_design top

3. Enable EDT Finder. For example:
set_edt_finder on -verbose on

The EDT Finder feature is enabled.

4. Set up for test pattern generation as needed. For more information, see “ Preparation for
Test Pattern Generation” on page 111.

Read the core-level TCD filesusing theread core_descriptions command.
Identify the core instances using the add_core_instances command.

Specify compressed and uncompressed chains, if any.

© N o O

Exit setup mode. For example:
set_system_mode analysis

The EDT logic and internal scan chain inputs are identified, scan chains are traced, and
DRC isrun.

9. Correct any DRC violations.

For information on DRCsrelated to the EDT Finder command, see EDT Finder (F
Rules) in the Tessent Shell Reference Manual.

10. Report the EDT Finder results. For example:

report_edt_finder -decompressors

// id #bits #inputs #chains EDT block type

/] mm e e e e e e e
// 1 16 4 28 ml_28x16 active
// 2 16 4 4 m2_4x32 active
// 3 16 4 50 m3_50x187 active
// 4 10 1 8 m4_8x16 active

All active decompressors are reported. For more information on reporting EDT Finder
results, see the report_edt_finder command.

Tip: You can aso use the Test Structures Window within DFTVisualizer to browse the
EDT logic after set_edt_finder isrun.

Tessent TestKompress User's Manual, v2014.2 115
June 2014

Generating/Verifying Test Patterns
Preparation for Test Pattern Generation

11. Generate and save test patterns. For more information, see “ Generating Test Patterns”

on page 121.

Examples

The following example demonstrates using EDT Finder at the top level of amodular design.
After you have generated a TCD file for each of the coresin your design using the
write_core_description command, you first enable EDT Finder, and then map the coresto the
chip level using the core TCD files, add any additional scan logic, and finally generate patterns
for the entire design.

Set the proper context for core mapping and subsequent ATPG
set_context pattern -scan

Read cell library (library file)
read_cell_library technology.tcelllib

Read the top-level netlist and all core-level netlists
read_verilog generated_1_edt_top_gate.vg generated_2_edt_top_gate.vg \
generated_top_edt_top_gate.vg

Specify the top level of design for all subsequent commands and set mode
set_current_design

Enable EDT Finder
set_edt_finder on -verbose on

Read all core description files
read_core_descriptions piccpu_l.tcd
read_core_descriptions piccpu_2.tcd
read_core_descriptions small_core.tcd

Bind core descriptions to core instances
add_core_instances -instance corel_inst -core piccpu_l
add_core_instances -instance core2_inst -core piccpu_2
add_core_instances -instance core3_inst -core small_ core

Specify top-level compressed chains and EDT
dofile generated_top_edt.dofile

Specify top-level uncompressed chains
add_scan_chains top_chain_1 grpl top_scan_in_3 top_scan_out_3
add_scan_chains top_chain_2 grpl top_scan_in_4 top_scan_out_4

Report instance bindings
report_core_instances

Change to analysis mode
set_system_mode analysis

Create patterns
create_patterns

Write patterns
write_patterns top_patts.stil -stil -replace

116

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Verification of the EDT Logic

Report procedures used to map the core to the top level (optional)
report_procedures

Related Topics

EDT Finder (F Rules)

Verification of the EDT Logic

Two mechanisms are used to verify that the EDT logic works properly: design rules checking
(DRC) and enhanced chain and EDT logic (chain+EDT logic) test.

The next two sections describe these mechanisms.

Design Rules Checking (DRC)

Several K DRCs verify the EDT logic operates correctly. F rules also verify the EDT logic
when EDT Finder ison.

The tool provides the most complete information about violations of these rules when you have
preserved the EDT logic structure through synthesis. Following isabrief summary of just the K
rules that verify operation of the EDT logic:

® K19 — simulates the decompressor netlist and performs diagnostic checksif a
simulation-emulation mismatch occurs.

® K20 — identifiesthe number of pipeline stages within the compactors, based on
simulation.

® K22 — simulates the compactor netlist and performs diagnostic checks if a simulation-
emulation mismatch occurs.

For detailed descriptions of all the EDT design rules (K and F rules) checked during DRC, refer
to the “Design Rules Checking” chapter of the Tessent Shell Reference Manual.

EDT Logic and Chain Testing

In addition to performing DRC verification of the EDT logic, the tool saves, as part of the
pattern set, an EDT logic and chain test. Thistest consists of several scan patterns that verify
correct operation of the EDT logic and the scan chains when faults are added on the core or on
the entire design. Thistest is necessary because the EDT logic is not the standard scan-based
circuitry that traditional chain test patterns are designed for. The EDT logic and chain test helps
in debugging simulation mismatches and guarantees very high test coverage of the EDT logic.

Y ou can use the following equation to predict the number of additional chain test patterns the
tool generatesto test the EDT logic. (In this equation, ceil indicates the ceiling function that

Tessent TestKompress User's Manual, v2014.2 117
June 2014

Generating/Verifying Test Patterns
Verification of the EDT Logic

rounds a fraction to the next highest integer.) Note, this equation provides alower bound; the
actual number may be higher.

Minimum number of chain test patterns = 1 + 2°® (!092(number of chains))

How it Works

To better understand the enhanced chain test, you need to understand how the masking logic in
the compactor works. Included in every EDT pattern are mask codes that are uncompressed and
shifted into a mask shift register as the pattern data is shifted into the scan chains. Once a
pattern’s mask codes are in the mask shift register, they are parallel loaded into a hold register
that places the bit values on the inputs to a decoder. Figure 6-3 shows a conceptual view of the
decoder circuitry for asix chains/one channel configuration.

The decoder basically has a classic binary decoder within it and some OR gates. The classic
decoder decodesiits n inputs to one-hot out of 2" outputs. The 2" outputs fall into one of two
groups: the “used” group or the “unused” group. (Unless the number of scan chains exactly
equals 2", there will always be one or more unused outputs.)

Figure 6-3. Example Decoder Circuitry for Six Scan Chains and One Channel

Masking

gates

P — -

: — 1

.3 D
Chain To compactor

Outputs 4 D XOR tree
5 _D_
6 VD

Decoder A """
2" bits out L}

Classic decoder
decodes to 1-hot
out of 2"

n code bits in__|

unused

| Mask Hold Register |

[[]]
edt_mask—| Mask Shift Register |

118 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Verification of the EDT Logic

Each output in the used group is AND’ d with one scan chain output. For a masked pattern, the
decoder typically places a high on one of the used outputs, enabling one AND gate to passiits
chain’s output for observation.

The decoder also has asingle bit control input provided by the edt_mask signal. Unused outputs
of the classic decoder are OR'’ d together and the result is OR’ d with this control bit. If any of the
OR’'d signalsis high, the output of the OR function is high and indicates the pattern is a non-
masking pattern. This OR output is OR’ d with each used output, so that, for a non-masking
pattern, all the AND gates will passtheir chain’s outputs for observation.

The code scanned into the mask shift register for each channel of a multiple channel design
determines the chain(s) observed for each channel. If the code scanned in for a channel isanon-
masking code, that channel’s chains are al observed. If achannel’s code is a masking code,
usually only one of the chainsfor that channel isobserved. The chain test essentialy testsfor all
possible codes plus the edt_mask control bit.

The EDT logic and chain test for a 10X configuration has a minimum of 24 patterns. These 24
patterns can be composed of the following masking and non-masking patterns: one al chains
masked pattern, ten masking patterns, seven masking patterns that observe all chains due to
unused codes, two non-masking patterns that observe all chains, and four XOR patterns that
observe a set of chains

The actual set of chain test patterns depends on how many chains each channel has. For
example, if you have one channel and ten chains, the composition of the chain test will be:

® Pattern 0 — All masking patterns. Control bit is set to 1.

® Patterns 1 through 10 — Masking patterns. Control bit is set to 1. Only one chain will be
observed per channel, due to “used” codes for each channel.

® Patterns 11 through 17 — Masking patterns. Control bit is set to 1. All chainswill be
observed due to “unused” codes.

® Patterns 18 and 19 — Non-masking patterns that observe al chains. Control bit is set to
0.

® Pattern 20 through 23 — X OR masking patterns that observe a set of chains. Control bit
Isset to 0.

Y ou can clearly seethisin the ASCII patterns. For a masking pattern, if the scanned in code
corresponding to a channel isa“used” code, only one of that channel’s chains will have binary
expected values. All other chains in that channel will have X expected values. To see an
example of amasked ASCII pattern, refer to “ Understanding Scan Chain Masking in the
Compactor” on page 255.

Tessent TestKompress User's Manual, v2014.2 119
June 2014

Generating/Verifying Test Patterns
Verification of the EDT Logic

Note
D When thetool generatesthe EDT chain patterns, in addition to non-masking and masking

(1-hot and xor) patterns, the tool aso generates chain test patternsto test all unused
decoder values when all chain patterns are selected. Because of this, the total sum of all
generated patterns may be greater than the sum of non-masking and masking patterns.

So, depending on which chain test isfailing, it is possible to deduce which chain might be
causing problems. In the preceding example, if afailure occurred for any of the patterns 2
through 10, you could immediately map it back to the failing chain and, based on the cycle
information, to afailing cell. For pattern 11, if channel 1 had afailure, you similarly could map
it back to achain and acell. If only a non-masking pattern or a masking pattern with “unused”
codes failed, then mapping is alittle bit tricky. But in this case, most likely masking patterns
would fail aswell.

Optionally, you can shift in custom chain sequences to the current chain test by specifying the
set_chain_test -sequence command. For more information, see the set_chain_test command in
the Tessent Shell Reference Manual.

Controlling the edt_update Signal for Load _Unload

When the tool generates chain test patterns, it adds an extra cycle to the end of the shift cycles
before the load_unload procedure when neither the edt_clock or system clock is pulsed. This
“dead” cycle guarantees the edt_update signal goes high during load_unload regardless of how
you choose to control the edt_update signal.

For example, if you do not explicitly force edt_update high during load_unload becauseit hasa
C1 pin constraint, the STIL pattern file keeps edt_update low during load_unload unless the
extracycle is specified.

Y ou can choose to remove this cycle from the pattern file using

set_chain_test -suppress_capture_cycle on. However, you should use CAUTION when using
this command option. If you remove the extra cycle and do not explicitly force edt_update high
in the load_unload procedure, the pattern file will be incorrect and edt_update will be low
during load_unload.

Coverage for EDT Logic and Chain Test

Experiments performed by Mentor Graphics engineers using sequential fault ssmulation
demonstrate that test coverage for the EDT logic with the enhanced chain test is nearly 100%
when the EDT logic does not include bypass logic (essentially multiplexers that bypass the
decompressor and compactor). Test coverage declinesto just above 94% when the EDT logic
includes bypasslogic. Thisis becausethe EDT chain test does not test the bypass mode input of
each bypass multiplexer (edt_bypassis kept constant in EDT mode during the chain test).

120 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Generating Test Patterns

Note
99+% coverage can be achieved in any event by including a bypass mode chain test (the

standard chain test).

The size of the chain test pattern set depends on the configuration of the EDT logic and the
specific design. Typically, about 18 chain test patterns are required when you approach 10X
compression.

Reducing Serial EDT Chain Test Simulation
Runtime

Y ou can simulate a small subset of the chain test patterns serialy. If you are not using and
enabling the low-power decompressor, you can simply save one non-masking pattern as shown
here:

set_chain_test -type nomask
write_patterns pattern_filename -pattern_sets chain -serial -end 0

If you are using alow-power decompressor, it is safest to run all non-masking patterns (whichis
still asmall subset of all chain patterns) as shown here:

set_chain_test -type nomask
write_patterns pattern_filename -pattern_sets chain -serial

For more information, see the set_chain_test command in the Tessent Shell Reference Manual.

Adding Faults on the Core Only is Recommended

When you generate patterns, if you add faults on the entire design, the tool tries to target faults
inthe EDT logic. Traditional scan patterns can probably detect most EDT logic faults. But
because EDT logic fault detection cannot be serially simulated, the tool conservatively does not
give credit for them. Thisresultsin arelatively high number of undetected faultsin the EDT
logic being included in the calculation of test coverage. Y ou, therefore, see alower reported test
coverage than is actually the case.

The EDT logic and chain test targets faultsin the EDT logic. The tool aways performs the this
test, so adding faults on the entire design is not necessary in order to get EDT logic test
coverage. To avoid false test coverage reports, the best practiceis to add faults on the core only.

Generating Test Patterns

The compression technology supports all of the pattern functionality in uncompressed ATPG,
with the exception of MacroTest and random patterns. This includes combinational, clock-
sequential (including patterns with multiple scan loads), and RAM sequential patterns. It also
includes al the fault types.

Tessent TestKompress User's Manual, v2014.2 121
June 2014

Generating/Verifying Test Patterns
Generating Test Patterns

When you generate test patterns, you should use the dofile and test procedure files the tool
generated during logic creation. If you added boundary scan, you will need to modify the files
as explained in the section, “Modification of the Dofile and Procedure File for Boundary Scan.”

To create the EDT logic, you invoked Tessent Shell with the core level of the design. To
generate test patterns, you invoke Tessent Shell with the synthesized top level of the design that
includes synthesized pads, boundary scan, if used, and the EDT logic. Here is an example
invocation of Tessent Shell with aVerilog file named created_edt_top.v, assumed hereto bethe
top-level file generated when the EDT logic was created:

Invoke Tessent Shell:

<Tessent_Tree Path>/bin/tessent -shell

Y ou are automatically placed in setup mode. Specify the context for generating test patterns and
load the Verilog file and library:

set_context patterns -scan
read_verilog created_edt_top.v
read_cell_library my_atpg_lib
set_current_design top

For adescription of how the created edt _top.v file is generated, refer to the Chapter 4 section,
“Creation of EDT Logic Files.” Next, you need to set up for EDT pattern generation. To do this,
execute the dofile. For example:

dofile created_edt.dofile

For information about the EDT-specific contents of this dofile, refer to “ Test Pattern Generation
Files” in Chapter 4. Enter analysis mode and verify that no DRC violations occur. Pay special
attention to the EDT DRC messages.

set_system_mode analysis

Now, you can enter the commands to generate the EDT patterns. If you ran uncompressed
ATPG on just the core design prior to inserting the EDT logic, it is useful to add faults on just
the core now to enable you to make valid comparisons of test performance using EDT versus
not using EDT.

add_faults /my_core // Only target faults in core
create_patterns

report_statistics

report_scan_volume

Another reason to add faults on the core isto avoid incorrectly low reported test coverage, as
explained earlier in “ Adding Faults on the Core Only is Recommended.”

The report_scan_volume command provides reference numbers when analyzing the achieved
compression.

122 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Generating Test Patterns

Note
D If you reorder the scan chains after you generate EDT patterns, you must regenerate the

patterns. Thisistrue even if the EDT logic has not changed. EDT patterns cannot be
modified manually to accommodate the reordered scan chains.

Figure 6-4 illustrates an important characteristic of the EDT logic during test pattern generation.

Figure 6-4. Circuitry in the Pattern Generation Phase

floating Pl

[e) | Chain 4 :

C C

O 0

m : Chain 3 | m
| p

Sl f a ——So

€ : Chain 2 : (t:

S 0

g r

r { Chain 1 }

Thereisno physical connection between the decompressor and the internal scan chains, as seen
within the tool in the Pattern Generation phase. This modification occurs only within the tool, as
aresult of the“add_scan_chains -internal” command. The tool does not modify the external
netlist in any way.

If EDT Finder ison, the tool traces through the compressor/decompressor logic and maintains
the connections. If EDT Finder is Off, the tool breaks the connection and turns the internal scan
chain inputsinto Pls as a means of controlling the values the ATPG engine can place on them.
The tool exercisesthis control by constraining these PIsto Xs at certain points during pattern
generation, thereby preventing interference with values being output by the decompressor. It
does this while emulating the behavior of an unbroken connection between the decompressor
and the scan chains.

Note

D If you report_primary_inputs, the scan chain inputs are reported in lines that begin with
“USER:”. Thisisimportant to remember when you are debugging simulation
mismatches.

Tessent TestKompress User's Manual, v2014.2 123
June 2014

Generating/Verifying Test Patterns
Generating Test Patterns

Compression Optimization

Y ou can do a number of things to ensure maximum compression: limit observable Xs and use
dynamic compaction.

Using Dynamic Compaction

Y ou should use dynamic compaction during ATPG if your primary objective is a compact
pattern set. Dynamic compaction helps achieve a significantly more compact pattern set, which
isthe ultimate goal of using EDT. Because the two compression methods are largely
independent of each other, you can use dynamic compaction and EDT concurrently. Try to use
create patternsfor the smallest pattern set, asit executes agood ATPG compression flow that is
optimal for most situations.

Note

D For circuits where dynamic compaction is very time-consuming, you may prefer to
generate patterns without dynamic compaction. The test set that is generated is not the
most compact, but it is typically more compact than the test set generated by traditional
ATPG with dynamic compaction. And it is usually generated in much lesstime.

Saving of the Patterns
Save EDT test patterns in the same way you do in uncompressed ATPG.

For complete information about saving patterns, refer to the write_patterns command in the
Tessent Shell Reference Manual.

Serial Patterns

One important restriction on EDT seria patternsis that the patterns must not be reordered after
they are written. Because the padding data for the shorter scan chainsis derived from the scan-
in data of the next pattern, reordering the patterns may invalidate the computed scan-out data.
For more detailed information on pattern reordering, refer to the section, “ Reordering Patterns’
in Chapter 7.

Parallel Patterns

Because parallel simulation patterns force and observe the uncompressed data directly on the
scan cells, they have to be written by the EDT technology which understands and emulates the
EDT logic.

Some ASIC vendors write out parallel WGL patterns, and then convert them to parallel
simulation patterns using their own tools. Thisisnot possible with default EDT patterns, asthey
provide only scan channel data, not scan chain data. To convert these patterns to parallel
simulation patterns, atool must understand and emulate the EDT logic.

124 Tessent TestKompress User's Manual, v2014.2
June 2014

Generating/Verifying Test Patterns
Post-Processing of EDT Patterns

There is an optional switch, -Edt_internal, you can use with the write_patterns command to
write parallel EDT patterns with respect to the core scan chains. Y ou can write these patternsin
tester or ASCII format and use them to produce parallel simulation patterns as described in the
next section.

EDT Internal Patterns

The optional -Edt_internal switch to the write_patterns command enables you to save paralel
patterns as EDT internal patterns. These are tester or ASCII formatted EDT patterns that the
tool writes with respect to the core scan chains instead of with respect to the top-level scan
channel Plsand POs. These patterns contain the core scan chain force and observe data with the
exception that they have X expected values for cells which would not be observed on the output
of the spatial compactor due to X blocking or scan chain masking. X blocking and scan chain
masking are explained in the Chapter 7 section, “Understanding Scan Chain Masking in the
Compactor.” Also, of course, the scan chain force and observe points are internal nodes, not top-
level Plsand POs. Because they provide data with respect to the core scan chains, EDT internal
patterns can be converted into parallel ssimulation patterns.

Note
D The number of scan chain inputs and outputsin EDT internal patterns corresponds to the

number of scan chainsin the design core, not the number of top-level scan channels.
Also, the apparent length of the chains, as measured by the number of shifts required to
load each pattern, will be shorter because the extra shift cycles that occur in normal EDT
patterns for the EDT circuitry are unnecessary.

Post-Processing of EDT Patterns

Sometimes there is a need to process patterns after they are written to afile. Post-processing
might be needed, for example, to control on-chip phase-locked loops (PLLS). Scan pattern post-
processing requires access to the uncompressed patterns. The tool, however, writes patternsin
EDT-compressed format, at which point it istoo late to make any changes. Traditional post-
processing, therefore, is not feasible with EDT patterns.

Note
D An exception is parallel tester or ASCII patterns you write out as EDT internal patterns.

Using your own post-processing tools, you can convert these patternsinto parallel

simulation patterns. See “Parallel Patterns’ on page 124 for more information.

The compressed ATPG engine must set or constrain any scan cells prior to compressing the
pattern. So it is essential you identify the type of post-processing you typically need and then
trandate it into functionality you can specify in the tool as part of your setup for pattern
generation. The compressed ATPG engine can then include it when generating EDT patterns.

Tessent TestKompress User's Manual, v2014.2 125
June 2014

Generating/Verifying Test Patterns
Simulation of the Generated Test Patterns

Simulation of the Generated Test Patterns

Y ou can verify the test patterns using parallel and serial test benches the same way you would
for normal scan and ATPG. When you simulate serial simulation patterns, you can verify the
correctness of the captured data for the pattern, the chain integrity, and the EDT logic (both the
decompressor and the compactor blocks). When simulation mismatches occur, you can still use
the parallel test bench to debug mismatches that occur during capture. Y ou can use the serial
test bench to debug mismatches related to scan chain integrity and the EDT logic.

To verify that the test patterns and the EDT circuitry operate correctly, you need to serially
simulate the test patterns with full timing. Typically, you would simulate all patternsin parallel
and a sample of the patterns serially. Only the seria patterns exercise the EDT circuitry.
Because simulating patterns serially takes along time for loading and unloading the scan
chains, be sure to use the -Sample switch when you write _patterns for serial simulation. Thisis
true even though serial patterns simulate faster with EDT than with traditional ATPG dueto the
fewer number of shift cycles needed for the shorter internal scan chains. The section,
“Simulating the Design with Timing” in the Tessent Scan and ATPG User’s Manual provides
useful background information on the use of this switch. Refer to the write_patterns command
description in the Tessent Shell Reference Manual for usage information.

Note
D Y ou must use Tessent Shell to generate parallel simulation patterns. Y ou cannot use a

third party tool to convert parallel WGL patterns to the required format, as you can for
traditional ATPG. Thisisbecause parallel smulation patternsfor EDT are uncompressed
versions of the compressed EDT patterns applied by the tester to the scan channel inputs.
They also contain EDT-specific modifications to emulate the effect of the compactor.

HDL Simulation Setup
First, set up awork directory for ModelSim.

../modeltech/<platform>/v1ib work

Then, compile the simulation library, the scan-inserted netlist, and the simulation test patterns.
Notice that both the parallel and seria patterns are compiled:

../modeltech/<platform>/vliog my_parallel pat.v my_serial_pat.v \
../created_edt_top_gate.v -y my_sim_1lib

Thiswill compile the netlist, al necessary library parts, and both the serial and parallel patterns.
Later, if you need to recompile just the patterns, you can use the following command:

../modeltech/<platform>/vlog pat_p_edt.v pat_s_edt.v

Running the Simulation

After you have compiled the netlist and the patterns, you can simulate the patterns using the
following commands:

Tessent TestKompress User's Manual, v2014.2 126
June 2014

Generating/Verifying Test Patterns
Simulation of the Generated Test Patterns

./modeltech/<platform>/vsim edt_top_pat_p_edt_v_ctl -do "run -all" \
-1 sim_p_edt.log -c

./modeltech/<platform>/vsim edt_top_pat_s_edt_v_ctl -do "run -all" \
-1 sim_s_edt.log -c

The“-¢” runs the ModelSim ssimulator in non-GUI mode.

Tessent TestKompress User's Manual, v2014.2 127
June 2014

Generating/Verifying Test Patterns
Simulation of the Generated Test Patterns

128 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 7
Modular Compressed ATPG

Modular Compressed ATPG is the process used to integrate compression into the block-level
design flow. Integrating compression at the block-level is similar to integrating compression at
the top-level, except you create/insert EDT logic into each design block and then, integrate the
blocks into atop-level design and generate test patterns.

Note
In this chapter, an EDT block refersto a design block that contains afull complement of

EDT logic controlling al the scan chains associated with the block.

The modular flow includes one or more of the top-level compressed pattern flows. For
information on these top-level flows, see, “ The Compressed Pattern Flows” on page 27 of this
manual .
Requirements

® Block-level compression strategy

® Gatelevel or RTL netlist for each block in the design

® Tessent Scan or other scan insertion tool (optional)

® Tessent cell library

® Design Compiler or other synthesis tool

®* ModelSim or other timing simulator

Tessent TestKompress User's Manual, v2014.2 129
June 2014

Modular Compressed ATPG

Modular Flow Diagram

gate-level netlists
and/or

RTL nethists

Test procadure
files for all blocks

Integrate EDT Logic
into each Design Block

EDT blocks
ATPG scripts

Dofiles
for all blocks

netlist

Create a Top-level Test
Procedure File

Create a Top-level
Dofile

Top-level test
procedure file

Top-evel dofile

Top-level design
netlist

Top-level dofile |————m

T I
EDT Blocks ~ ——» Cfﬂat% zs':';ﬁ-level
Top-level test
procedure file H

TR Generate

Test Patterns

T =N
Top-level design /'

Test patterns

130

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Modular Compressed ATPG

Flow Stage Descriptions

Table 7-1. Modular Flow Stage Descriptions

Stage

Description

Integrate EDT logic
into each Design
Block

EDT logic can be integrated into each design block using any of
the top-level methods described in this document. For more
information, see the following sections of this document:

® |ntegrating Compression at the RTL Stage

® The Compressed Pattern Flows

Thefirst step to using compression in your design flow is
developing a compression strategy. For more information, see
“Development of a Block-Level Compression Strategy” on
page 133.

Create aTop-level
Test Procedure File

Thetest procedurefiles generated during EDT | P creation for each
block must be merged to form atop-level test procedure file. For
more information, see “ Creating a Top-level Test Procedure File”
on page 145.

Create aTop-level
Design

Design blocks must be integrated to form a single top-level design
netlist. For more information, see “ Creating the Top-level Netlist”
on page 152.

Create a Top-level
Dofile

The dofiles generated during EDT IP creation for each block must
be combined to create a single top-level dofile. For more
information, see “Generation of Top-level Test Patterns’ on

page 157.

Generate Test
Patterns

Test patterns are set up and generated using the top-level netlist,
test procedure file, and dofile. For more information, see
“Generation of Top-level Test Patterns’ on page 157.

Y ou should also create bypass test patterns for the top-level netlist
at this point. For more information, see “ Compression Bypass
Logic” on page 208.

Related Topics
Generating Modular EDT Logic for a Fully Integrated Design

Tessent TestKompress User's Manual, v2014.2 131
June 2014

Modular Compressed ATPG
Understanding Modular Compressed ATPG

Understanding Modular Compressed ATPG

The EDT logic inserted in adesign block controls all scan chains within the block.

Figure 7-1 shows an example of a modular design with four EDT blocks. Each EDT block
consists of adesign block with integrated EDT logic. The design also contains a separate EDT
block for the top-level glue logic. The top-level glue logic can be tested with EDT logic as
shown or with bypass logic as described in “ Compression Bypass Logic” on page 208.

Figure 7-1. Modular Design with Five EDT blocks

AlA

EDT block 1 EDT block 2

Ss0~00T 300
SO0~0T 300

a 4
[socvnno=c3000T|

[ENEEEENIEEEEEEEN|
| I O A O A A A I

I

SOVWUVUD=-T 3000

<
EDT block 5 (Top-level Glue Logic) J

=0 300
T 300
[

EDT block 3 EDT block 4

SO0~0T 300

S00NVUVD=T3000

=0—~00T 300
T
|

HO A A

V-
0nNND—=03000
I I I I I I I I A A A A |

Al

Each EDT block has adiscrete netlist, dofile, and test procedure file that are integrated together
to form top-level files for test pattern generation.

132 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

Development of a Block-Level Compression
Strategy

Y ou can create and insert EDT logic into design blocks with any of the methods outlined in
Chapters 2 through 5 of this manual. Y ou can a'so mix and match methods between blocks.

Reference the following rules and guidelines while developing your compression strategy for
the modular flow:

® Scan chain lengths should be balanced — Balanced scan chainsyield optimal
compression. Plan the lengths of scan chainsinside al blocks in advance so that top-
level (inter-block) scan chain lengths are relatively equal. See “Balancing Scan Chains
Between Blocks™ on page 134.

* EDT logic names must be unique — When multiple EDT blocks are integrated into a
top-level netlit, all of the EDT logic file names and internal modul €/instance names
must be unique. See “Creation of EDT Logic Files’ on page 78.

® FEach EDT block must have a discr ete set of scan chains — Scan chains cannot be
shared between blocks.

® Uncompressed scan chains must be connected to top-level pins— Uncompressed
scan chains are scan chains not driven by or observed through the EDT logic.
Uncompressed scan chains are supported if the inputs and outputs are connected directly
to top-level pins. Uncompressed scan chains can also share top-level pins. See
“Inclusion of Uncompressed Scan Chains’ on page 40.

® Only certain control pins can be shared with functional pins— These pins can be
shared within the same EDT block. See “Functional/EDT Pin Sharing” on page 67.

® Control signalscan beshared by EDT blocks — Control signals such as edt_update,
edt_clock, edt_reset, scan_enable and test_en may be shared between EDT blocks; for
example, the edt_update signals from different blocks could be connected to the same
top-level pin. See“ Creating the Top-level Netlist” on page 152.

® Scan channels must have dedicated top-level pins— Only input scan channels
between identical EDT blocks can share top-level pins. See “ Sharing Input Scan
Channelson Identical EDT Blocks’ on page 134.

® Block-level signals must be connected in the top-level netlist — Thisincludes
connecting EDT logic signalsto 1/0 pads and inserting any multiplexers needed for
channel output signals shared with functional signals. See “ Creating the Top-level
Netlist” on page 152.

® EDT logic must be synthesized and verified for each block — See*® Synthesizing the
EDT Logic” on page 101 and “Generating/Verifying Test Patterns” on page 111.

Tessent TestKompress User's Manual, v2014.2 133
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

Balancing Scan Chains Between Blocks

Design blocks may contain alarge amount of hardware with many internal blocks and many
scan chains, so scan chain balance is very important for generating efficient test patterns. Y ou
should carefully plan the lengths of scan chainsinside each design block so that all blocks have
approximately the same scan chain lengths.

The following sections provide information on scan chain planning at the block level:

® “Determining How Many Scan Chainsto Use” on page 41
® “Varying the Number of Scan Chains’ on page 250
* “Varying the Number of Scan Channels’ on page 250

Y ou should target the same compression for every block and apportion avail able tester channels
according to the relative share of the overall design gate count contained in each block. Use the
following two equations to cal culate balanced scan chain lengths across multiple blocks:

of Scan Cedllsin block

Scan Chain Length ~ (# of Channelsfor block) x (Chain-to-channel ratio)

of Scan Cellsin block
of Channelsfor block = proer Cellsin chip x # of top-level Channels

Tip: Sincedifferent designers may perform scan insertion for different design blocks, itis
important to work together to select a scan chain length target that works for all blocks.

Sharing Input Scan Channels on Identical EDT
Blocks

You can set up identical EDT blocks to share input scan channels and top-level pins when
integrating modular design blocksinto atop-level netlist.

When EDT blocks share input scan channels, test patterns are broadcast via shared top-level
pinsto all theidentical EDT blocks simultaneously. This functionality reduces top-level pin
requirements and increases the compression ratio for the input side of the EDT logic.
Requirements
® EDT blocks must be identical asfollows:
o Number of input channels and output channels must match
o Input, output, and compactor pipeline stages must match

o Order of scan chains and the number of scan cellsin each must match

134 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

o Input channel/top-level pin inversions must match

All corresponding input channels on identical EDT blocks must be shared in the
corresponding order. For example the following channels can be shared:

o input channel 1 of blockl
o input channel 1 of block2

o input channel 1 of block3 and so on

Top-Level Dofile Modifications

Y ou need to set up the input channel sharing when the block-level dofiles are integrated into a
top-level dofile. Depending on the application, you can set up the input channel sharing in one
of two ways:

Make top-level pins equivalent

Use this method when atop-level pin exists for each input channel by defining the pins
for the corresponding input channels on each block as equivalent. For example:

add_edt_blocks corel

set_edt_pins input 1 corel_edt_channels_inl

set_edt_pins input 2 corel_edt_channels_in2

add_edt_blocks core2

set_edt_pins input 1 core2_edt_channels_inl

set_edt_pins input 2 core2_edt_channels_in2

add_input_constraints -eq corel_edt_channels_inl
core2_edt_channels_inl

add_input_constraints -eq corel_edt_channels_in2
core2_edt_channels_in?2

Physically sharetop-level pins

Use this method when top-level pins need to be shared between input channels by
explicitly specifying the top-level pinsto be same. For example:

add_edt_blocks corel
set_edt_pins input 1 edt_channels_inl
set_edt_pins input 2 edt_channels_in2
add_edt_blocks core2
set_edt_pins input 1 edt_channels_inl
set_edt_pins input 2 edt_channels_in2

During DRC, the blocks that share input channels are reported. Aslong asthe EDT blocks are
identical and the channel sharing is set up properly, EDT DRCs should pass.

Use the report_edt_configurations -All command to display information on the EDT blocks set
up to share input channels.

Tessent TestKompress User's Manual, v2014.2 135

June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

Channel Sharing for Non-ldentical EDT Blocks

This section contains the following information:

Overview of Channel Sharing Functionality. o ... 136
ComPression ANalYSISo 138
EDT IP Creation With Separate Control and Data Input Channels 139
Rulesfor Connecting Input Channelsfrom CorestoTop............ccvviven.... 141
Channel Sharing RePOrtiNgottt e 142
LimIitatioNS . . .o 142

Overview of Channel Sharing Functionality

Identical EDT blocks are composed of homogeneous cores that have exactly the same scan
chain and EDT structures. Therefore, you can generate scan patterns for one block and
broadcast the pattern stimuli to the inputs of all identical blocks.

Tessent tools support pattern stimuli broadcast to identical blocks as described in section
“Sharing Input Scan Channels on Identical EDT Blocks™ on page 134.

Non-identical EDT blocks are composed of heterogeneous cores that cannot share all input
channels. Tessent tools aso provide support for using the same channel to drive multiple non-
identical EDT blocks.

Channel sharing between non-identical EDT blocks enables you to improve data and time
compression results for most designs that use amodular EDT approach. Specifically, the
following scenarios can gain greater benefits from this feature:

® Designswith alimited number of top-level ports available for scan channel 1/0

* Designswith alarge pattern increase when comparing asingle EDT block at the top
level with multiple EDT blocks across the design

* Designswith alarge number of EDT aborted faults due to high chain-to-channel ratios
within individual EDT blocks

Support for channel sharing between non-identical EDT blocks does not have any impact on the
output channels. The EDT hardware created for channel sharing uses existing functionality that
uses dedicated (not shared) output channels.

Channel sharing between non-identical EDT blocks is supported by the compression analysis,
and the standard EDT reporting capability.

Y ou implement channel sharing across non-identical EDT blocks by separating the control and
datainput channels when creating the EDT IP. This allows the data channels to be shared across
multiple non-identical blocks.

136 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

The default EDT hardware creates control dataregistersfor X press compactor masking bits and
low-power control bits (if they exist) in front of each EDT input channel. The diagramin
Figure 7-2 shows how test data (D) loaded into an EDT block is followed by control data for
compactor masking (C) and low-power (LP) data.

Figure 7-2. Non-Separated Control Data Input Channels

LP LP C D D D D D D D D D D

LP LP C D D D D D D D D D D

LP LP C D D D D D D D D D D

You can create EDT hardware that separates control input channels from data input channels.
The resulting hardware includes several input channels that only load scan test datainto each
EDT block, asillustrated in Figure 7-3. By separating the control data that is specific to each
block into dedicated input channels, the scan test data (D) input channels can be shared across
multiple non-identical blocks. (With this option, an EDT block can no longer have only one
input channel; it must have at least one control channel and one data channel.)

Figure 7-3. Separated Control Data Input Channels

Because the broadcast is only allowed to go to multiple non-control input channels, normally at
least one dedicated control channel for each EDT block is still required, except for the special
caseinwhich an EDT block has a basic compactor but does not have a low-power controller.

In order to get the most benefit from input channel sharing, the number of input channelsin
each core should be maximized so that you share as many input channels as possible among
multiple non-identical cores and take full advantage of all available top-level datainput
channels.

Channel sharing also resultsin areduction in overall shift cycles. As shown in Figure 7-3, by
moving the control data to a dedicated channel that isloaded with scan data, no extra shift
cycles are added only for the purpose of masking or low-power control bits. This provides an
additional increase in overall compression of test data and application time.

Also, as shown in Figure 7-3, the input control channels can also load scan test data (D) if the
number of control bits (LPs and Cs) is smaller than the length of the longest scan chain.
Similarly, if adesign requires many control bits, the EDT block may require more than one

Tessent TestKompress User's Manual, v2014.2 137
June 2014

Modular Compressed ATPG

Development of a Block-Level Compression Strategy

control channel. The tool determines the appropriate number of control channels based on the
number of masking and low-power control bits and the length of the longest scan chain.

Compression Analysis

The Compression Analyzer in Tessent TestKompress fully supports channel sharing and can be
used to assess the effectiveness of channel sharing in combination with other channel

configurations.

Y ou run compression analysis with channel sharing at the top level of adesign using the
analyze compression command. The following switches have special meaning for channel

sharing:

® -INPut_channels — defines the total number of control and data channels for each

block.

* -SHARE_data channels[blockl block?2 ...] — defines the channel sharing group.

® -DATA_and control_channels[int] — defines the total number of input channels,
across all blocks, that can be shared among that group.

Optionally, you can alow this command to calculate the required number of input channels by
using this command without specifying the total number of input channels.

For example, you can emulate the displayed configuration shown in Figure 7-4 using the
analyze compression command with the -input_channels and the -share_data channels

-data_and_control _channel switches.

Figure 7-4. Channel Sharing Example

Controd channe

Contred channel

Controd chans

Controd channal

Data channel

-

Data channe

Data channe

138

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

analyze_compression -edt_block Blockl -input_channels 3 -output_channels 1\
-edt_block Block2 -input_channels 3 -output_channels 1\
-edt_block Block3 -input_channels 5 -output_channels 1\
-share_data_channels Block1 Block2 Block3
-data_and_control_channels 7

All other analyze compression command options are also supported, and you can use them to
run various experiments.

EDT IP Creation With Separate Control and Data Input
Channels

The only change you need to make to the EDT IP creation step is to separate the control and
datainput channels.

Y ou can create the hardware that supports separate control and datainput channels by using the
“set_edt _options-separate_control_data_channels ON” command in setup mode as shown here:

SETUP> set_edt_options -separate_control_data channels ON

By default, the -separate_control_data_channelsis set to OFf. When enabled, the
“-separate_control_data_channels ON” switch also modifies the generated EDT setup dofile to
include information about the separate control and data channels.

Typically, each EDT block needs to have at least one dedicated channel that cannot be shared,
while all others can be shared. The dofiles generated in the EDT IP creation step will contain all
of the information needed to fully describethe EDT hardware at each block. Y ou do not need to
make any changes to the pattern generation step.

For an EDT block with an X press compactor and/or low-power controller, you must have at
least one dedicated control channel, and none of its control channels can be shared with other
EDT blocks. The only exception to thisrequirement isan EDT block that has a basic compactor
and does not have a low-power controller; in this case, the block is not required to have a
control channel. The broadcast to shared channelsis only allowed for data channels with no
control bits.

Maximizing Block-Level Channels

In order to maximize the benefits of channel sharing, you should maximize the number of input
channels at the core level to take full advantage of al available top-level input channels. For
example, in Figure 7-5, the design hastwo EDT blocks, each block has four input channelswith

Tessent TestKompress User's Manual, v2014.2 139
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

mixed control and data on each channel. Clearly, without channel sharing, the design requires
eight input channels at the top-level.

Figure 7-5. Non-Channel Sharing

/ N

[
_ . |D C
“1E
shared > @]
control + data > 8 M™T
L > M P
P
B > D C
shared | »|E @]
control + data > 8 Mo T
L > % P

With channel sharing implemented, as shown in Figure 7-6, the design requires only five input
channels at the top-level, and each block still has four input channels (three data channels are
shared by each core). Thisimplementation mitigates the pin-limitation problem at the top-level,
while maintaining the same bandwidth at the core-level.

Figure 7-6. Channel Sharing Scenario 1

/ N\

B
control > .C
shared > C :M—_}
data .10 :P
(E
—>|D .C
| E o)
.IC PPy o 4
control > M p

Y ou can optimize input channel sharing by maintaining the same input pin count at the
top-level, while increasing the number of input channels in each core to maximize the number
of input channels shared among multiple non-identical cores.

In this channel sharing configuration, the design still has eight input channels at the top-level, as
shown in Figure 7-7, but each block now has seven input channels (six data channels are shared

140 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

by each core); this can improve their bandwidth for each core, and thereby improve encoding
efficiency and reduce the number of patterns.

Figure 7-7. Channel Sharing Scenario 2

/ N\

control >|D C
E O
shared C M —>
data o) P
.| M
L 1
D
E C
C (@]
Q M >
o | M
control >l P
\, /

Design Rule Checks for Channel Sharing

The K15 DRC verifiesthat all scan channels and control pins have the proper top-level pins.
Each scan input channel requires a dedicated top-level pin, except for blocks (identical and non-
identical) set up for input channel sharing. The K15 allows one top-level input port to broadcast
to multiple EDT blocks.

For more information on the specific checks performed, see “K15” in the Tessent Shell
Reference Manual.

Rules for Connecting Input Channels from Cores to Top

For the non-core mapping for ATPG flow, during EDT IP creation, the control and data
channels for each core are connected to the top-level ports with the command
“set_edt_pinsinput_channel index [pin_name]”. For the shared data channels, you use the same
port names.

In the core mapping for ATPG flow, you need to integrate the cores to the top level. In either
case, data input channels should be connected based on the following rules:

® Datainput channels should be shared so that top-level input channels are broadcast to
EDT blocks.

®* The sametop-level input channel should not drive datainto multiple channels on the
same EDT block.

Tessent TestKompress User's Manual, v2014.2 141
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

® Each top-level datainput channel is NOT required to drive datainto every EDT block.
Different blocks may have a different number of data input channels.

Channel sharing has no impact on how output channels are connected.

Channel Sharing Reporting

The input channelsto EDT decompressor can be divided into two categories. control channels
that deliver control data, and data channels that deliver tests. (Note that the control channel may
also be used to deliver atest if it is shorter than the data channels.) When broadcasting to non-

identical blocks, the data channels can share the same inputs, but control channels cannot.

When channel sharing isused, it is desirable to report the channel sharing information. The tool
provides the report_edt _configurations and the “report_edt_pins-Group_by pin_name”
commandsto allow you to report channel sharing information. Y ou can use these commandsin
the EDT IP Creation phase and also in the Pattern Generation phase when in either insertion or
analysis mode.

Refer to the examples on the report_edt_configurations command reference page for an
example of how channel sharing information is reported.

Limitations

The channel sharing functionality has the following limitations:

¢ Channel sharing is not allowed between EDT input channels and uncompressed chains
inputs.

® Input channel sharing between non-identical and identical blocks is not supported.

For example, adesign may have five cores where core 1 and core 2 are identical, cores
3,4 and 5 are non-identical, and cores 3, 4 and 5 are different from core 1 and core 2.

Y ou can share inputs between core 1 and core 2, and you can share inputs between cores
3, 4 and 5. However, you cannot share inputs between the identical cores (1 and 2) and
the non-identical core (3, 4 and 5).

® Mapping compressed EDT patterns to bypass patterns is not allowed. That is, the
write_patterns -edt_bypass and -edt_single bypass chain options are disabled for
channel sharing.

® All core-level shared channels driven by the same top-level channel port must have the
same number of external pipelining stages and the same input pin inversions.

® The non-overlapping clock setting should be the same for all blocks that are sharing
input pins. That is, the“set_edt_options-pulse_edt_before _shift_clocks’ option must be
set the same for al blocks that are sharing input pins.

142 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Development of a Block-Level Compression Strategy

® When generating bypass uncompressed patterns, the generated patterns mimic Illinois
scan patterns, since the existing hardware will be used for bypass patterns, which may
cause coverage drop compared to the normal bypass patterns.

Generating Modular EDT Logic for a Fully
Integrated Design

Use this procedure to simultaneously generate modular EDT logic for all blocks within afully
integrated design. Theresulting EDT logic can be set up as multiple instances within the design.
If the integrated design shares top-level channels or requires any form of test scheduling, you
must generate modular EDT logic one block at atime.

The files generated by this procedure support the same capabilities as the block by block
modular flow.
Prerequisites
®* Theintegrated design must be complete and fully functional.
® Each block must have dedicated input and output channels.

Procedure
1. Addeach EDT block, one at atime, using the add_edt_blocks command.

2. OnceaEDT block isadded, set up the EDT logic for it with aset_edt _options
command. The set_edt_options command only appliesto the current EDT block. EDT
control signals can be shared among blocks.

3. Onceadl the design blocks are added and set up, enter analysis mode. For more
information, see the set_system mode command.

4. Enter awrite_edt_filescommand. A composite set of filesis created including an RTL
file, asynthesis script, a dofile/testproc file, and a bypass dofile/testproc file. All block-
level EDT pins are automatically connected to the top level.

5. Usethis composite set of filesto synthesize EDT logic and generate test patterns.

Tessent TestKompress User's Manual, v2014.2 143
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Estimating Test Coverage/Pattern Count for EDT
Blocks

After you create EDT logic for ablock, you should use this procedure to get a more realistic
coverage estimate before synthesis.

See “ Analyzing Compression” on page 48.
Test coverage reported may be higher than when the EDT block is embedded in the design
because the tool has direct access to the block-level inputs and outputs at this point.
Procedure
1. Constrain al functional inputsto X. For example:
add_input_constraints my_func_in -cx
Where the functional input my_func_inisconstrained to X.
2. Mask al functiona outputs. For example:
add_output_masks my_func_outl my_func_out2

Where the two primary outputs my_func_outl and my_func_out2 are masked.

Note
D Constraining inputs to X and masking the outputs produces very conservative estimates

that negatively affect compression because al inputs become X sources when the CX
constraints are added to the pins.

Note
D Because final test patterns are generated at the top-level of the design and are affected by
all cores, the final test coverage and pattern count may vary.

Connecting EDT Signals From Cores to the
Top Level

Y ou should use this procedure if you are manually integrating your EDT blocksto the top level.

In this case, you manually create the top-level test procedure file based on the contents of the
block-level test procedure files, and you use the add_edt connections command to create the
connections between the blocks and the top level of the design

144 Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Creating a Top-level Test Procedure File

Prior to running top-level ATPG, you must integrate all block-level test procedure filesinto a
single top-level test procedurefile.

Thisisillustrated in Figure 7-8.

Figure 7-8. Creating the Top-level Test Procedure File

hi
| |
Test — Test = Test ——
procedure procedure procedure
file for file for file for
TK block 1 TK block 2 TK block 3
., 7
N ‘ /
‘\\\ II__.-'
7
hY ‘. /
™,
|I *

Top-level test
procedure file

When EDT logic is created for each block, a block-level test procedurefileis created. See” Test
Procedure File”. In anormal compressed ATPG flow, this test procedure fileis used to create
final test patternsfor the design. However, in amodular compressed ATPG flow, you manually
combine the relevant content from each block-level test procedure file into a single top-level
test procedure file that is used for top-level pattern generation.

To create the top-level test procedure file, you take the block-level test procedure files and
aggregate test-setup, load-unload, shift and capture procedure information into one file. The
top-level test procedure file is a superset of the block-level test procedure files and typically
consists of clock definitions and force or pulse statements for edt_update and edt_clock during
theload unload, shift and capture procedures. Pin names may also need to be changed. This
processisillustrated in the following procedure.

Prerequisites
e All EDT blocks are created and verified.

Tessent TestKompress User's Manual, v2014.2 145
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Procedure

1. Copy and use one of the block-level test procedure files as atemplate for the top-level
file. Y ou should use the block-level test procedure file with the most test procedures.

2. Using atext editor, copy and paste test procedures from the other block-level filesinto
the top-level file.

3. Update the timeplate or timeplates to include all statements present in each block-
specific timeplate and customize the top-level timeplate as needed. As you add
statements, update pin names to match the corresponding name changes in the top-level
netlist. See Figure 7-9.

Figure 7-9. Creating a Top-level Timeplate

timeplate gen_tpl = timeplate gen_tpl =
force_pi 0; force_pi 0;
measure_po 100; measure_po 100;
pulse clk 200 100; pulse clk 200 100;
pulse edt_clock 200 100; pulse edt_clock 200 100;
pulse ramclk 200 100; period 400;
period 400; end;

end;

timeplate gen_tpl =
force_pi 0;
measure_po 100;

P pulse corel_clk 200 100;
pulse core2_clk 200 100; ——

P pulse edt_clock 200 100; -
pulse ramclk 200 100;

p period 400;

end;

4. Update the load_unload procedure to include all statements present in each block-level
test procedure. As you add statements, update the pin names. See Figure 7-10.

146 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Figure 7-10. Creating a Top-level Load_unload Procedure

procedure load_unload = procedure load_unload =
scan_group grpl; scan_group grpl;
timeplate gen_tpl; timeplate gen_tpl;
cycle = cycle =
force clk 0O; force clk 0;
force edt_bypass 0; force edt_bypass 0;
force edt_update 1; force edt_update 1;
force edt_clock 0; force edt_clock 0;
force ramclk 0; force scan_en 1;
force scan_en 1; pulse edt_clock;
pulse edt_clock; end;
end; apply shift 26;
apply shift 16; end;
end;

procedure load_unload =
scan_group grpl;
timeplate gen_tpl;
cycle =
- p» force corel_clk 0;
force core2 clk 0; ——
—— > force shared_edt_bypass 0; @—
——— > force shared_edt_update 1; -—
——p» force edt_clock 0; -—
———p» force ramclk 0;
—————p» force corel_scan_en 1;
force core2_scan_en 1l; q4——
L p» pulse edt_clock; -
end;
apply shift 26; -e——|Mustbe greater than one.
end;

Note
D The number specified in the apply shift statement should be greater than one but is

otherwise irrelevant; actual shifts are determined by the actual traced length of the scan
chains.

5. Update the shift procedure to include statements present in each block-specific shift
procedure. Asyou add statements, make updates to the pin names similar to those in the
top-level timeplate and load_unload procedure. See Figure 7-11.

Tessent TestKompress User's Manual, v2014.2 147
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Figure 7-11. Creating a Top-level Shift Procedure

procedure shift =
scan_group grpl;
timeplate gen_tpl;
cycle =
force_sci;
force edt_update 0;
measure_sco;
pulse clk;
pulse edt_clock;
end;
end;

procedure shift =

cycle =
force_sci;

measure_sco;

end;
end;

scan_group grpl;
timeplate gen_tpl;

——p» force shared_edt_update 0; -—

L p» pulse corel_clk;
pulse core2_clk; 44— — |

L p» pulse edt_clock; -

procedure shift =
scan_group grpl;
timeplate gen_tpl;
cycle =
force_sci;
force edt_update 0;
measure_sco;
pulse clk;
pulse edt_clock;
end;
end;

If the same procedure occurs in multiple block-level test procedure files, you need to include it
just once in the top-level file. But you must include all the pin-specific statements (force, pulse,

and so on) from each block-level version.

Block-level Test Procedure Files Example

The following example illustrates two test procedure files written when the EDT logic was
created for the same two sub-blocks used in the netlist and dofile examples. Following these
block-level examplesisthe top-level test procedure file created from them.

Notice the identical pin namesin the force and pulse statements in each block-level file. To
force/pulse the correct pins at the top-level, you need to change the block-level pin names at the
top level when you merge the statements from the block-level files into the top-level procedure

// created2_edt.testproc

//
set time scale 1.000000 ns ;

set strobe_window time 100 ;

timeplate gen_tpl =

file.
// created_edt.testproc
éét time scale 1.000000 ns ;
set strobe_window time 100 ;
timeplate gen_tpl =

148

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

force_pi 0 ;
measure_po 100 ;
pulse clk 200 100;
pulse edt_clock 200 100;
pulse ramclk 200 100;
period 400 ;

end;

procedure capture =
timeplate gen_tpl ;
cycle =
force_pi ;
measure_po ;
pulse_capture_clock ;
end;
end;

procedure ram_passthru =
timeplate gen_tpl ;
cycle =
force_pi ;
pulse_write_clock ;
end ;
cycle =
measure_po ;
pulse_capture_clock ;
end;
end;

procedure ram_sequential =
timeplate gen_tpl ;
cycle =
force_pi ;
pulse_read_clock ;
pulse_write_clock ;
end ;
end ;

procedure clock_sequential =
timeplate gen_tpl ;
cycle =
force_pi ;
pulse_capture_clock ;
pulse_read_clock ;
pulse_write_clock ;
end ;
end ;

procedure shift =

scan_group grpl ;
timeplate gen_tpl ;
cycle =

force_sci ;

force edt_update 0 ;

measure_sco ;

pulse clk ;

pulse edt_clock ;
end;

force_pi 0 ;
measure_po 100 ;
pulse clk 200 100;
pulse edt_clock 200 100;
period 400;
end;

procedure capture =
timeplate gen_tpl ;
cycle =
force_pi ;
measure_po ;
pulse_capture_clock ;
end;
end;

procedure shift =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force_sci ;
force edt_update 0 ;
measure_sco ;
pulse clk ;
pulse edt_clock ;
end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force clk 0 ;
force edt_bypass 0;
force edt_clock 0;
force edt_update 1;
force scan_en 1 ;
pulse edt_clock ;
end ;
apply shift 26;
end;

procedure test_setup =
timeplate gen_tpl ;
cycle =
force edt_clock 0 ;
end;
end;

Tessent TestKompress User’'s Manual, v2014.2
June 2014

149

Modular Compressed ATPG

Connecting EDT Signals From Cores to the Top Level

end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force clk 0 ;
force edt_bypass 0;
force edt_clock 0;
force edt_update 1;
force ramclk 0 ;
force scan_en 1 ;
pulse edt_clock ;
end ;
apply shift 16;
end;

procedure test_setup =
timeplate gen_tpl ;
cycle =
force edt_clock 0 ;
end;
end;

Top-level Test Procedure File Example

The following example illustrates a top-level test procedure file that aggregates all the
procedures from the preceding block-level files. Notice that, with the exception of all the shared
EDT control pins, pins with the same name from different blocks were given unique names by
addition of a prefix (shown in bold font) indicating the block-level design where they occur. Be
sure the top-level pin names you use in the top-level test procedure file match the names you

gave these pinsin the netlist.

// all_cores_edt.testproc
//

// Manually created from createdl_edt.testproc & created2_edt.testproc

//
set time scale 1.000000 ns
set strobe_window time 100

timeplate gen_tpl =
force_pi 0 ;
measure_po 100 ;
pulse corel_clk 200 100
pulse core2_clk 200 100
pulse edt_clock 200 100
pulse ramclk 200 100 ;
period 400 ;

end;

procedure capture =
timeplate gen_tpl ;
cycle =
force_pi ;
measure_po ;

7

’

150

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG

Connecting EDT Signals From Cores to the Top Level

end;

pulse_capture_clock
end;

’

procedure ram_passthru
timeplate gen_tpl
cycle =
force_pi ;
pulse_write_clock ;
end ;
cycle =
measure_po ;

end;

procedure ram_sequential

end

procedure clock_sequential

end

pulse_capture_clock

end;

’

timeplate gen_tpl

cycle =

force_pi ;
pulse_read_clock ;
pulse_write_clock ;

end ;

7

timeplate gen_tpl

cycle =

force_pi ;

pulse_capture_clock ;
pulse_read_clock

7

7

’

7

pulse_write_clock ;

end ;

’

procedure shift =
scan_group grpl ;
timeplate gen_tpl

cycle =

force_.

sci ;

’

7

7

force shared_edt_update 0
measure_sco ;

pulse corel_clk
pulse core2_clk
pulse edt_clock

end;

end;

procedure load_unload
scan_group grpl ;
timeplate gen_tpl

cycle =
force
force
force
force
force
force

’

7
’

’

corel_clk O
core2_clk O
shared_edt_bypass 0
shared_edt_update 1

shared edt_clock 0

ramclk O

’

7

7

’

7

7

’

Tessent TestKompress User’'s Manual, v2014.2

June 2014

151

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

force corel _scan_en 1 ;
force core2 scan_en 1 ;
pulse edt_clock ;
end;
apply shift 26;
end;

procedure test_setup =
timeplate gen_tpl ;
cycle =
force edt_clock 0 ;
end;
end;

Creating the Top-level Netlist

Once al EDT blocks are created and verified, you must merge them into a single top-level
netlist for final test pattern generation. Merging the EDT blocksinto asingle design isthe
process of building a netlist that instantiates all of the EDT blocks including al of the
interconnects needed for the functional design. This processis referred to as the Integration
phase.

This step-by-step process invokes Tessent Shell in an integration session to make the
connections required to integrate the EDT blocks into the netlist. EDT control signals, such as
edt_update, edt_clock, edt_bypass, edt_reset, scan_enable and test_en, can be shared between
blocks, but all scan channels must have dedicated top-level pins. Y ou must use the
add_edt_connections command to actually create the connections between the blocks and the
top level of the design as shown in Figure 7-12 on page 154 and Figure 7-13 on page 156.

Note
Alternatively, you can skip the integration process and make these connections manually

or with another netlist editing tool.

Prerequisites

® All EDT blocks are created and verified. All design blocks that include EDT logic are
fully defined; no blackboxes can be used.

® Prior to beginning this step-by-step process, atop-level test procedure file must be
defined. The top-level test procedure file can only use top-level pinsthat already exist in
the netlist before integration.
Procedure

The following commands are typically assembled in a dofile and used to drive the session
automatically from the command line. For more information, see “Batch Mode” on page 25.

1. Invoke Tessent Shell. The tool invokesin setup mode.

152 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

2. Read in the top-level design netlist and perform the necessary setup.

3. Add thetop-level scan chains and test procedure file. For example:
add_scan_groups grpl top.testproc

4. Definetop-level clocks and pin constraints. For example:

add_clocks 0 clk tk_clk
add_input_constraints tk_clk -CO

5. Enable EDT mapping. For example:
set_edt_mapping on -verbose on

EDT mapping enables the tool to obtain EDT pin information from the
block-level dofiles.

6. Add each EDT block and specify its location and dofile. For example:
add_edt_block top

set_edt_instances -block_location /
dofile edt_ip_top/created_edt.dofile

add_edt_block blockl
set_edt_instances -block_location /module_1_inst
dofile ../module_1/1_edt_ip/created_edt.dofile

Where:
o top and blockl are the names of the EDT blocks

o “set_edt instances-block location /” specifiesthe EDT block location of top asthe
top-level of the design

o “set_edt instances-block location/module 1 inst” specifiesthe EDT block
location of blockl as/module 1 inst

o edt ip_top/created edt.dofileand ../module_1/1 edt _ip/created edt.dofile are the
dofiles for each block

Tessent TestKompress User's Manual, v2014.2 153
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Figure 7-12 shows the design at this point, before you make any connections to the top
level, in the DFTVisualizer Design window.

Figure 7-12. Before Top-level Connections are Created

|Design
top_level design (231) =
B top_level design_edt i (4) =
ti_clk edt_clock R
e edl_update edt_channels_out F
th_typass edt_bwpass cﬁ . ?3_0]
A edt_channels_in FdlLstanniat=
E— w2rlt_scan_outf3:0]
top_level_design_edt
module 1 inst ()
clk "
SCan_en
SCan_gen
et clack edt_channels_out! &
G—edt_update
edt_channels_out? —=
E—edt_tnpass
‘#—edt_channels_ini
&—edt_channels_in2
riodule 1 edt top
root 7
k-1] =

7. Specify the connections necessary to connect the EDT blocks to the top-level pins.
add_edt_connections -signal clock -to tk_clk -all_blocks
add_edt_connections -signal update -to tk_update -all_blocks
add_edt_connections -signal bypass -to tk_bypass -all_blocks
add_edt_connections -signhal scan_en -to scan_en -block block1
add_edt_connections -signal input 1 -to B -block block1
add_edt_connections -signal input 2 -to C -block block1

add_edt_connections -signal output 1 -to R -block block1
add_edt_connections -signal output 2 -to Q -block block1

8. Specify any additional non-EDT connections needed.
9. Changeto analysis mode and run DRC. For example:

set_system_mode analysis

154 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

10. Report and verify that the EDT connections are setup as specified. For example:

report_edt_connections -all_blocks

[/ mm e -
// EDT Signal Connections

/] mm e e
// Block Pin description Pin name Connection name
/] —==== mmmmm—————————— —mmmmm e e
// top Clock tk_clk

// top Update tk_update

// top Scan channel 1 input A

// top " " " output P

//

// Dblockl Clock tk_clk

// Dblockl TUpdate tk_update

// Dblockl Scan channel 1 input B

// Dblockl " " " output R

// blockl Scan channel 2 input C

// blockl " " " output Q

//

11. Write out the integrated design and DC synthesis script as needed if channel sharing is
used. For example:

write_edt_files integration/top_integrated -replace

Tessent TestKompress User's Manual, v2014.2 155
June 2014

Modular Compressed ATPG
Connecting EDT Signals From Cores to the Top Level

Figure 7-13 displays the design after the write_edt_files command is executed.

pEEl—— " — B[}

Figure 7-13. After Top-level Connections are Created

top_level design (232)

top_level _design_edt i (4)
th_clk dt_clock
th_update . dt _update P
th_bypass adt_channels_aout
- dt_bypass .
A . edt_scan_jin[3:0] f—)
dt_channels_in hlock _edt muus 2 to_ 101 ()
==edt _scan_out[3:0] i
—a_in
top_level_design_edt b_in z_out u
e
rnodule 1_inst{2) top_level_desTon_edt_rux_2 to 1
clk
clk
Scan_en scan_en
dr_clock R
edt _channels _out 1 |
dt_upd ate
edt_channels _out2
edt_bypass
B edt_channels_in1
c dt _channels _in2
module_1_edi_top
root
£
-1 | =
| [Inst: 4¢) Met Buncling : OFF Sheet: 1 of 1 | Callout Markers : O

Restrictions and Limitations

The integration process only supports two levels of EDT hierarchy as shown in
Figure 7-1. If your design contains additional levels of nested hierarchy within any of
the EDT blocks, you must manually update the dofiles for the nested blocks with the
correct block-level EDT pins.

EDT blocks can only be instantiated in atop-level design. The integration session does
not support the creation of an external wrapper like the one used for the external flow.
For more information on the external flow, see “ Compressed Pattern External Flow” on

page 33.

Uncompressed scan chains cannot be added during the integration session. For more
information on using uncompressed scan chains, see “Inclusion of Uncompressed Scan
Chains’ on page 40.

156

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG
Legacy ATPG Flow

* EDT mapping must be enabled for the integration session. See “ Generation of Top-level
Test Patterns’ on page 157.

Related Topics

Creating a Top-level Test Procedure File
delete_edt_connections

Legacy ATPG Flow

This section describes the legacy functionality that enables you to integrate EDT blocksinto the
top level and generate top-level test patterns for them. This methodolgy requires that you
manually generate chip-level test procedures.

Y ou can use the Core Mapping for ATPG functionality that replaces this functionality, and
automatically generates chip-level test procedures for you. For complete information, see the
“Core Mapping for Top-Level ATPG” chapter in the Tessent Scan and ATPG User’s Manual.

Note
If you are using the set_edt_mapping command in your dofiles, you should use this

legacy functionality. The set_edt_mapping command and the EDT Mapping functionality
have been superseded by the Core Mapping for ATPG functionality.

Generation of Top-level Test Patterns

Generating test patterns for the top-level of amodular design is similar to creating test patterns
in the standard flow except that you set one block up at atime.

Note
To generate top-level patterns, you must have atop-level design netlist, dofile and test

procedure file, prepared as described earlier in this chapter.

Y ou use the following commands to generate test patterns for the top-level of amodular design:

® set current_edt block — Applies EDT-specific commands and the add_scan_chains
command to a particular EDT block. Restricting commands in this way enables you to
re-specify the characteristics of an individual block without affecting other parts of the
design.

® report_edt blocks — Reportson EDT blocks currently defined in Tessent Shell
memory.

® delete edt blocks— Deletes EDT blocks from Tessent Shell memory.

Tessent TestKompress User's Manual, v2014.2 157
June 2014

Modular Compressed ATPG
Legacy ATPG Flow

A few reporting commands also operate on the current EDT block by default, but provide an
-All_blocks switch that enables you to report on the entire design. All other commands
(set_system _mode, create patterns and report_statistics for example) operate only on the entire
design.

Example

This example demonstrates the commands used to integrate EDT blocks and generate test
patterns. As shown in Figure 7-14, EDT control signals are shared at the top level; each EDT
block is created with the EDT logic and the scan-inserted core inside of awrapper.

Figure 7-14. Netlist with Two Cores Sharing EDT Control Signals

edt_top_all_cores
edt_blockl

o Olt_Clockcorel_edt_l

edt_update
—— edt_bypass

Channel ns > Channel ins Channel outs ¢ . | Channel ou

Scan chain insScan chain outs

Uy)

Scan chain’i reé‘eén chain out
::nl:)r:ﬁtionﬁ L Functional Functional - (':)L:th‘lgﬂ?na'
Pins H Input Output 1 Pins
Pins Pins
shared_edt_cloek
shared_edt _update
shared_edt_bypas. edt_block?2
o Olt_Clockcorez_edt_l
edt_update
L—edt_bypass
Channel inis > Channel ins Channel outs ¢ . | Channel ou
Slciam cha|in insSScan |CTT” 0b|ItS
Scan chaincl%r eén chain out
ﬁ\%ﬁuonal- Functional Fungc e Functional
Pins . Input utput '| Output
Pins Pins “ Pins

1. Invoke Tessent Shell, set the context, and read in the design and library.

2. Perform necessary setup and then define scan chains, clocks and EDT logic for the first
block. For example:

158 Tessent TestKompress User's Manual, v2014.2
June 2014

Modular Compressed ATPG
Legacy ATPG Flow

// Perform setup.
set_current_design edt_blockl

// Define scan chains, clocks, and EDT hardware.
add_scan_groups grpl groupl.testproc
add_scan_chains chainl grpl edt_sil edt_sol
add_scan_chains chain2 grpl edt_si2 edt_so2

add_clocks clkl 0

set_edt_options -channels 6
set_system_mode analysis

3. Create EDT logic with unique module names based on the core module name for the
first block. For example:

// Create EDT hardware with unique module names.
write_edt_files createdl -replace

Delete the design using the delete_design command.
Return to setup mode using the set_system mode command.

Read in the second block and repeat steps 2 and 3.

N oo o &

Using the DC script output during the EDT logic creation, synthesize the EDT logic for
each block.

8. Veify that the EDT logic isinstantiated properly by generating and simulating test
patterns for each of the resultant gate-level netlists. Thisis done using the test bench
created during test pattern generation and a timing-based simulator.

9. Veify that the block-level scan chains are balanced.

10. Create the top-level netlist, dofile, and test procedure files. The following example
shows the top-level dofile. For more information, see “ Generation of Top-level Test
Patterns’ on page 157.

Commands and options specific to modular compressed ATPG are shown in bold font.

// Define the top-level test procedure file to be used by all blocks.
add_scan_groups grpl top_ level.testproc

// Define top-level clocks and pin constraints here.
add_clocks...

add_read_controls...

add_write_controls...

add_input_constraints...

// Activate automatic mapping of commands from the block-level dofiles.
set_edt_mapping on

// Define the block tag (this is an arbitrary name) for an EDT block
// and automatically set it as the current EDT block.
add_edt_blocks cpul

Tessent TestKompress User's Manual, v2014.2 159
June 2014

Modular Compressed ATPG
Legacy ATPG Flow

// Define the block by executing the commands in its block-level dofile.
dofile cpul edt.dofile

// Repeat the preceding procedure for another block.

add_edt_blocks cpu2

dofile cpu2_edt.dofile

// Once all EDT blocks are defined, create_patterns that use all the
// blocks simultaneously and generate patterns that target faults in

// the entire design.

// Flatten the design, run DRCs.
set_system_mode analysis

// Verify the EDT configuration.
report_edt_configurations =-all_blocks

// Generate patterns.

create_patterns

// Create reports.
report_statistics
report_scan_volume

write_patterns...
exit

Modular Flow Command Reference

Table 7-2 describes commands used for the modular design flow.

Table 7-2. Modular Compressed ATPG Command Summary

Command

Description

add edt_blocks

Creates aname identifier for an EDT block instantiated in a
netlist.

add edt_connections

SpecifiesEDT logic connections during the top-level integration
step of the modular design flow.

delete_edt_blocks

Removes the specified EDT block(s) from the internal database.

delete_edt_connections

Deletes connections previously specified with the
add _edt_connections command

report_edt_blocks

Displays current user-defined EDT block names.

report_edt_configurations

Displays the configuration of the EDT logic.

report_edt_connections

Reports pin connections made during the top-level integration
session of the modular flow.

160

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Modular Compressed ATPG
Legacy ATPG Flow

Table 7-2. Modular Compressed ATPG Command Summary

Command

Description

report_edt_instances

Displays the instance pathnames of the top-level EDT logic,
decompressor, and compactor.

set_current_edt_block

Directs the tool to apply subsequent commands only to a
particular EDT block, not globally.

set_edt_instances

Specifies the instance name or instance pathname of the design
block that containsthe EDT logic for DRC.

set_edt_mapping Enables the automatic mapping necessary for block-level dofiles
to be reused for top-level pattern creation.
write_design If the design has been modified after executing the

write_edt_files, you must update the netlist using this command.

write_edt_files

Writes all the EDT logic files required to implement the EDT
technology in adesign.

Tessent TestKompress User's Manual, v2014.2 161

June 2014

Modular Compressed ATPG
Legacy ATPG Flow

162 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 8
Special Topics

This chapter describes advanced features of compressed ATPG.
For more information, see the following topics:

LOW-Power T et 163
Low Pin Count Test Controller e 171
Compression BypassLOgiC. 208
Uncompressed ATPG (External Flow) and Boundary Scan 218
Use of Pipeline Stagesinthe Compactort 223
Use of Pipeline Stages Between Pads and Channel Inputsor Outputs. 223
Change Edge Behavior in Bypassand EDT Modes, 228
UnderstandingLockup Cells 229
Performance Evaluation 247
Understanding Compactor Options.ottt e 252
Understanding Scan Chain Masking in the Compactor 255
Fault Allasingo 258
Reordering Patterns.o 259
Handlingof Last Patterns. e 260

Low-Power Test

Compressed ATPG with EDT can be configured to use low power during capture and/or shift
cycles. When configured for low power, both EDT mode and bypass modes are affected.

A low-power shift application is based on the fact that test patternstypically contain only a
small fraction of test-specific bits and the remaining scan cells or don't care bits are randomly
filled with Os and 1s; so, there are only afew scan chains with specified bits. In alow-power
application, scan chains without any specified bits are filled with a constant value (0) to
minimize needless switching as the test patterns are shifted through the core. For more
information, see “Low-Power Shift.”

A low-power capture application is based on the existing clock gatersin adesign. In this case,
clock gaters controlling untargeted portions of the design are turned off, while clock gaters
controlling targeted portions are turned on. Power is controlled most effectively in designs that
employ clock gaters, especially multiple levels of clock gaters (hierarchy), to control amajority

Tessent TestKompress User's Manual, v2014.2 163
June 2014

Special Topics
Low-Power Test

of the state elements. Configuring low-power capture affects only the test patternsand is
enabled with the set_power_control command during ATPG.

Note

O

Low-power constraints are directly related to the number of test patterns generated in a
low-power application. For example, using stricter low-power constraints resultsin more

test patterns.

Low-Power Shift

Setting up low-power shift includes two phases.

1

Inserting power controller logic — The power controller logic is configured/inserted
during EDT logic creation based on the -MIN_Switching_threshold percentage value
specified with the set_edt_power_controller Shift command. This value must fall into
one of the three threshold ranges described in “Low-Power Shift and Switching
Thresholds.”

For example: To enforce a 20% switching threshold for shift, (assume aworse case
switching activity of 50% for scan chains driven by the decompressor), the power
controller is configured to drive up to 40% of the scan chains as shown here:

20%
20%

50% (max % scan chains to switch of total scan chains)
50%(40%)

The remaining scan chains (minimum of 60%) are loaded with a constant zero (0) value.
So, in a case in which you have 300 scan chains, the maximum percentage of scan
chains that will switchis 120, which is 40% of 300.

For more information, see “Power Controller Logic” and L ow-Power Shift and
Switching Thresholds.”

Creating low-power test patterns— When test patterns are generated, you must
enable the power controller and specify the low-power switching threshold used during
scan chain shifting with the set_power_control and set_edt_power_controller Shift
commands. The specified switching threshold should not exceed the power controller
hardware capabilities; out-of-range thresholds are supported but will generate awarning.

For example, if you configure the power controller hardware for a minimum switching
threshold of 20%, you cannot set the test patterns to use a switching threshold of less
than 12% or more than 24% as described in “Low-Power Shift and Switching
Thresholds.”

In EDT bypass mode, the EDT logic and power controller are bypassed, and the
low-power test patterns use a repeat-fill heuristic to load constant values into the don’t
care bits as they are shifted through the core. The repeat-fill heuristic minimizes
needless transitions during bypass testing. Thisfeatureisonly available in
uncompressed ATPG or in the bypass mode of compressed ATPG.

164

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Low-Power Test

Low-Power Shift and Switching Thresholds

The configuration/capability of the power controller hardware is determined by the
-MIN_Switching_threshold_percentage value specified with the set_edt_power_controller
command during EDT logic creation.

The switching threshold percentage is a percentage of the overall scan chain switching during
shift. The minimum switching threshold percentage then represents the minimum switching
threshold the power controller hardware can accommodate in alow-power application and
determines the switching threshold percentage that can be used for test pattern generation.

Y ou can use the following three threshold ranges to set up alow-power shift application. The
bias value is set based on the threshold range you specify.

®* <12% (hias2)
* >=12%to<25% (bias1)
* >=25% (bias0)

Note
Theterm biasrefersto “biased signal probability”, with ahigher bias corresponding to an

increase in the size of the power controller hardware.

If you specify a-MIN_Switching_threshold percentage value that falls within one of these
ranges, the tool generates alow-power controller that can generate shift patterns with low-
power switching thresholds of the upper and lower bounds of the range. For example, if you
specify aminimum threshold of 14, alow-power controller is generated that is capable of
generating shift patterns with a low-power switching threshold of 12 to 24.

Both switching thresholds, the one for the power controller hardware and the one for low-power
test patterns, must fall into the same switching threshold range. Low-power applications where
power controller and test pattern thresholds fall in different ranges are not supported and may
result in a higher test pattern count and decreased shift power control.

Note
D If reaching the specified threshold causes adrop in test coverage, the threshold is violated

to maintain coverage. Y ou can use the set_power_control -rejection_threshold switch to
specify ahard limit on the switching activity and disregard the test coverage impact.

Pattern Generation and Switching Thresholds

During pattern generation, you use the set_power_control command to (1) enable the low-
power logic and (2) set the low-power switching threshold to be used during scan chain shifting.
The switching threshold you specify cannot exceed the power controller hardware capabilities.

Tessent TestKompress User's Manual, v2014.2 165
June 2014

Special Topics
Low-Power Test

The switching thresholds for both the power controller hardware and the low-power test
patterns must fall into the same switching threshold range. A warning message isissued when a
mismatch occurs between the software switching threshold and the power controller hardware
threshold. The following example is an example warning message that reports a mismatch
between the switching percentage threshold specified for shift and that specified for pattern
generation:

// command: set_power_control shift on -switching_threshold_percentage 7
// Warning: Specified software switching threshold [7] is not consistent
// with the switching threshold used to generate the shift power control
// hardware [30] in block odd.

// The software and hardware thresholds should be in the same bias range

// (except for the full control case). The following are the valid bias
// ranges: [0-11], [12-24], [25-50].
Note

L ow-power applications where power controller and test pattern thresholds fall into
different ranges are not supported and may result in a higher test pattern count and
decreased shift power control.

Low-Power Shift and Test Patterns

An additional test pattern (edt_setup) is added before every test pattern set. Thistest pattern sets
up the low-power mask registers before the load of the very first real test pattern. Similarly, the
first real test pattern carries the low-power mask setup for the second pattern and so on. The
unload values of the edt_setup pattern are not observed.

Power Controller Logic

The power controller |oads constant valuesinto the don’t care bits within scan chains as the test
patterns are uncompressed and shifted into the core.

The power controller must be enabled in both the EDT logic hardware and the test pattern
generation software to use low-power ATPG. By default, the power controller is enabled. For
moreinformation, see set_edt_power_controller. If you are not sure whether you need to use the
low-power feature, you can insert a disabled controller and then, enableit if you need to lower
power consumption. If you change the controller setting during pattern generation, remember to
modify the generated test procedure file to force the shift_const_en signal to the appropriate
value.

Note
Low-power ATPG adds additional shift cyclesto each test pattern, so the power
controller should be disabled when it is not needed to prevent unnecessary cycles.

166 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low-Power Test

The edt_low_power_shift_en signal shown in Figure 8-1 controls the low-power controller as
follows:

* Whenedt_low_power_shift_en is asserted, the power controller isenabled and a control
code is generated by pipeline stages at the channel inputs. The control code is |oaded
into a hold register and applied to the XOR expander to control whether the biasing
AND gates are enabled. If the control code is 1, the AND gate is enabled and the
decompressor drives the scan chain; if the control code isa0, the AND gateis disabled
and the O logic source drives the scan chain.

* Whentheedt low power_shift_en signa isforced off, the power controller is disabled,
the input pipeline stages are bypassed, the hold register isfilled with 1s, and the
decompressor drives al the scan chains. For information on disabling the power
controller, see set_edt_power_controller.

For information on defining asignal for the power controller, see set_edt_pins.

Figure 8-1. Low Power Controller Logic

EDT
channel
inputs

power MSB

[

XOR expander

LTI TTTIT T
| A Hold register |

edt_update

edt_clock

Static Timing Analysis and Hold Violations From Low-Power Hold Registers

Lockup cells are inserted on paths between the EDT decompressor and the scan cellsto avoid
clock skew issues. However, lockup cells are not required in the path between the low-power
hold register and the first scan cell of each chain. Thisis because this path does not operate as a
shift register due to the following:

® Thelow-power hold register only updates in the load_unload cycle, and the scan cells
are not clocked in the load_unload cycle.

Tessent TestKompress User's Manual, v2014.2 167
June 2014

Special Topics
Low-Power Test

* Thelow-power hold register does not change during the shift cycle when the scan cells
are clocked.

When you verify shift mode timing, both the edt_clock and the scan cell clocks are pulsed; this
means that a static timing analysis (STA) tool will look for and report violations in the paths
between low-power hold registers and the scan cells. Y ou can prevent these violations from
being reported by adding timing exceptionsto your STA tool, directing it to ignore violations on
these paths. An example of setting atiming exception is shown here:

set_multicycle_path -hold 1\
-from [get_cells edt_i/edt_contr_i/low_power_shift_contr_i/low_power_hold_reg_* reg?*]

Related Topics

EDT Logic with Power Controller Setting Up Low-Power Test

Setting Up Low-Power Test

This procedure creates EDT logic configured with an enabled power controller, and programs
the power controller for the desired level of shift control during test pattern generation. This
procedure also enables the low-power capture feature of the test patterns.

Prerequisites
®* RTL or agate-level netlist with scan chainsinserted.
®* DFT compression strategy for your design. A compression strategy helps define the
most effective testing process for your design.
Procedure

1. Invoke Tessent Shell to perform EDT logic creation. For example:
<Tessent_Tree Path>/bin/tessent -shell

Tessent Shell invokesin setup mode.

2. Setupfor EDT logic creation. For example:

set_context dft -edt
read_verilog my_gate_scan.v
read_cell_library my_lib.atpg
set_current_design top
dofile edt_ip_creation.do

168 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low-Power Test

Define a power controller with a minimum switching threshold. For example:

set_edt_options power_controller shift \
-min_switching_threshold_percentage 20

An enabled power controller with 20% minimum switching threshold is set up.

If no minimum threshold is specified, 15% is used. For more information, see “L ow-
Power Shift and Switching Thresholds.”

Y ou can usethe set_edt_pins command to define asignal for the power controller.

4. Definetheremaining EDT logic parameters. For more information, see “Parameter
Specification for the EDT Logic.”
5. Exit setup mode and run DRC. For example:
set_system_mode analysis
6. Correct any DRC violations.
7. Createthe EDT logic. For example:
write_edt_files ../generated/low_power_enabled_edt -replace
8. Exit Tessent Shell. For example:
exit
9. Synthesizethe EDT logic. For more information, see “ Synthesizing the EDT Logic.”
10. Invoke Tessent Shell in setup mode and then set context to perform test pattern
generation.
set_context patterns -scan
11. Program the power controller switching threshold. For example:
set_power_control shift on -switching_threshold_percentage 20\
-rejection_threshold_percentage 25
The switching during scan chain loading is minimized to 20% and any test patterns that
exceed a 25% rejection threshold are discarded. For information on switching threshold
constraints, see “Low-Power Shift and Switching Thresholds.”
By default, the switching threshold for ATPG is set to match the threshold used for the
power controller hardware. For modular applications, the highest individual switching
threshold is used.
12. Report the power controller and switching threshold status. For example:
report_edt_configurations -all
// IP version: 4
// External scan channels: 2
// Compactor type: Xpress
// Bypass logic: Oon
// Lockup cells: On
Tessent TestKompress User's Manual, v2014.2 169

June 2014

Special Topics
Low-Power Test

// Clocking: edge-sensitive
// Low power shift controller: Enabled and active
// Min switching threshold: 20%

Bold text indicates the output relevant to the power controller.
13. Turn on low-power capture. For example:

set_power_control capture on -switching_threshold _percentage 30\
-rejection_threshold_percentage 35

Switching during the capture cycle is minimized to 30% and any test patterns that
exceed a 35% rejection threshold are discarded.

14. Exit setup mode and run DRC. For example:
set_system_mode analysis
15. Correct any DRC violations.
16. Create test patterns. For example:
create_patterns
Test patterns are generated and the test pattern statistics and power metrics display.

17. Analyzereports, and adjust power and test pattern settings until power and test coverage
goalsare met. Y ou can use the report_power_metrics command to report the capture and
shift power usage associated with a specific instance or set of modules.

18. Savetest patterns. For example:

write_patterns ../generated/patterns_edt_p.stil -stil -replace

Related Topics

Low-Power Test set_power_control
set_edt_power_controller

170 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Low Pin Count Test Controller

The Low Pin Count Test (LPCT) controller minimizes the top-level pins required for the
EDT application. The LPCT controller generates the control signals needed to operate the EDT
logic and test the design core thereby making control signals from top-level pins unnecessary.

The LPCT controller is configured and embedded in the design along with the EDT logic
according to the design process shown in Figure 8-2.

Figure 8-2. LPCT Design Process

Configure EDT &
LPCT controller logic

J J
fook T e e

Scan-inserted
netlist

L DAL ST

Insert EDT & LPCT
controller logic into design

y .
feat (mrd AfRe
g IBCE pinsl

synthesize netlist

Gate-level
netlist

Gate-level
netlist

Generate test patterns

Tessent TestKompress User's Manual, v2014.2 171
June 2014

Special Topics
Low Pin Count Test Controller

LPCT Controller Decision Tree

Y ou can implement an LPCT controller using one of three configuration types. Type 1, Type 2,
or Type 3.

These three LPCT configuration types are described in this section. Figure 8-3 illustrates the
decision-making process for choosing which LPCT controller configuration fits your design
constraints.

Figure 8-3. LPCT Controller Decision Tree

Does Scan
Enable exist at
top level?

YES Choose: Type 1
LPCT Controller with Top-
level Scan Enable

Using JTAG TAP
Controller far
test?

Choose: Type 2
LPCT Controller with a TAP

Choose: Type 3
LPCT Controller —generated
Scan Enable

Note

D Be aware that the Type 3 LPCT controller requires on-chip controller (OCC) logic in the
design. Additionally, the OCC logic must be capable of turning off the clocks for capture
which is necessary for ATPG to detect reset faults. OCC logic is supported for Type 1
and Type 2 LPCT controllers aswell, but is not a requirement.

Test Mode Clock Multiplexer Requirement

Test mode clock multiplexer requirements depend on your clocking configuration.

Internal capture clocks— If you are using an internal capture clock such as the output of a
programmabl e clock controller with any of the LPCT controller types, you need amultiplexer to
choose between the clock controller output used during test and the original functional clock
source such as the output of aPLL. Thetool does not add this multiplexer because the tool only
knowsthetest clock source (i.e. clock controller output) and not the functional clock source (i.e.
PLL output). Therefore, you must add a test mode clock multiplexer for all internal capture
clocksfor all three types of LPCT controller.

172 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Shared LPCT and design clock — The test mode clock multiplexer is also needed when the
LPCT clock is shared with the scan shift clock. In this case, you must add the test mode clock
mux and provide the tool the connection point to connect the shift and capture clock that is
generated from LPCT clock,

Figure 8-4 shows an example of how the test mode clock multiplexer can be inserted and
connected in the design prior to LPCT logic generation and insertion.

Sharing of the LPCT Clock and a Top-Level Scan Clock

The Type 3 LPCT controller requires adedicated LPCT clock that is different from other top-
level scan clocks. The Type 1 and Type 2 LPCT controllers can use the top-level scan clock that
is used for both shift and capture cycles asthe LPCT clock also.

When an internal scan clock is used, the tool inserts a clock mux to choose between the
controller-generated shift clock during shift and the original internal clock during capture. For
top-level clocks, the tool does not insert a mux because the clock can be controlled as needed
during both shift and capture.

When atop-level scan clock is used asthe LPCT clock and the -shift_control option is set to
“clock”, the tool adds a clock gater for Type 1 and Type 2 controllers as shown in Figure 8-4.
The clock gater is not added when it generates a shift enable signal. This clock gater is enabled
for al shift and capture cycles, but disabled during the pre-shift and post-shift cycles.

The clock input of the clock gater is connected to the top-level clock, so ATPG has full control
of the scan clock during capture. This allows ATPG to turn off the capture clock, for example
when detecting asynchronous reset faults. Reusing atop-level scan clock asthe LPCT clock is
inferred when the defined LPCT clock is pulsed during shift in the incoming logic creation test
procedure file.

Figure 8-4. Clock Gater for Sharing LPCT Clock with Top-Level Scan Clock

Test clock mux
must be in the

design
LPCT Ipct_shift_en A]|
lpct_caplure_en
| Clock
Controller Lo

| design
Scan clock { |pet_cloc |
|
|
tesl_mods |
S N

Tessent TestKompress User's Manual, v2014.2 173

June 2014

Special Topics
Low Pin Count Test Controller

Shift Clock Control for LPCT Controller

All LPCT controller configuration types have the ability to generate and control the shift clocks.
Y ou should specify the option of shift clock control that is compatible with your design.

To specify how the LPCT controller generates the shift clock control signal, use following
command and options:

set_|pct_controller -shift_control {Enable | Clock | None}

The three options for specifying shift control are defined as follows:

®* Enable— TheLPCT controller generatesthe Ipct_shift_en enable signal to generate the
shift clock. Y ou can use this enable signal to create the shift clock for the design by
gating it with afree-running clock. In this case, you must define the connections from
the enable signal to the clock control logic. Thisisthe default setting.

® Clock — The LPCT controller generates the shift clock. All necessary connections and
gating are added so that shift clocks are controlled and driven from the LPCT controller.
In the case of internal capture clocks, whenthe LPCT clock is shared with the scan clock
and this option is used, the tool adds a clock gater in the clock path. In this case, the
LPCT clock is used as both a shift clock and a capture clock.

®* None— No signal is generated. Y ou should use this option when shift clocks are
available at the top level.

174 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Type 1 LPCT Controller

If your design has atop-level scan enable pin, you can implement the Type 1 LPCT controller.

Configuration: Uses atop-level scan enable pin to generate the dynamic EDT signals
edt_update and edt_clock.

Requirements:. A top-level scan_en signal and atop-level Ipct_clock signal.

LPCT Controller Configuration Required Inputs Generated Outputs
Typel scan_en edt_clock
Ipct_clock edt_update
Ipct_capture_en
Ipct_shift_clock OR Ipct_shift_en
Ipct_clock mux_select

Description: If your design has atop-level scan enable pin, you can implement the Type 1
LPCT controller to generate the dynamic test signals edt_clock, edt_update, and shift clock
from the scan_en and Ipct_clock signals. All other static EDT-specific test signals (edt_bypass,
edt_low_power_shift_en, and so on) are assumed to be available either from the top level or
through user-provided test logic. Y ou can choose to control them by some internal test data
register. This LPCT controller does not generate any hardware to control any of these static
signals.

Note
D OCC logicisoptional for the Type 1 LPCT controller.

Figure 8-5 shows the configuration of the Type 1 LPCT controller. For an in-depth description,
see“Type 1 - LPCT Controller with Top-level Scan Enable”.

Figure 8-5. Type 1 LPCT Controller Configuration

LPCT |
Ipct_clock l': Controller | /

S

i' LPCT clock gater i

edt_update

edt_clock

EDT

i | © ==l Channel Outputs

J

Channel Inputs i

scan_en |

\\

Tessent TestKompress User's Manual, v2014.2 175
June 2014

Special Topics
Low Pin Count Test Controller

Hardware area: The LPCT controller logic is approximately equal to 14 NAND gatesand is
independent of design size or test application.

Command: To generate a Type 1 controller use the following command:

set_|pct_controller on -generate_scan_enable off -tap_controller_interface off

Table 8-1 contains additional commands and switches that apply to the Type 1 controller.

Table 8-1. LPCT Controller Type 1 Commands and Switches

Togeneratea Typel set_Ipct_controller | set_Ipct_pins set_Ipct_condition_bits
LPCT Controller, use:

set_Ipct_controller -shift_control clock None
-generate_scan_enable Off input_scan_en (input)
-tap_controller_interface Off clock_mux_select (output)

capture_en (output)

shift_en (output)

shift_clock (output)
test_clock_connection (output)

Note
D When EDT channel outputs are shared with functional output pins, the tool adds an

output channel sharing mux. The select signal of this mux is the scan enable signal
specified using the “set_edt_pins scan_en” command. If you do not specify the scan
enable signal using the set_edt_pins command for the Type-1 LPCT controller, the tool
uses the specified LPCT input scan enable pin as the select signal for the mux.

Type 2 LPCT Controller

If your design uses a1149.1 JTAG TAP controller at the top level to run compression, you can
implement the Type 2 controller.

Configuration: Uses a TAP state machine to generate scan_enable and the dynamic EDT
signals edt_update and edt_clock.

Requirement: 1149.1 TAP controller that is P1687 compliant:

LPCT Controller Configuration Required Inputs Generated Outputs

Type?2 tck scan_en
test_mode edt_clock
test logic_reset edt_update
update dr Ipct_capture _en
shift_dr Ipct_shift_clock OR Ipct_shift_en
capture_dr Ipct_clock_mux_select

Note

For the Type 2 LPCT controller, the top-level scan enable pin isremoved and the
internally-generated scan enable pin is used.

176 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Description: If your design uses a1149.1 JTAG TAP controller at the top level to run
compression, you can implement the Type 2 controller to generate scan_en, edt_update and
edt_clock on chip. All other static test signals can be controlled by the TAP controller. The
LPCT controller only uses the shift_dr, capture_dr, update dr, test_logic_reset and test_ mode
signals from the TAP controller. All other EDT-specific static signals (edt_bypass,
edt_low_power_shift_en, and so on) are assumed to be available at the top level or are part of a
user-defined data register in the JTAG TAP controller. This LPCT controller does not generate
any hardware to control any of these static signals.

Figure 8-6 shows the configuration of the Type 2 LPCT controller. For an in-depth description,
see“Type 2 - LPCT Controller witha TAP".

Figure 8-6. Type 2 LPCT Controller Configuration

test_mode i

TCK B+ test logic_reset —» PLL/OCC |
ITAG updote_dr LPCT b nme!

TMS = Tap Shift, ar Controller

TRST [+ capture dr :

edt update
edt_clock

l-.
DI P O
led

TDO

_

Hardware area: The LPCT controller logic is approximately equal to 20 NAND gatesand is
independent of design size or test application.

Command: To generate a Type 2 controller use the following command:

set_|pct_controller on -generate_scan_enable on -tap_controller_interface on

Tessent TestKompress User's Manual, v2014.2 177
June 2014

Special Topics
Low Pin Count Test Controller

Table 8-2 contains additional commands and switches that apply to the Type 2 controller.

Table 8-2. LPCT Controller Type 2 Commands and Switches

Togeneratea Type?2 set_Ipct_controller | set_Ipct_pins set_Ipct_condition_bits
LPCT Controller, use:

set_|pct_controller -shift_control clock (input) None
-generate_scan_enable On test_ mode (input)
-tap_controller_interface On capture_dr (input)

shift_dr (input)

update_dr (input)

tms (input)

reset (input)

clock_mux_select (output)
capture_en (output)

shift_en (output)

shift_clock (output)
output_scan_en (output)
test_clock_connection (output)

Type 3 LPCT Controller

The Type 3 LPCT controller will internally generate the scan enable signal and all EDT-specific
control signals

Configuration: Scan enable signal and all other EDT-specific static and dynamic signals are
generated by the LPCT controller.

Requirements. Generate all EDT-specific signals on chip including scan_en.

LPCT Controller Required Inputs Generated Outputs
Configuration
Type3 Ipct_clock edt_update
Ipct_data in (edt_channels inl) | edt_clock
scan_en
edt_bypass

edt_low_power_shift_en
Ipct_shift_clock OR Ipct_shift_en
Ipct_capture_en
edt_configuration

Note
D For Type 3 controllers, the top-level scan enable pin isremoved and the internally-
generated scan enable pinis used.

Note
D OCC logicisrequired to detect reset faults for the design with a Type 3 LPCT controller.

Description: The LPCT controller will internally generate the scan enable signal and all
EDT-specific control signals; thisincludes the dynamic signals edt_update, edt_clock, and
scan_en and the static signals edt_bypass, edt_low_power_shift_en, and edt_configuration. If a

178 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

design shift clock is not available at the top level, the LPCT controller can generate the shift
clock from the LPCT clock.

Figure 8-7 shows the configuration of the Type 3 LPCT controller. For an in-depth description,
see“Type 3 - LPCT Controller-generated Scan Enable’.

Figure 8-7. Type 3 LPCT Controller Configuration

A

Ipct_clock LPCT
— PLL/OCC
- Controller "I
& £ I
él E‘ _:E E‘ E‘ g ,"“'"i““'*“""""""\
3 :lsl 8 g .| { LPCTclock gater |
Channel Inputs [P Channel Qutputs

I
EDT

Hardware area: The LPCT controller logic is approximately equal to 1200 NAND gate
equivalent and is independent of design size or test application.

Command:

set_|pct_controller on -generate_scan_enable on -tap_controller_interface off
Table 8-3 contains additional commands and switches that apply to the Type 3 controller.

Table 8-3. LPCT Controller Type 3 Commands and Switches

Togeneratea Type3 set_Ipct_controller | set_lpct_pins set_Ipct_condition_bits
LPCT Contraller, use:

set_|pct_controller -max_shift_cycles clock (input) -condition reset
-generate_scan_enableOn | -max_capture_cycles| reset (input) -condition scan_en
-tap_controller_interface Off | -max_scan_patterns | data_in(input)
-max_chain_patterns | test_mode (input)

-test mode_detect clock_mux_select (output)
-shift_control capture_en (output)

-load unload cycles | shift_en (output)
shift_clock (output)
output_scan_en (output)
reset_out (output)
test_end (output)

For an in-depth description of this configuration, see “Type 3 - LPCT Controller-generated
Scan Enable”.

Tessent TestKompress User's Manual, v2014.2 179
June 2014

Special Topics
Low Pin Count Test Controller

Limitations

The limitations described in the following sections apply to this release.

Design Flow/Hardware Limitations

The LPCT controller has the following design flow limitations:

Compression logic inserted external to the design core within atop-level wrapper is not
supported.

L SSD architecture is not supported.

The LPCT controller is primarily targeted at generating test control signalsinternaly to
reduce the number of ATE pins required during test. Currently, the Type 2 LPCT
controller does not support using the boundary scan register cells to further reduce the
number of ATE pins required to connect with the design functional pins.

The scan_en signal must be constrained to “0” during capture for the Type 1 LPCT
controller.

The number of pre-shift and post-shift cycles cannot be changed for any type controller
during pattern generation. However the Type 3 controller allows changing of these
cycles during I P creation.

Pulsing edt_clock before shift is not supported because edt_clock and shift_clock are
derived from the same clock source.

When scan_en isavailable at the top level, the EDT static control signals such as
edt_bypass and edt_low_power_shift_en are implemented as top-level pins.You are
responsible for connecting these pins to some internal test logic to avoid having them
assigned as top-level pins.

Test Pattern Limitations When Using a Type 3 Controller

When using an LPCT controller-generated scan enable configuration, the controller has the
following test pattern limitation:

Multiple load type test patterns are not supported.

Single Shared LPCT Controller for All EDT Design Blocks

If you define all EDT blocks at the same time during | P creation (top-down), the tool correctly
generates only one LPCT controller and drives all EDT blocks from this controller. In adesign
with multiple power domains, you should ensure that the LPCT controller is placed in an
always-ON power domain. The EDT blocks can still be placed on the same power domain as
the block level logic. You can use the set_Ipct_instances command to control where the LPCT
controller isinstantiated.

180

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

If you use the integration flow (bottom-up), do not create LPCT logic along with block-level
EDT logic. During the top-level integration, the tool can generate the LPCT controller while
also making the connections for the block level EDT signals. In adesign with multiple power
domains, you should also ensure that the LPCT controller is placed in an always-ON power
domain using the set_|pct_instances command.

LPCT Controller Types
The following sections fully describe the three LPCT controller types and their differences.
® Typel- LPCT Controller with Top-level Scan Enable
®* Type2-LPCT Controller withaTAP
® Type3-LPCT Controller-generated Scan Enable

Note
All three LPCT controller types apply to scan and EDT control pinsonly and do not limit
the number of EDT channels that can be used.

Type 1 - LPCT Controller with Top-level Scan Enable

When you implement an LPCT controller using atop-level scan_en pin, the LPCT controller
generates the edt_update and edt_clock signals. However, it does not generate any of the EDT
static control signals such as edt_bypass, edt_low_power_shift_en, and so on. To avoid having
these signals assigned as top-level pins, you must connect them to some internal test logic.

When implementing the LPCT controller with atop-level scan enable signal (Type 1), the
design must have atop-level clock. The clock can be afree running reference clock or atester-
controllable top-level clock pin asshown in Figure 8-8. If thisclock is also ashift clock, and the
shift control is set to “clock”, aclock gater isautomatically inserted in this clock path to enable
this clock to be used during shift and capture

Figure 8-8 shows the controller logic. In this configuration, the scan_en signal is constrained to
0 in the capture cycle and set to 1 during the shift cycle, but is set to 0 during the post-shift
cycles.

Tessent TestKompress User's Manual, v2014.2 181
June 2014

Special Topics
Low Pin Count Test Controller

Figure 8-8. Type 1 LPCT Controller Operation

L 4 edt_update
Scan_en D Q > D Q _f | }-— Ipct_capture_en
Ipct_clock
- > Rf > RrR2
Q Q

Ipct_shift
pct_shift_en
® A

T lpct clock mux select

} edt_clock_en
|
edt_clock =scan_en & R1/Q
edt_update = scan_en & R2/Q
Ipct_shift_en =scan_en & ~edt_update
Ipct_capture_en = R2/Q & ~scan_en
Ipct_clock_mux_select =R1/Q

The Type 1 LPCT controller does not have afinite state machine or countersto track the test

procedure states. The start of the load_unload procedure is inferred when the scan_en signal
transitionsfrom O to 1.

® For scan test patterns, the pin constraint on scan_en provides the initial 0 value for the
transition.

For chain test patterns, there are no capture cycles when using free running clocks; the
post-shift cyclesin load_unload provide theinitial O value for the transition.

182 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Figure 8-9 shows the waveforms generated by Figure 8-8.

Figure 8-9. Signhal Waveforms for Type 1 LPCT Controller

Load _unload Shift Load _unload

pre-shift post-shift Capture

Ipct_clock

scan_en —

edt_update |

edt_clock

Ipct_clock_mux_select

Ipct_shift_en

Ipct_capture_en

Two pre-shift and post-shift cycles are added to the load_unload procedures when using the
Type 1 LPCT controller. These two cycles separate the transition between the shift clock, the
capture clock, Ipct_capture _en, and the Ipct_clock _mux_select signals when transitioning from
capture to shift and from shift to capture.

* Pre-Shift Cycles: At the beginning of the pre-shift cycles, the scan enable signal
transitions from O (during capture) to 1 which alows the edt_update output from the
LPCT controller to be asserted immediately. The edt_clock signal is generated one cycle
later. However, the shift clock beginsto pulse two cycles after the transition of the
scan_ensignal.

® Post-Shift Cycles: At the end of scan chain shifting, the scan_en signal is deasserted
(transitionsfrom 1 to 0). The signal scan_en is deasserted for both post-shift cycles and
the clocks to the design are expected to be turned off as shown in the waveformsin
Figure 8-9. Thelpct_clock_mux_select signal is deasserted at the negedge of the clock
in the first post-shift cycle. The lpct_capture_en signal transitions one cycle later—on
the negedge of the second post-shift cycle. The capture pulses can only be generated in
the cycle after the Ipct_capture_en signal is asserted (after the 2nd post-shift cycle).
During each of these cycles, only one of the signals, Ipct_clk_mux_select and
Ipct_capture_en, transition at atime.

Tessent TestKompress User's Manual, v2014.2 183
June 2014

Special Topics
Low Pin Count Test Controller

Type 2 - LPCT Controller with a TAP

When you implement an LPCT controller with a TAP, the LPCT controller generates the scan
enable, edt_update, and edt_clock signals based on the output of the TAP controller. However,
it does not generate any of the EDT static control signals such as edt_bypass and
edt_low_power_shift_en. To avoid having these signals assigned as top-level pins, you must
connect them to some internal test logic.

When implementing a Type 2 LPCT controller, the dynamic test control signals are generated
based on the TAP controller state machine. In addition to the clock (tck) and test mode signal
(tms), the enable signals corresponding to capture dr, test_logic _reset, shift_dr, and update dr
are used asinputsto the controller. The shift_dr and capture_dr signals are assumed to change at
the rising edge of the tck signal. These signals can be connected either to combinational tap
output pins, or registered at the negedge of TCK in the TAP controller.

The update _dr signal is assumed to change at the falling edge of the tck signal. Thissignal can
be connected either to acombinational tap output pin, or registered early at the prior posedge of
TCK inthe TAP controller.

These signal change edges are consistent with the IEEE 1149.1 standard.
Figure 8-10 shows the controller logic of the LPCT controller when using a TAP.

Figure 8-10. LPCT Controller with TAP

l Ipct_shift_en

shift_dr

edt_clock_en

edt_update

test_mode
update_dr

B D Q scan_en

Ipct_clock_mux_select

capture_dr

:E'D— Ipct_capture_en
tms T
test_logic_reset

tck -
scan_en = SEp/Q
edt_clock_en = capture_dr | shift_dr
edt_update = capture_dr
Ipct_shift_en = shift_dr
Ipct_capture _en = CEn/Q & ~tms
Ipct_clock_mux_select = SEp/Q

184 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

The TAP controller must provide an enable signal (test_mode) that signals the LPCT controller
to enter test mode. Thistest_ mode signal can be generated using a JTAG user-defined
instruction.

The test_mode signal indicates whether the instruction corresponding to scan test is currently
loaded in the instruction register. The signal test_logic_reset is used to asynchronously reset the
flip-flops driving scan_en and capture_en because the design is required to go to functional
mode of operation immediately on reset of the TAP controller. The scan_en signal hasare-
circulating mux to hold its ON value between capture_dr and update _dr; thisallowsthe scan_en
to not change unnecessarily when long shift sequences are broken using the pause dr state.

Figure 8-11 illustrates the waveforms of the input signals from the TAP controller and the
generated output signals. Capture is performed during the run_test_idle state; this alows for an
arbitrary number of tck capture cycles by constraining tmsto O.

Figure 8-11. Signal Waveforms for TAP-based LPCT Controller

Alt

Csp?ure Pra-shift Main Shift =hift Post-shift Capture
Run'i'estldle SED'ER“ .CEFI':::FE: Shift DR E’S;l Up;:ml Run Test Idle
N
enable :
gt [e] [-
Capture DR :l | l |
shift_DR | I
Update_DR _I__
scanenable/ | [

clock mux select

|
edt_update
edt_clock |_|

Ipct_shift_clock _l rl I_l _l
Ipct_capture_en I |

Type 3 - LPCT Controller-generated Scan Enable

A Type 3 LPCT controller requires a minimum of three top-level pinsincluding afree-running
clock, an input data channel, and an output data channel.

Tessent TestKompress User's Manual, v2014.2 185
June 2014

Special Topics

Low Pin Count Test Controller

Asshown in Figure 8-12, the free-running clock source can be either the reference clock from
an on-chip PLL or the output of a PLL that is always running. The LPCT controller logic
operates based on this clock; the EDT and capture clocks are derived from this clock.

Note

For Type 2 and Type 3 controllers, the top-level scan enable pinisremoved and the
internally-generated scan enable pinis used.

Figure 8-12. After EDT and LPCT Controller Logic

Clock PLL Design
Eefore EDT and core
LPCT Controller
Logic [Foveranressr }—
Scan
enable
Free Clock
running PLL MUKEs
clock $ Shift clock Design
After EDTand core
Scanenable
LPCT Controller —
ogic
9 controller) >
EDT logic
:jnput - Output
ata data
channel channel
edt_update
Test sequenoe Edt‘:b:km
e inz . scan_snable
:D_:i running detector Z't:::: iﬁtﬁf’;ﬁaﬁ
machine Capture_sn
= loct_reset_out
o + t
Imput data Test
channel configuration Pattern, shift,
dataregister and capture
counters
186 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

In the Type 3 configuration, the LPCT controller contains the following components as shown
in Figure 8-12:

®* Test sequence detector — Detects a specified input sequence and produces asignal to
enabletest mode. Thisisoptional depending on how you configure the test mode enabl e.

®* Test configuration dataregister — Contains information about the test pattern set
such as the number of chain/scan tests, shift/capture cycles, and the EDT logic mode of
operation including low-power, bypass, and dual configurations. The size of the test
configuration register is approximately 50 bits and is directly related to the size of the
shift, capture, and pattern counters. The test configuration data is read once during the
test setup procedure.

® Finite state machine — Generates the scan control signals during test pattern
application and controls pattern shift and capture counters.

® Pattern, shift, and capture counters— Track test pattern data for the finite state
machine.

Test Mode Enable

Depending on the application, asignal from the LPCT controller to enable test mode must be
configured using one of the following methods:

®* Test mode signal — Test mode is enabled after the test mode signal is asserted for one
cycle, and the test session end is determined by the test pattern counters. When this
signal isatop-level pin, the correct test_setup procedure is automatically generated.
When thissignal isan internal pin, you must modify the test_setup procedure to ensure
that the internal test mode signal is asserted as necessary and that the controller logic is
reset before entering test mode.

* Test mode sequence — Test mode is enabled when a specific input sequence is
detected within a specific number of cycles after the LPCT controller isreset. Thisis
required when no top-level pinisused. Y ou can specify the sequence/cycles with the
set_|pct_controller command when setting up the LPCT controller. The generated test
procedure file contains all the initialization cycles necessary to enter test mode when
using sequence detection.

Note
Only one of these methods can be used to enable test mode for any single application.

Tessent TestKompress User's Manual, v2014.2 187
June 2014

Special Topics
Low Pin Count Test Controller

Test Patterns and the Type 3 LPCT Controller

When generating test patterns for a Type 3 LPCT controller, you must take into account the
following test pattern setups:

® NCPsor clock control definitions can be used for capture cycles— The LPCT
controller hardware is configured for afixed number of capture cycles as determined by
the set_Ipct_controller -max_capture_cycles command. Consequently, you must use
NCPsto specify all possible clocking sequences and add additional cycles so all test
patterns use the fixed number of capture cycles.

o If NCPs are used, each one must have the same number of capture cycles.

o If clock control definitions are used, the tool will automatically ensure that all
patterns in the pattern set have the same number of capture cycles.

o Thevalue of the capture cycle width portion of the test configuration datais
automatically stored in the test patterns as part of the test_setup procedure.

® Chain test patterns— The LPCT controller includes separate counters for chain test
and scan test patterns. The chain tests do not include a capture cycle, so the controller
does not enter capture state for chain test patterns.

® |ddq test patterns— lddq tests do not have a capture cycle, but there is a quiescent
(dead) cycle between pattern loads. During this time, you must ensure that no
functional/design clocks pulse. NCPs are not supported for iddq test patterns.

* Parallel test patterns— The LPCT controller includes internally-added primary input
pins, so you must use the -mode_internal switch when saving parallel test patterns. For
more information, see the write_patterns command.

Figure 8-13 and Figure 8-14 show the waveforms for signals generated by the Type 3 LPCT
controller configuration.

Note
The edt_clock signal isagated version of the free-running clock that is always generated

by the LPCT controller.

188 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Figure 8-13. Scan Test Pattern Timing

Capture
I N T Y R R A Lo
|Load, I | I i | Post anst { 1 | I
| Shlft Shlft Shlft Shift I 5hlft| 5hlft| Shift IShlft | | Load | Shift | Shift
Unloa%l | | Cycle | Cycle | unloag |

Core capture clock

Ipct_clock |
| E ! ' | L |
Ipct: shift-en E | | | | | I I I 1 ! | |
| H | | | | | | | |
H | | I
: I |
1 | T
Ipct_clock_mux_select | | | | :
| |
L	
T T	

f
|
I
Ipct_capture_en -
T
|
1
|

Core_clock |EIIII||II|||| IIIIllII ll'l

EDT_clock |

I
EDT_update | | |
|

Scan enable

Figure 8-14. Chain Test Pattern Timing

Hoagl 000 r b feostipest | |
oad | |
e 5h|ﬂ| Shift | Shift | Shift | Smmsmfn 5[“” | 21 1Load I shift | Shift
}Jnlnaci | | | ! Cycle | Cyclelynigad
Ipct_clock
| - . : 1
. . o1] o
Ipct_shift_en | | I I

T LETTIY

'Er

|
|
| | I |
I
Ipct_shift_clock

i H
-]
e
[| 3
I 1 HEE
. i i I : i N i
Ipet_clock_mux_select : < : Il " : : T : .I e vl
: | 1 : 1
Ipct_capture_en : H ! : : : : 1 !] l :
Core capturg clock [1 [1 | ! | ! i |
] E 1 | 1 1 I 4 1 I . |
I : ! |
Core_clock [1 :
: | :
edt_clock . 1 : '
i I I | I ! I I |—'—[!
edt_update | || L } ! : ! : : 1 : I H
L 1] 1 L] | . H 1
scan_en : . | .]] T I : : : |
Tessent TestKompress User's Manual, v2014.2 189

June 2014

Special Topics
Low Pin Count Test Controller

Detecting Faultson Reset Lines. When using the Type 3 LPCT controller, the functional reset
for the design isalso used to reset the LPCT controller. Therefore, the faults along the reset lines
are not detected by ATPG because the reset isin the deasserted state during the entire ATPG
session. Y ou can use one of the following two methods to recover the coverage along the reset
lines:

® Assertreset for theentirepattern set — With this method, the patterns to detect faults
along the reset lines must be in a different pattern set with their own test_setup
procedure. To use this method, make the following change in the dofile generated during
the logic creation phase of the LPCT controller:

In the Pattern Generation dofile, specify pin constraints and register values as follows:
Change: add_input_constraints reset_control -CO
To: add_input_constraints reset_control -C1
Change: add register value Ipct_config_reset_control O
To: add register_value Ipct_config_reset_control 1

Note

D When specifying an active low reset, using the set_Ipct_pins -reset -active low command,
you should reverse the pin constraint and register values. That is, you should flip the pin
constraint from C1 to CO and the register value from 1 to 0.

Theadd register_value command holds the reset to the design in the asserted state while
the reset to the controller is deasserted. Although this method requires two separate sets
of patterns each with their own test_setup procedure, no additional design requirements
are needed to create these patterns.

® UseLPCT condition bits— With this method, you use a scan flop in the design asa
control (condition) bit which allows ATPG to automatically justify the appropriate value
to assert or deassert the reset signal to the design. With this method, only one pattern set
is created for each fault model. To use this method, make the following changes:

In the IP Creation dofile, specify the condition scan cell asfollows:
Add: set_|pct_condition_bits -condition reset -from scancell _name.
In the Pattern Generation dofile, specify pin constraints and register values as follows:
Change: add input_constraints reset_control -CO
To: add_input_constraints reset_control -C1
Change: add register value Ipct_config_reset_control O
To: add register_value Ipct_config_reset_control 1

190 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

Note

D When specifying an active low reset, using the set_Ipct_pins -reset -active low command,
you should reverse the pin constraint and register values. That is, you should flip the pin
constraint from C1 to CO and the register value from 1 to 0.

ATPG justifies the value in this scan cell in the last load cycle before capture to ensure
the reset to the design is asserted or deasserted as needed. Using this method allows you
to generate a single test pattern set to detect reset line faults as well as other design
faults.

Toggling Scan Enable. When using the Type 3 LPCT controller, the scan enable signa
generated by the LPCT controller (Ipct_scan_en) is aways driven to O during capture. For
stuck-at patterns, if the scan enable signal to the design is required to toggle during capture, you
must use dedicated scan cells (condition bits); these scan cells must be part of the scan chain. To
toggle the scan enable signal, do the following:

In the IP Creation dofile, specify the condition scan cell:
Add: set_|pct_condition_bits -condition scan_en -from scancell_name.
In the Pattern Generation dofile, specify pin constraints and register values:
Change: add input_constraints scan_en_control -CO
To: add_input_constraints scan_en_control -C1
Change: add _register_value Ipct_config_scan_en_control O

To: add register_value lpct_config_scan_en_control 1

Tessent TestKompress User's Manual, v2014.2 191
June 2014

Special Topics
Low Pin Count Test Controller

LPCT Configuration Examples

This section provides an example for creating each of the three LPCT configuration types and
examples of the dofile and test procedure files generated for each configuration.

For more information on the differences between configuration types, see “LPCT Controller
Types.”

Example 1
Thisexample generatesa Type 1 LPCT controller and displays the associated pattern generation

dofile and test procedure file generated by the tool.

Sample dofile:

// Group definition

add_scan_groups grpl scan_setup.testproc

// Clock definitions

add_clocks 0 /occ/NX2

-internal -pin_name NX2

add_clocks 0 /occ/NX1l -internal -pin_name NX1

// Scan chain definitions

add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains

chainl
chain?2
chain3
chaind
chain5b
chainé
chain7
chain8
chain9
chainlO
chainll
chainl?2
chainl3
chainl4
chainl5b
chainlé

// EDT configuration
set_edt_options -channels 2

// LPCT configuration

set_lpct_controller -generate_scan_enable off -tap_controller_interface

grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl

off -shift_control clock

// LPCT Pin connections
set_lpct_pins clock refclk
set_lpct_pins input_scan_en scan_en

// Run DRC

scan_inl
scan_in2
scan_1in3
scan_1in4
scan_inb
scan_iné6
scan_in7
scan_in8
scan_1in9

scan_outl
scan_out?2
scan_out3
scan_out4d
scan_outh
scan_outb
scan_out?7
scan_out8
scan_out9

scan_1inl0
scan_inll
scan_inl2
scan_inl3
scan_inl4
scan_1inl5
scan_1inlé6

scan_outl0
scan_outll
scan_outl?2
scan_outl3
scan_outl4
scan_outlb
scan_outl6

-location internal

192

Tessent TestKompress User’'s Manual, v2014.2

Special Topics
Low Pin Count Test Controller

set_system _mode analysis

// Insert EDT and LPCT controller logic in design
write_edt_files created -verilog -replace

Sample pattern generation dofile:

set_edt_instances -edt_logic_top
set_edt_instances -decompressor
set_edt_instances -compactor

add_scan_groups grpl created_edt.
add_scan_chains -internal chainl
/m8051_edt_i/edt_scan_out[0]
add_scan_chains -internal chain2
/m8051_edt_1i/edt_scan_out[1]
add_scan_chains -internal chain3
/m8051_edt_i/edt_scan_out[2]
add_scan_chains -internal chain4
/m8051_edt_1i/edt_scan_out[3]
add_scan_chains -internal chainb
/m8051_edt_1i/edt_scan_out[4]
add_scan_chains -internal chainé
/m8051_edt_i/edt_scan_out[5]
add_scan_chains -internal chain7
/m8051_edt_i/edt_scan_out[6]
add_scan_chains -internal chain8
/m8051_edt_1i/edt_scan_out[7]
add_scan_chains -internal chain9
/m8051_edt_i/edt_scan_out[8]
add_scan_chains -internal chainlO
/m8051_edt_i/edt_scan_out[9]
add_scan_chains -internal chainll
/m8051_edt_1i/edt_scan_out[10]
add_scan_chains -internal chainl?2
/m8051 _edt_i/edt_scan_out[11]
add_scan_chains -internal chainl3
/m8051_edt_1i/edt_scan_out[12]
add_scan_chains -internal chainl4
/m8051_edt_1i/edt_scan_out[13]
add_scan_chains -internal chainlh
/m8051 _edt_i/edt_scan_out[14]
add_scan_chains -internal chainlé6
/m8051_edt_1i/edt_scan_out[15]

add_primary_inputs /occ/NX2

m8051_edt_i
m8051_edt_decompressor_i
m8051_edt_compactor_i

testproc

grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl

grpl

/m8051_edt_i/edt_scan_in[O0]
/m8051_edt_i/edt_scan_in[1]
/m8051 _edt_i/edt_scan_in[2]
/m8051_edt_1i/edt_scan_in[3]
/m8051_edt_i/edt_scan_in[4]
/m8051 _edt_1i/edt_scan_inl[5]
/m8051_edt_1i/edt_scan_in[6]
/m8051_edt_i/edt_scan_in[7]
/m8051 _edt_1i/edt_scan_in[8]
/m8051_edt_i/edt_scan_in[9]
/m8051_edt_i/edt_scan_in[10]
/m8051 edt_i/edt_scan_in[11]
/m8051_edt_i/edt_scan_in[12]
/m8051_edt_i/edt_scan_in[13]
/m8051 edt_i/edt_scan_in[14]

/m8051_edt_i/edt_scan_in[15]

-internal -pin_name NX2

add_primary_inputs /occ/NX1l -internal -pin_name NXI1

add_clocks 0 refclk
add_clocks 0 NX1
add_clocks 0 NX2

add_input_constraints scan_en -CO

// EDT settings.

Please do not modify.

// Inconsistency between the EDT settings and the EDT logic may
// lead to DRC violations and invalid patterns.

Tessent TestKompress User’'s Manual, v2014.2
June 2014

193

Special Topics
Low Pin Count Test Controller

set_edt_options -channels 2

-decompressor_size 12 -injectors_per_channel 3

-compactor_type Xpress

set_edt_pins update -
set_edt_pins clock -

-longest_chain_range 2 32 -ip_version 5

set_mask_register -input_channel_mask_register_sizes 1
set_mask_decoder_connection -mode_bit 17
set_mask_decoder_connection -lhot_decoder 1 16 1
set_mask _decoder_ connection -xor_decoder chainl 16 1
set_mask_decoder_connection -xor_decoder chain2 16 1
set_mask_decoder_connection -xor_decoder chain3 16 1
set_mask_decoder_connection -xor_decoder chainé 16 1
set_mask_decoder_connection -xor_decoder chainb 16 1
set_mask_decoder_connection -xor_decoder chainé 15 1
set_mask _decoder_connection -xor_decoder chain7 1 4 1
set_mask_decoder_connection -xor_decoder chain8 13 1
set_mask_decoder_connection -lhot_decoder 2 2 6 2
set_mask_decoder_connection -xor_decoder chain9 2 6 2
set_mask_decoder_connection -xor_decoder chainl0 2 6 2
set_mask _decoder_connection -xor_decoder chainll 2 6 2
set_mask_decoder_connection -xor_decoder chainl2 2 6 2
set_mask_decoder_connection -xor_decoder chainl3 2 6 2
set_mask_decoder_connection -xor_decoder chainl4d 2 5 2
set_mask_decoder_connection -xor_decoder chainl5 2 4 2
set_mask_decoder_connection -xor_decoder chainlé 2 3 2
// LPCT configuration settings. Please do not modify.

7

NN OO0 o]

NN OO oo

PR R RrRRRRR

D NDDNDDNDNDNDNDDNDDN

-scan_chains 16

P RPWWRE DWW DS

PR WWENDWRSP

// Inconsistency between the LPCT configuration settings and the LPCT
// logic may lead to DRC violations and invalid patterns.

set_lpct_controller on -generate_scan_enable off
-tap_controller_interface off -shift_control clock

-load_unload_cycles 2 2

Sample pattern generation test procedurefile:

set time scale 1.000000 ns
set strobe_window time 10 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 10 ;
pulse /NX1 20 10;
pulse /NX2 20 10;
pulse refclk 20 10;

period 40 ;

end;

procedure shift =
scan_group grpl ;
timeplate gen_tpl ;

’

// cycle 1 starts at time 0

194

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

cycle =
force_sci ;
measure_sco ;
pulse /NX1 ;
pulse /NX2 ;
pulse refclk ;

end;

end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =
force /NX1 0 ;
force /NX2 0 ;
force RST 0 ;
force edt_bypass 0 ;
force scan_en 1 ;
pulse refclk ;
end ;
// cycle 2 starts at time 40
cycle =
force scan_en 1 ;
pulse refclk ;
end ;
apply shift 45;
// cycle 3 starts at time 120
cycle =
force scan_en 0 ;
pulse refclk ;
end ;
// cycle 4 starts at time 160
cycle =
force scan_en 0 ;
pulse refclk ;
end;
end;

procedure test_setup =
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =
force scan_en 0 ;
pulse refclk ;
end ;
// cycle 2 starts at time 40
cycle =
force scan_en 0 ;
pulse refclk ;
end;
end;

Tessent TestKompress User's Manual, v2014.2 195
June 2014

Special Topics
Low Pin Count Test Controller

Example 2

Thisexample generatesa Type 2 LPCT controller and displays the associated pattern generation
dofile and test procedure file generated by the tool.

Sample dofile:
// Group definition
add_scan_groups grpl scan_setup.testproc
// Clock definitions
add_clocks 0 /occ/NX2 -internal -pin_name NX2
add_clocks 0 /occ/NX1 -internal -pin_name NX1
add_clocks 0 tck
// Pin constraints

add_input_constraints trst -C1

// Scan chain definitions

add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains

chainl
chain?2
chain3
chain4
chain5b
chain6
chain?’
chain8
chain9

grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl

scan_inl
scan_in2
scan_in3
scan_in4
scan_1inb
scan_1iné6
scan_in7
scan_in8
scan_in9

scan_outl
scan_out2
scan_out3
scan_out4d
scan_outh
scan_outb6
scan_out?
scan_out8
scan_out9

chainl0
chainll
chainl?2
chainl3
chainl4
chainlhb
chainlé

scan_inl0 scan_outlO
scan_1inll scan_outll
scan_1inl2 scan_outl?2
scan_1inl3 scan_outl3
scan_inl4 scan_outl4
scan_inl5 scan_outlb
scan_inl6é scan_outl6

add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains

grpl
grpl
grpl
grpl
grpl
grpl
grpl

// EDT configuration

set_edt_options -channels 1
set_edt_options -location internal

set_edt_pins input_channel 1 tdi m8051_i/edt_channels_inl
set_edt_pins output_channel 1 tdo tap_i/tap_edt_channel_reg_ in

// LPCT configuration

set_lpct_controller -generate_scan_enable on -tap_controller_interface on
-shift _control clock

// LPCT Pin connections to LPCT controller pins

set_lpct_pins clock tck pad_instance_1_i/po_pad_tck
set_lpct_pins reset - tap_1i/U2/2

196 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

set_lpct_pins
set_lpct_pins
set_lpct_pins
set_lpct_pins
set_lpct_pins
set_lpct_pins

capture_dr

tms tms pad_instance_1_1i
output_scan_en scan_en

// Run DRC

set_system_mode analysis

- tap_i/tap_ctrl_i/capturedr

shift_dr - tap_i/tap_ctrl_i/shiftdr

update_dr - tap_i/tap_ctrl_i/updatedr

test_mode - tap_i/instruction_decoder_i/edt_scan_inst

/po_pad_tms

// Insert EDT and LPCT controller logic in design

write_edt_files created -replace

Sample pattern generation dofile:

set_edt_instances -edt_logic_top
set_edt_instances -decompressor
set_edt_instances -compactor

add_scan_groups grpl created_edt.
add_scan_chains -internal chainl grpl
/m8051 _bscan_edt_i/edt_scan_out[0]
add_scan_chains -internal chain2 grpl
/m8051_bscan_edt_i/edt_scan_out[1l]
add_scan_chains -internal chain3 grpl
/m8051_bscan_edt_i/edt_scan_out[2]
add_scan_chains -internal chaind grpl
/m8051 _bscan_edt_i/edt_scan_out[3]
add_scan_chains -internal chainb5 grpl
/m8051_bscan_edt_i/edt_scan_out[4]
add_scan_chains -internal chain6 grpl
/m8051_bscan_edt_i/edt_scan_out[5]
add_scan_chains -internal chain7 grpl
/m8051 _bscan_edt_i/edt_scan_out[6]
add_scan_chains -internal chain8 grpl
/m8051_bscan_edt_i/edt_scan_out[7]
add_scan_chains -internal chain9 grpl
/m8051_bscan_edt_i/edt_scan_out[8]

m8051_bscan_edt_1i
m8051_bscan_edt_decompressor_i
m8051_bscan_edt_compactor_i

testproc

/m8051 bscan_edt_i/edt_scan_in[O0]
/m8051_bscan_edt_i/edt_scan_in[1]
/m8051_bscan_edt_i/edt_scan_in[2]
/m8051 bscan_edt_i/edt_scan_in[3]
/m8051_bscan_edt_i/edt_scan_in[4]
/m8051_bscan_edt_i/edt_scan_in[5]
/m8051 bscan_edt_i/edt_scan_in[6]
/m8051_bscan_edt_i/edt_scan_in[7]

/m8051_bscan_edt_i/edt_scan_in[8]

add_scan_chains -internal chainl0O grpl /m8051_bscan_edt_i/edt_scan_in[9]

/m8051_bscan_edt_i/edt_scan_out[9]
add_scan_chains -internal chainll grpl
/m8051_bscan_edt_i/edt_scan_out[10]
add_scan_chains -internal chainl2 grpl
/m8051_bscan_edt_i/edt_scan_out[11]
add_scan_chains -internal chainl3 grpl
/m8051 _bscan_edt_i/edt_scan_out[1l2]
add_scan_chains -internal chainl4 grpl
/m8051_bscan_edt_i/edt_scan_out[13]
add_scan_chains -internal chainl5 grpl
/m8051_bscan_edt_i/edt_scan_out[14]
add_scan_chains -internal chainl6 grpl
/m8051 _bscan_edt_i/edt_scan_out[1l5]

add_primary_inputs /occ/NX2 -internal
add_primary_inputs /occ/NX1 -internal

/m8051_bscan_edt_i/edt_scan_in[10]

/m8051_bscan_edt_i/edt_scan_in[11]

/m8051 bscan_edt_i/edt_scan_in[12]

/m8051_bscan_edt_i/edt_scan_in[13]

/m8051_bscan_edt_i/edt_scan_in[14]

/m8051 bscan_edt_i/edt_scan_in[15]

-pin_name NX2
-pin_name NX1

Tessent TestKompress User’'s Manual, v2014.2
June 2014

197

Special Topics
Low Pin Count Test Controller

add_clocks 0 tck -always_capture

add_clocks 0 NX1
add_clocks 0 NX2

add_input_constraints trst -C1
add_input_constraints tms -CO

// EDT settings. Please do

// Inconsistency between the EDT settings and the EDT logic may

not modify.

// lead to DRC violations and invalid patterns.

set_edt_options -channels 1 -longest_chain_range 2 32
-decompressor_size 12 -injectors_per_channel 6 -scan_chains 16

-compactor_type Xpress

set_edt_pins update -
set_edt_pins clock -
set_edt_pins input_channel
set_edt_pins output_channel

set_mask_register -input_channel_mask_register_sizes

set_mask decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection
set_mask_decoder_connection

// LPCT configuration settings.

1 tdi
1 tdo

-mode_bit 1 8
-lhot_decoder 1 1 7

-xor_decoder
-xor_decoder
-xo0r_decoder
-xo0r_decoder
-xor_decoder
-xor_decoder
-xor_decoder
-xor_decoder
-xo0r_decoder
-xo0r_decoder
-xor_decoder
-xor_decoder
-xor_decoder
-xor_decoder
-xo0r_decoder
-xo0r_decoder

chainl
chain?2
chain3
chain4
chain5b
chain6
chain?
chain8
chain9
chainlO
chainll
chainl2
chainl3
chainl4
chainlb
chainlé

PR R R R R RRRRRER R
POV d0UTWo~d~0~33d-

1

6

Please do not modify.

-ip_version 5

FRr R, R R R RRRRPRRRERRRRR
WwhwounB_NDUOU OO GO

1

8

ul

PR RrRRRRRPRPRPRPRPRERREER
NNNNRPRRNDWRRAEREDNDWRO

[

IS

// Inconsistency between the LPCT configuration settings and the LPCT
// logic may lead to DRC violations and invalid patterns.

set_lpct_controller on -generate_scan_enable on -tap_controller_interface
on -shift_control clock -load_unload_cycles 3 2

198

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

Sample pattern generation test procedure file:

Note
The following test_setup procedure is not generated by the tool but copied from a user-

provided test procedure file as an example.

set time scale 1.000000 ns ;
set strobe_window time 10 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 10 ;
pulse /NX1 20 10;
pulse /NX2 20 10;
pulse tck 20 10;
period 40 ;

end;

procedure shift lpct_tap_last_shift =
scan_group grpl ;
timeplate gen_tpl ;
// cycle 1 starts at time O
cycle =
force_sci ;
force tms 1 ;
measure_sco ;
pulse /NX1 ;
pulse /NX2 ;
pulse tck ;
end;
end;

procedure test_setup =
timeplate gen_tpl ;

// cycle 1 starts at time O
cycle =

force tck 0 ;

force tms 1 ;

force trst 0 ;
end ;
// cycle 2 starts at time 40
cycle =

force trst 1 ;
end ;
// cycle 3 starts at time 80
cycle =

force tms 0 ;

pulse tck ;
end ;
// cycle 4 starts at time 120
cycle =

force tms 1 ;

pulse tck ;
end ;
// cycle 5 starts at time 160

Tessent TestKompress User's Manual, v2014.2 199
June 2014

Special Topics
Low Pin Count Test Controller

cycle =
force tms 1 ;
pulse tck ;
end ;
// cycle 6 starts
cycle =
force tms 0 ;
pulse tck ;
end ;
// cycle 7 starts
cycle =
force tms 0 ;
pulse tck ;
end ;
// cycle 8 starts
cycle =
force tdi 0 ;
force tms 0 ;
pulse tck ;
end ;
// cycle 9 starts
cycle =
force tdi 1 ;
force tms 0 ;
pulse tck ;
end ;
// cycle 10 starts
cycle =
force tdi 0 ;
force tms 0 ;
pulse tck ;
end ;
// cycle 11 starts
cycle =
force tdi 0 ;
force tms 1 ;
pulse tck ;
end ;
// cycle 12 starts
cycle =
force tms 1 ;
pulse tck ;
end ;
// cycle 13 starts
cycle =
force tms 0 ;
pulse tck ;
end;

end;
procedure shift =

scan_group grpl ;
timeplate gen_tpl

at

at

at

at

at

at

at

at

’

time

time

time

time

time

time

time

time

200

240

280

320

360

400

440

480

// cycle 1 starts at time 0

cycle =
force_sci ;
force tms 0 ;
measure_sco ;
pulse /NX1 ;

200

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

pulse /NX2 ;
pulse tck ;
end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =
force /NX1 0 ;
force /NX2 0 ;
force RST 0 ;
force edt_bypass 0 ;
force tck 0 ;
force tdi 0 ;
force tms 1 ;
force trst 1 ;
pulse tck ;
end ;
// cycle 2 starts at time 40
cycle =
force tms 0 ;
pulse tck ;
end ;
// cycle 3 starts at time 80
cycle =
force tms 0 ;
pulse tck ;
end ;
apply shift 51;
apply lpct_tap_last_shift 1;
// cycle 4 starts at time 200
cycle =
force tms 1 ;
pulse tck ;
end ;
// cycle 5 starts at time 240
cycle =
force tms 0 ;
pulse tck ;
end;
end;

Example 3

Thisexample generatesa Type 3 LPCT controller and displays the associated pattern generation
dofile and test procedure file generated by the tool.

Sample dofile:

// Group definition
add_scan_groups grpl scan_setup.testproc

// Clock definitions
add_clocks 0 /occ/NX2 -internal -pin_name NX2

Tessent TestKompress User's Manual, v2014.2 201
June 2014

Special Topics
Low Pin Count Test Controller

add_clocks 0 /occ/NX1l -internal -pin_name NX1

// Scan chain definitions

add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains

chainl
chain?2
chain3
chaind
chain5b
chain6
chain7
chain8
chain9
chainlO
chainll
chainl?2
chainl3
chainl4
chainlh
chainlé

// EDT configuration
set_edt_options -channels 2

// LPCT configuration
set_lpct_controller -generate_scan_enable on -tap_controller_interface

off -shift_control clock

grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl

scan_inl
scan_in2
scan_in3
scan_1in4
scan_inb
scan_1iné6
scan_in7
scan_in8
scan_in9

scan_outl
scan_out?2
scan_out3
scan_out4d
scan_outh
scan_outb
scan_out?
scan_out8
scan_out9

scan_1inl0
scan_1inll
scan_1inl2
scan_inl3
scan_inl4
scan_inlb
scan_1inlé6

-location

scan_outl0
scan_outll
scan_outl?2
scan_outl3
scan_outl4
scan_outl5
scan_outl6

internal

set_lpct_controller -max_shift 1000 -max_capture 3

// LPCT Pin connections
set_lpct_pins clock refclk
set_lpct_pins output_scan_en scan_en

// Run DRC

set_system_mode analysis

// Insert EDT and LPCT controller logic in design

write_edt_files created -verilog

Sample pattern generation dofile:

set_edt_instances
set_edt_instances
set_edt_instances

add_scan_chains

-edt_logic_top

-replace

m8051_edt_1i
m8051_edt_decompressor_i

m8051_edt_compactor_i

/m8051_edt_1i/edt_scan_out[0]

add_scan_chains -internal chain?2

-decompressor
-compactor
-internal chainl grpl
grpl

/m8051_edt_i/edt_scan_out[1]
add_scan_chains -internal chain3 grpl
/m8051_edt_i/edt_scan_out[2]
add_scan_chains -internal chain4d grpl
/m8051_edt_1i/edt_scan_out[3]
add_scan_chains -internal chain5 grpl
/m8051_edt_1i/edt_scan_out[4]
add_scan_chains -internal chain6 grpl
/m8051_edt_i/edt_scan_out[5]
add_scan_chains -internal chain7 grpl

/m8051_edt_i/edt_scan_in[0]
/m8051 _edt_1i/edt_scan_in[1]
/m8051_edt_1i/edt_scan_in[2]
/m8051_edt_i/edt_scan_in[3]
/m8051 _edt_1i/edt_scan_in[4]
/m8051_edt_1i/edt_scan_in[5]

/m8051_edt_i/edt_scan_in[6]

202

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Special Topics
Low Pin Count Test Controller

/m8051 _edt_i/edt_scan_out[6]

add_scan_chains -internal chain8 grpl /m8051_edt_i/edt_scan_in[7]
/m8051_edt_1i/edt_scan_out[7]

add_scan_chains -internal chain9 grpl /m8051_edt_i/edt_scan_in[8]
/m8051_edt_1i/edt_scan_out[8]

add_scan_chains -internal chainl0 grpl /m8051_edt_i/edt_scan_in[9]
/m8051 _edt_i/edt_scan_out[9]

add_scan_chains -internal chainll grpl /m8051_edt_i/edt_scan_in[10]
/m8051_edt_1i/edt_scan_out[10]

add_scan_chains -internal chainl2 grpl /m8051_edt_i/edt_scan_in[11]
/m8051_edt_1i/edt_scan_out[11]

add_scan_chains -internal chainl3 grpl /m8051_edt_i/edt_scan_in[12]
/m8051 edt_1i/edt_scan_out[12]

add_scan_chains -internal chainl4 grpl /m8051_edt_i/edt_scan_in[13]
/m8051_edt_1i/edt_scan_out[13]

add_scan_chains -internal chainl5 grpl /m8051_edt_i/edt_scan_in[14]
/m8051_edt_1i/edt_scan_out[14]

add_scan_chains -internal chainlé grpl /m8051_edt_i/edt_scan_in[15]
/m8051 edt_1i/edt_scan_out[15]

add_primary_inputs /occ/NX2 -internal -pin_name NX2
add_primary_inputs /occ/NX1l -internal -pin_name NX1
add_primary_input -internal
/m8051_1pct_clock_gater_i/m8051_lpct_edt_clock_gater_i/clk_out

-pin_name edt_clock
add_primary_input -internal
/m8051_1pct_1i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/edt_
update -pin_name edt_update
add_primary_input -internal
/m8051_1pct_i/m8051_lpct_interface_i/edt_bypass -pin_name edt_bypass
add_primary_input -internal
/m8051_lpct_i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/scan
_en -pin_name lpct_scan_en
add_primary_input -internal
/m8051_lpct_i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/lpct
_capture_en -pin_name lpct_capture_en
add_primary_input -internal
/m8051_lpct_i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/lpct
_clock_mux_select -pin_name lpct_clock mux_select
add_primary_input -internal
/m8051_lpct_1i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/lpct
_shift_en -pin_name lpct_shift_en
add_primary_input -internal
/m8051_lpct_i/m8051_lpct_fsm i/m8051_lpct_control_signal_generator_i/lpct
_test_active -pin_name lpct_test_active
add_primary_input -internal
/m8051_1lpct_i/m8051_lpct_interface_i/reset_control -pin_name
reset_control
add_primary_input -internal
/m8051_lpct_i/m8051_lpct_interface_i/scan_en_control
-pin_name scan_en_control

add_clocks 0 refclk -free_running
add_clocks 0 NX1

add_clocks 0 NX2

add_clocks 0 edt_clock

add_input_constraints edt_clock -CO
add_input_constraints edt_update -CO
add_input_constraints edt_bypass -CX

Tessent TestKompress User's Manual, v2014.2 203
June 2014

Special Topics
Low Pin Count Test Controller

add_input_constraints lpct_capture_en -Cl
add_input_constraints lpct_clock_mux_select -CO
add_input_constraints lpct_shift_en -CO
add_input_constraints lpct_test_active -C1
add_input_constraints lpct_reset -CO
add_input_constraints reset_control -CO
add_input_constraints scan_en_control -CO

// EDT settings. Please do not modify.
// Inconsistency between the EDT settings and the EDT logic may
// lead to DRC violations and invalid patterns.

set_edt_options -channels 2 -longest_chain_range 2 32 -ip_version 5
-decompressor_size 12 -injectors_per_channel 3 -scan_chains 16
-compactor_type Xpress

set_edt_pins update edt_update
set_edt_pins clock edt_clock
set_edt_pins bypass edt_bypass

set_mask_register -input_channel_mask_register_sizes 17 2 6
set_mask_decoder_connection -mode_bit 17
set_mask_decoder_connection -lhot_decoder 1 16 15 14 13
set_mask _decoder_ connection -xor_decoder chainl 16 15 1 4
set_mask_decoder_connection -xor_decoder chain?2 16 15 1 3
set_mask_decoder_connection -xor_decoder chain3 16 15 1 2
set_mask_decoder_connection -xor_decoder chainé 16 15 11
set_mask_decoder_connection -xor_decoder chainb 16 14 13
set_mask_decoder_connection -xor_decoder chainé 15 14 13
set_mask _decoder_connection -xor_decoder chain7 1 4 12 11
set_mask_decoder_connection -xor_decoder chain8 13 12 11
set_mask_decoder_connection -lhot_decoder 2 2 6 2 5 2 4 2 3
set_mask_decoder_connection -xor_decoder chain9 2 6 25 2 4
set_mask_decoder_connection -xor_decoder chainl0 2 6 25 2 3
set_mask decoder_connection -xor_decoder chainll 2 6 25 2 2
set_mask_decoder_connection -xor_decoder chainl2 2 6 25 21
set_mask_decoder_connection -xor_decoder chainl3 2 6 2 4 2 3
set_mask_decoder_connection -xor_decoder chainl4d 2 5 2 4 2 3
set_mask_decoder_connection -xor_decoder chainl5 2 4 2 2 21
set_mask_decoder_connection -xor_decoder chainl6é 2 3 2 2 21
// LPCT configuration settings. Please do not modify.

// Inconsistency between the LPCT configuration settings and the LPCT
// logic may lead to DRC violations and invalid patterns.

set_lpct_controller on -generate_scan_enable on -tap_controller_interface
off -shift_cycles_reg width 10 -capture_cycles_reg width 2
-scan_patterns_reg width 20 -chain_patterns_reg width 10
-test_mode_detect signal -shift_control clock -load_unload_cycles 0 2
-bypass_controller off -reset_condition off

set_pattern_type -max_sequential 3
add_register_value lpct_config edt_bypass 0

add_register_value lpct_config_reset_control 0
add_register_value lpct_config scan_en_control 0

204 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

add_register_value lpct_config chain_pattern_load_count -width 10
-load_count chain_patterns -1lsb_shifted_first

add_register_value lpct_config scan_pattern_load_count -width 20
-load_count scan_patterns -1lsb_shifted_ first

add_register_value lpct_config capture_depth -width 2 -capture_cycles_max
-1lsb_shifted_first

add_register_value lpct_config shift_length -width 10 -shift_length
-1sb_shifted first

set_chain_test -suppress_capture on

Sample pattern generation test procedurefile:

set time scale 1.000000 ns ;
set strobe_window time 10 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 10 ;
pulse /NX1 20 10;
pulse /NX2 20 10;
pulse edt_clock 20 10;
pulse refclk 20 10;
period 40 ;

end;

procedure load_unload_register lpct_shift_data =
timeplate gen_tpl ;
shift =
// cycle 1 starts at time O
cycle =
force lpct_data_in # ;
pulse refclk ;
end;
end;
end;

procedure shift =
scan_group grpl ;
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =
force_sci ;
force edt_update 0 ;
force lpct_shift_en 1 ;
measure_sco ;
pulse /NX1 ;
pulse /NX2 ;
pulse edt_clock ;
end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =

Tessent TestKompress User's Manual, v2014.2 205
June 2014

Special Topics
Low Pin Count Test Controller

force /NX1 0 ;
force /NX2 0 ;
force RST 0 ;
force edt_bypass 0
force edt_clock 0
force edt_update 1

7

’

7

force lpct_capture_en 0 ;
force lpct_clock_mux_select 1 ;
force lpct_scan_en 1 ;
force lpct_shift_en 0 ;
force lpct_test_active 1 ;
pulse edt_clock ;

end ;

apply shift 45;

// cycle 2 starts at time 80

cycle

force lpct_clock_mux_select 1 ;
force lpct_scan_en 0 ;
force lpct_shift_en 0 ;

end ;

// cycle 3 starts at time 120

cycle

force lpct_clock_mux_select 0 ;
force lpct_shift_en 0 ;

end;
end;

procedure test_setup =
timeplate gen_tpl ;
// cycle 1 starts at time 0

cycle

force edt_clock 0

force

force lpct_reset 1

force

end ;

’

lpct_data_in 0 ;

7

lpct_test_mode 0 ;

// cycle 2 starts at time 40

cycle

force lpct_reset O

end ;

’

// cycle 3 starts at time 80

cycle

force lpct_test_mode 1 ;

end ;
apply
apply
apply
apply
apply

lpct_shift_data
lpct_shift_data
lpct_shift_data
lpct_shift_data
lpct_shift_data

lpct_data_in
lpct_data_in
lpct_data_in
lpct_data_in
lpct_data_in

1 ;

lpct_config edt_bypass ;
lpct_config reset_control ;
lpct_config_scan_en_control ;

lpct_config chain_pattern_load_count ;

apply

lpct_config_scan_pattern_load_count

apply

apply

apply
end;

lpct_shift_data

lpct_shift_data
lpct_shift_data
lpct_shift_data

lpct_data_in

lpct_data_in
lpct_data_in
lpct_data_in

lpct_config capture_depth ;
lpct_config _shift_length ;
0 ;

206

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Low Pin Count Test Controller

procedure test_end =
timeplate gen_tpl ;
// cycle 1 starts at time 0
cycle =
force lpct_test_active 1 ;
end ;
// cycle 2 starts at time 40

cycle =
force lpct_test_active 1 ;
end ;
// cycle 3 starts at time 80
cycle =
force lpct_test_active 1 ;
end;
end;
Example 4

This example generates asimple Type 1 controller that specifies atop-level scan clock as the
LPCT clock.

set_context dft -edt

add_clock 0 clk //Note - there i1s a single clock in the design
add_scan_chains

set_lpct_controller on -shift_control clock

set_lpct_pin clock clk //LPCT clock is shared with scan clock
set_lpct_pin input_scan_enable scan_en

set_lpct_pin test_clock_ connection test_mode_mux/B

set_system _mode analysis

report_lpct_pins

write_edt_files created -replace

Example 5

This example generatesa Type 2 LPCT controller that uses tck as a scan shift clock. The test
mode multiplexer, which chooses between the L PCT-generated scan clock and the functional
clock, already existsin the design. The test_clock_connection pin on the mux is specified with
thetest_clock_connection pin type.

Thisexampleisillustrated in Figure 8-15.

set_context dft -edt

add_clock 0 tck

add_scan_chains

set_lpct_controller -tap_controller_interface on
set_lpct_controller -shift_control clock
set_lpct_pins output_scan_enable scan_en
set_lpct_pins tck tck pad_tck/Z //LPCT clock is tck
set_lpct_pins tms tms pad_tms/7Z

set_lpct_pins reset - tap_1i/tlr

set_lpct_pins capture_dr - tap_i/capturedr
set_lpct_pins shift_dr - tap_i/shiftdr
set_lpct_pins update_dr - tap_i/updatedr
set_lpct_pins test_mode - tap_i/edt_scan_inst

Tessent TestKompress User's Manual, v2014.2 207
June 2014

Special Topics
Compression Bypass Logic

set_lpct_pins test_clock _connection test_mode_mux/B
set_edt_options -channel 1

set_edt_pins input 1 tdi pad_tdi/z

set_edt_pins output 1 tdo tap_i/tap_edt_channel_reg_in
set_system_mode analysis

report_lpct_pins

report_lpct_configuration

write_edt_files created -replace

Figure 8-15. Type 2 LPCT Design Example

EDT
test_data_reg out

- l\\ .-‘.",. l‘\‘\
tdi——{> %}) tdo
P
tms >
tck ™~
L - TAP
TAP Controller Shifelos wivee
—3 | || | y update DR
LPCT test [SO o
mode)

LPCT test clock CORE
connection to test Design
mode mux

scan_en

Compression Bypass Logic

By default, bypass circuitry isincluded in the EDT logic. The bypass circuitry allows you to
bypass the EDT logic and access uncompressed scan chainsin the design core.

Bypassing the EDT logic enables you to apply uncompressed test patterns to the design to:

® Debug compressed test patterns.
® Apply additional custom uncompressed scan chains.
® Apply test patterns from other ATPG tools.

Tessent TestKompress User's Manual, v2014.2 208
June 2014

Special Topics
Compression Bypass Logic

Bypass logic can aso be inserted in the core netlist at scan insertion time. This allows you to
place the multiplexers and lockup cells required to operate the bypass mode inside the core
netlist instead of the EDT logic. This option alows more effective design routing. For more
information, see “Insertion of Bypass Chains in the Netlist” on page 40.

Y ou can also set up two bypass scan chain configurations. In addition to the default
configuration, you can create a second bypass configuration that concatenates all scan chains
together into one bypass chain for use when hardware test channels are limited. For more
information, see “Dual Bypass Configurations’” on page 211.

Structure of the Bypass Logic

Because the number of core scan chainsisrelatively large, they are reconfigured into fewer,
longer scan chains for bypass mode. For example, in a design with 100 core scan chains and
four external channels, every 25 scan chains are concatenated to form one bypass chain. This
bypass chain is then connected between the input and output pins of agiven channel.

Figure 8-16 illustrates conceptually how the bypass mode is implemented.

Figure 8-16. Bypass Mode Circuitry

\\\

i Chain 4 }
|~
LN

i Chain 3 |

S d -
~ SO

i Chain 2 }
|~
N

i Chain 1 I
|~

Decompressor ComrJactor

Notice that the bypass logic is implemented with multiplexers. The tool includes the
multiplexers and any lockup cells needed to concatenate scan chainsin the EDT logic.

Tessent TestKompress User's Manual, v2014.2 209
June 2014

Special Topics
Compression Bypass Logic

Note
D When lockup cells are inserted as part of the bypass logic, the EDT logic requires a

system clock. If the same bypasslogicis placed in the netlist, the EDT logic does not
reguire a system clock.

Y ou can also set up the EDT clock to pulse before the scan chain shift clocks to avoid
using a system clock. For more information, see the -pulse_edt_before shift_clocks
switch of the set_edt_options command.

The bypass circuitry is run from bypass mode in Tessent FastScan.

Generating EDT Logic When Bypass Logic is
Defined in the Netlist

EDT technology supports netlists that contain two sets of pre-defined scan chains. Predefining
two sets of scan chains allows you to insert both the bypass chains and the core chainsinto the
core design with a scan-insertion tool.

Note
Design blocks that contain bypass chainsin the EDT logic and design blocks that contain
bypass chains in the core can coexist in adesign.

Restrictions and Limitations

® Bypass patterns cannot be created from compressed test patterns. Y ou must generate
bypass patterns from Tessent Shell. See “ Creating Bypass Test Patternsin
Uncompressed ATPG” on page 216.

Prerequisites
® Both bypass and core scan chains must be inserted in the design netlist. For more
information, see “Insertion of Bypass Chainsin the Netlist” on page 40.
Procedure
1. Invoke Tessent Shell. For example:
<Tessent_Tree Path>/bin/tessent -shell
2. Load the design and library and set the context for EDT logic generation.
set_context dft -edt
read_verilog my_gate scan.v
read_cell_library my_lib.aptg
set_current_design top

3. Set up parametersfor the EDT logic generation.

Tessent TestKompress User's Manual, v2014.2 210
June 2014

Special Topics
Compression Bypass Logic

For more information, see “Preparation for EDT Logic Creation” on page 52.
4. Enable the tool to use existing bypass chains. For example:
set_edt_options -bypass_logic use_existing bypass_chains
For more information, see the set_edt_options command.
5. Specify the number of bypass chains. For example:
set_edt_options -bypass_chain 2
For more information, see the set_bypass chains command.

6. Specify the input and output pins for the bypass chains. For example:

set_bypass_chains 2 -pins scan_in2 scan_out2

For more information, see the set_bypass chains command.

7. Generatethe EDT logic. For more information, see “Creation of EDT Logic Files’ on
page 78.

Related Topics

Synthesizing the EDT Logic
Creating Bypass Test Patterns in Uncompressed
ATPG

Dual Bypass Configurations

Y ou can usethe set_edt_options-single_bypass chain command to output EDT logic with two
bypass configurations as follows:

® Default scan chain configuration — All scan chains are evenly distributed and
concatenated into scan chains equal to the number of input/output channelsin the EDT
logic. This configuration can also be specified with the set_edt_options -bypass chains
command. For more information, see “Compression Bypass Logic” on page 208.

® Singlebypass scan chain configuration — All scan chains are concatenated together
to form one scan chain for bypass mode. A single bypass chain configuration can be
used in test environments with hardware limitations.

When dual configurations are specified, an additional primary input edt_single_bypass chain
pin is created to enable and disable the single chain configuration. For more information, see
“Single Chain Bypass Logic” on page 284.

An additional dofile <design>_single bypass chain.dofileis also produced to definethe single
top-level scan chain and force the edt_single bypass chain pinto 1.

Tessent TestKompress User's Manual, v2014.2 211
June 2014

Special Topics
Compression Bypass Logic

Additional lockup cells are inserted as needed. For more information, see “Lockupsin the
Bypass Circuitry” on page 233.

By default only test patterns for the default configuration are saved. To save the test patternsfor
the single chain bypass configuration, you must use the write_patternsedt_single bypass chain
command.

Note
D Single bypass chain configuration is associated with one compression block. To usethis

featurein ablock-level architecture, you must manually integrate all single bypass chains
together at the top-level.

Note
D The single bypass configuration is not included in reported test pattern statistics and scan

chains. Only information about the default bypass configuration is reported.

Related Topics

Structure of the Bypass Logic Lockupsin the Bypass Circuitry
Bypass Pattern Flow Example Structure of the Bypass Chains
Bypass Mode Files

Generation of Identical EDT and Bypass Test
Patterns

The EDT technology supports the creation of uncompressed versions of each EDT pattern. The
availability of uncompressed EDT patterns enables you to use uncompressed ATPG in bypass
mode to directly load the scan cells with the same values that compressed ATPG loads. For
debugging simulation mismatchesin the core logic, it is sometimes helpful if you can apply the
exact same patterns with uncompressed ATPG in bypass mode that you applied with
compressed ATPG.

Note
D Y ou can only convert EDT test patterns to uncompressed test patterns for bypass mode if

the bypass scan chains are created with compressed ATPG. Otherwise, you must use
uncompressed ATPG to generate bypasstest patterns. See“ Creating Bypass Test Patterns
in Uncompressed ATPG” on page 216.

After you generate EDT patterns in the Pattern Generation phase, you can direct the tool to
trandate the EDT patterns into bypass mode uncompressed ATPG patterns and write the
tranglated patterns to afile. The file format is the same as the regular uncompressed ATPG

Tessent TestKompress User's Manual, v2014.2 212
June 2014

Special Topics
Compression Bypass Logic

binary file format. Y ou accomplish the translation and create the binary file by issuing the
write_patterns command with the -EDT_Bypass and -Binary switches. For example:

write_patterns my_bypass_patterns.bin -binary -edt_bypass

Y ou can then read the binary file into uncompressed ATPG, re-simulate the patternsin the
analysis system mode to verify that the expected values computed in compressed ATPG are till
valid in bypass mode, and save the patternsin any of the tool’ s supported formats, WGL or
Verilog for example. An example of thistool flow is provided in the section, “Use of Bypass
Patterns in Uncompressed ATPG.”

There are severa reasons you cannot use EDT technology aone to create the EDT bypass
patterns:

® The bypass operation requires a different set of test procedures. These are only loaded
when running uncompressed ATPG and are unknown to EDT in the Pattern Generation
phase.

If the bypass test procedures produce different tied cell values than the EDT test
procedures, simulation mismatches can result if the EDT patterns are simply reformatted
for bypass mode. An example of thiswould be if aboundary scan TAP controller were
used to drivethe EDT bypass signal. The two sets of test procedures would cause the
register driving the signal to be forced to different values and the expected values
computed for EDT would therefore not be correct for bypass mode.

* EDT would not have run any DRCsto ensure that the scan chains can be traced in
bypass mode.

® You may need to verify that captured values do not change in bypass mode.

When it translates EDT patternsinto bypass patterns, EDT changes the captured values on some
scan cellsto Xsto emulate effects of EDT compaction and scan chain masking. For example, if
two scan cells are XOR' d together in the compactor and one of them had captured an X, the tool
sets the captured value of the other to X so no fault can be detected on those cells, incorrectly
credited, then lost during compaction.

Similarly, if ascan chain is masked for a given pattern, the tool sets captured values on al scan
cellsin that chain to X. When trandating the EDT patterns, the tool preserves those Xs so the
two pattern sets are identical. While this can lower the “observability” possible with the bypass
patterns, it emulates EDT test conditions. For more information on how EDT uses masking,
refer to “Understanding Scan Chain Masking in the Compactor.”

Chain Test Pattern Handling for Bypass Operation

The EDT technology saves only the translated EDT scan patternsin the binary file. The

enhanced chain + EDT logic test patterns are not saved. The purpose of the enhanced test
patternsisto verify the operation of the EDT logic as well as the scan chains. Because no
shifting occurs through the EDT logic when it is bypassed, regular chain test patterns are

Tessent TestKompress User's Manual, v2014.2 213
June 2014

Special Topics
Compression Bypass Logic

sufficient to verify the scan chainswork in bypass configuration; The regular chain test patterns
are appended to the compressed test pattern set when you write out the bypass patterns.

Note
Becausethe EDT pattern set contains the enhanced test patterns and the bypass pattern set

does not, the number of patternsin the EDT and bypass pattern sets are different.

Y ou can use the bypass test patterns with uncompressed ATPG to debug problems in the core
design and scan chains but not inthe EDT logic. If the enhanced tests fail in compressed ATPG
and the bypass chain test passes in uncompressed ATPG, the problem is probably inthe EDT
logic or the interface between the EDT logic and the scan chains.

Use of Bypass Patterns in Uncompressed ATPG

After you save the bypass patterns, invoke Tessent Shell, read the design, and use the dofile and
test procedure file generated when the EDT logic is created. Y ou then read into Tessent Shell
the binary pattern file you previously saved from compressed ATPG. Y ou should re-simulate
the patternsin the analysis system mode to verify that the expected values computed with
compressed ATPG are till valid in bypass mode. Then save the patternsin any of the tool’s
supported formats, WGL or Verilog for example.

Bypass Pattern Flow Example

The following example demonstrates how to use bypass patternsin ATPG mode.

Note
D The following steps assume that, as part of anormal flow, you already have run Tessent

Shell to create the EDT logic, followed by Design Compiler to synthesizeit. Y ou must
complete both steps in order to run Tessent Shell with uncompressed ATPG in bypass
mode. The bypass dofile and the bypass test procedure file generated by compressed
ATPG are required by uncompressed ATPG in order to correctly apply a bypass pattern
Set.

In the compressed ATPG Pattern Generation phase, issue a“write_patterns -binary
-edt_bypass’ command to write bypass patterns. For example:
write_patterns my_bypass_patterns.bin -binary -edt_bypass

Notice that the -Binary and the -Edt_bypass switches are both required in order to write bypass
patterns.

Tessent TestKompress User's Manual, v2014.2 214
June 2014

Special Topics
Compression Bypass Logic

Tessent Shell Setup in Uncompressed ATPG

Invoke Tessent Shell in setup mode and invoke the bypass dofile generated by compressed
ATPG. Place the design in the same state in uncompressed ATPG that you used in compressed
ATPG, then run DRC.

Note
D Placing the design in the same state in uncompressed ATPG as in compression ATPG

ensures the expected test values in the bypass patterns remain valid when the design is
configured for bypass operation.

The following example uses the bypass dofile, created bypass.dofile, described in section
“Creation of EDT Logic Files’:

dofile created_bypass.dofile
set_system_mode analysis

Verify that no DRC violations occurred.

Processing of the Bypass Patterns

To simulate the bypass patterns and verify the expected values, you can enter commands similar
to the following:

read_patterns my_bypass_patterns.bin
report_failures -pdet

Note
D The expected values in the binary pattern file mirror those with which compressed ATPG

observes EDT patterns. Therefore, if compressed ATPG cannot observe a scan cell (for
example, due to scan chain masking or compaction with a scan cell capturing an X), the
expected value of the cell isset to X evenif it can be observed by uncompressed ATPG in
bypass mode.

Saving of the Patterns with Compressed ATPG Observability

To save the patterns in another format using the expected valuesin the binary pattern file, issue
the write_patterns command with the -External switch. For example, to save ASCII patterns:

read_patterns my_bypass_patterns.bin
write_patterns my_bypass_patterns.ascii -external

Saving of the Patterns with Uncompressed ATPG Observability

Alternatively, you can save expected values based on what is observable by uncompressed
ATPG when the design isin bypass operation. Some scan cells which had X expected valuesin
compressed ATPG, due to scan chain masking or compaction with an X in another scan cell,

Tessent TestKompress User's Manual, v2014.2 215
June 2014

Special Topics
Compression Bypass Logic

may be observed by uncompressed ATPG. To write_patterns where the expected values reflect
uncompressed ATPG observability, first smulate the patterns as follows:

set_system_mode analysis
read_patterns my_bypass_patterns.bin
simulate_patterns -store_patterns all

Note
D The preceding command sequence will cause the Xs that emulate the effect of

compaction in EDT to disappear from the expected values. The resultant bypass patterns
will no longer be equivalent to the EDT patterns; only the stimuli will be identical in the
two pattern sets. For agiven EDT pattern, therefore, the corresponding bypass pattern
will no longer provide test conditionsidentical to what the EDT pattern provided in
compressed ATPG.

Using the -Sore_patterns switch in analysis system mode when specifying the external file as
the pattern source causes uncompressed ATPG to place the simulated patternsin thetool’s
internal pattern set. The simulated patterns include the load values read from the external
pattern source and the expected values based on simulation.

Note
D If you fault simulate the patterns loaded into uncompressed ATPG, the test coverage

reported may be slightly higher than it actually isin compressed ATPG. Thisis because
uncompressed ATPG recomputes the expected values during fault simulation rather than
using the values in the external pattern file. The recomputed values do not reflect the
effect of the compactors and scan chain masking that are uniqueto EDT. Therefore, there
likely will be fewer Xsin the recomputed values, resulting in the higher coverage
number.

When you subsequently save these patterns, take care not to use the -External switch with the
write_patterns command. The -External switch saves the current external pattern set rather than
the internal pattern set containing the simulated expected values. The following example saves
the simulated expected valuesin the internal pattern set to the file, my_bypass patterns.ascii:

write_patterns my_bypass_patterns.ascii

Creating Bypass Test Patterns in Uncompressed
ATPG

Usethis procedure to generate test patterns for the bypass chainslocated in your netlist or in the
EDT logic.

Tessent TestKompress User's Manual, v2014.2 216
June 2014

Special Topics
Compression Bypass Logic

Prerequisites

If asignal other than the edt_bypass signal is used for the mux select that enables the
bypass chains, the test procedure file for the bypass chains must be modified to allow
bypass chains to be traced.

EDT logic must be created and synthesized into your netlist, and the bypass dofile and
test procedure files generated by compressed ATPG are available.

Procedure
1. Invoke Tessent Shell. The setup prompt displays.
2. Set the context, read in the design library.
3. Run the bypass dofile. For example:
dofile created_bypass.dofile
4. Change to analysis system mode to run DRC. For example:
set_system_mode analysis
5. Check for and debug any DRC violations.
6. Create uncompressed ATPG patterns as you would for adesign without EDT. For
example:
add_faults /my_core
create_patterns
report_statistics
report_scan_volume
This example creates patterns with dynamic compression. Be sure to add faults only on
the core of the design (assumed to be “/my_core” in this example) and disregard the
EDT logic.
The report_scan_volume command provides information for analyzing pattern data and
achieved compression.
Uncompressed ATPG patterns that utilize the bypass circuitry are generated.
Tessent TestKompress User's Manual, v2014.2 217

June 2014

Special Topics
Uncompressed ATPG (External Flow) and Boundary Scan

Related Topics

Use of Bypass Patterns in Uncompressed Generating Test Patterns

ATPG Simulation of the Generated Test Patterns
Preparation for Test Pattern Generation

Uncompressed ATPG (External Flow) and
Boundary Scan

The information in this section applies to the external compressed pattern flow.
For more information on this flow, see “Compressed Pattern External Flow” on page 33.

Flow Overview

Oncethe EDT logic is created, you can use any tool to insert boundary scan.

Note

D As mentioned previously, boundary scan cells must not be present in your design before
you add the EDT logic. Thisis the same requirement that appliesto 1/0 pads and is for
the same reason which is to enable compressed ATPG to create the EDT logic asa
wrapper around your core design.

When you insert boundary scan, you typically configure the TAP controller in one of two ways:

® Drivethe minimal amount of the EDT control circuitry with the TAP controller, so the
boundary scan simply coexists with EDT. Thisis described in the next section,
“Boundary Scan Coexisting with EDT Logic.”

* Drivethe EDT logic clock, update, and bypass signals with the TAP controller as
described in the section, “Driving Compressed ATPG with the TAP Controller.”

These two approaches are described in the following sections.

Boundary Scan Coexisting with EDT Logic

This section describes how EDT logic can coexist with boundary scan and provides aflow
reference for this methodology. This approach enables the EDT logic to be controlled by
primary input pins and not by the boundary scan circuitry. In test mode, the boundary scan
circuitry just needs to be reset. Also, all Plsand POs are directly accessible.

Preparation for Synthesize of Boundary Scan and EDT Logic

Prior to synthesizing the EDT logic and boundary scan circuitry, you should ensure any scripts
used for synthesis include the boundary scan circuitry. For example, the Design Compiler

218 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Uncompressed ATPG (External Flow) and Boundary Scan

synthesis script that compressed ATPG generates needs the following modifications (shown in
bold font) to ensure the boundary scan circuitry is synthesized along with the EDT logic:

Note
The modifications are to the example script shown in the “Design Compiler Synthesis

Script External Flow” section of Chapter 4.

/**
** Synopsys Design Compiler synthesis script for created_edt_bs_top.v

* %
**/

/* Read input design files */

read -f verilog created_core_blackbox.v

read -f verilog created_edt.v

read -f verilog created_edt_top.v

read -f verilog edt_top_bscan.v / *ADDED* /

current_design edt_top_bscan /*MODIFIED*/

/* Check design for inconsistencies */
check_design

/* Timing specification */
create_clock -period 10 -waveform {0,5} edt_clock
create_clock -period 10 -waveform {0,5} tck /*ADDED*/

/* Avoid clock buffering during synthesis. However, remember */
/* to perform clock tree synthesis later for edt_clock */
set_clock_transition 0.0 edt_clock

set_dont_touch_network edt_clock

set_clock_transition 0.0 tck / *ADDED*/
set_dont_touch_network tck / *ADDED*/

/* Avoid assign statements in the synthesized netlist.
set_fix multiple_port_nets -feedthroughs -outputs -buffer_constants

/* Compile design */
uniquify

set_dont_touch cpu

compile -map_effort medium

/* Report design results for EDT logic */

report_area > created_dc_script_report.out

report_constraint -all_violators -verbose >>
created_dc_script_report.out

report_timing -path full -delay max >> created_dc_script_report.out

report_reference >> created_dc_script_report.out

/* Remove top-level module */
remove_design cpu

/* Read in the original core netlist */
read -f verilog gate_scan.v
current_design edt_top_bscan /*MODIFIED*/

Tessent TestKompress User's Manual, v2014.2 219
June 2014

Special Topics
Uncompressed ATPG (External Flow) and Boundary Scan

link

/* Write output netlist using a new file name*/
write -f verilog -hierarchy -o created_edt_bs_top_gate.v /*MODIFIED*/

After you have made any required modifications to the synthesis script to support boundary
scan, you are ready to synthesize the design. Thisis described in the section, “The EDT Logic
Synthesis Script.”

Modification of the Dofile and Procedure File for Boundary Scan
To correctly operate boundary scan circuitry, you need to edit the dofile and test procedure file
created by compressed ATPG.

Note
D The information in this section applies only when the design includes boundary scan.

Typical changesinclude:

® Theinternal scan chains are one level deeper in the hierarchy because of the additional
level added by the boundary scan wrapper. This needs to be taken into consideration for
the add_scan_chains command.

®* Theboundary scan circuitry needs to beinitialized. Thistypically requires you to revise
both the dofile and test procedure file.

® You may need to make additional changesif you drive compressed ATPG signals with
the TAP controller.

In the simplest configuration, the EDT logic is controlled by primary input pins, not by the
boundary scan circuitry. In test mode, the boundary scan circuitry just needs to be reset.

Following is the same dofile shown in the Chapter 4 section, “ Test Pattern Generation Files,”
except now it includes the changes (shown in bold font) necessary to support boundary scan
when configured simply to coexist with EDT logic. The boundary scan circuitry is assumed to
include a TRST asynchronous reset for the TAP controller.

add_scan_groups grpl modified edt.testproc

add_scan_chains -internal chainl grpl /core_i/cpu_i/edt_sil
/core_i/cpu_i/edt_sol

add_scan_chains -internal chain2 grpl /core_i/cpu_i/edt_si2
/core_i/cpu_i/edt_so2

add_scan_chains -internal chain3 grpl /core_i/cpu_i/edt_si3
/core_i/cpu_i/edt_so3

add_scan_chains -internal chain4 grpl /core_i/cpu_i/edt_si4d
/core_i/cpu_i/edt_so4

add_scan_chains -internal chainb5 grpl /core_i/cpu_i/edt_sib
/core_i/cpu_i/edt_sob

220 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Uncompressed ATPG (External Flow) and Boundary Scan

add_scan_chains -internal chain6 grpl /core_i/cpu_i/edt_si6
/core_i/cpu_i/edt_so6

add_scan_chains -internal chain7 grpl /core_i/cpu_i/edt_si7
/core_i/cpu_i/edt_so7

add_scan_chains -internal chain8 grpl /core_i/cpu_i/edt_si8
/core_i/cpu_i/edt_so8

add_clocks 0 clk
add_clocks 0 edt_clock

add_input_constraints tms -Cl
add_write_controls 0 ramclk
add_read_controls 0 ramclk
add_input_constraints edt_clock -CO
set_edt_options -channels 1 -ip_version 1

The test procedure file, created edt.testproc, shown in the Chapter 4 section, “ Test Pattern
Generation Files,” must aso be changed to accommodate boundary scan circuitry that you
configure to simply coexist with EDT logic. Here is that file again, but with example changes
for boundary scan added (in bold font). This modified file was saved with the new name
modified_edt.testproc, the name referenced in the fifth line of the preceding dofile.

set time scale 1.000000 ns ;
set strobe_window time 100 ;

timeplate gen_tpl =
force_pi 0 ;
measure_po 100 ;
pulse clk 200 100;
pulse edt_clock 200 100;
pulse ramclk 200 100;
period 400 ;

end;

procedure capture =
timeplate gen_tpl ;
cycle =
force_pi ;
measure_po ;
pulse_capture_clock ;
end;
end;

procedure shift =

scan_group grpl ;
timeplate gen_tpl ;
cycle =

force_sci ;

force edt_update 0 ;

measure_sco ;

pulse clk ;

pulse edt_clock ;

Tessent TestKompress User's Manual, v2014.2 221
June 2014

Special Topics
Uncompressed ATPG (External Flow) and Boundary Scan

end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force clk 0 ;
force edt_bypass 0 ;
force edt_clock 0 ;
force edt_update 1 ;
force ramclk 0 ;
force scan_en 1 ;
pulse edt_clock ;
end ;
apply shift 26;
end;

procedure test_setup =
timeplate gen_tpl ;
cycle =
force edt_clock 0 ;

force tms 1;
force tck 0;
force trst 0;
end;
cycle =
force trst 1;
end;
end;

Driving Compressed ATPG with the TAP Controller

Y ou can drive one or more compressed ATPG signals from the TAP controller; however, there
are afew more requirements and restrictions than in the ssmplest case where the boundary scan
just coexistswith EDT logic. Some of these apply when you set up the boundary scan circuitry,
others when you generate patterns:

® If youwant to completely drivethe EDT logic from the TAP controller, you first should
decide on an instruction to drive the EDT channels.

®* Toensurethe TAP controller staysin the proper state for shift as well as capture during
EDT pattern generation, you should specify TCK as the capture clock. Thisrequires a
“set_capture _clock TCK -atpg” command in the EDT dofile that causes the capture
clock TCK to be pulsed only once during the capture cycle.

® Also, the TAP controller must step through the Exit1-DR, Update-DR, and Select-DR-
Scan states to go from the Shift-DR state to the Capture-DR state. This requires three
intervening TCK pulses between the pulse corresponding to the last shift and the
capture. These three pulses need to be suppressed for the clock supplied to the core.

222 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Use of Pipeline Stages in the Compactor

®* TheEDT update signal isusually asserted during the first cycle of the load/unload
procedure, so as not to restrict clocking in the capture window. Typically, the EDT clock
must be in its off state in the capture window. Because there is already arestriction in
the capture window due to the “set_capture _clock TCK -atpg” command, you can
supply the EDT clock from the same waveform as the core clock without adding any
more constraints. To update the EDT logic, the EDT update signal must now be asserted
in the capture window. Y ou can use the Capture-DR signal from the TAP controller to
drivethe EDT update signal.

® Youshould aso modify any synthesis scripts to include the boundary scan circuitry. For
an example of aDesign Compiler script with the necessary changes, see “ Preparation for
Synthesize of Boundary Scan and EDT Logic” on page 218.

Use of Pipeline Stages in the Compactor

Pipeline stages can sometimes improve the overall rate of data transfer through the logic in the
compactor by increasing the scan shift frequencies. Pipeline stages are flip-flops that hold
intermediate values output by alogic level so that values entering that logic level can be updated
earlier in aclock cycle. Because the EDT logic isrelatively shallow, most designs do need
compactor pipeline stages to attain the desired shift frequency. The limiting factors on shift
frequencies are usually the performance of the scan chains and power considerations.

Y ou can enable the addition of pipeline stages in the compactor with the
set_edt_options-Pipeline logic levels in_compactor command when creating the EDT logic.
Pipeline stages added to the compactor use the EDT clock and lockup cells as described in
“Lockups Between Scan Chain Outputs and Compactor” on page 232.

Note
D The -Pipeline_logic_levels in_compactor switch specifies the maximum number of

combinational logic levels (XOR gates) between compactor pipeline stages, not the
number of pipeline stages. The number of logic levels between any two pipeline stages
controls the propagation delay between pipeline stages.

Use of Pipeline Stages Between Pads and
Channel Inputs or Outputs

When the signal propagation delay between apad and the corresponding channel input or output
IS excessive, you may want to add pipeline stages. Use the guidelines provided in this section to
add pipeline stages between atop-level channel input pin/pad and the corresponding
decompressor input, or between a compactor output and the corresponding channel output
pin/pad. The number of pipeline stages on each input/output channel can vary.

Typicaly, pipeline stages are inserted throughout the design during top-level design integration.
Pipeline stages are generally not placed within the EDT logic.

Tessent TestKompress User's Manual, v2014.2 223
June 2014

Special Topics
Use of Pipeline Stages Between Pads and Channel Inputs or Outputs

Note

D Y ou must use the set_edt_pins -Pipeline_stages command during test pattern generation
to enable channel pipeline stages. Y ou must also modify the associated test procedurefile
as described in the following subsections.

Channel Output Pipelining

To support channel output pipelines, the tool ensures there are enough shift cycles per pattern to
flush out the pipeline and observe all scan chains. Without pipelining, the number of additional
shift cycles per pattern, compared to the length of the longest scan chain, istypically four.

Aslong as the total number of output pipeline stages (including both compactor and channel
output pipelining) islessthan or equal to four, no additional shift cycles are added. If the total
number of output pipeline stages is more than four, the number of additional shift cyclesis
increased to equal the number of pipeline stages.

Channel Input Pipelining

While the contents of the channel output pipeline stages at the beginning of shifting each pattern
areirrelevant since they will be flushed out, the contents of the channel input pipeline stages do
matter because they will go to the decompressor when shifting begins (just after the
decompressor isinitialized in the load_unload procedure).

The tool adds an additional test pattern before every test pattern set. This test pattern initializes
the channel input pipelining stages before the load of the very first real test pattern.

The number of additional shift cyclesistypically incremented by the number of channel input
pipeline stages. If the number of additional shift cyclesisfour without input pipelining, and the
channel input with the most pipeline stages has two stages, the number of additional shift cycles
in each test pattern isincremented to six.

If you have a choice between using either input or output pipeline stages, you should choose
output stages for the following reasons:

® The number of shift cyclesfor the same number of pipeline stages is higher when the
pipeline stages are on the input side.

® You must ensure that input channel pipelines hold their value during the capture cycle.
For information on how to do this, see “ Ensuring Input Channel Pipelines Hold Their
Value During Capture” on page 226.

Clocking of Channel Input Pipeline Stages

If you use channel input pipelining, you must ensure there isno clock skew between the channel
input pipeline and the decompressor. If you use channel output pipelining, you must ensure

224 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Use of Pipeline Stages Between Pads and Channel Inputs or Outputs

there is no clock skew between the compactor (if you also use compactor pipelining) and the
channel output pipeline, or between the scan chain outputs (if no compactor pipelining is used)
and the channel output pipeline.

On the input side, the pipeline stages are connected to the decompressor, which is clocked by
the leading edge of the EDT clock. If the channel input pipeline is not clocked by the EDT
clock, alockup cell must be inserted between the pipeline and the decompressor.

Note
D EDT patterns saved for application through bypass mode (write_patterns-EDT_Bypass)

may not work correctly if thefirst cell of achain, driven by channel input pipeline stages
in bypass mode, captures on thetrailing edge of the clock. Thisisbecause that first cell of
the chain, which is normally a master, becomes a copy of the last input pipeline stage in
bypass mode. To resolve this, you must add alockup cell that is clocked on the trailing
edge of a shift clock at the end of the pipeline stages for a particular channel input. This
ensures that the first cell in the scan chain remains a master.

Clocking of Channel Output Pipeline Stages

On the output side, the last state element driving the channel output is either a compactor
pipeline stage clocked by the EDT clock or the last elements of the scan chains when the
compactor has no pipelining. In addition to ensuring no clock skew between the
chains/compactor and the pipeline stages, you must ensure that the first pipeline stages capture
on the leading edge (LE) when no compactor pipelining is used. Thisis because if the last scan
cell in achain captures on the LE and the path from the last scan cell to the channel pipelineis
combinational, and the channel pipeline stage captures on the trailing edge (TE), the pipeline
stage is essentially a copy during shift and the last scan cell no longer gets observed.

To ensure there is no clock skew between the pipeline stages and the compactor outputs, you
can usethe set_edt pins-CHange edge on_compactor _output command to specify whether
compactor output data changes on the LE or TE of the EDT clock. For example, specify the
compactor output changes at the trailing edge of the clock before feeding LE pipeline stages.
Depending on your application, compressed ATPG automatically inserts lockup cells and
output channel pipeline stages as needed. For more information, see set_edt pinsin the Tessent
Shell Reference Manual.

If you use pipeline stages clocked with the rising edge of the edt_clock, the tool inserts lockup
cellsin the IP Creation phase to balance clock skew on the output side pipeline registers. For
more information, see “Lockups in the Bypass Circuitry”.

Note
If the clock used for the pipeline stages is not a shift clock, it must be pulsed in the shift
procedure.

Tessent TestKompress User’'s Manual, v2014.2 225

June 2014

Special Topics
Use of Pipeline Stages Between Pads and Channel Inputs or Outputs

Ensuring Input Channel Pipelines Hold Their Value
During Capture

The tool adds an additional test pattern before every test pattern set to initialize channel input
pipelining stages before the load of the first test pattern.

As mentioned earlier in the “Channel Input Pipelining” section, Following the initialization
pattern, the tool ensures that every generated pattern has sufficient trailing zeros (ones for
channelswith pad inversion) to set the pipeline stagesto zeros/ones after every pattern is shifted
in.

Y ou must ensure that the values that get shifted into the input pipeline stages at the end of shift
(for every pattern) are not changed during capture. Y ou can ensure thisin one of the following

ways:
® Constrain the clock used for the pipeline stages off.

® Constrain the channel input pinto O (or 1 in case of channel inversion).

Note
D During scan pattern retargeting or when EDT Mapping or EDT Finder is enabled,

TestkK ompress automatically adds proper constraints to input channels if pipelines are

detected and their clocks are not constrained off during capture. For more information on

EDT mapping and EDT Finder, see set_edt_mapping and set_edt_finder in the Tessent

Shell Reference Manual. For more information on scan pattern retargeting, see “ Scan

Pattern Retargeting” in the Tessent Scan and ATPG User’s Manual.

Sincethe EDT clock is already constrained during the capture cycle, and drives the
decompressor (no clock skew), using the EDT clock to control the input pipeline stages
is recommended.

Note

D If the pipeline stages use the EDT clock, the channel pins must be forced to zero (or oneif
thereis channel inversion) inload_unload aswell, since the EDT clock is pulsed there as
well (to reset the decompressor and update the mask logic). TestKompress will
automatically add the needed force statements in the load_unload procedure if they are
not already added by the user.

DRC for Channel Input Pipelining

The K19 and K22 design rules detect errorsin initializing the channel input pipeline stages. If
the pipelineis not correctly initialized for the first pattern, K19 reports mismatches on the EDT
block channel inputs - assuming the hierarchy isnot dissolved and the EDT logic isidentified. If
the EDT logic channel inputs cannot be located, for example because the design hierarchy was
dissolved, K19 reports that Xs are shifted out of the decompressor. On the EDT logic channel

226 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Use of Pipeline Stages Between Pads and Channel Inputs or Outputs

inputs, the simulated values would mismatch within the first values shifted out, while the rest of
the bits subsequently applied would match.

If the pipelineis correctly initialized for the first pattern and K19 passes, but the pipeline
contents change (during capture or the following load_unload prior to shift) such that it no
longer contains zeros, K22 fails. K19 and K22 detect these cases if input channel pipelining is
defined and issue warnings about the possible problems related to channel pipelining.

DRC for Channel Output Pipelining

The K20 rule check considers channel output pipelining, in addition to any compactor
pipelining that may exist. K20 reports any discrepancy between the number of identified and
specified pipeline stages between the scan chains and pins (including compactor and channel
output pipelines).

If the first stage of the channel output pipelineis TE instead of LE, thiswill result in one less
cycle of delay than expected, which will also trigger aK20 violation. If thefirst stageis TE, and
the user specifies one less pipeline stage, those 2 errors may mask each other and no violation
may be reported. However, this may result in mismatches during serial pattern simulation.

Input/Output Pipeline Examples

This section presents pipeline examples.
The following command defines two pipeline stages for input channel 1:

set_edt_pins input_channel 1 -pipeline_stages 2

This example setsthe EDT context to corel (EDT context is specific to modular compressed
ATPG and is explained in the Modular Compressed ATPG chapter), and then specifies that all
output channels of the corel block have one pipeline stage:

set_current_edt block corel
set_edt_pins output_channel -pipeline_stages 1

Following is the modified load_unload procedure for a design with two channels having input
pipelining; edt_channel1 hasinversion and edt_channel 2 does not. Theinput pipeline stagesare
clocked by the EDT clock, edt_clock. The user-added events that support pipelining are shown
in bold and comments are shown in italics.

procedure load_unload =

scan_group grpl ;

timeplate gen_tpl ;

cycle =
// To ensure the values shifted into the input pipeline stages at
// the end of shift are not changed during capture, you must force
// channel pins with pipelines to zero (or one if there is channel
// inversion) since edt_clock is pulsed in load unload and is also
// used for the pipeline stages.
force edt_channell 1 ;

Tessent TestKompress User's Manual, v2014.2 227
June 2014

Special Topics
Change Edge Behavior in Bypass and EDT Modes

force edt_channel2 0 ;
force system_clk 0 ;
force edt_bypass 0 ;
force edt_clock 0 ;
force edt_update 1 ;
force ramclk 0 ;
force scan_en 1 ;
pulse edt_clock ;

end;

apply shift 21 ;

end;

Change Edge Behavior in Bypass and EDT
Modes

The output side compaction logic combines the scan outputs of multiple internal scan chains
into an EDT channel output. In the general case, the last scan cell of scan chains may be clocked
by different clocks and edges. Tessent TestK ompress can add logic to ensure a uniform change
edge at the compactor output. By default, the tool usesthetrailing edge (TE) as the change edge
for both bypass mode (multi- and single-mode bypass chains) and EDT mode (compactor
output).

Note
D The default TE change edge is optimal for channel pipelining. If you choose to change

the default to the leading edge or any edge, ensure that no channel pipeline stages will be
added later in the flow as this could cause timing issues.

In bypass mode, the tool adds aretiming cell at the end of every bypass chain as needed to
ensure the same edge as EDT mode. Similarly, the tool also ensures that the default capture
edge (for thefirst cell) for every bypass chain is changed to LE. That is, the tool addsan LE
retiming flop at the beginning of every bypass chain, as needed. The added bypass chain mode
input capture and output change edge cell will be clocked by the same clock driving the first or
last scan cell, respectively, and this clock waveform may not be aligned with the EDT clock
waveform.

In EDT mode, the default TE compactor change edge is not suitable for the following situations:

® Thechannel output pipeline register is TE and clocked by system clock. In this case,
there may be clock skew issues between the compactor change edge register clocked by
edt_clock and the channel pipeline register clocked by system clock.

To avoid this case, change the channel output pipeline register clock to LE.

® When the design has a JTAG controller and tdo output is used as a channel output. In
this case, there may be clock skew issues between compactor change edge register
clocked by edt_clock and tdo change TE register clocked by tck.

228 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Understanding Lockup Cells

To avoid this case, specify change edge leading for this channel output. Assuming the
first channel output istdo, you can specify this with the following commands:

set_edt_pins output_channel -change_edge_at_compactor_output leading
for {set channel 2} {$channel <= $n_channels} {incr channel} {
set_edt_pins output_channel $channel -change_edge_at_compactor_output trailing

}

Understanding Lockup Cells

The tool analyzes the timing relationships of the clocks that control the sequential elements
between the scan chains and the EDT logic and inserts edge-triggered flip-flops (lockup cells)
when necessary to synchronize the clocks and ensure data integrity.

For more information about lockup cells, see “Merging Scan Chains with Different Shift
Clocks’ in the Tessent Scan and ATPG User’s Manual. Y ou can use the

report_edt lockup_cells command to display a detailed report of the lockup cells the tool has
inserted.

Lockup Cell Insertion

The tool analyzes the relationship between the clock that controls each sequential element
sourcing data (source clock) and the clock that controls the sequential element receiving the
data (destination clock).

The tool inserts alockup cell when the source and destination clocks overlap as follows:

® Both clocks have identical waveform timing within atester cycle; clocks are on at the
same time and their edges are aligned.

® Theactive edge of the destination clock occurs later in the cycle than the active edge of
the source clock.

When clocks are non-overlapping, datais protected by the timing sequence and no lockup cells
areinserted.

Note
D Partially overlapping clocks are not supported.

Y ou can set up the EDT logic clock and scan chain shift clocks to be non-overlapping by
pulsing the EDT clock before the shift clock of each scan chain. Whenthe EDT logicissetupin
this manner, there is no need for lockup cells between the EDT logic and scan chains. However,
alockup cell driven by the EDT clock is still inserted between all bypass scan chains. For more
information, see “Pulse EDT Clock Before Scan Shift Clocks’ on page 64.

Tessent TestKompress User's Manual, v2014.2 229
June 2014

Special Topics
Understanding Lockup Cells

If your design contains amix of overlapping and non-overlapping clocking, or the shift clocks
are pulsed before the EDT logic clock, you must let the tool analyze the design and insert
lockup cells (default behavior) as described in the following sections.

Lockup Cell Analysis For Bypass Lockup Cells Not
Included as Part of the EDT Chains

This section includes the following sections:

® | ockups Between Decompressor and Scan Chain Inputs
® Lockups Between Scan Chain Outputs and Compactor

® Lockupsinthe Bypass Circuitry

Lockups Between Decompressor and Scan Chain Inputs

The decompressor is located between the scan channel input pins and the scan chain inputs. It
contains sequential circuitry clocked by the EDT clock. Asthe off state of the EDT clock (at the
EDT logic module port) is always O, leading edge triggered (LE) flip-flops are used in this
sequential circuitry. Scan chain clocking does not utilize the EDT clock. Therefore, thereisa
possibility of clock skew between the decompressor and the scan chain inputs.

For each scan chain, the tool analyzes the clock timing of the last sequential element in the
decompressor stage (source) and the first active sequential element in the scan chain
(destination).

Note
Thefirst sequential element in the scan chain could be an existing lockup cell (a
transparent latch for example) and may not be part of the first scan cell in the chain.

The tool analyzes the need for lockup cells on the basis of the waveform edge timings (change
edge and capture edge, respectively) of the source and destination clocks. The change edgeis
typically the first time at which the data on the source scan cell’ s output may update. The
capture edge is the capturing transition at which datais latched on the destination scan cell’s
output. The tool inserts lockup cells between the decompressor and scan chains based on the
following rules:

® A lockup cell isinserted when a source cell’ s change edge coincides with the destination
cell’ s capture edge.

® A lockup cell isinserted when the change edge of the source cell precedes the capture
edge of the destination cell.

In addition, the tool attempts to place lockup cellsin away that introduces no additional delay
between the decompressor and the scan chains and tries to minimize the number of lockup cells

230 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Understanding Lockup Cells

at theinput side of the scan chains. The lockup cells are driven by the EDT clock to reduce
routing of the system clocks from the core to the EDT logic.

Table 8-4 summarizes the relationships and the lockup cells the tool inserts on the basis of the
preceding rules, assuming thereis no pre-existing lockup cell (transparent latch) between the
decompressor and the first scan cell in each chain.

Table 8-4. Lockup Cells Between Decompressor and Scan Chain Inputs

Clock Source Dest. clock | Source! | Dest.'2 | #Lockups | Lockup®
Waveforms | clock change capture inserted edge(s)
edge edge
Overlapping | EDT clock | Scanclock | LE LE 1 TE
EDT clock | Scanclock | LE TE 2 TE, LE
EDT clock | Scanclock | LE active high | 2 TE, LE
(TE)
EDT clock | Scanclock | LE activelow | 2 TE, LE
(LE)
Non- . EDT clock | Scanclock | LE LE 2 TE, LE
Overlapping™ "en T ook | Scan clock | LE TE 2 TE,LE
EDT clock | Scanclock | LE active high | 2 TE, LE
(TE)
EDT clock | Scanclock | LE activelow |2 TE, LE
(LE)

1. LE = Leading edge, TE = Trailing edge.

2. Active high/low = Active clock level when destination is alatch. Active high means the latch is active
when the primary input (Pl) clock ison. Activelow meansthe latch is active when the PI clock isoff. (LE)
or (TE) indicates the clock edge corresponding to the latch’s capture edge.

3. Lockup cellsare driven by the EDT clock.

4. These are cases for which the tool determines the source edge precedes the destination edge. (L ockups
are unnecessary if the destination edge precedes the source edge).

To minimize the number of lockup cells added, the tool always adds atrailing edge triggered
(TE) lockup cell at the output of the LFSM in the decompressor. The tool adds a second LE
lockup cell at the input of the scan chain only when necessary, as shown in Table 8-4.

Note
D If there is a pre-existing transparent latch between the decompressor and the first scan

cell, asingle lockup cell (LE) is added between the decompressor and the latch. This
ensures the correct value is captured into the first scan cell from the decompressor.

Tessent TestKompress User's Manual, v2014.2 231
June 2014

Special Topics
Understanding Lockup Cells

Lockups Between Scan Chain Outputs and Compactor

When compactor pipeline stages are inserted, lockup cells are inserted as needed in front of the
first pipeline stage. Pipeline stages are LE flip-flops clocked by the EDT clock, similar to the
sequential elements in the decompressor.

The clock timing between the last active sequential element in the scan chain (source) and the
first sequential element (first pipeline stage) that it feeds in the compactor (destination) is
analyzed. Similar to the input side of the scan chains, the tool analyzes the need for lockup cells
on the basis of the waveform edge timings (change edge and capture edge, respectively, of the
source and destination clocks). The change edge is typically the first time at which the data on
the source scan cell’ s output may update. The capture edge is the capturing transition at which
datais latched on the destination scan cell’ s output.

Lockup cellsdriven by the EDT clock are added according to the following rules:

® A lockup cell isinserted when a source cell’ s change edge coincides with the destination
cell’ s capture edge.

® A lockup cell isinserted when the change edge of the source cell precedes the capture
edge of the destination cell.

In addition, the tool attempts to place lockup cellsin away that introduces no additional delay
between the scan chains and the compactor pipeline stages. It also tries to minimize the number
of lockup cells at the output side of the scan chains. The lockup cells are driven by the EDT
clock so as to reduce routing of the system clocks from the core to the EDT logic.

Table 8-5 shows how the tool inserts lockup cells in the compactor.

Table 8-5. Lockup Cells Between Scan Chain Outputs and Compactor

Clock Source Dest. clock | Sourcel 2 | Dest.! # Lockups | Lockup®
Waveforms | clock change capture inserted edge(s)
edge edge
Overlapping | Scanclock | EDT clock | LE LE 1 TE
Scan clock | EDT clock | TE LE none -
Scan clock | EDT clock | active high | LE 1 TE
(LE)
Scan clock | EDT clock | activelow | LE none -
(TE)
232 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Understanding Lockup Cells

Table 8-5. Lockup Cells Between Scan Chain Outputs and Compactor

Clock Sour ce Dest. clock | Source® 2 | Dest.! # Lockups | Lockup®
Waveforms | clock change capture inserted edge(s)
edge edge
Non- . Scan clock | EDT clock | LE LE 1 TE
Overlapping” o o clock | EDT clock | TE LE 1 TE
Scan clock | EDT clock | active high | LE 1 TE
(LE)
Scan clock | EDT clock | activelow | LE 1 TE
(TE)

1. LE = Leading edge, TE = Trailing edge.

2. Active high/low = Active clock level when sourceisalatch. Active high meansthelatch isactive when
the primary input (PI) clock is on. Active low means the latch is active when the Pl clock is off. (LE) or
(TE) indicates the clock edge corresponding to the latch’ s change edge.

3. Lockup cellsare driven by the EDT clock.

4. These are cases for which the tool determines the source edge precedes the destination edge. (L ockups
are unnecessary if the destination edge precedes the source edge).

Lockups in the Bypass Circuitry

The number and location of lockup cellsthe tool insertsin the bypass |ogic depend on the active
edges (change edge and capture edge, respectively) of the source and destination clocks. The
change edge istypically the first time at which the data on the source scan cell’ s output may
update. The capture edge is the capturing transition at which datais latched on the destination
scan cell’ s output.

The number and location of lockup cells aso depend on whether the first and last active
sequential elements in the scan chain are clocked by the same clock. The first and last active
sequential elementsin a scan chain could be existing lockup cells and may not be part of a scan
cell. Thetool inserts the lockup cells between source and destination scan cells according to the
following rules:

® A lockup cell isinserted when a source cell’ s change edge coincides with the destination
cell’ s capture edge and the cells are clocked by different clocks.

® A lockup cell isinserted when the change edge of the source cell precedes the capture
edge of the destination cell.

® If multiple lockup cells are inserted, the tool ensures that:

o A master/copy scan cell combination is aways driven by the same clock. This
prevents the situation where captured data in the master cell islost because a
different clock drivesthe copy cell and is not pulsed in a particular test pattern.

Tessent TestKompress User's Manual, v2014.2 233
June 2014

Special Topics

Understanding Lockup Cells

o Theearliest data capture edge of the last lockup cell is not before the latest time
when the destination cell can capture new data. This makes the first scan cell of
every chain amaster and prevents D2 DRC violations.

o If the earliest time when datais available at the output of the source is before the
earliest data capture edge of the first lockup, the first lockup cell is driven with the
same clock that drives the source.

* If alockup cell already exists at the end of a scan chain, the tool learnsits behavior and
treatsit as the source cell.

Table 8-6 summarizes how the tool inserts lockup cellsin the bypass circuitry.

Table 8-6. Bypass Lockup Cells

Clock Source! | Dest.!| Source? 3| Dest.>3 | # Lockups| Lockup
Waveforms clock clock | change capture |inserted |edge(s)
edge edge
Overlapping clkl clkl |LE LE none -
clkl clkl |LE TE 1 TE clkl
clkl cki |TE TE none -
clkl cki |TE LE none -
Overlapping clkl clk2 |LE LE 1 TE clkl1
clkl clk2 |LE TE 2 LE clkl, TE clk2
clkl ck2 |TE TE 2 LE clk1, TE clk2
clkl ck2 |TE LE none -
Non-Overlapping®* | clk1 ck2 |LE LE 2 LE clkl, TE clk2
clkl clk2 |LE TE 2 LE clk1,
TE clk2
clkl ck2 |TE TE LE clkl, TE clk2
clkl ck2 |TE LE LE clkl1, TE clk2
Overlapping clkl clkl | activehigh| activehigh| 1 TE clkl
(LE) (TE)
clkl clkl | activehigh| activelow | 1 TE clkl
(LE) (LE)
clkl clkl | activelow | activelow | none -
(TE) (LE)
clkl clkl | activelow | active high| none -
(TE) (TE)
234 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics

Understanding Lockup Cells

Table 8-6. Bypass Lockup Cells

Clock Sourcel | Dest.!| Source® 3| Dest.>3 | #Lockups| Lockup
Waveforms clock clock | change capture |inserted | edge(s)
edge edge
Overlapping clkl clk2 | active high| active high| 2 LE clkl, TE clk2
(LE) (TE)
clkl clk2 | activehigh| activelow | 2 LE clkl, TE clk2
(LE) (LE)
clkl clk2 | activelow | activelow | none -
(TE) (LE)
clkl clk2 | activelow | activehigh| 2 LE clkl, TE clk2
(TE) (TE)
Non-OverIapping4 clkl clk2 | active high| active high| 2 LE clk1, TE clk2
(LE) (TE)
clkl clk2 | active high| activelow | 2 LE clkl, TE clk2
(LE) (LE)
clkl clk2 | activelow | activelow | 2 LE clk1, TE clk2
(TE) (LE)
clkl clk2 | activelow | activehigh| 2 LE clkl, TE clk2
(TE) (TE)
Overlapping clkl clkl |LE activehigh| 1 TE clk1
(TE)
clkl clkl |LE activelow | none -
(LE)
clkl clkl | activehigh|LE none -
(LE)
clkl clkl |activelow | LE none -
(TE)
Overlapping clkl ck2 |LE active high| 2 LE clkl, TE clk2
(TE)
clkl ck2 |LE activelow | 2 LE clkl, TE clk2
(LE)
clkl clk2 | activehigh| LE 1 TE clkl1
(LE)
clkl clk2 |activelow | LE none -
(TE)

Tessent TestKompress User’'s Manual, v2014.2
June 2014

235

Special Topics
Understanding Lockup Cells

Table 8-6. Bypass Lockup Cells

Clock Sourcel | Dest.!| Source® 3| Dest.>3 | #Lockups| Lockup
Waveforms clock clock | change capture |inserted | edge(s)
edge edge
Non-OverIapping4 clkl ck2 |LE active high| 2 LE clk1, TE clk2
(TE)
clkl ck2 |LE activelow | 2 LE clkl, TE clk2
(LE)
clkl clk2 |activehigh| LE 2 LE clk1, TE clk2
(LE)
clkl clk2 |activelow | LE 2 LE clkl, TE clk2
(TE)
Overlapping clkl ckl |TE active high| none -
(TE)
clkl ckl |TE activelow | none -
(LE)
clkl clkl | activehigh| TE 1 TE clk1
(LE)
clkl clkl |activelow | TE none -
(TE)
Overlapping clkl ck2 |TE active high| 2 LE clkl, TE clk2
(TE)
clkl ck2 |TE activelow | 2 LE clkl, TE clk2
(LE)
clkl clk2 |activehigh| TE 2 LE clk1, TE clk2
(LE)
clkl clk2 |activelow | TE 2 LE clkl, TE clk2
(TE)
Non-OverIapping4 clkl ck2 |TE active high| 2 LE clk1, TE clk2
(TE)
clkl ck2 |TE activelow | 2 LE clkl, TE clk2
(LE)
clkl clk2 |activehigh| TE 2 LE clk1, TE clk2
(LE)
clkl clk2 |activelow | TE 2 LE clkl, TE clk2
(TE)

1. clk1 & clk2 are the functional (scan) clocks.

2. LE = Leading edge, TE = Trailing edge.

236 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Understanding Lockup Cells

3. Active high/low = Active clock level when source or destination is alatch. Active high means the latch
is active when the primary input (PI) clock ison. Active low meansthe latch is active when the Pl clock is
off. (LE) or (TE) indicates the clock edge corresponding to the latch’s change/capture edge.

4. These are cases for which the tool determines the source edge precedes the destination edge. (L ockups
are unnecessary if the destination edge precedes the source edge).

Lockup Cell Analysis For Bypass Lockup Cells
Included as Part of the EDT Chains

This section describes how the tool adds lockup cells at the scan chain boundary to eliminate
bypass only lockup cells.

Sub-section “Differences Based on Inclusion/Exclusion of Bypass Lockup Cellsin EDT
Chains’ provides athorough explanation of the differences that result when bypass lockup cells
areincluded in the EDT chain as opposed to when they are not.

This section is organized as follows:

® EDT Lockup and Scan Chain Boundary Lockup Cells

® Differences Based on Inclusion/Exclusion of Bypass Lockup Cellsin EDT Chains
® Limitations

® Comparison of Bypass Lockup Cell Insertion Results

The tool analyzes the clocking of first and last active scan elements and adds lockup cells at
scan chain inputs and outputs as required. These cells are added to ensure each scan chain starts
with a LE register and ends with a TE register. These lockup cells are included as part of both
EDT and EDT-bypass scan chains. They avoid clock skew problems between the decompressor
and scan chains, scan chains and compactor, as well as when concatenating EDT scan chains
into bypass chains. They also provide the ability to map EDT mode patterns into bypass mode.

As an exception, when al of thefirst and last scan elements are driven by the LE of the same
clock and the compactor has no sequential registers, scan chain output lockup cells are added
only for the last internal chain grouped into bypass chains.

EDT Lockup and Scan Chain Boundary Lockup Cells

When lockup cells at chain boundaries are inserted, the tool combines the analysis of
decompressor and compactor lockup cells along with the scan chain input/output bypass lockup
cells.

Tessent TestKompress User's Manual, v2014.2 237
June 2014

Special Topics
Understanding Lockup Cells

Table 8-7 summarizes how the tool adds lockup cells for different clocking configurations.

Table 8-7. EDT Lockup and Scan Chain Boundary Lockup Cells

Clock EDT Scan Chain| Scan Chain| Compactor
(source — destination) | Decompressor I nput Output L ockup
(last cell — first cell) | Lockup Cellst | Lockup L ockup Celll
Same source and destination clocks

LE clk —» LE clk TE edt_clock - TE clk -

LE clk — LE clk? TE edt_clock - - TE edt_clock
LE clk - TE clk TE edt_clock LE clk TE clk -
TEclk —» LEclk TE edt_clock - - -

TE clk —» TE clk TE edt_clock LE clk - -
Overlapping clocks, clkS and clkD

LE clkS — LE clkD TE edt_clock - TE clkS -

LE clkS— TE clkD TE edt_clock LE clkD TE clkS -

TE clkS — LE clkD TE edt_clock - - -

TE clkS — TE clkD TE edt_clock LE clkD - -
Non-overlapping clocks, clkS overlaps with edt_clock, clkD later than edt_clock & clkS
LE clkS— LE clkD TE edt_clock LE clkS TE clkS -

LE clkS — TE clkD TE edt_clock LE clkS TE clkS -

TE clkS — LE clkD TE edt_clock LE clkS - -

TE clkS— TE clkD TE edt_clock LE clkS - -
Non-overlapping clocks, clkS and clkD (either same or different clocks) later than
edt_clock

LE clkS— LE clkD TE, LE edt_clock | - TE clkS -

LE clkS — TE clkD TE, LE edt_clock | LE clkD TE clkS -

TE clkS— LE clkD TE, LE edt_clock | - - -

TE clkS — TE clkD TE, LE edt_clock | LE clkD - -
Overlapping clocks, same or different

active high clkS (LE) — | TE edt_clock LE clkD TE clkS -

active high clkD (TE)

active high clkS (LE) — | - - TE clkS -

active low clkD (LE)

activelow clkS(TE) —» | TE edt_clock LE clkD - -

active high clkD (TE)

238 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Understanding Lockup Cells

Table 8-7. EDT Lockup and Scan Chain Boundary Lockup Cells

Clock EDT Scan Chain| Scan Chain| Compactor
(source — destination) | Decompressor I nput Output L ockup
(last cell — first cell) | Lockup Cellst | Lockup L ockup Celll
activelow clkS(TE) —» | TE edt_clock - - -
active low clkD (LE)

LE clkS — TE edt_clock LE clkD TE clkS -
active high clkD (TE)

LE clkS — TE edt_clock - TE clkS -
active low clkD (LE)

TE clkS — TE edt_clock LE clkD - -
active high clkD (TE)

TE clkS — TE edt_clock - - -
active low clkD (LE)

active high clkS (LE) — | TE edt_clock - TE clkS -

LE clkD

active high clkS (LE) — | TE edt_clock LE clkD TE clkS -

TE clkD

activelow clkS(TE) —» | TE edt_clock - - -

LE clkD

activelow clkS(TE) —» | TE edt_clock LE clkD - -

TE clkD

1. Decompressor and compactor lockup cells are not included as part of the EDT scan chains.
2. Special case where all scan cells are clocked by asingle LE clock.

Differences Based on Inclusion/Exclusion of Bypass
Lockup Cells in EDT Chains

The tool adds decompressor/compactor lockup cells and scan chain lockup cells according to
the rules described in the following sections:

® |nterna Scan Chain Definition

® Insertion Algorithm When Bypass L ockup Cells are Included at the Boundary of the
EDT Chains

® Single Bypass Chain

Complete information on how the tool adds lockup cells when they are not included in EDT
chainsis presented in “Lockup Cell Analysis For Bypass Lockup Cells Not Included as Part of
the EDT Chains.”

Tessent TestKompress User's Manual, v2014.2 239
June 2014

Special Topics
Understanding Lockup Cells

Internal Scan Chain Definition

Figure 8-17 illustrates the internal scan chain definition anchor points (scan inputs and scan
outputs) during pattern generation when bypass lockup cells are not included as part of the EDT
scan chains.

Figure 8-17. Scan Chain and Bypass Lockup Cells Not in the EDT Scan Chain

| LFSM |
hannel
Cii;ﬂfs > | Lockup |
[Phase shifter |
Controller Decompressor
Bypass logic

—N
2 e —| |

” scan
inputs

Compactor

.| channel
outputs

scan
outputs /

Y ou can insert bypass lockup cells such that they are included as part of the EDT scan chains.
This allows the tool to see the actual bypass lockup cells and account for them correctly.

240 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Understanding Lockup Cells

Figure 8-18 illustrates the internal scan chain definition anchor points (scan inputs and scan
outputs) when bypass lockup cells are included as part of the EDT scan chains.

Figure 8-18. Scan Chain and Bypass Lockup Cells in the EDT Scan Chain

| LFSM |

channel > 2 I LOCkUD I

inputs | Phaseshifter |
Controller Decompressor

Compactor

scan outputs scan inpuL

sl
e

lockup

Chain_input

W channel

~
f outputs

Chain Output
Lockup

Note
D The lockup cells inside bypass logic are now included as part of the EDT scan chains as

well. Thefirst level lockup cells for the decompressor are still excluded from the scan
chain definition as before.

Tessent TestKompress User's Manual, v2014.2 241
June 2014

Special Topics
Understanding Lockup Cells

Insertion Algorithm When Bypass Lockup Cells are Included at the
Boundary of the EDT Chains

As shown in Figure 8-18, when bypass lockup cells are included in the EDT scan chain,
TestK ompress does the following:

® |f thelast scan cell isaLE scan cell, the tool adds a TE lockup cell clocked by the last
scan cell clock to the scan chain output.

* |f thefirst scan cell isa TE scan cell, the tool adds a LE lockup cell to the scan chain
input.

® |f al of the scan chains are clocked by the LE of the same clock, the tool makes an
exception and adds lockup cells only for the last internal scan chain of each bypass
chain. Thisfacilitates the concatenation of the bypass chains of an EDT block at a higher
level.

®* TheLElockup cell at the scan chain input is clocked by the source scan clock if it hasan
early waveform compared with the destination scan clock; otherwise, the lockup cell is
clocked by the destination scan clock.

® The second decompressor lockup cell is not required when the destination scan cell isa
TE with the same waveform asthe EDT clock. When the first scan cell has alate clock,
the second decompressor lockup cell isincluded only if the lockup cell at the last scan
chain output is pulsed with alate clock.

® Thenew lockup cell can influence EDT and compactor lockup cells because these new
lockup cellsarevisiblein the EDT path and are cumulative with dedicated EDT-only
lockup cellsin the decompressor and compactor.

® Compactor lockup cell analysisincludes the source lockup cell at the scan chain output.
In particular, if a TE source lockup cell is needed for a bypass lockup cell, it will also be
used for a compactor lockup cell.

Single Bypass Chain

When using this functionality, bypass lockup cells are also added at the input of the first and
output of the last internal chains grouped into a bypass chain. This enables the regular bypass
chains to be easily concatenated to form the single bypass chain for the entire EDT block.

The lockup cells for bypass mode concatenation also allow concatenating the single bypass
chain of all EDT blocks declared in the tool during 1P creation. TestK ompress does not actually
concatenate the single bypass chains of the EDT blocks; rather TestKompress facilitates the
process for some other tool to make such a concatenation.

Y ou can concatenate the single bypass chains of all the EDT blocks in adesign to construct a
system-wide single bypass chain, even across blocks not declared in IP creation. In such cases,
if the source clock from the preceding EDT block is pulsed earlier than the destination clock
from the succeeding EDT block in the system-wide single chain concatenation order, these scan

242 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Understanding Lockup Cells

cellswill become a master-copy pair. This should be properly accounted for when translating
EDT mode patternsinto the single system-wide bypass chain patterns

Limitations

This functionality cannot be used with the following features:
® EDT integration flow using the add_edt_connections command is not supported.

® Generating a blackbox for the EDT logic using set_edt_options -blackbox on. When
including bypass lockup cellsin EDT scan chains, the scan chains are defined on the
EDT decompressor and compactor instance pinsinthe EDT logic which are not
available in a blackbox description of the EDT module.

®* Pulsing EDT clock before shift clock — Since the bypass lockup cells are clocked by
edt_clock in this case, including them as part of the scan chainswill resultin D1
violations on all the lockup cells at scan chain inputs.

Comparison of Bypass Lockup Cell Insertion Results

This section compares the circuitry created by bypass lockup cell insertion depending upon
whether the bypasslockup cell isincluded or excluded from the EDT chain. The following three

cases are illustrated:
® (Casel: No Bypass Lockup Cell

® (Case2: OneBypass Lockup Cell
® (Case3: Two Bypass Lockup Cells

Case 1: No Bypass Lockup Cell

Figure 8-19 illustrates the circuitry when the bypass lockup cell insertion algorithm does not
insert any lockup cells: on the left is the circuitry when bypass lockup cells are excluded from
EDT chains, and on the right is the circuitry when they are included in EDT chains.

When both the last and first scan cells are TE and clocked by the same clock, aLE lockup cell is
added to the destination scan chain input. In this case, the second decompressor lockup cell in
the EDT decompressor is not added. Thisis shown in Figure 8-19. Thisis an example that
demonstrates the case when the bypass lockup cell affectsthe EDT decompressor lockup cell.

Tessent TestKompress User's Manual, v2014.2 243
June 2014

Special Topics
Understanding Lockup Cells

Figure 8-19. TE CLK to TE CLK

TE clk TE clk
+ +
pa |
DQ
LE clk
LE TE clk TE clk
edt_clock
Bypass Lockup Cell Excluded from EDT Chain Bypass Lockup Cell Included in EDT Chain

Case 2: One Bypass Lockup Cell

When bypass lockup cells are excluded from the EDT chain, the tool inserts one bypass lockup
cell in the following cases.

* If LEclkto TEclk, thetool insertsaTE clk lockup asillustrated, on theleft, in Figure 8-
20. Note, the absence of the second decompressor lockup cell, on theright, in Figure 8-

20.
Figure 8-20. LE Clk to TE Clk
LE clk LEclk
| ba_ |
TE clﬂ
ab
+ +
TE clk
DQ_|
- Da
LE clk
LE TE clk e cik
edt_clock
Bypass Lockup Cell Excluded from EDT Chain Bypass Lockup Cell Included in EDT Chain
244 Tessent TestKompress User's Manual, v2014.2

June 2014

Special Topics
Understanding Lockup Cells

® |f LEclkltoLE clk2, thetool insertsa TE clkl lockup asillustrated, on the left, in

Figure 8-21.
Figure 8-21. LE Clk1 to LE Clk2 Overlapping
LE clkl LE clk1
B —
TE cIk;‘
Qb
A A
TE clkl
LE clk2 LE clk2
Bypass Lockup Cell Excluded from EDT Chain Bypass Lockup Cell Included in EDT Chain

Case 3: Two Bypass Lockup Cells

Figure 8-22 illustrates the case where the tool infers two lockup cellsin both cases, but the
clock edges of the lockup cells are different. This case applies when both clkS and clkD are
overlapping with the EDT clock, and when clkS overlaps with the EDT clock but clkD has a

|ate waveform.

Figure 8-22. LE CIkS to TE CIkD

LE clkS LE clkS
. DQ
TE clkS
ab Qb
+ ‘T +
TE clkD LE clkS
DQ_|
| DaQ
LE clkS
LE TE clkD “ TE clkp
edt_clock
Bypass Lockup Cell Excluded from EDT Chain Bypass Lockup Cell Included in EDT Chain
Tessent TestKompress User's Manual, v2014.2 245

June 2014

Special Topics
Understanding Lockup Cells

Figure 8-23 illustrates the case when the destination cell is TE, but the same situation applies
when the destination cell is LE.

Figure 8-23. CIkS to CIkD, Both Clocks Later Than EDT Clock

LE clkS LE clkS
) —
TE clk;‘
Qb Qb
+ B +
TE clkD LE clkS
- DQ_|
—DQ | DQ
LE clkD
LE TE clkD LE TE clkD
edt_clock edt_clock
Bypass Lockup Cell Excluded from EDT Chain Bypass Lockup Cell Included in EDT Chain

Lockups Between Channel Outputs and Output
Pipeline Stages

During the top-level design integration process, clocking requirements may require you to insert
lockup cells between the EDT logic and pad terminals. If the clocking of the last scan cells
compacted into an output channel and the clocking of the output pipeline stage (outsidethe EDT
logic) overlap, you must add alockup cell (outside the EDT logic). Tessent Shell inthe EDT IP
Creation phase does not insert these lockup cells.

However, if internal compactor pipelining is enabled in the EDT logic, and the output pipeline
stages are active on the leading edge (LE) of the EDT clock, no lockup cells are necessary
because the internal compactor pipeline stages a so use the leading edge (LE) of the EDT clock.

For more information on pipeline stages, see “Use of Pipeline Stages Between Pads and
Channel Inputs or Outputs’ on page 223".

If the output pipeline stages use a different edge or clock, the existing lockup cells may be
insufficient, and you must specify the change edge for the compactor outputs or insert lockup
cells manually. When you specify the change edge for the compactor outputs, the tool inserts
pipeline stages and lockup cells as needed to ensure the compactor outputs change as specified.

You usethe set_edt pins command with the -CHange edge at_compactor _output option to
specify the change edge for the compactor outputs. Depending on the change edge specified for

246 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics

Performance Evaluation

the compactor outputs, the tool inserts lockup cells between the compactor output and output
channels as described in Table 8-8.

Table 8-8. Lockup Insertion Between Channel Outputs and Output Pipeline

-CHange edge at_compactor_ | Compactor | Lockup Last Lockup inserted
output pipeline between scan | scan between

stages chain and cell compactor

compactor output & output
channels

LEading_edge of edt clock |LE! NAZ? NA none>

none LE NA none

none TE NA LE

none none LE none

none none TE LE
TRailing_edge of edt_clock LE NA NA TE

none LE NA TE

none TE NA none

none none LE TE

none none TE none

1. LE indicates the |eading edge of the clock pulse.
2. NA indicates the state of that column has no effect on the resulting action described in
the right-most column (L ockup inserted between compactor output and output channels).

3. None indicates the object does not exist or is not inserted.

4. TE indicates the trailing edge of the clock pulse.

Related Topics

Merging Scan Chains with Different Shift
Clocks in the Tessent Scan and ATPG User’s

Manual

Performance Evaluation

report_edt_lockup_cells

set_edt_options -retime_chain_boundaries

The purpose of this section isto focus on the parts of the compressed ATPG flow that are
necessary to perform experiments on compression rates and performance so you can make
informed choices about how to fine-tune performance.

Figure 8-24 illustrates the typical evaluation flow.

Tessent TestKompress User’'s Manual, v2014.2

June 2014

247

Special Topics
Performance Evaluation

Figure 8-24. Evaluation Flow

From

Synthesized Synthesis
Netlist

(no scan)

Insert Scan

_ # 2 Al

\ >/

Generate Generate
Compressed Patterns Uncompressed Patterns

The complete Tessent TestKompress flow is described in section “Top-Down Design Flows.”

In an experimentation flow, where your intention is to verify how well EDT worksin adesign,
you generate compressed patterns and use these patterns to verify coverage and pattern count,
but not to perform final testing. Consequently, you do not need to write out the hardware
description files. The first thing you should do, though, to make the data you obtain from
running compressed ATPG meaningful, is establish a point of reference using uncompressed
ATPG.

Establishment of a Point of Reference

To illustrate how you establish apoint of reference using uncompressed ATPG, assume as a
starting point, that you have both a non-scan netlist and a netlist with eight scan chains. Y ou
would calculate the test data volume for measuring compression performance in the following
way':

Test DataVolume = (#scan loads) x (volume per scan load)
= (#scan loads) x (#shifts per patterns) x (#scan channels)

Note
#patterns may provide a reasonabl e approximation for #scan loads, but be aware that
some patterns require multiple scan loads.

248 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Performance Evaluation

For aregular scan-based design without EDT, the volume per scan load will remain fairly
constant for any number of scan chains because the number of shifts decreases when the number
of chainsincreases. Therefore, it does not matter much which scan chain configuration you use
when you establish the reference point.

The required steps to establish a point of reference are described briefly here. A design
configured with eight scan chainsis assumed.

1

Invoke Tessent Shell.
<Tessent_Tree Path>/bin/tessent -shell

Set the context, read in the netlist with eight scan chainsand alibrary, and set the current
design.

set_context patterns -Scan

read_verilog mydesign_scan_8.v

read_cell_library my_lib.atpg
set_current_design top

Execute the dofile that performs basic setup.
dofile atpg_8.dofile

Run DRC and verify that no DRC violations occur.
set_system_mode analysis

Generate patterns. Assuming the design does not have RAMS, you can just generate
basic patterns. To speed up the process, use fault sampling. It isimportant to use the
same fault sample size in both the uncompressed and compressed runs.

add_faults /cpu_i
set_fault_sampling 10
create_patterns
report_statistics
report_scan_volume

Note the test coverage and the total data volume as reported by the report_scan volume
command.

Performance Measurement

In these two runs (compressed and uncompressed), the numbers you will want to examine are:

Test coverage (report_statistics)
CPU time report_statistics)

Scan data volume (report_scan_volume)

Another interesting number is the number of observable X sources (E5) violations which can
explain lower compression performance.

Tessent TestKompress User's Manual, v2014.2 249

June 2014

Special Topics
Performance Evaluation

Also, you can do arun that compares the results with and without fault sampling.

Performance Improvement

There are some analyses you can do if the measured performance is not as expected.
Table 8-9 lists some suggested analyses.

Table 8-9. Summary of Performance Issues
Unsatisfactory Result | Suggested Analysis

Compression - Many observable X sources. Examine E5 violations.

- Too short scan chain vs. # of additional shift cycles. Verify the
of additional shift cycles, and scan chain length using the
report_edt_configurations command.

Run time - Untestable/hard to compress patterns. If they cause ahigh
runtime for uncompressed ATPG, they will also cause ahigh
runtime for compressed ATPG.

- If compressed ATPG has a much larger runtime than
uncompressed ATPG, examine X sources, E5 violations.

Coverage - Shared scan chain I/Os. Scan pins are masked by default. These
pins should be dedicated.

- Too aggressive compression (chain-to-channel ratio too high),
leading to incompressible patterns. Usethereport_aborted faults
command to debug. Look for EDT aborted faults.

1. Additional shift cyclesrefersto the sum of theinitialization cycles, masking bits (when using Xpress),
and low-power bits (when using alow-power decompressor).

Varying the Number of Scan Chains

The effective compression depends primarily on the ratio between the number of internal scan
chains and the number of external scan channels. In most cases, it is sufficient to just do an
approximate configuration. For example, if the number of scan channelsis eight and you need
4X compression, you can configure the design with 38 chains. Thiswill typically result in 3.5X
to 4.5X compression.

In certain cases, such arough estimate is not enough. Usually, the number of scan channelsis
fixed because it depends on characteristics of the tester. Therefore, to experiment with different
compression outcomes, different versions of the netlist (each with adifferent number of scan
chains) are necessary.

Varying the Number of Scan Channels

Another alternativeisto first use adesign with arelatively high number of scan chains, and
experiment with different numbers of channels. Y ou can do these experiments, varying the
chain-to-channel ratio. Then, when you find the optimum ratio, reconfigure the scan chains to

250 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Performance Evaluation

match the number of scan channels you want. Y ou can achieve similar test data volume
reduction for a 100:10 configuration as for a 50:5 configuration.

For example, assume you have a design with 350,000 gates and 27,000 scan cells. If acertain
tester requires the chip to have 16 scan channels, and your compression goal isto have no less
than 4X compression, you might proceed as follows:

1. Determine the approximate number of scan chains you need. This example assumes a
reasonabl e estimate is 60 scan chains.

2. Use Tessent Scan to configure the design with many more scan chains than you
estimated, say, 100 scan chains.

3. Runthetool for 30, 26, 22, and 18 scan channels. Notice that these numbers are all
between 1-2X the 16 channels you need.

Note
D Use the same commands with compressed ATPG that you used with uncompressed

ATPG when you established a point of reference, with one exception: with compressed
ATPG, you must use the set_edt_options command to reconfigure the number of scan
channels.

Suppose the results show that you achieve 4X compression of the test data volume using 22
scan channels. Thisisachain-to-channel ratio of 100:22 or 4.55. For the final design, whereyou
want to have 16 scan channels, you would expect approximately a4X reduction with 16 x 4.55
= 73 scan chains.

Determining the Limits of Compression

Y ou will find that the maximum amount of compression you can attain islimited by the ratio of
scan chainsto channels. If the number of scan channelsis fixed, the number of scan chainsin
your design becomes the limiting factor.

For example, if your design has eight scan chains, the most compression you can achieve under
optimum conditions will be less than 8X compression. To exceed this maximum, you would
need to reconfigure the design with a higher number of scan chains.

Speeding up the Process

If you need to perform multiple iterations, either by changing the number of scan chains or the
number of scan channels, you can speed up the process by using fault sampling. When you use
fault sampling, first perform uncompressed ATPG with fault sampling. Then, use the same fault
sample when generating compressed patterns.

Tessent TestKompress User's Manual, v2014.2 251
June 2014

Special Topics
Understanding Compactor Options

Note

O

Y ou should always use the entire fault list when you do the final test pattern generation.
Use fault sampling only in preliminary runs to obtain an estimate of test coverage with a
relatively short test runtime. Be aware that sampling has the potential to produce a
skewed result and is a means of estimation only.

Understanding Compactor Options

There are two compactors available in compressed ATPG:

Xpress

The Xpress compactor is the second generation compactor generated by default. The
Xpress compactor optimizes compression for all designs but is especially effective for
designs that generate X values. The Xpress compactor observes al chains with known
values and masks out scan chainsthat contain X values. This X handling resultsin fewer
test patterns being required for designs that generate X values.

Depending on the application, the EDT logic generated with the X press compactor
requires additional clocking cycles. The additional clocking cycles are determined by
the ratio of scan chains to output channels and are relatively few when compared with
the total shift cycles.

Basic
The basic compactor is the first generation compactor enabled with the
-COMpactor_type BAsic switch with the set_edt_options command.

The basic compactor should be used for designs that do not generate many unknown (X)
values. Due to scan cell masking, the basic compactor is significantly less effective on
designs that generate unknown (X) values in scan cells when atest pattern is applied.

The EDT logic generated when the basic compactor is used may be up to 30% smaller
than EDT logic generated when the Xpress compactor is used. However, when X values
are present, more test patterns may be required.

252

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Understanding Compactor Options

Basic Compactor Architecture

Figure 8-25. Basic Compactor

Core
(with scan chains) Basic

——————————————

' | Compactor

~

Input
Channel

Qutput
Channel

Input

Channel
e

Qutput
Channel

=0nmwe=oJoamD

-]

Mask Hold
Register

Mask Shift
Register

A mask code (prepended with a decoder mode bit) is generated with each test pattern to
determine which scan chains are masked or observed. The basic compactor determines which
chains to observe or mask using the mask code as follows:

1. The decompressor |oads the mask code into the mask shift register.

2. Themask codeis paralel-loaded into the mask hold register, where the decoder mode
bit determines the observe mode; either one scan chain or all scan chains.

3. Themask code in the mask hold register is decoded and each bit drives one input of a
masking AND gate in the compactor. Depending on the observe mode, the output of
these AND gatesis either enabled or disabled.

Tessent TestKompress User's Manual, v2014.2 253
June 2014

Special Topics
Understanding Compactor Options

Xpress Compactor Architecture

Figure 8-26. Xpress Compactor

Core
Mask Shift (with scan chains) X
: press
Reglsters | prnsnsnssss .= i Compactor
r 4
EET————————————— § ;
\ H H
A —— L Qutput
Input T A 1o A — - i Channel
Channel | s ——— i
| J— E P : = '
e ——
1 1
I'. : m — B '
\ - p -4 —— :
'| : r gy . 1
1 _ 1
- : ———— = ! Output
g‘ﬁm : \ [- B i Channel
annel \ .]
L ..-.1:.;- 'r} e = T
_————————y— 1
.) B
; O] i
' . B i
1 y ! 1
e - '
]

: Controller
1

Mask Hold
Register

basic decoder
XOR decoder

A mask code (prepended with a decoder mode bit) is generated with each test pattern to
determine which scan chains are masked or observed. The Xpress compactor determines which
chains to observe or mask using the mask code as follows:

1. Each test pattern isloaded into the decompressor through a mask shift register on the
input channel.

2. The mask code is appended to each test pattern and remains in the mask shift register
once the test pattern is completely loaded into the decompressor.

3. Themask code isthen parallel-loaded into the mask hold register, where the decoder
mode bit determines whether the basic decoder or the XOR decoder is used on the mask
code.

o Thebasic decoder selects only one scan chain per compactor. The basic decoder is
selected when there isa very high rate of X values during scan testing or during
chain test to allow failing chainsto be fully observed and easy to diagnose.

o The XOR decoder masks or observes multiple scan chains per compactor, depending
on the mask code. For example, if the mask codeisall 1s, then al the scan chainsare
observed.

254 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Understanding Scan Chain Masking in the Compactor

4. The decoder output is shifted through a multiplexer, and each bit drives one input on the
masking AND gates in the compactor to either disable or enable the output, depending
on the decoder mode and bit value.

Understanding Scan Chain Masking in the
Compactor

This section describes how and why scan chain masking is used in the compactor to ensure
accurate scan chain observations.

Why Masking is Needed

To facilitate compression, the tool inserts a compactor between the scan chain outputs and the
scan channel outputs. In this circuitry, one or more stages of XOR gates compact the response
from several chainsinto each channel output. Scan chains compacted into the same scan
channel are said to be in the same compactor group.

One common problem with different compactor strategiesis handling of Xs (unknown values).
Scan cells can capture X values from unmodel ed blocks, memories, non-scan cells, and so forth.
Assume two scan chains are compacted into one channel. An X captured in Chain 1 will then
block the corresponding cell in Chain 2. If this X occursin Chain 1 for all patterns, the valuein
the corresponding cell in Chain 2 will never be measured. Thisisillustrated in Figure 8-27,
where the row in the middle shows the values measured on the channel outpui.

Figure 8-27. X-Blocking in the Compactor

Chain 1
—
1{o|X)|1|x]|ofofo]f1 Chain Output
Channel
o1 |X][1|Xx|[2]|X])]X]|0]—
2 :)D;Output
compactor
Chain 2
111(0]0 (X1 (XIX)}1 Chain Output

Thetool records an X in the pattern file in every position made unmeasurable as a result of the
actual occurrence of an X in the corresponding cell of adifferent scan chain in the same
compactor group. Thisisreferred to as X blocking. The capture datafor Chain 1 and Chain 2
that you would see in the ASCI| pattern file for this example would look similar to Figure 8-28.
The Xs substituted by the tool for actual values, unmeasurabl e because of the compactor, are
shown in red.

Tessent TestKompress User's Manual, v2014.2 255
June 2014

Special Topics
Understanding Scan Chain Masking in the Compactor

Figure 8-28. X Substitution for Unmeasurable Values

Chain 1

1|11 X|O0O|X|1[X|[X]|1

Resolving X Blocking with Scan Chain Masking

The solution to this problem is a mechanism utilized in the EDT logic called “scan chain
masking.” This mechanism allows selection of individual scan chains on a per-pattern basis.
Two types of scan chain masking are used: 1-hot masking and flexible masking.

With 1-hot masking, only one chain is observed via each scan channel's compaction
network. All the other chainsin that compactor are masked so they produce a constant O
to the input of the compactor. This allows observation of fault effects for the observed
chains even if there are Xsin the observation cycles for the other chains. 1-hot masking
patterns are only generated for afew ATPG cycles at points when the non-masking and
flexible masking algorithms fail to detect any significant number of faults.

Flexible masking patterns allow multiple chains to be observed via each scan channel's
compaction network. Flexible masking is not fully non-masking; with fully non-
masking patterns, none of the chains are masked so Xsin some cycles of some chains
can block the observation of the fault effectsin some other chain. The Xpress compactor
observes all chains with known values and masks out those scan chains that contain X
values so they do not block observation of other chains. With Xpress flexible masking,
only a subset of the chains is masked to maximize the fault detection profile while
reducing the impact on pattern count. When a fault effect cannot be observed at the
channel output under any of the flexible masking configurations, the tool uses 1-hot
masking to guarantee the detection of such faults.

Figure 8-29 shows how scan chain masking would work for the example of the preceding
section. For one pattern, only the values of Chain 2 are measured on the scan channel output.
Thisway, the Xsin Chain 1 will not block valuesin Chain 2. Similar patterns would then also
be produced where Chain 2 is disabled while the values of Chain 1 are observed on the scan
channel output.

256

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Special Topics
Understanding Scan Chain Masking in the Compactor

Figure 8-29. Example of Scan Chain Masking

Chain 1
110 X[(1(X[0f0]0O]|1 Chain Output
0_
1l1]ofo|x|1|x|x]|1 masking Channel
gates Output
1— compactor
Chain 2
1100 (X[1]|X[X]|1 Chain Output

When using scan chain masking, the tool records the actual measured value for each cell in the
unmasked, selected scan chain in a compactor group. The tool masks the rest of the scan chains
in the group, which means the tool changes the valuesto all Xs. With masking, the capture data
for Chain 1 and Chain 2 that you would see in the ASCI| pattern file would look similar to
Figure 8-30, assuming Chain 2 isto be observed and Chain 1 is masked. The values the tool
changed to X for the masked chain are shown in red.

Figure 8-30. Handling of Scan Chain Masking

Chain 1 (masked
X[X X X[X[X]X|X] X

Chain 2
111|100 X1 [X|X]1

Following is part of the transcript from a pattern generation run for a simple design where
masked patterns were used to improve test coverage. The design has three scan chains, each
containing three scan cells. One of the scan chain pinsis shared with afunctional pin, contrary
to recommended practice, in order to illustrate the negative impact such sharing has on test
coverage.

/] mmm e

// Simulation performed for #gates = 134 #faults = 68

// system mode = analysis pattern source = internal patterns
[/ mm e
// #patterns test #faults #faults #eff. #test
// simulated cvrg in list detected patterns patterns
// deterministic ATPG invoked with abort limit = 30

/=== === -—- -—- -—- -—-
// 32 82.51% 16 47 6 6
/=== === -—- -—- -—- -—-

// Warning: Unsuccessful test for 10 faults.

Tessent TestKompress User's Manual, v2014.2 257
June 2014

Special Topics
Fault Aliasing

// deterministic ATPG invoked with abort limit = 30

// EDT with scan masking.

/] === === -—- -—- -—- -—-
// 96 91.26% 0 16 6 12
A -—- -—- -—- -—-

The transcript shows six non-masked and six masked patterns were required to detect all faults.
Here' s an excerpt from the ASCI|I pattern file for the run showing the last unmasked pattern and
the first masked pattern:

pattern = 5;
apply "edt_grpl_load" 0

chain "edt_channell" "00011000000";
end;
force "PI" "100XXX0" 1;
measure "PO" "1XXX" 2;
pulse "/CLOCK" 3;
apply "grpl_unload" 4 =
chain "chainl" = "1X1";
chain "chain2" = "1X1";
chain "chain3" = "0X1";
end;
pattern = 6;
apply "edt_grpl_load" 0 =
chain "edt_channell" = "11000000000";
end;
force "PI" "110XXX0" 1;

measure "PO" "O0XXX" 2;
pulse "/CLOCK" 3;
apply "grpl_unload" 4 =

chain "chainl" = "XXX";
chain "chain2" = "111";
chain "chain3" = "XXX";

end;

The capture datafor Pattern 6, the first masked pattern, shows that this pattern masks chainl and
chain3 and observes only chain2.

Fault Aliasing

Another potential issue with the compactor used in the EDT logic is called fault aliasing.
Assume one fault is observed by two scan cells, and that these scan cells are located in two scan
chains that are compacted to the same scan channel. Further, assume that these cells are in the
same locations (columns) in the two chains and neither chain is masked.

Figure 8-31 illustrates this case. Assume that the good value for a certain patternisalin the
two scan cells. This correspondsto a0 measured on the scan channel output, due to the XOR in
the compactor. If afault occurs on this site, Os are measured in the scan cells, which also result
in a0 on the scan channel output. For this unique scenario, it isnot possible to see the difference
between a good and a faulty circuit.

258 Tessent TestKompress User's Manual, v2014.2
June 2014

Special Topics
Reordering Patterns

Figure 8-31. Example of Fault Aliasing

Chain 1

1/0 Chain Output

Good/Faulty
ﬁ 0/0
| Channel
1/0 Output

Chain 2

1/0 Chain Output

The solution to this problem is to utilize scan chain masking. The tool does this automatically.
In compressed ATPG, afault that is aliased will not be marked detected for the unmasked
pattern (Figure 8-31). Instead, the tool uses a masked pattern as shown in Figure 8-32. This
mechanism guarantees that all potentially aliased faults are securely detected. Casesin which a
fault is always aliased and requires a masking pattern to detect it are rare.

Figure 8-32. Using Masked Patterns to Detect Aliased Faults

Chain 1

1/0 Chain Output

Good/Faulty
1/0 1— 1/0
Channel
0 — Output

Chain 2

1o Chain Output

Reordering Patterns

In Tessent Shell, you can reorder patterns using static compaction.

Y ou reorder patterns with the compress_patterns command, and pattern optimization with the
order_patterns command. Y ou can also use split pattern sets by, for example, reading a binary
or ASCII pattern file back into the tool, and then saving a portion of it using the -Begin and
-End options to the write_patterns command.

The tool does not support reordering of serial EDT patterns by a third-party tool, after the
compressed patterns are saved.

Tessent TestKompress User's Manual, v2014.2 259
June 2014

Special Topics
Handling of Last Patterns

Thishasto do with what happens in the compactor when two scan chains have different lengths.
Suppose two scan chains are compacted into one channel, asillustrated in Figure 8-33. Chain 1
issix cellslong and Chain 2 isthree cellslong. The captured values of the last three bits of
Chain 1 are going to be XOR’d with the first three values of the next pattern being loaded into
Chain 2. For regular ATPG, this problem does not occur because the expected values on Chain
2, after you shift three positions, are all Xs. So you never observe the values being loaded as
part of the next pattern. But, if that is done with EDT, the last three positions of Chain 1 are
XOR'd with X and faults observed on these last cells are lost. Because the padding data for the
shorter scan chainsis derived from the scan-in data of the next pattern, avoid reordering serial
patterns to ensure valid computed scan-out data.

Figure 8-33. Handling Scan Chains of Different Length
Pattern 2 Pattern 1

1]1fofo]1]1
::jD—%‘j‘tBﬂ?'100011
olofo

Handling of Last Patterns

In order to completely shift out the values contained in the final capture cycle, the tool shiftsin
the last pattern one additional time so that the output matches the calculated value.

When the design contains chains of different lengths, the tool pads the shorter chains using the
values generated by the decompressor during next pattern load. The calculated expected values
on the last pattern unload are based on loading the last pattern one more time. Changing the last
pattern load will result in simulation mismatches.

H,.J
Fill

Note
D If the last pattern load is modified, mismatches will occur.

260 Tessent TestKompress User's Manual, v2014.2
June 2014

Chapter 9
Integrating Compression at the RTL Stage

You can create EDT logic during the RTL design phase, rather than waiting for the complete
synthesized gate-level design netlist. Creating the EDT logic early alows you to consider the
EDT logic earlier in the floor-planning, placement, and routing phases.

To create EDT logic during the RTL stage, you must know the following parameters for your
design:
® Number of external scan channels

®* Number of internal scan chains

® Clocking of thefirst and last scan cell of each chain
This scan chain clocking information is not necessary if you set up the EDT clock to
pulse before the scan chain shift clocks. For more information, see “Pulse EDT Clock
Before Scan Shift Clocks” on page 64.

® Longest scan chain length range (an estimate of the minimum number of scan cellsand
maximum number of scan cells the tool can expect in the longest scan chain)

Y ou should also have knowledge about the design interface if you are creating/inserting the
EDT logic external to the design core.

About the RTL Stage Flow

The create_skeleton_design utility is used to create a skeleton design.s

Figure 9-1 showsthe |P Creation RTL stage flow. The utility, create _skeleton _designisusedto
create a skeleton design. This utility writes out a gate-level skeleton Verilog design and several
related files required to create EDT logic.

To use the create_skeleton_design utility, you must create a Skeleton Design Input File. The
Skeleton Design Input File contains the requisite number of scan chains with the first and last
cell of each of these chains driven by the appropriate clocks. For more information, see
“Skeleton Design Input File” on page 264.

If you are creating/inserting the EDT logic external to the design core, you must also create a
Skeleton Design Interface File. For more information, see “ Skeleton Design Interface File” on
page 267.

Tessent TestKompress User's Manual, v2014.2 261
June 2014

Integrating Compression at the RTL Stage
About the RTL Stage Flow

Figure 9-1. EDT IP Creation RTL Stage Flow

Prepare Input
& Interface Files

Create Skeleton
«a—| Design Input File

Skeleton
Design

Input File (page 264)
" Create Skeleton 1 <)
Pesign Interface Filg g . Deésign .
. (page 267) 'Interface File|

i / (if ext. flow
run

create_skeleton_design
(page 267)

/] “Skel

Skeleton Skeleton Skeletor Test
Gate-level || cell Library Dofile Proc
Netlist File

Create EDT Logic
(page 267)

Use the following steps to create EDT logic for an RTL design:

1. Create a Skeleton Design Input File. For more information, see “ Skeleton Design I nput
File” on page 264.

2. If you areinserting the EDT logic external to the core design (Compressed Pattern
External Flow), create a Design Interface File to provide the interface description of the
core design in Verilog format. For more information, see “ Skeleton Design Interface
File” on page 267.

3. Runthecreate skeleton design utility. For example:
® Internal Flow:

create_skeleton_design -o output_file prefix \
-1 skeleton_design_input_file

®* [External Flow:

create_skeleton_design -o output_file prefix \
-1 skeleton _design_input_file -design_interface file name

262 Tessent TestKompress User's Manual, v2014.2
June 2014

Integrating Compression at the RTL Stage
Skeleton Design Input and Interface Files

The utility writes out the following four files:
<output_file prefix>.v — Skeleton design netlist
<output_file prefix>.dofile— Dofile
<output_file prefix>.testproc — Test procedure file
<output_file prefix>.atpglib — Tessent cell library

For a complete example showing create skeleton_design input files and the resultant
output files, see the “ Skeleton Flow Example” on page 270.

4. Invoke Tessent Shell, set the correct context, and read the skeleton design netlist and the
Tessent cell library.

5. Provide compression setup commands.
® Runthedofile and test procedure file to set up the scan chains for the EDT logic.

® |ssuetheset _edt options command to specify the number of scan channels. You
should use the -Longest_chain_range switch with this command to specify an
estimated length range (min_number_cells and max_number_cells) for the longest
scan chain in the design. For additional information, refer to “Longest Scan Chain
Range Estimate” on page 268.

6. Provide EDT DRC, configuration, and logic creation commands.
® Usetheset system mode analysis command to flatten the design and run DRCs.
® |ssue other configuration commands as needed.

® Write out the RTL description of the EDT logic with the write_edt_files command.

Skeleton Design Input and Interface Files

This section describes the inputs and outputs for the create_skeleton_design utility.

These inputs and outputs are illustrated in Figure 9-2. The Skeleton Design Input Fileis aways
required. The Skeleton Design Interface File is needed only if you will be creating the EDT

Tessent TestKompress User's Manual, v2014.2 263
June 2014

Integrating Compression at the RTL Stage
Skeleton Design Input and Interface Files

logic external to the core design (Compressed Pattern External Flow). Y ou must create both

files using the format and syntax described in the following subsections.

Figure 9-2. Create_skeleton_design Inputs and Outputs

Skeleton
Design
Input File

‘Interface File|

_(ext flow)

Y \

create_skeleton_design

g

RN

Skeleton Design Input File

Create the skeleton design input file using the rules described in the next section.

Input File Format

This section describes the format of the input file for create_skeleton _design.

T 1
_ Tessent _Verilog |

5 Dofile Skel. Gate- Cell Simulatio
level netlist Library Library

(Verilog) L

Example 9-1 shows the format of the skeleton design input file. Required keywords are
highlighted in bold. Thisfile contains distinct sections that are described after the example.
Example 9-2 on page 267 shows a small working example.

Example 9-1. Skeleton Design Input File Format

// Description of scan pins and LSSD system clock with design interface

// (required)

scan_chain_input <prefix> <bused|indexed> [<starting index_if_indexed>]
scan_chain_output <prefix> <bused|indexed> [<starting_index_if_indexed>]

lssd_system clock <clock_name>

// Any system clock for LSSD designs

scan_enable <scan_enable_name> // Any scan_enable pin name

// Clock definitions (required)

begin_clocks // Keyword to begin clock definitions
<clock_name> <off_ state> // Clock name and off state
<clock_name> <off_state> // Clock name and off state

end_clocks // Keyword to end clock definitions

// Scan chain specification (required)

begin_chains

// Keyword to begin chain definitions

264

Tessent TestKompress User’'s Manual, v2014.2

Integrating Compression at the RTL Stage
Skeleton Design Input and Interface Files

// first_chain_number and last_chain_number specify range of chains
// MUXD chain
<first_chain_number> <last_chain_number> <chain_length> \

<TE|LE> <first_cell_clock> <TE|LE> <last_cell_clock>

//LSSD chain
<first_chain_number> <last_chain_number> <chain_length> \
LA <first cell master_ clock> <first_cell slave_clock> \
LA <last_cell master_clock> <last_cell_slave_clock>
end_chains // Keyword to end chain definitions

Scan Pins and LSSD System Clock Specification Section

Note
D This section is required when you use the -Design_interface switch with

create skeleton_design to enable the tool to create a correct instantiation of the core in

the top-level EDT wrapper (Compressed Pattern External Flow). If the scan pins

specified in this section are not present in the design interface, the utility automatically

adds them to the skeleton design. Y ou can omit this section if you are not using the

-Design_interface switch.

In this section, specify the scan chain pin name prefix and the type, bused or indexed, using the
keywords, “scan_chain_input” and “scan_chain_output”. The bused option will result in scan
chain pins being declared as vectors, i.e., <prefix>[Max-1:0]. The indexed option will result in
scan chain pins being declared as scalars, numbered consecutively beginning with the specified
starting index, and named in “ <prefix><index>" format.

If you intend to share channel outputs, you can specify the name of a scan enable pin using the
“scan_enable’ keyword. If you do not specify a scan enable pin, the tool will automatically add
adefault pin named “scan_en” to the output skeleton design.

If the design contains LSSD scan cells, you can optionally use the Issd_system_clock keyword
to specify the name of any one LSSD system clock. If you do not specify a name, the tool will
use the default name, “Issd_system_clock”.

Clock Definition Section

In this section, specify clock names and their corresponding off states. The utility uses these off
states to create a correct skeleton dofile and skeleton test procedure file. (See the add_clocks
command for additional details about the meaning of clock off states.)

Scan Chain Specification Section

The scan chain specification section is the key section. Here, you specify the number of scan
chains, length of the chains, and clocking of the first and last scan cell.

Tessent TestKompress User's Manual, v2014.2 265
June 2014

Integrating Compression at the RTL Stage
Skeleton Design Input and Interface Files

Note
D If the EDT logic clock is pulsed before the scan chain shift clock, you do not need to

account for the clocking of thefirst and last cell in each scan chain as this information
will not be evaluated. For more information, see “Pulse EDT Clock Before Scan Shift
Clocks’ on page 64.

To simplify and shorten this section, you can list, on one line, arange of chains that have the
same specifications. Each line should contain the chain number of the first chain in the range,
the chain number of the last chain in the range, length of the chains, and the edge and clock
information of the first and last scan cell. Thelength of the scan chains can be any value not less
than 2, but typically 2 suffices for the purpose of creating appropriate EDT logic. In the created
skeleton design, all chainsin this range will be the same length and contain afirst and last scan
cell with the same clocking.

The edge specification must be one of the following:

® LE for ascan cell whose output changes on the leading edge of the specified clock
® TE for ascan cell whose output changes on the trailing edge of the specified clock
® LA foranLSSD scan cell

When you specify the clock edge of the last scan cell, it is critical to include the lockup cell
timing as well. For example, if aleading edge (LE) triggered scan memory element is followed
by alockup cell, the edge specification of the scan cell must be TE (not LE) since the cell
contains a scan memory element followed by alockup cell and the scan cell output changes on
the trailing edge (TE) of the clock. Specifying incorrect edges will result in the tool inserting
improper lockup cells and you may need to regenerate the EDT logic later.

Note
D When the scan chain specification indicates the first and last scan cell have master/slave

or master/copy clocking (for example, an LE first scan cell and a TE last scan cell), the
create _skeleton_design utility will increase that chain’s length by one cell in the skeleton
netlist it writes out. Thisis done to satisfy a requirement of lockup cell analysis and will
not alter the EDT logic; the length of the scan chains seen by the tool after it readsin the
skeleton netlist will be as specified in the skeleton design input file.

Comment Lines

Y ou can place comments in the file by beginning them with adouble slash (//). Everything after
adouble slash on alineistreated as a comment and ignored.

Input File Example

The following example utilizes bused scan chain input and output pins. It also defines two
clocks, clkl and clk2, with off-states 0 and 1, respectively.

266 Tessent TestKompress User's Manual, v2014.2
June 2014

Integrating Compression at the RTL Stage
Creating EDT Logic for a Skeleton Design

A total of eight scan chains are specified. Chains 1 through 4 are of length 2, with the first cell
being LE clkl triggered and the last cell being TE clk1 triggered. Chains 5 and 6 are of length 3,
with thefirst cell being LE clk2 triggered and the last cell being TE clk2 triggered. Chains 7 and
8 are also of length 3, with the first and last cells being of LSSD type, clocked by master and
slave clocks, mclk and sclk, respectively.

Example 9-2. Skeleton Design Input File Example

// Double slashes (//) mean everything following on the line is a comment.
//
// edt_si[7:0] and edt_so[7:0] pins are created for scan chains.
scan_chain_input edt_si bused
scan_chain_output edt_so bused
begin_clocks
clkl O
clk2 1
mclk O
sclk O
end_clocks
begin_chains
// chains 1 to 4 have the following characteristics (Mux scan)
1 4 2 LE clkl TE clkl
// chains 5 and 6 have the following characteristics (Mux scan)
5 6 3 LE clk2 TE clk2
// chains 7 and 8 have the following characteristics (LSSD)
7 8 3 LA mclk sclk LA mclk sclk
end_chains

Skeleton Design Interface File

Y ou should create a skeleton design interface file if you are creating EDT logic that is inserted
external to the design core. It should contain only the interface description of the core designin
Verilog format; that is, only the module port list and declarations of these ports as input, output,
or inout.

For an example of thisfile, see”Interface File” on page 271.

0 Tip: Theinterface file ensuresthe files written out by the create_skeleton_design utility
contains the information the tool needs to write out valid core blackbox
(*_core_blackbox.v) and top-level wrapper (* _edt_top.v) files.

Creating EDT Logic for a Skeleton Design

After invoking Tessent Shell and reading the skeleton design, you must set up the following
parameters with the set_edt_options command:

®* Number of external scan channels

Tessent TestKompress User's Manual, v2014.2 267
June 2014

Integrating Compression at the RTL Stage
Creating EDT Logic for a Skeleton Design

® Estimate of the longest scan chain length (optional). This value allows flexibility when
configuring scan chains. For more information, see “Longest Scan Chain Range
Estimate” on page 268.

For example:

set_edt_options -channels 2
set_edt_options -longest_chain_range 75 125

For more information on setting up and creating the EDT logic, see “Creation of EDT Logic
Files’ on page 78.

Longest Scan Chain Range Estimate

The longest scan chain range estimate defines arange for the length of the longest scan chain in
thedesign. The EDT logic isthen configured to allow the longest scan chainin the design to fall
within this range without requiring the EDT logic to be regenerated.

Thisbuildsin flexibility in cases, such asthe RTL flow, where the scan chains may change after
the EDT logic is created as follows:

* min_number_cells— specifies the lower bound of the longest scan chain range. You
should avoid specifying an artificially low value for the set_edt_options
“min_number_cells’” command option. Specifying an artificially low value resultsin the
creation of an EDT logic configuration that can result in incompressible patterns.

Note that the set_edt_options “longest_chain_range” switch defines arange for the
length of the longest scan chain in your design — this does not mean the range of
lengths of al the scan chainsin your design. Setting the min_number_cells option based
on these considerations enables the tool to configure the EDT logic to assure robust
pattern compression.

For more information on compactors, see “Understanding Compactor Options’ on
page 252.

* max_number_cells— specifies the higher bound of the longest scan chainrangeand is
used to configure the phase shifter in the decompressor. The phase shifter is configured
to separate the bit streams provided to the scan chains by at least as many cycles as
specified by the max_number_cells value. This reduces linear dependencies among the
bit streams supplied to the internal scan chains.

The flexibility of thisrestriction is determined by the linear dependencies present in a
design and the number of scan cells specified for the longest scan chain. Some designs
tolerate up to a 25% increase in scan chain length before the EDT logic is affected.

268 Tessent TestKompress User's Manual, v2014.2
June 2014

Integrating Compression at the RTL Stage
Integrating the EDT Logic into the Design

Integrating the EDT Logic into the Design

After you create the EDT logic, integrating it into the design is a manual process.

For EDT logic created external to the design core (Compressed Pattern External Flow):

If you provided the create_skeleton_design utility with the recommended interface file
when it generated the skeleton design, you can continue with the compressed pattern
external flow (optionally insert 1/0 pads and boundary scan, then synthesize the I/0
pads, boundary scan, and EDT logic).

If you did not use an interface file, you will need to manually provide the interface and
all related interconnects needed for the functional design before synthesizing the EDT
logic.

For EDT logic created within the design core (Compressed Pattern Internal Flow):

Integrating the EDT logic into the design is a manual process you perform using your
own tools and infrastructure to stitch together different blocks of the design to create a
top level design.

Note

O

The Design Compiler synthesis script that the tool writes out does not contain
information for connecting the EDT logic to design 1/0O pads, as the tool did not have
access to the complete netlist when it created the EDT logic.

Knowing When to Regenerate the EDT Logic

By the time the gate-level netlist is available, there may be changes to the design that affect the
EDT logic as described in the following list. When one of these changes occurs in the design,
the safest approach isto always regenerate the EDT logic and compare the new RTL with the
previous RTL to determineif the EDT logic is changed.

Number of channelsor chains has changed — In this case, the EDT logic must be
regenerated.

Clocking of afirst or last scan cell has changed — Whether the EDT logic actually
needs to be regenerated depends on whether the clock edge that triggers the first or last
scan cell has changed and whether lockup cells are inserted for bypass mode scan
chains. Y ou should regenerate the EDT logic any time the clocking of thefirst or last
scan cell changes. Note, this scan chain clocking information is not relevant (not a cause
for regenerating EDT logic) if you set up the EDT clock to pulse before the scan chain
shift clocks. For more information, see“Pulse EDT Clock Before Scan Shift Clocks’ on

page 64.

Length of the longest scan chain islessthan the min_number_cells specified with
theset_edt options-Longest_chain_rangeswitch — If the EDT logic usesthe X press

Tessent TestKompress User's Manual, v2014.2 269
June 2014

Integrating Compression at the RTL Stage
Skeleton Flow Example

compactor (default), this value does not affect the architecture and the EDT logic does
not need to be regenerated.

However, if the EDT logic usesthe Basic compactor, this parameter is used to configure
the length of the mask register in the compactor. In this case, you should regenerate the
EDT logic. For more information, see “Longest Scan Chain Range Estimate” on

page 268”.

® Length of thelongest scan chain isgreater than the max_number_cells specified
with the set_edt_options-Longest_chain_range switch — Whether the EDT logic
actually changes or not depends on whether the phase shifter in the decompressor needs
to be redesigned or not. The flexibility of thisrestriction is determined by the linear
dependencies present in a design and the number of scan cells specified for the longest
scan chain. Some designs tolerate up to a 25% increase in scan chain length before the
EDT logicisaffected. For more information, see “Longest Scan Chain Range Estimate”
on page 268”.

Skeleton Flow Example

This section shows example skeleton design input and interface files and the output files the
create skeleton_design utility generated from them.

Input File

The following example skeleton design input file, my_skel des.in, utilizes indexed scan chain
input and output pins. The file defines two clocks, NX1 and NX2, with off-states 0, and
specifies atotal of 16 scan chains, most of which are 31 scan cellslong. Notice the clocking of
thefirst and last scan cell in each chain is specified, but no other scan cell definition is required.
Thisis because the utility has built-in ATPG models of simple mux-DFF and LSSD scan cells
that are sufficient for it to write out a skeleton design (and for the tool to use later to create the
EDT logic).

Note
If you will be creating the EDT logic within the core design (Compressed Pattern Internal

Flow), thisfileisthe only input the utility needs.

scan_chain_input scan_in indexed 1
scan_chain_output scan_out indexed 1

begin_clocks
NX1 0
NX2 0
end_clocks

begin_chains
1 1 31 TE NX1 TE NX1
2 2 30 TE NX1 TE NX1

270 Tessent TestKompress User's Manual, v2014.2
June 2014

Integrating Compression at the RTL Stage
Skeleton Flow Example

30
31
31
32
31
31
31
10
11
12
13
14

TE
TE
TE
LE
LE
LE
LE
31
31
31
31
31
31
31

O J o Ul W
O o0 Jo Ul idh W

9
10
11
12
13
14
15 15
16 16
end_chains

Interface File

NX1
NX1
NX1
NX2
NX2
NX2
NX2

LE
LE
LE
LE
LE
LE
LE

TE
TE
TE
LE
LE
LE
LE
NX2
NX2
NX2
NX2
NX2
NX2
NX2

NX1
NX1
NX1
NX2
NX2
NX2
NX2

LE
LE
LE
LE
LE
LE
LE

NX2
NX2
NX2
NX2
NX2
NX2
NX2

The following shows an example interface file nemo6_blackbox.v for the design described in

the preceding input file.

Use of an interface file is recommended if you intend to create the EDT logic as awrapper
external to the core design (Compressed Pattern Externa Flow).

module nemob6

(NMOE
NSFRWE

B

E ,

NESFR

scan_inl

’

CE

’

NMWE
NSFROE
, DE
ALET
scan_outl ,
scan_in4d ,

’

scan_out3 ,

scan_1iné6

’

scan_out8 ,
scan_inll ,
scan_inl3 ,
scan_inl5 ,

input NX1 , NX2 ,
scan_1in3
scan_1in9
scan_inl4d ,

input [7:0] AT ;

input [7:0] BI ;
input [7:0] CI ;
input [7:0] DI ;
input [7:0] FI ;
input [7:0] MD ;
output NMOE , NMWE
NSFROE , IDL
scan_out4d ,
scan_out9 ,
scan_outld ,
output [7:0] OA ;
output [7:0] OB ;
output [7:0] OC ;
output [7:0] OD ;
output [7:0] AE ;
output [7:0] BE ;

RST

’

E

DLM
XOFF
scan_outb
scan_outl0
scan_outlb

scan_outé6 ,
scan_1in9 ,
scan_outll ,
scan_outl3 ,
scan_outl5 ,

, NEA

, scan_in4

, scan_inl0

scan_inlb

scan_outl ,

DLM , ALE , NPSEN , NALEN , NFWE , NFOE ,

, IDLE , XOFF , OA , OB, OC , OD , AE ,
FA , FO , M , NX1 , NX2 , RST , NEA ,
PSEI , AT , BI , ¢CI , DI , FI , MD ,

scan_in3 ,
scan_out5 ,

scan_in2 ,
scan_out4d ,
scan_1in7 ,
scan_out9 ,

scan_out2 ,
scan_inb ,
scan_out7 , scan_in8 ,
scan_inl0 , scan_outl0 ,
scan_inl2 , scan_outl2 ,
scan_inl4 , scan_outl4d ,

scan_inl6 , scan_outl6é , scan_en);
NESFR , ALEI , PSEI , scan_inl , scan_in2 ,
scan_1in5 , scan_in6é , scan_in7 , scan_in8 ,
scan_inll , scan_inl2 , scan_inl3 ,
scan_1inl6 , scan_en ;
, NPSEN , NALEN , NFWE , NFOE , NSFRWE ,

scan_out2 , scan_out3 ,
scan_out6 , scan_out7 , scan_out8 ,

, scan_outll , scan_outl2 , scan_outl3 ,
, scan_outlé ;

Tessent TestKompress User’'s Manual, v2014.2

June 2014

271

Integrating Compression at the RTL Stage
Skeleton Flow Example

output [7:0] CE ;

output [7:0] DE ;

output [7:0] FA ;

output [7:0] FO ;

output [15:0] M ;

endmodule
Outputs

This section shows examples of the four ASCII fileswritten out by the create skeleton_design
utility when run on the preceding input and interface files using the following shell command:

create_skeleton_design -o bbl -design_interface nemo6_blackbox.v \

-1 my_skel_des.in
The utility wrote out the following files:
bbl.v
bbl.dofile

bbl.testproc
bbl.atpglib

Skeleton Design

Following is the gate-level skeleton netlist that resulted from the example input and interface
files of the preceding section. For brevity, lines are not shown when content is readily apparent
from the structure of the netlist. Parts attributabl e to the interface file are highlighted in bold; the

utility would not have included them if there had not been an interfacefile.

Note

The utility obtains the module name from the interface file, if available. If you do not use

an interface file, the utility names the module “skeleton_design_top”.

module nemo6 (NMOE, NMWE, DLM, ALE, NPSEN, NALEN, NFWE, NFOE,
NSFROE, IDLE, XOFF, OA, OB, OC, OD, AE, BE, CE, DE, FA, FO,
RST, NEA, NESFR, ALEI, PSEI, AI, BI, CI, DI, FI, MD, scan_inl,

scan_in2, ..., scan_inl6, scan_outl, scan_out2, ..., scan_outlsé6,

NSFRWE,
NX1, NX2,

scan_en) ;

output
output
output
output
output
output
output
output
output
output
output
output

NMOE;
NMWE ;
DLM;
ALE;
NPSEN;
NALEN;
NFWE;
NFOE;
NSFRWE;
NSFROE;
IDLE;
XOFF;

output [7:0] OA;
output [7:0] OB;

272

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Integrating Compression at the RTL Stage
Skeleton Flow Example

output
output
output
output
output
output
output
output
output
input
input
input
input
input
input
input
input
input
input
input
input
input

input
input

input

output scan_outl;
output scan_out2;

output scan_outlé6;

[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]

FO;

[15:0] M;

NX1;
NX2;
RST;
NEA;
NESFR;
ALEI;
PSEI;
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]

scan_inl;
scan_1in2;

scan_1inlé6;

input scan_en;

wire NX1_inv;

wir
wir

wir
wir
wir
wir
wir
wir

wir

inv0l NX1_inv_inst

muxd_cell chainl_cellO

e chainl_celll_out;
e chainl cell2 out;

e chainl_cell31 out;
e chain2_celll_out;

e chain2_cell2_out;

e chain2 cell30_out;

e chainlé_celll out;
e chainlé_cell2_out;

e chainl6_cell31l out;

.D(1'b0),

.D(1'b0),

Y (NX1_inv),

.Q(scan_outl),
.SE(scan_en));
.0 (chainl_celll out), .SI(chainl cell2 out),
.SE(scan_en));

.CLK(NX1_inv),
muxd_cell chainl celll
.CLK(NX1_inv),

LA(NXL)) ;

.SI(chainl_celll_out),

Tessent TestKompress User’'s Manual, v2014.2

June 2014

273

Integrating Compression at the RTL Stage
Skeleton Flow Example

muxd_cell chainl cell30 (

.D(1'b0), .CLK(NX1_inv),

muxd_cell chain2_ cell0 (

.0(chainl_cell30_out),
.SE(scan_en));

.Q(scan_out2),

’

.D(1’b0), .CLK(NX1_inv), .SE(scan_en));
muxd_cell chain2_celll (.Q(chain2_celll_out),

.D(1'b0), .CLK(NX1_inv), .SE(scan_en));
muxd_cell chain2 cell29 (.Q(chain2 cell29 out),

.D(1’b0), .CLK(NX1_inv), .SE(scan_en));

muxd_cell chainlé_cell0 (

.D(1'b0),

.CLK (NX2) ,

muxd_cell chainlé_celll (

.SE(scan_en)

.Q(scan_outl6),

) :

.SI(scan_inl),

.SI(chain2_celll out),

.SI(chain2_cell2_out),

.SI(scan_in2),

.8I(chainl6_celll out),

.Q(chainl6_celll_out),

.SI(chainl6_cell2_out), .D(1'b0), .CLK(NX2),
muxd_cell chainlé_cell30 (.Q(chainl6_cell30_out),
.D(1’b0), .CLK(NX2), .SE(scan_en));
endmodule

Skeleton Design Dofile

.SE(scan_en)

) :

.SI(scan_inle),

The generated dofile includes most setup commands required to create the EDT logic.
Following is the example dofile bbl.dofile the utility wrote out based on the previously
described inputs:

add_scan_groups
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_scan_chains
add_clocks 0 NX1
add_clocks 0 NX2

grpl bbl.testproc

chainl
chain?2
chain3
chaind
chain5b
chainé
chain7
chain8
chain9
chainlO
chainll
chainl?2
chainl3
chainl4
chainl5b
chainlé

grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl
grpl

scan_inl
scan_in2
scan_1in3
scan_1in4
scan_inb
scan_iné6
scan_in7
scan_in8
scan_1in9

scan_outl
scan_out?2
scan_out3
scan_out4d
scan_outh
scan_outb
scan_out?7
scan_out8
scan_out9

scan_1inl0
scan_inll
scan_inl2
scan_inl3
scan_inl4
scan_1inlbs
scan_1inlé6

scan_outl0
scan_outll
scan_outl?2
scan_outl3
scan_outl4
scan_outlb
scan_outl6

274

Tessent TestKompress User’'s Manual, v2014.2

June 2014

Integrating Compression at the RTL Stage
Skeleton Flow Example

Skeleton Design Test Procedure File

The utility also writes out atest procedure file that has the test procedure steps needed to create
EDT logic. Following is the example test procedure file bbl.testproc the utility wrote out using
the previously described inputs:

set time scale 1.000000 ns ;
timeplate gen_tpl =
force_pi 0 ;
measure_po 10 ;
pulse NX1 40 10;
pulse NX2 40 10;
period 100 ;
end;

procedure shift =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force_sci ;
measure_sco ;
pulse NX1 ;
pulse NX2 ;
end;
end;

procedure load_unload =
scan_group grpl ;
timeplate gen_tpl ;
cycle =
force NX1 0 ;
force NX2 0 ;
force scan_en 1 ;
end ;
apply shift 2 ;
end ;

Skeleton Design Tessent Cell Library

The Tessent cell library written out by the utility contains the models used to create the skeleton
design. You must usethislibrary when you perform EDT IP Creation on the skeleton
design in Tessent Shell.

model inv01 (A, Y) (

input (A) ()

output (Y) (primitive = _inv (A, Y);)
)

// muxd_scan_cell is the same as sff in adk library.
model muxd_scan_cell (D, SI, SE, CLK, Q, 0OB) (
scan_definition (
type = mux_scan;
data_in = D;

scan_in = SI;
scan_enable = SE;
Tessent TestKompress User's Manual, v2014.2 275

June 2014

Integrating Compression at the RTL Stage
Skeleton Flow Example

scan_out = Q, 0OB;
)
input (D, SI, SE, CLK) ()
intern(_D) (primitive = _mux (D, SI, SE,
output (Q, QB) (primitive = _dff(, , CLK,
)

model 1lssd_scan_cell (D, SYS_CLK, SI, MCLK, SCLK, Q, 0OB) (
scan_definition (
type = lssd;
data_in = D;
scan_in = SI;
scan_master_clock = MCLK;
scan_slave_clock = SCLK;
scan_out = Q;
)
input (D, SYS_CLK, SI, MCLK, SCLK) ()

intern (MOUT) (primitive = _dlat master (, , SYS_CLK, D, MCLK, ST,
MOUT,);)

output (Q, QOB) (primitive = _dlat slave (, , SCLK, MOUT, Q, QOB);)
)

Note

Y ou can get the utility to write out aVerilog ssmulation library that matches the Tessent
cell library by including the optional -Simulation_library switch in the shell command.

276 Tessent TestKompress User's Manual, v2014.2
June 2014

Appendix A
Getting Help

There are several waysto get help when setting up and using Tessent software tools. Depending
on your need, help is available from documentation, online command help, and Mentor
Graphics Support.

Documentation

The Tessent software tree includes a complete set of documentation and help filesin PDF

format.

Although you can view this documentation with any PDF reader, if you are viewing

documentation on a Linux file server, you must use only Adobe® Reader® versions 8 or 9, and
you must set one of these versions as the default using the MGC_PDF_READER variablein
your mgc_doc_options.ini file.

For more information, refer to “ Specifying Documentation System Defaults’ in the Managing
Mentor Graphics Tessent Software manual.

Y ou can download a free copy of the latest Adobe Reader from this location:

http://get.adobe.com/reader

Y ou can access the documentation in the following ways:

Shell Command — On Linux platforms, enter mgedocs at the shell prompt or invoke a
Tessent tool with the -Manual invocation switch. This option is available only with
Tessent Shell and the following classic point tools: Tessent FastScan, Tessent
TestKompress, Tessent Diagnosis, and DFTAdvisor.

File System — Access the Tessent bookcase directly from your file system, without
invoking a Tessent tool. From your product installation, invoke Adobe Reader on the
following file:

SMGC_DFT/doc/pdfdocs/_bk_tessent.pdf

Application Online Help — Y ou can get contextual online help within most Tessent
tools by using the “help -manual” tool command:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command
description.

Tessent TestKompress User's Manual, v2014.2 277

June 2014

http://get.adobe.com/reader

Getting Help
Mentor Graphics Support

Mentor Graphics Support

Mentor Graphics software support includes software enhancements, access to comprehensive
online services with SupportNet, and the optional On-Site Mentoring service.

For details, refer to this page:
http://supportnet. mentor.com/about

If you have questions about a software release, you can log in to SupportNet and search
thousands of technical solutions, view documentation, or open a Service Request online:

http://supportnet. mentor.com

If your siteisunder current support and you do not have a SupportNet login, you can register for
SupportNet by filling out a short form here:

http://supportnet.mentor.com/user/register.cfm
All customer support contact information is available here:

http://supportnet. mentor.com/contacts/supportcenters/index.cfm

278 Tessent TestKompress User's Manual, v2014.2
June 2014

http://supportnet.mentor.com/about/
http://supportnet.mentor.com
http://supportnet.mentor.com/user/register.cfm
http://supportnet.mentor.com/contacts/supportcenters/index.cfm

Appendix B
EDT Logic Specifications

This section contains illustrations of EDT logic specifications.

Tessent TestKompress User's Manual, v2014.2 279
June 2014

EDT Logic Specifications

EDT Logic with Basic Compactor and Bypass Module

Bypass Module

r— — 1
———
E—
[=—
———
|:1|
7 7—Core +—-/

—/— edt_channels_out[...]

edt_channels_in]...] —/

SOVWVWDOSTZIO0OODT
N~
N~
d
So~"o®TIO0N
I~

—
\'4
-
|
I
L
1
\%

edt_clock .
edt_update

edt_mask

|
I
I
scan_en ‘

NOTE: Functional pins not shown

EDT Logic with Xpress Compactor and Bypass Module

Bypass Module

r— — "

Mask shift register

edt_channels_in[...] %4}3%

edt_clock

—/— edt_channels_out]...]

S0VWVDOSTIOODY
N~
N~
)H
d
So~o®TIO0N

|

scan_en

edt_mask

Controller

edt_update

NOTE: Functional pins not shown

Decompressor Module with Basic Compactor

The following illustration shows details for a decompressor used with a basic compactor, eight

280 Tessent TestKompress User's Manual, v2014.2
June 2014

EDT Logic Specifications

scan chains, and two scan channels.

Decompressor
Clk - P —
h
= Ck a ___——
L ek S -
- -
edt_channels_inl Fll— — Connnected to scan chain
. T . inputs in EDT mode
edt_channels_in2 S| h |
MIT—— ~§ T
[B
L e
r
edt_update X T A .
edt_clock =2 f \ (scan chain masking data)

scan channels < # of lockups < # scan chains 0 < # lockups < # scan chains

(lockups are always inserted here) # depends on scan chain arrangement &
clocking of lockups ahead of Phase Shifter

Decompressor Module with Xpress Compactor

The following illustration shows details for a decompressor used with an X press compactor,
eight scan chains, and two scan channels.

Decompressor
Mask shift registers i
Clk - P —
\ Clk h ———
.y 2 L 1
L bCk .
edt channels_in1 __| — .
> Fl— s Connected to scan chain
edt_channels_in2 ————___] S| h B inputs in EDT mode
M — i
Controller | I | [
L - .
B
edt_update
reda
edt clock i

\

scan channels < # of lockups < # scan chains 0 < #lockups < # scan chains

; # depends on scan chain arrangement &
(lockups are always inserted here) clocking of lockups ahead of phase shifter

Tessent TestKompress User's Manual, v2014.2 281
June 2014

EDT Logic Specifications

Input Bypass Logic

system_clk2

system_clkl—

edt_bypass—

0=EDT mode

1=Bypass mode (concatenate)

edt_channels_inl & 2

Compactor Module

[Chain 1]

[Chain 2]

[Chain 3]

[Chain 4]

[Chain 5]

[Chain 6]

[Chain 7]

[Chain 8]

Lockup cells (inserted per Bypass Lockup Table 7-3)

Destination Source
4 \
! \
Input * ’
Bypass —B_ 1 Chain 1 v
L |
3‘ L Chain 2 J
—]
i ‘ , |
= (J_ L Chain 3 ‘
1
| i i | o
poK ck J_ 1 Chain 4 '_
1
B_ 1 Chain 5 J
]
— - . 1 | | |
: : 0 w Chain 6 J
]
— . 1 | | |
’ : 0 L Chain 7]
—»]
. i
i ' J_ 1 Chain 8 —
]

Compactor

__ _(complex case)
MLcBank Al

l.cBank B!

QS —xno

oO—QQor-

Output bypass

edt_channels_outl

edt_channels_out2

282

Tessent TestKompress User’'s Manual, v2014.2

June 2014

EDT Logic Specifications

Output Bypass Logic

[Chain 1]

[Chain 2]

[Chain 3]

[Chain 4]

[Chain 5] —

[Chain 6] —

[Chain 7]

[Chain 8]

Compactor
(simple case)

Scan chain 4 output

Scan channel 1
Func. output from core

Scan chain 8 output

Scan channel 2
Func. output from core

M
a O%< edt_channels_outl
S u
k t
I p
n u
g t
! y
0
p
g a
| S
c edt_channels_out2

Output Bypass

Q

1

c]q_

o 0
o

/

{

A

- edt_channels_outl

- edt_channels_out2

only when bypass logic

is included

edf_bypass [scan_en

(active high)

only when a channel output is
shared with a functional output

Tessent TestKompress User’'s Manual, v2014.2

June 2014

283

EDT Logic Specifications

Single Chain Bypass Logic

edt_bypass or edt_single_bypass_chain

D (|
e { __ Chan4 |} c
c |~ (o]
m
(o]
Input 2 m |- N | p Output 2
p : { Chan3 1} a
r 1~ (o3
e NG t
(o]
Input & s | [Chanz | 1}— r —Output 1
z T ;
r : \F :
! { _ Chanl | .
Vv !
| |
| |
| |
1 |
e !
I
|
edt_single_bypass_chain
284 Tessent TestKompress User's Manual, v2014.2

June 2014

EDT Logic Specifications

Basic Compactor Masking Logic

Compactor
(simple case)

[Chain 1]

[Chain 2]

[Chain 3]

[Chain 4] —

QS —xun

[Chain 5] —

[Chain 6]

o —Qor-

[Chain 7]

l Chain 8 |

edt_update

edt_mask

edt_clock

edt channels_outl

edt_chaqnels_out2

Chain
Outputs 5 _|

Mask Hold Register |

Mask Shift Register |

Tessent TestKompress User’'s Manual, v2014.2
June 2014

285

EDT Logic Specifications

Xpress Compactor Controller Masking Logic

Masking
AND gates Compactor
\ Chain 1 \
| Chain 2 | =Da
D_ edt_channels_outl
\ Chain 3 | /_D—‘
\ Chain 4 | ./_DJ
| Chain 5 | —
\ Chain 6 | /_DJ
D edt_channels_out2
\ Chain 7 | /_D"
\ Chain 8 | /_DJ
edt_mask
M
> Controller
| XOR Decoder | | One-Hot Decoder|
edt_update Mask Hold Register |
edt_channels_in|... L[]~ -_ — ', - |
Mask Shift Register |
edt_clock

Dual Compression Configuration Input Logic

The following illustration shows input logic details when both a 2-channel and a 16-channel
compression configuration are defined. Note that the first 2 channels of the 16-channel
configuration are always used for the 2-channel configuration.

286 Tessent TestKompress User's Manual, v2014.2
June 2014

EDT Logic Specifications

Red highlights the path for channel 1 when the 2-channel configuration is active. Blue
highlights the path for channel 2 when the 2-channel input configuration is active.

When edt_configuration is at 1, the
2-channel configuration is active
H" edt_configuration

Mask shift register 0
| g1
1
0 —P|Ha5h shift register L
\J
1 Y
Cig 0 ™ ask shift register! p O
»|1 >
/f’
0 s ey A
Mask shift ish =
ci4 0 [~®|Mask shift register 7 3
,./,
1 [
’/\i
: ; &l
Ci6 : 1
- ',/
- \{
™0
[L™
rj
™0
- LI]
-/\l
]
c116 - | Mask shift register 1
'://

= o wwew o= 3 aon0@3

Tessent TestKompress User’'s Manual, v2014.2
June 2014

287

EDT Logic Specifications

Dual Compression Configuration Output Logic

The following illustration shows output logic details when both a 2-channel and a 4-channel
compression configuration are defined. Note that the first 2 channels of the 4-channel
configuration are always used for the 2-channel configuration.

When edl_configuration is 1, tha
2-channal configuration highlighted in red is active

\\l
edt_configuration
s o] |,
1o J1 C.1
& } ‘ >0 N
2 / e C,2
Design 1 ’;
core \
& @ » C,3
i | [~
&[] 7 » CA4
ﬂ Compactor
]
Masking
information
Tessent TestKompress User's Manual, v2014.2 288

June 2014

EDT Logic Specifications

EDT Logic with Power Controller

Mask 0
shift C
Power register b 6]
shift = m
reglster m p
E . ;
ed e edt
channels —// s L —— channels
inf...] s r out[...]
o
r

adt clock | T
scan_en .
Compactor edt_mask
Power — controller
edt_upéate controller
low_power_shift_en EDT controller

Tessent TestKompress User's Manual, v2014.2 289

June 2014

EDT Logic Specifications

290 Tessent TestKompress User's Manual, v2014.2
June 2014

Appendix C
Troubleshooting

This appendix is divided into three parts.

® Thefirst part, “Debugging Simulation Mismatches,” lists some EDT-specific aspects of
debugging simulation mismatches that you may aready be familiar with from past
ATPG experience.

® The second part, “Resolving DRC Issues,” contains some explanation (and examples
where applicable) of causes of EDT-specific design rule violations and possible
solutions.

®* The"Miscellaneous’ section covers afew topics that are unrelated to simulation
mismatches or DRC.

Debugging Simulation Mismatches

This section provides a suggested flow for debugging simulation mismatches in adesign that
uses EDT.

Y ou are assumed to be familiar with the information provided in the “ Potential Causes of
Simulation Mismatches” section of the Tessent Scan and ATPG User’s Manual, so that
information is not repeated here. Y our first step with EDT should be to determine if the source
of the mismatch isthe EDT logic or the core design. Figure C-1 shows a suggested flow to help
you begin this process.

Tessent TestKompress User's Manual, v2014.2 291
June 2014

Troubleshooting
Debugging Simulation Mismatches

Figure C-1. Flow for Debugging Simulation Mismatches

Start

Debug K19 thru K22 DRC violations

Debug with compressed ATPG methods

— OR —
Use uncompressed ATPG methods with EDT bypass
patterns. Will likely capture the problem.

Serial Chain
Test Fails?2

Y—®| Debug chain problems with uncompressed ATPG methods

Serial Chain
Test Fails?

Y—®| Focus on interface logic between EDT logic and scan cells

Contact
customer support.

If the core design is the source of the mismatch, then you can use uncompressed ATPG

troubl eshooting methods to pinpoint the problem. This entails saving bypass patterns from
compressed ATPG, which you then process and simulate in uncompressed ATPG with the
design configured to operate in bypass mode. Alternatively, you can invoke Tessent Shell with
the circuit (configured to run in bypass mode) and generate another set of uncompressed
patterns. For more information, refer to “ Compression Bypass Logic” in Chapter 8.

292 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Resolving DRC Issues

This section supplements the DRC information in the reference manual with some suggestions
to help you reduce the occurrence of certain DRC violations.

Full descriptions of the EDT-specific “K” rules, K19 through K22 DRC Violations, are
provided in section “Design Rule Checking” in the Tessent Shell Reference Manual.

K19 through K22 DRC Violations

K19 through K22 are simulation-based DRCs. They verify the decompressor and compactor
through zero-delay serial simulation and analyze mismatches to try to determine the source of
each mismatch. As atroubleshooting aid, these DRCs transcript detailed messages listing the
gates where the tool’ s analysis determined each mismatch originated, and specific simulation
results for these gates.

Thetool can provide the most debugging information if you have preserved the EDT logic
hierarchy, including pin pathnames and instance names, during synthesis. When thisis not the
case and either rule check fails, the tool transcripts a message that begins with the following
reminder (K22 would be similar):

Warning: Rule K19 can provide the most debug information if the EDT logic
hierarchy, including pin and instance names, is preserved during
synthesis and can be found by Tessent TestKompress.

The message then lists specifics about instance(s) and/or pin pathname(s) the tool cannot
resolve, so you can make adjustmentsin tool setups or your design if you choose. For example,
if the message continues:

The following could not be resolved:
EDT logic top instance "edt_i" not found.
EDT decompressor instance "edt_decompressor_i" not found.

you can use the set_edt_instances command to provide the tool with the necessary information.
Use the report_edt_instances command to double-check the information.

If the tool can find the EDT logic top, decompressor and compactor instances, but cannot find
expected EDT pins on one or more of these instances, the specifics would tell you about the pins
asin this example for an EDT design with two channels:

The following could not be resolved:
EDT logic top instance "edt_i" exists, but could not find
2-bit channel pin vector "edt_channels_in" on the instance.
EDT decompressor instance "edt_decompressor_i" exists, but
could not find 2-bit channel pin vector "edt_channels_in"
on the instance.

When the tool is able to find the EDT logic top, decompressor and compactor instances, but
cannot resolve a pin name within the EDT logic hierarchy, it istypically because the name was

Tessent TestKompress User's Manual, v2014.2 293
June 2014

Troubleshooting
Resolving DRC Issues

changed during synthesis of the EDT RTL. To help prevent interruptions of the pattern creation
flow to fix a pin naming issue, you are urged to preserve during synthesis, the pin names the
tool created inthe EDT logic hierarchy. For additional information about the synthesis step,
refer to “The EDT Logic Synthesis Script” on page 102.

Debugging Best Practices

For most common K19 and K22 debug tasks, you can report gate simulation values with the
set_gate report Drc_pattern command.

Typical debug tasks include checking for correct values on:

® EDT control signals (edt_clock, edt_update, edt_bypass, edt_reset)
® Sensitized paths from:

o Input channel pins to the decompressor and from the decompressor to the scan
chains during shift. (K19)

o Scan chainsto the compactor and from the compactor to the output channel pins
during shift. (K22)

When you use the Drc_pattern option the gate simulation data for different proceduresin the
test procedure file display. For more information on the use of Drc_pattern reporting, refer to
“Debugging State Stability” in the Tessent Scan and ATPG User’s Manual.

In rare cases, you may need to see the distinct ssimulation values applied in every shift cycle. For
these special cases, you can force the tool to simulate every event specified in the test procedure
file by issuing the set_gate report command with the K19 or K22 argument while in setup
mode.

ﬂ Tip: Useset_gate report with the K19 or K22 argument only when necessary. Because
the tool hasto log simulation datafor all simulated setup and shift cycles, set_gate report
K19/K 22 reporting can slow EDT DRC run time and increase memory usage compared
to set_gate report Drc_pattern reporting.

The following two subsections provide detailed discussion of the K19 and K22 DRCs, with
debugging examples utilizing the Drc_pattern, K19 and K22 options to the set_gate _report
command.

“Understanding K19 Rule Violations’ on page 295
“Understanding K22 Rule Violations’ on page 305

294 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Understanding K19 Rule Violations

DRC K19 simulates the test_setup, load_unload, shift and capture procedures as defined in the
test procedure file. By default, this simulation is performed with constrained pins initialized to
their constrained values. To speed up simulation times, however, the rule simulates only asmall
number of shift cycles. If the first scan cell of each scan chain isloaded with the correct values,
then the EDT decompressor works properly and this rule check passes.

If the first scan cell of any scan chain isloaded with incorrect data, the K19 rule check fails. The
tool then automatically performsan initial diagnosisto determine where along the path from the
channel inputs to the core chain inputs the problem originated. Figure C-2 shows the data flow

through the decompressor and where in this flow the K19 rule check validates the signals.

Figure C-2. Order of Diagnostic Checks by the K19 DRC
Data Flow

06 ¢ @fjﬁw

=)/ -
. WS y =
§2] =4 oS =
al |&] 1=} ~
= %) @ I3
> |3 g EDT| <= . Core
58] o) g [%2]
£ = 3 logic 3 ®
ars |— a n% *

2 | [H H H

1: Core chain <index> first cell

2: Core chain <index> input

3: Core chain <index> input driver

4: EDT module chain <index> input (source)

5: Decompressor chain <index> output

6: Decompressor channel <index> input

7: EDT module channel <index> input

8: Channel <index> input internal node

9: Channel <index> input pin

Tessent TestKompress User's Manual, v2014.2 295

June 2014

Troubleshooting
Resolving DRC Issues

For example, if the K19 rule detected erroneous data at the output of the first scan cell (1) in
scan chain 2, the rule would check whether data applied to the core chain input (2) is correct. If
the datais correct at the core chain input, the tool would issue an error message similar to this:

Erroneous bit(s) detected at core chain 2 first cell
/cpu_i/option_reg_2/DFF1l/ (7021).

Data at core chain 2 input /cpu_i/edt_si2 (43) is correct.
Expected: 0011101011101001X
Simulated:01100110001110101

The error message reports the value the tool expected at the output of thefirst cell in scan chain
2 for each shift cycle. For comparison, the tool also lists the values that occurred during the
DRC’ s simulation of the circuitry. If the datais correct at the first scan cell (1) and at the core
chain inputs (2), the rule next checks the data at the outputs of the core chain input drivers (3).

Note
D The term, “core chain input drivers’ refersto any logic that drives the scan chain inputs.

Usually, the core chain input drivers are part of the EDT logic. However, if acircuit
designer inserts logic between the EDT logic and the core scan chain inputs, the drivers
might be outside the EDT module.

The signals at (3) should always be the same as the signals at the core chain inputs (2). The tool
checks that thisis so, however, because the connection between these two pointsis emulated
and not actually aphysical connection. Figure 6-4 and the explanation accompanying it detail
why the tool emulates this connection.

Note
D Dueto the tool’ s emulation of the connection between points (2) and (3), you cannot

obtain the gate names at these points by tracing between them with a*report_gates
-backward” or “report_gates -forward” command. However, reporting a gate that has an
emulated connection to another gate at this point will display the name and gate |D# of
the other gate; you can then issue report_gates for the other gate and continue the trace
from there.

If the data at the outputs of the core chain input drivers (3) is correct, the rule next checks the
chain input data at the outputs of the EDT module (4). For each scan chain, if the datais correct
at (4), but incorrect at the core chain input (2), the tool issues amessage similar to the following:

Erroneous bit(s) detected at core chain 1 input /tiny_i/scan_inl (11).
Data at EDT module chain 1 input (source) /edt_i/edt_bypass_logic_i/ix31/Y
(216) is correct.
Expected: 10011101011101001
Simulated:10110011000111010

In thismessage, “EDT module chain 1 input (source)” refersto the output of the EDT module
that drivesthe “core chain 1 input.” The word “source” indicates thisis the pattern source for
chain 1. Also, notice the gate name “/edt_i/edt_bypass logic i/ix31/Y” for the EDT module

296 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

chain 1 input. Because the tool simulates the flattened netlist and does not model the
hierarchical module pins, the tool reports the gate driving the EDT modul e outpui.

Note
D The K19 and K22 rules always report gates driving EDT modul e inputs or outputs.

Again, thisis because in the flattened netlist there is no specia gate that represents
module pins.

The K19 rule verifies the data at the EDT module chain inputs (4) only if the EDT module
hierarchy is preserved. If the netlist is flattened, or the EDT module name or pin names are
changed during synthesis, the tool will no longer be able to identify the EDT module and its
pins.

Tip: Preserving the EDT module during synthesis allows for better diagnostic messages
if the simulation-based DRCs (K19 and K22) fail during the Pattern Generation Phase.

The K19 rule continues comparing the simulated data to what is expected for all nine locations
shown in Figure C-2 until it finds a location where the simulated data matches the expected
data. The tool then issues an error message that describes where the problem first occurred, and
where the data was verified successfully.

This rule check not only reports erroneous data, but also reports unexpected X or Z values, as
well asinverted signals. Thisinformation can be very useful when you are debugging the
circuit.

Examples of some specific K19 problems, with suggestions for how to debug them, are detailed
in the following sections:

Incorrect Control Signals

Inverted Signals

Incorrect EDT Channel Signal Order
Incorrect Scan Chain Order

X Generated by EDT Decompressor
Using set_gate report K19

Incorrect Control Signals

Fixing incorrect valueson EDT control signals often resolves other K19 violations. Problems
with control signals may be detected by other K rules, so it isagood practice to check for these
in the transcript prior to the K19 failure(s) and fix them first. At minimum, the other K rule
failures may provide clues that help you solve the K19 issues.

If K19 detectsincorrect valueson an EDT control signal, the tool will issue amessage similar to
thisone for the EDT bypass signal (edt_bypass by default):

Tessent TestKompress User's Manual, v2014.2 297
June 2014

Troubleshooting
Resolving DRC Issues

1 EDT module control signals failed. (K19-1)

Inverted data detected at EDT module bypass /edt_bypass (37).
Expected: 0000000000000000000000
Simulated: 1111111111111111111111

Because the edt_bypass signal is a primary input, and the message indicates it is at a constant
incorrect value, it is reasonable to suspect that the load _unload or shift procedure in the test
procedure file is applying an incorrect value to this pin. The edt_bypass signal should be 0
during load_unload and shift (see Figure 6-2), so you could use the following command
sequence to check the pin’s value after DRC.

1. set_gate report drc_pattern load_unload
2. report_gates/edt_bypass

3. set_gate report drc_pattern shift

4. report_gates/edt_bypass

The following transcript excerpt shows an example of the use of this command sequence, along
with examples of procedures you would be examining for errors:

set_gate report drc_pattern load_unload

report gate /edt_bypass

// /edt_bypass primary_input
// edt_bypass O (0001) /cpu_bypass_logic_i/ix23/S0...

procedure load_unload =
scan_group grpl;
timeplate gen_tpl;
cycle =
force clear 0 ;
force edt_update 1;

timeplate gen_tpl = force edt_clock 0;
force pi 0; = & force edt_bypass 0;
measure_po 10; force scan_en 1;
pulse tclk 20 10; pulse tclk 0;
pulse edt_clock 20 10; pulse edt_clock;
period 40; end;

end; & apply shift 22;

end;

The values reported for the load_unload are okay, but in the first “apply shift” (shown in bold
font), edt_bypassis 1 when it should be 0. This points to the shift procedure as the source of the

problem.

298 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Y ou can use the following commands to confirm:

set_gate _report drc_pattern shift
report_gate /edt_bypass

// /edt_bypass primary_input
// edt_bypass O (111) /cpu_bypass_logic_i/ix23/S0...

procedure shift =
scan_group grpl;
timeplate gen_tpl;

cycle =

timeplate gen_tpl = force_sci;

force_pi 0; = &> force edt_bypass 1;

measure_po 10; force edt_update 0;

pulse tclk 20 10; measure_sco;

pulse edt_clock 20 10; pulse tclk;

period 40; pulse edt_clock;
end; end;

end;

The DRC simulation data for the shift procedure showsit isforcing the edt_bypass signal to the
wrong value (1 instead of 0). The remedy isto change the force statement to “force
edt_bypass0”.

Following is another example of the tool’ s K19 messaging—for an incorrect value on the EDT
update signal (highlighted in bold).

EDT update pin "edt_update" is not reset before pulse of EDT clock pin
"edt_clock" in shift procedure. (K18-1)
1 error in test procedures. (K18)

1 EDT module control signals failed. (K19-1)

Inverted data detected at EDT module update /edt_update (36).
Expected: 0000000000000000000000
Simulated: 1111111111111111111111

4 of 4 EDT decompressor chain outputs (bus
/cpu_edt_i/cpu_edt_decompressor_i/edt_scan_in) failed. (K19-2)

Erroneous bit(s) detected at EDT decompressor chain 1 output
/cpu_edt_i/cpu_edt_decompressor_1i/ix97/Y (282).

Data at EDT module channel inputs (signal /cpu_edt_i/edt_channels_in)
is correct.
Expected: 110101101111010100001X
Simulated: 0000000000000000000000

Notice that earlier in the transcript there is a K18 message that mentions the same control signal
and describes an error in the shift procedure. A glance at Figure 6-2 showsthe EDT update

Tessent TestKompress User's Manual, v2014.2 299
June 2014

Troubleshooting
Resolving DRC Issues

signal should be 1 during load_unload and O for shift. Y ou could now check the value of this
signal as follows (relevant procedure file excerpts are shown below the example commands):

set_gate _report drc_pattern shift

report_gate /edt_update

// /edt_update primary_input

// edt_update O (111) /cpu_bypass_logic_i/ix23/S0...

-
procedure shift =
scan_group grpl;
timeplate gen_tpl;
cycle =
timeplate gen_tpl = force_sci;
force pi 0; =@ &> force edt_update 1;
measure_po 10; measure_sco;
pulse tclk 20 10; pulse tclk;
pulse edt_clock 20 10; pulse edt_clock;
period 40; end;
end; end;

The output of the gate report for the shift procedure showsthe EDT update signal is 1 during
shift. The reason is an incorrect force statement in the shift procedure, shown in the procedure
excerpt below the example. Changing “force edt_update 1;” to “force edt_update 0;” in the shift
procedure would resolve these K18 and K19 violations.

Inverted Signals

Y ou can use inverting input pads to drive the EDT decompressor.

However, you must specify theinversion using the set_edt pins command. (Thisactually istrue
of any source of inversion added on the input side of the decompressor.) Without this
information, the decompressor will generate incorrect data and the K19 rule check will
transcript a message similar to this:

1 of 1 EDT module channel inputs (signal /cpu_edt_i/edt_channels_in)
failed. (K19-1)

Inverted data detected at EDT module channel 1 input /US1/Y (237).

Data at channel 1 input pin /edt_channels_inl (38) is correct.
Expected: 1000001011011000010000
Simulated: 0111110100100111101111

The occurrence message lists the name and ID of the gate where the inversion was detected
(point 6 in Figure C-2). It also lists the upstream gate where the data was correct (point 8 in
Figure C-2). To debug, trace back from point 6 looking for the source of the inversion. For
example:

report_gates /USL/Y

// /US1 inv02
// A I /edt_channels_inl

300 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

// Y O /cpu_edt_i/cpu_edt_decompressor_1i/ix199/A1
/cpu_edt_1i/cpu_edt_decompressor_1i/ix191/A1
/cpu_edt_i/cpu_edt_decompressor_1i/ix183/A1

b

// /edt_channels_inl primary_input
// edt_channels_inl O /UsS1/Y

The trace shows there are no gates between the primary input where the data is correct and the

gate (an inverter) where the inversion was detected, so the latter is the source of this K19
violation. Y ou can use the -Inv switch with the set_edt_pins command to solve the problem.

report_edt_pins

//

// Pin description Pin name Inversion
/] ——mm—mm———————— ———————= ——————
// Clock edt_clock -

// Update edt_update -

// Scan channel 1 input edt_channels_inl -
/" " " output edt_channels_outl -

//

set_edt_pins input_channel 1 -inv
report edt pins

//

// Pin description Pin name Inversion
/] ——mmmm———————— ——————— ——mm
// Clock edt_clock -

// Update edt_update -

// Scan channel 1 input edt_channels_inl inv

// " " " output edt_channels outl -

//

Incorrect EDT Channel Signal Order

If you manually connect the EDT module to the core scan chains, it is easy to connect signalsin
the wrong order. If the K19 rule check detects incorrectly ordered signals at any point, it issues
messages similar to the following; notice the statement that signals appear to be connected in

the wrong order:

2 of 2 EDT module channel inputs (bus /edt_i/edt_channels_in) failed.

(K19-1)

Erroneous bit(s) detected at EDT module channel 1 input
/edt_channels_in2 (9).

Data at channel 1 input pin /edt_channels_inl (8) is correct.
Expected: 010000000
Simulated: 000000000

Erroneous bit(s) detected at EDT module channel 2 input
/edt_channels_inl (8).

Data at channel 2 input pin /edt_channels_in2 (9) is correct.
Expected: 000000000
Simulated: 010000000

2 signals appear to be connected in the wrong order at EDT module
channel inputs (bus /edt_i/edt_channels_in). (K19-2)

Tessent TestKompress User’'s Manual, v2014.2
June 2014

301

Troubleshooting
Resolving DRC Issues

Data at EDT module channel 2 input /edt_channels_inl (8) match those
expected at EDT module channel 1 input /edt_channels_in2 (9).
Data at EDT module channel 1 input /edt_channels_in2 (9) match those
expected at EDT module channel 2 input /edt_channels_inl (8).

DRC reports this as two K19 occurrences, but the same signals are mentioned in both
occurrence messages. Notice also that the Expected and Simulated values are the same, but
reversed for each signal, a corroborating clue. The fix isto reconnect the signals in the correct
order in the netlist.

Incorrect Scan Chain Order

The tool enables you to add and delete scan chain definitions with the commands,
add_scan_chains and delete_scan_chains. If you use these commands, it is mandatory that you
keep the scan chains in exactly the same order in which they are connected to the EDT module.

For example, the input of the scan chain added first must be connected to the least significant bit
of the EDT module chain input port (point 4 in Figure C-2). Deleting a scan chain with the
delete_scan_chains command, then adding it back again with add_scan chains, will change the
defined order of the scan chains, resulting in K19 violations. If scan chains are not added in the
right order, the K19 rule check will issue a message similar to the following:

2 signals appear to be connected in the wrong order at core chain
inputs. Check if scan chains were added in the wrong order. (K19-2)
Data at core chain 6 input /cpu_i/edt_si6 (39)

match those expected at core chain 5 input /cpu_i/edt_si5 (40).
Data at core chain 5 input /cpu_i/edt_si5 (40)

match those expected at core chain 6 input /cpu_i/edt_si6 (39).

To check if scan chains were added in the wrong order, issue the report_scan_chains command
and compare the displayed order with the order in the dofile the tool wrote out when the EDT
logic was created. For example:

report_scan_chains

chain = chainl group = grpl

input = /cpu_i/scan_inl output = /cpu_i/scan_outl length = unknown
chain = chain2 group = grpl

input = /cpu_i/scan_in2 output = /cpu_i/scan_out2 length = unknown
chain = chainé group = grpl

input = /cpu_i/scan_in6 output = /cpu_i/scan_out6 length = unknown
chain = chain5b group = grpl

input = /cpu_i/scan_in5 output = /cpu_i/scan_out5 length = unknown

shows chains 5 and 6 reversed from the order in this excerpt of the original tool-generated
dofile:

//

// Define the instance names of the decompressor, compactor, and the

// container module which instantiates the decompressor and compactor.

// Locating those instances in the design allows DRC to provide more debug

302 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

// information in the event of a violation.

// If multiple instances exist with the same name, subtitute the instance
// name of the container module with the instance’s hierarchical path

// name.

set_edt_instances -edt_logic_top test_design_edt_i
set_edt_instances -decompressor
set_edt_instances -compactor

add_scan_groups

grpl testproc

test_design_edt_decompressor_i
test_design_edt_compactor_i

add_scan_chains -internal chainl grpl /cpu_i/scan_inl /cpu_i/scan_outl
add_scan_chains -internal chain2 grpl /cpu_i/scan_in2 /cpu_1i/scan_out2
add_scan_chains -internal chainb grpl /cpu_i/scan_inb5 /cpu_i/scan_outb
add_scan_chains -internal chain6 grpl /cpu_i/scan_in6 /cpu_i/scan_out6

The easiest way to solve this problem is either to delete all scan chains and add them in the right
order:

delete_scan_chains -all
add_scan_chains -internal chainl grpl /cpu_i/scan_inl /cpu_i/scan_outl
add_scan_chains -internal chain2 grp1 /cpu_i/scan_in2 /cpu_i/scan_out2

édd_scan_chains -internal chain5 grpl /cpu_i/scan_in5 /cpu_i/scan_out5
add_scan_chains -internal chain6 grpl /cpu_i/scan_in6 /cpu_i/scan_out6

or exit thetool, correct the order of add_scan_chains commands in the dofile and start the tool
with the corrected dofile.

X Generated by EDT Decompressor

Xs should never be applied to the scan chain inputs. If this occurs, the K19 rule check issues a
message similar to this:

X detected at EDT module chain 1 input (source)
/edt_i/edt_bypass_logic_1i/U86/Z (3303).

Data at EDT decompressor chain 1 output
/edt_i/edt_decompressor_1i/U83/Z (2727) is correct.

Expected: 10100010000000010001
Simulated: X0X000X00000000X000X

Provided the EDT module hierarchy is preserved, the message describes the origin of the X
signals. The preceding message, for example, indicates the EDT bypass |logic generates X
signals, whilethe EDT decompressor works properly.

To debug these problems, check the following:

® Arethe core chain inputs correctly connected to the EDT module chain input port?
Floating core chain inputs could lead to an X.

® Arethe channel inputs correctly connected to the EDT module channel input ports?
Floating EDT module channel inputs could lead to an X.

Tessent TestKompress User's Manual, v2014.2 303

June 2014

Troubleshooting
Resolving DRC Issues

* AretheEDT control signals (edt_clock, edt_update and edt_bypass by default) correctly
connected to the EDT module? If the EDT decompressor is not reset properly, X signals
might be generated.

* |sthe EDT update signal (edt_update by default) asserted in the load _unload procedure
so that the decompressor is reset? If the decompressor is not reset properly, X signals
might be generated.

® |sthe EDT bypasssignal (edt_bypass by default) forced to O in the shift procedure? If
the edt_bypass signal isnot 0, X signals from un-initialized scan chains might be
switched to the inputs of the core chains.

* |f the EDT control signals are generated on chip (by means of a TAP controller, for
example), are they forced to their proper values so the decompressor isreset in the
load_unload procedure?

Y ou can report the K19 simulation results for gates of interest by issuing “set_gate _report k19”
in setup system mode, then using “report_gates’ on the gates after the K19 rule check fails. You
can also use an HDL simulator like Model Sim. In order to do that, ignore failing K19 DRCs by
issuing a“set_drc_handling k19 ignore” command. Next, generate three random patternsin
analysis system mode and save the patterns as serial Verilog patterns. Then simulate the circuit
with an HDL simulator and analyze the signals of interest.

Using set_gate report K19

If you issue aset_gate report command with the K19 argument prior to DRC, you can use
report_gates to view the simulated values for the entire sequence of eventsin the test procedure
filefor any K19-simulated gate. The K19 argument +-also has several optionsthat enable you to
[imit the content of the displayed data.

ﬂ Tip: Useset_gate report with the K19 argument only when necessary. Because the tool
has to log simulation data for all smulated setup and shift cycles, set_gate _report K19
reporting can slow EDT DRC run time and increase memory usage compared to
set_gate report Drc_pattern reporting.

The following shows how you might report on the simulated values for the “ core chain 2 first
cell” mentioned in the first error message example of this section (see “Understanding K19
Rule Violations” on page 295):

set_gate report k19

// Warning: Data will be accessible after running DRC.
set_system_mode analysis

Erroneous bits detected at core chain 2 first cell

/cpu_i/option_reg_2/DFF1l/ (7021).
Data at core chain 2 input /cpu_i/edt_si2 (43) is correct.

304 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Expected: 0011101011101001X
Simulated:01100110001110101

report_gates 7021

// /cpu_i/option_reg 2/DFF1 (7021) DFF
// "S" I 50-

// "R" I 46-

// CLK I 1-/clk

// "DO" I 1774-

// "ouTrT" O 52- 53-

//

// Proc: ts 1d u sh 1 sh 2 sh 3 sh 4 sh 5 sh 6... cap
/] —mmm— mm mmmm —mmm —m e —m e —m e — e -—-
// Time: i 234 123 123 123 123 123 123... o o
// n0O 0000 0000 0000 0000 0000 0000 0000... f£Xf
[/ —==== m= mmmm —mmm —mmm —mmm —mmm —m e ——— -—-
// Sim: XX XXXX XX00 0001 0011 0010 1110 1111... XXX
// Emu: -- ---- ---0 ---0 ---1 ---1 ---1 ---0... ---
// Mism: * * * *

// Monitor: core chain 1 first cell.

//

// Inputs:

// S 00 0000 0000 0000 0000 0000 0000 0000... OXO
// R 00 0000 0000 0000 0000 0000 0000 0000... 0OXO
// CLK X0 0000 0010 0010 0010 0010 0010 0010... 0OXO

// DO XX XXXX XX00 0001 0011 0010 1110 1111... XXX

Y ou can see from this report the effect each event in each shift cycle had on the gate’ svalue
during simulation. The time numbers (read vertically) indicate the relative time events occurred
within each cycle, as determined from the procedurefile. If the gateisused by DRC asa
reference point in its automated analysis of K19 mismatches, the report lists the value the tool
expected at the end of each cycle and whether it matched the smulated value. The last line
reminds you the gate isamonitor gate (areference point in its automated analysis) and tellsyou
its location in the data path. These monitor points correspond to the eight pointsillustrated in
Figure C-2.

Understanding K22 Rule Violations

Like DRC K19, the K22 rule check simulates the test_setup, load_unload and shift procedures,
as defined in the test procedure file. But the K22 rule check performs more simulations than
K19; one simulation in non-masking mode and a number of simulationsin masking mode. If the
correct values are shifted out of the channel outputs in both modes, then the EDT compactor
works properly and this rule check passes.

If erroneous datais observed at any channel output, either in non-masking or masking mode, the
K22 rule check fails. The tool then automatically performs an initial diagnosisto determine
where along the path from the core scan chains to the channel outputs the problem originated.
Figure C-3 shows the data flow through the compactor and where in this flow the K22 rule
check validates the signals.

Tessent TestKompress User's Manual, v2014.2 305
June 2014

Troubleshooting
Resolving DRC Issues

Figure C-3. Order of Diagnostic Checks by the K22 DRC

Data Flow .
2 5 6
~+—{HH1 D H
' [
3 T g 2
1 H H H] s S g =
° " S E} 0 (@)
Core N2 EDT =) o =
° " e .) o I
. n 8 logic @ = S
5 =3 E &
> s o
on oM S
0000 D 2
1 4

1: Core chain <index> output

2: EDT module chain <index> output (sink)
3: EDT compactor channel <index> output
4: EDT module channel <index> output

5: Channel <index> output internal node

6: Channel <index> output pin

For example, if the K22 rule detected erroneous data at the channel outputs (6), the tool would
begin asearch for the origin of the problem. First, it checksif the core chain outputs (1) have the
correct values. If the data at (1) is correct, the tool next checks the data at the inputs of the EDT
module (2). If the simulated data does not match the expected data here, the tool stops the
diagnosis and issues a message similar to the following:

Error:Non-masking mode: 1 of 8 EDT module chain outputs (sink)

(bus /edt_i/edt_scan_out) failed. (K22-1)

Erroneous bit(s) detected at EDT module chain 3 output (sink)
/cpu_i/stack2_reg_8/Q (1516).

Data at core chain 3 output /cpu_i/edt_so3 (7233) is correct.

Check if core chain 3 output is properly connected to EDT module
chain 3 output (sink).
Expected: 111101001101100100000000001000100000
Simulated: 110100100101101000101011010111001111

Error:Masking mode (mask 3): 1 of 8 EDT module chain outputs (sink)
(bus /edt_i/edt_scan_out) failed. (K22-2)
Erroneous bit(s) detected at EDT module chain 3 output (sink)
/cpu_i/stack2_reg_8/Q (1516).
Data at core chain 3 output /cpu_i/edt_so3 (7233) is correct.
Check if core chain 3 output is properly connected to EDT module
chain 3 output (sink).

306 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Expected: 110001001011000000000000000000110001
Simulated: 00011000111010000000001111001101100

Inthismessage, “EDT module chain 3 output (sink)” refersto the input of the EDT module that
Is driven by the “core chain 3 output.” The word “sink” indicates thisis the sink for the
responses captured in chain 3. Also, notice the gate name “/cpu_i/stack2 reg_8/Q” for the EDT
module chain 3 output. Because the tool simulates the flattened netlist and does not model
hierarchical module pins, the tool reports the gate driving the EDT modul€’ s input.

Note
The K19 and K22 rules always report_gates driving EDT module inputs or outputs. This

is because in the flattened netlist there is no special gate that represents module pins.

The message has two parts; the first part reporting problems in non-masking mode, the second
reporting problems in masking mode. The preceding example tells you the masking mode fails
when the mask is set to 3; that is, when the third core chain is selected for observation.

Note
D In masking mode, only one core chain per compactor group is observed at the channel

output for the group. In non-masking mode, the output from all core chainsin a
compactor group are compacted and observed at the channel output for the group.

Given the error message, it is easy to debug the problem. Check the connection between the
core chain output (1 in Figure C-3) and the EDT module, making sure any logic in between is
controlled correctly. Usualy, there is no logic between the core chain outputs and the EDT
module.

The K22 rule verifies data at the EDT module chain outputs (2) only if the EDT module
hierarchy is preserved. If the netlist is flattened or the EDT modul€e’ s name or pin names are
changed during synthesis, the tool will no longer be able to identify the EDT module and its
pins.

Note
Preserving the EDT module during synthesis allows for better diagnostic messagesif the

simulation-based DRCs (K19 and K22) fail during the Pattern Generation Phase.

If the data at the EDT module chain outputs (2) is correct, the K22 rule continues comparing the
simulated data to the expected data for the EDT compactor outputs (3), the EDT module
channel outputs(4), and so on until the tool identifies the source of the problem. This approach
is analogous to that used for the K19 rule checks described in the section, “Understanding K19
Rule Violations” on page 295.

For guidance on methods of debugging incorrect or inverted signals, X signals, and signals or
scan chains in the wrong order, the discussion of these topics in the section, “Understanding

Tessent TestKompress User's Manual, v2014.2 307
June 2014

Troubleshooting
Resolving DRC Issues

K19 Rule Violations,” is good background information for K22 rule violations. Examples of
some specific K19 problems, with example debugging steps, are detailed in these sections:

Incorrect Control Signals

Inverted Signals

Incorrect EDT Channel Signal Order
Incorrect Scan Chain Order

X Generated by EDT Decompressor

Some specific K22 problems, with example debugging steps, are detailed in the following
sections:

Inverted Signals

Incorrect Scan Chain Order
Masking Problems

Using set_gate report K22

Inverted Signals

Y ou can use inverting pads on EDT channel outputs.

However, you must specify theinversion using the set_edt_pins command. (Thisactually istrue
of any source of inversion added on the output side of the compactor.) Without thisinformation,
the compactor will generate incorrect data and the K22 rule check will transcript a message
similar to this (for a design with one scan channel and four core scan chains):

Non-masking mode: 1 of 1 channel output pins failed. (K22-1)
Inverted data detected at channel 1 output pin /edt_channels_outl (564).
Data at EDT module channel 1 output /cpu_edt_i/edt_bypass_logic_1/ix23/Y
(458) is correct.
Expected: X000001101110000100111
Simulated: X111110010001111011000

Masking mode (mask 1): 1 of 1 channel output pins failed. (K22-2)
Inverted data detected at channel 1 output pin /edt_channels_outl (564).
Data at EDT module channel 1 output /cpu_edt_i/edt_bypass_logic_1i/ix23/Y

(458) is correct.

Expected: X111101001010010011001

Simulated: X000010110101101100110

Masking mode (mask 2): 1 of 1 channel output pins failed. (K22-3)
Inverted data detected at channel 1 output pin /edt_channels_outl (564).
Data at EDT module channel 1 output /cpu_edt_i/edt_bypass_logic_1i/ix23/Y

(458) is correct.

Expected: X111111110000000010010

Simulated: X000000001111111101101

Masking mode (mask 3): 1 of 1 channel output pins failed. (K22-4)
Inverted data detected at channel 1 output pin /edt_channels_outl (564).
Data at EDT module channel 1 output /cpu_edt_i/edt_bypass_logic_1i/ix23/Y
(458) is correct.
Expected: X010001010000110011101

308

Tessent TestKompress User’'s Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

Simulated: X101110101111001100010

Masking mode (mask 4): 1 of 1 channel output pins failed. (K22-5)
Inverted data detected at channel 1 output pin /edt_channels_outl (564).
Data at EDT module channel 1 output /cpu_edt_i/edt_bypass_logic_1i/ix23/Y

(458) is correct.

Expected: X110101011110011101110

Simulated: X001010100001100010001

Notice the separate occurrence messages are identifying the same problem.

The occurrence messages list the name and 1D of the gate where the inversion was detected
(point 6 in Figure C-3). It also lists the upstream gate where the data was correct (point 4 in
Figure C-3). To debug, simply trace back from point 6 looking for the source of the inversion.
For example:

report_gates /edt_channels_outl

// /edt_channels_outl primary_output

// edt_channels_outl I /ix77/Y

b

// /ix77 1inv02

// A I /cpu_edt_i/edt_bypass_logic_i/ix23/Y
// Y O /edt_channels_outl

Thetrace showsthere are no gates between the primary output where the inversion was detected
and the gate (an inverter) where the data is correct, so the latter is the source of this K22
violation. Y ou can use the -Inv switch with the set_edt_pins command to solve the problem.

report_edt_pins

//

// Pin description Pin name Inversion
/] ——————————————— ———————— ———
// Clock edt_clock -

// Update edt_update -

// Scan channel 1 input edt_channels_inl -
/)" " " output edt_channels_outl -

//

set_edt_pins output_channel 1 -inv
report edt pins

//
// Pin description Pin name Inversion
/] ——mm——————————— ———————
// Clock edt_clock -
// Update edt_update -
// Scan channel 1 input edt_channels_inl -
/)" " " output edt_channels_outl inv
//
Tessent TestKompress User’'s Manual, v2014.2 309

June 2014

Troubleshooting
Resolving DRC Issues

Incorrect Scan Chain Order

Y ou can add and delete scan chain definitions with the commands add_scan_chains and
delete_scan_chains. If you use these commands, it is mandatory that you keep the scan chainsin
exactly the same order in which they are connected to the EDT module.

For example, the output of the scan chain added first must be connected to the least significant
bit of the EDT module chain output port (point 2 in Figure C-3). Deleting a scan chain with the
delete_scan_chains command, then adding it again with add_scan_chains, will change the
defined order of the scan chains, resulting in K22 violations. If scan chains are not added in the
right order, the K22 rule check will issue a message similar to the following:

4 signals appear to be connected in the wrong order at EDT module chain

outputs (sink) (bus/cpu_edt_i/edt_so). (K22-8)

Data at EDT module chain 2 output (sink) /cpu_i/datai/uul/Y (254)
match those expected at EDT module chain 1 output (sink)
/cpu_i/datao/uul/Y (256).

Data at EDT module chain 3 output (sink) /cpu_i/datail/uul/Y (253)
match those expected at EDT module chain 2 output (sink)
/cpu_i/datai/uul/Y (254).

Data at EDT module chain 4 output (sink) /cpu_i/addr_0/uul/Y (245)
match those expected at EDT module chain 3 output (sink)
/cpu_i/datail/uul/Y (253).

Data at EDT module chain 1 output (sink) /cpu_i/datao/uul/Y (256)
match those expected at EDT module chain 4 output (sink)
/cpu_i/addr_0/uul/Y (245).

To check if scan chains were added in the wrong order, issue the report_scan_chains command
and compare the displayed order with the order in the dofile the tool wrote out when the EDT
logic was created. For example:

report_scan_chains

chain = chain2 group = grpl

input = /cpu_i/scan_in2 output = /cpu_i/scan_out2 length = unknown
chain = chain3 group = grpl

input = /cpu_i/scan_in3 output = /cpu_i/scan_out3 length = unknown
chain = chain4 group = grpl

input = /cpu_i/scan_in4 output = /cpu_i/scan_outd length = unknown
chain = chainl group = grpl

input = /cpu_i/scan_inl output = /cpu_i/scan_outl length = unknown

shows chainl added last instead of first, chain2 added first instead of second, and so on; not the
order in this excerpt of the original tool-generated dofile:

//

// Define the instance names of the decompressor, compactor, and the

// container module which instantiates the decompressor and compactor.

// Locating those instances in the design allows DRC to provide more debug
// information in the event of a violation.

// If multiple instances exist with the same name, subtitute the instance
// name of the container module with the instance’s hierarchical path

// name.

310 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Resolving DRC Issues

set_edt_instances -edt_logic_top

set_edt_instances -decompressor
set_edt_instances -compactor

add_scan_groups

grpl testproc

test_.

design_edt_i

test_design_edt_decompressor_i
test_design_edt_compactor_i

add_scan_chains -internal chainl grpl /cpu_i/scan_inl /cpu_i/scan_outl
add_scan_chains -internal chain2 grpl /cpu_i/scan_in2 /cpu_1i/scan_out2
add_scan_chains -internal chain3 grpl /cpu_i/scan_in3 /cpu_i/scan_out3
add_scan_chains -internal chain4 grpl /cpu_i/scan_ind /cpu_i/scan_out4d

The easiest way to solve this problem is either to delete all scan chains and add them in the right
order:

delete_scan_chains -all

add_scan_chains -internal chainl grpl /cpu_i/scan_inl /cpu_i/scan_outl
add_scan_chains -internal chain2 grp1 /cpu_i/scan_in2 /cpu_i/scan_out2
add_scan_chains -internal chain3 grpl /cpu_i/scan_in3 /cpu_i/scan_out3
add_scan_chains -internal chain4 grpl /cpu_i/scan_in4 /cpu_i/scan_out4

or exit thetool, correct the order of add_scan_chains commands in the dofile and start the tool
with the corrected dofile.

Note
When the tool is set up to treat K19 violations as errors, the invocation default, incorrect

scan chain order will be detected by the K19 rule check, since the tool performs K19
checks before K22. (See “Incorrect Scan Chain Order” in the K19 section for example
tool messages). In this case, the tool will stop before issuing any K22 messagesrelated to
the incorrect order.

O

If the issue was actually one of incorrect signal order only at the outputs of the internal
scan chains and the inputs were in the correct order, you would get K22 messages similar
to the preceding and no K19 messages about scan chains being “added in the wrong
order.”

Masking Problems

Most masking problems are caused by disturbances in the operation of the mask hold and shift
registers.

One such problem results in the following message for the decoded masking signals:

Non-masking mode: 4 of 4 EDT decoded masking signals failed.
Constant X detected at EDT decoded masking signal 1
/cpu_edt_i/cpu_edt_compactor_i/decoderl/ix63/Y (343).
Expected: 1111111111111111111111
Simulated: XXXXXXXXXXXXXXXXXXXXXX

(K22-1)

Tessent TestKompress User’'s Manual, v2014.2
June 2014

311

Troubleshooting
Resolving DRC Issues

Y ou can usualy find the source of masking problems by analyzing the mask hold and shift
registers. In this example, you could begin by tracing back to find the source of the Xs:

set_gate level primitive
set_gate_report drc_pattern state_stability
report_gates /cpu_edt_i/cpu_edt_compactor_i/decoderl/ix63/Y

// /cpu_edt_i/cpu_edt_compactor_i/decoderl/ix63 (343) NAND

// (ts) (1d) (shift) (cap) (stbl)

// "I0" I (X) (XXX) (XXX~X) (XXX) (X) 294-

// BO I (X) (XXX) (XXX~X) (XXX) (X) 291- ../decoderl/ix107/Y
// Y (0] (X) (XXX) (XXX~X) (XXX) (X) 419- ../ix41/Al

b

// /cpu_edt_i/cpu_edt_compactor_i/decoderl/ix63 (294) OR

// (ts) (1d) (shift) (cap) (stbl)

// A0 I (X) (XXX) (XXX~X) (XXX) (X) 208- ../reg_masks_hold_reg_0_/Q
// Al I (X) (XXX) (XXX~X) (XXX) (X) 214- ../reg_masks_hold_reg_1_/Q
// "ouT" O (X) (XXX) (XXX~X) (XXX) (X) 343-

b

// /cpu_edt_i/cpu_edt_compactor_i/reg_masks_hold_reg_0_ (208) BUF
// (ts) (1d) (shift) (cap) (stbl)

// "I0" I (X) (XXX) (XXX~X) (XXX) (X) 538-

// 0 (0] (X) (XXX) (XXX~X) (XXX) (X) 235- ../ix102/A0

// 292- ../decoderl/ix57/A0
// 293- ../decoderl/ix113/A
// 346- ../decoderl/ix61/A0
// 294- ../decoderl/ix63/A0
b

// /cpu_edt_1i/cpu_edt_compactor_i/reg _masks_hold_reg_0_ (538) DFF
// (ts) (1d) (shift) (cap) (stbl)

// " I (0)(000)(000~0) (000) (0) 48-

// "R" I (0) (000) (000~0) (000) (0) 150-

// CLK I (0)(000) (000~0) (000) (0) 47-

// D I (X) (XXX) (XXX~X) (XXX) (X) 235- ../ix102/Y

// "ouT" O (X) (XXX) (XXX~X) (XXX) (X) 208- 209-

The trace shows the clock for the mask hold register isinactive. Trace back on the clock to find
out why:

report_gates 47

// /cpu_edt_i (47) TIEO

// (ts) (1d) (shift) (cap) (stbl)

// "OouT" O (0)(000) (000~0) (000) (0) 541-../reg_masks_hold _reg 1_/CLK
// 540-../reg_masks_shift_reg 1_/CLK
// 539-../reg_masks_shift_reg 0_/CLK
// 538-../reg_masks_hold_reg_0_/CLK
// 537 ../reg_masks_shift_reg 2_/CLK
// 536-../reg_masks_hold_reg_ 2_/CLK

312 Tessent TestKompress User's Manual, v2014.2

June 2014

Troubleshooting
Resolving DRC Issues

The information for the clock source showsit istied. Asthe EDT clock should be connected to
the hold register, you could next report on the EDT clock primary input at the compactor and
check for a connection to the hold register:

report_gates /cpu_edt_i/cpu_edt_compactor_i/edt_clock

Based on the preceding traces, you would expect to find that the EDT clock was not connected
to the hold register. Because an inactive clock signal to the mask hold register would cause
masking to fail, check the transcript for corroborating messages that indicate multiple similar
masking failures. These DRC messages, which preceded the K22 message in this example,
provide such aclue:

Pipeline identification for channel output pins failed. (K20-1)
Non-masking mode: Failed to identify pipeline stage(s) at channel 1 output
pin /edt_channels_outl (563).

Masking mode (mask 1, chainl): Failed to identify pipeline stage(s) at
channel 1 output pin /edt_channels_outl (563).

Masking mode (mask 2, chain2): Failed to identify pipeline stage(s) at
channel 1 output pin /edt_channels_outl (563).

Masking mode (mask 3, chain3): Failed to identify pipeline stage(s) at
channel 1 output pin /edt_channels_outl (563).

Masking mode (mask 4, chaind): Failed to identify pipeline stage(s) at

channel 1 output pin /edt_channels_outl (563).

Error during identification of pipeline stages. (K20)
Rule K21 (lockup cells) not performed for the compactor side since
pipeline identification failed.

Notice the same failure was reported in masking mode for all scan chains. To fix this particular
problem, you would need to connect the EDT clock to the mask hold register in the netlist.

Using set_gate report K22

The set_gate_report command has a K22 argument.

ThisK22 argument is similar to the K19 argument described in “Using set_gate report K19” on
page 304. If you issue the command prior to DRC, you can use “report_gates’ to view the
simulated values for the entire sequence of eventsin the test procedure file for any K22-
simulated gate. Like the K19 argument, the K22 argument also has several options that enable
you to limit the content of the displayed data.

ﬂ Tip: Useset_gate report with the K22 argument only when necessary. Because the tool
has to log simulation data for all smulated setup and shift cycles, “set_gate report k22"
reporting can slow EDT DRC run time and increase memory usage compared to
“set_gate report drc_pattern” reporting.

Tessent TestKompress User's Manual, v2014.2 313
June 2014

Troubleshooting
Miscellaneous

Miscellaneous

This section contains the following troubleshooting procedures:
® |ncorrect Referencesin Synthesized Netlist
® Limiting Observable Xsfor a Compact Pattern Set
* Applying Uncompressable Patterns Thru Bypass Mode
® |f CompressionisLess Than Expected
® |f Test Coverageis Less Than Expected
® |f thereare EDT aborted faults
® Interna Scan Chain PinsIncorrectly Shared with Functional Pins

® Masking Broken Scan Chainsinthe EDT Logic

Incorrect References in Synthesized Netlist

Use the information in this section to troubleshoot problems that cause Design Compiler to
insert ** TSGEN** references in a synthesized netlist.

Run Design Compiler to synthesize the netlist and verify that no errors occurred and check that
tri-state buffers were correctly synthesized. For certain technologies, Design Compiler isunable
to correctly synthesize tri-state buffers and inserts an incorrect reference to “** TSGEN**”
instead. Y ou can run the UNIX grep command to check for TSGEN:

grep TSGEN created_edt_bs_top_gate.v

If TSGEN isfound, as shown in bold font in the following example Verilog code,

module tri_enable_high (dout, oe, pin);
input dout, oe;
output pin;

wire pin_tri_enable;

tri pin_wire;

assign pin = pin_wire;

*¥**TSGEN** pin_tri (.\function (dout),
.three_state(pin_tri_enable), .\output (pin_wire));
N1L Ul6 (.Z(pin_tri_enable), .A(oce));
endmodule

you need to change the line of code that contains the reference to a correct instantiation of atri-
state buffer. The next example corrects the previous instantiation to the LS| 1cbg10p technology
(shown in bold font):

module tri_enable_high (dout, oe, pin);
input dout, oe;
output pin;

wire pin_tri_enable;

314 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Miscellaneous

tri pin_wire;
assign pin = pin_wire;
BTS4A pin tri (.A (dout), .E (pin tri_enable), .Z
(pin_wire));
N1A Ul6 (.Z(pin_tri_enable), .A(oce));
endmodule

Limiting Observable Xs for a Compact Pattern Set

EDT can handle Xs, but you may want to limit them in order to enhance compression. To
achieve a compact pattern set (and decrease runtime as well), ensure the circuit has few, or no,
X generators that are observable on the scan chains. For example, if you bypass a RAM that is
tested by memory BIST, X sources are reduced because the RAM will no longer be an X
generator in analysis mode.

If no Xs are captured on the scan chains, usually no fault effects are lost due to the compactors
and the tool does not have to generate patterns that use scan chain output masking. For circuits
with no Xs observable on the scan chains, the effective compression is usually much higher
(everything else being equal) and the number of patternsis only slightly more than what ATPG
generates without EDT. DRC'’ srule E5 identifies sources of observable Xs.

One clue that you probably have many observable Xsisusually apparent in the transcript for an
EDT pattern generation run. With few or no observable Xs, the number of effective patternsin
each simulation pass without scan chain masking will (ideally) be 64. Numbers significantly
lower can indicate that Xs are reducing test effectiveness. Thisis confirmed if the number of
effective patterns rises significantly when the tool uses masking to block the observable Xs.

Applying Uncompressable Patterns Thru Bypass Mode

Occasionally, the tool will generate an effective pattern that cannot be compressed using EDT
technology. Although it isarare occurrence, if many faults generate such patterns, it can have
an impact on test coverage. Decreasing the number of scan chains usually remedies the
problem. Alternatively, you can bypass the EDT logic, which reconfigures the scan chains into
fewer, longer scan chains. This requires an uncompressed ATPG run on the remaining faults.

Note
Y ou can use bypass mode to apply uncompressed patterns. Y ou can also use bypass mode

for system debugging purposes.

If Compression is Less Than Expected

If you find effective compression is much less than you targeted, taking steps to remedy or
reduce the following should improve the compression:

® Many observable Xs—EDT can handle observable Xs but their occurrence requires the
tool to use masking patterns. Masking patterns observe fewer faults than non-masking
patterns, so more of them are required. More patterns lowers effective compression.

Tessent TestKompress User's Manual, v2014.2 315
June 2014

Troubleshooting
Miscellaneous

If the session transcript shows all patterns are non-masking, then observable Xs are not
the cause of the lower than expected compression. If the tool generated both masking
and non-masking patterns and the percentage of masking patterns exceeds 25% of the
total, then there are probably many observable Xs. To find them, look for E5 DRC
messages. Y ou activate E5 messages by issuing a“set_drc_handling €5 note” command.

Note

D If there are many observable Xs, you will probably see a much higher runtime compared
to uncompressed ATPG. Y ou will probably also see a much lower number of effective
patterns reported in the transcript when compressed ATPG is not using scan chain
masking, compared to when the tool is using masking.

The Chapter 8 section, “Resolving X Blocking with Scan Chain Masking,” describes
masking patterns. It also shows how the tool reports their use in the session transcript,
and illustrates how masked patterns appear in an ASCI| pattern file. See also “Limiting
Observable Xsfor a Compact Pattern Set” earlier in this chapter.

* EDT Aborted Faults—For information about these types of faults, refer to “If there are
EDT aborted faults” in the next section.

* |If thereare no EDT aborted faults, try a more aggressive compression configuration by
increasing the number of scan chains.
If Test Coverage is Less Than Expected

If you find test coverage is much less than you expected, first compare it to the test coverage
obtainable without EDT. If the test coverage with EDT isless than you obtain with
uncompressed ATPG, the following sections list steps you can take to raise it to the same level
as uncompressed ATPG:

If there are EDT aborted faults

When the tool generates an effective fault test, but is unable to compress the pattern, the fault is
classified asan EDT aborted fault.

A warning isissued at the end of the run for EDT aborted faults and reports the resultant |oss of
coverage. Y ou can also obtain this information by issuing the report_aborted_faults command
and looking for the “edt” class of aborted faults. Each of the following increases the probability
of EDT aborted faults:

* Relatively aggressive compression (large chain-to-channel ratio)
® Large number of ATPG constraints
* Relatively small design

If the number of undetected faultsis large enough to cause arelevant decrease of test coverage,
try re-inserting a fewer number of scan chains.

316 Tessent TestKompress User's Manual, v2014.2
June 2014

Troubleshooting
Miscellaneous

Internal Scan Chain Pins Incorrectly Shared with Functional Pins

Relatively low test coverage can indicate internal scan chain pins are shared with functional
pins. These pins must not be shared because the internal scan chain pins are connected to the
EDT logic and not to the top level. Also, the tool constrains internal scan chain input pinsto X,
and masks internal scan chain output pins. This has minimal impact on test coverage only if
these are dedicated pins. By default, DRC issues awarning if scan chain pins are not dedicated
pins.

Be sure none of the internal scan chain input or output pins are shared with functional pins.
Only scan channel pins may be shared with functional pins. Refer to “ Scan Chain Pins” on
page 42 for additional information.

Masking Broken Scan Chains in the EDT Logic

You can set up the EDT logic to mask the load, capture, and/or unload values on specified scan
chains by inserting custom logic between the scan chain outputs and the compactor. The custom
logic alows you to either feed the desired circuit response (0/1) to the compactor or tie the scan
chain output to an unknown value (X).

For more information, see the add_chain_masks command.

Tessent TestKompress User's Manual, v2014.2 317
June 2014

Troubleshooting
Miscellaneous

318 Tessent TestKompress User's Manual, v2014.2
June 2014

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Index

A Commands

add_edt_blocks, 160 Cor;‘;?ggd%'\#;((?gem’ 26

add_edt_conn_ectl ons command, 160 commands

add_scan_cha! ns-internal, 77, 87, 88, 113 add_edt blocks, 160

Advqnced topics, 163 add_edt_connections, 160

Architecture, EDT, 14, 62 add_scan_chains, 77, 88, 113

— B — delete_edt blocks, 160

Batch mode, 24, 25 delete_edt_connections, 160

Boundary scan report_edt_blocks, 157, 160
circuitry, 103 report_edt_configurations, 64, 65, 77,
EDT and, 218 to 223 113,160
EDT coexisting with, 218 to 222 report_edt_connections, 160
EDT signalsdriven by, 222 to 223 report_edt_instances, 161, 293
flow overview, 218 report_edt _lockup_cells, 229
inserting, 102, 103 report_edt _J)i ns, 66, 69, 73
modifying EDT dofile for, 39, 220 report_environment, 24, 52
modifying EDT test procedure file for, 39, report_scan_volume, 44, 122

220 set_bypass chains, 75

pre-existing, 38 set_compactor_connections, 75
synthesis, preparing for, 218 set_current_edt_block, 157, 161
top level wrapper for, 103 set_dofile_abort, 25

Bypa$ Ci rcuitry, 17, 81 Set_edt_' nStan.CE‘S, 87, 161, 293
customizing, 60, 75 set_edt_mapping, 161
diagram, 209 set_edt_options, 52, 60, 62

Bypass mode set_edt_opti ons pins, 80
circuitry, 209 set_edt_pins, 67, 70
generated files for, 89 set__logflle__handllng, 26
single chain, 284 write_edt_files, 78, 161

Bypass patterns, EDT emulating uncompressed ATPG with, 11
flow example, 214 generating EDT patterns with, 33, 35
using, 214 inputs and outputs, 36

Bypassing EDT logic, 208 to 217 external flow, 34

internal flow, 36

—C — pre-synthesis flow, 261

Channel input pipeline stages skeleton flow, 261
defining, 224 tool flows, 35

Channel output pipeline stages external logic, 17, 33
defining, 224 compression

Clocking in EDT, 19, 64 baseline, 44

Tessent TestKompress User's Manual, v2014.2 319

June 2014

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

Compression, see Effective Compression
Control and channel pins
basic configuration, 65
default configuration, 66
sharing with functional pins, 67 to 72
channel input pin, 68
channel output pin, 68
EDT bypass pin, 69
EDT clock pin, 68
EDT configuration pin, 69
EDT reset pin, 62, 68
EDT scan enable pin, 68
EDT update pin, 63
example, 69
reporting, 69
requirements, 67
summary, 65
create_skeleton design, 261
flow, 261, 262
input file, 264
example, 266
inputs, 264
inputs and outputs, 263, 264
interfacefile, 267, 271
outputs, 264, 272
skeleton design, 272
skeleton design dofile, 274
skeleton design Tessent cell library,
275
skeleton design test procedure file, 275

—D—
Decompressor, 14, 16, 81
decompressor, see Decompressor
delete_edt_blocks command, 160
delete_edt_connections command, 160
Design Compiler synthesis script, 82, 101, 104
Design flow, EDT
design requirements, 32
tasks and products, 28, 29
Design requirements, 32
Design rules checks
EDT-specific rules (K rules), 18
introduction, 18
TIE-X message, 76
transcript messages, 77

upon leaving setup mode, 76
verifying EDT logic operation with, 117
Dofile
for bypass mode (plain ATPG), 90, 114
for generating EDT patterns, 62, 87, 113
for inserting scan chains, 43
Dofiles, 24, 25

— E—
EDT
as extension of ATPG, 13
clocking scheme, 19, 64
compression, see Effective compression
configuration, reporting, 64
control and channel pins, see Control and
channel pins
definition of, 13
diagnostics
flow example, 214
with EDT bypass patterns, 214
EDT bypass patterns, 214
EDT internal patterns, 125
fundamentals, 11
generating EDT test patterns, see Pattern
generation phase
I/O pads and, 32
logic
conceptual diagram, 15, 132
pattern generation, see Pattern generation
phase
pattern size, 44
pattern types supported, 20
scan channels, see Scan channels
signals
bypass, see Pattern generation phase
clock, see Pattern generation phase
internal control of, 18
reset, 62
update, see Pattern generation phase
EDT internal patterns, 125
EDT logic
configuration, 62
architecture, 62
pipeline stages, 61
creating, 47
multiple configurations

320

Tessent TestKompress User’'s Manual, v2014.2
June 2014

ABCDEFGHI JKLMNOPQRSTUVWXY Z

configuration pin, 69
parameters, 54
version of, specifying, 62
EDT reset signal
specifying, 62
Effective compression
chain-to-channel ratio and, 316
controlling, 21
Embedded deterministic test, see EDT
Enhanced procedurefile
for bypass mode (plain ATPG), 114
for generating EDT patterns, 113
External logic location flow
definition of, 17
steps, 33
tasks and products, 28

— F—
Fault aliasing, 258
Fault sampling, 249
Faults, supported, 20

— G —
Generated EDT logic files
Generated files
blackbox description of core, 81
described, 79
edt circuitry, 81
for bypass mode (plain ATPG)
dofile, 90, 114
enhanced procedurefile, 114
test procedurefile, 90
for usein EDT pattern generation phase
dofile, 87, 113
enhanced procedure file, 113
test procedurefile, 88
synthesis script, 82, 83, 101, 104
top-level wrapper, 80
Generating EDT test patterns, see Pattern
generation phase

S
1/O pads
adding, 103
managing pre-existing, 38
requirements, 32

I/O pins, usage, 16
insert_test logic -output new, 42, 43
Intellectual property (IP)

blocks
detailed description of, 280 to 284
specification, 279
synthesizing
Design Compiler and, 102
verifying operation of, 117 to 121
design rules checks, 117

Internal logic location flow

tasks and products, 29

— L —
Length of longest scan chain

specifying, 62

Lockup cells

insertion, 229 to 237
reporting, 229

Log files, 25
Logic creation phase

in EDT design flow, 33

Logic location

external, 17

— M=
Masking, see Scan chains, masking
Memories

handling of, 30, 315
X values and, 255, 315

Modular Compressed ATPG

generating for afully integrated design, 143
input channel sharing, 134

— P —
Pattern generation phase, 111 to 125

adding scan chains, 112
circuitry in, 123
EDT signals, controlling

bypass, 112

clock, 112

update, 112
generating EDT patterns, 121 to 123
in EDT design flow, 33, 35, 111
optimizing compression, 124
pattern post-processing, 125

Tessent TestKompress User’'s Manual, v2014.2
June 2014

321

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

prerequisites, 111 to 113
reordering patterns, 259
setting up, 112
simulating EDT patterns, 126
test procedure waveforms, example, 112
verifying EDT patterns, 111, 126 to 127
Pattern generation, see Pattern generation
phase
Pattern verification, 44
Patterns
reordering, see Pattern generation phase,
reordering patterns
types supported, 20
Performance
establishing areference point, 248
evaluation flow, 248
improving, 250
issues and analysis summary, 250
measuring, 249
Pin sharing
allowed, 42, 67, 80
not allowed, 80
Pipeline stages
description of, 223
including, 61, 223
Pre-synthesis flow, 261

—R—
Reduced netlist

rolein Internal logic location flow, 98

using to improve synthesis run time, 98

writing, 98
Reorder

patterns, see Pattern generation phase,

reordering patterns

scan chains, see Scan chains, reordering
Report

EDT configuration, 64
report_edt_blocks command, 160
report_edt_configurations command, 64, 65,

77,113, 135, 160

report_edt_connections command, 160
report_edt_instances command, 161, 293
report_edt _lockup _cells command, 229
report_edt_pins command, 66, 69, 73
report_scan_volume command, 44, 122

Reset signal, 62

— S —
Scan chains
custom masking of, 317
determining how many to use, 41
length
longest, specifying range for, 62
limitations on, 40, 80
masking, 255 to 258
pattern file example, 258
transcript example, 257
why needed, 255
X blocking and, 256
prerequisites for inserting, 39
reordering
impact on EDT logic, 79
impact on EDT patterns, 123
synthesizing, 37, 39
uncompressed
defining for EDT pattern generation,
88, 113, 133
effect on test coverage estimate, 40
including, 40, 88, 113
leaving undefined during IP creation,
40
modular flow and, 133
Scan channels
conceptual diagram, 14
controlling compression with, 14, 21
definition of, 14
introduction, 13
pins, sharing with functional pins, 42, 67
Scripts, 24, 25
set_bypass chains command, 75
set_compactor_connections command, 75
set_current_edt block command, 157, 161
set_edt_instances command, 87, 161, 293
set_edt_options command, 52, 60, 62
set_edt pins command, 67, 70
Shell commands, running UNIX commands,
26
Skeleton flow, 261
Spacial compactor
connections, customizing, 75
Spatial compactor, 17, 81

322

Tessent TestKompress User’'s Manual, v2014.2
June 2014

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

Supported Functions, 11
Supported pattern types, 20
Synthesizing

scan chains, 37

with areduced netlist, 98

— T —
Tessent FastScan
command-line mode, emulating with
Tessent TestKompress, 33
creating bypass patterns, 216
Tessent Scan
dofile for inserting scan chains, example,
43
insert_test logic command, 42, 43, 44
Tessent TestKompress
creating logic with, 33
emulating Tessent FastScan with, 33
Test data volume, 248
Test procedurefile
for bypass mode (plain ATPG), 90
for generating EDT patterns, 838
Toolsused in EDT flow, 28, 29
Troubleshooting, 291 to 317
EDT aborted faults, 316
incompressible patterns, 315
K19 through K22 DRC violations, 293 to
297
less than expected
compression, 315
test coverage, 316
lockup cellsin EDT IP, reporting, 229
masking broken scan chains, 317
simulation mismatches, 291, 292
too many observable Xs, 315
TSGEN, incorrect references to, 102, 314

—U—
UNIX commands, running within tool, 26
User interface

dofiles, 24, 25

log files, 25

running UNIX system commands, 26
using areduced netlist with, 98

—V —
Verification of EDT IP, 117 to 121
Verification of EDT patterns, 111, 126 to 127

— W —
write_edt_filescommand, 78, 161

— X —

X blocking, 255
Xs, observable, 315

Tessent TestKompress User’'s Manual, v2014.2
June 2014

323

ABCDEFGHI JKLMNOPQRSTUVWXY Z

324 Tessent TestKompress User's Manual, v2014.2
June 2014

Third-Party Information

For information about third-party software included with this rel ease of Tessent products, refer to the Third-Party Software for
Tessent Products.

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’'S COMPLETE
AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (“Agreement”)

Thisisalegal agreement concerning the use of Software (as defined in Section 2) and hardwar e (collectively “Products”)
between the company acquiring the Products (“ Customer™), and the Mentor Graphics entity that issued the corresponding
quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics’). Except for license
agreementsrelated to the subject matter of thislicense agreement which are physically signed by Customer and an authorized
representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties’ entire understanding
relating to the subject matter and supersede all prior or contemporaneous agreements. |f Customer does not agree to these
terms and conditions, promptly return or, in the case of Softwarereceived electronically, certify destruction of Software and all
accompanying itemswithin five days after receipt of Software and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and Mentor
Graphics accepts purchase orders pursuant to this Agreement (each an “Order”), each Order will constitute a contract between
Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this Agreement,
any applicable addenda and the applicable quotation, whether or not those documents are referenced on the Order. Any additional
or conflicting terms and conditions appearing on an Order or presented in any electronic portal or automated order management
system, whether or not required to be electronically accepted, will not be effective unless agreed in writing and physically signed
by an authorized representative of Customer and Mentor Graphics.

1.2. Amountsinvoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such invoice.
Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month or
the applicable legal rate currently in effect, whichever is lower. Prices do not include freight, insurance, customs duties, taxes or
other similar charges, which Mentor Graphics will state separately in the applicable invoice. Unless timely provided with avalid
certificate of exemption or other evidence that items are not taxable, Mentor Graphics will invoice Customer for all applicable
taxes including, but not limited to, VAT, GST, sales tax, consumption tax and service tax. Customer will make all payments free
and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments by Customer
hereunder will be Customer’s sole responsibility. If Customer appoints a third party to place purchase orders and/or make
payments on Customer’s behalf, Customer shall be liable for payment under Orders placed by such third party in the event of
default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software delivered
electronically, which shall be deemed delivered when made available to Customer for download. Mentor Graphics retains a
security interest in all Products delivered under this Agreement, to secure payment of the purchase price of such Products, and
Customer agrees to sign any documents that Mentor Graphics determines to be necessary or convenient for use in filing or
perfecting such security interest. Mentor Graphics' delivery of Software by electronic meansis subject to Customer’s provision of
both a primary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement, including any
updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all rights not expressly granted
by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable license fees, a nontransferable, nonexclusive
license to use Software solely: (a) in machine-readable, object-code form (except as provided in Subsection 5.2); (b) for Customer’s
internal business purposes; (c) for the term of the license; and (d) on the computer hardware and at the site authorized by Mentor
Graphics. A siteisrestricted to a one-half mile (800 meter) radius. Customer may have Software temporarily used by an employee for
telecommuting purposes from locations other than a Customer office, such as the employee’s residence, an airport or hotel, provided
that such employee’s primary place of employment is the site where the Software is authorized for use. Mentor Graphics' standard
policies and programs, which vary depending on Software, license fees paid or services purchased, apply to the following: (a)
relocation of Software; (b) use of Software, which may be limited, for example, to execution of a single session by a single user on the
authorized hardware or for arestricted period of time (such limitations may be technically implemented through the use of
authorization codes or similar devices); and (c) support services provided, including eligibility to receive telephone support, updates,
modifications, and revisions. For the avoidance of doubt, if Customer provides any feedback or requests any change or enhancement to
Products, whether in the course of receiving support or consulting services, evaluating Products, performing beta testing or otherwise,
any inventions, product improvements, modifications or devel opments made by Mentor Graphics (at Mentor Graphics' sole discretion)
will be the exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use devel opment or prototyping tools of Mentor Graphics Embedded Software
Channel (“ESC"), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++ compiler Software that are

http://www.mentor.com/eula

linked into a composite program as an integral part of Customer’s compiled computer program, provided that Customer distributes
these files only in conjunction with Customer’s compiled computer program. Mentor Graphics does NOT grant Customer any right to
duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other embedded software products into
Customer’ s products or applications without first signing or otherwise agreeing to a separate agreement with Mentor Graphics for such
purpose.

BETA CODE.

4.1. Portionsor al of certain Software may contain code for experimental testing and evaluation (which may be either alpha or beta,
collectively “Beta Code"), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor Graphics'
authorization, Mentor Graphics grants to Customer atemporary, nontransferable, nonexclusive license for experimental useto test
and evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. Mentor Graphics may
choose, at its sole discretion, not to release Beta Code commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under normal
conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation and testing,
Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform beta
testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments
that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and
interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices and
legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall remain
the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and primary location of all
copies of Software, including copies merged with other software, and shall make those records available to Mentor Graphics upon
request. Customer shall not make Products available in any form to any person other than Customer’s employees and on-site
contractors, excluding Mentor Graphics competitors, whose job performance requires access and who are under obligations of
confidentiality. Customer shall take appropriate action to protect the confidentiality of Products and ensure that any person
permitted access does not disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics
written notice of any unauthorized disclosure or use of the Products as soon as Customer becomes aware of such unauthorized
disclosure or use. Except as otherwise permitted for purposes of interoperability as specified by applicable and mandatory local
law, Customer shall not reverse-assembl e, reverse-compile, reverse-engineer or in any way derive any source code from Software.
Log files, datafiles, rule files and script files generated by or for the Software (collectively “Files”), including without limitation
files containing Standard Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF’) which are Mentor Graphics
trade secret and proprietary syntaxes for expressing process rules, constitute or include confidential information of Mentor
Graphics. Customer may share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality
of such Filesis protected by written agreement at least as well as Customer protects other information of a similar nature or
importance, but in any case with at |east reasonable care. Customer may use Files containing SVRF or TVF only with Mentor
Graphics products. Under no circumstances shall Customer use Products or Files or allow their use for the purpose of developing,
enhancing or marketing any product that is in any way competitive with Products, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct software
errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure of source code,
in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or on-site contractors,
excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code in any manner
except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense, or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics' prior written consent and
payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer without Mentor
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in the
immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms of this Agreement,
including without limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in
interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphicswill provide Customer with updates and
technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor Graphics' then
current End-User Support Terms located at http://supportnet.mentor.com/supportterms.

LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly installed, will
substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Products will meet Customer’s requirements or that operation of Products will be uninterrupted or error free. The warranty
period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Customer must notify Mentor

http://supportnet.mentor.com/supportterms

10.

11

12.

Graphicsin writing of any nonconformity within the warranty period. For the avoidance of doubt, thiswarranty applies only to the
initial shipment of Software under an Order and does not renew or reset, for example, with the delivery of (a) Software updates or
(b) authorization codes or alternate Software under a transaction involving Software re-mix. This warranty shall not be valid if
Products have been subject to misuse, unauthorized modification, improper installation or Customer is not in compliance with this
Agreement. MENTOR GRAPHICS' ENTIRE LIABILITY AND CUSTOMER'S EXCLUSIVE REMEDY SHALL BE, AT
MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF THE PRODUCTS TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS
LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B)
PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF WHICH ARE PROVIDED “AS|1S.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE VOID
OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR
SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF MENTOR GRAPHICS
OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT RECEIVED FROM
CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE
WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY
DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT RESULT IN
DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS"). EXCEPT TO THE EXTENT THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL
MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION
WITH THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING ATTORNEYS' FEES,
ARISING OUT OF OR IN CONNECTION WITH THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS
APPLICATIONS. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INFRINGEMENT.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product acquired by
Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics will
pay costs and damages finally awarded against Customer that are attributable to such action. Customer understands and agrees
that as conditions to Mentor Graphics' obligations under this section Customer must: (&) notify Mentor Graphics promptly in
writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the action; and (c)
grant Mentor Graphics sole authority and control of the defense or settlement of the action.

11.2. If aclaim is made under Subsection 11.1 Mentor Graphics may, at its option and expense: (&) replace or modify the Product so
that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return of the
Product and refund to Customer any purchase price or license fee paid, |ess a reasonabl e allowance for use.

11.3. Mentor Graphics has no liability to Customer if the action is based upon: (@) the combination of Software or hardware with any
product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the use of other
than acurrent unaltered rel ease of Software; (d) the use of the Product as part of an infringing process; (€) aproduct that Customer
makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided by Mentor Graphics'
licensors who do not provide such indemnification to Mentor Graphics' customers; or (h) infringement by Customer that is
deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs
related to the action.

11.4. THIS SECTION 11 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,
SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION.

12.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the authorized
term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
upon 30 days written notice if Customer failsto cure the breach within the 30 day notice period. Termination of this Agreement or

13.

14.

15.

16.

17.

18.

10.

any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or licenses granted prior to the
termination, which amounts shall be payable immediately upon the date of termination.

12.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware and
either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and documentation, and
certify in writing to Mentor Graphics within ten business days of the termination date that Customer no longer possesses any of
the affected Products or copies of Softwarein any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and United States (“U.S.”) government agencies,
which prohibit export, re-export or diversion of certain products, information about the products, and direct or indirect products thereof,
to certain countries and certain persons. Customer agrees that it will not export or re-export Products in any manner without first
obtaining all necessary approval from appropriate local and U.S. government agencies. If Customer wishesto disclose any information
to Mentor Graphicsthat is subject to any U.S. or other applicable export restrictions, including without limitation the U.S. International
Traffic in Arms Regulations (ITAR) or specia controls under the Export Administration Regulations (EAR), Customer will notify
Mentor Graphics personnel, in advance of each instance of disclosure, that such information is subject to such export restrictions.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all Softwareis
commercial computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to U.S. FAR 48
CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. government or a U.S.
government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which shall supersede any
conflicting terms or conditions in any government order document, except for provisions which are contrary to applicable mandatory
federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation and
other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and during
Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review Customer’s
software monitoring system and records deemed relevant by the internationally recognized accounting firm to confirm Customer’'s
compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor
product) report log files that Customer shall capture and provide at Mentor Graphics' request. Customer shall make records availablein
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the expense of
any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential information all information
gained as aresult of any request or review and shall only use or disclose such information as required by law or to enforce its rights
under this Agreement. The provisions of this Section 16 shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics intellectual
property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the world, disputes shall be
resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed under the laws of the State of
Oregon, U.S,, if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North or
South America. All disputes arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of the courts
of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the laws of Ireland apply. Notwithstanding the foregoing,
all disputesin Asiaarising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a single arbitrator
to be appointed by the chairman of the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in
accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by
referencein this section. Nothing in this section shall restrict Mentor Graphics' right to bring an action (including for example amotion
for injunctive relief) against Customer in the jurisdiction where Customer’s place of business is located. The United Nations
Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or
illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all prior
or contemporaneous agreements. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to Customer. Please see the applicable Software documentation for details. This Agreement may only be modified in
writing, signed by an authorized representative of each party. Waiver of terms or excuse of breach must be in writing and shall not
constitute subsequent consent, waiver or excuse.

Rev. 140201, Part No. 258976

	Bookcase
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Getting Started
	Tessent TestKompress
	EDT Technology
	TestKompress Compression Logic
	TestKompress Flow Overview
	Tessent Shell User Interface

	Chapter 2 The Compressed Pattern Flows
	Top-Down Design Flows
	The Compressed Pattern Flows
	Design Requirements for a Compressed Pattern Flow
	Compressed Pattern External Flow
	Compressed Pattern Internal Flow

	Chapter 3 Scan Chain Synthesis
	Design Preparation
	Scan Chain Insertion
	ATPG Baseline Generation

	Chapter 4 Creation of the EDT Logic
	Compression Analysis
	Analyzing Compression
	Preparation for EDT Logic Creation
	Parameter Specification for the EDT Logic
	Dual Compression Configurations
	Defining Dual Compression Configurations
	Asymmetric Input and Output Channels
	Bypass Scan Chains
	Latch-Based EDT logic
	Compactor Type
	Pipeline Stages in the Compactor
	Pipeline Stages Added to the Channel
	Longest Scan Chain Range
	EDT Logic Reset
	EDT Architecture Version
	Specifying Hard Macros
	Pulse EDT Clock Before Scan Shift Clocks

	Reporting of the EDT Logic Configuration
	EDT Control and Channel Pins
	Functional/EDT Pin Sharing
	Shared Pin Configuration
	Connections for EDT Pins (Internal Flow only)
	Internally Driven EDT Pins
	Structure of the Bypass Chains
	Decompressor and Compactor Connections

	Design Rule Checks
	Creation of EDT Logic Files
	The EDT Logic Files
	Inserting EDT Logic During Synthesis
	Synthesis Script that Inserts/Synthesizes EDT Logic
	Creation of a Reduced Netlist for Synthesis

	Chapter 5 Synthesizing the EDT Logic
	The EDT Logic Synthesis Script
	Synthesis and External EDT Logic
	Synthesis and Internal EDT Logic
	SDC Timing File Generation
	EDT Logic/Core Interface Timing Files
	Scan Chain and ATPG Timing Files

	Chapter 6 Generating/Verifying Test Patterns
	Preparation for Test Pattern Generation
	Updating Scan Pins for Test Pattern Generation

	Verification of the EDT Logic
	Design Rules Checking (DRC)
	EDT Logic and Chain Testing
	Reducing Serial EDT Chain Test Simulation Runtime

	Generating Test Patterns
	Compression Optimization
	Saving of the Patterns

	Post-Processing of EDT Patterns
	Simulation of the Generated Test Patterns

	Chapter 7 Modular Compressed ATPG
	Understanding Modular Compressed ATPG
	Development of a Block-Level Compression Strategy
	Balancing Scan Chains Between Blocks
	Sharing Input Scan Channels on Identical EDT Blocks
	Channel Sharing for Non-Identical EDT Blocks
	Overview of Channel Sharing Functionality
	Compression Analysis
	EDT IP Creation With Separate Control and Data Input Channels
	Rules for Connecting Input Channels from Cores to Top
	Channel Sharing Reporting
	Limitations

	Generating Modular EDT Logic for a Fully Integrated Design
	Estimating Test Coverage/Pattern Count for EDT Blocks

	Connecting EDT Signals From Cores to the Top Level
	Creating a Top-level Test Procedure File
	Block-level Test Procedure Files Example
	Top-level Test Procedure File Example

	Creating the Top-level Netlist

	Legacy ATPG Flow
	Generation of Top-level Test Patterns

	Chapter 8 Special Topics
	Low-Power Test
	Low-Power Shift
	Setting Up Low-Power Test

	Low Pin Count Test Controller
	LPCT Controller Decision Tree
	Test Mode Clock Multiplexer Requirement
	Sharing of the LPCT Clock and a Top-Level Scan Clock
	Shift Clock Control for LPCT Controller
	Type 1 LPCT Controller
	Type 2 LPCT Controller
	Type 3 LPCT Controller

	Limitations
	LPCT Controller Types
	Type 1 - LPCT Controller with Top-level Scan Enable
	Type 2 - LPCT Controller with a TAP
	Type 3 - LPCT Controller-generated Scan Enable

	LPCT Configuration Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Compression Bypass Logic
	Structure of the Bypass Logic
	Generating EDT Logic When Bypass Logic is Defined in the Netlist
	Dual Bypass Configurations
	Generation of Identical EDT and Bypass Test Patterns
	Chain Test Pattern Handling for Bypass Operation

	Use of Bypass Patterns in Uncompressed ATPG
	Bypass Pattern Flow Example
	Creating Bypass Test Patterns in Uncompressed ATPG

	Uncompressed ATPG (External Flow) and Boundary Scan
	Flow Overview
	Boundary Scan Coexisting with EDT Logic
	Driving Compressed ATPG with the TAP Controller

	Use of Pipeline Stages in the Compactor
	Use of Pipeline Stages Between Pads and Channel Inputs or Outputs
	Channel Output Pipelining
	Channel Input Pipelining
	Clocking of Channel Input Pipeline Stages
	Clocking of Channel Output Pipeline Stages
	Ensuring Input Channel Pipelines Hold Their Value During Capture
	DRC for Channel Input Pipelining
	DRC for Channel Output Pipelining
	Input/Output Pipeline Examples

	Change Edge Behavior in Bypass and EDT Modes
	Understanding Lockup Cells
	Lockup Cell Insertion
	Lockup Cell Analysis For Bypass Lockup Cells Not Included as Part of the EDT Chains
	Lockups Between Decompressor and Scan Chain Inputs
	Lockups Between Scan Chain Outputs and Compactor
	Lockups in the Bypass Circuitry

	Lockup Cell Analysis For Bypass Lockup Cells Included as Part of the EDT Chains
	EDT Lockup and Scan Chain Boundary Lockup Cells
	Differences Based on Inclusion/Exclusion of Bypass Lockup Cells in EDT Chains
	Limitations
	Comparison of Bypass Lockup Cell Insertion Results

	Lockups Between Channel Outputs and Output Pipeline Stages

	Performance Evaluation
	Establishment of a Point of Reference
	Performance Measurement
	Performance Improvement
	Varying the Number of Scan Chains
	Varying the Number of Scan Channels
	Determining the Limits of Compression
	Speeding up the Process

	Understanding Compactor Options
	Understanding Scan Chain Masking in the Compactor
	Fault Aliasing
	Reordering Patterns
	Handling of Last Patterns

	Chapter 9 Integrating Compression at the RTL Stage
	About the RTL Stage Flow
	Skeleton Design Input and Interface Files
	Skeleton Design Input File
	Input File Format
	Input File Example

	Skeleton Design Interface File

	Creating EDT Logic for a Skeleton Design
	Longest Scan Chain Range Estimate

	Integrating the EDT Logic into the Design
	Skeleton Flow Example
	Input File
	Interface File
	Outputs

	Appendix A Getting Help
	Documentation
	Mentor Graphics Support

	Appendix B EDT Logic Specifications
	Appendix C Troubleshooting
	Debugging Simulation Mismatches
	Resolving DRC Issues
	K19 through K22 DRC Violations
	Debugging Best Practices
	Understanding K19 Rule Violations
	Incorrect Control Signals
	Inverted Signals
	Incorrect EDT Channel Signal Order
	Incorrect Scan Chain Order
	X Generated by EDT Decompressor
	Using set_gate_report K19
	Understanding K22 Rule Violations
	Inverted Signals
	Incorrect Scan Chain Order
	Masking Problems
	Using set_gate_report K22

	Miscellaneous

	Index
	Third-Party Information
	End-User License Agreement
	Documentation Feedback

