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The Bode plot is an important tool for stability analysis
of closed-loop systems. It is based on calculating the
amplitude and phase angle for the transfer function
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for

s = jw

where G
C
(s) is the controller and G

P
(s) is the process. The

Bode stability criterion presented in most process control text-
books is a sufficient, but not necessary, condition for insta-
bility of a closed-loop process.[1-4] Therefore, it is not pos-
sible to use this criterion to make definitive statements about
the stability of a given process.

Other textbooks[5,6] state that this sufficient condition is a
necessary condition as well. That statement is not correct, as
will be demonstrated in the following examples. In another
text[7] the criterion is formulated as a necessary condition for
stability, but no definite statements can be made based on a
necessary condition alone.

Often, some statements are added for clarification,[1-6,8] e.g.,
“...the Bode stability criterion only applies to systems that
cross f  = - 180∞ once, where f  is the phase shift of the trans-
fer function G

C
(s)G

P
(s). For multiple crossings one must use

the Nyquist criterion.”[3]

It can be shown that the above statements about the Bode
stability criterion are not complete. For example, a system
can cross the -180∞ phase angle line only once, have an am-
plitude ratio of less than one at the corresponding frequency,
and still be unstable. This is because G

C
(s)G

P
(s) can have an
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amplitude ratio greater than unity for frequencies where f  =
-180∞-n*360∞, where n is an integer. These conditions can
occur when the process includes time delays, as shown in the
following example.
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EXAMPLE 1

A reboiler process with a
proportional-derivative (PD) Controller

A process transfer function with inverse re-
sponse and integrating action as seen in some
reboilers is to be controlled by a PD controller
with a pre-filter.
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The reason that a PD controller is chosen over
a PID is that the process transfer function al-
ready contains a pole at the origin. Therefore,
the controller for this process should not include
integral action for impulse or step inputs in the
setpoint or disturbances.

The parameters are chosen to be

t = 0.1 min
q = 0.4 min

K
C

= 0.2
tD = 1 min

a = 0.05

The resulting Bode plot for the open-loop sys-
tem is given in Figure 1. The phase crossover
frequency ( )wc180∞  is defined to be the fre-
quency at which the open-loop phase angle is
-180∞. Furthermore, the gain crossover frequen-
cies ( )wg  are defined to be the frequencies at
which the open-loop amplitude ratio is equal to
unity and  wc540∞ corresponds to the frequency
where the phase angle crosses -540∞.

The amplitude ratio corresponding to a phase
lag of -180∞ is 0.6. One could reach the follow-
ing false conclusions from the Bode stability
criterion:

Figure 1. Bode plot of the reboiler process.

Figure 2. Nyquist plot of the reboiler process.

The Bode stability criterion presented in most process control textbooks is a
sufficient, but not necessary, condition for instability of a closed-loop

process. Therefore, it is not possible to use this criterion to make
definitive statements about the stability of a given process.
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Figure 3. Bode plot of the time-delay process.

Figure 4. Nyquist plot of the time-delay process.

� The system is stable.

� The gain margin is 1.67. The controller
gain can be increased by 67% without
making the system unstable.

But the amplitude ratio corresponding to a
phase angle of -540∞ is 2.0 and thus greater than
unity. Therefore, we conclude that the closed-
loop system is unstable. Increasing the control-
ler gain makes the system even more unstable.
Instead, a reduction of the gain by 50% will re-
sult in a stable closed-loop system.

These conclusions can be validated by ana-
lyzing the Nyquist plot in Figure 2. It is appar-
ent that this system is unstable due to the fact
that the curve shown encircles the point (-1,0)
twice in a clockwise direction. When this sys-
tem is implemented in MATLAB and simulated,
the finding from the Nyquist plot is confirmed.

Another commonly found statement about the
Bode stability criterion is that it cannot be used
if the frequency response of the open-loop sys-
tem exhibits “nonmonotonic phase angles or
amplitude ratios at frequencies higher than the
first phase crossing of -180∞.”[8] Although this
statement applies to many cases and would ex-
clude the above example, it can lead to false
conclusions. For example, the amplitude ratio
of a system can be monotonically increasing for
a PID controller after the notch frequency,[5]

while the phase angle is constantly decreasing
due to a time delay in the process. It is possible
to construct a case where the notch frequency
of the system has a phase lag of less than 180∞
and the corresponding amplitude ratio is less
than unity. Although this system behaves mono-
tonically in both phase and amplitude ratio af-
ter its phase crossover frequency, further analy-
sis is required to determine the stability of the
system. Example 2 illustrates this point.

EXAMPLE 2

Control of a time-delay process with an elec-
tronic proportional-integral-derivative (PID)
controller

Assume a process that consists of a pure time
delay and is controlled by a PID controller.
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The parameters are given by

q = 0.6 min
K

C
= 0.1

tI = 4 min

tD = 1 min

a = 0.05

Figures 3 and 4 show the Bode and Nyquist plots of the
open-loop transfer function of this process.

The notch frequency ( )wn  for this PID controller is 0.5
min-1 and the amplitude ratio of the open-loop process is
monotonically increasing at higher frequencies. The phase

crossover frequency is located at wc180
10 7∞

-= . min  and at

higher frequencies, both the amplitude ratio and the phase
angle are monotonic. It can be concluded from the Nyquist
diagram that this system is unstable, since (-1,0) is encircled
an infinite number of times in a clockwise direction. This
result has been confirmed in simulations. If the Bode stabil-
ity criterion in any of the above mentioned forms is used to
determine stability of the system, however, it would lead to
the wrong conclusion.

The foregoing examples indicate that it is not possible to
formulate a Bode stability criterion that is simple to use and
applicable to all possible cases at the same time. Therefore
we conclude:

� A system should only be analyzed for
stability using the Bode plot, if it has at most
one phase crossover frequency. Additionally,
if it has only one gain crossover frequency
and the amplitude ratio as well as the phase
angle are decreasing at the gain crossover
and afterward, then the gain and phase
margins can be calculated in a way found in
control textbooks.

� A system that has only one phase crossover
frequency but multiple gain crossover
frequencies is stable if the amplitude ratios,
corresponding to frequencies where f=
-180∞-n*360∞, are all less than unity and the
open-loop system is stable. The gain margin is
calculated from the crossover frequency or a
frequency corresponding to a larger n,
whichever exhibits the largest amplitude ratio.

� If the Bode plot information is inconclusive,
the Nyquist stability criterion should be
applied for stability analysis of closed-loop
systems.

From these conclusions we propose a

Revised Bode Stability Criterion

A closed-loop system is stable if the open-loop
system is stable and the frequency response of
the open-loop transfer function has an amplitude
ratio of less than unity at all frequencies corre-
sponding to f =-180∞-n*360∞, where
n=0,1,2,...,•.

The proof of the revised Bode stability criterion follows
directly from the Nyquist criterion. When this definition of a
stability criterion is recast in a form for use in a Nyquist dia-
gram, the resulting set of closed-loop stable systems is given
by the curves that do not cross the real axis to the left of
(-1,0) and are open-loop stable. Therefore, all these curves
do not encircle (-1,0) in either direction, and this set is a sub-
set of all stable closed-loop systems described by the Nyquist
stability criterion.

This revised stability criterion is a sufficiency condition
for stability. It is not a necessary condition, since a system
can have multiple phase crossover frequencies (some of
them with amplitude ratios larger than unity) and still be
stable. If a case arises that is not covered by the revised
criterion, then the Nyquist stability criterion should be
used for stability analysis.
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