=

l Hardware Verification
with SystemVerilog

An Object-Oriented Framework

Mike Mintz
Robert Ekendahl

@ Springer

Hardware Verification with
SystemVerilog

An Object-Oriented Framework

Mike Mintz
Robert Ekendahl

Hardware Verification with
SystemVerilog

An Object-Oriented Framework

Cover art from the original painting “Dimentia #10” by John E.
Bannon, johnebannon.com

@ Springer

Mike Mintz Robert Ekendahl
Harvard, MA Somerville, MA
USA USA

Library of Congress Control Number: 2007923923

ISBN 0-387-71738-2 e-ISBN 0-387-71740-4
ISBN 978-0-387-71738-8 e-ISBN 978-0-387-71740-1

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

987654321

springer.com

For Joan, Alan, and Brian.
Thanks again for your patience.

Mike

For Chantal.
Thanks again for your understanding,
love, and active support.

And to Newton—and now Darwin.
For many more missed walks.

Robert

vi e 0000 00 Hardware Verification with SystemVerilog

Contents

Preface. Xix
Acknowledgments., Xxi
Chapter 1: Introduction 1
Background e e 3
What is Functional Verification?. 4
Why Focus on SystemVerilog? 5
A Tour of theHandbook 5
For FurtherReading 6

Part I:
SystemVerilog and Verification
(TheWhyandHow).................... 7
Chapter 2: Why SystemVerilog? 9
Overview.o i e 10
SystemVerilog as a Verification Language 11
Main Benefits of Using SystemVerilog 13
Drawbacks of Using SystemVerilog 13
SystemVerilog Traps and Pitfalls 14
SystemVerilogisnot Verilog 14
Errors and run-timecrashes 15

Hardware Verification with SystemVerilog: An Object-Oriented Framework vii

Contents

viii

Five languagesinone! 15
The assertions language. 15
The constraint language. 16
The coverage language 18
SystemVerilog features not discussed 19
SUMMaAry. . .ot e e e 20
For FurtherReading 20
Chapter 3: OOP and SystemVerilog
Overview.o i e 24
The Evolution of OOP and SystemVerilog. 25
Assembly programming: The early days. 25
Procedural languages: The next big step......... 25
OOP: Inheritance for functionality 26
OOP: Inheritance for interface 28
A word or two about “interface” 28
The Evolution of Functional Verification 29
Verification through inspection 29
Verification through randomness 29
The emergence of
hardware verification languages 30
OOP: A current trend in verification. 31
OOP: A possiblenextstep 31
OOP and SystemVerilog 32
Data abstraction through classes 32
A DMA descriptorexample 32
Accesscontrol 33
Constructorst 34
Member methods and variables. 35
Inheritance for functionality. 36
Inheritance for code interface. 37
What’sa headerfile?. 39
Packages.t e 40

Separating HDL and testbenchcode 42

Wiggling wires: the interface concept. 42

Building and using interfaces 44
SUMMaArY. . .o e e e 46
For FurtherReading 46

Chapter 4: A Layered Approach 47
Overview.o i e 48
A Whiteboard Drawing 50

An “ends-in” approach. 51

Refining the whiteboard blocks 52
The “Common-Currency” Components 52
The Component LayerinDetail 53

The connection layer. 54

Theagentlayer 56

The transaction layer 57
The Top-Layer Componentsc..... 58
WhatisaTest?. 60
The TestComponent 62
The Testlrritator, 64
ACompleteTest. 65
SUMMaArY. . .ot e e 67
For FurtherReading 67

Part Il:

An Open-Source Environment with SystemVerilog69

Chapter 5: Teal Basicsccvivivenennn 71
Overview.o i e 72
Teal’s Main Components.c..... 72
Using Teal i ittt 74

Asimpletest 74
Logging Qutput.o i ittt ittt i 74
Using Test Parameters. 77
AccessingMemory. it e 79

An Object-Oriented Framework

Contents

Amemoryexample.......... ..., 80
Constrained Random Numbers. 84
Required initialization. 84
Using randomnumbers. 85
Working with Simulation Events. 86
SUMMaAry. . .ot e e e 87

Chapter 6: Truss: A Standard Verification

Frameworkciiiiiiiiiiinneennnnnns
Overview.ot e e 90
General Considerations 91

SystemVerilog considerations 91
Keepingitsimple 92
Major Classes and TheirRoles 93
Key test algorithm: The “dance” 94
The verification_component Virtual Base Class. 97
Detailed Responsibilities
of the Major Components 98
The testbenchclass. 99
Watchdog timer 101
Testclasst 102
Test Component and Irritator Classes 106
The test component virtual baseclass 106
AnAHBexample. 108
Test-component housekeeping functionality 109
The irritator virtual baseclass 110
Using theirritator. 112
SUMMaAIY . & v vt ettt e et e e e ettt e e 113

Chapter 7: Truss Flow...........ciivu.
Overview. i e e 116
About truss_verification_top.sv................ 116
The Test ComponentDance 119
The lrritatorDance 121
Compiling and Running Tests. 122

The trussrunscript. 123
Switches. e 124
Using “-f”"files. o i, 125

The First Test: ADirected Test 125

The Second Test:

Adding Channels and Random Parameters 127
The channel pseudo-templated classes 128
Building the second test. 129
Building the second test’s test_component 131
Adjusting the second test’s parameters 132

The Remaining Tests:

Mix-and-Match Test Components 135

SUMMaArY . . .ot e e 136

Chapter 8: Truss Example
Overview. . . .o it i e e 138
Directory Structure 138
Theory of Operation 140
Running the Simple ALU Example. 142
Pointsof Interest 142
Power-onReset 143
Driver and Monitor Protocol 144
The alu_test_component 145
Checkingthe Chip. 146
Completingthe Test 147
SUMMaAIY . vt ettt e e e e e e ettt e e ennn 149

An Object-Oriented Framework

xi

Contents

xii

Part Ill:
Using OOP for Verification
(Best Practices).o v it i e i i
Chapter 9: Thinking OOP
Overview.o i e 154
Sources of Complexity, 155
Essential complexity vs.
implementation complexity 155
Flexibility vs. complexity 156
Apparent simplicity vs.
hiding inherent complexity. 159
Example: How hiding complexity
can create confusion. 159
Example: How apparent simplicity
leads to laterproblems 160
Teamdynamicscuieiveeeennnn. 162
Teamrolesttt 162
Using a “codebuddy” 163
Creating AdaptableCode 163
Achieving adaptability, 163
Why is adaptability tricky? 164
Architectural Considerations
to Maximize Adaptability 165
Changes are easy—or just plain impossible. 166
Where is adaptation likely to happen? 167
Separating Interface from Implementation 168
Code Interface, Implementation, and Base Classes . . .169
SUMMAIY . & v vt ettt e e e e e ettt ieee e e 170
For FurtherReading 171

Chapter 10: Designing with OOP 173

Overview. i e e 174
Keeping the Abstraction Level Consistent 174
Using “Correct by Construction” 176
The Value of Packages 178
Data Duplication—A Necessary Evil. 180
Designing Well, Optimizing Only When Necessary181
Using the Protocol, Only the Protocol. 182
Verification Close to the Programming Model. 183
The Three Parts of Checking. 184
Separating the Test from the Testbench 186
SUMMaAIY . v e ettt e et e e e ettt e enan 187
For FurtherReading 188
Chapter 11: OOP Classescieuuuu.n 189
Overview. i e e 190
Defining Classes o v ittt ii i 191
How Much Electricity? 191
Classes . v v vttt e e e e e e e e e 192
Packages.ttt i e 192
Pointers and virtual functions 192
Global Services. e 193
Packageitup!, 193
Staticmethods., 194
Singletons—A Special Case of Static Methods 194
Packages or static methods? 195
Other considerations 196
Class Instance Identifiers 197
Strings as identifiers 197
Static integers as identifiers. 197
Combination identifiers 198
Class Inheritance forReuse. 198
A BFM base-classexample 199

An Object-Oriented Framework xiii

Contents

ABFMagentclass...........o ... 200
Reusingthe BFMclass 200
Class Inheritance for Code Interfaces 201
Inheritance for a verification component 201
Inheritance for a payload code interface. 202
SUMMaAry. . .ot e e e 203
For FurtherReading 204
Chapter 12: OOP Connections
Overview.o i e e 206
How Tight a Connection? 207
Types of Connections. 209
Peer-to-peer connections. 209
Master-to-slave and push-vs.-pull connections 209
Two Tight Connection Techniques 211
Usingpointerst eeennn 211
Using inheritance 212
Threads and Connections 214
Events—explicit blocking interconnects. 214
Hiding the thread block inamethod 216
Fancier Connections 217
Listener or callback connections 218
Channel connections 219
Action object connections 220
SUMMaAIY . & v vt ettt e e e e e ettt e e e e 221
For FurtherReading 222

xiv

Chapter 13: Coding OOP

Overview. i e e
“If” Tests—A Necessary Evil
“If” tests and abstractionlevels
“If” tests and code structure
Repeated “if” expressions
“If” tests and factory functions.
A factory functionexample
Coding Tricks v i i it e it e e e e e e e
Coding only what youneedtoknow
Reservableresources.
The register: an int by any othername..........
Using data members carefully.
CodingIldioms.
The singletonidiom.

Public nonvirtual methods:
Virtual protectedmethods

Enumeration for Data, Integer for Code Interface. . . .
What’sinaName?
Keeping class name the same as filename
Keeping class and instance names related
CodingwithStyle,
Proceeding withcaution.
General syntax conventions
Identifying local and protected members
SUMMAIY . & et ettt e e e e ettt e e
For FurtherReading

An Object-Oriented Framework

241

XV

Contents

Part IV:
Examples
(Putting It All Together).................
Chapter 14: Block-Level Testing
Overview.ot e 250
Theory of Operation 251
Verification environment 252
Verification IP 253
UARTVIPS e e e e 253
Wishbone VIP. i 254
The verificationdance. 255
Running the UART Example. 255
Pointsof Interest 256
Configuration. 256
VIPUART package., 257
VIP UART configurationclass. 258
Randomization of parameters. 258
UART 16550 configurationclass. 260
Configuringthe Chip 261
Registeraccess. v v i ittt i e e 262
The wishbone_memory_bank and
wishbone_driver. oo L. 263
Traffic Generation 265
The generator_agent and uart_bfm_agent classes. . .265
TheChecker 267
Checkingthedata. 268
Connecting It All Together 270
Thetestbench 270
Building the channels 271
Building the configuration and interface port. 271
Building the component-layer objects 273
The wishbone objects 274
The testcomponent 275

Xvi

The uart_basic_test_component::do_randomize()

method. 277
The basicdatatest....................... 278
More Tests. i i it it i i i e 280
SUMMaAIY. . . e e e e e e e e et ettt ee e e 280
Chapter 15: Chip-Level Testing 281
Overview.ot e e 282
Theory of Operation 282
Verification environment 283
Running the UART Example. 284
The quad_uart_test_components Test 284
The quad_uart_irritators Test 286
UART irritatorclass. oo 286
Thetest i 288
The quad_uart_vectors Test 292
The block_uart Test 293
SUMMANY . . et et e e e e e e ettt e e 293
Chapter 16: Things to Remember.......... 295
Part I: Use SystemVerilog and Layers!. 296
Part Il: An Open-Source Approach 296
Part Ill: OOP—Best Practices 297
Part IV: Examples—Copy and Adapt! 298
Conclusion to the Conclusion. 298
Index i e e e e 301

An Object-Oriented Framework xvii

Xviiie o o o o o o Hardware Verification with SystemVerilog

Preface

This is the second of our books designed to help the professional verifier
manage complexity. This time, we have responded to a growing interest not
only in object-oriented programming but also in SystemVerilog. The writing
of this second handbook has been just another step in an ongoing masochistic
endeavor to make your professional lives as painfree as possible.

The authors are not special people. We have worked in several companies,
large and small, made mistakes, and generally muddled through our work.
There are many people in the industry who are smarter than we are, and many
coworkers who are more experienced. However, we have a strong desire to
help.

We have been in the lab when we bring up the chips fresh from the fab, with
customers and sales breathing down our necks. We’ve been through software
bring-up and worked on drivers that had to work around bugs1 in production
chips.

What we feel makes us unique is our combined broad experience from both
the software and hardware worlds. Mike has over 20 years of experience from
the software world that he applies in this book to hardware verification.
Robert has over 12 years of experience with hardware verification, with a
focus on environments and methodology.

What we bring to the task of functional verification is over three decades of
combined experience, from design, verification, software development, and
management. It is our experiences that speak in this handbook. It is our desire
that others might learn and benefit from these experiences.

We have had heated discussions over each line of code in this book and in
our open-source libraries. We rarely agree at first, but by having to argue our
cases we arrive at what we feel are smart, efficient, flexible, and simple
solutions. Most of these we have “borrowed” from the software industry but
have applied to the field of verification.

We believe that the verification industry can benefit from the lessons learned
from the software domain. By using industry-standard languages, the verifi-
cation domain can adapt techniques and code from over twenty calendar years

I Features.

An Object-Oriented Framework Xix

XX

of software effort, the scope of which is nothing short of stunning. Many
brilliant people have paved the way in the software field. Although the
field of verification is much younger, we could benefit greatly from
listening, learning, and adapting mature programming techniques to the
production of products of the highest quality.

So why do we provide open-source software at our website,
www.trusster.com? Open-source software is a key to uniting and increas-
ing the productivity of our industry. There is almost no successful closed-
source (“hard macro”) intellectual property (IP), for a good reason.
Without the ability to look at the source and edit as necessary, the task
is much more difficult and the chances for success are slim.

We hope that you enjoy this book—and better yet, find its principles
increasingly useful in daily practice. We look forward to your comments.
Please keep in touch with us at www.trusster.com.

Mike Mintz

Robert Ekendahl

Cambridge, Massachusetts, USA
March 2007

Acknowledgments

Acknowledgments

It takes a village to raise a child, and it takes a village to create a book. There
is a core family, and a few relatives, and a whole lot of helpful neighbors and
friends. Once again, the authors would like to bow humbly to our village—
in particular, to the global verification village.

This, our second book, shares many of the same reviewers and adds some
new ones. They provided great comments on almost every chapter, both
detailed and “big picture,” helping to improve many sections substantially.

Michael Meyer was once again our main technical editor, turning our gib-
berish into English and making clear where we were unclear. This book would
not have been readable without him.

We are truly grateful for all the reviewers, their time, and their suggestions
during both the early and near final stages of the book. In particular, we thank
Ed Arthur, Oswaldo Cadenas, Jesse Craig, Simon Curry, Thomas Franco,
John Hoglund, Mark Goodnature, Tom Jones, James Keithan, Ajeetha
Kumari, David Long, Bryan Morris, Nancy Pratt, Joe Pizzi, Dave Rich, Henrik
Scheuer, Chris Spear, Peter Teng, Thomas Tessier, Greg Tierney, Igor
Tsapenko, Gerry Ventura, Stephanie Waters, and Andrew Zoneball.

We are also grateful for the support and encouragement of the producers of
the HDL simulators. In particular, we thank the following simulator compa-
nies—Cadence, Mentor Graphics, and Synopsys—for providing licenses to
their products, so we could confirm that the examples in this handbook work.

An Object-Oriented Framework XXi

XXii o o o o o o o Hardware Verification with SystemVerilog

Part I:
SystemVerilog and
Verification

(The Why and How)

This part of the handbook explores the use of SystemVerilog for
verification and then look at the benefits and drawbacks of using Sys-
temVerilog. In the next chapter we take a brief tour of the features of
SystemVerilog.

Next, we weave three different themes together: the evolution of pro-
gramming in general, the creation of object-oriented programming (OOP)
techniques, and the evolution of functional verification. The reason we
chose to look at these three themes is to show why OOP exists and how
it can be harnessed to benefit verification.

A major theme of this handbook is to build a verification system in layers.
OOP techniques are well-suited to this approach. In the last chapter of
this section, we’ll look at a canonical verification system by using a
standard approach to building verification components.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 7

Introduction

Coding is a human endeavor. Forget that and
all is lost.

Bjarne Stroustrup, father of C++

There are several books about hardware verification, so what makes
this book different? Put simply, this book is meant to be useful in your
day-to-day work—which is why we refer to it throughout as a handbook.
The authors are like you, cube dwellers, with battle scars from developing
chips. We must cope with impossible schedules, a shortage of people to
do the work, and constantly mutating hardware specifications.

We subtitled this book An Object-Oriented Framework because a major
theme of the book is how to use object-oriented programming (OOP) to
do verification well. We focus on real-world examples, bloopers, and
code snippets. Sure, we talk about programming theory, but the theme
of this book is how to write simpler, adaptable, reusable code. We focus
mainly on OOP techniques because we feel that this is the best way to
manage the ever-increasing complexity of verification. We back this up
with open-source Verification Intellectual Property (VIP), several com-
plete test systems, and scripts to run them.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 1

Chapter 1: Introduction

We cover the following topics:

SystemVerilog as a verification language
A tour of the features and real-world facts about SystemVerilog

How to use OOP to build a flexible and adaptable verification
system

How to use specific OOP techniques to make verification code
both simpler and more adaptable, with reference to actual
situations (both good and bad) that the authors have encountered

Useful SystemVerilog code, both as snippets, complete examples,
and code libraries—all available as open source

This handbook is divided into four major sections:

Part I provides an overview of OOP concepts, then walks through
the transformation of a block-level view of a typical verification
system into code and classes.

Part II describes two free, open-source code libraries that can
serve as a basis for a verification system—or as inspiration for
your own environment. The first, called Teal, is a set of utility
classes and functions. The second, called Truss, is a complete
verification system framework. Both are available as open source
and are available at www.trusster.com.

Part I1I describes how to use OOP to make your team as
productive as possible, how to communicate design intent better,
and how to benefit from “lessons learned” in the software world.

Part IV describes several complete real-world examples that
illustrate the techniques described in the earlier parts of this book.
In these examples we build complete verification environments
with makefiles, scripts, and tests. These examples can serve as
starting points for your own environment.

For the curious, each of the chapters in Part I and Part III ends with a

section called “For Further Reading,” which recommends relevant land-

mark papers and books from both the hardware and software domains.

1

I The references in these sections, though not academically rigorous, should be
sufficient to help you find the most recent versions of these works on the
Internet.

Background

Background

The silicon revolution! has made computers, cell phones, wireless net-
works, and portable MP3 players not only ubiquitous but in a constant
state of evolution. However, the major impediment to introducing new
hardware is no longer the hardware design phase itself, but the verifica-
tion of it.

Costs of $1M or more and delays of three to six months for new hardware
revisions of a large and complex application-specific integrated circuits
(ASICs) are common, providing plenty of incentive to get it right the
first time. Even with field-programmable gate arrays (FPGAs), upgrades
are costly, and debugging an FPGA in the lab is very complex for all but
the simplest designs.

For these reasons, functional verification has emerged as a team effort
to ensure that a chip or system works as intended. However, functional
verification means different things to different people. At the 30,000-
foot level, we write specifications, make schedules, and write test plans.
Mainly, though, we code. This handbook focuses on the coding part.

White papers are published almost daily to document some new verifi-
cation technique. Most of you probably have several papers on your desk
that you want to read. Well, now you can throw away those papers! This
handbook compresses the last ten years of verification techniques into a
few hundred pages. Of course, we don’t actually cover that decade in
detail (after all, this is not a history book), but we have picked the best
techniques we found that actually worked, and reduced them to short
paragraphs and examples.

Because of this compression, we cover a wide variety of topics. The
handbook’s sections range from talking about SystemVerilog, to intro-
ducing OOP, to using OOP at a fairly sophisticated level.

L Moore’s law of 1965 is still largely relevant. See “Cramming more components
onto integrated circuits,” by Gordon Moore, Electronics, Volume 38, Number
8, April 19, 1965.

An Object-Oriented Framework 3

Chapter 1: Introduction

What is Functional Verification?

Asking “what is functional verification?” brings to mind the familiar
poster, “A View of the World from Ninth Avenue,”1
of New York City are predominant and everything beyond is tiny and

in which the streets

insignificant. Every one of us has a different perspective, all of which
are, of course, “correct.” Put simply, functional verification entails build-
ing and running software to make sure that a device under test (DUT, or
in layman’s terms, the chip) operates as intended—before it is mass-
produced and shipped.

We perform a whole range of tasks where the end goal is to create a high
degree of confidence in the functionality of the chip. Mostly we try to
find errors of logic, by subjecting the chip to a wide variety of conditions,
including error cases (where we validate graceful error handling and
ensure that the chip at least does not “lock up”). We also make sure that
the chip meets performance goals, and functions in uncommon combi-
nations of parameters (“corner cases”), and confirm that the chip’s
features—such as the register, interrupt, and memory-map interfaces—
work as specified.

As with the view of New York City, the perspectives of every company,
indeed even of the design and test teams within a company, will naturally
be slightly different. Nevertheless, as long as the chip works as a product,
there are a number of ways to achieve success. That’s why this handbook
does not focus on what the specific tasks are; you know what you have
to do. Rather, we focus on how you can write your code as effectively
as possible, to alleviate the inevitable pain of verification.

. Saul Steinberg, cover of The New Yorker, March 29, 1976.

Why Focus on SystemVerilog?

Why Focus on SystemVerilog?

A major development in the field of functional verification is the increas-
ingly mainstream use of OOP techniques. Basically, those of us in the
verification field need those techniques to handle increasingly complex
tasks effectively. While most of the techniques presented in this handbook
are adaptable to any number of languages such as Vera or C++, we focus
on SystemVerilog—the marriage of the Verilog programming language
with OOP.

At its core, OOP is designed to manage complexity. All other things
being equal, simpler code is better. Because of the flexibility inherent in
using OOP, we can write code that is simpler to use, and therefore more
adaptable. In short, we can write reusable code that outlives its initial use.

This handbook is all about providing techniques, guidelines, and exam-
ples for using SystemVerilog in verification, allowing you to make more
use of some “lessons learned” by software programmers. We distill the
important bits of knowledge and techniques from the software world,
and present them in the light of verification.

A Tour of the Handbook

The four parts of this handbook provide a variety of programming tips
and techniques.

m Part I walks through the main concepts of OOP, introducing how
to transform your high-level “whiteboard” idea for a verification
system into separate roles and responsibilities. The goal is to
build appropriately simple and adaptable verification systems.

] Part II uses these techniques and presents two open-source code
libraries for verification, called Teal and Truss. Teal is a utility
package that is lightweight and framework agnostic. Truss is a
verification framework that encourages the use of the canonical
form described in Part I. Both are used by several companies and
run under most simulators.

An Object-Oriented Framework 5

Chapter 1: Introduction

Part 111 introduces the OOP landscape in a fair amount of detail.
OOP thinking, design, and coding are illustrated by means of code
snippets representative of problems that verification engineers
commonly have to solve.

Part IV provides several complete examples of verification test
systems, providing real-world examples and more details on how
the OOP techniques discussed are actually used. Part IV is all
about code. While a handbook may not be the best vehicle for
describing code, it can be a good reference tool. We show a
relatively simple example of how the verification of a single block
of the ubiquitous UART! can be done. Then we show how this
block-level environment can be expanded to a larger system.

The authors sincerely hope that, by reading this handbook, you will find

useful ideas, techniques, and examples that you can use in your day-to-

day verification coding efforts.

For Further Reading

On the topic of coding well, Writing Solid Code, by Steve
McGuire, is a good tour of the lessons Microsoft has learned.

Principles of Functional Verification, by Andreas Meyer, provides
an introduction to the broad topic of chip verification.

Writing Testbenches: Functional Verification of HDL Models,
Second Edition, by Janick Bergeron, gives another view of the
process of functional verification.

I Universal asynchronous receiver-transmitter.

Why
SystemVerilog?

C H A PTEUR 2

If you want to do buzzword-oriented
programming, you must use a strongly
hyped language.

Mike Johns

We, in the functional verification trade, write code for a living. Well,
we do that, and also puzzle over code that has been written and that has
yet to be written. Because functional verification is a task that only gets
more complex as designs become more complex, the language we work
in determines how well we can cope with this increasing complexity.

The authors believe that SystemVerilog is an appropriate choice for
functional verification, but as with any choice, there are trade-offs. This
chapter discusses the advantages and disadvantages of using System Ver-
ilog for functional verification. We’ll look at the following topics:

m An abbreviated comparison of the languages and libraries
available for functional verification

m Why SystemVerilog is an appropriate choice for verification

Hardware Verification with SystemVerilog: An Object-Oriented Framework 9

Chapter 2: Why SystemVerilog?

Overview

10

m The disadvantages of using SystemVerilog

Coding for functional verification can be separated into two parts. One
is the generic programming part, and the other is the chip testing part.
The generic part includes writing structures, functions, and interactions,
using techniques such as OOP to manage complexity. The chip testing
partincludes connecting to the chip, running many threads, and managing
random variables.

The generic programming part becomes more and more crucial as the
complexity of the hardware to be tested grows. While the problem of
connecting to a more complex chip tends to grow only linearly, the overall
problem of dealing with this increased complexity grows exponentially.

The authors believe the generic part of programming is served reasonably
by SystemVerilog. The language’s features and expressive capabilities
make it usable for functional verification. As will be discussed in detail
in later sections, the downside is that the language is immature, and
compliance from one simulator to the next is inconsistent.

While SystemVerilog might be a little rough around the edges, it is a
good way for those who are mainly hardware oriented to learn OOP. As
with Verilog, threading is built in, and connection to the chip is relatively
well thought out. Realize though, that the actual percentage of code
devoted to these tasks is small.

These tasks of HDL connection and parallel execution generally increase
linearly with the complexity of the chip. In other words, there are more
wires to connect, more independent threads to run, more variables to
constrain, and so on.

By contrast, it is much more difficult to make the complexity of a chip
increase only linearly. So, as a verification system gets bigger, things
tend to get out of hand quickly. Our ability to understand a complex
verification system is often more important than how we actually connect
to the hardware description language (HDL) wires.

SystemVerilog as a Verification Language

So this handbook concentrates on the “How to make the code reasonable”
part of programming. Sure, our examples are multithreaded and use
virtual interfaces,1 but the bulk of this handbook is about how to write
understandable code.

SystemVerilog as a Verification Language

Several attempts have been made to move verification away from HDLs,
such as Verilog or VHDL.? An HDL does a good job of spanning design
concepts (called the register transfer level, or RTL) down to a few
primitives that are used in great numbers to implement a design (called
the gate level). However, HDLs are not adept at “moving up” in abstrac-
tion level to handle modern programming techniques. HDLs are con-
cerned with creating silicon, not with programming. Specifically, HDLs
do not provide for object-oriented concepts.

SystemVerilog makes a step in this direction, and can be used to verify
a chip. However, it is not clear that such a large span of concepts as
SystemVerilog tries to cover can be integrated well into a single language.
This handbook provides advice and examples that the authors believe
will maximize the programming features of the language, while mini-

mizing the “clunky” parts.

Not surprisingly, there are many choices and trade-offs when you choose
a verification language. The table on the following page briefly lists the
pros and cons of various languages suitable for verification.

I We talk about virtual interfaces in the next chapter, but for now just know that
they are the way to connect HDL wires with testbench OOP code.
2. VHSIC (Very High-Speed Integrated Circuit) HDL.

An Object-Oriented Framework 11

Chapter 2: Why SystemVerilog?

12

Language

Verilog, VHDL

Pros

Simple, no extra license
required

Cons

No class concept, no
separation of verification
and chip concerns

Cadence Specman

W

e

Rich feature set

Effectively proprietary,
nonorthogonal language
design

OpenVera

0O0P—“like”, better feature
set than HDL

Effectively proprietary,
interpreted, lacking full OOP
support

SystemVerilog

IEEE standard, OOP features,
one simulator does HDL and
HVL, C interface

Covers all aspects from gates
to OOP, implementation
compliance is weak,
language is large, yet lacking
full OOP support

SystemC (C++)

Mature language, open
source, most often does not
need a simulator

Big footprint, focus is on
modeling, heavy use of
templating, coverage and
constraint system dominates
coding, long compile times,
clumsy connection to HDL

Teal/Truss
(C++ form)

Mature language, good use of
C++, open source, few
source files

Not a product, no inherent
automatic garbage collection

Homegrown PLI/C

Free, well known

Not usually multithreaded,
usually called from HDL as a
utility function

As we stress repeatedly through this handbook, the team
must decide what features of which languages to use, and
how. This handbook will show how best to use SystemVerilog’s

OOP features.

Main Benefits of Using SystemVerilog

Main Benefits of Using SystemVerilog

A major benefit of SystemVerilog is that it provides a relatively painless
introduction to OOP, allowing you to use as little or much of OOP as you
feel comfortable with. To this end, SystemVerilog allows the concept of
“code interface” versus “implementation,” allowing someone reusing
code to concentrate on the features the code provides, not on how the
code is actually implemented.

SystemVerilog is well-marketed, with several books and experts. (A
quick web search for “SystemVerilog” yielded over 365,000 references.)
The language is a good stepping stone from Verilog to OOP, reusing a
fair amount of the Verilog syntax.

Furthermore, SystemVerilog vendors are developing useful debugging
tools, and because SystemVerilog can coexist with Verilog and VHDL,
existing HDL code can be integrated easily.

Many companies have behavioral c-models of their core algorithms. For
models with a simple integral interface, the DPI' can be used to run the
code in SystemVerilog. Note that the current compliance and feature set
are spotty, so be prepared that you may have to rewrite the code in
SystemVerilog.

SystemVerilog allows a clean separation between HDL and OOP con-
cerns. As will be explained further in the next chapter, the use of the
virtual interface feature, along with new keywords such as class
and local, can be used to support the OOP concerns.

Drawbacks of Using SystemVerilog

While there are many benefits to using SystemVerilog, there are naturally
drawbacks as in any language. One drawback is that, by itself, System-
Verilog is not a solution. Even with the open-source verification libraries
of Teal and Truss, you have to write code in a new language.

I Direct Programming Interface—SystemVerilog’s API for connecting to C, and
by extension to C++.

An Object-Oriented Framework 13

Chapter 2: Why SystemVerilog?

Another drawback, ironically, is that SystemVerilog is a rich language—
with the “dangerous” power that this implies. There are many features
and even sublanguages. Figuring out which subset to use is a daunting
task.

Consequently, it can take time to learn how to use SystemVerilog effec-
tively, even with the help of good FAE! teams from EDA? companies
giving presentations on the language and their design methodology. You
will have to find your own techniques within SystemVerilog. This, by
the way, is not necessarily a bad thing.

The purpose of this handbook is to lessen the effects of these drawbacks—
by providing proven OOP techniques from the software world, and by
illustrating, through real examples, how they are applicable to functional
verification.

SystemVerilog Traps and Pitfalls

This section of the handbook will probably be the most controversial.
We will talk about the current state of the SystemVerilog language.

We do not advocate using every feature in the language. Perhaps, over
time, the benefits of the features will bear out. But because this language
is immature, there are some areas where caution is advised.

SystemVerilog is not Verilog

14

Realize that SystemVerilog and Verilog are two separate languages.
While there is movement within the language committees to join the two
languages together, this will happen in 2008 at the earliest. Why does
this affect you? SystemVerilog has, for the most part, Verilog behavior
(and its warts), but there are differences.

For example, the SystemVerilog language reserves new keywords that
are likely to make your Verilog code fail to compile. Fortunately, simu-
lator vendors provide a way to tag files as either Verilog or SystemVerilog.

I Field applications engineer.
2. Electronic design automation.

SystemVerilog Traps and Pitfalls

Errors and run-time crashes

When you code in a new language, there will be syntax and run-time
errors. The majority of the time the compiler will be correct. However,
remember that the language is young and the compliance is evolving, so
do not spend a large amount of time debugging. Do not be shy about
calling your local FAE. To be more clear, the authors and the FAEs are
on a first-name basis.

Five languages in one!

As you start to learn SystemVerilog, it becomes clear that several lan-
guages are melded into one. SystemVerilog includes a synthesizable
subset, an assertions language, a constraint language, a coverage lan-
guage, and an OOP language. Whew!

Each of these sublanguages has its own syntax, semantics, and features,
with a limited sharing of idioms. Because this handbook is focused on
OOP for verification, we will discuss only the SystemVerilog OOP
sublanguage.

With the exception of the synthesizable subset and OOP, these other
features have not been proven universally necessary. They might work
great for specific situations but not for most others. In the next sections,
we present arguments why they may not withstand the test of time.

The assertions language

The authors have used assertions for years. Well, to be clear, we have
used nontemporal assertions. These are simple boolean expressions that
must be true, otherwise the simulation ends. The following is an example:

assert (request && grant);

This use is fairly straightforward. However, as soon as time is involved,
the assertions can become quite complex, approaching the impenetrable.1

sequence gABC; a ##1 b ##[0:5] c; endsequence : gABC
property pEnded; not (gABC.ended); endproperty : pEnded

I This example is from a forum on www.verificationguild.com.

An Object-Oriented Framework 15

Chapter 2: Why SystemVerilog?

first match (gA23B).pEnded) [-> c;

The mental effort required to understand such constructs is large. The
mental effort to write such constructs is an order of magnitude larger.
This means that only a few engineers are able to create assertions. The
authors have worked in languages where the complexity of the language
created a “priesthood,” where only the anointed could understand the
actual meaning of the code. While this might create a sense of job security
for the priests, it is never good for accuracy and efficiency, because it
stops discussions about the code.

In addition, often the assertion-writing effort itself is equal to—or
exceeds—the actual design-coding effort. While it’s true that formal
tools! can then be used, the effort required can be large compared to the
payoff. This was tried in the software domain, complete with formal
program proofs, but such proofs are no longer used.

Temporal assertions are complicated to write and
understand. Make sure that the HDL complexity requires
their use.

The constraint language

16

In verification, randomization is essential. Unfortunately, it can be dif-
ficult to control the parameters that manage the randomization. (This
topic is discussed in detail in later chapters.) It certainly is not clear that
we, as an industry, understand enough about managing randomization to
have a “best” solution. The random-number management solution used
in SystemVerilog includes a constraint language. It is unclear to the
authors that this is a benefit. Sure, at some level we have to constrain
random numbers to a range (or disjoint ranges), and possibly skew the
distribution so that it is nonuniform. However, adding a declarative
sublanguage within a procedural verification language is not an obvious
win. The declarative language may look deceptively procedural. In addi-
tion to requiring the verifier to learn an HVL, the application of hierar-
chical and overlapping constraints is not intuitive.

I Yes, commercial assertion libraries for standard protocols—when available—
can sometimes be useful, but beware: writing your own can be tricky!

SystemVerilog Traps and Pitfalls

For example, in one company we used the recommended method of
extending a class to add constraints. This is “obvious” in theory, but in
a real system one often cannot find, or keep in mind, all the classes and
their subclasses. We kept adding constraints that conflicted at run time,
and other testers added constraints to a class that many people were
already using—even though the added constraints were applicable to
only a single test. Finally, we decided that all constraints were to be local

to a class, and not in the inherited classes.!

There are two techniques the authors have used successfully to perform
constraints. One technique uses procedural code to set up min/max
variables for constraining the random variable, and the other uses a
forward declaration on a constraint. The first technique will be used in
the examples, and so is not discussed further here. For the forward
declaration technique, we declare a constraint test, without a body, in
every class that has random behavior.

class ethernet packet;

///method and data declarations

int packet size;

constraint test; //no implementation in this class
endclass

class usb generator;

int device id;

constraint test; //no implementation in this class

endclass

Then in the actual test case, we implement the specific class’s test
constraint that we need.

//in test <some test name>.sv we now define constraints
constraint ethernet packet::test { packet size == 218;}
constraint usb generator::test {device id == 4;}

//the rest of the test code

This allows each test case to have “knobs,” to control the code as
appropriate.

I Don’t worry if these terms are a bit confusing in this paragraph. They will be
explained in the next chapter.

An Object-Oriented Framework 17

Chapter 2: Why SystemVerilog?

Use constraints sparingly, either as a min/ max bounds or as
an unimplemented constraint that a test may use.

The coverage language

18

In addition to using constraints to guide the randomization, System Ver-
ilog adds a coverage sublanguage. While coverage is a good idea in theory
and is a well-marketed concept, the authors are not certain that the
industry has a clear need for it as implemented. It is a relatively simple
matter to collect data, but many questions remain:

] Do you keep the time at which the coverage event occurred?

m How do you fold a large coverage range (such as an integer or a
real) into coverage bins?

m What is the relationship between the covered events and the
constraints that control the randomization?

These points show the difficulty in using coverage. They are inherent
issues with functional coverage, as contrasted with line, toggle or expres-
sion coverage. Since humans define what the function of a chip is, humans
need to define the coverage of these functions. In other words, it can
never be simpler than defining what the chip does, which is not an easy
task.

There is one more question:

m Will your company delay the chip tape-out or FPGA! delivery if
coverage goals are not met?

This last question is critical. Be honest in your assessment. After many
years of working on chip projects, it’s our honest assessment that most
companies would be fiscally delinquent if a product were delayed because
of the possibility of some bugs.2 The factis that acompany needs revenue,
and the chip should have been tested adequately for basic market features
at least—assuming the verification team is reasonably competent. If the
team isn’t, your company has more pressing problems to deal with.

One final point: It’s common for software drivers to have to work around
major deficiencies in a chip, as well to work around minor deficiencies

L Field-programmable gate array.
2 Now of course, there are exceptions. The medical and space industry come to
mind.

SystemVerilog Traps and Pitfalls

in many chips. If the chip runs and even performs a subset of the features
adequately, your company will sell it and make revenue.

So why use coverage at all? Coverage is good for your configuration
parameters. There are modes, such as baud_rate, data_width, and so
on, that are set once and then used throughout the test run. By looking
at coverage data, you can see that your basic data-flow tests are properly
walking the configuration space of the chip.

Use coverage in SystemVerilog as part of your basic data-flow
tests, but be careful: This coverage does not necessarily

increase the productivity of your team. Write directed tests
(without coverage) for specific cases and data-flow patterns.

SystemVerilog features not discussed

SystemVerilog has many features, some of which are essentially vendor-
specific. Other features are just not universally implemented or well
thought out. In this section we’ll enumerate some of these features.

Within SystemVerilog, templating in the OOP sublanguage is like using
parameters in HDL. While an interesting feature, the vendor support for
templating is weak and real-world proofs are even weaker. Templating
makes SystemVerilog OOP code more complex, and does not map to
C++ templating, which is well-proven.

The bind construct is a fairly loose part of the specification at present.
It is also primarily used to connect SystemVerilog assertions to the
synthesizable subset, so it is not a focus for verification coders. It is also
a declarative construct, making it inappropriate for run-time configura-
tions.

There are many more minor features of SystemVerilog, such as wild
equality, the ref concept, clocking blocks on interfaces, and new
datatypes such as byte, shortreal, int union, enum, and string.
Searching through the SystemVerilog specification for terms such as
“SystemVerilog adds” and “SystemVerilog introduces” will produce a
fairly complete list. Because this handbook is concerned primarily with
OOP and SystemVerilog, we will not discuss these features further here.

An Object-Oriented Framework 19

Chapter 2: Why SystemVerilog?

Summary

This chapter made the case for using SystemVerilog as a verification
language. We took a quick look at some other options and then enumer-
ated why SystemVerilog was appropriate.

The main point of this chapter is that SystemVerilog is a relatively easy
path from Verilog to OOP.

Because SystemVerilog is a new and evolving language, we spent a fair
amount of time presenting notes of caution. We also took note of spe-
cialized and new features that are not in the mainstream of OOP.

For Further Reading

20

m Software Engineering: A Practitioner's Approach, by Roger S.
Pressman, has a great section on the evolution of programming.
This handbook also has references to landmark papers and books.

m The SystemC and Testbuilder manuals have discussions on why
C++ is good for verification. SystemC information can be found
at www.systemc.org, and Testbuilder information can be found at
www.testbuilder.net.

] Teal and Truss were initially documented in the authors’ other
book, “Hardware Verification with C++:A Practitioner’s
Approach. The current version of the source code for C++ and
SystemVerilog is available on www.trusster.com.

] There are several standards for verification and simulation, such
as 1800 for SystemVerilog, IEEE 1364-1999 (for VHDL), IEEE
1995-2001 (for Verilog), IEEE 1076, and IEEE 1647 (for the
IEEE version of Cadence Specman “e”). The website
www.openvera.org provides the OpenVera specification.

] There are a growing number of books devoted to coding in
SystemVerilog. One book that the authors have used is
SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, by Chris Spear. It is a good look at most of
SystemVerilog’s features. (Note that this book is specific to
Synopsys, so caveat emptor.)

For Further Reading

m If you want to learn more about SystemVerilog assertions,
consider the SystemVerilog Assertions Handbook by Ben Cohen,
Srinivasan Venkataramanan, and Ajeetha Kumari.

u If you want a detailed look at the evolution of the SystemVerilog
language, sign up for the SystemVerilog Testbench Extension
Committee mailing list, at http://eda.org/sv-ec.

u Stuart Sutherland has a great paper (from SNUG! Boston 2006)
titled “Standard Gotchas: Subtleties in Verilog and SystemVerilog
That Every Engineer Should Know,” available at http://
www.sutherland.com/papers.html.

I Synopsis Users Group.

An Object-Oriented Framework 21

22 e e 0o 0 0 0 0 Hardware Verification with SystemVerilog

OOP and
SystemVerilog

C H AP TER 3

Progress has not followed a straight
ascending line, but a spiral with rhythms of
progress and retrogression, of evolution and
dissolution.

Johann Wolfgang von Goethe

The idea of progress in the art and science of verification seems simple
enough —until you look at how progress is made. It is rarely a single
person, technique, or language that moves us forward to simpler code,
while handling ever more-complex chips. Rather, it is a swinging, jump-
ing roller-coaster that we are on. OOP is just another of those twists and
turns along the ride of progress.

This chapter looks at why and how object-oriented programming was
developed, and reflects on why OOP is the right choice for managing the
increasing complexity of verification. It then shows how OOP is
expressed in SystemVerilog. The OOP techniques shown in this chapter
are used throughout the remainder of this handbook.

Hardware Verification with SystemVerilog: An Object-Oriented Framework 23

Chapter 3: OOP and SystemVerilog

Overview

24

OOP is a programming technique that is often touted as a cure-all for
verification. While it is true that OOP is an essential tool in a program-
mer’s toolbox, itis by no means the mostimportant one. One’s experience,
intelligence, and team environment are far more important to the success
of verification than any language feature or technique. That said, OOP
is a useful tool for communicating and enforcing design intent for large
projects and teams, in addition to being a good way to build adaptable,
maintainable, and reusable code.

This handbook is intended for those having at least some familiarity with
the concept of OOP. Many verification engineers already have some
experience with OOP through languages such as C++, Vera, Specman
“e,” or SystemC.

The first part of this chapter looks at the history of OOP and why it is
well-suited to functional verification. The second part shows how Sys-
temVerilog expresses the most common elements of OOP.

For readers with limited experience in OOP, there are a few suggestions
at the end of this chapter. If you have at least some experience with OOP,
or if some time has passed since you used it last, then don’t worry!

Some of the aspects presented in this and subsequent chapters might
seem confusing at first, but Part II of this handbook shows a complete
working verification environment. It is the authors’ hope and intent that
you will “copy and paste” from this environment as well as from the
examples provided.1 This handbook is designed to give you a jump start
on using SystemVerilog without having to design every class from
scratch.

The “basic” OOP techniques expressed in this chapter are important, and
form the basis of the fancier techniques in Part III of the handbook.

I Code is freely available at www.trusster.com.

The Evolution of OOP and SystemVerilog

The Evolution of OOP and SystemVerilog

OOP techniques have been proven to help large programming teams
handle code complexity. One key to coping with such complexity is the
ability to express the intent of the code, thus allowing individual pro-
grammers to develop their part of the code more effectively. This under-
standing of intent allows programmers to build upon already working
code, and to understand the overall structure more easily.

Assembly programming: The early days

Programming has changed a lot over the years. It started with the use of
assembly 1anguage1 as a way to express a “simple” shorthand notation
for the underlying machine language. This simple abstraction allowed
programmers to focus on the problem at hand, instead of on the menial
and error-prone task of writing each instruction as a hexadecimal or octal
integer. Simply put, abstraction allowed an individual programmer to
become more productive.

Here is an example of some assembly language:

MOV.W R3, #100

MOV.L R1, #7865DB
loop: ADDQ.W R1, #4

TST.W R1, R2

BNZ loop

Procedural languages: The next big step

With the increase in complexity of the problems programmers were asked
to handle, procedural languages such as FORTRAN,2 C, and Pascal were
developed. These procedural languages became very popular and allowed
individual programmers to become highly productive.

Here is an example of FORTRAN,? a common procedural language:

I The first assembly language was created by Grace Hopper in 1948.

2- For FORmula TRANGslator, created by John W. Backus in 1952.

3. Okay, you got us—this is actually FORTRAN 77, the “new” FORTRAN (ANSI
X3.9, 1978).

An Object-Oriented Framework 25

Chapter 3: OOP and SystemVerilog

DO 3, LOoop =1, 10

READ *, MGRADE, AVERAGE

IF (.NOT. (AVERAGE .GT. 6.0 E —1)) THEN
PRINT *, 'Failing average of ', AVERAGE
STOP

ELSE
PRINT *, 'Passing average of', AVERAGE
AVERAGE = (MGRADE / 1 E 2) + AVERAGE

END IF

3 CONTINUE

Interestingly, as the size of the programs grew, the focus of programming
switched from the productivity of the individual to the productivity of
the larger team. It was found that procedural languages were not well-
suited to large programming efforts, because communicating the intent
of the code was difficult. OOP, with its ability to build classes upon
classes and define interfaces, proved an effective response to this prob-
lem.

OOP: Inheritance for functionality

By necessity, OOP developed in stages. The first stage focused on what
is often called data hiding or data abstraction. This is a way to organize
large amounts of code into more manageable pieces. With large amounts
of procedural code, it became very complicated to keep track of all
structures and the procedures that could operate on those structures. It
was also hard to expand, in an organized way, upon existing code without
directly editing the code—a process that, as we all know, is error prone.

To address these problems, a language called Simula was developed in
1967. This language is recognized as the first language to introduce
object-oriented concepts.

SystemVerilog has this lineage, with ways to organize data structures
and the functions that operate on those structures. This organizational
concept is called a class (loosely based on Simula’s class). The tasks and
functions, now scoped within a class, are called methods. In addition,
SystemVerilog included ways for one class to expand upon another
through inheritance (also from Simula).

26

The Evolution of OOP and SystemVerilog

The very essence of OOP is the ability to specify similarities
and differences in code constructs relatively easily.

Classes allowed for the grouping of code with data, while inheritance
allowed a way to express increasingly intricate functionality through the
reuse of smaller working modules. This technique is often called inher-
itance for functionality. (Later in this chapter, we’ll show how System-
Verilog expresses both of these features—grouping into classes and reuse
through inheritance—in more detail.) This new approach was sort of like
the Industrial Revolution of the programming world, increasing team
productivity by an order of magnitude.

Classes helped improve the productivity of programming teams by orga-
nizing the code in layers—with one layer inheriting from, and enhancing
upon, a lower layer. This meant that the code could now be “reasoned
about.” With “reasonable” code, changes and bug fixes could be made
only to the appropriate lines, without the changes echoing, or propagating
undesirably, throughout all of the code.

Furthermore, as code was structured into layers through hierarchy trees,
several patterns became visible. For example, it became clear that certain
layers were not involved with manipulating the data (in the classes)
directly, but rather with ordering, structuring, and tracking events.

These framework layers became more and more important to understand-
ing the system. To get a large program to be “reasonable,” more and more
standard infrastructure was needed. These framework layers had no
“interest” in how the actual data were manipulated; rather, the important
feature was that now the data could be assumed to be manipulated in
predefined ways.

As an example, as long as each class in a particular framework layer had
astart () orarandomization () function, working with classes of that
type was reasonable. As these framework layers were written, it became
clear that they could be generalized as long as each class followed the
rules for that type of “component.”

An Object-Oriented Framework 27

Chapter 3: OOP and SystemVerilog

OOP: Inheritance for interface

So how to get a class to “follow the rules” of a framework component?
What is needed is a language-enforced way to express the rules that a
class had to follow in order to “fit in.” The solution, known as virtual-
ization, is included in SystemVerilog. With virtualization one could
define classes called virtual base classes; these simply express the code
interface to which a component must conform, in order to fit into the

larger system.

Each developer of the actual classes that fit in a particular structure would
then inherit from this virtual base class, and implement the details for
how a particular function should be implemented for the problem at hand.
This technique of defining the code interface through virtualization, often
called inheritance for interface, is frequently used in OOP-based
projects.

The clever thing is that now one could write the code for the framework
layer using virtual base classes. This not only allowed the framework to
be implemented concurrently with the data-based classes, but it also
allowed the framework layer to be developed in a much more generic
way. This virtualization of base classes has proven to be a powerful
technique for creating and maintaining large and complex systems.

A word or two about “interface”

28

It is unfortunate that SystemVerilog has a keyword called interface.
This is because “interface” is a common term in OOP for expressing the
class items (data and methods) with which a user is concerned. This is
also called the public part of a class, but interface is a more wide-spread
term. We will talk more about the SystemVerilog interface at the end
of this chapter.

So, in this handbook, we will mostly use the phrase “code interface” to
refer to the public code of a class, and use interface (in that weird code
font) to indicate the SystemVerilog keyword. When we feel the context
is sufficient, we may omit the distinction here and there.

The Evolution of Functional Verification

The Evolution of Functional Verification

Verification through inspection

There are similarities with the development of OOP and that of functional
verification, and while hardware verification is a younger field than
software programming, it has (not surprisingly) followed a similar path.

As readers of this handbook surely know, functional verification has
come a long way from its recent humble beginning as a (mostly manual)
process of verifying simulation waveforms. From there, it evolved into
“golden” files; a current simulation run was compared to a known-to-be-
good result file—the golden file. For this technique to work it required
fixed stimuli, often provided in simple text format. Golden files were an
acceptable technique for small designs, where the complete design could
be tested exhaustively through a few simulation runs.

Verification through randomness

The simple technique of using golden files became impossible to use as
the size of the hardware being tested grew both in size and complexity,
so other techniques were needed. For larger projects it was no longer
possible to test the “state space” of a chip completely. To do so would
require an unobtainable amount of computer time, even on the fastest
machines. To address the reality that the chips being developed could no
longer be tested exhaustively, random testing was introduced. Using
randomness in tests changes the input stimuli every time a test is run.
The goal is to cover as much of the state space as possible through ongoing
regression runs.

Unfortunately, several problems were found in using randomness with
current hardware description languages (such as Verilog or VHDL). To
begin with, the result checking became more complex as golden files
could no longer be used (because the input stimuli changed for each run).
This meant that verification models that could predict the outcome from
any set of input stimuli were needed. Writing these models has become
a major task for the verification projects of today.

An Object-Oriented Framework 29

Chapter 3: OOP and SystemVerilog

However, this technique also posed other problems. It was discovered
that using randomness was a tricky thing. If you use random stimuli and
your testing fails because of a hardware bug, then you later would want
to rerun the exact same sequence of stimuli to verify that the bug has
been solved. This is more easily said than done.

You can record all the stimuli that generated the test run, then use some
mechanism to replay the stimuli later; alternatively, you can track the
“seed” from which the (pseudo) random generator starts and then pass
that number into your next simulation run.

Both techniques can be problematic, because storing all the generated
stimuli requires a lot of disk space and directory infrastructure, and
because controlling randomness through a seed requires good control
over your “random” generator.

The current most common solution to this problem is to control and store
the “random” seed, then use it to replay a given stimuli sequence over
and over.

The emergence of
hardware verification languages

30

We can see that controlling the generation of random stimuli requires
many things. We need verification models that can predict results from
any given set of stimuli. We also need control over how the random
generator works, to be able to replay a given stimuli sequence. It was
found thatusing HDL languages, such as Verilog and VHDL, was difficult
with respect both to writing high-level models quickly and controlling
randomness. In Verilog, for example, it was not obvious how to control
the random seed back in 1987.

As a result, people started looking at other languages for verification.
The natural first step was connecting C to Verilog, but soon languages
such as “e” and Vera were introduced. These languages made it easier
to do random testing, in turn making it possible to test much larger chips.

The Evolution of Functional Verification

OOP: A current trend in verification

The problems we are facing today in verification are similar to the
problems software faced when OOP was adopted. We now have to deal
with very large amounts of code and multitudes of modules, all of which
must be compiled, instantiated, controlled, randomized, and run. This is
not an easy task, and we spend more and more time solving these basic
framework problems. Specman “e” and Vera were early and proprietary
entries in OOP-enabled hardware verification languages (HVLs). Sys-
temVerilog is the latest entry, and promises a multivendor descendency.

It seems clear that adopting OOP techniques should help make these
problems more manageable. Unfortunately, there are still not enough
people in the field of verification who have sufficient experience and
understanding of how to develop an appropriate OOP infrastructure.

Engineers in our field are just starting to adopt OOP techniques. The
main reason for this book is to show verification techniques through
“OO0P glasses.”

OOP: A possible next step

The field of verification is young; not long ago we were staring at
waveforms on a screen. By using modern verification languages we have
developed the field into something better. However, today we are facing
even harder problems, one of which is the issue of the framework. To do
a job that is increasingly complex, we need a framework for how our
verification environment is interconnected. This is no longer an easy
thing to achieve. In this handbook we show many techniques for how to
manage this and other problems. We also introduce an open-source
verification framework, called Truss, which collects our best experience
in OOP into a working environment.

It is our belief that if enough people adopt a powerful open-source
infrastructure, many great innovations will result. The problem we face
today cannot be solved by the features of individual languages alone;
rather, we need an agreed-upon framework. Even if this framework were
modified by each team, it still provides the opportunity for best practices
to evolve. This handbook, and the associated open-source code, is our
attempt to start the discussion.

An Object-Oriented Framework 31

Chapter 3: OOP and SystemVerilog

However, we are getting ahead of ourselves, so before we dive into the
practical problem of verification, let’s look at how SystemVerilog
expresses OOP techniques.

OOP and SystemVerilog

This section shows how SystemVerilog expresses the OOP concepts
described above. It describes some of the techniques we use to build a
successful verification environment in later chapters. For engineers expe-
rienced with other OOP languages such as C++, Vera or “e,” this chapter
can serve as a way to map concepts from one language to another.

Data abstraction through classes

32

Using classes to express data abstraction is an important technique in
building large verification systems. Data abstraction, by grouping the
data and the operations together, allows engineers to reason about the
code.

We will look at a direct memory access (DMA) descriptor class to show
how a class can be constructed, then evolved by means of inheritance.

A DMA descriptor example

DMA is a common hardware feature for transferring data from one
memory location to another without putting a load on the CPU. In this
example, we verify a DMA chip that accepts DMA descriptors, puts them
into an on-chip memory array, and then executes them. Each descriptor
has a source and destination memory address, as well as the number of
bytes (called “length”) to transfer.

In the verification environment, a DMA descriptor could be represented
by a small class. The DMA generator is then responsible for building,
or instantiating, DMA descriptors and “pushing” them to the chip and
to the checker.

OOP and SystemVerilog

The following code describes the DMA descriptor class:

class descriptor;
//Constructor
extern function new (int src, int dest,

int length, int status);

//Code (or Public) Interface:
extern virtual function void print();
int source address ; //public as an example!
extern virtual function bit equal (descriptor d);
//Implementation (or local and protected) interface:
extern local virtual function int unique id ();
protected int destination address ;
protected int length ;
protected int status ;
protected int verif id ;

endclass

The descriptor class is divided into the code (or public) interface and the
implementation (or local and protected) interface, as shown by the access
control level on each line. The next section will explain what access
control labels are for.

Access control

The keywords protected and local, as used in the descriptor class,
are SystemVerilog access control labels. They indicate how methods and
variables following the statements can be used. The absence of a label
indicates that the methods and variables that follow are publicly acces-
sible by any code that has access to an instance of the class.! A local
label indicates that only the code inside the class itself can access the

variable or method.

The keyword protected indicates a private variable or method that can
be modified through inheritance. Public, local, and protected can be used
to express and enforce the intent of the class quite clearly.

I This is an unfortunate default, as a vast majority of classes will have far fewer
public methods and variables compared to the local and protected code used to
implement the class. Be prepared to type “local” and “protected” a lot.

An Object-Oriented Framework 33

Chapter 3: OOP and SystemVerilog

34

Access control is needed to help separate the user or code interface from
both the internal methods and the data needed to implement the class.
Consequently, the public section of a class declaration is the “code
interface.” These are the interesting methods and variables to look at
when you want to use a new class. When you implement a class, on the
other hand, you also need a space to store the “state” of your class between
method calls. This is done in local or protected scope.

Implementing a class is similar to implementing a state machine, where
each method call changes the state of the state machine (that is, modifies
the data members of the class). This “change of state” must be recorded
somehow. Variables for tracking the state as well as intermediate methods
should be put in the local scope, not only to indicate to users that they
shouldn’t focus on these methods and variables, but also to protect these
variables from accidentally being modified. When a class is instantiated,
only the public methods and calls can be accessed. Trying to access local
scope results in an error during compilation. This is an example of how
language enforces the “intent” of the class.

Enforcing intent can (and should) go beyond protecting state variables.
For example, instead of printing an error message during run-time, when
the code calls internal implementation-detail methods, one should
declare those methods to be in local scope, so that a compile error occurs
instead.!

Constructors

When a class is instantiated, the special function new () is called. This
special function is the constructor. A constructor is used to initialize
member variables, reserve memory, and initialize the class.

So how do you actually create an instance of a class? Consider our
descriptor class for a moment. The class could be instantiated as follows:

I Note that SystemVerilog does access checking first, then resolution checking.
This is unfortunate, as it means the code can behave differently when the
access control is changed. This problem is discussed in detail in the book The
Design and Evolution of C++.

OOP and SystemVerilog

descriptor descriptorl = new (source addr,
destination_ addr,

source, length);
descriptor descriptor2;
descriptor?2 = descriptorl;//point to the