
© 2017 Synopsys, Inc. 1

Formality Jumpstart Training

扫码可进资料分享群

© 2017 Synopsys, Inc. 2

CONFIDENTIAL INFORMATION
The following material is being disclosed to you pursuant to a non-disclosure agreement
between you or your employer and Synopsys. Information disclosed in this presentation may be
used only as permitted under such an agreement.

LEGAL NOTICE
Information contained in this presentation reflects Synopsys plans as of the date of this
presentation. Such plans are subject to completion and are subject to change. Products may be
offered and purchased only pursuant to an authorized quote and purchase order. Synopsys is
not obligated to develop the software with the features and functionality discussed in the
materials.

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 3

Formality Mission Statement

If Design Compiler reads, optimizes, or writes, Formality must verify.
• Primary Goal – Highest design QoR in a verifiable flow

– Verification of all Design Compiler Ultra default optimizations
• No need to turn off optimizations to pass equivalence checking

– Lockstep language support (Verilog, SystemVerilog, or VHDL)
– Low power (UPF) design support

• Secondary Goal – Time to results
– Auto-setup environment for Design Compiler Ultra
– Less manual setup
– Continuous improvement in performance and capacity

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 4

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 5

Glossary

• Reference Design
– The golden design versus the design
– Usually the RTL (Verilog, SystemVerilog, or VHDL)
– Simulated and known to be good

• Implementation Design
– The modified design versus the reference design

• Containers
– A Formality database consisting of designs and libraries
– The default reference container ‘r’
– The default implementation container ‘I’
– Any Formality versions can be used to save and read

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 6

Equivalence Checking

• Assumes that the reference design is functionally correct
• Determines if the implementation design is functionally equivalent to the reference design

– Provides counter examples if designs are functionally different
• Checks are mathematically exhaustive with no missing corner cases
• Does not require test vectors

Reference
Design

Implementation
Design

?

Functionally
Equivalent?

module top (…);
always @ (posedge clk)
.
.
.
endmodule

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 7

Equivalence Checking in The Flow

Synthesis

Physical Synthesis

Detailed Place/Route

Formality

…
RTL

Static Rule Checker
LEDA

Dynamic/Semi-Formal Verification
• Magellan – Property/Model Checking
• Vera – Testbench Automation
• VCS – Verilog Simulation
• VCS MX – VHDL Simulation
• VCS NLP – Low Power simulation

Customer Usage Model
• Simulates RTL first
• Identifies problems early with static

and dynamic RTL verification
• Uses equivalence checking

throughout the flow – not just at
tape-out

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 8

• Logic Cones and Compare Points
– Common Compare Points

• Primary output
• Register or latch
• Input of a black box

– Less Common Compare Points
• Multiply-driven net
• Loop
• Cutpoint

– Logic Cone
• A block of combinational logic that drives a compare point

Key Equivalence Checking Concepts

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 9

Logic Cone

Logic
Cone

BB
BB

Compare Point

Inputs to a logic cone

• Register Output Pins
• Primary Input Ports
• Black-Box Output Pins

Compare Points

• Registers
• Primary Output Ports
• Black-Box Input Pins

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 10

Formality breaks the reference and implementation designs
into compare points, each with its own logic cone

Logic Cones and Compare Points

D Q
BB

Determining Compare Points

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 11

Formality Flow Overview

MATCH : Aligns (map) corresponding
compare points between the two designs

VERIFY : Checks functionality of each
compare point pair

REF

IMP

LIB

Formality Equivalence Checker

DEBUG : GUI and Reports

READ: Partitions reference and
implementation designs into logic cones
and compare points

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 12

The Design Read Cycle

Breaks Designs into Logic Cones
Reference Design Implementation Design

REF IMP

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 13

The Matching Cycle

Matches corresponding points between designs
Reference Design Implementation Design

a_reg[31] a_reg_31_

Logic
Cone

BB

BB
Logic
Cone

BB

BB

These points matchautomatically

Most compare points match by name. For those
compare points that do not need guidance
information, matching is performed manually or
by compare rules.

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 14

The Matching Cycle

Matched Cone
User Specified Matched Cone
Unmatched Cone

Reference Design Implementation Design

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 15

The Verification Cycle

Verifies logical equivalence for each logic cone
Reference Design Implementation Design

Passing Cone
Failing Cone
Unmatched Cone

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 16

The Debug Cycle

1

a_reg_31_

1

1

a_reg[31]

0

Isolates implementation errors

Reference Design Cone Implementation Design Cone

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 17

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 18

Invoking Formality

• To run a typical Formality Tcl script
% fm_shell –f runme.fms |tee runme.log

• To start the GUI from UNIX
% formality
or
% fm_shell –gui –f runme.fms |tee runme.log

• To start the GUI within a batch session
fm_shell (setup)> start_gui

• To view other invocation options
% fm_shell -help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 19

Files That Formality Generates

• Record of commands issued
– fm_shell_command.log

• Log file that stores informational messages
–formality.log

• Working files
– FM_WORK directory
– fm_shell_command.lck and formality.lck
– Formality automatically deletes all working files when you exit the tool (gracefully)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 20

Formality Setup File

• Formality reads the .synopsys_fm.setup file when invoked.
• A typical setup file contains commands such as:

– set search_path “. ./lib ./netlists ./rtl”
– alias h history

• Formality reads this file from the following locations:
– The Formality installation directory:

– formality_root/admin/setup/.synopsys_fm.setup
– Your home directory
– The current working directory

• The setup is a cumulative effect of all three files.

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 21

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 22

Formality Flow Overview

6: Debug

5: Verify

4: Match

Start

End

Y
N

1: Read Reference
Design + Libraries

3: Setup

2:Read Implementation
Design + Libraries

1: Link Design
set_top

0: Guidance
Read in automated setup file (SVF)

Success?

1: Load Reference UPF

2: Load Implementation UPF

2: Link Design
set_top

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 23

The Formality GUI

GUI is recommended for new users
• Guides you through the flow
• Contains context-sensitive help
• Tabs for each step of the flow
• Do not have to remember the Tcl syntax
• Displays the corresponding Tcl commands
• Stores GUI preferences in the
~/.synopsys_fmg folder

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 24

Formality Low Power Capabilities

• Complete low-power static verification solution
• Adheres to IEEE 1801 (UPF)
• Comprehensive low-power checks

– Verifies all legal power states as defined in the power
state table

– Including power-up and power-down states
– Supports advanced low-power design techniques
– Supports special low-power cells

• VCLP support for static low-power rule checking

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 25

Low Power Verification Flow

• Data Requirements
– RTL and UPF must be simulated with Synopsys tool

VCS NLP
– Design Compiler netlist can be either Verilog or DDC
– UPF must be from the Design Compiler command
save_upf

– Technology libraries
– Power aware cells must have power pins and power down

functions
– Formality can create power pins for standard logic function

cells

Implementation Equivalence
Checking

RTL
UPF

PG
Netlist

Ref

Formality
Impl

Ref

Formality
Impl

Design Compiler
Power Compiler

IC Compiler

Gate
UPF’

Ref

Formality
Impl

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 26

A Basic Formality Script
#Step 0: Guidance
set_svf default.svf

#Step 1: Read Reference Design
read_verilog -r alu.v
set_top alu
load_upf –r alu.upf

#Step 2: Read Implementation Design
read_db –i lsi_10k.db
read_verilog -i alu.fast.vg
set_top -auto
load_upf –I alu.fast.upf

#Step 3: Setup
#No setup required here

#Steps 4 & 5: Match and Verify
verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 27

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 28

What is Guidance?

• SVF – Automated Guidance Setup file
• Hints passed from Design Compiler to Formality

– Automatically generated by Design Compiler
– Contains both setup and guidance information
– Reduces user setup effort and errors
– Removes unnecessary verification iterations

• SVF data is implicitly or explicitly proven in Formality
or it is not used

• Using the SVF flow is recommended
– Required when verifying a netlist containing retiming,

register merging, or register inversions

Formality

Design Compiler
Ultra

RTL and
Netlist Guided

Setup

Tcl Syntax
Operation1:
Operation2:
Operation3:
Operation4:

…

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 29

Guidance File Contents

• SVF contains the following information:
– Object name changes
– Constant register optimizations
– Duplicate and merged registers
– Multiplier and divider architecture types
– Datapath transformations
– Finite State Machine (FSM) re-encoding
– Retiming
– Register phase inversion

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 30

Using the Automated Setup File

• By default, Design Compiler names the automated setup file default.svf
– To specify the name, use the set_svf file.svf command in Design Compiler

• Formality uses the same command to read automated setup files: set_svf file.svf
– Specifies one file, multiple files, or a directory
– Specifies SVF guidance using the design name
– Automatically determines multiple SVF file processing order
– Places the formality_svf directory in the current working directory

– Creates ASCII text version “svf.txt”

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 31

Using Feature: Auto Setup Mode

• Variable: set synopsys_auto_setup true
– Assumptions made in Design Compiler are also made in Formality
– Increases out-of-the-box (OOTB) verification success rate
– Set the auto setup variable before using the set_svf file.svf command

• Works with or without the SVF, does more with SVF
– Handles undriven signals like synthesis
– RTL interpretation like synthesis
– Auto-enable clock-gating and auto-disable scan (requires SVF)

• You can overwrite the SVF passed variables and commands
– Transcript summary shows variable settings
– Variables take the last value that was set

• Selectively controls auto setup using synopsys_auto_setup_filter
• You must not use auto setup mode for gate-to-gate verifications

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 32

What Auto Setup Mode Does

• Runs the following commands by default (and more):
– set hdlin_error_on_mismatch_message false
– set hdlin_ignore_parallel_case false
– set hdlin_ignore_full_case false
– set svf_ignore_unqualified_fsm_information false
– set verification_set_undriven_signals synthesis
– set verification_verify_directly_undriven_output false
– set hdlin_ignore_embedded_configuration true
– set signature_analysis_allow_subset_match false
– set upf_assume_related_supply_default_primary true
– set upf_use_additional_db_attributes true

• Design Compiler places additional setup information in the SVF
– Clock-gating notification
– Scan mode disable information

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 33

Benefits of Auto Setup Mode

• Formality is easier to use
• Reduces the need for debugging

– A large percentage of failing verifications are “false failures” caused by incorrect or missing setup in
Formality

• Improves productivity
– Dramatically reduces manual setup

• Simplifies overall verification effort

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 34

Formality Script Generator

• The fm_mk_script command automatically generates Formality Tcl script using information
in the SVF

• Syntax:
fm_mk_script <svf…> [-o[utput] <file>]

where
<svf…> : List of SVF files or directory
-o[utput] : Specifies the output script to be created. The default is fm_mk_script.tcl

• Examples:
– The fm_mk_script default.svf command creates the fm_mk_script.tcl script.
– The fm_mk_script default.svf –output fm.tcl command creates the fm.tcl script

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 35

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 36

Read Commands

• Formality input formats:
– Verilog (synthesizable subset) -read_verilog
– VHDL (synthesizable subset) -read_vhdl
– SystemVerilog (synthesizable subset) -read_sverilog
– Synopsys Milkyway -read_milkyway
– Synopsys binary files -read_db, read_ddc
– UPF Files -load_upf

• Designs are read into containers
-r # default reference container
-i # default implementation container
-container containerID # Other container name

• Links top level of design by using the set_top command
– Loads all required designs and libraries before running the set_top command
– Elaborates each container before loading subsequent containers

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 37

Reading in Libraries

• Verilog Simulation Libraries
– Use the -vcs option of the read_verilog command

Example: read_verilog –i top.vg –vcs “-y ./lib +libext+.v”

• Design Libraries
– Use read_verilog –tech design.v or read_vhdl –tech design.vhd
– Subsequent containers will have access to this library
– Use the -r or -i options to place library only within the specified containers

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 38

Reading in Libraries

• Synopsys binary libraries (.db file format libraries)
– Use the read_db command

Example: read_db lsi_10k.db
– Shared technology libraries
– Subsequent containers will have access to this library
– Use the -r or -i options to place the library in the reference or implementation containers

• Instantiated DesignWare components
– Set the hdlin_dwroot variable to the top level of Design Compiler software tree

• Note that pure RTL does not require any component library

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 39

Linking and Referencing Designs

• After reading the source files, use the set_top command to elaborate or link the design and
designate the top-level module.

– Using default containers (r and i), the set_top command automatically designates which design is
reference or implementation.

– Using nondefault container names, specify which container is reference or implementation.
– set_reference_design
– set_implementation_design

• After set_top has been completed,
– The $ref Tcl variable specifies the reference design
– The $impl Tcl variable specifies the implementation design

• The syntax of $ref and $impl is:
– ContainerName:/Library/Design
– Examples:

r:/DESIGN/chip
i:/WORK/alu_0

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 40

Reference Design

• The read_verilog command loads design into a container
– The -r option signifies the (default) reference container

• This script does not load a technology library into the reference container
– The file alu.v is pure RTL (no mapped logic)

• The set_top –auto command finds and links the top-level module
– The set_top command uses the current container (r)
– The top-level module found by Formality is “alu”
– Since the current container is “r”, Formality automatically sets the set_reference_design variable
($ref) to r:/WORK/alu

– WORK is the default library name

fm_shell (setup)> read_verilog –r alu.v
fm_shell (setup)> set_top -auto

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 41

Reading and Linking
Example
read_ver -r { controller.v multiplier.v top.v}
…
set_top r:/WORK/top
Setting top design to 'r:/WORK/top' Status: Elaborating design top ...
Warning: Cannot link cell '/WORK/top/add1' to its reference design 'adder'. (FE-LINK-2)
Warning: Cannot link cell '/WORK/top/add2' to its reference design 'adder'. (FE-LINK-2)
Status: Elaborating design controller ...
Error: Unresolved references detected during link. (FM-234)
Error: Failed to set top design to 'r:/WORK/top' (FM-156)

0
read_ver -r adder.v
No target library specified, default is WORK
Loading verilog file '/…/rtl/adder.v'

1
set_top r:/WORK/top
Setting top design to 'r:/WORK/top'
Status: Elaborating design adder ...
Status: Implementing inferred operators...
Top design successfully set to 'r:/WORK/top'
Reference design set to 'r:/WORK/top'

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 42

Implementation Design

• The read_verilog command loads the implementation design.
– The -i option specifies the (default) implementation container.

• The read_db command loads the technology library class.db
– Because the -i option is specified, this library is visible only in the implementation container

• The set_top command links top-level module alu_0
– The script reads both design and technology library before set_top
– The set_top command uses the current container (“i”)
– Since the current design is “i”, Formality automatically sets the implementation design variable
($impl) to i:/WORK/alu_0

– WORK is the default library name
– The script specifies that the top-level module is alu_0

fm_shell (setup)> read_verilog –i alu.vg
fm_shell (setup)> read_db –i class.db
fm_shell (setup)> set_top alu_0

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 43

Simulation-Style Verilog Read

• The read_verilog supports VCS style switches.
read_verilog –r top.v -vcs “switches”

where “switches” include:
-y <directory_name>: Searches <directory_name> for unresolved modules.
-v <file_name>: Searches <file_name> for unresolved modules.
+libext+<extension>: Looks at files with this extension, typically “.v” or “.h”.
+define+: Defines values for Verilog parameters.
+incdir <dirname>: Directory containing `include files.
-f <file_name>: VCS option file supported.

• Use the -vcs option only once for each container.

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 44

Reading and Writing Containers

• Command: write_container
– Saves all design information in the current elaborated state, including libraries, to a file
– Recommended: Run the set_top command before saving the container

– Can save without running the set_top command using the –pre_set_top option

• Command: read_container
– Restores a design

• Recommended to save containers before running match
– SVF processing can change the contents of the container

• Complete containers can be used with any version of Formality

fm_shell> write_container –replace -r ref.fsc
fm_shell> read_container –r ref.fsc

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 45

Loading Low Power Data

• Use the load_upf command after running the set_top command
• Example script for RTL and UPF versus Post-DC-Netlist+UPF

read_db {low_power_library.db special_lp_cells.db}

read_verilog –r {top.v block1.v block2.v block3.v}

set_top r:/WORK/top

load_upf –r top.upf

read_verilog –i {post_dc_netlist.v} set_top i:/WORK/top

load_upf –i top_post_dc.upf

• Formality modifies the reference or implementation design to meet the specification implied by
the UPF commands

• UPF commands cannot be issued interactively

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 46

Save and Restore Session

• Use after verification to save the current state of Formality.
• Commonly used to debug failing verification in a separate Formality run
• Saved sessions are not portable across Formality releases

fm_shell> save_session –replace mysession_file
fm_shell> restore_session mysession_file.fss

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 47

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 48

Setup Needed for Verification

• Guidance might be needed for matching and verification
– Recommended: Use the automated setup file (SVF)

– Essential for retiming, register merging, or register inversion

• Design transformations that might need setup:
– Internal Scan
– Boundary Scan
– Clock-gating
– Clock Tree Buffering
– Finite State Machine (FSM) Re-encoding
– Black boxes

• Auto Setup Mode handles most setup automatically
–set synopsys_auto_setup true

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 49

Internal Scan: What is it?

• Implemented by DFT Compiler
– Replaces flip-flops with scan flip-flops
– Connects scan flip-flops into shift registers or “scan chains”

• The scan chains make it easier to set and observe the state of registers internal to a design for
manufacturing test

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 50

Internal Scan: Why it Requires Attention?

The additional logic added during scan insertion changes
the combinational function

D Q D Q D Qdata_in data_out

clk

data_out
scan_out

data_in
scan_in

scan_en

D Q
si so
se

D Q
si so
se

D Q
si so
se

clk
Pre-Scan

Post-Scan

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 51

Internal Scan: How to Deal With it?

• Determine which ports disable the scan circuitry
– Default for DFT Compiler is test_se

• Set those ports to the inactive state using the set_constant command

fm_shell (setup) > set_constant i:/WORK/TOP/test_se 0

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 52

Boundary Scan: What is it?

• Boundary scan involves the addition of logic to a design
– The added logic makes it possible to set and or observe the logic values at the primary inputs and

outputs (the boundaries) of a chip
– Used in manufacturing test at board and system level
– Added by BSD Compiler

• Boundary scan is also referred to as
– The IEEE 1149.1 specification
– JTAG

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 53

Boundary Scan: Why it Requires Attention?
• The logic cones at the primary outputs are different.
• The logic cones driven by primary inputs are different.
• The design has extra state holding elements.

Pre-Boundary Scan Post-Boundary Scan

out2

out3

out1data1

data2

data3

out2

Controller

out3

out1data1

data2

data3
Tap DQ

DQ

DQ

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 54

Boundary Scan: How to Deal With it?

• Disable the Boundary scan:
– If the design has an optional asynchronous TAP reset pin (such as TRSTZ or TRSTN), use
set_constant on the pin to disable the scan cells.

– If the design has only the 4 mandatory TAP inputs (TMS, TCK, TDI and TDO), then force an internal
net of the design using the set_constant command.

fm_shell (setup) > set_constant i:/WORK/TOP/TRSTZ 0
fm_shell (setup) > set_constant i:/WORK/alu/somenet 0

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 55

Clock-Gating: What is it?

• Added by Power Compiler
• Adding logic in a register’s clock path, which disables the clock when the register output is not

changing
• Saves power by not clocking register cells unnecessarily

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 56

Clock-Gating
Before Clock-Gating

Data In Data Out

Register Bank

Q

CLK

Data In Data Out

Register Bank

clken

DQQ

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 57

Clock-Gating: Why is it an Issue?

• Without intervention, compare points will fail verification
– A compare point is created for each clock-gating latch

– This compare point does not have a matching point in the other design and will fail
– The logic feeding the clock input of the register bank has changed

– The register bank compare points will fail

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 58

Clock-Gating: How to Deal With it?

• set verification_clock_gate_hold_mode low
– Use option low or any if the clock-gating net drives the clock pin of positive edge-triggered DFF
– If the clock-gating net also drives primary outputs or black-box inputs, use the
collapse_all_cg_cells option

– Use the set_clock command to identify the primary input clock net if clock-gating cells do not drive
any clock pin of a DFF

• Auto setup mode enables clock-gating by default
• Use the following variable only if clock-gating verification issues continue:

set verification_clock_gate_edge_analysis true

fm_shell (setup)> set verification_clock_gate_hold_mode low

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 59

Clock Tree Buffering

Clock tree buffering is the adding of buffers in the clock path
to allow the clock signal to drive large loads.

clk

PreBuffering

blocka

top

ff1

ff2

ff3

clk
D Q

clk
D Q

clk
D Q

D Q

D Q

D Q

clk

PostBuffering

blockaclk_buf

top

ff1

ff2

ff3

clk1

clk2

clk3

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 60

Clock Tree Buffering: How to Deal With it?

• Verification at the top level requires no setup
• When verifying at “blocka” sub-block level, use the set_user_match command to show

that the buffered clock pins are equivalent

fm_shell (setup)> set_reference_design r:/WORK/blocka
fm_shell (setup)> set_implementation_design i:/WORK/blocka
fm_shell (setup)> set_user_match r:/WORK/blocka/clk \
i:/WORK/blocka/clk1 \
i:/WORK/blocka/clk2 \
i:/WORK/blocka/clk3
fm_shell (setup)> verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 61

Finite State Machine Re-encoding

• Verify that the re-encoding in the automated setup file (SVF) is correct
– View the ASCII file: ./formality_svf/svf.txt

• Enable the use of this setup information in Formality
• Auto setup mode will enable use of this FSM information by default

fm_shell> set svf_ignore_unqualified_fsm_information false

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 62

Black Boxes

• A black box is a module or entity which contains no logic
– The following modules that are not verified

– Analog circuitry
– Memory devices

– Match black boxes between reference and implementation

Top_ref

Mod_a Ram (Black Box)

Top_imp

Mod_a Ram (Black Box)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 63

How Are Black Boxes Created?

• RTL modules that have only I/O port declarations are read
• Library .db cells with port and timing information only

– Typically a memory
• Missing a piece of design and are using this variable:

–set hdlin_unresolved_modules black_box

• Usage of other variable when reading in designs:
–set hdlin_interface_only “SRAM* dram16x8”
– Any module beginning with SRAM and the dram16x8 module will become a black box

• Declare a sub-design as a black box
–set_black_box designID

• Command report_black_boxes shows list of black boxes

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 64

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 65

Matching Compare Points

• The first thing match does is verify and apply the guidance (SVF) if set
– The guidance makes the subsequent matching and verification far easier
– Far less manual setup
– Better completion

• With Formality 2014.09 and onwards, “applying the SVF” step can be done separately using
preverify command

• The “applying the SVF” is only done once
– If match has previously been run, a subsequent match will not apply the SVF again
– If preverify has previously been run, a subsequent match will not apply the SVF again

fm_shell (setup)> match

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 66

Matching Compare Points

• The match command is optional
– The verify command will also run matching
– Recommendation:

– For interactive work, use the match command for feedback
– Omit the match command from scripts to reduce runtime

• Name matching algorithms are used first
• Remaining unmatched points matched by signature analysis

– Includes structural techniques
– Signature analysis might be turned off (but not recommended)

• Any remaining unmatched points are then reported
– User can specify compare rules or can manually set matches

• Use of the SVF flow improves name matching performance and completion
– Matches points by name without user intervention

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 67

GUI Unmatched Point Report

Select two points and set match
Create a compare rule

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 68

Compare Rules

• When names change in predictable ways, write a compare rule.
• Use SED syntax to translate names in one design to the

corresponding names in the other design:

fm_shell (match)> set_compare_rule $ref \
–from {i_tv80_core} -to {}

fm_shell (match)> match

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 69

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 70

Verify Implementation Design

• Runs Formality’s verification algorithms on compare points
– Formality deploys many different solvers
– Each solver uses a different algorithm to prove equivalence or nonequivalence

• Four possible results:
– Succeeded: Implementation is equivalent to the reference
– Failed: Implementation is not equivalent to the reference

True logic difference, or setup problem

– Inconclusive: No points failed, but analysis is incomplete
Might be due to timeout or complexity

– Not run: A problem earlier in the flow prevented verification from running at all

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 71

Verify Implementation Design (contd…)

• For each matched pair of compare points, Formality
– Confirms same functionality of logic cones
– Marks point as “passed”
Or
– Determines that functionality is different between logic cones
– Finds one or more “counter examples” that shows different response at compare point
– Marks the compare point as “failed”

• All valid compare points are verified
– Constant registers are not verified
– “Unread” compare points are not verified by default

– Unread points do not affect other compare points or primary outputs

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 72

Verify Example

• Verification is incremental
– Verification can continue again after being stopped
– You might match additional compare points manually and continue with verification
– To force verification of entire design: verify -restart

• Options:
– Verification of single compare point
– Verification against a constant: verify $ref/cp –constant0
– Use set_dont_verify to exclude points from verification

fm_shell (match)> verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 73

Controlling Verification Runtimes

• set verification_timeout_limit hrs:min:sec
– Halts entire verification after a specified time
– 36 CPU hours is default limit (0:0:0 means no timeout)
– Remaining unverified compare points are not attempted

• set verification_failing_point_limit number
– Halts verification after specified number of compare points fail (default is 20 failing compare points)
– Allows you to correct for any missing setup
– Allows you to begin debugging failing compare points

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 74

Controlling Verification Runtimes

• set verification_effort_level [super_low | low | medium | high]
– Specifies amount of effort spent solving a compare point (the default is high)
– Using super_low finds failing compare points quickly but will also produce several aborted

compare points

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 75

Hierarchical Verification

• Command write_hierarchical_verification_script
– Formality generates Tcl script that performs hierarchical verification on current reference and

implementation designs
– Helpful for debugging large and hard-to-verify designs
– Usage:

set_top i:/WORK/top set_constant $impl/test_se 0
write_hier –replace –level 3 myhierscript

source myhierscript.tcl

quit
– View results in the file fm_myhierscript.log

– Formality will create one session file (by default) if verification fails on a sub-design

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 76

Multicore Support

• Specify up to 4 cores with a single license
• Support for UPF designs and auto-factoring

– Legacy distributed processing did not support UPF or auto-factoring
• Single command for setup:
set_host_options -max_cores num_cores

• New command for reporting maximum number of cores: report_host_options

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 77

Multicore Support (contd…)

• Measure performance using wall clock time
– Use new Formality command: elapsed_time
– Shows “wall clock” seconds since session started
– Continues to run even when session is idle
– Use immediately after verify command to find total seconds for verification
– Do not use Formality command: cputime

– Adds up all CPU time of child processes serially

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 78

Alternate Verification Strategies For Resolving Hard
Compare Points
• Two new variables are introduced to enable alternate strategies

set verification_alternate_strategy <>

– Default is “none” which uses the standard strategy
– Setting value other than “none” enables an alternate verification solver flow

• Read-only variable
verification_alternate_strategy_names

– Contains list of names of all alternate strategies
– The names of the strategies, their number, and their functions might vary from release
to release of Formality

fm_shell (setup)> printvar verification_alternate_strategy_names =
“none m1 s2 s3 s1 l2 s6 s10 l1 l3 s8 s4 s5 k1 k2 s7 s9”

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 79

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 80

Example of Typical Formality Script
set search_path “. ./rtl ./lib ./netlist”
set synopsys_auto_setup true
set hdlin_dwroot /tools/syn/E-2010.12

set_svf default.svf

read_verilog -r "fifo.v gray_counter.v \
pop_ctrl.v push_ctrl.v rs_flop.v"

set_top fifo

read_db –i tcb013ghpwc.db
read_verilog -i fifo.vg
set_top fifo

set_constant $impl/test_se 0

verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 81

Find the problem in this script

Debugging: Problem 1

read_verilog -r alu.v
set_top alu

read_verilog -i alu.fast.vg
set_top alu
read_db –i class.db

verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 82

Debugging: Problem 2

Find the problem in this script
read_verilog -r alu.v

read_db –i class.db
read_verilog -i alu.fast.vg

set_top r:/WORK/alu
set_top i:/WORK/alu

verify

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 83

Debugging Flow

• Step 1: Look at the transcript for clues
• Step 2: Use debugging tools and commands
• Step 3: Identify and resolve problem areas
• Step 4: Try the verification again
• Step 5: Ask for help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 84

Debugging Flow Chart
Start

Resolve black boxes
and design issues

Unexplained
unmatched

points?

Check for rejected
SVF operations

Check setup

Choose point
to debug

Run Analyze

Display logic
cone

Display
pattern
window

Finish

Isolate
difference

Problem
identified?

Consider using
synopsys_auto_setup

Review the transcript
for important
messages

Y

N

Y

Y

SVF flow
being
used?

N

N

Y

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 85

Steps of Debugging

• Check for Warning Signs
– Check for simulation or synthesis mismatch errors
– Check RTL interpretation messages in transcript
– Were full_case and parallel_cases pragmas interpreted?
– Check for black-box warnings in the transcript

• Check for rejected SVF guidance commands
• Check for unmatched compare points

– Are unmatched compare points present only in implementation?
– Are clock-gating latches found?

• Is there a setup problem? Did you disable scan?
• Try using Auto Setup Mode

–set synopsys_auto_setup true

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 86

Debugging Tools: analyze_points

• Provides debugging guidance for failing or hard to verify compare points
• Command: analyze_points

– Options for failing verifications: -failing , -all
– Options for hard verifications: -aborted , -unverified , -no_operator_svp , -all
– Takes a single or list of compare points as an argument

• Report command: report_analysis_results
– Option: -summary

• Variable: verification_run_analyze_points
– False is default
– When enabled, runs analyze_points –all

• For hard-to-verify compare points, the analyze_points command looks at datapath
specific SVF operations involved with the logic cone

– Produces Design Compiler Tcl script command: set_verification_priority
– Targets specific blocks, instances, or arithmetic operators
– Turns off specific optimizations
– Improves verification success
– Minimizes QoR impact

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 87

Debugging Tools: analyze_points (contd…)
Guidance for Failing Verifications

fm_shell (verify)> analyze_points -failing

*********************************** Analysis Results ***********************************
Found 1 Unconstrained Implementation Input

Unmatched input ports in the implementation typically result
from test logic insertion. Constraining the unmatched ports
to a constant value may correct the failures.

i:/WORK/bc_top/test_se

Unmatched in the implementation cones for 20 compare point(s):
i:/WORK/abc_top/text_in_r_reg_112_
i:/WORK/abc_top/us22/sbox2/dreg_reg_2_
i:/WORK/abc_top/us22/sbox2/dreg_reg_4_
i:/WORK/abc_top/us22/sbox2/dreg_reg_7_

{…}

Try adding this command before verify:
set_constant i:/WORK/abc_top/test_se 0

**
Analysis Completed

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 88

Debugging Tools: analyze_points (contd…)
Guidance for Hard Verifications

*********************************** Analysis Results ***********************************
Found 1 Hard Datapath Component Module

These modules contain arithmetic operators that may be contributing to hard verifications.
Lowering the Design Compiler optimization level for the these modules may permit
verification to succeed.

r:/WORK/top in file /remote/fmcae4/users/rtl/test.v

Module with datapath cell(s):
r:/WORK/top/DP_OP_23J1_125_5602

Try adding the following command(s) to your Design Compiler script right before the
first compile_ultra command:

current_design top
set_verification_priority [get_cells { add_28 mult_28 sub_28 }]

**
Analysis Completed

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 89

Debugging Tools: analyze_points (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 90

Debugging Tools: analyze_points (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 91

Debugging Tools: Pattern Viewer

• Formality automatically creates sets of vectors to illustrate failures at the compare point
– These counter examples are failing patterns
– Failing patterns are applied on the inputs of each logic cone
– Proof of nonequivalence performed mathematically
– No failing patterns exist for passing or hard to verify compare points

• Viewing the logic cone inputs and failing patterns are extremely helpful in debugging

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 92

Debugging Tools: Pattern Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 93

Debugging Tools: Pattern Viewer (contd…)

• Allows quick identification of issues with setup and matching
– For this example, note failure when scan enable “test_se” has “1” value
– Try using set_constant $impl/test_se 0 for a successful verification

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 94

Debugging Tools: Pattern Viewer (contd…)
Failing Compare

Point
values annotated

Vector Annotated in
Schematic (logic cone

view)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 95

Debugging Tools: Logic Cone Viewer

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 96

Debugging Tools: Logic Cone Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 97

Debugging Tools: Logic Cone Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 98

Debugging Tools: Logic Cone Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 99

Debugging Tools: Logic Cone Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 100

Debugging Tools: Logic Cone Viewer (contd…)

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 101

Debugging Tools: Prune

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 102

Correlation From Logic Cone to Pattern Viewer

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 103

Viewing RTL Source From Schematics

Select Cell,
Popup Menu,

and View
Source

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 104

Source Code Browser

Gate and line number
highlighted

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 105

Don’t Care Conditions

• In synthesis, the X state is considered as don’t care and Design Compiler is free to choose 1
or 0

• By default in Formality, X is interpreted same as synthesis
• The variable verification_passing_mode controls how X will compare

– verification_passing_mode consistency
– Default: Ref:X = Impl:1 ; Ref:X = Impl:0

– verification_passing_mode equality
– Ref:X fails against Impl:1 or Impl:0

• consistency asymmetric : If RTL-to-gates passes, gates-to-RTL can fail
• Mode equality useful when comparing RTL-to-RTL

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 106

Formality Don’t Care Symbol

– When don’t care (DC in figure) pin is 1; out is X . When don’t care (DC in figure) is 0; out is F.

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 107

Queued Setup Commands

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 108

Debugging Tools: Dual Design Browser

• Reference and implementation browser now integrated together
• Search feature

– “Find Matching” feature
– Select an object and find corresponding object in other container

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 109

Agenda

Introduction to Equivalence Checking
Using Formality
Flow Overview
Guidance
Read
Setup
Match
Verify
Debug
Documentation and Help

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 110

Formality Online Help

• Click on a hyperlink in the transcript, or use the man command

• Variable sh_man_browser_mode controls the GUI opening the browser for man command

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 111

Formality Online Help
Web Browser Window

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 112

Help For Commands and Variables

• Three important commands for getting help:
printvar
– Displays the value of a Tcl variable
– Accepts wildcards
help
– Displays brief description of a Formality command
– Accepts wildcards
man
– Displays detailed information about a Formality command, Tcl variable, warning, or error message
– Does not accept wildcards

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 113

Help Examples

fm_shell (setup)> read_verilog –r r400.v
Error: Can't open file r400.v (FM-016)
0

N. Messages Command
fm_shell (setup)> man FM-016
messages

Reference

NAME
FM-016 (error) Can't open file %s.

DESCRIPTION
The specified file does not exist or cannot be created.

WHAT NEXT
Verify that you specified the correct filename and that you

have permission to open and create files.

fm_shell (setup)> help report_con*

report_constants # Report user specified constants

report_constraint # Reports on the defined constraints

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 114

Command Editing and Completion

• The Tcl shell supports powerful command editing and completion capabilities
– Command completion with “Tab”
– Use up and down arrow keys for moving through command stack

fm_shell (setup)> read_v
read_verilog read_vhdl

fm_shell (setup)> read_verilog

Press Tab key
Enter “e” and
Press Tab key

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 115

Sources For Information

• SolvNet Website: https://solvnet.synopsys.com/
– Formality release notes and user guides
– Online training
– Articles
– Reference Methodology Guides

– https://solvnet.synopsys.com/rmgen/
– Design Compiler and Formality Tcl scripts
– IC Compiler and Formality Tcl script

• Synopsys Website:
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx

Synopsys Confidential Information

扫码可进资料分享群

© 2017 Synopsys, Inc. 116

Predictable Success

Synopsys Confidential Information

扫码可进资料分享群

