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Welcome to this presentation. It is designed to give you an understanding of:

* Advanced Design System (ADS) and RF Design Environment (RFDE) Phase-
locked loop (PLL) simulation capabilities.

* PLL component behavioral modeling in Agilent ADS and RFDE
 Agilent ADS and RFDE post-processing capabilities
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Introduction

» Agilent ADS and RFDE capabilities for simulating
PLLs

* PLL component behavioral modeling
» Agilent ADS and RFDE post-processing capabilities
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Outline

» Basic phase-locked loop (PLL) operation

Fractional-N PLL operation and simulation

Behavioral modeling of a phase/frequency detector

« Simulating jitter in a transistor-level PFD and charge
pump

* Behavioral modeling of a VCO/divide-by-N

* Modeling an accumulator with Ptolemy

+ Sigma-delta modulators

» Simulating a PLL with a sigma-delta modulator

* Adding phase noise to the VCO
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Basic Phase-Locked Loop
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This phase-locked loop consists of a reference source, phase/frequency detector,
charge pump, loop filter, VCO, and divider. If the divide ratio is a constant, then the
loop will operate to force the VCO signal frequency to be exactly N times the
reference signal frequency. The phase/frequency detector and charge pump act to
output either positive or negative charge “pulses” depending on whether the
reference signal phase leads or lags the divided VCO signal phase. These charge
pulses are integrated by the loop filter to generate a tuning voltage. The tuning
voltage forces the VCO frequency up or down, such that the reference signal and
divided signal phases are synchronized.

Phase-locked loops are used as frequency synthesizers in many applications, where it
is necessary to generate a precise signal frequency with low spurs and good phase
noise. A VCO’s signal frequency can be changed by varying the reference signal
frequency or the divide ratio. Often, the reference signal is a very stable oscillator
whose frequency cannot be varied. So the divide ratio is changed in integer steps to
change the VCO frequency.
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Problem with Basic Phase-Locked Loop

N can only have integer values, so

Fvco=..., (N'Z)* FREF y (N'1 )* FREF P N* FREF P (N+1)* FREF y mun

The smallest frequency change in F,,.4 that can be made is
1*F rer

What if you need finer frequency resolution?
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One limitation with this type of phase-locked loop is that the VCO frequency cannot
be varied in steps any smaller than the reference frequency. (Although you could put
a 1/M divider between the reference signal and the phase/frequency detector, in
which case the VCO output frequency would be N*Fref/M.) Due to mismatches in
the PLL’s charge pump and other factors such as the non-ideal behavior of
phase/frequency detectors, even when the loop is locked, the charge pump still
outputs small charge pulses which cause sidebands or spurs to appear in the VCO
output spectrum, at offset frequencies equal to the reference frequency. So, for fine
frequency resolution, you want a small reference frequency. But this will cause
spurs to be generated at a smaller offset frequency from the VCO, meaning they will
require that a narrower loop filter bandwidth be used to filter them. PLLs with
narrower loop bandwidths have longer transient settling times (the time required to
transition from one frequency to another) and such loops may not operate at the
required speed. Reference 1 has a discussion of PLL settling time requirements.
Also, the narrower the PLL’s loop bandwidth, the less the VCO’s phase noise is
supressed.
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Fractional-N Synthesizer Overcomes
Frequency Resolution Problem

Periodically change divide ratio between N and N+1:
Average Fyco = [Ty*N*Frep +T . (N+1)*Freel/(Ty +Ty.4)
= [N +(Tyu)(Ty +T yoq)*Frer
= [N +Fraction]*F g,

Divide ratio versus time:

S N I I O B N

TN TN+1
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An approach to achieving finer frequency resolution than the reference frequency is
fractional-N synthesis. In this approach, the divide ratio is varied periodically

between two integer values.
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Fractional-N Synthesizer Phase-Locked
Loop

In steady-state, average F,-o=(N+Fraction)*Fgge

vCo
»| Phase/
Frequency
Detector and LPF
/\/ Charge Pump
Ref.
- N /+(N +1)
| Divider Modulus Control |

Overflow
When an overflow occurs,

the divide ratio changes

from N to N+1.
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This type of PLL can be modeled (as described in reference number 2, at the end of
this presentation) using an accumulator that sums the desired fraction to itself each
reference clock cycle. While the accumulator is not overflowing (its accumulated
sum is less than its capacity) the overflow output is 0, and the divider divides by N.
When the accumulator reaches its capacity, it overflows, and the divide ratio is set to
N+1. If the desired fraction is about 0.1, then the accumulator will only overflow
about once every 10th reference clock cycle. If the desired fraction is about 0.5, then
the accumulator will overflow about every other reference clock cycle.

With fractional-N PLLs, the signals at the input to the phase/frequency detector are
not at the same frequency. The reference signal is at Fref, and the divided VCO
signal is at (1 + fraction/N)*Fref. Referred to the VCO, this frequency difference
means that the phase of the VCO advances at a rate of “fraction” radians per
reference clock cycle faster than a signal at frequency N*Fref. The accumulator
sums this fraction once per reference clock cycle, so it accumulates at the same rate
that the VCO phase difference advances. An accumulator overflow occurs at the
same time the VCO phase difference (relative to a signal at N*Fref) reaches 2pi
radians. When the accumulator overflows, the divide ratio is increased to N+1 for
one cycle. This subtracts 2pi/N radians from the divided VCO signal, so the phases
of the two signals at the input to the phase/frequency detector are again equal. The
phase difference between the two signals at the input to the phase/frequency detector
should increase and be reset to zero at the same rate that the accumulator sum
increases and overflows.
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Co-simulation allows numeric processing to be included in simulations along with
traditional circuit simulators that solve Kirchoff’s Current Law equations. On this
top-level schematic, various parameters are set, such as the reference frequency, the
simulation time step, the bit width of the accumulator, the nominal divide ratio, and
the fraction. The desired fraction is set equal to the constant value that is the input to
the accumulator. The five, timed sink components collect data to be displayed after
the simulation.
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The design of this PLL, including choosing the phase margin, which determines the
component values, is described in the Franceschino paper (reference 1). The unity-
gain frequency may be set by a single variable from which all the filter component
values are computed. For this paper, the unity-gain frequency is set to 20 kHz.

While designers would like to see phase-locked loops modeled at the transistor level,
this is usually impractical unless you are willing to tolerate days-long simulation
times. PLLs are so difficult to simulate because there are widely-varying
frequencies present and logic circuits that require a small simulation time step.
Transient responses can be milliseconds long, which when coupled with a small
simulation time step can mean millions of time points are required.

To overcome these simulation difficulties, we recommend that users extract
behavioral models of various components, such as the VCO, phase/frequency
detector, and frequency divider. Then simulate the closed-loop PLL with behavioral
models much more quickly and efficiently.
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This is the equivalent circuit of the phase/frequency detector behavioral model. It
models a PFD made with dual flip flops, and it outputs digital pulses, the duration of
which depend on the phase difference between the reference source and the divided
VCO signal. In the PhaseFreqDetCP model used in these simulations, a charge
pump is included, which converts the digital pulses into either source or sink current

pulses.
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PFD Input and Charge Pump Waveforms
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This figure shows the input reference and divided VCO signal waveforms and the
corresponding charge pump current pulses. The polarity of the charge pump current
changes, depending on which of the two PFD input signals is leading the other.
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Why are Reference and Divided VCO
Signals Sawtooth Waves?

Sawtooth waves are easiest to
interpolate.
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Why do we recommend that the input signals to the PFD be sawtooth waves that are

the phase, in radians, of these signals, rather than square waves?

Phase/frequency detectors in real PLLs are asynchronous, meaning that their outputs
depend on when the inputs transition through a specified logic threshold, not in
response to a periodic clock signal. These circuits are time-consuming to simulate (at
the transistor level) because very short clock edges (<100 psec.) must be captured

even though the overall simulation time may be milliseconds long. This

phase/frequency detector model uses interpolation to determine the input signal
transition time points with finer resolution than the time step, and actually modulates
the amplitude of the output signal pulses to overcome the fixed time step limitation
of the simulator. The phase/frequency detector operation is described in detail in
reference 3. To more accurately compute the phase difference between the signals at
the input to the phase/frequency detector, these signals are sawtooth waves that
model the phase of the reference source and the divided VCO signal. Interpolation

also works pretty well if sine waves are used, but square waves are not
recommended.
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Phase/Frequency Detector Deadzone
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The phase/frequency detector model also has a dead zone, meaning that if the time
difference between the two input signals is less than a user-specified dead time, then
the charge pump does not output any current. If something is not done to bias the
PLL out of the dead zone (such as adding some DC offset current into the loop), then
the loop will not be able to attenuate spurious signals that might be introduced into it.
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Phase/Frequency Detector Jitter
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You can add timing jitter to the PhaseFreqDetCP model. This will introduce noise in
the charge pump current, which would correspond to a jitter variation in the input
signals to the PhaseFreqDetCP model. This jitter parameter can be extracted from a
time-domain noise simulation of a transistor-level phase/frequency detector.

© Copyright 2002 Agilent Technologies 14
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Simulating Jitter in Transistor-Level
Phase/Freq. Detector and Charge Pump

Run simulations with noise on and noise off,
then compute the difference in pump current
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This shows a set-up for simulating the jitter of a transistor-level phase/frequency
detector and charge pump. To determine the noise current, two simulations are run
over multiple cycles of the reference clock, one with the noise on and the other with
it off. The difference between the two currents will be the noise. The phase
difference between the two input signals is set close to zero but out of the dead zone.

Reference for this charge pump design:

H. O. Johansson, "A Simple Precharged CMOS Phase Frequency Detector," IEEE

Journal of Solid-State Circuits, pp 295-299, Feb., 1998.
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The charge pump current pulses with the noise on and off are indiscernible, at the
scale shown. However, subtracting one from the other does indicate a difference,
which is the noise current. The RMS value of the noise current is computed by
taking the standard deviation of this difference. If the noise bandwidth, which is set
on the transient simulation controller, is increased by reducing the maximum
simulation time step, then the RMS noise current will also increase, unless there is
something in the simulation (such as filtering) to limit the bandwidth of the noise.

© Copyright 2002 Agilent Technologies
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To convert the RMS noise current at the charge pump output to a jitter value at the
phase/frequency detector input, we have to determine the sensitivity, in Amperes per
degree, of the phase/frequency detector and charge pump. To determine this, in a
separate simulation, we sweep the phase difference between the two input signals to
the PFD and plot the average charge pump current versus this phase difference. The
sensitivity is computed as the slope of a straight line drawn between the two markers.

© Copyright 2002 Agilent Technologies
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Noise Current Conversion to Jitter

RMS jitter in seconds = RMS noise current in Amps
X 1/(Sensitivity in Amps per Degree)
X seconds per degree of reference
signal
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This shows the calculation to get RMS jitter in seconds at the input of the PFD.
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VCO/Divide-By-N Behavioral Model

ads_v1 is the
LT tuning voltage

.l ] gOid VCO frequency is
FO0+VCO_Freq

VCO output is a time-
(@) varying phasor

Tuning voltage

output from
lowpass filter sawtooth wave
representing the

Divided VCO output - ; divided signal
frequency is i r.;hase in radians

(FO+VCO_ Freq)l(N0+dN)

Divided output is

time, usec

. -: ':-‘- -~ Agilent Technologies
L Page 19

This behavioral model combines the VCO and divide-by-N together. (Separate VCO
and divider behavioral models exist, also.) Combining them together makes
transient simulations much more efficient, because you only need a time step small
enough to adequately sample the tune voltage or the divided VCO signal, which is
usually at a frequency orders of magnitude lower than the VCO. The dN input is a
voltage versus time, which is the change in divide ratio. The resulting divide ratio is
NO + (the voltage at dN). So if the dN input voltage has increases from 0 to 3 Volts,
the divide ratio also increases from NO to NO+3. In the simulations shown later, the
output from the sigma-delta modulator will be applied here.

© Copyright 2002 Agilent Technologies 19
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VCO/Divide-By-N Behavioral Model
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This is a simple simulation to show what the VCO/Divide-By-N model does. For the
first part of the simulation (10 cycles of the reference clock), the tune voltage and the
dN input are 0. So the VCO signal is at fvco, which is NO*ReferenceFreq. Note that
0 Hz on the spectral plots corresponds to the fundamental analysis frequency on the
Envelope controller. The phase of the undivided VCO is constant, which is as
expected, since its frequency is not changing. After 10 cycles of the reference clock,
the Vtune input is stepped from 0 to 0.2 Volts. Because the VCO’s Kv is 10
MHz/Volt, theVCO’s frequency increases by 2 MHz, as shown in the lower right
plot. Also, the phase of the VCO output phasor is increasing at a rate of 360 degrees
per 0.5 usec., which is 2 MHz. After 20 cycles of the reference clock, the dN input is
increased from 0 to 30 Volts, which increases the divide ratio from 1023 to 1053.

But this only affects the divided VCO output.

© Copyright 2002 Agilent Technologies
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This is a duplicate of the figure on page 8. We have gone over some of the
behavioral models in ADS and RFDE, as well as their extraction, and are ready to
proceed with the PLL simulation, after a discussion of some of the Ptolemy
modeling.
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The accumulator consists of an adder, two bus rippers and a data register. The
accumulator continuously adds a constant (in this case the fraction) to itself,
generating an accumulating sum. The arithmetic precision setting of the output of
the first bus ripper is set to 1.0, which means that it only outputs a 1 if the adder
output is >1. Otherwise, it outputs a 0. This is the accumulator overflow output.
The other bus ripper feeds back to the input of the adder the fractional part of the
adder’s output. So, for example, if the desired fraction to be summed is
100/(2**10) = 0.097656..., then after 10 summations, the adder output will be
1.0742187, the overflow will be 1, and the amount fed back to the input of the adder
will be 0.0742187. With this simulation, you can easily change the number of bits
used (precision) of the summation.
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1.2

Accumulator Simulation Results

Fraction that is summed is 100/(21°), so the
accumulator overflows about once every 10 clock cycles

Agilent Technologies
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Index Index
Index AccumOut AccurnOverflow AdderCut
1] 0.09785625000 0.00000000000 0.0976562500
1 0.19531250000 0.00000000000 0.19531250000(
2 0.25296575000 0.00000000000 0.2529687 5000
3 0.32062500000 0.00000000000 0.32062500000)
4 045528125000 0.00000000000 04586261 25000/
5 0.585093750000 0.00000000000 10.58583750000)
B 065359375000 0.00000000000 10.68359375000)
7 0.76125000000 0.00000000000 0.78125000000f
8 0.87890625000 0.00000000000 0.87820625000(
9 0.97656250000 0.00000000000 0.97656250000(
10 0.07421875000 1.00000000000 1.07 421875000
I 017187500000 0.00000000000 0.17187500000)
12 0.26953125000 0.00000000000 0.26953125000(
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This shows the sawtooth waveform of the accumulator output and the accumulator
overflow bit switching from 0 to 1 about once every 10 times a summation occurs.
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Fractional-N Simulation Results

VCO Spectrum
0
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0 Hz corresponds to NO*ReferenceFreq = 1023%(1.728 MHz)
=1.767744 GHz

m1
freq=341.1633kHz|
s1=-54.013694

s1

Fraction = 101/(2'°) = 0.098633

Synthesized frequency = (NO + Fraction)*ReferenceFreq
=1.767744 GHz + 0.098633*1.728 MHz
=1.767744 GHz + 170.438 kHz
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The simulation set-up has the reference frequency (Fref) specified at 1.728 MHz, the
nominal divide ratio (NO) set to 1023, the number of bits used in the accumulator set
to 10, and the fraction is defined to be 101/(2'°). This means the VCO frequency
should be (on average) = NO.fraction * Fref=1.767914 GHz. The spurs at
fraction*Fref offset from the synthesized signal are clearly visible.
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Using a Sigma-Delta Modulator as an

Accumulator Quantization
Fraction to N . noise introduc.ed
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______________________

1 bit quantizer,
outputs O or 1.

When accumulator core overflows,
1-bit quantizer outputs a 1.
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In the fractional-N PLL, the desired fraction, is converted to a sequence of 1’s and
0’s (1 when the accumulator overflow bit is set, and 0 when it is clear.) This could
be considered a coarse analog-to-digital conversion, using a 1-bit A-to-D converter.

As described in references 2 and 3, an accumulator may be considered a simple
sigma-delta modulator.

The 1/(1-z") block implements the basic accumulator operation. The 1-bit quantizer
outputs a 0 while the accumulator has not overflowed, and a 1 when it overflows.
The overflow quantity is subtracted from the input, which in effect just keeps the
fractional part of the accumulated sum in the accumulator when it overflows.
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Sigma-Delta Modulator Z-Domain
Equation

Y(z2)=F(z)+(1-z")Eq(z)

The quantization noise, Eq(z), is high-pass filtered,
(let z=¢" thenl—-z =1l-¢e" = jo

for ® small)

if .F(z) is sufficiently random.

But the fraction is constant, so the quantization
noise varies periodically, generating spurs.

- -: ':-‘- -~ Agilent Technologies
g, Page 26
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Using a 3-Stage Sigma Delta Modulator
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To attain a divide ratio with quantization noise that has a high-pass-shaped frequency
response and that does not suffer from the periodicity (and consequently the spurs) of
a single-accumulator sigma-delta modulator, a multi-stage architecture shown here
and described in references 2 and 3 was simulated.

Conceptually, the quantization noise from the first-stage sigma delta modulator
becomes the input to the second-stage sigma delta modulator. The quantization
noise from the second-stage sigma delta modulator becomes the input to the third-
stage sigma delta modulator. The differentiators (1-z"! blocks) connected at the
outputs of the second- and third-stage sigma delta modulators are necessary for
canceling the noise from the previous stages at the final output summation.

The noise from the third stage is not cancelled but it is sufficiently random and it is
high-pass filtered by a (1-z!)° term.
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3-Stage Sigma-Delta Modulator Equation

Z-domain equation for frequency:
Fpu(2) = N.F(2)F,pp + (=27 Y Frp B3 (2)

3rd-stage quantization noise is more random than 1st,
and this noise has a more high-pass shape

- -: ':-‘- -~ Agilent Technologies
g, Page 28

E;(2) is the quantization noise of the third modulator stage (References 2 and 3)
This equation may be derived easily from the block diagram in the previous figure.
This equation gives frequency noise, whereas phase noise is of more interest to
frequency synthesis applications. An equation for the phase noise as a function of
offset frequency (f) and the number of modulator stages, (m), due to the shaping of
the quantization noise is equation 12 in reference 2. However, this does not predict
the overall noise performance of the PLL, since this will depend on the loop
bandwidth, the free-running VCO’s phase noise, noise from the phase detector and
divider, and so on.
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A Three-Stage Sigma-Delta Modulator

Py Sigma-Delta Modulator (3rd order)
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Bits=Bits

Num=2 SD_ACCUMm
a1
Bits=Bits

Differentiator

Mum=3 S0_Diff SD_Diff s0_Diff Canstsyn
02 D1 D4 3
Bits=3 Bits=2 Bits=1 CutputPrecision="1 0"
ArthType=TWOS_COMPLEMENT
Constvalue=0
<+s 2+ Agilent Technologies
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This shows a three-stage sigma-delta modulator, implemented via accumulators,
described above, and differentiators.

The accumulators have a clock input, an input that is accumulated, an overflow
output (that will be 1 or 0), and an output that is the fractional part of the

accumulator’s sum.
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Differentiator in Ptolemy

A differentiator/summer block for the sigma delta modulator.
ovf is a single input with "1.0" precision, that is treated as [0,-1]
twos complement.
Input is twos_complement with "Bits.0" precision.
Output is twos_complement with "Bits+1.0" precision.
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The “A” input is differentiated via the data register and the adder, configured to
subtract, generating A-B, or the current value of “A” minus the value of “A” one
clock sample ago. The result is then added to the “B” input, so this subcircuit really

combines a differentiation with an addition.

© Copyright 2002 Agilent Technologies 30
All Right Reserved



PLL Design--Analysis of a Sigma-Delta Modulator ~+e %e- Agilent Technologies
Using RF Behavioral Modeling and System Simulation e

3-Stage Sigma-Delta Modulator Signals
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This figure shows how much more random the third-stage overflow signal is than is
that of the first-stage. The average value of the dN signal is nearly exactly equal to
the desired fraction, as expected. For a longer simulation, it should be exactly equal
to the fraction. The average divide ratio will be NO, the nominal divide ratio, plus
dN.
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Simulating PLL with Multi-Stage Sigma-
Delta Modulator
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This shows the ADS simulation set-up, which is quite similar to the fractional-N

simulation set-up (in fact, configuring the sigma-delta modulator to just use a single
stage should give the same results.)
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Delta N Signal vs Time
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Simulated output signal (deviation in divide ratio from the nominal value) from the
sigma-delta modulator, both in time and as a spectrum.
This signal, when added to the nominal divide ratio, becomes the instantaneous
divide ratio. Note that its spectrum has a high-pass shape, as expected.
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VCO Spectrum
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This shows the simulated output spectrum, and a log-offset spectral plot, showing the
close-in spectrum. The loop bandwidth has been set to about 20 kHz, the noise
spectrum flattens out above this offset frequency. In the “VCO Spectrum” figure,
the X-axis is not the absolute frequency, but the offset from the nominal analysis
frequency at NO*ReferenceFreq. The Fraction is set to 501/(2!°), and this value
times the reference frequency at 1.728 MHz is 845.4375 kHz, which is how far
above the nominal analysis frequency the VCO is, as expected.

From the equation in the reference that gives the phase noise as a function of offset
frequency and number of modulator stages:

(27)*

/

12(m-1)

L) =17
ref

_Fref /(272')_

with m=3 stages, the phase noise should increase at a rate of 40 dB/decade increase

in offset frequency, f.
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Including VCO Phase Noise in the
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The previous simulation results did not include any phase noise from the VCO or
from other sources such as the phase/frequency detector. This shows how phase
noise may be added to a VCO, via the phase noise modulator component.
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Phase N0|se Modulator Component
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The phase noise modulator component adds phase noise in accordance with Leeson’s
equation The equation is repeated here as “PhaseSpectralDens.” If you have a plot
of phase noise versus offset frequency, from a simulation or from measurements, to
use this phase noise model you have to adjust the PhaseNoiseMod parameters until
you get a phase noise plot that matches what you want to model.

The “Single-Sideband Phase Noise Plot” here is from a frequency-domain noise
simulation, in which the noise offset frequency is swept and the noise is simulated as
a small-signal perturbation on a large-signal solution. In these simulations with the
sigma delta modulator, the noise must be simulated in the time domain.

Reference:

Leeson, D., “A Simple Model of Feedback Oscillator Noise Spectrum,” Proceedings
of the IEEE, vol. 54, pp. 329-30, February 1966.)
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Noisy Open-Loop VCO Spectrum
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These plots show the phase noise spectrum of the VCO, with noise added via the
PhaseNoiseMod component and simulated in the time domain. When this noise is
simulated in the time domain, random noise voltages and currents are added into the
circuit. These noise signals are treated the same way as the large-signal voltages and
currents. To see phase noise at large offset frequencies, a small simulation time step
must be used. To see phase noise at small offset frequencies, a large stop time must
be used. Also, because the signals are random noise, it may be necessary to run
multiple simulations and average the results, to get reasonably smooth plots.
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But VCO_DivideByN Model Does Not
Allow Use of PhaseNoiseMod

Cannot add phase noise VCO. DivideByN_Pulse
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VCO and divider VCO_Freg=Kv * _v1
FO=fvco
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Rout=50 Ohm
Power=dbmtow(0)
Delay=0.0
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“N tred —

'—I\ R [l *
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The VCO_DivideByN Pulse and VCO_DivideByN models include both the VCO
and frequency divider together, so it is not possible to insert the PhaseNoiseMod in
between them.
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To overcome this issue with the VCO/Divide-By-N, we use an FM demodulator to
obtain a voltage versus time that, when applied as a frequency modulation signal at
the VCO’s tune input, will force the VCO to have the same frequency variation as is
produced by connecting the PhaseNoiseMod to the output of a VCO with its tune
input grounded. This is accomplished via the VtDataset source.
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Frequency Modulate VCO/Divide-By-N
Source to Add VCO Phase Noise
VCO_DivideByN_Pulse
VCO2
VCO_Freg=Kv * _v1
ViDataset FO=fvco
SRC7 N=NO
Dataset="VCO_wAddedPhNoise.ds" Rout=50 Ohm
Expression="FMdemod_out" Power=dbmtow(0)
Delay=0.0
) e
-
| T

Here, the VtDataset source is used to frequency modulate the VCO in the
VCO_Divide-By-N source, and add phase noise.
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Comparing these phase noise plots with the earlier ones, the phase noise is higher,
most noticeably between 1 and 5 kHz.
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Transient Response Due to Change in
Fraction

Fraction summed into sigma-delta modulator is 0 at first.
After a delay for PLL to stabilize, non-zero “Fraction” is summed in.

ConstSyn
ca4
OutputPrecision=ACCIA Sigma Delta Modulate to Generate Quantized Divides Signal Pulses
ArithType=UN_SIGHNED
Const¥alue=Fraction ¢
Generate Phase Offset
G 0
au i
Delay e B =
D2 Gain
N=(StopTimelTimgStep)2 30 Madulator G2 ;299'9 CxToTimed
Const3yn W2 Gain=-1.0 // c3
C35 _ Bits=SigmaDeltaBits fonst Totep=Tima:
QutputPrecision=AC AW QutputPrecision=ACCW R Foarier=1 1
ArithType=UN_SIGNED ArithType=UN_SIGNED VARB
Gonstvalue=0 . ACCW=sprintir0 S SigmaDeltabits) g?“m
VAR1 Level=0.0

RefersnceFrag=1.728 MHz
SamplesPerCycle=5
Timestep=1i{SamplesPerCycle*ReferenceFre)
. StariTime=200/Referencefreg
F ractlon=1 023/(2 1 0) StopTime=500/Referencefreq

MO=1023 ;to setinteger portion of synthesized frequency
Mom_Freg=MO*ReferenceFreg; also Envelope carrier frequency
SigmaDeltaBits=10; to setwidth of sigma delta accumulatars
Offsetvalue=1023; to setfractional porion of synthesized frequency
Fraction=0ffsetvalue/{2**SigmaleltaBits)
SynthFreg=Mom_Freg+Fraction*Referencefreq
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Agilent Ptolemy and ADS may also be used to simulate the transient response of a
phase-locked loop. Here, the fraction that is summed into the sigma-delta modulator
is initially 0. After a delay, it is stepped to nearly 1, and the simulation is run until
the VCO frequency settles.
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Transient Response Plots
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This shows the change in VCO frequency versus time, as a frequency error from the
final, expected steady-state value.
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Conclusion

* This paper has shown:

» Agilent ADS and RFDE capabilities for simulating PLLs

* PLL component behavioral modeling for including transistor-
level effects

+ Agilent ADS and RFDE post-processing capabilities

» Agilent Ptolemy and ADS are able to simulate a complex
phase locked loop using a sigma-delta modulator

RFDE may be used for extracting behavioral models
from transistor-level simulations

Agilent Technologies
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