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Preface

Sometimes, once in a lifetime, a new technology comes along that changes the world; for example,
AM radio, television, and wireless Internet. Bluetooth low energy is at the cusp of the next revolution
in wireless technology: a technology that can be embedded in products because it uses so little power
that it can be designed around a small battery that lasts for years.

This book explains how this technology came about, why it was designed the way it has been
designed, and how it works. It is written by one of the leading experts on Bluetooth low energy,
Robin Heydon, who has been involved in creating the specifications, interoperability testing, and
training.

This book is for anyone who is thinking about developing a product that incorporates Bluetooth
low energy, whether you are an engineer, an application developer, a designer, or you’re in
marketing.

For engineers, the book covers the details of how the complete system works, from the physical
radio waves up to the discovery of, connection with, and interface provided by that device.

For application developers, this book provides an understanding of the constraints imposed by
Bluetooth low energy on applications. It also presents a thorough description of the design goals and
implementation of these requirements.

For designers, the information contained herein will allow you to appreciate the particular
problems with designing Bluetooth low energy wireless products, from how the product might need to
work and how big a battery might be required to implement your ideas.

For everyone else, the book provides the background of why Bluetooth low energy was designed,
the design goals it tried to achieve, and how you can take something that radically changes the way
you can think of wireless technology and implement it in everything else.

The book is split into four parts:
Part I provides an overview of the technology, the basic concepts that guided the development of

Bluetooth low energy, the architecture of the system from the radio through the various protocol layers
up to the application layers, and finally, the new usage models that this new technology enables.

The second part goes into detail on how the radio chip—called a controller—functions. This is the
silicon chip that product designers need to incorporate into their end products. This part also covers
the radio, Direct Test Mode, and the Link Layer. In addition, it shows how to interact with the
controller from the upper-layer stack, called a host.

Part III goes into detail of how the host (the software stack) works. It covers the concepts and
details behind the main protocol used to expose attributes of a device. It also covers the security
models and how to make connections and bonds, or associate, two devices with one another.

In Part IV, you wrap up all the details by looking at the design considerations that a product or
application developer needs to consider. It starts by looking at the issues involving central devices.
Next, it looks at issues related to peripheral devices. Finally, it considers the entire problem
surrounding testing and qualification, typically the final part of any product that will be taken to
market.

If after reading the book you would like to learn more about Bluetooth low energy, there are a



number of resources available. The specifications themselves are available on the Bluetooth SIG
website at www.bluetooth.org. If you would like to find developer information about Bluetooth low
energy, there is also a developer site available at developer.bluetooth.org that has detailed
information about characteristics. The author also has a website at www.37channels.com, where you
can view frequently asked questions raised by this book and Bluetooth low energy.

http://www.bluetooth.org
http://developer.bluetooth.org
http://www.37channels.com
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Part I: Overview
Chapter 1, What Is Bluetooth Low Energy?, introduces Bluetooth low energy, and discusses its design
goals.

Chapter 2, Basic Concepts, discusses the foundations upon which the low energy architecture was
designed.

Chapter 3, Architecture, introduces the main system architecture for low energy, from the
controller, through the host, and up to the applications.

Chapter 4, New Usage Models, describes the new usage models that the low energy technology
enables.



Chapter 1. What Is Bluetooth Low Energy?

If I have seen a little further, it is by standing on the shoulders of Giants.
—Isaac Newton

Bluetooth low energy is a brand new technology that has been designed as both a complementary
technology to classic Bluetooth as well as the lowest possible power wireless technology that can be
designed and built. Although it uses the Bluetooth brand and borrows a lot of technology from its
parent, Bluetooth low energy should be considered a different technology, addressing different design
goals and different market segments.

Classic Bluetooth was designed to unite the separate worlds of computing and communications,
linking cell phones to laptops. However its killer application has proved to be as an audio link from
the cell phone to a headset placed on or around the ear. As the technology matured, more and more
use cases were added, including stereo music streaming, phone book downloads from the phone to
your car, wireless printing, and file transfer. Each of these new use cases required more bandwidth,
and therefore, faster and faster radios have been constantly added to the Bluetooth ecosystem over
time. Bluetooth started with Basic Rate (BR) with a maximum Physical Layer data rate of 1 megabit
per second (Mbps). Enhanced Data Rate (EDR) was added in version 2.0 of Bluetooth to increase the
Physical Layer data rates to 3Mbps; an Alternate MAC1 PHY2 (AMP) was added in version 3.0 of
Bluetooth that used IEEE3 802.11 to deliver Physical Layer data rates of up to hundreds of megabits
per second.

Bluetooth low energy takes a completely different direction. Instead of just increasing the data rates
available, it has been optimized for ultra-low power consumption. This means that you probably
won’t get high data rates, or even want to keep a connection up for many hours or days. This is an
interesting move, as most wired and wireless communications technologies constantly increase
speeds, as illustrated in Table 1–1.

Table 1–1. Speeds Almost Always Increase



This different direction has been achieved through the understanding that classic Bluetooth
technology cannot achieve the low power requirements required for devices powered by button-cell
batteries. However, to fully understand the requirements around low power, another consideration
must be taken. Bluetooth low energy is also designed to be deployed in extremely high volumes, in
devices that today do not have any wireless technology. One method to achieve very high volumes is
to be extremely low cost. For example, Radio frequency identification (RFID) tags can be deployed
in very high volumes because they are very low cost, ultimately because they work by scavenging
power delivered by a more expensive scanner.

Therefore, it is crucial to also look at the Bluetooth low energy system design from the
requirements of low cost. Three key elements within this design point to very low cost:

1. ISM Band
The 2.4GHz ISM band is a terrible place to design and use a wireless technology. It has poor
propagation characteristics, with the radio energy readily being absorbed by everything, but
especially by water; consider that the human body is made up primarily of water. These rather
significant downsides are made up by the fact that the radio spectrum is available worldwide
and there are no license requirements. Of course, this Free Rent sign means that other
technologies are also going to use this space, including most Wi-Fi radios. But the lack of
licensing doesn’t mean that anything goes. There are still plenty of rules, mainly related to
limiting the power output of devices that use the spectrum, limiting the range. However, these
limitations are still more attractive than paying heavily for licensed spectrum. Therefore,
choosing to use the ISM band lowers the cost.
2. IP License
When the Wibree technology was mature enough to be merged into an established wireless
standards group, Nokia could have taken the technology to any such group. For example, it could
have taken it to the Wi-Fi Alliance, which also standardizes technology in the same 2.4GHz
ISM band. But they chose the Bluetooth Special Interest Group (SIG) because of the excellent
reputation and licensing policy that this organization has. These policies basically mean that the



patent licensing costs are significantly reduced for a Bluetooth device when compared with a
technology developed in another SIG or association that has a FRAND4 policy. Because
Bluetooth has a very low license costs, the cost per device is also significantly reduced.
3. Low Power
The best way to design a low-cost device is to reduce the materials required to make such a
device—materials such as batteries. The larger the battery, the larger the battery casing needs to
be, again increasing the costs. Replacing a battery costs money, not just for a consumer who
needs to purchase another battery, but replacement also includes the opportunity costs of not
having that device available. If this device is maintained by a third party, perhaps because it is
part of a managed home alarm system, there are additional labor costs to change this battery.
Therefore, designing the technology around low power consumption also reduces the costs. As a
thought experiment, how would things be different if a megawatt battery were available for a
single penny?
Many devices could accommodate a larger battery. A keyboard or mouse can easily take AA
batteries, yet the manufacturers want to use AAA batteries not because they are smaller, but
because their use reduces the bill of materials and therefore the cost of the device.

Therefore, the fundamental design for low energy is to work with button-cell batteries—the
smallest, cheapest, and most readily available type of battery available. This means that you cannot
achieve high data rates or make low energy work for use cases that require large data transfers or the
streaming of data. This single point is probably the most important difference between classic and
low-energy variants of Bluetooth. This is discussed further in the next section.

1.1. Device Types
Bluetooth low energy makes it possible to build two types of devices: dual-mode and single-mode
devices. A dual-mode device is a Bluetooth device that has support for both Bluetooth classic as well
as Bluetooth low energy. A single-mode device is a Bluetooth device that only supports Bluetooth
low energy. There is a third type of device, which is a Bluetooth classic-only device.

Because it supports Bluetooth classic, a dual-mode device can talk with the billions of existing
Bluetooth devices. Dual-mode devices are new. They require new hardware and firmware in the
controller and software in the host. It is therefore not possible to take an existing Bluetooth classic
controller or host and upgrade it to support low energy. However, most dual-mode controllers are
simple replacement parts for existing Bluetooth classic controllers. This allows designers of cell
phones, computers, and other device to replace their existing Bluetooth classic controllers with dual-
mode controllers very quickly.

Because it does not support Bluetooth classic, a Bluetooth low energy single-mode device cannot
talk with the existing Bluetooth devices, but it can still talk with other single-mode devices as well as
dual-mode devices. These new single-mode devices are highly optimized for ultra-low power
consumption, being designed to go into components that are powered by button-cell batteries. Single-
mode devices will also not be able to be used in most of the use cases for which Bluetooth classic is
used today because single-mode Bluetooth low energy does not support audio for headsets and stereo
music or high data rates for file transfers.

Table 1–2 shows what device types can talk with other devices types and what Bluetooth radio
technology would be used when they connect. Single-mode devices will talk with other single-mode



devices using low energy. Single-mode devices will also talk with dual-mode devices using low
energy. Dual-mode devices will talk with other dual-mode devices or classic devices using BR/EDR.
A single-mode device cannot talk with a classic device.

Table 1–2. Single-Mode, Dual-Mode, and Classic Compatibility

1.2. Design Goals
When reviewing any technology, the first question to be asked is how did the designers optimize this
technology? Most technologies have one or two things that they are very good at, and many things that
they are not. By determining what these one or two things are, a greater understanding of that
technology can be achieved.

With Bluetooth low energy, this is very simple. It was designed for ultra-low power consumption.
The unique structure of the Bluetooth SIG is that the organization creates and controls everything from
the Physical Layer up to the application. The SIG does this in a cooperative and open but
commercially driven standards model, and over more than ten years, it has optimized the process of
creating wireless specifications that not only work at the point of release but are also interoperable,
robust, and of extremely high quality.

When the low energy work started, the goal was to create the lowest-power short-range wireless
technology possible. To do this, each layer of the architecture has been optimized to reduce the power
consumption required to perform a given task. For example, the Physical Layer’s relaxation of the
radio parameters, when compared with a Bluetooth classic radio, means that the radio can use less
power when transmitting or receiving data. The link layer is optimized for very rapid reconnections
and the efficient broadcast of data so that connections may not even be needed. The protocols in the
host are optimized to reduce the time required once a link layer connection has been made until the
application data can be sent. All of this is possible only when all parts of the system are designed at
the same time by the same group of people.

The design goals for the original Bluetooth radio have not been forgotten. These include the
following:

• Worldwide operation
• Low cost
• Robust
• Short range
• Low power

For global operation, a wireless band that is available worldwide is required. There is only one
available band that can be implemented using low-cost and high-volume manufacturing technology
today: the 2.45GHz band. This is available because it is of no interest to astronomers, cell phone
operators, or other commercial interests. Unfortunately, just like everything that is free, everybody



wants to be part of it, causing congestion. Other wireless bands are available, for example, the
60GHz ISM band, but this is not practical from a low-cost point of view, or the 800/900MHz bands
that have different frequencies and rules depending on where you are on the planet.

The design goal of low cost is interesting because it implies that the system should be kept as small
and efficient as possible. Although it could be possible, for example, to add scatter net support or
full-mesh networking into Bluetooth low energy, this would increase the cost because more memory
and processing power would be required to maintain this network. The system has therefore been
optimized for low cost above interesting research-based networking topologies.

The 2.45GHz band that Bluetooth low energy uses is already very crowded. Just taking into
account standards-based technologies, it includes Bluetooth classic, Bluetooth low energy, IEEE
802.11, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and IEEE 802.15.4. In addition, a number of
proprietary radios are also using the band, including X10 video repeaters, wireless alarms,
keyboards, and mice. A number of devices also emit noise in the band, such as street lights and
microwave ovens.

It is therefore almost impossible to design a radio that will work at all times with all possible
interferers, unless it uses adaptive frequency hopping, as pioneered by Bluetooth classic. Adaptive
frequency hopping helps by not only detecting sources of interference quickly but also by adaptively
avoiding them in the future. It also quickly recovers from the inevitable dropped packets caused by
interference from other radios. It is this robustness that is absolutely key to the success of any
wireless technology in the most congested radio spectrum available.

Robustness also covers the ability to detect and recover from bit errors caused by background
noise. Most short-range wireless standards compromise by using a short cyclic redundancy check
(CRC), although there are some that use very long checks. A good design will see compromise
between the strength of the checks and the time taken to send this information.

Short range is actually a slight problem. If you want a low-power system, you must keep the
transmitted power as low as possible to reduce the energy used to transmit the signal. Similarly, you
must keep the receiver sensitivity fairly high to reduce the power required to pick up the radio signals
of other devices from amongst the noise. What short range means in this context is really that it is not
centered around a cellular base station system. Short range means that Bluetooth low energy should be
a personal area network.

The original Bluetooth design goal of low power hasn’t changed that much, except that the design
goals for power consumption have been reduced by one or two orders of magnitude. Bluetooth classic
had a design goal of a few days standby and a few hours talk time for a headset, whereas Bluetooth
low energy has a design goal of a few years for a sensor measuring the temperature or measuring how
far you’ve walked.

1.3. Terminology
Just like many high technology areas, the people working in Bluetooth low energy use their own
language to describe the features and technology with the specification. This section enumerates each
of the words that have special meaning and what they mean.
Adaptive Frequency Hopping (AFH) A technology whereby only a subset of frequencies is used.

This allows devices to avoid the frequencies that other non-adaptive technologies are using (e.g., a
Wi-Fi access point).



Architecture The design of the Bluetooth low energy is sometimes known as the Architecture.
Band See Radio Band.
Frequency Hopping The use of multiple frequencies to communicate between two devices. One

frequency is used at a time, and each frequency is used in a defined sequence.
Layer A part of the system that fulfills a specific function. For example, the Physical Layer covers

the operation of the radio. Each layer in a system is abstracted away from the layers above and
below it. The Link Layer doesn’t need to know all the details of how the radio functions; the
Logical Link Control Layer and Adaptation Layer don’t need to know all the details of how the
Link Layer works. This abstraction is important to keep the complexity of the system at manageable
levels.

Master A complex device that coordinates the activity of other devices within a piconet.
Piconet This is a contraction of the words pico and network. Pico is the SI5 prefix for 10–12. This is

derived from the Italian piccolo, meaning small.6 Therefore, a piconet is a very small network. A
piconet has a single master device that coordinates the activity of all the other devices (slaves) in
the piconet and one or more slaves.

Radio Band Radio waves are defined by their frequency or wavelength. Different radio waves are
then allocated different rules and uses. When a range of radio frequencies are grouped together
using the same rules, this group of frequencies is called a Radio Band.

Slave A simple device that works with a master. These devices are typically single-purpose devices.
Wi-Fi A complementary wireless technology that is designed for high data rates to connect computers

and other very complex devices with the Internet.



Chapter 2. Basic Concepts

In protocol design, perfection has been reached not when there is nothing left to add, but when
there is nothing left to take away.

—IETF RFC 1925, Rule 12

To understand Bluetooth low energy is to understand how low power consumption can be achieved in
a short-range wireless system. The most basic design decisions are all built around enabling low
power consumption in typical use cases.

Bluetooth low energy is not trying to optimize Bluetooth classic; instead, it is targeted at new
market segments that haven’t previously used open wireless standards. These market segments are
those that require devices to send a few octets of data from once a second to once every few days.
These are monitoring and control applications that perform tasks, such as detecting whether windows
are open or closed for Smart Home heating applications, turning on and off appliances in response to
electricity price fluctuations, or changing to a different TV channel.

2.1. Button-Cell Batteries
Button-cell batteries are the primary design goal for Bluetooth low energy. These batteries (see
Figure 2–1) have very strict limits on how they can be used. The figure shows a CR2032, although
other battery sizes are also available. The “CR” part of the battery label indicates it’s a 3-volt battery
made using lithium manganese dioxide. The “20” denotes that the battery is 20mm in diameter, and
“32” specifies that it’s 3.2mm in height.

Figure 2–1. A button-cell battery.
For such small batteries, the maximum energy that can be stored in one manufacturer’s battery is

very similar to any other. A typical CR2032 will have a quoted energy capacity of 230mAh at 3 volts.
Just to put this into context, this is about the amount of energy required to power a human being for
just over 20 seconds. So by the time you’ve read this paragraph, you’ll have used more energy than a
typical CR2032 has available to power a Bluetooth low-energy device for a few years.

Even though 230mAh is a comparatively tiny amount of energy, a device will never be able to
obtain all of it. First, the energy available is dependent on the temperature of the battery. The colder



the battery, the less energy will be available. A button-cell battery at  would only be able to
provide 80 percent of the energy that is available at room temperature.

Second, if the battery is used aggressively, the total energy available will be significantly reduced.
Typically, most button-cell batteries have a peak current that should not be exceeded without
damaging the battery. This is typically 15mA. If this high-level current is drawn from the battery for
extended periods of time, the total energy available would be reduced. Therefore, any successful
radio design would need to manage this and allow the battery time to recover after a large or long
current draw.

Finally, the battery itself has its internal leakage current that must also be taken into account. Even
if a device is drawing no power from the battery, the battery is still losing charge. When the battery is
used sparingly, the leakage current will start to become significant in the total energy budget.

2.2. Time Is Energy
Another basic concept that is used throughout the design of Bluetooth low energy is that time is
energy. If the radio is doing something, even if it’s nothing more than checking whether it needs to
send or receive something, it’s using energy. Consequently, it is important to reduce the time required
to do anything useful.

A number of important and repetitive actions must be optimized. These include robustly
discovering devices, connecting to devices, and sending data. By reducing the time required for these
activities, the energy consumption is reduced, lengthening the life of the battery.

Robust device discovery requires a minimum of two devices: a device that is looking for other
devices, and one or more devices that are discoverable. In Blue-tooth low energy, for a device to be
discoverable, it must transmit a very short message three times every few seconds, and if it needs to
see if any other device wants to talk to it, it must listen immediately after broadcasting its message. A
device that is looking for devices opens up its receiver and listens for devices that are transmitting.

Three transmits are done because three frequencies are used for robustness. The number three is
chosen as a compromise between robustness and low power. If the number of frequencies was just
one, like a lot of other technologies, then as soon as that frequency is blocked, the whole system
would break. If the number of frequencies was, for instance, 16, the device would spend so much time
just transmitting that it would not be low power anymore.

The choice about which device transmits and receives is also very deliberate. To search for a
device that is transmitting requires you to listen for a long period of time; this uses a lot of energy and
therefore should be done on the device with the bigger energy budget or a good reason to use the low-
energy device. In Bluetooth low energy, the discoverable devices transmit, and the devices that are
looking for the other devices receive.

The packet itself is very short. Short packets are good for three reasons. First, by using efficient
encoding, short packets can send the same quantity of data faster, using less energy. Second, by
restricting the devices to only use short packets, the requirements to constantly recalibrate the radio
within the controller as the packet is transmitted are removed. Radios, when transmitting or receiving,
will heat up, changing the characteristics of the silicon chip, and therefore changing the frequency of
the transmissions. If the packets are kept short, the chip doesn’t have enough time to heat up; thus, this
energy-expensive procedure can be ignored. In addition, the requirement for a short packet also
reduces the chip’s peak power consumption a little. Finally, you can get more energy out of a button-



cell battery by taking it in short-duration bursts and not a long continuous draw of current. Therefore,
using several short packets with a sufficient space between them to allow the battery time to recover
is better for the battery than using one longer packet.

2.3. Memory Is Expensive
Everybody knows that the more memory a computer has, the more expensive it is. However, every
little bit of memory in a computer not only costs money but also costs energy. Memory typically
requires dynamic refreshing—every so often the memory in the chip is refreshed. This dynamic
refreshing requires energy. So the more memory that a device requires, the more energy is required to
power the device. Therefore, the whole of Bluetooth low energy has been designed to reduce the
amount of memory that is required in every layer.

For example, keeping the packets small in the Link Layer helps because it reduces the memory
requirements for the radio when transmitting and receiving packets. For example, the Attribute
Protocol Layer does not require any packets larger than 23 octets to be processed. It also does not
require any state information to be saved between transactions. All this reduces the memory needed to
do something useful.

Another burden for memory is the multitude of protocols that are required to be active when a
device can do multiple things. For example, imagine a headset that does hands-free, remote control,
and battery status reporting. If each of these use cases required a separate protocol, the memory
required for each of those protocols would have to be added together. In Bluetooth low energy, there
is only one protocol. The Attribute Protocol is used for name discovery, service discovery, and for
reading and writing information required to implement a given use case. By having only one protocol,
the overheads of multiple protocols are significantly reduced.

2.4. Asymmetric Design
One of the obvious design concepts in Bluetooth low energy, once the architecture has been
understood, is the asymmetry that is evident at all layers. This asymmetric design is very important
because the device with the smaller energy source is given less to do.

At the Physical Layer, there are two types of radios: transmitters and receivers. A device can have
both a transmitter and a receiver. However, a device can implement only a transmitter or only a
receiver. If one device only has a transmitter, and the other device only has a receiver, this is an
asymmetric network.

This asymmetric design is all based on the fundamental assumption that the most resource-
constrained device will be the one to which all others are optimized.

At the Link Layer, devices are divided into advertisers, scanners, slaves, and masters. An
advertiser is a device that transmits packets; a scanner is a device that receives the advertiser’s
packets. A slave is connected with a master, but even here the asymmetry is evident. A slave cannot
initiate any complex procedures, whereas a master has to manage the piconet timing, adaptive
frequency hopping set, encryption, and a number of other complex procedures. The slave only does
what it is told and doesn’t have to perform complex processing at all. This keeps the slave very
simple and therefore low cost, low memory, and using the lowest possible power.

At the Attribute Protocol Layer, the two types of devices are called client and server. The server
holds data and the client sends requests to the server for this data. The server, like the slave at the



Link Layer, just does what it is told. The client has the hard job of working out what data the server
has and how to use it.

Even the security architecture for low energy is asymmetric. The security architecture works on a
key distribution scheme by which the slave device gives a key to the master device for it to
remember. The burden is on the master to remember this bonding information; the slave doesn’t have
to remember anything. This means that it’s simple for a slave device to support security, yet for a
master device it is more complex.

This all implies that the most resource-constrained devices will want to be advertisers, slaves, and
servers. These types of devices have the lowest possible memory and processing burden; therefore,
the asymmetric design is beneficial to the goal of ultra-low power consumption on these types of
devices.

The other types of devices—scanners, masters, and clients—have lots of resources to play with.
These devices are typically associated with larger batteries, rich user interfaces, and possibly even
an electric supply. It is right to move the burden then from the slave to the master, from the advertiser
to the scanner, and from the server to the client. This reduces the power consumption of the most
resource-constrained devices, to the cost of the most resource-abundant devices.

2.5. Design For Success
So many wireless standards fall down at the first hurdle because a great radio design just doesn’t
work when it starts to become popular due to congestion from many other radios. If there is one thing
that Bluetooth does well, it is operating in a very congested environment. Three times a year, the
Bluetooth Special Interest Group (SIG) organizes UnPlugFest testing events at which engineers from
many competitive companies come together to test their devices before they are released to the
market. These events highlight the fact that Bluetooth still works even when hundreds and even
thousands of wireless devices come together in a single hotel ballroom. And Bluetooth low energy
has learned from this.

Designing for success means that every person who gets on a crowded commuter train or bus or
goes to a busy sports stadium or concert should be able to operate several low-energy devices. This
means that thousands of devices could be within a few meters of a device, and device discovery and
connections should function as expected. It also means that there should be no inherent limit to the
number of devices a given device can talk to at the same time. If a device wants to talk to another
device, then it should just be able to do that, not worry that there are only seven possible slaves that
can be connected at the same time, which is the limit imposed by classic Bluetooth.

Device density is just one metric that was used during the design of the controller. Another was the
security system. Any very popular radio system will become a target for people who want to try to
break its security. This becomes even more important when monetary value is involved. So state-of-
the-art security and encryption engines must be used.

Beyond security, if a person is going to be carrying around many devices, all of which are resource
constrained and therefore advertising continuously, the issue of privacy must also be addressed. In
Bluetooth low energy, privacy is dealt with as a major design goal. Every connection that is made
uses a different signature that has no relation to any identifying information of these two devices. It is
not possible to know who is walking down the street by just listening to the packets being transmitted
during connections. Also, when advertising, it is possible to use a private address, which is a



resolvable address that allows a friendly device to resolve the address if they have the identity
resolving key but denies unfriendly devices the ability to resolve or track the address.

Another factor taken into account was that when the radio is used everywhere, even a single bit
error can become significant. If you have a sewage outflow valve, for example, protecting your nice
public park from being swamped by effluent, you really don’t want to have a single bit error that
causes that sewage outflow valve to open when you really wanted to make sure it was still closed. To
protect against this, all packets have a strong cyclic redundancy check (CRC) value that can protect
against all 1, 2, 3, 4, 5, and all odd bit errors. Also, if you want more robustness, you can start
encryption. Then a different message authentication code is appended to the data to ensure that the
data was sent from the device that you think it was sent from; no attacker will be able to reply to
messages to the sewage outflow valve. And for the really vigilant, at the Attribute Protocol Layer,
there is the ability to prepare a write into an attribute and only perform the execute of that write after
the value to be written has been returned and verified. This means that for this single bit state for the
valve, a total of 14 octets of CRC and authentication codes protect this data. Bluetooth low energy is
robust.

2.6. Everything Has State
One of the basic concepts behind Bluetooth low energy is that everything has state. This state is
exposed by using the Attribute Protocol in an attribute server. The state could be anything: the current
temperature, the state of the battery of the device, the name of the device, or the description of where
the temperature is being measured.

State doesn’t just have to be readable state; it can also be written. A thermostat can have a set-point
temperature by which another device can set the temperature to which this room should be heated or
cooled. If you can expose state, you can also expose the state of a state machine. By using explicit
state machine attributes, the state of the device can be clearly exposed. This offers the capability for
clients to disconnect whenever they want, because when they reconnect, they can quickly determine
the current state by just reading it.

Some state is variable and can change frequently. To enable an efficient transfer of state
information from the server to the client, direct notifications of the state information from the server to
the client are possible. These notifications don’t require the client to poll the server, allowing very
efficient application designs. The battery state could be notified only when something interesting
happens; thus, a device wouldn’t need to worry about the battery state at all until the notification
arrives.

This simple-state–based model makes it possible for a very efficient client server architecture to
be constructed. This also allows an object-oriented approach to state to be designed into
applications, with reusable data types and service behavior. This reduces the quantity of code that a
device needs to contain, which consequently reduces the power consumption of the device because
memory doesn’t need to be provided for that code. And there is another significant benefit to having
less code: fewer bugs. Simpler systems are cheaper and faster to develop. A simpler system also
typically contains fewer errors, making it more robust. Finally, simpler systems are easier to
maintain. As Robert Browning said, “Less is more.”

2.7. Client-Server Architecture
The client-server architecture has one additional basic design element that is fundamental to the
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design of Bluetooth low energy. When low energy was being designed, the problem of connecting
devices to the Internet was considered. It could have been possible to put an Internet Protocol (IP)
stack on every single resource-constrained device and just expose all the devices over the Internet.
Unfortunately, even the simplest of IP stacks takes more memory and energy than is desirable on the
simplest of devices. Therefore, the decision was made to not allow any IP packets to be routed
directly to slave devices.

Instead, smart gateways allow the interconnection between the Internet and very efficient low-
energy slaves. This interconnection is possible because of the pure client-server architecture. A
server is just a repository of data, and it does not care who the client is. A client could be directly
connected to the server or it could be connected via an Internet gateway from the other side of the
planet.

This affords the ability for individuals to monitor and control their home when they are on
vacation. And given that low energy will be used for everything from security alarms to set-top boxes
and heating systems, it would be possible to check that all the windows are secure on the way to the
beach, set up a recording of your favorite television program while you’re lying back in the sand, and
then turn the heat back up while flying home.

The ability to connect with gateways also allows sports and fitness devices to instantly update their
associated web sites with their collected data, even before the exerciser has had a chance to finish
her drink of water. It would also provide the ability to monitor elderly people so that they can stay in
their own homes, safe in the knowledge that people are available should they need help.

The client-server gateway model also enables full Internet security to be used from the client to the
gateway and allows the gateway to perform access control, firewall, and authorization of the client
before granting it access to anything beyond the gateway. These are proven technologies used today in
many homes and businesses.

2.8. Modular Architecture
One basic concept that is often overlooked is future-proofing the architecture. Most wireless
standards are created in a rush, trying to get the technology out as quickly as possible, without much
concern about how the technology will function in 10 or 20 years’ time. This causes problems,
because poor architectural decisions made under the duress of “time to market” damage the long-term
viability of the platform. To solve this, the Bluetooth SIG created a special architecture working
group just for the Generic Attribute Profile–based architecture to ensure a future-proof design.

The main outcome of this group has been the modular service architecture that builds on top of the
generic attribute profile. This allows atomic encapsulatable bits of behavior to be wrapped up in a
single service and exposed on a device in a standard way. (In this context, an atomic service is one
that just does a single thing, and encapsulatable means that it can be separated from other functions
and wrapped up by itself.) These services can reference other services, so a battery service can
reference a temperature service if the battery has its own temperature sensor; this same temperature
service can be reused for a home thermometer, a freezer temperature sensor, or a car engine coolant
temperature sensor.

An interesting side effect of this architecture is that the services exposed on a device do not have to
be directly related to a given profile. Profiles will require a given set of services on a given device,
but that is about as much of a link as needed. This means that if another profile can be created to use a
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different combination of services on a device, it can combine the existing services in a different way
without a problem. This is true, even if that profile was written after the services were designed and
implemented in a device.

This is a highly flexible and modular architecture that can enable the building up of ecosystems
over time. For example, smart meters could be deployed into homes to allow current and future price
information and usage information to be exposed. Later, smart appliances can be deployed that allow
themselves to be remotely turned on and off; using the gateway model, this could be controlled
outside the home. Even later, a smart energy broker can be deployed that uses the information from the
smart meter and the information from the smart appliances to save the homeowners money by
scheduling energy use that takes into account the pricing information from the meter.

2.9. One Billion Is a Small Number
Any new technology faces a serious challenge trying to obtain market traction. For a technology to be
successful, it has to be low cost. To be low cost, you need volume. To have volume, you need to be
successful. Today, the single largest consumer electronics device that is sold is the cell phone. Any
technology that makes it into the cell phone will be successful. Bluetooth is the classic example of
this. Bluetooth low energy builds on Bluetooth’s attach rate in cell phones to create an instant market.

The technology has the opportunity to have over one billion devices in the field within the first
couple of years as the cell phone manufacturers update their platforms to include Bluetooth low
energy. The interesting thing about this is that it creates a huge market for accessories for phones. And
it is not just phones that can have Bluetooth low energy designed in quickly; computers, televisions, in
fact, any devices that have Bluetooth classic, are likely to be updated to add Bluetooth low energy
because of the extremely low cost associated with incorporating the new technology to an existing
Bluetooth system.

2.10. Connectionless Model
Bluetooth classic was all about cable replacement: headset cables, mouse cables, file transfer cables.
This implies an architecture where the cost of setting up a link is not that important because the link
will be maintained for a few minutes, hours, or even days. The odd second delay at the start of the
connection is not that important. Bluetooth low energy changes all this.

The basic concept with low energy is that connections are transient. When you need to do
something or check something, you quickly create a connection, do what needs to be done, and then
disconnect. A device that is only notifying some state information once every five minutes would only
need the radio on for less than one second a day. This means that the radio is off 99.999 percent of the
time; or to four significant digits, the radio is off 100 percent of the time. Any delay in each
connection setup will cause a significant increase in power consumption.

Bluetooth low energy can create a connection, send data, and gracefully disconnect in about three
milliseconds. This means that many devices that have some state information, but until now couldn’t
afford to add wireless technology because of the cost of energy requirements, can finally consider
adding Bluetooth low energy. Even something as simple as a button can be enabled, possibly using
scavenged power, and therefore never need a battery.

2.11. Paradigms
Most successful technology is built around sets of paradigms, and Bluetooth low energy is no



different. Bluetooth low energy uses two main architectural paradigms: client-server architecture and
service-oriented architecture.

2.11.1. Client-Server Architecture
The client-server architecture is a paradigm by which clients can send requests to servers over a
network and the servers send back responses. It is the main paradigm behind the Internet, which is
arguably the most successful networking technology ever released.

For example, when you type a URL address into a web browser, it first sends the address to a DNS
server. This server responds with the IP address of the server that has been assigned to that name. The
client then sends a hypertext transport protocol (HTTP) request to that server and, once connected,
sends a request for the server to get the resource identified in the request. The server then responds
with the appropriate resource, typically a text file that contains markup (HTML) information about
how to display the information.

This file can also include additional URLs with which the client can fetch other resources, such as
pictures or other pages. These additional links are really the reason HTML pages are thought of as
being linked together into a web, hence the terms web page and web server.

There is a clear distinction between what a server does and what a client does. The server has
information, typically in a structured form. This data is really why the server exists. This data can be
anything, the current weather in Kona, Hawaii, the time of the next train from Seoul to the airport, or
just some inane chatter between friends. The client, on the other hand, doesn’t have any data. It just
sends requests to servers. Once it receives the replies from a server, it can carry out the task it was
assigned to do, such as display information to the user or notify the user that somebody they know has
posted something on a wall or tweeted.

The main benefit of the client-server architecture is this defined split between the client and the
server. This split is necessary when the different parts of the system are on different devices. By
defining one of these parts as a server and one as a client, the explicit relationship between these two
parts of the system can be determined.

The main benefit of this architecture is that it can scale. A client doesn’t need to know anything
except the URL to be able to access a resource. There can be many clients. Some sites on the Internet
will have millions of requests made each day from millions of clients. The server doesn’t really care
what or where these clients are; it just responds to each request as it comes in.

This server architecture can also be scaled. A single machine responding to millions of requests a
day might become overloaded and start to fail. The solution is to place many identical servers, all
having access to the same information. This is further assisted when clients are given multiple IP
addresses for a single name so that the load is spread evenly among each server. This is known as
load balancing.

2.11.2. Service-Oriented Architecture
A further abstraction on top of the client-server architecture is the service-oriented paradigm. This is
a model that organizes the information in a server into services. These services can be discovered,
interacted with, and used with known semantics. This means that the services have a defined behavior
that will always produce the same result, given the same preconditions.

This paradigm is the foundation of the most highly successful Internet systems, such as SOAP,
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REST, COBRA, RPC, Web Services, and so on.
A way to illustrate this is to relate it to a real-world example. Suppose that you have a package that

needs to be delivered to another company quickly. The first thing you will probably do is call a
courier company, arrange a pickup of the package, and then pay for the service. The key concept is
that you know what is going to happen. There is an implicit set of behaviors that the courier company
will be following. On any day, given the same package to be delivered, the courier company will do
exactly the same thing—deliver it to its destination, on time. This service has known semantics with
defined behavior that produces predictable results.

An interesting part of this is that you are interacting with two different people at the courier
company: the person who answered the phone and took your request and the delivery driver who
collected your package. You also used, although unknowingly, a third person who dealt with the
financial transaction. Each of these people provide a subservice that, when combined, results in the
primary service offering of the courier company.

Some of these subservices are also generic; they could be used interchangeably by many different
types of companies. The processing of financial transactions is something that is done pretty much the
same way in every company. Similarly, the function of taking phone calls for picking something up at
one location and dropping it off at another could also be applied to taxi companies.

For all this to work, everything must adhere to a set of rules and conventions that are outlined in the
sections that follow.
2.11.2.1. Formal Contract

For a service to be considered a service, it must follow a formal description of both its exposed
functionality and how it behaves. For example, the courier company driver wears the company
uniform, drives the company vehicle, and greets the customers in a pleasant manner. He will also
drive between locations quickly and safely, and deliver the packages intact. Any violation of these
rules would break the contract that the customer has with the courier company. Most courier
companies therefore also require customers to agree to this formal contract before picking up their
packages.

A side effect of having a formal contract is that it becomes easy for one instance of a service to be
replaced by another instance of the service. This is possible only if the two instances of the service
both expose the same functionality and behavior. For example, if the financial person left the
company, it should be easy to find a replacement who knows the same accounting rules.

In Bluetooth low energy, these formal contracts are captured in service specifications that are
formally adopted by the Bluetooth SIG. These specifications also have test specifications that ensure
that the behavior of an implementation is valid.
2.11.2.2. Loose Coupling

In object-oriented software, each individual component of the system is meant to be designed as a
separate object with no side effects. Those interactions that do occur between components can then be
explicitly defined and tested.

By reducing the dependancies to a minimum, each service implementation can be changed without
risk that unexpected side effects are either introduced or lost. Taking this to its logical conclusion,
there should be a separation between the formal contract and its implementation. This then allows the
implementation to be changed at will, as long as the formal contract is not broken and is unchanged.



For example, it is possible to add more drivers to the courier company, changing the
implementation from a single driver doing everything to many drivers collecting packages from a
small area of a city, bringing them back to a central warehouse, and then sending them back out,
possibly with a different driver. From the customer’s point of view, the service is identical, packages
are collected and delivered as required, but the implementation is completely different. And this was
possible without changing the financial or order-taking services.
2.11.2.3. Abstraction

Service abstraction is an import design rule because of the consequences if this rule is not followed.
If there were no abstraction and a client had full knowledge of how a given service was implemented,
that client might start to use that service in a way that constrains how the service can evolve.

It is common knowledge that more information is good. However, in the context of a service-
oriented architecture, the less knowledge that a client has about how a service is provided, the better
it is. With too much knowledge, the client might obstruct the reuse or redesign of the service because
the client is implicitly linked to the specific implementation. If the service implementation changes,
the client might break.

To ensure that this rule is followed, only the absolute minimum of state must be exposed by the
service. Also, only the external manifestation of the service behavior should be specified.
2.11.2.4. Reusability

The concept of reusability is a design goal that was one of the promises of object-oriented
methodologies for many years. However, reusability is really the ability for a service to be designed
so that it could be applied to multiple different applications. Without careful thought, it is always
easier to design a service that only does one job. With good design, services can be designed to be
independent of the actual process that is used. This means that the service can then be reused in
another application, quickly and easily.

The Bluetooth SIG has responded to this challenge by setting up a working group that has but one
job, which is to look out for generic functionality and then abstract the requirements to enable
significant reuse.
2.11.2.5. Statelessness

To be able to scale services for many clients, the servers cannot hold any client state data. A service
could be defined that remembers everything the client has told them so that the client doesn’t have to
repeat this information on subsequent requests. The problem with this approach is that this
information takes up a lot of memory and relies on this shared state information being in sync on both
the client and server. This therefore leads to the server being reliant on the correct functioning of the
client; this is a bad assumption.

Therefore, the statelessness design goal removes all the state from the interaction between the
client and the server. There will still be some state information stored in the service, but this is
always the server’s state and is never the client’s state. This means that any client can then send any
request at any time and the server will respond to the same request in exactly the same way,
regardless of which client made the request.
2.11.2.6. Composability

All the preceding goals imply that services should be designed to be both small and very simple. But



the real world is never that simple. Real-world services are complex. To resolve this apparent
conflict, a service-oriented architecture encourages the aggregation of smaller services to enable
higher service interfaces.

The aforementioned design goals for services all encourage that they can be combined. For
example, the courier company service was shown to be composed of three separate services. As long
as each of these individual services followed the stated goals, these can be combined into a courier
company. Similarly, some of these services could be combined to make a taxi company or an
executive car service. The implementation might be different—a delivery van, a family car, or an
executive limousine—but the services are essentially the same.
2.11.2.7. Autonomy

For services to be reused and combined, they must be reliable. A service that relies on other
components within the system to perform received requests will not be as reliable as a service that
has complete control over everything it does.

An autonomous service can stand alone and perform its task, regardless of what is going on around
it. These services can be reused in other applications with very little difficulty. A service that is not
autonomous would probably have to bring many other support services; these additional services
might conflict with other services.

For example, the courier company drivers function autonomously, collecting and delivering
packages, as they are told to do. They will continue to function autonomously even if there is a major
malfunction in the office.
2.11.2.8. Discoverability

Finally, for services to be used, they must be discoverable. This might appear obvious at first glance,
but service discoverability is essential for ad hoc networking. Without service discovery, all services
must be statically programmed; a complex, burdensome, and error-prone task.

Typically, these use a separate protocol from the protocol used to interact with the service. For
example, to find the courier company, somebody might have used a phone book or searched on the
Internet; they would not just call random telephone numbers and hope that one would be a courier
company.

Bluetooth low energy takes a different approach and uses a single protocol for both the discovery
of services and interacting with these services. This protocol is called the Attribute Protocol, and
service discoverability is described in its profile, the Generic Attribute Profile. Both of these are
described in Chapter 10, Attributes.



Chapter 3. Architecture

That’s been one of my mantras—focus and simplicity. Simple can be harder than complex: You
have to work hard to get your thinking clean to make it simple. But it’s worth it in the end

because once you get there, you can move mountains.
—Steve Jobs

The architecture for Bluetooth low energy is fundamentally very simple. As shown in Figure 3–1, it is
split into three basic parts: controller, host, and applications. The controller is typically a physical
device that can transmit and receive radio signals and understand how these signals can be interpreted
as packets with information within them. The host is typically a software stack that manages how two
or more devices communicate with one another and how several different services can be provided at
the same time over the radios. The applications use the software stack, and therefore the controller, to
enable a use case.

Figure 3–1. The Bluetooth Architecture



Within the controller, there is both the Physical Layer and Link Layer as well as a Direct Test
Mode and the lower layer of the Host Controller Interface. Within the host are three protocols:
Logical Link Control and Adaptation Protocol, Attribute Protocol, and the Security Manager Protocol.
Also within the host are the Generic Attribute Profile, the Generic Access Profile, and modes.

3.1. Controller
The controller is the bit that most people can identify as the Bluetooth chip or radio. Calling the
controller a radio, however, is very simplistic; the controller is composed of both analog and digital
parts of the radio frequency components as well as hardware to support the transmission and
reception of packets. The controller interfaces with the outside world through an antenna and to the
host through the Host Controller Interface.

3.1.1. Physical Layer
The Physical Layer is the bit that does the hard work of transmitting and receiving bits using the
2.4GHz radio. To lots of people, the Physical Layer is magical. Fundamentally, it is not magic, but is
the simple transmission and reception of electromagnetic radiation. Typically, radio waves can carry
information by varying the amplitude, frequency, or phase of the wave within a given frequency band.
In Bluetooth low energy, the frequency of the radio waves are varied to allow either a zero or a one
to be exposed, using a modulation scheme called Gaussian Frequency Shift Keying (GFSK).

The Frequency Shift Keying part means that ones and zeros are coded onto the radio by slightly
shifting the frequency up and down. If the frequency is shifted abruptly to one side or the other at the
moment the frequency changes, there is a pulse of energy that spreads out over a wider range of
frequencies. So a filter is used to stop the energy spreading too far into higher or lower frequencies.
In the case of GFSK, the filter used is shaped like a Gaussian curve. The filter used for Bluetooth low
energy is not as tight as the filter used for Bluetooth classic. This means that the low energy radio
signal spreads out a little more than the classic radio signal.

This slight widening of the radio signal is useful because it means the radio comes under spread-
spectrum radio regulations, whereas the Bluetooth classic radio is governed by frequency-hopping
radio regulations. Spread-spectrum radio regulations allow a radio to transmit on fewer frequencies
than frequency-hopping radio regulations. Without the more relaxed filter shape, the Bluetooth low
energy radio would not be allowed to advertise on just three channels; it would have to use many
more channels, which would make the system higher power (as discussed earlier).

This slight widening of the radio signal is referred to as the modulation index. Modulation index
describes how wide the upper and lower frequencies used are around the center frequency of a
channel. When the radio signal is transmitted, a positive frequency deviation of more than 185kHz
from the center frequency represents a bit with the value 1; a negative frequency deviation of more
than 185kHz represents a bit with the value 0.

For the Physical Layer to work, especially when lots of other radios are in the same area
transmitting at the same time, the 2.4GHz band is split up into 40 separate RF channels, each 2MHz
apart from one another. The Physical Layer transmits information at one bit of application data every
one microsecond. For example, to send the 80 bits of data for the string “low energy” formatted in
UTF-8 would take just 80μs, although this does not take into account any packet overhead.

3.1.2. Direct Test Mode



Direct Test Mode is a novel approach to the testing of the Physical Layer. In most wireless standards,
there is no standard way to get a device to perform standard Physical Layer tests. This leads to the
problem of many different companies building their own proprietary methods to test only their
Physical Layers. This increases the costs for the whole industry and increases the barriers for an end-
product manufacturer to change from one silicon supplier to another quickly.

Direct Test Mode allows a tester to command a controller’s Physical Layer to either transmit a
sequence of test packets or receive a sequence of test packets. The tester can then analyze the packets
received, or the number of packets that the device under test received, to determine if the Physical
Layer is working according to the specification. The tester can also measure various RF parameters
from received packets to determine if the Physical Layer is compliant with the RF specs. The Direct
Test Mode is not just applicable to qualification testing; it can also be used for production line testing
and calibration of radios. For example, by quickly commanding a Physical Layer to transmit on a
given radio frequency, and measuring the actual transmitted signal, the radio can be tuned to match
what it should be doing. This sort of calibration is typically done on every single unit, so having test
equipment that can do this efficiently can save product manufacturers money.

3.1.3. Link Layer
The Link Layer is probably the single most complex part of the Bluetooth low energy architecture. It
is responsible for advertising, scanning, and creating and maintaining connections. It is also
responsible for ensuring that packets are structured in just the right way, with the correctly calculated
check values and encryption sequences. To do this, three basic concepts are defined: channels,
packets, and procedures.

There are two types of Link Layer channels: advertising channels and data channels. Advertising
channels are used by devices that are not in a connection sending data. There are three advertising
channels—again, this is a compromise between low power and robustness. Devices use these
channels to broadcast data, advertise that they are connectable and discoverable, and to scan and
initiate connections. The data channels are only used once a connection has been established and data
needs to flow. There are 37 data channels, and they are used through an adaptive frequency-hopping
engine to ensure robustness. The data channels allow data from one device to another to be sent,
acknowledged, and, if necessary, retransmitted. Data channels can be encrypted and authenticated on
a per-packet basis.

To send data on any of these channels (data or advertising), small packets are defined. A packet
encapsulates a small amount of data that is sent from a transmitter to a receiver over a very short
period of time. Packets include information to identify the intended receiver, as well as a checksum
that ensures that the packet is valid. The basic packet structure is identical between the advertising
channels and data channels, with a minimum of 80 bits of addressing, header, and check information
included in each and every packet. Figure 3–2 presents an overview of the Link Layer packet
structure.



Figure 3–2. The Link Layer packet structure
The packets are optimized to increase their robustness by using an 8-bit preamble that is

sufficiently large to allow the receiver to synchronize bit timing and set the radio’s automatic gain
control; a 32-bit access address that is fixed for advertising packets but completely random and
private for data packets; an 8-bit header to describe the contents of the packet; an 8-bit length field to
describe the payload length, although not all these bits are used for length because no packet with
more than 37 octets of payload is allowed to be sent; a variable-length payload that contains useful
data from the application or the host device stack; and finally, a 24-bit cyclic redundancy check
(CRC) value to ensure that there are no bit errors in the received packet.

The shortest packet that can be sent is an empty data packet that is 80μs in length, whereas the
longest packet is a fully loaded advertising packet that is 376μs in length. Most advertising packets
are just 128μs in length, and most data packets are 144μs in length.

3.1.4. The Host/Controller Interface
For many devices, a Host/Controller Interface (HCI) will be provided that allows a host to
communicate with the controller though a standardized interface. This architectural split has proven to
be extremely popular in Bluetooth classic, for which over 60 percent of all Bluetooth controllers are
used through the HCI interface. It allows a host to send commands and data to the controller and the
controller to send events and data to the host. It is really composed of two separate parts: the logical
interface and the physical interface.

The logical interface defines the commands and events and their associated behavior. The logical
interface can be delivered over any of the physical transports, or it can be delivered via a local
application programming interface (API) on the controller, allowing an embedded host stack to be
included within the controller.

The physical interface defines how the commands, events, and data are transported over different
connection technologies. The physical interfaces that are defined include USB,1 SDIO,2 and two
variants of the UART.3 For most controllers, they will support just one or possibly two interfaces. It
should also be considered that to implement a USB interface requires lots of hardware, and the
interface is not the lowest power interface, so it would not typically be provided on a Bluetooth low
energy single-mode controller.

Because the host controller interface has to exist on both the controller and the host, the part that is
in the controller is typically called the lower-host controller interface; the part that is in the host is
typically called the upper-host controller interface.

3.2. The Host
The host is the unsung hero of the Bluetooth world. The host contains multiplexing layers, protocols,
and procedures for doing lots of useful and interesting things. The host is built on top of the upper-
host controller interface. On top of this is the Logical Link Control and Adaptation Protocol, a
multiplexing layer. On top of this are two fundamental building blocks for the system; the Security
Manager that does everything from authentication and setting up secure connections and the Attribute
Protocol that exposes the state data on a device. Built on the Attribute Protocol is the Generic
Attribute Profile that defines how the Attribute Protocol is used to enable reusable services that
expose the standard characteristics of a device. Finally, the Generic Access Profile defines how



devices find and connect with one another in an interoperable manner.
There is no defined upper interface for the host. Each operating system or environment will have a

different way of exposing the host APIs, whether that be through a functional or object-oriented
interface.

3.2.1. Logical Link Control and Adaptation Protocol
The Logical Link Control and Adaptation Protocol (also referred to as L2CAP) is the multiplexing
layer for Bluetooth low energy. This layer defines two basic concepts: the L2CAP channel and the
L2CAP signaling commands. An L2CAP channel is a single bidirectional data channel that is
terminated at a particular protocol or profile on the peer device. Each channel is independent and can
have its own flow control and other configuration information associated with it. Bluetooth classic
uses most of the features of L2CAP, including dynamic channel identifiers, protocol service
multiplexers, enhanced retransmission, and streaming modes. Bluetooth low energy just takes the
absolute minimum of L2CAP.

In Bluetooth low energy, only fixed channels are used: one for the signaling channel, one for the
Security Manager, and one for the Attribute Protocol. There is only one frame format, the B-frame;
this has a two-octet length field and a two-octet channel identifier field, as illustrated in Figure 3–3.
This is the same frame format that classic L2CAP uses for every channel until the frame formats are
negotiated to something more complex. For example, in Bluetooth classic, it is possible to have frame
formats that include additional frame sequencing and checks. These are not needed in Bluetooth low
energy because the checks at the Link Layer are strong enough to not need additional checks, and the
simple Attribute Protocol has no need for out-of-order delivering of packets from multiple channels.
By keeping the protocols simple and doing sufficient checks, only one frame format was required.

Figure 3–3. The L2CAP packet structure

3.2.2. The Security Manager Protocol
The Security Manager defines a simple protocol for pairing and key distribution. Pairing is the
process of attempting to trust another device, typically by authenticating the other device. Pairing is
typically followed by the link being encrypted and the key distribution. Using key distribution, shared
secrets can be distributed from a slave to a master so that when these two devices reconnect at a later
date, they can quickly prove their authenticity by encrypting using the previously distributed shared
secrets. The Security Manager also provides a security toolbox for generating hashes of data,
generating confirmation values, and generating short-term keys used during pairing.

3.2.3. The Attribute Protocol
The Attribute Protocol defines a set of rules for accessing data on a peer device. The data is stored on
an attribute server in “attributes” that an attribute client can read and write. The client sends requests
to the server and the server responds with response messages. The client can use these requests to



find all the attributes on a server and then read and write these attributes. The Attribute Protocol
defines six types of messages: 1) requests sent from the client to the server; 2) responses sent from the
server to the client in reply to a request; 3) commands sent from the client to the server that have no
response; 4) notifications sent from the server to the client that have no confirmation; 5) indications
sent from the server to the client; and 6) confirmations sent from the client to the server in reply to an
indication. So, both client and server can initiate communication with messages that require a
response, or with messages that do not require a response.

Attributes are addressed, labeled bits of data. Each attribute has a unique handle that identifies that
attribute, a type that identifies the data stored in the attribute, and a value. For example, an attribute
with the type Temperature that has the value  could be contained within an attribute with the
handle 0x01CE. The Attribute Protocol doesn’t define any attribute types, although it does define that
some attributes can be grouped, and their group semantics can be discovered via the Attribute
Protocol.

The Attribute Protocol also defines that some attributes have permissions: permissions to allow a
client to read or write an attribute’s value, or only allow access to the value of the attribute if the
client has authenticated itself or has been authorized by the server. It is not possible to discover
explicitly an attribute’s permissions; that can only be done implicitly by sending a request and
receiving an error in response, stating why the request cannot be completed.

The Attribute Protocol itself is mostly stateless. Each individual transaction—for example, a single
read request and read response—does not cause state to be saved on the server. This means that the
protocol itself requires very little memory. There is one exception to this: the prepare and execute
write requests. These store a set of values that are to be written in the server and then executed all in
sequence, in a single transaction.

3.2.4. The Generic Attribute Profile
The Generic Attribute Profile sits above the Attribute Protocol. It defines the types of attributes and
how they are used. It introduces a number of concepts, including “characteristics,” “services,”
“include” relationships between services, and characteristic “descriptors.” It also defines a number
of procedures that can be used to discover the services, characteristics, and relationships between
services, as well as read and write characteristic values.

A service is an immutable encapsulation of some atomic behavior of a device. This is a long
stream of very complex words, but it is a very simple concept to understand. Immutable means that
once a service is published, it cannot change. This is necessary because for a service to be reused it
can never be changed. As soon as a service’s behavior changes, version numbers and other awkward
setup procedures and configuration take time and therefore become the antithesis of a connectionless
model, one of the basic concepts behind Bluetooth low energy.

Encapsulation means expressing features of something succinctly. Everything about a given service
is enclosed and expressed through a set of attributes in an attribute server. Once you know the bounds
of a service on an attribute server, you know what information that service is encapsulating. Atomic
means of or forming a single irreducible unit or component of a larger system. Atomic services are
important because the smaller the server, the more likely it is to be reusable in another context. If we
created complex services that had multiple, possibly related behaviors, the chance of these being
reused is significantly reduced.



Behavior means the way something acts in response to a particular situation or stimulus. For
services, the behavior means what happens when you read or write an attribute, or what causes the
attribute to be notified to the client. Explicitly defined behavior is very important for interoperability.
If a service is specified with poorly defined behavior, each client might act in a different way when
interacting with the service. The services might then act differently depending on which client is
connecting, or more important, the same service on different devices will act differently. As soon as
this becomes entrenched in the devices, interoperability is destroyed. Therefore, explicitly defined
behavior that is testable, even for erroneous interactions, promotes interoperability.

Service relationships are key to the complex behaviors that devices expose. A service is atomic by
nature. Complex behaviors should not be exposed in just a single service. Take, for example, a device
that can measure the room temperature by exposing a temperature service. The device might be
powered by a battery so it would expose a battery service. However, if the battery also has a
temperature sensor, we should be able to expose another instance of the temperature service on the
device. This second temperature service needs to be related to the battery so that a client can
determine that relationship. This is shown in Figure 3–4.

Figure 3–4. Complex service relationships
To accomodate complex behaviors and relationships between services, services come in two

types: primary services and secondary services. The type of a service is not typically dependent on
the service itself but on how that service is used in a device. A primary service is one that exposes
what the device does, from the perspective of the user. A secondary service is one that is used by a
primary service or another secondary service to enable it to provide its complete behavior. In the
previous example, the first temperature service would be a primary service, the battery service would
also be a primary service, whereas the second instance of the temperature service—the temperature
of the battery—would be a secondary service referenced from the battery service.

3.2.5. The Generic Access Profile
The Generic Access Profile defines how devices discover, connect, and present useful information to
the users. It also defines how devices can create a permanent relationship, called bonding. To enable



this, the profile defines how devices can be discoverable, connectable, and bondable. It also
describes how devices can use procedures to discover other devices, connect to other devices, read
their device name, and bond with them.

This layer also introduces the concept of privacy by using resolvable private addresses. Privacy is
important for devices that are constantly advertising their presence so that other devices can discover
and connect to them. Devices that want to be private, however, must broadcast by using a constantly
changing random address so that other devices cannot determine which device it is by listening, or
which device is moving around by tracking its current random address over time. However, to allow
devices that are trusted to determine if it is nearby, and to allow connections, the private address must
be resolvable. The Generic Access Profile, therefore, defines not only how private addresses are
resolvable but also how to connect to devices that are private.

3.3. The Application Layer
Above the controller and the host is the Application Layer. The Application Layer defines three types
of specifications: characteristic, service, and profile. Each of these specifications is built on top of
the Generic Attribute Profile. The Generic Attribute Profile defines grouping attributes for
characteristics and services, and the applications define the specifications that use these attribute
groups.

3.3.1. Characteristics

A characteristic is a bit of data that has a known format labeled with a Universally Unique Identifier4

(UUID). Characteristics are designed to be reusable, and therefore have no behavior. As soon as
behavior is added to something, it limits its reuse. The most interesting thing about characteristic
specifications is that they are defined in a computer-readable format rather than as human-readable
text. This gives computers the ability, when they see a characteristic used for the first time, to
download this computer-readable specification and use it to display these characteristics to the user.

3.3.2. Services
A service is a human-readable specification of a set of characteristics and their associated behavior.
The service only defines the behavior of these characteristics on a server; the service does not define
the client behavior. For many services, the client behavior can be implicitly determined by the
service’s server behavior. However, for some services, there might need to be more complex
behavior in the client that must be defined. This client behavior is defined in profiles, not in the
services.

Services can include other services. The parent service can only define the services that are
included; it cannot change the characteristics in these included services or change the behavior of
these services. The including service, however, can describe how multiple included services interact
with each other.

Services come in two variants: primary and secondary, as noted in Section 3.2.4. The primary or
secondary nature of a service can be defined in a service specification or can be left up to the profile
or an implementation. Primary services are those that embody what a given device does—it is these
services that the user would understand that the device does. Secondary services are those that assist
the primary services or other secondary services.

Services do not describe how devices connect to each other to find and use services. Services only



describe what happens when a characteristic is read or written, or when it is notified or indicated.
Services do not describe what Generic Attribute Profile procedures are used to find the service, the
characteristics within a service, or how the characteristics are used by a client.

3.3.3. Profiles
Profiles are the ultimate embodiment of a use case or application. Profiles are specifications that
describe two or more devices, with one or more services on each device. Profiles also describe how
the devices should be discoverable and connectable, thereby defining what topology is necessary on
each device. Profiles also describe the client behavior for finding the service, finding the
characteristics of the service, and using the service to enable the functionality required by the use
case or application.

There is a many-to-many mapping of profiles to services, as illustrated in Figure 3–5. A service
can be used by many profiles to enable a given behavior on a device. The behavior of a service is
independent of which profile is using this service at this time. Application stores can be given the list
of services that a device supports and find the set of applications from the store that use these
services. This flexibility enables a plug-and-play model that has worked so well for the universal
serial bus.

Figure 3–5. Complex profile service relationships

3.4. Stack Splits
It is possible to build a Bluetooth low energy product by using multiple different stack splits. The
specification defines one stack split using the host controller interface between the controller and the
host, but you can use many other different stack splits.

3.4.1. Single-Chip Solutions



The simplest stack split that is possible with Bluetooth low energy is the single-chip solution, as
shown in Figure 3–6. This has no stack splits; all parts of the product are packed into a single chip.
This chip includes the controller, the host software, and the applications. This is the ultimate in low-
cost products, only requiring a source of power, an antenna, some hardware to interface to—for
instance, buttons and lights—and some additional discrete components.

Figure 3–6. A single-chip solution
Unfortunately, there are some downsides to using single-chip solutions. First, the development

environments are more difficult to use because the chips are very resource constrained. Second, to
reduce the cost, the software needs to be burned into read-only memory (ROM) in the chip. This
requires a custom chip to be made for a single product. This can be offset by the reduced bill of
materials for very large production runs, but the process can be very expensive for smaller production
runs.

For devices that have small production runs or for prototype products, a mass-produced single chip
that includes everything from the controller up to the top of the host can be used with a small
nonvolatile memory chip to store the application. This yields very low-cost small production runs. At
power up, the contents of the non-volatile memory are read into the single chip and executed. Thus,
you can have both an efficient prototyping platform and a cost-effective small production run product.

3.4.2. Two-Chip Solutions
For two-chip solutions, the classic model is that the controller is on one chip and the host and
applications are on a separate chip, as shown in Figure 3–7A. This model is typically used for cell
phones and computers because they already have very powerful processors capable of running the
complete host and application software stack. This solution typically uses mass-produced controller
chips with a standard Host Controller Interface. Although this architectural split is ideal for devices
that already have a very powerful processor, it is not ideal for any other type of device.



Figure 3–7. A pair of two-chip solutions
An alternative two-chip solution is one in which the controller and host are on one chip, and the

applications are on a separate chip, as shown in Figure 3–7B. This has the advantage that the
application chip can be a very small low-power microprocessor because the application chip doesn’t
need much memory or other resources to run the application. The interface between the two chips
would typically be a custom interface, probably employing a simple UART. This solution has the
advantage that two standard mass-produced chips can be combined and use the standard development
tools for the application chip.

3.4.3. Three-Chip Solutions
It is also possible for multiple-chip solutions to be used. For example, it would be possible to
combine a standard controller on one chip, with a host chip and an application chip, as shown in
Figure 3–8. The host chip would require two separate interfaces.

Figure 3–8. A three-chip solution
These solutions are typically prohibitively expensive; therefore, they are typically confined to



development systems where multiple interfaces are used to allow each layer to be separately
instrumented. Short production runs might also be able to tolerate this complexity because the cost of
integrating into fewer components is not offset by the savings on each end product if only a few
products are ever to be manufactured. For mass-produced products, this architecture would never be
viable from a cost point of view.



Chapter 4. New Usage Models

All of the books in the world contain no more information than is broadcast as video in a single
large American city in a single year. Not all bits have equal value.

—Carl Sagan

Bluetooth low energy enables a new way of using wireless technology. The main new models are
based around the advertising model and include presence detection, broadcasting of data, and
connectionless models. They also include gateways from devices to the Internet.

4.1. Presence Detection
The most interesting new wireless model enabled by Bluetooth low energy is presence. Presence
means the state or fact of existing, occurring, or being present in a place or thing. Using the
advertising model, devices can passively scan in the background for other devices that are
broadcasting. The devices that are advertising might be just advertising their address, or they could
be advertising some presence-based data.

Advertising is a new mode of operation defined in the Link Layer. With it, devices can periodically
transmit their identity and a small amount of information. This model is possible because the
modulation index of the radio has been increased and the 2.4GHz band regulations permit wider radio
signals to be sent using a non-frequency-hopping radio. Because the radio doesn’t employ frequency
hopping, fewer channels are needed for devices to be connectable and discoverable. This means that
it is much more efficient to advertise and scan.

Scanning is possible in two modes: active and passive. Active scanning requires the scanner to
request more information from advertisers, to obtain additional static data. Passive scanning just
requires the scanner to listen for advertising packets. Once an advertising packet is received by the
Link Layer, it can be sent to the host.

The host can use the information about what devices are nearby to determine where it is. For
example, if the host discovers a car, then the host can determine that it is in or near a car and change
its behavior accordingly, perhaps by connecting to the car. Similar use cases around the home, in the
office, or at a café are also possible. It is this automatic determination in the background using
passive scanning that allows a device to automatically change its behavior based on where it is.

Presence, as just described, is about a mobile device determining where it is. Another type of
presence is about static devices being able to determine what devices are in a given location.
Probably the most useful benefit of this would be to find somebody or something in a large office
building, for example. The devices or people that want to be tracked would advertise infrequently,
and devices in each room would monitor which devices they can detect. This information can then be
communicated to a central device to determine location. You can use this to automatically route phone
calls to the nearest phone or to track employees during an emergency evacuation of a building.

4.2. Broadcasting Data
The advertising model also allows a small quantity of data to be broadcast—a very small amount, just
a few tens of octets of data—but the ability to broadcast this small bit of information to any device
that is listening in the area is incredibly valuable. As stated earlier, the ability to determine where a
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device is, based on what devices are broadcasting, is a useful function in its own right. However, this
relies on having some way to map the device that is broadcasting to a physical location. Data
broadcasting helps with this mapping.

You can use broadcasting to transmit many different types of useful data. There are three main
areas for which broadcasting data can help the user experience: initial connection setup, advertising,
and broadcasting information.

To help with an initial connection setup, devices can broadcast data about what type of device they
are and that they want to connect to a device with a complementary set of services or profiles. For
example, when you remove a television from its box and switch it on for the first time, it starts to
search for a remote control. When you install the batteries in the remote control, it starts to advertise
that it is looking for the television.

The television receives this broadcast data, connects to the remote control, automatically pairs
with it, and then allows the remote control to talk to it securely. This means that, from the consumer’s
perspective, they turn on the television for the first time, put the batteries in the remote control, and
then press buttons on the remote to control the television; no connect buttons and no pairing menus.

Advertising is a useful tool for many organizations. With it, consumers have the ability to discover
real world-services from over 100 meters away. An obvious place where advertising using a free
wireless technology is useful is at international airports and railway stations. The ability to advertise
gate or track details for flights or trains gives travellers who don’t want to spend lots of money on
roaming charges or Wi-Fi Internet access an alternative way to gather information. Simple bus stops
can also advertise when the next bus will arrive and where the bus is heading.

It is also possible to broadcast information that is gathered locally by a device. For example, a
temperature sensor could broadcast the temperature to any device that is currently listening for
temperature information. This is most useful when information is being sensed that changes rapidly
and the information is useful for multiple devices.

4.3. Connectionless Model
One of the biggest changes from Bluetooth classic to Bluetooth low energy is in the way that a
connectionless model has been designed and implemented. In a connectionless model, devices do not
need to maintain a connection for useful information to be exchanged quickly between them. Because
the main protocols never establish a connection-oriented channel between devices, there is no cost to
dropping and then reconnecting a connection when data needs to be sent. This encourages devices to
only establish a connection when they need to send data, and not to maintain an expensive connection
just in case some data does need to be sent. This connectionless model does impose some interesting
design changes from standard wireless protocols.

In a connection-oriented channel, the state information can be established over a period of time by
using the protocol. The state information, therefore, typically is not available whenever it is required,
but only by remembering the state that has been implicitly created by both devices. This state
information requires a long time to be established, causing delays upon the initial connection while
the state information is discovered and negotiated. Protocols that are based on implicit state typically
have negotiation and configuration procedures as well as feature bits and version numbers. If a
connection is going to be up for a long time, and there is a lot of state information, that state-full
system can be more efficient.
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Unfortunately, many protocols are not fully defined, with each bit of state implicitly defined as
opposed to being explicitly defined. This leads to interoperability problems because each device
thinks that the connection has a different state and therefore makes different assumptions about what
can or should happen next. This is one of the biggest problems with connection-oriented systems. This
can be solved by defining the state explicitly and also how any state machines work. A good example
of this would be the Logical Link Control and Adaptation Protocol (L2CAP) Layer in Bluetooth
where for Bluetooth classic, a simple state machine and configuration system are used when
establishing a connection. All the state of the connection is explicitly defined, and the connection state
machine is fully described. This, however, has taken over 10 years to develop to the exemplary level
it now occupies.

Thus, the connectionless model solves these problems by not defining the state of a connection, but
the state of the device. By exposing state through a stateless protocol, such as Attribute Protocol, it is
possible to disconnect at any time and, upon reconnection, determine what the current state is directly
from the other device. It is also possible to explicitly define state machines with both an exposed state
and an exposed control point to persuade that state machine into different states as defined by some
service. It is also possible to reestablish a connection just because some information in this state has
changed and a device has registered to receive this state change information.

For example, it can be used to signal the battery level of a device. A monitoring device would
connect to the battery-powered device, read the current battery level, configure the battery level to be
notified when it changes, and then disconnect. When the battery level does change, the battery-
powered device slowly makes itself connectable and the battery-monitoring device notices that it has
something to say. The battery-powered device then connects to the battery-monitoring device.
Immediately after establishing a connection, the battery-powered device can notify the monitor of the
new battery level and then immediately terminate the link. This can all happen within about 3
milliseconds. For a device that was fully charged and has a battery that lasts for just one year, this
would require approximately 99 reports of 3 milliseconds each, a total radio-active time of just fewer
than 300 milliseconds. In contrast, just to set up a connection-oriented channel in Bluetooth classic
can take a similar time, for each report.

4.4. Gateways
The most radical change in computing technology over the last few years has been the spread and
pervasiveness of the Internet. It appears that everything is connected to it, from newspapers to
televisions and radios. All of these are portals for media, whether it is printed words, moving
pictures, or voice. Of course, there are many other uses for the Internet, including communications
such as e-mail and social networking, and teleconferencing audio and video links. However, the next
big challenge will be to connect hundreds more devices for each device that’s connected to the
Internet today. This is a big change and the current infrastructure will probably not have the capacity
to cope with all this new data initially.

The problem with the Internet is that it is built around a connection-oriented model. A TCP1

connection is a session-oriented channel that is established between two devices, which takes time to
set up. The fact that devices connected to the Internet have to have an address is also session based.
To obtain an address, a device must either have this address programmed into it or it has to ask
another device to allocate it an address for a period of time; it can use this address for this period of
time, after which it must ask for another address.
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The biggest problem with the Internet as it is currently structured is that it is designed around a
wired infrastructure. Wires are great; they are mostly reliable, and because the devices connected
with wires aren’t moving around, they can also be connected to other wires supplying electricity. This
means that energy efficiency for wired protocols is rarely considered. The fact that routers constantly
check for the mapping of allocated or nonallocated Internet addresses to devices, at stochastic
intervals, typically means that Internet devices need to be listening all the time. This doesn’t work
when devices are constantly moving around and need ultra-low power consumption. Another
approach has to be used.

The model followed in Bluetooth low energy is one that is used in most homes that have more than
one computer connected to the Internet. This is the concept of a gateway using network address
translation (NAT). To the outside, your typical home has a single Internet address, allocated to the
gateway or router. The gateway, however, allocates a separate set of addresses for all the devices in
the home that are attached to it. The key is that the gateway translates the internal addresses to the
single external address, hiding the topology of the internal network from the outside world. The
outside world just sees one device, and it doesn’t really care about which device is really sending or
receiving the data.

The Internet Protocol itself is very expensive. For an IPv6-based network, a 128-bit source and
destination address has to be included in every single packet that is transmitted. This means that the
minimum size of a packet, before any other protocol overhead, is 32 bytes. This is larger than the
biggest Bluetooth low energy packet. Therefore, it becomes very difficult to just use the Internet
Protocols directly over low energy—even if we were to discount the fact that they were designed
when everything was wired. The gateway model, however, allows us to hide the internal addressing
of devices from the outside world. This internal addressing of devices could be using a separate IPv6
address space or could be using some other addressing scheme that is transparent to the outside
world.

By using Bluetooth low energy gateways, tiny wireless devices not only can connect to the Internet,
but they can do so using the least possible amount of power. Bluetooth low energy does this by
pushing the complexity of the Internet to the gateway devices that have the resources to cope. It also
allows these gateway devices to map Internet addresses to devices using any scheme they want. This
could be done by allocating an individual IPv6 address to each device or by using a port number of a
single Internet address to each device.

Gateways are useful because if your refrigerator needs to notify its manufacturer that the
compressor pump is failing and needs to be replaced under warranty, it must have a way to get this
message out to the manufacturer’s Internet server. Obviously, similar things will need to be done for
all manufactured devices: washing machines, cars, and vacuum cleaners, to name just a few. The
manufacturer might also want to send information to these devices; for example, they might want to
upgrade washing programs. Thus, gateways provide the way for devices to interact with the Internet
without being burdened by the power-hungry wired protocols that drive the Internet.



Part II: Controller
Chapter 5, The Physical Layer, describes how devices communicate wirelessly with one another.

Chapter 6, Direct Test Mode, highlights the Direct Test Mode and its role in performing low-cost,
time-efficient testing of the radio.

Chapter 7, The Link Layer, introduces the lowest layers of protocol that describe packets,
advertising, and how to create a connection.

Chapter 8, The Host/Controller Interface, describes the interface that hosts can use to talk with a
controller and get it to do useful things.



Chapter 5. The Physical Layer

You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his
head is meowing in Los Angeles. Do you understand this? And radio operates exactly the same
way: you send signals here, they receive them there. The only difference is that there is no cat.

—Albert Einstein

5.1. Background
Two or more Bluetooth low energy devices use radio waves to send and receive information among
them. Radio has been around for many years, starting with very simple spark-gap transmitters,
evolving through amplitude modulation and frequency modulation, and recently, to phase-shift keying
and other more complex modulation schemes.

The sections that follow provide an introduction to how radios work, from the basics up to modern
modulation schemes that are used by Bluetooth low energy.

5.2. Analog Modulation
The basic spark-gap radio is possibly the simplest radio that you can build. It is so simple that you
could build it with just two components. Take a nine-volt battery with the two battery terminals at the
top of the battery and a metal coin that can conduct electricity. But before you make your transmitter,
you need to set up a receiver; you can use a radio that is turned to the AM band but not to any
particular radio station. Then, briefly contact the coin to the battery terminals. You should hear the
radio pick up the interference caused by the coin and the battery as the electricity sparks across the
gap when the coin is very close to the terminals at the top of the battery but not actually touching them.

There are two problems with spark-gap radios. First, they are not very efficient. You need a very
large electrical potential difference to transmit a long distance, typically many thousands of volts.
Second, there is only one radio able to transmit at the same time in the same area. This severely
restricts the ability to communicate more than one message at the same time in any given region. For
example, imagine the residents of an entire city having the “choice” of just one television station.

The next advance in radio technology was amplitude modulation, or AM radio. It was observed
that you could transmit a single frequency by using radio waves. These carrier signals could then be
modulated to transmit some information. In amplitude modulation, the amplitude, or volume, of the
carrier signal was changed. Fundamentally, this was a huge advance because many different radio
signals could be transmitted at the same time. Figure 5–1 shows a representation of an analog
amplitude modulation signal.

Figure 5–1. Analog amplitude modulation
Countries and private companies would go on to create many different radio stations. When short-

wave radio was the only type of radio available, governments would set up their radio station and
just pick an empty part of the spectrum, or deliberately pick a part that would interfere with another
country’s station so that their citizens could listen to the local propaganda only. Eventually,



international agreements were created to allocate frequencies in a logical and nonconflicting manner.
It is these agreements that have been the basis of most radio frequency allocations since.

Sometimes, the allocation of frequency bands might be very similar, but how they are used would
be different. For example, the medium-wave radio bands used for AM radio in the United States and
the European Union are both between 530kHz and 1620kHz, yet in the United States, each station is
allocated a frequency at 10kHz intervals, whereas in the European Union they are at 9kHz intervals.
This means that the European Union can have more stations, but radio receivers must be designed to
cope with both different frequency bands.

Amplitude modulation also has problems that are self evident when you listen to an AM radio
station. If the audio input to a radio station is very quiet, the receiver might either lose the signal
completely or it will output more noise as it desperately attempts to receive something useful. This
noise always exists; it is called background noise, and it is generated by the many electrical devices
that exist in our world. It is also caused by lightning and other atmospheric effects, including radiation
from the sun.

The next advance in radio transmission would significantly increase the sound quality by removing
the effect of the background noise from the signal. This was done by using frequency modulation, or
FM radio. Instead of modulating the carrier with amplitude, so that when the input is very weak the
output carrier is very weak, the frequency of the carrier is instead modulated with the input (see
Figure 5–2). Whereas audio is the input signal, this means that a very quiet input would cause
virtually no deviation of the carrier frequency, but a very loud input would cause a large deviation in
the carrier. The most important thing about frequency modulation is that the carrier is always
transmitted at maximum power so that a receiver can lock onto the signal and then demodulate the
information out of the signal. The other main advantage of frequency modulation is that many more
carriers can be placed in very close proximity to each other. A modern FM transmission, for example,
would have a mono signal (Left + Right), a stereo signal (Left/Right), digital information about this
station (Radio Data System), as well as pilot tones.

Figure 5–2. Analog frequency modulation
Frequency modulation therefore solves both the main problems with spark-gap radios and

amplitude modulation. It is relatively simple, has the ability for a receiver to lock on to the signal
regardless of what that signal is, and has the ability to have much closer grouped signals. There are
yet more advanced modulation schemes, such as phase modulation. Phase modulation is similar to
frequency modulation in that the frequency of the signal changes based on the input. Phase modulation
makes changes to the phase of the signal. Phase modulation is more complex than simple frequency
modulation and is typically used in complex digital systems only, such as digital radio. Beyond this,
there is quadrature amplitude modulation, which uses amplitude modulation on two different carriers
that are 90 degrees out of phase with one another. Quadrature amplitude is used for transmitting
digital television in most of the world.

5.3. Digital Modulation
Before discussing digital modulation, it is useful to quickly recap the difference among chips, bits,
and symbols. The input data is expressed as bits, which have a value of either zero or one. One bit



can be combined with other bits to form a multiple-bit value. These combined bits are collectively
called a symbol. A symbol is therefore one value that can represent multiple bits. There is the other
way, although rarely used in real life, when a bit is actually transmitted by using multiple chip codes.
Each chip is actually a fractional bit; thus a single bit is made up of many chips. On the excessively
complex end of the scale, it is even possible to combine multiple chips into a single symbol that
represents multiple bits.

When radio systems are compared, various numbers are normally bandied about. Most are
compared with each other when they are not actually directly comparable. The most useful number is
the application data rate. This is the maximum data rate at which application data can be transmitted
after taking account of any packet overhead and the maximum rate at which packets can be
transmitted. Packet overhead is any extra symbols that are needed to define and manage the
transmission itself in addition to the actual application data. This can include timing synchronization
information, addressing information, headers that describe the application data, and checks to ensure
that the application data is valid when received.

The most often quoted number is the physical bit rate. This is the maximum number of bits that can
be transmitted in one second if the radio were to transmit data continuously for that complete second.
Apart from television and radio stations, very few radios can continuously transmit data. Instead they
must split the data into multiple, self-contained packets. Another very useful number is the symbol
rate. The symbol rate is the maximum number of symbols that can be transmitted in a second; this
determines the speed at which the receiver must work. The higher the symbol rate, the more energy is
required to process these symbols to extract the information bits.

Another piece of information that is important to understand to quantify how much application can
be sent is the frame rate. This is the number of packets that can be sent within a given period of time.
The radio must be turned around from being a transmitter to being a receiver. Turning the radio
around takes time. The longer this turn-around time the less time is spent transmitting application data.

When transmitting digital information, the modulation schemes become much simpler to understand.
The most simple digital modulation is the on-off keying, or OOK. Keying is a jargon word that
describes how the carrier is adjusted for a given digital signal. On-off keying means that we take a
carrier and either have it on or off at various times. This could be considered a very simple amplitude
modulated signal with the input being full on or full off. Thus, as shown in Figure 5–3, if the absence
of a carrier encoded the value zero, and a carrier encoded the value one, it is easy to see that it is
possible to transmit 8 bits of information by just transmitting the appropriate amplitude of the carrier
at the appropriate time. Although this is very simple, it is prone to noise, especially when the signal is
very weak.

Figure 5–3. On-off keying
Next in complexity is amplitude-shift keying, or ASK (see Figure 5–4). It is analogous with

amplitude modulation. If the input signal is binary—0 percent and 100 percent—ASK will degenerate



to OOK. If it were possible to represent four different levels—0 percent, 33 percent, 66 percent, and
100 percent—this can encode two bits of information for each level. The 8 bits of data could then be
transmitted twice as quickly as an OOK encoded system, in just 4 symbols. Both ASK and OOK have
problems with low signal-to-noise ratios, such that making the determination as to whether the symbol
represents anything other than zero becomes problematic.

Figure 5–4. Amplitude shift keying
Frequency-shift keying, or FSK, is the next step up in complexity. This is analogous with

frequency modulation. As Figure 5–5 demonstrates, shift in frequency is used as the key to determine
the symbol’s value. The simplest frequency-shift keying is binary frequency-shift keying, for which
an input bit of zero yields a negative frequency deviation, and a input bit of one yields a positive
frequency deviation of the carrier. Using FSK, more levels can be used by varying rates of frequency
deviation. The advantage of frequency deviation is that the carrier can always be received and
therefore locked upon, allowing much longer range than the simpler ASK approach. Equation 5-1
shows a mathematical representation of frequency deviation.

Figure 5–5. Frequency shift keying
The size of the deviation is called the modulation index h, where Δf is the maximum deviation from

the carrier frequency, and fm is the highest frequency in the source signal being modulated onto the
carrier. If the modulation index is greater than one, the carrier is varying in frequency more than the
source signal, then the signal is called a wide-band transmission. If the modulation index is less than
one, the carrier is varying in frequency less than the source, then the signal is called a narrow-band
transmission. A modulation index of 0.5 is considered a very special value because this is the value
used for minimum-shift keying, or MSK. MSK is a variant of FSK that is very spectrally efficient.

5.4. Frequency Band
Bluetooth low energy uses the 2.4GHz Industrial, Scientific, and Medical (ISM) band for transmitting
information. This frequency band is very special for two reasons. Most radio spectrum is licensed,
meaning you have to buy a license to transmit anything. For example, your local radio station might
have lots of money to buy a license to transmit music and advertising, on the premise that the revenue



from the sales of commercial spots is sufficient to pay for the music, wages, and license. Some
frequency bands are licensed but at zero cost. This includes bands for aviation, military, and civilian
emergency services. Some bands are free. Yes, free!

The 2.4GHz ISM band is one of the license-free frequency bands. You do not need to buy a license
to transmit in this band as long as you follow the rules. The rules are very simple; the band must be
used for a personal area network (PAN) or a local area network (LAN) with limited range and
limited transmit power. The details of the rules themselves are very complicated; however, in
essence, it is free to use for short-range applications.

The second reason the 2.4GHz ISM band is very special is that it is the only license-free spectrum
that is the same in every country. This means that no matter where you buy a product that uses this
band, you can use it in any other country without having to configure it. There are other ISM bands,
such as those around 900MHz, but these use different frequencies and band sizes, depending on the
locations; the United States uses 915MHz, whereas the European Union uses 868MHz. The 2.4GHz
band, which is useable anywhere, extends from 2400MHz to 2483.5MHz. This gives a total available
spectrum of about 83.5MHz.

5.5. Modulation
The Bluetooth low energy radio uses Gaussian frequency-shift keying. A Gaussian filter is one that
optimizes the transition from one symbol to the next by increasing the time that is used to slide the
frequency from one value to another. Without this filter, the frequency shift would be dramatically
quick, causing much noise to be created. This means that when changing from a zero bit to a one bit,
the transition is both fast and efficient.

When transmitting data, Bluetooth low energy transmits at one million bits per second (Mbps), with
one bit per symbol. The modulation index is approximately 0.5, meaning that it is very close to the
optimal MSK. The modulation index can vary between 0.45 and 0.55, meaning that Bluetooth low
energy is not classified as an MSK radio; however, it has most of the MSK properties, including
reducing side-band power output, which means less expensive filters are required to make it conform
to the regulatory requirements.

To send a zero, a negative frequency deviation is used. To send a one, a positive frequency
deviation is used. The minimum frequency deviation is about 180kHz. This means that if a center
frequency of 2402MHz is used, a zero would be indicated by a transmission at 2401.820MHz, and a
one would be indicated by a transmission at 2402.180MHz, as shown in Figure 5–6.



Figure 5–6. Modulation

5.6. Radio Channels
If you want to implement the most robust, longest-range system, it is always best to use more than one
frequency to transmit information. Some systems achieve this by having very wide transmissions;
802.11, for example, uses either 20MHz- or 40MHz-wide channels to send data very quickly. Other
systems do this by frequency hopping; Bluetooth classic uses 79 narrow channels that are all used
when transmitting information. The choice is mostly arbitrary, except that many narrow channels will
be able to find a way through complex multi-path environments that are constantly changing much
more efficiently than fewer wide-band transmissions.

Figure 5–7 illustrates that Bluetooth low energy uses 40 radio channels to transmit information. The
center frequency for each channel can be calculated very simply, as shown in Equation 5-2.



Figure 5–7. Radio channels
Here, fc is the center frequency of radio channel k.

This means that the lowest frequency used in Bluetooth low energy is 2402, and the highest
frequency is 2480. At the bottom end of the frequency band, a gap of 2MHz is provided between a
Bluetooth low energy channel and anything using the next frequency band below it. At the top end of
the frequency band, a gap of 3.5MHz is provided between a Bluetooth low energy channel and
anything using the next frequency band above it.

5.7. Transmit Power
In the 2.4GHz ISM band, there are limits to the maximum transmit power that a device can use to stay
within the license-free regulations. For Bluetooth low energy, the specification limits the maximum
transmit power to +10dBm. The LE specification also imposes that there is a minimum transmit
power of –20dBm, so devices cannot be made so quiet that no other devices can hear them.

A + 10dBm transmit power means that it would be transmitted at 10mW, whereas at –20dBm, it
would be transmitting at just 10μW.

5.8. Tolerance
All devices are manufactured with a given tolerance. Typically, the more accurate the tolerance, the
more costly the devices. For the radio, the major tolerance that can be specified is the frequency
accuracy. Even if a radio is designated to transmit around 2402MHz, it might actually be operating at
2401.850MHz or 2402.150MHz. This is the tolerance in the center frequency when transmitting a
packet. In Bluetooth low energy, the center frequency tolerance is ±150kHz for the whole packet. The



reason that the center frequency might be off is that it is typically obtained by multiplying the
frequency from a known frequency crystal. This crystal would typically have a frequency of 16MHz;
therefore, it must be multiplied by a factor of over 150 to get to up 2400MHz. Any inaccuracies in the
crystal would be multiplied, as well, and included in the transmission frequencies. For example, if the
crystal was actually outputting 16.0001MHz, the center frequency would be off by approximately
150kHz. This crystal would be said to have an error rate of 62 parts per million (ppm). Typically,
low-cost, high-volume crystals with an error rate of approximately 50 ppm are readily available.

Another value that is very important is how much the radio drifts from its center frequency during
the packet. This drift is caused by heat that builds up in a silicon chip during use. As the heat builds,
the internal frequencies used in the radio will drift slightly. A Bluetooth low energy radio cannot drift
more than 50kHz during a packet. This means that if the radio started transmitting perfectly at
2402.000MHz at the start of a packet, it would have to be between 2401.950MHz and 2402.050MHz
at the end of the packet. There is also a maximum drift rate of 400Hz/μs.

5.9. Receiver Sensitivity
When building a receiver, there is really only one question that matters: How good is it? This is
quantified by measuring the receiver sensitivity: how sensitive the radio is to detecting wireless
transmissions from another device. This is measured in dBm, and is typically a very small number.
The required receiver sensitivity for Bluetooth low energy is –70dBm. In other words, it has to be
able to pick up 0.0000001mW of electromagnetic energy to be able to work. However, noise will
always be present. There is no point in being able to detect a signal if you can’t decode it. Therefore,
in practice, the sensitivity threshold is set at the value where a signal can be decoded with an
acceptable bit error rate (BER). For Bluetooth low energy, this has been chosen as 0.1 percent BER.

Most controllers supporting Bluetooth low energy will have a receiver sensitivity of about –
90dBm, or 1pW. This is an incredibly small amount of energy that is able to be detected from the
noise of the band, but this leads to impressive ranges, as explained in the following section.

5.10. Range
To calculate the range of a Bluetooth low energy radio, the link budget of the system needs to be
determined. The link budget is made up of a number of elements that use the power from the
transmitter in a silicon chip before it is received by a peer silicon chip. These elements include the
antenna and matching circuit gains and losses. However, assuming that the antenna and matching
circuits make little difference,1 the main contributor to the link budget is the path loss. Path loss is a
measure of how much the radio signal has reduced in power between the antenna in the transmitter
and the antenna in the receiver. Equation 5-3 determines the path loss required for a given distance.
Table 5–1 presents the correlation between path loss and distance; Figures 5–8 and 5–9 show the
relationship graphically. It should be noted that this equation is an approximation, valid only for an
isotropic antenna, and ignores any losses in the transmit/receive systems.



Figure 5–8. A graphic representation of path loss



Figure 5–9. Path loss (log graph)
In the equation, d is the distance between the transmitter and the receiver.

Table 5–1. The Relationship of Path Loss to Distance

When the transmit power is –20dBm and the receiver sensitivity is –70dBm, a path loss of 50dB,
the range is 2.5 meters. This is the distance possible when the minimum transmit power is used, with
the minimum receiver sensitivity.

When the transmit power is 0dBm and the receiver sensitivity is –80dBm, a path loss of 80dB, the
range is 40 meters. This is the distance possible when a moderate transmit power is used, with a
moderate receiver sensitivity.

When the transmit power is 10dBm and the receiver sensitivity is –90dBm, a path loss of 100dB,
the range is 250 meters. This is the distance possible when the maximum transmit power is used with
the receiver sensitivity possible with modern chips.



Chapter 6. Direct Test Mode

Knowledge must come through action; you can have no test which is not fanciful, save by trial.
—Sophocles

6.1. Background
One of the biggest problems with wireless systems, especially those that are designed for the lowest
possible cost of production, is how to calibrate them and perform qualification and product line tests
of their performance. This is especially true after the device has been packaged into another module
or product, and there is no way to move aside the host stack to perform a few seconds of testing at the
start of the device’s life. Direct Test Mode solves all these problems by defining standard testing
procedures and a hardware interface to drive this protocol even after a host stack and other parts of
the device have been incorporated in the device.

For the direct test mode to work, three devices are required (see also Figure 6–1):
• A Device Under Test (DUT)
• An Upper Tester (UT)
• A Lower Tester (LT)

Figure 6–1. Test configuration
The DUT is the controller, module, or end product that is being tested. The device must have both

an antenna and a Universal Asynchronous Receiver Transmitter (UART) or Host/Controller Interface
(HCI) to the UT.

The UT is typically manufactured by a test-equipment manufacturer and includes software to drive
the device under test through the UART or HCI interface as well as the ability to communicate and
drive the LT.

The LT is a device that can transmit and receive packets, effectively communicating with the



device under test through the device’s antenna.
The device under test is told what to do by the UT and transmits or receives packets. The UT at the

same time informs the LT to do the opposite; that is, to receive or transmit packets, respectively. This
means that the device under test will transmit packets to or receive packets from the LT. At the end of
the test, the UT can use the information available from both devices, a packet count from the device
under test or more comprehensive information from the lower tester, to determine if the DUT passed
the tests.

The UT can also do calibration of the controller on a production line by asking the device to
transmit packets at a known frequency and measuring the actual frequency that the controller is
transmitting. Typically, this is required if the external crystals used for a timing reference are not
exactly at their design frequency. This crystal trimming would be done while the controller is
transmitting packets, allowing very fast calibration of parts.

6.2. Transceiver Testing
To test the transceiver, the controller can either be asked to transmit or receive packets. When the
controller transmits packets, it does so for a length of time determined by the tester. The tester then
attempts to receive these packets and can determine various Physical Layer properties from these
received packets. For example, the LT can measure the frequency drift of the device under test while
transmitting. When the transceiver receives packets, it does so for another length of time determined
by the tester. The tester sends a known number of packets, and the DUT just counts the ones that were
correctly received. This information can be passed back to the UT when the test has completed. By
doing so, the tester can determine how well the receiver has performed for a given number of
transmitted packets.

6.2.1. Test Packet Format
The packet format for test packets is very similar to the advertising packet format, as described in
Chapter 7, The Link Layer, Section 7.3. The access address used is the bit inverse of the advertising
access address. However, given that this access address is only ever used during testing, and can
never be used in a product during a typical connection, it is not a protected value such as the main
advertising access address.

The test packet format uses the advertising packet header format, so the first four bits are the test
packet type, and all other bits are set to zero. The test packet types that are defined include:

• PRBS9 (a 9-bit Pseudo-Random Bit Sequence)
• “11110000”
• “10101010”
• PRBS15 (a 15-bit Pseudo-Random Bit Sequence)
• “00001111”
• “01010101”

Only the first three packet types are used in the qualification test specification. However, these tests
might be useful for production line testing. For all advertising packets, whitening is disabled. This
must be done to allow accurate measurement of frequency deviation for the nonrandom bit sequences.

6.2.2. Transmitter Tests



The transmitter tests determine how accurately the transmitter in the DUT is performing. You can use
the transmitter tests to determine frequency deviation, frequency drift, and other radio parameters that
are specified.

To start the transmitter test, the UT sends a command to the DUT. This command includes three
parameters that determine the test to be performed. The first parameter is the frequency that will be
tested. This is the radio channel number, as defined in Equation 5-2. The next parameter is the packet
payload length; valid values are 0 to 37 bytes, inclusive. The last parameter is the type of data that
will be transmitted.

Three types of data in test packets can be transmitted:
1. PRBS9—Used for power transmission testing
2. 11110000—Used for frequency deviation testing
3. 10101010—Used for carrier and initial frequency testing

The PRBS9 packet sequence is a pseudo-random bit sequence that uses a repeating 9-bit sequence. It
is generated by using a linear feedback shift register. The PRBS9 sequence is commonly used as a test
pattern to test the performance of the radio as quickly as possible. The primary reason for using the
PRBS9 sequence is that it closely resembles the random nature of whitened packets used in
connections. As such, it is easily used for power transmission tests as well as receiver sensitivity
tests.

The 11110000 packet sequence is a repeating sequence of four ones and four zeros. This is used to
test the frequency deviation when the same bit is transmitted continuously and then moved to the other
bit. The tester will be looking for a frequency deviation of over 225kHz. This illustrates why the
whitening must be turned off in test mode; otherwise, the radio would not transmit repeating bits.

The 10101010 packet sequence is a repeating sequence of one and zero. This is used to test the
frequency deviation when alternate bits are transmitted. This is used to perform carrier testing and for
measuring the initial frequencies used in transmissions.

After the LT has received enough packets to obtain a suitable result, the UT commands the DUT to
stop the test. The DUT immediately stops transmitting and returns an event to confirm that it has
finished transmitting. The UT can then start another test, possibly using a different packet type, a
different packet length, a different frequency, or a combination of all three.

6.2.3. Receiver Tests
The receiver test is much simpler than the transmitter test. The receiver tests are used to determine the
bit error rate at various transmit power levels. This requires the LT to transmit packets at a known
transmit power, typically by using a conducted antenna connection to the DUT so that uncertainty of
the path loss over the air is removed from the equation. The DUT counts the number of successfully
received packets and sends this information to the UT at the end of the test. The UT can then
determine the resulting number of packet errors, thereby estimating the bit error rate of the receiver at
the given signal strength.

To start the receiver test, the UT sends a command to the DUT. The command includes just one
parameter. The parameter is the frequency that will be tested, the radio channel number, as in the
transmitter tests. When the DUT receives this command, the DUT resets a packet counter to zero and
starts receiving.



When the receiver receives a valid packet, the packet counter is incremented. The DUT continues
to increment until the UT commands the DUT to stop the test. Once the stop command is received, the
DUT immediately stops receiving and returns an event to confirm that it has finished receiving. The
event includes the number of valid packets received by the DUT. The UT can then compute the
performance of the receiver, based upon how many packets were transmitted and how many were
received. The UT can then start another test, possibly using a different frequency or at a different
transmit power.

6.3. Hardware Interface
To enable very efficient and device-independent testing of modules, possibly from multiple controller
manufacturers, a standardized hardware interface is defined that can be used by UTs. The hardware
interface is a simple two-wire UART that has a single line for transmitting bits from the UT to the
DUT, and another line for transmitting bits from the DUT to the UT. It is expected that module
manufacturers and end-product manufacturers will expose two pins or pads that can be connected to
the UT on a production line to allow for calibration and verification of an individual product’s ability
to transmit and receive.

6.3.1. UART
UARTs are typically very flexible in how they can be configured. To reduce the problem of an
incompatible interface, the Direct Test Mode UART only has one configurable parameter: baud rate.

The baud rate for the DUT can be one of the following values: 1200, 2400, 9600, 14400, 19200,
38400, 57600, or 115200. The typical rate is 38400 because this is a good compromise between
efficient command and event transfer and implementation cost.

The rest of the UART parameters are very standard. Each byte is 8 bits in length, sent with no
parity, and one stop bit. There is no flow control, either software or hardware. Obviously, it is
impossible to do hardware flow control because there are no hardware flow control wires. Software
flow control is also not required because a command or event is only a maximum of 2 bytes in length
and only one command can be sent at a time. The final design parameter is a common ground. It is
assumed that there is a common ground between the two devices.

To send a command or event, 2 bytes of data must be sent a maximum of 5 milliseconds apart. Once
a command is sent, an event must be returned within 50 milliseconds. This ensures that the DUT starts
and stops tests in a timely manner, and therefore, the accuracy of any counting is easily validated.

6.3.2. Commands and Events
Four commands can be sent from the UT to the DUT:

• Reset
• Transmitter Test
• Receiver Test
• Test End

Two events can be sent from the DUT to the UT:
• Test Status
• Packet Reporting



The reset command does exactly as it says. It stops the controller at whatever point it is located; if the
controller was transmitting or receiving test packets, it must stop. It also places the controller into a
known good state. It immediately returns a test status event to confirm that everything is back to the
quiescent state. Only 2 bits within the reset command are used; all other bits are ignored.

The transmitter test command starts the transmitter test. This includes the three parameters:
frequency, length, and packet type, as shown in Figure 6–2. Once this command is received, the DUT
sends a test status event and starts transmitting packets using the parameters. If for some reason the
device cannot transmit packets, the DUT still returns the test status event but sets the status bit to
denote an error. If the transmitter test command failed to start, the UT would need to reset the DUT to
place it into a known good state.

Figure 6–2. The Direct Test Mode command bit structure
The receiver test command starts the receiver test. This includes the frequency parameter; all other

bits in this packet are ignored. Once this command is received, the test status event is returned and the
DUT starts receiving packets on the desired frequency. Again, if the device cannot receive any
packets, the test status event is returned with the status bit showing an error.

After a successful transmitter or receiver test, the test end command can be sent by the UT to stop
the test. When this command is received by the DUT, it immediately stops what it was doing and
returns the packet reporting event. If the receiver test was being run, this packet-reporting event
includes the packet count for the successfully received packets (see Figure 6–3). If the transmitter test
was being run, this field in the event is set to zero because no packets are received in the transmitter
test. After the packet-reporting event is received, the UT can start another test by using another test
command.



Figure 6–3. Direct Test Mode events reporting bit structure
The test status event only defines a single bit. If this bit is zero, the test command was successful. If

this bit is one, the test command failed for some reason. There are two possible reasons a test
command fails:

• The controller is in a state that confuses it, and a reset is probably the most suitable next step
for the UT.

• The controller doesn’t support the test, probably because it doesn’t have either a transmitter or
receiver. (Although it possible to test the receiver of a transmitter-only device.)

It is not possible to determine from this command set if the DUT supports a given test; a UT can only
try each test and determine the status.

The packet-reporting event is used to report that the test completed. It includes a single 15-bit
packet count of the number of successfully received packets. This packet count will always be zero
for transmitter tests, but can be any value from 0 to 32,767 for receiver tests. The DUT doesn’t worry
about overflow of the packet counter; if the packet counter overflows, a test that might have taken a
very long time can determine that only one packet was received, even though 32,769 packets were
actually received. UTs should therefore only run tests for a duration that would not cause overflow of
the packet counter.

6.4. Direct Testing by Using HCI
It is also possible to reuse the existing HCI transports (see Chapter 8, The Host Controller Interface,
Section 8.2) and logical interface to exercise direct test mode on a controller. This does require more
infrastructure to be in place, especially if the host interface is complex. However, for controllers that
are being individually tested—as opposed to being within a highly optimized module design or end
product—this is a very valid approach.

The test procedures are identical, except that instead of sending 2-octet commands and events, full
HCI commands and events are sent. The mapping of the HCI commands and events to the Direct Test
Mode commands and events is shown in Table 6–1.



Table 6–1. HCI to Direct Test Mode

There is no dedicated test status event or packet reporting event when using HCI because the
Command Complete already performs this function, includes an opcode to determine which command
triggered this Command Complete, and has differing parameters, depending on this command.



Chapter 7. The Link Layer

All this technology for connection and what we really only know more about is how anonymous
we are in the grand scheme of things.

—Heather Donahue

The Link Layer defines how two devices can use a radio to transmit information between one another.
This includes defining the detail of a packet, advertising, and data channels. It also defines
procedures for discovering other devices, broadcasting data, making connections, managing
connections, and ultimately sending data within connections. This is compounded by the challenges of
wireless communication systems in the 2.4GHz ISM band, including interference, noise, and deep
fades.

7.1. The Link Layer State Machine
Before we discuss packets and how they are used, it is important to understand the basic concept of
the Link Layer state machine and its implications on the design of Bluetooth low energy.

As shown in Figure 7–1, the Link Layer state machine defines just five states:
• Standby
• Advertising
• Scanning
• Initiating
• Connection



Figure 7–1. The Link Layer state machine
However, it should be considered that the scanning state has two substates: active scanning and
passive scanning. The connection state also has two substates: master and slave.

Although the Link Layer state machine explains how devices can discover and connect to one
another, it also explains another fundamental design decision that Bluetooth low energy implemented;
the separation of the broadcast, discovery, and connection processes from the data transmitted in a
connection. Part of this design was done for ultra-low power consumption on the part of the
advertising devices. By reducing the number of advertising channels to just three, you can maintain
robustness while reducing power consumption. But this requires separate advertising states and
separate advertising packets. The Link Layer state machine has three states in which advertising
packets are sent or received, and one state in which data packets are sent and received.

7.1.1. The Standby State
When Link Layers are powered on, they start in the standby state and remain there until the host layers
tell them to do otherwise. It is possible to move from the standby state into either the advertising,
scanning, or initiating states (see Figure 7–2). It is also possible to move into the standby state from
every other state. The standby state is really the center—the most important, albeit inactive, state.

Figure 7–2. The standby state

7.1.2. The Advertising State
The advertising state (see Figure 7–3) allows the Link Layer to transmit advertising packets. It can
also respond to scan requests from devices that are actively scanning by sending a scan response. The
advertising state is required if a device wants to be discoverable or connectable. The advertising
state is also required if a device wants to broadcast data to other devices in the area.



Figure 7–3. The advertising state
To be an advertiser, a device must have a transmitter, but it might have a receiver as well. A

device that only supports the advertising state could be built with just a transmitter, saving the cost of
the receiver on that chip. It should be noted that in practice the volume pricing for a dual-purpose chip
with both a transmitter and a receiver might well end up being less expensive than a low-volume
transmit-only chip.

It is possible to move from the advertising state into the standby state by stopping advertising. It is
also possible to move from the advertising state into the connection state when an initiating device
sends a connect request packet to this advertiser.

7.1.3. The Scanning State
In the scanning state (see Figure 7–4), a device will receive advertising channel packets. This could
be used to simply listen to see what devices are advertising in the local area. Scanning is composed
of two different substates: passive scanning and active scanning. Passive scanning only receives
advertising packets. Active scanning also sends scan requests to advertising devices to obtain
additional scan response data.



Figure 7–4. The scanning state
It is only possible to move from the scanning state into the standby state. This is done by stopping

scanning.
7.1.3.1. Passive Scanning

In passive scanning, the device just passively scans, never transmitting anything. Passive scanning can
therefore be implemented on a device that only has a receiver. By supporting only passive scanning,
you can reduce the size and cost of the controller because there’s no need for a transmitter. But, as
mentioned earlier, depending on the amount you’re producing, multi-purpose devices might end up
costing less as a result of volume pricing.
7.1.3.2. Active Scanning

In active scanning, whenever a new device is discovered by the Link Layer, a scan request is sent to
the advertising device, and a scan response is expected in reply. Both these scan requests and
response packets are transmitted on the advertising channel. For active scanning to work efficiently,
the data in the scan response must be mostly static because this data is expensive in terms of energy
expended to retrieve due to the additional two packets that are transmitted or received. The data in the
original advertising packet, however, can change regularly because this will always be received.

7.1.4. The Initiating State
To initiate a connection to another device, the Link Layer must first be placed into the initiating state.
In the initiating state (see Figure 7–5), the receiver is used to listen for the device to which the
initiator is attempting to connect. If an advertising packet from this device is received, the Link Layer
will send a connect request to the advertiser and move into the connection state, in the assumption that
the advertising device does the same. It is also possible to leave the initiating state to move back into
the standby state by stopping initiating a connection.



Figure 7–5. The initiating state

7.1.5. The Connection State
The final state of the Link Layer state machine is the connection state (see Figure 7–6). This can be
entered either via the advertising state or the initiating state. Both of these transitions are caused by an
initiating device sending a connect request packet to an advertising device.

Figure 7–6. The connection state
Again, this has two substates: master or slave. In the connection state, data channel packets are sent

and received between the two devices. This is the only state in which the data channels are used; all
other states use the advertising channels. It is only possible to leave the connection state by moving
into the standby state. This is done by terminating the connection.
7.1.5.1. The Master Substate

The master connection substate can only be entered from the initiating state. A device that becomes a



master must initiate the connection to the peer device. When a device is a master, it must transmit
packets to the slave at regular intervals. This provides the slave with opportunities to reply and send
its own data.
7.1.5.2. The Slave Substate

The slave connection substate can only be entered from the advertising state. A device that becomes a
slave must have been advertising to the peer device. When a device is a slave, it cannot transmit
anything until a packet from the master is received correctly. Once a packet from its master is
received, the slave can transmit a packet itself. If the slave wants to transmit more data, it must wait
for the master to send another packet of data back to it. Slaves can save power by just ignoring the
master at any time. By doing so, the slave device can save significant quantities of power by staying
“asleep.”

7.1.6. Multiple State Machines
In an implementation of the Link Layer, it is possible to have multiple state machines; each state
machine is separate. Using this configuration, a device can, for example, be a slave, advertise, and
actively scan at the same time. Or, you could configure a device to be a master, advertise, passively
scan, and initiate a connection at the same time, as illustrated in Figure 7–7. The device could also
have multiple master connections to slaves at the same time.

Figure 7–7. An example of multiple state machines



Be aware that there are some restrictions related to deployment that are important to understand.
7.1.6.1. Not Master and Slave

The Link Layer is an “autocracy”; if a device is a master, it cannot also be a slave at the same time.
Similarly, if a device is a slave, it cannot be a master at the same time. This implies that if a device is
a master, it cannot advertise with a connectable advertising packet; however, it can still advertise
with nonconnectable or discoverable advertising packets.

Consequently, if a device is already a slave, it cannot initiate a connection to another device
because doing so could cause it to become the master of that device. By making this restriction, there
will be no point in time when it is nondeterministic as to what the device should be doing.

The deterministic nature of the Link Layer enables Bluetooth low energy devices to be
implemented using very efficient scheduling algorithms. Any nondeterministic system that is
maintaining synchronization with multiple time domains will need to have very complex scheduling
algorithms. These algorithms, by virtue of being nondeterministic, will also require significant
processing requirements implemented in general-purpose CPUs. This does not fit in with the low-
power goals for the technology. The deterministic design, therefore, allows for highly efficient
algorithms that can be implemented by using discrete logic.

A device also cannot be a slave of two masters at the same time. If a device is a slave, it cannot
advertise with a connectable advertising packet. Being a slave of two masters is actually a harder
scenario than being a master and a slave at the time. In Bluetooth classic, this would be called
scatternet. Bluetooth low energy does not support scatternets.

7.2. Packets
A packet is the fundamental building block of the Link Layer. A packet is really simple; it is a labeled
piece of data that is transmitted by one device and received by one or more other devices. The label
identifies the device that sent the data and which devices should listen to it.

Figure 7–8 shows the packet structure, which all packets share, regardless of what they’re used for.
At the start of the packet is a short training sequence called the preamble. After that is an access
address that is used by the receiver to distinguish this packet from the background radio noise. After
the access address are header and length bytes. Immediately after these is the packet’s payload,
followed by a cyclic redundancy check (CRC), which ensures that the payload is correct.

Figure 7–8. Packet structure

7.2.1. Advertising and Data Packets



In Bluetooth low energy, there are two types of packets: advertising and data packets. These packets
are used for two completely different purposes. Devices use advertising packets to find and connect
to other devices. Data packets are used once a connection has been made. The difference between
advertising packets and data packets is that a data packet is understandable by only two devices,
known as the master and slave devices; advertising packets, on the other hand, are sent by one device
and can be either broadcast to any device listening or directed at a specific device.

Whether a packet is an advertising packet or a data packet is determined by the channel on which
the packet is transmitted. There are 3 advertising channels and 37 data channels. If a packet is
transmitted on one of the 3 advertising channels, then the packet is an advertising packet; otherwise, it
is a data packet.

7.2.2. Whitening
The interesting thing about frequency-shift keying (FSK) receivers is their lack of ability to receive a
very long sequence of bits of the same value. (To learn more about FSK receivers, go to Chapter 5,
The Physical Layer.) For example, when transmitting a string of bits such as “000000000000”, the
receiver will assume that the center frequency of the transmitter has moved to the left and it will
therefore lose frequency lock. It then misses the next “1” bit and fails to receive the rest of the packet.
To protect against this, a whitener is used to randomize the packets transmitted.

A whitener is typically a very short random number generator that outputs zeros and ones in a
known order for a given packet (see Table 7–1). A receiver can then use the same random number
generator to recover the original bits. To keep the original information in the output sequence, the
original data is combined with the random number whitener using an exclusive-or operation.

Table 7–1. Using a Whitener in an Exclusive-Or Operation

By using a random whitener combined with the original information in the packet, a string of
identical bits in the original information will be converted into a sequence that is highly randomized.
This reduces the chance that the receiver will lose frequency lock. If the long string of information
bits were already random in nature, any further randomization will not hurt.

The whitening random number sequence is generated using a linear feedback shift register, similar
to one used to calculate a CRC. The polynomial used is shown in Equation 7-1.

In this equation, x is the shift register.
The value of the shift register is initially set with the Link Layer channel number on which this

packet will be transmitted, with the high bit set. This means that even if a packet is whitened on one



channel that causes the receiver to lose lock, when it is transmitted on another channel, it will use a
different whitening sequence, and therefore the receiver will be able to receive it. This is a very rare
occurrence, but one from which the whitener allows recovery.

Table 7–2 shows how the whitener is used to stop long sequences of zeros or ones from being
transmitted. This example shows the first 3 bytes of data being whitened when transmitted on channel
23. This means that the binary sequence:

input = 00000000 : 00100000 : 00010000

Table 7–2. Whitener LFSR: Input Bits and Resultant Output Bits

combined with the whitener of:

whitener = 11110101 : 01000010 : 11011110

is converted to:

output = 11110101 : 01100010 : 11001110



You can see that the data has become randomized with the whitener. The original input data has
long sequences of single digits: 10,1,8,1,4. The output data does not have these long sequences, and
critically, the longest single digit sequence is just four digits: 4,1,1,1,1,1,2,3,1,1,2,2,3,1.

7.3. Packet Structure
As shown in Figure 7–9, the packet structure is composed of a number of fields. Each of these fields
is described in detail in the following subsections. Some fields contain multiple byte fields; therefore,
the order of transmission of these bytes as well as the bits in these bytes also needs to be discussed.

Figure 7–9. Packet structure

7.3.1. Bit Order and Bytes
Packets are transmitted bit by bit, but they are composed of bytes of data. When these bytes of data
are transmitted, they are transmitted with the least significant bit first. Therefore 0x80 is transmitted
as 00000001, whereas 0x01 is transmitted as 10000000. Most multiple-byte fields are transmitted
least significant octet first. Therefore, the value 0x010203 would be transmitted as the following:

11000000010000001000000

7.3.2. The Preamble
The first 8 bits of a packet that are transmitted are either a 01010101 or 10101010 sequence. This is a
very simple alternating sequence by which a receiver can set its automatic gain control and also
determine the frequencies being used for the zero and one bits.

The reason that this sequence is very important is due to the possible range of input signal strengths
with which a chip must be able to cope. The radio must be able to handle a signal at –10dBm at the
antenna, all the way to –90dBm. This is a dynamic range of 80dBm. From a receiver’s perspective,
this means that it could receive a packet with a power of 1pW or a power of 0.1mW. An automatic
gain control would therefore have to detect the input power level and adjust its gain to bring the
signal into a range with which the controller can easily work.

The determination of whether the preamble is 01010101 or 10101010 is determined by the first bit
of the access address that is transmitted. If the first bit of the access address is a “0”, the 01010101
sequence is used. If the first bit of the access address is a “1”, the 10101010 sequence is used. This
always guarantees that the first 9 bits of a packet have alternating bits: either 101010101 or
010101010.



7.3.3. Access Address
The next 32 bits of a packet are the access address. This can be one of two types:

• Advertising access address
• Data access address

The advertising access address is used when broadcasting data or when advertising, scanning, or
initiating connections. The data access address is used in a connection after a connection has been
established between two devices.

When a controller wants to receive a packet, it always knows which access address it will be
receiving. As the receiver is turned on and tuned into the correct frequency, the receiver will start to
receive bits of data. Even if no other device is around transmitting at this time, the radio will pick up
background radiation. Given simple probabilities of receiving pure random noise, the chance of
receiving a sequence of bits that matches the preamble is fairly high; typically, once every few
minutes for a low-energy device with its receiver constantly open. Therefore, the access address is
used to reduce the probability of random noise causing a pseudo-packet to be received.

The Link Layer also doesn’t know when the other device will be transmitting packets, so it has to
keep a copy of all the possible bits that have been received for the last 40μs and check each time a
new bit is shifted into this register to see if this sequence of bits now matches the expected preamble
and access address. This process is called correlation of the access address.

For advertising channels, the access address is a fixed value: 0x8E89BED6. In binary this is
transmitted from left to right as the following:

01101011011111011001000101110001

This means that for an advertising packet the preamble would be 01010101. This value was chosen
because it has excellent correlation properties. The fixed value means that any Bluetooth low energy
device can correlate against this access address and know it is receiving an advertising packet, even
though it might never have received a packet from this specific device before.

For data channels, the access address is a different random number on each and every connection
between two devices. This random number, however, must adhere to a number of rules, primarily to
ensure that the access address still has good whiteness.

As is explained in Section 7.2.2 on whitening, it is necessary to whiten radio transmissions to
ensure that receivers can be built as easily as possible. The most basic rule is that there cannot be
more than six zeros or ones anywhere in the access address. The packet also has to be different from
the advertising access address by at least 1 bit. Also, the access address cannot have any repeating
patterns; each octet of the access address must be different. There should be no more than 24 bit
transitions, stopping the use of an alternating bit sequence. Finally, there must be at least 2 bit
transitions in the last 6 bits, to ensure that just before the header starts that there are bit transitions,
just in case the header whitens to a long sequence of bits.

Given the preceding rules, it can be shown that there are approximately 231 possible uniquely valid
random access addresses. Or in other words, it is possible to have approximately 2 billion Bluetooth
low energy devices within range of one another, talking at the same time. That was probably a slight
design overkill, but remember Bluetooth low energy has been designed for success. Another useful
feature of this random access address for data channels is that an attacker cannot determine which two



devices are in a connection by just receiving this access address. This ensures the privacy of devices
during a connection.

7.3.4. Header
The next part of a packet is the header. The contents of the header depends on whether the packet is an
advertising packet or a data packet.

For the advertising packet (see Figure 7–10), the header includes the advertising packet type as
well as some flag bits to specify whether the packet includes public or random addresses. There are
seven advertising packet types, each having a different payload format and a different behavior:

• ADV_IND—General advertising indication
• ADV_DIRECT_IND—Direct connection indication
• ADV_NONCONN_IND—Nonconnectable indication
• ADV_SCAN_IND—Scannable indication
• SCAN_REQ—Active scanning request
• SCAN_RSP—Active scanning response
• CONNECT_REQ—Connection request

Figure 7–10. The contents of an advertising packet header
Figure 7–11 illustrates the header for data packets, which includes bits to enable the reliable

delivery of packets, manage low power, and route the payload into either the local controller or to the
host.



Figure 7–11. The contents of a data packet header

7.3.5. Length
For advertising packets, the length field comprises 6 bits, with valid values from 6 to 37. For data
packets, it’s 5 bits in length with valid values from 0 to 31. After the length field is the payload,
which contains the same number of bytes of data as the value in the length field.

It might appear strange that the length field is a different length for advertising packets and data
packets. The main reason for this is a design decision that accomodates 31 bytes of useful data in an
advertising packet. However, an advertising packet’s payload also always includes a 6-octet address
for the advertising device. Adding the 6 octets of this address with the 31 octets of useful advertising
data resulted in a packet length of 37 octets, and thus the requirement for a 6-bit length field.

Data packets are much easier. The size of data packets is less critical; most data being transferred
is just a few octets in length, and therefore an absolutely maximal-sized packet was never considered
useful. It’s also interesting to note at this point that if the packet is encrypted, it includes a 4-octet
message integrity check value, shortening the actual data in the payload to just 27 octets. To keep the
design of the Link Layer as simple as possible, unencrypted packets are not allowed to be longer than
this 27-octet limit; this reduces the complexity of buffering within the Link Layer.

7.3.6. Payload
The payload is the actual “real” data that is being transmitted. It could be advertising data about the
device or service data that is being broadcast to devices in the local area. It could be additional
active scan response data such as the device name and the services it implements. It could be



information required to establish a connection or to maintain the connection once it is established. It
could also be the application data that is being transmitted from one device to another.

7.3.7. Cyclic Redundancy Check
The last part of every packet is a 3-byte cyclic redundancy check (CRC). This CRC is calculated over
the header, length, and payload fields. The CRC is a 24-bit CRC that is strong enough to detect all
odd numbers of bit errors as well as 2- and 4-bit errors. This means that all 1, 2, 3, 4, 5, 7, 9, and so
on, bit errors are detected in all packets.

The choice of a 24-bit CRC might appear strange, considering that most wireless standards use 16-
or 32-bit CRCs. However, for the size of packet that Bluetooth low energy can send, a 32-bit CRC
would not be able to detect 6-bit errors any more reliably than the 24-bit CRC used, and therefore
would simply waste 8 microseconds of radio activity for every packet. If the length of the header,
length, and payload fields were increased past the maximum of 39 bytes, it would be necessary to
increase the CRC size to be able to detect even 4-bit errors. A 16-bit CRC, however, is not strong
enough to detect the 4-bit errors over all possible 336 bits of the payload and CRC that are being
protected. The 24-bit CRC is consequently the best compromise between robustness and power
saving.

The polynomial used for the 24-bit CRC is as demonstrated in Equation 7-2:

7.4. Channels
As described in Section 5.6 of Chapter 5, The Physical Layer, Bluetooth low energy uses 40
channels. The Bluetooth low energy channels differ from classic channels because of the relaxed
modulation index. This means that the radio energy for each channel is spread wider; therefore, to
prevent interference between adjacent Bluetooth low-energy channels, they are separated by 2MHz,
instead of the classic 1MHz.

In the Link Layer, these channels are divided into two types: advertising channels and data
channels. These channel types are aligned with the advertising packets and data packets, as described
earlier. When a packet is transmitted, if the packet is sent on an advertising channel, it is an
advertising packet. If the packet is sent on a data channel, it is a data packet.

There are 3 advertising channels and 37 data channels, as shown in Figure 7–12 (the advertising
channels are rendered in darker shading). The 3 advertising channels are not all placed in the same
part of the ISM band because that would mean that any deep fade in a single part of the band would
stop all advertising. Instead, the advertising channels are placed a minimum of 24MHz apart from one
another.



Figure 7–12. The Link Layer channel map
The advertising channels are placed strategically away from significant interferers such as a Wi-Fi

access point. These access points typically use one of three 802.11 channels, either channel 1,
channel 6, or channel 11. These channels have center frequencies of 2412MHz, 2437MHz, and
2462MHz and a width of approximately 20MHz. This means that channel 1 extends from 2402MHz to
2422MHz, channel 6 extends from 2427MHz to 2447MHz, and channel 11 extends from 2452MHz to
2472MHz.

The advertising channels are placed at 2402MHz, 2426MHz, and 2480MHz. This means that the
first advertising channel is below Wi-Fi channel 1, the second advertising channel is between Wi-Fi
channel 1 and channel 6, and the third advertising channel is above Wi-Fi channel 11. This is
illustrated in Figure 7–13, in which 3 Wi-Fi channels have blocked the use of data channels 0 to 8, 11
to 20, and 34 to 32. The 3 advertising channels, 37, 38, and 39, are all interference free.



Figure 7–13. Link Layer channels and Wi-Fi channel coexistence
The data channels are placed every 2MHz between the advertising channels. Table 7–3 shows the

complete list of advertising and data channels, the Link Layer channel number, and the center
frequency.

Table 7–3. Complete List of Advertising and Data Channels, the Link Layer



The advertising channels are numbered from 37 to 39; the data channels are numbered from 0 to 36.
The separation of the data channel and advertising channel numbers is so that the frequency-hopping
algorithm is very easy to implement.

7.4.1. Frequency Hopping
When in a data connection, a frequency-hopping algorithm is used. Because the number of data
channels is 37, which is a prime number, the hopping algorithm is very simple, as demonstrated in
Equation 7-3:

The hop value is a value that can range from 5 to 16; it is added onto the last frequency modulo 37
every time the frequency-hopping algorithm is used. This means that every frequency will be used
with equal priority, regardless of the hop value. In Figure 7–14, the channels chosen, given a hop
value of 13, are shown over time. Also, the algorithm can be implemented by just adding the hop
value, comparing the value with 36, and if it is greater than this, subtracting 37. No divisions,
multiplications, or other complex mathematics are required.



Figure 7–14. Frequency hopping of data channels over time

7.4.2. Adaptive Frequency Hopping
Adaptive frequency hopping makes it possible for a given packet to be remapped from a known bad
channel to a known good channel so that the interference from other devices is reduced. To do this, a
channel map of good and bad channels is kept in both devices. If the channel that would have been
chosen by using Equation 7-3 is a good channel, then that channel is used; if the channel that would
have been chosen is a bad channel, then it is remapped onto the set of good channels, as depicted in
Figure 7–15. A minimum of two data channels must be marked as good by a master.



Figure 7–15. Link Layer adaptive frequency-hopping bad channels with Wi-Fi channel 1
Suppose, for example, that a Bluetooth low energy device is in the same area as a Wi-Fi channel 1

access point that is streaming data to another Wi-Fi device. The Bluetooth low energy device would
mark Link Layer data channels 0 to 8 as bad channels. This means that when the two devices are
communicating, they would cycle through the channels and remap these channels to a set of good
channels, as shown in Table 7–4 and Figure 7–16.

Table 7–4. An Example of Adaptive Frequency Channel Remapping



Figure 7–16. Adaptive frequency-hopping remapping
This remapping of channels ensures that even in the face of heavy interference, Bluetooth low

energy will still continue to send data. It also enables the device to react very quickly to new
interference. In Bluetooth classic, most controllers can react to a new interferer within just a few
seconds, after which both will readily coexist without any concerns.

To assist in the remapping process, the host can inform the controller of the current channel
conditions. This information could come directly from the interfering radio in the device or it could
come from something much more exotic. Most Blue-tooth controllers can also perform passive band
scanning to determine the location and extent of interference and act on this without any input from the
host.

7.5. Finding Devices
A device uses the advertising channel to find another device, with one device advertising and another
device scanning, as illustrated in Figure 7–17. There are four types of advertising that can be
performed by devices: general, directed, nonconnectable, and discoverable.



Figure 7–17. An advertiser sending advertising packets
Each time a device advertises, it transmits the same packet in each of the three advertising

channels; this sequence of packets is called an advertising event. Apart from directed advertising, all
of these advertising events can be sent as often as every 20 milliseconds to as infrequently as every
10.28 seconds. Typically, a device that is advertising would advertise once per second. The time
between advertising events is called the advertising interval. The host can control this interval.

However, there would be a problem if devices advertised periodically because as their clocks
drifted independently, two devices would constantly be advertising at exactly the same time, possibly
for a long period of time. To prevent this from happening, all advertising events, except directed
advertising, are perturbed in time. This perturbation is done by adding a random addition time from
the last advertising event of somewhere between 0 and 10 milliseconds. This means that even if two
devices collide on the same advertising channel at the same time and share the same advertising
interval, they will probably not collide the next time they send an advertising event.

Scanning is important to complete the picture for low-energy advertising. Scanning is required to
be able to receive advertising events. How much time is available and how quickly a device needs to
find another device will determine the time that will be dedicated to scanning. For example, if the
user is directly touching an interface that is looking for devices, the device would scan continuously
for a number of seconds, soaking up all the devices that are advertising in the area.

However, if the user is just walking around, the scanning device might only be scanning for a few
milliseconds every second, or for a few hundred milliseconds every minute, looking for interesting
information, depending on whether the user just arrived home, sat down in a café, or perhaps walked



into a meeting room. This background scanning can then change the behavior of the device depending
on where it is; if you are in the café, the phone might automatically switch to silent mode; at home, it
might direct all phone calls through to the home phone system; in an office meeting room, all calls
might go to your voicemail along with a message to the caller indicating that you are in a meeting and
cannot be disturbed.

7.5.1. General Advertising
General advertising is the most general-purpose advertising type. A device that is generally
advertising can be scanned by a scanning device or go into a connection as a slave when it receives a
connect request. General advertising can be sent by a device that has no other connections; in other
words, it is not a slave to another device or a master of another device.

7.5.2. Direct Advertising
Sometimes a device needs to make a connection with another device quickly. For a slave to do this, it
must advertise. To allow for the fastest possible connection times, direct advertising events are used.
These packets contain two addresses: the advertiser’s address and the initiator’s address. An
initiating device that receives a direct advertising packet addressed to itself immediately sends a
connect request packet in response.

These directed advertising events also have special timing requirements. The complete advertising
event must be repeated every 3.75 milliseconds. This timing allows a scanning device to scan for just
3.75 milliseconds and pick up directed advertising devices.

The problem with sending packets this quickly is that the advertising channels will become
congested with directed advertising packets, resulting in all other devices in the area not being able to
advertise themselves. For this reason, directed advertising is not allowed to continue for more than
1.28 seconds. The controller will automatically stop the advertising if the host hasn’t already done so
or if a connection has not been established. Once the 1.28 seconds have expired, the host would then
just be able to use general advertising at a much lower duty cycle to allow the device to still be
connectable.

When using directed advertising, a device cannot be actively scanned. Also, directed advertising
packets cannot have any additional data in the payload of the packet; they contain only the two
addresses needed, and nothing more.

7.5.3. Nonconnectable Advertising
Devices that don’t want to be connectable use nonconnectable advertising events. Typical uses of this
include devices that are broadcasting data and have no intention of being either scannable or
connectable. This is the only type of advertising that a device equipped with only a transmitter can
use.

A nonconnectable advertising device will never enter the connection state; therefore, it can only
transition between the advertising state and the standby state when asked to do so by the host.

7.5.4. Discoverable Advertising
The final type of advertising event is the discoverable advertising event. This cannot be used to
initiate a connection, but it can be used to allow another device to scan the advertising device. This
means that the device is discoverable, both for advertising data and scan response data, but cannot be



connectable. This is an advanced form of broadcast data, whereby the dynamic data can be included
in the advertising data, whereas static data would be included in the scan response data.

Discoverable advertising will never enter the connection state; instead, it moves back to the
standby state when it is stopped.

7.6. Broadcasting
As explained in the previous section, devices can advertise. However, for a device to be considered
a broadcasting device, it must also include some useful data in that advertisement. This means that
you can broadcast with three of the four advertising events: general advertising, nonconnectable
advertising, and discoverable advertising.

When broadcasting, the data is labeled within the advertising packets. This is done because not all
devices will understand all possible broadcast data. As such, there needs to be a way for the
broadcast data to be both labeled and sized. Each piece of data starts with a length field that indicates
the length of the following type and data fields. Next is a type field that a receiver will use to
determine if it understands the following data (see Chapter 12, The Generic Access Profile, Section
12.5). By using this “length : type : data” format, devices that do not understand a particular type of
data can skip over it because they know the size of the data and can therefore continue with the next
piece of data.

Broadcast data can be received by any passive or active scanning devices nearby. Broadcast data
cannot be acknowledged. A broadcasting device also doesn’t know if any device received its data or
if any device is attempting to listen to the data. Therefore, broadcasting must be considered to be an
unreliable operation.

7.7. Creating Connections
If the data transfers are more complex than can be performed by broadcasting the data, or the data
needs to be reliably delivered to another device, a connection will be required. A connection uses the
data channels to reliably send information, in two directions, between two devices. It uses adaptive
frequency hopping to be robust and a very low duty cycle to keep the power consumption as small as
possible.

As illustrated in Figure 7–18, the first step in creating a connection is for one device to advertise
by using a connectable advertising event and for another device to initiate a connection to the
advertising device. To make a connection, either the general advertising event or the direct
advertising event types must be transmitted by the advertiser. When the initiator receives the
advertising packet from the correct device, it sends a connect request back to the advertiser. This
connection request packet includes everything that is needed at the start of the connection, which is
presented in the following list:

• Access Address to be used in the connection
• CRC initialization value
• Transmit window size
• Transmit window offset
• Connection interval
• Slave latency



• Supervision timeout
• Adaptive frequency-hopping channel map
• Frequency-hop algorithm increment
• Sleep clock accuracy

Figure 7–18. Creating connections with which two devices can reliably transmit data
Once the connect request packet is sent or received, the devices are connected and data packets can

be exchanged.

7.7.1. Access Address
The master always determines the access address that will be used in the connection. The value is
random, adhering to a few rules, as detailed in Section 7.3.3. If the master has multiple slaves, it will
choose a different random access address for each slave. The randomness of this value ensures that
the probability for collisions between different masters and slaves is very low. The randomness also
enhances privacy by not allowing a scanner to determine which two devices are communicating.

7.7.2. CRC Initialization
The CRC initialization value is another random value chosen by the master. This is random because a



small probability exists that two masters in the same area could use the same access address to talk to
different slaves. If this did occur, the slaves could receive interfering data from the wrong master. By
randomizing the CRC initialization value for each slave, the probability of having two masters and
slaves with the same access address and the same CRC initialization value is very small.

7.7.3. Transmit Window
Advertising is always done based on the timing of the slave. The slave is the device that needs to
save the most power, so this is the correct design decision. However, if the master device is already
doing something else, possibly something more important, it must interleave the Bluetooth low energy
activity around its other traffic. During connection setup, this information is conveyed in two
parameters: window size and window interval.

The transmit window starts after the end of the connection request packet, plus an additional
mandatory delay of 1.25 milliseconds, plus the transmit window offset. The transmit window offset
can have any value from 0 to the connection interval, in multiples of 1.25 milliseconds. At the start of
the transmit window, the slave device opens up its receiver and waits for a packet to come from the
master. If this packet is not received within transmit window size, the slave aborts and tries again one
connection interval later.

The most interesting thing about the connection process is that once the connection request has been
transmitted, the master believes it has a connection; the connection has been created but not proven to
have been established. Once the slave receives the connection request, it believes it is also in a
connection; again, the connection has been created but not proven to have been established.

In the interests of efficiency, the host is notified immediately when the connection is created. The
connection might not succeed, the slave might not receive the connection request, or the two devices
might be such a long distance apart that the connection has a high probability of failure. However,
because the host is notified of the connection being created, it can start to send data down into the
controller, ready for it to send in the very first packet over the air, saving time and therefore energy.
Because the first data packet is not sent until after the mandatory 1.25-millisecond delay that follows
the creation of the connection and the host stack notification, the host stack should have sufficient time
to provide this data into the controller, using the very first opportunity to send data. This mandatory
delay also provides any batteries with time to recover from the possibly exhausting advertising
procedure before the connection is created.

The connection is only considered established once a packet has been acknowledged.
Establishment doesn’t change how the connection works, but it does change the link supervision
timeout, from just six connection timeouts, to the value in the connection request message. This
ensures that if the connection is not established quickly, it is terminated immediately.

7.7.4. Connection Events
When in a connection, the master has to transmit a packet to the slave once every connection event. A
connection event is the start of a group of data packets that are sent from the master to the slave and
back again. A connection event is always conducted on a single frequency, with each packet
transmitted 150 microseconds after the end of the last packet.

The connection interval determines how frequently the master will talk to the slave; it is the time
between the start of the last connection event and the start of the next connection event. This can be
any period from 7.5 milliseconds to 4 seconds in multiples of 1.25 milliseconds. To determine how



infrequently the slave is allowed to talk to the master, the slave latency is used. This is a multiple of
the connection interval and therefore determines how many times the slave can ignore the master
before it is forced to listen. It should be noted, however, that this must still be quicker than the
supervision timeout.

As illustrated in Figure 7–19, each connection event is a connection interval apart. Each connection
event starts with a single packet from the master, and can continue until either the master or slave
device stops responding. The times between connection events contain no packets from the master to
this slave or the other way around.

Figure 7–19. Connection events
For example, if the connection interval is 100 milliseconds and the slave latency is 9, the slave can

ignore the master for 9 connection events but is forced to listen for the 10th, or once every second.
The supervision timeout, therefore, must be a minimum of 1010 milliseconds. At the extreme end, the
maximum supervision timeout is 32 seconds, and, therefore, with a connection interval of 100
milliseconds, the slave latency must be 319 or less.

However, it is not a good idea to give the slave just one opportunity to listen for the master within
the supervision timeout when the slave is using its slave latency to the maximum. Thus, it is
recommended that the slave is given six opportunities to listen. Therefore, in the preceding example,
if the connection interval is 100 milliseconds and the slave latency is 9, the supervision timeout
should be a minimum of 6 seconds, allowing the slave to listen a minimum of six times before the link
is dropped.

7.7.5. Channel Map
The adaptive frequency-hopping channel map is a bit mask of the data channels that are known to be
good or bad. Because there are 37 data channels, the channel map is 37 bits in length. If the bit is set
to one, the channel is a good channel and will be used for data traffic. If the bit is zero, the channel is
a bad channel and will never be used for data traffic.

The frequency-hopping algorithm’s hop value is a random number between 5 and 16. It is used in
the frequency-hopping algorithm before the adaptive remapping algorithm is used, as described in the
frequency-hopping Section 7.4.1. The number zero is obviously not allowed because this could mean
that the frequency would never change.



Very low hop numbers are not desirable because most interferers are typically more than a couple
of megahertz in width; therefore, having a very small number would not move the next transmission
opportunity away from the interferer quickly enough, causing continued interference. The same logic
is used for values 17 and higher. With a hop increment of 17, for example, every other frequency used
would be just 3 channels away because of the modulo 37 operations used in the frequency-hopping
algorithm (refer to Equation 7-3).

7.7.6. Sleep Clock Accuracy
Finally, the sleep clock accuracy value is sent from the master to the slave. This value determines the
range of accuracies that the clock is able to guarantee. If the clock is timed from a crystal, the crystal
will have a known accuracy over the temperature range, from, for example, 20ppm at room
temperature to 50ppm at  or . Therefore, the clock accuracy would have to state that this
device has a clock accuracy of up to 50ppm.

The clock accuracy is used to determine the uncertainty window of the slave device at a connection
event. If the slave has not synchronized its timing with that of the master for 1 second, and both
devices have a timing accuracy of 500ppm, then the combined uncertainty of 1,000ppm has to be
multiplied with the time away, to give a 1 millisecond uncertainty window. This means that the slave
must wake up 1 millisecond early and stay on for an extra 1 millisecond, just in case the master and
slave clocks have both drifted at the maximum ppm in different directions.

Having more accurate clocks can help save power. For example, if the crystals used in two devices
were, for instance, 150ppm in one device and 50ppm in another, then the combined accuracy would
be just 200ppm. So, after one second away, the slave would have to wake up just 200 microseconds
early and stay on for an extra 200 microseconds. If a device is waking up infrequently, this could run
for 5 times longer than the two devices with 500ppm crystals. It is therefore recommended that high-
accuracy crystals be used in devices that have very low-power requirements and need to maintain a
connection for some time.

7.8. Sending Data
Once in a connection, devices can send data to one another. This is done by sending data packets at
connection events. Data packets are distinct from advertising packets because they are private
communications between two devices rather than broadcast communications to any device that is
listening. The biggest differences between advertising packets and data packets are the length of the
payload that is possible and the packet header.

The length of the payload in a data packet can be anywhere from 0 octets in length to 31 octets. A
zero-length payload in a data packet is an empty packet; it has no application data but can still include
some information from the packet header. The maximum length payload (at 31 octets) is smaller than
the advertising packet’s maximum length. It is also only possible to have this large a packet if it is
encrypted.

An unencrypted data packet has a maximum of just 27 octets of data in it to allow for the
retransmission of a data packet, even after encryption has been established between the data packet
being sent into the controller and encryption being enabled in the controller.

7.8.1. Data Header
The data packet header, as shown in Figure 7–20, contains just the following four fields:



• Logical link identifier (LLID)
• Sequence number (SN)
• Next expected sequence number (NESN)
• More data (MD)

Figure 7–20. The data packet header
There is no “packet is encrypted” bit because this is a modal property of the connection, just like for
the adaptive frequency hopping or the connection event intervals.

7.8.2. Logical Link Identifier
The logical link identifier (LLID) is used to determine if the packet contains one of the following
types of data:

• Link Layer control packet (11)—This is used for managing the connection
• Start of a higher-layer packet (10)—Or for a complete packet
• Continuation of a higher-layer packet (01)

If the packet is a Link Layer control packet, this is indicated by the logical link identifier, and this
data is passed directly to the Link Layer control entity. The meaning of the data within this packet is
therefore determined by the Link Layer control entity, as described in Section 7.10.

All other packets are to or from the host. The host is able to send packets larger than the maximum
27 octets of data that can be included in a single Link Layer data packet; therefore, it is able to
segment these. To do this, the packet is labeled as either a start of a higher layer data packet or a



continuation of a higher layer data packet. This is illustrated in Figure 7–21, in which a very long
higher layer data packet is split over three Link Layer data packets. The first data packet is labeled
with an LLID of “start”, whereas the other two data packets are labeled with an LLID of
“continuation”.

Figure 7–21. Packet fragmentation
This is interesting from two standpoints. First, the Link Layer doesn’t require knowledge of the

ultimate size of the packet at the start of the packet. It is possible to send start, continuation,
continuation, ... continuation, continuation, before sending another start message. The number of
continuation messages is not fixed at the start of the message.

This allows the second interesting side effect: it is possible to always send zero-length
continuation messages without any impact on the higher layer data. This allows empty packets to
always be sent, meaning that simple acknowledgement messages can always be sent as zero-length
continuation messages. These zero-length continuation packets are known as empty packets.

7.8.3. Sequence Numbers
To enable the reliable transfer of data, all data packets have sequence numbers. The sequence number
for each new data packet sent is different from the last data packet’s sequence number, with the first
packet in a connection having a sequence number of zero. This allows a receiving device to determine
if the next packet that is received is a retransmission of the previous packet because the sequence
number is the same or a transmission of a new packet because the sequence number is different.

In data packets, there is a single bit for the sequence number, starting at zero for the first data
packet that is sent. The sequence number then alternates between one and zero for each new data
packet that is sent by a device.

7.8.4. Acknowledgement
To perform acknowledgement of a data packet, a single bit is used. This is called the next expected
sequence number bit. This informs the receiving device of the next sequence number that the
transmitting device is expecting it to send.

If the packet received by a device has the sequence number zero, the next expected sequence
number that it receives must be one; otherwise, the packet would have been retransmitted. Therefore,
it’s possible to signal if the packet received was received correctly or if the packet needs to be
retransmitted. This is illustrated in Figure 7–22.



Figure 7–22. Sequence numbers

7.8.5. More Data
The final bit in the data channel packet header is the more data bit. This signals to the peer device that
the transmitting device has more data ready to be sent. The peer receiving device upon seeing the
more data bit set in a received packet should continue to communicate in this connection event. This
automatically extends connection events while there is still data to be sent. It also quickly closes
connection events for which there is no more data to be sent. The more data bit also allows a device
that needs to save power to close the connection event gracefully and quickly by setting its more data
bit to zero. The more data bit can therefore be used to enable lots of data to be reliably delivered in a
very efficient manner by using as few transmitted packets as possible.

7.8.6. Examples of the Use of Sequence Numbers and More Data
The processing of sequence numbers, next expected sequence numbers, and more data bits is shown in
Figure 7–22 and described in the following:

1. The master transmits its first packet by using the default sequence number of zero and the next
expected sequence number of zero. The master also sets the more data bit because it has two



packets of data to send (SNmaster=0, NESNmaster=0, MDmaster=1). This packet was received
correctly by the slave; therefore, the slave’s next expected sequence number is updated
(NESNslave=1).

2. The slave’s first packet (SNslave=0) was transmitted with the newly updated next expected
sequence number (NESNslave=1). This packet also has the more data bit set (MDslave=1)
because the slave is about to send some interesting data. This packet was not received by the
master, so the master’s next expected sequence number was not changed. The slave continues
to listen to the master because the more data bits for both the master and the slave were set.

3. The master’s second transmission (SNmaster=0, NESNmaster=0, MDmaster =1) is a
retransmission of its first packet. The master never received a packet from the slave and
therefore must retransmit its packet. The slave receives this packet and detects that this is a
retransmission of the last packet it received because the sequence number is identical; thus,
the slave does not update its next expected sequence number. The slave sees that the master
has more data to send to it, so it continues this connection event by transmitting another packet.

4. The slave retransmits its first packet (SNslave=0, NESNslave=1, MDslave=1). The master
receives this packet successfully and updates its next expected sequence number
(NESNmaster=1). The master sees that the slave has more data to send and continues this
connection event by transmitting another packet.

5. The master’s third transmission is a new packet requiring a new sequence number
(SNmaster=1, NESNmaster=1, MDmaster=0). This packet contains the last of the data the master
has to send, so the master has set the more data bit to zero. The slave receives this packet
successfully and updates its next expected sequence number (NESNslave=0). The slave still has
more data it wants to send, so it continues the connection event.

6. The slave’s third transmission is a new packet requiring a new sequence number (SNslave=1,
NESNslave=0, MDslave=0). The slave’s more data bit has been set to zero to indicate that it
doesn’t have any more data to send. The master receives this packet correctly and updates the
next expected sequence number (NESNmaster=0). Because the last packets of the master and
slave both indicated that neither device has any more data, the connection event is
immediately closed.

7. Some time later, the master wakes up at the next connection event and transmits a new packet
to the slave with a new sequence number and the latest next expected sequence number
(SNmaster=0, NESNmaster=0, MDmaster=0). This packet also lazily acknowledges the last packet
from the slave. The slave receives this packet successfully and updates its next expected
sequence number (NESNslave=1). The slave has no more data to send but needs to respond
with an empty packet.

8. The slave’s fourth transmission is an empty packet using a new sequence number (SNslave=0,
NESNslave=1, MDslave=0). The slave also has no more data to send; therefore, it sets its mode
data bit to zero. The master receives this packet successfully and updates its next expected
sequence number (NESNmaster=1). Because the last packets of the master and slave both
indicated that neither device has any more data, the connection event is immediately closed.



As the preceding example illustrates, the sequence number and next expected sequence number are
always in lock-step with one another. This ensures that packets are always reliably delivered and in
order. A packet is not considered to be received when the CRC fails to verify that the contents of the
packet have been received correctly.

It is also possible to enable flow control by using the next expected sequence number. If a device
does not have enough buffer space to process a message at a given time, it is not able to update the
next expected sequence number. This forces the other device to retransmit this message, effectively
pushing the buffering requirements onto the sending device and away from the receiving device.

There is one other effect of this whole process on connection events. If a packet is not successfully
received because a few bit errors cause the CRC to fail, and this happens again on the same packet
within a single connection event, the two devices will stop using that connection event. The devices
will then resynchronize at the next connection event and try again. This means that if a given channel
is being blocked due to interference, then very quickly the two devices will discover this interference
and stop using that channel. By moving to a new channel quickly, the interference caused by
transmitting on the blocked channel is mitigated almost immediately, but data is still delivered to the
other device very quickly at the next connection event.

7.9. Encryption
When in a connection, data within the payload can be encrypted. This encryption can ensure
confidentiality of the data against attackers. Confidentiality means that a third party cannot intercept
the messages, decipher them, and read the original contents of the messages because the “attacker”
does not have the shared secret used to encrypt the link.

Encrypted packets also include a message integrity check value that ensures the data is
authenticated. Authentication means that the validity of the sender can be confirmed by calculating a
signature of the encrypted data with a shared secret. This prevents a third party from changing any of
the bits in the packet. Authentication allows the receiver of a message to know that the data packet it
has just received was sent by a device it trusts. A personal identification number (PIN) used to
authenticate bank card holders is a classic example of authentication; the PIN verifies that the
authorized person is using the bank card.

Encrypted packets also include a packet counter to stop replay attacks. A replay attack is one in
which an attacker intercepts a given message and then at a later date replays this message in the hope
that it will result in a response. For example, without replay attack protection, it could be possible to
scan for lots of packets being transmitted by a device and then replay these packets and see what
happens. If the receiving device was a sewage valve near a city park, the results could be
“interesting.” Clearly, protecting against replay attacks is something very important.

7.9.1. AES
All encryption and authentication in Bluetooth low energy is built around a single encryption engine
called the Advanced Encryption System (AES). This encryption engine was originally designed as
part of a United States government program to find a suitable encryption engine for the future. It has
since been adopted by many wired and wireless standards and has so far held up well against the
attempts by security researchers to find weaknesses in its algorithms.

AES can be built in multiple forms, typically determined by the size of the blocks of data and keys
that it can process at any given time. In Bluetooth low energy, the 128-bit key size and 128-bit data



blocks are used. This means that all keys are 128 bits in length, and up to 16 octets of encrypted data
can be created at a time.

The AES encryption block is very simple: it takes two inputs and generates one output. The two
inputs are a 128-bit key value and a 128-bit block of plain-text data, and the output is a 128-bit block
of encrypted data. The reason the two inputs are labeled as key and plain-text data is that the key must
be processed first before being used in the encryption block, whereas the plain text is immediately
processed by the encryption block. Therefore, it is more efficient to set up the key once and then pass
in different plain-text blocks and encrypt them quickly than it is to use a different key for each block.

Thus, the encryption of some data, plaintext, with a key, key, using an algorithm, E, to produce
encrypted text, ciphertext, can be represented by using the function in Equation 7-4:

In Bluetooth low energy, the AES encryption engine is used for four basic functions:
• Encrypting payload data
• Calculating a message integrity check value
• Signing data
• Generating private addresses

The signing of data is defined by the Security Manager, and the generating of private addresses is
defined by the Generic Access Profile.

7.9.2. Encrypting Payload Data
To encrypt the payload data, the payload is split into 16-byte blocks, and for each block a cipher bit
stream is generated. This cipher bit stream is then Exclusive-Or’ed with the plain text. This is defined
by using the standard IETF RFC 3610. This standard defines a method for encryption and
authentication using Counter with Cipher Block Chaining-Message Authentication Code Mode or
CCM.1 This is a standard encryption algorithm for any size key and any size message.

In Bluetooth low energy, the Ax encryption blocks are used. These are initialized plain-text blocks
that have a known format and include a nonce composed of a packet counter, a direction bit, and an
initialization vector (IV). In the equation that follows, the || notation means concatenation.

nonce = Packet Counter || Direction || IV

The packet counter is a 39-bit value that is incremented for each new non-empty packet that is
transmitted. The packet counter always starts with zero when encryption is enabled. Empty packets
are not encrypted; therefore, they do not need to increment the packet counter. The initialization vector
is a random value that is 64 bits in length, where 32 bits of this vector are contributed by each device
in the encrypted link (see Section 7.10.3). Therefore, the nonce is 13 bytes in length.

The other octets of the Ax are per the CCM specification. The first octet is a flags field that will
always be set to 0x01 to indicate that this is an Ax block. The last two octets are the block counter.
The block counter is set to 0x0001 when used to encrypt the first 16 octets of the payload (CBlock1)
and to 0x0002 when used to encrypt the second 11 octets of the payload (CBlock2). The CCM
specification is also used to encrypt the message integrity check value (MMIC), and for this, the block



counter is set to 0x0000.

CMIC = Ekey(0x01 || nonce || 0x0000)

CBlock1 = Ekey(0x01 || nonce || 0x0001)

CBlock2 = Ekey(0x01 || nonce || 0x0002)

The cipher blocks are then Exclusive-Or’d with the various parts of the message to generate the
encrypted payload.

encrypted = CBlock1 ⊕ Block1 || CBlock2 ⊕ Block2 || CMIC ⊕ MIC

This encrypted payload is then sent to the peer device. Because the peer device knows the shared
secret—the key value—it can decrypt the message by using the same packet counter, direction, and IV
values. When the encrypted payload is sent, the CRC is calculated over the encrypted payload, not the
original payload blocks. The header and length fields of the data packet are never encrypted.

7.9.3. Message Integrity Check
The message integrity check (MIC) value is used to authenticate the sender of the data packet, and this
MIC is inserted between the Data and the CRC, as illustrated in Figure 7–23. This ensures that the
encrypted packet is sent by the peer device and not by a third-party attacker. To calculate the MIC, the
AES encryption engine is used again. This time, the output of one block is used as the input to the next
block, chaining together the blocks to ensure that every bit in the original message is as important as
every other bit in calculating the MIC.

Figure 7–23. The encrypted data format
To calculate the MIC, the same nonce is used for encrypting the payload. Three or four B blocks

are used. The first B0 block contains the nonce and the original length of the data being authenticated.
This length field comprises 16 bits, even though the maximum size of the payload that can be
authenticated in low energy is just 27 octets.

B0 = 0x49 || nonce || length



The next B1 block contains additional data that should be authenticated with the payload but is not
contained within the payload. In Bluetooth low energy, this is used to authenticate some of the bits in
the header of the packet. The only bits that need to be authenticated are the logical link identifier bits.
All other bits in the header are masked to zero; this simplifies calculation and allows precalculation
of blocks without having to know values such as SN or NESN, and so on because these bits are not

important from a security point of view.

B1 = 0x0001 || headermasked || 0x00000000000000000000000000

The next block or two contains the actual payload data being authenticated. B2 contains the payload
data from octets 0 to 15. B3 contains the payload data from octets 16 to 26.

To calculate the MIC, these blocks are then chained together by using a single key as used for
encrypting the payload. Only the most significant 32 bits of the payload are used in the packet.

X0 = Ekey(B0)

X1 = Ekey(X0 ⊕ B1)

X2 = Ekey(X1 ⊕ B2) where B2 = Payload[0..127]

MIC = Ekey(X2 ⊕ B3)[128..96] where B3 = Payload[128..215]

When an encrypted packet is received, the same MIC calculation is performed on the receiving
device to check that the MIC value computes to the same, given the same inputs. If the value does not
compute correctly, the connection is immediately disconnected. No further communication will occur,
and the peer device will automatically eventually enter supervision timeout. This appears at first
glance to be a very drastic approach; however, the MIC will not even be checked if the CRC fails—
the packet will just be rejected and a new packet retransmitted from the peer.

The only way that an MIC can fail is if an attacker is currently attempting to attack the link or if a
number of bit errors were falsely accepted by the CRC, causing the MIC to fail. In the first case, the
safest approach is to immediately disconnect the link because it might already be compromised. In the
second case, the data contained in the packet is already compromised because the CRC has falsely
identified it as a correct packet. So again, the safest approach is to assume the worst and disconnect
the link. Once the connection has been dropped, the two devices can quickly reconnect, establish a
new initialization vector, and reencrypt the link. The approach of reestablishing a new initialization
vector refreshes the nonce and, therefore, the encryption that is used on the connection.

It is also possible to reestablish a new initialization vector while in a connection, if needed. Given
that the packet counter has a fixed size, and that the encryption is only considered secure if nonce
values are never repeated, it is necessary to refresh the initialization vector periodically. This will
not occur very frequently; there are a total of 239 – 1 packets that can be sent in a connection before
the nonce would repeat, which would take over 12 years of continuously transmitting packets to get
anywhere close to wrapping. However, Bluetooth low energy has been designed for success and for
connections to be stable for many years. As such, it is already a defined process to refresh the nonce.



To do this, a new initialization vector is generated by using the encryption pause and resume
procedures, as defined in Section 7.10.4.

7.10. Managing Connections
Once two devices are in a connection, they can send and receive data and manage the connection.
Connection management involves sending Link Layer control messages. There are only seven Link
Layer control procedures:

• Updating the connection parameters
• Changing the adaptive frequency-hopping channel map
• Encrypting the link
• Reencrypting the link
• Exchanging feature bits
• Exchanging version information
• Terminating the link

7.10.1. Connection Parameter Update
When the connection is created, the connection parameters are sent in the connection request packet,
as detailed in Section 7.7. After a connection has been active for a period of time, the connection
parameters might no longer be suitable for the services being used over this connection. The
connection parameters will need to be updated for the services to be used efficiently. Instead of
disconnecting the link and then reconnecting it with different connection parameters, it is possible to
do a connection parameter update within the link, as illustrated in Figure 7–24.

Figure 7–24. Performing a connection update procedure
To do this, the master sends a connection update request to the slave with the new parameters by

using LL_CONNECTION_UPDATE_REQ. There is no negotiation of these parameters; the slave



must use them. If the slave doesn’t accept the parameters being suggested, it only has one option
available to it: disconnect the link. The connection update request includes a subset of parameters that
were used in the connection request message sent earlier during connection creation and one
additional parameter, called the instant:

• Transmit window size
• Transmit window offset
• Connection interval
• Slave latency
• Supervision timeout
• Instant

The instant is the parameter that determines from when the connection update will start. When the
master sends the message, it picks a time in the future when the connection update will be actioned
and includes it in the message. The slave, upon receiving the message, will remember this instant
future time and then wait until the specified time before moving to the new connection parameters.
This helps solve one of the largest problems in wireless systems: packet retransmission. As long as
the packet is retransmitted enough times and eventually gets through before the instant passes, the
procedure will work well. If, however, the packet does not get through in time, the link will probably
drop.

Given that Bluetooth low energy has no clock, the only way to determine an instant is to count
connection events. Therefore, each connection event is counted, with zero being the first connection
event in the link; the one that was transmitted in the first transmit window after the connection request.
The instant, therefore, is the connection event count at which the new parameters will be used. The
master should provide enough opportunity for the slave to receive this packet. Even at maximum
latency, this should typically allow at least six attempts for the message to be sent by the master to the
slave. If the slave latency is 500 milliseconds, then the instant would typically be placed at least 3
seconds in the future.

Once the instant arrives, the slave listens for the transmit window, just like during connection
creation. This allows the master to shift the timing of the slaves, both within the 1.25-millisecond slot
but also at the gross level. This better allows the master device that is also a Bluetooth classic device
to align its own Bluetooth low energy slaves to those of its other activities. Once this procedure is
complete, a new connection interval, supervision timeout, and slave latency values are used.

7.10.2. Adaptive Frequency Hopping
Adaptive frequency hopping is very important for the successful survival of any radio technology in
an open wireless band. Unfortunately, some technologies don’t perform adaptive frequency hopping
and are therefore susceptible to interference. The biggest problem with adaptive frequency hopping,
especially in model devices, is that the set of channels at any given time that can be considered good
or bad can be considered to be constantly changing. This means that there needs to be signaling to
allow devices to change this channel map. This procedure is shown in Figure 7–25.



Figure 7–25. The Channel map update procedure
The adaptive frequency-hopping updates are sent in a channel map request packet

LL_CHANNEL_MAP_REQ. This is sent from the master to the slave and includes only the following
two parameters:

• New channel map
• Instant

The instant is the same concept as the instant used in the connection update. It determines a point in
time that the new channel map will be used. At the instant, and afterward, the new channel map is
used for all connection events in the future at least until the next time the channel map is updated.

The channel map is a 37-bit field that has one bit for each data channel. If a given channel’s bit is
set to one, the channel is considered good and will be used; if a given channel’s bit is set to zero, the
channel is considered bad and will not be used.

The channel update request can only be sent again after the instant has passed. This places a
restriction on how fast the connection’s channel map can be updated. Typically, the channel map
would be updated only when the connection is performing poorly using its current set of channels or
when the host determines that the current bad channels are now good again. No Link Layer control
procedures are provided to allow a slave device to change the channel map or even notify its master
of its own channel conditions.

7.10.3. Starting Encryption
To start encryption, the link must be unencrypted. To encrypt the link, both the nonce and a session
key (SK) need to be created. The nonce requires 4 octets of information to be contributed by each
device, and the session key requires 8 octets of information to be contributed by each device. An
additional key is also required, called the long-term key (LTK). This is the shared secret that is
established during pairing (for more information, go to Chapter 11, Security, Section 11.2).



To start encryption, as illustrated in Figure 7–26, the master first transmits an encryption request
message (LL_ENC_REQ) to the slave. The slave then responds with an encryption response message
(LL_ENC_RSP). The encryption request packet from the master includes its 4-byte contribution to the
initialization vector, 8 bytes of session key diversifier, and some additional information that the slave
transmitted to it when they initially paired. This additional information is static for a given master,
and the slave can use this information to determine with which master it is communicating and
possibly derive the LTK for the master from this information. By doing this, the slave might not need
to store any information about bonded devices. The encryption response packet from the slave
includes its 4-byte contribution to the initialization vector and its contribution to the session key
diversifier.

Figure 7–26. Starting the encryption procedure
If the LTK is not available on the slave side, the slave will then immediately send a reject

indication to the master along with the reason it rejected the encryption. If the LTK is available, the
slave will start a three-way handshake to begin encryption. The three-way handshake is required
because the slave, for example, must be able to transmit an unencrypted packet to the master, but it
must be able to receive an encrypted packet back. Thus, this handshake procedure moves the two
devices in lockstep into a fully encrypted link.

When encryption is started, a session key is used to encrypt the link. The session key is calculated
from the LTK and the session key diversifier contributed to by both devices.

The session key diversifier enables an LTK to be used multiple times. This is done by ensuring that
each time a connection is encrypted a different encryption key is derived from the session key. The
master and slave contribute half of this diversifier to ensure that even if one device is an attacker, the
other device can force a different diversifier and therefore a different encryption key. The primary



reason all this is done is to protect against the single weakness in AES: A key cannot be used more
than once, ever. Therefore, even though we have a shared secret, LTK, we cannot use this to encrypt
the application data. Instead, we must diversify this LTK into a session key, SK.

The two session key diversifiers (SKD), SKDmaster contributed by the master, and SKDslave
contributed by the slave, are concatenated together and used as the plaintext input into the AES
encryption engine (refer to Equation 7-4). The LT K is used as the key input into the AES encryption
engine. The output of the AES encryption engine is the session key that is used as the key to encrypt
the link.

SK = ELTK (SKDmaster || SKDslave)

The initialization vector (IV) is also calculated from the two values contributed by both devices
IVmaster contributed by the master and IVslave contributed by the slave by concatenating them together.

IV = IVmaster || IVslave

All data transfers are paused while encryption is starting. This is done on the master before it sends
its encryption request packet; on the slave, it’s done before it sends its encryption response packet.
This ensures that no data can be sent unencrypted while the encryption is starting up; it also helps the
three-way handshake to perform correctly.

Once the SK and IV have been calculated by the slave, the slave sends the start encryption request
packet (LL_START_ENC_REQ) unencrypted, but the slave sets to receive an encrypted packet by
using the SK and IV values just calculated. If the master doesn’t receive the slave’s packet, the master
will respond by requesting the same packet again, using an empty packet because all other data
packets have been paused. Because empty packets can never be encrypted (there is no payload to
encrypt), the slave can receive either this packet or the master’s next encrypted packet.

The master responds to the slave’s packet by sending an encrypted packet (LL_START_RSP) that
uses the same SK and IV values it has just calculated and setting up to receive an encrypted packet in
response. The slave can receive this encrypted packet because it was configured to receive encrypted
packets. The slave will now turn on encrypted packet transmission.

Upon receipt of this master’s encrypted packet, the slave will respond with an encrypted packet
(LL_START_RSP). The master can receive this encrypted packet because it has already turned on the
reception of encrypted packets.

Once the master has received this final packet, it can turn on the flow of application data, all of
which will be encrypted. Once the slave has received the Link Layer acknowledgement of this final
packet, it can turn on the flow of application data, all of which will be encrypted.

On Bluetooth classic, authentication must be performed before encryption can be started. This costs
both in terms of time and additional messages that need to be transmitted. In Bluetooth low energy,
this process is not necessary because each packet that is transmitted includes authentication.
Therefore, the authentication of the link is done on each and every packet, not just once at the start of
the encryption process.

7.10.4. Restarting Encryption



Restarting encryption is useful to refresh the session key and is used to encrypt the link when the
packet counter has almost expired or because a new link key has been established, and the host wants
to use this new link key to derive the session key. It is not a procedure that will be used very often; in
fact, some devices might never have a connection up long enough and so never require the restarting
of encryption.

To restart encryption, the same starting encryption process is used, but only after encryption is
paused. Pausing encryption means that application data is paused and then encryption is turned off.
This ensures that no application data can be sent unencrypted while encryption is restarting. It is
effectively a two-step process: The master must first pause encryption and then restart it by using the
starting encryption procedure.

The pausing of encryption is another three-way handshake, but in the opposite order to the way that
the starting encryption handshake is carried out.

As illustrated in Figure 7–27, the master sends a pause encryption request packet
(LL_PAUSE_ENC_REQ) to the slave, after the master’s application data is paused.

Figure 7–27. Restarting the encryption procedure
Upon receipt of the pause encryption request packet from the master, the slave will pause its



application data and then send a pause encryption response packet (LL_PAUSE_ENC_RSP) and
disable the reception of encrypted packets; the master will only be able to send empty packets to
acknowledge any packets the slave might send.

After it has received this slave pause encryption response packet, the master will turn off the
transmission and reception of encrypted packets and reply with another pause encryption response
packet (LL_PAUSE_ENC_RSP). The slave can receive this packet because it has already disabled
encryption. Once the slave receives this packet, it will also disable encryption for transmitted
packets.

Encryption is now disabled. No application data can be sent because all application data has been
paused. This protects against the possibility of sensitive application data being sent unencrypted.

Once encryption has been disabled, the master will immediately send the encryption request packet
(LL_ENC_REQ) to the slave to initiate the starting encryption procedure defined in the last section.

7.10.5. Version Exchange
Sometimes it is useful for debugging purposes to find out a little more about a device than just its
device address and what information is available in the host and application layers. Version
information is only useful for debugging purposes and can be obtained from devices by the Link Layer
autonomously or by the host requesting the information, as shown in Figure 7–28. The version
information cannot be used for changing the behavior of the device; therefore, it does not need to be
exchanged on every new connection. However, most devices will request this information once every
10 or more connections so that a sniffer can pick this information up and help with the debugging of
the connection.

Figure 7–28. The version exchange procedure
This autonomous behavior of the Link Layer troubles some people. Why would a Link Layer want

to receive version information every 10 connections? Simply, when you have a problem with two
devices that need debugging, you might not have any ability to trigger a version information exchange
from a host in either of these devices. Therefore, to be able to characterize these devices, a version
information exchange that occurs infrequently is much better than nothing at all.

The classic example here is a device that is paired with only one other device (so no other device
can connect and request this version information) that does not exhibit the buggy behavior for many
months after being initially paired, and now that device is exhibiting buggy behavior. Having these
version exchanges autonomously sent by the Link Layer every few connections will help tremendously
in solving this problem now, and not in a few months’ time.



Version information includes the following:
• Version number
• Company identifier
• Sub-version number

The version number is a number assigned to a given published version of the Blue-tooth specification
with which this device is compliant.

The company identifier is an assigned number from the Bluetooth Special Interest Group (SIG) that
is allocated to the company that manufactured this controller.

The sub-version number is a number assigned by the company that manufactured the controller; it
must be different for each implementation or revision of the controller. There is no defined way to
assign this number, and if debugging of a device is important, then the manufacturer of the device
should be contacted directly. The device manufacturer contact details are typically exchanged at
UnPlugFest events, where engineers test and validate these controllers before shipping them in mass
volume. This contact information is also available in the qualification database for all shipping
products.

To exchange version information, either device can send a version information indication packet, if
they have not already done so during the current active connection. If a device receives a version
information indication from a peer device and it has not already sent its own message, it will respond
with a version information indication packet. After this has completed once, the procedure cannot be
requested again. This information is static and therefore will not change while in a connection. So,
it’s pointless to ask again for the same static information. The controller should cache this information
while the connection is active in case the host asks for it again.

7.10.6. Feature Exchange
The feature information is used by a peer device to determine what a device can do. It exposes the set
of optional features supported by a device. As illustrated in Figure 7–29, this information can be
requested by the master by using the feature request packet (LL_FEATURE_REQ) at most once, if at
all, during any connection. Upon receipt of the master’s request, the slave replies with the feature
response packet (LL_FEATURE_RSP). This information does not need to be exchanged to attempt to
use an optional feature because all features must be enabled, and all optional features have a way to
reject this request. For example, if encryption is not supported or enabled, then a reject indication
packet is returned, safely rejecting the encryption request.

Figure 7–29. The feature exchange procedure



In the first version of Bluetooth low energy, there is only one feature bit defined: encryption
supported. This states that encryption is supported by a device.

7.10.7. Terminating Connections
The only other Link Layer control procedure that can be performed is the termination procedure. This,
unsurprisingly, disconnects the link and moves both the master and slave connections back into
standby state. A link can be terminated at any time, by either device, for any reason, as shown in
Figure 7–30.

Figure 7–30. The terminate procedure
To terminate the link, a device sends a terminate indication packet (LL_TERMINATE_IND). It

then waits for the acknowledgement of this packet at the Link Layer, after which it disconnects. If a
device sends the terminate indication packet but does not receive any acknowledgement of this
packet, the sending device will just timeout this procedure and the connection will still be
disconnected. This timeout is the same as the supervision timeout value.

As soon as a device receives the terminate indication packet, in response it sends an empty packet
to immediately acknowledge this packet, and then it disconnects.

Connections can also be terminated for two other reasons:
• Supervision timeout
• MIC Failure

When these other reasons are encountered, there is no terminate indication packet sent; the link is just
disconnected, and the hosts on both sides are notified accordingly.

7.11. Robustness
To be robust, the Link Layer uses two very strong algorithms to ensure that data gets through without
interference and that when data is sent from one host, it is delivered to a peer host unchanged.

7.11.1. Adaptive Frequency Hopping
Adaptive frequency hopping is essential for the efficient movement of data between devices
communicating by using the 2.4GHz ISM band. There are so many different devices using this band
that having technology that protects against interference is essential. Adaptive frequency hopping was
originally brought into the Bluetooth classic specification in late 2003; it brought in a step change in
performance improvements when compared with pre-2003 devices.

Simply put, adaptive frequency hopping is a way of taking a frequency-hopping radio and masking



out bad channels by remapping them onto good channels. To do this, both devices have a channel
map. This channel map is 37 bits in length, with each bit mapping directly onto a given Link Layer
channel. Bit 0 in the channel map is related to the Link Layer channel 0; bit 1 in the channel map is for
Link Layer channel 1; bit 36 in the channel map is related to the Link Layer channel 36. If a channel’s
bit is set to one, the channel is a used channel; if a channel’s bit is set to zero, the channel is an unused
channel. A minimum of 2 bits must be set as used into this channel map.

Take, for example, the channel map if all three main Wi-Fi channels are actively being used. These
are channels centered at 2412MHz, 2437MHz, and 2462MHz. This means that only 9 Link Layer
channels would be considered good: 9, 10, 21, 22, 23, 33, 34, 35, and 36. Three values define the
channel map, ChannelMap is transferred between devices, Used is the set of good channels from the
ChannelMap, and numUsed is the number of these good channels. These values for the preceding
example would therefore be as follows:

ChannelMap = 00011110000000001110000000000110000000002

Used = [9, 10, 21, 22, 23, 33, 34, 35, 36]

numUsed = 9

If a connection were set up with this channel map, sent in the connect request packet from the
master to the slave, with the hop interval set to 7, the preadaptive frequency-hopping channels used
for this connection would be calculated by using the frequency-hopping equation, as shown in Figure
7–5, and as explained in Section 7.4.1.

The adaptation of these channels occurs after the initial frequency fn is calculated.

The first connection event on the link should be channel 7. This is not in the set of good channels,
so it would be remapped into the set of good channels. To do this, the set of good channels, Used, is
ordered by channel number, and the unmapped channel number is mapped into this by modulating this
with the number of good channels, numUsed: in this case, we have 9 good channels. The seventh good
channel, Link Layer channel 35, is used as the channel in the connection event.

Used[7 mod numUsed ] ⇒ 35

At the next connection event, the channel would be calculated from the last unmapped channel.

fn+1 = (fn + hop) mod 37

fn+1 = (7 + 7) mod 37

(7 + 7) mod 37 = 14 mod 37 ⇒ 14

Channel 14 is also an unused channel, so this is again remapped into the Used channels.

Used[14 mod numUsed ] = Used [5] ⇒ 33



At the next connection event, the channel would be calculated again from the last unmapped
channel:

(14 + 7) mod 37 = 21 mod 37 ⇒ 21

Channel 21 is in the set of used channels, so this is just used directly.
As you can see in Table 7–5, this can continue for each connection event in the future.

Table 7–5. Remapping Channels by Using Adaptive Frequency Hopping

By using adaptive frequency hopping, data can always be transferred, even if lots of interferers are
in the area, by remapping channels that are marked as unused to used channels that are known to be
good.

7.11.2. Strong CRCs
The size of the CRC value in Bluetooth low energy is 50 percent larger than the size of the CRC in
Bluetooth classic and most other wireless short-range devices. Unfortunately, Bluetooth classic has
proven that a 16-bit CRC is not strong enough for the 2.4GHz ISM band. This was solved by adding
another 16-bit CRC in the Logical Link Control and Adaptation Protocol Layer (L2CAP) to ensure
that even if the CRC protecting data in the controller passed a packet up to L2CAP that has bit errors
that were not protected, the host can still protect against these bit errors by using this second CRC.
Unfortunately, this makes every L2CAP packet much larger, and for resource-constrained devices, the
complexities of calculating a CRC in software also complicate the implementation.

Because of the experience gained from Bluetooth classic, Bluetooth low energy uses a much
stronger CRC at the controller. This CRC is a 24-bit value that protects the packet. This CRC will
detect all single-bit, two-bit, three-bit, four-bit, and fivebit errors, and all other odd numbers of bit
errors in the packet. This is much stronger than a 16-bit CRC, and when compared with much larger
packets used in wired protocols such as Internet Protocol (IP), it provides the same strength. This is



because the packets in low energy are much shorter; thus, a shorter CRC can provide an equivalent
level of protection.

The other problem that Bluetooth classic has is that the header of its packets is protected by a
relatively weak header error-check value, which is just an 8-bit CRC. Obviously, if this falsely
identified a packet, the main CRC should also fail.

Again, this experience has shown that having a separate header error check and main packet CRC
does not help much. If the packet is good, then the controller still has to run two separate LFSRs, one
for the header and one for the payload. If the packet is bad, the probability of the error occurring in
the header is relatively low; the whole packet will probably have to be received anyway, which will
not result in the expected power savings by using a separate header error check in the first place.

Bluetooth low energy takes an alternate design choice. It uses a single strong CRC that protects
against the header, length, and payload fields of the packet, including any encrypted packets’ message
integrity check value. This means that the full strength of the strong CRC is used over the complete
packet, except for the preamble and access address; both of which must be received bit for bit perfect
for the packet to be received in the first place. This is not only more robust but equally efficient.

And by having just one CRC—as compared to the three used in Bluetooth classic—the system is
also simpler to implement. This shows why designing all layers in the specification at the same time
is the best way to create a top-to-bottom, high-quality specification that can meet the market
requirements.

7.12. Optimizations for Low Power
The following sections discuss how Bluetooth low energy has been optimized for ultra-low power
consumption. The primary methods include the following:

• Keeping the packets short
• Using a high physical bit rate
• Providing low overhead
• Optimized acknowledgement scheme
• Single-channel connection events
• Subrating connection events
• Using offline encryption

Power consumption can be measured in multiple ways, but here it will be considered that two types
of power consumption are critical to low power consumption within a device. First, low peak-power
consumption is essential to allow a device to be powered from low-cost button-cell batteries. If the
peak power is too high, the batteries would burn out too quickly, significantly reducing the lifetime of
the device. Second, low power-per-application-bit is essential to allow a device to be used for a
long time, sending a certain quantity of application data.

7.12.1. Short Packets
One of the exceptionally complicated parts of wireless technology is the actual radio that is used.
Most of these radios are built by using bulk CMOS2 technology. This creates a dilemma for designers
because to make the radio stable, they need to increase the cost by adding circuitry to keep the
frequency stable. Bluetooth low energy solves this for them because the packet length is sufficiently



small that this heating effect is minimized. It does not need a very long packet to cause this problem.
The 3-millisecond packets in Bluetooth classic are long enough to cause problems.

This very simple design decision emphasizes the level of detail that the designers of Bluetooth low
energy have taken, optimizing the Link Layer specification by taking into account the physical
properties of the silicon manufacturing processes used.

If the packets are never more than a few hundred microseconds in length, then no calibration of the
radio or stabilization circuitry will be required. The frequency can drift for this period of time
without concerns that it will drift outside the frequency drift requirements stated in the specifications.
In Bluetooth low energy, the longest possible packet is 376 microseconds; this is short enough that the
heating up of the silicon will not change the frequency of transmitted packets enough to drift outside
the limits allowed. While in a connection, the longest possible packet is smaller at just 328
microseconds, as depicted in Figure 7–31.

Figure 7–31. Short packets
Therefore, by keeping packets short, there is no need for constant calibration of the radios. This

reduces peak power consumption by reducing the quantity and complexity of circuitry that is required
to be powered during a packet transmission or reception.

It should also be noted that after transmitting a very long packet, a gap of 150 microseconds is
required. This interpacket gap allows the silicon to cool down between packets. Thus, allowing no
calibration of frequencies needed between transmitting and receiving or receiving and transmitting
packets, further reducing power consumption. This means that when transmitting data in one direction
on an encrypted link, the maximum duty cycle is just:

A 58 percent duty cycle is very low for a wireless technology. Bluetooth classic has a duty cycle of
72 percent, whereas very high-speed wireless technologies will have duty cycles in the high 90
percent range. Bluetooth low energy is optimized for small discrete pieces of data being sent, not for
the highest possible throughput of data.



7.12.2. High Bit Rate
When transmitting data, a radio requires a large amount of current. Most of this current is consumed
by the requirement to run a 2.4GHz oscillator on which the radio signal is modulated. Running very
high frequencies in CMOS requires very high currents. CMOS is optimized for gates that don’t change
their state all the time because most gates in a digital system do not change state all the time. Any
radio running at 2.4GHz built using a bulk CMOS process will therefore use similar current
generating this 2.4GHz signal.

Given that it is almost impossible to reduce the power consumption below a certain level because
of the oscillator, the efficiency of the modulated signal becomes significant. The quicker you can
transmit a given amount of data, the more efficient your radio will be. Bluetooth low energy transmits
data at 1,000,000 bits per second.

For example, if a device using another technology can only transmit at a quarter of the rate of
Bluetooth low energy, it would take four times as long to transmit a given sequence of bits. Thus, it
would take four times as much power to transmit the same amount of data as a Bluetooth low energy
system would take. Consequently, high bit rates are a good thing.

It should also be considered that it is possible to go too far on the data rate front. A complex
modulation scheme that can transmit, for example, 10 times as many bits per second as Bluetooth low
energy would typically take much more power to modulate and demodulate these bits. So, although
these bits might take less time to transmit, the extra energy used for modulation means that the power
per bit is about the same. However, the current used when receiving nothing, due to clock drift, is
significantly higher. Therefore, a simple modulation scheme with low peak-power consumption with
high data rates is the most efficient way of sending data. This is the sweet spot that the designers of
Bluetooth low energy used.

7.12.3. Low Overhead
Given that every bit counts, the amount of overhead is critically important when considering a radio
technology. In Bluetooth low energy, the overhead includes everything that cannot contain application
data. This includes the preamble, access address, header, length, the CRC fields, and the optional
MIC value.

For an unencrypted packet, the efficiency measured as the size of application data compared with
the total packet size required to transmit this data goes from 29 percent to 73 percent, as demonstrated
in Table 7–6. The larger the packet, the more efficient the radio is in terms of overhead. For
encrypted packets, the efficiency is lower, primarily because of the extra 4 octets of MIC included in
each packet. This efficiency is very good, compared with the efficiency of similar proprietary radios.
For example, Zigbee has a packet overhead of anywhere from 15 to 31 octets before any encryption
overhead. When considering the four-times slower physical bit rate for Zigbee, a short four-octet
application data in Zigbee could require up to 10 times more energy than a Bluetooth low energy
solution.

Table 7–6. The Overhead for Application Data



7.12.4. Acknowledgement Scheme
One interesting side effect of the Link Layer acknowledgement scheme is that it does not require that
the acknowledgement of a packet be performed, or even delivered, immediately. This is a radical
difference between Bluetooth classic and Bluetooth low energy.

In Bluetooth classic, the receiver must acknowledge the packet at the next opportunity it has to
transmit. If the acknowledgement is not received immediately, the receiver must signal a negative
acknowledgement in the next packet it transmits. This causes the most problems when synchronous
links are active and the slave is attempting to send data.

In Bluetooth low energy, every packet sent can acknowledge the last packet transmitted, even if this
was transmitted some time ago. This means that devices never have to transmit immediately to send
their acknowledgements. The device can choose to wait until it has data to send (or needs to transmit
for some other reason, such as timeouts) before acknowledging the last packet. This allows for very
fast and efficient acknowledgements that are required when transmitting large quantities of data very
quickly.

7.12.5. Single-Channel Connection Events
All communication between a master and a slave occurs in a connection event. A connection event is
a packet transmitted by the master, followed by a series of alternating packets sent by the slave and
master. In Bluetooth v1.1, every single packet transmitted either as master or slave was transmitted on
a different channel. If the master to slave packet was transmitted on one channel, the response would
have been sent on a different channel. The problem with this is that even though the slave might have
received the master’s transmission perfectly, the next channel that was used for the reply might have
interference and, therefore, the acknowledgement for the master’s data packet might not get through.

When it added Adaptive Frequency Hopping, Bluetooth v1.2 made each slave transmission use the
same channel as the master’s transmission. In the preceding example, the slave would have replied on
the same channel that the master used to transmit its data, and therefore that packet would most likely
get through; the assumption is that if a packet is good when data is transmitted from the master to the
slave, it will be good when data is transmitted from the slave to the master. This is a good assumption
and has improved the actual data rates in heavy interference situations.

Bluetooth low energy has taken this to the logical conclusion. If a channel is good, then why stop
using it? If a channel is good, then it should be used for as long as possible. The ultimate invalid



conclusion would be to just stop frequency hopping altogether. After all, if the data gets through, then
you should just stay on that frequency until it stops working, and then change to another channel at that
point.

Unfortunately, at the point when you do need to change frequency, you cannot send any signaling
packets to coordinate that change. It also uses a lot of power resynchronizing the single frequency
once the channel starts to fail. Given the transient nature of interferers in a location, especially with
the bursty nature of much Internet traffic over a Wi-Fi network, this model breaks down very quickly.

This one-channel model also reduces the number of co-located networks because each will
naturally drift to a clean frequency. If the number of channels that are clean is small, the number of co-
located networks will also be small. A frequency-hopping algorithm distributes network traffic in
both time and frequency, allowing for many more simultaneous networks to be active in the same area
at the same time. The alternate algorithm—stay on one frequency until it breaks—doesn’t work.

The low-energy approach is to stay on one frequency in a single-connection event, as if you know it
works and can send data and acknowledgements, and then move to a new frequency at the next
connection event. This means that at any point in time, the frequency to use is fully deterministic. If a
particular channel does not work, the two devices will stop using that channel very quickly and
resynchronize at the next connection event on a different channel and continue sending data (see
Figure 7–32). This means that data can flow with the minimum of latency impacts even where there is
lots of interference that is highly unpredictable—a situation that is common in many homes and
businesses.

Figure 7–32. Single-channel connection events

7.12.6. Subrating Connection Events
In many situations, the master device has many more resources than the slave device. A computer
keyboard has a much smaller battery than the computer, and although the computer might be recharged
regularly, the battery in the keyboard is expected to last for years. However, many devices have very
small latency requirements. When a user presses a key on a keyboard, that keystroke needs to be
delivered to the peer device as quickly as possible. Low latency is a requirement for user interaction.
However, the conflicts of low latency and low power have to be resolved.

Low power requires the slave device to only listen for the master device very infrequently. Low
latency requires the slave device to be able to transmit as often as possible. Given that the slave
cannot talk unless the master speaks to it in a connection event, low latency requires the master to



continuously poll the slave to see if it has any data to send. However, if the slave had to listen to each
of these connection events, it would not be low power.

The solution is to allow the slave to ignore most connection events from the master, as illustrated in
Figure 7–33. The slave would still be able to synchronize and send data at the earliest possible
opportunity once it needs to send some data, keeping the latency of data to the connection event
interval to that of the master. However, the slave would also be able to ignore a certain number of
connection events; this is called the slave latency. The number of connection events that can be
missed determines the amount of power that the slave can save. The more connection events that can
be missed, the lower power the slave can be.

Figure 7–33. Subrated connection events
There is a limit to the slave latency. It is not possible to have a slave latency that is longer than the

supervision timeout of the connection. It is also not recommended to have a slave latency that gives
fewer than 6 opportunities for the slave to resynchronize to the master. For example, if the
supervision timeout is 5 seconds, and the connection event interval was 50 milliseconds, then a slave
latency of 4,650 milliseconds would give the slave 6 opportunities to resynchronize at the end of the
slave latency. It would also allow the slave to communicate just once every 4.5 seconds, a duty cycle
of just 0.0069 percent but still allowing the slave to transmit data to the master in an average time of
just 25 milliseconds.

7.12.7. Offline Encryption
Encrypting data is typically considered a very high-power procedure. A device must compute cipher
blocks for the payload and message authentication codes as well as compute the authentication code
itself. This requires, for a maximum-sized packet, a total of seven iterations of the AES-128
encryption block. If this were required to be performed in real time, the peak current of the packet
transmitter and receiver would be significantly higher.

In Bluetooth low energy, the encryption of data and authentication code can be computed in the
background. Before a packet is transmitted, the encryption of the data can be performed when the
radio is still off. This encryption of data doesn’t depend on the sequence number, the next expected



sequence number, or the more data bit. Therefore, the data can be encrypted at any time, from the
point it reaches the Link Layer, to just before being transmitted. Also, this data can be retransmitted
any number of times, and the encryption and authentication code will not change for each
retransmission, even if the next expected sequence number or more data bit changes. This lowers the
peak power consumption, and removes the cost of retransmitting encrypted packets.

When receiving encrypted data, the CRC value is computed in real time and is the only value that
determines whether the data was received correctly. The encrypted data can be kept in the Link Layer
until radio activity stops and there is spare power to decrypt the packet. This decryption of the packet
can be done at any time before the packet is delivered to the host. This reduces the peak power for a
receiver. Also, if the packet is retransmitted, then upon reception because the sequence number is
repeated, it is not necessary to decrypt the packet again. This lowers peak power consumption and
removes the cost of re-receiving encrypted packets.



Chapter 8. The Host/Controller Interface

The best way to predict the future is to invent it.
—Alan Kay

8.1. Introduction
As shown in Figure 3–1, the Host Controller Interface (HCI) is the interface between the host and the
controller. It is responsible for two main functions: It sends commands to the controller and receives
events back, and it sends and receives data from a peer device.

Typically, the host interface is both a physical and logical interface between devices. The logical
interface defines a number of packet formats for commands, events, and data. The physical interface
then defines how these packets can be transported between the host and controller.

8.2. Physical Interfaces
There are four defined physical interfaces in the Bluetooth specification. Each is optimized for a
different purpose:

• The Universal Asynchronous Receiver/Transmitter (UART) is optimized for very simple
implementations.

• 3-Wire UART is optimized for reliable UART implementations.
• USB is optimized for high speed, typically in computers and similar devices.
• Secure Digital Input Output (SDIO) is optimized for medium speed, typically in consumer
electronic devices.

8.2.1. UART
The UART interface is the simplest of all the transports available. It defines a simple universal
asynchronous receiver/transmitter that is connected in a null-modem configuration between the host
and the controller. Null modem simply means the transmit and receive wires cross over at opposite
ends of the link so that transmit data (TXD) from the controller connects to receive data (RXD) on the
host, and vice versa. Three-wire UARTS only have TXD, RXD, and ground. Five-Wire UARTS also
have flow control wires by which the request to send (RTS) on the controller connects to clear to
send (CTS) on the host, and vice versa.

In Bluetooth low energy, the UART interface always uses 8-bit characters with no parity and one
stop bit. The stop bit is an extra bit’s worth of time at the end of each byte. The parity bit is used for
error checking when used. When the link between Bluetooth controller and host is very short, errors
don’t tend to occur and the parity check is not needed. It uses hardware flow control lines CTS and
RTS. To send an HCI packet, one of the following three packet type codes is prepended to it. That is
it. That’s all it is.

• Command = 0x01
• Data = 0x02
• Event = 0x04

Unfortunately, the UART interface cannot do any low-power signaling, and, therefore, this interface is



not suitable for very-low-power devices. Some devices will use additional hardware signaling lines
to allow the interface to be moved into a very-low-power mode, but these are typically proprietary
extensions and each device will do these extensions differently.

In Bluetooth classic, the HCI packet type of 0x03 is also defined for synchronous data packets; low
energy does not use synchronous data packets; thus, they would never be sent to or from a low-
energy-only controller.

8.2.2. 3-Wire UART
The 3-wire UART is a little more complex than the previously described UART transport because it
is designed to work without any hardware flow control lines as well as in the presence of some bit
errors. If your host and controller are separated by more than a few millimeters and they are in a
noisy electrical environment, using the 3-wire UART is a strong recommendation.

For the 3-wire UART to work, channels are used in a similar manner to the UART interface
described earlier. The channel numbers are the same, with 0x1 for commands, 0x2 for data, and 0x4
for events. The 3-wire UART also defines two additional channels for link establishment on channel
0xF and one for acknowledgements on channel 0x0. Note: Channel numbers in 3-wire UART are only
four bits in size.

The 3-Wire UART has three main modes:
• Link establishment
• Active state
• Low-power state

The link establishment channel is used to confirm that the peer device is awake and to configure any
parameters. The link establishment channel can also be used for automatic baud-rate detection. It does
this by sending link establishment messages at different baud rates and determining which one caused
the peer device to respond. The link establishment process is effectively a three-way handshake
between the two devices to move them into the normal state. This includes configuration of the
reliable sliding window size, whether a cyclic redundancy check (CRC) is used, and if out-of-frame
software flow control is used.

In the active state, reliable packets can be sent. All packets are framed and include a sequence
number and an acknowledgement number. These numbers are both three bits in size, allowing multiple
packets to be in transit at the same time. This is useful for very fast UARTs for which it might take
some time to process a packet.

The framing of packets uses SLIP, as defined in RFC 1055. SLIP places a 0xC0 octet at the start
and end of every packet to frame it. It then replaces any occurrences of 0xC0 in the packet with a two-
octet byte stream of 0xDB 0xDC. Given that 0xDB is an escape sequence, this also needs to be
converted into a two-octet byte stream of 0xDB 0xDD. If out-of-frame software flow control is used,
the XON and XOFF octets will also be escaped to 0xDB 0xDE and 0xDB 0xDF.

The packet header of a framed packet also includes the length of the packet and a header checksum.
The header checksum just validates that the header information can be trusted. If it is invalid, then the
entire packet is rejected, and a retransmission scheme will automatically retransmit this packet.

The payload can be up to 4,095 bytes and is protected by a CRC value. The CRC used in the 3-
wire UART is the same CRC that is used in the Bluetooth classic baseband packets—the 16-bit CRC-



CCITT. Again, if the CRC fails to validate the packet, the packet is just ignored, and the entire packet
will be retransmitted by the peer device.

It is also possible to move the connection into low power mode by sending a “sleep” message. In
this mode, the UART is typically turned off and any packet that is transmitted is not guaranteed to be
fully received; it can take some time for the UART hardware on the peer device to wake up once a
packet is transmitted. To aid the efficient wakeup of a peer device before sending HCI messages, a
very short wakeup message can be sent. The device responds with a “woken” message, after which,
the devices have an active connection and can send any packets.

If a device only has a UART interface, and the basic UART interface isn’t proving robust against
bit errors, the 3-wire UART is the right way to go.

8.2.3. USB
The USB interface is optimized for devices that already include a USB host. It defines how to
transmit commands and events as well as data between the host and the device. For enumeration, a
standard class code for Bluetooth devices is also defined. This has allowed plug-and-play Bluetooth
dongles to be sold by many manufacturers.

Commands from the host to a device are sent on the Control endpoint (0x00) using a “host to device
class request, device as target” request type. Events are polled from the device by the host using an
Interrupt endpoint (0x81). This endpoint should be polled every millisecond to ensure that events can
flow with the minimum of latency.

Data is sent on two endpoints: one for Bulk data out (0x02) for data from the host to the device, and
one for Bulk data in (0x82) for data from the device to the host. Again, a one-millisecond poll
interval is used; however, multiple Bulk data USB packets can be sent in a single frame, allowing for
very high data throughput where needed.

The biggest problem with USB is that it is not very power sensitive. To implement a USB interface
requires lots of high-speed hardware and software control. This is an expensive proposition. Another
problem is that the USB host must poll for data from the device every millisecond. Typically, this
stops the host from moving into the lowest-power processor states while the device is being used.
This can be solved by another USB featured called Link Power Management. It is recommended to
use this on Bluetooth devices.

8.2.4. SDIO
The SDIO protocol is a high-speed interface by which a host can communicate with a controller over
the SDIO Card Type-A interface. SDIO is a packet-based bus that uses between 4 and 8 lines to
transmit data in both directions very quickly using very little power.

The transport uses the same channel assignments that are used by UART and 3-wire UART
transports for commands, events, and data.

The SDIO interface has very low error rates, which makes it very useful for devices that already
have an SDIO interface available.

To obtain the full SDIO transport specifications, you must be a member of the SD Association.
However, a version of these specifications has been made available to help companies evaluate the
technology. These simplified specifications do not include everything that is necessary to build a
product, but they do contain enough information to obtain an understanding of how the system works.



8.3. Logical Interface
Above the HCI physical transports is the logical interface. It is a logical interface because in the
single-chip device, this interface doesn’t need to be implemented as a message-passing interface
between components. For a system in which the controller and host are on separate chips connected
by a physical interface, the HCI logical interface is represented as physical packets transferred over
this physical interface.

There are three concepts to understand about the logical interface:
• Channels
• Packet formats
• Flow control

8.3.1. HCI Channels
Whenever a controller has a connection to another device, the controller’s lower HCI interface
creates an HCI channel that is identified by using a connection handle. This connection handle is used
to identify all data that is sent from the host to the controller that is to be sent to a specific peer device
as well as all data that is received from that peer device by the controller before it is sent to the host.

The connection handle is given to the host whenever the attempt to create a connection completes.
The connection handle is valid until the connection is terminated, either locally, by the Link Layer
termination procedure, or due to a link supervision timeout.

8.3.2. Command Packets
To command the controller to do something useful, command packets are sent by the host to the
controller. These command packets typically are used to either configure the state of the controller or
ask it to do something.

As illustrated in Figure 8–1, the HCI command packet contains an opcode that determines the
command that is being sent, a parameter length field, and the parameters for the command. Each
command has its own unique set of parameters.

Figure 8–1. The HCI command packet format
There are three basic types of commands in Bluetooth low energy that perform the following

functions:
• Configure the controller state



• Request a specific action
• Control a connection

8.3.2.1. Configuring the Controller State

The controller can be considered to be one big state machine that has a number of parameters which
can be configured. For example, advertising can be considered to be a state that has the following
state that can be configured by using the LE Set Advertising Parameters command, LE Set Advertising
Data command, LE Set Scan Response Data command, and the LE Set Advertise Enable command.

Typically, within Bluetooth low energy, the state used within a state machine cannot be changed
while that state is being used. Therefore, it is impossible to change the advertising parameters while
advertising is enabled. It is therefore necessary to disable advertising, change the advertising
parameters, and then enable advertising again.
8.3.2.2. Requesting a Specific Action

Some commands request a specific action to occur without altering the state of the device or the state
of a connection. For example, the LE Encrypt command takes a key and some plain-text data and
requests the controller to generate some encrypted data based on these.
8.3.2.3. Controlling a Connection

When a connection has been created between two devices, commands can be sent to manage this
connection. These commands always include the connection handle. For example, the LE Read
Channel Map command is used to read the current adaptive frequency-hopping channel map for a
given connection.

8.3.3. Event Packets
Event packets are used to send information from the controller to the host, typically in response to
something that the host has previously commanded.

Figure 8–2 shows that the HCI event packet contains an event code that determines which event is
being sent, a parameter length field, and the parameters for the event. Each event has its own unique
set of parameters.

Figure 8–2. The HCI event packet format
Three basic event types are used in Bluetooth low energy:

• Generic command complete events



• Generic command status events
• Command-specific completion events

8.3.3.1. Generic Command Complete Events

Whenever a command is sent to the controller that can be completed immediately, a generic command
complete event is returned. This is the Command Complete event. This event is generic in that the
event parameters include the command opcode that this event is completing along with the return
parameters that are specified by that command. The first parameter of all command return parameters
is a status code that specifies whether the command was successful or had an error and couldn’t
complete.

For example, the LE Rand command that is used to command the controller to return a random
number has two return parameters: the status code and the requested random number.

The generic command complete event is used whenever the controller can complete a command
without doing any over-the-air transactions. For example, the LE Encrypt command does not request
any Link Layer packets to be transmitted, so the generic command complete event is used, whereas the
LE Create Connection command requires that at a minimum a Link Layer CONNECT_REQ packet is
transmitted before the connection is established; therefore, the generic command complete event
cannot be used.
8.3.3.2. Generic Command Status Events

For those commands that perform over-the-air transactions, such as creating the connection mentioned
in the previous section, a generic command status event is normally followed some time later by a
command-specific completion event. The generic command status event is the Command Status event.
8.3.3.3. Command-Specific Completion Events

Some commands require time to complete. These commands always have command-specific
completion events. For all of these commands, there is just one command completion event. For
example, the LE Create Connection command will first have a Command Status event sent and then an
LE Connection Complete event will be sent once the connection is created or the connection fails. It
is not until this command-specific completion event is received that the command is considered to be
finished.

8.3.4. Data Packets
Data packets are used to send application data from the host to the controller so that it can be
transmitted to a peer device, and from the controller to the host that has been received from a peer
device.

As illustrated in Figure 8–3, data packets are always labelled with a connection handle. This is a
12-bit value that is provided to the host in the LE Connection Complete event. Until the event is
received by the host, it cannot send any data to a peer device. However, once this event is received,
the host can start to send data to the peer device, and it will start to receive data from the peer device.



Figure 8–3. The HCI data packet format
There are two flags in the HCI data packet: the Packet Boundary Flag and the Broadcast Flag.

Because these packets are reused from Bluetooth classic, some of these flags don’t have any meaning
in low energy. The Packet Boundary Flag determines if this packet is a start or continuation of a
higher-layer (Logical Link Control and Adaptation Protocol) message. This can be considered to be
very similar to the LLID bits in a Data Channel PDU in the Link Layer (for more information, see
Chapter 7, The Link Layer, Section 7.8.2).

The interesting thing is that from the host to the controller, this can contain the values 00 (start) and
01 (continuation), whereas from the controller to the host, this can contain the values 10 (start) and 01
(continuation). This is because in Bluetooth classic the value 10 from the host to the controller means
that the data packet can be flushed if necessary; with Bluetooth low energy, the concept of flushing
doesn’t exist. Instead, it simply drops the link if the data cannot get through, so this value cannot be
used. It is for this reason that the value used for the start indication from the host to the controller is
00 (instead of the LLID value 10 at the Link Layer) because this is used for unflushable data in
Bluetooth classic.

8.3.5. Command Flow Control
The HCI interface has two forms of flow control: command flow control and data flow control.
Command flow control is used to enable the controller to manage how many HCI commands it can
process at the same time. The easiest way to consider how this works is to think of the controller as
having enough memory to buffer a small number of commands. It communicates the number of these
buffers to the host so that the host knows how many commands it can send to the controller at the same
time.

There is no event flow control. It is assumed that the number of events that can be sent is limited by
the number of commands that can be processed. It is also assumed that the host has more resources
than the controller; therefore, it can buffer and process these events in sequence.

To enable command flow control, all Command Complete and Command Status events include a
parameter called Num HCI Command Packets. This parameter indicates how many command packets
can be buffered in the controller. Each time a command is sent, it uses one of these slots. Each time a
Command Complete or Command Status event is sent to the host, it includes the number of slots that
are currently free. It is also possible to send a Command Complete event for the opcode “No
Operation” with a new Num HCI Command Packets at any time. This is most useful at the initial boot-



up of the controller, when it might want to grant the controller more command buffer slots to speed up
the initial configuration of the controller by the host.

8.3.6. Data Flow Control
Data flow control is performed in a similar manner. There are two flows of data: host to controller
and controller to host. Host to controller data flow control must be used, but the flow control from the
controller to the host can be ignored. Most hosts should be able to cope with the quantity of data being
sent from the controller to the host, so flow control is not necessary.

For host to controller data flow control, the controller is considered to have a number of buffers,
each a fixed size. Each time a data packet is sent from the host to the controller, it uses one of these
buffers. Each time a data packet is successfully transmitted by the controller to the peer device, the
buffer that held that data packet is released back to the host to fill up with another data packet.

A slight complication with this flow control system is that a dual-mode controller can have two
different buffers, one for basic rate data and one for low energy data. This means that there are two
HCI commands to discover the buffers on a controller: Read Buffer Size command and LE Read
Buffer Size command. Using these two commands, the host can therefore determine which buffers are
available. For a low energy–only device, only the LE Read Buffer Size command will return non-zero
length buffers.

After the host has discovered the number of buffers available, each time it sends a data packet to
the controller, it uses one of these buffers. The buffers are released when a Number Of Completed
Packets event is sent from the controller to the host. This has a list of connection handles and the
number of packets that was sent. This means that not only does the host know how many buffers have
been released but also which data was sent to the peer devices.

8.4. Controller Setup
There are a number of things that the host can do before it attempts to transmit or receive any packets
from peer devices. This includes resetting the controller to a known state, reading the device address,
setting event masks, reading the flow control buffers, reading the supported features for the local
controller, generating a random number, encrypting some data, setting the random address, and
configuring white lists.

8.4.1. Reset the Controller to a Known State
It is always useful to reset the controller to a known state before doing anything else (see Figure 8–4).
The controller might have been doing something else, and the host transport might only now have been
connected. Therefore, resetting should place the controller to the standby state and return all
configurable parameters to their default state.



Figure 8–4. HCI reset
To reset the controller, the host sends the Reset command to it. Once the controller has been reset,

the Command Complete event for the reset command is sent to the host. It should be noted that this
command does not reset the physical transport. If the physical transport needs to be reset, this should
be done by using that transport’s reset procedure. It should be further noted that even if the host can
send multiple commands, due to command flow control, it is not allowed to send any other commands
while the controller is resetting. Any commands that were being processed when the reset is sent will
be discarded.

8.4.2. Reading the Device Address
Many low energy devices will have a preprogrammed device address. It is useful for the host to be
able to read this address.

To read the device address, the host sends a Read BD_ADDR command to the controller, as shown
in Figure 8–5. This causes a Command Complete event to be sent back with the fixed device address.
If the controller does not have a fixed address, this address will have the value 00:00:00:00:00:00.
The host will then need to generate and program a random address into the controller before it does
anything that would cause packets to be transmitted.



Figure 8–5. Reading the device address

8.4.3. Set Event Masks
There are many possible events defined for the controller that can be sent. In the highly likely event
that additional functionality is defined in a future version of the specification, there must be a way for
the controller to know which events that host is able to receive and process. If the controller just sent
every event it knows to the host, but the host doesn’t understand these events, then interoperability
problems will occur. The only way to solve this is to allow the host to configure the controller with
the set of events that it can accept. The controller will then send only those events.

As demonstrated in Figure 8–6, to set the event masks, two commands are required. First, there is
the classic Set Event Mask command that configures the events used by Bluetooth classic. One of
these events is the “meta-event” for low energy. It is therefore necessary for the host to enable this
meta-event by using this command. Second, the LE Set Event Mask command is used to enable any
low energy events that are required.

Figure 8–6. HCI set event mask

8.4.4. Read Buffer Sizes
As explained in the data flow control section, the controller has up to two sets of buffers it uses to
buffer data that is transmitted from the host to the controller before it is sent to a peer device.

To read the buffers available in the controller, the host sends both the LE Read Buffer Size
command and the Read Buffer Size command, as illustrated in Figure 8–7. Once the Command
Complete events have been returned, the host can determine how many buffers are available to send
low energy data packets to connected devices.



Figure 8–7. Reading the buffer size

8.4.5. Read Supported Features
Another way to ensure that a host can be forward-compatible with a controller is by allowing the host
to determine what features a controller supports before sending any feature-specific commands to the
controller.

To read the supported features that a controller supports, the host sends the LE Read Supported
Features command, as illustrated in Figure 8–8. The controller responds with the Command Complete
event, which includes the set of features that this controller supports. This should be sent before any
feature-specific commands are sent.

Figure 8–8. Determining what supported features are available on the controller

8.4.6. Read Supported States
The controller can be very simple or it can be very complex. So that a host can scale its operations to
the capabilities of the controller without trying possibly invalid combinations of states and receiving
back failures, a command is provided that can obtain this information.

To obtain the set of supported state combinations, the host sends the LE Read Supported States



command, as depicted in Figure 8–9. The controller responds with a Command Complete event that
includes the complete list of possible support states.

Figure 8–9. Using the LE Read Supported States command
The states that can be supported include the following:

• Nonconnectable advertising
• Scannable advertising
• Connectable advertising
• Directed advertising
• Passive scanning
• Active scanning
• Initiating a connection to the master role
• A connection to the slave role

It also has bits that determine if various combinations of states can be supported, such as the
following:

• Nonconnectable advertising and passive scanning at the same time
• Nonconnectable advertising and a connection in the slave role at the same time

With this information, the host can determine whether a given command to start advertising,
scanning, or initiating will succeed.

8.4.7. Random Numbers
The controller has a very good source of random numbers. Typically, these random numbers come
from some physical property of the device; for example, the phase noise between a free running
oscillator and an external crystal time source. As with most random number generators that are based
off inherently chaotic physical properties, the number of random numbers that can be generated is
limited; therefore, the host should ask for as few random numbers as it possibly can. It can then use
these random numbers as seeds into a more classic pseudo-random number generator or by
infrequently injecting randomness into such a generator.

To ask the controller to generate a random number, the host sends the LE Rand command. The
controller responds with the random number in a Command Complete event, as shown in Figure 8–10.



Figure 8–10. Generating random numbers

8.4.8. Encrypting Data
It is sometimes useful for the host to encrypt data by using the AES-128 encryption engine that is used
by low energy. Given that the controller has to have implemented this encryption engine, it makes
sense to provide access to this engine to the host.

The host can encrypt some plain-text data using an encryption key by sending these pieces of data in
an LE Encrypt command to the controller, as illustrated in Figure 8–11. The controller then performs
the encryption by using the AES-128 encryption engine and returns the encrypted data in a Command
Complete event.

Figure 8–11. The HCI encrypting data
It should be noted that there is no decrypt command. There was a requirement for the host to

generate encrypted data for private addresses, but there was no requirement for decrypting data at the
host layer. The host can only check that the encrypted data is the same each time something is
encrypted and not recover the plain-text data from the encrypted data and an encryption key.

8.4.9. Set Random Address
Some controllers have no fixed device address, or the host wishes to use a private address instead of
the fixed address. To accommodate this, the host must program a random address into the controller
that can then be used when advertising, active scanning, or initiating connections.

Typically, a random address is generated by using either a random number or a combination of a



random number and an identity resolving key. As Figure 8–12 demonstrates, the host requests a good
random number from the controller by using the LE Rand command. Next, it uses that as the plain-text
data along with its identity resolving key as inputs into the encryption engine by using the LE Encrypt
command. The resultant value can then be used to set the random address via the LE Set Random
Address command. The random address is available for use by other commands when the Command
Complete event is returned.

Figure 8–12. Setting a random address

8.4.10. White Lists
The controller has a list of device addresses that can be used for white listing devices. This is
especially useful when searching for a few known devices in the fog of advertising packets in busy
locations. The white list has a fixed size, so the first thing that needs to be determined is how large
this list is. The list can then be managed by using commands to clear, add, and remove devices from
this list. The controller can use the list, under the control of the host, to filter advertising packets.

To read the white list size, the LE Read White List Size command is sent by the host to the
controller (see Figure 8–13). The controller responds with a Command Complete event that contains
the maximum number of entries in its white list. The host can clear all the entries in this list by using
the LE Clear White List command. It can also add devices to the white list by using the LE Add
Device To White List command. It is also possible to remove a single entry in the white list by using
the LE Remove Device From White List command.



Figure 8–13. Reading a white list
It should be noted that it is not possible to change the contents of the white list while it is being

used. For example, if the device is advertising and using the white list to filter the devices to and from
which it will respond to scan requests or connection requests, the white list cannot be changed until
advertising is disabled. The white list can then be changed and advertising re-enabled.

8.5. Broadcasting and Observing
The most primitive form of communication possible between two Bluetooth low energy devices is the
broadcasting and observing model. These use advertising and scanning to transmit and receive data.

8.5.1. Advertising
The controller has two sets of data that can be transmitted by using advertising: advertising data and
scan response data. It also has a set of parameters that are used for determining how and when it
should transmit advertising packets.

The LE Set Advertising Parameters command allows the host to configure the advertising
parameters (see Figure 8–14). This includes the minimum and maximum interval that the host requires
the controller to advertise, anywhere from 20 milliseconds to 10.24 seconds. The type of advertising
is also specified here. Four types of advertising are available:

• Connectable undirected advertising that is used for general advertising of the advertising and
scan response data. This allows any other device to connect to this device.

• Connectable directed advertising that is used to request a particular peer device to connect.
This does not include any advertising data.

• Scannable undirected advertising that is used to broadcast advertising data and scan response
data to active scanners.

• Nonconnectable undirected advertising that is used to just broadcast advertising data.
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Figure 8–14. HCI advertising
Another parameter of the LE Set Advertising Parameters command is the address type to be used in
the advertising data. This can either be the fixed device address or the random address just described.
If the type of advertising used is directed advertising, the peer device address is also included. The
final two parameters are the advertising channel map that is used to determine which of the three
advertising channels should be used and the advertising filter policy. The filter policy determines if
the white list is used to help filter out advertising packets that are received in response to an
advertising packet. This can be set to one of the following states:

• Allow a scan request or connect request from any device.
• Allow a scan request only from devices in the white list, but allow connect requests from any
device.

• Allow a scan request from any device, but only allow connect requests from devices in the
white list.



• Allow only scan requests and connect requests from devices in the white list.
The next command that can be sent is the LE Read Advertising Channel Tx Power command. This
returns the transmit power used when advertising. This is useful because it allows this value to be
included in the advertising data or the scan response data to enable proximity pairing, or sorting
devices by path loss in a user interface.

The host can then configure the advertising data and scan response data by using the LE Set
Advertising Data and the LE Set Scan Response Data commands.

Once everything is configured, advertising can be enabled or disabled by using the LE Set
Advertising Enable command. While advertising is enabled, the controller advertises by using the
configured parameters.

8.5.2. Passive Scanning
To receive advertising data from peer devices, you can use passive scanning.

As illustrated in Figure 8–15, the LE Set Scan Parameters command is used to configure the
controller’s scanning parameters. These parameters include the scanning filter policy as well as the
following:

• Scan type—Either passive scanning or active scanning
• Scan interval—How often the controller should scan
• Scan window—How long the controller should scan for each scan interval
• Scanning filter policy—Accept all advertising packets or only those in the white list



Figure 8–15. HCI passive scanning
The scan interval and window are recommendations from the host to the controller that determine
how often and for how long the controller should scan. The interval divided by window determines
the duty cycle for which the controller should scan.

For example, if the interval is 100 milliseconds and the window is 10 milliseconds, then the
controller should scan for 10 percent of the time. The slowest practical duty cycle that can still pick
up a directed advertising packet directed at the controller is a 3.75-millisecond window every 1
second—a 0.4 percent duty cycle.

It is possible to have the interval and window set to the same value. In this case, the scanning is
continuous, with a change of scanning frequency once every interval. For example, setting the default
parameters at a 10-millisecond interval and a 10-millisecond window results in a 100 percent duty
cycle that changes the scanning channel every 10 milliseconds.

The scanning filter policy determines if the white list is used or not. This can allow either all



advertising packets to be received, or only advertising packets from devices in the white list to be
processed. It should be noted that directed advertising packets that are not addressed to this device
would also be discarded, even if sent from a device in the white list.

Once the scanning parameters have been configured, scanning can be enabled by using the LE Set
Scan Enable command. Once scanning, the controller sends events up for any advertising packets
received that pass the scanning filter policy and other rules. This advertising data is sent to the host in
an LE Advertising Report event. In addition to the device address of the advertiser, this event
includes any advertising data that was in the packet and the received signal strength indication of this
advertising packet. The signal strength can be combined with the transmit power data included in the
advertising packet to determine the path-loss of the signal and hence give an approximation of range.

The host can also end scanning by using the same LE Set Scan Enable command but with a
parameter set to disable.

8.5.3. Active Scanning
The next complexity up from passive scanning is active scanning. This is used not only to obtain
advertising data from peer devices but also their scan response data if possible.

The commands used to configure and enable active scanning are identical to those for passive
scanning. However, because the controller will need to send SCAN_REQ packets to the peer device
to obtain the scan response data, these packets need to include a device address. Therefore, you use
an additional parameter in the LE Set Scan Parameters command to determine whether these Link
Layer packets use the fixed device address or the programmed random address, as illustrated in
Figure 8–16.



Figure 8–16. HCI active scanning
When the controller receives the SCAN_RSP packets, it sends the same LE Advertising Report

event to the host. This event also includes the advertising packet type of the Link Layer packet that
caused this event. Thus, it’s possible for the host to distinguish between a peer device that is
advertising as connectable or nonconnectable, or whether the device can be scanned, or if this data is
advertising data or scan response data.

8.6. Initiating Connections
Advertising and scanning is only useful up to a point. To perform most application work, a connection
is required between two devices. To set up a connection, one device must be advertising as
connectable, and the other device must be initiating. It is possible to initiate a connection to either a
white list or directly to a device. Creating a connection can take some time; therefore, it is useful to
be able to cancel the connection creation procedure if the user or application decides that it’s no
longer necessary.



8.6.1. Initiating Connection to White List
The most common way to connect to a device is for the host to add the device to the white list and
then initiate a connection to the white list. By doing this, a controller can initiate a connection to many
devices at the same time. Effectively, this allows a host to ask the controller to initiate a connection to
device A, B, C, D, E, F, and so on, all at the same time.

To initiate a connection to one or more devices in the white list, the white list must include that
device. As depicted in Figure 8–17, the host uses the LE Add Device To White List and other white
list management commands to do this. Once the host is happy with the set of device addresses in the
white list, it sends the LE Create Connection command to the controller.

Figure 8–17. HCI initiating a connection to a white list
The LE Create Connection command includes a number of parameters, including the following:

• Scan interval and scan window—Just as with the passive scanning parameters, these
determine how often the controller should listen for advertising packets from devices.

• Initiator filter policy—This should be set to “use white list” to initiate a connection to any
device in the white list.

• Initiating address type—This determines whether the fixed device address or random address
is used in the CONNECT_REQ packet.

• Initial connection parameters—This is used to determine how often the master transmits to
the slave and the latency that the slave is allowed to use by ignoring the master, as well as the
supervision timeout and the expected quantity of data that is to be sent to or from the slave at
each connection interval

It should be noted that the initial connection parameters will be identical for each device in the white
list. This command is therefore very useful when connecting to lots of similar devices—for example,



automation sensors—but not that useful when connecting to many diverse types of devices. For those
circumstances, the host should use the worst-case connection parameters in the LE Create Connection
command.

If an advertising packet is received from a device that is in the white list, and this advertising
packet is a connectable advertising packet type, the controller will send the CONNECT_REQ packet
with all the information required and then generate the LE Connection Complete event. The peer
device will also send the LE Connection Complete event up to its host once it receives the
CONNECT_REQ packet.

The LE Connection Complete event includes the connection handle that is used to label data
packets sent from the host to the controller and the controller to the host for this connection. This
event also includes the current role of this controller (either master or slave). It is possible for a
device to be advertising as connectable and initiating a connection at the same time; this is useful to
determine which one of these succeeded. The event also includes the peer device address as well as
the interval, latency, and supervision timeout connection parameters. Finally, the event includes the
master’s clock accuracy that is needed to determine how much window widening is required on a
slave device. This parameter is provided to the host for informational purposes only.

The other side effect of sending the LE Connection Complete event from the controller to the host is
that any advertising or initiating that was ongoing while the connection was being created
automatically stops. Therefore, if the host wants to initiate connections to other devices or continue
advertising, it must issue new commands to the controller to do so.

8.6.2. Initiating a Connection to a Device
It is also possible to initiate a connection to a single specific device.

To initiate a connection with a single device, the host uses the same LE Create Connection
command, as demonstrated in Figure 8–18. However, the initiator filter policy is set to ignore the
white list, and other parameters are used to define the device address of the peer device to which it is
connecting. Apart from these minor differences, the connection procedure is the same as when
initiating to a white list; an LE Connection Complete event is generated on both devices when the
connection has been created.



Figure 8–18. HCI initiating a connection to a device

8.6.3. Canceling Initiating a Connection
Sometimes a connection is initiated to a device that is not responding, probably because it is nowhere
near the initiating device, and the host wants to cancel this connection request to do something else.

In this example, which is shown in Figure 8–19, the host uses the LE Create Connection command
to attempt to connect to a specific device. This also works for initiating a connection to a white list.
When the host wants to cancel the initiating of this connection, it sends an LE Create Connection
Cancel command to the controller that responds with a Command Complete event for the cancel
command as well as an LE Connection Complete event for the initial LE Create Connection
command. It is important to complete all commands, and the LE Create Connection command is
completed with the LE Connection Complete event, regardless of whether the connection was created.



Figure 8–19. Canceling a connection initiation
It should be noted that there is a race condition here. It is possible for the host to send the LE

Create Connection Cancel command to the controller at approximately the same time that the
controller sends a CONNECT_REQ packet to the peer device but before the LE Connection
Complete event is sent to the host to notify it of the new connection. In this condition, the LE Create
Connection Cancel command will be completed by using the Command Complete event, but the LE
Connection Complete event will be sent up to the host reporting the new connection that has been
created. It is possible, therefore, to have created a valid connection even when trying to cancel this
very same connection.

8.7. Connection Management
Once a connection has been created, devices can start to manage that connection to lower power
consumption, increase or decrease latency, start encryption, or ultimately terminate the connection.

8.7.1. Connection Update
If the connection parameters that are currently being used on a given connection are no longer useful,
the host of the master can change the connection parameters. This could be because the connection
was initially created with a very fast connection interval to help the devices initially configure
themselves, but once the services are in use, a much longer connection interval is much more
beneficial to save power.

The master can change the connection parameters by using the LE Connection Update command, as
shown in Figure 8–20. This includes the requested new values for the connection interval and
connection latency as well as the supervision timeout and new expected connection event length.



Figure 8–20. Changing the connection parameters
The controller responds with a Command Status event before sending a Link Layer connection

update request packet to the peer device (for more information on this, go to Chapter 7, Section
7.10.1). This packet includes the timing of an instant when these new connection parameters will take
place. Once this instant passes, the new connection parameters are used, and the LE Connection
Update Complete event notifies the host that the new connection parameters have been updated.

8.7.2. Channel Map Update
The host might have information about the local channel usage and wish to communicate this
information to the controller. For example, it might be co-located with a Wi-Fi radio that is connected
to an access point on a given channel and therefore communicating that the low energy channels in the
same part of the band would reduce the possibility of the two radios from directly interfering with
one another.

There is no way to directly instruct the controller to send a Link Layer channel map request to the
peer (for more information about this, go to Chapter 7, Section 7.10.2). However, the host can send
the LE Set Host Channel Classification command to the controller, as illustrated in Figure 8–21. This
includes a bit field that denotes each Link Layer data channel as either bad or unknown. It is
obviously not possible to denote a data channel as good from the point of view of the host because the
controller might be measuring the packet error rates by channel already and noticed that some
channels denoted as unknown by the host are actually bad.



Figure 8–21. Updating the channel map
The LE Set Host Channel Classification command causes a Command Complete event to be

immediately sent to the host. The controller can use the Link Layer control procedures to change the
channel map at any time it wants. It is possible for the host to monitor the channel map on a given
connection by using the LE Read Channel Map command. This command returns whether each Link
Layer data channel is used or unused at this time.

8.7.3. Feature Exchange
It is possible for the host to discover the features that are available on a connection. For example,
even if the local controller supports encryption, encryption can only be used if the peer controller
also supports it.

Figure 8–22 shows how the master’s host can ask for the remote used features by sending the LE
Read Remote Used Features command. This causes a Command Status event to be returned, and the
Link Layer feature request (LL_FEATURE_REQ) and response (LL_FEATURE_RSP) to be
exchanged (for more information about this, go to Chapter 7, Section 7.10.6). The controller then
sends the feature response Link Layer message information to the host in the LE Read Remote Used
Features Complete event.



Figure 8–22. Exposing connection features

8.7.4. Version Exchange
When debugging devices, especially those that you do not directly control, it is sometimes useful to
find the Link layer version information. This information can then be used to help contact the company
that manufactured this device so that you can fix the problem. This information can be requested by
either the master or slave host, allowing both devices to debug the link if necessary.

To exchange the version information, the host sends the LE Read Remote Version Information
command to the controller, as shown in Figure 8–23. The controller responds with a Command Status
event and starts the Link Layer version exchange (for more information about this, go to Chapter 7,
Section 7.10.5).

Figure 8–23. Obtaining version information
Once the version information has been exchanged, the controller sends the LE Read Remote

Version Information Complete event to the host with the peer device’s version information.
Note that if the LE Read Remote Version Information command is sent a second time, the same

sequence of events is returned, but no Link Layer procedure will be performed because the version



information is static information and is cached in the controller. This is also true if the remote device
has already exchanged version information before the local host sent the command to the controller.
Because the controller already has the version information from the remote device, it immediately
sends the completion event after the status event.

8.7.5. Starting Encryption
It is possible for the host to enable the encryption of data packets while in a connection, as long as
both sides have a shared secret. This shared secret is set up by the Security Manager, either during the
initial paring process or through key distribution during bonding.

Two sequences of commands and events must be considered: one from the master’s point of view
and one from the slave’s point of view.

The master’s host can ask for the Link Layer to start encryption by sending the LE Start Encryption
command that includes the key used to encrypt the connection (see Figure 8–24). The controller
returns a Command Status event while encryption is started. The Link Layer then starts encryption (for
more information about this, go to Chapter 7, Section 7.10.3). Once encryption has started, the
controller sends the Encryption Change event to the master’s host to notify it as to whether encryption
is now on or if there was a problem with encryption.

Figure 8–24. HCI master starting encryption
From the point of view of the slave’s host, the sequence of events and commands is slightly

different. As depicted in Figure 8–25, the first event that warns the slave’s host that encryption is
being enabled is the LE Long Term Key Request event. This event needs to be responded to, by the
host, by sending the LE Long Term Key Request Reply command that includes the key to be used for
encrypting the connection. Because this is a command, a Command Complete event is used to
complete it. After the connection is encrypted, the Encryption Change event is sent to the slave’s host
to notify it of the new encryption state.



Figure 8–25. HCI slave starting encryption

8.7.6. Restarting Encryption
Sometimes, it is necessary for the host to restart encryption, either by using a new encryption key or
just to refresh the initialization vector that is generated as part of the starting of encryption.

As is illustrated in Figure 8–26, from the point of view of the master’s host, the sequence of
commands and events are identical to the starting of encryption. The Link Layer has to send more
packets, first to pause encryption and then to restart it.



Figure 8–26. HCI master restarting encryption
From the point of view of the slave’s host, the events and commands are also identical, as shown in

Figure 8–27.



Figure 8–27. HCI Slave Restarting Encryption
It should be noted that it is not possible to turn off encryption in low energy and then send

application or host data. Therefore, it is not necessary to send an Encryption Key Refresh Complete
as soon as encryption is paused.

This is because of a problem discovered in early versions of Bluetooth classic. Hosts that desired
maximum security would try to refresh keys regularly to make them more difficult to crack. However,
refreshing keys required turning off encryption, but while encryption was off, data could still be sent.
The host couldn’t get around this by simply pausing its flow of data to the controller because there
might be data in the controller’s buffers awaiting transmission. This meant that in early versions of
Bluetooth classic, hosts trying to increase security ended up actually decreasing security and causing
the controller to send unencrypted data. This was fixed in a later version of Bluetooth classic.

Once a host has requested encryption on a connection, there is usually no reason to disable it. So
when encryption is paused, data transmission is also paused, closing the security hole that existed in
early Bluetooth specifications.

8.7.7. Terminating a Connection
Once either host has decided that no more data needs to be sent on a connection, or if maintaining the
connection would use more power than disconnecting and reconnecting at a later time, then the host
can terminate the connection.

To terminate the link, the host sends a Disconnect command to the Link Layer, as shown in Figure
8–28. The Link Layer responds with a Command Status and then attempts to terminate the link by
using the Link Layer procedures, as defined in Chapter 7, Section 7.10.7. Once the link is terminated,
the controller sends the Disconnect Complete event to the host.

Figure 8–28. Terminating the connection
Is it also possible for the host to receive the Disconnect Complete event at any time when the link

terminates due to a supervision timeout or due to an encrypted message integrity check failure.
Supervision timeout typically occurs when two devices have moved so far apart from one another that
they can no longer receive Link Layer packets from the peer device. Encrypted message integrity
check failures should never occur, except when an attacker is attempting to take over a connection, or
in very exceptional cases when a very rare pattern of bit errors passes the cyclic redundancy check



but fails the message integrity check.



Part III: Host
Chapter 9, Logical Link Control and Adaptation Protocol, describes the multiplexing layer.

Chapter 10, Attributes, explains how a stateless protocol can be used to obtain the state of a device
efficiently.

Chapter 11, Security, is the main body of protocol that is used to provide security services.
Chapter 12, The Generic Access Profile, ties all the pieces of the puzzle together into a high level

abstraction that application writers can use.



Chapter 9. Logical Link Control and Adaptation Protocol

Anyone who considers protocol unimportant has never dealt with a cat.
—Robert A. Heinlein

The Logical Link Control and Adaptation Protocol (L2CAP) is a protocol multiplexing layer that
enables Bluetooth low energy to multiplex three different channels. It also enables segmentation and
reassembly of packets that are larger than the underlying radio can deliver. On a Bluetooth classic
radio, the L2CAP layer also performs many additional, complicated operations.

9.1. Background
One of the basic concepts for Bluetooth low energy is a radically different connectionless model; this
means that you only have to create a connection when you need to send data, and the device can
always disconnect at any time. To achieve this, the connectionless model must be extended up to the
L2CAP layer; thus, only fixed channels are supported. Fixed channels don’t have any configuration
parameters to negotiate, and they exist as soon as the lower layers have established a connection;
consequently, there is no time wasted waiting for the channel to be created.

When Bluetooth low energy was first designed, it did not use L2CAP. Previously, a Protocol
Adaptation Layer (PAL), was designed to be a highly optimized, and severely restrictive multiplexer
between two protocols. The PAL looked like the Attribute Protocol and a signaling layer. This was
bad for two reasons: flexibility and legacy implementations.

The PAL could only support two types of packet: a single higher-layer protocol or its own
signaling layer. There was no segmentation or reassembly, nor was there the ability to separate
different protocols. One of the basic design tenets of protocol design is that you layer protocols; each
protocol is self-contained. This means that is possible to design, for example, the Security Manager
with all the other parts of the system. At the point of implementation, each protocol is a separate layer
that can be individually tested. Therefore, the PAL broke this simple rule. The part that killed this
approach, however, was not the design, but the lack of flexibility.

Most multiplexing layers perform segmentation and reassembly. This means that a large protocol
packet from a higher layer can be segmented into multiple smaller packets appropriately labeled so
that they can be transmitted through a system that has packet length restrictions. A good example of
this is an ATM network for which each packet is restricted to just a few bytes of data, allowing the
rapid switching between different streams. This facilitates the delivery of low-latency audio traffic
and bulk data at the same time.

The Host Controller Interface (HCI) supports segmentation and reassembly by using the “start” and
“continuation” bits on each data packet. However, the PAL didn’t support such a basic feature. This
meant that the maximum size of any application data in this layer would be limited to just 24 bytes of
data. This severe restriction was the eventual downfall of the PAL.

When L2CAP was proposed as an alternative, the group designing Bluetooth low energy split
down the middle: the companies that already had existing Bluetooth implementations and the
companies that didn’t. In some standards bodies, this would have meant many months of acrimonious
voting to attempt to force division; this is also typically associated with disruptive political actions
like trying to stuff the room with voting members to try to sway the vote one way or the other. In



Bluetooth, this is not the standard approach. Instead, a paper on the various costs of each approach
was written showing the cost of adding L2CAP. The deciding argument was that the battery life of a
device that reported something once a second was reduced from 3.3 years to 3.2 years. So L2CAP
did reduce the battery life of the device, but compared with the 7 bytes before the payload of the
packet, and the 3 bytes of cyclic redundancy check (CRC) on every single packet whether it was
carrying data or not, it was not a significant reduction. This is another example of the attention to
detail that the designers of Bluetooth low energy took to consider the system design issues of all the
decisions.

L2CAP gives you the ability to plug Bluetooth low energy into an existing L2CAP implementation.
It also supports the full segmentation and reassembly from Blue-tooth classic, effectively allowing
packet sizes of up to 65,535 bytes in length; even though there are no protocols that support this
packet size that can be run on Blue-tooth low energy. L2CAP also retains the channel model that
Bluetooth classic uses.

In Bluetooth classic, the channels come in two different flavors: fixed and connection-oriented. A
fixed channel exists for as long as the two devices are connected. These are used primarily for
signaling channels, either for basic L2CAP signaling commands or, in v2.0 and later, an Alternate
MAC/PHY signaling channel. Connection-oriented channels can be created at any time by sending a
few L2CAP signaling commands to a peer device.

In Bluetooth classic, connection-oriented channels allow data from an individual pair of
applications to be considered as separate from the data of other channels. For example, even though
connection-oriented channels can add additional data integrity checking, they might have a different
flow specification, or they might be a streaming channel rather than a best-effort channel. Connection-
oriented channels are great when you have a complex system that has multiple, varied types of data
being transmitted at the same time. For example, a phone and a car can have multiple different
protocols running at the same time: one stream for the high-quality audio from the phone to the car
stereo; one stream for the hands-free operation; another stream for the phone book; and perhaps
another stream for an Internet connection.

Opening connection-oriented channels can be a complex operation. Each L2CAP channel has a
large number of configuration parameters; seven in the latest specification. This means that in addition
to the two messages that have to be exchanged to request a connection to be established, each of the
configuration parameters has to be agreed upon before any data is allowed to be sent. This could be
fairly quick—just another four messages—or it could be a fairly lengthy operation of proposed values
and counter proposals. The other complexity that connection-oriented channels bring is that once they
are all configured and data is flowing, a device can renegotiate different parameters. All this
increases the latency of the data connection at the expense of more flexibility. For most Bluetooth
classic protocols and profiles, this is an acceptable cost because these connections are kept alive for
long periods of time.

9.2. L2CAP Channels
In L2CAP, there is a simple concept of a channel. L2CAP, after all, is a multiplexing layer, and to do
this, it has multiple channels. A channel is a single sequence of packets, from and to a single pair of
services on a single device. Between two devices, there can be multiple channels active at the same
time.

In Bluetooth low energy, only fixed channels are supported. A fixed channel is a channel that exists



as soon as the two devices are connected; there is no configuration requirement for fixed channels.
The future-proofed flexibility still exists to add connection-oriented channels if they are considered
necessary.

Table 9–1 presents the L2CAP channel identifiers. Each channel identifier in Blue-tooth is a 16-bit
number. The channel identifier 0x0000 is reserved and should never be used. Channel identifier
0x0001 is a fixed channel for Bluetooth classic signaling.

Table 9–1. L2CAP Channel Identifiers

Channel identifier 0x0002 is a fixed channel used for “connectionless data,” although there is no
profile that currently uses this. Channel identifier 0x0003 is used for the Alternate MAC/PHY
protocol when sending data at high speed is required. Channel identifier 0x003F is used for a test
channel for the Alternate MAC/PHY controllers.

There are three Bluetooth low energy channels: Channel identifier 0x0004 is used for the Attribute
Protocol (for more information on this, go to Chapter 10, Attributes); Channel identifier 0x0005 is
used for the Bluetooth low energy signaling channel; Channel identifier 0x0006 is used for the
Security Manager (for more information on this, go to Chapter 11, Security). All the other channel
identifiers from 0x0007 to 0x003E are reserved, and channel identifiers from 0x0040 to 0xFFFF can
be used for connection-oriented channels.

9.3. The L2CAP Packet Structure
Each L2CAP packet contains a 32-bit header followed by its payload. It is assumed that segmentation
and reassembly is used; thus, the length of the packet must be included in the packet header so that the
end of the packet can be determined. The segmentation and reassembly scheme used requires the
marking of packets over the HCI interface (for more information on this, go to Chapter 8, The Host
Controller Interface) as well as within each transmitted packet as either a start or continuation packet.
There is no way to denote that a given L2CAP packet segment is the end of the current packet. This
means that the only way to determine if the current packet is complete is to either send a new packet,
assuming that one is ready to be sent, or to include the packet length in the very first packet sent.

As shown in Figure 9–1, the header contains a 2-byte length field followed by the 2-byte channel
identifier. This is followed by length bytes of information payload. In Bluetooth classic, the



information payload can also include additional headers and information, but in Bluetooth low
energy, there are no other structures of significance at the L2CAP layer.

Figure 9–1. L2CAP Packet Structure
For all Bluetooth low energy channels, the information payload starts with a Maximum

Transmission Unit (MTU) size of 23 bytes. MTU is the largest possible size for the information
payload in a given L2CAP channel. This means that all Bluetooth low energy devices must support
27-byte packets over the air—4 bytes of the L2CAP header and 23 bytes for the information payload.

9.4. The LE Signaling Channel
The LE signaling channel is used for signaling at the host level. As illustrated in Figure 9–2, each LE
signaling channel packet contains a single opcode, followed by any parameters. The following
command opcodes are supported on the LE signaling channel:

• Command Reject
• Connection Parameter Update Request
• Connection Parameter Update Response



Figure 9–2. The L2CAP command packet
Whenever a signaling command is sent, an identifier is included in the information payload. This

identifier is just 1 byte in length and is used to match responses with requests. For example, if a
request was sent with the identifier 0x35, any response that also had the same identifier 0x35 would
be the response for that request. This allows multiple requests to be outstanding at the same time, with
each request having a different identifier. Identifiers can’t be reused unless all other identifiers have
been used. This leads implementations to use an increment operation to ensure this rule is met. There
is just one exception to this: An identifier with the value 0x00 is never used. A side effect of the use
of identifiers is that duplicate commands can be silently dropped. This would be useful if the
command channels were unreliable, but they are always sent on a reliable bearer, so this rule is
rarely invoked.

In Bluetooth low energy, because only one request has been defined, and because this request can
only be sent when no other request is outstanding, the logic for identifiers is very simple.

9.4.1. Command Reject
The command reject command is used to reject any nonsupported message that was received by the
device. This command is identical to the Bluetooth classic command reject command. It contains a
reason code and can contain some data. The reason code can be either Command not understood or
Signaling MTU exceeded.

The Command not understood reason code is used when a command was sent to the device that it



does not support. This should be sent even for command codes that are not defined at the moment; this
allows a device to be forward-compatible with future versions of the specifications.

The Signaling MTU exceeded reason code is used when a command is received that is longer than
23 bytes. The default MTU for the signaling channel is just 23 bytes, so if a command were received
that was 24 bytes or more, the command reject would be sent in reply.

In Bluetooth classic, another reason code is defined, Invalid CID in request, but because no
commands are defined that use a channel identifier in Bluetooth low energy, this reason code has
never been used.

9.4.2. Connection Parameter Update Request and Response
The connection parameter update request command provides the slave device with the ability to ask
for the Link Layer connection parameters to be updated, as demonstrated in Figure 9–3. These
parameters include how often the slave wants the master to allow the slave to transmit, the connection
event interval, and often the slave wants to be able to ignore the master, the slave latency, and the
supervision timeout.

Figure 9–3. The L2CAP Connection Parameter Update Request command
This command would be used when the slave is in a connection for which it wants to modify

current connection parameters. For example, the connection event interval might be too fast and
therefore wasting too much power. This would not be a problem if the slave latency were reasonably
high, but if this is not true, then the slave would have to listen very frequently. Sometimes this is
useful, for example, when the devices are first bonding and sending many messages between one
another, discovering the services and characteristics of the device. But many other times, having the
ability to minimize the number of connection events when the slave has to listen is vitally important
for efficient battery life.



This command is only usefully sent from the slave to the master; the master can always initiate a
Link Layer connection parameter update control procedure at any time (see Section 7.10.1 in Chapter
7). If the command is sent by the master, the slave would consider it an error and would respond with
a Command Reject command with the reason code Command not understood.

The slave can send this command at any time. If the master receives the message and can change the
connection parameters, it will respond with a Connection Parameter Update Response with a result
code set to accepted. The master will also initiate the Link Layer connection parameter update
control procedure.

Of course, this is just a request, and if the master doesn’t like the parameters that the slave wanted,
it can reject the request by sending a Connection Parameter Update Response with the result code set
to rejected. The slave then has two options: accept that the master wants or needs the connection
parameters that it is currently using, or terminate the connection. Terminating the connection might
appear at first glance to be a fairly drastic approach, but if the slave would burn through its battery in
a week with the current connection parameters but would last for years with its requested connection
parameters, it might have only one logical choice available.

To reduce the probability of having the master reject the connection parameters from the slave, the
slave can request a range of connection event intervals that would be acceptable. A well-designed
slave would willingly accept a wide range of intervals. A master device might also be doing some
other activities such as a low latency conversational audio connection or a high-quality audio
connection and is therefore severely restricted in the range of connection intervals that it can accept.
The set of intervals it can accept might be different depending on what it is currently doing, so it might
not be the same as the last time the two devices connected.

Another way to increase the chance that the master will accept the connection parameters is to have
a reasonably sized slave latency. The master can then choose the most suitable connection event
interval, and the slave can then use a slave latency that gives it the best power consumption. For
example, if the slave wants to synchronize every 600 milliseconds, it could request a connection
interval range of between 100 milliseconds and 750 milliseconds, with a slave latency of 5. If the
master chooses 100 milliseconds, the slave could synchronize every 6 connection events. If the master
chooses 200 milliseconds, then the slave could ignore 2 out of every 3 connection events, achieving
its desired synchronization interval of 600 milliseconds. If the master chooses 300 milliseconds, the
slave could ignore every other connection event. If the master chooses 400 milliseconds, the slave
could synchronize every 400 milliseconds.



Chapter 10. Attributes

Data is a precious thing and will last longer than the systems themselves.
—Tim Berners-Lee

Civilization advances by extending the number of important operations which we can perform
without thinking of them.

—Alfred North Whitehead

There are two layers that will be considered in this chapter: the Attribute Protocol Layer and the
Generic Attribute Profile Layer. Both are so closely related that it is useful to discuss them at the
same time. When Bluetooth low energy was created in the Bluetooth Special Interest Group (SIG), the
concepts behind Attribute Protocol were originally created within a non-core working group before
being integrated into the core specification. However, at the time of integration an architectural
decision was made to split the document into an abstract protocol and a generic profile. Although this
is a useful abstraction to make from the specification point of view, it is not useful when attempting to
understand how attributes work. The abstraction of generic attribute profile away from the attribute
protocol can theoretically allow other generic profiles to be placed above the attribute protocol. And
although this is possible, it’s not something that is being considered currently.

10.1. Background
When Bluetooth low energy was first designed, there was a big question about what protocol to use.
The protocol had to be very simple because any complexity would increase the cost and memory
requirements for that protocol. It was also desirable to use the minimum number of protocols as
possible. As a result, it was considered that using a single protocol for everything would be the best
initial approach. This goal was not entirely met; Bluetooth low energy uses three protocols: Logical
Link Control and Adaptation Protocol (L2CAP), Security Manager Protocol (SM), and Attribute
Protocol (AP).

The goal was to reduce the number of protocols to a minimum, and each and every service above
the Generic Attribute Profile (GATT), including the Generic Access Profile for name and appearance
discovery, uses the AP. This allows additional services to be created, built on top of the GATT, for
minimal additional cost.

10.1.1. Protocol Proliferation Is Wrong
You might be questioning why protocols are such a bad thing. The whole of computing, and in some
senses the rest of the world, revolves around protocols. Most activities have their own protocol: to
download a Web page, the Hypertext Transfer Protocol (HTTP) is used; to transfer a file, the File
Transfer Protocol (FTP) is used; to log in to another computer securely, the Secure-Shell protocol
(SSH) is used. Each protocol is optimized for its own application area. It is not efficient to transmit a
large group of files by using HTTP, and it is not efficient to log in to computers by using FTP.

The big difference between Bluetooth low energy and the plethora of Internet protocols is that
Bluetooth low energy is not trying to transfer such a wide range of data types. Given that it is not
about transferring large quantities of data or streaming music, a single protocol can be designed that
only has to deal with the limited set of data types that Bluetooth low energy targets. This protocol is



called the Attribute Protocol; it is the foundation and building block for the whole of Bluetooth. To
understand Attribute Protocol is to understand Bluetooth low energy.

10.1.2. Data, Data, Everywhere...
When Bluetooth low energy was first discussed, it was clear that as any communications system, it is
all about data. Lots of things have data, and Bluetooth low energy is a means by which lots of other
devices can access and use this data. This data could be anything: the signal strength of your mobile
phone; the state of the battery in your toys; your weight; how many times you’ve opened the fridge
today; how far you’ve bicycled this morning; what time it is; how much talk time you have on your
headset; the latest news headline; who has just sent you a text message; if the chair is being sat upon at
the moment; who is in the meeting room; how long you’ve spoken on your phone this month—
anything!

As Figure 10–1 demonstrates, a Bluetooth proximity device might expose its transmit power level,
which is an alert level used to notify the user when the connection is lost. It might also have a device
name so that the user can more easily identify the device. Finally, because the device is battery
powered, it might also expose its current battery level.

Figure 10–1. Some examples of the types of data that Bluetooth low energy devices might have
The important concept about data that you need to understand is that some devices have it, and

other devices want to use it. In Bluetooth low energy, this distinction is very important because it
determines which devices are considered to be servers and which are clients. A device that has data
is a server; a device that is using the data from another device is a client. This relationship is
illustrated in Figure 10–2.



Figure 10–2. Servers have data; clients use this data

10.1.3. Data and State
There is another important concept that you need to understand. There is a significant difference
between data and state. Data is a value that represents something, such as a fact or a measurement.
Data could be the temperature of the room as measured by the thermometer, or it could be temperature
of the room as read by the heating system; thus multiple devices can “know” data. State is a value that
represents the status or condition of a device: what it is doing, how it is operating. This state is only
known on one device; one device is said to hold this state information. The thermostat measures the
room temperature and is therefore said to reflect the state of the temperature for that room.

In this book, “state” refers to the information (data) that resides on the server; “data” refers to that
information (again, the data) as it is in transit from the server to the client or held on the client. So, a
server is a device that holds a collection of state information. A client is a device that reads or writes
this state information, perhaps caching it locally as data. The data on the client is not authoritative
because the server’s state could have changed since the client last received data from it. When
reading the following sections, remember that devices have state, and that the state will be on the
server.

10.1.4. Kinds of State
Bluetooth low energy uses three different kinds of state: external, internal, and abstract.

Current physical measurements represent the state of a physical sensor or similar interface. For
example, let’s consider a bathroom scale. As shown in Figure 10–3, measurements for this device
might include the current temperature of the room, the current battery state of the weighing scales, or
the weight of the person who last used the scale. These are all known as external state; state that
every time you read it might result in a different value because it is being measured by using an
external sensor.



Figure 10–3. Physical measurements
The next type of state is internal state (see Figure 10–4). Some devices have state machines that

represent their current internal state. They don’t represent the external state of a sensor, but how the
device is currently functioning. This could include things such as the state of the call on the phone,
whether time is currently being synchronized by using a GPS receiver, or if the light is still changing
brightness due to an earlier dimming command.

Figure 10–4. Internal state
The last type of state is an abstract state (see Figure 10–5). This is state information that is only

relevant at a momentary point in time; it does not represent the current external or internal state of the
device. Examples of this type of state include a way to command a light to toggle its on/off state, a
way to request a device to immediately alert, or a way for a device to control when time is
synchronized and how to cancel an in-progress synchronization. In the Attribute Protocol, these are
known as control points. Typically, these are attributes that cannot be read; they can be written or
notified.

Figure 10–5. Abstract state

10.1.5. State Machines
The most interesting aspect of the Attribute Protocol and the types of state that can be exposed is that
it explicitly supports exposing finite state machines. A state machine represents the internal state for
the device. A state machine also has one or more external inputs into the machine. These external
inputs are momentary commands that move the state machine from one state to another, as determined



by other state information or behavior; this is an abstract state, or control point.
By using the combination of internal state and control points, it is possible to fully expose the

workings and behavior of a finite state machine on a device. This is interesting from two points of
view. First, by exposing finite state machines, their inputs, and their current state, the behavior of a
device can be exposed explicitly. By exposing inputs, other devices can interact with this device.
Second, it is possible to define the full behavior of a finite state machine, including invalid behavior.
By doing this, any device can send an input on any control point into a state machine, and the behavior
defined for that state machine will still define what will happen.

Consider for a moment a very simple state machine for a light. The light can be considered to have
a finite state machine with two states: on and off, as illustrated in Figures 10–6 and 10–7. It could be
possible to read its current state and also write this state to change the light’s state. However, it is
also useful to consider that this state machine has three possible inputs: turn on, turn off, and toggle.
Most of the state machine inputs can map to a valid and logical next state. For example, sending turn
on to a light that is off will turn it on, sending turn off to a light that is on will turn it off. However,
sending turn on to a light that is on will keep it on even though this might be considered an invalid
behavior. Similarly, sending turn off to a light that is off will keep it off. Also, sending toggle to a
light that was on will turn it off. Sending toggle to a light that was off will turn it on.

Figure 10–6. An example of state transitions for a light

Figure 10–7. An example of a light state machine



The interesting thing about the toggle input is that it significantly reduces the volume of traffic that
needs to be sent over the radio to change the light’s state. Without exposing this abstract control point,
a light switch would need to first read the current light state, toggle this data internally, and then write
the new value to the light state. This requires a minimum of three different messages to be sent: a
request for the current light state, a response including that light state, and a command to set the light
state to a new value. By adding the toggle command to the light’s finite state machine, it is possible to
remove most of these messages by just commanding the light state machine’s abstract control point to
accept the toggle command. The light switch can then send a single toggle command to the light. The
light does the toggling of the light state on the server; the light switch doesn’t need to know the old or
new state.

Exposing a state machine is therefore more efficient in terms of messages that need to be sent over
the radio, but is also more interoperable because it is impossible to command a state machine into a
state that has not been defined by the behavior of this state machine. Therefore, by defining all
possible states, and the behavior of all inputs in all possible states, an interoperable and optimal
protocol can be used.

10.1.6. Services and Profiles
The most interesting architectural change between Bluetooth classic and Bluetooth low energy is the
service and profile architecture. In Bluetooth classic, most profiles also include protocols, defined
behavior, and interoperability guidelines. These classic profiles are therefore highly complex and
encompass many different concepts. The biggest problem is that the profiles define just two types of
device, one at either end of the link. The behavior of each device is then explicitly defined. At first
glance, this might appear to be a very useful thing to do. If you have a phone and a Bluetooth car kit, it
would be very useful to define what each device must do and how it interacts with the other device to
enable a given use case. Unfortunately, this has a few problems.

The first problem with existing profiles is that the behavior of a given device in the network is not
explicitly defined on its own. This means that even though the behavior of the two devices is defined,
it is sometimes not explicitly clear what the behavior of each individual device should be.

This leads to ambiguities wherein each device believes it is the other device’s job to carry out an
action, and thus the action never gets done. For example, the Hands-Free Profile (HFP) says, “either
the HF or the AG shall initiate the establishment of an Audio Connection whenever necessary.” So,
which device initiates the audio connection, the HF or the AG? What happens if they both attempt to
do this at the same time? This is an interoperability nightmare.

The obvious solution to this is to define the behavior of each device separately, to make it explicit
what each device should do.

The second problem with existing profiles is that it is almost impossible to use the profile in a way
that was not initially envisioned. Because profiles define how the two devices interoperate with one
another, it is very difficult to then make it work with a slightly different device. Even within profiles,
this becomes difficult. For example, the hands-free profile defines a phone and a car kit, yet the most-
implemented use case is a phone with a headset; the phone doesn’t know it is talking with a car kit or
a headset and therefore continuously sends user interface status updates to the other device because it
might be a car kit. This wastes power because a headset really doesn’t care about the signal strength
going from four bars to three bars. The obvious solution to this is to define the behavior of each
device without the need to know the device’s functionality.



In Bluetooth low energy, these problems have been tackled by taking a radically different
approach. First, because we have a pure client-server architecture, we have separate documents that
describe the behavior for a given use case on the server and on a client. The server’s behavior is
defined in a service specification, whereas the client’s behavior is defined in a profile specification.
As illustrated in Figure 10–8, this means that the service specification defines the state that is exposed
in the server by using an attribute database as well as the behavior that is available through these
attributes.

Figure 10–8. The profile/service architecture
Some attributes on a service might be readable, returning either historical or current data. Some

attributes might be writable and make it possible for commands to be sent to the service. Some
attributes expose the state of a finite state machine that when combined with control points provide
fully exposable behavior. The profile specifications define how to use one or more services to enable
a given use case (for example, how to configure the attributes exposed for a service in an attribute
database on the server to ask the service do something that client needs it to do).

The main advantage of this split is that the server has a known and defined behavior. It does what it
does, as defined by the service specification, without any interest in how the client is using it. This
means that the service can be individually unit tested and that it is independent of the client. Any
client can use that service if it needs to do so. For example, if there is a time service, this service
could be used by one client to obtain the current time; it could be used by another client to read the
current time periodically to determine it’s own clock drift; it could be used by another client to
request that a GPS receiver is used to obtain the most accurate time possible. The time service
doesn’t care what the client is doing; it just does it.

For example, as demonstrated in Figure 10–9, a light can expose a Light Service with two pieces
of data: the current physical light state, and the abstract light control point to allow a client to control
the state of the light. A light switch would implement the light profile that knows how to find the light
service, how to read the current light state, and how to control the light state. The light switch knows
the behavior that is exposed because this must be the same for every instance of the light service.



Figure 10–9. An example of a light profile and service
The client is also at an advantage using this system. The profiles are written without defining the

behavior of the server—these are defined by the services—and therefore very much simpler. The
client profiles are in essence a set of rules for discovering, connecting, configuring, and using
services. They also include standard procedures for performing various actions that are required by
the client. The clients, and their profiles, can use any combination of services to achieve their goals.
For example, a client could combine the use of the time service with a temperature service to allow
temperature to be monitored over time, without the need to have a real-time clock in the client and
without the need to collect this data in real time.

Take, for example, a home security system that knows that the house is unoccupied, but the
homeowners would like the house to appear to be occupied by turning on and off lights randomly.
This could be accomplished by defining a new profile that implemented some very simple sets of
instructions, as illustrated in the following script:
Click here to view code image

loop forever:
   wait <random period from 10 seconds to 3 hours>
   connect to a light:
      send "toggle" to control point
      disconnect

Alternatively, if you were managing an office and wanted to make sure all the lights were off when
people were not at work, this could be implemented in yet another profile that is represented by this
set of instructions:
Click here to view code image

loop forever:
   wait <until start of next working day>
   connect to lights:
      send "on" to control point
      disconnect

   wait <until end of working day>



   connect to lights:
       send "off" to control point
       disconnect

It is this combination of multiple services in the client that is one of the most powerful concepts in
Bluetooth low energy. Each individual service can be kept very simple; it is the combination of
services that provides the complexity and richness of the system. For this to be true, services must be
atomic. Atomic in this context means that the services perform only one set of actions. By making
services atomic, they can be reused by multiple clients, all doing different things.

This allows the first problem identified with classic profiles to be solved—it is almost impossible
to define a classic profile that has explicit state. By defining the services as separate specifications, it
is possible to keep them atomic so that the quantity of behavior in each service is very small. The
small quantity of behavior means it is very much easier to define explicitly what a service does, and,
therefore, it is also easier to test this by using standard unit testing methodologies. This means that
atomic services have explicit state, and that this state can be relied upon by clients.

This approach also solves the second problem identified with classic profiles—it is almost
impossible to use a classic profile in a way that was not envisioned. By splitting the use cases into
services that are atomic with known behavior, it is possible to define clients that can use these
services. Clients can use these either in isolation or in combination with other services. Because the
services have explicit behavior, the complexity of combining services is minimized. Also, because
each service is atomic, there is no “bleeding” of behavior from one service to another. Each service
is separate, and its behavior is not dependent upon the state of another service. This means that
services can be combined in any order that is conceivable.

This also means that clients can use services on a device in novel ways. There is no actual need for
profiles; it is the services that define how devices interoperate, profiles just define the standard ways
that this can be done for a given use case. Therefore, a device can determine that it can combine not
only the temperature service and time service but also the solar panel’s power generation service to
determine the current weather. This is probably not a profile or use case that would be defined by the
Bluetooth SIG, but it could be something that a manufacturer might wish to do. By splitting the
behavior of the server into services, it is possible to combine this behavior in interesting, novel, and
useful ways in any client.

10.2. Attributes
To understand the Attribute Protocol, you first must understand an attribute. Defined broadly, an
attribute is a piece of labeled, addressable data. In the following subsections, we’ll look more
closely at what this means and how you can use attributes in a practical sense.

10.2.1. Attribute
Figure 10–10 shows that an attribute is composed of three values: the attribute handle, the attribute
type, and the attribute value.



Figure 10–10. The structure of an attribute

10.2.2. The Attribute Handle
A device can contain many attributes. For example, a temperature sensor might contain an attribute for
the temperature, one for the device name, and one for the battery state. It could be considered that the
attribute type would be sufficient to identify a given attribute; for example, just asking for the
temperature should return the temperature, asking for the device name should return the device name,
and so on. However, what if the device contains two temperature sensors: an indoor temperature
sensor and an outdoor temperature sensor? In this case, you cannot just read the temperature sensor;
you need to read the first or second temperature attribute. This problem becomes much more complex
when you consider that you could have an arbitrary number of temperature sensors.1

To solve the this problem, instead of addressing attributes by their type, you use a 16-bit address
called the attribute handle. Valid handles are 0x0001 to 0xFFFF. Handle 0x0000 is an invalid
handle and cannot be used to address an attribute. You can consider these handles to be the memory
address, port number, or hardware register address for the attribute value, depending on your
particular background in software, hardware, or embedded engineering.

10.2.3. Attribute Type
There are many different types of data that can be exposed: temperature, pressure, volume, distance,
power, time, charge, Boolean on/off state, state machine states, and so on. The type of the data that is
exposed is called the attribute type. Given the different possible types of data that can be exposed, a
128-bit number is used to identify the type of the attribute. This unique identifier is known as a
Universally Unique Identifier (UUID).2

UUIDs are huge. A 128-bit UUID requires 16 bytes of data to be sent between devices so that each
device can identify the type of the data. To enable the efficient transfer of data types between devices,
the Bluetooth SIG has defined a single 128-bit UUID, called the Bluetooth Base UUID that can be
combined with a small 16-bit number. The use of a defined Bluetooth Base UUID means that this
UUID and any derived UUID still follow the rules for allocating UUIDs. It also means that when
sending UUIDs between devices for well-known values, only the short version of the UUID can be
sent and then recombined with the Bluetooth Base UUID when it is received.

The Bluetooth Base UUID is defined as the following:

00000000 − 0000 − 1000 − 8000 − 00805F 9B34F B

When a short 16-bit Bluetooth UUID is sent, say the value 0x2A01, the full 128-bit UUID would be
the following:

00002A01 − 0000 − 1000 − 8000 − 00805F 9B34F B

When referring to these 16-bit Bluetooth UUIDs, the values of the short UUIDs are very rarely
used. Instead, a name of these values is used, surrounded by guillemets (“≪” and “≫”). So, for
example, the name ≪Includes≫ is a 16-bit Bluetooth UUID that has the value 0x2802. There are
many 16-bit Bluetooth UUIDs that are defined. The UUID itself does not define the usage of the
UUIDs, but the UUIDs that are used by Bluetooth low energy are arranged into the following groups



for human readability when debugging:
• 0x1800 through 0x26FF are for Service UUIDs
• 0x2700 through 0x27FF are for Units
• 0x2800 through 0x28FF are for Attribute Types
• 0x2900 through 0x29FF are for Characteristic Descriptors
• 0x2A00 through 0x7FFF are for Characteristic Types

10.2.4. Attribute Value
The state data that a device exposes is available in an attribute value. Each attribute has a value that
can be any size from 0 bytes to a maximum of 512 bytes in length, although the size is fixed for some
attribute types. The value of the attribute is not significant to the Attribute Protocol, but it is
significant to the layers above that include the Generic Attribute Profile and GATT-based services
and profiles.
10.2.4.1. Service UUIDs

Each service can be identified by using a UUID. This can be either a 16-bit UUID or a full 128-bit
UUID. There are 3,840 services that can be allocated by using a 16-bit UUID, and an almost infinite
number3 of proprietary services by using 128-bit UUIDs.
10.2.4.2. Units

Many of the values that are exposed represent physical values measured by a sensor. Therefore, it’s
useful to also define unit UUIDs for each of these possible types of value. The units are derived from
the Bureau International des Poids et Mesures, otherwise known as the International System of Units
(abbreviated SI from the original French, Système International d’Unités). This allows values
captured from a Bluetooth low energy sensor to be used in other systems that also use the same SI
units. It should be noted that even though the SI units are defined around the metric system, imperial
units are also defined. So, even though velocity can be represented in meters per second, it can also
be represented in kilometers per hour (km/h) or miles per hour (mph).
10.2.4.3. Attribute Types

The most fundamental attribute types are allocated UUIDs from the Attribute Type UUID range. These
are typically used for the attribute types defined by the Generic Attribute Profile, and not a service.
The following attribute types are defined:

• Primary Service
• Secondary Service
• Include
• Characteristic

10.2.4.4. Characteristic Descriptor

Some data exposed by a service might include additional data. This additional data is labeled by
using Characteristic Descriptors. An example of a descriptor would be a value that describes the
format (the unit and representation) of an associated value.
10.2.4.5. Characteristic Types

This range of 16-bit UUIDs is the most used group of attribute types. Each unique type of value that is



exposed by a service is allocated a Characteristic Type UUID. This allows a client to discover all the
different types of data that a server has. Each characteristic type has a defined format and
representation. There are a possible 22,015 characteristic types that can be defined, without having to
resort to the almost unlimited number of 128-bit UUIDs that can also be used.

10.2.5. Databases, Servers, and Clients
A collection of attributes is called a database. A database can be very small and simple, the
minimum being just six attributes,4 or very large and complex. The complexity of the attribute
database, however, is not at the attribute layer, it’s how those attributes are used in services and
profiles.

The database is always contained in an attribute server; an attribute client uses the Attribute
Protocol to communicate with the attribute server. There is only ever one attribute server on each
device, regardless of whether Bluetooth low energy or Bluetooth classic is used to make a connection
with the other device. Because there is only one attribute server on each device, there is only one
attribute database on each device. For a Bluetooth low energy device, the attribute database includes
a Generic Access Profile service that is mandatory to support. This means that every Bluetooth low
energy device includes an attribute server and an attribute database (see Figure 10–11).



Figure 10–11. An example of an attribute database
This means that the cost of exposing a small amount of information on a device—for instance, say

just the battery state—is very small. This is because every device already includes an attribute
database, so the only cost of adding in a service to expose this information is just the cost of three or
more additional attributes. Given that each device starts with six attributes as a minimum, adding an
extra three attributes for the battery service is fairly trivial.

10.2.6. Attribute Permissions
Some attributes in an attribute server contain information that can only be read or written. To
facilitate these restrictions upon access, each and every attribute in an attribute database also has
permissions. Permissions themselves can be split into three basic types: access permissions,
authentication permissions, and authorization permissions. Access permissions determine what types
of requests can be performed on a particular attribute. Going back to our earlier examples, the state of
the light might be readable and writable, the state of a phone call might only be readable, whereas the
light control point might be writable only. Similarly, the state of a light might be readable to anybody
but can only be written by trusted devices, the state of a phone call will require authorization to read



its state, and the light control point will require authentication to write its state.
It should be noted now that attribute permissions only apply to the attribute value. They do not

apply to the attribute handle or attribute type. Every device has permission to discover all the
attributes that a device exposes, including their handles and their types. This is to allow devices to
determine if a device supports something that it can use before authenticating and obtaining
authorization. For example, it is possible to determine if a device supports the light control point
attribute without authenticating. This makes the initial device and service discovery very user-
friendly, while protecting the private and confidential information exposed by that device in those
services.

The following access permissions are defined:
• Readable
• Writable
• Readable and Writable

When an attribute is read, the access permissions are checked to determine if the value of the
attribute is readable. If it cannot be read, an error will be returned stating that the client cannot read
this attribute value. Similarly, when an attribute is written, the access permissions are checked and if
the value of the attribute cannot be written, an error stating that the client cannot write this attribute
value will be returned.

The following authentication permissions are defined:
• Authentication required
• No authentication required

When an attribute is accessed, either for read or write, the authentication permissions are checked
to determine if the attribute requires authentication. If it does require authentication, the client that sent
the request is authenticated with this device. If the attribute does not require authentication, the value
should be accessible, subject to other permission constraints. If the attribute does require
authentication, only the clients that have previously authenticated will be allowed access. If a client is
not authenticated with the device and it attempts to access an attribute that requires authentication,
then an error stating that there is insufficient authentication will be returned.

If a client receives the insufficient authentication error, it can do one of two things: it can ignore the
request and pass the error up to the application; or it can attempt to authenticate the client by using the
SM and resend the request. It should be noted that the error code does not communicate the required
level of authentication. Therefore, the client might need to either request authentication or raise the
authentication level to gain access to the attribute value.

The interesting side effect of this behavior is that the client is in complete control over when and
how authentication is performed. The server also doesn’t need to hold the state of the received
request. In Bluetooth classic, authentication is typically performed on the creation of an L2CAP
channel. When the responder receives the channel request to a channel that requires authentication, it
stores this request, sends back a pending response, initiates security procedures, and then finally
resumes the original request. This is both complex and memory intensive. In Bluetooth low energy,
the server simply responds as best it can to each and every request; the client contains the complexity
of ensuring that authentication is performed, reissuing the original request again when necessary.

The following authorization permissions are defined:



• No authorization
• Authorization

Authorization is subtly different from authentication. It triggers similar behavior; an error response
is sent with the error code insufficient authorization whenever an attribute access is attempted and
the client is not authorized. However, this is an error that the client cannot resolve.

Authorization is a property of the server; the server either authorizes a client to access a set of
attributes, or it does not. Therefore, it is up to the server to authorize clients. More important, the
client has no signaling available to prompt the server to ask the user to authorize the client. Therefore,
whenever a client attempts to access a given attribute that requires authorization, the server might
prompt the user to authorize that client. The server might also immediately reject the request. The
client would then need to wait before reattempting the request. Typically, the user of the client device
will trigger the retry after he has configured the other devices to add the client to the list of authorized
devices.

10.2.7. Accessing Attributes
Each attribute in an attribute database can be accessed by using one of the following five basic types
of messages:

• Find Requests
• Read Request
• Write Request
• Write Command
• Notification
• Indication

Using Find Requests, a client can find attributes in an attribute database such that the more efficient
handle-based requests can be used.

The Read Request is sent to read an attribute value. These either use one or more attribute handles
or a range of attribute handles and an attribute type to determine which attribute value to read.

The Write Request is sent to write an attribute value. These always use an attribute handle and the
value to write. It is also possible to prepare multiple values to be written before executing these
writes in a single atomic operation.

Each of these requests always causes the attribute server to send a single response. If more data is
required, another request must be sent by the client. For example, if the attribute value is very long
and cannot fit into a single Read Response, the client can request the additional parts of the attribute
value by using another Read Blob Request.

To minimize the complexity of the server, only one request can be sent at a time. Another request
can only be sent after the previous response has been received.

It is also possible to use the Write Command to write an attribute value. This never causes a
response. Because it does not have a response, this command can be sent at any time. This means that
it is useful to write commands into a control point of an exposed state machine.

There are two additional types of messages, both of which are initiated by the server and send
attribute values unprompted to the client. The Notification can be sent at any time and includes the



attribute handle of the attribute that is being notified and the current attribute value of this attribute.
The Indication is the same, having the same attribute handle and attribute value, but always causes an
attribute confirmation to be sent back. These confirmations both acknowledge that the indicated value
has been received but also that another Indication can be sent, whereas Notifications can be sent at
any time.

10.2.8. Atomic Operations and Transactions
Each Attribute Protocol message that is sent from a client to a server, and vice versa, is sent as part of
a single transaction. A transaction is either a single request followed by a single response or a single
indication followed by a single confirmation. Transactions are important because they limit the
amount of information that needs to be saved between successive transactions. This means that if a
device receives a request, it doesn’t need to save any information about that request to process the
next request.

The other important aspect about the transaction model is that a new transaction can’t be started
until the last transaction has completed. For example, if a device sends a Read Request for an
attribute, it can’t send another until it has received the response from the last request. These
transactions are only relative to a single device. A device that starts a transaction cannot initiate
another transaction, but it can still process requests from peer devices.

There are a couple of exceptions to this simple rule: Commands and Notifications, and
Prepare/Execute writes.
10.2.8.1. Commands and Notifications

There are two Attribute Protocol messages called Commands and Notifications with which a device
can send a message to another device without having to await a response before sending another
Command or Notification. These are useful when you must send a particular Command or Notification
but are currently in the middle of another transaction. For example, suppose that you have have sent a
Read Request to a particular device and are awaiting a response, and then you need to write a value
on the same peer device. To do that, you would use a Write Command.

Commands and Notifications do not require a response or confirmation. This means that the
sending device has no way of knowing if the message has been received and processed. For some
applications, this is not acceptable, and a request/response or indication/confirmation is required. For
some applications, however, this is perfectly acceptable. An interesting side effect of the lack of a
response or confirmation is that the there is no limit to the number of these messages that a device can
send. Effectively, a device can flood the peer device with Commands or Notifications. To protect
against this, a device can drop any Command or Notification that it receives if it doesn’t have the
buffer space to store or process it. Therefore, these messages must be considered to be unreliable.
10.2.8.2. Prepare Write Requests and Execute Write Requests

The second exception to the preceding transaction rules is the Prepare Write Request and the Execute
Write Request messages. Using these messages, a device can prepare a whole sequence of writes and
then execute them as a single transaction. From the transaction point of view, each Prepare Write
Request and response is a separate transaction. It is possible to interleave other requests in the
middle of the complete sequence of prepares and execute.

There are two interesting side effects of this command: long writes and verification of writes. Each
Prepare Write Request not only includes the handle of the attribute that will be written along with a



value, but also the offset into that attribute’s value where this part of the value will be written. This
means that you can use a sequence of Prepare Write Requests to write a single, very large attribute for
each part of the attribute value in a single execution.

The other interesting side effect is that the prepare write response includes the attribute handle,
offset, and part value that was placed into the Prepare Write Request. This might at first appear to be
a waste of bandwidth, but because values in the response will be the same as in the request, this
protects against something going wrong.

Bluetooth low energy is sometimes a little protective of data; all bits in the payload are protected
with a 24-bit cyclic redundancy check (CRC) that can detect up to 5 bit errors. If a packet is received
that has 6 bit errors, there is a very small probability that the CRC will falsely accept this packet. The
next guard is the 32-bit message integrity check (MIC) value that is included in every encrypted
packet. This should reject a packet that has falsely passed the CRC value, but there is absolutely no
guarantee that it will not also falsely pass an invalid packet. Therefore, there is an extremely small
chance that a packet can be received that has falsely passed the checks.

Sometimes even a very small chance is too large. For example, if you are using Bluetooth low
energy to control the sewage outflow valve of a city, you really don’t want to write “close” only to
discover that the valve received it as “fully open” and flooded the park and children’s play area
with... err, sewage.

It is for this reason that the prepare response includes the same data that was in the request. The
fact that a packet is sent in two different directions, typically by using two different radio channels,
each using different encryption packet counters, means that the chance that the same data in the
response has been corrupted in the same way as the request is as close to zero as you could possibly
make it. And, of course, if the response was wrong, then you can cancel the whole sequence of
prepared writes by using the “cancel” code in the Execute Write Request and then start preparing to
write again.

10.3. Grouping
The Generic Attribute Protocol only defines a flat structure of attributes. Each attribute has an address
—its handle. However, modern data organization methodologies require significantly more structure
than this simple flat structure. This is what the Attribute Profile enables. Instead of just a set of
attributes, the Attribute Profile defines groups of attributes.

To understand why this is necessary, let’s analyze how this could be done. It’s possible to have
“pages” of attributes. Each page would have a defined set of values. A page would be defined for
each use case; for example, one page would describe the device, another page would be used if the
device has a battery, and another page would expose the temperature. This is interesting if the devices
are complicated. What happens when you have two batteries? What if there are two temperature
sensors?

The biggest leap in software engineering over the last few decades has been the slow introduction
of object-oriented paradigms. This essentially groups the data that describes an entity with the
methods that you can use to control the data’s behavior. The main benefit of using an object-oriented
architecture is that each object is self-contained.

Let me take a moment to define some terminology. When talking about object-oriented
programming, you might think of interfaces, classes, and objects. An interface is a description of



external behavior. A class is an implementation of that interface. An object is an instantiation of that
class. For example, a car is an instance of an automobile class that implements the driving interface,
Not all car objects look the same; they can be implemented differently, but critically, they all have the
same basic driving interface, such as the steering wheel, the accelerator pedal, and the brake pedal.
The driving interface is the same, but the class that implements this interface can be different, and this
can be instantiated many times, as is evident in traffic congestion.

Within Bluetooth low energy, grouping is used for both services and characteristics. A service is
grouped by using a service declaration; a characteristic is grouped by using a characteristic
declaration.

A service is a grouping of one or more characteristics; a characteristic is a grouping of one or more
attributes.

10.4. Services
In software engineering, if you define and implement behavior for a given class, as long as the
interface to that class is fixed, other parts of the system can reuse an object based on that class. This
also means that if there is a bug in that class, you can fix it once, and all the other parts of the system
can benefit immediately from that fix.

To ensure that classes are reusable, you must define an abstract interface that is immutable.
Immutability is a strong word that means “unchanging over time.” This immutability is the only thing
that ensures the long-term viability of an interface. If interfaces were mutable, the user of that object
would need to spend more time working out what interface that object has rather than actually doing
what it needs to do.

Object-oriented systems typically use inheritance to enable changes to interfaces; a new class with
a new interface inherits the behavior of an old class and then adds to or changes this behavior, as
required. By ensuring that interfaces are immutable, they can be reused successfully for many years.

In Bluetooth low energy, the Generic Attribute Profile defines two basic forms of grouping:
services and characteristics. A service is the equivalent of an object that has an immutable interface.
Services typically include one or more characteristics, and can also reference other services. A
characteristic is a unit of data or exposed behavior. These characteristics are self-describing, such
that generic clients can read and display these characteristics.

Thus, a service is just a collection of characteristics and some behavior that is exposed through
these characteristics (see Figure 10–12). The set of characteristics and their associated behavior
encompasses the immutable interface for the service.



Figure 10–12. An immutable service interface is composed of characteristics and behaviors
However, as Figure 10–13 illustrates, services can reference other services. And it is this simple

concept that imbues enormous power to this architecture. A reference is just that—one service can
point to another service. The reference can say many things: this service is used to extend the
behavior of the original service; this service uses the other service; this service and the other service
are combined together into a much bigger set of services. Let us examine each of these references in
term.



Figure 10–13. Service A references Service B

10.4.1. Extending Services
Service A, which has been used for many years, now needs to be extended. Because Service A is
immutable, we cannot simply add new behavior to the original service. Therefore, it’s necessary to
extend without altering the original service. To do that, we define a new service, Service AB, which
contains the additional behavior required, as shown in Figure 10–14. However, to maintain backward
compatibility for the many millions or billions of existing devices that only support Service A, we
must also include an instance of that Service in every device that implements Service AB.



Figure 10–14. Service AB extends Service A
Now, suppose that we have two instances of Service AB, AB:1, and AB:2, on a device. We would

also need two instances of Service A, A:1, and A:2 on the device. But which Service A belongs to
which Service AB? To solve this problem, a reference needs to be made from each Service AB to the
particular instance of Service A that it is explicitly extending (see Figure 10–15).



Figure 10–15. Two instances of Service AB extending Service A
An old device that only understands Service A will still find the two old Service A instances and

use them as before; the old device will ignore the other Service AB instances and, therefore, will
only be able to use the nonextended behavior.

A new device that understands both Service AB and Service A will find the Service AB instances
and follow the references to their Service A instances. As such, the new device will be able to use
the new behavior that is defined in Service AB.

A new device that is talking with an old device will attempt to find Service AB, fail, and then find
Service A; the new, therefore, will be able to automatically fall back to the interoperable behavior
that was defined in Service A.

This appears complex, but it’s actually much simpler than the alternative: Service A would be
extended into a new version, with feature bits to determine which features a particular service
supports and possibly very complex behavior because each possible combination of features would
need to be tested. The extension methodology means that each service is self-contained and
immutable, and the relationship between services is explicitly exposed. A device using the services
can determine its behavior. Legacy compatibility is also guaranteed by the immutability of the original
server.

10.4.2. Reusing Another Service
An additional method for reusing another service is to reference it. This is actually the simplest
reference that can be made. One service, Service A, wants to use the behavior and state information
from another service, Service B. To do this, Service A only needs to reference Service B. This is not
reuse in the classic object-oriented sense; it is more like a generic pointer to another instance of a
class.

This is useful because there may be many instances of both the referencing service as well as the



referenced services: Service A:1, Service A:2, Service B:1, Service B:2, as depicted in Figure 10–
16. Without the reference, it would be impossible to determine if A:1 reused B:1 or B:2, or if A:2
reused B:1 or B:2. By including a reference to the other service, the particular instance of the service
that is being reused will be known.

Figure 10–16. Service A reuses behavior and characteristics of Service B

10.4.3. Combining Services
The final reference style is more complex than the other two in that it implies a separation of interface
from implementation. Sometimes, it is necessary to have two independent service instances that are
related to one another and have additional behavior when combined. To do this by using services, a
third service must be defined that references both the original two services. For example, consider
two instances of a service, Service A:1 and Service A:2, that need to be merged together and have
additional “combinatorial” behavior. You can do this by instantiating a third service, Service C, that
references both A1 and A2, as demonstrated in Figure 10–17.



Figure 10–17. Service C combines the behavior of two instances of Service A
Service C can expose the behavior that is required when dealing with both A:1 and A:2; it

encapsulates the combined service behavior. For example, a light service and a daylight sensor
service could be combined to give a service of a light that could only be switched on when there was
no daylight.5 The state machine of the combined service has extra states deriving from combinations
of the state of the two basic services it references. The independent A:1 and A:2 services still have
their own immutable behavior. This implies that Service C must very clearly distinguish the
difference between the behavior associated with the combined services and the behavior of the
independent services.

10.4.4. Primary or Secondary
One final concept to understand for services is that they can come in two different “flavors.” Services
can either be primary or secondary services. As you can clearly gather from the preceding description
of the services and how they are designed, it is sometimes necessary to set up services that expose the
external behavior of the device, and sometimes it is necessary to set up services that expose a block
of functionality that can be reused many times in many different ways yet is never actually used or
understood by the end user.

A service that exposes what a device does is typically a primary service. For example, if you have
a device that supports Service B, Service B would be instantiated as a primary service. If you need
some additional information for this device, which is available in Service D, but that information is
not associated with what the device does, Service D would be instantiated as a secondary service
(see Figure 10–18). So, a secondary service is an encapsulation of behavior and characteristics that
are not something that a user would need to understand.



Figure 10–18. The relationship between primary and secondary services
Primary services can be found quickly and efficiently by using the Attribute Protocol. They can

have either a “parent” service or be a stand-alone service. Secondary services can only be found by
reference and must always have another service that points to them. This implies that a tree of
services can be created, with a primary service at the top of each tree and each branch pointing to
either primary or secondary services, and each branch from each of these being yet more primary or
secondary services.

A primary service can point to another primary service, as illustrated in Figure 10–19. For
example, the service extension would allow a new “version” of a service to be exposed and enable
backward compatibility between these services.



Figure 10–19. Primary services
A primary service can point to a secondary service so that it can reuse the behavior exposed in a

secondary service. A secondary service can point to another secondary service or another primary
service. Pointing from one secondary service to another secondary service is fairly rare because
secondary services are typically leaf nodes in a service tree. Pointing from a secondary service to
another primary service is extremely rare, but possible.

Primary services have one final advantage. When a client is looking for a particular service, it is
possible to look for primary services very quickly. This can be further enhanced by only allowing a
single instance of a given primary service on a device. For example, if a service is defined that can
only have one instance of itself on a device, a quick search for that service by a client device would
definitely determine whether that service exists.

This optimization has a significant benefit: A simple client that is only looking for one instance of a
primary service can achieve that objective with the absolute minimum of fuss. Simple clients don’t
need to read the complete list of services in a device or determine their relationships to be able to use
simple services. Without this optimization, every single simple client would need to walk the
complete service tree to determine how it can use the services exposed on a device to best effect.
This is a huge waste of valuable resources, both in terms of power for communication and memory to
store all intermediate results and computations.

10.4.5. Plug-and-Play Client Applications
The other interesting aspect of the service model is that it is possible to take the set of service trees in
a device and search for applications that can exploit these service trees. To do this, the generic client
would begin by performing a complete service enumeration, first of the primary services and then



following the relationships to other referenced services. Once this tree has been built up, it is
possible to pass this “forest” of services to an application store to obtain the list of applications that
are known to work with all, or part, of this forest.

Some applications might support just a single primary service. Some applications might support a
primary service that extends another primary service, perhaps as an extension of the original service,
and perhaps as a second version of the application. Some applications might support more than one
service tree. These applications might be able to either present the information from these services in
an interesting all-in-one application or combine this information together on the client in innovative
ways.

For example, given a server that supports the services illustrated in Figures 10–18 and 10–19, it
would support the primary Service A, including another primary Service C, the primary Service B
including secondary Service D, and the primary Service C on its own: A(C), B (D), C. The client can
then use this information to determine which applications support this set of services. The list of
services for each App is then checked against this set to determine which applications can support
this device. Some applications might only support a single service (App1 supporting C), whereas
others might support the extended service A that includes C. Other apps might support both the A(C)
and B service trees, App6, whereas others might support the additional secondary service D included
from B, App7 (see Figure 10–20).

Figure 10–20. Services on a server mapped to applications on a client
Another approach is to use a generic application, App8, that can talk with any service. These client

applications will typically not be able to interact as well as a specifically written application, but
they might be able to support devices for which the client has no specific application already written.

This generic client behavior is explicitly supported by using the combination of services and a pure



client-server model. However, the key element that makes this possible is the immutable services.
Without services that have a known immutable behavior, generic client applications could not be
written that can use this behavior.

The whole system has been designed for the maximum flexibility by limiting each individual part of
the system to minimum flexibility. It is the combination of these individual immutable parts that
provides the richness and ultimate flexibility required by products in the market.

10.4.6. Service Declaration
A service is grouped by using a service declaration (see Figure 10–21). This is an attribute with the
attribute type of Primary Service or Secondary Service. All attributes that follow this service
declaration and occur before the next service declaration are considered grouped with this service;
they belong to this service.

Figure 10–21. Primary and secondary service declaration
As defined earlier, a primary service is one that encapsulates what the device does. A secondary

service is one that helps the primary service achieve its behavior. All secondary services are
referenced from a primary service. The reason for this is very simple; it retains simplicity of the
client.

Simple clients are devices that have no user interface but can still use services on a peer device. A
simple device can just search for the primary services and find the services that it needs. It does not
need to walk the complete tree of services that a device might expose. In fact, the Attribute Protocol
is optimized for simple clients by allowing them to search for a specific primary service.

Some services have helper services that assist them in exposing their behavior or state. For
example, most medical devices will include device information; there is no need for each medical
service to define their own device information. Similar device information is also required in the
automation and battery scenarios. By defining this information in a service, the device information
service only needs to be defined once and can then be used many times. This also makes it possible
for those simple clients to not concern themselves with such information; they just ignore those
secondary services when looking for their primary services.

The service declaration’s value is a Service UUID. This is either a 16-bit Blue-tooth UUID or a
128-bit UUID. Any service that a device does not understand can be safely ignored. For example, if a
device includes a secondary service that has a 16-bit or 128-bit UUID that this device does not
understand, all the attributes that are grouped with this service declaration can be ignored. To help
with this, the Attribute Protocol allows the range of attribute handles for services to be discovered.



Only known services will be processed further.

10.4.7. Including Services
Secondary services must be discovered separately. To do this, each service can have zero or more
Include attributes. Include declarations always immediately follow the service declaration and come
before any other attributes for the service. The Include definitions also encompass the handle range
for the referenced service, along with the Service UUID for the included service (see Figure 10–22).
This allows very quick discovery of the referenced services, their grouped attributes, and the type of
the service. It does not state if this referenced service is a primary or a secondary service because
this is not relevant.

Figure 10–22. The structure of the Include declaration
Given that four octets are used for handles in the Include value, a Service UUID that is a full 128-

bit UUID will not fit into the standard response packets used to find the included services. Therefore,
when the included service has a 128-bit UUID, the Service UUID is not a part of this declarations
value. This means that an additional Attribute Protocol read is required to find the type of the service
being included.

If the type of a referenced service—either primary or secondary—does not matter, a primary
service can reference another primary service or a secondary service, and a secondary service can
reference another secondary or primary service.

The preceding example that presented four services A(C), B(D) would be created by using the
database illustrated in Figure 10–23.



Figure 10–23. An example of an attribute database of Services A(C), B(D)
A primary service that was originally published that was later extended with another primary

service would need to reference the original service. This original primary service cannot be changed
to a secondary service because that would mean old clients would not be able to find that old service.

10.5. Characteristics
Grouping attributes together within a service demonstrates how these attributes can be combined to
provide a consistent interface to a block of behavior. The architecture of Bluetooth low energy also
makes it possible to group attributes to allow the state and behavior of a service to be exposed.

A characteristic is just a single value. It could be current temperature, how far somebody has
ridden their bicycle, or the state of the time synchronization finite state machine. However, a
characteristic is much more than that. A characteristic needs to expose what type of data a value
represents, whether a value can be read or written, how to configure the value to be indicated or
notified or broadcast, and expose what a value means.

To do this, a characteristic is composed of three basic elements:
• Declaration
• Value
• Descriptor(s)

A declaration is the start of a characteristic; it groups all the other attributes for this characteristic.
The value attribute contains the actual value for this characteristic. The descriptors hold additional
information or configuration for this characteristic.

One question that is always asked at this point is why is the value an attribute within a
characteristic and not just an attribute in its own right? The answer is actually fairly complex. A
characteristic is not just a value; it has permissions, additional configuration, and descriptive data that
is useful to consider as part of this characteristic. It could have been possible to add additional
semantics to the Attribute Protocol to access this information, but this would have made the protocol
more complex for the minority of cases for which this is really necessary.



Instead, a decision was made to keep the flat structure of attributes, as exposed by the protocol,
separate from the structure of the device and its characteristics, as defined by the Generic Attribute
Profile. This means that it is more complex to obtain certain information about some characteristics,
but much easier to find the required information for most characteristics.

Simply put, a characteristic is composed of a characteristic declaration, the characteristic value,
and zero or more descriptors.

10.5.1. Characteristic Declaration
To start a characteristic, a Characteristic attribute is used. This contains three fields: characteristic
properties, the handle of the value attribute, and the type of the characteristic, as shown in Figure 10–
24.

Figure 10–24. Characteristic Declaration
The characteristic properties determine if the characteristic value attribute can be read, written,

notified, indicated, broadcast, commanded, or authenticated in a signed write. If the bit is set in this
field, the associated procedure can be used to access the value of the characteristic value.
Additionally, if the characteristic has the broadcast bit set, the server characteristic configuration
descriptor must also exist. Similarly, if the characteristic has the notify or indicate bit set, the client
characteristic configuration descriptor must exist.

There is also an extended properties bit in this field. This was added because there were
additional properties to include in the 8-bit field, and the length of this field as the maximum size of
this Descriptors value was already met. These additional properties are in the characteristic extended
properties descriptor. There are only two additional properties: reliable write support and writable
auxiliaries. The writable auxiliaries is the most interesting bit because this determines whether the
characteristic user description descriptor can be written.

The characteristic value handle field is the handle of the attribute that contains the value for the
characteristic. This is needed so that a very quick search for the characteristic can be performed by a
client that returns only characteristic declarations. With this declaration, the attribute that holds the
value is immediately available. If this field did not exist, the client would then need to perform an
additional search for attributes and effectively guess which attribute after the declaration was the
value. At the moment, the value attribute is the very next attribute after the characteristic declaration,
but by including the handle for the value attribute in the declaration, this practice could be changed in
the future.

The final field is the characteristic UUID. This holds the UUID that is used to identify the type of
the characteristic value. This UUID must be the same as the type of the attribute that holds the



characteristic value. Effectively, this means that this is a duplication of information that could be
determined by sending more requests to the server. However, this would require more over-the-air
protocol messages to be sent, wasting power. It is more efficient to include the type information in the
declaration directly.

On occasion, it has been questioned why the characteristic value attribute’s type is not a static
UUID such as Value. This would reduce the previously described problem; however, there are other
optimizations that can be performed, indicating that this would not be an ideal solution (see Figure
10–25). For a simple client that only wants to retrieve the battery state of a device, it would be much
more efficient to just ask for the battery state rather than search for the characteristic that has the
battery state UUID in one of its fields. It is these simple optimizations that have determined the
structure of the declaration, as demonstrated in the following:
Click here to view code image

// The complicated way
service_range = discover_primary_service_by_UUID
(«Battery_Service»)
chars = discover_all_characteristics_of_a_service (service_range)
foreach char in chars:
   if char.uuid == «Battery Level»:
        battery_level = read_characteristic_value (char.handle)

// The easy way
battery_level = read_characteristic_value_by_UUID («Battery
Level»)

Figure 10–25. Characteristic example

10.5.2. Characteristic Value
The characteristic value is an attribute with the type that must match the characteristic declaration’s
characteristic UUID field. Apart from that, it is an ordinary attribute. The biggest difference is that the
types of actions that can be performed on this characteristic value attribute are exposed in the
characteristic declarations properties field and additionally might be in the characteristic extended
properties descriptor.

For each characteristic, a specification document can be found that describes the format of the
characteristic. Also, characteristics themselves have no behavior, so the service specification with
which this characteristic is grouped should be examined to determine the behavior exposed by this



instance of the characteristic.

10.5.3. Descriptors
There can be any number of descriptors on a characteristic. Most descriptors are optional, although,
as just explained, they might be required depending on the characteristic declaration. Some
descriptors might also be required by a service specification.

The following descriptors can be included in a characteristic:
• Characteristic Extended Properties
• Characteristic User Description
• Client Characteristic Configuration
• Server Characteristic Configuration
• Characteristic Presentation Format
• Characteristic Aggregation Format

10.5.3.1. The Characteristic Extended Properties Descriptor

This is the descriptor that is used to capture the additional extended properties. At the moment, only
two are detailed: the ability to perform reliable writes on the value and the ability to write the
Characteristic User Description descriptor.
10.5.3.2. The Characteristic User Description Descriptor

Using this descriptor, a device can associate a text string with a characteristic. This is most useful
with devices for which users can perform this configuration themselves. For example, the user could
configure a thermostat to describe which room in the building the device is measuring. Some devices
might include multiple temperature sensors, so having this configuration at the characteristic level is
essential for the ultimate configurability.
10.5.3.3. The Client Characteristic Configuration Descriptor

If a characteristic is notifiable or indicatable, this descriptor must exist. It is a twobit value, with one
bit for notifications and the other for indications. Notification and Indication are complementary
procedures, so it is impossible to set both of these bits at the same time. How the value is notified or
indicated is not defined in the core specifications; this is defined by the service specifications.
10.5.3.4. The Server Characteristic Configuration Descriptor

This descriptor is very similar to the Client Characteristic Configuration descriptor, except that it has
one bit for broadcast. This is a single bit, and setting it causes the device to broadcast some data
associated with the service in which this characteristic is grouped. Again, the timing of this broadcast
is determined by the service.

Interestingly, it is not possible to broadcast a single characteristic. Instead, the service for which
this characteristic is grouped defines what data is broadcast when this bit is set. Some services might
define that multiple characteristics can be broadcast; it is up to the service to define how an observer
can determine which characteristics are broadcast by the service.

It might appear at first to be rather strange that there is bit in a characteristic that can turn on the
broadcast of this characteristic, without having the ability to actually broadcast the characteristic
directly. This is because characteristics themselves do not have behavior; thus, the meaning of



broadcast characteristic data without the context of a service is meaningless. Just receiving
“Temperature : 20.5°C” doesn’t mean much. Receiving “Room Temperature Service : 20.5°C” or
“Car Engine Service : 65°C” gives that temperature the needed context.
10.5.3.5. The Characteristic Presentation Format Descriptor

One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is
defined as a device that can read the values of a characteristic and display them to the user without
understanding what they mean. A generic client could connect to a refrigerator and display the inside
temperature without understanding that a value above 10°C is probably bad. In contrast, a profile
defines how a client can interoperate with a temperature service in a refrigerator and what to do when
the temperature goes out of a valid range.

For generic clients to work, they must be able to find characteristics that can be displayed to the
user and then understand their characteristic values enough to display them to the user. The
characteristic declaration having a known attribute type is one aspect of being able to find all the
characteristics within a device. Generally, characteristics that are readable are also useful. The most
important aspect that denotes if a characteristic can be used by a generic client is the Characteristic
Presentation Format descriptor. If this exists, it’s possible for the generic client to display its value,
and it is safe to read this value.

The presentation format is a multiple-field value that contains the following fields:
• Format
• Exponent
• Unit
• Namespace
• Description

The format is an enumeration of the standard data types that determine how the value is structured.
There are formats for Boolean and unsigned 2-bit and 4-bit formats. There are formats for both
unsigned and signed integer values with sizes ranging from 8 to 128 bits. There are two sized
standard IEEE-754 floating-point numbers, such as are used in most high-end computers. There are
two sized integer-based fixed-point numbers that are used primarily by medical devices. Finally,
there are two string representations using both UTF-8 and UTF-16 encodings. If the format of the
characteristic doesn’t fit into one of these buckets, the opaque structure can be used, or an aggregate
format should be used, as defined in the following description.

After the format comes the exponent. This field is only valid for the integer values; it determines a
fixed exponent that can be applied to the integer value before it is rendered to the user. This is a base
10 exponent, which makes it possible to perform the placement of the decimal point in the final output
routine, rather than using complex mathematics. The value that the characteristic value represents can
be expressed by using the following formula:

displayed value = characteristic value * 10exponent

For example, if the characteristic value is 0xFD94, and the presentation format is a signed 16-bit
integer with an exponent of −2, the displayed value will be as follows:



−620 * 10−2 = −620 * 0.01 = −6.20

The next field in the presentation format is the unit field. The unit is a UUID defined in the assigned
numbers document. Many units are defined. For example, in the preceding example, if the unit is
Temperature Celsius, the displayed value will be −6.2°C. It is obviously assumed that a generic
client knows what each of these unit UUIDs are.

The final two fields should be considered as a single value. The namespace and description fields
determine additional information about the value. The namespace field is a single byte that determines
which organization controls the description field. The description field is a 16-bit unsigned number.

The description field is really just a single “adjective” that can be applied to the characteristic so
that the user can determine which value is associated with a particular property of the device. As an
example, consider a thermometer that has both inside and outside temperature probes. This would
expose two temperature characteristics, the only difference being the description field of the
Characteristic Presentation Format descriptor being either “inside” or “outside.”

The description and unit fields are used as a lookup to a string localized to the user’s language.
Therefore, for a characteristic that has the unit of “weight (kg)” and a description of “hanging”, this
localized string would be one of “hanging weight”, “hengende vekt”, “vjeŠanje teŽina”, “riippuva
paino”, “penjant de pes”, depending on the user’s language.
10.5.3.6. The Characteristic Aggregation Format Descriptor

Some characteristic values are more complex than just a single value. For example, look at the
standard denotation of a position on the planet earth. This is composed of two values concatenated
together into a single “value.” The position value is an aggregation of a latitude value and a longitude
value. To allow for such complex characteristic values, the Characteristic Aggregate Format
descriptor allows multiple presentation format descriptors to be referenced so that the individual
fields of the value can be illustrated.

Using the preceding example, the characteristic would have two Characteristic Presentation Format
descriptors (one for the latitude and one for the longitude) and the Characteristic Aggregation Format
descriptor that references these two Characteristic Presentation Formation descriptors in their correct
order. A generic client can then correctly deconstruct the format of the characteristic value and
display the value to the user.

It should be noted that there is no requirement for these Characteristic Presentation Format
descriptors that are referenced from the Characteristic Aggregate Format to be in the same
characteristic. They might not even be in the same service or device. They are just referenced
presentation formats; the characteristic within which they are grouped has no meaning for the
aggregate format.

10.6. The Attribute Protocol
The Attribute Protocol is a very simple protocol by which an attribute client can find and access
attributes on an attribute server. It is structured as six basic operations:

• Request
• Response
• Command



• Indication
• Confirmation
• Notification

The client sends a request to the server to request that the server do something and send back a
response, as depicted in Figure 10–26. A client can send only one request at a time. This reduces the
complexity on the server, reducing the memory requirements, and thereby making it possible to
implement an attribute server using very little code. For each request, there can be only two possible
responses: a response that is directly associated with the request, or an error response that gives
information about why the request failed.

Figure 10–26. An Attribute Protocol request
A client also sends a command to a server but receives no response, as demonstrated in Figure 10–

27. The client uses commands when it wants the server to perform an action but there is no need for a
immediate response, for example, when the client commands the server to change the television
channel. A command can also be used when the response might be delayed and therefore would be
delivered in the form of indications or notifications.

Figure 10–27. An Attribute Protocol command
Indications are sent by a server to a client to inform the client that a particular attribute has a given

value (see Figure 10–28). Indications are similar to requests in that a confirmation response is
required by the client. Also, the server can send only one indication at a time, meaning that only after
receiving a confirmation for a previous indication can the next indication be sent.



Figure 10–28. An Attribute Protocol indication
The server sends notifications to a client to inform the client that a value of a particular attribute

has a given value (see Figure 10–29). Notifications don’t require a response. In this way, they are
similar to commands.

Figure 10–29. An Attribute Protocol notification
Because commands and notifications have no response or confirmation, there are no restrictions on

how often they can be sent. If too many commands or notifications are sent, such that the server or
client cannot process them all, the receiver of the messages can discard them. They are therefore
unreliable. Requests and indications are therefore considered to be reliable because they all must
elicit a response acknowledging that the receiving side has at least processed the request or
indication.

10.6.1. Protocol Messages
Figure 10–30 provides a list of all the Attribute Protocol PDUs. For most messages, there are both a
Request and a Response PDU. For example, the Read message has a Read Request PDU and Read
Response PDU. For each of these, there is a set of parameters, which are summarized here.



Figure 10–30. Attribute PDUs
The following sections refer to the example attribute database that is shown in Figure 10–11.

10.6.2. The Exchange MTU Request
The Attribute Protocol has a default maximum transmission unit (MTU) of 23 octets on a Bluetooth



low energy link. If a device wants to send larger packets, it must negotiate a higher MTU size. Only
the client can initiate this request. However, given that many devices have both client and server
functionality, this should not be a critical issue. The client request includes the client receiver’s MTU
size; the server request includes the server receiver’s MTU size. These two values cannot not be the
same value. The MTU size that a link uses can be calculated by taking the minimum of both the client
Rx MTU and the server Rx MTU.

This value is not negotiated. In fact, the values sent in the Exchange MTU Request and Exchange
MTU Response are fixed values so that the implementation is made as easy as possible. A device that
is both a client and a server must use the same value for its client Rx MTU and server Rx MTU,
meaning that regardless of which device initiates the MTU exchange, the same MTU results. This
means that in the event that both devices initiate the procedure at the same time, the result is the same
as if one or the other had started it at different times. This restriction also means that there is no point
in starting another MTU exchange at a later time during a connection because the result will always
be the same.

For very simple devices that don’t support anything more than the default MTU, the server can
always respond with a service Rx MTU of 23, and nothing changes. Obviously, a client would not
initiate an MTU exchange if it only supports the default MTU. This implies that all devices must
support at least the default MTU.

10.6.3. The Find Information Request
The Find Information Request and response are used to find handle and type information for a
sequence of attributes (see Figure 10–31). This is the only message that enables a client to discover
the types of any attributes.



Figure 10–31. The Find Information Request
The Find Information Request includes two handles: a starting handle and an ending handle. These

define the range of attribute handles used for this request. To find all value attributes, the request
would have the starting handle set to 0x0001 and the ending handle set to 0xFFFF. Typically, the
response can only include a few attributes within this range of handles at a time; therefore, a sequence
of these Find Information Requests must be performed to find all the attributes, with the starting
handle one higher than the last found attribute.

The Find Information Response contains handle-type pairs. There are two possible formats for this
because there are two sizes of UUID used in Bluetooth low energy. One format is for 16-bit UUIDs
that allows up to 5 attribute handle-type pairs to be included in a single Find Information Response.
The other format is for 128-bit UUIDs that can only contain a single handle-type pair in the response.
Obviously, with a larger MTU than the default, the number of handle-type pairs that can be included
increases.

The other interesting thing about the response is that it cannot include both 16-bit and 128-bit
UUIDs in the same response packet. To do this would have required an extra byte for each handle-
type pair, reducing the number of 16-bit UUIDs that could have been included in a default MTU
response to just 4. Given that most UUIDs in a standard attribute server will be 16-bit UUIDs, and it
is also not possible to include both a 16-bit UUID and a 128-bit UUID in a single response, it was not
considered useful to provide this flexibility.

10.6.4. The Find By Type Value Request
The Find By Type Value Request and response can find all the attributes with a given type and value.
The request includes two handles: a starting handle and an ending handle. These define the range of
attribute handles used for this request. Any attribute with a handle of starting handle up to and
including ending handle that has the same type and same value as the request is returned in the
response.

The response includes one or more handles for each attribute that is found. If the type in the request
is considered a grouping attribute, one of Primary Service, Secondary Service, or Characteristic, the
handle of the last attribute within this group is also included in the response. Unfortunately, because
the format of the characteristic declaration does not have a static value for a given characteristic, it is
not possible to use this request to search for characteristics.

The primary use of this request is to find a specific primary service. A client can send a Find By
Type Value Request with the type set to Primary Service and the value set to the UUID of the service.
The response then includes the handle range of each instance of this primary service that is found.
Some services are specified such that they cannot exist in a server more than once; therefore, this
request would only return a single handle range for that service.

It is possible to use this request to find secondary services; however, this is not something that is
used by Bluetooth low energy today. Secondary services are always included from other services, so
the Read By Type Request is used to discover these services.

10.6.5. The Read By Type Request
The Read By Type Request reads the value of an attribute within a range of handles. The client uses
this when it knows only the type, not the handle. The request includes a starting handle and ending



handle. It also includes the type of the attribute to be read. The response includes pairs of handles and
values.

Each attribute within the handle range that has the requested type is returned. The response is a set
of attribute handles and their associated values. The response is optimized for attributes that have the
same size values. For example, when reading all the includes of a service, the Include attributes might
all have the same sized values; thus, a single response is returned. If the attributes have different sized
values, only the first one or first few that have the same length of value will be returned in the first
response. If the attributes have the same sized values, but only some fit into a single response, only the
ones that fit into the response will be returned. The request will then have to be repeated with an
updated starting handle to obtain further requests.

The Read By Type Request is used for searching for included services as well as discovering all
the characteristics of a service by using the Characteristic type. It is also used to read the value of a
characteristic with a known type. For example, if you just want to quickly read the battery level of a
device, a quick method is to use a read by type request, with the type set to Battery Level. The
response will then include the handles of the characteristic values for the battery state along with its
values. This allows a client to read out some data very quickly by sending a quick request to it and get
that attribute type’s value without extensive characteristic discovery.

10.6.6. The Read Request
The Read Request is probably the simplest request in the Attribute Protocol. The request includes a
handle, and the response returns the value of the attribute identified by that handle. This is only useful
when the attribute handle is known, but assuming that this knowledge is available on the client, the
value of that attribute is read.

10.6.7. The Read Blob Request
Sometimes, the value of an attribute is longer than can be contained within a Read Response. In this
situation, the Read Blob Request can be used to read the additional bytes of an attribute’s value. The
word blob comes from the database term meaning Binary Long Object. The Read Blob Request
includes not only the attribute handle but also a zero-based offset into the attribute value. The
response contains as much of the value of the attribute as from the given attribute offset.

This request can be used after the Read Response has returned the first 22 octets of an attribute
when the client expects a longer attribute value. That Read Blob Request uses the same attribute
handle but with an offset of 22. The response includes part of the value of this attribute from offset 22
to the byte at offset 43. This can continue until the complete attribute value has been read.

This is used when reading long characteristic values and reading long characteristic descriptors.

10.6.8. The Read Multiple Request
The Read Multiple Request reads multiple attribute values in a single operation. The request includes
a set of one or more attribute handles. The response includes the values of these attribute handles in
the order that they were requested. This is optimized to read multiple attributes of a known size. For
example, weight scale might measure an individual’s weight as well as a body mass index; both of
these values can be read in a single request.

Because there is no delimitation between the values in the response, variable-length attribute
values cannot be used, with a single exception. The last attribute requested can have a variable length.



This means that if a client requests a read of three attributes in a single-read multiple request, the first
two attributes must have a fixed size, whereas the last attribute can have a variable length.

If a client requests multiple attributes whose values would extend beyond the end of the response
packet, the values that don’t fit into the response will be silently dropped.

10.6.9. The Read By Group Type Request
The last read request is the Read By Group Type Request. This is very similar to the Read By Type
Request in that it takes a range of handles that the read will be considered over as well as an attribute
type. The difference is that the attribute type must be a grouping attribute type, and the response
includes the handle of the read attribute, the last attribute for that grouping attribute, as well as the
value.

This means that if the grouping type is a Primary Service, it will return not only all the primary
service declaration attribute handles but also the last attribute within that primary service and the
value of the primary service declaration. A single request can therefore be used to discover all the
primary services within a device, and the handle ranges of all the attributes associated with those
services, and the type of those services.

As with the other responses where pairs of handles and values are returned, if the values have a
variable length, only the first attributes with the same length will be returned in a single response.
Therefore, it is necessary for the client to send the request again, updating the starting handle to find
the next attribute of interest.

10.6.10. The Write Request
The Write Request is analogous to the Read Request. The request includes a handle and the value to
be written into that attribute. The response acknowledges that the value was written.

10.6.11. The Write Command
The Write Command is similar to the Write Request, except there is no response sent. The Write
Command contains the handle of the attribute to be written along with the value that is to be written.

Use this command when there is no need for a response. Also, because this command can be sent at
any time, even after another request has already been sent and an associated response has not yet been
received, this command is also useful in situations for which the latency of sending the command is
very important.

10.6.12. The Signed Write Command
The Signed Write Command is very similar to the Write Command except that it also includes an
authentication signature. This way, the sender can authenticate itself along with the handle and value
being commanded to the server without the need to encrypt the link. This is most useful when the cost
of starting encryption would either significantly increase the latency of the data connection or increase
the cost of sending a small bit of data when the data does not have to be confidentially delivered.

The authentication signature is composed of a SignCounter and a message authentication code. The
SignCounter must be a different value for each message sent between the two devices, regardless of
whether the link was disconnected between messages being sent. The message authentication code is
the result of the CMAC function as defined in the NIST special publication 800-38B, using a
Connection Signature Resolving Key (CSRK) that can be distributed when two devices bond.



The SignCounter is a 32-bit value, which means that there are 4 billion possible signed writes to
be performed before the devices need to distribute a new CSRK. Because the SignCounter protects
against replay attacks, a Signed Write Command that is received with the same SignCounter must be
ignored. The message authentication code is a 64-bit value that is appended after the handle, value,
and SignCounter. It should be noted that this requires that the server stores the last SignCounter for
each client.

10.6.13. The Prepare Write Request and Execute Write Request
The Prepare Write Request and Execute Write Request are used for two purposes. First, they provide
the ability to write long attribute values. Second, they allow multiple values to be written as a single-
executed atomic operation.

The attribute server contains a single prepare write queue in which Prepare Write Requests are
stored. The size of the queue is implementation dependent, but typically, it is large enough for all the
expected services that require prepared writes. The values that are prepared are not written into the
attributes until an Execute Write Request is received that gives the go-ahead to execute these prepared
writes.

The Prepare Write Request includes the handle, offset, and part attribute value in a similar way as
that of the Read Blob Request. This means that the client can either prepare the values of several
attributes in the queue or prepare all the parts of an attribute value to be written in the queue. This
way, a client can be sure that all the parts of an attribute can be written on the server before the
prepare queue is actually executed.

The Prepare Write Response also includes the handle, offset, and part attribute value from the
request. This is pure paranoia to ensure that the data gets through reliably. The client can check the
fields in the response, with the values it placed into the request, to ensure that the prepared data is
received correctly. For some applications, this is certainly a level of verification that is needed. As
per the earlier sewage valve example, it is better to send a message twice—and check it—than to
flood the children’s play park with untreated effluent because of a single bit error.

To see how careful a client can be about writing a single byte of data to a server, we need to
examine how much protection there can be on this data. When a client sends a Prepare Write Request
to a server on an encrypted link, there is a 24-bit CRC making sure that there are no bit errors as well
as a 32-bit MIC value to ensure that it was sent from the correct client. The prepare write response is
also protected with the same 24-bit CRC and 32-bit MIC values.

This means that a single Prepare Write Request of a 1-byte attribute value is being protected by
112 bits of error-checking values: a ratio of 14 protection bytes to the single data byte. In addition, if
the client is not happy with the Prepare Write Response, it can just send a quick Execute Write
Request with the flags set to “cancel” the Prepare Write Queue and start preparing the value again.

Once all the prepared writes have been sent, the server has a queue of prepared writes ready to
execute. The client can then send the Execute Write Request with the flags set to immediately write all
prepared values. The server will then write all these values in a single atomic operation. The
attributes are written in the order in which they were prepared. If the client prepared the same
attribute multiple times, the server will write these values in order. This means that if the prepare
queue is used to configure a hardware state for which the hardware must be disabled, configured, and
then reenabled, this can all be done with in a single prepare queue by writing “disable” to the
appropriate attribute, writing the configuration attributes, and then writing “enable” at the end of the



prepare queue. The execution of this prepared queue will therefore complete the reconfiguration in an
atomic operation.

10.6.14. The Handle Value Notification
When the server wants to send a quick attribute state update to the client, it can send a Handle Value
Notification. This is one of only two messages that the server can send to the client, and the only one
that doesn’t have a message sent in reply. Therefore, the server can send it at any time and it is also
considered to be unreliable.

The Handle Value Notification has an attribute handle and a value. The notification is therefore a
message from the server to the client that this attribute now has this value. This message is one of the
most important messages in the Attribute Protocol. It not only allows the server to efficiently keep the
client up to date with the current state of its attribute database, but it is also used to notify the client of
the changes in a finite state machine.

Without notifications, a client would need to constantly poll the server to determine if the attribute
value had changed. Once notifications are configured, the client just waits for the server to notify it
when the value has updated. It should be noted that this also means that the client is be notified of the
new value more quickly than if it were polling periodically.

Typically, the configuration of notifications within a server is stored for all bonded devices. This
has the advantage that when a client reconnects to a device, the server in that device can instantly
notify the client of its state. For example, the battery level of a device could be configured for
notification; whenever the client reconnects to the device and the battery level has changed, the client
is instantly notified.

Because these notifications don’t have any confirmations, they can be sent at any time, regardless of
any other transactions that are active at the same time. This means that even if the client and server are
in the middle of a complex interaction involving requests and indications, a notification can always
be sent. As such, notifications are very useful for information that needs to be sent to the client now.

10.6.15. The Handle Value Indication
A Handle Value Indication is very similar to the Handle Value Notification; it has the same fields of
attribute handle and value, but it must be confirmed upon receipt in the client. The server can only
send one of these indications at a time, and it will only send the next indication when the last
indication has been confirmed.

The handle value confirmation doesn’t have any data within it. It is used for flow control. Because
of the confirmation, the indications can be considered to be reliable. Once the server has received the
confirmation, the server can be assured that the client has received the indication.

10.6.16. Error Response
An Error Response can be sent by a device whenever a request asks for something that cannot be
achieved. For example, if a device asks for an attribute to be written by using a write request, but that
attribute is read-only, instead of sending a write response saying that everything was good, an Error
Response is sent giving the reason the request failed.

The Error Response includes all the information about the request that caused the error, the
attribute on which the request failed, and why the error was generated in the first place. Whenever a
client receives an error response, it must assume that this error response is for the last request that it



sent. Therefore, the Error Response is another way to close the request’s transaction along with its
own response message. This means that for each request that can be sent, there are always two
possible responses, the failure error response case and the success response case. For example, a
Read Request can either have an Error Response or a Read Response sent in reply.

The following are the different reasons an error can be sent:
• Invalid Handle The attribute handle in the request was invalid and does not exist on the server.
This could be because a read or write was requested using an attribute handle that is not used or
allocated by that server. It can also be sent when an attribute handle in the request was set to
0x0000.

• Read Not Permitted The attribute does not allow the reading of the attribute value. For
example, a control point write-only attribute will send this error if a client attempted to read
this value.

• Write Not Permitted The attribute does not allow the writing of the attribute value. For
example, attempting to write a read-only attribute value will send this error.

• Invalid PDU The request that is sent is not understood by the server. This is typically sent
when the client has sent a request that is badly formatted. For example, a Read Request should
have a two-octet handle as its single parameter. If the Read Request does not have two octets of
parameters, this error is sent.

• Insufficient Authentication The request to read or write an attribute’s value cannot be
completed because the two devices have not authenticated one another. To perform
authentication, the connection can be encrypted, or if no bond exists for that device, the Security
Manager pairing procedures can be used to pair and then bond the devices.

• Request Not Supported The request that is sent is known to the server but it has chosen not to
implement it at this time. This can be used for both known requests that the server did not
implement as well as future requests that it does not currently understand. This error can be the
default error on any request that is not implemented in a device.

• Invalid Offset The request includes an offset, but the offset given was invalid. When reading
long attributes, the offset is used to read the parts of the attribute value one block of bytes at a
time. If the offset used is greater than the length of the attribute value, the offset would be
considered invalid. An offset the same as the length of the attribute value does not give this
error; instead, it would respond with zero-length part value in the response.

• Insufficient Authorization The request to read or write an attribute’s value cannot be
completed because the server has not authorized the client to have access to that value.
Authorization is a server local feature. The server needs to determine how to allow the user to
authorize that client. For example, on a phone or a computer, this could be done by prompting
the user and asking her if she grants access to the requested data.

• Prepare Queue Full The Prepare Write Request cannot be accepted because the memory used
to hold the queue of pending writes is already full. The prepare queue is a finite size and should
be sufficiently large to handle all the services that the device supports. However, a client might
attempt to do too much in a single prepared queue and therefore would fail.

• Attribute Not Found The sought-after attribute was not found. This is only used when
searching over a range of attributes when looking for a specific attribute type or types. This



means that only the Find Information Request, Find By Type Value Request, Read By Type
Request, and Read By Group Type Request can generate this error. For the Find Information
Request, this means that there were no attributes found within the handle range. For the Find By
Type Value Request, Read By Type Request, and Read By Group Type Request, this means that
there were no attributes of the given type found within the handle range.

• Attribute Not Long The attribute referenced in the Read Blob Request is not a long attribute
and therefore the request is rejected and the client should use the Read Request instead. This
error is only relevant to fixed-length attribute values, which are shorter than the current MTU
size where the Read Blob Request is used. For this reason, it is much simpler to use a Read
Request to read the first 22 octets of an attribute value and then use the Read Blob Request to
read the remaining octets.

• Insufficient Encryption Key Size This error is generated when the link is encrypted and has
sufficient authentication and authorization, but the encryption key size negotiated during pairing
is weaker than that required by the service. There are some attribute values where very strong
encryption keys are necessary to fully protect the confidentiality of the data.

• Invalid Attribute Value Length The attribute value used in the write request or from the
prepare queue during the execution of that prepare queue is the wrong length. If an attribute
value has a fixed size (for example, two bytes) and the write attempts to change this to a
different size (for example, one or three bytes), then this error is generated.

• Unlikely Error This is probably the best error code that exists. It basically means that
something unexplained happened that doesn’t fit any other error code. The problem with this
error code is that if the error was describable, an error code could be created for it. Given that
the error generating this was not thought of ahead of time, it really is an unlikely error.

• Insufficient Encryption The attribute value can be read or written but the link is not encrypted.
There are some attribute values for which the confidentiality of an encrypted link is required.

• Unsupported Group Type The attribute type that was included in the request was not
considered a group type by the server. Only group types that are known by the server can be
used in Read By Group Type Request.

• Insufficient Resources The server has insufficient resources to accept or process this
particular request. For example, some services might use this error code when configuring a
device to broadcast data when the quantity of data that is already being broadcast in addition to
the requested broadcast data is too large.

• Application Errors The request did something with an attribute of a service that was not
allowed, and the service allocated its own error code to report what went wrong. This is a
range of error codes, from 128 to 255, and the actual meaning is defined in the service
specification in which the attribute is grouped. A typical application error would be that the
value written into a characteristic was invalid.

It should be noted that an error response terminates the request. If the client fixes the error, perhaps
by authorizing or performing a procedure that authenticates the link, the client will have to repeat the
request. There is no “pending” response. Pending responses assume that the server can hold state
about the request while it sorts out the problem. In Bluetooth low energy, the client is always the more
complex device so it must resolve the problems and hold the state again. It also means that a client
can send any request to the server, knowing that it can always receive an error, and then move on to



the next attribute if it is unable to fix the problem causing the error.

10.7. The Generic Attribute Profile
The final piece of the attribute puzzle is the Generic Attribute Profile (GATT) procedures. The
Attribute Protocol defines how a client and server can send standard messages between one another.
The GATT procedures define standard ways that services, characteristics, and their descriptors can
be discovered and then used. The GATT procedures can be considered to be split into three basic
types:

• Discovery procedures
• Client-initiated procedures
• Server-initiated procedures

There is one additional type of procedure that doesn’t fit into any of these groups. This is the
Exchange MTU procedure that uses the Exchange MTU Request from the Attribute Protocol to
determine the MTU size that is used for any subsequent messages. This procedure does not have to be
used; therefore, the default MTU of 23 octets would be used.

10.7.1. The Discovery Procedures
There are four basic things that need to be discovered. First, the client needs to discover the primary
services. Once the primary services have been discovered, all the other information on a server that
is grouped with this primary service can be discovered. The client can then use the range of handles
for each interesting primary service to discover the referenced secondary services, the characteristics
that are actually exposed by this instance of the service. For each characteristic found, the set of
descriptors can then be discovered. Only after all this is complete can the services be “used” by
client and server-initiated procedures such as reading or writing characteristic values or descriptors.

10.7.2. The Discovering Services
There are three ways to discover services:

• Discover All Primary Services
• Discover Primary Service By Service UUID
• Find Included Services

10.7.2.1. Discover All Primary Services

When a client connects to a device and wants to find all the primary services exposed on the device
to determine what it can do, it uses the Read By Group Type Request with the handle range set to
0x0001 : 0xFFFF and the attribute type set to Primary Service. The server responds with the one or
more primary services that it finds. The response includes not only the handle of the service
declaration but also the last handle for the attributes of this service. The response also includes the
value of the service declaration so that the client can determine that it understands each service.

Unless the last handle of the last service is 0xFFFF or an Error Response was received, the client
sends another Read By Group Type Request with the starting handle updated to be one greater than
the last handle of the last service in the previous response. This way, the client can enumerate all the
services on a device.

It should be noted that the Read By Group Type Response cannot return both services with 16-bit



UUIDs and 128-bit UUIDs in a single response. Therefore, the server will return all 16-bit UUIDs
before an attribute with a 128-bit UUID in one response, and then the 128-bit service in the next
response, and the remainder of the 16-bit UUIDs in subsequent responses. This is optimized for the
more common 16-bit UUIDs used by standard services. To help with this, 16-bit UUID–based
services are recommended to have lower numbered handles.
10.7.2.2. Discover Primary Service By Service UUID

Sometimes, a client just wants to use a particular service and doesn’t want or need to enumerate any
other services. For example, a light switch would only need to discover the Light Service and
wouldn’t care about any other services that this device exposes. To help with these “simple clients,”
a special procedure is used that is optimized for discovering primary services that have a known type.

The client sends a Find By Type Value Request to the server with the handle range set to 0x0001 :
0xFFFF, the type set to Primary Service, and the value set to the service type that is wanted, for
example, Light Service. The server responds with the handle ranges for each light service that is
found.

Some services will be defined such that they are “singleton” services; they can only be instantiated
once on any given server. For these services, the response will only ever include a single handle
range. Other services will allow themselves to be instantiated multiple times; thus, the response will
have multiple handle ranges, one for each service.

It might be possible—although unlikely—that the number of instances of a given service on a
device will exceed the eight service handle ranges that can be included in a single response. In this
case, the same updating of the starting handle that was used earlier is used to find the other services.
10.7.2.3. Find Included Services

Once the primary services are discovered, secondary services and other referenced services can then
be discovered. This involves looking for an Include declaration by using the Read By Type Request.
This time, the starting handle and ending handle would be set to the handle range of each service
previously found. Typically, only two references can be returned in a single response. Therefore, the
request needs to be sent with the starting handle set to one higher than the last handle returned.

Once referenced services have been discovered, the references to these services can also be
discovered by using the same procedures.

10.7.3. Characteristic Discovery
Once the services have been discovered, the characteristics of each service can then be discovered.
To discover characteristics, both characteristic discovery and characteristic descriptor discovery
must be performed.
10.7.3.1. Discover All Characteristics of a Service

To perform characteristic discovery, Read By Type Request is used with the handle range set to the
handle range for the service and the type set to Characteristic. This allows all the characteristic
declarations to be discovered and read.

Within a service, the mandatory characteristics should be ordered first, followed by any optional
characteristics. This allows a client that is looking for the one mandatory characteristic in a service to
terminate this procedure early.

For each characteristic in a service, the characteristic declaration is returned, together with the



handle of this characteristic. The declaration includes its properties, the handle of the attribute that
contains the characteristic’s value, and the type of this characteristic. This means that once you have
discovered the characteristic declaration, you can determine what this characteristic represents, what
you can do with this characteristic, and the handle for the subsequent read or write procedures.
10.7.3.2. Discover All Characteristic Descriptors

Once each characteristic’s declaration has been discovered, it is then possible to find all the
descriptors for each characteristic. This is done by using the Find Information Request with the
handle range set to the handle range for each characteristic declaration grouped with the
characteristic.

It is not possible to find the handles of all the attributes that are grouped with the characteristic
declaration directly. It is possible to determine the handles of all the characteristic declarations
within a service, and with this knowledge, determine the handles associated with a given
characteristic. For example, if you have a service that has a declaration at handle 0x0100, and the end
handle for this service is 0x010F, with characteristic declarations at 0x0102 and 0x0108, the attribute
handles for the attributes grouped with the first characteristic of this service would be in the range
0x0103 to 0x0107, and for the second characteristic, they would be in the range 0x0109 to 0x010F.

The Find Information Response includes the handles and types of all the descriptors for the
characteristic. Any characteristic descriptor that is not understood by the client can be safely ignored.
Any characteristic descriptor that is understood by the client can be used to either understand the
characteristic further, or configure the behavior of the characteristic. For example, the client could
use the Characteristic Presentation Format to understand how to display the value on the client’s
display. The client could use the Client Characteristic Configuration Descriptor to configure the
characteristic to be notified or indicated.

10.7.4. Client-Initiated Procedures
There are four things that a client can do with a characteristic:

• Reading characteristic value
• Writing characteristic value
• Reading characteristic descriptors
• Writing characteristic descriptors

10.7.4.1. Read (Long) Characteristic Values

After the characteristics of a service have been discovered, the value of the characteristic can be
read. The value is stored in an attribute that is pointed to by a handle in the characteristic declaration.
The type of this attribute is also the same as the characteristic UUID from the characteristic
declaration. This means that once the characteristic descriptor has been discovered by using the
characteristic discovery procedures described earlier, the characteristic value can be read by using
either a Read Request or a Read Blob Request.

The difference between using a Read Request or a Read Blob Request is very subtle and can cause
confusion. Attributes can have a fixed length, and if this fixed length is less than the attribute
protocol’s MTU, the Read Request can be used to read the characteristic value. If the attribute has a
fixed length but this length is longer than the attribute protocol’s MTU, first a Read Request would be
used to obtain the first 22 octets of the characteristic’s value, followed by one or more Read Blob



Request messages to obtain the remaining parts of the characteristic’s value.
If the characteristic value can have a variable length, for example, a string, then it must be assumed

that the value is longer, and then the Read Request followed by Read Blob Request messages must be
used to read the complete value. This procedure can terminate early if the variable length value is
shorter than expected. For example, if the characteristic value is 21 octets in length, only a single
Read Request will be necessary; if the characteristic value is 22 octets in length, a Read Request
followed by a Read Blob Request will be necessary, with the Read Blob Response containing no
additional octets of value. Therefore, it is not possible to know if the Read Response or any Read
Blob Response contains the last octet of the attribute value or is just full up because it has exactly the
right length. Thus, the client keeps issuing a Read Blob Request until it receives a Read Blob
Response containing less than 22 octets of data.
10.7.4.2. Read Using Characteristic UUID

There are some instances for which you just want to read the value of a characteristic, without having
to first find all the characteristic declarations within a service and then read the value. For example,
to read the battery level, it would be much more efficient to just request the value of the Battery Level
characteristic. This can be done by using the Read By Type Request with the type set to the required
characteristic UUID.
10.7.4.3. Read Multiple Characteristic Values

It is also possible to read multiple characteristic values at the same time. This does require that the
handles of each of the characteristic’s values are known. The biggest issue with this procedure is that
each of the values must have a known size. This is because there are no frame boundaries on each
value. The Read Multiple Request is used to perform this procedure.

However, even when taking this restriction into consideration, it can also provide some interesting
possibilities. The last characteristic value requested can have a variable size because the size of this
value is determined by the size of the attribute protocol packet.
10.7.4.4. Write (Long) Characteristic Value

To write characteristic values, the Write Request is used. This can only be used to write short
characteristic values; by default, less than or equal to 20 octets in length. To use this, the
characteristic value’s attribute handle must have been discovered.

If the attribute value that is to be written is longer than 20 octets, a different procedure will need to
be used. This involves using both the Prepare Write Request to prepare the long value to be written,
followed by the Execute Write Request to actually write the value. It might appear to be overkill from
a protocol point of view to use the same procedure to write long characteristic values as is used for
reliable writes, but there is a very good reason for this. The Attribute Protocol is atomic in operation
only for a single request. If the long attribute write occurred over multiple requests, causing the value
to be partially changed between each request, any other device trying to read the value would
possibly read an invalid value. By using the prepare write queue to prestore the long value to be
written and then executing this write in a single Execute Write Request, the atomic nature of the write
can be ensured.
10.7.4.5. Characteristic Value Reliable Writes

When attempting to write values with the maximum reliability, the Characteristic Value Reliable
Writes procedure is used. This procedure can also be used for writing multiple characteristic values



at the same time in an atomic operation. For example, when moving a machining tool to a new
position in 2-D space, if the x and y values were written in sequential requests, two straight lines
would be created, one horizontal and one vertical. However, if both the x and y values were prepared
and then executed in a single atomic operation, a single line would be created.

The procedure uses the same Prepare Write Request and Execute Write Request that is used in the
Write Long Characteristic Value procedure, with one additional check. For each value that is
prepared, the Prepare Write Response is compared with the request to ensure that the handle and
value in the response are the same as those used in the request. As explained in Section 10.6.13, this
ensures the maximum security against single bit errors. If the handle and value are different, the
Execute Write Request is used with the flags parameter set to cancel the prepare queue. Consequently,
all the values that were prepared will have to be prepared again.
10.7.4.6. (Signed) Writing Without Response

Sometimes, a value needs to be written very quickly and a response is not required at the protocol
level. This procedure uses the Write Command to send the value to be written to the characteristic
value’s attribute. There is no response with this command; therefore, it is assumed that if a response
is required, it would be delivered through another characteristic being notified, or is out of band, or
not required.

For example, when turning a light on, it is not necessary to receive a response from the peer device
over the Attribute Protocol because the user will see the light turn on. Another reason for using this
procedure is when the response might not be available immediately. For example, a time
synchronization service might expose a characteristic that can be written without response to start the
synchronization process. When the synchronization has completed, the newly updated time value can
be notified to complete the process. The final reason for using this procedure is when the response
would be too complex to fit into a single message. For example, a message server could expose the
state of a single message and have a characteristic that can be written without response to change
which message is exposed. There is no reason to have a response to the write because the value of the
associated characteristics will have been updated by the time those values are read.

For some devices, the data that is written needs to authenticate the initiator of this message. To do
this, the Signed Write Command is used. Again, this does not have a response, so it can be used in
exactly the same situations as a Write Command, but with the additional security that authentication
provides.

For example, the television would like to know that the remote control that just sent the “power
off” message was the remote control that is bonded with the television. Typically, this would have
required the full encryption of the link to ensure authentication. Encryption takes time to set up and
requires many resources on devices to create cipher streams for encrypting each message. For some
applications, the time taken to encrypt the link will push the latency requirements of the application
outside the latencies that can be tolerated. The Signed Write Without Response procedure solves this.
The message can be authenticated before the link is established, and then sent on an unencrypted link
as the very first message on the link. This significantly reduces the latency for the message being
transmitted to the other device but does not stop eavesdroppers from listening to this transaction.
However, if this message is just to say “turn on” or “turn off” a device, there is no confidential
information in this message.
10.7.4.7. Read/Write (Long) Characteristic Descriptors



Characteristic descriptors are not the same as the characteristic value, but the procedures to access
them are very similar to the procedures used to read and write the characteristic values.

For reading the descriptors, the Read Request and Read Blob Request are used. For writing the
descriptors, the Write Request and Prepare Write Request/Execute Write Request are used.

10.7.5. Server-Initiated Procedures
Not all procedures are initiated by the client. Some are initiated by the server, including notifications
and indications. Typically, the client will configure the server to send these messages or cause the
server to send the messages because it commanded the server to do something that generates these
messages.

There are two types of GATT procedures that are server initiated:
• Notifications
• Indications

10.7.5.1. Notifications

A notification is a server-initiated message that can be sent at any time by a server to a client. These
messages have no flow control mechanisms, so a client might not have enough buffer space to hold all
the received messages and is allowed to drop them. It is useful to consider notifications as unreliable
messages. Notification uses the Handle Value Notification message.
10.7.5.2. Indications

An indication is a server-initiated message that can be sent at any time by a server to a client. These
messages have flow control and therefore a server cannot send an indication until the last indication
was confirmed as received by the client. These indications are therefore considered to be reliable
messages. Indications use the Handle Value Indication message as well as the Handle Value
Confirmation message sent by the client to acknowledge the receipt of the indication.

10.7.6. Mapping ATT PDUs to GATT Procedures
• Exchange MTU Request is used in the Exchange MTU procedure in GATT.
• Find Information Request is used in the Discover All Characteristic Descriptors procedure in
GATT.

• Find By Type Value Request is used in the Discover Primary Services By Service UUID
procedure in GATT.

• Read By Type Request is used in the Find Included Services, Discover All Characteristics of a
Service, Discover Characteristics by UUID, and Read Using Characteristic UUID procedures in
GATT.

• Read Request is used in the Read Characteristic Value and Read Characteristic Descriptors
procedures in GATT.

• Read Blob Request is used in the Read Long Characteristic Values and Read Long
Characteristic Descriptors procedures in GATT.

• Read Multiple Request is used in the Read Multiple Characteristic Values procedure in GATT.
• Read By Group Type Request is used in the Discover All Primary Services procedure in
GATT.



• Write Request is used in the Write Characteristic Value and Write Characteristic Descriptor
procedures in GATT.

• Write Command is used in the Write Without Response procedure in GATT.
• Signed Write Command is used in the Signed Write Without Response procedure in GATT.
• Prepare Write Request and Execute Write Request is used in the Write Long Characteristic
Value, Characteristic Value Reliable Writes, and Write Long Characteristic Descriptors
procedures in GATT.

• Handle Value Notification is used in the Notification procedure in GATT.
• Handle Value Indication is used in the Indication procedure in GATT.



Chapter 11. Security

There are two types of encryption: one that will prevent your sister from reading your diary,
and one that will prevent your government.

—Bruce Schneier

11.1. Security Concepts
Security is a complex subject that for many people is just a black box. If the technology is secure, that
is enough for lots of people. However, there are many things about security that need to be understood
in the context of Bluetooth low energy. These include the following topics:

• Authentication
• Authorization
• Integrity
• Confidentiality
• Privacy

11.1.1. Authentication
Authentication is defined as a way to prove that the device with which you are connecting is actually
the device it claims to be and not a third-party attacker. This is done by using two basic methods:

• Initial authentication and sharing of a secret
• Re-authentication using a previously shared secret

For example, when a user opens a bank account, she must provide documentation to prove that she
is who she says she is. This authenticates the user to the bank, typically because the bank trusts the
issuers of these documents. Passports, identification cards, and other government-issued documents
such as a driver’s license are typically used for this. The bank then gives the customer a plastic bank
card and a Personal Identification Number (PIN) that she can use at a later time to re-authenticate
herself with the bank. When the customer wants to remove money out of this bank account she must
authenticate herself to the machine by using the card and the shared secret PIN. Any person who has
that card and that PIN can authenticate himself as the account holder to the bank—even if he isn’t in
actuality.

In Bluetooth low energy, authentication is performed in three different ways:
• During the initial pairing of devices, an authentication algorithm is used to authenticate the
connecting device. This might involve entering a passkey into one or both devices. This allows
the link to be encrypted, and any shared secrets that will be required later can be distributed.
When these shared secrets are stored, the devices are said to be “bonded.”

• When reconnecting to a device with which you have previously bonded, one of these devices
can send a signed command to the other device to authenticate that it knows the shared secret
that was previously distributed. The signature is created by using the shared secrets exchanged
at bonding, and as such, it cannot be falsified by a third party. Part of this signed command must
be a counter that is incremented for each message sent to prevent replay attacks.

• When reconnecting to a device with which you have previously bonded, either device can



initiate encryption. Each and every data packet that is transmitted from then on will incorporate
a message integrity check (MIC) value that authenticates the sender of that message to the other
device by using the previously distributed shared secrets.

11.1.2. Authorization
Authorization is defined as the assignment of permission to do something. This is usually done in two
ways:

• Documentation that provides authorization
• Authorization that is actioned directly

A concert normally has few, if any, authentication requirements, but authorization to enter the
concert is typically enforced by using something called a ticket. These tickets are provided by the
event organizer to the guest who presents the ticket at the concert as authorization to enter. There is no
authentication that the person holding the ticket is the same person who authenticated the payment for
these tickets; in other words, no photo identification is needed.

Another example of authorization is the instant approval to allow somebody to do something. For
example, if you quickly lent somebody your computer and ask him only to use a single program, you
are authorizing him to use that program and no others.

This same authorization model can also be used wirelessly. When something connects with your
device, you can authorize it to access certain parts of your device, but not everything within it.

11.1.3. Integrity
Integrity is defined as the internal consistency and lack of corruption of data. When any data is sent
from one device to another, either by using a wired or wireless communications protocol, the data is
subject to introduced errors. These errors are important to detect and guard against.

From a security point of view, some errors could be introduced by a third-party attacker to attempt
to change a valid message into a malicious message. For example, by replaying a captured message
but changing one bit in a message that means “lock door” to “unlock door,” the security of a building
could be severely compromised. It should be noted that cyclic redundancy checks (CRC) are used to
protect against bit changes, but these are typically too weak to be considered a security measure. It is
too easy to change not only a few bits in the message but also a few bits in the CRC to match. To
ensure integrity, a much stronger form of message authentication is required that also checks the
integrity of the original message.

11.1.4. Confidentiality
Confidentiality is defined as the intent to keep something secret. The most common representation of
confidentiality is in films when you see the characters handling company or government reports
marked as “confidential.” Unfortunately, this is not a good use of the word because anybody who can
see that report can read it. In Bluetooth low energy, confidentiality means that even if a third-party
eavesdropper receives a message, she cannot decode it. The process of enciphering a message is
called encryption. The enigma machine developed during the second world war is a classic example
of a device that could encrypt or decrypt a message.

11.1.5. Privacy
Another security concern that should be considered is how private any communication is. Complete



anonymity is difficult to provide. Take, for example, a famous person boarding an aircraft; there are
plenty of people who will recognize him just by his face. It is therefore almost impossible to be
granted complete anonymity in every location.

Wireless communications should not make it easy to track somebody. If the devices that somebody
carries are constantly allowing other parties to track his movement throughout a space, there could be
some interesting and spooky consequences. For example, stores might give you special offers based
on what you have bought in other stores. That’s not so bad, right? But a stalker could seed an area
with devices and automatically track you through that area, which is a less attractive prospect than
getting a few discounts.

Thus, privacy is the ability to prevent others from recognizing you by the devices that you are
carrying, and not to allow them to track your movement throughout a space.

11.1.6. Encryption Engine
Within Bluetooth low energy, there is a single cryptographic block that is used as a one-way function
to generate keys and also to encrypt and provide integrity checks. This encryption engine is called the
Advanced Encryption System (AES) as defined by the NIST publication FIPS-197.1 Bluetooth low
energy uses the 128-bit version of this, known as AES-128.

A generic way of looking at AES is to consider a single function, E, that takes both a key and some
plain-text data, and results in a cipher-text data block. AES is therefore a block cipher. The key is
128 bits in length, the plain-text data is 128 bits in length, and the resultant cipher-text is 128 bits in
length. This can be expressed as shown in Equation 11-1:

It is interesting to note that if the key doesn’t change rapidly, the algorithm is very efficient. Each
time a new key is used, lots of calculations need to be performed to set up the internal state of the
encryption engine. After the setup is performed, each new plain-text value that is input can be quickly
converted into cipher text. The security algorithms in Bluetooth low energy make use of this property
of the AES encryption engine.

11.1.7. Shared Secrets
Virtually all security is based on shared secrets. You bank card’s PIN is a secret that is shared
between you and your bank. Your computer password is a secret that is shared between you and
either your computer or your company’s information systems departmental computers. Your house key
is a shared secret between the metal that you hold in your hand and the physical formation of the metal
within the door lock.

Within Bluetooth low energy, there are many shared secrets known as keys. A key is just a
shorthand way of saying “shared secret.” There can be plenty of keys, just like you have a car key, a
door key (or two or three), a bicycle lock key, or a key to access your work.

There are five main keys in Bluetooth low energy:
• Temporary Key
• Short-Term Key
• Long-Term Key
• Identity Resolving Key



• Connection Signature Resolving Key
11.1.7.1. The Temporary Key

The Temporary Key (TK) is used during the pairing procedure. It is set to a value that is determined
by the pairing algorithm and used to calculate the Short-Term Key.

“Just Works” is a mode designed to make connection to Bluetooth low energy devices possible
when very limited user interfaces prevent user entry or verification of pass key values. The TK value
when using “Just Works” is zero. This means that there is no authentication being performed and
therefore this connection and any keys distributed over it would be vulnerable to man-in-the-middle
attacks.

“Passkey Entry” is a mode used when the user interfaces on both devices allow at least the display
or entry of a number value. The TK value when using the “Passkey Entry” algorithm would be set to
the numeric value that is to be input on both devices. This numeric value is a value from 0 to 999999.
This means that there is a significant probability that a man-in-the-middle attack will not guess the
same value that is being used by the connection. There is only a one-in-one-million chance that the
right value is guessed. For authentication, this is a reasonable probability; therefore, a key generated
using this algorithm is considered an authenticated key, protected from man-in-the-middle attacks.

The last TK value is when the “Out Of Band” algorithm is used. This is when both devices have
information that has been acquired by using another technology than Bluetooth. For example, if Near-
Field Communication (NFC) was used to transfer a value between the two devices, this value can be
used as the TK value for authentication. A key generated by using out-of-band data is considered
authenticated and protected from man-in-the-middle attacks because it is assumed that the out-of-band
technology is also not subject to these types of attacks.
11.1.7.2. Short-Term Key

The Short-Term Key (STK) is used as the key for encrypting a connection the very first time two
devices pair. The STK is generated by using three pieces of information: The Temporary Key is used
as the key for the encryption engine, and two random numbers, Srand and Mrand, are contributed by
both the slave and master devices in the initial pairing request. Srand and Mrand are concatenated with
the | symbol, as illustrated in Equation 11-2 and then encrypted using the Temporary Key.

The contribution of random numbers by both the slave and the master increases the security of the
whole system because any attacker can only contribute 64 bits of the 128-bit random value. It is much
harder for a man-in-the-middle attacker to guess which one of 264 possible values the peer device
used.
11.1.7.3. Long-Term Key

The Long-Term Key (LTK) is distributed once the initial pairing procedure has encrypted the
connection. The LTK can be a random number that is stored in a security database. It is also possible
that the LTK is generated on the slave device.

Slaves are by design resource-constrained, so having a security database might be considered too
much. To solve this problem, the slave also distributes two other values: EDIV and Rand. These two
values are stored on the master and sent upon a reconnection to the slave. The slave can then calculate
the LTK that should be used, or more accurately, the LTK that it had previously given to the master.



Upon reconnection to a previously paired and bonded device, the LTK is used to encrypt the link.
This means that full pairing is not required each and every time a device connects.
11.1.7.4. Identity Resolving Key

The Identity Resolving Key (IRK) gives a device that knows a peer device’s IRK the ability to
resolve (work out) a peer device’s identity. Privacy could be performed by always using a fully
random address. These devices could change their random addresses at random times, and the device
would not be trackable or even connectable by any trusted device. The problem is how to be both
private due to using a random address, and also be identifiable by trusted devices.

To solve this problem, the IRK is used when generating the random address. This is done by
splitting the address into two parts: a random part, and a hash of this random part with the IRK, as
shown in Equation 11-3.

By placing both the random number and the hash into the address field, a peer device that knows
the IRK can be checked to see if they match.

One way to think of this is to consider a private person who uses a different alias each time he talks
to another person. To keep this simple, assume that instead of 224 possible name pairs, we have just
three. The first time he could be known as “Floella Benjamin,” the next time as “Bob Hope,” and the
next time as “Charlie Dimmock.” If you see the names Floella with Benjamin, or Bob with Hope, and
so on, then you know it is that person. If the name were “Floella Hope” or “Bob Dimmock,” it is not
that person because “Floella” always comes with “Benjamin.”

Therefore, it’s possible for a device that has a list of IRKs for each separate bonded device to do
an exhaustive match on each of these IRKs with the received private addresses. A match likely means
that the correct device has been found.

It should be noted that there is not a one-to-one correspondence of devices to random numbers and
hash values. There are approximately 70,000 billion possible fixed device addresses and, therefore,
devices, yet there are only 4 million random numbers that can be used. Therefore, there is a
reasonably high probability that for two given devices with the same random number and different
IRKs, it would be possible to have the same hash value. This is why privacy is typically combined
with authentication to ensure that it really is the correct device and not somebody who has the same
combination of address parts.
11.1.7.5. Connection Signature Resolving Key

The Connection Signature Resolving Key (CSRK) gives a receiving device the ability resolve a
signature and therefore authenticate the sender of the message. The CSRK is distributed from the
source of the message to the destination device for the message. Once distributed over an encrypted
link, the link can be disconnected. Upon reconnection, because the message only needs to be
authenticated and not sent in a confidential matter, the message can be signed.

To sign the data, the CMAC function defined by NIST Special Publication 800-38B2 is used. This
uses the CSRK as the key for this function, along with a Sign-Counter. The SignCounter is a 32-bit
value that must be incremented for each message from the source device to the destination device for
the duration of the bond. The SignCounter is set to zero immediately after bonding and incremented
for each new packet sent, regardless of whether the devices disconnected in the meantime.



11.2. Pairing and Bonding
To enable most of the security features in Bluetooth low energy, two things must happen: The devices
must pair with each other, and then once the connection is encrypted, they must distribute keys that can
be used to encrypt, enable privacy, and authenticate messages. If these keys are saved for a future
time, the devices are bonded.

Therefore, to understand how security works, it is essential to understand how the pairing and key
distribution system works. It is also important to understand that the initial connection between two
devices is different from the subsequent connections between the same two devices.

11.2.1. Pairing
Two devices that initially have no security but wish to do something that requires security must first
pair with each other. Pairing involves authenticating the identity of the two devices to be paired,
encrypting the link, and then distributing keys to allow the security to be restarted on a reconnection
much more quickly the second time around.

Pairing has three distinct phases:
• Exchange of pairing information
• Authentication of the link
• Key distribution

11.2.2. Exchange of Pairing Information
The first phase of pairing involves the exchange of pairing information that is used to determine both
how to pair the two devices and what keys are distributed during the last phase.

It is important to note that just because there can be very complex algorithms used during the
pairing operation, how the devices pair is probably the biggest single opportunity to have the user
reject the whole wireless technology. If pairing is difficult and complex for the user, there is a risk
that the user will fail to pair the device the first time around and take the product back to the store.

Bluetooth low energy uses the same pairing process as that used for the Secure Simple Pairing
feature in Bluetooth classic.

Each device first determines its input and output capabilities, together with other paring
information. The input and output capabilities are selected from a list of possible capabilities:

• No Input No Output
• Display Only
• Display Yes/No
• Keyboard Only
• Keyboard Display

To determine which of these five possible values should be used, the device determines its input
and output capabilities and feeds them into a matrix, which is shown following this paragraph. The
input capabilities can be either “no input,” the ability to select “yes/no,” or the ability to input a
number by using a “keyboard.” The output capabilities can be either “no output” or “numeric output.”
Numeric output in this context means the ability to display a six-digit number.



These five device input and output capabilities are communicated between the devices by using the
Pairing Request message.

The Pairing Request message is sent as the first security message from a device. This contains not
only the capabilities but also other pairing information, including a bit stating if out-of-band data is
available, and what the authentication requirements are, if any. It also includes the list of the keys that
are being requested to be distributed at the end of the pairing procedure. The authentication
requirements include whether bonding is enabled and whether man-in-the-middle protection is
required.

In response to this, a Pairing Response message or a Pairing Failed message can be sent.
The Pairing Response message includes basically the same information as the Pairing Request.

However, if the request indicated that out-of-band data was present but the responder doesn’t have
any out-of-band data, then the Pairing Failed message is sent instead. In fact, the Pairing Failed
message can be sent at any time during the pairing procedure to give devices the opportunity to fail
the current pairing; for example, when a parameter doesn’t match what is supported or expected.

Once the Pairing Request and Pairing Response have been exchanged, the two devices can then
move to the second phase of the pairing procedure.

11.2.3. Authentication
Using the information from the Pairing Request and Pairing Response, the two devices can
deterministically use the pairing algorithm. The two input and output capabilities are used in the
following table to determine which algorithm is used:

It should be noted that for some combinations, it is entirely possible to lead the users into doing the
right thing. For example, if device A has a Display Yes/No capability while device B has a Keyboard
Display capability, then device A can display a six-digit number, and the user of device B can see
that number and type it into device A. That value can then be used for the TK value.



Once the TK value has been determined, a really simple but hard-to-attack procedure is used to
help stop a man-in-the-middle attack. A random number is generated by each device, and a
confirmation value is also calculated based on that random number, the TK value, the known values
of the pairing so far including the device addresses, and the parameters from the pairing request and
response messages see Equation 11-4.

This value confirms that all the known parameters and addresses used so far are the same on both
peer devices. This protects against man-in-the-middle attackers.

Both devices exchange the random numbers and the confirm values; therefore, they can check that
the confirmation values match the random numbers and all the other shared information. The
interesting twist is that the confirmation values are sent before the random numbers are exchanged. By
doing this, an attacker would have to guess which one of the 2128 possible random numbers the peer
device would use to calculate the confirmation value, before it knows what that random number might
be.

If the confirmation values do not match the random numbers, then a Pairing Failed message would
be sent to terminate the pairing because something was wrong. If the confirmation values do match the
random numbers, both devices have the same input parameters from the pairing request and response,
the same address information, the same TK value, and the correct random numbers.

Assuming that everything is confirmed correctly, the random numbers exchanged during the
authentication are then used to calculate the STK value as described in Section 11.2. This STK value
is then used to encrypt the link by using the Link Layer encryption procedures, as described in Chapter
7, The Link Layer, Section 7.10.3.

11.2.4. Key Distribution
Once the connection is encrypted by using the STK, it is then possible to distribute the required keys.
These keys are distributed one at a time because at 128 bits in length, they only just fit into a single
packet.

The following keys can be distributed:
• LTK
• IRK
• CSRK

The LTK is distributed along with EDIV and RAND because the slave does not have a security
database. The slave can use these bits of information to generate the LTK for that master directly.

Both the master and slave can distribute all the types of keys. This is because for the current
connection, the topology might be that device A is a master and device B is a slave; however, in
subsequent connections the topology might be reserved such that device A is the slave and device B is
the master. It is therefore possible to distribute the LTK from the master to the slave so that if they
reconnect in a different topology, they can still reconnect quickly.

A slight issue that must be considered is that the addresses used during the pairing might not be the
actual address of the device; the addresses used during pairing can be either a random or a private
address. It is therefore also useful to distribute the identity information of the two devices so that this
information can be used as the unique value in the database. This allows future connections to be



performed by using this identity information rather than a random address that could be out of date.

11.2.5. Bonding
Bonding is really a Generic Access Profile discussion; however, it is useful to consider its operation
at this point also. Bonding is nothing more than the saving of the keys and associated identity
information in a security database. If the device does not save these values, the devices will have
paired but not bonded. If one device saves them but the other doesn’t, upon reconnection, only one
device will have the LTK, and thus the starting of encryption will fail.

To avoid this prospect, both devices exchange bonding information during the initial pairing so that
they know whether the other device saves this bonding information. If the other device does not save
the information, then once the attempt at starting encryption fails, the hosts will attempt to pair again.

11.3. Signing of Data
When a device is connected but not encrypted, it is possible to send data that is authenticated without
confidentiality. To do this, a CSRK is exchanged during the very first connection at which pairing
occurred. After this point, as long as no data is exchanged that requires confidentiality, signing can be
used.

To sign the data, the CMAC algorithm is used. This algorithm takes the message to be
authenticated, a SignCounter, and the CSRK used to authenticate the sender and then generates a
signature value.

The message that is authenticated is typically an attribute protocol Signed Write Command and
consists of the opcode, handle, and value that is being written.

The SignCounter is a 32-bit value that must be incremented on each new data packet that is sent.
This is used to stop replay attacks. If the same SignCounter is transmitted in a subsequent data packet,
it must be assumed that an attacker has received the previous message and is attempting to replay the
message in the hope that it might do something interesting. Unfortunately for the attacker, the receiver
just discards any message with a SignCounter that is less than the next expected value. It should be
noted that the peer device needs to store this next expected SignCounter value for each device with
which it is bonded if signed data is supported.

The SignCounter value must be included in the message that is sent because the receiver doesn’t
know if the next message received has the next expected Sign-Counter. Consider the case when this is
used to open and close the garage door. The message that commands the garage door to open or close
is not confidential; anybody watching from the street will see the car turn up, followed by the garage
door opening. If you go out one day far away from the garage and press the garage door remote
control button a number of times, each time it is pressed a new message needs to be generated. By the
time you return home and press the button to actually open the garage door, the SignCounter value
might be higher than what is expected. The garage door itself won’t consider this a threat because the
value is not one that has been previously used.



Chapter 12. The Generic Access Profile

It is no coincidence that in no known language does the phrase “As pretty as an Airport”
appear.

—Douglas Adams

The final part of the core specification is the Generic Access Profile (GAP). This defines how
devices can discover and connect with one another and how they bond. It also describes how devices
can be broadcasters and observers and, as such, transfer data without being in a connection. Finally, it
defines how the different types of addresses can be used to allow private and resolvable addresses.

12.1. Background
One of the most important things to understand with Bluetooth low energy is how two devices first
find one another, work out what they can do with one another, and how they can find and connect with
one another repeatedly. This is really what GAP defines. To illustrate how Bluetooth low energy
works, let’s consider a typical user scenario:

A user has just returned home from the store from which she has just purchased a new heart-rate
belt. She already has a low energy–enabled phone and wants to connect the heart-rate belt to the
phone. She has been buying a lot of low energy devices recently; the list includes a low energy–
enabled television with remote control, a low energy lighting system, and, of course, low energy
sensors in her computer, shoes, and watch. How does she configure the heart-rate belt to work with
her phone?

The user opens the heart-rate belt box and reads the instruction leaflet that tells her to remove the
plastic tab from the heart-rate belt to turn the device on. It then instructs her to discover the heart-rate
belt. On her phone, she accesses the Bluetooth menu, taps the “Add Devices” button, and then watches
as a number of devices appear on the screen.

At the top of the list of devices is the heart-rate belt she just purchased along with an icon of a
heart-rate belt. She selects the heart-rate belt, and the phone moves to its application store and
displays a list of applications that work with this device. Some applications are free, some cost
money, and some are from the same brand as the heart-rate belt. She selects an application and
installs it on the phone. A few seconds later, the application is running and displaying heart-rate
information on the screen. The user goes out for a run to test the application.

The next day, the user puts on the heart-rate belt again and starts the application she downloaded
yesterday. Again, the heart-rate information is displayed on the screen. It’s almost like magic—she
simply uses the application, and the device works.

A few days later, one of the user’s friends recommends a different application that he downloaded
for his own heart-rate belt. She goes to the application store, searches for this application, downloads
it, and then runs it. The application again displays the heart-rate information, but now also includes
additional information about how hard the user is working out. The application is using the same
heart-rate information from the belt, but this time it’s using the data in a different way.

This example shows how a user can simply begin by using a Bluetooth low energy device, and how
the flexibility of Bluetooth low energy services means that they are not tied to a single application to



use that device.

12.1.1. Initial Discovery
To discover a device, you must scan for devices that advertise. Advertising devices transmit packets
to any scanning devices by using a many-to-many topology. The problem with this is that every device
that is connectable, but not necessarily discoverable, will be scanned. To solve this, in addition to
data, some flags are also broadcast that reveal whether the device is discoverable or connectable.

There are two types of discoverability. The first type is used by devices that are “limited-
discoverable.” This is used by devices that have just been made discoverable on a temporary basis.
For example, the first time a device is powered on, it would be limited-discoverable, or if the device
had a button that allowed it to be discoverable temporarily. A device is not allowed to remain in the
limited-discoverable mode for very long. This is because limited-discoverable mode is intended to
allow devices to stand out from the crowd of general-discoverable devices. If devices stayed limited-
discoverable for a long time, they would not stand out. Therefore, a device can only be limited-
discoverable for about 30 seconds.

The second type is used by devices that are “general-discoverable.” This is used by devices that
are discoverable but have not been recently engaged in interaction. For example, a computer that is
discoverable, such that other devices can find and connect to it, but has not recently had this
discoverability turned on, would be generally discoverable. A device that is searching for other
devices would typically place generally discoverable devices lower down the list of found devices
because these are probably not going to be as immediately important to the user as those limited-
discoverable devices are now.

Determining device discoverability is the combination of scanning for all devices and filtering on
the discoverable flags that each of these devices is broadcasting. It is also possible to use additional
filters when presenting the list of devices to a user. For example, the proximity of the device can be
used to present the devices that are closer to the searching devices at the top of the list and those that
are farther away at the bottom of the list. To do this, the transmit power at which the advertising
packets are transmitted is compared with the received signal strength to calculate the path loss of the
communication. Devices with a smaller path loss will likely be closer than devices with a larger path
loss.

Another possible form of filtering involves using the service information in advertising data to
segregate based on what a devices does. For example, if the user is looking for a heart-rate belt, then
the fact that one device in the area supports this particular service probably indicates that this is the
device with which the user wants to connect. There are two types of service information that a device
can expose: a device can expose a list of the services that it has implemented, and a device can
expose a list of services that it would like a peer device to support.

Therefore, with nondiscoverable devices, limited-discoverable devices, general-discoverable
devices, path loss range filtering, and service-based filtering, an intuitive interface can be made for
the user. If the user interacts with a device, it appears at the top of the list; if he moves the device
closer, it appears nearer the top of the list; if the device supports the services that are being searched
for, they will appear closer to the top of the list. A user just performs the search, looks at the item at
the top of the list, and, with high probability, connects to this correct device.

One little wrinkle in the device discovery procedure is name discovery. Users don’t like to look at
hexadecimal 48-bit numbers; instead, they prefer to look at user readable and understandable names.



To allow every device to have a name, the GAP defines a characteristic that exposes the device
name. The device name can also be included in the advertising data or the scan response data for
devices.

To obtain the scan response data, active scanning needs to be used. Therefore, when discovering
devices to display names on the screen, active scanning is typically required. This is because the
device name is static data that would normally be included in the scan response data and not the
advertising data. However, some devices have so much information they need to broadcast that they
are unable to include the complete device name in the advertising or scan response data; instead, they
include just part of the name or none of the name.

To obtain the complete device name in this situation, a connection must be made with this device
and the device name read. Thankfully, the device name has the well-known characteristic type of
“Device Name,” which you can read by using the simple attribute protocol Read By Type Request.

12.1.2. Establishing the Initial Connection
Once the list of devices has been found and a device has been selected, the next step is the initial
creation of a connection to the device. This initial connection is performed by initiating a connection
to the same device address that was found from the advertising packets. Once the devices are
connected, the connecting device performs either an exhaustive enumeration for all the services and
characteristics of that device, or it looks only for the service or services that it is interested in, and
the characteristics of those services.

For example, a phone or computer that has an application store would enumerate all the services
that the device exposes. This service information can then be sent to the application store, and any
applications in that store that support those services would be presented to the user. So, instead of the
user having to use the application that came with a device, an ecosystem of applications becomes
available. Some would be free, some would cost money, some would be made by the manufacturer of
the device, and some would be from independent software companies.

The alternative method is that the device only performs service discovery for one or possibly a
very limited list of services. For example, a television that is connected to a remote control would
only search for the human interface device service and possibly the battery service, but nothing else.
This means that even if the device supported more services than these two, the television would never
even perform service discovery on them. This method would typically be used by devices that have a
limited user interface or by devices that are connecting to peripherals that only use a very simple set
of functionality.

The result of service discovery is a list of those services that a device exposes. The client can then
use these services. In the application store model, it is the application that takes the next step of
characteristic discovery and configuration. Characteristic discovery is just like service discovery in
that a device can either enumerate all the characteristics within a service or just use the well-known
characteristics that it knows a service must expose. For example, the battery service must expose the
battery level characteristic. So, if it doesn’t need to discover any characteristics within the battery
service, a client can read the battery level characteristic directly.

12.1.3. Service Characterization
For a heart-rate belt, the characteristic discovery and configuration might be a little more elaborate.
For example, the heart-rate service might expose just the heart rate, or an aggregation of the heart rate



and the time intervals between heartbeats, or just the time interval between heartbeats. It can also
expose other information that it has calculated from the heart-rate sensor. A client can pick and
choose which characteristics to read. Some clients might only be interested in the heart-rate value,
whereas others might want to read all the information.

For the efficient transfer of data between devices, notifications or indications should be used. To
configure the characteristics for which a client wants to receive notifications or indications, the client
must write the client characteristic configuration descriptor. This descriptor enables the required
functionality. The device then starts sending these notifications or indications whenever necessary.
For the heart-rate example, a client might configure the heart-rate value to be notified, and for that
service, the value would be notified once each second, even if the heart rate doesn’t change. For other
services, the time interval can be more flexible. The battery service, for example, might only notify a
value when the value changes.

Thus, the application can configure the set of characteristics to be notified or indicated and then
wait until the service sends this data through. This means that even if the user changes the heart-rate
application, the new application will continue to receive the heart-rate notifications that were
previously configured.

12.1.4. Long-Term Relationships
Most of the time, a peripheral is associated with a single central device. Your proximity tag is
associated with your phone; your keyboard with your computer; your garage door opener with your
garage door. When one device is associated with another, they are are said to be bonded. Bonding is
a two-step process by which two devices that barely know one another authenticate themselves and
share secrets.

For bonding to be successful, both devices also need to be configured to be bondable. A device
that is not bondable—perhaps because it is already bonded with another device and can only manage
a single bond at a time—doesn’t need to advertise that it is bondable.

When both devices are bondable and one of these devices wants to bond, the first step of the
bonding process has started. After this, the input and output capabilities of the two devices are
exchanged, an authentication algorithm is chosen based on these capabilities, and the devices
authenticate one another. This results in an STK that is used to encrypt the link (for more information
about this, go to Chapter 11, Security, Section 11.1.7.2).

With the link now encrypted, the second step of the bonding process can be performed. This step
involves exchanging shared secrets that can be used when reconnecting to the same device. These
shared secrets are typically keys that have various uses: a Long-Term Key (LTK) for encrypting
subsequent connections, an Identity Resolving Key (IRK) for resolving private addresses, a
Connection Signature Resolving Key (CSRK) for checking the signature of signed attribute protocol
commands, as well as the distribution of some identification information sent by the slave to the
master so that the slave doesn’t have to store the information.

12.1.5. Reconnections
Sometimes, devices will discontinue a connection. This might be because they’ve already sent
everything they needed to send and don’t want to waste energy maintaining a connection. A light
switch will create a connection, send the “turn on the light” command, and then quickly disconnect.
Sometimes, the connections might be maintained for significantly longer periods of time. For example,



a keyboard might remain connected with a computer until the computer is turned off, at which point, it
disconnects. When the computer is turned back on again, it needs to reconnect to the keyboard.

Reconnections are both easy and hard. In Bluetooth low energy, all devices that want to be slaves
in a reconnected connection need to be advertising by using connectable advertising events. It might
not be discoverable, or it might be either limited or general-discoverable, or it might not allow
connections from any device. Also, for a device to connect to an advertising device, the master must
scan or initiate a connection to the device with the particular address that is advertising. This means
that the reconnecting device must be in the white list of the scanning or the initiating device if white
lists are being used (for more information about white lists, go to Chapter 8, The Host/Controller
Interface, Section 8.4.10).

12.1.6. Private Addresses
Some complications are introduced if the device that is advertising is using private addresses. A
private address is a random address that changes periodically, for instance, once every 15 minutes.
This means that even if you discovered a device that is advertising now, you will not be able to
determine if that same device is around in 20 minutes’ time, because it might be using a different
address. This can at first appear to be an impossible problem to solve.

The solution to this problem is a three-step process. The first step is to save an IRK during
bonding; the second is to use this key to generate a resolvable private address; and finally, the master
must scan for all devices and resolve these private addresses by using all the IRKs and only connect
to devices that it believes it has identified.

A resolvable private address is a type of random address that comprises three parts. The first part
is a set pattern of two bits to identify that this random address is a resolvable private address. This
reduces the computational load on the scanning device so that it only attempts to resolve private
addresses on resolvable private addresses. The second part is a 22-bit random number. The third part
is a hash of the random number with the IRK that was shared during bonding.

The combination of the random number and the IRK means that each private-addressed device
effectively has four million possible addresses that fingerprint it.

A master that wants to reconnect to a slave device that is using private addresses must therefore
take each resolvable private address that it scans, check with each and every IRK for each device that
it knows could be using private addresses, and then compute the hash value that would have been
used for each of these devices, given the random number. If this hash value matches the value used in
the resolvable address, then there is a fairly high probability that this is the device identified by that
key.

This is not absolutely certain. It’s possible that another device with a different IRK with the same
random number generates exactly the same hash value. However, a quick connection and encryption
can quickly check that this is the correct device. The IRK and the LTK used for encryption or the
CSRK used for signature authentication will be different for each of these devices, which can quickly
confirm that this is either the right device or the low probability that a duplicated hash value has
happened and it is the wrong device.

Private addresses have some disadvantages. The biggest one is that the host of the master must
perform brute-force checking of each and every IRK for each resolvable private address that it
receives. If that host knows many private devices, this could take some time. The HCI Encrypt



command is very useful in this instance, especially if the host has few computation resources
available.

Another disadvantage is that white lists cannot be used to make connections easily. The only way to
connect to private devices is to first scan for the resolvable private addresses, compute if this is a
private address of one of the devices to be connected to, and then connect to it manually. This
increases the power consumed by the host because the host must perform many computations to
resolve the addresses.

12.2. GAP Roles
There are four GAP roles defined for a Bluetooth low energy device:

• Broadcaster
• Observer
• Peripheral
• Central

A broadcaster is a device that sends advertising packets. Typically, this is used to broadcast some
data from a service to other devices that happen to be in an observer role. A broadcast must have a
transmitter but does not need a receiver. A broadcast-only device, therefore, only needs a transmitter.

An observer is a device that scans for broadcasters and reports this information to an application.
An observer must have a receiver; it can also optionally have a transmitter.

A peripheral is a device that advertises by using connectable advertising packets. As such, it
becomes a slave once connected. A peripheral needs to have both a transmitter and a receiver.

A central is a device that initiates connections to peripherals. As such, it becomes a master when
connected. Just like a peripheral, a central needs to have both a transmitter and a receiver.

A device can support multiple GAP roles at the same time. For example, a device can be a
broadcaster and a peripheral at the same time.

12.3. Modes and Procedures
Within GAP, there are two basic concepts that are used to describe how a device behaves. These are
modes and procedures.

When a device is configured to behave in a certain manner for a long time, this is known as a mode.
If a device is configured to perform a single action that has a finite time period over which this
behavior will occur, this is called a procedure.

For example, when a device is broadcasting, this is called “broadcast mode.” Broadcasting
typically lasts a long time; perhaps that is the single purpose of the device. When a device is looking
for broadcasters, this is called the “observation procedure.” Observations typically occur for a very
short period of time to build a user interface or find specific information that is needed.

Within GAP, the following modes are defined:
• Broadcast mode
• Nondiscoverable mode
• Limited-discoverable mode
• General-discoverable mode



• Nonconnectable mode
• Directed-connectable mode
• Undirected-connectable mode
• Nonbondable mode
• Bondable mode

Within GAP, the following procedures are defined:
• Observation procedure
• Limited-discovery procedure
• General-discovery procedure
• Name-discovery procedure
• Auto-connection establishment procedure
• General-connection establishment procedure
• Selective-connection establishment procedure
• Direct-connection establishment procedure
• Connection parameter update procedure
• Terminate connection procedure
• Bonding procedure

To understand GAP is therefore to understand how these modes and procedures interact with one
another. For example, the broadcasting mode and observation procedure can be logically combined to
allow observations of broadcasters.

12.3.1. Broadcast Mode and Observation Procedure
When a device is in broadcast mode, it is using the Link Layer advertising channels and packets to
transmit advertising data. This broadcast data can be observed by devices by using the observation
procedure.

When broadcasting, the advertising data must be formatted correctly, as described in Section 12.5.
It should be noted that some devices might have only a transmitter and are therefore broadcast-only

devices. For these devices, it would not generally be possible to use private addresses or signed data
in the broadcast data. Both of these require knowledge of keys that are distributed during the bonding
procedure that require a connection, which require both transmitter and a receiver. Of course, if these
keys could be distributed out of band, then they could still be used; however, there is no standard
defined method for this to occur.

12.3.2. Discoverability
In GAP, only devices operating in the peripheral role are discoverable. Devices that are trying to
discover these devices will be in the central role.

A peripheral device can be in one of three different modes used for discoverability:
nondiscoverable mode, limited-discoverable mode, and general-discoverable mode. Discoverability,
in the context of GAP, does not mean that a device is advertising, but that the device is discoverable
by a user interface on a peer device. A device can transmit advertising packets without being
discoverable, as understood by GAP.



Therefore, it’s necessary to include discoverability information as part of the advertising data for
devices to be discoverable in the context of GAP. This differentiates them from the devices that are
advertising or broadcasting data that are not discoverable. To do this, the Flags AD information (see
Section 12.5.1) includes two bits that are used to determine if a device is in nondiscoverable mode,
limited-discoverable mode, or general-discoverable mode.
12.3.2.1. Nondiscoverable Mode

A peripheral that is in nondiscoverable mode cannot set either the limited-discoverable mode or
general-discoverable mode bits in the Flags AD information. If no other bits in the flags information
are set, then the Flags AD does not have to be included in the advertising data. Nondiscoverable
mode is the default discoverable mode; therefore, the host must command a change from this default to
one of the other discoverable modes.
12.3.2.2. Limited-Discoverable Mode

A peripheral that is in limited-discoverable mode sets the limited-discoverable mode bit and clears
the general-discoverable mode bit in the Flags AD. Limited-discoverable mode is used by a device
with which the user has recently interacted, for example, the user just turned the device on for the first
time or pressed the connect button, or the user just made the device discoverable in some user
interface.

Limited-discoverable mode is only allowed to be used for approximately 30 seconds. This means
that if another device finds a limited-discoverable device, it can be fairly certain that this is a
peripheral with which the user has very recently interacted. Therefore, this device is most likely to be
the one to which the user is trying to connect at this moment.

Because limited-discoverable mode is primarily designed for devices that are trying to be
discovered and enter a connection, it is highly recommended to also include the following useful
information in the advertising data that will help build the user interface:

• Tx Power Level AD to allow sorting of devices found by path loss and therefore range
• Local Name AD to allow the name of the device to be displayed
• Service AD to allow filtering based on what the device supports

Limited-discoverable devices should advertise at a reasonable advertising interval to both allow
the user interfaces to be populated quickly and also to reduce the time required by the master device
for scanning for Bluetooth low energy devices. The recommended interval should be somewhere
between 250 milliseconds and 500 milliseconds. Obviously, a device that is discoverable and wants
to connect should allow connections from any device, and, as a result, white lists would not be used.
12.3.2.3. General-Discoverable Mode

A peripheral that is in general-discoverable mode sets the general-discoverable-mode bit and clears
the limited-discoverable mode bit in the Flags AD. A device uses general-discoverable mode when it
wants to be discoverable.

When compared with limited-discoverable mode, general-discoverable devices are very similar,
except in the following ways:

• General-discoverable devices can be discoverable for an unlimited period of time; limited-
discoverable mode has a 30-second maximum time limit.

• General-discoverable devices have a slower recommended advertising interval of between



1.28 seconds and 2.56 seconds; limited-discoverable devices are between 250 milliseconds
and 500 milliseconds.

It should noted that general-discoverable devices will not be found very quickly. This is by design;
it is always useful to populate a user interface with those devices that are in limited-discoverable
mode first and then place those devices that are generally discoverable lower down the list.

The same transmit power-level information should still be included in the advertising data, along
with the other user interface building information, to allow the priority sorting and filtering of the
discoverable devices to be used by the connecting device.
12.3.2.4. Discoverable Procedures

A central device that wants to find discoverable peripherals either uses the limited-discovery
procedure or the general-discovery procedure. These two procedures are essentially identical except
for filtering they perform based on the Flags AD information.

If there is no Flags AD information available in an advertising packet, or this information exists
and neither the limited-discoverable mode bit nor the general-discoverable mode bit is set, then the
advertiser is nondiscoverable and would not be discovered.

If the Flags AD information has the limited-discoverable mode bit set, the device is always
discovered. This is true regardless of whether the limited-discovery procedure or the general-
discovery procedure is used.

If the Flags AD information has the general-discoverable mode bit set, the peripheral is only
discoverable when using the general-discovery procedure. These peripherals are not discovered by
the limited-discovery procedure.

As shown in Table 12–1, the general-discovery procedure finds all discoverable peripherals
regardless of whether they are limited or generally discoverable, whereas the limited-discovery
procedure finds limited-discoverable peripherals.

Table 12–1. Discoverability

12.3.3. Connectability
In GAP, only devices operating in the peripheral role use connectable modes. Devices that are trying
to connect to these devices are in the central role and use connection establishment procedures.

As with discoverability, connectable peripherals can be in one of three modes: nonconnectable
mode, directed-connectable mode, and undirected-connectable mode. However, connectability is
more complex for the central device because there are four different connection establishment
procedures: auto, general, selective, and direct.

From the GAP perspective, connectability is much easier to manage than discoverability. The Link
Layer provides two types of connectable advertising packets: ADV_IND and ADV_DIRECT_IND;
and two types of nonconnectable advertising packet types: ADV_NONCONN_IND and



ADV_SCAN_IND. Thus, it’s always possible for the host to use the correct type of advertising
packet based on the connectable mode it is using.
12.3.3.1. Nonconnectable Mode

A device that is in nonconnectable mode cannot use a connectable advertising packet type when it
advertises. This means that it can only use the ADV_NONCONN_IND or ADV_SCAN_IND
advertising packet types. This mode is the default mode, so the host must perform an action to make a
peripheral device connectable.
12.3.3.2. Directed-Connectable Mode

A peripheral device that wants to connect very quickly to a central device uses the directed-
connectable mode. This mode requires the use of the ADV_DIRECT_IND advertising packets and, as
such, cannot be combined with the discoverable modes because these advertising packets have no
host-generated advertising data.

Because directed advertising packets are sent very quickly, this mode can only be used for a
maximum of 1.28 seconds, after which the controller will automatically stop advertising. The host
should not immediately start directed-connectable mode after it has timed out because this can
severely restrict the ability for other devices to broadcast, be discoverable, or establish connections.
Therefore, it’s recommended that if directed-connectable mode times out, undirected-connectable
mode should be the fall-back mode.

When using the ADV_DIRECT_IND advertising packets, both the current peripheral’s device
address and the central’s device address are included in the packet. This means that the peripheral
must have at least been connected with this device previously to know the device address. So, it’s
assumed that this mode would only be used when devices are bonded.
12.3.3.3. Undirected-Connectable Mode

A peripheral device that is connectable but does not need to establish a connection very quickly or
wants to be connectable while saving as much energy as possible would use the undirected-
connectable mode. This mode requires the use of the ADV_IND advertising packets. Because
ADV_IND advertising packets can include the Flags AD information, a device can be discoverable at
the same time as being in undirected-connectable mode.

A peripheral stays in undirected-connectable mode until the host either moves to nonconnectable
mode or a connection is established. Therefore, as soon as the new connection is terminated and the
device wants to continue to be connectable, it will move back into the undirected-connectable mode
again. Obviously, a device that was connectable but is now in a connection cannot still be
connectable because this would require that the Link Layer support two connections in the slave role
at the same time, and this is not a supported state for the Link Layer.
12.3.3.4. Auto-Connection Establishment Procedure

The auto-connection establishment procedure is used to initiate a connection to many devices at the
same time. A typical user scenario for Bluetooth low energy is that a central’s host is bonded with a
number of peripherals and it wants to establish a connection with each of these devices as soon as
they start to advertise. For example, a central device might want the ability to establish a connection
to any sensor device that has a new reading when the device starts advertising.

To allow a central device to make a connection to many devices at the same time, the host must



first populate the white list with the set of devices that should be connected and then initiate a
connection to the white list (for more information about white lists, go to Chapter 8, The
Host/Controller Interface, Section 8.6.1). Typically, this would be the set of bonded devices about
which the host is aware. Once one of these devices is found, because it is using directed-connectable
mode or undirected-connectable mode, a connection is established. If other peripherals still need to
be connected, the auto-connection establishment procedure would be restarted.

There are two downsides to this procedure: the procedure only has one common set of connection
parameters that can be used, and this procedure cannot connect with devices that are using private
addresses.

Because the connection parameters are determined by the central’s host when it initiates a
connection to the white list, it is not possible to have different connection parameters for different
peripherals. This, therefore, works best when the types of peripherals are reasonably similar, at least
from a connection parameter point of view. Obviously, it is possible to change the connection
parameters once the connection has been established. So, it might be necessary to initially use a fairly
compromised set of connection parameters when using this procedure.

Private addresses also cause severe problems for this procedure. Because private addresses must
be changed frequently and randomly to provide privacy, it is almost impossible to predict the private
address that a device will be using at any given point in time. As a result, it’s not possible to use this
procedure to connect to peripherals that are using private addresses.
12.3.3.5. General-Connection Establishment Procedure

In an attempt to solve the problems outlined in the preceding section, the general-connection
establishment procedure does things slightly differently. Instead of using white lists, this procedure
uses passive scanning to find all the devices that are advertising.

For devices that are using resolvable private addresses, these addresses are checked against all
known IRKs for the devices to which the central devices want to connect. If the address resolves, the
host stops scanning and uses the direct-connection establishment procedure by using the resolvable
private address that it received.

Obviously, if a device address was received that was not a resolvable private address but is
instead in the list of peripherals to which it wants to connect, it stops scanning and uses the same
direct-connect establishment procedure by using the known device address.

The downside of this procedure is that there is a time gap between the host discovering that a
device is advertising and the time when a direct connection establishment starts. This means that at a
minimum, the connectable peripheral must send two connectable advertising packets before a
connection can be established. This is a natural consequence of using private addresses.

This general-connection procedure also requires the processing of all advertising packets received
by the controller in the host, even if the advertising packets are not connectable advertising packets or
are not from devices that are interesting to the central device. This can require significantly more
energy consumption in the host than the auto-connection establishment procedure.
12.3.3.6. Selective-Connection Establishment Procedure

The selective-connection establishment procedure is used to initiate a connection to many devices at
the same time, but for which each device has different connection parameters. This solves the single-
connection parameter problem from the auto-connection establishment procedure.



To perform the selective-connection establishment procedure, the host places the set of devices that
are to be connected in the white list and then starts scanning by using this white list. This means that
only peripheral devices that are in the white list and are advertising are passed up the host; all other
devices that are advertising in the area are filtered out immediately by the controller.

When the host receives the advertising information from the controller for a device in the white list,
it can first check that this device was using a connectable advertising packet type. If it was, the host
stops scanning and uses the direct-connection establishment procedure to initiate a connection to this
specific device. Because each peripheral might want to have a different set of connection parameters,
the host can also look up the desired connection parameters for the peripheral that can be used by the
direct-connection establishment procedure.

This has the same downside as the general-connection establishment procedure in that it takes a
minimum of two advertising packets to establish a connection, but it solves the problem of having the
same connection parameters as the auto-connection establishment procedure. Unfortunately, this does
not solve the privacy issue of the auto-connection establishment procedure regarding the resolution of
private addresses.
12.3.3.7. Direct-Connection Establishment Procedure

Many of the previous procedures reference the direct-connection establishment procedure. Basically,
this procedure is used to establish a connection to a single, specific device by using a set of
connection parameters.

It does not use the white list; instead, it initiates a connection directly to a single device address
(for more information, go to Chapter 8, Section 8.6.2). This is why the general and selective-
connection establishment procedures reuse this procedure to make the actual connection, once they
have found the device address of the device that is advertising.

12.3.4. Bonding
Just like discoverability and connectability, bonding defines modes and procedures, except that there
are only two modes: nonbondable mode and bondable mode; and just one procedure: the bonding
procedure.
12.3.4.1. Nonbondable Mode

The default mode for devices is the nonbondable mode. This means that a device will not accept
bonding at this time. No keys will be exchanged or stored by the device.
12.3.4.2. Bondable Mode

If a device wants to be bondable, then it is in bondable mode. When a device is in bondable mode, it
will accept a bonding request from a peer device. To be in bondable mode, the bonding bit is set in
the authentication requirements of the Pairing Request message during pairing (for more information
on pairing, go to Chapter 11, Security, Section 11.2.2). If possible, the device exchanges security keys
and stores them if necessary.
12.3.4.3. Bondable Procedure

If a device wants to bond with a device it believes is bondable, it uses the bondable procedure. When
using the bondable procedure, the device initiates pairing with the same bonding bit set in the
authentication requirements of the Pairing Request message.



Therefore, for bonding to work, the device that uses the bondable procedure initiates pairing with
the bonding bit set. If the peer device is bondable, it will respond with the bonding bit set. If all this
happens, the keys will be distributed after the link is encrypted, and the keys are then stored. Once the
keys have been distributed and stored, the devices are bonded.

12.4. Security Modes
When pairing, the algorithm chosen can determine if the pairing performed a strong authentication to
establish that the peer device was what it said it was, or whether it was not possible to provide a
strong authentication. For example, a device that has no input or output capabilities will not be able to
prove that it is actually the device that was connected because it has no way to authenticate itself.
This is known as an unauthenticated pairing.

Other devices such as keyboards and computers can prove their identity by transmitting some
information out of band that can be used for authentication. The computer can show a six-digit number
on the computer screen and then ask the user to type this number into the keyboard. Both devices now
have knowledge of this six-digit number, but any device that was eavesdropping on the connection
cannot determine this shared number by just listening to the packets being transmitted. This is known
as an authenticated pairing.

The strength of the authentication algorithm used is also used to label the keys that are distributed
during bonding. If a device was paired by using an unauthenticated algorithm, the keys distributed
during bonding must also be labeled as unauthenticated keys. If a device was paired by using an
authenticated pairing, the keys will be labeled as authenticated.

Any subsequent reconnections using these labeled security keys would again be labeled with the
strength of the algorithm implemented during the initial pairing. It is therefore possible to describe an
encrypted connection as being encrypted by using either an unauthenticated pairing or an authenticated
pairing, even if this pairing occurred on a previous connection.

12.4.1. Security Modes
GAP defines two security modes with up to three levels of security. The first security mode is for
different levels of encryption within a connection; the second security mode is for different levels of
data-signing protection. These security modes are used when describing what level of security is
required for a given service. For example, some services have have no security requirements,
whereas others might want to have as much security as possible to protect against eavesdroppers and
ensure that authentication and confidentiality requirements are met.

The following security modes and levels are defined:
• Security Mode 1 Level 1: No security
• Security Mode 1 Level 2: Unauthenticated pairing with encryption
• Security Mode 1 Level 3: Authenticated pairing with encryption
• Security Mode 2 Level 1: Unauthenticated pairing with data signing
• Security Mode 2 Level 2: Authenticated pairing with data signing

Security Mode 1 Level 1 is used when there are no security requirements between two devices.
This is the default security level on a link.

Security Mode 1 Level 2 is used when data confidentiality is required but authentication is not



required or was not possible. It is possible to send data that requires no security over a link that is
encrypted to this level of security.

Security Mode 1 Level 3 is used when data confidentiality and authentication are required. This is
the strongest security mode and level. It is possible to send data that requires a lower security level
over a connection that is currently using this level of security.

Security Mode 2 Level 1 is used when neither data confidentiality nor authentication is required.
Security Mode 2 Level 2 is used when data confidentiality is not required but authentication is

required for this data. It is possible to send data that does not require authentication over a link that
uses authentication.

Table 12–2 demonstrates that sometimes it is possible to send the data for a different security mode
and level on a connection that is stronger than required. For example, a connection that is encrypted
by using an authenticated pairing can send any type of data. For example, an unencrypted link that has
authenticated keys from a previous pairing can be used to send data that requires Security Mode 2;
however, it would require the link to be encrypted before data can be sent that requires Security
Mode 1 Level 2 or Security Mode 1 Level 3.

Table 12–2. Security Modes and Levels



12.5. Advertising Data
Whenever a device transmits advertising packets, the advertising or scan response data has a defined
format. The format is just a sequence of advertising data structures. Each structure starts with a length
field, which determines how many more bytes of data are part of this structure. Immediately after the
length is the advertising data type. This is normally just 1 byte in length, but could be 2, 3, or more
bytes if necessary. A device that doesn’t understand a given advertising data type can just ignore it
and skip to the next structure. Any additional data bytes within the structure are defined by the data
type.

For example, the TX Power Level data type defines that the data, after the length and data type, is a
single byte in length. This means that to output the TX Power Level in an advertising or scan response
packet requires 3 bytes in total: one for the length, one for the data type, and one for actual power
level.

It is possible for some advertising data to be variable length. The local name of a device could be
anything from a few bytes to many bytes in length. The length field at the start of the data structure,
however, binds the number of bytes that are being output in the advertising data. Therefore, it is not
necessary to include any terminating bytes. It is also possible to not include the complete value of a



given value, especially if that would overflow the packet size or remove something else just as
valuable from the packet.

Most data that could be expected to overflow is typically represented by multiple data type values:
one for the complete value if possible, and another for the shortened version. This way, the receiver
can determine that the value is not complete, and thus, it can attempt to find the rest of this data
through some other means. For example, the local name might be longer than is possible to include in
a short advertising packet, but it is also possible to read the complete name by using the GAP’s
Device Name characteristic.

12.5.1. Flags
The Flags AD is a sequence of bit fields that can be any length, from zero to many bytes long. Any
bytes that are not included in the advertising data are assumed to have the value zero. This means that
the flags field can be extended with additional flags bits as necessary. A device that receives a Flags
AD that is longer than it expects can just truncate the data without problem.

The following flags are defined for Bluetooth low energy:
• Limited-discoverable mode
• General-discoverable mode
• BR/EDR Not Supported
• Simultaneous LE And BR/EDR To Same Device Capable (Controller)
• Simultaneous LE And BR/EDR To Same Device Capable (Host)

The limited and general-discoverable mode flag bits are the same bits that are described in Section
12.3.2.

The BR/EDR Not Supported flag bit is used to notify a peer device before making a connection that
it cannot make a connection by using Bluetooth classic; instead, it must use Bluetooth low energy.
This is important because a dual-mode device cannot make a connection to another dual-mode device
by using Bluetooth low energy. Therefore, a dual-mode device must check this bit to determine how it
should initiate a connection to the device.

The Simultaneous LE And BR/EDR To Same Device Capable flag bits—one for the controller and
one for the host—are used to determine if the peer device can initiate a connection over Bluetooth
low energy if a Bluetooth classic connection already exists to that device. The controller and host
might have different capabilities, and, therefore, both bits must be examined before two connections
to the same device are attempted.

12.5.2. Service
There are multiple, varied types of service advertising data types. This advertising data type exposes
a list of service UUIDs, one for each service. UUIDs come in two different sizes: 16-bit values or full
128-bit values. Some devices will not want to expose all the services that they support, or the
complete list of services might be too long. So, both a full list of services and a partial list of services
must be supported. Therefore, it is necessary to expose four different service advertising data types:

• Complete list of 16-bit service UUIDs
• Partial list of 16-bit service UUIDs
• Complete list of 128-bit service UUIDs



• Partial list of 128-bit service UUIDs

12.5.3. Local Name
The local name advertising data type comes in two variants:

• Complete Local Name
• Shortened Local Name

If the local name is too long to fit into the advertising packet, the Shortened Local Name data type
will be used. The local name is a UTF-8 string, possibly truncated.

12.5.4. TX Power Level
The transmit power level advertising data type is used to expose the transmit power level used to
transmit this information in the advertising packet. It consists of a single byte of data delineated in
dBm.

12.5.5. Slave Connection Interval Range
The slave connection interval range exposes the preferred connection interval range for any
subsequent connection to this peripheral. The master is in complete control of the connection
parameters, and these parameters are typically set before the directed connection establishment
procedure is used. Thus, this information is useful to allow the central to at least determine a range of
connection intervals that it should use when connecting to the peripheral.

The interval range consists of two 16-bit values. The first value is the minimum connection
interval; the second value is the maximum connection interval. Both values are in the same units as
those used in the HCI command used to initiate a connection.

12.5.6. Service Solicitation
Sometimes a peripheral wishes to use a service on a central device. Unfortunately, the central device
might not want to advertise, or the peripheral might not be designed to spend energy scanning for all
possible central devices. The solution to this is to include a list of services that the peripheral would
like the central device to support. This solicitation of services gives a central device that is looking
for peripherals the ability to connect, and it can use this information to determine which peripherals
are more likely to include the client functionality for one of its services.

The service solicitation advertising data consists of a partial list of either 16-bit service UUIDs or
128-bit service UUIDs.

12.5.7. Service Data
When a service is configured to broadcast, it uses the service data advertising data type. The first two
bytes of the data are the 16-bit UUID for the service that is broadcasting the data. Any additional
bytes are the actual service data that is being broadcast.

12.5.8. Manufacturer-Specific Data
The last advertising data type is manufacturer-specific data. The first two bytes of the data are a 16-
bit company identifier for the ensuing data, followed by data that is specified by that company. This
means that any company can define its own advertising data structures and expose them in an
advertising packet.



12.6. GAP Service
GAP defines its own generic attribute profile service, the Generic Attribute Profile, which provides a
device with a way to ascertain information about the device, including its name, what it looks like,
and how to connect to it. The service exposes up to five characteristics:

• Device Name
• Appearance
• Peripheral Privacy Flag
• Reconnection Address
• Peripheral Preferred Connection Parameters

12.6.1. The Device Name Characteristic
The Device Name characteristic is a UTF-8 string that exposes the name of the device. Interestingly, a
device can only have one Device Name characteristic, so it’s possible to use the Read By UUID
Request to quickly read the device’s name without having to perform service discovery or
characteristic discovery first.

12.6.2. The Appearance Characteristic
The Appearance characteristic is a 16-bit value that enumerates what the device looks like. Bluetooth
Classic had a class of device field that could be discovered during the inquiry procedure, but this was
a mix of what the device did and what it looked like. This has proven to be a real problem because
some manufacturers filtered on bits in the class of device, creating interoperability problems. For
Bluetooth low energy, the chosen solution was to just concentrate on what was the most important
information to build up a user interface rather than attempting to do filtering as early as possible.
Therefore, the appearance is only allowed to be used to drive the icon that is displayed on the user
interface next to the device.

The value in the characteristic is an enumerated value that is defined in the assigned numbers
document, which is a living document. New values can be added to this enumeration when required
by just requesting an assignment to be made.

12.6.3. The Peripheral Privacy Flag
The Peripheral Privacy Flag is used to expose if the device is currently using privacy. It is both
readable and writable; this is where the use of this characteristic becomes confusing.

• If this characteristic does not exist, this device does not support privacy and will always use
the public Bluetooth address.

• If this characteristic does exist but it is set to “disabled”, again, this device is not using a
private address and therefore will use the public Bluetooth address.

• If this characteristic exists and it is set to “enabled”, it will always advertise by using a private
address. However, that doesn’t mean that it will be connectable by using a private address.

• If the Reconnection Address characteristic exists, the address used when making a connection
will be this reconnection address, and not the advertising address.

This means that only when the reconnection address exists and the privacy flag is set to “enabled”
is this device truly able to use private reconnections.



A central device might not want to use privacy with a device, or it might want to use privacy with a
device that currently has the Peripheral Privacy Flag set to “disabled”. In either case, the central
device can attempt to write this characteristic. However, this write might not succeed.

If the peripheral has more than one central device bonded with it, having the second or later central
device being able to enable privacy would mean that the first bonded central device would not be
able to reconnect. Reconnecting would fail because it would be attempting to reconnect to the public
address of the device and not the value it last read in the Reconnection Address.

Disabling privacy can also cause similar problems. This direction is not as dysfunctional as the
central device that still thinks that privacy is enabled on the peripheral because the central at least can
detect that the peripheral is using its public address in advertising packets, allowing it to reconnect to
this address. Upon reconnecting, it can check the value of the Peripheral Privacy Flag to confirm that
privacy has been disabled.

Therefore, the only safe way to use privacy is to have it always enabled from the start of the
peripheral device being connected. It is not useful to constantly change the privacy state.

12.6.4. Reconnection Address
As explained in the preceding section, the Reconnection Address is used when privacy is enabled.
This is the address that a peripheral device uses when it attempts to reconnect to a central device that
it is bonded with, and the central device knows that the peripheral has privacy “enabled”.

When used, the Reconnection Address will be a nonresolvable private address. Therefore, the only
devices that can make a mapping from this reconnection address to a peripheral are the devices that
are bonded with the peripheral and have read the reconnection address.

The reason that the reconnection address is part of the system is to allow for a power optimization
when privacy is used. If there were no reconnection address, all private peripherals would advertise
by using a resolvable private address. The central would then need to check every received
advertising packet with a resolvable private address against every IRK that it knows. This is an
expensive operation, typically because the host must get involved. By using a static nonresolvable
private address, the value is static and can therefore be placed into the white list to allow the
controller to efficiently establish a connection to the peer device without using the power-hungry host.

The interesting thing about the reconnection address is that for it to be considered private, it must
be changed on each reconnection. Therefore, each time that a central device reconnects to a
peripheral using the reconnection address, it will write a new reconnection address into this
characteristic before doing anything else.

There is a possibility that the connection fails during this write request. In this case, the peripheral
might have received the write request and not been able to send back the write response.
Alternatively, the peripheral might not have received the write request. Therefore, the central must
assume that the peripheral could be using the old reconnection address or the newly written
reconnection address. It will therefore have to place both of these addresses in its white list.

12.6.5. Peripheral Preferred Connection Parameters
Many peripherals have been designed for a single use case and have a preferred set of parameters
with which they work optimally. Instead of having the central device guess what these parameters are,
the peripheral exposes them in the Peripheral Preferred Connection Parameters characteristic. The



central can then read them on the initial connection and quickly change the connection parameters to
something that the peripheral really likes. Also, when reconnecting to a peripheral for which the
central has remembered the parameters, it can place the appropriate values into the connection
request, removing any need to change the connection parameters after the connection has been
established.



Part IV: Application
Chapter 13, Central, describes how an application can use Bluetooth low energy to interact with
peripherals.

Chapter 14, Peripherals, explains how a peripheral can be designed to make the best use of the
Bluetooth low energy technology.

Chapter 15, Testing and Qualification, explains how to qualify a design so that it can be sold or
distributed.



Chapter 13. Central

One is and is not in the centre of the maelstrom of it all.
—Harold Pinter

The application of Bluetooth low energy can be broken into two separate disciplines: the design of
applications that find and interact with peripherals, and the design of peripherals that can provide
information to these applications running on a central device. Both disciplines require knowledge of
how all the previous parts fit together to make a functioning whole. This chapter looks at the
applications from a central point of view. The next chapter subsequently deals with how a peripheral
can be designed.

13.1. Background
Central devices are vitally important for Bluetooth low energy to be useful. Typically, these devices
are highly functional and have complex user interfaces. This chapter will not go into how to write an
application for a particular type of device; that is the job of that platform’s developer program.
Instead, important considerations will be given on how to optimize the user experience and the best
ways to save power.

13.2. Discovering Devices
The first thing that any central device needs to do is to discover other devices. To do this, it can use
either passive or active scanning. For passive scanning, a central device passively listens to any
advertisement packets that peripherals are transmitting. Active scanning is when the central device,
after hearing a peripheral, asks for more information.

If the central device is only looking for what devices are around, and perhaps any information they
may also contain, it should use passive scanning. If the central device is also populating a user
interface such as a screen or a window, active scanning should be used because the additional
information can be useful to build the list of discoverable devices on a user interface.

The information that can be found by scanning includes the name of the device and a unique number
that identifies the device. This identity can be used if the central device later needs to connect to it. It
is also possible to find some broadcast data within the scan responses so that information that is being
broadcast by a service can be obtained. This could be useful information such as the battery level or
the current time.

Some information is not immediately available but can be obtained by making a quick connection to
the device and reading it as needed. For example, the complete name of the device might be very long
and might not fit into a single advertising or scan response packet. Therefore, it would be necessary to
make a connection with the device to read the rest of the device name. When doing this, the
application on the central device should be very careful about only reading characteristics within the
correct service.

Therefore, first the application should perform a service discovery of the required service, for
example, to look for the GAP Service. It can then look within that service for the Device Name
characteristic value. This can be read directly using the Read Characteristic Value by UUID
procedure. The GAP Service specification requires that only a single GAP service can exist on a
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device, and it will have only one device name characteristic value. If the device name is longer than
what can be read in a single attribute protocol response, additional requests for the rest of the device
name value can be made by using the handle that is returned in the first response.

This same procedure can be used for other useful information, such as the Appearance
characteristic value in GAP.

It should be noted that when passively or actively scanning, not only can the application obtain the
contents of advertising packets but it can also receive the received signal strength (RSSI) of these
packets in the controller. This RSSI value can be subtracted from the Tx Power that might be included
within the advertising packets to give a very basic estimate of the path loss and therefore an estimate
of the distance between this device and the central device, as illustrated in the following equation:

path loss = TxPower – RSSI

If the path loss is very small—between 0 and 20—this indicates that the device is very close. If the
path loss is very large, for example, above 70, the device is very far away. Because of the nature of
wireless transmissions, these values should be averaged over a number of seconds so that any
multipath interference is averaged out. Once this is done, the list of devices presented to the user
should place the closest (the smallest path loss) at the top of the list. This way, the user will
preferentially see those devices that are very close. When there are lots of devices, the user will need
to scroll down to find those devices that are farther away.

Another consideration is that some devices might be advertising but not discoverable. Unless the
user interface is displaying the broadcast service data, the devices that are not discoverable should be
removed from the list of found devices.

13.3. Connecting to Devices
In the preceding section, the list of discoverable devices was created. This list can be presented to
the user so that he can select a particular device (or devices) with which he wants to interact. The
next task will be connecting to the device.

Connecting to a device selected from a user interface should just be a case of initiating a
connection to that device. If, however, the chosen device is using a private address, care should be
taken to recover gracefully if the device found has recently changed its private address. If that does
happen, the initiation of the connection should timeout and the list of discoverable devices should be
refreshed. The device might still be there, but it’s using a different private address because it wants to
protect its privacy. This is not a problem once the devices have bonded and exchanged Identify
Resolving Keys (IRKs) because the central device can automatically refresh the list, resolve the
private addresses to identify which one belongs to the desired device, and then connect to it.

When initiating a connection, a set of connection parameters need to be chosen. The parameters
used depend on what the two devices are intending to do. Typically, peripherals have a Client
Preferred Connection Parameters characteristic that gives a very strong hint to a central device about
the types of connection parameters it prefers. When making the very first connection with a device,
this information will not be available, and therefore a compromise between low power consumption
and rapid characterization of a device needs to be struck.

The best set of parameters are those that have a fairly rapid connection interval, allowing for a
rapid exchange of Attribute Protocol and Link Layer control messages during the initial connection. A



reasonably large slave latency should also be offered so that the peripheral device can save power
whenever possible. For example, a connection interval within the range of 15 milliseconds and 30
milliseconds, with a slave latency of 150 milliseconds, allows for both rapid collection of data about
the peripheral using up to 60Hz connection interval and a 6Hz idle frequency for the slave.

The slave might request different parameters from those that the application on the central device
chose. The central device should always try to honor these requests, especially after it has finished
reading all the data that it wants at that moment.
It is always possible for the central device to change the connection latency again, once it has more
data to send or receive.

13.4. What Does This Device Do?
After connecting to a peripheral device, the central device will want to know what the device does.
To gather this information, it uses four procedures, in a specific order: primary services discovery,
relationship discovery, characteristic discovery, and descriptor discovery.

The first procedure is the primary services discovery. These are the services that describe what the
device does. For example, if the device has a battery, primary services would expose the Battery
Service; if the device has a temperature sensor, it would expose the Temperature Service; if the
device had a temperature sensor within the battery, this secondary temperature would not be exposed
through a primary service because this might confuse the central device. Primary services only expose
the primary functionality of a device.

Next, for each primary service that the central device knows could include another service, these
relationships need to be discovered. These relationships could be because of an extending,
combining, or reusing relationship.

The set of services that a device has does not necessarily determine the set of profiles that a
peripheral device supports. There is no way to quickly determine the set of profile roles that a device
supports. Instead, a more complex algorithm has to be used, matching the profile roles that the central
device supports with the set of services that are exposed on the peripheral and checking which roles
are valid. This could be a nontrivial operation; however, the devices that would be doing these
checks have plenty of resources, and this type of complexity is not considered a Bluetooth low energy
issue.

The benefit of this approach is that future client profile roles that use a set of services on a
peripheral don’t need to be designed into the peripheral when it is manufactured. This becomes a very
flexible and extendable system ideally suited to the downloadable application models being deployed
in many central devices.

Once the services have been discovered, the set of characteristics and their descriptors can also be
discovered. There are no version numbers in Bluetooth low energy services; therefore, the only way
to know if a given optional feature exists is to check for the exposure of a given characteristic that is
linked to this optional feature. Alternatively, characteristic properties and descriptors such as the
notification and Client Characteristic Configuration descriptor can be used to differentiate optional
behavior.

13.5. Generic Clients
It is possible to build entirely generic clients. These are clients that can read and display



characteristic values, possibly in a human-readable format. This gives central devices that have no
understanding of the meaning of the individual services or characteristics on a peripheral device the
ability to make them available to the user. There are two levels of generic clients: those that use the
available information on the peripheral device directly, and those that augment this information with
characteristic information available via the Internet.

The first level of generic clients finds all the characteristics within a peripheral and filters out any
that cannot be read directly. It then also filters out any that do not have a Characteristic Presentation
Format descriptor. This descriptor includes most of the information needed to change the binary
representation of the data into a human-readable value. It does this by using the format and exponent
fields to determine how to convert the value from a fixed-point value into a more intuitive number.
The unit field is a UUID that encodes the unit of this value.

There are units for most physical quantities, which are taken from the BIPM1 list of units. All
standard SI units and most common units are included. Finally, a namespace:description pair is
included in the descriptor to allow for an even finer-grained client display. This could allow not only
for the weight of the item being measured to be converted from a 16-bit unsigned value into pounds
weight, but also noting that this weight is from a hanging weighing machine as opposed to a vehicle
weight bridge or a set of bathroom scales.

The second level of generic clients can display the most complex values in a characteristic. The
Characteristic Presentation Format descriptor is limited in that it can only represent a very small
subset of all possible data structures. Therefore, the second level of generic clients does not rely on
that descriptor. Instead, it uses the knowledge that each and every characteristic type has a unique
number, the UUID, that can be looked up on the developer website of the Bluetooth Special Interest
Group (SIG)2 to find an XML representation of the data format.

For every characteristic type in any service specification, there must also be an XML file defined
for that characteristic. These files are used to help validate devices when they are being tested, but
they can also be used to determine the structure of the characteristic value. The XML files can encode
every possible data representation required, including enumerated types, bitfields, optional fields
based off the value of an enumerated value or a bitfield, and binary and decimal exponential fixed-
point formats. These fields can also be concatenated together to make very complex data structures.

A generic client with a connection to the Internet can therefore find a readable characteristic value
and perform a simple query of a website to download the characteristic representation’s XML file.
This file can be used to display the value to the user.

13.6. Interacting with Services
Once the central device has determined that it is necessary to interact with a service on a peripheral
device, it makes a connection to that device and starts to read and write characteristic values and
descriptors. The protocol used to do this, Attribute Protocol, is essentially a stateless protocol.

The protocol has no state when connected or when between one connection and the next. There is
no “session protocol” either. To get around this limitation, all state is maintained at the application
layers, where the applications can make intelligent decisions on how to save energy. The next
sections describe how this is done.

13.6.1. Readable Characteristics



The most basic of services simply exposes a set of readable characteristics. For example, the Device
Information Service contains one or more characteristics that provide additional information about a
device. These basic services are easy to use. For each characteristic in the service that the client
understands, it reads the value, either in a single request if the value is short, or by using multiple
requests if the value is long.
13.6.1.1. Writable Characteristics

The next level of complexity is a service that has a characteristic that is both writable and readable.
The Link Loss Service is a good example of this type of service. It has a single writable
characteristic, Alert Level, that the client can write to configure the behavior when the link between
the two devices is lost.

If the client writes “No Alert” into this characteristic, when the devices disconnect, the server does
nothing. If the client writes “Mild Alert” into this characteristic, when the devices disconnect for any
reason, the server will use a mild alert to the user to notify her of this occurrence. If the client writes
“High Alert” into this characteristic, when the devices disconnect, the server will use as many bells,
whistles, flashing lights, and other “alert” methods that it has at its disposal.

Some people who have experience using connection-oriented protocols can be worried by this.
How do you “start” this service? How do you “stop” this service?

The key element to understand here is that the state of the service is exposed in the service
characteristics. The Alert Level characteristic in the Link Loss Service determines the device
behavior. If this holds the value “No Alert”, the server will do nothing. You could consider this the
“not-connected” state. If this holds the value “Mild Alert” or “High Alert”, the server will do
something when the client disconnects. You could consider that when this service’s characteristic
holds one of these values, it is “connected”.

Of course, this implies that if the client wants to gracefully disconnect from the server that has a
mild or high alert level, it must change the alert state by writing “No Alert” to this characteristic
before it disconnects.

Many people will also ask about what this means if a server can have more than one connection at
the same time, and one client writes the value “Mild Alert” to the link loss service’s alert level
characteristic, but the other doesn’t and then disconnects. This is not a problem. The value for each
characteristic of each service can be different for each client. If client A writes “Mild Alert”, this
does not mean that the server will alert when client B disconnects because the value for client B is
still “No Alert”.

An important difference between this type of service and those described in the following sections
is that these services have characteristics that can be readable and writable. This means that a client
can always check the current state of these services without having to remember what it had done
previously. This is most useful when the client application unexpectedly terminates, perhaps during
debugging of the client application software. When restarting, the client can just refresh its knowledge
of the state by reading the appropriate characteristic values.

13.6.2. Control Points
Another type of service is one that holds no state, but the client can still write values to the service.
This might appear strange at first, especially considering the services described in the preceding
section were holding state. How can a service have a characteristic that is writable and not hold on to



that state? The answer is easy: The service uses the value written immediately, and the server does
not have any need to store that value after it has been consumed. This type of characteristic is called a
control point.

The previously described Link Loss Service had an Alert Level characteristic that could be written
that determined the behavior when the two devices disconnected. But what if the client wants to just
make the server alert now? It could write the appropriate value into this service and then disconnect.
But this is incredibly disruptive to any other applications that are also using other services on this
device that might need the connection. Is there a better way? Of course there is, and it uses a control
point characteristic.

The service is called the Immediate Alert Service and the characteristic is called Alert Level. Yes,
it is the same alert level characteristic that was used in the Link Loss Service. But characteristics are
simply a data format, in this case, an enumeration of three values, “No Alert”, “Mild Alert”, and
“High Alert.” The behavior is determined by the service, not the characteristic.

In the Immediate Alert Service, the Alert Level characteristic is only writable, and it causes an
alert immediately. Because the alert is immediate, this characteristic cannot have a state. Any value
written is immediately consumed, used to make an alert, and not stored. Therefore, there is no point in
making this characteristic readable. The characteristic has no state.

There is another type of control point that is discussed in the Notifications and Indications
subsection that follows.

The advantage of this type of control point-based service is that it doesn’t matter which slave
commanded the control point. Instead, the device will act upon the command written into the control
point.

13.6.3. State Machines
The next type of service exposes a few writable control points along with one or more readable
characteristics. These expose the state of a state machine. A state machine in this context is a
“machine” that has an exposed state and a way of internally or externally changing states. Essentially,
the only difference between a state machine and a control point described earlier is that the state is
remembered in a state machine. This state can therefore be read and notified to the client if it changes.

To help illustrate this, let’s consider a state machine for time synchronization. It would have the
current states: the machine is doing nothing, and the machine is busy trying to find a more accurate
value for the current time. Let’s label these states “Idle” and “Searching.” This is the exposed state of
the state machine.

Next, we need a way for the device to control the state machine. This is done by using a control
point. This is a control point as described just a moment ago, except that the control point is
connected with the state machine that has an external state. For example, with the time synchronization
service, this could be enumerated with two commands: Start Synchronization and Cancel
Synchronization. This has a number of advantages.

Any device can interrogate the current state of the state machine through the machine’s exposed
state characteristic. This means that if three devices all want to synchronize time at the same time,
they can all check the state and only command it to start a new synchronization if the machine is in the
idle state.

More realistically, each of the devices can just command the state machine to start synchronization.



This should not be a problem with a well-defined state machine that can continue to operate even
when given potentially invalid commands. For example, if the state machine stays in the searching
state when it was commanded to start synchronization, it would be safe to have multiple clients all
ask it to start synchronizing any time they want. This is much preferred over the alternative of sending
error responses to all clients when any sends a second start synchronization command, and then
having to instigate some form of random back-off procedure to start synchronizing again.

The state machines must be sufficiently robust that all commands will have a defined state
transition. For example, if the time synchronization service was idle and a client asked it to cancel
synchronization, the state machine could take this as an error, or it could accept that the client was
unaware that it was already in the idle state and do nothing. This latter approach is typically required
in state machines, so all commands should be safe for the client at any time.

However, this scenario points up an interesting side effect: When one device asks for
synchronization to start, it has no guarantee that synchronization will complete because it might be
cancelled by another device. As an alternative, a service could be defined in which synchronization
would always run to completion once started, unless canceled by that client.

13.6.4. Notifications and Indications
Services expose state information. Some of this data can change rapidly or randomly. It would be
inefficient to constantly poll the state of a service on a device just in case the value has changed.
Take, for example, a battery in a device. Sometimes, when the device is not being used, the battery
level might only change once a day. However, if the device is actively being used, the battery level
can change once every 15 minutes or more. How often should the client check the battery level? If the
client checked the battery level once each day, then at the end of one day the client might think the
battery is full, but the battery is actually at 4 percent. If it checked the battery level every 15 minutes,
even when the device is idle, the battery level might drop faster than it should due to excessive energy
use from reading the battery level.

Instead, it is possible to set up a characteristic to tell the client when the value changes. This way,
the client is only notified when the state has actually changed. The client can wait for the changes in
state to arrive from its peripheral devices and then efficiently deal with these changes.

To do this, the client can configure a characteristic to send these notifications as required. Most
notifications are sent as defined by a service, but some can be configured further by using additional
characteristic descriptors.

It should be noted that some characteristics don’t support notification; only characteristics that have
the correct properties and have a Client Configuration Descriptor will support notification.

It should also be noted that there is a second way of receiving data from a service. Notifications
are sent at any time and aren’t acknowledged by the application layer. Therefore, they must be
considered unreliable. This is fine for many things, such as a status update on a state machine
characteristic. But if it is a blood glucose reading, the concept of the server unreliably sending that
data is untenable. Therefore, a client can configure characteristics to send indications. These are the
same as notifications except that a confirmation message is sent back to the server to inform it that the
client has received the data and that the application has received the data.

Indications are configured in the same way by using the Client Configuration Descriptor.

13.7. Bonding



Some devices need a longer relationship than only a single connection. Other devices might want to
transmit data confidentially or to only transmit data to a device that has been authenticated to really be
the same device as used last time rather than any available device in the area. This is achieved by
using a security model that fundamentally results in a “bond.”

A client that wants to establish a long-term relationship with another device will first connect to
that device, find some services that it can use, and then initiate a secure connection with the device.
These secure connections first authenticate that the device is the correct device. Next, it encrypts the
link to ensure confidentiality. Finally, the devices exchange some pairing information. This is the
critical bit: If this pairing information is stored on the client, the client has a “bond” with that device.

This is important because when the client reconnects to this device, it does not need to
reauthenticate and exchange pairing information again. It just encrypts the link by using information it
has stored as part of this bond, and the devices then have an authenticated and confidential data
connection.

Bonding also provides other benefits. When devices are bonded, the server will save their
configuration data for this client. This model allows a device that reconnects to immediately receive
notifications without the need to reconfigure the server.

For example, if the central device configures a characteristic such as a battery level to be notified,
the battery level would be notified to the client if it changes when it is connected. But if the client
disconnects from the server, the server will not be able to send the notifications. With bonding, when
the client reconnects to the server, the notification can be sent immediately.

This has a side effect that must be considered. The server could ignore all state changes for bonded
devices and require the client to query the current state after it reconnects. If the data changes
infrequently, this can be inefficient for both the client and server. This model also assumes that the
client doesn’t disconnect and reconnect frequently because the cost of reconnecting would be
significantly higher because each bit of state must be read on each reconnection.

The alternative approach taken in Bluetooth low energy is that the server has to remember not only
that a characteristic is configured for notification but also that the value has changed while a client is
disconnected. This requires an additional bit to be associated with each notifiable characteristic that
would be set when the characteristic value changes. Then, when the client reconnects, these bits can
be checked and the characteristic value notified only if it did change.

The consequence of the server saving the configuration information for a bonded connection is that
the client doesn’t “connect” with a server. Instead, the client bonds and configures a peripheral to
perform a function and then the client disconnects and reconnects to the peripheral, as and when it
needs. The peripherals will be connectable when they have data to send, and the central device will
reconnect to these bonded devices and quickly receive the data, as needed.

This is even true if the peripheral is doing something that the central device requested. For
example, a central might ask a peripheral that has a time synchronization service to start synchronizing
time and then disconnect. Some time later, the central device can reconnect to the peripheral and
check on the state of the time synchronization, albeit with no guarantee that the synchronization
completed.

The other major advantage of this approach is that the client can remember information about the
handles of attributes in the peripheral. This means that once the central device has determined the set
of services on a peripheral and configured them, the client can remember the attribute handles. When



the central device reconnects to the peripheral, it can read and write these attribute handles without
doing another service scan. This reduces the time required between reconnecting to a device and
being able to use this device.

13.8. Changed Services
As stated in the preceding section, a central device’s client can remember or cache the sets of
services and characteristics between connections. Some devices will have the capability to change or
add services. For example, a computer or a smart phone can add an application that might include a
service, or a peripheral might have updated its firmware. When this happens, the client will not be
able to read any attributes, and all requests to that server will fail. This protects the client from
reading the wrong attributes.

Along with these error messages, the client will also receive a notification of the Service Changed
characteristic from the GATT Service. The client should have stored this attribute’s handle, so when
the client receives this notification, it can take the appropriate action.

The Service Changed notification includes a range of handles that have been changed. This means
that if a device has only added or removed one service, only the range of handles for that service will
be included in the notification. If the device has had all of its services changed—for example, if the
operating system on the device has been updated—the handle range might include all the handles of
the device.

Note that Service Changed is only relevant for bonded devices. If the central device does not bond
with a peripheral device, then no attribute handles can be cached by the client and no notification of
any service changes will be made. This means that for two devices that are not bonded, the client
must refresh the list of all services and characteristics on the server every time they connect.

13.9. Implementing Profiles
When designing a central device, the biggest implication is what it supports. Usually, a central device
will implement the client roles of one or more profiles. To understand what this means, profiles must
be explained.

13.9.1. Defining a Profile
A profile is a description of how a device functions for a given use case. Within a profile, roles are
defined. A profile role defines a device that can act as one part of an ecosystem of devices that enable
the profile’s use case.

Each profile role defines the set of services that a device must implement. Some profile roles don’t
require any services, others require just one service, and others require many services. Typically,
profiles define two roles, for example, a reporter role and a monitor role. The reporter role would
require one service and would be implemented in a peripheral device. A monitor role would not
require any services and would be implemented in a central device.

For example, the proximity profile defines two profile roles: the proximity monitor and the
proximity reporter. The proximity reporter implements the Immediate Alert Service, the Link Loss
Service, and the Tx Power Service. These three services act independently on the reporter, behaving
as defined in each of their associated service specifications. This independence of services is critical
to this profile model being flexible and therefore future proof.



The proximity monitor defines how a client uses these three services to enable the proximity use
case. For example, once the services and characteristics have been discovered, the monitor can read
the current Tx Power characteristic and compare it with the received signal strength of packets from
the reporter. The proximity monitor can then ensure that the implied distance between the two devices
is acceptable. If this distance is not acceptable, the proximity monitor can write the alert level
characteristic in the Immediate Alert Service.

The proximity monitor can also write the alert level characteristic in the Link Loss Service. In this
way, if the signal strength drops so quickly that the connection drops before the signal strength drop is
noticed or the alert level characteristic in the Immediate Alert Service can be written, the proximity
reporter can still alert in a controlled way.

This combination of services allows the proximity monitoring use case. But the Immediate Alert
Service could also be used to enable different use cases, such as allowing the user to see which
device is selected on a user interface by writing the alert level characteristic of the Immediate Alert
Service. This behavior in the client would be described in a different profile.

13.9.2. Finding Services
The first thing that a profile needs to do is find the services that the peer device supports. It can do
this by first discovering primary services. This can be done by either finding primary services by
service type or by finding all primary services.

This makes it possible for a profile that only requires the use of a single service to just find the
particular service it needs, ignoring all other services on the device. For example, the user interface
alerting service would only need to find the single service that it uses.

A more complex profile might require that many services are found. The proximity monitor profile
role requires that three services are discovered. It could do this by doing the same single service
search, one at a time, or it could do this by finding all primary services and then only storing the
services that it needs.

Typically, a complex client only finds all services once and then caches them for later. When an
application that implements a given profile role asks for all the services on a device, the cached list
of services is used. This is possible because when the set of services changes on a server, a
notification is sent to inform the client that the services have changed.

13.9.3. Finding Characteristics
Once the set of services has been found on the peer device, the set of characteristics will be required.
Just like services, only one characteristic might be required by the profile, or many characteristics
might be required. Some characteristics might be optional, and as such, they must be searched for
within a service to check whether they exist.

Typically, all characteristics for each service previously discovered will be found by the client.
This is because for the simplest service that has just one characteristic, this is a very fast and efficient
operation. Also, if the service contains many optional characteristics, this operation finds all the
characteristics the service implements.

13.9.4. Using Characteristics
Once the characteristics have been found, they can be used. For example, for the Immediate Alert
Service, the proximity monitor client can write the required alert level into the Alert Level



characteristic value.
It should be noted that for some services that have just one characteristic that is readable, the

characteristic discovery and the reading of the characteristic value can be combined into a single
operation. For example, once the Tx Power Service has been discovered, the Tx Power characteristic
can be discovered and read by using the Read Characteristic By Type GATT procedure. This means
that the separate step of finding the characteristics that was just described is not required.

Some characteristics can support being notified or indicated. For a client to be able to use these
capabilities of a server, the client must first find the Client Characteristic Configuration Descriptor.
The client does this by finding any additional attributes after the characteristic value, within this
characteristic group. This will find all additional descriptors for the characteristic. Once the Client
Characteristic Configuration Descriptor has been discovered, it can be written with the correct value
to enable notifications or indications.

13.9.5. Profile Security
Finally, if the client wants to disconnect and reconnect quickly again in the future, or the
characteristics require an encrypted or authenticated link, the client must bond with the server.
Typically, this is driven by the client role in the profile.

The client can attempt to read or write any characteristic value in a service. The service only has to
respond with the value of the characteristic or with the response that the value was written, if the
correct permissions are in place to read or write this characteristic. If the permissions are not correct,
the server will respond with an appropriate error code.

If the error code suggested that the client had insufficient security, the client could attempt to pair or
bond with the server to enable the correct level of security. If the client is just reading the information
once, pairing would be sufficient. If the client will reconnect again and again, bonding would also be
required. Once the devices have the appropriate security, the connection will be encrypted, and the
client can retry the request that previously failed.



Chapter 14. Peripherals

The hand is the cutting edge of the mind.
—Jacob Bronowski

This chapter looks at the design of peripherals, tying together all the parts of this book from the
perspective of a peripheral.

14.1. Background
Peripherals are the lifeblood of the Bluetooth low energy ecosystem. While a central device will
typically be in a phone, television, or computer, peripherals are custom-designed products that are
heavily optimized for ultra-low power consumption.

Peripherals are mostly designed around their battery, their sensors, their inputs and outputs; only
then is the wireless technology considered. For peripherals to work, they must interact with central
devices. They can do this in three different ways: they can broadcast data; they can be discovered and
connected to by a central device; or they can stay disconnected and then establish connections as they
need.

14.2. Broadcast Only
Some devices will have a single quantum of data that they want to share with many other devices. The
best and lowest power way to do this is by using the broadcasting model. For example, a device that
knows the current time and wants to share it with every other device in the area would broadcast that
time data so that other devices can receive the current time.

A peripheral that only does broadcasting can be very power efficient. It does not need to be
discoverable or connectable. It does not need to accept any connections from central devices or have
an extensive attribute database that can be discovered. It just constantly broadcasts useful data.

One consideration is the broadcast interval or frequency at which the device will broadcast. For
example, it is possible to broadcast the current time every 100 milliseconds, or 10 times a second.
But given that the current time is typically only accurate to the nearest second, it is not worth wasting
the energy broadcasting the time repeatedly within a one-second interval. Therefore, the interval at
which some data is broadcast may be based on the time that a user is willing to wait before the data is
available.

The current time is probably something that can be broadcast at reasonably slow intervals because
the observers of this information will only listen infrequently for this information. Say, once a day, or
even once a week. Thus, a broadcast interval of once every 10 seconds would then be reasonable.

It is interesting to note that a wall clock that synchronizes its time from a broadcaster once a day
only needs to be accurate to the nearest second over the course of that day. A wall clock that would
normally be off by half a minute a month would be made more accurate by synchronizing with an
accurate time broadcaster once a day.

14.3. Being Discoverable
Apart from peripherals that only broadcast, all other peripherals will start off being discoverable.
Discoverable means that the peripheral is advertising to any scanning central device in the area that is



looking for peripherals.
There are two types of discoverability: limited and general discoverability. A peripheral is only

limited-discoverable for a short time after interacting with the user. At all other times that the
peripheral needs to be discoverable it would be generally discoverable.

For example, when the batteries of a peripheral are first installed by the user, it would be limited-
discoverable. This makes it possible for a central device, probably held by the same user, to display
this new device at the top of a list on the user interface.

Peripherals would also be limited-discoverable immediately after a connect button is pressed on
the device. Again, the user would expect to see the peripheral at the top of the list of devices after he
has pressed that connect button.

Peripherals don’t need to be discoverable all the time. It is very common for devices that have
paired with a central device to never be discoverable again or to only become discoverable again
after the connect button is pressed. This has two advantages.

First, peripherals that are not discoverable don’t need to include information in their advertising
packets that is related to discoverability such as the device name or the current Transmit Power.

Second, central devices that are looking for devices to discover will only want to display devices
that are of interest to the user, and not all peripherals in the area. By peripherals not being
discoverable all the time, the list presented to the users of central devices will be much more
manageable and useful.

14.4. Being Connectable
Being discoverable and connectable are very similar to one another; they both use advertising
packets, yet they serve different purposes. Discoverable devices are typically not paired with any
other device, whereas connectable devices are typically bonded with one or more devices and would
only accept connections from those devices.

When a device is connectable, it accepts connection requests from initiating central devices that
want to connect to it. Essentially, when a peripheral is connectable, it accepts connections from any
device that sends it a connection request packet.

This promiscuous behavior is not great from a power consumption point of view. If any central
device can connect with the peripheral, it can take lots of time talking with the peripheral, wasting the
peripheral’s power, and probably more important, preventing the peripheral’s bonded centrals from
connecting to it.

To solve the this problem, the controller in a peripheral device can be configured to only accept
connections from a limited set of central devices. The set of central devices is stored in a white list,
and any connection request from a device that is not in that white list is ignored. This way, the
peripheral need only accept connections from the central devices that are bonded and in the white list;
thus, the peripheral only uses power to talk with its bonded devices.

This model of only accepting connections from bonded devices in a white list can only be used
once the device is bonded. Before this is enabled, the device must be promiscuous and accept
connections from any device. Typically, this is only when the device is initially connectable and not
bonded with any devices yet.

14.5. Exposing Services



Once in a connection, the peripheral typically exposes one or more services. Each of these services
encapsulates the atomic behavior of a component of the peripheral. These services are exposed
through attributes by using an Attribute Protocol server. The collection of attributes in a server is
normally referred to as an attribute database.

The organization of these attributes is determined by the Generic Attribute Profile (GAP). It has the
following structure:

Each service in the attribute database starts with a service declaration that defines the type of the
service. The attributes belonging to the service follow this declaration. Next comes the service
declaration for the ensuing service.

Within each service, there can be one or more other services that are included by a service.
Included services make it possible to incorporate more complicated behavior within a service
without extending the core functionality of that service. This encourages the definition of services that
only implement some small piece of functionality.

For example, the Battery Service only exposes the battery level. A device like a camera might have
two batteries, one for the flash and one for the main camera body. These components can have their
own services; for example, the Camera Flash Service and the Camera Service. The Camera Service
would therefore include both the Battery Service for the main camera and the flash service. The
Camera Flash Service would include a separate Battery Service for the flash.

Also within each service, there can be one or more characteristics. A characteristic is
fundamentally a single value that can be accessed. But each characteristic also has a characteristic
declaration that defines what the data is, how it can be accessed, and can also include additional
information that describes how it is formatted or how it is configured.

Each of these service declarations, service includes, characteristic declarations, characteristic
values, and characteristic descriptors are individual attributes within the attribute database.
Therefore, the peripheral just exposes the attributes it needs to expose, depending on what behavior it
is exposing, and then waits for a client to come along and interact with these attributes.

14.6. Characteristics
Characteristics are the fundamental building blocks of services. A characteristic is just a value with
which a client can interact. The format of the value of a characteristic is determined by the
characteristic type, and ultimately by an XML file that is the characteristic specification.

The behavior of a characteristic is not defined by this XML file; rather, it is defined in a service
specification. Therefore, within a single peripheral, it is possible to have multiple characteristics
with the same type, but different behaviors.

For example, the Alert Level characteristic is used in both the Immediate Alert Service and the
Link Loss Service, but the behavior is different. In the Immediate Alert Service, the Alert Level
characteristic is only writable and causes the peripheral to make an immediate alert based on the
value written. This value is not readable because the value of the characteristic is consumed
immediately; this is known as a control point characteristic.

In the Link Loss Service, the Alert Level characteristic is both readable and writable and causes an
alert only when the central disconnects from the peripheral, based on the value of the characteristic at
the point of disconnection. In this service, the characteristic has state and can be read and written.
When it is written, the value is stored and can be read at a later point in time.



14.7. Security Matters
A peripheral device can expose data that could be considered confidential or private, or should only
be sent to authenticated devices. To ensure this, the attribute server refuses any request for
information about an attribute that it considers cannot be completed within the current level of
security.

For example, if the client requests to read the number of unread emails from a phone or wants to
write the ringer level of a phone, these should only be acceptable from a device that has been
authenticated and for which confidentiality can be assured. This requires that the peripheral first
authenticates and then bonds with the requesting central device. Typically, it is the central device that
initiates the authentication and bonding. Once the devices are authenticated, the connection can be
encrypted and the client requests can be re-sent.

This security model is very simple for a peripheral. For each request received by the peripheral’s
attribute server, the server first checks the security permissions required to accept the request. If the
security permissions are insufficient, the server will send back an error response with a suitable
error, giving a hint to the server about how it can go about fixing the problem before resending the
request. If the security permissions are acceptable, the server will act upon the request and send back
a response. At no point does the peripheral have to initiate any security requests.

The security that is required by a service or a characteristic within a service is defined by the
service specification that is being implemented. Some services might require no security because they
are exposing public information such as the current time. Some services might require very strong
security, particularly if they are exposing private personal information.

14.8. Optimizing for Low Power
For peripherals to be able to operate with only the power provided by tiny batteries, for extended
periods of time, consideration must be given to optimizing the peripheral for low-power operation.
This includes determining the best advertising and connection intervals, optimizing access to
attributes, and choosing whether to stay connected or to disconnect and reconnect.

To understand how low power can be achieved, consider the typical states that a peripheral device
uses (see Figure 14–1). This starts with the peripheral being off. Obviously, when off, it is using no
(or very little) power. When the device is first powered on, it moves to the discoverable advertising
state. In this state, the peripheral is discoverable and can be found by one or more central devices.



Figure 14–1. The typical states of a peripheral device
At some point, a central device will connect with the peripheral and then bond. Upon bonding, the

peripheral moves to the connectable advertising state. If bonding doesn’t happen, the peripheral
moves back to discoverable advertising and waits for another central device with which to connect
and bond.

Once the devices are bonded, the peripheral will use connectable advertising. Then, only central
devices that have paired with this peripheral can make a connection to the peripheral. Once they do
reconnect, they move to the connected state and manage their connection intervals, depending on what
the central device is doing.

When connected, the peripheral also needs to determine if it should disconnect now, or stay
connected. This decision is more relevant if the central device has not made any requests recently, or
if the peripheral has not sent any data to the central device or is not expecting to do so for some time.

When it does disconnect, it can move to one of two possible states. One would use the connectable
advertising, in which the peripheral is periodically advertising so that the central device can



reconnect as it needs. The other option is that the peripheral doesn’t advertise at all until it has some
data to send, at which point it would use directed advertising to reconnect to the central.

Finally, don’t forget that the peripheral might have a connect button that when pressed removes the
current bond and allows the peripheral to be discoverable again. Any devices that were connected at
that point would be disconnected, and the device returns to the discoverable advertising state.

14.8.1. Discoverable Advertising
One of the most fundamental ways to optimize for low power in a peripheral is to choose appropriate
intervals for advertising and connection intervals. The choice of good values could mean the
difference between a device that has a few weeks’ battery life and one that has a few years’ battery
life. But the choice is not simple because there are many compromises that must be made.

A peripheral device will typically start out performing discoverable advertising so that central
devices can find it. The time that the peripheral is in this mode of operation should typically be very
short in the total lifetime of the device because the user will want to take the device out and connect
to it as quickly as possible. Once connected, the device will revert to only connectable advertising.

When in this discoverable mode, the peripheral will want to be found quickly, to provide the best
user experience possible. It will also be advertising lots of additional information such as the transmit
power so that the central device can sort devices by proximity; the device name to build a good user
interface; and the set of services that the device supports to enable the central device to filter devices
if necessary.

A discoverable peripheral device should therefore be willing to advertise at a fairly rapid rate to
be discovered quickly. An advertising interval of about 250 milliseconds would be a good
compromise between the speed of discovery and power savings.

14.8.2. Bonding
Whenever the peripheral engages in a connection, the connection intervals are determined by the
central device. The central device should use sensible connection interval values—but this is not
guaranteed.

Once the peripheral makes a connection from the discoverable advertising state, the connection
interval can be fairly fast. A fast connection interval—for example, between 7.5 milliseconds and 25
milliseconds—can use lots of power, but it also means that the central device can discover the set of
services and characteristics that this peripheral offers, and therefore can provide prompt feedback to
the user about how it can interact with the peripheral.

If the connection interval is very slow (between 1 second and 4 seconds), it can take an extremely
long time before the central device determines how to utilize the peripheral and the user might think
that the device is not working.

Once the device is bonded and the central device has finished analyzing the device, it should be
able to reduce the connection interval significantly to save power. The correct interval to choose is
discussed a little later on. The central device can also start using the exposed services on this
peripheral. At some point the device will disconnect.

Once the bonded peripheral is disconnected, it could move to the connectable advertising state, or
to the directed advertising state. Each of these options is detailed in the following sections.

14.8.3. Connectable Advertising



When the peripheral is disconnected, it can periodically advertise to allow the central device to
reconnect. The advertising interval used in this state is a compromise between how fast a central
device can reconnect to this peripheral and the power consumption that the peripheral will use when
disconnected.

For some peripherals, the time when not in a connection will be significant. For example, a heart-
rate belt might only be connected while the user is running for an hour, three times a week. Each
week, the heart-rate belt is therefore connected for three hours, but for the other 165 hours, it is in a
connectable advertising state. Therefore, the peripheral should seriously consider the benefits of
using a longer connectable advertising interval.

A connectable advertising interval of 1 second would allow a central device to be able to connect
within a few seconds. This is probably a perfectly acceptable time for the average user. However, if
the device needs to allow the central to make a connection quicker, then it would have to decrease the
connectable advertising interval to 0.5 second or less.

It should also be noted that some devices would not need to advertise continuously. Again, let’s
look at the example of the heart-rate belt. When this peripheral is not being worn, the device does not
need to use connectable advertising. It can therefore disable advertising when it’s not being worn and
save a significant amount of power when it is disconnected.

If the heart-rate belt is worn, it can then use more power when it is advertising, perhaps using a
100 millisecond advertising interval. This gives the user the impression that once she puts the belt on,
it connects instantly—an excellent user experience. Obviously, if the central is not ready to initiate a
connection with the heart-rate belt at this time, it would be prudent for the heart rate belt to move to a
slower advertising rate, using a longer advertising interval, to save power in those cases when the
belt is being worn but the central device is not within range.

14.8.4. Directed Advertising
Some peripherals will want to connect directly with a central device when something happens. For
peripherals, where the time between something happening and when it sends a notification about the
event to the central device must be as short as possible, it is best to use directed advertising.

Directed advertising burns a lot of power on the peripheral because the peripheral transmits lots of
advertising packets very quickly to a single central device. If that central device is ready to initiate a
connection to this peripheral, it will immediately connect, allowing the peripheral to send whatever
data it needs, quickly.

Directed advertising is also the quickest way for a peripheral to make a connection to a central
device. Connection times of fewer than 3 milliseconds are possible, including the transmission of
application data.

There is no way to configure the intervals used when using directed advertising because the
advertising packets must be sent every 3.75 milliseconds on each of the 3 advertising channels. This
means that there will be one directed advertising packet transmitted by the peripheral every 1.25
milliseconds, or 800 packets per second.

For a peripheral that must send data very quickly, and that also rarely needs to be connectable,
directed advertising is probably the best model.

14.8.5. Connected



When in a connection, the central device has complete control over the connection intervals and
latency used by the peripheral. The peripheral does have the option to make a request to the central’s
host, by using a Logical Link Control and Adaptation Protocol (L2CAP) signaling channel command
to suggest to the central device that the values currently being used are not useful.

For example, if the central device is monitoring the proximity of the peripheral device it would
only need a connection interval rate of perhaps three times a second. If the actual connection interval
used is shorter than this, the peripheral would be forced to use too much power synchronizing with the
central with no user benefit. If the connection interval used is longer than this, the peripheral would
possibly be synchronizing so slowly that the pair of devices would not be able to detect the movement
of the devices early enough to warn the user.

There are two configurable values for the connection parameters that relate to power consumption:
the connection interval and the slave latency. The connection interval is a time that determines how
often the central will transmit and synchronize with the peripheral device. This is any multiple of 1.25
milliseconds.

The connection interval is not the most significant factor. The slave latency is much more important
from a peripheral power consumption point of view. The slave latency determines the number of
master connection intervals that the slave can ignore. This is a value from 0 to 500.

For example, suppose that the connection interval is 12.5 milliseconds and the slave latency is 0,
then the slave would have to listen every 12.5 milliseconds for the master. This would burn a lot of
power. With the same 12.5 milliseconds connection interval but a slave latency of 1, the slave can
ignore one connection interval but must listen to the next one. This halves the power consumption of
the slave, yet allows the slave to have the same ability to send data within 12.5 milliseconds if
necessary.

The slave latency is not just a way for the slave device to save power; it also determines the
latency that any data from the master can be sent to the slave. For example, if you have a keyboard
with a Caps-Lock light, then this light might need to be turned on and off within 0.5 second. If the
connection latency was 12.5 milliseconds, slave latency would have to be 39. The slave could then
skip 39 out of every 40 packets from the master, and therefore would listen once every 500
milliseconds. This would also allow the slave to save a significant amount of power compared with a
slave latency of 0 or 1. Of course, this is an approximation because it assumes a perfect channel
without the need for retransmissions. In practice, retransmissions will be required, so sometimes
latency will be greater.

It should be noted that this is not a never-ending benefit. For example, if the data flow were only
from the peripheral to the central device, it could be possible to use a very high slave latency.
However, using a very high slave latency yields diminishing returns.

For example, consider a mouse that only sends data to a computer. If the connection interval is 15
milliseconds, and the slave latency is set to 500, then the mouse would only need to listen once every
7.5 seconds. But consider the fact that both the central and the peripheral are timed based on clocks
that have a certain level of inaccuracy. In the worst case, these inaccuracies can amount to 500 parts
per million on each device. In other words, every second, the timing of either the central or the
peripheral might be off by up to half a millisecond.

This means that after the 7.5 seconds of time that the mouse has not been in synchronization, its
concept of time could be off by 3.75 milliseconds, as would that of the master, possibly in different



directions. Therefore, the total uncertainty would be 7.5 milliseconds. The peripheral has to listen for
an additional 7.5 milliseconds before the time when it has calculated the master should be
transmitting, and up to 7.5 milliseconds after. This is called window widening. This burns power. So
every 7.5 seconds, the radio has to be on for 7.5 milliseconds (best case).

If the slave latency was only 50, the mouse would have to listen once every 750 milliseconds, but
the window widening would mean that the slave has to listen 0.75 milliseconds early. Unsurprisingly,
this requires the same proportion of time for window widening as the previous example.

The peripheral also must receive and transmit some empty packets, an 80 microsecond packet from
the master and an 80 microsecond packet in reply. As the slave latency increases, the time taken to
transmit and receive the packets becomes insignificant; therefore, the additional power savings from
not having the slave synchronize frequently is lost to window widening.

As a result, it makes no sense to set a slave latency of greater than about 1 second or fewer than
300 milliseconds. Below this range, the power used to repeatedly synchronize is higher than it would
be to wait a little bit longer. Above it, the power used by window widening doesn’t save any
significant amount of power, and so it is better to use the lower latency to enhance the user
experience.

14.8.6. Stay Connected or Disconnect
When the peripheral is connected, the use case might require that data is transferred at a random
interval. A peripheral that is performing in such a use case could stay connected or disconnect and
then reconnect when it has some more data.

There are two main decisions to make. First, can the central device reconnect back to the
peripheral in a reasonable latency if the peripheral starts advertising so that the users don’t know that
it was disconnected? Second, if it does stay connected, what connection latency is being used or is
possible to ask for, such that the battery life is still acceptable?

To enable the peripheral to make more informed decisions, the Scan Parameters Service can be
exposed on a peripheral so that a central device can inform the peripheral what scan parameters it is
using. When the central device connects to the peripheral, it discovers this service on the peripheral,
and the central device can then write the latency that it will honor to the peripheral when
reestablishing a connection. Using this information, a peripheral can determine if and when it should
disconnect, given the excepted user experience.

For example, if the connection latency written by the central device into the peripheral’s scan
parameters service is 100 milliseconds, and the peripheral is happy with a latency of 250
milliseconds, then it could theoretically disconnect at any time if it has no data to send. The device
knows that it can reconnect within 100 milliseconds and be able to send data. However, although
disconnecting saves power, the reconnection procedure uses lots of power. With a 100-millisecond
reconnection latency, the peripheral will spend on average 50 milliseconds to make a connection.
During these 50 milliseconds, the peripheral will be sending a 176-microsecond packet every 1.25
milliseconds, therefore powering the radio for 8.64 milliseconds.

This doesn’t sound like a very long time. But if the peripheral were connected with a connection
interval of 250 milliseconds, and it was not sending any data, it would only have the radio on for 640
microseconds every second. Therefore, the peripheral would have to be connected to the central
device for 13.5 seconds before it would use more power staying connected than disconnecting and



then reconnecting.
However, unfortunately, it’s not that simple. If the peripheral also wants to be connectable, then it

would also need to advertise slowly when disconnected. Suppose that the peripheral has a 1-second
advertising interval. It would have to send up to 3 advertising packets that take 504 microseconds. So,
the peripheral could stay connected and use 640 microseconds of time every second to stay
connected, or it could disconnect, advertise periodically, and then rapidly advertise when it needs to
make a reconnection.

Therefore, the peripheral is only saving 136 microseconds per second by disconnecting. This
means that the peripheral would actually need to stay connected for over a minute before it makes
sense to disconnect. It gets worse: If the peripheral wants to allow a central device to connect
quicker, it would need to advertise quicker. An advertising interval of 500 milliseconds would
actually use more power than just being in a connection. Therefore, for some devices, it actually
makes sense to stay connected all the time.

This implies that for some peripherals, there is no need to implement this service. Once the
peripheral is connected, it would remain connected. This really depends on the use case and how the
peripheral is used.

Of course, if a peripheral has exposed the scan parameters service but the central device doesn’t
write any useful values into the service characteristics, then the peripheral must use guesswork to
determine when it should stay connected or it should disconnect. This guesswork is typically a simple
matter of staying connected for a given period of time after the last application data was sent. Once
this timeout has expired, the peripheral would disconnect. Typical values for this might be measured
in the order of minutes or even hours.

14.9. Optimizing Attributes
At the end of the day, the typical use of a peripheral is to provide access to the data it generates. For
example, a heart monitor exposes the heartbeat rate of the person who is wearing it. The final
optimization that a peripheral can use is how this data is transferred.

Typically, a peripheral exposes one or more services. The central device discovers these services
and their characteristics and descriptors. The central device then reads, writes, and configures these
characteristics to utilize the services offered by the peripheral. But the peripheral can help itself to
save power by implementing notifications and indications about its characteristics.

Characteristics and services are described by using attributes, and these are accessed by using the
attribute protocol. This protocol enables a client (in a central device) to access these attributes in a
peripheral. The protocol not only makes it possible for attributes to be read and written but also
notified and indicated.

Take a characteristic of a device—for example, a measured heart rate—that is being transmitted
once per second from the heart-rate monitor to a central device such as a watch or phone. This data
transmission could be implemented by reading the characteristic’s value once every second. But this
would require a read request to be sent by the central and a read response sent in reply by the
peripheral. The peripheral’s radio would be active for 272 microseconds every second just to send
the request and receive the response.

If the characteristic is configured for notifications, this would reduce the active time to just 232
microseconds. This is significantly more energy efficient than the polling case. This advantage is



more evident when the data is only available at random times and not periodic. In this case, the client
might be polling for data more often than is necessary.

Consider a device that monitors a sensor once per second, but the value only changes infrequently,
perhaps once every 30 seconds. In this case, polling by using a read request and read response would
need to be performed 60 times per minute, but the value might only change once during this time. This
requires 60 requests to be sent, and 60 responses to be received in return. This takes 16.32
milliseconds every minute. But, if the peripheral supports notifications, and the central device
configures notifications, the radio would only need to be active for 9.744 milliseconds. This is almost
half the power consumption of the polling case.

Indications are similar to notifications, except that they also have a response message to
acknowledge at the protocol layer that the information has been received. This uses slightly more
energy than the preceding notification case, approximately 10 milliseconds, but this has the advantage
that no data is lost. Because notifications are not acknowledged at the protocol layer, they can be
ignored if the receive buffers are full. But indications can only be sent one at a time and cannot be
sent again until a confirmation message has been received.

Notifications and indications are therefore highly efficient when compared with a polling model. A
peripheral can help itself be more energy efficient by ensuring that as many characteristics as possible
are exposed for notification or indication. This makes it possible for a central device to configure
characteristics to be notified or indicated.



Chapter 15. Testing and Qualification

Ideas must be put to the test. That’s why we make things; otherwise, they would no more than
ideas. There is often a huge difference between an idea and its realisation. I’ve had what I

thought were great ideas that just didn’t work.
—Andy Goldsworthy

Before releasing a Bluetooth low energy product that implements one or more services and profiles, it
must be tested and then qualified. The Bluetooth Special Interest Group (SIG) requires this and
codifies it in the membership agreements that all Bluetooth SIG members sign. This agreement allows
products that comply with the published specifications to be able to utilize and rely on the necessary
claims of the intellectual property that any other members may have. This means that a product that
has implemented one or more Bluetooth specifications, as determined by a Declaration of
Compliance (DoC) signed by that member, has a royalty-free license to use that technology. This
implies that there is a great benefit for declaring compliance. Proving that your device is compliant is
where the testing and qualification come into the picture.

As illustrated in Figure 15–1, the qualification program is a multistep process that spans product
conception through to a qualified and listed product. Part of this process requires that testing is
performed. Some steps require that a monetary investment is made; others require decisions to be
made about what the product will do.



Figure 15–1. The Bluetooth testing and qualification process

15.1. Starting a Project
The very first step is the easiest. You start a project. This requires you to log in to the Bluetooth SIG
Web site1 at bluetooth.org and start a new Test Plan Generator (TPG) project. You need a project
name and the date that you expect to qualify. Don’t worry about this information too much. You can
change these names and dates in a later step.

The nice thing about starting a project is that it is free. You can start as many projects as you want.
If you want to test out what might be required to do something, you can just start a project, configure
the project, and see what the resulting testing burden is. You can also delete projects at any time, so if
a project no longer looks viable, you can remove it from your current list of active projects.

The project that you create in this initial step will be the same all the way through to the point of
qualification. This means that although the project is free to create, before the project can become an
officially listed, qualified product, a fee will have to be paid.

To start the project, you go to the Create New Project page on the bluetooth.org Web site. The
information you will need includes the expected qualification date, the TPG Release Version, a
project name, product type, and a description of the hardware and software versions.

http://bluetooth.org
http://bluetooth.org


For a Bluetooth low energy product, the TPG Release Version should be 4.0 or later. By doing so,
the project takes advantage of all the low energy layers in the system that were only introduced in the
v4.0 core specification.

The next value to select is the product type. There are eight types of products that can be selected,
depending on the type of component or subsystem that is being qualified.

• End Product This is an actual product that is available for public consumption.
• Host Subsystem Product This is a product that is only composed of the host parts of the core
specification, such as Logical Link Control and Adaptation Protocol (L2CAP), Attribute
Protocol (ATT), Generic Attribute Profile (GATT), Security Manager (SM), and Generic
Access Profile (GAP). This needs to be combined with a controller subsystem and one or more
profile subsystems to make an end product.

• Controller Subsystem Product This is a product that is only composed of the controller parts
of the core specification, such as the radio and link layers. This needs to be combined with a
host subsystem and one or more profile subsystems to make an end product.

• Profile Subsystem Product This is a profile subsystem that contains an implementation of one
or more profiles and/or services. This will be combined with a host subsystem and a controller
subsystem, and possibly additional profile subsystem products to make an end product.

• Component Subsystem Product This is an individual part of a subsystem. For example, the
implementation of your SM might be separately listed as a component subsystem product.

• Development Tool This is a special product type that you use during the development of
Bluetooth products. This type of product cannot be sold to the end consumer, but it can be
distributed to other members to assist the rapid creation of end products.

• Test Equipment This is a special type of product designed for the small set of test equipment
manufacturers who need to have access to the royalty-free license. Because the test equipment
might need to do things outside the specification to enable testing of real products, these tools
have a special product type.

The interesting thing about this set of product types is how they can be combined. At the most
discrete level, everything can be combined together into an end product as a whole. This holistic
approach can cause lots of problems because the complexity of the testing will be huge. Instead, most
components would be tested individually and listed as individual component subsystems. These can
then be combined together without any additional testing into an end product.

Components can also be combined into a controller or host subsystem. By doing this, whole parts
of the product’s design can be combined into a single listing. For example, when using a controller
chip, it would be listed as a controller subsystem so that it can be combined with your host subsystem
to make an end product.

15.2. Selecting Features
The next step in the process of qualifying a product is to select what features your product is going to
support. This is declared in the summary template. Here, you can select the set of core layers and
profiles and services that your device will support. For example, a low energy proximity device
would select RF PHY, Link Layer, L2CAP, ATT, SM, and GATT in the core section, and Link Loss
Service, Immediate Alert Service, and the Tx Power Service in the host section.



After this, you need to delve deeper into the details of what is being claimed. This is where you
match the features that you plan to implement with the feature set for which you will later be claiming
compliance. For every feature claimed, a set of tests will be required to be run, and test evidence will
need to be collected before the DoC can be signed.

For each layer that was selected in the summary template, the detailed Implementation
Conformance Statement (ICS) is filled in. For each ICS, each and every possible mandatory or
optional feature has a line where you can identify whether your product will support this feature.
There is an ICS for each layer of the core specification and each profile or service being claimed.

15.3. Consistency Check
Once all the ICSs have been filled in, the validity of the selections can be checked. There are many
rules as to what features you must have if another feature has been selected. If any of these selections
are invalid, the line will be marked as invalid. Once these errors have been corrected, the consistency
check can be refreshed. For example, if a service has optional notification of a characteristic, then if
you select this line, the consistency check will ensure that GATT also has the ability to write
characteristic descriptors. This is because without the ability to write characteristic descriptors, it
would be impossible to configure a characteristic to enable notifications.

Sometimes, the set of features selected will be inconsistent. If they are inconsistent, the set of
features selected will need to be changed and the consistency check attempted again. Once all the
consistency checks have completed, it is possible to move to the next step.

It is worth noting that occasionally the test plan generator (TPG) has errors for new specfications.
If you believe you are correct and the TPG signals an inconsistency, this can be raised with the
Bluetooth Qualification Administrator (BQA), who can arrange for the TPG issues to be fixed.

15.4. Generating a Test Plan
Each layer of the core specification, or service or profile specification, has an associated test
specification. Each test within these test specifications has a unique identifier. For your product, many
of these tests will not be required, depending on the configuration of your ICS that was determined
from the previous step. Therefore, the next step is to generate your test plan for your product as it
pertains to the ICS that you have just completed. The test plan includes all the tests that need to be run
to prove that your product has implemented all the required functionality that you are claiming.

The test plan that is generated can be downloaded to your local computer from the Web site; this
provides you with a list of tests to use during your product development. Once the product has been
developed and a prototype is available for testing, there is one final step before the qualification
testing can begin. This is the creation of a compliance folder.

15.5. Creating a Compliance Folder
A compliance folder is a single location where all the information about a product, that product’s
feature set and capabilities, and all test evidence are stored. The compliance folder can be a
collection of electronic documents or paper documents. The folder must be stored securely and be
easily accessible for each product that you have qualified. If later on a problem is found with your
device, the Bluetooth SIG can audit that product’s compliance; thus, it must be given access to the
compliance folder to be able to perform this audit.



The compliance folder contains the following items:
• Product Information This includes information about the product, such as the product name, a
description of the product, and hardware and software version information. It also includes,
where relevant, the user manual or user guide, a block diagram and technical description of the
product, and notes on how the Bluetooth component is integrated into the design of the product.

• Testing Information This includes all the information about how the device was tested,
including the test plan that was generated, a test declaration that has the result of each test, test
reports that are required for formal validated tests, and any extra information that might be
required to perform the tests so that the testing can be replicated at a later date.

• Design Information This includes detailed design information that describes the design of the
product where relevant to the Bluetooth functionality. This could include elements, such as the
circuit schematics, printed circuit board layouts, component layouts, and a bill of materials that
describes the physical external components and their tolerances. This could also include things
such as the software design documentation and sufficient information to extract the precise
software used during testing from a software version control system.

• Implementation Conformance Statements This includes the ICS documents for each layer in
the system and each profile or service.

The compliance folder must be stored securely while the product is offered for sale or distribution.
Only after the product has been removed from sale for over a year can the compliance folder be
destroyed.

15.6. Qualification Testing
Once the prototype is ready for testing, a test plan has been generated, and a compliance folder has
been created to store all the information about the product and its testing information, the testing can
begin.

For some tests, there exists validated test equipment that can be used to run the tests. There are
three types of validated testers: RF testers are used to run the physical layer qualification tests;
protocol testers are used to run the protocol layer tests; and the Profile Tuning Suite (PTS) is used to
run the profile tests.

Each test is assigned to one of four different categories:
Category A Cat A tests are the best-defined test cases and must be done by a Bluetooth Qualified

Test Facility (BQTF) or a Bluetooth Recognized Test Facility (BRTF). The tests that are run will
generate a test report that will be stored in the compliance folder.

Category B Cat B tests are run by the product company according to the test requirements. The test
setup, test evidence, and test results are stored in the compliance folder.

Category C Cat C tests are also run by the product company, but the documentation requirements are
significantly reduced. Cat C tests have to be declared that they have been performed and the test
result must be captured, but no test evidence is required.

Category D Cat D tests are optional. There is no requirement to run these tests and there is no need
to document that they have been run, that the results have been captured, or to store any test
evidence.
Category D tests might appear to be mostly pointless, but all tests can move between categories as



the tests mature or problems are found. For example, a new specification might start with all tests
being at Category C, but once the maturity increases, these can move to Category B. Category B tests
might be implemented by a test-equipment manufacturer that validates these tests, and, therefore, these
might move up to Category A.

A test might be moved to Category D when it has known unresolved issues, and thus, the SIG
cannot reasonably require that it be run. However, you should keep in mind that when you qualify, you
declare compliance to the specification. Test cases are merely a useful way to check that compliance.
So, even if a test case is broken, products must still correctly comply with the feature it was designed
to test.

It is possible to raise test case errata on all the tests in the qualification program if the test case or
the expected outcomes are invalid. The core specifications, not the test specifications, are the
determining factor in deciding whether something is a valid test. It is therefore possible to take a
Category A test, prove that it does not implement what is required in the core specification, and still
qualify your product because you can still provide the test evidence required. This doesn’t happen
very often, but it is a useful safety valve.

15.7. Qualify Your Design
Once the testing has been completed, the compliance folder should be full of test reports. The next
step is to qualify your design. To do this, you need a Qualified Design Identifier (QD ID). This is a
unique number that refers to your design. This does not refer to an end product; this will come later.
Instead, you qualify a design that can be used in multiple end products. For example, you might design
a product that can be sold under multiple brands, with each brand using its own packaging. The
qualification of the design allows the parts of the product that use Bluetooth wireless technology to be
used by many end products. It does cost money to qualify a design, but this design can be used in many
end products with no additional qualification charges.

Once the QD ID has been obtained, the test declaration is uploaded to the Bluetooth SIG Web site.
This test declaration includes all the test reports from the validated testers as well as any additional
Category C or Category D tests that you performed directly. Also, the profile tuning suite reports
should be uploaded separately. These are directly parsed and the set of profiles and services that your
device will support is immediately verified.

15.8. Declaring Compliance
Once the Bluetooth SIG has all the information about the design—what it does, the tests that have
been run, and the test results—the design can be qualified. The member company that has designed the
product now completes a Declaration of Compliance (DoC). This is a legally binding document that
states that the member declares that the design complies with the Bluetooth specifications referenced,
that the product implements the reference design, and that the product meets the testing and
documentation requirements of the defining process document. This whole process is defined by the
Qualification Program Reference Document (PRD). Essentially, by signing this declaration of
compliance, the member has said that it has done everything necessary according to the process.

Because the DoC is a legal document, it can only be signed by someone who has the authority to
enter into a legal commitment for the company. This means an officer of the company or someone who
has been delegated the authority to make legal commitments by an officer of the company must be the
signer.



The DoC must include the QD ID, the product information, the feature set of the product, the
Bluetooth specifications being referenced, and the version of the PRD and test specifications used, as
well as the test case reference list used to determine the set of tests required and their categories.

Once this DoC has been signed by a member company, the product is covered under the royalty-
free license, and the Bluetooth brand can used in association with this product.

All products that have been qualified must have the QD ID clearly marked on the device or in its
documentation. This allows anybody to determine the set of features and, therefore, the requirements
of the design.

15.9. Listing
Once a member company has a compliant product with a QD ID, a listing is next performed. This
listing does not need to be made public immediately because this can have an impact on the marketing
plan for the release of the product. But a product must be listed within three months. The product
compliance is not considered to be effective until the product is listed; therefore, you must list your
product before offering it for sale or distribution.

15.10. Combining Components
It is possible to combine multiple listings into a single product. For example, an end-product listing
might use a controller chip from one manufacturer, a host stack from another, one service from another
supplier, and another service from yet another. This product would, therefore, have five QD IDs: one
for the controller, one for the host, two for the services, and one for all the QD IDs in combination.

It should also be noted that each of these qualified designs can themselves be a combination of
multiple, qualified components. The host in the previous example might have a separate QD ID for
each layer in the design: one for L2CAP, one for ATT, one for GATT, one for GAP, one for SM, and
one for this combination of components as a host subsystem. This seemingly simple end product
would therefore ultimately reference nine different QD IDs.

This tree of QD IDs is a very powerful concept; it allows packaged components or subsystems to
be designed and qualified separately and then delivered as a complete design. These components or
subsystems can be reused in many products, again and again, without paying any additional testing
costs or listing fees. For devices that use many existing parts, the costs for creating a new product can
be negligible.
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Wibree technology, 5
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defined, 10
Link Layer channels and, 84–85
technologies increasing speeds of, 4

Window widening, 309
Wired infrastructure, problem of Internet design, 45
Wireless band, global operation design goals, 7–8
Woken message, 3-Wire UARTs in HCI, 134
Writable, access permission, 194
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Footnotes

Chapter 1
1. MAC stands for Medium Access Control. How a transceiver uses a Physical Layer to

communicate with other transceivers.
2. PHY stands for Physical Layer.
3. IEEE stands for the Institute of Electrical and Electronics Engineers.
4. FRAND stands for Fair, Reasonable, and Non-Discriminatory. This means that if you license

your technology, you must do it at a fair price, on the same terms for everybody, regardless of
who the licensee is.

5. SI stands for Système International (or International System in English), which is a system of
standardized unit designations, typically in relation to scientific, engineering, and technical
measurements such as seconds, meters, kilograms, and so on.

6. http://www.industrie.gouv.fr/metro/aquoisert/etymol.htm

Chapter 3
1. USB stands for Universal Serial Bus.
2. SDIO stands for Secure Digital Input Output.
3. UART stands for Universal Asynchronous Receiver/Transmitter.
4. UUIDs are documented as part of ITU-T Rec. X.667 | ISO/IEC 9834-8, which is duplicated in

the IETF as RFC 4122.

Chapter 4
1. TCP stands for Transmission Control Protocol. This is the protocol that is used to transmit a

stream of data between two devices.

Chapter 5
1. Sometimes, this is an invalid assumption if the antenna and matching circuits are poorly

designed. Good module manufactures or RF engineers should be able to reduce this problem.

Chapter 7
1. Cipher Block Chaining = CBC; Message Authentication Code = MAC; Counter with CBC-

MAC = CCM.
2. Complimentary Metal on Silicon (CMOS) is used to manufacture over 95 percent of all silicon

chips. It is a very low-cost technology.

Chapter 10
1. The computer used to write this book has 23 different temperature sensors.
2. Universally Unique Identifiers are defined in RFC 4122, which is functionally equivalent to

ISO/IEC 9834-8.

http://www.industrie.gouv.fr/metro/aquoisert/etymol.htm


3. The number of services is approximately 1038, more than enough for the planet earth for a few
years.

4. The smallest attribute database must have the following six attributes: ≪Primary Service≫ for
≪GAP Service≫, ≪Characteristic≫ for ≪Device Name≫, the ≪Device Name≫ value,
≪Characteristic≫ for ≪Appearance≫, the ≪Appearance≫ value, and a ≪Primary Service≫
for ≪GATT Service≫. This database doesn’t expose much state and is therefore not
particularly useful.

5. A more dramatic example would be an oven that automatically turned off when the food inside
caught fire. Not that this happens in my house, of course :-).

Chapter 11
1. You can find NIST FIPS-197 at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
2. You can find NIST Special Publication 800-38B at

http://csrc.nist.gov/publications/PubsSPs.html

Chapter 13
1. Bureau International des Poids et Mesures. You can find more information at

http://www.bipm.org/
2. Use https://developer.bluetooth.org/ to discover all possible characteristics.

Chapter 15
1. To create a new project, go to http://www.bluetooth.org/tpg/create_project.cfm

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/PubsSPs.html
http://www.bipm.org/
https://developer.bluetooth.org/
http://www.bluetooth.org/tpg/create_project.cfm
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