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PREFACE

Quantum well devices have been the objects of intensive research during the last 
two decades. Some of the devices have matured into commercially useful products 
and form part of modern electronic circuits. Some others require further devel-
opment, but have the promise of being useful commercially in the near future. 
Study of the devices is, therefore, gradually becoming compulsory for electronics 
specialists. The functioning of the devices, however, involve aspects of physics 
which are not dealt with in the available text books on the physics of semiconduc-
tor devices. There is, therefore, a need for a book to cover all these aspects at an 
introductory level. The present book has been written with the aim of meeting 
this need. In fact, the book grew out of introductory lectures given by the author 
to graduate students and researchers interested in this rapidly developing area of 
electron devices. 

The book covers the subjects of heterostructure growth techniques, band-offset
theory and experiments, electron states, electron-photon interaction and related 
phenomena, electron transport and the operation of electronic, opto-electronic and 
photonic quantum well devices. The theory as well as the practical aspects of the 
devices are discussed at length. 

The aim of the book is to provide a comprehensive treatment of the physics 
underlying the various devices. A reader after going through the book should find 
himself equipped to deal with all kinds of quantum well devices. 

The book may serve as a text-book for advanced level graduate courses. New 
entrants into researches or developments in the area should also find the book 
useful.

Indian National Science Academy helped the author to complete the book by 
awarding him the position of INSA Senior Scientist for three years (1998-2000).

B. R. Nag 
Calcutta
June, 2000 
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CHAPTER 1

INTRODUCTION

1.1. Quantum Well Devices

The seed of quantum well devices was planted when Esaki and Tsu [1.1,2] sug-
gested in 1969 that a heterostructure consisting of alternating ultrathin layers 
of two semiconductors with different band gaps should exhibit some novel use-
ful properties. The band-edge potential varies from layer to layer as a result 
of the difference in the band gaps and a periodically varying potential is pro-
duced in the structure with a period equal to the sum of the widths of two con-
secutive layers. For layer thicknesses of the order of ten nanometer, the wave-
length as well as the mean free path of the electrons extend over several layers 
and the periodic potential transforms the energy bands of the host lattice into 
minibands. Phenomena like Bloch oscillation and low-field negative differential
resistance may be produced by the electrons in such minibands. Attempts to 
fabricate the proposed structure and to demonstrate the predicted Phenomena
were only partially successful[1.3,4]. Interest was, however, generated in fabri-
cating heterostructures with transition regions extending over a few atomic lay-
ers. Structures were initially grown by using the technique of molecular beam 
epitaxy [1.5],(MBE) but soon several other techniques were developed. 
Heterostructures may now be grown of any composition with crystalline perfection 
at the interfaces. Such structures form the basis of quantum well devices. 

Experiments were done on the proposed heterostructures in 1974 with gallium 
arsenide (GaAs) and aluminum gallium arsenide (AlxGa1–xAs), The mismatch in 
the lattice constant of GaAs and AlAs being only 0.12% it is easy to grow layers
of GaAs and mixed compounds of GaAs and AlAs on each other with crystalline 
perfection. Experiments were done with structures consisting of GaAs layers sand-
wiched between AlxGa1–xAs layers, which form potential-barrier layers as the band
gap of AlxGa1–xAs is larger than that of GaAs. The potential profile in these struc-
tures are as envisaged in textbook problems of one-dimensional potential wells and 
potential barriers. The component of the electron wave vector is quantized in such 
structures in the direction of potential variation. 

Two experiments were reported in which the effects of quantization were ex-
plored in order to establish that quantization really occurs. In one experiment[1.6] 
optical absorption was measured in a multi-quantum well (MQW) structure. The 
absorption was found to increase in steps for certain wavelengths. This result 
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2 CHAPTER 1 

indicated that the component of the wave vector was quantized in the direction 
perpendicular to the interfaces and the electron and the hole gases were two-
dimensional. The stair-case-like density of states of the two-dimensional gas ex-
plained the experimental absorption characteristic. In the second experiment [1.7], 
the barrier layers on the two sides of a sandwiched GaAs layer were provided with 
ohmic contacts by growing on them degenerate GaAs layers. Current between the 
contacts was measured for different voltages. The current-voltage characteristic 
exhibited peaks, which could be explained by resonant, tunneling from the con-
tact layer to the quantized levels in the GaAs well layer. These two experiments 
confirmed the conjecture that the energy levels are indeed quantized in the poten-
tial wells formed due to the band gap difference. 

The next important experiment demonstrated[1.8] in 1979 the formation of a 
two-dimensional electron gas (2DEG) on the GaAs surface of a AlxGa1–xAs/GaAs
heterojunction. The GaAs layer was undoped, while the AlxGa1–xAs layer was
doped n-type with a donor concentration of 1018 cm–3. Electrons migrated to the
lower lying conduction band of GaAs to form a space charge layer at the interface. 
The conduction -band edge of GaAs was so bent by this space charge that a narrow 
near-triangular well was formed. The energy levels were quantized as a result. 
Quantization was confirmed by the observed anisotropy of the Shubnikov-de Haas 
oscillations. More importantly, mobility of the confined electrons was found to be 
high even though the areal electron concentration was about 1.1 × 1012cm–2   . The

high mobility was mainly due to the segregation of the impurity atoms which were 
confined to the AlxGa1–xAs barrier layers, whereas the electrons were in the GaAs
surface layer. 

A transistor was realized[1.9] by using a Al0.7Ga0.3As/GaAs heterostructure
in 1980. The Al0.7Ga0.3As layer was doped n-type (ND=6.6 × 1017cm–3) and the
GaAs layer was undoped. The electron concentration in GaAs and the in-plane
current could be controlled by using a conventional metal-oxide-semiconductor
field-effect-transistor (MOSFET)-like structure with source, drain and gate con-
tacts. The high mobility of the electrons[1.10,11] in the structure gave at 77 K 
a transconductance, three times higher than that of a conventional Schottky-gate
GaAs field-effect transistor (GaAs FET). The operation of the AlGaAs/GaAs 
FET depends on the capability to change the space charge by the gate voltage 
and quantization of the energy levels is not a necessary condition. However, the 
carrier concentration in the devices is such that the potential well formed by the 
space-charge layer is very narrow and quantization results. Electrons can have, 
therefore, only in-plane motion, the perpendicular motion being restricted due to 
quantization. The quantization, although not necessary, affects significantly the 
device characteristics. That energy levels may be quantized in surface space-charge
layers was predicted by Schreiffer[1.12] as early as 1957 and quantization in SiO2/Si
system has been studied extensively [1.13]. The condtions in silicon MOSFET’s
are, however, such that the effects of any quantization are not significant. On the 
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other hand, in the transistors realized by using AlGaAs/GaAs structures, quan-
tization cannot be ignored and the device should be treated as a quantum well
device. It has been given different names TEGFET, MODFET, SDFET, HFET,
but it is mostly referred as HEMT (High Electron Mobility Transistor). The per-
formance characteristics have been improved through intensive research and the
devices today[1.14] may have cut-off frequencies of 455 GHz, noise figure of 1.7 dB
with 7.7 dB gain at 44 GHz. HEMT’s are extensively used in low-noise receivers,
digital IC’s and microwave circuits. 

In parallel with the development of a transistor, research was also being done
for realizing a laser by using a quantum well structure, as some advantages were

envisaged for such a laser. The density of states being stair-case-like, the concen-
tration of carriers is large at the band edges in quantum wells. whereas in bulk
material the concentration is zero at the band edges. The density of carriers is also 
larger in quantum wells for the same injection current as the carriers are confined
in a narrower region. These two conditions were expected to cause a lowering 
of the threshold current density in quantum well laser(QWL)’s. An additional
expected advantage was the possibility of tuning the laser wavelength by control-
ling the well width. The quantized energy levels being related to the inverse square 
of the well width, the energy difference between the lowest energy level in the con-
duction band and the highest energy level in the valence band is determined by the 
well width. A desired lasing wavelength can, therefore, be realized by a suitable 
design of the well structure. 

An optically pumped QWL was reported in 1975,[1.15] but the required pump-
ing power was 36 kW/cm2. Large pumping power was required as the quality of the
available MBE material was poor at that time. The interfaces were uniform and
sharp, but the radiation efficiency was low due to interface defects. Performance
of the QWL’s was significantly improved with materials grown by the technique of 
metal-organic chemical vapor deposition (MOCVD). A threshold current density of 
3 kA/cm 2 was reported[1.16] for a MOCVD-grown QWL in 1978. Further
improvement was reported[1.17,18] in 1979 and the threshold current density was 
reduced to 1.66 kA/cm2. The quality of the MBE material was also improved
in the mean time. The non-radiative defects in AlGaAs interfaces were removed 
by raising the growth temperature. An MBE-grown multi-quantum well laser 
(MQWL) was reported[1.19] in 1979, which had a room temperature threshold
current density of 2 kA/cm2,

The successful developments initiated extensive research and development in 
QWL’s. Various heterostructure systems using lattice-matched as well as lattice-
mismatched (the so-called strained layer) materials have been evolved. The com-
positions of the structures have also been varied[1.20,21] to cover the wavelength 
range 1.55 µ m to 417 nm. Different configurations have also been developed to 
obtain emission from the edges or from the surfaces. The threshold current has
also been lowered[1.22] to 0.35 mA and the characteristic temperature has been 
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raised[l.23] to 240 K. 
Quantum well laser may be considered to be the most successful quantum well 

device. It is now extensively employed in optical communication systems, bar-code 
scanners, laser arrays and erasable optical discs. Short wavelength QWL’s are also
being developed currently, which have promise of increasing the storage capacity 
of data storage systems by an order of magnitude. 

HEMT and quantum well laser are the two well-developed quantum well devices
which are now extensively used. However, various other QW devices are also being
studied in different laboratories. Among these devices resonant tunneling devices
have received much attention. 

The resonant tunneling experiment[1.5] of 1974 demonstrated the quantization
of energy levels in the wells formed by semiconductor heterostructures. But, 
the magnitude of the peak in the voltage-current characteristic and the negative 
differential resistance were very small, although much higher peak-to-valley cur-
rent ratio was expected from theory. The discrepancy was found to be due to the 
poor quality of the MBE material used in the experiment. Interest in the devices
was, however, renewed in 1983 when it was shown[1.24] that the negative resis-
tance of the diode could be used to construct oscillators for terahertz frequencies. 
As the quality of MBE material was also improved, it became possible to realize
this prediction. Intensive work has been carried out on resonant tunneling diodes 
(RTD)’s in the last decade. The figures for the peak-to-valley current ratio and 
valley current have been much improved[1.25]. In addition to the AlGaAs/GaAs 
system In0.52Al0.48As/In0.53Ga0.47As systems[1.26] have been used to realize a large 
peak-to-valley current ratio. A few other heterostructure systems[1.27] have also 
been used in which interband resonant tunneling occurs. Significant improvement 
in the characteristics of RTD’s have resulted from these studies.

A transistor using a resonant tunneling structure was also suggested [1.28] in 
1963 and such a device was realized [1.29] at 77 K in 1985. Room temperature 
operation of a resonant tunneling transistor with a double barrier in the base was 
demonstrated[1.30] in 1986. Various other devices using resonant tunneling struc-
tures have also been suggested[1.31], but practical applications of these devices 
are not yet much reported. 

Another mature and promising quantum well device is the quantum well in-
frared photodetector (QWIP). Quantum wells may be so designed that the energy
separation between the ground state and the continuum or a second quantized 
level near the top of the well is equal to the photon energy of infrared radi-
ation. Infrared radiation may be absorbed in such doped wells to came exci-
tation of electrons from the ground state to the upper level or the continuum 
and to produce current. The suitability of such a device for infrared detection 
was first suggested[1.32] in 1977 and experiments were conducted[1.33] in 1983. 
Strong intersubband absorption was also demonstrated[l.34] experimentally in 
1985. These initial studies prompted work on the development of a practical
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detector. A detector was reported[1.35] in 1987 for the wavelength of 10.8 µm
with a detectivity of 0.52 A/W. Further development occurred in course of time
and today 128 × 128 high sensitivity staring arrays are available,[1.36] which use
QWIP’s. Although major part of the work was done by using AlGaAs/GaAs
system other structures have also been studied. For example, a QWIP using
GaAs/In0.2Ga0.8As has been reported[1.37] for the wavelength of 16.7 µm with a
detectivity of 1.8 ×1010 cm(Hz)1/2/W at 40 K. The QWIP has advantages com-
pared to the HgCdTe detectors which are currently used for infrared detection. 
QWIP’s are highly reproducible and can be made uniform so that large-area low-
cost staring arrays may be easily realized. The composition of the detectors is 
also more stable and the detectors may be integrated with other GaAs devices. At 
the same time, the spectral response may be controlled by choosing the structural 
dimensions. It is predicted that because of these advantages QWIP’s would soon 
be a competitor to HgCdTe detectors.

Infrared detectors are also being developed[1.38] by using GaInSb or AlGaSb 
/InAs superlattices and Si/SixGe1–x quantum wells. The Si/SixGe1– x detectors are
based on the same principles as AlGaAs/GaAs detectors but holes are used instead
of electrons. On the other hand, the GaInSb/InAs or AlGaSb/InAs superlattice
detectors are based on different principles. In these superlattices valence band 
levels are higher in GaInSb or in AlGaSb and conduction- band levels are lower in 
InAs. Incident radiation is detected by exciting electrons from the valence band 
of GaInSb or AlGaSb to the conduction band of InAs. Significant progress has 
been made with these two kinds of detectors. but the materials technology requires 
further development. 

Devices are also being developed by using quantum wells for the modulation 
of light. Absorption of light in a quantum well may be significantly modified by 
applying a voltage across the well; the effect, is known as quantum- confined Stark 
effect (QCSE). The effect was demonstrated[1.39] in 1985 by using AlGaAs/GaAs 
quantum wells. Extensive development work was done in the last decade on mod-
ulators and switches, based on QCSE. The modulator may be of the transmis-
sion type[1.40], But, better performance characteristics have been obtained in
the reflection type modulators using Fabry-Perot(FP) resonators[1.41]. A multi-
quantum well structure is provided with two reflectors on the two sides to form a
FP resonator. The device acts as a p – i – n diode and the modulating voltage is 
applied by reverse biasing the diode. The percentage modulation per unit driving 
voltage is about 20 %/V and the contrast ratio, the ratio of the highest magnitude
and the lowest magnitude of controlled light ranges[1.42] between 15:1 to 100:1. 
The modulation frequency may also be as high[1.43] as 37 GHz. The same kind
of structure has also been used to realize optic switches and voltage-tunable optic 
detector. Development of these devices is progressing at a very fast pace and the 
performance characteristics are outdated in a few months. 

Quantum well structures have also large nonlinearity. Optical bistable de-
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vices[1.44] , all-optic directional couplers[1.45] and degenerate four-wave mixers[1.46]
have been realized by using the nonlinearity, Progress in this area has been, how-
ever, rather slow and only a few reports are available in the literature.

The successful quantum well devices have so far used size-limited quantization
in one direction only or the so-called quasi two-dimensional electron gas. Attempts
are being made to realize quantum well devices with size-quantization in two or
even in all the three dimensions. It is predicted that the resulting one-dimensional
and zero-dimensional electron gas will yield more efficient devices.

The quantum well devices use the same basic principles as the corresponding
bulk-material devices. The physics of the devices may, therefore, be considered
to have been discussed extensively. However, formation of the potential wells,
quantization of the electron momentum and the transport and optical interaction
properties of electrons with reduced dimensionality involve aspects of physics,
which are not as yet much discussed at an introductory level. The present text is
an attempt to fill this gap. The scope of the book is detailed below.

1.2. Scope of the Book

Quantum wells are realized by heterostructures which consist of different kinds of
semiconductor layers, one grown on top of another. Techniques used for the growth
of the structures are described in Chapter 2 with suitable diagrams. Although the
book is mainly concerned with devices using 2DEG, techniques for growing struc-
tures to realize one-dimensional electron gas (1DEG) or zero-dimensional electron
gas (0DEG) are also briefly discussed, as the subjects are of great current interest.

In Chapter 3 are discussed the theoretical models of band offset and also the
experimental methods for its determination. Values of band offsets for common
heterostructures are also discussed in this chapter.

Behavior of electrons in quantum wells of semiconductors is very nearly the
same as elaborated in text book problems of quantum mechanics. However, the
basic characteristics of semiconductors add some new features which affect the per-
formance of the devices. Energy levels and energy-wave-vector dispersion relation
in quantum wells are discussed in Chapter 4, by considering the special aspects of
wells in semiconductors. 

The optoelectronic quantum well devices use the special optical properties of 
the quantum well heterostructures. The basic theory of electron-photon interaction 
and its application to the various interaction phenomena are discussed in Chapter 
5.

Performance of transistor-like quantum well devices depend on the electron 
transport properties. The reduced dimensionality of the electron gas makes these 
properties very different from those of the bulk materials. Chapter 6 deals with 
electron transport in quantum wells giving emphasis on both the low-field and the 
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high-field pro pert ies . 
In Chapter 7 through 10 are discussed the principles of operation and the per-

formance characteristics of the various electronic and optoelectronic devices, viz., 
HEMT, RTD, QWL, QWIP, OBD and optical modulators and switches. The sub-
ject has already grown in vast proportions and for economy of space, discussion has 
been limited to the essential features and current realizations. Detailed analysis 
of all the devices could not be given, but the analysis related to the basic features 
are presented. 



CHAPTER 2

HETEROSTRUCTURE GROWTH

Composite semiconductor structures consisting of two or more layers of differ-
ent materials, one grown on another, are commonly referred as heterostructures. 
Heterostructures have been used effectively in semiconductor devices since about 
1969[2.1-5]. It was by using heterostructures that the critical temperature for 
diode lasers could be increased beyond room temperature. Heterostructures have 
been used also in transistors[2.6] to realize better performance characteristics. The
structures were mostly grown by the techniques of liquid phase epitaxy[2.7,8] or 
chemical vapor deposition techniques[2.9]. The junctions yielded by these tech-
niques are not very sharp and the transition region from one layer to another may 
have extents of 10 nm or more. Since the device dimensions were much larger 
and the wavelength of light of interest was a few nanometer, the transition did 
not affect the performance of the devices in any significant way. Heterostructures 
for quantum well devices are, however, required to have much sharper junctions, 
since for quantization the dimensions are required to be comparable to the electron 
wavelength, which is of the order of a few nanometers. 

Several epitaxy techniques have been developed to grow heterostructures with 
transition region as thin as a monolayer. Work was initially started by using the 
technique of molecular beam epitaxy (MBE)[2.10,11]. This technique was per-
fected with time and in addition, were developed two other techniques: metalor-
ganic chemical vapor deposition (MOCVD) [2.12-14] or metalorganic vapor phase 
deposition (MOVPD) [2.15] and chemical beam epitaxy (CBE) [2.16, 17] or met- 
alorganic molecular beam epitaxy (MOMBE). These techniques of growth are 
described in this chapter. 

2.1. Molecular Beam Epitaxy

Molecular beam epitaxy is a kind of ultrahigh vacuum evaporation in which the 
atoms or molecules containing the desired atoms are directed from effusion cells 
to a heated substrate. The atoms on arriving at the substrate combine on the 
lattice sites. The flux of the incident beams are determined by the temperature 
of the effusion cells. The composition of the grown layer may be controlled by 
opening and closing the shutters in front of the effusion cells, which are kept at 
predetermined temperatures. 

8
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A schematic diagram of an MBE system is given in Fig. 2.1. The effusion cells,
made of boron nitride or pure graphite are individually provided with heat shields,
alumina- coated tungsten heater and a thermocouple to monitor and control their 
temperature. All the effusion cells are kept inside a shroud, cooled with liquid
nitrogen. The gases effusing from the cells are collimated by holes in the shroud.
The shutters in front of the cells may be opened or shut to start. or stop a beam 
within 0.1-0.3 s. The substrate is heated by resistive heaters or by radiation, to 
a temperature of 400 -700 °C. The chamber, a bell jar, is of stainless steel and is 

evacuated by an ultrahigh vacuum system consisting of sorption pump, sublimation 

(titanium) pump and a ion or a closed-cycle helium pump. The pressure in the 
chamber is initially in the 10–9-10–11 torr range, which is achieved by long-time
baking (8 hrs or more at a temperature around 180 °C). This high vacuum is 
required for ensuring low pressure of ambient impurities. The vapor pressure of 
evaporating atomsis in the 10–9-10–8 torr range. The substrate is scrupolously
cleaned before inserting in the growth chamber by etching and sometimes by ion 
bombardment. It is introduced via two or three-chamber system connected to the 
sorption pump, cryo-pump and the ultrahigh vacuum (UHV) system to reduce the 
pressure in steps from 10–4 to 10–6 and then to 10–11 torr.

Figure 2.1. Schematic diagram of a molecular beam epitaxy system. Components of the system 
are labelled in the diagram. (After C. T. Foxon arid B. A. Joyce in Growth and Characterization 
of Semiconductors, R. A. Stradling and P. C. Klipstein, eds., Adam and Hilger, New York, 1990, 
p.36; Copyright: IOP Publishing Ltd). 
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The system is also provided with quadrupole mass spectrometer (QUAD), a
reflection high-energy electron diffraction (RHEED) system and a beam monitor-
ing ion gauge. These are used to monitor respectively the ambient gases, growth 
rate and intensity of arriving beams. 

The system allows growth rate of a monolayer per second and it is possible 
to grow layers with composition changing within a few monolayers. The hetero-
junction interfaces have the sharpness of monolayers but laterally there may be 
variation in the thickness of one or two monolayers. 

Heterostructures have been grown by MBE of various compositions, as detailed 
below:
GaAs/Gax All–xAs[2.18], GaAs/AlAs[2.19], InxGa1–xAs/InP[2.20], In0.53Ga0.47As/

In0.52Al0.48As [2.21], InxGa1–xAs/GaAs[2.22], In0.53Ga0.47As/AlAs[2.23], InAs/
GaSb[2.24], InAs/AlSb[2.25], InAs/In0.52Al0.48As[2.26], InAs/GaAsSb[2.27], InGa
AlAs/InP[2.28], GaAs/GaxAl–xSb[2.29], InGaAsSb/AlGaAsSb[2.30], InGaP/InGa 
AlP[2.31], InxAl1–xP/GaAs[2.32], In0.47Ga0.5Al1–xPx/GaAs[2.32], InxAl1–xP/
GaAs[2.33] , GexSi1–x/Si[2.34], ZnSe/ZnMnSe [2.35], CdTe/ZnTe[2.36], HgTe/ 
CdTe[2.37], Ga1–xInxSb/GaSb[2.38].

Literature on the subject is vast. The references, given above, are only illustra-
tive of the work on the particular structure. A report of the latest developments 
is available in Reference 2.39. 

We may note that it is now possible to grow by MBE a structure with any 
combination of materials with crystalline purity and sharp interfaces, devoid of
roughness and interfacial charge. 

2.2.  Metalorganic Chemical Vapor Deposition

Metalorganic vapors containing the group III elements are mixed with hydrides
of group V elements using hydrogen as the carrier gas and thermally activated to
react and produce the III- V binary or mixed compounds, which form layer on
the substrate. Two such reactions are illustrated below. 

(a) Trimethylgallium and arsine reaction : 

(CH3)3Ga + AsH3 → GaAs + 3CH4

(b) Triethylgallium and arsine reaction 

(C2H5)3Ga + ASH3 → GaAs + 3C2H6
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Figure 2.2. Schematic diagram of a metalorgxnic chemical vapor deposition system. Group III 
elements are supplied by methyl compounds stored in the tubes arid the Group V elements are 

supplied by the gases. The composition is controlled by controlling the flow rate of the gases and 
the hydrogen gas by mass flow controllers symbolized by rectangles. The mixed gas reacts in the 

reactor tube. [After M. J. Lurlowise, J. Appl. Phys. 58, R31 (1985); Copyright: American
Institute of Physics]. 

The apparatus used for this purpose is illustrated in Fig. 2.2. Sources of the 
different vapors are connected to the reactor furnace through mass flow controllers 
and vents. The substrate is so mounted in the reactor that the arriving gases are 
well mixed and form an atmosphere near its surface. A continuous flow at near 
atmospheric pressure is maintained with the right composition. The desired layer 
grows with a rate, mostly controlled by the arrival rate of Group III element 
and weakly determined by temperature. Group V elements have practically little 
effect on the growth rate. Arrival of the group III precursor is determined by a 
diffusion process through a boundary layer which forms on the substrate and is 
controlled by its pressure. MOCVD technique gives very sharp interfaces like the 
MBE technique. The impurity concentration was, however, difficult to control 
initially as it is determined by the purity of the precursor gas which may be of 
the order of 1 ppm. Currently, however, layers with a concentration of 1015-1016

cm–3 are possible to grow by this technique and materials containing phosphorus 
are produced better in quality than produced by MBE. The technique has been 
used to grow combinations of mostly III-V binaries, ternaries and quaternaries 
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[2.40-46]. Growth rate is very fast in atmospheric pressure (APMOCVD), which
may be inconvenient for growing thin layers. In one variation of the method, in the
LPMOCVD [2.47-49] , the pressure of the gases is lowered by introducing exhausts
at the outlet, to reduce the growth rate to about 10-50 nm/min. In another
variation, the organometals are replaced by adducts[2.50,51], e.g., (C2H5)3 In: PH3

in place of (C2H5)3In and PH3, so that the growth rate may be brought down to
about 6 × 103µm/mole of In by such techniques. Developments in MOCVD are 
occurring very fast and machines are commercially available for growing different
kinds of heterostructures. 

2.3.  Chemical Beam Epitaxy

Chemical Beam Epitaxy (CBE) [2.52,53] combines the distinctive feature of molec-
ular beams of MBE with gaseous sources of MOCVD. It uses a high vacuum system
arid maintains a pressure of 10–4 torr, when the reactant gases are introduced in the
reactor chamber. The mean free path of gas molecules is larger than the distance
between the gas inlet and the substrate for such pressures, and they, therefore,
arrive as molecular beams. This condition is very different from that in MOCVD
reactor, where the reactant gases diffuse through the overlying gas mixture to the
substrate.

A schematic diagram of a CBE system is given in Fig. 2.3. The group V
elements are obtained by thermally cracking their hydrides at about 920 °C, while
the group III elements are obtained by the pyrolysis of the organometallic coni-
pounds at the heated substrate, as in MOCVD. The flow of incoming gases, the
hydrides and the organometallic gases! with the carrier hydrogen gas, are con-
trolled as in MOCVD by precision electronic mass flow controllers. The group III
atoms and the organometallic gases arrive as molecular beams at the substrate
heated to about 550-580 °C and combine to produce the layers. Layers may be
grown at the rate of 1.5-3.65 µm/hr. Dopant is introduced as atomic beeams or as
organometallic gas molecules.

The CBE technique was developed around 1986, while work on the other two
techniques was initiated from about 1968. It was, therefore, a late-comer in the
field and combined the individual advantages of the two techniques. The advan-
tages in comparison to MBE are: semi-infinite source supply with instant flux
response, beams of well-mixed elements, ensuring uniformity of composition, no
oval defects, high growth rates. On the other hand, in comparison to MOCVD
it offers the advantages of very sharp interfaces and ultrathin layers, no stagna-
tion or flow pattern of gases, clean growth environment and possibility of in-situ
monitoring of the growth as in MBE. The technique has been used extensively by 
Tsang and his collaborators[2.53] to produce InP/InGaAs quantum wells. Wells 
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Figure 2.3. Group III elements are 
supplied by the methyl and ethyl compounds, while the Group V elements are supplied by the 
gases stored outside the deposition chamber. The composition is controlled by controlling the flow
rate with mass flow controllers [After Y. Kaivaguchi and H. Asahi, Appl. Phys. Lett. 50, 1243

(1987); Copyright: American Institute of Physics]. 

Schematic diagram of a chemical beam epitaxy system. 

as narrow as 0.6nm have been produced. The technique is reported to give wells
of uniform width and of very pure material. 

2.4.  Other Techniques 

A few other techniques have also been reported for the growtth of heterostructures. 
Mention may be made of hot-wall epitaxy (HWE) [2.54,55], gas-source MBE (GS-
MBE)[2.56], atomic layer epitaxy[2.57] and RF or ECR MBE[58]. 

2.4.1 HOT-WALL EPITAXY (HWE) 

In HWE, the compounds for the layers are heated in quartz crucibles with long 
necks, walls of which are also heated and the heated substrate is pushed mechan-
ically from the front of one crucible to another to obtain the layers with 
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Figure 2.4. Schematic diagram of a hot-wall epitaxy system. Tube 1 emporates PbTe arid Tube
2 evaporates Ph0.8Sn0.2Te onto the BaF2 substrate which is heated to 250 °C. The walls of the 

tubes [After H. Kinoshita and H. fujiyashu, J. Appl. Phys. 51, 5845 (1988); Copyright,: American
Institute of Physics].

different composition The deposition takes place in a pressure of about 10–6 torr.
A schematic diagram is given in Fig. 2.4. Multiple layers with thicknesses of 100-
200 Å have been grown of PbTe-PbSnTe, by this method. The growth rate is is
about 2-2.4 µm/hr.

2.4.2 GS-MBE

The technique of GS-MBE is in between MBE and CBE. The group V elements are 
supplied in this system from outside the deposition chamber, instead of by heating 
solids in effusion cells in the chamber. Group II elements are: however, supplied 
by effusion cells. This arrangement has the advantage of an infinite supply of As, 
which otherwise requires opening the vacuum at frequent intervals. 

2.4.3 LASER-ASSISTED MBE

In some MBE systems, deposition has been done by using laser heating of either
the source material or of the beam impinging on the substrate. This technique 
is often referred as laser- assisted MBE and is reported to improve the quality of 
deposit, as the decomposition temperature is lowered[2.59]. 
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Figure 2.5. Schematic diagram of an atomic layer epitaxy system showing the growth chamber 

and the susceptor. The susceptor has a fixed part F, a rotating part R and a, recess to hold the
substrate. Tubes A and B are the inlets for reactant gases and C is for the input of H2 to prevent
mixing of the reactant gases [After C. L. Goodman and M. V. Pessa, J. Appl. Phys. 60, R65

(1986); Copyright: American Institute of Physics].

2.4.4 ATOMIC LAYER EPITAXY 

In atomic layer epitaxy, layers are grown by alternately depositing the anions and 
cations, so that layers of one kind of atom first deposits on the substrate, and then 
the atoms of the other kind deposit on it and form bonds to yield a monolayer of 
the compound. Alternate deposition of the two kinds of atoms may be arranged 
by introducing the beams, usually hydrides and organometallics, through different 
inlets, and starting and stopping them alternately. In a variation of the method, 
the substrate is placed on a rotating mount (see Fig. 2.5), which is inside a 
susceptor with holes aligned to the inlet tube. For growing a layer, the substrate 
is rotated and exposed to the constituent gases alternately. The layer grows at 
the rate of one monolayer per cycle. GaAs/InAs and few other systems have been 
grown by this technique. 
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2.4.5 RF-ECR MBE 

This technique has been developed mostly to. grow nitrides. N2 is supplied in 
this systrem as RF (Radio Frequency) or ECR (Electron Cyclotron Resonance ) 
assisted plasma. The passage of molecular nitrogen at a pressure of about 10–4

Torr through RF or ECR system supplies atomic and to some extent ionic N2 which
reacts with the atoms of group III material much more readilyt than neutral N2

Heterostructures have been produced also by other more conventional tech-
niques of epitaxy, e.g., liquid phase epitaxy (LPE)[2.3], chloride vapor phase epi-
taxy[2.60,61], hydride vapor epitaxy[2.62]. The techniques have been used to grow 
quantum wells of InGaAsP/InP with thicknesses of 10-30 nm. 

It should, however, be noted that although different techniques have been tried, 
bulk of the reported growth work has been done by using one of the techniques of 
MBE, MOCVD, CBE or GS-MBE.

The techniques have their relative advantages and disadvantages but may be 
used to produce heterostructures of various compositions required for quantum 
well devices. Not only that, the techniques are suitable also for producing well-
trimmed structures for basic physics research on the properties of quantum wells 
and semiconductors. 

molecules.

2.5.  1D Structures 

Several reports have appeared, in which the fabrication of the so-called quan-
tum wires (1DEG structures) and quantum boxes (0DEG structures) have been 
described[2.63-79]. Growth of quantum wires has been attempted by using MBE 
and MOCVD for the growth of the layer materials, but different techniques have 
been used for reducing the lateral dimensions. These techniques are: etching and 
regrowth, growth on vicinal substrates, interdiffusion of group III element and 
growth on patterned non-planar substrates. These techniques are briefly described
in the following subsections. 

2.5.1.  ETCHING AND REGROWTH 

There have been several reports of the realization of quantum wires by this tech-
nique. For example[2.63], InGaAs quantum wires were realized by using a GS-MBE
grown quantum well structure, consisting of an InP substrate, InGaAs well and an 
InP layer covered by another InGaAs layer. The desired wire pattern was opro-
duced on the top InGaAs layer by using a. resist and electron beam lithography. 
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Figure 2.6: Schematic diagram showing the steps in the fabrication of quantum wire by the tech-
nique of etching and regrowth [After M. Notomi, M. Naganuma, T. Nishida, T. Tamamura, H.

Iwamura, S. Nojima and M. Okamoto, Appl. Phys. Lett. 58, 720 (1991); Copyright : American
Institute of Physics]. 

A selective etch (H2SO4/H2O2/H2O) was then used to etch the unmasked part 
of the InGaAs layer. The resist was removed and the InP layer now masked by 
the remaining InGaAs layer (as shown in Fig. 2.6) was etched by HCl/H2O. The 
selective etch was used again and the exposed part of the InGaAs well layer as well 
as the InGaAs layer masking the upper InP layer were removed. InP was grown 
again by MOCVD to cover the exposed parts. The unetched part of the InGaAs 
well layer formed quantum wires with nearly rectangular geometry. The wires were 
reported to have exhibited the expected energy level shifts due to quantization. 

In0.53Ga0.47As quantum wires have been constructed [2.64] also by deep wet 
chemical etching using high voltage electron beam lithography and dry plasma 
etching with CH4, H2 or Ar. 

2.5.2.  GROWTH ON VICINAL SUBSTRATES 

A 20-40 misoriented (100) substrate is taken in this technique as the starting mate-
rial. The misorientation produces in subsequent growths a sequence of alternating 
steps and terraces. Alternate submonolayers of GaAs and GaAlAs are then grown 
on this surface. GaAs wires surrounded by GaAlAs are obtained in step advance-
ment. This happens because GaAs grows faster in the lateral direction at the 
steps while GaAlAs grows uniformly in all directions. Successful growth of stacks 
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of quantum wires has been reported by this technique with a monolayer thickness
and lateral dimension of a few nm[2.66-68].

2.5.3. INTERDIFFUSION OF GROUP-III ELEMENTS 

Effective shortening of the lateral dimension was realized in this technique by en-
hancing interdiffusion of Group III elements via implantation or diffusion through 
a mask. A single quantum well was taken which consisted of a Cr-doped GaAs 
substrate, 50 nm Ga0.65Al0.35As barrier, 5 nm GaAs QW, 50nm Ga0.65Al0.35As bar-
rier and another 5 nm GaAs layer. Metal masks were produced by electron beam 
lithography and Ga+ ions were implanted through the open regions. The sample 
was then annealed. The annealing caused enhanced interdiffusion of Al and Ga 
atoms through the region where Ga+ ions were implanted. The ultimate result was 
the production of GaAs wires in the well layer, surround by GaAlAs produced by 
enhanced interdiffusion from the barrier layers. Wires produced by this technique 
gave evidence of lateral quantization[2.69,70]. The lateral surfaces of the wires 
are, however, not sharp but diffuse with Gaussian profiles. 

2.5.4.  GROWTH ON PATTERNED NON-PLANAR SUBSTRATE 

This technique relies on the difference in the growth rate of GaAs in different 
crystallographic directions. It grows faster in the <100> direction in comparison 
to other directions. Hence, when GaAs is grown on a <100> oriented grooved 
substrate, the grown layers are thicker at the centre in comparison to the sides 
and behave like quantum wires. Different techniques have been used to realize 
non-planar substrates.

In one technique[2.72-74], V-shaped grooves are etched on the <100> oriented
GaAs substrate along the <011> direction. An AlGaAs layer is grown on the 

–

substrate, which has a sharp corner between two (111)A planes. GaAs, grown on
this GaAlAs layer, has a triangular thick region at the bottom and thin regions
on the sides as illustrated in Fig. 2.7(a). 

In a second technique, wires are grown on patterned substrates[2.75-77]. A SiO2

layer is first formed by plasma chemical-vapour deposition on the (100) substrate. 
The SiO2 layer is then etched to form gratings oriented along the <011

–
> directions

by using resist and wet chemical etching. GaAs grown on this masked substrate has 
triangular surfaces with smooth (111)A faces, due to the directional dependence 
of the growth of GaAs. The growth of GaAs is continued in one report to join 
over the SiO2 masks. GaAs forms a corrugated surface, as shown in Fig. 2.7(b). 
Quantum wires are realized as in the earlier case by growing first AlGaAs and 
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Figure 2.7. Schematic diagram showing quantum wires grown by the technique of patterned 
substrate. (a) Growth on grooved substrate. (b) Triangular quantum wire grown by SiO2 masked

substrate. (c) Arrowhead quantum wire grown by SiO2 masked substrate. 

then GaAs on this corrugated surface. In a second report[2.78], the SiO2 masks
were left uncovered by GaAs. AlGaAs grown on the resulting surfaces, had side 
walls parallel to the (111)A planes, but the top surface consisted of (311)A planes. 
Subsequent growth of GaAs resulted in the formation of GaAs layers with thick 
arrow-head tops and thin sides as shown in Fig. 2.7(c). The thick region behaved 
as quantum wires. 

The technique of growth on patterned substrates has been used also to grow 
SiGe/Si wires [2.79]. 

The three techniques of construction of quantum wires, described above, have 
yielded wires with fairly clean and sharp interfaces, and have been tried also in 
devices.
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2.6  0D structures 

Quantum boxes have also been realized by various techniques. 

2.6.1  ETCHING OR ION MILLING TECHNIQUE 

In one case[2.80], a InP/InGaAs/InP structure was first grown. The top layer 
was then masked by a metal mask prepared with electron beam lithography. The 
unmasked part was removed by ion milling. The mask pattern produced wires or 
dots, as was desired, on the top layers. It should be noted that in this technique, 
the wires or boxes are formed by size limitation, the surfaces being exposed to 
the ambient. The success of the structures to perform as quantum well, therefore, 
depends on the surface recombination velocity, which is reported to be good enough 
for the InGaAs/InP system to confine the electrons in the box. 

2.6.2 SELECTIVE ETCH TECHNIQUE 

Structures for 3D quantum confinement have also been constructed[2.81,82] by the 
selective etch technique using SiO2 masked substrate, described above. The SiO2

masks are prepared in this case as small square discs on the surface of the GaAs 
substrates. Subsequent growth of GaAs, AlGaAs and GaAs results in the forma-
tion of quantum boxes of pyramidal shape. Evidence for 3D quantum confinement 
has been obtained from photoluminescence studies. 

2.6.3 SELF-ORGANIZED GROWTH 

More recently, quantum boxes have been realized [2.83-88] by controlled growth of 
the epitaxial layer of lattice-mismatched InGaAs on GaAs or AlGaAs substrate 
by using the so-called Stranski-Krastanow growth conditions. A few monolayers 
of InxGa1–xAs are deposited on a GaAs or a AlGaAs substrate. These layers grow 
as islands with dimensions of a few nanometers to relieve the accumulated strain 
arising from the lattice mismatch. The islands are then embedded in GaAs or 
GaAlAs by overgrowing a few layers of these materials. The embedded islands 
of InGaAs behave as quantum dots. Quantum dots of SiGe[2.89] on Si and InP 
on In0.085Ga0.0515As have also been grown by using the same technique[2.90].The 
technique is being used currently to realize quantum dots based on various material 
systems [2.91]. 

Arrays of quantum dots having approximately 20-30 nm diameter with a den-
sity of 1011 cm–2 may be grown [2.92] by monitoring the transition from the two-
dimensional (layered) to the three-dimensional (islanded) growth by Reflection 
High Energy Electron Diffraction (RHEED). The variation in the size of such 
arrsays is within ±7%. The luminous efficiency of such dots have been shown to 
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be very high. 

2.7.  Conclusion 

In this chapter has been described the various techniques, currently employed 
to grow heterostructures with interfaces good enough for quantum well devices. 
Emphasis in the early years was on lattice-matched heterostructures. Currently, 
however, a major part of the work is concerned with the growth of non-lattice-
matched strained-layer heterostructures of various compositions[2.93], which give 
better performance characteristics for some quantum well devices. As a further 
improvement, compensated heterostructures[2.94] are also being grown. In these 
structures, a compressively strained layer may be sandwiched between two tensile-
strained barrier layers, which are again enclosed by two lattice-matched layers. 

Effort is also being made to grow quantum wires and quantum dots by 
using different techniques. 

Centres for the growth of heterostructures proliferated as commercial 
MBE and MOCVD machines became available. Heterostructures with various 
compositions and complicated structures are being grown and studied extensively 
in these centres.It appears at the present stage that techniques of growth do not 
introduce any limitation in trying any idea that may be conceived. Various kinds 
of devices with very novel ideas are being proposed and tried. It is not yet clear 
how many of them will be ultimately accepted commercially. Only those, which 
show promise currently, will be of interest for further discussion in this book. 
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BAND  OFFSET

Heterostructures, grown by the techniques described in Chapter 2, are structurally 
pure, although of varying composition and consequently of varying band gap. 
The structural purity is achieved by selecting constituents having the same lattice 
constant and crystal structure. In Fig. 3.1 are plotted the direct band gap and 
lattice constant of the various III-V and II- VI compounds[3.1,2].

There are a few binaries, which have nearly equal lattice constant but different 
band gap, e.g., GaP and Alp; Ge. GaAs, ZnSe and AlAs; InAs, ZnTe, GaSb and 
AlSb; aSn, InSb and CdTe. Heterostructures with good crystalline interfaces have 
been gown using some of these binaries. Examples are : GaAs/AlAs, InAs/GaSb, 
InAs/AlSb, InSb/CdTe.

Ternaries having different band gap and lattice constant may be obtained by
combining two binaries. The lines joining the binary compounds in Fig. 3.1 give 
the values for the ternaries which may be obtained by combining the end-point
binaries. The ternary will have the same lattice constant when the component 
binaries have nearly equal lattice constant. The band gap, however, may be ad-
justed in between the two end values by choosing the proportion of the binaries. 
For example, AlxGa1–xAs has nearly the same lattice constant as GaAs and AlAs;
the direct band gap may, however, be varied between 2.79 eV and 1.51 eV by 
changing x. Binaries with different lattice constants may also be combined to
obtain a ternary with a lattice constant which is equal to that of a third bi-
nary. Ga0.47In0.53As and Al0.48In0.52As are examples of ternaries which are lattice-
matched to InP. The band gap of the ternary cannot be chosen in this case. The
lattice constant and the band gap may, however, be chosen independently by com-
bining four elements to realize quaternaries. GaxIn1–xAsyP1–y is an important
example of such a quaternary whch has the same lattice constant as InP and a
band gap which may be adjusted between 0.73 eV and 1.35 eV when x and y are
chosen according to the following relation : 

x = 0.1894 y/(0.4184 – 0.013 y) (3.1)

Heterostructures with good crystalline quality may also be grown with non-
lattice-matched compounds, but only for limited dimensions. The lattice-mismatch
causes strains which are accommodated up to a thickness of about 4 nm. Larger

22
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thickness results in the appearance of stacking faults due to the strain. Strained-
layer heterostructures with limited thickness have also been grown to realize cho-
sen band gaps. The interfaces in the heterostructures are mostly free of crystal 
defects or interfacial charge density. In early days, there used to be surface rough-
ness, but such roughness has been mostly eliminated, although there remain vari-
ations of widths with extended areas. Electron states in the heterostructures are, 
therefore, altered from the bulk states only by the potential profile resulting from 
the variation in the band gap. 

Figure 3.1. Direct band gap-lattice constant diagram for III-V and II-VI compounds. The symbol 
gives the values of direct band gap and the lattice constant of the associated binary. The lines 

joining two binaries give the combination of values of band gap and lattice constant of ternaries 
that may be obtained by combining the end-point binaries as exemplified by Ga0.47In0.53As.
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3.1.  Types of Heterosructures 

The potential profile near the heterojunction has step- discontinuities in the ab-
sence of accumulated charges as shown in Fig. 3.2. Heterostructures are named[3.3] 
as Type I, Type II and Type III according to the alignment of the bands producing 
the discontinuity. 

In Type I heterostructures, illustrated in Fig. 3.2(a), the band gap of one mate-
rial overlaps that of the other and the potential discontinuities for the conduction
band, ∆Ee, and for the valence band, ∆Ev , may be expressed as,

∆Ec = Ec1 – Ec2 = f (Eg1 – Eg2) = f ∆Eg,

∆Ev = Ev1 – Ev2 = (1 – f )(Eg1 – Eg2) = (1 – f )∆Eg,

(3.2

(3.3)

Figure 3.2. Band alignments in heterojunctions. (a) Type I heterostructure. (b) Type II-staggered
heterostructure. (c) Type II-misaligned heterostructure. (d) Type III heterostructure. 
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Eg1 >Eg2 and ∆Bg indicates the band gap difference. The factor f gives the 

ratio DEc/DEg ; it depends on the pair of materials forming the heterostructure
and its magnitude ranges between 0 and 1. Both electrons and holes are con-
fined in the lower-band-gap material in these heterostructres. AlxGa1–xAs/GaAs,
InP/Ga0.47In0.53As, Al0.48In0.52As/Ga0.47In0.53As and      InP/Ga xInt1–xAsyP1–y

heterostructures are of this type. 
In Type II lieterostructures, Ev1 >Ev2 and ∆Ec may or may not be larger than

Eg1. Also, Eg2 is not necessarily smaller than Eg1. Hetrostructures of Type II,
(illustrated in Fig. 3.2(b)) with ∆Ec < Eg1 have been named Type II-staggered.
Both the conduction-band edge and the valence-band edge of one material being
lower than the corresponding band edges of the other material, electrons are con-
fined in one material, while holes are confined in the other material. This type of 
band alignment occurs, for example, in InAs/Al0.4Ga0.6Sb heterostructures. 

Type II hetrostructures, (illustrated in Fig. 3.2(c)), with ∆Ec > Eg1 have been 
named Type II-misaligned. In these heterostructures also, electrons and holes are 
confined separately in the two materials. But, as the valence band of the material, 
in which the holes are confined, overlaps the conduction band of the other material 
some novel phenomena result. InAs/GaSb heterostructure belongs to this class. 

Type III hetrostructures are formed by the combination of a semimetal with 
inverted bands and a semiconductor as shown in Fig. 3.2(d). HgTe/CdTe is an 
example of this type of hetrostructure. Valence bands of the two materials strongly 
interact in this structure. It should be mentioned that there is some confusion in 
the literature about the nomenclature of Type III; Type II-misaligned has been 
named Type III by some authors[3.4]. 

Quantum well devices have been realized mostly by using the Type I het-
erostructures, either lattice matched or strained- layer systems. GaAs/GaxA1–x

As, Ga0.47In0.53As/InP, Ga0.47In0.53As/Al0.48In0.52As and InP/GaxIn1–yAs1–y

Py are commonly used as lattice- matched systems while AlxGa1–xAs/GaxIn1–xAs,
GaxIn1–xAs/ AlyIn1–yAs, Ga0.47In0.53AS/AlAs, GaxIn1–xAs/InP and  a few  other
combinations are used as strained layer systems. 

Type II or Type III structures are not much used in quantum well devices. 
Only InAs/GaInSb or InAs/AlInSb is used in QWIP’s. The SixG1–x/Ge system
is another type II system which has been finding much use in recent years. 

The potential discontinuity plays a, crucial role in quantum well devices as it is 
this discontinuity or the so-called band offset which causes the quantum behavior 
of the structures. Models are first discussed for estimating the band offset from 
the bulk properties of the constituents. Experimental methods are then described 
for the determination of its values, and the best available values are also listed at
the end. 
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3.2. Emperical Rules 

Two empirical rules[3.5-8] have been used to estimate the band offset, namely, the 
electron affinity rule and the common anion rule. Although the relevance of these 
rules has been much reduced by the development of accurate theoretical methods, 
these are briefly discussed below considering their extensive use in the past. 

3.2.1.  ELECTRON AFFINITY RULE 

The oldest rule is that given by Anderson[3.5,6]. According this rule, the discon-
tinuity in the conduction band edges is the difference of the electron affinities for 
the constituents, i.e., the conduction band offset, 

∆Ec = x 1 – x2, (3.4)

where x1 and x2 are the electron affinities of material 1 and 2 constituting the
het ero j unction. 

It has been argued that this simple rule should not be necessarily applicable, 
since the electron affinity relates to the free surface with a large discontinuity, 
whereas in heterostructures, the discontinuity is much smaller and the surface 
conditions are much different. Particularly, it is thought that the contribution of 
dipoles with negative charge on the outer surface, which form on it due to quantum 
mechanical tunneling of the electrons, should be much different in heterojunctions 
than in free surfaces. Further, values of the band offset is a small fraction of the 
electron affinity, and experimental values of the latter are not accurate enough to 
yield non-anomalous values of the former. 

However, in spite of these criticisms, the affinity rule has been widely used, and 
in many cases, the values given by the rule are found to be close to those obtained 
by other experimental methods. 

3.2.2.  COMMON ANION RULE 

This rule[3.7,8] is based on the empirical results obtained from the Schottky con-
tacts to III-V and II-VI compounds. The Schottky barrier for the valence band of
these compounds to gold has been found to be the same for different compounds 
containing the same anion. This result has been explained by considering that the 
theoretical band structure calculations indicate that the valence band develops 
out of the p-levels of the anions, contribution of the cations being comparatively 
negligible. Hence, the position of the valence band minimum with reference to 
the vacuum, or any other common reference level, e.g., the Fermi level of a metal, 
should depend only on the electronegativity of the anion. Valence-band offset for 
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compounds with the same anion should, therefore, be zero and those for different 
anions may be derived from the Schottky barrier valence-band offsets. Although, 
the band offsets for compounds with the same anion are found to be closer than 
those with different anions, the rule does not apply strictly. Variation of the band 
offset of the order of 0.2- 0.4 eV is observed between compounds with the same 
anion, The rule cannot, therefore, be applied to obtain accurate values of the band 
offset, but has its usefulness as a guide for selecting the anion for the compound. 
The offset may be expected to increase in the order of As, P, Te, Se and S. 

3.3.  Theoretical Methods 

Several theoretical methopds [3.9-16] haqve been reported for the calculation of 
band offset. Two of these methods, the Tersoff method and the Van de Walle-
Martin method are explained below as these methods give values agreeing with 
the experiments to within 0.1 eV. 

3.3.1  TERSOFF METHOD 

The method is based on the argument that there are states in the gap, produced 
by the interface, and an energy level, EM, may be identified for each semicon-
ductor swuch that it divides the gap states into two groups. Those above are 
conduction-band-like while those below are valence-band-like. When a hetero-
junction is formed, dipoles are produced if the EM’s of the constituents are not
aligned.

The alignment of the bands is assumed to be dictated by the condition that the 
interface dipoles will be minimized, and therefore the midgap energies, EM’s shall
be aligned. Knowing the position of EM’s with reference to the conduction-band
edges, the band offset may be determined. The value of EM may be theoretically 
calculated to obvtain the band offset. However, EM of a semiconductor also deter-
mines the pinning of the Fermi energy of a metal when it is contacted to it. This 
provides a means of determining the relative position of EM of two semiconductors 
from the Schottky barrier with respect to a common metal. 

Band offsets determined experimentally for different binaries with respect to 
germanium and silicon have been compared with the theoretical values and found 
to agree within 0.15 eV. 

3.3.2.  VAN DE WALLE -MARTIN METHOD 

Band offsets are obtained in this method from first- principles calculations[3.13-
18]. In such calculations, an infinite crystal is considered to be made up of a 
periodically repeated supercell consisting of the two kinds of layers including the 
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interface region. The pseudo-potentials are evaluated self-consistently for the su-
percell geometry by using the local density-functional approximation (LDA) (ap-
plied in the momentum space formalism) and non-local norm-conserving ab initio
pseudopotentials,i.e., potentials generated by theoretical calculations on atoms. 
The potentials , averaged over planes parallel to the interface,are determined by 
using the pseudopotentials as a function of the distance from the interface. The 
average in the central regions of the two sides of the interface are considered to be 
bulk-like. Individual bulk-band calculations are then made to fix the valence-band
maxima with respect to these average potentials and the band offset is calculated 
therefrom, as illustrated in Fig.3.3 for AlAs/GaAs system. Calculated values have 
been given for the heterostructures of the III-V/III-V, III-V/IV, II-VI/III-V , II-
VI/II-VI compunds and III-nitride/ III-nitride system. 

The calculated values are in most cases within the spread of the experimen-
tal results. Values obtained by using two different techniques[3.13-15] of band 

Figure 3.3. (a) A schematic representation of a GaAs/AlAs interface showing the supercell by 
the dashed lines. (b) Variation of the average potential in the directiuon normal to the interface. 
Dotted lines are its values on its two sides which coincide with the bulk values far from the interface. 

(c) Illustrates the derivation of the band line-up for AlAs/GaAs junction. The values are given 
with reference to the l = 1 angular momentum component potential. The valence-band offset 
is found to be 0.34 eV. The value increases to 0.37 eV when the effects of spin-orbit splitting is 
included.[After C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154 (1987); Copyright 

(1987) by the American Physical Society]. 
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structure calculations, however, differ significantly for some structures, notably for 
the important AlAs/GaAs structure. One method[3.13] gives a value of 0.39 eV, 
while the other method[3.14] gives a value of 0.53 eV for the valence-band offset. 

3.4.   Experimental Methods 

Design of a quantum well device requires more accurate values of band offset than 
may be obtained from the theoretical models. Attempts have been made to obtain 
such values from experiment. 

Many methods have been used to obtain the band offset from the analy-
sis of data on experimental phenomena. These are based on: absorption mea-
surements[3.19], photoluminescence studies in quantum wells[3.20-24], photoe-
mission spectroscopy[3.25-28] , current-voltage[3.29] measurements, capacitance-
voltage measurements[3.30,31], charge transfer analysis[3.32] and X-ray photo-
emission[3.33-40] core level spectroscopy (XPS) . 

The first method was used to establish that energy levels are quantised in 
potential well structures, while the second one has been extensively used to obtain 
the band offset for different heterostructures. The XPS technique is believed to 
give more accurate values and does not involve any assumption, approximation or 
knowledge of other physical constants. These three methods are described below. 

3.4.1.  ABSORPTION MEASUREMENT 

Quantum wells are realized by sandwiching a thin layer of the lower-band-gap
constituent , between two layers of the larger- band-gap material. The component 
of momentum in the direction perpendicular to the interfaces being quantized, the 
absorption spectrum of such structures show peaks corresponding to transitions 
from the hole levels to the electron levels at near- liquid- helium temperature 
as illustrated in Fig. 3.4. Band offsets are determined by fitting the transition 
energies with the calculated values for different offsets. The transition energies do 
not, however, change sharply with the band offset and the method has 

therefore yielded erroneous results. In fact , this method was first applied[3.19] 
to a 315 Å wide quantum well of the GaAs/GaAlAs system and gave a value
of 0.85 for ∆Ec/∆Eg , the ratio of the conduction-band offset and the band gap 
difference. This value was used for many years for the analysis of the properties
of quantum wells and superlattices, but was ultimately revised to 0.6 by other 
experiments.

The accuracy of the method becomes particularly poor, if wide wells are used, 
since the energy levels in such wells do not deviate much from the values for 
infinite barrier height. If, however, narrow wells are used, much better results may 
be obtained, as the energy levels then vary sharply with the band offset. 
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Figure 3.4. Schematic diagram showing the absorption spectrum of a quantum well. (a) The 
heterostructure. (b) Quantized energy levels. (c) Schematic absorption coefficient for different 

photon energy. 

3.3.2.  PHOTOLUMINESCENCE MEASUREMENT 

Photoluminescence experiments give the difference in energy between the first level 
in the conduction band and the first level of the heavy-hole band. Strong light 
of an intensity of 1-5 W/cm2 from a argon laser is shone on the sample to excite 
electrons from the valence band to the conduction band. These excited electrons 
finally recombine to produce the luminescence radiation, giving effectively the shift 
in band gap due to quantization. Such luminescence lines, shown in Fig. 3.5(a) 
are recorded for different well widths. The band offset is then obtained by fitting 
the calculated energy shifts with the measured values as illustrated in Fig. 3.5(b). 

The method has been extensively applied[3.21] to study the GaInAs/InP sys-
tem; growing wells as thin as 3 A. The values of band offset obtained by different 
authors are, however, much different. The difference arises mostly from the errors
in the determination of well widths and the incompleteness of the theory of energy 
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Figure 3.5. Photoluminescence spectra for quantum wells. (a) Successive spectrum from widths 
of 10, 20, 40 and 60 Å [After J. H. Marsh, J. S. Roberts and P. 4. Claston, Appl. Phys. Lett. 

46, 1161 (1985); Copyright: American Institute of Physics]. (b) Energy shift in In0.53Ga0.47As/InP
wells for different well widths [After B. R. Nag and S. Mukhopadhyay, Appl. Phys. Lett. 58,
1056 (1991); Copyright: American Institute of Physics]. Solid lines Give the calculated values of 
energy shift for different values of conduction-band offset, indicated by the numbers in eV against 
each curve. The data points are the experimental dues. 

levels. The theory is incomplete in two ways. First, the energy levels being deep 
within the conduction band, energy-band nonparabolicity plays an important role. 
Proper formulation of this aspect of the theory is still being debated in the lit-
erature. Second, it is not yet clearly established, how accurate is the effective 
mass formalism when the well is so thin that it has a few monolayers. The method 
should, therefore, be considered to be of limited accuracy like the absorption or ex-
citation spectroscopy method. A variation of the method has also been used[3.22], 
in which is analyzed the splitting of the spectra found for narrow wells due to the 
variation in the thickness. This method also has the same problem, as the analysis 
of the basic spectra. Photoluminescence spectra have also been used to obtain the 
band offset in the currently emerging GaN/AlGaN material system[3.23,24]. 
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3.4.3.  X-RAY CORE LEVEL PHOTOEMISSION SPECTROSCOPY (XPS)

In this method , electrons are excited by X-ray signals from the core level of the 
group III elements and the energies required for the excitation are compared to 
obtain the valence- band offset,. Consider for example the GaSb/AlSb system. 
Thin epitaxial layers of GaSb or AlSb are grown on GaSb substrates and their 
photoemission spectra are recorded. The emission is from the Ga 3d level for 
GaSb and from the Al 2p level in AISb (see Fig. 3.6). The difference in the
position of the two peaks, F3 , is obtained by growing a thin layer of AlSb on 
GaSb or GaSb on AlSb. It is related to the valence-band offset ∆Ev and the 
energy of the core levels E1 and E2 of the constituents as

E3 = E2 – E1 + Ev. (3.5)

E2 and E1 are determined by similar experiments from a reference level. The ref-
erence level is chosen in some experiments as the valence band maximum[3.33,36]. 
The spectrum for the valence band is not, however, sharp in some experiments as 
the X-ray source may not be monochromatic. Absorption edge may be identified 
by aligning the features of a calculated emission spectrum. Alternately, a metal 
may be deposited with a known Schottky barrier to serve as the reference. In 

Figure 3.6. Energy bands and core energy levels in, (heterojunction of GaSb and AlSb and (b)

a Au Schottky barrier on GaSb. Ec(1)(Ec(2)) arid Ev(1)(Ev(2)) are respectively the conduction
and valence band levels of GaSb(AlSb). EFm, is the Fermi level and φp(1) is the Schottky barrier

height of Au on GaSb. Ga 3d,Al 2p and Au 4f2 are respectively the 3d level of Ga, 2p level of Al
arid 4f2 level of Au. The significance of E1 E2, E3, EM and ∆Em are indicated in the figure.
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one experiment[3.34], gold was deposited on the GaSb and AlSb layers and the 
differences between the Au 4f7/2 and the Ga 3d or the A1 2p levels were determined
from the photoemission data. If now Emi and Ei denote these energies, for one
material (i=1 for Ga and i=2 for Al), then the measured energy difference may
be expressed as,

∆Em1 = Em – φ1 – E1, (3.6)

φ1 being the Schottky barrier for gold on the particular p-type material. The
valence-band offset is now given by 

∆Ev = E3 – (E2 – E1) = E3 + (∆ – Em2 – ∆Em1) + φ2 – φ1. (3.7)

Using the predetermined values of φ1 and φ2 and the values of ∆Em1 and ∆Em2

obtained in this experiment, ∆Ev may be determined. 
This method has been used to measure the valence-band offset in the GaSb/ 

AlSb system[3.34]. A variation of the method was used to determine ∆Ev for
the InAs/GaSb[3.35] system ,in which a common Fermi level served as the refer-
ence . On the other hand, ∆Ev for the HgTe/CdTe system[3.38] and the GaAs
/AlAs system[3.39] was obtained by this method using the valence-band edge as
the reference. More recently. the method has been used to determine DEv for the
GaN/AIN system[3.37] and InN/GaN, GaN/InN, InN/AlN, AlN/InN, GaN/AlN 
and the AlN/GaN system[3.40]. 

3.5.  Values of Band Offset 

It should be evident from the preceding discussion that accurate values of band 
offset are difficult to determine. Attempts for determining its value from band
structure calculation or from the analysis of the experimental results often yielded
widely varying values of band offset. For example, initially the ratio ∆Ec/∆Ev for
the GaAs/Ga0.7Al0.3As system was fixed[3.19] to be 85:15, but later experiments
established a value of 60:40. The value of ∆Ec/∆Ev for Ga0.47In0.53As/InPis
reported to be between 36:64 and 100:0[3.41], and for the Ga0.5In0.5P/GaAs system
between 8:92 and 90:10[3.42-49]. Apparently, the value depends very much on the 
interpretation of the experiment and also on the conditions of preparation of a 
sample. Consequently universally acceptable values are not available for all the 
heterojunctions. In Table 3.1 are collected the currently accepted values of valence-
band offset for some common heterojunctions. 

In many cases, experimental results may not be available for the combina-
tions of materials of interest. Data available for the valence band position of the 
constituents with reference to a common reference valence band as obtained in 
photoemission experiment may be used for this purpose. Such data have been 
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Table 3.1 Valence-Band offset, ∆Ev, in heterojunctions
Heterojunction material ∆Ev(eV) Reference

GaAs/AlxGa1–xAs 0.46x 3.14
GaAs/Ga0.5Al0.5As 0.21 3.30 
GaAs/AlAs 0.31 3.36 
GaAs/InAs 0.35 3.36 
AlAs/Al0.37Ga0.63As 0.34 3.31 
AlAs/InAs 0.35 3.36 
InP/Ga0.47In0.53As 0.32 3.15 

GaAS/ALSb 0.40 3.25 

GaSb/InAs0.95Sb0.05 0.67 3.32
CdTe/HgTe 0.34 3.36 
CdTe/ ZnTe 0.40 3.36 
ZnTe/HgTe 0.30 3.36 
CaN/AIN 0.710.24 3.30 
AlN/GaN 0.57±0.22 3.40 
InN/AlN 1.81±0.2 3.40 

InN/GaN 1.051 3.40 

Al0.48In0.52As/Ga0.47In0.47As 0.75 3.29 

GaSb/InAs 0.51 3.32 

AlN/InN 1.32±0.14 3.40 

Ga0.5In0.5P/GaAs 0.32 3.45 

given in Table 3.2. It should be evident that the table lists values only for the 
binaries. However, the data may be used as a guide for ternaries or quaternaries 
by linear interpolation or by using a relation analogous to the Vegard’s law. 

Table 3.2 Valence-Band offset, ∆Ev, with
Reference to Germanium and Silicon*
Material ∆Ev(eV) Material ∆Ev(eV)
Si-Ge 0.17 InP-Ge 0.64 
AlAs-Ge 0.95 CaAs-Si 0.05 
GaAs-Ge 0.35 Inns-Si 0.15 
InAs-Ge 0.33 GaSb-Si 0.05 
CaSb-Ge 0.20 Gap-Si 0.80 
GaP-Ge 0.80 InP-Si 0.57 

* Values are quoted from Reference 3.12. 

3.6.  Conclusion 

In this chapter has been discussed the theories of band offset and the experimental 
methods available for its determination. Band offset forms the quantum wells 
and determines how well are the electrons confined in the well. It plays a very 
important role in some devices. Its values are therefore required to be known with 
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greater accuracy than is possible at present for some heterojunctions. However,
till such values are available analysis will proceed with the best current values 
quoted here. 

It should be noted also that in considering the band line-ups, attention should 
be given to the location of the minimum of the junction materials in the Brillouin 
zone. The minimum of the two materials may not, have the same locations in 
the Brillouin zone and it becomes important to consider which conibination of 
the minimum should be considered as forming the barrier. There are not many 
studies: but the indications of the few studies so far reported[3.50], are that it is the 
same kind of minimum which forms the barrier. For example, in the GaAs/AlAs 
combination: the minimum in GaAs is at the Γ point, while in AlAs, it is at the 
X point. It is, however, found that the offset between the Γ -point minimum of
GaAs and that of the Γ -point minimum of AlAs form the barrier. In fact the
X-point minimum of the two materials also form wells[3.51], but with a different 
characteristic. Such studies are, however, required to be extended also to other 
heterojunctions.
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ELECTRON STATES 

Heterostructures for quantum well devices are constructed in three forms : the 
single-junction structures, often referred as simply heterostructures, the double -
junction structures, mostly referred as quantum wells and - multi-junction struc-
tures, called superlattices. These are shown in Fig. 4.1. Electron states in the 
structures are evaluated by assuming that the bulk band structures remain ap-
plicable for the constituents, even though the physical dimension in one or more 
directions may be comparable to the lattice constant. Electron states in the struc-
tures are obtained by solving the wave equation for the potential distributions in 
the structure by using the bulk physical constants and by applying the so-called
effectivemass approximation and suitable boundary conditions. as explained in 
the following section. 

( a ) ( b ) (c)

Figure 4.1. Heterostructures. (a) Single-junction heterostrurture. (b) Double-junction het-
erostruct ure . (c) Superlat t ice. 

36
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4.1.  Effective-Mass Approximation

Time-independent Schrödinger wave equation for the electrons in a solid is

(4.1)

where m0 is the free electron mass, is the momentum operator, Vc(r) is the

operator for the potential arising from the ions including all the bound electrons 
and also in the one- electron approximation, partly from free electrons except 
the one under consideration, ψ(r) is the wave function and E is the eigenvalue of
energy. The solution of the equation is the Bloch function, having the form, 

ψnk(r) = (1/N1/2) Unk(r) exp (ik.r), (4.2)

where N is the number of unit cells in the crystal. The wave vector is represented
by k. The function Unk(r) has the periodicity of the lattice i.e., Unk(r+a) = Unk(r),
where a is a lattice translation vector. The function is referred as the cell periodic
part of the Bloch function and is normalized over a unit cell. The subscript n
indicates the band to which the particular state belongs.

Figure 4.2. Energy band diagram of a crystal with sphalerite structure. [After J. R. Chelikowsky 

and M. L. Cohen, Phys. B 14, 556 (1976); Copyright(1976) by the American Physical 
Society].

Rev.
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Different methods have been developed for solving Eq. (4.1) to obtain the 
relation between e and k. These band structure calculations yield diagrams as 
illustrated in Fig. 4.2 for a representative III-V binary compound, having the 
sphalerite crystal structure. The conduction band and the valence band have 
several extrema, some of which may be degenerate. In electronic, optoelectronic or 
photonic applications of semiconductors, these extrema, are mostly of importance, 
as the carriers are concentrated near them. The full details of the band structure, 
as revealed by the band-structure calculations are not involved. It is, therefore, 
convenient if the wave equation in the presence of an external potential is recast 
in terms of the behavior of the electrons at these extrema. This is done in the 
effective- mass approximation of the wave equation by using the k.p method[4.1-4]
outlined below. 

4.1.1. EFFECTIVE-MASS APPROXIXIMATION FOR DEGENERATE 
EXTREMA

We assume that the electron states are required to be evaluated near an r-fold de-
generate extremum with energy E0 and other extrema are assumed to be separated
by large energies from this extremum. 

The perturbed wave function ψp (r) in the presence of a potential V p(r) may be
expressed as, 

since ψnk'’s form a complete set for ψp(r) and Un'0’s, for Unk. The coefficient, A n'k'

is evaluated by using the orthogonal property of the constituent functions.
Substituting (3) in (1) and using the orthogonality property of ψnk’s the fol-

lowing equation is obtained for the coefficients. 

where,

α, β indicate the coordinates; 1,2,3 indicate respectively x, y, z.

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)



ELECTRON STATES 39

Taking the Fourier transform of (4.4) and putting, 

we obtain, 

The wave function ψp(r) may be written in terms of Fm(r) as follows.

(4.9)

(4.10)

(4.11)

The solution Fm(r) is a slowly varying function like Vp (r) and gives the envelope of
the cell-periodic functions. The function is referred as the envelope function and 
Eq. (4.10) as the envelope-function equation. 

In quantum well devices, we are mostly concerned with the conduction-band
minimum or the valence-band maximum. The envelope-fundion equation for these 
extrema are obtained from Eq.(4.10) by using the cell-periodic functions for these
extrema as explained in the following sections. 

4.12.  ENVELOPE-FUNCTION EQUATION FOR ELECTRONS 

Electrons occupy the minima of the conduction band. These are nondegenerate 
(excluding the spin-degeneracy) and separated by the band gap energy from the 
valence band maxima and by larger amounts of energy from other extrema. For 
the purpose of the calculation of electron states near a prticaular conduction-band
minimum, the contribution of only that minimum is considered significant in the 
first approximation. It is assumed that Ack >> An ’k where the subscript c indicates
the conduction band minimum. 

The conduction-band minimum is located either at the Γ -point i.e., at k = 0,
or at a point in the ∆ or Λ i.e., in the <100> or <111> direction. We first consider
the Γ -point minimum.

Using the expression for the Hamiltonian, given in Eq. (4.4) we get for the
energy in the absence of the perturbing potential, 

(4.12)

The E – k relation for values of k close to the minimum is expressed as, 

(4.13)
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where M–1 is defined as the inverse effective mass tensor, elements of which are
given by 

(4.14)

Comparing (4.14) with (4.12) we find that the sum of the matrix elements may 
be identified with the components of the effective mass tensor as follows, 

(4.15)

The envelope-function equation for the electrons is written by using this equiva-
lence as. 

(4.16)

For cubic crystals. the effective mass mc for electrons at the Γ point is a scalar
and Eq. (4.16) simplifies to,

*

(4.17)

In quantum wells, V p(r) varies only in one direction. Choosing this direction as
the z direction Fc(r) may be expressed as,

Fc(r) = F(z) exp (ikt.ρ), (4.18)

where kt and ρ represent respectively the in-plane wave vector and the position
vector.

Substituting (4.18) in (4.17) we obtain 

(4.19)

Electron states for most of the quantum well devices, using n- type III-IV coni-
pounds, are evaluated by using Eq. (4.19). The value of the effective mass, mc

* is
taken from experiments such as cyclotron resonance, magneto-phonon oscillation, 
Faraday rotation. etc. 

The wave function ψp(r) is given in this case by,

(4.20)

The second term in Eq. (4.20) may be neglected in the analysis of most of the 
phenomena. Only for the case of intersubband absorption, the contribution from 
the second term becomes significant (see Section 5.2.2). 

The wave function is simplified in the normalized form as

ψp(r)=(Ω /<F |F>) 1/2U c0 Fc(r) , (4.21)
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where Fc(r) is the solution of Eq. (4.17) and Ω is the volume of a unit cell. It
should be noted that the cell-periodic function is normalized over the volume of a 
unit cell, Ω , while the wave function is normalized over the volume of the structure.

Equation (4.21) may be generalized for non-degenerate minima with energy
Ec0(k0), located at k = k0 . The cell-periodic functions Unk0 form a complete set
like Un0 and ψP(r) may be expressed as,

(4.22)

Substituting (4.22) in the Schrödinger equation and proceeding as for k0 = 0,
we get 

(4.23)

The elements of the tensor M–1 are defined so as to replace the momentum matrix
elements, according to the following relation,

(4.24)

where mαβ may be identified as the elements of the effective mass tensor, defined
as

(4.25)

The values of mαβ may be obtained from cyclotron resonance and other experi-
ments. These are used in Eq. (4.23) to analyze quantum well devices using the 
indirect-gap materials, eg., Si or Six Ge1–x .

We note that in the theory, as discussed above, the minimum is taken as
isolated. However, indirect-gap materials have multiple equivalent minima, located 
either in the <100> directions, viz., in Si or in the <111> directions, viz., in Ge. 
The perturbing potential may affect the different minima differently, depending
on the direction of variation of Vp (r) in relation to the crystallographic directions.
In such cases, each minimum may be treated as being independent. On the other
hand, for some directions of variation of Vp(r), more than one minimum may be
affected identically. The minima cannot, then be considered as independent. The
effect of the possible coupling between such minima have not, been evaluated. It is 
presumed that the coupling may cause only finite splitting of the minima, without 
materially affecting other results and the minima may be treated independently 
even when the energies are the same. 

4.1.3. ENVELOPE-FUNCTION EQUATION FOR HOLES 

The valence band of all the cubic semiconductors, except the chalcogenides, have 
three valence band maxima located at the Γ point. Two maxima are four-fold



42 CHAPTER 4 

degenerate (including the spin degeneracy). The third maximum is lower in energy 
from these maxima by the spin-orbit splitting, ∆. The Hamiltonian for the holes is
evaluated by assuming that only the degenerate maxima contribute significantly, 
while the contribution of the third maximum and all other extrema may be treated 
as perturbation. 

The cell-periodic parts of the Bloch functions for these maxima are like the 
p-type atomic orbitals corresponding to the angular momentum number J = 3/2 
and the magnetic quantum numbers Jz = 3/2, 1/2. This identification is done by 

considering that the effective mass obtained from the cyclotron resonance experi-
ments agree with the. E – k relation, calculated by using this assumption.

The cell-periodic functions for these bands are therefore chosen to be 

(4.26)

(4.27)

(4.28)

(4.29)

The numbers in the parenthesis indicate the values of J and Jz . The prefactors 
and phases are chosen so as to normalize the functions and to ensure time reversal. 
Arrows indicate the two opposite spins. X, Y and Z indicate the x, y and z type
p-orbitals, x, y, z being chosen along the crystallographic directions. Using the
above expressions for U1, U2. U3 and U4 and taking into account the symmetry of 
the functions, we get for H(k) the following matrix[4.2].

where,

(4.30)

(4.31)

(4.32)

(4.33)

The constants γ 1,γ 2,γ 3 , known as Luttinger parametersI4.5], have been substi-
tuted for the momentum matrix elements (see Section 4.1.2) as detailed below.

(4.34)

(4.35)

γ1 = –(2/3)(A + 2B)m0, γ2= –(1/3) (A – B)m0, γ 3 = (1/3) Cm0,,

where
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(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

a represents x, y, or z. The summation is carried out over all the extrema except
the degenerate valence band maxima, under consideration. The equivalence be-
tween the matrix elements (e.g., px

xn' = py
yn' = pz

zn' ), which are evident from the 
the symmetry of the functions are not listed, but the constants A, B, C are to be 
interpreted accordingly. We note that γ 1, γ 2, γ 3 give the inverse of the effective 
mass ratio of holes and the signs in the above expressions have been chosen so 
that these parameters are positive. 

We find that all the envelope functions F1, F2, F3 and F4 are coupled in the 
equations given by the Hamiltonian of Eq. (4.30). The equations may be decoupled
into two sets of two coupled equations using the unitary transformation given 
below[4.6,7].

where

The transformed envelope functions, F'1 , F'2, F'3 and F'4 are given by,

F = U
– . F'.

The equation for the transformed functions is therefore 

(U
– . H . U†) . F' = EF',

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

where U† is the hermitian conjugate of U
–

and H is the matrix operator. The
transformed operator is 

(4.47)

–
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~
R= | R | –i | S |. (4.48)

Evidently, equations for F'1 F'2 are decoupled from those for F'3 , F'4 .
The two sets of coupled equations are identical and may be written in the expanded
form as,

(4.49)

where

(4.50)

(4.51)

W † is the hermitian conjugate of W. The perturbed wave function ψp(r) is given
by

(4.52)

It should be noted that; the unitary transformation matrix, used above, depends
on both the magnitude and the direction of k. The quantum wells being grown 
along the crystallographic directions, kz is fixed for each quantized level. The 
transformation relation, therefore, depends on the magnitude and direction of the 
transverse wave vector kt . Detailed calculations may be done by using different 
transformation matrices for different kt . For example, for the <100> and <110> 
directions of kt , the operator W is given respectively by,

(4.53)

(4.54)

However, the values of γ 2 and γ 3 being nearly the same, the problem is often 
simplified by assuming that, 

(4.55)

(4.56)
and writing W as

4.1.4. ENVELOPE-FUNCTION EQUATION FOR HIGH-ENERGY
ELECTRONS

Envelope-function equation for the electrons has been derived in Section 4.1.2 by 
assuming that, the energy of the electron is close to a minimum and that the 
difference in the energy of this minimum and of other extrema (including the 
valence band maxima) is large. This assumption may be justified generally only 
for electron kinetic energies of a few meV, as the band gap in some compounds 
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(i.e., InSb) may be as low as 230 meV. The quantized energies in quantum wells 
may, however, be a few hundred meV, particularly in narrow wells. The effect 
of the coupling of the nearby valence bands with the conduction band cannot be 
neglected for such energies. 

Envelope-function equation for the high-energy electrons are obtained by as- 
suming that the contribution of the valence-band extrema are also significant,. We 
illustrate the equation by combining the four-fold degenerate valence-band max-
ima with the conduction-band minimum. The coupling between the nearby bands 
is caused by the term This term was not included in Section 4.1.2 
as the contribution of all extrema, except the conduction-band minimum was con-
sidered to be of the second order and included in the analysis by replacing the free 
electron mass with the effective mass. The k.plm term is, however, required to be
included when the contribution of the valence band is also significant.

The cell-periodic part of the Bloch function for the Γ - point conduction-band
minimum is of the s-type atomic orbital. Taking the functions for the two spins 
as S ↑ and S ↓ and using the functions for the cell-periodic parts of the four
degenerate valence bands we get the following matrix for the Hamiltonian.

where
(4.57)

(4.58)

(4.59)

The diagonal elements and the elements of the upper half are given. Elements
of the lower half are the hermitian conjugates of the upper-half elements. The
effective mass mc

* differs from m*
c , introduced in Section 4.1.2, as in the present 

formulation contribution of the valence bands are introduced through the coupling
terms and are therefore excluded in the definition of m*

c . The operators P', Q', R' 
and S' are given by the same expression as P, Q, R and S (See Sect.4.1.3) but,
γ '1, γ '2, γ '3 differ from γ 1, γ 2 and γ 3 as in their definition also the contribution of the
conduction band is excluded.

Energy eigenvalues for the high energy electrons and the dispersion relations 
are required to be calculated by solving the equation obtained by using the above 
Hamiltonian. A more complete description requires also the inclusion of the third 
valence band as in some materials the spin-orbit splitting may be only 40 meV[4.8]. 
The operator is given by a 8 × 8 matrix when the coupling to the split-off band is
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included [4.9]. The analysis of quantum well devices, is rarely based on the solution 
of these equations, all taken together. Further, the problem is complicated by the 
presence of the k2 -dependent terms in the diagonal elements which cause the
appearance of spurious solutions. 

The analysis is simplified by substituting for m*
c in the envelope function equa- 

tions, the energy dependent mass m*
c (E), which is applicable to bulk materials

for some simplifying assumptions. It . assumed that the k2-dependent terms may
ed in the diagonal elements. The z-direction is also selected in the di-

rection of k and a new set of orthogonal X'. Y', Z' functions are chosen for these 
new coordinates. For this assumption kz = k, and kx = ky = 0. The matrix then
simplifies to [4.4] 

(4.60)

All the elements involving the transverse component of k are zero. In effect.
only the conduction band minimum and the valence band corresponding to J =
3/2. Jz = 1/2 are coupled. 

The above Hamiltonian gives the following dispersion relation. 

(4.61)

The matrix element, Psp may be eliminated by noting that the above relation
should reduce for k → 0 to

We get accordingly. 

(4.62)

(4.63)

Eg = Ec0 – Ev0 or the band gap. Equation (61) may now be rewritten as,

(4.64)

where α = 1/Eg . The parameter a is referred as the nonparabolicity parameter
as for α ≠ 0, the E – k relation is nonparabolic.

A third order dispersion relatioil is obtained by including the split-off valence
band which is coupled to both the conduction band and the J = 3/2, Jz = 1/2 
band even for the above simplifying assumptions. The expressions is 

(4.65)

This expression may, however, be approximated to the form of (64) , but a is now
given by [4.10]

(4.66)
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The free electron the diagonal terms is taken into ac-

count while deriving the above expression. It should, however, be noted that the 

diagonal terms include in addition to the free electron term, other terms involving 

the momentiun matrix elements, pcn' etc., with bands other than the lowest con-
duction band and the three upper most valence bands, effect of which are included
in mc* , γ' 1 etc. The net effect, of these terms is to alter the value of α. To account
for these effects, α is treated as an empirical parameter which may be determined
from experiments, viz., Burstein shift.

The effect of nonparabolicity has been mostly included in the analysis of the 
in quantum well devices by using the simplified expression (64),

discussed above. 

4.1.5. BOUNDARY CONDITIONS 

Electron states in heterostructures are obtained by solving the envelope-function 
equation. subject to the proper boundary conditions. We assume that the per-
turbing potential varies only in the z direction. The envelope function may then
be expressed as, 

(4.67)ψp(r) = F(z) exp (ikt.ρ),

where k t and ρ represent respectively the wave vector and the position vector. The
z-component of the wave function now satisfies the equation,

(4.68)

where being the energy eigenvalue and Eci the band-
edge energy. In heterostructures, two such equations give the electron wave func- 
tion in the two regions. Boundary conditions are introduced to match the functions 
at the interfaces and at infinity. 

The first boundary condition is obtained by considering that for a quantum 
well and a heterostructure the wave function should he normalizable and therefore 
should become zero as | z | goes to intinity.

The second boundary condition is obtained from the requirement that the 
probability density of the electron is single-valued. To ensure single-valuedness 
the wave function should be continuous across an interface. 

The two conditions are obeyed when it is ensured that, 

(4.69)

(4.70)

(4.71)

where UAFA(zi) and UBFB(zi) represent the envelope functions respectively for the
A and the B material at the interface located at z = zi . It is usually assumed 

electron states 



48 CHAPTER 4 

that the cell-periodic parts of the wave functions are identical in the constituent 
materials, i.e., UA = UB. This assumption is a limitation of the analysis. using 
the effective mass approximation. Apparently: deviation from this assumption
does not affect the final results in any significant manner, as is indicated by tho
agreement between the theory and the experiment. This assumption simplifies 
Eq. (4.70) to 

FA (zi) = FB(zi). (4.72)

The third boundary condition is related to the derivatives of the wave function.
This boundary condition is obtained by integrating Eq. (4.68) from an infinites-
imal distance – ∈ on one side of the interface to a distance +∈ on the other side.
However: before carrying out this integration we note that Eq. (4.68) should re-
main hermitian even when m* varies with z as in quantum wells. This condition
is ensured by formulating the equation as[4.11,12], 

Integrating the function from – ∈ to ∈ we get

(4.73)

(4.74)

The second term and the right-hand side term are zero since Fi(z) is continuous.It
then follows that [1/m*(z)]F'i (z) is continuous across the interface, or

(4.75)

The prime indicates the z-derivative.
Thus condition ensures also the continuity of probability current density at the 

interface and is introduced in some studies from such consideration[4. 13]. There 
has been discussion in the literature[4.9] about the necessity of introducing the 
condition of the continuity of probability current density since the current density 
is zero for real F(z) in quantum wells. It is argued, on the other hand, that for
states in quantum wells, which are in the continuum, i.e., above the band-edge
energy of the barrier layer or when an electron tunnels through a barrier. the 
probatility current density is not zero and the continuity of current density is 
required to be ensured. As the boundary condition cannot depend on the nature 
of the problem, the same condition should also apply even when the probability 
current density is zero. 

For high-energy elcctrons it has been discussed in Section 4.1.4 that the mixing 
between the different bands is required to be considered. However, in most of 
the analyses. simplification is done by using the energy dependent effective mass 
m*(E) in place of m*(0). Use of this mass requires that in Eq. (4.75) m i

* should
be replaced by the so-called velocity effective mass, given by[4.14,15], 

(4.76)
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The eigenfunction and the energy eigenvalues are, however, required to be obtained 
by solving the envelope-function equation with the assumed nonparabolic E(k) to
give the operator E( –i∇ ). Controversyj however, exists in the literature about the
use of mv in the boundary condition and the use of the so-called energy effective
mass, defined as[4.16-18],

(4.77)

has been suggested. 
Boundary conditions for the holes are also obtained from the same considera- 

tions as for electrons. The condition of the continuity and normalizability of the 
wave functions give 

for each value of m, since the functions are orthogonal. 

(4.78)

(4.79)

(4.80)

(4.81)

The boundary condition for the derivative is obtained by integrating the enve- 
lope function as for the electrons. We get. 

(4.82)

The cell-periodic parts of the Bloch functions being assumed to be equal in the two 
materials, the momentum matrix elements. plm’s, are also equal Terms involving
plm are, therefore. omitted in the above condition. On ming the expression in the
transformed four-fold degenerate model of the valence band [see Eq. (41)] we get
for the above condition,

(4.83)

4.2.  Energy Levels of Electrons 

Heterostructures for quantum well devices are so constructed that the potentials
produced in them confine the electrons. The confining potentials are due to the 
band offsets (discussed in Chapter 3) at the interfaces in double-junction quantum 
wells and superlattices. In single-junction heterostructures, the confining potential 
is due to the band offset, on the one side and due to the accumulated charges on 
the other side. The determination of energy levels is comparatively simpler for 
double-junction quantum wells and superlattices since the charge accumulation 
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may be considered negligible. Energy levels in these structures are first worked 
out.

4.2.1. QUANTUM WELL 

The potential distribution in the structure is as shown in Fig. 4.1(b). The bending 
of the band edges is due to charge redistribution at the interfaces. However, the 
width and doping of the well is such that the bending may be neglected in the first 
approximation and the potential may be approximated as being of rectangular 
shape as shown by the dashed line. 

Equation (4.19) is required to be solved subject to the boundary conditions
discussed in Section 4.1.5. Choosing z = 0 at the left interface between the well
and the barrier the solution may be written as, 

where L is the width of the well and

(4.84)

(4.85)

(4.86)

(4.87)

Θ(x) is the Heaviside unit function. The subscript i indicates the well layer for w
arid the barrier layer for b. Eci is the band-edge energy, kt is the transverse wave
vector which is identical in the well and the barrier became of the requirement of
the continuity of the envelope function. In the solution for the barrier layer only
one solution has been taken from the two possible solutions on each side to ensure
that Fb(z) → 0 as | z |→ ∞. It may also be noted that for

and kb are both real.
On applying the boundary conditions at z = 0 and at z = L we get the

following equation. 

(4.88)

where r = (kb/kw)(m*
w/m*

b).
from Eq. (88) may be written as. 

The equation for the eigenvalues of energy, obtained

tan [kwL/2 + (1 ± 1)π/4] = r. (4.89)

When Ecb » Ecw, kb is much larger than kw and kwL/2 = nπ/2. The energy
eigenvalues are then given by 

(4.90)
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This approximation is referred as the infinite-barrier approximation, and is often 
used in the analysis of quantum well devices. 

We also note that there are two series of solutions corresponding to the plus
and the minus sign and the wave functions corresponding to them have even and 
odd symmetry about the centre of the well. This symmetry plays a significant role 
in the opto-electronic interactions. 

Effect of finite barrier potential 
The properties of the barrier layer, however, become important , when the energy 
eigenvalue, En , is comparable in magnitude to the barrier potential
V 0 [=(Ecb – Ecw )]. It is then found that En’s have lower values than those given
by the infinite-barrier-potential model. The lowering depends on the magnitude
of V 0 and L. These features are illustrated in Fig. 4.3 by computing the energy
levels in wells of the GaAs/Ga0.7Al0.3As system with the following values of the 
physical constants. 

Figure 4.3. Energy eigenvalues for quantum wells. Solid line- Finite Barrier well. Dashed line -
Infini te- barrier well. 
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m*
w = 0.067m0, m*

b = 0.09m – 0, V 0 = 276meV,m0 = 9.1 × 10–31kg.
The calculations show that the values for the finite-barrier model are not much 

different from those for the infinite-barrier model for well widths largdr than about 
50 nm, but for smaller widths. the eigenvalues are much lower. The difference
becomes more distinct for very narrow wells when the eigenvalue approaches the 
barrier potential. Further, the electron spends part of the time in the barrier
layer when the barrier potential is finite. The in-plane effective Inass is therefore
a weighted average of the masses in the well and in the barrier layer. As m*

b > mw*

the merage mass is larger than m*w . It may be evaluated for a particular value
of n by calculating E for different values of k, and using the formula 1/m*

t =
Such calculations have been done[4.19] for the first subband 

level in Ga0.47In0.53As/InP wells. The following values of the physical constants 
were used. 

mw
* = 0.042m0, mb

* = 0.075, V0 = 240 meV.
The results are presented in Fig. 4.4. The value of mt* is found to increase

from the mass for Ga0.47In0.53As to that for InP as the well width is reduced and 
consequently, the energy eigenvalue approaches the barrier potential and causes

Figure 4.4. [ Reference: B. R. Nag and S.

Mukhopadhyay, Phys. Lett. A 166 395 (1992), Copyright (1992) with permission from Elsevier 
Science]. Solid line - Nonparabolic band including the effect of wave function extension. Dashed 
line - Parabolic band. Dot-dashed line - Nonparabolic band excluding the effect of wave function 

extension.

In-plane effective mass in narrow quantum wells. 
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Table 4.1 Energy levels in quantum wells(meV).
L= well width(nm).(a) - Parabolic. (b)- Nonparabolic.
I - GaAs/Ga 0.3Al 0.7As.II - InP/Ga 0.47In 0.53As.

L I(a,) I(b) II(a) II(b) III(a) III(b) 
20 10 11 14 16 16 18 
10 32 34 39 44 49 59 
5 80 89 87 89 123 156
2 180 211 172 186 291 345 
1 239 266 216 223 -

0.5 265 275 233 235 -

I I I - Ga 0.47In 0.53As/Al 0.48In 0.52As.

large penetration of the wave function into the barrier layer. Recent cyclotron 
resonance experiment, has given data confirming this theoretical prediction[4.20]. 

The extension of the wave function into the barrier layer for finite barrier 
potential affects also the probabilities of scattering of the electrons. This aspect 
is discussed in Section 7.3. 

Effect of energy band nonparabolicity
The effects of nonparabolicity are incorporated as explained in Section 4.1.4 by 
using the energy effective mass in Eq. (4.86) and the velocity 
effective mass, in r of Eq. (4.88). Such analyses have been carried 
out for GaAs/Ga0.7Al0.3As,Ga0.47In0.53As/InP and Ga0.47In0.53As/Al0.48In0.52 As sys-
tems. The nonparabolic relation used for the analysis is the simplified[4.21-24]
Kane relation, which is assumed to apply to both the conduction band and the 
forbidden baud [4.25,26]. 

Results of the analysis are given in Table. 4.1 along with those for the parabolic 
band. The nonparabolicity causes significant changes in the values of the energy 
levels. The change is maximum near about the well width of 2 nm and may be 
as large as 17%. Although such changes may not be important in the design of 
electron devices, these have to be taken into account in the design of optoelectronic 
devices in which the signal frequency resonates with differences in energy levels. 

4.2.2.  SUPERLATTICE 

Energy levels in superlattices are evaluated by following the same procedure[4.27] 
as outlined above for the double-junction quantum wells. The effect of the charge 
redistribution is ignored and it is assumed that the potential distribution is 
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periodic with a uniform period. 

the well layers is uniformly Lw and that of the barrier layers Lb .

The equation for the envelope function ψi(r) in the two layers is written as

We assume that the superlattice is grown along the z direction, the width of 

We choose z = 0 at the left interface between a well layer and a barrier layer.

(4.91)

where the subscript i indicates the well layer for w and the barrier layer for b, m *
i

and Eci are respectively the conduction-band-edge effective mass and the energy 
of the i-layer, E is the energy of the electron.

The equations are to be solved with the boundary conditions at the interfaces 
as in the double-junction quantum well. The potential variation being periodic,the 
envelope functions are required to satisfy the additional condition, 

where kz is the component of the wave vector in the z-direction.
The solution for ψi may be written as

(4.92)

(4.93)

since the potential varies only in the z direction; kt and ρ are respectively the
in-plane wave vector and the position vector. Substituting (4.93) in (4.91) we get,

Solution of Eq. (4.94) is 

where

The boundary conditions give, 

(4.94)

(4.95)

(4.96)

(4.97)

(4.99)

(4.98)

The prime indicates the derivative with respect to z.

following equation, 
On applying the above conditions to the solutions of Eq. (4.91) we get the 

(4.100)



where
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(4.101)

(4.102)

Simplifying Eq. (4.100) we get for the dispersion relation of superlattices, 

cos (kzL) = cos (kwLw) cos (kbLb) – (1/2)(r + 1/r) sin (kwLw) sin (kbLb). (4.103)

The variation of the eigenvalues with kz is illustrated in Fig. 4.5. It may be 
noted that (E – Ecw) varies as the square of kz in the bulk material. For the 

superlattice, on the other hand, the band breaks into minibands, with boundaries 
given by ±nπ/L. Since, L is a few times the lattice constant, a number of such
bands may be produced and those are often called minibands. The width of the 
minibands and their numbers are determined by the barrier potential, the period 
of the superlattice, L, and the relative values of the widths of the well and the
barrier layer i.e Lw and Lb .

Figure 4.5. 
width/barrier width. 

Energy eigenevalues in superlattice structures. Figures on the curves give well 
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The widths of the bands become very small for barrier potentials of the order 
of 0.2 - 0.5 eV, when the barrier width is larger than 10 nm[4.28]. The system may 
then be considered as a combination of single wells, rather than a superlattice. Due 
to the weak coupling between the wells, the wave function corresponding to one 
well is not much modified by the proximity of the other wells. Such superlattice 
systems are referred as multiple quantum well, (MQW) , and are used extensively 
in the optic quantum well devices discussed in Chapter 10 and 11. Energy levels in 
such systems are degenerate and may be worked out as discussed in the preceding 
section. The effects of the extension of the wave function into the barrier layer and 
the energy band nonparabolicity may also be incorporated into the calculations
by following the procedure, already discussed. 

For smaller widths, however, Eq. (4.103) is required to be used for obtaining
the energy dispersion relation. The effects of nonparabolicity may be readily in-
corporated by using the energy effective masses to obtain, kw , and kb for the energy
E, and by using the velocity effective mass in Eq. (4.102).

The dispersion relation may also be obtained in the tight-binding approxima- 
tion by expressing the wave function for the superlattice in terms of the wave 
functions for the individual wells as 

(4.104)

where Fn
sw (z–lL) represent the wave function of a single well located at z = lL

for the nth mode. In many cases, significant contribution comes only from the 
nearest neighboring wells. The dispersion relation may then be simplified to 

(4.105)

where
(4.106)

and
(4.107)

En is the nth energy level for the single well, ∆ n is the width of the energy bands,
mainly determined by the interaction between two neighboring wells, and În is 
the shift in the centre of the band due to the interaction. V (z) is the potential
difference between a single well and the superlattice potential. In many applica-
tions! the above simplified expressions are used to estimate the band width and 
the energy shift in a superlattice. 

Superlattices very often constitute the barrier layers or the cladding layers[4.29].
The characteristics of tunneling of electrons through these structure are of impor-
tance in such applications, and aspects of this phenomenon are discussed in Section 
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9.1. Superlattices have also been used in quantum well modulators and switches, 
which are discussed in Chapter 10. 

4.2.3.  SINGLE HETERO JUNCTION 

The potential variation, causing the quantum well, is produced in single hetero-
junctions by the redistribution of the charge carriers. Electrons are transferred 
from the higher-lying conduction band to the lower conduction band or the holes 

are transferred from the lower-lying valence band to the higher valence band, till 
the bending of the bands due to this transfer aligns the Fermi levels of the two 
constituents. Such alignment, is illustrated in Fig. 4.6 for the n – n, n – i and n –p 
junctions in the GaAs/Ga0.7Al0.3As system. The band offset is determined by the 
composition of the two constituents as discussed in Chapter 3. The bending of the 
bands is essentially determined by the doping of the layers. The doping is modu-
lated so that the well layer is undoped and has only the background impurities. A
portion of the barrier layer adjacent to the junction is also undoped. The carriers 
are generated by the doping and the symbols, used in the analysis, are shown in 
Fig. 4.7. Analysis of the potential profile forming the well is discussed below by 
considering a n – p junction.

Figure 4.6. Band alignment in single -junction heterostructures. (a) n-n junction. (b) n-i junction. 
(c) n-p junction. ∆Ec(∆Ev)- Conduction band edge energy for well (barrier) layer. Evw(Evb)-

Valence band edge energy for well(barrier) layer. EF - Fermi level.
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Total positive areal charge density, Qsb, in the barrier layer is given by

(4.108)

where Ndb(z) and nb(z) represent respectively the donor density and the electron
density in the barrier layer. 

The charge density Qsb may be expressed in terms of ∆Ec , EFi , Ndb , and the
thickness of the undoped layer d, by using the following equations which relate the 
charge density to the local potential and the carrier concentration to the potential 
and the Fermi level. 

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

Figure 4.7. Modulation doping. Nd - Donor density. EF1, EF1, EF2 - Fermi level in different

regions as indicated.
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where U is the local electrostatic potential, ∈b is the permittivity, m b
* , m0 are the

effective mass and free-electron mass respectively. T is the lattice temperature. 
Γ (j) is the gamma function and ηb = EFb/kBT, EFb being the Fermi energy and kB

is the Boltzmann constant. It may be noted that. Ncb is the same as the prefactor 
in the Maxwell-Boltzmann distribution function. The subscript cb, db indicate
the barrier layer. It is assumed that the donors are fully ionized. The barrier 
height is of the order of a few hundred millivolts, whereas kBT is a few millivolts.
The contribution of the electron concentration nb(z) may be shown to be about,
(kBT/|e|U) times Ndb and may be neglected, since (kBT /|e|U) is small.

Equation (4.108) may now be integrated to relate Qsb with the potential,
(∆Ec – EFi – EFb), at the junction. The relation is

Qsb ≈ [(2∈bNdb)(∆ Ec – EFi – EFb)] 1/2 (4.114)

The Fermi level of the well layer, EFi, at the interface, is treated in the above 
expression as an unknown. Values of all the other physical constants being known, 
EFi may be obtained, by applying the condition that the total structure must be 
electrically neutral, i.e., the negative areal charge density in the well layer must 
be equal to Qsb.

The potential distribution in the well layer is controlled ,on the other hand, 
more by the charge carriers, accumulated near the interface, than by the ionized 
acceptors. In quantum well devices, the surface charge density is made so large 
that the potential reaches the bulk value in a distance comparable to the electron 
wavelength. The charge distribution in the well is, therefore, required to be deter-
mined by solving the envelope-function equation, including the potential energy 
Vw(z) due to the charges, given below:

(4.115)

The potential Vw(z) is mainly the Hartree potential i.e., the potential due to
the ionized impurities and all the electrons except the one under consideration.
Electron concentration being large, a second component arising from the charge 
arid correlation effects should also be considered. However, detailed calculations 
indicate that the effect of this component is comparatively small and it may be 
neglected in the first approximation[4.30]. 

The Hartree potential is required to be obtained by solving the Poisson equa- 
tion,

(4.116)

where Naw is the acceptor density, assumed uniform in the well layer, ∈w is the 
well-layer permittivity and nw(z) is the electron density at z. It should be noted
that the electrons occupy different quantized energy levels according to the Fermi 
function and they are distributed in space in accordance with the eigenfunction 
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for the particular quantum level. The electron density nw (z) may be expressed as,

(4.117)

where ni is the number of electrons in the ith level corresponding to which the
eigenfunction is Fwi(z) The concentration ni is related to the Fermi level and the 
quantized energy levels by the Fermi function. as given below,

(4.118)

where EFi is the Fermi level measured from the conduction-band edge at the 
interface, and the energy of the electron from the same reference is 

kt being the in-plane component of the wave vector, k.
The total charge on the well layer per unit area is 

(4.119)

(4.120)

and EFi would be obtained by equating |Qsw| to |Qsb|.

involves Vw (z).
The evaluation of nw(z) however, requires solution of Eq. (4.115) which again

Equation (4.116) is required to be solved subject to the boundary conditions, 

(4.121)

(4.122)

The second condition follows from the condition of the continuity of the normal 
component of the displacement. 

For finite values of the barrier potential ∆Ec , the wave functions for the quan-
tized levels will partially extend also into the barrier layer and a second Schrödinger
equation is required to be solved for the barrier layer. It is given by 

(4.123)

where the subscript b indicates values for the barrier layer and Vb (z) is the potential
energy due to the charge distribution. The potential Vb(z) is considered to be due
to only the ionized surface charge density. However, a significant contribution to 
this density may also come from the electrons in the well for finite barriers, as they 
spend part of the time in the barrier layer when the wave function extends into 
it. Equation (4.123) is, therefore, required to be solved after obtaining Vb(z) by
including this additional contribution to the charge density in the barrier layer.



ELECTRON STATES 61 

The solutions, Fw(z) and Fb(z), are finally required to be matched at the het-
erojunction interface by applying the boundary conditions, already discussed in 
Sect.4.2.1 in connection with the double-junction quantum wells. 

It should be evident that a complete solution of the equation for evaluating the 
. energy eigenvalues and the wave function is very involved for the single junction 
quantum wells. The potential, Vw(z) in Eq. (4.115) is required to be obtained
by using the solution of the same equation or the equation is to be solved self-
consistently[4.31]. It may, therefore, be tackled only iteratively by using numerical 
techniques. Such solutions have been obtained in a few cases[4.32]. It is, however,
found that the problem may be simplified by introducing some approximations, 
and solutions may be obtained analytically. Such analytic solutions are close to 
those obtained by applying the rigorous numerical methods and mostly, these 
are used in the analysis of quantum well devices, using single junctions. These 
solutions are discussed below. 

Infinite-barrier triangular well
The most common and popular approximation is the triangular-well approxima-
tion. The potential in the well layer may be expressed in the Hartree approxima-
tion as 

(4.124)

Variation of the potential is dominated by the field term for small values of z. The
potential, therefore, increases initially linearly with the distance, but as the second 
term increases faster than the first term the rate of increase gradually decreases 
till the potential levels off to the bulk value. In a simple approximation, called the 
triangular-well approximation, the field ∈ is taken to be equal to

Ei ’s are the energy eigenvalues, given by

(4.125)

where Ndep and Ns represent respectively the concentration of the ionized acceptors
and the accumulated electrons per unit area. The factor of (1/2) is introduced to
account, for the variation of ∈ with z. solutions may be obtained analytically, if it
is assumed further that DEc is so large that Fw(z) = 0 at the interface.

Equation (4.115) has then the form of the well-studied Airy equation and the 
wave functions are the Airy functions[4.33,34]. The wave function is given by

(4.126)

(4.127)

(4.128)
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θi have the values of 0.7587, 0.7540, 0.7575 for l = 0, 1 and 2 and may be approx-
imated as 0.75 for higher values of l.

The approximation will be more appropriate for the lower energy levels, for
which the wave function docs not extend to large values of z. However, because of
the simplicity of analysis, it is frequently used to derive the characteristics of the
quantum well devices using single heterojunctions.

Improved analytic solutions are obtained by using the variational functions for
Fw(z). The variational function used for barriers with infinite height is [4.35]

(4.129)

The variational parameter b0 is then determined by minimizing the total energy of
the electron, which may now be obtained by solving Eq. (4.115) with the Hartree 
approximation.

The value of b0 may be expressed in terms of the surface electron concentration,
Ns and the density, Ndep , of donor atoms integrated over the distance in which
the potential varies in the well layer. The relation is[4.36], 

(4.130)

More elaborate trial functions have been used for the analysis of wells with finite 
barriers, which are more realistic[4.37,38]. The function is 

(4.131)

(4.132)

where B, B', b, b' and β are the variational parameters. The constants B, β and
B’ are expressed in terms of b and b' by using the boundary conditions at the 
interface and the normalization condition for the wave function. The total energy 
is calculated by using these functions and then minimizing it by varying b and b'
to obtain their values. 

The discussion above has been based on the assumption that the electrons 
occupy only the lowest subband. The following variational function[4.39] has been 
used for the second subband, to account for its occupancy, in case the well is broad 
enough.

It is found after minimizing that 

(4.133)

(4.134)

(4.135)

The variational method has been used to GaAs/AlxGa1–xAs wells, along with
the complete numerical method[4.37] to estimate its accuracy. The energy levels 
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are almost indistinguishable. The space-dependence of the wave functions are 
slightly different and the average electron position is found to be shifted towards 
the interface, as expected when the barrier is considered to be finite. 

It should be evident from the discussions of this section that an exact evaluation 
of the wave function or the energy levels is rather involved for single-junction wells. 
On the other hand, quantum well transistors mostly use these structures and the 
wave functions, if not the energy levels, determine the scattering probabilities, and 
are required to be known for any theoretical evaluation of the electron mobility. 

It has been the practice to use Eq. (4.128) for this purpose. The effect of the 
extension of the wave function into the barrier layer may not be important for
low electron concentration. For larger electron concentration, however, the effect 
may not be negligible. The penetration affects mobility in two ways. The alloy
scattering in AlxGa1–xAs starts playing a role. Also, the scattering probability 
decreases, since effectively the well width increases. This point is discussed in
greater details in Chapter 7. Equation (4.132) is therefore, required to be used 
when the electron concentration in the device is large. It should also be mentioned 
that for such concentrations, the energy band nonparabolicity is also important .
However, analysis including the nonparabolicity becomes rather difficult as E –
Ecw(z) varies with z due to the bending of the conduction-band edge and the
variation of Ecw . Such analysis has not yet been attempted.

4.2.4.   QUANTUM WIRES AND QUANTUM DOTS 

It has been mentioned in Chapter 2 that though the major current interest for 
quantum well electronics is in quantum well systems, quantum wires and quan-
tum dots promise some improved characteristics and are being studied[4.40]. The 
progress is, however, mostly held back because of technical problems in the real-
ization of a structure with acceptable perfection. Energy levels in these systems 
are hence only briefly discussed. 

Quantum wire or 1D electron gas system, 
The simplest 1D system is a rectangular two dimensional well with dimensions Lx

( in the x direction), Ly ( in the y direction) and infinite barrier height. Energy
levels in this system are obtained by solving the equation,

(4.136)

with V(x, y) = 0 for 0 ≤ x ≤ Lx and for 0 ≤ y ≤ Ly Solutions for ψw is

ψw(r) = A sin (mπx/Lx) sin (nπy/Ly) exp (ikzz), (4.137)

where m, n are integers, A is the normalixation constant, kz is the wave vector in 
the z direction, in which the electrons have freedom of motion. The x-dependent
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and y-dependent components of Fw are chosen to fit the boundary condition, that 
it is zero at the interfaces. The corresponding eigenvalues of energy are 

(4.138)

For the lowest subband energy, m = n = 1, the energy is two times higher than 
the lowest subband energy for the 2D system with similar quantizing dimensions. 
The higher value of the confinement energy makes it important to consider the 
effect of the finite barrier height. 

Analytical solutions for finite barrier potentials may be obtained if the ge-
ometry is assumed to be cylindrical or elliptical. For the cylindrical geometry,
assuming the radius of the well to be a, the wave functions may be written as

ψw = AJn(kwr) exp (ikzz), for the well,

and ψb = BK n(kbr) exp(ikzz ), for the barrier,

where

(4.139)

(4.140)

(4.141)

Jn and Kn are respectively the Bessel and the modified Bessel function of order n.
The eigenvalues of energy are obtained from the solution of the following equa-

tion, which is derived by putting the boundary conditions as discussed for the
quantum wells. 

(4.142)

These solutions may be used to estimate the modification in the energy eigenvalues 
for wells with square cross section by choosing a to be such that the cross sectional 
areas are the same, i.e., using the following equivalence relation[4.41],

(4.143)a = L/π1/2 where Lx = Ly = L.

For a check, the eigenvalues were compared for the infinite-barrier cylindrical and 
square geometry. The values were found to agree to within 8% 

Numerical techniques are required to be applied for rectangular quantum wires
with finite barriers. The finite- element method has been used[4.42] to evaluate 
numerically the energy eigenvalues of GaAs/GaAlAs rectangular quantum wires. 
A convenient method has also been proposed by Gershoni et al[4.40], in which the 
envelope function is expressed as a sum of two-dimensional orthogonal trigono-
metric functions, as follows, 

F (x, y) = Σ Amn sin [m(π/2 + x/L1)] sin [n(π/ 2 + y/L2)],
m,n

(4.144)
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where m, n are integers and Amn’s are the corresponding coefficients. L1 and L2

are arbitrarily chosen. But, L1 and L2 are required to be much larger than Lx and
Ly so that F(x, y) has negligible value for x = L1 and y = L2 .

Equation (4.136) is modified so as to include the x,y dependence of the effective
mass and written as, 

(4,145)

The function (4.144) is substituted in this equation and then the equation is re-
duced to a matrix equation by using the orthogonal property of t he trigonometric 
functions. Eigenvalues of the matrix equation are obtained by using a software 
like IMSL. The method has been used to obtain the electron energy eigenvalues 
in InP/GaInAs quantum wire[4.43]. The method has also been used to calculate 
the energy shift in InP/GaInAs quantum wires for comparison with the available 
experimental data. These results are presented in Fig. 4.8. Close agreement has 
been found between the calculations and the experiment. 

The method may be used conveniently to quantum wires of any arbitrary shape, 
e.g., triangular or arrowheads, discussed in Chapter 2. Calculations for such wires 

Figure 4.8. Energy eigenvalues in 1D wells with breadth = 5 nm. [After S. Gangopadhyay and 
B. R. Nag , Phys. Stat. Sol. 195, 123 (1996)]. Solid line - Theory. Open circles - Experiment.
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wires have also been reported[4.44]. 
It should be mentioned that the application of quantum wires to photonic 

devices requires good estimated values of the energy levels, so that the required 
dimensions of the well may be worked out with suitable design formulæ. The 
energy levels may, however,be significantly altered due to the finite height of the 
barrier. Energy band nonparabolicity is also likely to have significant contribution. 
The effect of nonparabolicity may be estimated by using the method discussed in 
Section 4.2.1 for energy levels in double-junction quantum wells. However, the 
technology of realizing quantum wires is not yet perfect enough to produce wells 
with well-defined geometries. Evidence for definite two-dimensional quantizations 
has appeared recently[4.45-49]. Numerical methods discussed above may be fruit-
fully employed to examine the experimental results obtained for these structures.

Quantum dots or 0D systems 
Not many 0D systems have been reported so far in the literature. Some have been 
produced by etching[4.50] and the confinement is essentially by the semiconductor 
vacuum interface potential. The value of this potential is of the order of a few 
eV and it may be assumed justly that the wave function is zero on the surfaces, 
except for the one in continuity with the substrate. Even if it is assumed that it 
is zero also on that surface, the error will not be large. 

The energy eigenvalues for these conditions are given for a prallelopiped by,

(4.146)

The lowest mode corresponds to l = m = n = 1, and the corresponding eigenvalue
for Lx = Ly = Lz = L is three times that for the 2D systems with the well width L.
Further, the allowed energies of the electron are discrete, there being no continuous 
wave vector component and hence no thermal spread. The systems may therefore 
give good optic devices. 

In some reports, the wells are like short sections of cylinders[4.50]. The wave 
functions and energies for such systems may be shown to be 

(4.147)

(4.148)

where a and L are respectively the radius and the length of the cylindrical wells.
J1(x) is the Bessel function. rlm’s are the roots of J1(kwa) = 0, and l is a positive
integer. It may be noted that this geometry introduces no special new features,
except that it is easier to realize by etching or argon ion milling. 

The technology of constructing the quantum well boxes is not yet developed 
enough to ensure perfect and uniform geometry and hence comparison of the theo-
retical energy levels with experiments is not meaningful. However, as the technol-
ogy improves and systems are realized with a second semiconductor surrounding 
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the structures on all sides, some of the refinements required for estimating the ef-
fects of finite barriers and energy hand nonparabolicity will have to be considered, 
as discussed in Section 4.2.1(a) for the 2D system. A few reports[4.47,51] of the 
realization of such structures have appeared, hut comparable calculated values of 
energy levels are not available. 

4.3.  Energy Levels of Holes 

Electronic quantum well devices are constructed with modulation-doped hetero-
structures using electrons as the charge carriers, since the electrons have higher 
mobilities than the holes. However, devices using holes as the charge carriers are 
also required for complementary logic and attempts are being made to exploit the 
low in-plane effective mass of holes for this purpose by new techniques, which are 
discussed in Section 4.4. Photonic devices, on the other hand, involve the holes 
integrally, as light interaction in many devices causes electrons to be transferred 
from the quantized electron levels to hole levels or the vice versa. Quantization 
of hole levels in heterostructures, therefore, plays an important role in photonic 
devices.

Energy levels of holes corresponding to the degenerate levels are worked out for 
heterostructures by following the same procedure as discussed for the electrons. 
However, two coupled effective mass equations are required to be solved, subject to 
the boundary conditions at the two interfaces. The equations have been derived 
in Section 4.2. We discuss below the dispersion relations obtained from these
equations.

The quantum well is assumed to be grown along a <100> direction, which
is also chosen as the z axis. The effective mass equations for the well and the
barrier layers are written below assuming that γ2 = γ3 = γ– in order to simplify
the expressions. 

where

(4.149)

(4.150)

(4.151)

(4.152)

The subscript i is to be replaced by w for the well and by b for the barrier layer. 
Before discussing the dispersion relations we note some important characteris-

tics of the holes. The coupling term W is zero for kt = 0 and the two equations 
are decoupled. The solutions given for E in Section 4.2 are applicable and the 
eigenvalues of energy may be obtained from Eq. (4.89) , by replacing Eci with Evi
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and mci with m±i . The effective mass of holes, m±i is given for the assumption
kt = 0, by 

(4.153)

The mass for H+i being larger than that for H–i , a hole corresponding to the 
plus sign is referred as heavy hole arid that corresponding to the minus sign, light 
holes.

The quantized energy eigenvalues for heavy holes are smaller in magnitude than 
those of light, holes as m+i > m–i . The energies of heavy holes are therefore higher.
The expression for the Hamiltonians also indicate that the in-plane effective mass
of holes is given by 

m±i = (γ1i ± γi)–1m0
– (4.154)

The in-plane effective mass of heavy holes is thus smaller than that of the light 
holes. As the heavy hole energy levels are higher, these are occupied before the
light hole levels. The small in-plane effective mass of heavy holes may be expected 
to cause a reduction in the density of states of the holes in quantum wells, which 
should reduce the value of the threshold current density of lasers (see Chapter 10).
The expected reduction is, however, much modified by the mixing of the two hole
states for kt ≠ 0 as discussed below.

For kt ≠ 0, the two valence bands are mixed and the coupled equations are
required to be solved[4.52] with the proper boundary conditions. The wave vector 
component kz for the envelope functions in each layer, corresponding to a particular 
hole energy E, are the roots of the characteristic equation, 

The roots are, 

The solution for the envelope functions may now be written as

F1i = A1 sin (k+iz) + B1 cos (k+iz) + C1 sin (k–iz + D1 cos (k– iz)

F2i = A2 sin (k + iz) + B2 cos (k + iz ) + C2 sin (k – iz) + D2 cos (k–iz).

(4.155)

(4.156)

(4.157)

(4.158)

The energy eigenvalues are obtained by using these functions in (4.140) and (4.141)
and applying the boundary conditions.

We consider first quantum wells with the so-called infinite barrier potentials, 
i.e., Ev0b << Ev0w. In this case, the envelope functions are required to be zero at the 
well boundaries i.e., at z = 0 and at z = L. The subscript i may also be dropped
as the envelope function does not exist for the barrier layer. 
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Substituting (4.157) and (4.153) in (4.149) and (4.150) and equating to zero 
the coefficients of the sine and cosine terms we get the relations between A 2,B2

and A 1, B1 and between C2 D2 and C1, D1. Using these relations and equating F1

and F2 to zero for z = 0 and for z = L, we get

where
(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

On simplifying the above equation we get the following dispersion relation for 
the holes in a quantum well with infinite barrier and width, L,

(4.164)

In Fig. 4.9 is illustrated the dispersion relation, E – kt, as obtained from this
equation for a GaAs well of thickness 10 nm. Difference of the energy eigenvalues 
from En(kt = 0) have been plotted against k 2

t , to illustrate the strong nonparabolic
nature of the dispersion relation. We note that for kt = 0, the eigenvalues are

(4.165)

We get two series of values for the two kinds of holes. The variation of the en-
ergy with kt, is found to be quite distinct for the different branches. The strong 
nonparabolicity of the dispersion relation is a distinctive character of the holes 
in heterostructures, which affects the opto-electronic properties significantly. One
interesting feature of the curves is that the in-plane effective mass is a complex
function of kt and En . It varies strongly with kt and may even be negative for
some values of kt in some bands. 

The analysis may be extended to include the effects of the finite harrier height. 
However, we have to consider the functions in the two barrier lagers in addition
to those in the well layer. The characteristic equation is obtained by applying the 
boundary conditions at the two interfaces. Consequently we get a 8×8 matrix for 
the equation, which is required to be solved numerically for different values of kt.

,
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Figure 4.9, Energy-wave vector dispersion curves for holes in a GaAs 10 nm wide quantum well 
with infinite barrier height. Calculations were done assuming that γ 1 = 2.8, γ– = 2.5. HH1, HH2
and HH3 are respectively the first, second and third heavy-hole bands. LH1 is the first light-hole
band. Dashed curves correspond to the parabolic bands with the effective-mass ratio taken as
(γ 1 + γ)–1 and (γ 1 – γ)–1– respectively for the heavy holes and the light holes.

The exact dispersion relation changes with the barrier height, but the nature of the
E – kt curves are not much altered. The curves are nonparabolic and the in-plane
effective mass becomes zero or negative for some values of kt in some subbands as
for wells with infinite barrier[4.52] 

The details of the dispersion relations may not be important for phenomena 
such as photoluminescence in which only holes near kt = 0 are involved. But, for all 
other phenomena e.g., transport and light absorption, these details are important. 

–
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These details affect, the nature of the voltage-current and light absorption char-
acteristics. Some analyses have been reported for the absorption characteristics 
by using these dispersion relations[4.53,54]. In most other studies, however, the 
analysis is based on approximately equivalent parabolic and isotropic dispersion 
relations.

4.4.  Energy levels in strained-layer wells 

Heterostructures have been discussed so far, by assuming that the constituent 
materials are lattice-matched, so that there is no distortion or extra potential at 
the heterojunction interface. Heterostructures may be grown also with materi-
als, the lattice constants of which are different; the difference ay be as large
as 6.8% as in Si/SiGe system[4.55-58]. For materials with different lattice con-
stants, the difference is accommodated by misfit dislocations when the layers are 
thicker than about 100 nm. If, however, the layers are thin, and the thickness is
less than a critical value, the mismatch is accommodated by generating uniform 
elastic strains, without producing misfit dislocations. Such heterostructures are 
referred as strained-layer structures. These layers have crystalline purity, mostly
unaffected by the mismatch. But, the mismatch allows realization of hetrostruc-
tures with wide-ranging band offsets and band gaps in the well, than is possible 
by using lattice-matched constituents. Energy levels in such strained- layer wells 
are discussed in this section. 

It is the thin epitaxial layer grown on thick substrates, which gets strained and 
depending on the difference in the lattice constants, the strain may he compressive 
or tensile. The in-plane lattice constant of the strained layer becomes the same 
as that of the substrate and hence when the bulk lattice constant of the former 
is larger than that of the latter, the strain is compressive and in the reverse case, 
the strain is tensile. The biaxial in-plane strain causes also a consequential strain 
in the direction normal to the interface, a compressive in-plane strain causes an
extension while a tensile strain causes a compression. The epitaxial layer is, as 
a result, tetragonally distorted as shown in Fig. 4.10. Energy bands are altered
by the strain and these altertions are evaluated by using the phenomenological 
deformation potential theory. 

A discussion of the deformation potential theory is beyond the scope of this 
book. The interested reader may consult Reference 4.59. We shall only discuss
the results which allow us to compute the changes in the band structure of the
strained layer. We note that the strain has a hydrostatic and a shear component.
The biaxial strain is given by 

∈xx = ∈yy = ∈ = ∆a / a, (4.166)

where ∆a = asub – a0, asub and a0 being respectively the lattice constant of the
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Figure 4.10. Lattice distortion in a strained-layer structure. (a) Compressive strain. (b) Tensile
strain.

substrate and of the unstrained epitaxial layer. The strain in the z direction ∈zz is
obtained by considering that the stress in that direction is aero in the equilibrium
condition. Consequently[4.60], 

C13∈xx + C23∈yy + C33∈zz = 0,

where C13, C23, C33 are the elastic constants, We get from (167),

∈zz = [–(C13 + C23) /C33]∈= (–2C12/C11)∈,

(4.167)

(4.168)

where use has been made of the eqality of the diagonal and non- diagonal com-
ponents of the elasticity tensor of a cubic crystal. 

The hydrostatic or dilational strain is given by 

∈xx + ∈yy + ∈zz = 2(1– C12 /C11)∈. (4.169)
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The shear strain is, on the other hand, given by

(∈zz – ∈xx + (∈zz – ∈yy) = –2(1 + 2C12/C11)∈. (4.170)

It is assumed that the strains, resulting from the lattice mismatch with the sub-
strate, alters the band structure of the thin layer like the external stresses affecting 
the band structure of the corresponding bulk material. The strain causes changes 
in the position of the different bands by different amounts.

4.4.1. EFFECT OF STRAIN ON THE CONDUCTION BAND 

The conduction band is shifted by an amount proportional to the strain ∈. The
direct determination of the proportionality constant , the so-called deformation
potential constant, is difficult to determine for bulk materials as the absolute 
position of the energy levels are not known. Its value has been calculated for 
some materials from first principles[4.61]. In most, other cases, the value has been 
inferred from the analysis of the mobility or of the free-carrier absorption[4.22]. 
For heterostructures, however, the shift in the condnction band changes the band 
offset, and the shift may therefore be determined by using the methods, which 
have been used to measure the band offset, as described in Chapter 3[4.62]. 

4.4.2.EFFECT OF STRAIN ON THE VALENCE BAND 

The strain shifts the valence bands relative to the conduction band. The hydro-
static component of the shin given by Eq. (4.169) shifts[4.63] equally the heavy
hole and the light hole band by an amount δEhy , where

δEhy = 2Eh(1– 2C12/C11)∈,

Ec = Ec0 + E1∈,

EvH = Ev0 + E1∈ + δEhy + (1/2)δEsh,

EvL = Ev0 + E1∈ + δEhy – (1/2)δEsh

(4.171)

Eh being the dialational deformation potential constant. 
The shear strain. on the other hand, removes the degeneracy of the valence

band maximum and shifts the heavy hole band and the light hole band by equal 
amounts in the opposite directions. Using the expression for the shearing strain, 
the shift due to shearing strain may be written as,

δEsh = Esh (1 + 2C12/C11)∈, (4.172)

where Esh is the deformation potential constant for shear strain. Thus. the band-
edge energies in the strained layer are,

(4.173)

(4.174)

(4.175)



74 CHAPTER 4 

where Ec, EvH, EvL represent respectively the band edge energies of the conduc-
tion band, heavy hole band and the light hole band, E1 is the total deformation
potential constant which gives the shift of the conduction band.

We note that for a tensile biaxial strain, ∈ is positive and since both Eh and Esh

are negative, δEhy and δEsh are negative. The band gap, (Ec0 – Evh) , therefore
increases from (Ec0 – EvL by |δEhy + (1/2)δEsh|. We also note that |E – EvL|
is smaller than |Ec0 – EVH|. Therefore for a tensile biaxial strain, the light hole
band maximum is higher than the heavy hole band maximum in the strained bulk
material.

On the other hand, for a compressive biaxial strain, the heavy hole maximum is
higher than the light-hole maximum. The relative position of the two maxima are, 
however, altered further in quantum wells. The space quantization in wells pushes 
downwards the valence bands, and the light holes have lower energy than the heavy
holes because of their lower longitudinal mass. The quantization, therefore acts 
in the opposite direction to the biaxial tensile strain and in the same direction as 
the biaxial compressive strain. The difference in energy between the heavy-hole
and the light-hole quantized levels is therefore accentuated by compressive biaxial 
strain and reduced and may even be made negative by the biaxial tensile strain. 

The accentuation of the difference in the energy levels by compressive biaxial 

Figure 4.11. Schematic diagram showing hole dispersion relation in a strained-layer system.
(a) Unstrained bulk material. (b) Strained bulk material. (c) Quantum wells. 
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strain reduces the coupling between the two hole bands and makes the in-plane
effective mass of heavy holes closer to γ 1 – γ . In addition, the occupation of–

the heavy hole band also increases as the separation between the two bands is 
increased. The density of valence-band states is therefore reduced over a wider
energy range by compressive biaxial strain. This reduction offers advantages in 
the operation of lasers as explained in Chapter 10. 

Electron and hole states in strained layer quantum wells are worked out by 
using the equations discussed in the earlier sections for unstrained layers. The 
effective mass constants are likely to be affected by strain as the band gaps between 
the bands change [see Eq. (4.15)]. This likely change is assumed to be negligible. 
Consequently, we are only required to solve Eq. (4.19) and Eq. (4.155) respectively 
for finding the states of electrons and holes, replacing Eci and Evi by the values 
given in Eq. (4.173-4.175). As an illustration, the calculated hole dispersion 
relation for a compressively strained quantum well system is shown in Fig. 4.11. 
It should be noted that no significant change is expected in the electron dispersion 
relations. The hole dispersion relations are not also qualitatively altered, but the 
light-hole band is pushed further downwards with respect to the heavy-hole bands 
and the exact shape of the dispersion curves is slightly changed. 

The conduction band minimum has been considered in the above discussion to 

Figure 4.12. Schematic diagram of energy extrema in a Si/SixGe1–x system. (a) Strained Si0.5Ge0.5

on unstrained silicon. (b) Strained Si0.5Ge0.5 on strained silicon. 
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lie at the Γ point, which is mostly true for the III-V compounds used in the quan-
tum well devices. Intensive studies are also being done on Si/SiGe systems [4.64-
68], in which silicon or Six Ge1–x may work as the strained layer depending on 
the growth sequence. Conduction band minima in such layers are in the ∆ di-
rections and are six-fold degenerate. Strain changes the degeneracy in such layers 
and produces a doublet and a set of four-fold degenerate conduction band minima.
Energy levels in Si/Ge systems are worked out following the same procedure as 
outlined above: by using the envelope function methd, but the ordering. of the 
minima have to be properly determined by using the shear deformation poten-
tials. The splitting for the Gex Si1–x alloys on Si (001) substrate is illustrated in
Fig. 4.12. These data together with the changes in the band gap and the va-
lence band splittings provide the input for the calculation of the electron states in
Si/ SiGe quant um well systems. 

4.5.  Conclusion 

Energy levels and dispersion relations have been discussed for heterostructures by
using the envelope-funtions, which are based on the k.p perturbation theory and
the effective- mass approximation. Electron states have been obtained by consid-
ering only the lowest conduction-band minimum and the hole states by considering 
only the four-fold degenerate valence bands. The effect of coupling to other bands
has been incorporated through the effective mass. The results obtained from the 
analysis may be considered accurate for energies close to the extrema. For larger 
energies, the effect of coupling with other bands is required to be directly in-
corporated. The method of analysis discussed for the degenerate bands may be 
extended to include such coupling. The effective mass approximation which is an 
essential component of the envelope functions is, however, questionable close to 
the interfaces and for very thin layers. The tight-binding approximation[4.69], the 
pseudopotential method[4.70] and calculations using band-orbitals[4.71] have also 
been used for obtaining the energy states in heterostructures. These methods do 
not. suffer from the limitations mentioned above for the envelope-function method. 
The results obtained from the envelope-function method are, however, found to 
be close to those obtained by using these more elaborate methods. Energy states 
in quantum well devices are, therefore, mostly worked out by using the envelope-
function method discussed in this chapter as thc method is simple and requires 
as input the effective mass parameters, band offsets and band gaps which can be 
determined from experiments with sufficient accuracy. 



CHAPTER 5 

OPTICAL INTERACTION PHENOMENA

Quantum well structures have been used to realize various opto-electronic devices 
with much improved characteristics. The confinement of the electrons and holes
and the changed density of states (DOS) have caused the improvement. The charge 
carriers are concentrated near the band edge energies due to the staircase DOS 
and the opto-electronic interaction is thereby much enhanced. This has led to a 
lower threshold current and a higher characteristic temperature in lasers, higher 
nonlinear coefficients for the realization of optical bistable devices (OBD) [5.1] and
degenerate four-wave mixers (DFWM)[5.2]. The quantization of the energy levels
have also made it possible to realize a few new opto-electronic devices, e.g., Stark 
effect modulator[5.3] and intersubband absorption detectors[5.4-6]. The basis of all 
these devices are the enhanced values of the opto- eletronic interaction parameters 
of the quantum well structures. The optical interaction phenomena in quantum
wells and the underlying theory are discussed in this chapter. 

5.1. Optical Interaction in Bulk Materials 

The basic theory of the interaction of electrons with the radiation field is first
presented by considering bulk materials. The theory is then extended to quantum 
systems.

In the presence of a radiation field the wave equation[5.7] for the electrons in
a solid is as follows

(5.1)

where m0 is the free-electron mass, V c(r) is the crystal potential, E is the electron
energy, is the momentum operator and |e|Aop is the additional term arising
from the vector potential A associated with the radiation. It may be noted that
all the variables are expressed in SI units.

The vector potential A is related to the electric field intensity of the radiation
by the relation,

(5.2

(5.3)

It may be expressed as

77
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where a is a unit vector giving the poldrization of the radiation field. A 0 is the 
magnitude of the vector potential. κ and ω are respectively the wave vector and 
the frequency of the radiation. Also, 

κ = nrω/c, (5.4)

where c is the velocity of light in vacuum and nr is the refractive index of the 
material.

A 0 is expressed in terms of the photon energy and the crystal volume. Vc , by
equating the energy densities corresponding to one photon in the sample and the 
density given by the field description , as follows 

(5.5)

where ∈0 and ∈ are respectively the permittivity of free space and the material,
and n2

r = ∈/∈0.
The operator, Aop is written as

(5.6)

where aκ and a†
κ are respectively the annihilation and the creation operators.

small, so that terms upto the first order in Aop need be retained.
Equation (5.1) is simplified by assuming that the intensity of the radiation is 

The simplified equation is

(5.7)

The effect of the additional term arising from the presence of the radiation is
treated as a perturbation. The transition rate from a state (Ek', k) to (Ek', k') is
given according to the first order perturbation theory by[5.7,8] 

(5.8)

where is the energy of a photon and the plus and minus signs respectively 
indicate the emission and the absorption of a photon.

The matrix element M(k, k' ) for the transition is obtained by considering that
these are associated with simultaneous changes in the photon population. It is 
required that the combined wave function for the electron and the photon system 
be considered. The matrix element for the combined wave function is given by,

(5.9)

where ψk'LUf and ψkUi represent the wave function for the final and the initial
electron-photon system respectively, Uf, Ui being the components representing the 
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photon system. The coordinates of the electron and the photon wave functions

are r and α respectively. The integral is transformed by considering that the

annihilation and the creation operators associated with Aop, act on Ui , while ∇
operates on ψk.

The matrix element is expressed in the braket notation as

where p is the momentum operator
with the photon wave vector κ.

The matrix element is expressed also as,

by using the identity 

or the equivalence 

(5.10)

is the occupation number of states 

(5.11)

(5.12)

(5.13)

where p is the momentum operator, H is the Hamiltonian operator in the
Schrödinger equation and r is the position vector operator.

Expression (5.11) is simplified for photon-atom interactions, by putting[5.9]
exp (ik.r) ≈ 1. It is often referred as the dipole approximation, as |e|r gives the
dipole moment of the atom. The expression helps in envisaging the polarization
and direction dependence of absorption and emission from the knowledge of the
characteristics of dipole radiation. 

On using the electron wave function N–1/2Uk(r) exp (ik.r) the matrix element 
is found to be, 

M(k. k' ) = M0(k,k')(nκ + 1/2 ± 1/2)1/2, where. (5.14)

The integral in the matrix element may be written also as

The integral has a nonzero value only if 

(5.15)

(5.16)

(5.17)

since exp [–i(k' – k ± κ).r] is otherwise a periodic function. The condition implies
the conservation of pseudomomentum. On the other hand, the presence of the 
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delta function in the expression for the transition probability implies conservation
of energy, since it has a nonzero value only for 

(5.18)

The two conditions cannot be simultaneously satisfied in bulk material if the elec-
tron states (Ek' , k' ) and (Ek, k' ) correspond to the same extremum in the same
band. If, however, the states belong to two separate bands with extrema located
at the same point in the Brillouin zone, then the energy conservation condition
modifies to 

(5.19)

where Ekin indicates that the (Ek', k') state is in the nth band, Eknl indicates that 
the (Ek, k) state is in the mth band and Egmn is the energy gap between the bands
at k = k' = 0. Evidently, this condition may be satisfied along with the condition
of conservation of momenturn if = Egmn.

Electron transitions may be caused directly by the radiation in bulk materials 
with the valence band maximiun and the conduction band minimum located at the 
same k in the Brillouin zone. In many compound semiconductors, this condition
applies, as the extrema are located at the Γ point. Direct transitions are, therefore,
very strong in these materials. The condition applies in quantum wells also be-
tween subbands in thc same band. Hence, direct intersubband transitions within 
a band may also be strong in quantum wells, in addition to interband transitions. 

It should be mentioned that transitions may also occur between two extrema 
located at different points in the Brillouin zone but such transitions require the 
participation of a third particle, e.g., a phonon[5.8] for the conservation of pseudo-
momentum.

The integral I has two components, of which the first component,

(5.20)

would be small as the cell-periodic functions U *
ck' and Uvk , corresponding respec-

tively to the conduction band and the valence band are orthogonal for k' = k.
However, as k' is not exactly equal to k, f' has a small finite value and accounts
for part of the transitions. 

The second component of the integral,

(5.21)

(5.22)

is the momentum matrix element between the states at the extrema. An exact 
expression for this matrix element is not available, but its value may be estimated 
by using the expression for the effective mass near the extrema, as obtained from 
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the k.p perturbation analysis given by Eq. (4.15) .  The expression may be written
in terms of the f-sum as, 

(5.23)

where mni
* is the effective mass at the extremum along the ith direction of the 

principal axis of the constant energy ellipsoid, En and En' are the energies at the
extremum which are coupled through the k.p perturbation. The summation is
required to be extended over all values of n', which are separated by small energies 
from the band under consideration. In the special case, where transition occurs
between two bands, which are very much close to each other than all other bands,
the expression may be simplified to

(5.24)

This expression is often used to estimate the value of pcv from the knowledge of 
the conduction-band effective mass mci

* .
Alternately, pcu may be estimated by assuming that the conduction-band wave

function is like s-type atomic orbitals and the valence-band wave functions are like
p-type atomic orbitals, as discussed in Section 4.1.3. The wave functions may be
written[5.9-12] in general, as, 

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

where S'. X', Y', Z' indicate respectively the functions corresponding to the s-type
and the p-type atomic orbitals, α'1 and α'2 are the spinors. The subscripts indicate
the functions for the conduction band ψcl, ψc2 , heavy hole band, ψvH1, ψvH2 light
hole band, yvL1, yvL2 and the split-off bands ψvS1 , ψvS2 for the different spins. The
valence band wave functions are found to be polarized in the direction of the
wave vector k and the primed- functions indicate the values transformed from the
crystallographic directions of symmetry. 

Let z' be chosen in the direction of the wave vector and x' y' two other suitably
chosen orthogonal directions, x' being in the plane of z' and the crystallographic z
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direction. The transformation relations between the coordinates may be obtained 
from Fig. 5.1 as given below. 

The corresponding transformation relation for the spinors is [5.13] 

(5.31)

(5.32)

The wave function for the heavy hole valence band may be written as 

(5.33)

(5.34)

(5.35)

(5.36)

Figure 5.1. Unprimed and primed coordinates used in the transformation. The unprimed coor-

dinates are in the crystallographic directions, while the primed coordinates are chosen with the z1

direction of the wave vector. 
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The matrix element pcvH is, therefore, given by

which may be simplified to 

where

(5.37)

(5.38)

(5.39)

(5.40)

It should be noted that in obtaining the above expression it has been assumed 
that the spin is conserved by using the relations.

α1 . α1 = α2 . α2 = 1; α1 . α2 = 0. (5.41)

Similarly, the momentum matrix element between the electrons and the light holes 
is

βx = sinθ cos θ, βy = sinθ sin φ, βz = cos θ.
where

(5.42)

(5.43)

The detailed expressions for the matrix element in terms of the components is 
not important for bulk materials, as the wave vector may have any direction and
the matrix element is averaged out. In quantum wells, on the other hand, the
direction of the wave vector is not random, but limited to be on the surface of 
a cone[5.14] with vertical angle θ/2 around z (if it is taken as the direction of
quantization) as the direction may be random only €or the in-plane component of 
the wave vector, while the magnitude of the z component is fixed. The detailed 
expressions introduce an anisotropy factor and will be used to evaluate it when 
optical transition is discussed for quantum wells. 

The magnitude of P may also be obtained in terms of the electron effective
mass, the energy band gap and the spin orbit splitting by using the energy dis-
persion relation obtained from the k.p perturbation theory, discussed in Section 
4.1.4. In the simplified model, in which only the conduction band, the light hole 
band and the split-off band are combined, the dispersion relation including the 
free electron term is found to be[5.11]

(E' – Ec)(E' – Ev) (E' – Ev + ∆ ) – P2k2(E' – Ev + 2∆ /3) = 0, (5.44)

where E being the energy eigenvalue, Ec, Ev and ∆ are re-
spectively the conduction-band edge energy. valence-band edge energy and the
spin-orbit splitting. 
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The matrix element P may be expressed in terms of the conduction-band edge
effective mass m*c by noting that for small values of k,

(5.45)

Also (E'–Ec) << Eg , where Eg is the energy band gap. Using the above expression,
P2 is found to be given by

(5.46)

P may hence be obtained by using the experimental values of Eg, m*
c and ∆ .

light hole band are taken as, 
In the above formulation, the wave function for the conduction band and the

(5.47)

(5.48)

The averaged matrix element, therefore, involves for the bulk material a multiply-
ing constant, γ , given by[5.12]

γ 2 = (accj + ccaj)2 + (acbj – bcaj)2, (5.49)

where ac, bc,cc are the constants for the conduction band while aj, bj and cj ,
are the corresponding constants for the valence band. There is some confusion
in the literature about the expression for |pcv|2 in terms of Eg,∆ and m*

c . An
additional factor of 1/2 is introduced in Eq. (5.9) presumably to account for the
fact that spin is conserved in transitions and hence only half the transitions are
allowed[5.15]. However, a more clear approach is to use Eq. (5.9), and half the
density of states for the final states of the electron. Equation (5.23) has also been
misinterpreted[5.16] in some cases by assuming pnn' to be the same for the heavy
hole, the light hole and the split off bands and thereby obtaining the relation,

(5.50)

But, it may be shown by using expressions (5.25) through (5.30) that, 

where the subscripts vHH, vLH,vS indicate the heavy hole, the light hole and
the split-off hole. On substitution of these values for it is found that 

(5.51)
This relation is the same as obtained from Eq. (5.46), whereas Eq. (5.50) gives a 
different value for P.
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The matrix elements for transitions from the heavy hole, the light hole and 
the split-off hole are also different. The values would depend also on the direction 
relative to the crystallographic directions. 

Often an average value[5.15] is used for the matrix element, Pcv, given by,

but, for quantum wells it is more appropriate to use the matrix elements for the

individual bands for calculating the absorption since the energy levels correspond-
ing to the particular heavy and light hole are separated due to quantization. The 

relevant matrix elements for the heavy hole, the light hole and the split-off bands 
are given respectively by and for quan-
tum wells grown along a crystallographic direction and light propagating along
the same direction. 

It should be noted that the value of P obtained from Eq. (5.46) by using the 
experimental value of mc

* should not be considered exact. The experimental value
of m c

* is determined by interaction with all the bands, whereas Eq. (5.46) is derived
by considering the interaction between only the conduction band arid the three
valence bands. It is in fact found that the value of P obtained from the electron
spin resonance experiment [5.17], which may be considered to be its correct value 
differs significantly from the value given by Eq. (5.46). For example, the direct
experimental value of 2|pcv|m0 for GaAs is 28.8 eV, whereas Eq. (5.46) gives
a value of 22.5 eV. The discrepancy may be understood by considering that. the 
contribution of the higher- lying bands is negative [ see Eq. (4.15) ] and hence 
when these contributions are neglected a lower value of P is required to get the 
experimental value of m *

c . To correct this discrepancy, the matrix element is often
generalized as, 

|Pcv |2 = ξ(m0/m*
c) (m0Eg). (5.53)

where ξ may be treated as an empirical constant for a particular transition for a
particular material. 

The matrix element may now be expressed as follows to evaluate the transition
probability T(k, k').

(5.54)

The delta function δkckv is included to indicate that kc = kv, since in relation (17),
κ, the photon wave vector, may be neglected in comparison to kc and kv.

It may be mentioned in this connection that the dimensionless quantity, f, is
defined as the oscillator strength. It is given by, 

(5.55)

as it gives the strength of the equivalent oscillating dipole. The fire electron mass
m0 is replaced by m *

c in the above definition in some publications. Then m0 in

|pcv|2 = (m0
2 /6mc)Eg, 1/mc = 1/m*

c – 1/m0,
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Eq. (5.55) is also to be replaced by m *
c . The oscillator strength, however, turns

out to be very different for the two definitions as (m0 /m*
c ) is a factor larger than

10.

5.2.  Interaction in Quantum Wells 

The formulæ of Section 5.1 remain valid for quantum wells, but the expression
for the electron wave function is modified due to quantization. As a result of this 
modification, transitions are allowed in quant um wells between subbands in the 
same band in addition to the interband transitions. Expressions for the transition
probabilities are also altered. Modifications in the interband transitions are first 
discussed.

5.2.1.  INTERSUBBAND TRANSITIONS 

Electron wave functions may be taken for the quantized states as (see Section 4.1),

ψkvi = Fvi (z)Uv0 (r) exp (ikti.ρ),

ψkcf = Fcf (z) Uco(r)exp(ik'ti.p),

(5.56)

(5.57)

where ψkvi, ψk'cf represent respectively the normalized wave functions for the ith
subband in the valence band of wave vector k and the f th subband in the conduc-
tion band of wave vector k', Fvi(z), Fcf(z) are the corresponding envelope func-
tions, Uv0, Uc0 are the corresponding cell periodic functions at the band edges, 
kti, k' tf, are the in-plane components of the wave vectors and r is the in-plane
position vector.

The matrix element pcv has now the form,

(5.58)

The integrals may be simplified by considering that the envelope functions Fvi (z)
and Fcf (z) vary slowly in comparison to the cell periodic function for not too nar-
row wells. The analysis presented in this treatise, being based on the effective mass
approximation, is not likely to be applicable tit very narrow wells, for which more
elaborate basic formulations would be required. Assuming that the approximation
is valid, the integral may be simplified to 

where
k'tf = kti.

(5.59)

(5.60)
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The second component of the integral is zero as the functions Uc0 and Uv0 are
orthogonal. Also, the first component has a non-zero value only if the envelope
functions are non- orthogonal. This condition implies that the transitions are 
allowed only for f = i, since Fcf(z) and Fvi(z) have an overlap only for this
condition. However, this restrictive selection rule is not strictly valid as has been
found from more elaborate analysis. It is invalidated when the states arise from the
mixing of the different basic states, e.g., the second and the third quantized valence 

band states, which are admixtures of the heavy-hole and the light-hole bands. 
Also, the one-electron picture from which the selection rule, f = i, is derived, is 
altered by the electron-electron interaction for large electron concentrations as in 
modulation- doped structures or lasers. These features add fine structures in the 
absorption spectrum, but are relatively unimportant in the design of the devices, 
which are based on the main allowed transitions. This aspect is not, therefore, 
discussed any further. Some results are, however, presented when discussing the 
experiment in the light of this theory. 

The integral for the allowed transitions may also be simplified by considering 
that Fcf(z) and Fvi(z) are very similar functions. For wells with infinite barriers,
the functions are identical. In that case, the integral I, has the same value as for
bulk materials. For wells with finite barriers or for narrow wells, the functions are’
not identical and the integral differs from the bulk value by a numerical factor. 
But, this factor is close to unity and interband transitions in quantum wells may
he considered to be the same as in bulk material. However, there appears an
anisotropy factor, when averaging is done over different directions of kt , which is
different from (1/3) and depends on the direction of the electric field associated 
with the radiation field. 

5.2.2. INTERSUBBAND ABSORPTION 

The momentum matrix element for the intersubband transitions is obtained from 
the formula, 

(5.61)

where ψik and ψfk' represent respectively the wave functions for the initial and
the final states. For electrons in the conduction band, these may be written as,

(5.62)

It should be noted that as the two subbands belong to the same band the cell-
periodic parts of the wave-functions are identical. Fi(r) and Ff(r) denote the
envelope functions given by Eq. (4.17). The functions are assumed to be normal-
ized.

On substituting the above expressions in Eq. (5.61), the momentum matrix
element is found to be given by 

(5.63)
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It may be recalled that the wave function has been approximated so far as

ψp(r) = Uc0F(r) (5.64)

by considering that the contribution of the second term of ψp(r) in the expression
(4.20) is negligible. In the case of intersubband scattering, however, this term
contributes more than the first term and is required to be retained. On using the
full expression,

we obtain

since

p if = < Ff(r)|p|Fi(r) > (m0/m *c )

m*
c being the band-edge effective mass. 

The matrix element for intersubband scattering is hence given by 

For a well, grown along the z direction,the envelope functions may be written as,

Fi(r) = Fi(z) exp (ikti.ρ),Ff(r) = Ff(z) exp (iktf.r), (5.69)

where kti and ktf are the in-plane wave vectors of the initial and the final state
belonging respectively to the ith and the fth subband.

Fi(z) and Ff(z) are the z components of the corresponding envelope functions,
evaluation of which has been explained in Chapter 4. Non-zero value of the matrix
element is obtained only if ktf = kti , the photon wave vector being considered to
be negligible. Also, Fi and Ff are required to have opposite parity to yield a non-
zero value for the matrix element. Thus, intersubband transitions may occur only
between neighboring subbands of opposite symmetry obeying the condition of con-
servation of pseudomomentum. Also, the matrix element has only a z component,
the direction in which the quantum well is grown. Consequently, intersubband
absorption may occur only if the electric field associated with the radiation has a 
component perpendicular to the interfaces. 

Analytic expressions may be given for the matrix elements for wells with infinite 
barrier height by using the functions √

—––
(2/L) cos (iπ/L)z and √

—––
(2/L) sin (fπ/L)z

respectively for Fi(z) and Ff(z) for a well of width L. The expression is

(5.65)

(5.66)

(5.67)

(5.68)

(5.70)
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where az is the z component of the polarization vector â. It should be noted that
the values of i and f art such that (i + f) is odd.

The oscillator strength for the intersubband absorption is defined in the 
effective-mass approximation as, 

It may be expressed for the wells of infinite barrier height as, 

(5.71)

(5.72)

Expressions have been obtained so far by assuming that the E – k relation
is isotropic and it has been concluded that intersubband interaction may happen 
only if the radiation field has an electric field component along the z direction. In
materials with anisotropic mass, however, the matrix element has the form[5.18]

(5.73)

where M–1 is the inverse-effective mass tensor, obtained from the energy wave-
vector relation, assumed to he given by

(5.74)

It should be mentioned also that the intersubband interaction involves higher levels
of energy. The energy-band nonparabolicity has often significant effect for interac- 
tions involving such energy levels. Effects of nonparabolicity may be incorporated 
in the same formalism by using the nonparabolic dispersion relation of Kane[5.11] 
or Rossler[5.19]. 

Expressions for the matrix element have been derived above by using the wave
equation including the radiation field in the Schrödinger equation. The expression 
may also be derived by using the equivalence given by Eq. (5.13). The matrix 
element may be written by using the equivalence as 

(5.75)

This expression is applicable, however, only when the wave function becomes zero
for large values of z. It should not, therefore be applied to unbounded superlattice 
systems, as large errors may arise[5.20]. 

5.3 Excitons 

Photon-electron interaction has been discussed in Section 5.1 and 5.2 for transi-
tions of the electron from a quasi-free state ( e.g., the valence band or the ground 

f = (64/π2)i2 f2 / (f2 – i2)3.

E –Ec = (h- 2/2)k.M– 1. k.
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state in the conduction band) to another quasi-free state (e.g., states in the conduc-
tion band). The electron and the hole created by such transitions are assumed to 
be completely decoupled and described by the wave functions for the one-electron
approximation. However, the electron-hole pair created by the interaction may be 
bound to each other by the Coulomb force and move about freely as a bound-pair
quasi-particle like an electron or a hole. The bound pairs are referred as excitons
and the states so created by the transfer of an electron from an occupied level to 
an unoccupied level are called exciton states. The energy of the states may be 
discrete and located below the conduction-band edge or form a continuum within 
the conduction band. The excitonic effects dominate the light absorption property 
near the band gap and form the basis of photonic quantum well devices[5.21,22]. 

It should, however, be noted that the excitonic effects are important only
for low carrier and low impurity concentration. For large carrier concentration, 
the excitonic effects are much reduced. Large impurity concentration may also 
destroy the excitons, even if the electron concentration be small as in compensated 
materials. Also, the binding energy of the excitons being small these are mostly 
deexcited at room temperature in bulk materials. In quantum wells, the binding 
energy is larger and the carrier concentration and the impurity concentration are 
also small and hence the excitonic effects are more important in quantum wells. 

5.3.1. EXCITED-STATE WAVE FUNCTIONS 

The wave function for the excited state is obtained from the one-electron Bloch
functions by considering that for an N-electron system the ground-state wave
function may be written in the Hartree-Fock approximation[5.12] as

(5.76)

where the electrons (total number N) with the position vectors r1, r2,. . . rh, . . . , rN

are assumed to be in the uppermost fully filled valence band. The subscript kh

indicates an electron in the valence band with the wave vector kh.

In the excited state, an electron from the valence band is excited to an empty 
conduction band state. Only the uppermost valence band and the lowest conduc-
tion band are assumed to be involved in such transitions. Wave function for the 
excited state is obtained by replacing one of the valence-band Bloch function ψkh

with wave vector kh , by a conduction band Bloch function with wave vector ψkp
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as follows,

(5.77)

Wave functions for the various excited stated are obtained by permuting the 
states with wave vectors kh and ke , ψkh and ψke, amongst the available states.
The excitonic states are obtained when the effect of the Coulomb force between
the excited electron and the hole created in the valence band is taken into ac-
count. The corresponding wave function may be obtained by linearly combining
the excited-state wave functions, φke,k'h s’ .   The wave function for the excitonic
state ψex(r1, r2 . . . rN) may hence be written as

(5.78)

where A(ke, kh)’s are the unknown coefficients, which should be suitably chosen.
These coefficients are evaluated in the Wannier model[5.23] by using the effective-
mass equation. The assumption underlying the model is that the excitons have 
large spatial extent such that the electron and the hole states are given by the 
band structure and the Coulomb interaction may be treated as a perturbation. 
It is also required that the interaction potential may be evaluated by using the 
macroscopic dielectric constant. 

The effective-mass equation is obtained by using the result that the combined 
electron states in the valence band in the absence of an electron in the state 
ykh , may be represented by a positive charge and a positive mass or a hole with
the wave functions ψ *–kh or θψkh , where θ is the time reversal operator. The wave
function φke,kh may then be replaced by ψke(re)ψkh(rh) when the position vectors
of the excited electron and the created hole are given respectively by re and rh .
The wave equation may be written by considering only the electron-hole pair as

(5.79)

where ∇i is the operator for the variable ri , which is either re or rh . Vc(ri , Ri) is
the potential energy of the ith particle due to its being in the field of the nuclear
charge (with coordinate Ri ) and all other electrons. V(rp,rh) is the potential
energy due to the Coulomb interaction between the electron-hole pair, is given by

V(re,rh) = –(e2/4πKd∈0 )|re – rh|
–1, (5.80) 

where re and rh are respectively the position vectors of the electron and the hole.
The constant Kd in the above expression is the static dielectric constant, when 
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electrons and holes are far apart and the relative motion between them is small, 
so that the polarization is due to both the electrons and the lattice displacement. 
As the particles approach each other, Kd chsnges to the high-frequency dielectric 
constant, which corresponds to the case of polarization being due to only the elec-
tron displacement , lattice polarization being unable to follow the field variation. 
For still smaller values of |re –rh|, when the relative motion of the electron and the
hole becomes more rapid, Kd is further reduced and other effects, e.g., correlation
effect and break down of the effective-mass approximation, become important. 
Expression (5.80) for the interaction potential is not applicable for such distances. 
The critical distance is of the order of 50 Å in bulk III-V compounds and the
approximation may not be considered a limitation for bulk materials. However, 
this aspect should be considered, when applying the present theory to quantum
well systems, where dimensions are of the same order.

Replacing yex by Σke,kh A(ke, kh)ϕke,kh and taking the scalar product of ψke
*

and ψ*kh with each term, the equation is transformed to[5.24]

where

Ec(ke) and Ev(kh) represent respectively the energy of an electron with the wave
vector ke in the conduction band and that of a hole with the wave vector kh

in the valence band. The k-dependence of the cell-periodic parts of the wave
functions, Ucke and Uvkh are considered to be weak and are neglected at this stage
of approximation. The wave functions may hence be simplified to

(5.81)

(5.82)

(5.83)

N being the total number of unit cells in the crystal over each of which the cell
periodic parts are normalized. (5.81) by 
exp i(kere + kh.rh) and summing over all values of ke and kh the effective-mass
envelope-function equation is obtained as follows .

Then multiplying each term of Eq. 

(5.84)[Ee (–i∇e) – Ev(–i∇h) – E]F(re , rh) + V(re , rh)F(re , rh) = 0.

The subscripts e and h indicate respectively the variables corresponding to the
electron and the hole. The envelope function F(re, rh) is defined as

(5.85)

Vc being the crystal volume. 
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It should be noted that the effective-mass equation for the excitons has been 
obtained by assuming that the cell-periodic parts of the wave functions are weakly 
dependent on the wave vectors. The dependence causes a mixing of the wave 
functions from the different bands in the formation of the exciton state. This 
mixing is, therefore, neglected in the present formulation. It appears from the 
comparison of the present theory with experiments that this approximation is 

reasonably valid. 

5.3.2. EXCITONIC WAVE FUNCTIONS

The effective-mass equation is solved by assuming an isotropic parabolic band for 
both the electrons and the holes, so that the equation may be written as 

(5.86)

where me* m*
h are respectively the band-edge effective mass of the electron and the 

hole.
The equation is transformed by using the following relations,

(1/2) (re + rh) = R, re – rh = r, ∇e + ∇h = ∇R, (1/2)(∇e – ∇h) = ∇r. (5.87)

and

The function ϕ(r) satisfies the equation,

The coefficients A(ke, kh) of Eq. (5.85) are given by,

where
k = (1/2)(ke – kh).

For non-zero value of the integral, it is required that

K = ke + kh.

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

The exciton wave vector is thus the vector sum of the electron and the hole wave 
vectors.

The coefficients are given by 

(5.93)
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The exciton wave functions may now be expressed by neglecting the k-dependence
of Uc and Uv as,

(5.94)

Explicit expression for ϕ(r) may be obtained conveniently by changing the
variable r, R to r', R' as given below,

r' = r; R' = R + [(1/2)(m*e – m*
h )/M].r, M = m*

e + m*
h .

and putting 
F(r'', R''= V c

–1/2exp(iK.R')ϕ'(r'')

The equation for ϕ'(r') is,

where
1 / µ = 1/m *

e +1/m h
* .

Solutions are of the hydrogenic form and are given by

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)ϕn'(r') = ϕ' (r) = Rnl(r)Y
m
l (θ, φ),

where Rnl (r) and Y m
l (θ,φ) are respectively the radial function and the spherical 

harmonic; l,m are the orbital and the magnetic quantum numbers and n is the
order of the energy level.

The energy of the exciton for discrete states is given by

(5.100)

(5.101)

En is an eigenvalue for and is given by 

where n is an integer, and µ is the reduced mass. 
The E – K relations for the excitonic states are schematically illustrated in 

Fig. 5.2 and the energy levels corresponding to the excitonic states in the one-
electron E – k diagram in Fig. 5.3. The first few states are discrete and below
the conduction band and in the forbidden gap. Equation (5.97) admits also solu-
tions with positive values of En, which, however. form a continuum as shown in 
Fig. 5.3. Energy eigenvalues are given by 

(5.102)

where k is a continuously variable quantum member. 

E(k )= -h 2k 2/2µ ,
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Figure 5.2.
energy of the excitons varies as the square of the wave vector.

Schematic diagram showing the dispersion relation for the excitons. The kinetic

The function ϕ'1 (r) for the ground (n = 1) excitonic state is 

ϕ'1(r) = (πaB
3)–1/2 exp (–r/aB), (5.103)

where aB is the Bohr radius given by, aB =

The coefficients , A(ke,kh), are evaluated by using the equivalence, F(r',R') =
F(r,R), or 

ϕ'n(r’) exp (iK.R') = ϕn(r) exp (iK.R).

The coefficient for the ground state is, 

A(k') = Vc
–1/2 (64π/a 5

B )1/2 [k' 2 + (1/aB)2]–2,

where

k' = (m *
ekh – mh

* ke)/M.

(5.104)

(5.105)

(5.106)
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Figure 5.3. Schematic representation of the excited states for the electron wave vector, K = 0.
First few states are discrete and are in the forbidden gap below the conduction-band edge. The
shaded region shows the electron and the hole states which contribute to the ground exciton state.

Significant values of ke and kh which form the excitons are of the order of 1/aB .
The mixing effect of the k-dependence of the cell-periodic parts (neglected in the
present analysis) may be estimated from the result that k ~ 1/aB . It is found that
the effect is of the order of 10–2 -10–3 and may be neglected for III-V compounds. 

5.3.3. EXCITONIC OPTICAL INTERACTION MATRIX ELEMENT 

The Matrix element for optical interactions in which an exciton state is formed
may now be worked out by using the wave function of the exciton ψex and of the 
ground state ψ0 The matrix element is, (see Section 5.1)

(5.107)

Replacing ψex and ψ0 by the detailed expressions, the matrix element may be
expressed as 

(5.108)
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ψkh being the wave function for the hole, created by the interaction.
The significant component of the sum is obtained by neglecting the

k-dependence of the cell-periodic parts. The integral has a non-zero value if ke

and kh be such that
ke + kh = K. (5.109)

Since K is small, ke = –kh. This result implies also that K = κ i.e., the exciton
wave vector is equal to the photon wave vector. The significant part of the matrix
element may be written as, 

(5.110)

The above expression for the matrix element may also be written in terms of the
envelope functions as follows,

(5.111)

The magnitude of the matrix element which enters the expression for the transition
probability is hence 

(5.112)

n

is given for the discrete states characterized by integers n, by

’
(5.113)

whereas for the continuum state characterized by quantum number k it is

|φn' (o)| =  [(π/kaB) exp(π /kaB) / sinh(π / kaB)]1/2. (5.114)

5.3.4. EXCITONS IN QUANTUM WELLS 

Analysis of the characteristics of excitons in quantum wells is made difficult by 
the confining heterojunction potential, which destroy the spherical symmetry of 
the wave functions. The theory is developed by applying the same procedure as 
discussed in Section 5.3.1 for excitons in bulk materials, but analytically closed 
solutions cannot be worked out even for the effective-mass wave equation. Varia-
tional techniques have been applied to obtain the energy eigenvalues. Principles 
of these techniques[5.25-271] and results obtained therefrom are briefly discussed in 
this section. 

The Hamiltonian for the excitons may be written as follows in the effective-
mass formalism by applying the procedure discussed in Section 5.1.3 for excitons 
in bulk materials. 

(5.115)

|φ'n (o) |= (πaB
3n3)–1/2

M( f,i) = Vc
1/2 (|e|A 0/2m0)φ'n

The function |ϕ'n(o)| is the magnitude of the eigenfunction ϕ' (r') of Eq. (5.99). It

(o) â.pcv.

M(f , i) = (|e|A0/2m0)â.pcvVc
1/2φ'n (o) exp iK.(R' – R).
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where the subscript i is either e or h and indicates the electron or the hole. The
first term gives the kinetic energy, the second term, the potential energy due to the
field of the atoms, the third term, that due to the heterojunction potentials, which 
are different for the electrons and the holes; the fourth term gives the potential 
energy due to the Coulomb attraction between the electron and the hole. As for 
the bulk excitons, the wave function ψex is expressed as a linear combination of the
wave functions for the excited states, ϕke,kh, and the effective-mass wave equation
for the envelope function is obtained by following the same procedure. But, now
the equation includes Vze and Vzh as shown below,

(5.116)

where the plus and minus signs in mh± indicate the heavy hole or the light hole. 
As discussed in Section 4.3, the effective mass of holes is radically altered in 

quantum wells due to the mixing of the wave functions of the two kinds of holes. 
The in-plane effective mass is different in different subbands and changes largely, 
in magnitude and even in sign with the in-plane component of the wave vector.
The problem is simplified[5.27,28] by assuming that the hole dispersion relation
may be expressed as 

(5.117)

where m0/mhz±
* = γ 1

± 2γ 2,γ 1 and γ 2 being the Luttinger parameters,
k2

t = k2
x + k2

y. The transverse mass m*
ht± has been taken in some studies[5.27]

to be equal to its value,obtained by neglecting the mixing , i.e., m0/(γ 1 ± γ 2) . In
some other studies [5.28] it has been taken to be equal to m0/(g1 ± (3 – α)γ 2) with
α suitably chosen between 2 and 1.

Equation (5.116) is further simplified by considering that the energy due to 
the Coulomb interaction may be considered small in comparison to the subband 
energies due to the quantization. The envelope function may then be written as,

F(re, rh) = fe(ze) fh±(zh)G(ρe, ρh), (5.118)

where fe(ze) and fh±(Zh) are respectively the solutions for the electron and the 
hole corresponding to the subband energies.

Equation(5.116) is transformed as in the case of bulk excitons by putting, 

x = xe – xh , y = ye – yh, z = ze – zh,

and putting 
G(ρe,ρh) = exp (iK.P)G(ρ,z),

(5.119)

(5.120)

(5.121)
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where

The reduced equation is 

(5.122)

(5.123)

1 / µ± = 1/m *
e + 1/m *

ht± , Eex = E – Ecn – Evn – Eg, M± = me
* + m hz± .* (5.124)

The difference in energy between the hole level and the electron level is represented
by Ecn + Evn + Eg. Equation (5.123) cannot be solved analytically and variational
techniques have been used [5.25-27] to evaluate the eigenvalues of energy. Different
variational functions have been used for this purpose. Some of the functions are
quoted below. 

G(ρ, z) = N exp(–βρ). (5.125)

G(ρ, z) = N exp –β(ρ2 + z2). (5.126)

G(ρ, z) = N exp [– αi z2 –(α j + β)ρ2]. (5.127)

N is a normalizing constant, b is the variational parameter, αi,βi are chosen con-
stants. The value of the variational parameter is chosen by minimizing
< ψex|H|ψex >, which also gives the eigenvalues of energy.

Results of such analysis[5.27,29], illustrated in Fig. 5.4, clearly indicate that
the binding energy of excitons increases with the narrowing of the wells. For
example, the energy increases from about 4.5 meV to 9.5 meV as the well width
is reduced from 500 Å to 30 Å in the GaAs/Ga0.7 Al0.3 As system. In the early
analysis, fez(ze) and fhz(zh) were taken to correspond to very large values (tending
to infinity) of V ze and Vzh . However, when the solution for finite values of Vze

and VZh are taken, the binding energies are found to be lowered, particularly for
very narrow wells. For very narrow wells, the binding energy is found to decrease
instead of increasing with the narrowiing of the well. 

5.3.5. EXCITONIC OPTICAL MATRIX ELEMENT FOR QUANTUM WELLS 

The development of the optical matrix element gets complicated for the general
case in which ze ≠ zh . The procedure may be much simplified by assuming that,
ze = zh i.e, z = 0. The exciton wave function may then be written as

and the matrix element reduced to 

(5.128)

(5.129)

Ac is the in-plane area of the well.
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Figure 5.4. Calculated values of the heavy-hole exciton binding energy of the ground state in a
GaAs/Al0.3Ga0.7As quantum well for different well thicknesses. The binding energy decreases with

increase in the well thickness, from about 9 meV to 4.5 meV as the well thickness increases to 50 

nm. [After R. L. Greene, K. K. Bajaj arid D. E. Phelps, Phys. Rev. B 29, 1807 (1984); Copyright 
(1984) by the American Physical Society].

G(ρ, 0) is the solution of the equation,

where

It may be shown[5.30] that the eigenvalues of energy for this strictly 2D 
excitons are given by 

(5.130)

(5.131)

(z = 0)

(5.132)

The binding energy for the first excitonic level in the extreme 2D case is four times
the value for the bulk excitons. This value, as discussed earlier, is not, however, 
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reached as the well width is reduced because of the finite value of the potential 
barrier.

The wave function, G(ρ, 0), obtained from Eq. (5.132) is

G(ρ,0) = (8 / aB
2 )1/2 exp –(2ρ/aB). (5.133)

On using this function in (5.131) we find that the ratio of the strength of optical 
excitonic interaction in quantum wells and in bulk material is (8L/aB). Since
aB ~ L, the strength is expected to be 8 times larger. Although this increase
is not realized in practice, the excitonic absorption in quantum wells is found to
be much stronger arid to dominate the optical properties. An understanding of 
the quantum well optic devices, therefore, require a good acquaintance with the 
behavior of excitons in the wells. 

5.4.  Bound and Localized Excitons 

We have considered so far the excitons formed by the binding of a free electron
and a free hole. These excitons may move about freely and are referred as free 
excitons. Excitons may, however, be bound to the ionized or the neutral impurity 
atoms. The excited electron, the hole and the impurity atom are coupled by the 
Coulomb force. Under conditions in which the total energy of the system (electron 
+ hole + impurity atom) is reduced (corresponding to an increase in the binding 
energy of the exciton), a bound exciton is formed. Such excitons cannot move 
about, but remain near the impurity atom. The required conditions for a bound 
exciton to exist have been studied by Hopfield[5.31] and others[5.32]. It is the ratio 
of the electron mass and the hole mass which determines whether a bound exciton 
may be formed. The conditions being exclusive an exciton may be bound either to 
a donor or to an acceptor. In the case of excitons bound to neutral impurities it 
was observed empirically[5.33] that the dissociation energy of the exciton-neutral
impurity complex is about 10% of the impurity binding energy. This result, usually 
referred as the ‘Haynes rule’ is also supported by detailed calculations. Bound 
excitons have been detected in the photoluminescence spectra of quantum wells, 
in many experiments, some of which are discussed in Section 5.6. 

Excitons may also be localized by potential fluctuations[5.34,35] . The inter- 
faces of the heterostructures have roughnesses extending over distances comparable 
to the exciton radius and of the height of a monolayer. The width of the wells 
changes and the energies of the quantized levels change consequently. The energy 
being therefore different in different regions of the well, the excitons are confined 
in low-energy regions. In wells of alloy semiconductors, e.g., Ga0.47In0.53As, the 
variation of the alloy potential may also produce local potential minima and cause 
localization of the excitons. 
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Excitons bound to impurities and localized by interface defects and alloy po-
tentials are common features of quantum wells [5.36.37]. In fact, luminescence 
produced due to the recombination of such excitons provide a means of assesing
the quality of heterostructures and even in the mapping of the defects. This aspect 
of the excitons is discussed in Section 5.6. 

Optical interaction results in various phenomena, e.g., light absorption, photo-
luminescence, optical nonlinearity and Stark effect. Quantum well optoelectronic 
devices are realized by exploiting these phenomena. Theory for exploiting the phe-
nomena. and their important characteristics are discussed in the following sections. 

5.5.  Absorption 

The light incident on a quantum well structure may cause excitation of the ground 
state electrons from the valence band to the conduction band; or from one subband 
to a higher subband. The excitation may cause the appearance of a free electron 
at a higher energy or an exciton. Whenever such excitation occurs, the required 
energy is supplied by the photon and in effect light is absorbed. The phenomenon 
is characterized by an absorption coefficient. It is defined as the light energy 
absorbed in unit length per unit incident energy and is given by 

α = – (dnp/dt) [(np – np0) (c/nr,)] –1 (5.134)

where np is the photon density in the sample when light is incident, np0 is its 
value in the absence of the incident light, c is the velocity of light in vacuum,
nr is the refractive index of the material. Evidently, (np – np0)(c/nr) gives the
number of photons incident per unit time per unit area and (dnp/dt) gives the
rate of absorption of these photons. The ratio of the two quantities is equal to α 
by definition. 

The rate of photon absorption is given according to Fermi’s Golden rule[5.38-

41] by 

(5.135)

where k and k' are respectively the initial and the final state wave vectors, Ek and
Ek’ are the corresponding energies. D and D' are the electron density of states for
the initial and the final states, Vc is the volume of the crystal. M0(k, k')n1/2

κ and
M0(k', k)(nκ + 1) 1/2 are the matrix elements for transitions from the k - state to
the k' -state and for thp reverse transitions, nκ being the occupation probability of
the photons. The functions f(k) and f(k') give the distribution of electrons with

,
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wave vectors k and k' respectively. Frequency of the incident signal is assumed to
be ω, so that the energy of a photon is and the corresponding density of states
for the photons is ρ(ω).

First term in the integral gives the number of electrons excited per unit the

from the k-state to the k'-state by absorbing light. The second term gives the
rate of reverse transitions from the k'-state to the k-state by emitting light. In

the absence of light, the integral must be zero and from the principle of detailed
balance each term must be zero. This condition gives 

|M0(k,k')|2nκ0f(k)[1 – f(k')] = |M0(k' , k)|2(nκ 0 + 1)f(k')[1–f(k)]. (5.136)

where nk0 is the occupation probability in the absence of the incident light. It is
evident that Ek' , and Ek are related because of the delta function as

(5.137)

On using the Fermi distribution function for f(k) and f(k') and the Bose distri-
bution function for the photon occupation probability it is found that,

nκ0f (k) [(1 – f(k')] = (nk0 + 1) f(k') [1 – f(k)].

This condition when combined with (5.136) gives

|M0(k, k')| = |M0(k', k)|,

(5.138)

(5.139)

i.e., the matrix element for transitions from the k-state to the k'- state and from
the k' -state to the k -state are equal. This equality is often taken as the starting
point in (5.135) which then means in effect that detailed balance is assumed to
apply.

Equation (5.135) may now be simplified to

(5.140)

considering that np = ρ(ω)nκ and np0 = ρ(ω)nκ0. The absorption coefficient,

(5.141)

Absorption coefficient for the different kinds of interaction may be worked out by
putting the corresponding expression for the matrix element, as discussed below. 

Ek' = Ek+hω.-
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5.5.1.  INTERBAND ABSORPTION 

In interbarnd absorption, a free electron from the valence band with wave vector 
k is excited to a free state in the conduction band, having a wave vector k'. Such
transitions may occur due to the interaction with the photons alone only in direct
band gap semiconductors in which the conduction band minimum and the valence 
band maximum are located at the same point of the Brillouin zone. This is because
photons cannot cause a large change of momentum as required for the indirect
band gap semiconductors in which the conduction band minimum is separated by 
a large wave vector from the valence band maximum. Interband transitions may
occur in indirect band gap semiconductors if an additional particle, e.g., a phonon, 
an impurity atom or a defect, participates in the interaction along with the photon 
and such interactions are comparatively infrequent as three particles are involved. 
Quantum well electronics is, therefore, based on interband absorption caused by 
the interaction of the electrons with the photons alone. The formula for bulk 
materials is first given. The matrix element is [see Eq. (5.54)] 

(5.142)

The Krönecker delta function is included to indicate that k = k' when the photon
wave vector is assumed to be small in comparison to k or k' or when k-selection
rule applies. The density of states D and D' for bulk materials are 2/(2π)3 and
1/(2π)3 . The factor of 2 in D accounts for the spin degeneracy and its absence in
D' indicates that spin is conserved in the transitions. The factor DD' is, however,
changed when the k-selection rule applies, since it restricts transition from a k-
value to the same k-value. An electron from a particular state in the valence
band may be excited to a single state and not to all other available states. The 
number of states involved in the transitions from the phase space volume Vcd3k
to Vcd 3k' is therefore the density of joint states[5.39,40] 2Vcd 3k / (2π)3 and not
2V2

c d3kd3k'/(2π)6. Equation (5.141) has for k -selection rule the form,

(5.143)

where Evk and Eck are respectively the energy of the electron with the wave vector 
k in the valence band and in the conduction band. These are related to k for an 
isotropic parabolic band by the following relations. 

(5.144)

where me and mh are respectively the effective mass of the conduction-band and 
the valence-band electron, Ec0 and Ev0 being the corresponding energies for k = 0. 
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The argument of the delta function may be written as 

where mr is called the reduced mass and is defined as

1/mr = 1/me + 1/mh,

and using the property of the delta function. One obtains, 

where

(5.145)

(5.146)

Eg is the band gap, being equal to Ec0 – Ev0. The distribution functions for the
electrons in the valence band and in the conduction band are indicated respectively 

by fv (k) and fc(k).
The integral is evaluated by substituting

(5.147)

(5.148)

(5.149)

(5.150)

The matrix element pcv is assumed to be independent of k and |â.k|2 is replaced
by its average value k2/3. A 2

0 has been replaced by ( ) [see Eq. (5.5)].
On comparing the magnitudes, the second component of the absorption, arising

from |â,k| is found to be negligible in comparison to that due to |â.pcv|2 . Now,
|â.pcv|2 may be approximated as ξ(m0

2 /m*
c)Eg [see Eq. (5.53) ] with ξ = 1/6. It

may also be assumed that fc(Eck) ≈ 0 and fv(Evk) ≈ 1.
Expression for the interband absorption coefficient for bulk materials may, now,

be written as, 
(5.151)

Expression (5.150) is modified for the quantum wells due to the change in the
density of states resulting from quantization. The term [V c / (2π)3]d3k is replaced
by [Ac/(2π)2]d2kt, where Ae is the in-plane area of the sample and kt is the in-plane
wave vector. After carrying out the integration, following the same procedure as
explained above for the bulk material, the absorption coefficient is found to be
given by 

where

(5.152)

(5.153)
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L is the width of the well, H(x) is the Heaviside unit function, ξ2D is also different
from the constant ξ for the bulk material. Evm, Ecn are the energy levels in the
valence band and in the conduction band corresponding to kt = 0, between which
the transitions occur. The delta function indicates that absorption occurs between 
levels obeying the rule m = n. 

It is evident from Eq, (5.152) that the absorption in quantum wells increases 
in steps as the frequency increases and becomes equal to the difference between 
the quantized levels of different order. The first step occurs at hω- = Eg +Ec1 +Ev1

, the second step at –hw = Eg + Ec2 + Ev2 and so on. It is of interest to note that

(5.154)

and the step in the absorption coefficient for quantum wells with infinite barrier 
height is approximately equal in magnitude to the absorption coefficient in bulk 
materials at the corresponding frequencies since for quantum wells with infinite 
barrier height. 

and

(5.155)

(5.156)

This equality, however, does not apply for wells with finite barrier height. In fact, 
the steps occur at lower frequencies due to the reduced values of 
Ecn + Evm . It is, also, interesting to find that the absorption coefficient in quantum
wells varies as the inverse of the well width and the total absorption is, therefore, 
independent of the well width. The total absorption above the threshold frequency 
in a multiquantum well system therefore, varies directly as the number of wells 
and does not depend on the the width of the individual wells. 

Formulae for the absorption coefficients have been obtained by assuming ideal 
conditions in which k-selection rule applies. Practical conditions are often so
different that the k-selection rule is not strictly valid. Absorption coefficient is
estimated for such conditions by using the so-called no-k-selection rule[5.41,42].
The matrix element in such transitions is taken to be independent of k and the
absorption coefficient is evaluated from Eq. (5.142) by omitting the δkk' term.
Expression for the absorption coefficient, is obtained by substituting,

The expression is, 

(5.157)

(5.158)

The no-k-selection rule predicts results which are qualitatively different from those 
obtained by applying the k-selection rule. The absorption, instead of increasing
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in steps, increases with ω and the slope changes as the frequency crosses the

thresholds for quantized levels of different order.Also, it varies as the inverse square

of the well width. The magnitude of such absorption is, however, difficult to 
estimate theoretically. |M|2 has the dimension of L3p2(p - momentum) and is
determined by the impurity concentration. It is therefore required to be treated 
as an experimental parameter. 

5.5.2.  EXCITONIC ABSORPTION

Light absorption in the interband transition process discussed in Section 5.5.1 takes 
place when an electron is transferred from the valence band to the conduction 
band. Total number of transitions depends, therefore, on the number of states 
in the two bands. On the other hand, in excitonic absorption, an electron in the 
valence band is annihilated and an exciton is created in its place. The ground state 
and the excitonic states are mutually exclusive. Excitons obey Bose statistics[5.43]
and there is no limit to the number that can be created at a particular energy,
unless it is very large when other processes become effective to limit the number.
The absorption coefficient is, therefore, determined by the rate of transitions. If
the number of transitions per unit volume per unit time be W and the incident
radiation intensity be I(ω), then the absorption coefficient α is given by

Whω- being the energy absorbed per unit volume per unit time.
Transitions per unit time per unit volume is 

where Eexn is the excitonic energy. 
Replacing |M (f,i)|2 by Eq. (5.112), we get

I(ω) may be expressed in terms of A 2
0 as

The absorption coefficient is 

(5.159)

(5.160)

(5.161)

(5.162)

(5.163)

(5.164)

This expression indicates that the absorption spectrum will be discrete lines at 
the frequencies, 

where

(5.165)

a =Whω/I(ω)-

I(ω) = (1/2)cnr∈0ω2 A2
0 .
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The lines are, however, broadened in experimental samples by lattice vibrations,
impurities, strain fields and other crystal imperfections. The lines are given for
such broadening by a Lorentzian or a Gaussian curve. The delta function is then 
replaced by S(hω- ), which has either of the two forms given below.

(5.166)

(5,167)

Γ and σ give respectively the half power band width of the Lorentzian and the
Gaussian curve. Values of these constants are determined by the processes which 
came the broadening. Some of these processes are discussed in Section 5.4 in
relation to photoluminescence. 

Excitonic energy levels are crowded close to the band edge for large values of n.
The absorption spectrum due to the discrete levels merge together to form bands.
Absorption coefficient for this region is expressed as

(5.168)

where S1(hw) is defined as the density of excitonic states per unit energy interval,
including spin degeneracy.

-

On using Eq. (5.103) for the excitonic energy, we get for S1(hw- ),

(5.169)

(5.170)

On replacing |φ'n(0)|2 [Eq. (5.113) ] and S1(hw- ), the absorption coefficient is found
to be given by, 

(5.171)

Expression for the absorption coefficient may be extended also to frequencies such 
that hw- > Eg and the relevant excitonic states extend into the conduction band.
The expression, obtained by using for |φ'n(o)|2 the relevant expression [Eq. (5.114)] 
is as given below. 

(5.172)

(5.173)

Equation (5.172) reduces to Eq. (5.171) as k tends to zero. The absorption due
to a few discrete states well below the band edge show up as discrete lines in the 
absorption, but the excitonic absorption below the band edge merges with the 
absorption due to the free electron states and thereby eliminates the absorption 
edge.

α(ω) = Cex |f'n(o)|2|â.pcv|2S1(hw,)-
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5.5.3.  ABSORPTION SPECTRUM

The absorption spectrum for experimental samples is the combined effect of band-
to-band and excitonic transitions. The nature of the spectrum for bulk samples is
illustrated schematically in Fig. 5.5(a) and the experimental results are presented 
in Fig. 5.5(b). The theoretical curve is obtained by using Eq. (5.151) and 

Figure 5.5. (a) Schematic representation of optical absorption coefficient,. I - Spectrum without 

excitonic absorption showing increasing absorption from a threshold wavelength. II - Spectrum
with excitonic absorption. A - peak due to first excitonic level, which occurs in the long wavelength 
end of the spectrum. (b) Experimental excitonic spectra in GaAs: o 293 K, ∆ 186 K, • 21 K .
[After M. D. Sturge, Phys. Rev. 127, 768 (1962); Copyright (1962) by the American Physical 
Society].
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Eq. (5.172) respectively for the band-to-band and the excitonic absorption. The 
theory gives a temperature-independent spectrum. The experimental curve is, on 
the other hand, very much dependent on temperature. The absorption near the 
band edge changes drastically. Excitonic absorption involving the discrete states 
are clearly visible at low temperatures but at room temperature, such absorption 
is mostly absent. The binding energy of the excitons [Eq. (5.101) ] being small 
compared to kBT at room temperature, these are mostly de-excited. In addition,
interaction with phonons and other defects are enhanced at room temperature and 
cause broadening of the exciton line. In fact, exact comparison between experiment 
and theory, as developed, is not justified because many other important processes 
are not taken into consideration. Near the absorption edge the curve is less sharp 
than predicted from theory. 

Figure 5.6. Absorption spectra of an InGaAs/AllnAs multiple quantum well structure with well 
width of 100 Å for different temperatures. Note the steps in the absorption. The well is doped
n-type ( N = 4.8 × 1011 cm–2). [After G. Livescu, D. A. Miller, D. S. Chemla, M. Ramaswamy,
T. Y. Chang, N. Sauer, A. C. Gossard and J. H. English, IEEE J. Quantum Electron. 24, 1677
(1988); Copyright: (=A9 1988=IEEE].
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The experimental curve differs also significantly from the theoretical curve at 

high frequencies at which electrons are transferred deep into the conduction band.
This deviation is explained when the nonparabolicity of the energy band and the 
k-dependence of the cell-periodic functions are taken into account. Absorption for 
such frequencies are not, however, of much relevance to the operation of quantum 
well devices. This aspect of the absorption spectrum is not discussed any further.

It has been mentioned earlier (Section 5.3.4) that, the binding energy of excitons 
is much enhanced in quantum wells. This feature is strongly reflected on the
absorption spectrum for 2D systems [5.44]. The excitonic absorption peaks are 
seen even at room temperature as illustrated in Fig. 5.6. More importantly,
the absorption spectra exhibit very clearly the excitons formed due to transitions 
between the higher order quantized energy levels. Such studies, when extended to 
wells such that the restriction of the selection rule ∆n = 0 (see Section 5.1.2) is
relaxed, yield a wealth of data for the indentification of the quantized energy levels.
Experiments have been done on parabolic wells[5.45] ( the composition of the well
varies such that the conduction-band edge has a parabolic shape), and absorption 

Figure 5.7. Excitonic spectra in a prabolic quantum well. The peaks correspond to a transition 

from a heavy-hole or a light-hole level to the nth electron level. The subscript nmh or nml indicates
transitions from the nth heavy or light hole-level to the nth electron level. Note that, the selection

rule ∆n = 0 is not obeyed in a parabolic well. [After R. C. Miller, A. C. Gossard, D. A. Kleinman
and O. Munteanu, Phys. Rev. B 29, 3740 (1984); Copyright (1984) by the American Physical 
Society].
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spectrum has been obtained as shown in Fig. 5.7., which exhibits a large number 
of excitonic peaks. Such spectra have been usefully employed[5.46] to determine 
the value of band offset and provide direct evidence of quantization of the energy 
levels.

Absorption has been discussed in this section for signals of low amplitude,
such that the density of the carriers or of the excitons, created in the absorption 
process, is not large enough to produce any significant effect. The absorption co-
efficient may be considered independent of the light intensity for such conditions. 
As the intensity is increased, other processes become effective to make the absorp-
tion coefficient dependent on the magnitude of the light intensity. This aspect of
absorption is discussed in Section 5.5. 

It should, however, be mentioned in this section that band-to-band transitions 
should show a step increase at the threshold frequency as characteristic of the 2D 
behavior. This is usually masked by the excitonic absorption. However, when exci-
tonic absorption is washed out, such step increase is often observed, as illustrated in 
Fig. 5.6. 

5.5.4. INTERSUBBAND ABSORPTION 

Light signals acting alone cannot cause transition of the electrons from one energy 
level to another in the same band. Photon momentum being comparatively small, 
the required momentum corresponding to the change in the energy of the electron 
cannot be supplied by the photon. Such transitions require the participation of 
a third particle, such as, a phonon, impurity atom or a crystal defect. In yuan-
turn wells, however, electrons belonging to different subbands may have the same 
momentum but different energies. Light signals with suitable polarization may,
therefore, cause transitions between the subbands in the same band. The optical 
matrix element for such transitions has been discussed in Section 5.2.2. On using 
this matrix element and the 2D joint density of states we get, 

(5.174)
It should be noted that the approximation, f(k) = 1, f(k') = 0, cannot be applied
to this kind of absorption at ordinary temperatures as the separation between
the quantized energy levels is not too large compared to kBT. The integration is
required to be carried out by retaining the relevant expressions for f(k) and f(k').
We assume a parabolic energy band so that Ek and Ek' may be expressed as,

(5.175)

where me is the electron effective mass, Ecm and Ecn are the energies of the mth
and the nth subbands between which the transition occurs. The distribution
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functions may also be written as, 

f(k) = {exp[(Ek – EF)/kBT] + 1}–1, f(k') = {exp[(Ek' – EF)/kBT] + 1}–1

(5.176)
where EF is the Fermi energy, kB is the Boltzmann constant and T is the sample
temperature. It may also be recalled that

where Fn and Fm are the envelope functions for the nth and the mth subband,
az is the component of polarization vector in the z direction. i.e., the direction of
the width of the quantum well. The photon wave vector is assumed to be small
enough for being neglected in comparison to k or k'. Consequently, k = k'.

On using the above relations we get, 

(5.178)

where θ is the angle between the polarization vector of the radiation and the z
direction,

Cint = e2/kBT/L∈0nrwcme (5 .179)

The intersubband absorption occurs ideally at a single frequency given by

(5.180)w0 = (Ecn – Ecm) / h.-

In practice, however, the absorption spectrum is modified by various factors, e.g., 
nonuniformity in well width, electron - electron collisions and electron-lattice col- 
lisions. The effect of such broadening mechanism is represented by replacing the 
delta function by a Lorentzian function[5.47] as in the case of the excitonic ab-
sorption. The absorption coefficient is then written as, 

(5.181)

where Γ is the broadening parameter, which is equal to the full width at half the
maximum of absorption (FWHM). The Fermi functions have also been replaced
by the carrier concentrations in the two bands by using the relation, 

(5.182)

where Nsi is the total carrier concentration in the ith band, the subband energy
for which is Eci.

Intersubband absorption has been observed in quantum wells of 
Al1–x Gax As/GaAs[5.48-50],  A10.48In0.52As/Ga0.47In0.53As[5.51-54],  Ga0.47In0.53As/

Nsi = (mekBT/πh2) In{1+ exp[(EF – Eci)/kBT]},
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InP[5.55], In0.15Ga0.85As/Al0.35Ga0.65As[5.56], Si/SixGe1–x[5.57] and more recently
in Ga0.5In0.5P /GaAs[5.58] system. The experimental values of the oscillator 
strength have been found to be close to those given by the theory. Refinements 
in the theory has also been made by including the effects of the energy band 
nonpaxabolicity which is expected to be important [5.59], since in this kind of 
absorption electrons at higher energies are involved. The effect is found to cause 
a shift in the peak frequency and some asymmetry in the line shape. 

The restriction that the intersubband absorption may occur only with light 
signals having a polarization component in the direction of the well width, has been 
attempted to be removed by using gratings[5.60-62], or wells with semiconductors 
of anisotropic effective mass (5.63] or more recently by using the p-type wells[5.64].
The basic theory of these modifications is the same as presented above. Only 
the anisotropies of the effective mass have to be properly considered to explain 
the observed results. These are not discussed any further. It should, however,
be mentioned that the study of intersubband absorption is being pursued with 
different structures[5.65], as it is expected to provide the basis of new kinds of 
long wavelength infrared detectors. 

5.6.  Quantum - Confined Stark Effect

The shift of the absorption edge in bulk semiconductors due to an electric field is
known as Franz-Keldysh effect[5.66,67]. A significant change, may be produced by 
utilizing this effect only by applying very large fields. In addition, the excitonic 
effects are less prominent in bulk materials due to thermal dissociation at room 
temperature. Effects are further diminished in the presence of an electric field due 
to decreased overlap between the electrons and the holes. The absorption edge 
is smeared out as a result and Franz-Keldysh effect has no practical application. 
In quantum wells, on the other hand, excitonic effects persist strongly at room 
temperature and at the same time an electric field does not diminish much the 
coupling between the electrons and the holes as they are confined within the well. 
The absorption edge, therefore, remains sharp and band gap modification by an 
electric field has been used successfully for realizing practical devices in quantum-
well electronics. 

The effect of the electric field appears as a shift in the quantized energy levels 
of the excitons and also of free carriers and as a result, the excitonic peaks as 
well as the absorption edge shift. The shift is similar to the shift in the atomic 
or molecular emission lines in the presence of an electric field, which is known as 
Stark effect[5.68] after its discoverer. In the case of quantum wells, the shift in the 
energy levels due to an electric field is often referred as quantum-confined Stark 
effect. Theory of the effect and some experimental results are presented in this 
section. Practical application of the effect will be discussed in Section 9.2. 
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The effect is analyzed by using the envelope functions formalism, discussed in 
Section 4.1. We consider a single quantum well of width L and barrier potential
V 0 . The potential distribution in the well in the presence of an electric field is as
shown in Fig. 5.8. The equation for the envelope function is

-[- ( h 2/ 2 m i* ) | ∇ 2
z + Vc i + | e | ∈ z ] Fi ( z ) = E F i( z ) , ( 5 . 1 8 3 )

where m *
i , Vci and Fi are respectively the effective mass, the conduction-band edge

potential and the envelope function for the ith layer; ε is the electric field applied in 
the positive z direction and |e| is the magnitude of the charge of the carrier. Holes
are treated in the same manner as electrons, by assuming an isotropic dispersion
relation with an average effective mass. Solution is here illustrated for the electrons 
only.

It is evident that the electrons remain confined within the well only if the 
barrier potential is infinitely large. Energy levels may be obtained for this case 
by applying the method discussed in Section 4.2. For finite barrier, on the other 
hand, the well is leaky as the electrons escape by tunneling when an electric field 
is applied. There is, therefore, no bound state. But the electrons remain for a 
long time at some particular state before escaping. These states correspond to 

Figure 5.8. Potential distribution arid the energy levels in the presence of an external field. Dashed 

lines give the potential and the energy levels in the field-free condition. Full lines give the same
quantities in the presence of a field.
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the bound states of the field - free well. These are the so-called quasi-bound
states. These states determine the emission lines and absorption edges. The 
objective of the analysis is to determine the quasi-bound states. It should be 
mentioned, however, that the finite value of the confinement time of the carriers 
broaden the emission lines and the absorption edges. The analysis gives also the 
magnitude of this broadening, although it may not be of practical interest as it is 
significant at fields, much larger than the operating fields of the devices, utilizing
the effect. 

is the Airy equation and Fi(z) may be written in general as[5.69,70].
Solutions for the infinite barrier wells are obtained by noting that Eq. (5.183)

Fi(z) = CiA1[–α(|e|εz – E)] + C2Bi[-a(|e|εz – E)], (5.184)],

where C1 and C2 are constants, Ai and Bi are the two independent Airy functions.
For infinite barrier wells, Fi(z) = 0 for |z| = L/2 and application of this boundary
condition gives the following equation for the eigenvalues of energy.

Ai[–α(|e|ε L /2 – E )]Bi[α(|e|εL/2 + E)]

= Ai[α(|e|εL/2 + E)]Bi[–α(|e|εL/2 – E)], (5.185)], 

where α = (2m*
e /h2e2ε2)1/3,me

* being the effective mass of the electrons in the
well. It is found from the solution of Eq. (5.185) that the effect of the field is
significantly large for the ground state but decreases drastically for higher energy.
Also, it is found that initially for low fields, ground-state energy decreases as the 
square of the field but it decreases linearly with the field for large fields. 

Solution of Eq. (5.185) is often considered inconvenient as it involves the Airy 
functions. Variational methods have been used with[5.70,71] simple trial functions 
in order to simplify computations. One set of trial functions used for this purpose 
has the form[5.71], 

(5.186)Fn(z) = sin[(nπ/L )(z + L /2)] exp[–βn(z/ L + 1/2)],  

where βn is a variational parameter and n has the values 1,2,3 .... The ground state
energy is evaluated by using the above function with n = 1 and minimizing the
energy eigenvalue to obtain β1 . It is found that the ground state energy is given

by

E(ε) = E(0) – (1/8)(1/3 – 2/π2)me
*e2ε2L4/h2, for small fields (5.187)-

-and E(ε) = E(0) – (1/2)| e|εL+(3/2)5/2(e2ε2h2/me
* )1/3, for large fields. (5.188)

The values obtained from the above expressions are very close to those given by the
exact solutions obtained from Eq. (5.185). Values of the higher energy levels may
be obtained by suitable combinations of these functions to ensure normalization.
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However, as infinite barriers idealize the problem and for practical devices the 
barrier is finite these methods are not discussed any further. 

A straightforward application of the usual methods is not possible for the 
analysis of Stark levels in wells with finite barriers, since there is no bound state. 
Solutions have been obtained by applying several intuitive approaches[5.71]. In one 
method, it has been argued that since the electron will behave as a free electron 
after its escape, the wave function should give a propagating wave for z < – L/2.
Accordingly, solutions have been taken to be given by, 

where

(5.189)

(5.190)

(5.191)

(5.192)

(5.193)

m*
b and mw* are respectively the effective mass in the barrier and in the well.

Equation for the energy eigenvalues is obtained, when the above solutions are
used to satisfy the boundary conditions at |z| = L/2. Solutions for the GaAs/Gax

Al1–x As well are given in Fig. 5.9., which show some interesting features in the 
shift of hole energies. The shift is initially negative, reaches a minimum and then 
changes rapidly to a positive value, whereas for electrons the shift is negative and 
the magnitude increases monotonically with the field. 

A second method[5.73] used for the purpose is the same as developed by Gamow 
for the evaluation of the decay time of alpha particles. It is assumed that there
exists an infinite potential barrier at z = –L∞, where L∞ is a very large quantity.
It is then assumed that F(–L∞) = 0. On applying this condition, F(z) is found
to be given for z < –L/2, by

F(z) = C1{Ai[φb(z,E)]–Ai[φb (–L∞,E)]Bi{φb(z,E)]/Bi[φb(–L∞,E)]}. (5.194)

The other two equations remain unchanged. Solution of the equations may now be
obtained by applying the boundary conditions at z = –L∞ and |z| = L/2, as the
electron is effectively bound in the negative z direction at z = –L∞ and decays
exponentially in the positive z direction. The solution can also be normalized by 
using the relation, 

(5.195)

The energies of the quasi-bound states are then obtained by using the condition 
that for these states, 

(5.196)
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Figure 5.9. Calculated energy shifts of electrons and holes for different applied fields. I - Electrons.

II - Holes. [After E. J. Austin and M. Jaros, Phys. Rev. B 31, 5569 (1985); Copyright (1985) by

the American Physical Society]. 

where ρ is the density of states and is given by

(5.197)

A numerical method[5.69] has also been proposed, in which a free electron is
assumed to be incident from the left hand side with a function exp(ik0z), (k0

2 =
2mb

* /h2)E. The transmitted amplitude T at the right-hand interface of the well
is then evaluated by using the solutions based on Airy functions.

-

Alternately, the well and the barrier region are divided into sections and the
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transmission amplitude is obtained by using the formula, 

(5.198)

where γ n = kn m*
n+1 /kn+1m*

n , βn = kn (dn – dn–1), β1 = 0 kn =  (2m *
n /h 2 ) (E – Vn )1/2

Equation (5.198) is obtained by considering that solutions for F(z) may be

-

written as 
Fi(z) = Ai exp(kiz ) + Bi exp(–kiz ), (5.199)

where the index i indicates the section under consideration. On applying the

boundary conditions, 

Fi(z) = Ei+1(z), (1/mi)∂zFi(z) = (1/mi+1)∂zFi+1(z) (5.200)

at the interface, An+1,Bn+1 are found to be related to An, Bn by the following
relations,

(5.201)

Equation (5.198) is obtained by successively using Eq. (5.201) and introducing 
the phase shifts suffered by the forward and the reflected wave in travelling from 
the n, n + 1 interface at dn to the n + 1, n + 2 interface at dn+1 . Values of energy 
for which T is maximum gives the quasi-bound states. Results obtained by this 
method for the same quantum well as studied by the other two methods are found 
to be nearly the same, particularly for the ground state. 

The three methods discussed above are based on different approaches but give 
similar results. Either of them may be applied when computers are used to obtain 
the solutions. However, the third method offers some advantages when effects of 
the energy band nonparabolicity and of the band bending caused by the redistri-
bution of carriers are to be taken account. 

It has been discussed in Section 5.5 that absorption near the band edge is 
caused predominantly by the creation of excitons in quantum wells. The modi-
fication of the exciton levels are therefore required to be analyzed in addition to 
the shift of the free-carrier levels for the interpretation of the quantum-confined 
Stark effect. Analysis of Stark shifts of excitonic levels is, on the other hand, fairly 
complex. Important results may, however, be obtained with reasonable accuracy
by introducing suitable approximations as discussed below: the equation to be 
solved may be written as[5.69], 

(5.202)
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where yex and Eex are the wave functions and energy eigenvalues for the excitons.
is the reduced mass, x, y are the in-plane relative coordinates, ze(zh), mez(mhz),

Ve(Vh) are respectively the z coordinate, the effective mass and the barrier potential
for electrons (holes). Eg is the energy band gap of the well material assumed to be
negligibly affected by the electric field. The well width is taken to be L and H(x)
is the Heaviside unit function. The permittivity is taken to be the same in the well 
and in the barrier material, so that the image effects may be considered negligible. 
The term involving the centre-of-mass, M, has not been included, as for optical
interaction, the wave vector, K, for the motion of the centre of mass may be taken 
to be zero as explained in Section 5.3.4. The holes are also represented by an
isotropic mass or an anisotropic mass with different z and in-plane components. 
The actual description of holes may, however, be more complex as discussed in 
Section 4.3. Equation (5.202) has been solved by using variational methods. The 
following discussion is in accordance with the initial analysis of Miller et al[5.69]. 
The solution is obtained by using the trial function,

ψ e x( r , z e, Z h) = ψ e( z e) ψ h( z h) φ e – h( r ) ( 5 . 2 0 3 )

where ye(ze) and ψh(zh) are the solutions respectively for the electrons and the
holes in the absence of the interaction. These functions satisfy the equations,

(5.204)

(5.205)

where Ee(Eh) are the energy eigenvalues for the electrons (holes) when these are
not coupled. The wave functions ψe(ze) and ψh(zh) are evaluated by the methods
discussed above. An approximate method has been used for the sake of conve-
nience. Solution for the infinite-barrier well is used instead of that for the finite-
barrier well, by taking advantage of the fact that the two solutions may be made 
to agree by using an effective width for the well to take account of the extension of 
the wave function into the barrier region for the finite barrier height. The effective
width may be chosen from the consideration of only the right energy eigenvalue
or may be evaluated by considering the effective penetration of the wave function 
on the two sides of the well for a chosen energy. For φe–h(r), a trial function is
chosen; one such function is, 

φe–h(r) = (2/π)1/2(1/λ)exp(–r/λ), (5.206)

where l is the variational parameter. The eigenvalues are finally obtained from,

E = < ψex|H|ψex >, (5.207) 

where H is the complete Hamiltonian in Eq. (5.202) and E is the total eigenvalue.
It may, however, be decomposed as follows: 

E = Ee + Eh + Eexk + EexV (5.208)
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where Ee and Eh are given by Eq. (5.204) and (5.205), 

Hexk = –(h2/2 )(∂2/∂x2 + ∂2/∂y2),

EexV = < ψex |V (re , rh|) ψex >,

Eexk = < φ e – h | H e x k | φ e – h > , (5.209)

(5.210)

V(re, rh) represents the Coulomb potential term, Eex is required to be evaluated
numerically and for the sake of convenience often variational wave functions are
used for ψe and ψh for this purpose, instead of the exact solutions given by the
Airy functions. 

An alternative approach has been used to evaluate the exciton binding 
energy. The Hamiltonian is separated into components representing the 2D elec-
tron, the hole and the hydrogen atom. The solution is obtained in terms of some 
tabulated functions[6.74]. Results of such calculations are presented in Fig. 5.10
for the GaAs/Al1–xGaxAs system. Exciton binding energy is found to decrease
with increasing field and at a larger rate for wide wells. 

The net effect of the electric field as discussed in this section is to shift the 
electron and the hole subband energies and also the exciton binding energies and 
thereby shift the peak position and the edge of the absorption curves. The change 
in the electron energy being faster than in the heavy-hole energy the band gap 

Figure 5.10. Heavy hole exciton binding energy for different applied fields and well widths. Well
widths are indicated by the numbers on the curves. [After Der-San Chuu and Yu-Tai Shi, Phys.
Rev. B 44, 8054 (1991); Copyright (1991) by the American Physical Society]. 
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Figure 5.11. Absorption spectra of a quantum well for different applied fields, ε . The zeroes for
the different fields are displaced for clarity. (a) ε = 1 × 104 V/cm, (b) ε = 4.7 × 104 V/cm,

(c) ε = 7.3 × 104 V/cm. [After D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W.
Wiegmann. T. H. Wood and C. A. Burrus, Phys. Rev. B 32 , 1043 (1985); Copyright (1985) by 

the American Physical Society]. 

is found to be decreased and the exciton peak to move to higher wavelengths. 
Experimental results are presented in Fig. 6.7, which exhibit the theoretically 
predicted characteristics. These results form the basis of optical modulators and 
switches, in which an electric field is applied to control the level of optical signals 
by varying the transmission coefficient. 

5.7.  Nonlinear Effects 

Electron-optic interaction has been discussed so far by assuming that the intensity 
of the optic signal is small, so that the absorption coefficient and the refractive 
index may be assumed to be independent of the intensity. However, this assump-
tion ceases to be valid for large intensities of the optic signal. The change in the 
refractive index and the variation of the absorption coefficient for large intensity 
signals are utilized for the realization of switching and signal processing devices 
and are, therefore, of great importance for the understanding of a class of quan-
tum well devices. The theory of the optic nonlinearity and a detailed discussion 
of the experimental characteristics are, however, beyond the scope of this book. 
Only simplified theories of the nonlinearity and phenomenological explanations are 
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presented in this section, which should help in the explanation of the operating
principles of photonic quantum well devices, discussed in Chapter 10.

5.7.1.  NONRESONANT NONLINEARITY 

The physical processes which cause nonlinearity are broadly divided into two 
classes. the nonresonant and the resonant processes. The nonresonant processes 
produce nonlinearity through the nonlinear response of the bound electron cloud 

above the frequency of Eg /h, Eg being the band gap. However, the phenomenon is
usually studied for frequencies below Eg/h, so that the results are not mixed with 
those arising from carrier generation. 

The response time for the nonresonant nonlinearity is of the order of the period 
of the optic signal as the electrons and the charge cloud respond almost instan-
taneously. The polarization due to the displacement of the charges by the optic 
signal may, in general, be written as, 

and the free charges. These are effective for all the frequencies, both below and 

(5.211)

where [χ(n)] is the susceptibility of the nth order, ε is the electric field associated
with the optic signal. [χ(n)]’s are, in general, tensors. However, for isotropic
materials these are scalars, and χ(2) may also be taken as zero. Limiting the
expansion to the third order term, and assuming that the field is given by,

ε = (1/2)[ε0 exp(iωt) + c.c], (5.212)

the polarization for the signal frequency, ω, may be expressed as,

(5.213)

(5.214)

The refractive index, nr , is, hence, 

where ∈0 is the free-space permittivity and nr0 is the small-signal refractive index,
given by, n 2

r0 = 1 + χ(1)/∈0.ε2
0 may be replaced in terms of the light intensity I, by

using the relation, 

to obtain, 

(5.215)

(5.216)

(5.217)

where c is the velocity of light in free space. 
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The third-order coefficient χ(3) is usually expressed in e.s.u. and n2 in cm2/kW,
assuming that I is given in kW/cm2 . On using these units, (5.217) gives,

n2 = 4(π/nr)2χ (3), (5.2 18)

The nonresonant nonlinearity arising from the bound charges are caused by the
excitation of the virtual electron-hole, (e-h), pairs. Expression for the susceptibility 
is obtained by summing over complete sets of such states after taking into account 
the coupling  of t he  fields  of  the  Maxwell’s  equations  through  the  nonlinearity.
The basic aspects of the phenomenon may, however, be clarified by including an 
anharmonic force of restitution in the classical theory of polarization. 

The polarization due to the bound charges is given by, 

P = Nex, (5.219)

where N is the concentration of the atoms and x is the displacement of the charge
cloud having an effective charge e. The equation of motion giving x is,

(5.220)

where ω 2
0 x and µx are respectively the harmonic and the anharmonic forces of 

restitution terms, γ is the damping factor, and m is the effective mass of the
charge cloud. Considering that µx << ω2

0 x, the equation may be solved by the 
method of successive approximation. We get, 

χ(3) = (m /N3e4)[χ(1)]4. (5.221)

Expression (5.221) may be used to estimate the magnitude of χ(3) from the knowl-
edge of χ(1) and µ. The value of  µ has been estimated by assuming that the linear 
and the nonlinear restoring forces are equal when x equals the lattice constant.
The estimated values[5.75] of χ(3) for different semiconductors is found to be of
the order of 10–10 -10–11 e.s.u.

A second source of nonresonant nonlinearity arises from the response of the 
free electrons in doped semiconductors with strong nonparabolic bands. This
contribution may be worked out by using the dispersion relation (see Chapter. 4),

h2k/2 m* = E(1 + αE), α ≈ 1/Eg,

and the equation of motion,
hk = eε,

The velocity of the electron, v, is,

(5.222)

(5.223)

(5.224)
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The corresponding displacement at the fundamental frequency for an optic field,
ε0 exp(iωt), is 

Using Eq. (5.225) we get for χ(3),

χ(3) = (α/N)[χ(1)]2.

(5.225)

(5.226)

Nonresonant nonlinearity arising from this process has been measured in low band 
gap materials, viz., InSb. The magnitude of χ(3) is found[5.76] to be of the order of
10–10 e.s.u. for the electron concentration of 2×1016 /cm3 , which is in agreement 
with the value given by Eq. (5.226). 

5.7.2. RESONANT NONLINEARITY 

Optic signals with photon energies larger than the band gap excite electrons from 
the valence band, which may form excitons or behave as free e-h pairs. The non-
linearity produced by such real excitation of the electrons is referred as resonant 
nonlinearity. It may be distinguished from the nonresonant nonlinearity by consid-
ering that in this case, the nonlinearity is produced indirectly by the photo-excited
carriers, whereas the nonresonant nonlinearity is produced directly by the optic 
field.

The excited carriers cause nonlinearity by changing the refractive index. This 
change may be evaluated[5.77] from the knowledge of the absorption coefficient by 
using the Kramers- Kronig relation between the imaginary and the real parts of 
permittivity, ∈2(ω) and ∈1(ω). The relation is ,

α(ω) = (ω/nrc∈0)∈2(ω)

The change in the refractive index ∆nr is given by,

∆nr = ∆∈/ 2nr∈0 ..

(5.227)

where Pr indicates the principal value of the integral, i.e., the value of the integral 
excluding the singular point ω = ω'. We note that the absorption coefficient α(ω)
is given in terms of ∈2(ω) by the relation,

(5.228)

(5.229)

Using the expression for α given by Eq. (5.228) and the relations (5.227), we get

(5.230)
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where k and k' are the initial and the final wave vectors, the suffixes c and v
indicate the conduction band and the valence band, f(Ek) is the energy dustribu-
tion function, ω is the frequency of the optic signal, other symbols have the same
meaning as defined earlier. Replacing the momentum matrix element by the value 
given by the k.p perturbation method expression (5.230) has been simplified to,

(5.231)

where wg = Eg /h, Eg being the band gap, nr is the refractive index and Ne is the -

photo-excited electron density. Ne may be eliminated by using the expression,

Ne = (ηατ/hω)I,- (5.232)

where I is the intensity of the incident light, α is the absorption coefficient, η is
the quantum efficiency and τ is the lifetime of the carriers or the duration of the 
light pulse, whichever is smaller. 

Substituting (5.231) in (5.230) we get for n2,

(5.233)

Values of χ(3)c have been obtained[5.78] by using this expression for n2 and
relation (5.217), and found to agree with the experiments. Some semiconductors, 
e.g., Hgx Cd1–x Te, yield a value as large as 10–2 e.s.u. However, the response time
for this kind of nonlinearity is of the order of 10–7 s.

In addition to changing the susceptibility directly, the photo-excited carriers 
cause significant changes in the band- edge absorption coefficient. This change 
occurs through four basic processes, 

First, the excited carriers loose energy partially through non-radiative recom-
bination and energy exchange with the phonons. The transferred energy increases 
the lattice temperature. In most cubic semiconductors, the band gap, Eg , de-
creases with the rise in the lattice temperature following the relation, 

(5.234)Eg(T) = Eg(0) – αT/(1 + β/T),

where α ~ 4 × 10–4 eV/K, β ~ 300. The absorption band edge is red-shifted as a
result of the rise in temperature and the red shift increases with the intensity of 
light.

Second, the energy band gap is altered due to the so-called band gap renor-
malization. Pauli exclusion principle excludes occupation of the same site by two 
charges with the same quantum number and produces a forbidden zone for other 
charges around a charge. This is referred as the exchange hole. Coulomb repulsion 
also prevents occupation of the same site by two charges of the same kind, and 
produces the so-called Coulomb hole around a charge. These two effects cause 
reduction of the electron and the hole energy and reduces the band gap to cause 
a red-shift of the band edge. 
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Third, the created charges collectively screen the field of a charge and reduces 
effectively the Coulomb attraction between the electrons and the holes. Excitons, 
which axe produced by Coulomb binding are therefore de-excited in screened fields. 
The bleaching of the excitons alters the band edge absorption characteristic very 
significant1y.

Fourth, the excited carriers fill-up the states and reduces the density of the 
available dates which may be occupied by subsequently generated carriers. This 

effect is referred as phase-space-filling (PSF). The PSF is particularly effective in 
reducing the excitonic absorption. 

All the resonant nonlinear processes, described above, are effective in quantum 
wells as in bulk materials. However, the changes in the excitonic absorption may 
be caused by relatively small optic power in quantum wells. In photonic device, 
therefore, mostly the change in the excitonic absorption is exploited. 

Excitonic absorption in quantum wells, in contrast to bulk materials, is not 
significantly affected by the screening of the Coulomb force. The 2-D screening 
length λ2D is given by, 

(5.235)

under degenerate conditions. The effect of the screening therefore becomes satu-
rated as the carrier concentration reaches high values. On the other hand, PSF 
plays an important role in reducing the excitonic absorption, as explained below 
by using a simple model[5.79]. 

We consider a sample of area A and assume that for an incident radiation
of intensity I, Nx excitons are in equilibrium with Ne electrons and Nh holes per
unit area at a lattice temperature T. The probability of an electron or hole being
outside the space occupied by one exciton is, 

P1 = 1 – Ax /A, (5.236)

where Ax is the area occupied by an exciton. The total probability of Ne electrons
and Nh holes being outside Ax is ,

P = ( 1 – Ax/A) (Ne+Nh)A ≈ exp[ – (Ne + Nh)Ax]. (5.237)

Also, as Nx excitons occupy an area Nx Ax , the area available to the free electrons 
and holes is (1 – Nx Ax).

The excitonic absorption coefficient α(I) for the signal intensity I, is therefore
reduced by the factor, 

(1 – NxAx) exp[– (Ne + Nh)Ax] and we get

α(1) = α(0)(1–NxAx)exp(–2NeAx), (5.238)

where α(0) is the absorption coefficient in the absence of light for which the effect
of PSF is nonexistent. Also, Ne and Nh are taken to be identical as the sample is 
neut ral .
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We may eliminate Ne and Nx from Eq. (5.238 ) by using the relation,

(5.239)N0 = Nx + Ne,

and the Saha equation relating the bound excitons with the free carriers as given
below,

(5.240)Ne
2 / Nx = C(Eex,T),

where N0 is the number of photons absorbed per unit area in the quantum well and
C(x) is a function of the exciton binding energy Eex and the lattice temperature 
T.

Combining the two relations we obtain, 

(5.241)

Also,
(5.242)

(5.243)

where L and τ are respectively the width of the well and the life time of the excited 
carriers. Substituting, 

and putting, 
(1 – NxAx) exp(–2NeAx) ≈ (1 – 2N0Ax,)

we get 

(5.244)

(5.245)

α(1) = α(0)/(1 + I / Is). (5.246)

Absorption coefficient for the nonlinear conditions has been determined[5.79] 
experimentally by first measuring the transmission coefficient of a probing signal 
and then measuring the change in the coefficient in the presence of a pump signal 
of high intensity. The linear transmitted signal and the differential nonlinear sig-
nal as obtained in such experiments, are illustrated in Fig. 5.12. It was concluded 
from a detailed analysis of the absorption spectrum that the coefficient for the 
excitonic absorption was strongly affected by the pump signal, but that for the 
intersubband absorption remained almost unaffected. The nonlinearity coefficient 
c(3) was found to have a value of 6 × 102 e.s.u, which is about 6 times the value for 
silicon and much larger than the coefficient for other nonlinear mechanism. The 
response time for such nonlinearity was also found to be of the order of 10–9s The 
saturation intensity Is has also been determined from experiments for GaAs/Gax

Al1–xAs[5.80], Ga0.47In0.53AsInP[5.81] and Ga0.47In0.53As/Al0.48In0.52As[5.82] sys-
tem. Results were found to be in close agreement with Eq. (5.246) . The value 
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Figure 5.12. Absorption spectra of quantum well illustrating the optical nonlinearity. (a) Trans-

mission without the pump beam. (b) Different nonlinear transmission induced by the pump beam. 
(c) Intensity of the four-wave degenerate mixing signal. [After D. S. Chemla, D. A. B. Miller, P. 

W. Smith, A. C. Gossard, and W. Weigmann, IEEE J. Quantum Electron. QE-20, 265 (1984); 
Copyright: (=A9 1984= IEEE)]. 

of the saturation intensity was less than 1 kW / cm2 for the first two systems and 
was about 3 kW / cm2 for the third system[5.83]. 

The expected change in the refractive index associated with the saturation of 
the excitonic absorption is illustrated schematically in Fig. 5.13. The excitonic 
peaks are absent under the saturation conditions and the change in the refractive 
index shows a large negative peak on the lower side and a large positive peak 



130 CHAPTER 5 

Figure 5.13. Schematic diagram showing the changes in the absorption and the refractive index 
for high intensity radiation. (a) The absorption spectrum for small amplitude radiation, showing 

the excitonic peak. (b) The absorption spectrum spectrum for high intensity radiation when the 

exciton is bleached. (c) Change in the absorption. (d) Consequent change in the refractive index. 

on the higher side of the excitonic resonance frequency. These large changes in 
the refractive index of quantum wells may be caused by relatively low-intensity
light signals produced by laser diodes. The optical switches and bistable devices 
described in Chapter 10 have been realized by utilizing this nonlinearity. 
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5.8.  Photoluminescence

Photoluminescence is the phenomenon of the emission of light due to the recom-
bination of the electrons and the holes created by a pump signal. The sample is 
excited[5.84] by a strong source of light, often a laser, and the spectrum of the 
emitted signal is measured by a double grating spectrometer coupled to a cooled 

photomultiplier tube, which is monitored by a photon counter, The results of such 
measurement[5.85] on a set of quantum wells with varying widths are shown on 
Fig. 5.14. 

Figure 5.14. Photoluminescence spectrum of quantum wells of different widths at three temper-
atures. Widths are indicated by the numbers on the curves in nm. The splitting of the lines are 

ascribed to pseudo-monolayer flat islands. [After H. Hillmer, A. Forchel, C. W. Tu and R. Sauer, 
Semicond. Sci. Technol. 7, B235 (1985); Copyright: IOP Publishing Ltd.].
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Emission peaks are observed at wavelengths, which decrease with the width of 
the well. The spectrum has a small band width, depending on the temperature 
and the interface morphology. The characteristic feature of photoluminescence is
the appearance of the sharp lines. This is due to the fact that the electrons and the 
holes, created by the exciting pump signal, relax very rapidly to the end or levels 
close to the ends of the bands. These then recombine radiatively to produce the 
luminescence, and thereby produce sharp lines characteristic of the band gap The 
phenomenon is widely used for the characterization of quantum well structures. 

It is also relevant to the understanding of the quantum well lasers. A discussion 
of the physics of photoluminescence should therefore be useful as the background 
material for these devices. Formulae for the evaluation of photoluminescence are 
essentially the same as given earlier for the absorption coefficient in Section 5.5. 
The two processes, absorption and emission go on simultaneously all the time. 
These processes counterbalance each other in the absence of an external agency to 
produce the equilibrium carrier concentration and thermal radiation. In the case 
of absorption phenomenon, the external radiation creates more electron-hole pairs 
than are lost by recombination and in effect, energy is absorbed and the carrier 
population is increased. In the case of photoluminescence, the excess electron-hole
pairs created by the pump signal enhance the emission process, which exceeds the 
absorption and light is therefore emitted, while the carrier population is reduced. 

Equation (5.135) which gives the rate of photon absorption, gives also the rate 
of photon emission, when it is written as, 

(5.247)

The symbols have the same significance as defined for Eq. (5.135). But, now 
the initial state corresponding to the wave vector k is in the conduction band, 
while the final state is in the valence band with the wave vector k' . Further,
the factors arising from the distribution functions were approximated to be unity 
for absorption, by considering that for low radiation intensities the conduction 
band could be considered to be almost empty and the valence band almost full. 
For the luminescence experiments, on the other hand, it is the excited electrons 
and the consequential holes which recombine to produce the radiation. These 
excess carriers are accounted for by defining quasi-Fermi levels EFc and EFv for the
conduction and the valence band, such that the increased electron concentration 
n and the hole concentration p are given by, 

(5.248)

(5.249)
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Equation (5.246) may be written by using the quasi-Fermi levels in the distribution 
functions as follows. 

(5.250)

where ∆EF = EFc – EFv and it has been assumed that (Ek – EFc), (EFv – Ek') >>
kBT. The integral may be evaluated by following the same procedure as used for
the evaluation of the absorption coefficient. We first consider the photolumines-
cence due to band-to-band transitions in a bulk material. We get, 

(5.251)

However, the radiation signal emitted by the sample over a solid angle determined 
by the receiver is measured in the photoluminescence experiment. The photon,
emission rate for which is given by Eq. (5.250), is, however, emitted in all directions
and with all polarizations. The energy radiated per unit time, per unit solid 
angle, per unit energy interval, and per unit volume of the crystal is obtained by 
multiplying (dnp/dt) by the energy of a photon, i.e., hω and by the optical density-

of states i.e., the number of photons states per unit volume, per unit solid angle 
and per unit energy interval. The density of states ,taking into account the two 
states of polarization is given by. 

G(ω) = 2(1/2π)3d3k/d(hw),-

Replacing k by ωnr/c, we get

- -G(ω) = 2(nr/2πch)3(hw)2.

-

(5.252)

(5.253)

Multiplying (dnp/dt) by G(ω)hw, we get for the energy radiated per unit solid
angle per unit energy interval per unit time per unit volume of the crystal, 

(5.254)

Under conditions of thermal equilibrium, ∆EF = 0 and np = [exp(hω/kBT) –
1]–1 and hence L(ω) = 0, and there is no radiation other than the thermal radia-
tion. When, however, excess carriers are generated by the pump signal, ∆EF > 0

where Clum = e2m3
r/2nr/2√

–
2π4m2

0c3h5∈0.     -

     -
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and L(ω) has a finite value and there is luminescence at the frequency ω. So long
as ∆EF is less than hω, there is only enhanced luminescence. If, however, ∆EF is
greater than hω, the second term, representing the stimulated radiation, becomes
positive and laser action sets in.

-
-

In photoluminescence experiments, the luminescence spectrum is often more
important. It is very different from the absorption spectrum. Considering the more
rapidly-varying components in the expressions, we find that whereas absorption
varies as (hω – Eg) 1/2 luminescence varies as (hω – Eg)1/2 exp[ – (hω – Eg) kBT] and---

hence it has the shape of a resonance curve. The luminescence spectrum[5.85], as
illustrated in Fig. 5.14 starts from zero at hω = Eg , peaks at hω = Eg +- -

kBT/2 and then falls off exponentially. The peak moves closer to the band gap as 
the temperature is reduced. This property of photoluminescence is often used to
determine the band gap. 

We note that it is not necessary to derive separately the expressions for the
photoluminescence spectrum for the excitonic transitions in bulk materials, or for
transitions in quantum wells. The luminescence L(ω) may be written as

(5.255)

The absorption spectrum has peaks for excitonic transitions or for inter - and 
intra – subband transitions in quantum wells; the peaks in the photoluminescence 
spectrum are,however, much sharper. It should, however, be mentioned that the 
experimental spectrum is broadened by several mechanisms which are not included 
in the expression for α(ω), derived in Section 5.5 for ideal conditions. The broaden-
ing is more important for the photoluminescence experiment, as the ideal spectrum 
is more sharp. Phenomenological discussions were made about this broadening in 
the absorption spectrum. However, more intensive studies have been made of the 
broadening of the photoluminescence spectrum, as the data may be used to assess 
the purity of the quantum well structures. 

The photoluminescence spectrum is broadened by several processes [5.86], Some 
of these arise from the structural and the compositional variations. The width 
of the well varies along the plane of the heterointerfaces. Monolayer thickness 
variation having different extents occur even in very well-grown structures. The 
potential barrier also varies due to the variation in the composition of the barrier 
or the well material, when these are mixed compounds. There are also structural 
defects in the interfaces. All these variations cause broadening due to band-filling,
when significant number of carriers migrate to the well. The broadening due to 
these various causes may be easily shown to be given by the following expressions:

∆E = (dE / dL)∆L ≈ 2E0(∆L/L), (5.256)
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for well width variation of ∆L over a width of L, E0 being the corresponding 
subband energy. 

∆E = (dE/dV )∆V , (5.257)

for barrier potential variation of ∆V over a barrier potential of V. The derivative
(dE/dV ) may be evaluated using the theory discussed in Section 4.2.

(5.258)

for composition variation in the well material, where Eg is the energy band gap, x
is the fraction of one compound in the ternary material, a0 is the lattice constant,
Kd is the dielectric constant, aB is the Bohr radius and mr / m0 is the reduced 
effective mass ratio. 

∆E = nsπh2
 / m *,- (5.259)

for band-filling effect, where ns is the areal electron concentration in the well. The 
broadening due to the above factors may be computed by using the estimated

Figure 5.15. Luminescence broadening mechanisms in GaInAs/AlInAs quantum wells. Contri-

bution of different mechanisms to the line width are shown separately. Broadening in thin wells 
is mainly due to the variation of quantum well thickness while for thick wells, the broadening is 

due to band-filling by the sheet carrier density, which is taken to be 2×1011 cm–2 [After D. F. 

Weltch, G. W. Wicks and L. F. Eastman, Appl. Phys. Lett. 46, 991 (1985); Copyright: American 
Institute of Physics]. 
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values of ∆L, ∆V and ns . Such computed values for the Ga0.47 In0.53 As/Al0.48 In0.52

As wells are illustrated in Fig. 5.15. The experimentally observed broadening may
be explained by using properly chosen values of ∆L, ∆V and ns . The broadening 
for L < 5 nm is mainly due to width variation, while that. for L > 5 nm is due 
to band filling. Broadening due to alloy variation may, however, be considered 
relatively unimportant. 

Although the well-width dependence of the broadening may be explained by 
considering the mechanisms discussed above, the scattering of the excitons by the 
lattice vibrations and other imperfections also cause broadening.The broadening
∆E resulting from scattering of s unit time is[5.87,5.88], ∆E = hs.-

This kind of broadening is also important and is required to be considered
particularly to explain the increase of broadening with increase in the lattice tem-
perature. Discussion of this kind of broadening involves the formalism for dealing 
with the scattering mechanisms. As the mechanisms are discussed in Chapter.7 
in connection with the transport properties, the broadening of photoluminescence 
spectrum caused by scattering is also discussed in the same chapter. 

5.9.  Photoluminescence Spectrum 

The line width of photoluminescence is related to the interface quality and alloy 
inhomogeneities as discussed in Section 5.8. It is often used to judge the quality of 
a grown structure. The luminescence spectrum may, however, be used to obtain 
more detailed information about the interface defects and impurities. The spec-
trum is required to be resolved into its fine structures for this purpose. Such reso-
lution may be done by using high resolution spectroscopy to record the spectrum. 
More commonly, this is done by applying the technique of photoluminescence exci-
tation spectroscopy[5.89]. In this technique the luminescence is detected at a fixed 
wavelength, conveniently located within the photoluminescence spectrum. Elec-
trons are excited by using a source of variable wavelengh. As the photon energy 
of the incident radiation resonates with a particular transition, the radiation is 
strongly absorbed and a large number of electrons are excited to the conduction 
band. The excited electrons are subsequently scattered to the lowest conduction 
level and produce luminescence near the band edge, which is detected by the de-
tector. The detected signal therefore exhibits peaks for resonance wavelengths. 
Recently, the detection technique of photoluminescence has been so improved by 
using microscopic excitation that the output from small areas of the sample may 
be recorded instead of recording the output from the whole sample[5.90]. It is 
therefore possible to probe the luminescence outputs as affected by localized areas 
of defects and inhomogeneities. 

All the three techniques, high-resolution photo- luminescence (PL) spectro-
scopy, photoluminescence excitation (PLE) spectroscopy and microprobe photolu-
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minescence recording, have been used extensively to study defects and impurities
in quantum well structures. A detailed discussion of these studies is beyond the 
scope of this book. We shall briefly mention only some important findings from
such studies which have important bearing on the performance of the devices, 

Excitons, bound to neutral beryllium atoms were detected[5.91] in GaAs wells 
by resolving the photoluminescence spectrum. Four peaks were identified in the 
spectrum which correspond to the e1 – HH1 first electron-first heavy hole level
free excitons, e1 – HH1 exciton bound to neutral beryllium (Be0 ) atoms and e1
electrons recombining with Be0 impurities in the interfaces and the centre of the
well.

The PLE-spectroscopy gives spectrum showing transitions between higher 
quantized levels[5.92], nth electron level to the nth heavy hole or light hole lev-
els. Some of the spectra exhibit transitions for ∆ n ≠ 0. More importantly, the
band-edge spectrum reveals details, which throw light on the interface roughness. 
It is observed that the photoluminescence peak is red-shifted from the PLE peak.
The shift is due to the participation of phonons in the reconibination process and 
is referred as the Stokes shift. It has been shown[5.93] that the line width of the
PL spectrum is linearly related to the Stokes shift. This linear relation has been 
explained theoretically[5.92] by assuming a Gaussian distribution of the variation 
of well widths or alloy potentials, in which the excitons are localized. The line 
width of the PL spectrum may, therefore, be used as an indicator of the interface 
roughness. Further evidence of the localization has been obtained from the micro-
scopic PL spectra[5.90] in thin (35 Å thick) quantum wells. Sharp lines are seen in
the spectra which vary in energy and intensity as different, areas of the sample are 
explored. It has been possible to map the variation of the well widths by utilizing 
the photoemission from the localized excitons. 

Evidence of the interface defects and the bound excitons due to the well 
width fluctuations have been presented[5.90-97] also for GaAs/GaAlAs, (GaIn)As/ 
Ga(PAs) and Si/Si xGe1–x systems. It may be concluded from these and other simi- 
lar studies that the defect-related and the localized excitons play a significant role 
in the photoluminescence output. Such emission reduces the desired output at 
chosen wavelength and causes deterioration in the performance characteristics of 
the devices. PL, PLE or microscopic PLE provide convenient techniques for the 
characterization of such defects. 

Photoluminescence provides also a useful tool for the study of the stresses in 
device structures. Uniaxial stress enhances the splitting of the heavy and the 
light hole energy levels and changes thereby the polarization of the emitted light. 
Microscopic examination of the polarization of the emitted light gives information 
about the stress in the particular position of the devices. This technique has been 
successfully used[5.98] to image stresses in GaAs diode lasers. 

using these structures. 
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5.10.  Conclusion 

The various electron-photon interaction phenomena, discussed in this chapter, are 
made use of in different opto-electronic and photonic devices. Optical detectors 
and mixers use absorption, light-emitting devices and lasers use luminescence, op-
tical modulators use the Stark effect and the nonlinear absorption is used in the 
optical bistable devices. Intense work is in progress for the development of the 
quantum well devices for all these applications as superior performance character-
istics may be realized by using quantum well structures. Reports appear frequently 
about order-of-magnitude improvements. New materials and new structures are 
also being invented for these improvements. 

The study of the physics of the phenomena, as observed in quantum wells, is 
also very rewarding since it is possible to investigate the electron-photon interac-
tion under designed conditions. For example, excitonic interactions are hardly of 
interest at room temperature in bulk materials or in devices using bulk materials. 
On the other hand, excitons play a very important role in all the quantum well 
optoelectronic and photonic devices even at room temperature. Consequently, 
physics of the spectral content of excitons and of exciton dynamics are subjects of 
great current interest [5.99-101].

An extensive literature has been created on the various optical properties of 
quantum wells which deal with the intricate details of the physics of the vari-
ous opto-electronic phenomena. References are given at the end which may be 
consulted by the interested reader. However, the physics of the phenomena, as 
explained in this chapter, may be considered adequate for the understanding of 
the devices, discussed in this book. 
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TRANSPORT PROPERTIES 

Quantum well structures attracted the attention of device designers because it is 
possible to segregate impurities from the carriers in these structures and thereby 
realize large carrier concentration without the associated reduction in the mobil-
ity. The well layer may be undoped, but carriers may be produced by doping the 
barrier layer. In contrast, carrier concentration may be increased in bulk mate-
rials only by increasing the concentration of impurities which causes a decrease 
in the carrier mobility. The larger conductivity resulting from the larger carrier 
concentration and larger mobility was expected to give higher switching speed and 
higher transconductance. This expectation has been fulfilled in High Electron Mo-
bility Transistor(HEMT) , also called Two-dimensional Electron Gas Field Effect 
Transistor(TEGFET) or Modulation Doped Field Effect Transistor(MODFET) or 
Selectively Doped Field Effect Transistor(SDFET) . Emergence of these devices 
has made it important to study the characteristics of carrier transport in quantum 
wells.

The transport is controlled as in bulk materials by the various scattering[6.1,2] 
processes. All the scattering mechanisms of bulk materials are effective in quantum 
wells and in addition there are a few more mechanisms due to the multilayered 
structure. Further, electron gas in the quantum wells have only freedom of in-plane
motion and may be considered for transport calculations as a two-dimensional gas 
(2DEG). It should, however, be remembered that the electron wave functions 
have finite extent in the direction of quantization. The quasi-two-dimensional
character of the electrons modify the scattering rates and the expressions for the 
transport coefficients. The modification is further enhanced in narrow wells, as 
used in strained-layer systems, due to the spreading of the electron wave function 
into the barrier region[6.3]. The various scattering mechanisms are first discussed 
with special emphasis on the additional scattering processes and modifications 
due to the two-dimensional character. The methods used for the evaluation of the 
transport coefficients are then discussed. 

The formalism used for the transport studies in quantum wells is, however, 
the same as used for bulk materials. Boltzmann transport equation is used at 
low fields and the same methods of solution are adopted. For high fields also, 
the analytic methods, e.g., the displaced-Maxwellian approximation method, or 
the Monte Carlo method is used. These methods are extensively discussed in 
the literature[6.2] and are, therefore, briefly considered here. Detailed discussion 
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is, however, given for the application of the methods to quantum well systems 
and for the results obtained for different structures. Experimental results are also 
presented and compared with the theory. 

6.1.  Scattering Processes for 2DEG 

Electrons are accelerated when an electric field is applied to a semiconductor sam-
ple, but for not-too-small samples the carrier velocity attains a steady value on the 
average, which is independent of the size. This limiting of the velocity is caused 
by the scattering processes. The accelerated electron loses the momentum gained 
from the field, when it is scattered. This loss may occur in one scattering event 
or in more than one event. Hence, it shows only an average gain in momentum 
which is due to its gain in between the scattering events. This situation prevails 
if the sample is long enough so that the electron is scattered a large number of 
times before it reaches an end of the sample. If, however, the sample is too short, 
the electron may move out of the sample before being significantly scattered. The 
average velocity is determined for such short samples not only by the scattering 
processes but also by the length and the terminal conditions of the sample. Sam-
ples used in the devices of interest in this book are, however, such that the former 
scattering-dominated transport prevails. 

In a crystal with perfect periodicity, an electron is expected to move about 
freely and the transport would be determined by electron dynamics as in vacuum 
tubes. It is the imperfections which scatter the electrons and cause scattering-
dominated transport. The scattering processes effective in the bulk materials are: 
lattice scattering of various kinds, i.e., deformation potential acoustic phonon, 
piezoelectric phonon, and polar and non-polar optic phonon scattering, ionized 
and neutral impurity scattering and alloy scattering in mixed compounds. All 
these scattering mechanisms are effective for the 2DEG in quantum well systems, 
but the interactions are modified. The momentum of the electron being quantized 
in the direction perpendicular to the well interfaces, when an electron interacts 
with the lattice or the impurity atom, the component of the lattice wave vector 
or of the Fourier wave number for the impurity potentials is not altered in the 
direction of quantization. The density of states is also different for the 2DEG. 
These two effects cause distinct changes in the effects of even the bulk scattering 
mechanisms.

In addition, the lattice vibrations are also modified by the quantum well struc-
ture. The physical constants of the constituent materials being different, discon-
tinuities are introduced at the interfaces, which affect the modes and dispersion 
relations of lattice vibrations. The so-called surface and confined modes[6.4] are 
excited. These are particularly important in polar materials and changes the na-
ture of interaction. Further, in narrow wells, the electron is not fully confined 
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within the well, but penetrates into the barrier. Electron scattering in such wells 
is, therefore, a more complex phenomenon. 

Impurity scattering is also different in nature in quantum wells, since the im-

purities are non-uniformly distributed. This gives rise to the so-called remote 
impurity scattering [6.5] in addition to the local impurity scattering. 

There is in addition to the bulk scattering processes, another important scat-
tering process in quantum wells. The interfaces of quantum wells have nonuni-
formities depending on the growth processes. Even in very well-grown quantum 
wells there are monolayer variations of different extents. This causes the so-called
interface roughness scattering (IFRS) [6.6]. Its importance depends on the quality 
of the crystal and has been decreasing with the improvement in crystal growth 
technique; but even then it cannot be neglected, particularly in narrow wells at 
low temperatures. 

It may also be noted that all these scattering processes may cause the final 
state to be in the same subband or in another subband. The former is referred as 
intra-subband scattering and the latter, intersubband scattering. These are similar 
to the intervalley and non-equivalent intervalley scattering in bulk materials and 
have similar effect. 

6.2.  Matrix Elements for 2DEG

The scattering interactions are dealt with in the transport calculations by the first
order perturbation theory[6.1] which gives for the rate of scattering S(k, k') of an
electron from the k-state to the k'-state,

(6.1)

where Ek and Ek' are the energies corresponding to the wave vectors k and k', ∆ E
is the change in energy of the scatterer, δ(x) is the Dirac delta function. M(k, k')
is the element which relates k'-state with the k -state, in the matrix relating the
perturbed state with the various equilibrium k-states and is usually referred as 
the matrix element. 

The matrix element for electron- phonon interaction is given by[6.2], 

(6.2)

where ψk and ψk' are the electron wave functions for the initial k-state and
the final k'-state respectively, while φnq and φn'q are the wave functions for the
phonon system, nq and n'q being the phonon occupation probabilities for the wave
vector q.
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The scattering potential ∆V may, in general, be expressed for lattice vibrations
as,

(6.3)

where aq and aq
† are respectively the creation and the annihilation operator and

A (q) is the effective amplitude of the interaction potential corresponding to the
phonon wave vector q.

For three-dimensional (3D) systems the wave function ψk is the Bloch function
Uk(r) exp(ik.r), Uk(r) being the cell-periodic part. On using this function, the
matrix element reduces to,

M(k, k') = A (q)Oi(nq + 1/2 ± 1/2)1/2,

where Oi is the overlap integral [6.2] defined as

(6.4)

(6.5)

It has a value of unity for parabolic energy bands for which Uk is taken to be 
independent of k, but it may be significantly different from unity for nonparabolic
bands[6.2]. The factor (nq + 1/2 ± 1/2)1/2 is due to the creation and annihilation
operators, operating on the wave functions for the lattice vibrations. The plus
sign corresponds to the creation or the emission of a phonon, while the minus
sign corresponds to the annihilation or the absorption of a phonon. Also, as the 
integrands of the periodic functions exp i(k – k' ± q).r is zero for sfficiently large
crystals, unless the argument is zero, only one term of the summation has a non-
zero value and q in Eq. (6.4) satisfies the relation,

k' = k ± q, (6.6)

which implies the conservation of total pseudomomentum of the electron-phonon
system, and in effect defines the value of q which is involved in the scattering from
the k-state to k'-state.

The interaction potential for defects and impurities may be expressed as

(6.7)

M(k, k') = A (q)Oi.

where q satisfies the relation, 

where A (q)’s are the coefficients in the three-dimensional Fourier transformation
coordinate q, which plays the same role as the phonon wave vector.

The matrix element for these scattering mechanism is

(6.8)

(6.9)k' = k + q.
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Matrix elements for the scattering of 2D electrons are obtained by following the
same procedure, but by replacing ψk and ψk' by the 2D wave functions. As indi-
cated in Section 4.1, the wave function for 2D electrons is expressed as,

(6.10)

where F(z) is the envelope function, z-axis being chosen perpendicular to the
hetero-interfaces; kt and ρ are respectively the in-plane wave vector and the po-
sition coordinate; U0 is the cell-periodic function for k = 0, corresponding to the
particular energy band minimum to which the electrons belong. On substituting
the wave function (6.10) in Eq. (6.2) we get for the matrix element for lattice 
scattering.

(6.11)

The overlap integral Oi has a value of unity since the cell- periodic part is assumed 
to be independent of k. Also, non-zero value of the periodic part is obtained only 
for

k't = kt ± qt, (6.12)

where qt is the in-plane component of the phonon wave vector q. Thus, only 
the in-plane component of q is involved in the change of pseudomomentum of the
electron due to the interaction. The longitudinal component of q, qz is not directly
involved in the transition and in effect transitions may occur from an energy Ekt

corresponding to the kt-state by interactions with different modes of vibration
characterized by different longitudinal components of q. It can be physically ex-
plained by visualizing that when the electron wave vector is quantized in the z-
direction its momentum is diffuse, so that it can absorb or give up all possible mo-
mentum in that direction. This effect gives rise to a term in the matrix element, 
which is often called the form factor. It is given by[6.7] 

(6.13)

Evidently, this is an additional term involved in the matrix element for 2D-electron
scattering in comparison to that for 3D-electrons.

On taking account of this modification we find that the matrix element for the
lattice scattering of the 2D-electrons for a particular mode is,

M(kt, k' t) = A (qt, qz) G(qz)(nq + 1/2 ± 1/2)1/2. (6.14)
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The total matrix element for all the modes having the same q is given by 

(6.15)

since each mode acts independently. The summation may, however, be written as 
an integral to obtain for lattice scattering, 

(6.16)

where L is the width of the infinite-barrier quantum well or the effective width of 
a single hetcrojunction , or a quantum well with finite barrier. We get similarly 
for the matrix element for defect scattering of 2D electrons, 

(6.17)

It should be mentioned that the location of the defect or the impurity atom is 
not considered for bulk materials since electrons as well as these scattering centers 
are uniformly distributed in the sample, which is assumed to be infinite in extent. 
In 2D systems, on the other hand, electrons are confined in or near the well, and 
may not also be uniformly distributed. The relative position of the electron gas
and the scattering centers is,therefore,important in 2D systems. We have assumed
that the center is located at ri , the corresponding in-plane and z-coordinate being
respectively ρi and zi . We get. as for the lattice scattering,

(6.18)k't = kt + qt,

for non-zero values of the matrix element. Expression for the matrix element may 
be simplified, by using this condition, to 

(6.19)

If A (q) is independent of q, as in alloy scattering Eq. (6.19) may be simplified to

(6.20)

Expressions for the matrix element obtained by following the above procedure are 
given in Table 6.1 for the important scattering mechanisms. 
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6.3.  Form Factor 

The z-component of q , gives rise, as explained above, to the form factor, 

(6.21)

This integral may be evaluated analytically for wells of parabolic semiconduc-
tors with infinite barrier height. It is, however, required to be evaluated numeri-

Table 6.1 Matrix Elements for Scattering of Two-dimensional Electron
Scattering Matrix Element Squared 
1. Acoustic Phonon : 
Deformation
Potential
Piezo electric 

2. Optic Phonon : 
Non-polar
Polar

3. Defect : 
Alloy

lonized Impurity 

Surface Roughness 

Meanings of symbols : E1 - Acoustic phonon deformation potential constant, q - 2π times
the phonon wave number, h = (1/2π) times Plank’s constant, Vc - sample volume, ρ - Sample
density, ωq, ωo, ωl - Phonon frequencies for aroustic. non-polar optic and polar- optic phonons.
nq,no,nl - Occupancy of acoustic, non-polar, polar optic phonons, G(qz) =

is the z-dependent part of the envelope function and qz is the 
z-component of phonon wave vector q, e-electron charge, hpz - Average piezoelectric constant,
∈∞ - High frequency and ∈s - Static, permittivity. Do - Non-polar optic deformation potential,
∆Vall - Alloy potential, r0 - Radius of alloy potential sphere, N(zi) - Number of scattering
centers per unit volume at zi , α(zi) - Fraction of AC material in the compound Aα B1–α C
at z = zi, Z- Ionization number, qt - In-plane component of q, λ2D - 2D Debye length, ∆ -
Average displacement of the interface, Λ -The range of spatial variation of the interface. A c

- Interface area. V- Potential at z.+, – signs in ± are for emission and absorption processes 
respectively.E0 -Quantized energy lelel. L-Well width.



146 CHAPTER 6 

cally for wells of nonparabolic semiconductors or of finite barrier height. G(qz) is
equal to unity for qz = 0. but decreases with increasing qz . The form factor was 
approximated as unity in some very early publications[6.8,9]. It is evident from
the nature of the variation of G(qz) that this approximation will not introduce
much error if scattering is predominated by low-q phonons or if A (q) increases
with decrease in q as in polar optic phonon, piezoelectric phonon or impurity 
scattering(see Table 6.1). On the other hand, for scattering mechanisms in which 
A(q) is independent of q as in acoustic phonon or alloy scattering, the reduced 
value of form factor for large values of qz will reduce the scattering rate and hence 
increase the mobility. This will be more so in narrow wells and wells with smaller
barrier height. 

Single heterojunctions are usually analyzed by using the variational envelope
functions given in Section 4.1. This function gives for G(qz) [6.10]

(6.22)G(qz) = b3/(b2 + q z
2 ) 3/2.

The effect of the deviation of G(qz) from unity will increases in single heterojunc-
tions with increase in b or in the carrier concentration.

The effect of the wave-function penetration into the barrier is not considered
in Eq. (6.22). The effect would be important for the material systems used in 
quantum well devices and such studies should be useful. It may, however, be 
commented here that the effect is expected to cause an increase in mobility for 
material systems with low barrier height. 

6.4.  Screening for 2DEG

Expressions given for A (q) in Table 6.1 do not include the screening effect of the
free electrons. Electron concentration in quantum well devices is usually very
high and the screening effect cannot be neglected. The procedure used for the 
evaluation of the effect may be illustrated by considering a point charge e located
at z = zi in an ideal two dimensional system, which has a sheet of charge at 
z = 0. We neglect for the sake of simplification the difference in the permittivity 
of the two materials constituting the well. The potential U of the point charge, as 
modified by the surrounding charges, is obtained by solving the Poison equation, 

(6.23)

where ∈s is the permittivity and the charge density ρc includes the induced charge in
addition to the point charge. The density of induced charge, ρind may be expressed,
by using a model analogous to the 3D Thomas-Fermi model, as 

(6.24)
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where eNs(U) is the sheet charge density for a potential U. It may be expressed 
in terms of U by assuming that the potential is weak and slowly-varying as 

(6.25)

where 1 / λ2D = (e2/2∈s)(dNs /dEF), has the significance of screening length for 2D
electrons.Ns and EF are respectively the electron concentration and the Fermi
energy.

The resulting potential, satisfies the equation,

(6.26)

It may be shown that the Fourier coefficient for the expansion of the potential U
satisfying the above equation in the plane of the point charge is 

(6.27)

On comparing this expression with that in the absence of screening charges it is 
found that, the 2D electrons modify the potential by introducing the factor 

Sc = qt / (qt + 1/λ2D) (6.28)

In practical 2D systems, however, electrons are not exactly two- dimensional but
are quasi-two-dimensional, as they are distributed over a finite width, although 
their motion is two-dimensional. The finite extent changes the screening length
by introducing a form factor, F(q), given by,

(6.29)

In addition, the assumptions in the Thomas-Fermi model of screening that the 
potentials being screened are also slowly varying i.e., q = 0 and static are not 
generally valid. These limiting conditions are removed in the random phase ap-
proximation (RPA), in which the response of an electron to the external field and 
all other electrons is worked out to define an effective dielectric constant[6.11], 

(6.30)

where Ks is the static lattice dielectric constant, ω is the frequency of the external 
field, q is the wave vector of the excitation, c is the velocity of light in free space,
χ(q,ω) is the polarizability determined from the response function. The full ex-
pression for χ(q, ω) is rarely applied and mobility is usually analyzed by using the
static approximation,for which[6.12] 

(6.31)
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where F(q) is the form factor given by Eq. (6.29) and π(q) is the static polarization.
In the RPA [6.12] 

(6.32)

where m* is the electron effective mass, H is the Heaviside unit function and kF

is the 2D-wave vector corresponding to the Fermi- energy.

-
Expression (6.31) may be simplified when only the ground state is occupied and

when the electron concentration is degenerate, π(q) ≈ m*/ πh2 . The simplified
expression is 

Consequently, the screening factor is modified to 

since for degenerate materials, 

(6.33)

(6.34)

(6.35)

The dependence of Sc on temperature and the carrier concentration is mostly 
determined by the effective qt as λ2D is independent of these two parameters. In 
degenerate materials the effective qt is the same as kF,which is proportional to 
√

—–
Ns. The screening constant Sc therefore decreases with increase in the carrier

concentration. In other words, the potential is much more screened with decrease 
in the carrier concentration. This result is opposite to the physical expectation. 
The anomaly has not yet been satisfactorily resolved although Eq. (6.34) has been 
widely used to asses the effect of screening. 

6.5.  Collision Integral for 2DEG 

Low-field transport coefficients are evaluated by using the Boltzmann transport 
equation, which may be written for wells with uniformly distributed carriers of 
isotropic effective mass as follows[6.2] 

(6.36)

where ε is the externally applied field and f is the distribution function, D' is the
density of states for the 2DEG and d2kt is the two-dimensional element in the wave
vector space. The left-hand side gives the change in f, caused by the field ε, while
the right-hand-side gives the change due to scattering and in the steady-state the 
two terms are balanced.The right-hand-side term is often referred as the collision 
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integral.The first term in the integral gives the number of electrons scattered out
from the kt-state to different k't-states and is calld the out-scattrig term. The

second term in the integral gives the number of electrons scattered from different
k't -states into the kt-state and is called the in-scattering term.

The equation is solved by expanding f with the spherical harmonics with the
direction of e as the polar axis. The series is terminated at the second term at 
low fields and is written as, 

(6.37)

where E is the energy corresponding to kt, θ is the angle between ε and kt, f0

and φ are the two energy-dependent functions, m* is the band-edge effective mass.
Equation (6.35) may be reduced for low fields, by using this expansion to, 

and

It is assumed for arriving at these equations that the principle of detailed balance 
holds and the integrand is balanced for each value of k't . Further, the angle θ'
between kt and ε has been written in terms of θ and β, the angle between kt and
k't . The term containing sin β is zero, because of symmetry, while the cos β term
may become non-zero for some scattering mechanisms. The velocity effective mass
mv has also been substituted for [(1/h2kt)∇ktE]–1.-

The symmetric component oft he collision integral gives the steady-state unper-
turbed distribution function f0 , which for low fields, is the Fermi-Dirac function for
degenerate electron concentration or the Maxwellian function for non-degenerate
electron concentration. The asymmetric part of the distribution function φ is ob-
tained by solving Eq. (6.39). The integrated scattering rate is required to be 
evaluated for this purpose. These are discussed in the following section. 

6.6.  Scattering Rate for 2DEG 

Expressions for the two components of scattering, out-scattering and in-scattering
are further simplified by using the property of the delta function. The out-
scattering component of lattice scattering is considered first. Replacing S(kt, k't)
by Eq. (6.1) ad the matrix element by the expression of Eq. (6.15) we get for the 

(6.38)

(6.39)
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out-scattering rate, 

(6.40)

The density of states D' has been replaced by (1/2π)2 as the electron gas is two-
dimensional and spin-flip scattering is assumed to be absent [6.13,14]. The plus 
and minus signs correspond respectively to the emission and the absorption of a
phonon. The in-plane component of q, qt , has been replaced by k't – kt . The
phonon occupation probability has been written as n[( k't – kt|2 + q2

z )1/2]as it is a
function of the magnitude of the phonon wave vector. ∆E has been replaced by
the energy of a phonon hω.-

The integration over k't is carried out putting

(6.41)

and using the property of the delta function. We obtain for the out-scattering
rate,

where now, 

(6.42)

(6.43)

The magnitudes of k't correspond to Ekt ± hw and is determined by the E – k
relation for the material of the well.

-

Expressions for the out-scattering rates for defects and impurities are derived
by using the same procedure. Using the matrix element of Eq. (6.19), we get for 
the scattering rate due to a center at ρi, zi ,

(6.44)

The term [1 – f0(Ek')] [1 – f0(Ek)]–1 and ∆E have been omitted, since defect
scattering is mostly elastic as the electron does not gain or loose any significant 
amount of energy in such collisions. 
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On integration over d2k't followig the same procedure as discussed for lattice 
scattering and summing the contribution of all the scattering centers in the whole 
structure we get , 

Also,
Ek't = Ek t, |k't – kt| = [2k 2

t (1 – cos β)]1/2.

(6.45)

(6.46)

The integrals of Eq. (6.42) and (6.45) may be evaluated only numerically when the 
finite barrier height of the wells and the nonparabolicity of the well material are 
taken into account. Analytic expressions may, however, be obtained for wells with 
infinite barrier height and for materials with parabolic bands. These expressions 
are collected in Table 6.2. 

Table 6.2 Scattering Rates for Two-dimensional Electrons
Scattering Mechanism Scattering Rate 

1. Acoustic Phonon : 
Deformation
Potential
Piezo electric 

2. Optic Phonon : 
Non-polar

Polar

3. Defect : 
Ionized Impurity 

Alloy

Surface Roughness 

Meanings of symbols : kB - Boltzmann constant, T-Lattice temperature, s-Longitudinal
sound velocity, P-Piezoelectric constant, (hpx

2 /rs2∈s),qt = |kt – k't| = 2kt
2 (1 – cos β), kt , (k't)

being the electron wave vector before (after) collision, cos β = kt.k't/ktk't , E-Electron energy,
H(x)-Heaviside Unit function, mv - Velocity effective mass,NI(zi)-Concentration of impurity
atom at z = zi, N(zi)- Number of atom per unit volume at z = zi , All other symbols have
the same meaning as given in Table 7.1.
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The energy dependence of the scattering rates for 2D electrons are very different
from that for bulk materials. In fact, the scattering rate does not vary much with 
energy in 2D systems. This characteristic arises mainly from the step density 
of states and makes the temperature dependence of mobility very different in 
quantum wells. 

In the discussion of out-scattering rates, so far, carriers have been assumed 
to populate only the lowest subband and only intra-subband scattering has been 
considered. Expressions may be generalized to include inter-subband scattering. 

The form factors and the relations between Ek't and Ekt are altered to the 
following forms 

(6.47)

(6.48)

The initial and final subbands are indicated respectively by the indices l and
l' ; El and El' are the respective subband energies.

The integrals for the in-scattering rates may be evaluated by following the
same procedure. Only the additional factor cos β has to be included for elastic
scattering and the factor (k't / kt) cos β for inelastic scattering. This term becomes
zero in randomizing collisions e.g., in non-polar optic phonon scattering, in ideal-
ized deformation-potential scattering and in alloy scattering for which the matrix 
element is independent of q.

6.7.  Solution of the Transport Equation for 2DEG 

The solution of the transport equation is first discussed with the assumption that 
the wells are so narrow that the separation between the lowest and the next-to-
lowest subband is a few times the energy corresponding to kBT(kB is the Boltz-
mann constant and T is the lattice temperature). Carriers may then be assumed 
to populate only the lowest subband, a condition which is often referred as the 
extreme quantum limit(EQL). Extension of the analysis to conditions in which
more than one subband may be populated will be done after the discussion of the 
EQL solution. 

The equation has been resolved into two equations in Section (6.5), the first 
[Eq. (6.38)] of which gives the symmetric part f0 as the distribution function in 
the absence of the external field. The perturbation due to the external field is 
obtained as the solution of the second equation, [Eq. (6.39)]. It may be written 
by using the results of Section 6.6 as follows: 

(6.49)
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where Σ Souti is the sum of the out-scattering rates for all the different scattering
mechanisms, and Σ S ini is the in-scattering rate for the ith scattering mechanism
for which the initial energy is Ek't.

Solution of this equation is trivial for elastic (acoustic phonon and defect) 
and randomizing (non-polar optic phonon) scattering events. In elastic scattering,
since Ek't = Ekt the solution of the equation is simply,

(6.50)

For randomizing scattering, on the other hand, S ini = 0 and the solution is 

(6.51)

It is only in the case of non-randomizing inelastic scattering (polar optic phonon), 
that the solution is more involved. The equation may be written for polar-optic
phonon scattering as 

(6.52)

where the first term is the sum of all the out-scattering rates including that due 
to the polar-optic phonon scattering. The second term is the sum of the two 
in-scattering terms contributed by polar-optic phonons, the plus and minus sign
corresponding respectively to the emission and the absorption of a polar-optic
phonon, the frequency of which is ωl . The equation is a difference equation and 
cannot be solved straightaway, and different techniques, e.g.,variational method, 
matrix method and iteration methods[6.2] have been used in the past. The itera-
tion method, however, appears to be the most convenient as all the complexities
of scattering terms can be easily included and the numerical evaluation does not 
involve propagation of computational errors. The iteration may be done either 
by the Ritz method or the Gauss-Siedel method. In the Ritz method, values of
φ(Ekt + nhωl) are obtained for different values of n in the ith step of iteration by
using the iteration formula,

-

(6.53)

The starting value for i = 0 is taken to be zero. In the Gauss-Siedel method the 
iteration formula is 

(6.54)
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The Ritz method or the Gauss-Siedel method may be used to obtain results of 
similar accuracy, but the latter is a little faster. The methods are usually conver-
gent, but the convergence is assured and fast when the diagonal terms, i.e Souti is
larger than the other two terms, which is usually the case. 

Solutions for φ are illustrated in Figure 6.1 for the important mechanisms in
a 10 nm wide double-junction quantum well of Ga0.47 In0.53 As/InP systems.The 
perturbation φ is relatively independent of energy for the elastic scattering mech-
anisms. It varies strongly with energy for the polar-optic phonons scattering, and
drops drastically down when the carrier energy equals the optic phonon energy
and phonon emission starts, but it does not vary much till that energy is reached. 
It may, however, be recalled that the carriers populate mostly the energies below 
hωl because of the step density of states, unless it is so degenerate that the Fermi
energy is higher than hωl . The relative independence of energy is the character-
istic of 2-D scattering, which makes Hall ratio close to unity and causes a small 
value of magnetoresistance.

-
-

The above analysis may be easily extended when the carriers are distributed 
over different subbands, if the strength of intersubband scattering is negligible. 
Carriers in each subband may then be considered to constitute isolated systems and 
characterized by a different distribution function, for which the kinetic energy of 
the carriers may be measured from the subband energy. Specifically, the symmetric
part

Figure 6.1. The perturbation function ,φ, for a 10 nm double-junction quantum well of InP/Ga0.47In0.53As
[After B. R. Nag and S. Mukhopadhyay , Jpn. J. Appl. Phys. 31, 3287 (1992)].
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of the distribution function for the lth subband would be given by 

f0l = [exp(E + El – EF) / kBT + 1]–1

The asymmetric part φl would be given by the same equation as for the first 
subband, i.e., Eq. (6.52). The scattering rates would, however, be different due 
to differences in the form factor, G(qz), and the effect of nonparabolicity. The
perturbation φ may however, be obtained by solving Eq. (6.49) following the
same procedure as outlined for the first subband.

The solution gets involved, when the effect of inter- subband scattering is not
negligible. Equation(6.49) is then modified to 

(6.56)

where now the out-scattering term includes in addition to the intra-subband con-
tribution, the inter-subband contribution. The intra-subband in-scattering term 
is unaffected, but an additional term arises from inter-subband scattering. These 
equations may be solved in principle by using an iteration scheme similar to that 
used for a single subband. The iteration formula is then as given below : 

Such detailed solution has not, however, been reported by including all the scat-
tering mechanisms. Results are reported only for the polar optic phonon scatter-
ing[6.15].

6.8. Mobility

The current density is given by 

(6.58)

(6.59)

(6.60)

Replacing f by [see Section 6.51 

we get for the mobility, µ = |j /neε|, ( n is the areal electron density),

(6.57)

where mE = hkt)2/2E and mv = h2kt/(dE/dkt). The formula is applicable to
parabolic as well as to nonparabolic bands. In the latter case mE and mv are
required to be obtained by using thev proper E – k relation[6.3].

( - -
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This expression may be generalized when more than one band is occupied as 
follows:

(6.61)

The index l indicates the lth subband. The distribution function f0l is given by 

Eq. (6.55). The perturbation functions are required to be obtained by solving
Eq. (6.56) as discussed in Section 6.7. It should be noted that mvl and mEl are to
be evaluated by considering the total energy El + E.

Electron mobility is evaluated by using Eq. (6.60) when only one subband 

The perturbation function, φ has the dimension of time, and has the significance
of the commonly used relaxation time. which applies to randomizing and elas-
tic collisions. A relaxation time cannot be defined for more complex scattering
mechanisms, but φ gives for such mechanisms a measure of the time in which the
momentum gained from the external field is randomized. 

The integral in Eq. (6.60) may be evaluated only numerically in the general
case when all the complexities of nonparabolicity. finite barrier height and screen-
ing are taken into account. The Gaussian quadrature method is often used for

-this purpose. The total energy range is often broken into groups spaced by hωl

(ωl is the optic phonon frequency) to facilitate the iterative solution of Eq. (6.49)
as discussed in Reference 6.2. Such solutions are discussed at the end of this
section along with the experimental results.

The
function – (∂f0 / ∂E) behaves as a delta function when the material is extremely
degenerate, which is often true for the electron concentrations used in quantum
well devices. Under such conditions, Eq. (6.61) may be simplified to,

is occupied or by using Eq, (6.61) when more than One subband is occupied.

Analytic solutions may be obtained. however. for some special cases.

(6.62)

For large carrier concentration, EF has a large positive value, and it does not
vary much with the temperature. The temperature dependence of mobility is 
then determined only by the temperature dependence of the coupling constant 
and is not significantly affected by the energy dependence of φ. It is hence ex-
pected that alloy scattering will be independent of temperature, deformation po-
tential scattering will vary as T–1 and polar-optic phonon scattering will vary as
[exp(hωl /kBT) – 1]–1.

The integral may be evaluated analytically also for wells with non-degenerate
carrier concentration, infinite barrier height and parabolic bands, including the ef-
fect of screening. The integrated expressions are given in Reference 6.10, for single 
hetrojunctions. Alloy scattering-limited mobility is independent of temperature 
and deformation-potential scattering-limited mobility varies as T–1 as for degen-
erate electron concentration. The temperature-dependence for other scattering 
mechanisms can not be simply expressed by a power law. 
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Mobility of electrons and holes in single heterojunctions and in quantum wells 
has been extensively studied [6.16-86] since the publication of the first paper by
Dingle et al[6.16], showing the improvement in mobility achieved by modulation 
doping. A major part of the studies are related to the mobility at very low tem-
peratures, as the improvement due to the reduction of the effect of impurities is 
expected to be prominent at such temperatures. Such studies are useful for the as-
sessment of the quality of the sample, but, mobility values near room temperature 
are more relevant to the performance of the QW- devices.

Figure 6.2. Electron mobility in 2DEG. (a) Electron mobility in a GaAs/GaAlAs modulated 
single-junction well at different temperatures for a spacer width of 230 Å between the junction 

and doped GaAlAs. Full and open circles give the experimental points respectively for the electron 
density of 2.2×1011 cm–2 and 3.8×1011 cm–2 . (b) Electron mobility in In0.53Ga0.47/ Al0.52In0.48As
modulated single-junction heterostructure with spacer width of 80 Å . Dots are experimental 

points. Component mobilities are calculated values for electron density of 4.5×1011 cm–2. The up- 
per and lower curves for impurity scattering are respectively for impurity concentration of 0.5× 1016

cm–3 and 1 × 1016 cm–3, Alloy scattering potentials are 0.55 eV and 0.63 eV respectively for the
upper and the lower curve.[After W. Walukiewicz, H. E. Ruda, J. Lagowski and H. C. Gatos, Phys.
Rev. B 30, 4571 (1984); Copyright (1984) by the American Physical Society]. 



158 CHAPTER 6 

6.8.1. ELECTRON MOBILITY IN AlGaAs/GaAs AND AlGaAs/InGaAs 
SINGLE HETEROJUNCTION, AND InP/GaInAs QW’s

In Fig. 6.2 are illustrated the variation of electron mobility with temper-
ature in GaAs/GaAlAs and AlIAs/GaInAs single heterojunctions[6.10] and in 
InP/GaInAs[6.3] quantum wells. Figure 6.2 shows that ionized impurity scat-
tering contributes significantly only at very low temperatures. Contribution of' 
piezo-electric scattering is also not very significant. 

Mobility is mostly determined by the acoustic phonon scattering and alloy 
scattering near liquid nitrogen temperature. But, near room temperature the 
polar-optic phonon scattering dominates. 

Calculated values of mobility in GaAs single heterojunctions are also compared 

Figure 6.3. Calculated values of electron mobility in InP/Ga0.47In0.53as double-junction wells of 
different widths. The dashed lines are for very small carrier density of 0.97× 1012 m–2. Numbers 
on the curves give the lattice temperature. The bars give the range of experimental values. Values 
for Al0.48In0.52As wells are shown by open circles. Deformation potential acoustic and optic phonon 

scattering and alloy scattering were included in the calculations. [After S. Mukhopadhyay and B. 
R. Nag, Phys. Rev. B 48, 17960 (1993); Copyright (1993) by the American Physical Society]. 
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with the experimental results in Fig. 6.2(a,b) and 6.3. 
The theory as discussed here is found to agree with the experimental results 

fairly well, provided some of the coupling constants are adjusted. The main dif-
ficulty in explaining the transport results by theory arises from our insufficient 
knowledge about the coupling constants. The dielectric constants, acoustic phonon 
deformation potential and alloy potential are not known with sufficient accuracy. 
On the other hand, experimental transport coefficients may be fitted by adjusting 
their values and this procedure has been used to estimate their values, which has 
resulted in controversies raging over decades. The only justified conclusion is that 
the theory gives the right kind of temperature and energy dependence, and helps 
us to estimate the relative importance of different scattering mechanisms. 

In-plane electron mobility have been studied in recent years for quantum wells 
using a few other systems. Mention may be made of the In0 Ga0.5P/GaAs [6.79-81]
and AlGaN/GaN[6.82-86] quantum wells.

6.8.2 ELECTRON MOBILITY IN InGaP/GaAs QW’s 

Replacement of AlGaAs by InGaP with lattice matching composition In0.5Ga0.5P
is expected to remove many of the problems involved with aluminum, e.g., high 
growth temperature, low doping efficiency and persistent photocurrent effects due 
to the presence of DX centers. It was also expected that the quality of the interface 
may also be better in this system in comparison to that in AlGaAs/GaAs struc- 
tures, particularly in the inverted structure. Studies have been made to examine
this possibility by studying the electron mobility at low temperatures, e.g.,20 K.
The mobility is dominantly controlled for such temperatures by the IFRS and 
therefore gives an indication of the surface roughness. We find from the expres-
sion for scattering rate given in Table 6.2 for IFRS the mobility is proportional 
to the inverse of the sqare of the differential coefficient of energy eigenvalues with 
respect to the well width, e. g., (∂E /∂L)–2. Since the eigenvalue of energy e varies
as L–2 in infinite-barrier wells , the IFRS-limited mobility is expected to vary as
L6. The so-called L6 law is approximately true for the AlAs/GaAs wells [6.79]. On 
the other hand, the electron mobility in InGaP/GaAs wells were found [6.80] to 
be much larger for wells of small width than that obtained from the L6 law. These 
large values of mobility were accepted as evidence of largo values of correlation 
lengths of roughnesses in these wells.It has, however, been found [6.81] that the 
deviation from the l6 law may also be due to the low value of the barrier height 
in this system. The barrier height has not yet been conclusively established for 
this system and hence the problem remains open at present. It may be mentioned 
that experimental or theoretical results are not available for InGaP/GaAs single 
heterojunctions or quantum wells for higher temperatures although a number of 
studies have been reported for low temperatures. 
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6.8.3.  ELECTRON MOBILITY IN AlGaN/GaN QW’s 

Results on the electron mobility in AlGaN/GaN QW’s have been reported by 
Redwing et al [6.82]. The mobilities were found to be 1700 cm2/V.s at 300 K 
and 7500 cm2/ V.s at 77 K. It was also found rthat the mobility varies with the 
aluminum content of Alx Ga1–x N and peaks at composition close to x = 0.2 for
MOCVD-grown layers , and for x = 0.4 for MBE-grown layers. Theoretical values
of mobility have also been studied for this system [6.85]. The theoretical values 
of low-temperature mobility are higher by about two orders of magnitude. The 
descrepancy has been attributed to residual scattering centers. The variation of 
mobility with the composition of AlGaN is also not yet well understood [6.86]. It 
may be concluded that the from the available data that the material properties in 
this system are not yet properly known for comparison with the theory. 

6.8.4 GENERALIZED EXPRESSION FOR MOBILITY 

The generalized expression for the mobility when more than one subband is pop-
ulated is given by Eq. (6.61). This equation is required to be used for large well 
widths.

The structures used in quantum well devices, however, are of small effective
widths. Population of higher subbands may, therefore, be considered unimportant 
for the estimation of mobility in quantum well devices. 

The wells for the devices, however, may be so narrow that the effects of wave 
function penetration becomes important. Wave function penetration increases mo-
bility by reducing effectively the form factor, and at the same time decreases the 
mobility by increasing the effective value of mv since the barrier mass is usually 
larger than the well mass. The net effect may be assessed only by detailed calcu-
lations. Some calculations [6.3] reported in the literature indicate that the effect 
may be important and will then be required to be incorporated into the theory. 
This may be particularly important for wells of strained- layer structures in which 
the well width is required to be narrower than 4 nm for preventing the appearance 
of crystal dislocations. 

6.9.  High-field Velocity of 2DEG 

Electron mobility is independent of field for low fields and Ohm’s law applies. The 
velocity increases linearly with the field. It is, however, found in quantum wells 
as in bulk materials, that the relation becomes nonlinear for high values of the 
field. The velocity saturates and in some cases decreases with increase in the field 
at high fields. Since the operating condition of the devices usually extends to this 
region, the switching speed and the transconductance are very much dependent 
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on this saturation velocity or the high-field velocity characteristics. Velocity-field

characteristics become nonlinear for high fields due to the so-called hot-electron
effect. A very extensive literature exists on this effect and the interested reader 
may consult Reference 6.2. One way to explain the effect is as follows. Equat-
ion (6.38) was obtained from the transport equation, Eq. (6.36), by assuming that 
the field is small and consequently the product of the field and the perturbation 
term, which is proportional to ε2 may be neglected. This assumption evidently
fails at high fields. Equation (7.38) is modified to the following equation when this
term is retained. 

(6.63)

Evidently for high fields the symmetric part of the distribution function f0 , is 
a function of the electric field and is different from the zero-field function. As a 
result, electron mobility, being proportional to (∂f0/∂E) varies with the field. The
nature of variation is determined by the characteristics of the scattering mecha-
nisms. Since the average energy of the electrons usually increases with the field, 
the mobility is expected to increase with the field for those mechanisms for which 
the scattering rate decreases with increase in the electron energy as in impurity 
scattering or polar-optic phonon scattering in parabolic-band materials. The mo-
bility may decrease with increase in the field and lead to velocity-saturation if the 
scattering rate increases with increase in the electron energy as in deformation-
potential acoustic phonon or alloy scattering or for other scattering mechanisms 
in bulk nonparabolic materials. However, at high fields since the electron en-
ergy is much enhanced, some scattering mechanisms, normally ineffective for low 
fields, become important and cause velocity saturation and in some cases a de-
crease of velocity with increasing field. The most effective such mechanism is the 
non-equivalent intervalley scattering in bulk materials. 

In quantum wells, on the other hand, conditions are more complex. The aver-
age energy of the electrons may exceed the barrier potential and then the electrons 
do not remain confined within the wells, but may move about in the barrier layers. 
This so-called electron transfer effect[6.52,53] causes a decrease of velocity with in-
creasing field since the mobility in the barrier material is lower than that in the 
well. Even for those electrons which remain confined, the wave functions become 
very different and the scattering is of different nature. Also, as in bulk materials 
non-equivalent intervalley scattering becomes effective, but in this case a 2D elec-
tron may be scattered into a 3D state or the vice-versa. Inter-subband scattering 
also plays a more and more dominant role as the average energy increases. Be-
cause of all these factors, it is very difficult to work out or to predict the high-field
velocity characteristics of 2DEG in quantum well structures. The straightforward 
expectation, that since for most of the scattering mechanisms the scattering rate is 
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independent of energy or decreases slowly with energy in quantum wells the veloc-
ity will increase linearly or runaway at high fields, is not seen in experiments. Only
a few experiments have, however, been performed. Some of them show saturation
of velocity but a few show decreasing velocity with increasing field. Considering
that the knowledge of the characteristics is very important for understanding the
devices, the available experimental and theoretical results are presented, although
these are far from being complete for a thorough discussion of the subject.

6.9.1. THEORY

The theory developed for the evaluation of hot-electron characteristics of bulk
materials is applicable also to the 2D EG in quantum well structures. The 2D
character only changes the density of states and the formulae for the scattering
rates and the other integrals are required to be modified accordingly. Analyses
reported in the literature have been done by using the displaced Maxwellian ap-
proximation method and the Monte Carlo method.

Displaced-Maxwellian Approximation 
The functional form f

0
of is assumed in this approximation to be displaced

Maxwellian, as written below:

(6.64)

where In = [∫ f0d2kt]-1 is the normalization integral, kt0 is  the average value of 
the wave vector in the direction of the field and Te is the effective temperature. 
This function is chosen from the considerations that as the electrons are ener-
gized by the field, their average velocity and energy increase. However, for large 
electron concentration due to frequent electron-electron collisions their velocity is 
shared. Hence, electrons have identical average velocity although a particular elec-
tron may attain a different velocity due to the difference in actual collision time.
Also, when electron-electron collisions are frequent the distribution function must 
be Maxwellian (for non-degenerate concentration), but as the average energy is 
increased from the no-field value, i.e.,kBTL(TL is the lattice temperature) the elec-
tron temperature has a different value. It is because the value of the temperature
is higher, that the high-field transport is often referred as hot-electron transport.

The average value of the wave vector k t 0 and the electron temperature Te , are 
obtained by balancing the energy and momentum gained from the field to those
lost through collisions. The necessary equations are obtained by multiplying the 
two sides of Eq. (6.36) by E and kt and integrating over the in-plane phase space.
The common wave vector kt0 and the drift velocity are obtained by solving the 
resulting equations. 
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Monte Carlo Method 
The application of the displaced-Maxwellian approximation method, although jus-
tified for very high electron concentration as exists in quantum well devices, is 
difficult when all the different scattering mechanisms, energy band nonparabol-
icities and partial confinement effects are to be taken into account. The Monte 
Carlo method is considered to be more versatile and has been used extensively 
to derive the hot- electron characteristics of quantum wells as for bulk materials. 
The method is discussed in details in Reference 6.2. However, a brief outline is 
given below. 

The basic idea is to simulate on the computer the trajectories of a single or 
an ensemble of electrons. In the first step of simulation the electron is given an 
energy Ei and wave vector kti which may be chosen arbitrarily if the interest is
in the calculation of the steady-state velocity. If, however, the interest is in the 
calculation of the time and position- dependence of the average velocity after the 
field is applied, the initial energy and wave vector are chosen according to the 
zero-field room temperature distribution. 

In the second step, the time of the subsequent scattering is computed by using 
a uniformly distributed random number r1 , and the following formula. 

tc = –Γ log(1 – r1), (6.65)

where Γ is a suitably chosen constant, larger than the total scattering rate due to
all the scattering mechanisms. 

After determining the collision time, the energy and the wave vector of the
electron before collision are computed by using the equations : 

ktf = k ti + (eε/h)tc
-

-

(6.66)

(hktf)2/2m* = F(Ef), (6.67)

where kti is the initially chosen wave vector, ktf is the wave vector at the collision
time tc , immediately before collision; ε is the applied field, m* is the band edge
mass and F(E), is a function relating energy E to the wave vector. For parabolic
bands F(E) = E, whereas for nonparabolic bands obeying the simplified Kane
relation F(E) = E(1 + αE) (α is the nonparabolicity parameter). It may be
chosen to be more complex as required by the material properties. The scattering
probabilities for the different scattering mechanisms are next computed for the 
electron energy at time tc. These may be computed directly at this stage or may 
be obtained by interpolation from look-up tables prepared before the start of the 
simulations. A second random number is then generated to determine which kind 
of scattering occurs by using the inequality. 

and

(6.68)
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where the left-hand side sum is the total scattering probability for (n– 1) scattering
mechanisms and the right-hand side sum is the value obtained by including another 
scattering mechanism. When this inequality applies, the nth mechanism is taken
to be effective. If, however, r2 is larger than the sum, including all the scattering 
mechanisms, the scattering is taken to be the so- called self scattering, which is 
really no-scattering.

After knowing the kind of scattering in the second step, explained above, the 
energy and wave vector of the electron after the scattering are determined by 

generating a third random number r3 and by using the equations: 

(6.69)

(6.70)

(6.71)

where θ is the angle between kt f and ε and β that between ktf and kti after collision
and ±∆E is the change in energy of the electron in the particular scattering.

This process is repeated several thousand times to generate data about ktf

and k ti and the free time tc in between the scattering events. These data are 
then utilized to evaluate the different transport coefficients by using the relevant
descriptors. The drift velocity is given by 

The diffusion constant is given, on the other hand, by, 

where ts is the sampling time, and < vt > is the average velocity during this time. 
In materials, for which the electron concentration is such that the nondegener-

ate statistics applies and electron- electron scattering is negligible, the simulation 
may be done by considering one electron and recording its trajectory over a long 
time. If, however, electron-electron scattering be important, the ensemble simula-
tion is required since inclusion of this scattering requires knowledge of the energy 
distribution function. 

The method has been used extensively to work out the drift velocity in both 
single heterojunctions and quantum wells. In some of these simulations, degen-
eracy, electron-electron scattering, electron transfer effect and intersubband and 
nonequivalent scattering have been included. The effect of electron-electron scat-
tering is not very significant on the drift velocity , as may be expected. Electron-
electron scattering really changes the distribution function and causes sharing 
of the momentum between the electrons without causing a change in the total 

(6.72)

(6.73)
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Figure 6.4. Hot-electron velocity-field Characteristics at 300 K. The dashed curves are for 2DEG 

in AlxGa1– x As/CaAs samples with x = 0.5. The full curve is for bulk GaAs with electron density
of 1×1015 cm–3. [After W. T. Masselink, Semicond. Sci. Technol. 4, 503 (1989); Copyright IOP 
Publishing Ltd.]. 

momentum of the system and the drift velocity is not much sensitive to the exact 
form of the distribution function. The simulations indicate that at high fields, 
the electron velocity decreases in quantum wells with increase in field as in bulk 
materials.

6.9.2 EXPERIMENTAL RESULTS

Experimental results on high-field characteristics are given in Fig. 6.4. The deter-
mination of the characteristics in the negative differential mobility region is difficult 
for quantum wells both experimentally and theoretically. The time-of-flight tech-
niques, both dc and microwave, which have been used for bulk materials to obtain 
reliable characteristics, cannot be applied conveniently to obtain the in-plane drift 
velocity. Data have been obtained by either measuring the current-voltage char-
acteristic of dumbbell shaped samples[6.60-62] or by shining with microwaves and 
measuring the low-field dc conductivity[6.63]. 

On the theory side, simulations for the energies corresponding to the peak 
velocities involve many approximations. The quantum confinement is likely to be 
significantly altered at such energies and this alteration occurs dynamically. Exact 
formulation of the intersubband and intervalley scattering is also difficult as the 
quantized picture of the higher-valleys is riot very clear. Because of these reasons, 
the high-field drift velocity obtained from these studies should be considered as 
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guiding values rather than the exact values, when used in the design of devices. 

6.10.  Scattering- induced Broadening of Photoluminescence Spectrum

It was mentioned in Section 5.5 that the broadening of photoluminescence spec-
trum is partly due to the scattering of excitons. The scattering rate for excitons 
is computed by applying the Golden rule and using the wave functions and dis-
persion relations for excitons in quantum wells. These expressions, given in Sec-
tion 5.3, are repeated below: 

(6.74)

(6.75)

where fe(ze) and fh(zh) are respectively the z-component of the envelope functions
for electrons and holes in the quantum well. G(ρ, z) is the envelope function for
the exciton, ρ and z being respectively the in-plane and the z component of the
relative coordinates of electrons and holes. K, R, M are the wave vector, the 
in-plane coordinate of the center of mass and the effective mass of the exciton, 
These are related to the corresponding quantities for electrons and holes, indicated 
respectively by the subscripts e and h, by the following relation: 

(6.76)

Ec 0 and Ev0 are the magnitudes of the energies of the lowest electron and hole sub-
bands measured from the band edges. The scattering rate for lattice scattering for 
an exciton with the initial wave vector Ki is given, according to the Golden rule by, 

(6.77)

where Kf, Ki and Eexi, Eexf are respectively the final and initial wave vectors
and energies of the exciton, Nf(Eexf) and Ni(Eexi) are the final and the initial
exciton populations, nq and q are the phonon occupation factor and wave vector. 
M(Ki, Kf) is the matrix element for scattering from the Ki -state to the Kf - state.
It is also assumed that the excitons are created by a strong source of illumination

The central task in , evaluating the scattering rate is the formulation of the
matrix element. The matrix element is formulated by suitably modifying the 
electron-phonon interaction matrix elements discussed in Section 6.2. It should, 
however, be noted that the excitons are strongly coupled electron-hole pairs, and 

so that [Nf(Eexf) + 1] ≈ Ni(Eexi) ≈ 1.
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as such are not expected to be affected by the electronic potential originating
from the different kinds of imperfections which scatter free electrons or free holes 
if the electrons and holes are equally affected. However; as the electrons and holes
belong to different bands, the imperfections affect them differently. For example, 
the acoustic phonon deformation potentials are different for the electrons and 
the holes. As a consequence of this difference, electrons and holes are affected 
by different amounts and a net effect is observed. Further, in the dynamics of 
excitons, although the electron-hole pair moves as one particle, the motion being
indicated by the center of mass, the individual motions of the electron and the hole 
are different. This difference also causes a scattering for the scattering mechanisms 
for which electrons and holes see the same potential. 

Evaluation of the matrix element by including all the complexities of the ex-
citonic wave function, particularly for quantum well systems, is very difficult and 
has not been attempted so far. Some illustrative results have been obtained by 
introducing simplifying approximations. But, even with these approximations, the 
analysis is too complex and not much will be gained by discussing them. The in-
terested reader may consult Reference 6.64, for acquaintance with these results. 
We discuss instead the basic approach used for the analysis and the final expres-
sions which may be used to explain the experimental results or for designing the 
opto-electronic devices. 

We consider deformation-potentia1 acoustic-phonon scattering for explaining 
the basic approach. In principle, the matrix elements is given by, 

(6.78)

It may be easily appreciated that evaluation of the above expression is almost im-
possible by substituting the expressions for ∆V for the different scattering mecha-
nisms, discussed in Section 6.6 and for ψex the expression discussed in Section 5.1.3.
It may however, be shown that the integral may be separated into two components:
one involving the interaction with the electron and the other with the hole. As 
the electron and the hole have opposite but equal charge, and have,therefore,equal 
but opposite potential energy in a common potential, the net matrix element is 
the difference of the two components. 

The component for the interaction with the electron may be written as 

(6.79)

where ρ , z 'e , zh'(ρe, ze, zh) are the coordinates of the exciton after (before) scatter-'
ing. G(ρ, z)fe(ze)fh(zh) is the excitonic envelope function. Ee is the deformation 
potential for the electron. These coordinates are not affected by the scattering;
only the energy and wave vector of the exciton and the phonon change.
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The integral may hence be written as, 

(6.80)

The exponential term within the integral is obtained by considering that a non-zero
value of the integral is obtained only if, 

(Ki + qt).R – Kf.R = 0. (6.81)

The integral is evaluated by introducing the assumptions that the barrier potential
is infinite, the well is very narrow and the excitonic envelope function is given by
(see Section 5.1.3 d)

G(ρ , z) = In exp(–βρ/2), (6.82)

where β is a variational parameter to be determined for the minimization of the
energy.

We may write, 

(6.83)

(6.84)

The component of the matrix element due to the electron may now be simplified 
to

where

(6.85)

γ e = [1 + (αh|Ki – Kf/β)2)]–3/2. (6.86)

The component due to the hole may be evaluated by following the same procedure 
and the total matrix element written as,

(6.87)

The scattering rate is now obtained by substituting the above expression for
M(Ki, Kf) into Eq. (6.77), converting the summation to integration and carrying
out the integrations. We obtain,

(6.88)

Equipartition approximation has been used, i.e. we have assumed that nq ≈ 
nq + 1 ≈ kBT/hwq . The phonon dispersion relation has been assumed to be
linear, i.e. ωq = sq, where s is the sound velocity. Integration over Kf is carried 

-

out by using the property of the delta function. The scattering is assumed to be
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where we have put 

elastic i.e., hwq is considered negligible in comparison to the kinetic energy, of the
exciton. Expression (6.88) may be further simplified by considering that β is about
1/2aB(aB is the Bohr radius) and its numerical value is about 10 m–1 . The value
of Ki is about an order lower. We may hence either neglect (αhKi/β)2 or (αeKi/β)2

in comparison to unity, or replace γ e(γ h) by suitable average values γ e(γ h).--

Equation (6.88) then simplifies to

(6.89)

(6.90)

Expression (6.90) is the same as that for the scattering rate for electrons multiplied
by (γ e – γ hEh/Ee)2 . The scattering rate for excitons may, therefore, be estimated––

from the values for free electrons, by multiplying by a factor. It is, however, difficult
to accurately estimate the value of this factor due to incomplete knowledge about
Ee and Eh . There being no established direct method for the determination 
of their values, indirect methods have been used and the reported values differ
by large factors. This difference is further enhanced in the case of excitons as the 
scattering rate is proportional to the square of the difference of the two deformation 
potentials.

Similar results are obtained for other elastic scattering mechanisms: piezoelec-
tric scattering, alloy scattering and interface roughness scattering. The factors
are respectively, -(γ e – γ hhe/hh)2, (γe – γh∆Eh/∆Ee)2 and (γ e – ghme

* ,/m *
h ), where--- -

he( hh), ∆Ee(∆Eh) are the piezoelectric constants and alloy potentials for elec-
trons(holes). As for deformation potential scattering exact estimation of these
factors is rendered difficult by our incomplete knowledge of the different coupling 
constants. The scattering rates for the impurities and the polar optic phonons 
are still more difficult to formulate. Location of the impurities play an important
role. Although no detailed theory has yet been attempted, it may be expected 
that the scattering rate will be given by the free electron scattering rate multi-
plied by a factor as for the other elastic scattering processes. The factor would 
be (γ e – γ h)2. However, impurities play a relatively unimportant role in quantum--

wells as these are usually segregated from the active layer. Effect of impurities on 
the broadening may, therefore, be considered insignificant. Polar optic phonons, 
on the other hand, would be very important particularly near room temperature, 
as observed from the analysis of the mobility of free carriers in quantum wells. 
Analysis of the effect of this scattering on excitons is, however, extremely compli-
cated. The energy of the polar optic phonons (30-40 meV) is much larger than 
the binding energy of excitons (~10 meV). Hence, the scattering may result in the 
ionization of the exciton, transition to an excited state or to just an increase in 
the kinetic energy associated with the motion of the center of mass. Although, 
some expressions have been given in the literature[6.65] for the estimation of po-
lar optic phonon scattering rate, these should be considered incomplete as all the 
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above-mentioned possibilities are not considered. The only acceptable conclusion 
is that the rate will be proportional to the phonon occupation probability i.e., to 
[exp(hωl/kBT) – 1]-1–

It should be evident from the above discussion that estimation of scattering
for excitons is less accurate than that for the free carriers. This is partly due 
to the complicated nature of the exciton wave functions, small binding energies 
and closely spaced excited levels, and partly because, the inaccurate knowledge of
the interaction constants affect strongly the computed values. We may, however, 
conclude that the rate will vary with the well width and the temperature like the 
scattering rates for the free electrons. Accordingly, it is expected that the variation 
of the line width with temperature will be given by the following relation. 

(6.91)

where Γ 0 represents the contribution from alloy scattering, interface roughness
and other structural defects, discussed in Section (6.6), Γ 1T , the contribution
from the acoustic phonons and the third term from the polar optic phonons. An
experimental[6.66] curve for Γ (T) is given in Fig. 6.5 for a 102 Å wide well. The
curve may be fitted by taking Γ = 2 meV, Γ 1 = 0 and Γ 2 = 5.5 meV. The line-
width broadening may, therefore, be ascribed for temperatures below 100 K to
structural imperfections and for temperatures above 100 K, mainly to polar optic 
phonon scattering. 

The broadening may, therefore, be expected to vary with the well width like 

Figure 6.5. Temperature dependence of the half-width of heavy-hole exciton peak. Experimental 
points are shown by circles and error bars. The solid lines give the calculated values with adjusted 
values of Γ 0 and Γ 2 of Eq. (6.91).[After D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C.

Gossard and W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984); Copyright: (=A9
1984=IEEE)].
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Figure 6.6. Photoluminescence full width at half maximum (FWHM) for different well widths. 

Solid line is the calculated FWHM for an average well width variation of one monolayer. tb -
Interruption time between the growth of Ga0.47In0.53As and InP.[After D. Grützmacher, K. Wolter, 
H. Jürgensen, P. Balk and C. W. T. Bulle Liewma, Appl. Phys. Lett. 52, 872 (1986); Copyright 

American Institute of Physics]. 

the inverse of optic-phonon scattering- limited mobility near room temperature 
and as the inverse of defect scattering-limited mobility at low temperatures. Ex-
perimental data on the dependence of room temperature line width on well width 
are not, however, available. 

Data are available for near helium temperatures[7.78] and these are presented 
in Fig. 6.6. The line-width is almost independent of the well width down to about 
7 nm, but increases with decrease in the well width for smaller widths. Attempts 
have been made to explain the variation by invoking the various broadening mech-
anisms, particularly the interface roughness scattering. However, exact agreement 
can hardly be expected, since the parameters of the scattering mechanisms which 
cause broadening at low temperature (see Section 6.6) may not remain the same 
for samples of different widths as these depend on growth conditions. 

6.11.  Ballistic Transport 

The theory of transport, discussed in the preceding sections, has been based on 
the Boltzmann transport equation and a semiclassical description of the electron 
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motion. Electrons have been assumed to move as particles in between collisions in 
response to the external forces. Effects of collision have been evaluated, however, 
by using the quantum perturbation theory to determine the state of the electron 
after the collision. Further, it has been assumed that the collisions are isolated 
in space and time, and the electron is unaffected by the external forces during 
the collision. Collisions arc also assumed to be frequent enough in comparison to 
the transit time across the device so that the phase coherence is destroyed and 
a quasi-equilibrium condition prevails in the distribution of the electrons in the 
momentum space. These assumptions are applicable to sufficiently long samples 
and the dimensions of the quantum well devices discussed in this book, are such 
that they remain valid. The assumptions are not, however, justified for short 
samples.

Interest was generated [6.87] at one time in the study of electron transport in 
short samples with the expectation of realizing fast devices by exploiting the higher 
velocity obtainable in collision-free ballistic motion in such samples. Electron 
transport in short samples was analyzed by treating the electrons as particles 
and making essentially vacuum-tube-like calculations[6.88]. However, the ideal 
conditions could not be realized in practice and development of devices using 
collision- free ballistic motion in short bulk samples has not made much progress. 

A different kind of ballistic transport is, receiving attention currently, which 
may occur in short quantum-wire-like structures. The transport is analyzed by 
a formalism, which is often referred as the Buttiker-Landauer formalism[6.89-94].
In this formalism, the analysis of the interaction of the electron with a scatter-
ing center is not based on the perturbation theory but on the scattering matrix 
for the electron wave. The method was applied to calculate the resistance of a 
one-dimensional medium with a series of independent scatterers[6.90]. Recent ex-
periments on electron transport in ballistic one-dimensional channels have added 
further importance to this method. This aspect of electron transport is not: how-
ever, discussed here as the phenomenon is not relevant to the devices of interest 
in this monograph. 
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HIGH ELECTRON MOBILITY TRANSISTOR (HEMT)

The superior opto-electronic and transport properties of quantum well struc-
tures have been utilized to realize better performance characteristics of transistors, 
lasers and nonlinear optic devices. The basic principles of operation of these de-
vices are the same as those of the corresponding devices using bulk materials. But, 
the operating characteristics are required to be worked out by taking into account 
the confinement and the 2D motion of the carriers. 

In addition, new devices have also been invented by utilizing the peculiar tun-
neling properties in quantum well structures. These properties may be used to 
realize oscillators in the tera-hertz range, for realizing multi-functional devices or 
for high speed switching. 

The principles of operation and the functional characteristics of these devices 
are discussed in this and in the following chapters. The basis of this discussion are 
the physical properties explained in the preceding chapters. 

Field-effect transistors were developed using single- junction heterostructures
as soon as the high mobility property of electrons in these structures were known. 
These transistors were named high electron mobility transistor (HEMT) by one 
group of workers[7.1]. Several other names, TEGFET[7.2], MODFET[7.3,4], and 
SDFET[7.5] are used for these devices[7.6]. The name, HEMT, being most popular 
it is used in this book. is used instead The structure,the operating principle and 
the experimental results of this device are discussed in the following sections. 

7.1.  Structure and Principle of Operation 

The structure used for HEMT’s is shown in Fig. 7.1. Basically, the structure 
consists of a semi-insulating GaAs substrate, on which is first grown a thin GaAs 
layer; then an undoped AlGaAs layer, then a doped AlGaAs layer and finally 
another thin GaAs layer. Typical widths of these layers are shown in Fig. 7.1. 
The transistor is finally realized by depositing aluminum to form a Schottky barrier 
and serve as the gate, and by providing two ohmic contacts to serve as the source 

173
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Figure 7.1. Schematic diagram showing the structure of a HEMT. Quantum well is formed in 

the GaAs layer near the interface with the Al0.3Ga0.7As. Carriers are supplied by the doped 

Al0.3Ga0.7As layer. 

and the drain. 
The transistors may be operated in two modes, normally-on mode and normally-

off mode. These are determined by the thickness of the AlGaAs layers. When these 
layers are thick enough, charge is supplied by the layer to fill up the surface states 
at the interface between it and the gate metal and also to the GaAs layer for the 
alignment of the Fermi levels. The transistor is normally-on. If, on the other hand, 
the barrier layer is made thin, then the charge available in the layer is not enough 
to cause alignment) of the Fermi levels and the GaAs layer is required to supply 
additional charge. The layer being depleted, the transistor is normally-off. Both 
these kinds of transistors are required for different functional circuits. These may 
be constructed on the same chip and such realizability is considered to be a great 
advantage in using HEMT’s.

The current between the source and the drain contacts is controlled, as in 
other FET’s, by applying a voltage between the gate and the source. Application 
of the volatage causes a. redistribution of the charges and in effect alters the carrier 
density and hence the current through the channel formed by the quantum well in 
the GaAs layer near the heterointerface. An expression for the current is obtained 
by first working out the potential distribution in the structure and determining the 
carrier density, and then using the mobility-field relations to evaluate the current 
as explained below. 
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7.2. Potential Distribution and Accumulated Charge Density 

The potential distribution in the presence of a negative voltage Vg between the 
gate metal and the GaAs layer is as shown in Fig. 7.2. The Fermi level is aligned 
in the AlGaAs and GaAs layer, whereas that in the metal is lower by Vg ,Two
depletion regions are produced, one near the gate metal (region I) and the other
near the heterointerface (region II). In region I, electrons collect on the metal
surface, the Fermi level in which is initially lower than in AlGaAs, to produce a 
negative electric field εs . The positively charged ionized donors in the AlGaAs
layer produce a positive field gradient which counteracts εs and at some distance 
d1 , completely annuls it to produce equilibrium. The consequential band bending
causes the alignment of the Fermi levels as shown. The potential energy of the
electron in this region, measured from the Fermi level, is given by,

The direction perpendicular to the interfaces has been chosen as the z direction,
the x direction being chosen along the length of the device. The doping and the 
electron concentration are taken respectively as Nd(z) and n(z). The first term is

Figure 7.2. Potential distribution in a HEMT. ∆Ec - Conduction-band offset between GaAs and
AIxGa1–xAs. EF1 and EF2 arc the Fermi levels in AlxCa1–xAs and GaAs Iayers respectively. A
voltage Vg is assumed to be applied to the gate. 
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the potential at z = 0, due to the surface barrier potential Vs and the applied gate
voltage Vg . The second term gives the potential drop at some distance z due to
the surface field εs. The third term is the increase caused by the charges in the
layer, e and ∈2 being respectively the charge of the electron and the permittivity of
AlGaAs. We assume that the AlGaAs layer is doped uniformly upto the distance dd

and is completely undoped for another length dv , adjacent to the heterointerface. 
The expression for VI(z) may be simplified by neglecting n(z). The simplified
expression is as follows:

VI (z) = Vs – Vg + εsz + az2,

where
a =| e | Nd /2∈2.

The field in this region is given by 

εI = εs + 2az.

(7.2)

(7.3)

(7.4)

At the equilibrium distance d1 , the field is zero and V I(d1) is equal to the
conduction-band edge energy of AlGaAs, EF2. Putting these conditions we get

εs = –2ad1. (7.5)

The depletion near the heterointerface (region II) is caused by the migration of 
the electrons from the AlGaAs layer to the GaAs layer, the conduction-band edge
of which is lower in energy by ∆Ec . We assume that this depletion region extends
upto the distance d2 . The field and the potential in this region are respectively 
given for d2 < z < dd by,

εII (z ) = 2a(z – d2)

and
| e | VII(z) = EF2+ | e | a(z – d2)2,

and for dd < z < d by,
ε II (z) = 2a( dd – d2) ,

and

(7.6)

(7.7)

(7.8)

(7.9)| e | VII (z) = EF2 + e | a(dd – d2)[2z – (dd + d2)]

The potential distribution in the GaAs layer may be computed by applying the 
boundary conditions: 
(a) The potential energy decreases by the discontinuity in the conduction-band
edges, ∆Ec, at the interface.
(b) There is no surface state at the interface and the displacement is continuous 
across the interface. 
(c) The GaAs layer is completely undoped. 
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The field in the GaAs layer is then given by, 

(7.10)

where n(z) and ∈1 are respectively the electron concentration and the permitivity
in GaAs and d is the total width of the AlGaAs layer.

increases from its value at the interface to the bulk value at some distance d∝ ,
where the field becomes zero, ie., 

The field decreases with the distance, and the corresponding potential energy

(7.11)

or when the total accumulated charge is equal to the depletion charge. 
The potential distribution may be altered by changing the gate volatage. How-

ever, the gate voltage changes only the depletion layer width in the metal side so 
long as d1 remains less than d2 . At some threshold voltage, d1 becomes equal to
d2 and the whole AlGaAs layer is depleted. Further change in the gate voltage
controls the accumulated surface charge density and the device then works as a
FET.

The threshold voltage for charge control, Vth1, is obtained by eliminating d1 =
d2 from Eq. (7.2) and Eq. (7.7) and using the relation (see Fig. 7.2),

| e | V II(d) – ∆Ec + EF1 = 0, (7.12)

where EF1 is the Fermi energy in the GaAs layer measured from the conduction-
band edge at the interface as shown in Fig. 7.2. The threshold voltage is, 

(7.13)

(7.14)
where

Charge accumulated in the GaAs layer for operating conditions may be obtained 
from the field produced at the interface under the complete depletion regime of 
the AlGaAs layer. The field and the potential are respectively given by 

ε(d) = ∈s + 2add. (7.15)

V (d) = Vs – Vg + ∈sd –. add
2 + 2addd. (7.16)

The surface field εs is evaluated by using Eq. (7.16) and relation (7.12). It is given
by,

ε s = (1/d)(V g – Vs + ∆Ec / | e | – EF1 / | e | +ad d
2) – 2add .

Putting in Eq. (7.11) we get,

ε(d) = (1/d) (Vg – Vs + ∆Ec / | e | –EF1 | e | +ad d
2 ).

(7.17)

(7.18)
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The accumulated areal charge density is, hence

(7.19)

The Fermi level EF 1 , however, depends on the surface electron density, ns and for
degenerate conditions, as is usually the case, it may be expressed as[7.7,8],

| Qs | = (∈2 /deff) (Vg – Vth2),

where

(7.20)EF1 = EF0 + αns,

where α = 1.25×10–17 eV.m2 for the GaAs/AlGaAs system. The accumulated
areal charge density is, therefore,

(7.21)

(7.22)

Operation of the device requires that charge should be accumulated at the interface 
and at the same time it should be controlled by the gate voltage.For this purpose, 
the gate voltage is required to be between the two threshold gate voltages, Vth1

and Vth2. For normally-off HEMT’s, the thickness of the AlGaAs layer, d, is such
that Vth2 is positive and Vth1 > Vth2 . Charge, therefore, accumulates when Vg is
larger than Vth2 and remains controllable upto Vg < Vth1. On the other hand, for
normally-on HEMT’s, the AlGaAs layer thickness is such that Vth2 is negative and
| Vth2 | > | Vth1 |. The limits of the operating negative gate voltage are therefore
given by | Vth2 |>| Vg |>| Vth1 |.

7.3.  Current-Voltage Characteristic

We assume that a voltage Vd is applied between the drain and the source and a 
gate voltage Vg is applied between the gate and the source. The gate has a length 
L and the zero of the x-coordinate is taken where the gate starts. The voltage
varies from the source to the drain and let it be indicated by V (x) at a distance x
from the gate end. 

The effective gate voltage at x is then

Veff = Vg – V (x) (7.23)

and the surface charge density at x is

| e | n(x) = (∈2/deff)(Veff – Vth2) (7.24)

Current through the sample L is continuous and its magnitude is given for any 
value of x by

I = µ(ε) | e | n(x)[dV (x)/dx].w, (7.25)
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where w is the width of the gate, µ(E) is the mobility of the electrons for a field

ε = –dV (x)/dx, (7.26)

and n(x) is given by Eq. (7.19).
Relation between V and I is obtained by integrating Eq. (8.33, with the condi-

tion that the current I is continuous. This requires knowledge of µ(E). However,
even though there has been extensive interest in HEMT’s, reliable data for µ(E)
in single heterojunctions or quantum wells are not available, particularly for high
fields as discussed in Section 6.9. Also, the concentration of electrons being very
large, the mobility should depend on this concentration and hence on the trans-
verse field as observed in silicon inversion layers[7.9]. No data are available for
taking this dependence into account. The V – I chracteristics are obtained in-
stead by using a simple model[8.10] for the velocity-field characteristic illustrated
in Fig. 7.3.

The mobility is assumed to have a field-independent value µ0 upto a threshold
field εth , beyond which the velocity is assumed to have a constant value vs.

The mobility is assumed to have a field-independent value µ0 upto a threshold

Figure 7.3. Simplified velocity-field characteristic of GaAs. vg - saturation velocity. εth - threshold
field for saturation. 

Field _→
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Equation (7.3) may be integrated to obtain, 

(7.27)

where V (0) = RsI,Rs being the resistance of the channel between the source
contact and the front end of the gate. The voltage across the length of the gate is 

(7.28)

where Rd is the resistance of the channel between the drain contact and the rear
end of the gate. 

The current-voltage characteristic obtained from this model is illustrated in 
Fig. 7.4. The current initially increases nearly linearly with the drain voltage 
V and then saturates as the voltage exceeds a threshold value. The saturation 
current Is is obtained by evaluating the field, (–dV (x)/dx) from Eq. (7.26) and
putting it equal to εth . We get accordingly,

Is may be simplified for large values of L to

(7.29)

(7.30)

(7.31)

Figure 7.4. Voltage-current characteristic of a HEMT, obtained by using the simplified velocity-
field characteric of Fig. 7.3.[After T. J. Drummond, H. Morkoc, K.Lee and M. Shur, IEEE
Electron Dev. Lett. EDL-3, 338 (1982). Copyright: (=A9 1982=IEEE)].
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and the saturation current is proportional to the square of the effective voltage.

neglected and 
On the other hand, for small values of L, the term containing L may be

Is = C(vs/L)(Vg – Vth2)(1 + RsCvs/L)–1
.

The saturation current, thus varies linearly with the gate voltage.
The intrinsic transconductance, gm, is given by

gm = C(vs /L)(1+ RsCvs/L)–1.

(7.32)

(7.33)

The transconductance increases with (L/vs)–1
 , or inversely as the transit time of 

the electrons across the gate under saturation conditions. For large values of the
transconductance or for fast switching, the gate length is therefore required to be 
small and the saturation velocity should be large. The source resistance should 
also be small. The constant C is the capacitance between the gate metal and the
quantum well layer. The current gain is therefore given by 

where

Is / | I |= gm/wC = fT /f, (7.34)

fT = (1/2π)(gm/C). (7.35)

The cut-off frequency for the current gain increases like the transconductance 
with decrease in the transit time (L/vs). The basic parameters limiting the per-
formance of the HEMT’s are thus obtained from the simplified model. However,
in practice, the characteristics are significantly affected by the parasitic circuit 
components and the deviations from the ideal conditions on which the analysis is
based.

Attempts have been made to improve the accuracy of the computed charac-
teristics by using a more realistic velocity-field, (v – ε), characteristic than that
assumed above. The relations used in the literature[7.11,12] are as follows, 

(7.36)

(7.37)

where µ0 is the low-field mobility and vs is the saturation velocity.
It should, however, be noted that the basic characteristics are not significantly 

altered when the above more realistic velocity-field relations are used. Accurate 
evaluation of the characteristics requires knowledge of the source resistance Rs ,
drain resistance Rd , the concentration of donors, Nd, modification of the v – ε 
relation by the transverse field due to alteration in the well width and screening by 
the accumulated electrons, the velocity over-shoot effect and various other physical 
constants. All these information being not available, more accurate models are not 
really relevant at this stage. It is also of interest to note that the two-dimensional
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character of the electron gas does not play any essential role in the operation of 
the HEMT’s. The 2D character is a consequence of the large values of electron 
density in these devices and the device is required to be analysed by taking into 
account this character, which affects electron mobility and the Fermi level. In all 
other aspects the device may be considered to be a metal-insulator-semiconductor
FET, the depleted AlGaAs layer playing the role of the insulator. 

7.4.  Experimental Results

The first experimental HEMT was reported by Mimura et al[7.1] in 1980. They 
used a MBE grown structure consisting of a Cr-doped semi-insulating GaAs sub-
strate, on which was first grown an undoped GaAs layer, then a doped 
(Nd = 6.6×1017/cm3) Al0.32Ga0.68As layer and finally an undoped GaAs layer.
The devices showed an increase in the instrinsic transconductance by a factor of 
3 at 77 K in comparison with the conventional bulk devices. 

Improvements in the device characteristics were made by using essentially the
same structure, but with an undoped AlGaAs layer[7.3] between the undoped
GaAs and doped AlGaAs layer to reduce the remote ionized impurity scattering. 
Physical dimensions of the device structure and the growth of materials were, 
however, optimised to realize higher and higher values of power-delay product and 
cut-off frequency. Values have been reported[7.13-16] for the transconductance, 
for the power-delay product (pdp) and for the delay time TD for 1 µm gate lengths
lying respectively between 170 and 280 mS/mm, between 16 and 22 fJ /stage and
between 8.5 and 20 ps. Improvement has been obtained by using the 0.35 µm gate 
technology, for which the values of pdp and τD are respectively 10.5 fJ and 10.2 
ps at 300 K and 10.2 fJ and 5.8 ps at 77 K [7.13-16]. 

Further improvement has been realized by utilizing sophisticated fabrication 
techniques with short gate lengths. Cut-off frequencies of 350 GHz [7.17], noise 
figure of 2.1 dB and 6.3 dB gain at 94 GHz have been achieved[7.18]. 

Devices have been used to realize frequency dividers and microwave ampli-
fiers[7.19]. Frequency dividers have been operated upto about 13 GHz, while 
microwave amplifiers have been operated upto 35 GHz with a noise figure of 2.7 
dB at 300 K. Substantially lower noise figure of 0.8 dB has also been reported at 
18 GHz with a cut-off frequency fT of 80 GHz.

All the above performance characteristics were realized with the AlGaAs/GaAs 
system. But this system exhibits some anomalous behaviour : the so-called col-
lapse[7.20] of the I – V characteristic at cryogenic temperatures, a reduction in 
drain current for large voltages and a shift in the threshold voltage. This deterio-
ration in the characteristics is thought to be due to the injection of charges into the 
AlGaAs layer and subsequent trapping. The AlxGa1–xAs layer contains a defect
centre (DX) which has quite a large barrier to electron capture and emission at 
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cryogenic temperature. This centre gives rise also to persistent photoconductivity. 
The centres capture the electrons injected into the barrier layer for a long enough 
time to produce the observed phenomenon. 

Alternative material systems have been used to construct HEMT’s, in an at-
tempt to avoid the current-collapse problem and also to realize higher transconduc-
tance. Devices have been developed[7.21] by using the lattice matched Al0.48In0.52As
/Ga0.47In0.53As system. The higher mobility and the higher saturation velocity in 
Ga0.47In0.53As make it possible to realize higher transconductance and higher cut-
off frequency. A noise figure as low as 1.2 db has been demonstrated[7.22] at 94
GHz. Current gain cut-off frequencies exceeding 200 GHz have been reported[7.23-
32].Values of fmax = 455 GHz [7.29], a noise figure of 1.7 dB with 7.7 dB gain at
94 GHz [7.30] and fT > 340 GHz [7.31] have been reported for the lattice-matched
In0.53Ga0.47As/Al0.48In0.52As system. These devices like the AlGaAs/GaAs 

Figure 7.5. Schematic diagram showing the structure of a pseudomorphic HEM’T. The 2DEG is 

formed in the InxGa1–xAs layer at the interface with the In0.52Al0.48As layer. [After R. Lai, P. K.

Rhattacharya, D. Yang, I. Brock, S. A. Alterovitz and A. N. Downey. IEEE Trans. Electron
Dev. 39. 2206 (1992); Copyright:(=A9 1992 IEEE)].
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and Silicon-on-insulator metal-oxide FET (SOI-MOSFET)suffer from an anoma-
lous increase in the drain current at a certain drain-to-source voltage. This phe-
nomenon , known as kink phenomenon , has been studied for AlInAs/GaInAs
system by Suematsu et al [7.33] and it has been concluded that the kink is pro-
duced due to a modification of the parasitic source resistance induced by the hole
accumulation.

Attention has also been given[7.34-35] to the pseudo-morphic AlyGa1–yAs/Inx

Ga1–xAs and InxGa1–xAs/In0.52Al0.48As systems, in which the two layers are not
lattice matched.This system is expected to enhance the performance due to the
larger value of the conduction band discontinuity[7.36], a higher low-field electron 
mobility [7.37] and a higher electron peak velocity The effects of mismatching are
minimized by keeping the well material thin enough for absorption of the strain
without creating dislocations. One such structure[7.35] is shown in Fig. 7.5. A
transconductance of 290 mS/mm has been reported for 1 µm gate length. The
devices, often referred as pHEMT show no current collapse or persistent effect of
illumination or shift in the threshold voltage. Other performance parametrs are
also found to be better in the HEMT’s  using the pseudo-morphic system. A value
of 500 GHz has been predicted to be realizable with this structure[7.38]. A recor
high fT of 305 GHz was obtained by using an x = 0.8 and a gate length Lg Of
0.065 µm [7.39]. It has been shown that by proper processing the fT.Lg may be
made as high as 57 GHz.µm in a strain-compensated pHEMT.

Various other pseudo-morphic systems, e.g, InAs/InP[7.40], AlSb/InAs[7.41]
and AlGaN/GaN[7.42] systems have also been used to construct HEMT’s.

7.5  Current Research on HEMT’s

The technology of HEMT’s has reached the stage of commercial exploitation. The 
devices as well as wafers with chosen composition [e. g., 7 nm In0.53Ga0.47As (doped 
to a concentration of 6×1018 cm–3) cap layer, followed by 20 nm Al0.48In0.52As (un-
doped) layer, 6 nm Al0.48In0.52As layer (δ doped to a concentration of 5×1012

cm–2), 20 nm undoped In0.53Ga0.47As layer, 250 nm Al0.48In0.52As buffer layer on a 
450 µ m InP substrate)[7.43]. Research is , however, being continued for further
improvement in the characteristics. Numerous reports have appeared in the liter-
ature on new kinds of HEMT’s. Main aspects of this research are discussed in this
section.

7.5.1 TEMPERATURE DEPENDENCE OF THE CHARACTERTSTICS

The temperature dependence of the characteristics of AlGaAs/GaAs HEMT’s arise 
mainly from the presence of trap states and DX centers. It was studied theoreti-
cally by Valois et al [7.44] and Subramanian[7.45], and experimentally by Gobert 
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and Salmer[7.46]. On the other hand, variation of electron mobility and the gat-
ing function (ns – Vg relation) are the main causes of tempersature dependence of
the p-HEMT characteristics.Mizutani and Maezawa7.47] studied the temperature
dependence of the high frequency small signal characterics. The large signal char-
acteristics of AlGaAs/InGaAs pHEMT’s have been studied theoretically as well
as experimentally by Zurek et al[7.48] over the temperature range 300-405 K. The 
analysis is on the same lines as explined in Section 7.3. The current is given by the 
same expression as (7.25) and integrated to obtain the I – Vg characteristic. How-
ever, the mobility is obtained by solving the momentum and the energy balance 
equations as explained in Section 6.9.1. The electron concentration is determined 
by first computing the conduction band edge and electron densaity profile with a 
program named C-BAND[7.49]. The electron density, so obtained, is integrated
over the cross-section of the device. It was found that the InGaAs channel works 
as HEMT while the AlGaAs layer also contributes to the current by acting as a
MESFET. The zero temperature coefficient (ZTC) of the characteristics was found
to be close to the threshold voltage. Consequently the ZTC for these devices may
be realized at the working voltages only by using suitably chosen external circuit
elements.

7.5.2.  THEORETICAL MODELS AND SIMULATORS

HEMT simulators have been developed [7.50], which allow prediction of DC and 
small signal microwave performance of HEMT’s taking into account the hot-
electron effects , parasitic MESFET conduction, quantum effects , substrate injec-
tion phenomena and effects of DX ceners and other traps.A numerical sanalysis of
the performance characterics of a InyA1–yAs/InxGa1–xAs HEMT has been pub-
lished[7.51] A capacitance-voltage model has been used by Sen et al [7.52] to ana-
lyze the performance of AlGaAs/GaAs HEMT. A unified model for δ-doped and
uniformly doped HEMT’s has been developed by Karmalkar and Ramesh[7.53].

7.5.3. HIGH-POWER MICROWAVE HEMT’s

An important aspect of the evolution of HEMT’s has been devising structures to
control the gate leakage current and the gate-drain or the gate-source breakdown 
for large gate voltages in microwave and millimeter wave power HEMT’s[7.54-56].
Typical performance characteristics of a power microwave p-HEMT using a gate 
length of 0.25 µm are: power output-1 W, associated gain 11 dB, power added
efficiency 60 % at 10 GHz for a gate width of 1200 µm, extrinsic transconductance
of 400 mS/m and maximum current density 550 mA/mm. The device fea-
tures an asymmetric double recess gate, delta doping of the barrier and a narrow 
channel with low indium content on a A0.24Ga0.76As 1000 Å buffer on intrinsic 
GaAs buffer [7.57]. 
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Figure 7.6. Schematic diagram of the cross section of an AlGaAs/InGaAs double-heterostructure

pHEMT. [After J. J. Brown, J. A. Pusl, M. Hu, A. E. Schmitz, D. P. Docter, J. B. Shealy, M. G.

Case, M. A. Thompson and L. D. Nguyen, IEEE Microwave Guided Wave Lett. 6, 91 (1996);
Copyright (=A9 1996=IEEE)]. 

The breakdown voltage has been controlled in different devices by using sym-
metric or asymmetric recessed gate or a symmetric or asymmetric double-recessed
gate. One such structure is illustrated in Fig. 7.6. 

The off-state breakdown in power pHEMT’s has been studied by Somerville et 
al [7.58]. It is commonly believed that the off-state breakdown is determined by 
the field between the gate and the drain. But, Somerville et al showed by mea-
surements and simulations that the electrostatic interaction of the source seriously 
degrades the gate-drain breakdown and that the key aspect ratio is the gate length 
divided by the depletion region length on the drain. 

The effect of gate recess dimension on the breakdown voltage and the high 
frequency characteristics have been studied by Higuchi et al [7.59]. It has been 
shown by analysis and confirmed by experiments that a breakdown voltage of 14 
V and fmax of 127 GHz may be realized by using a gate length of 0.66µm and
optimal gate recess. 

An alternative technique has been proposed to enhance the breakdown voltages 
by Enoki et al [7.60]. A composite channel combining a thin layer of Ga0.47In0.53As
and InP was shown to be effective in enhancing the breakdown voltage. Carriers 
are confined in the Ga0.47In0.53As channel at low voltages , while for high voltages 
the electrons are transferred to the InP layer and the high breakdown voltage and 
the saturation velocity are utilized. Further improvement in the characteristics has 
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been realized by making the Ga0.47In0.53As layer thin enough so that quantization 
increases the effective band gap [7.61]. A triple channel HEMT has been studied 
[7.57], in which a third InGaAs channel and a quaternary carrier supplier have 
been introduced to improve the performance characteristics [7.62]. It has been 
shown that by using a gate length of 0.8µm, a gm of 275-325 mS/mm, a static 
voltage gain of 20 and a cut-off frequency of 40 GHz may be realized with this 
structure.

7.5.4.CONTROL OF HEMT CHARACTERISTICS BY LIGHT 

The characteristics of HEMT’s may be altered by shining light on the device. This 
effect has been utilized to cotrol gain of amplifiers, for oscillator tuning,locking 
and switching[7.63,64]. Optical control of monolithic microwave integrated cir-
cuits(MMIC’s), especially oscillators have been demonstrated in AlGaAs/GaAs 
HEMT[7.65]. Such control has been demonstrated also in InA1As/GaInAs HEMT’s
[7.66,67]. Recently, the current-voltage relation of InA1As/InGaAs HEMT has 
been studied by using both CW 1.3 µm laser light and also by vmodulated light
by Takanashi et al[7.68,69] 

7.6 Conclusion

The basic structure and the principle of operation of HEMT’s have been presented 
in this Chapter. HEMT is, perhaps, the quantum well device, which has found 
maximum applications as a low-signal high-gain and low-noise device, as well as a 
high power device upto microwave and millimeter wave frequencies. 

The device,however, is of great interest to researchers. Novel structures, e.g., 
Si channel SiGe n-HEMT [7.70] and HEMT incorporating a resonant tunneling 
diode [7.71] have been proposed. Work is also being continued for evolving test 
procedures for the performance characteristics[7.43,72]. 
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RESONANT TUNNELING DIODE 

The tunneling properties of double-barrier quantum well heterostructures may be 
conveniently utilized to produce differential negative resistance. Such negative 
resistance devices make it possible to realize oscillators or amplifiers like Gunn 
diodes or impatts. The cut-off frequency is, however, much higher in these devices, 
and it has been possible to construct oscillators working in the THe range with 
these devices and also to realize various kinds of functional circuits by building-in
the tunnel device in the emitter or the base of a transistor. 

The device has, received great attention and exhaustive literature has been 
created about the diodes. Interested reader may consult Reference 8.1 for detailed 
discussions. We shall concentrate in this book only on the physics aspects of the
devices.

8.1. Introduction 

Possibility of realizing a negative resistance device by using a double barrier tun-
neling structure was first demonstrated by Chang et al[8.2] in 1974 . The structure 
consisted of two undoped barrier layers which sandwiched an undoped well layer 
and was provided with doped contact layers on the two outer surfaces as shown 

Figure 8.1. Structure of a resonant tunneling diode. Composition of the layers is indicated in the 
figure.

188
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BIAS VOLTAGE (V) 

Figure 8.2. Typical voltage-current characteristic of a resonant tunnel diode. One resonant peak 
is shown. The device being symmetric the characteristic is identical for both the polarity of the 
voltage.

in Fig. 8.1. The current through the structure initially increased with the voltage 
across the two end layers, reached a peak and then decreased with further increase 
in the voltage. At still higher voltages, the current showed a second peak. Results 
of a later experiment are illustrated in Fig. 8.2. The characteristics may be 
explained qualitatively as follows. 

The potential distribution in the structure is illustrated in Fig. 8.3. The 
double-barrier quantum well structure acts as a Fabry-Perot resonator, the trans-
mission coefficient of which is a maximum at the resonant frequencies, which are in 
this case the quasi-quantized energy levels of the quantum well. An electron from 
one contact may tunnel through the structure to the other contact if its energy is 
close to a quantized level. No current therefore flows through the device so long 
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(a) (b) (c)

Figure 8.3. Potential distribution in a resonant tunneling diode. (a) Potential distribution in the 

absence of the external voltage. Ec - Conduction-band edge energy. EF - Fermi energy. E0, E1 -
Quantized lowest and the next higher energies in the well. (b) Potential distribution when a voltage

V is applied between the end contacts. The barrier layers and the well layer being undoped and
of equal width the applied voltage is distributed as shown. (c) Potential variation simulated by 

steps.

as the lowest quantized level in the well E0 is above the Fermi level EF in the
contact layer. However. when a voltage V is applied between the two end contact 
layers, energy levels at one end are pushed up and those in the other end are pushed 
down by |e| V/2, with reference to the energy levels in the well if it is assumed that 
the barriers are identical and the voltage is distributed uniformly across the device. 
Consequently, when EF + |e|V /2, is equal to E0 as shown in Fig. 8.3(b), current
starts flowing and continues to flow till E0 is less than Ec+ |e|V /2, As E0 falls below
the conduction band edge of the contact layer for larger voltages, the current drops 
to zero. A current peak is therefore expected near V = 2(E0 – Ec)/|e|, Similar
peaks are also expected at higher voltages near the higher lying quantized levels. 
The details of the characteristics involve other factors which are discussed later. 
It is. however, clear that the current in the device is produced basically by the 
tunneling of the electrons through the barriers. 

Current in the device being produced by the tunneling of the electrons, the 
frequency and the speed limitation of the device is controlled by the tunneling 
time and the effective device capacitance. Since these two parameters are very 
small in this structure, the operating frequency and the switching speeds of the 
device were expected to be much higher than that of other available devices. Work 
on the device, however, did not progress till the middle of eighties as the technology 
of growing the structures was not easily available. Rapid progress has been made 
only during the last two decades and the device has been perfected and used in 
practical circuits. 
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We present in this section the detailed theory of operation and the current 
status of the device. 

8.2. Tunneling Characteristic 

It is assumed that the conduction band offset is ∆ Ec and the end layers are de-
generate as shown in Fig. 8.3(a). The barrier layers and the sandwiched well 
layer are assumed to be undoped. The transmission probability for the structure 
is evaluated by using the envelope function formalism (discussed in Chapter 4), in
which the wave function of the electron is taken as, 

ψ k = U0(r) exp[i(k zz+kt.ρ)], (8.1)

where U0(r) is the cell-periodic function Corresponding to the conduction-band
edge, kz and kt are respectively the z-component and the in-plane component of
the wave vector, corresponding position coordinates being z and ρ. The energy
corresponding to the wave vector is,

        -

     -E = Eci + (hk)2/2m *,

k2 = k 2
z + k 2

t .

(8.2)

where m* is the band-edge mass and 

(8.3)

The nonparabolicity of the band may be taken into account by using the Kane
nonparabolic dispersion relation, 

(hk)2/2m * = (E – Eci)[1 + α (E – Eci)], (8.4)

where α is the nonparabolicity parameter. The relation is assumed to be valid in 
the conduction band as well as in the forbidden band. 

The transmission coefficient is evaluated by assuming that an electron wave of 
unit amplitude is incident on the structure from the left. It is partially reflected 
with amplitude R and partially transmitted with amplitude Tu . The transmission 
coefficient is then given by Tu*Tu[(∂E/∂klt,)(∂E/∂kli)–], where the term within
the parenthesis is the ratio of the outgoing and the incident group velocities, kli
and klt being respectively the longitudinal wave number of the incident and the 
transmitted electron; Tu*Tu gives the probability density of the outgoing electron.
The tunneling coefficient Tu may be obtained by solving analytically the envelope 
function equation for the potential distribution in the device. But, such solu-
tions involve the Airy functions, which make the computations involved. A more 
convenient method is the so-called matrix method[8.3,4] in which the potential is 
assumed to vary in steps as shown in Fig. 8.3(c), instead of varying linearly. Solu-
tions for the envelope functions are then obtained for each segment, which behave 
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as rectangular barriers or wells. These solutions are matched at the interfaces be-
tween the sections by applying the conditions of the continuity of the probability 
density, the current probability density and the energy. This procedure yields the 
following matrix equation relating R,Tu and the incident wave.

where the matrix for the pth segment is

(8.5)

(8.6)
--

kp,dp are the wave vector and width of the pth section, the width of the zeroth
section being taken to be zero. The wave vector kp is given in general by

(8.7)

where mp
* and Vp are the band-edge effective mass and the band-edge energy (in-

cluding the contribution of the applied voltage) of the pth section, α p being the
corresponding nonparabolicity parameter, kt is the in-plane component of wave 
vector which is identical in all the sections because of the continuity of the prob-
ability density, rp is the ratio of the velocity effective mass of the pth and the
(p + 1)th section and is given by,

(8.8)

Tu = 1/m11, (8.9)

The value of Tu is given by 

where m11 is the first element of the equivalent matrix M.
The method can be implemented on a computer straightaway when complex 

numbers are admissible. It should be noted that kp is imaginary in the barrier
layers and real in the well layers. The method involves only the evaluation of Vp

for the selected number of segments n, evaluation of rp and kp and straightforward
matrix multiplication. 

8.4. A symmetric A1GaAs/ 
GaInAs structure with d1 = d2 = d3 = 10 nm was considered and computations 
were done with the physical constants corresponding to the lattice temperature of 
300 K as given below:
m* (A1InAs)= 0.08 m0 ,
α (A1InAs) = 0.571 (eV), 

Some computed results are presented in Fig. 

m* (GaInAs)= 0.042 m0

α (GaInAs) = 1.167 (eV)–1 ,
∆ Ec = 0.5 eV, m0 =9.1 × 10–31 kg



RESONANT TUNNELING DIODE 193 

Energy (meV)

Figure 8.4. Energy dependence of the tunneling probability in a double-barrier heterostructure, 

calculated by the matrix method. The curves are for 300 K for different transverse energies as 
indicated on the curves, kB and T being respectively the Boltzmann constant and the lattice 
temperature.

We first consider the transmission probability curve in the absence of the volt-
age. The curve has a peak of finite width at an energy of about 133.35 meV, when 
the in-plane component of the wave vector i.e., kt is taken to be zero. Barriers
being of finite height, act as leaky reflectors. The transmission coefficient is unity
when the electron energy resonates with the quasi-eigenvalue of energy in the well; 
but the transmission curve has a finite width because of leak in the barriers. 

The effect of a finite value of the in-plane component of the wave vector is 
to increase the bandwidth at resonance since it effectively reduces the barrier 
height approximately by (hkt )2/2)(1/m*

w – 1/m*
b ), m*

w and m*
b being respectively

the effective mass of the well and the barrier layer. The effect of the energy band 
nonparabolicity is not separately displayed, but it is significant and alters the 
energy for peak transmission as well as the bandwidth. 

Some conclusions may be made about the variations in the tunneling charac-
teristics with changes in the dimension of the diode structure. For example, the 
bandwidth of transmission should increase as the well becomes more leaky i.e., 

        -
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as the electron life time, τ1 , is reduced since the bandwidth, ∆ E = h/tl . Such 
increase will be caused by the reduction in the barrier and in the well width or in 
the barrier height or in the barrier effective mass. The leakiness depends essen-
tially on the transmission characteristic of the barriers, which is governed by the
product of the barrier width L and the attenuation constant α, given by 

α = (2m*b/h2)(Eb – Er)1/2, (8.10)

where m *
b is the effective mass in the barrier, Eb is the barrier potential and

Er is the resonant energy. Evidently, total attenuation will be smaller as m*

b

and L are reduced and Er is made to approach Eb by reducing the well width.
These expected changes in the bandwidt h of transmission affect the characteristics 
of the RTD's very significantly. A major part of the development work [8.5-10] 
for the optimization of the diode parameters have been carried out with these 
considerations.

Application of a voltage affects the transmission probability in two ways. The 
energy for peak transmission is lowered and approaches the left hand conduction 
band edge. The lowering is about half the applied potential, |e|V /2. This may be
understood by considering that the average potential in the well region is – |e|V /2.
The second effect appears as a decrease in the peak value of transmission and an 
increase in the bandwidth. This result may also be explained by considering the 
average potential distribution in the barrier and the well regions. The barriers 
become asymmetric in the presence of a voltage. An asymmetric system behaves 
as a Fabry-Perot resonator with reflectors of different characteristics and hence 
the effect of reflections are not compensated and the wave inside the resonator 
cannot build to the level required for producing unit transmission. The resonator 
is also more leaky as the barrier heights are reduced on the average. When the 
applied voltage is more than 2E0/|e|(E0 is the energy of the peak transmission in
the absence of a voltage) only a few electrons will tunnel through and the number
will die down as the voltage is made larger. 

Experimental current-voltage characteristics may be explained by considering 
the tunneling characteristic discussed above, by using the expression for the current 
density.

8.3. Current-voltage Characteristic 

The current density through the device is given by the product of the incident flux 
of electrons and the transmission coefficient. It may, hence be expressed as 

J = (2/8π3)(e/h)(∇k1E)Tu
* Tu[f(E) – f(E + |e|V )]d3k, (8.11)

where kl is the component of electron wave vector in the direction perpendicular
to the junction interfaces; E is the electron energy as measured from the bottom 

∫ 

        -

        -

        -



current. The peak current, therefore, increases as ∆ 
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of the conduction band on the incidence side, V is the applied voltage, d3k is a 

barrier voltage or the electron effective mass in the barrier or by reducing the well 

volume element in the wave vector space. 
The distribution function for the electrons is the Fermi-function f(E), given

f(E) = {exp[(E – EF)/kBT ] + 1}–1 (8.12)

where EF is the Fermi energy, kB is the Boltzmann constant and T is the lattice

temperature. It may be noted that the device is bipolar and hence electrons may
flow either way. The energy of the electrons being conserved in tunneling, an 
electron having an energy E with respect to the band edge on the left hand side 
has an energy (E + |e|V ) with respect to the band edge on the right hand side, as
the edge is lowered by the applied voltage by the amount |e|V . The distribution
function for the transmission side is therefore given by f(E + |e|V ) .

Expression for J may be transformed by noting that the transverse component 
of k, is conserved i.e., kli = klt , and the energy may be split into two components
El and Et , corresponding to the wave-vector components kl and kt . It is then 
obtained that, 

by

(8.13)

On substituting (9.12) into (9.13): writing E = El + Et and carrying out the 
integration over El , we obtain

(8.14)

The resonance feature of the experimental characteristics, which were explained 
qualitatively in Section 8.2 are also exhibited by the curves computed by using 
Eq. (9.14),as illustrated in Fig. 8.5. It is of interest to note that the bandwidth 
of transmission, ∆ E, is about 1-2 meV, while the Fermi energy is about 20-30
meV. Hence, electrons within the bandwidth ∆ E take part in producing the peak 

E is increased by reducing the 

width or the effective mass in the well layer. Such variations have been observed 
in the experimental characteristics[8.5-8]. 

The model based on the assumption that the electron travels through the 
structure without any impedance in its motion thus explains the basic features of 
the current-voltage characteristics of RTD's. In a real diode, however, there are 
many other important mechanisms which play a significant role in determining the 
shape of the characteristic. Electrons may be scattered as they travel in the barrier 
or in the well region. The coherence of the electron wave is destroyed by scattering 
and the tunneling model discussed above becomes inapplicable. However, even 
when such scattering occurs, the essential feature of the characteristic, the negative 
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Bias voltage ( V )

Figure 8.5. Voltage-current characteristic of a resonant tunneling diode for the lattice tempera-

tures of 77 K and 300 K . Curves obtained by assuming a parabolic and a nonparabolic energy

band are shown respectively by the solid and the dashed lines. 

differential conductivity, may be explained on the basis of the tunneling of the 
3D electrons from the end contact into the well, where the motion is restricted to 
be two-dimensional[8.11]. Since such tunneling is controlled by the condition of 
conservation of transverse momentum and energy we have

(8.15)

where Ec and Er, are respectively the conduction-band edge energy and the quan-
tized energy level in the well. The longitudmal and the transverse components of
the wave vector are given by kl and kt. It should be noted that kt. and E remain
the same as the electron tunnel from the contact layer into the well. We may also
assume that the electron levels are occupied up to the Fermi energy, EF in the
contact layers. The longitudinal component of the wave vector kl is related to kt

as,
(8.16)

where kF is the wave vector corresponding to the Fermi energy EF , Evidently, 
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electrons cannot tunnel through so long as Er > EF , as no electron level is 
occupied above EF . However, as Er is pushed down by the applied voltage V by
|e|V /2 flow of current becomes possible for a threshold voltage Vt for which,

Er – |e|Vt /2 = EF. (8.17)

The value of kl for this condition is 

(8.18)

The corresponding value of kt is zero and the number of electrons with a particular 
value of kl being proportional to k2

t , the current remains zero for Vt . However, as 
the applied voltage is further increased kl decreases and kt increases. Increasing 
current flows with increasing kt . When the applied voltage is larger than the 
cut-off value Vc , given by, 

Er – |e|Vc/2 = Ec, (8.19)

current stops flowing as there is no occupied state in the contact layer below Ec .
Hence, the NDC in the characteristics of RTD’s may be explained also by using

the so-called sequential model[8.12]. It is assumed in this model that the electrons 
tunnel through the structure in two steps. In the first step, it tunnels through
the first barrier coherently, it is then thermalized in the well and finally tunnels 
through the second barrier in the second step. 

Which of the two models will apply to a particular experiment should be deter-
mined by the relative values of the electron life time and the scattering time. The
coherent model would apply when the life time τ1 is much smaller than the scat-
tering time ts and the sequential model would apply when τs < τ1 . Experiments 
appear to confirm this expectation[8.13]. 

A further complication in the calculation of the characteristics arises from the
distortion in the potential profiles due to the accumulation and depletion of the 
charges. Charges collect at the emitter end to produce single-junction quantum 
wells and also in the well to bend the band edge. At the same time, charges 
are depleted on the collector side to produce a parabolic potential profile. These 
distortions explain the deviation of the experimental values of the voltage for peak 
current from 2Er/|e| . Such charge accumulation also plays a role in determining
the actual form of the current-voltage characteristic, which may show step changes 
during the downfall or hysteresis. 

It may be noted further that although the basic features of the current-voltage
characteristic are explained by the resonant tunneling current, certain features 
require consideration of other modes of current transport. For example, the current 
does not drop to zero as the resonant energy goes below the emitter-band edge. 
In fact, the so-called valley current may be fairly large. No exact calculation of 
the valley current is available. It is, however, suggested that it is partly due to 
tunneling through the non-resonant energies and partly due to thermionic emission 
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over the barriers. The scattering of the carriers in the barrier and the well region 
may also play an important role. 

8.4. Experiments

The basic phenomenon of resonant tunneling, as mentioned earlier [8.2], was demon-
strated in 1974. However, intensive experiments were carried out since about
1983[9.14], after the epitaxial techniques for growing the structures were perfected.
Experiments were first carried out with the GaAs/GaA1As system. 

Structures were grown on n+ (Si-doped to 1018 cm–3 ) GaAs substrates with
composition as shown in Fig. 8.6. The double- barrier structure is isolated from 
the end-contacts formed by 1 µm thick GaAs(Si-doped to about 0.8× 1018 cm–3 ) by
15 Å thick undoped GaAs layers to prevent diffusion of the impurities to
the subsequent layers. Contacts to the diode are finally formed at the two 
ends by AuGe/Au on well-defined geometries. The area of the diodes is about 
2×10–5 cm2 .

The figures of merit for the diodes are the peak current density and the peak-to-
valley current (PVC) ratio. Best values of these parameters for the GaAs/GaA1As 
system are 1- 2 × 105 A/cm2, and 3.6 at 300 K and 21 at 80 K. The peak current does
not vary much with the temperature. Its value increases as the barrier thickness 
is reduced. But such increase is accompanied with a deterioration in the value of 
the PVC ratio as the valley current increases faster than the peak current. 

Higher figures of merit may be conveniently realized[8.15-18] for the GaInAs/ 
A1InAs system. Constructional features for these diodes are the same as for the 

Figure 8.6. Schematic diagram showing the structure of an experimental resonant tunnel diode. 
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GaAs/GaAlAs systems. Only GaInAs replaces GaAs and AlInAs replaces GaAlAs. 
The peak current density is reported to be 5.5×104 A/cm2 and the PVC ratio is 
21.6 at 77 K and 6 at 300 K. Even a PVC ratio of 14 has been reported[9.19] 
at 300 K by using the GaInAs/AlAs system. The improvement for this system 
is essentially due to a larger value of the barrier potential and lower value of the 
effective mass in the well. 

lected in Table 8.1. 
Suggestive calculations have been made for the III-V/II-VI systems[8.20] to pre-

dict higher speed of operation. However, detailed experiments are not reported for 
such systems. Experiments have been reported on the InAs/AlSb syst8em[8.21,22]
which gave a peak current density of 105 A/cm2 and PVC ratios of 11 at 300 K 
and 28 at 77 K. 

Some typical results obtained with the structures of different systems are col-

8.5.  Applications 

The diodes have been used to realize oscillators, mixers, frequency multipliers, 
switches and some special circuits[8.23-33]. The attractive feature of these diodes
for such applications is the high value of the cut-off frequency, fmax . Value of fmax

is controlled by the intrinsic time scale of charge relaxation and tunneling time. 
It is also determined by the contact resistance, terminal capacitance and the time 
delay in the anode contact. In the steady state of transmission certain amount of 
charge collects in the well for any applied voltage. As the voltage is changed, this 
collected charge has to change by the leakage through the barrier. The relaxation
time is estimated to the about 0.6 ps per meV band width. The tunneling time is 
a small fraction of this time. 

The contact resistance of the diodes is about 10-15 Ω, while the terminal ca-
pacitance may be about 1.6 fF/µ m2 and the time delay is 175 fs. The value of
fmax for these values is about 270 GHz. But, these parameters may be changed by 
heavy doping of the cathode layer, and lengthening of the anode depletion region 
by low doping. It is possible to push fmax controlled by these parameters to near 
1000 GHz by proper adjustment of their values. 

The value of fmax is, therefore, controlled ultimately by the charge relaxation 
and tunneling time. It is estimated that by suitable design, the value of fmax may
be pushed beyond 300 GHz. 

The power output of the diodes is, however, very low. The estimated value is 
225 µW for a 4 µm diameter diode and a typical value is 0.2 µW at 200 GHz. The
diodes are, therefore, likely to be useful for very special applications in the high 
frequency end of the spectrum. 

The use of the diodes as self-oscillating mixers and more recently in avalanche 
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Table 8.1 Structural parameters for the best Figure of merit
of Resonant Tunneling Diodes.Lb1 ,Lw,Lb2 and Ipeak are respe-
-tively the first barrier width,the well width , the second barrier 
width and the peak current 
Semiconductor Lb1 Lw Lb2 Ipeak × 10–5 PVC Ratio 

System (nm) (nm) (nm) (A/ um2) 300 K 77K
AIGaAs/GaAsa 23 50 23 0.15 3 11
In0.52A10.48As/
In0.53Ga0.47Asb 45 61 45 0.1 6.1 21.6

50 50 50 4 15 
AISb/InAsc 28 65 28 0.04 11 28 

19 65 19 1.6 1.8 5 
a. Reference 9.6 
b. References 9.18 and 9.15 
c. Reference 9.22 

photo diodes[8.25] has been demonstrated successfully. Frequency multipliers and
some very sophisticated function generators have also been demonstrated by in-
tegrating the diodes vertically and horizontally[8.24,34-38]. Resonant tunneling 
structures have been incorporated in the emitter or in the base region of conven-
tional transistors to realize resonant tunneling transistors [8.38-42]. Recently, a 
pseudomorphic InGaAs/AlAs/InAs RTD was incorporated into the source of an 
InGaAs/InAlAs HEMT [8.43]. The RTD had high current density and a large 
peak-to-valley ratio, and the HEMT achieved high gain and high speed of oper-
ation. It was possible to generate by using this device low order harmonics of a, 
considerably higher power levels than those produced by conventional transistors, 
and extremely high order harmonics with significant power. 

Efforts are being made to exploit the picosecond switching capabilities of RTD’s
by combining them with high-performance heterostructure bipolar transistor based 
logic cicuits [8.44]. A 10 GHz monolithic latching comparator has been demon-
strated by using InAs/AlAs/GaSb RTD’s. An exclusive-or circuit withe capability 
of running at 25 GHz has realized by using RTD’s with pHEMT’s [8.45]. A very 
low-power RAM cell has been produced, which combines FET’s for reading and 
writing and RTD’s for charge state storage ( replacing the storage capacitor). 
Silicon-based RTD’s are also being studied for memory applications [8.46]. A 
novel memory has been proposed by using a double tunneling transistor, in which 
current flows in the in-plane direction and is switched from one quantum well to 
the other by a surface gate. The source terminal contacts with the top quantum 
well, while the drain terminal is contacted to the lower well. 

In summary, The current researches on RTD’s are aimed at applications to 
high-speed signal processing , e.g., three dimensional image processing. Efforts are 
also directed to the development a Silicon-based RTD which may be used to replace 
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the usual storage capacitors in dynamic random access memories (DRAM’S), as 
the RTD causes storage by changing the voltage level, which switches a transistor 
in the output read line and the transistor provides the current for the output 
sense amplifier. Very little charge being required to set the voltage level, it is 
expected that with a silicon-based RTD it will be possible to realize a static RAM 
cell with the speed and packing density of DRAM’s [8.47]. Switching of a RTD 
by using long-wavelength intersubband transitions has also been demonstrated 
recently [8.48] 

It may be concluded that the future applications of RTD’s lie mostly in switch-
ing circuits and memories rather than in high-frequency oscillators. 
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QUANTUM WELL LASER

The basic principle of operation of quantum well lasers (QWL’s) is the same as 
that of bulk lasers. But, the change in dimension of the carrier motion causes 
improvement in the characteristics, e.g., ultra-low threshold current, narrow gain 
spectrum and high characteristic temperature. The density of states (DOS) in 
bulk materials increases with energy from zero at the band edge. On the other 
hand, in quantum wells, as discussed in Chapter 4, the DOS has the same value
at the band edge as for higher energies due to the two-dimensional character of 
carrier motion. The energy-independent DOS causes greater net emission and 
reduced temperature-dependence of the Fermi level and thereby leads to better 
performance characteristics. 

Extensive studies have been made of QWL’s during the last decade. Many 
kinds of structures have been developed for improving the performance and de-
tailed theories have been worked out to explain the characteristics for different 
structures. A complete discussion of these studies is beyond the scope of this 
book. The discussion is confined only to the physics of the devices with special 
emphasis on the factors which cause improvement in the performance of QWL’s.
Up-to-date experimental results are, however, briefly described. 

9.1. Operating Principle 

Structure of a quantum well laser is illustrated schematically in Fig. 9.1. A 
100-200 Å thick lower-band gap material, e.g., GaAs, is sandwiched between two 
cladding layers of a lattice-matched higher band gap material, e.g., GaxAl1–xAs,
which are doped p-type and n-type. The sandwiched layers are provided with
contacts for passing current through the device. Current may be passed through
a stripe contact for lateral confinement of the injected charge carriers as shown in 
Fig. 1(a). Alternately, the quantum well may be sandwiched between two higher 
band gap material also in the lateral direction for lateral confinement as shown in 
Fig. 1(b). The former is referred as gain-guided and the latter as index-guided
laser.

The band diagram of the device is shown in Fig. 9.2 in the presence of a 
forward biasing voltage. Electrons and holes coexist throughout the well region 
and the well acts as the active layer. It is in this region that electrons and holes 

202
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Figure 9.1. Schematic diagram of a quantum well laser (QW). (a) Gain-guided QWL> Current 
flows through the Zn-diffused region of GaAs and the injected carriers are thereby confined to 

the central region of the well. The p-type AlGaAs and n-type AlGaAs layer together with the 

sandwiched GaAs well forms the laser diode. (b) Index-guided QWL. The InGaAsP/InP multi-

quantum- structure is flanked by p-type InP region which has a separate refractive index and 
confines the optical signal in the MQW. The top p-type InP and the bottom n-type InP together
with the sandwiched InGaAsP/InP MQW forms the laser diode. 

recombine to generate photons of frequencies corresponding to the difference of 
their energies. The associated waves travel back and forth inside the Fabry-Perot
cavity formed by the two partially reflecting end surfaces in the longitudinal di-
rection. These waves are confined in the vertical as well as in the lateral direction 
by the refractive index differential between the well and the surrounding material. 
It should be mentioned that the refractive index and the band gap are inversely 
related[9.1,2], so that a material with a higher band gap has a lower refractive 
index. The difference in the refractive indices is about 10%, which is, however, 
sufficient to cause confinement of the light energy. 

The waves are partly absorbed as they travel due to interband absorption, 
free-carrier absorption[9.3] and other loss processes. At the same time, they are 
also enhanced by coherent stimulated emission from the recombining electrons and 
holes. Under conditions, in which the enhancement dominates over the loss, the 
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Figure 9.2. Band diagram of a QWL. (a) The band diagram in the absence of an external 

voltage.Discontnuities at the interfaces are the band offsets. (b) The band diagram for an applied 

positive bias voltage. Inlected carriers are confined in the well region.

diode acts as a laser, producing coherent light at a definite frequency within a 
small bandwidth. 

9.2. Laser Equation

The basic laser equation is obtained by considering that under the equilibrium 
lasing condition, the electromagnetic wave should remain unaltered after a round 
trip. We obtain from this condition, 

(9.1)

where R1 and R2 are the reflectivities of the end faces in the longitudinal direction, 
k is the complex propagation constant and L is the length of the active region. 
We assume, for the sake of simplicity, that the wave is a plane wave. The actual 
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wave will be more complex and the wave front may be curved[9.4], because the 
wave propagates in the wave guide formed by the cladding layers and the lateral
confining layers. 

Equation (9.1) gives for the free-space wavelength λ and the power absorption 
coefficient α,

(9.2)

(9.3)

where nr is the refractive index of the laser material. The first condition gives the 
possible wavelengths of oscillation corresponding to different values of the integer 
n. It should be noted that the laser operates at wavelengths in the range of 1 µm
and the length L is a few hundred µm’s. The value of the integer n for operation at
1.4 µm is about 1250, assuming nr =3.5, L=250 µm. The laser therefore operates in
a very high order mode of the Fabry-Perot cavity. Evidently, the phase condition 
given by Eq. (9.2) will be satisfied by a very large number of values of λ around
the above value. The separation between these values of λ is

(9.4)

where ng is the group refractive index. The value of ∆λ is 1 nm for ng=4. Ev-
idently, optical signals will be generated at different wavelengths separated by 1 
nm around 1.4 µm, for which the attenuation constant which is required to be neg-
ative, satisfies Eq. (9.3). In other words, the medium should amplify rather than 
attenuate. But, as the gain varies with the frequency, radiation over a small band 
of wavelengths among all the possible wavelengths given by Eq. (9.2) for different 
values of n, are excited. Further, with increase in the amplitude of the signals, 
optic signals of wavelengths for which the gain is maximun develops, while signals 
of other modes are suppressed as in electronic oscillators with multi-frequency res-
onant circuits through nonlinear interaction[9.5]. The laser then operates mostly 
at a single wavelength, for which the gain is maximum. 

9.3.  Operating Characteristics 

Optical signal is generated in a diode laser due to the recombination of the carriers 
injected by applying a forward bias voltage. The resulting photon population is 
controlled by four processes : (a) the generation by stimulated emission, (b) the 
interband absorption[9.6], (c) absorption through various other processes, e.g., 
free-carrier absorption, interface scattering, inter-valence band absorption and (d) 
the spontaneous emission. The rate equation for the photons may be written as, 

(9.5)
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where Nph is the total photon number in the cavity, GNph is the net rate of gen-
eration of photons resulting from generation through stimulated emission and loss
through interband absorption, γNph is the net rate of photon decay through in-
trinsic absorption and end-surface loss, Rsp is the rate at which photon number is
enhanced by spontaneous emission. 

The steady-state photon number is given by 

(9.6)

The photon number is, therefore very small so long as G is less than γ, since Rps

is very small, It increases rapidly as G approaches g and becomes very large when
G = γ . The equation indicates that Nph should go to infinity for this condition. In
practice, however, other processes, not considered here, limit the photon number. 
It should, however, be noted that G cannot be larger than γ , since then Nph is
required to be negative which is unrealistic. The gain and hence the carrier density
remain nearly pinned to the threshold value. 

The current density corresponding to the threshold condition for Stimulated 
emission is 

(9.7)

where d is the active layer width. nth is the carrier density under the thresh-
old condition and τe(nth) is the carrier- recombination time corresponding to the 
threshold carrier density. The stimulated recombination being negligible, τe(nth)
may be written as[9.7]

(9.8)

where the first term accounts for non-radiative recombination through impurity 
states, surface roughness etc., the second term is the radiative recombination term 
and the third term is the Auger recombination term. 

For current densities larger than the threshold value, the additional injected 
carriers cause rapid increase of photon density nph which is then given by

(9.9)

where τp is the photon lifetime and ηi is the internal quantum efficiency, given 
by the ratio of the radiative and the total recombination rate including the non-
radiative recombination. 

The light output from the device from one facet, assuming the two facets to
be identical with reflectivity R is

(9.10)

where V is the total volume of the active layer, vg is the group velocity at the 
lasing frequency ω and αm, is defined as

(9.11)



QUANTUM WELL LASER 207 

Expressing nph in terms of the total current I we get for the light output,

(9.12)

where τp has been replaced by (αm + αi)–1 , expressing the facet losses as a dis-
tributed loss factor αm , αi being the internal loss due to the various phenomena
mentioned earlier. I is the total current, which may have a component, the so-called
leakage current, which does not pass through the active layer.∆IL is the change in 
the leakage current, as the current increases from Ith to I.

The light output increases almost linearly with the diode current, when the
diode starts lasing. However, for very large currents the light output saturates
through various mechanisms, not discussed here. A characteristic parameter of the 
light output-current curve is the differential (external) quantum efficiency defined 
as the ratio of the photon escape rate and the generation rate , multiplied by the 
internal quantum efficiency. It is given by[9.8],

(9.13)

The characteristics of the laser discussed above applies equally well to the quan-
tum well lasers. The distinctive deviation occurs only in the magnitude and the 
temperature dependence of the threshold current. This aspect is discussed in the 
following sections, 

9.4.  Threshold Current 

The component of the threshold current due to the recombining carriers is given 
by,

(9.14)

where nth is the threshold carrier density, Tr is the recombination time and ηi is the
internal quantum efficiency defined in Eq. (9.9). The threshold current may be 
computed by determining the value of nth for which the gain is equal to the loss.
The value of Tr may be evaluated by using the expressions for the electron-photon
interaction discussed in Chapter 5. The quantum efficiency, however, depends on 
the perfections of the diode structure and is treated in most cases as an experi- 
mentally determined parameter. Some of the non-radiative processes, e.g., Auger
recombination[9.9-11], which becomes important in low band gap materials and 
hence in long wavelength lasers, have been theoretically studied. We shall not
discuss the theories, but we shall note only that the recombination rate due to 
the Auger processes is proportional to n3 , while non-radiative recombination due
to the other processes is proportional to n and the radiative recombination rate 
is proportional to n2 (n is the carrier density). As the Auger processes are more
effective in low band gap materials the magnitude of nth is much higher in these 



208 CHAPTER 9

materials and this is one of the major difficulties in designing a room-temperature
InGaAsP laser. 

9.4.1. CONFINEMENT FACTOR 

Electromagnetic energy although waveguided in the active layer is not fully con-
fined in it. Consequently the active medium affects the optic signal only partially. 
The effective gain may be written as Γg, where g is the gain in the active layer
and Γ is the confinement factor, defined as the ratio of the electromagnetic energy
within the well and the total energy.

Evaluation of the threshold carrier density nth involves the computation of the 
confinement factor Γ and the gain g as a function of the carrier density. Extensive
analysis[9.12,13] has been carried out for double-heterostructue lasers to calcu-
late Γ. It is found that Γ may be considered to be the product of a transverse
confinement factor Γ T and a lateral confinement factor Γ L . These factors give the
electromagnetic energy in the active region as a ratio of the total energy, as deter-
mined by the variation of the refractive index in the two directions. The factors 
may be evaluated theoretically in principle. However, the analysis is complicated 
by the complex geometry, non-homogeneity, variation of the electron density, at-
tenuation and gain in different regions. A complete analysis is not available, but 
some simplified relations have been deduced, which may be used to estimate the 
value of Γ . The simplified expressions for Γ L and Γ T are as given below[9.8].

(9.15)

where W = (2π/λ)[(nin
r )2 – (nout

r )2]1/2w, nin
r  and nout

r are respectively the refractive 
indices inside and outside the active layer, w is the width and λ is the operating
wavelength. The width w is about 2 µm and considering that l ≈ 1µm, nr ≈ 4 and
∆nr ≈ 0.1nr, the value of W works out to about 10. The value of Γ L is therefore
close to unity and G may be taken to be the same as Γ T . Γ T is given by,

(9.16)

where D = (2π/λ) (n2
ra – n2

rc)1/2d, nra and nrc are respectively the refractive indices 
of the active layer and the cladding layers; d is the thickness of the active layer. 
For QWL’s d ≈ 150 Å and putting λ = 1µm, nra = 3.5, (n2

ra – n2
rc) / n2

rc  = 0.1, we
obtain D ≈ 0.1. Γ may, therefore, be approximated as

(9.17)

The value of d being typically 1.5 nm we find that the confinement factor lies 
between 0.003 and 0.004 for wavelengths of 1-1.5 µm. Such low values of Γ partially
annuls the increased value of g for quantum wells. Attempts have been made to 
increase the value of Γ , retaining the two-dimensional character of the electron gas

Γ L = W 2 / (2 + W 2),
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by devising essentially two kinds of structures : the multi-quantum well (MQW) 
or the modified multi-quantum well (MMQW) and the graded-index separately 
confined heterostructure (GRIN-SCH) wells shown in Fig. 9.3. 

The confinement factor for multi-quantum wells may be approximated as[9.8],

–

(9.18)

where nr = [nradw + (d – dw)nrc]/d, d is the total thickness of the individual 
quantum well structure, dw is the thickness of each well and N is the total number 
of wells. Expression (9.18) is obtained by considering that the refractive index 
of the active region has an average value determined by the width of the active 
layer and the barrier layer and that the active region is a fraction dw/d of the 
total active layer. For wells of equal thickness, it is found that G is effectively the 
value for the individual well. multiplied by the square of the number of wells. The 
confinement factor may, therefore, be increased by large factors by using multiple 
quantum wells, keeping at the same time the advantage of the two- dimensional
motion of carriers. 

The confinement factor for the GRIN-SCH systems is also given by the simple 
expression[9.8]

(9.19)

Figure 9.3. Quantum well structure for the enhancement of optical cdonfinement. (a) Modified 
multi-quantum well (MQW). Carriers are confined in the GaAs wells, while the optical field is 

confined in the region between the two other AlGaAs layers. (b) Graded-index separate confinement 
heterostructure (GRIN-SCH). The carriers are confined in the well, While the optical field is 
confined in the GRIN region, due to variation of the refractive index. 
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where dw is the width of the central well and d is the total width of the active layer, 
nra is the average refractive index of the active layer. The confinement factor is-
thus multiplied in the GRIN-SCH structure by approximately (d/dw). If, however,
d is made large, then Γ T is given by the simple expression[9.14]

(9.20)

The MQW or GRIN-SCH structures increase the value of the confinement factor 
by factors of about 10-30 and a typical value of Γ for these structures may be
taken to be 0.1, 

These structures improve the performance of QWL’s through an additional 
process. Carriers are injected in the active layer in the high energy end. These 
are then scattered downwards to the band edge before they may recombine and 
generate photons. This settling time is not available for narrow wells and cap-
ture of the injected carriers take long time in SQL’s. This affects the dynamic 
performance of the lasers[9.15] In a MQW or GRIN-SCH structure, on the other 
hand, this problem is mitigated and most of the injected carriers are available for 
recombination in the active layer immediately. 

9.4.2. GAIN

The phenomenon of electron-photon interaction has two components : the emission 
of photons due to the recombination of electrons from the conduction band with 
the holes in the valence band and the reverse transition causing the absorption of 
photons. Photon emission has again two components : the spontaneous emission 
and the stimulated emission. Expressions for the rate of change of photon density 
through these processes have been given in Chapter 5. These were used to calculate 
the absorption coefficient for an incident optic signal. In absorption experiments,
the conduction band is mostly empty, while the valence band is mostly full, so that 
we may assume that fc(Eck) ≈ 0, and fv(Evk) ≈ 1. Consequently, the absorption
process is found to be stronger than the emission process. 

In lasers, on the other hand, we are concerned with conditions in which the 
emission process dominate over the absorption process. The density of the carri-
ers, both electrons and holes, is made large by the injection process. The Fermi 
functions fc(Eck) for electrons in the conduction band has, therefore, a large value.
Also, the function fv(Evk) for electrons in the valence band has a value different
from unity. The emission and absorption rates are required to be evaluated for
the calculation of the laser gain by keeping both fc(Eck) and fv(Evk).

The gain coefficient g is the difference of the emission and the absorption 
rate. It is obtained by changing the sign of the absorption coefficient given by
Eq. (5.143) .
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The gain coefficient is therefore given by 
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(9.21)

The k-selection rule has been assumed to apply and the integral is therefore re-
quired to be evaluated by using the joint density of states. 

Evaluating the integral as for absorption we get 

(9.22)

where Egn is the difference between the nth level energies of electrons and holes. It 
is assumed that the injected electrons and holes reach a quasi-equilibrium condition 
so that their distribution is also given by Fermi functions with the quasi- Fermi
levels EcF and EvF .

Computed values[9.16] of g are illustrated in Fig. 9.4 for a GaAs/AlGaAs
system. The gain, g decreases faster than (1/hω), since fc decreases while fv

increases with increase in hω. The gain, however, shows step increases as hω 
becomes equal to the subsequent values of Egn.

-
--

It may also be noted that the quantized levels are broadened by intraband
scattering. The effect of such scattering is taken into account by multiplying the 
gain function by a Lorentzian distribution function and then integrating over the 
energy level to obtain the convolved gain function, G(ω), which is then given

by[9.17],

(9.23)

where Γ iv is the intraband scattering time. The effect of this broadening is to
smooth out the gain curve as shown by the dotted line in Fig. 9.4. It also causes 
a small shift in the position of the peak gain. However, these effects are not large 
enough to cause a major change in the gain characteristics. 

The gain frequency curves for quantum wells are quite distinct from those for 
the bulk materials. In bulk materials, the gain starts from a value of zero for 
hω = Eg , increases with increase in hω, reaches a maximum value and then- -

decreases again. The frequency of the maximum gain for bulk materials varies
with the carrier density. On the other hand, in quantum wells, the maximum gain
occurs for all carrier densities when hw = Eg + Ec1 + Ev1 , i.e., at the modified band 
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edge. There is only a minor change of ω due to band gap renormalization[9.16] 
with the carrier density and due to intraband scattering. The difference in the 
character of the quantum well and the bulk gain curves arises from the step density 
of states in quantum wells and parabolic density of states in bulk materials. It 
is also because of this difference that the injected carriers contribute more to the 
emission in quantum wells. In bulk materials, as the current is increased to cause 
the carrier density to increase, the maximum gain shifts to higher energies, and the 
number of carriers contributing to the emission does not increase proportionately. 
On the other hand, in quantum wells, the injected carriers increase the carrier 
concentration at the band edge and contribute more effectively to emission.

The gain spectrum illustrated in Fig. 9.4 is also found to be sharper in quantum 
wells, as the density of states does not change with the energy. This character of 
the gain curve leads to better spectral purity in the laser output. 

The maximum value of the gain coefficient has been calculated[9.18,19] for 
GaAs and GaInAs for different injected carrier densities assuming the width of the 
well to be 200 Å . The calculated curves for GaAs[9.18] at dufferent temperatures 
are illustrated in Fig. 9.5. The gain initially increases rapidly with the carrier 

Figure 9.4. Gain of a GRIN-SCH-SQW laser for different phonon energy for four different injection 
levels. The upper and the lower curve for each injection level give respectively the unconvolved and 
the convolved gain vs photon energy .[After S. R. Chinn, P. S. Zory and A. R. Reisinger, IEEE J. 

Quantum Electron. 24, 2191 (1958); Copyright (=A9 1988=IEEE)]. 
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Figure 9.5. Calculated maximum gain for heavy-hole-1 to conduction-band-1 level transitions

as a function of injected carrier density in GaAs single quantum wells of 200 Å thickness with 

Al0.52Ga0.48As barriers. The temperature is indicated by the numbers on the curves.[After N. K. 

Dutta, J. Appl. Phys. 53, 7211 (1982); Copyright: American Institute of Physics]. 

density but finally saturates. The saturation is characteristic of the quantum wells 
and is due to the energy- independent density of states and unchanging frequency 
of maximum gain. These states get filled up for large injected carrier density and 
cause thereby saturation of the gain. In contrast, as the maximum gain shifts 
to higher energies in bulk materials with increase in the carrier density and since 
the density of states increases continuously with energy no saturation in gain is 
observed.

9.4.3.  ESTIMATION OF THRESHOLD CURRENT 

The threshold current for lasing may be calculated by using the gain curves, and 
the estimated values of αi αm and Eq. (14) as illustrated in Reference 9.18.,
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For example, the estimated values of Γ , αi, and R are 0.04, 10 cm–1 and 0.3 for
a GaAs/ Al0.52Ga0.48As well of 200 Å thickness. These data give for a 380 m long
well, gth ≈ 103 cm–1. It should be noted that the increased gain in the quantum
wells is partially offset by the low value of the confinement factor. However, in 
spite of this decrease in the effective gain, the required current density turns out 
to be lower as the injected carriers are required to fill a smaller volume and the 
current density is proportional to the well width. The estimated value of threshold 
current density is 550 A/cm2 in the above case, which is significantly lower than 
the value for a conventional laser. 

The gain, being related to the carrier distribution, changes with the tempera-
ture. As the carriers are more spread in the energy space with rise in the temper-
ature, concentration of the carriers decreases at energy levels from which emission 
occurs. The gain, therefore, decreases with increase in the temperature. The inter-
nal absorption coefficient, on the other hand, increases with the temperature due 
to increased scattering rate. The net result is that the threshold current increases 
with the temperature. The temperature dependence[9.8] is found to be expressible 
by the following relation, 

(9.24)

around an operating temperature T (J0 is a constant). The constant tempera-
ture T0 is defined as the characteristic temperature of a laser. The value of the
threshold current may be estimated by carrying out the analysis, outlined above,
for different temperatures and the value of T0 may be derived therefrom. It may, 
however, be noted that the gain for QWL’s is expected to be less dependent on 
temperature, since the Fermi level for the carriers in quantum wells is almost 
temperature independent for degenerate concentration. Detailed calculations also 
indicate that the characteristic temperature for QWL’s is higher than that of con-
ventional double-heterostructure lasers. 

9.4.4.  EQUIVALENT CIRCUIT MODEL 

The design of a cicuit for using a laser for a specific purpose requires an equiva-
lent circuit model of the laser. Several model circuits have been proposed [9.20]. 
Consideration of these models is beyond the scope of this book. We may, however, 
note that it is possible to predict the turn-on delay, relaxation oscillation frequency 
and 0n/0ff aspect ratio resulting from the application of a pulse voltage by using
these models. Variation of the parameters may also be predicted . It has been 
generally concluded that the bias dependence of QWL’s are significantly different 
from that of the coventional double-heterostructure(DH) lasers. 
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9.5.  Experimental Results 

The work on QWL’s has been so extensive that it is not possible to discuss even a 
fraction of this work within the limited scope of the book. Interested reader may 

consult books solely devoted to this topic[9.21]. Some salient features of this work 
are, however, discussed below. 

9.5.1.  GaAs/AlGaAs QWL 

Experimental work on QWL’s was started with the GaAs/AlGaAs system, as
the crystal growth techniques for this lattice-matched system was already devel-
oped. The first QWL[9.22] , using a single 200 Å well was reported in 1977; 
it required a threshold current density Jth of 3 kA/cm2 at 300 K. The perfor-
mance characteristics were radically improved in later years by improving the
quality of the crystals, particularly the interface, so as to reduce the interface 
scattering. The structures were also optimized by choosing the proper dimension 
of the active layer quantum well and number of wells in MQW systems. Alu-
minum content and thickness of the barrier layers were optimized to facilitate 
greater carrier injection and the outer cladding layers were designed to ensure 
confinement of the optical energy. The number of wells was also optimized to 
minimize absorption and maximize confinement. An optimized MQWL with four 
120 Å wells and 380 µm length was reported[9.23] to have a threshold current den-
sity Jlh of 250 A/cm2 . The value of Jth of a single well laser was also reduced[9.24]
to 160 A/cm2 by using a 1125 µm long cavity. The increased cavity length reduced
the effect of facet loss and the carrier absorption loss was reduced by reducing the 
doping of the cladding layers. Greater optical confinement was ensured by using 
the GRIN-SCH structure. 

Work on GaAs/GaAlAs lasers is being continued and development of such 
lasers have been reported even in recent years. In one report[9.25], the laser had 
a threshold current,Ith of 18 mA, characteristic temperature T0 of 240 K and 
external quantum efficiency ηd of 70 – 74%. The power output, Pout , was 20 mW
at 840 nm and operated up to 70°C. In a second report[9.26], the power output
was 500 mW at 50°C. The value of Jth at 300 K has also been reduced[9.27] to 52
A/cm2 and of Ith to 0.35 mA[9.28]. GaAs/AlGaAs lasers have also been developed 
to have low temperature sensitivity[9.29] , high modulation bandwidth[9.30] and 
reduced spectral band width[9.31] and chirp (initial wave length variation).

9.5.2.  InGaAsP QWL

The development of opttical fibers for communication[9.32] stimulated work on 
diode lasers for the zero dispersion wavelength 1.1 µm and lowest attenuation
wavelength 1.55 µm. It was recognized that the quaternary Inx Ga1–xAsyP1–y ,
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with suitably chosen values of x and y has the required band gap values for the gen-
eration of these wavelengths and may be lattice matched to InP. Conventional het-
erostructure lasers using this material system grown by LPE are well-established.
Considering the expected advantages of QW lasers, attempts have been made to 
realize QWL’s with this material. However, good quality phosphides being diffi-
cult to grow by MBE or MOCVD, first few lasers were made by LPE[9.33,34] or 
hydride-transport VPE technique[9.35]. 

It may be recalled that the confinement factor for the MQW being larger
in comparison to that for SQW, the threshold carrier density is smaller in the 
former. Auger non-radiative recombination[9.36,37] being more effective in these 
lasers because of the smaller band gap, the carrier density is tried to be kept 
as low as possible since Auger recombination increases as the cube of the carrier
density. The InGaAsP QWL’s are, therefore, based on MQW systems. Initial
experiments[9.34] on 1.3 µm lasers yielded I th of 15-20 mA, Jth of 1.2 kA/cm2 and
T0 of 70-145 K. The threshold current has been further reduced[9.38] to 5-8 mA
by reflective coating of one facet by Si/SiO2 .

MQL’s for 1.55 µm wavelength have been fabricated by MBE, but using the
In0.53Ga0.47As/Al0.48In0.52As system[9.39] and by CBE[9.40], using the 
In0.53Ga0.47As/InP systems. The value of Jth is about 2.4 kA/cm2, while T0 is
about 60-100 K. A 1.5 µm QWL using InGaAs/InGaAsP has been reported[9.41],
which has Jth of 170 A/cm2, η i of 83%, a of 3.8 cm–1 and T0 of 45 K.

It appears from the published work that the performance characteristics of 
InGaAsP MQL’s are not yet as good as those of GaAs MQL’s. Values of threshold 
currents have been reduced but the characteristic temperature has still a low value.

9.5.3.  STRAINED-LAYER LASERS

Heterostructures may be grown with materials having small lattice mismatch. The 
layers grown on a host material of a different lattice constant gets strained, but the 
strain may be accommodated[9.42] unless the layer is thicker than about 30-40 Å
The strain, however, alters the energy band structure[9.43]. The light hole band 
and the heavy hole band are decoupled and as a result the upper most band has a 
reduced value of effective mass for fairly large values of hole energy as illustrated 
schematically in Fig. 4.11. The valence band Fermi level is therefore deeper in 
the band for the same hole concentration. The difference between the electron 
quasi-Fermi level and the hole quasi-Fermi level is, therefore, larger for the same 
injected carrier density in strained layers in comparison to that in the unstrained 
layers. The gain in QWL’s using strained layers is, therefore, expected to be higher 
for the same carrier density. 

A phenomenological analysis has been given [9.44] , which describes the high-
power high-temperature operation of a compressively strained InGaAsP MQW 
ridged waveguide laser.It has also been experimentally verified that it is the crystal 
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heating which defines the optical power saturation.
Strained-layer lasers are also of interest for generating radiation of wavelengths

of 0.8-1.1 µm, required for E 3
r

+ - doped optical fiber amplifiers[9.45]. The ternary
material InxGa1–xAs of the required band gap has a lattice constant, different from
the readily available substrates and is required to be grown as a strained layer.

Work on the strained-layer QWL’s is being carried out mostly by using the 
InxGa1–xAs/GaAs system. The early reports[9.46] on InGaAs/GaAs lasers emit-
ting at 1.0 µm gave Jth of 1.2 kA/cm2 . The performance of these lasers, however
improved with the years and 0.98-1 µm lasers have been reported with Ith ranging
between 3 mA and 85 mA[9.47-51] and Jth ranging between 56 A/cm2 and 212 
A/cm2[9.52-56]. The threshold current has been further reduced to 0.35 mA by 
using reflective coating on a facet [9.57].

Recently, a 1 × 12 monolithically integrated array has been demonstrated[9.58] 
with AlGaInAs/InP GRIN-SCH strained MQW 1.5 µm lasers. The diodes on the
array had a characteristic temperature of 88 K, slope efficiency drop of 0.9 dB 
between 20 and 80°C, threshold current of 5.91 mA, slope efficiency of 0.281 W/A
at 20°C. The lasing wavelength was 1510 nm at 20°6 and the 3 dB modulation 
band width was 12 GHz. 

The effect, of strain on the performance characteristucs of InxGa1–xP/
In0.5 (Al0.7Ga0.3)0.5P strained-layer lasers have been analysed by Ahn [9.59]. The 
threshold current density of compressive as well as tensile-strained quantum wells 
were found to be lower than that in unstrined wells. Lowest threshold current 
density of about 385 A/cm2 was obtained for a laser with a 500 µm long cavity,
which agreed with experiments. 

9.5.4.   VISIBLE MQWL 

Lasers for visible light are required for different applications, e.g., in bar-code scan-
ners and erasable optical disks. The AlGaInP system lattice-matched to GaAs can 
give radiation of wavelengths around 650 nm. The room temperature AlGaInP 
laser was first reported in 1986[9.60]. The performance characteristics have been 
improved with time. However, Ith in these lasers are comparatively larger because
of the larger carrier effective mass, which effectively reduces the quasi-Fermi levels 
and increases the transparency concentrations. The band offsets, being also small 
in these structures the leakage current is larger. Characteristic temperatures for 
these lasers are in the range between 80 and 140 K. The development of AlGaInP 
lasers with improved performance characteristics is therefore engaging great atten-
tion. A strained-layer single QW AlGaInP/GaInP laser has been reported[9.61] 
to have Jth of 215 A/cm2 . In another report[9.62] 60 mW light output has been 
obtained at 100°C with a Ith of 36 mA. Light output at 634 nm has also been 
reported[9.63] for a laser with Ith of 59 mA and To of 46 K. 
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There has been great interest in the development of Light-Emitting Diodes 
(LED’s) and lasers from the ultraviolet to the yellow region . Such LED’s have 
been developed by using InGaN single quantum wells and these are commercially 
available [9.64,65]. An InGaN MQWL has been demonstrated [9.66] , which pro-
duced 215 mW of power at a forward current of 2.3 A with sharp peak light, 
output at 417 nm and had a FWHM of 1.6 nm under pulsed condition at room 
temperature. The threshold current density fior the laser was 4 kA/cm2.

9.5.5.  SURFACE-EMITTING LASERS

In many applications. e.g. , parallel light-wave communication systems, quick-
access optical disks, optical computing, optical interconnects, monolithic integra-
tion and two-dimensional arrays, light is required to be emitted from the surface. 
Surface-emitting lasers[9.67-72] are realized either by using a vertical cavity or by 
using a horizontal cavity and a built-in reflector. 

A vertical-cavity surface-emitting laser (VCSEL) is shown schematically in Fig. 
9.6(a). It has the usual laser structure, but the top and the bottom surfaces are 
covered by Bragg reflectors. For example[9.67], for an InGaAs VCSEL, a Bragg 
reflector consisting of quarter wave layers of Al0.67Ga0.33As and GaAs is first grown 
on a GaAs substrate. Then the active layers consisting of three 80 Å In0.2Ga0.8As
wells with 100 Å GaAs barriers are grown, separated by A0.33Ga0.67As spacers. 
On top of the active structure another Bragg reflector is grown. The total vertical 
length of the wells, barriers and spacers is one wavelength. As the reflectivity of 
the Bragg reflectors is very close to unity (99.75-99.95 %), the edge reflection loss 
in the vertical direction is much smaller than that in the lateral direction. Hence 
the lasing occurs in the vertical mode to produce emission through the substrate 
GaAs, which is transparent to the generated radiation at 930 nm. The lateral 
extent of the carriers is also limited by the contact dimensions to concentrate 
the injected carriers over a small diameter. VCSEL’s have been constructed with 
InGaAs and GaAs[9.69] quantum wells, which have Ith of 1-4 mA, Jth of 0.8-1.4
kA/cm2 , Pout of 1-9 mW and η d of 10- 25 %.

Horizontal cavity surface-emitting lasers (HCSEL) are essentially the edge-
emitting lasers with in-built 90°/45° mirrors, as illustrated schematically in Fig. 
10.6(b,c). To one end of the laser consisting of the n and p-type GaAlAs layers and 
a GRINSCH active layer, a 90°S3 N4 mirror is constructed by reactive ion etching 
and to the other end is constructed a 45°S3 N4 mirror with ion-beam etching. The 
laser works as an edge- emitting laser with output at one end, which is reflected 
upwards to be emitted through the surface. Such lasers have been constructed 
with GaAs[9.70] and InGaAs[9.71,72] active layers to give Pout of 100-250 mW, Jth

of 300-500 A/cm2 and η d of 10-22 %.
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Figure 9.6. Schematic diagram of surface–emitting quantum well laser. (a) Vertical cavity SE

QWL. The cavity is formed by the top p-type and the bottom n-type Bragg reflectors. Current 

is confined to the central region by H+ implants around the contact. The quantum well system is 
similar to the structures used in other lasers. (b) GaAs/CaAlAs horizontal cavity SEQWL. The 

cavity is formed by the two mirrors at the end faces. Light emitted from the edge is reflected verti-

cally upwards by the 45°-mirror. (c) InGaAs/GaAs horizontal SEQWL. Light is emitted vertucally 
upwards after reflection from the end mirror. 

10.5.6.  QUANTUM WIRE LASER 

The improvement in the performance of diode lasers by the one-dimensional con-
finement is expected to be further enhanced by two- or three-dimensional con-
finement. Attempts are, therefore, being made to realize structures in which the 
carrier momentum will be quantized in two directions, the so called quantum wires 
(QWR). Various techniques, e.g., etching and regrowth[9.73], growth on vicinal 
substrates[9.74], growth on patterned non- planar substrates[9.73-78], have been 
tried for realizing QWR’s.

Quantum wire lasers (QWRL) have been constructed by the first technique 
but the expected low Jth could not be realized, apparently because damage free 
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interfaces are difficult to realize in the etch and regrowth technique. On the 
other hand, QWRL’s have been constructed by the third technique which have Ith

comparable with the best QWL’s reported to date. A QWR laser constructed by
this technique, therefore, merits description at this stage. 

In the first step of fabrication, V-grooves (3 µm deep and 5 µm wide) were
produced on a <100> oriented n+ GaAs substrate along the [011] direction. On top 
of the grooves was grown first a n-Al0.7Ga0.3As layer, then a 0.15 µm AlxGa1–xAs
GRIN layer. Above the GRIN layer were grown three QWL’s each 7 nm thick
and spaced by 25 nm thick AlGaAs superlattice barriers. These were then clad
by another GRIN layer, a p-Al0.7Ga0.3As layer and finally by a p+ GaAs layer. 
Contacts to the laser were provided by Ti/Au, Au/Ge deposits on the top and 
the bottom GaAs layers. The GaAs layers grown between the GRIN layers, were 
thick at the center, because of the larger growth rate in the <100> direction and 
behaved as quantum wires with a breadth of 100 nm. Current through the diode 
was confined in this central region by proton implantation. The diode structure is 
shown schematically in Fig. 9.7. Lasers fabricated[9.75] with one such QWR gave 
a Ith of 33 mA. The threshold current was reduced[9.76] to 2.5 mA by using three
QWR layers and a cavity length of 100 m, the value of η d being 55 |The

Figure 9.7. Schematic diagram of a quantum-wire laser. Quantum wires are formed by the GaAs
layers deposited on the AlGaAs layers with corrugated surface. The diode is formed by the top
p-type AlGaAs and the bottom n-type AlGaAs. Carriers are confined mostly to the GaAs wires
with triangular cross-section.
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threshold current was further reduced to 0.6 mA by applying high-reflection coat-
ing ( R= 0.95 ) and using a length of 135 µm.

Superlattice QWR structures, constructed by SiO2 masks on GaAs substrates, 
as described in Chapter 2 have also been tested for laser action by optical pump-
ing[9.77,78]. It has been predicted from these results that it may be possible to 

realize lasers with Ith <100 µA by suitable design of the cavity of a vertical-cavity

laser.
Quantum wire lasers have also been produced by a single step molecular epitaxy 

method[9.79]. It has been found that QWR lasers offer the benefits of higher 
gain, reduced temperature sensivity , higher modulation band width and narrower 
spectral linewidth. In these structures a short-period superlattice is grown with
lateral modulation via the strain-induced lateral ordering [9.80]. A quantum wire 
is realized by using this structure as the quantum well region of a conventional 
quantum well as shown in Fig. 9.8. The band structure of such a laser has been 
analysed by Li and Chang [9.81], who concluded that the strain increases the 
quantum confinement and enhances the anisotropy of the optical transitions. 

9.5.7  QUANTUM DOT LASER 

Quantum dots are also being studied for use in the active region of injection 
lasers[9.82.83]. Lasers based on a single sheet of quantum dots (QD’s) lase via the 
ground state in the low temperature range (150-180 K) and exhibit the expected 
low threshold current density and ultrahigh temperature stability [9.84]. However, 
the electrons and the holes escape fronm the QD’s at higher temperatures, which 
causes a decrease in gain and increase in the threshold current. The problem has 
been solved by using vertically coupled QD’s(VCQD’s). The threshold current has 
been found to decrease dramatically at 300 K [9.85].A 1 W CW laser has been 

Figure 9.6. A schematic diagram of a quantum wire laser using GaxIn1–xAs with strained lateral
ordering.
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demonstrated by using InGaAs VCQD’s in an AlGaAs matrix [9.86].
QD lasers have also been realized [9.87] with CdSe/ZnSSe strain-compensated

quantum dot superlattices. A threshold current density of 55 kW/cm2 and 0.8
kW/cm2 were realized respectively for T(temperature) = 300 and < 75 K. The
characteristic temperature was as high as 750 K.

In spite of the lower values of the threshold current densities and higher char-
acteristic temperatures so far realized, QD lasers cannot be considered as fully
developed . The main difficulty arises from the size variation of the QD’s, which
leads to a large number of lasing wavelengths. It may be expected that with fur-
ther improvement in the QD growth techniques , this problem will be minimised
and the full potential of QD lasers will be realized.

9.6.  Conclusion

The physics underlying the operation of quantum well lasers have been discussed
in this chapter. Different kinds of QWL’s realized to-date have also been briefly
described. The basic idea behind the improvement of the performance character-
istics is the confinement of carriers in a smaller and smaller physical space so that
greater concentration of carriers is obtained for the same total carrier injection.
Confinement by reducing the physical size, confines the electron also in the energy
space by quantization. However, the small physical size has the attendant problem
of small optical confinement. Steps are required t o be taken for greater optical
confinement. GRIN and MMQ systems have been evolved for this purpose.

Improvement of the performance characteristics also reqtuires minimization of
the loss and the non-radiative processes. The effective edge loss may be reduced
by increasing the length of the cavity and by high-reflection coating of the edges.
Crystal growth techniques are also required to be improved so as to reduce the
defects which may cause non-radiative recombination. The carrier concentration
is also required to be kept low for the threshold conditions to minimize the Auger
non-radiative recombination processes and the bee-carrier absorption loss.

We find that more and more improved characteristics have been realized for
QWL’s from the above considerations. QWL’s have been realized with very low
threshold currents to cover the important wavelengths of practical interest in edge-
emitting as well as the surface-emitting lasers. Interest in the diode laser research,
however, continues, the object being to realize ultimately threshold currents in the
micro ampere range. One route towards this aim is the development of lasers with
quantum wires and ultimately quantum dots. Significant progress has been made
in recent years for reaching this goal.



CHAPTER 10

QUANTUM WELL DETECTOR, MODULATOR 
AND SWITCH 

Quantum well devices discussed in Chapter 7-9 have replaced conventional devices 
in many electronic equipment. Extensive work is also being carried out on quantum 
well detectors, modulators and switches. These devices are not, however, fully 
developed yet and several varieties of each device are being experimented on. In 
order to keep the discussion within limits we shall consider only the basic operating
principles of these devices and describe one or two forms of each device as example. 

10.1.  Quantum Well Detector

Detectors for infrared or long wavelength radiation are of interest for night vision, 
space surveillance, space exploration, remote monitoring of environment and such 
other applications. Such detectors have been made since the sixties by using 
mercury cadmium telluride, the band gap of which may be varied from near-zero
value to 1.44 eV by varying the composition. The detectors developed by using 
the absorption phenomena in quantum wells provide a challenging alernative to
these detectors for some of the applications. 

Quantum well infrared photo detector (QWIP)’s have been realized by using
intersubband absorption in GaAs/GaxAl1–xAs , InGaAs/AlxGa1–xAs and SixGe1–x

/ Si MQW systems, by using interband absorption in InAs/Ga1–xInxSb superlat-
tices and also by using HgTe/CdTe superlattices. The intersubband absorption
detectors are comparatively well developed and have reached the application stage. 
We shall discuss only this detector. Interested reader may consult Reference 10.1 
and 10.2 for a more detailed dlscussion on the QWIP’s.

10.1.1. PRINCIPLE OF OPERATION 

The width of the wells and the composition of the barrier material are so chosen 
for a QW intersubband detector that the wells have two energy levels separated 
by the energy of a photon to be detected. The upper energy level is arranged 
to be either a resonant level in the continuum or a level just below the barrier 
level in the presence of the applied voltage as shown in Fig. 10.1. The wells are 
heavily doped n-type to a concentration of about 1018/cm3 . The incident radiation 
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excites electrons from the lower ground state to the upper level and the electrons 
so excited are transported out of the well freely or by tunneling due to the applied 
field.

The performance of the detector depends on three factors: the absorption of 
the incident radiation, the current produced by the excited carriers, dark current 
and noise. These factors are discussed below. 

Absorption of incident radiation
Intersubband absorption has been discussed in Section 5.1.4 for quantum wells 
with barriers of infinite height. The barrier height for the wells in experimental 
detectors are, however, finite, which cause extension of the envelope functions into 
the barrier region. The effective mass m* is a function of z as a consequence and
the matrix element for transitions are modified. The modification may be worked 
out by using the envelope function equation after including the vector potential 
operator Aop arising from the incident radiationThe modified equation is given 
below

(10.1)

Proceeding as in Section 5.1 and neglecting the sqare of Aop we get for the matrix
element for transitions from level 1 to level 2, 

(10.2)

where Aop has been replaced by azA0 exp(iκ.r). E2 and E1 are the energies corre-
sponding to the two levels and az is the component of the polarization vector 

Figure 10.1. Energy levels in quantum well infrared photodetector (QWIP). 
(a) Bound-to-bound QWIP. Both the lower and the upper levels are bound. (b) Bound-to- con-
tinuum QWIP. The lower level is bound, but the upper level is in the contnuum. 
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in the z-direction. Using this matrix element in the expression for the absorption
coefficient we get 

where

(10.3)

(10.4)

Lw is the width and m*
cw is the electron effective mass of the well. All other

symbols are the same as defined for Eq. (5. ). The oscillator strength for the
transitions from E1 to E2 is f0 . It should be mentioned that when the matrix 
element is expressed in terms of the dipole moment |e| < z >, the effective mass
is eliminated from Cabis . However, it reappears when a is expressed in terms of
f0 . If the mass in f0 is taken[10.3] as m0 , then C abis has the factor 1/m 0 . On the
other hand, when mcw

* is used to define f0 , as is usually done[10.2] , Cabis has the
factor 1 /m *

cw . Values of f0 quoted in the literature are required to be interpreted 
accordingly. We note that the half-width Γ in the above expression is required to
be chosen to fit the experimental curves. However, with properly chosen values of 
Γ , experimental curves are explained well as shown in Fig. 10.2

The oscillator strength f0 depends on the structure of the detector. Its value
is 0.96 for transitions from the ground level to the next higher level in a well with 
infinite barrier height. For wells with finite barrier height, < z > is required to be
evaluated by using the solutions F1(z) and F2(z). The solution for Fn(z) may be
generally written as, 

(10.5)

(10.6)

where Ecw and Ecb are the bandedges respectively of the well and the barrier layer. 
The width of the well is Lw and the total width of the barrier layer is Lb (Lb/2 being
the width on each side). The energy eigenvalues are obtained from the equation, 

(10.7)

(10.8)



226 CHAPTER 10 

Figure 10.2. Absorption spectrum for a bound-to-bound detector. The dashed line is a Lorentzian 

fit to the experimental curve. [After B. F. Levine, J. Appl. phys. 74, R1 (1993); Copyright: 
American Institute of Physics]. 

We note that the level corresponding to En is bound if En < Ecb , since kb is
then imaginary and F(z) decays in the barrier. Equation (10.7) giving the energy
levels then reduces to Eq. (4.8). The transition is from a bound level to a bound
level (b–b), when both E1 and E2 are smaller than Ecb . The absorption is given in
this case by the delta function or the Lorentzian function as in wells with infinite
barrier. But, the value of α is reduced due to the reduced value of f0 . Values
of f0 have been computed[10.2] for the GaAs/GaAlAs, GaInAs/AlInAs systems,
The value is approximately 0.4. 

For well widths less than a critical value there is only one bound level 
E1 . Transition may, however, occur to levels in the continuum ,( b – c ), for which 
En > Ecb , The absorption spectrum[10.3] for ( b – c ) transition is illustrated in Fig. 
11.3. Absorption commences when the photon energy is equal to the difference
between the barrier band-edge energy. Ecb , and the bound level energy, E1 . As 
the photon energy is increased, it sharply rises to a peak value and then slowly 
falls to near-zero value for large photon energies. The nature of the absorption 
spectrum is essentially determined by the variation of f0 or < z > with the fie-
quency, ω, of radiation. Computed curves obtained by using the expressions of
Eq. (10.3) agree with the experimental results[10.4]. The nature of the curve may 
also be explained as follows. 

Absorption is zero for photon energies hω < (Ecb– E1), since there are no levels
available for transition. It starts for hω = Ecb – E1 . As ω increases

-
-
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Figure 10.3. [After B. F. Levine, 
C. G. Bethea, K. K. Cho, J. Walker and R. J. Malik, J . Appl. Phys. 64, 1591 (1988); Copyright:

American Institute of Physics]. 

the absorption increases, since the probability density for the electron is more 
and more concentrated within the well. The probability density within the well
reaches the maximum value when kwL or the total phase shift is a multiple of 
π.The corresponding energy levels are referred as virtual levels, the energy for
which are given by, 

Absorption spectrum for a bound-to-continuum detector. 

(10.9)

It may be expected that f0 will have the largest value when hω = Evn – E1 .-

The first such value corresponds to n = 2. In reality, however, the peak value
occurs for lower energies [10.5] Since the envelope function F1 (z) corresponding to
E1 extends in narrow wells into the barrier layer, < z > has the largest value
when F2(z) also has non-zero value in the barrier layer. The peak absorption,
therefore, occurs for photon energies less than Ev2 – E1 . Experimentally, it has 
been found to be larger than Ecb – E1 by a few milli electron volts, about 20 meV. 
The absorption, therefore, sharply rises to the peak value within about 20 meV 
of the cut-off photon energy. After reaching the peak value it decreases as the 
envelope function for the second level gradually diffuses into the barrier layer and 
becomes uniform like that of a free electron. 

We note that the broadening of the absorption spectrum for ( b-c) transitions 
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is inherent in the phenomenon whereas the broadening in (b-b) transitions is due
to extraneous factors. 

Detector current and Responsivity
In the absence of an input signal, the carriers are confined to the ground level in the 
wells and produce very little current when a voltage is applied. This current, the so-
called dark current. and the associated noise are discussed in the next subsection. 
However, when a signal is applied, carriers are excited from the ground level to 
the upper level or the continuum. These carriers produce the detected current. 
In case, the upper level is also a bound level, the carriers escape from the well by 
tunneling through the barrier layer. In the presence of a voltage, the bandedge 
of the barrier layer is bent and the tunneling is facilitated. The carriers, which 
escape by tunneling, move in the conduction band of the barrier layer under the 
action of the applied voltage and produce current. On the other hand, when the
upper level is in the continuum, the excited carriers move under the action of the 
voltage partly in the well and partly in the barrier to produce the current. 

We may also distinguish between two modes of transport of the free carriers. If 
the excited carriers recombine at a fast rate, and the recombination time is smaller
than the transit time across the detector, then the current is given by,

(10.10)

where np is the number of photoexcited carriers exiting per unit time per unit 
area at the output end. Ar is the surface area of the detector. We note that 
for signal power P, incident per unit area on the detector, the number of photo 
excited carriers per unit time per unit area in one well is 

(10.11)

where v is the incident signal frequency, θ is the angle of the direction of propa-
gation of the signal with the normal to the surface of the well inside the well, R is
the reflection coefficient of the detector surface, p is the number of passes through
the well, α is the absorption coefficient given by Eq. (10.3) and Lw is the width
of a single well. The factor of (1/2) is introduced to account for the fact that for
unpolarized input signal only the component in the plane of incidence is absorbed. 
If now, pe be the probability of escape from the well and there be Nw wells, then
the number of electrons reaching the output end per unit area 

(10.12)

where pe is the probability of escape of the excited electrons from the well, Ttr is
the transmit time of the escaped electron across one period, Lp = (Lw + Lb) arid Tr

is the recapture or recombination lifetime. Wells are counted from the exit end. 
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As electrons exit from the output end, other electrons exit from the opposite end 
contact to maintain charge neutrality of the detector. If Ttr be small or the end
contact be made directly to the well in single-well detector these injected carriers 
recombine before travelling to any significant distance to contribute to the current.
The current is contributed in this case by the primary excited electrons given by 
Eq. (10.10). and it is given by 

where pαLw has been assumed to be much smaller than Tr and

Responsivity for this mode of transport is

(10.13)

(10.14)

ηa is defined as the quantum efficiency. Performance of a detector is characterized
by responsivity which is defined as 

(10.15)

(10.16)

It should be noted that τtr may be taken to be inversely proportional to the drift
velocity v of the carriers, which for a voltage V is given by,

(10.17)

vs being the saturation velocity, and µ the mobility. The responsivity, therefore,
increases with the increase in voltage through the exponential factor. 

The other mode of carrier transport is effective for τr > Nwτtr . For this
case, the injected electrons also contribute to the current. In effect, the excited 
carriers travel around the detector a number of times before being recaptured. 
The steady- state free carrier concentration n is given by the condition that the 
rate of recapture is equal to the rate of excitation and escape per unit volume 

(10.18)

nex being the number of electrons excited from each well per unit area. The current 
in this case is given by 

(10.19)

v being the drift velocity of the free electron. 
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The factor vτr/NwLw is defined as the optical gain g; it gives the increase in
current due to the circulation of the excited carriers. The value of g for some
designs[10.6] may be as large as 8.1. The gain is often expressed as 

(10.20)

where pc is the capture time, being equal to τtr/τr, i.e., the ratio between the 
transit time across well and the recapture life time, Replacing v by (17), we get
for the responsivity is in this case, 

(10.21)

Expression (10.21) gives the dependence of the performance characteristics on the 
different factors. The variation of responsivity with the bias voltage V is illustrated 
in Fig. 10.4 for two QWIP’s[10.7]. The curve E is for a GaAs/Ga0.74Al0.26As
MQWIP with 50 Å wells and 500 Å barriers, while curve F is for a MQWIP in 
which Lw –50 Å, but the barrier consists of a 50 Å Ga0.7Al0.3As layer followed by
a 500 Å Ga0.74A0.26As layer. The responsivity for the detector E is initially near 
zero, then increases almost linearly and finally saturates. The near-zero

Figure 10.4. Responsivity vs. bias voltage for two QWIP’s. (a) Bound-to-bound. (b) Bound-

to-quasicontinuurn. Insert shows the energy levels in the QWIP’s.[After B. F. Levine, J. Appl. 
Phys. 74, R1 (1993); Copyright: American Institute of Physics]. 
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resonsivity for low voltages is due to the small value of the tunneling probability 

and hence 0f pe. The rest of the curve is in accordance with the variation of 
the carrier velocity with the voltage as given by (10.17). The responsivity of the 
detector F increases almost linearly from low voltages and finally saturates. The 
barrier being very thin, excited electrons escape from very low voltages to produce 
current and the current varies with the voltage like V.

Expression (10.21) for the responsivity also shows that its value will increase 
with increase in the value of pe and ηa . Since α is directly proportional to the
carrier density the responsivity should increase with increase in the doping. Also, 
in bound-to-bound QWIP’s, Rp should increase with decrease in the barrier width,
which enhances the value of pe . Optimization of these two factors is controlled 
by the dark current and the associated noise, discussed below. 

Dark current and Noise 
Dark current. as mentioned earlier, is the detector current in the absence of the 
infrared radiation . It is required to be as low as possible as its magnitude deter-
mines the sensitivity of the detector. The current is produced by the tunneling of 
the carriers out of the ground state in the well. It is given by 

(10.22)

where v is the velocity of the escaped electrons and the density of such electrons 
is for bound-to-continuum QWIP, 

(10.23)

where m* is the effective mass in the well, f(E) is Fermi distribution function and
Tu(E1, V) is the tunneling probability for an applied voltage V and electron energy
E1. For bound-to- bound QWIP an additional integral extending from E2 to ∞ is
to be included. 

We may conclude from Eq. (10.23) that the dark current will be strongly
temperature dependent. For example, if we idealize Tv(E, V) as Tu = 0 for E <
(Eb – E1)(Eb is the barrier layer bandedge) and Tu =1 for E > (Eb – E1), we get

(10.24)

EF
 being the Fermi-energy corresponding to the doping density ND . Calcula-

tions[l0.8] show that the current changes by a factor of about 108 as the tempera-
ture is raised from 4 K to 77 K. The current will also depend strongly on the width 
of the barrier layer, since the tunneling probability decreases exponentially with 
the width of the layer. The thickness of the barrier layer in bound-to-bound QWIP 
is made about 100-150 Å so that the escape probability for the excited carriers is 
not too small. On the other hand, the thickness of the barrier layer may be made 
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500 Å or more in bound-to-continuum QWIP without reducing significantly the 
value of pe or g. The five-fold increase in the barrier layer thickness reduces the 
dark current for these QWIP’s by a factor of 104 -1011 over the temperature range 
4-80 K. The difference is accentuated as the operating voltage is also much smaller 
in these detectors, the excited electrons being not required to tunnel out. 

The current flow through the detector is associated with shot noise. The root 
mean square shot-noise current is 

(10.25)

where ID is the dark current. 

1 Hz for characterization, so that the unit of in is A/Hz1/2.
The current is magnified by the optical gain,g. The bandwidth ∆ f is taken as

The net performance of the detector is specified by detectivity, defined as 

(10.26)

in units of cm.Hz1/2 /W, unit of Rp being A/W. 
Optimization of a detector structure is aimed at maximizing Rp and D. The

effect of barrier width on Rp and ID has been discussed. Rp may be increased
also by increasing the absorption coefficient a, which is proportional to the carrier 
density and hence to the doping of the well. The increased doping enhances also
the the dark current and thereby mitigates a part of the increase in D. The dop-
ing dependence of D may be understood by considering the bound-to-continuum
QWIP. The dark current is proportional to n* ,which may be expressed in terms 
of the doping concentration ND as follows. Assuming all the donors to be ionized, 
we may express ND as,

Hence,

where

(10.27)

(10.28)

(10.29)

The dark current, ID , therefore, increases exponentially with ND and D ∝
ρ/[exp(ρ) – 1], where ρ = ND/n0 . Consequently. the detectivity initially in-
creases with ND , attains a peak value and then decreases with further increase of 
ND . The peak is, however, very broad. Computations show that the detectivity
changes by a factor of 2 for a change of ND by a factor of 30. 

It is also of interest to note that the detectivity is relatively insensitive to the 
magnitude of the bias voltage V, since for low voltages, Ip as well as ( IDg )1/2 vary
as V. However, at high biases ID increases faster than V. On the other hand, 
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the reduction in the value of pe for very low voltages reduces the value of D. The
detectivity as a result has a broad maximum for moderate operating voltages. 

10.1.2.  EXPERIMENTAL RESULTS

The first QWIP was demonstrated for a wavelength of 10.9 µm by Levine et
al[10.9] following the exploratory work on intersubband absorption by West and 
Eglash[10.3]. A multiquantum well system consisting of fifty 65 Å GaAs wells, 
doped 1.4×1028 cm –3, and 95 Å Al0.25G0.75As barriers was used. The detector 
was constructed by providing ohmic contacts to the top and bottom n GaAs
covering layers as shown in Fig. 11.5. Also, to ensure optical coupling, radiation 
was made incident from the back by polishing the substrate at 45° angle. The 
responsivity of the detector was 0.52 A/W. The value of pe and vτr were estimated
to be 60 % and 2500 Å The dark current of the device was however, very large 
Subsequently the performance of the detector was improved[10.10] by increasing 
the barrier thickness to 95-140 Å and the barrier height by using Al0.36Ga0.69As.
The value of Rp was 1-9 A/W and ID was 2×10–4 A at 15 K.

Further improvement in the performance characteristics was achieved[10.8] by 
using thinner quantum wells, so that the transitions occurred from the bound state 
to the continuum. Fifty GaAs quantum wells 40 Å thick, (doped 1.4×1018 cm–3)
and 305 Å Al0.29Ga0.71As barriers were used. The cut-off wavelength was 8.4 µm .
The dark current was about 10 A at 77 K and less than 10–12 A at 15 K. Another 
structure with increased barrier width of 480 Å and composition of Al0.25Ga0.75As,
had a cut-off wavelength of 10.7 µm and gave dark current of about 10–5 A at 77
K and <10–12 A at 15 K. 

Extensive work[10.1] has been reported, in which the well width was varied 

Figure 10.5. Structure of an AlGaAs/GaAs QWIP. The shaded region is n+ GaAs. The GaAs
substrate is polished at an angle of 45° so that normally incident light is incident on the detector at 

45°. The hatched area is the MQW.[After E. F. Levine, J. Appl. Phys. 74, R1 (1993); Copyright: 

American Institute of Physics]. 
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Figure 10.6. QWIP’s with grating and waveguide. (a) Schematic diagram showing a detector 

with a grating on top. The normally incident signal is reflected at angles with the normal to the 
grating, which is then optically coupled to the well. [After G. Hasnain, B. F. Levine, C. G. Bethea, 
R. A. Logan and J. Walker. Appl. Phys. Lett. 54,2515 (1989)]. (b) Schematic diagram showing 
a detector with a waveguide formed by the QW’s and the bottom and the top n-doped GaAs 
layer. [After J. Y. Andersson, L. Lundqvist and Z. F. Paska, Appl. Phys. Lett. 58, 2264 (1991)]. 
Copyright: American Institute of Physics. 

from 40-70 Å, the barrier width was about 500 Å, the doping was raised between 
0.3 -2×1018 cm–3, and the value of x in AlxGa1–xAs was also varied between 0.1-
0.3. These covered the wavelength range 7.5 to 16.6 µm. The peak responsivity at
20 K was in the range 0.4-0.7 A/W. The detectivity varied from 1010 cm.Hz1/2/W
at 77 K to 1013cm.Hz1/2/W at 35 K for a 10.7 µm detector and form 109 cm.Hz1/2

/W at 50 K to 1012cm.Hz1/2/W at 20 K for a 19 µm detector.
Experiments were conducted on various kinds of structures, which are described 

in Reference 10.2. Optical coupling has been improved by using either a grat-
ing[10.10,11] on the top contact layer [shown in Fig. 10.6(a)] or by constructing 
a waveguide[10.12,13] below the MQW [shown in Fig. 10.6(b)] or by construct-
ing both. To improve the coupling of the radiation, p-type doped wells were also
used[10.14,15]. The effective mass for holes being anisotropicj radiation is coupled 
to holes even for normal incidence as explained in Section 5.2.2. The responsivity 
of the p-type detectors was, however, an order of magnitude lower than that of 
n-QWIP’s. The lower mobility of holes, is responsible for the poorer performance. 

Recently, an evanescent wave prism film coupler has been developed [10.16] in 
which the light is coupled to the detector through a GaAs thin film prism .The 
angle of the prism is so chosen that the incident light is totally internally re-
flected from the base. But, the evanescent wave escaping from the base is coupled 
through a AlGaAs dielectric film to the detectors. The electric field component 
of the evanescent wave being normal to the bottom surface of the prism , light 
interacts effectivelyt with the electrons in the QWIP. It is reported that a tenfold 
increasein electron photon coupling may be realized by this technique in compar-
ison to optimal grating coupling systems. 
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Table 10.1 Characteristics of Quantum Well Infrared Photo detectors (QWIP). 
λ-Wavelength.∆λ-Spectral width.

Matarial Well Barrier Number Wave-len- ∆λ/λ Responsi-
width(Å) width(Å) of wells gth(µm) % vity(A/W)

GaAs 50 500 25 7.5 11 0.35 
GaAlAsa 40 500 50 9.8 20 0.5

60 500 50 13.2 19 0.7 
70 500 50 16.6 28 0.7 

InGaAs/
InAIAsb 50 300 50 4 33 0.025
InGaAs/

InPc 50 500 20 8 6.5
GaAs/
GaInPd 40 300 10 8 53 0.34
GaAs/
AlInPe 30 500 20 3 12 

InGaAs/ 80 500 5 15.3 50 0.63 
GaAsf 50 600 10 16.7 18 0.29

a - Reference 10.12, b - Reference 10.17: c - Reference 10.18, 
d - Reference 10.19, e,f - Reference 10.1 

Materials other than GaAs/GaAlAs have also been used [10.17-20] to construct 
QWIP’s of different wavelengths. Typical results are summarized in Table 10.1.
Some results for the GaAs/AlGaAs system are also included for comparison. 

10.1.3 QUANTUM DETECTOR SYSTEMS UNDER EXPERIMENTATION

Quantum well infrared photodetectors (QWIP’s) have been realized by using
both p and n type Si1–xGex/Si strained-layer MQW structures. Because of the
anisotropic electron effective mass, n-type as well as p-type detectors work on
normal incidence. The estimated value of detectivity is 1 × 10 cm.Hz1/2/W at 77
K for 9.5 m wavelength in the structures on which experiments have been con-
ducted[10.21].

The InAs/GaxIn1–xSb heterojunctions have also been considered for detectors.
The junctions are of type II; the conduction band and the valence band edges of 
InAs are both lower than those of GaxIn1–xSb. Consequently electrons are localized
in the InAs layer, while holes are localized in the GaxIn1–xSb layers. Separation
between the conduction band electron energy levels of InAs and the valence band
hole energy levels may be made to be such as to absorb 10 µm radiation. Also,
by properly choosing the thickness of the barrier layers the electron and hole wave 
functions may be made to overlap so that electrons may be excited from the valence 
band to the conduction band by absorbing photons. Some preliminary studies 
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have been made[10.2] on this structure, which show that the optical properties of
InAs/GaxIn1–xSb detectors may be comparable to those of HgCdTe.

Another quantum well structure currently being studied for QWIP is the 
HgTe/CdTe superlattice. It is expected that some of the drawbacks of HgCdTe 
detectors, e.g., requirement of stringent uniformity, large tunneling currents, may
be eliminated by using the superlattice. Theory predicts that in HgTe/CdTe su-
perlattice detector, wavelength will be easier to control, tunneling current will be 
reduced and operating temperatures may be reasonable. In comparison to other 
QWIP’s, this material has the advantage of polarization-independent absorption 
and large absorption coefficient. QWIP using HgTe/CdTe superlattice has been 
demonstrated[10.22] for the 4.5 µm wavelength. Work is also being continued for
extending the wavelength to longer values. However, problems associated with the
growth of good quality structures are not yet fully resolved. 

in which a barrier layer is introduced within the well layer to divide it into a broad 
and a narrow well. There are two energy levels below the barrier in the broad
well and one level in the narrow well , close to the top level of the broad well 
(see Fig. 10.7). The broad well is doped while the narrow well is undoped. In 
the absence of light electrons tunnel sequentially through the narrow well, while
under illumination the excited electrons tunnel coherently through the narrow
well. As a result, the DBQWIP’s have good responsivity but low dark current. 
Such detectors have been constructed with GaAs/AlAs/AlGaAs [10.1] and Al-
GaAs/AIAs/InGaAs [10.21-23]. 

The tehnology of GaAs/AlGaAs QWIP’s have been so perfected that focal 
plane arrays may be realized to detect light of wavelengths 6 to 25 µm [10.26-
30]. Arrays having dimensions of 128×128, 256×256 and 640×486 have been 
constructed and used in the focal plane of snap-shot cameras. Efforts have been 
made to reduce the dark current by using bound to quasi-continuum (the upper 
level is just below the continuum) structure in place of the bound-to- continuum
structure.

Although the technology of QWIP’s have matured for commercial exploita-
tion , work is being continued for further improvement[10.25,31,32]. 

Extensive work has been done on the so-called double-barrier QWIP (DBQWIP), 

10.2.  Quantum Well Modulator

Quantum well modulators have been realized by utilizing the field-dependence of
the excitonic absorption in quantum wells. We have presented in Fig. 10.7 the 
absorption spectrum for a GaAs/AlGaAs quantum well system for a voltage V ,
applied across it. The spectrum has a peak for V = 0 near about 990 nm. This 
peak shifts to higher wavelengths, i.e., it is red- shifted by the applied voltage. 
The magnitude of the peak also decreases with increase in the value of V.
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Figure 10.7. The energy band diagram of a double barrier QWIP. (a) Potential distribution with
no bias.(b) Potential distribution under forward bias.L1 - 72 Å GaAs well doped to 1.0×1018cm–3

L2- 39 Å Al0.33Ga0.67As undoped barrier.L3-18 Å undoped GaAs well. L4- 152 Å undoped 
Al0.433Ga0.67As barrier. 

Excitons and excitonic absorption have been discussed in Section 5.3 and 5.5.2. 
The nature of the experimental excitonic absorption curves may be explained on 
the basis of the theory presented in these sections. We recall that the binding en-
ergy of excitons in quantum wells is ideally eight times that for bulk materials (see 
Section 5.3 ). Excitons are, therefore, excited at room temperature and produce 
the peaks in the absorption below the band edge, which in the case of quantum 
wells correspond to the separation between the lowest quantized conduction band 
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level and the highest valence band level. Also, as discussed in Section 5.6, this 
separation between the quantized levels decreases on the application of a voltage
across the well due to the so-called quantumm-confined Stark effect (QCSE). The 
excitonic levels being below the conduction band edge by a few meV, exciton level
energy also decreases with reference to the valence band edge and consequently 
excitonic peak is red-shifted. Also, the envelope functions are more extended when 
the voltage is applied due to lowering of the effective barrier potential. The reduced 
confinement of the excitons lowers the strength of the excitonic absorption. 

The development of quantum well modulators have proceeded mostly on the 
basis of the qualitative features of the field-dependent absorption spectrum, dis-
cussed above. The only design formula is concerned with the required well width 
for the radiation to be modulated. The width is chosen to give excitonic peaks for 
the intended radiation either for zero voltage or for the maximum applied voltage. 

Figure 10.8. Absorption spectrum for InGaAs/GaAIAs quantum wells. Samples consisted of 
twenty 75 Å In0.2Ga0.8As wells separated by 200 Å Ga1–xAlxAs in p – i – n diode configuration.
[After B. Pezeski, S. M. Lord and J. S. Harris, Jr. Appl. Phys. Lett. 59, 888 (1991); Copyright: 
American Institute of Physics]. 
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The barrier height and width are also chosen to ensure maximum confinement and 
maximum interaction with the incident radiation. We review below the character-
istics and structures of modulators that have been developed. Three basic forms 
of modulators have been developed as described in the following subsections. 

10.2.1.  TRANSVERSE TRANSMISSION MODULATOR

A transverse transmission modulator was first, demonstrated[10.33] using the struc-
ture shown schematically in Fig. 10.9(a). An MQW structure consisting of 50 in-
trinsic 90 Å GaAs wells, was sandwiched between two intrinsic superlattice buffer 
layers in order to improve the quality of the quantum wells. The buffer layers were 
clad by p and n type conducting superlattices, followed by p and n-Al0.32Ga0.68As
layers. The complete structure was grown on GaAs substrate. Contacts were pro-
vided on the top and the bottom side by metallization. Moles were etched through 
the metal contacts and the GaAs substrate for the input and output light. Di-
mensions of different layers are indicated in the figure. 

Light of wavelength matching the exciton lines is modulated by applying a 
reverse bias voltage to the diode. The field appearing across the MQW, causes red 
shift of the exciton lines and the absorption of the incident light is altered 

Figure 10.9. (a) Transverse transmission 
modulator. Radiation is incident through the top hole and is transmitted through the MQW 

system and the bottom hole in the substrate. Voltage is applied between the nmetallized contacts 
on the top p+ AlGaAs and the bottom n+ AlGaAs to modulate the transmission. (b) Fabry-Perot
modulator. Light is incident on the top through the hole in the metallized contact. The reflected 

light is modulated by applying a voltage between the top p-type reflector and the bottom n-type

reflector through the surface. 

Schematic diagram of a quantum well modulator. 
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as a consequence. The intensity of the emergent light can thus be modulated by 
varying the bias voltage. The characteristic of the modulator is often indicated by 
the contrast ratio, which is defined as the ratio of the maximum and the minimum 
intensity of the emergent light. The particular modulator described above had a 
contrast ratio of 2. 

The structure was made simpler in later versions of the modulator [10.34] by 
using GaAs/AlGaAs. The diode cosisted of an n-type GaAs substrate, a 1 µm
thick n-type Al0.3Ga0.7As layer, a 60-well GaAs/AlGaAs MQW structure, a 0.5
µm thick p-type Al0.3Ga0.7As layer and a 50 Å p+ GaAs layer, grown successively.
Experiments have been carried out to optimize the composition and the thickness
of the barrier layers and it has been concluded that optimum normally-on operation 
is obtained by using 20-30 Å AlAs barriers with 83-91 Å GaAs wells.

Transverse transmission modulators have been realized[10.35,36] also by using
InxGa1–xAs/GaAs and InxGa1–xAs/Al0.15Ga0.85As MQW structures. These are
grown on GaAs substrates with p+ and n+ GaAs cladding layers, and operate at
wavelengths of 1.02 to 1.07 µm and 980 nm. The structures do not require removal
of the GaAs substrate as it is transparent to these radiations. This is of advantage 
in using these modulators in many-device systems. 

Performance characteristics of the modulators may be improved by arranging 
for greater interaction between the carriers and the optical signal, than is possible 
in the single pass transverse transmission modulators. It is with the objective of 
increasing the interaction that two other forms of the modulator have been devised. 
These are the waveguide modulator and the Fabry-Perot modulator, described in 
the following subsections. 

10.2.2.  WAVEGUIDE MODULATOR

In the first report[10.37] of a waveguide modulator the same structure as illus-
trated in Fig. 10.9(a) was used. Light was, however, made incident on a cleaved 
side surface of the diode and taken out from the opposite side. Light propagates 
horizontally along the MQW structures, being guided by the cladding layers. A 
modulation depth of 9.2-10.2 dB and insertion loss of 6± 2 dB (3 dB was due to 
reflection) was achieved. 

Horizontal waveguide modulators have been realized[10.38] for the wavelength 
of 1.5 µm by using MQW structures with InGaAlAs (186 Å) wells and InAlAs
(50 Å barriers. The device consisted of an n-InP substrate, a p-InAlAs layer, a 
p-InGaAs layer grown consecutively. Modulation was done by applying a reverse 
bias to the metal contacts on the two surfaces. The modulator had contrast ratio 
of 20 dB and a modulation bandwidth of 40 GHz. 

In a further development of the device[10.31)] an integrated modulator and 
amplifier has been realized on InP to operate at 1.55 µm, with a contrast ratio of
10.5 dB and effectively no insertion loss. 
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10.2.3.  FABRY-PEROT MODULATOR 

A Fabry-Perot(FP) modulator is also essentially a p – i – n diode, the intrinsic 
region being made of MQW’s. The MQW layers are, however, sandwiched between 
two Bragg reflectors made of alternate quarter wave GaAs and AlGaAs layers. For 
example, a FP modulator has been reported[10.40] in which the MQW structure 

consists of 100 Å /100 Å GaAs/Al0.2Ga0.8As layers. This structures is sandwiched 
between a 5-period quarter-wave Bragg reflector at the top and a 20 1-

2
period

Bragg reflector at the bottom. Reflectors are made of 725 Å AlAs and 625 Å
Al0.2Ga0.8As layers. The structure is schematically illustrated in Fig. 18.9(b).

The total reflectivity RT , of a Fabry-Perot cavity may be expressed as[10.41]

(10.30)

where Rf and Rb are the reflectivities of the front and the backside mirrors re-
spectively, α is the absorption and φ is the phase shift of the light beam in one
pass.

The resonant frequency of the cavity corresponds to sin φ = 0; it is determined
by the length of the cavity and the permittivity of the material of the cavity. The
reflectivity depends on the relative values of Rf, Rb and α.Rf is made small, of the
order of 50 %, while Rb is made as close to unity as possible. The front quarter-
wave Bragg mirror is, therefore, constructed with 5 or fewer periods and in some 
designs the semiconductor/air interface constitutes the front mirror. On the other
hand, the back Bragg mirror is made of 20 or more periods. The device may be 
made to work as normally-on [10.42] or normally-off [10.43] by choosing properly 
the operating wavelength in relation to the exciton line. Optimal performance 
is obtained[10.44] when the cavity is designed to operate as normally-on and the 
reflectivity is arranged to be maximum when the absorption, a, is minimum. As 
the bias voltage is increased, the exciton line shifts towards the incident signal
wavelength and a increases. Rb

1/2 exp( –α) therefore, approaches R f
1/2 and RT

decreases. As a consequence, the output light decreases in intensity as the bias 
voltage is increased. On the other hand, in a normally-off device, initial absorption
is so arranged that Rb

1/2 exp(–a) is close to Rf
1/2 for zero bias. As the bias is 

increased the exciton line shifts away from the signal wavelength, a decreases 
and RT increases. The signal, therefore, increases in intensity as the bias voltage 
is increased. An experimental reflectivity spectrum is given in Fig. 10.10 for a 
normally-on modulator. 

It should be noted that the realization of large contrast ratios require larger 
interactions with the carriers, but such interaction increases the insertion loss. The 
design of the cavity is therefore aimed at a compromise between the values of the 
contrast ratio and the insertion loss. 
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Figure 10.10. Reflection spectra for a normally-on Fabry-Perot modulator. Reflectivity is maxi-

mum for zero applied voltage and decreases with increase in the modulating voltage. [After C. C. 
Barron, C. .J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren and J. E. Rowers, IEEE
J. Quantum Electron. 31, 1484 (1995);Copyright (=A9 1995=IEEE)]. 

Fabry-Perot modulators have been realized[10.44] with GaAs/GaAlAs MQW’s
for the wavelength of 829 nm with an insertion loss of 1.2 dB and contrast ratio of 
7.5 using an optimum value of 35 Å for the well thickness. A few other[10.45,46] 
GaAs/GaAlAs F-P modulators have been reported in which the integrated Bragg 
mirrors act as the p and n regions for the p – i – n diode, the i- region being formed 
by the MQW structure. Contrast ratios ranging between 15 and 100 have been 
realized by suitably designing the mirrors and the MQW structure. Higher values
of contrast ratio, 60-130, have also been realized[10.47,48] in GaAs/GaAlAs F-P
modulators by replacing the MQW’s by superlattice structures. The exciton line is
blue shifted in superlattices due to the so- called Wannier-Stark localization[10.49- 
51]. In this case, due to band bending electron states change from the extended
states in minibands of the superlattice to localized states, the energy gap between
the hole and the electron levels increase and blue shift results. The absorption 
coefficient being also high and the cavity lengths relatively short, the contrast 
ratio has a higher value in superlattice modulators. 

Fabry-Perot modulators have also been realized by using GaAs/ 
InGaAs strained layer multi-quantum wells for the operating wavelength of 938-
960 nm. The structures were grown on n+ GaAs substrate and had two n and
p-doped Bragg mirrors at the bottom and the top side. The top mirror had a 
few periods and low reflectivity, while the bottom mirror had a large number of 
periods and a reflectivity larger than 99 %. The MQW structure consisting of 50 
or more periods of InxGa1–xAs/GaAs wells was sandwiched between the mirrors.
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Contrast ratio of 37-66 and modulation of 8-9 dB with insertion loss of of 5.2 dB 
have been realized[10.52-54]. 

An inverted cavity GaAs/InGaAs strained layer F-P modulator has also been 
reported[10.41] for the wavelength of 956 Å. One side of the cavity was formed by 
a 5.5 period GaAs(654 Å)/ AlAs(784 Å) Bragg reflector, grown on n+ GaAs buffer 
layer on an insulating GaAs substrate. The other side of the cavity was formed 
by an undoped 90 Å GaAs layer and p – p + doped 570 Å GaAs layer covered 
by a metallic or dielectric mirror. The MQW structure consisted of 50 periods 
of In0.15Ga0.85As (100 Å)/GaAs(125 Å) layers. As GaAs is transparent to the
operating wavelength, light could be made incident though the substrate and the 
reflected light could also be collected from the same side. The structure therefore 
has the potential for quasi-hermetic hybridization with protected surfaces. The 
reflectors being also simpler, the processing of the modulator is less complex. 

10.3.  Quantum Well Switch 

Switches for optic signals have been realized[10.36,54-581 by using the quantum 
well modulators described in the preceding section. Three different kinds of circuit 
have been used. These are the resistance coupled self electro-optic effect device 
(R-SEED) [10.54], the diode-coupled self electro-optic device (D-SEED) [10.58] and 
symmetric self electro- optic device (S-SEED)[10.57]. The basic device is a QW 
modulator, but the circuit operation becomes different because of the different 
loads used in the three forms. Operating principles of the devices are described 
below.

10.3.1.  R-SEED

A resistive load with a resistance of the order of 1 M Ω is connected[10.57] in an
R-SEED in series with a QW modulator and the voltage supply, as shown in the
insert of Fig. 10.11(a) The modulator may be transmission type or reflection 
type. It is, however, so designed that for zero operating bias the absorption is 
maximum and the absorption decreases with increasing bias. The diode is also 
initially biased with a large voltage. The QW modulator therefore transmits (in 
case of a transmission modulator) or reflects (in case of a reflection modulator) low-
intensity incident signal. It should be understood that the absorbed signal causes 
photocurrent to flow through the device and this current causes a drop across 
the load resistance. Hence, as the signal intensity is increased, the photocurrent 
increases, the voltage drop increases and the voltage across the diode decreases. 
The decreased voltage causes enhancement of absorption and at some point, this 
positive feedback in absorption becomes cumulative and the voltage across the 
diode reaches a small value. Absorption of the incident signal is then maximum, 
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The load line for a resistive load is given by ABC. For 

The current through the QW-modulator, which acts as a photo-
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Figure 10.11. Schematic diagram of the current-voltage and input-output characteristic of an 

R-SEED. (a) Current-voltage characteristic. Insert shows the circuit arrangement. R is the load 

resistance. (b) Input-output characteristic. 

giving rise to a characteristic shown in Fig. 10.11(b). The device thus acts as a 
self-activated switch. It is also found that, as the signal intensity is reduced after 
switching, the device remains in the low-output state down to a minimum input 
intensity. At this minimum, the reverse transition occurs and the device switches 
to the large-output state. 

The hysteresis may be explained by drawing the load line on the current-
voltage(I – V ) characteristic of the modulator for different input, as shown in 
Fig. 10.10(a).
diode, initially increases from zero for a positive voltage across it. 
current at this voltage cancels the photocurrent. 
for V = 0 and then decreases with increasing value of V, since the absorption in 
the modulator decreases with increasing field as a result of the shift in exciton 
line due to QCS effect. 
low as well as high input, the load line cuts the I – V curve of the modulator at 
one point. The intersection point corresponds to a high value of V for low light 
input. The modulator is, therefore, in a high-output state for low input. For large 
input the intersection point corresponds to a low voltage. the modulator is then 
in a low-output state. But, for input of some intermediate value, there are three 
intersection points, A,B,C, and the circuit may settle to either A, corresponding 
to a high-output state or to C, corresponding to a low-output state. Hence, as the 
intensity of the input is increased to I1 , a point D is reached beyond which only 
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the low-output intersection point exists. The modulator therefore switches from 
the high-output state to the low-output state as the input intensity is increased 
beyond I1 . On the other hand, as the input is reduced to I2 , a point E is 
reached below which the load-line intersects the current-voltage characteristic at 
high voltage or the high-output point. Reverse switching from the low-output

to the high-output state therefore occurs as input intensity goes below I2 . It
is evident that the input-output characteristic will exhibit hysteresis as I2 < I1 .
The extent of hysteresis depends on the bending of the I – V characteristic of the 
modulator, which may be enhanced by suitable design of the modulator. 

It may also be noted that the presence of hysteresis in the characteristic makes 
the R-SEED usable as an optical bistable device. 

It is also evident from Fig. 10.11(a) that values of the input switching power, 
I1 and I2, decrease with increase in the value of the load resistance R. On the other 
hand, the switching speed is ultimately controlled by the value of the time constant 
RC, C being the capacitance of the modulator. Hence, as the switching power is
reduced by increasing R the switching time is increased. Experimentally,[10.54] 
the switching power has been varied from 250 µW to 0.5 µW by varying the load
resistance from 100 kΩ to 100 MΩ ; switching time was about 20 µs for 1 MW load
resistance for which the threshold power was about 30 µW.

10.3.2.  D-SEED

A diode-coupled SEED (D-SEED) is realized[11.58] by connecting a photo-diode in 
series with the QW-modulator and the bias voltage V as shown in the insert of Fig. 
10.12(a). The modulator is so arranged that it is normally-off, e.g., the absorption 
is maximum for zero bias. The absorption decreases as for the R-SEED with 
increasing bias voltage. The current through the modulator, therefore, changes 
with the voltage V across it, as shown in Fig. 10.12(b) for a fixed input optic-
signal. The voltage across the photo-diode is Vabs – V and the diode being also 
negatively biased (the anode connected to the ground side), its current varies with 
V as shown by the dotted lines for different input signal. The currents of the QW 
modulator and the photo-diode are required to be the same in the steady state 
as they are in series. It is evident that this requirement may be satisfied for low 
and also for high input power to the photo diode by a unique voltage across the 
modulator indicated respectively by A and B. For point A the voltage across the 
modulator is small and its output is small. On the other hand, for point B, voltage 
across the modulator is large and its output is large. Hence the modulator remains 
in the low-output, state when input to the photo diode is small and it remains in 
the high-output state when the input to the photo diode is large. The low-output
state of the modulator continues up to an input I1 to the photo-diode, for which 
its current touches the point D of the modulator current. The modulator switches 
to the high-output state as photo-diode input is increased beyond I1 . Similarly, 
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when the photo-diode input is reduced from a high value the high-output state 
of the modulator continues down to an input I2 to the photo-diode for which its 
current touches the point E of the modulator current. The modulator switches 
back to the low-output state as the photo- diode input is lowered below I2 . The 
output characteristic of the modulator therefore varies with the photo-diode input 
as shown in Fig. 10.12(b). The hysteresis in the characteristic extends from 12

to I1 . The device acts like the R-SEED as a switch and also an optical bistable 
device. It is also evident from Fig. 10.12(a) that the values of 11 and 12 depend on 
the power input to the modulator and the values increase as the modulator input 
power increases. So, larger input power will be required to control larger power in
the modulator. 

10.3.3.  S-SEED

The working of symmetric self electro-optic device (S- SEED)[10.57] is similar 
to the D-SEED. In a S-SEED the photo-diode is replaced by a QW-modulator and 
one of the two modulators may be switched by changing the input to the other 
modulator. The switching modulator acts as the photo-diode and the switched 
modulator acts as a switch and a bistable device. The two devices, the controlled 
and the controller, being identical switching power is required to be the same as 
the controlled power. 

Figure 10.12. Schematic diagram of the current-voltage and the input-output characteristic of 
a D-SEED. (a) Current-voltage characteristic. Solid line - QW- modulator. Dashed line - Photo-
diode. Insert shows the circuit arrangement. (b) Photo-diode input-output characteristic. 
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SEEDS of different forms have been realized by using GaAs/AlGaAs,
In0.1Ga0.9As/GaAs and InxGa1–xAs/Al0.15Ga0.85As modulators based on MQW’s
or SL’s. Contrast ratios have been realized from 5:1 to 130:1. The switching-input
powers are of the order of a few microwatts and the switching energy is of the 
order of a few fj/µm2 . The switching speed varies from a few microseconds to a
few nanoseconds, 

10.4.  Optical Bistable Device(OBD) 

The SEED’S described in Section 10.3 provide two output levels , switching be-
tween the two levels being controlled by the intensity of an input optical signal. 
Switching in these devices, however, occur via the current flow through the de-
vice. The change in current through the device with change in the input optic 
signal provide the feedback for switching. These devices are therefore considered 
as hybrid. 

All-optic bistable devices are realized by using the optical nonlinearity asso-
ciated with the excitonic absorption, which is very significant and continues up
to the room temperature in quantum wells as discussed in Chapter 5. The ab-
sorption increases sharply as the wavelength of the incident signal approaches the 
exciton wavelength, reaches a maximum and then falls again to merge with the 
absorption for band-to-band transitions. The change in the absorption coefficient 
causes also a change in the refractive index of the composite structure, which
may be worked out by using the Krammers-Kronig relations. These changes are
illustrated schematically in Fig. 10.13. The absorption α, as well as the change
in refractive index, ∆nr , depend on the intensity of the input signal since the
excitons are affected by the generated carriers through various mechanisms, such 
as screening, phase-space filling, saturation and band renormalization. The net ef-
fect is a reduction in the magnitude of a and ∆nr with increasing intensity of the
optical signal. Bistable devices are realized by utilizing these input-signal-induced
changes.

The effect of the changes are enhanced by enclosing the MQW structure in a 
Fabry-Perot(FP) etalon. The transmitted intensity IT , for an input intensity Ii

is given for a FP etalon by the following expression, 

(10.31)
where R is the reflectivity of the mirrors of the etalon, α is the absorption coefficient 
of the enclosed material, φ is the total phase shift of the signal in traversing the
length L of the cavity and in the reflection. The total phase shift φ may be
expressed as 

(10.32)
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Figure 10.13. Schematic diagram showing the variation of the absorption coefficient and the

refractive index with the radiation intensity near the exciton resonance. (a) Absorption coefficient. 

(b) Refractive index. 

where λ0 is the free-space wavelength of the incident signal, nr is the refractive 
index of the material for low input, ∆nr is the change in nr caused by the input 
signal and φr is the phase change introduced by the mirrors. Equation (10.31)
may also be written as 

(10.33)

(10.34)
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(10.35)

(10.36)

l being the integer nearest to φ/π 
The transmission coefficient of the etalon may, therefore, be controlled by the 

input signal through the changes in a and ∆nr or ∆φ Two types of OBD’s may
be devised. These are the absorption-based and the dispersion-based OBD.

10.4.1.  ABSORPTION-BASED OBD 

These devices are realized by designing the MQW and the FP etalon so as to make 
identical the wavelength of the input signal, the exciton wavelength of the MQW 
and the resonant wavelength of the FP etalon, i.e., the wavelength for which D=0.
The absorption being very high for this condition, the output for low input signal 
is small. However, as the intensity of the input increases, the absorption decreases 
and the transmission coefficient IT / I0 also incre 

ases. The reduction in absorption also causes the intensity of the signal, Iet ,
inside the etalon to be high and the enhancement causes further reduction of the 
absorption. This feedback mechanism leads to a drastic reduction in the absorption
at a particular input level I1 . The output then switches to a high value and 
continues to be high for further increase of the input. However, when the input is
decreased, the output remains high below I1 and sw itches back to the low level for 
an input level I2 lower than I1 . The hysteresis is due to the fact that initiation of 
the reverse process of desaturation and destruction feedback requires a lowering of 
Iet from the value corresponding to I1 . Evaluation of the criterion for absorptive 
bistability however, is somewhat involved and is not therefore, discussed. 

Designing of the MQW’s and FP’s for satisfying the conditions so that the 
device acts as an OBD being fairly critical, such devices are not much reported.

10.4.2. DISPERSION-BASED OBD 

The basic structure of dispersion-based OBD’s are the same as that of the ab-
sorption based OBD. But, the FP resonant wavelength is made larger than the 
wavelength of the input signal which, however, is close to the exciton wavelength. 
The resonator is hence in a low-transmission mode. As the input intensity in-
creases, ∆nr which is negative increases in magnitude and causes the resonant 
wavelength of FP etalon to approach the wavelength of the input signal. The 
intensity inside the cavity therefore increases, which causes further increases in 
|∆nr | . This positive feedback causes the cavity to switch to the high- transmis-
sion mode when the input intensity reaches a level I1 . The high-transmission mode 
continues for further increase in the input. However, as the input is decreased, 
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the device switches back to the low-transmission mode for an intensity I2 which is 
lower than I1 under certain conditions. The transmission curves have been worked 
out theoretically for determining the required conditions. The conditions may be 
visualized also graphically as follows. 

It may be noted that the change in refractive index ∆nr is caused by the 
radiation Iet , inside the etalon. For the sake of simplicity. ∆nr and therefore ∆φ 
may be taken to be proportional to Iet . On the other hand. the transmitted signal
IT is proportional to Iet and hence ∆φ may be taken to be proportional to IT .
Equation (10.33) may now be written as

(10.37)

where γ has been introduced as the proportionality constant and ∆φ0 is the low-
input value of ∆φ. The solution of the above equation gives IT for an input Ii . The
basic nature of the characteristics may be explained by plotting the functions on 
the two sides of Eq. (10.37) against IT , as shown schematically in Fig. 10.14(a). 
The curves for the functions intersect at a single point for small values of Ii

(e.g., A) and also for high values of Ii (e.g.,J). But, for input intensities lying 
between I1 and 12 the curves intersect at three points (e.g., D,E,F). Hence as the
input intensity Ii is increased from a low value, output continues to be low till Ii

equals I1 . For larger inputs, the output jumps to H or the large output point,
Similarly, when the input is reduced from a high value, the high-transmission state 

Figure 10.14. Characteristic of dispersion-based optical bistable device (OBD). (a) Schematic dia-

gram showing the variation of [1 + Fsin2(∆φ)]–1 and IT/TMIi [of Eq. (11.33)] with IT.
(b) Input-output characteristic. 
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continues till Ii reaches I2 for which the two curves touch at C. For further reduc-
tion of Ii , the device switches to the low- transmission mode at B. The resultant
input-output characteristic is shown in Fig. 10.14(b). It may be noted that points
on the left side of the [(1+F sin2(∆φ–γIT)]–1 vs IT curves or the etalon resonance 
curve are not stable from G to C. For these points, a reduction in IT causes an 
increase in ∆φ and further reduction in IT . Similarly, for an increase in IT , ∆φ
is decreased which causes a further increase in IT.

It is evident from the above discussion that the characteristic of the device 
is critically dependent on the choice of the etalon wavelength and the exciton
wavelength. The operating wavelength should be close to the exciton wavelength 
to get significant change in ∆nr. with Ii . It should not also be too far away or 
too close to the FP etalon resonant wavelength. When it is too far away, the 
intersection point of the two curves remain on the low transmission side and when 
it is too close, the intersection points lie on the right side of the etalon resonance 
curve and the input-output curve remains single valued. We also find that the 
separation between I1 and I2 is determined by the width of the etalon resonance
curve. It is necessary to make the resonance curve not-too sharp for getting a 
significant difference between I1 and I2 . A value of R, not-too close to unity and 
some absorption are favorable from these considerations. The switching time of 
the device is controlled by the photon life time in the FP cavity and can be made 
small by shortening its length. 

An OBD using a semiconductor, namely GaAs was first demonstrated[10.59] in 
1979. The sensitivity of the device was much improved by using a MQW structure 
in place of the bulk sample[10.60,61]. The MQW structure had 300 periods of 
66 Å GaAs and 64 Å Al0.3Ga0.7As grown by MBE. It was sandwiched between
mirrors of reflectivity 0.9 and 0.98. The device could be switched by using 6mW 
power from a laser diode operating at 830 nm. 

An OBD has been realized[10.62] also by using InGaAs/InAlAs MQW’s. The 
mirror for the Fabry-Perot etalon was provided by high-reflection dielectric mirror 
coating on the two surfaces of the MQW structures and the structure was cemented 
to a sapphire slab. The device was operated at 1.5 µ m wavelength with 20 mW
power and had a switching time of 10 ns. 

10.5.  Waveguide All-optic Switch

The enhanced optical nonlinearity of MQW’s have been utilized also to realize 
waveguide all-optic switches. It uses the property of two coupled waveguides, in 
which the power fed into one switches back and forth with distance[10.54]. The 
power fed to one waveguide is fully transferred to the other waveguide in a distance 
Lc , called the beat length. This length is determined by the guide wavelength 
and may, therefore, be controlled by varying the refractive index of the material 
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of the waveguide. 
An waveguide all-optic switch is realized by using a MQW structure, covered by

two cladding layers, in which two waveguides are formed. The separation between 
the two waveguides is arranged so that they work as coupled waveguides due to 
leaking of optic energy through the sides. Power in waveguide 1, to which the 
signal is applied, may be expressed[10.63] as 

(10.38)

where L is the coupling length of the waveguides, Lc is a characteristic length, the
so-called beat length, cn(φ|m) is the Jacobi elliptic function[10.51], P is the input 
power and P1 is the output power from waveguide 1, Pc is the critical power, given 
by

(10.39)

for which the incremental phase shift in a waveguide is 2π. A eff is the effective
cross-sectional mode area of a waveguide, λ is the wavelength of the incident
radiation and n2 is the coefficient of nonlinear refractive index, i.e., 

n2 = [n(I) – n(0)]/I,

n(I) being the refractive index for an intensity I of radiation.

(10.40)

Figure 10.15. Schematic diagram of the structure and input-output characteristic of waveguide 
all-optic switch. (a) Normalized input-output characteristic. Solid line - Theoretical. Dashed line 

- Experimental. (b) Structure of the device.
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The beat length Lc is determined by the waveguide material and the device
structure. The guide coupling length is made equal to Lc .

The variation of power at the output of the waveguides for different inputs 
to waveguides 1 is illustrated schematically in Fig. 10.15(a). For small values of 
incident power, P, P/Pc is small; the Jacobi elliptic function behaves as a cosine 
function and P, varies cosinusoidally with the coupling length. The power at the
output of waveguide 1 is, therefore, zero for L = Lc and low intensity input. The 
input power P then comes out of the coupled waveguide i.e., waveguide 2. As the
output is increased the output of waveguide 1 increases and that of waveguide 2
decreases. For P = Pc , cn[π|(P2/P 2

c )] ≈ 0.08. The output from the two waveg-
uides are then nearly equal. As the input power is further increased cn[p|(P2/P2

c)]
approaches unity and the output of waveguide 1 is nearly equal to the input and
consequently that of guide 2 goes to zero. The ideal variation as descrived above 
is illustrated schematically in Fig. 10.15(a).

The waveguide all-optic switch [10.65-72], also called nonlinear directional cou-
pler (NLDC) has been realized by using GaAs/ AlGaAs MQW’s with AlGaAs 
cladding layers. The waveguides were realized either by depositing metal strips 
or by etching ridges[10.65]. Vertical confinement is produced in these structures 
by the cladding layers, while the horizontal confinement is caused by the strains 
at the edges of deposited metal strips[10.63-65] or by the ridges[10.68,69]. The 
structure used with ridge waveguides is illustrated in Fig. 10.15(b). Experimental
curves are also illustrated schematically by dotted lines in Fig. 10.15(a). The 
cross-coupling for low inputs was found to be 1:3-1:5, while for high inputs (about 
400 pJ) it changed to a value higher than 1:1/3. It should be noted that the NLDC
described above has associated with it a large absorption and the transmission is 
a few percent. It was, however, surmised that the transmission could be increased 
to about 15 % by suitable design. 

10.6. Conclusion

Hybrid and all-optic devices have been discussed in this chapter. The principles of
operation and the underlying physics have been explained. Reported experimental 
results have also been quoted. There are various other devices, based on quantum 
wells, discussion of which is not however, possible within the limited scope of the 
book.

These devices use either the electric field dependent or the signal intensity 
dependent absorption or change in refractive index for realizing the intended func-
tion. MQW structures are used because of large excitonic effects in these struc-
tures, which persist up to room temperature. The physics of these devices are, 
therefore, related mostly to electron-photon interaction and optical absorption 
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phenomena discussed in Chapter 5 . Work has been mainly concerned so long 
with proving ideas and improving the device characteristics from the knowledge of 
the qualitative features of the involved phenomena. However, developments have 
now reached a stage at which detailed study of the devices and the underlying 
phenomena have become relevant. 



REFERENCES

CHAPTER 1

1.1. L. Esaki and R. Tsu, IBM Internal Res. Rep. RC 2418, Mar.26 (1969)

1.2. L. Esaki and R. Tsu , IBMJ. Res. Dev. 14, 61 (1970) 

1.3. L. Esaki, L. L. Chang, W. E. Howard and V. I,. Rideout, Proc. 11th Int. Conf. Phys. 
Semicond., Warsaw, Poland, 1972, Polish Academy of Sciences, ed., PWN - Polish Scientific 
Publishers, Warsaw, Poland, 1972, p.431 

1.4. R. O. Grondin, W. Porod, J. Ho, D. K. Ferry and G. J. Iafrate, Superlattices Microstruct. 
1, 183 (1985) 

1.5. L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett. 24, 593 (1974) 

1.6. A. Y. Cho and J. R. Arthur, Prog. Solid-State Chemistry, Vol.10, Pt.3, 157 (1975) 

1.7. R. Dingle, W. Wiegmann and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974) 

1.8. H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann and M. D. Sturge, Solid State 
Commun. 29, 705 (1979) 

1.9. T. Mimura, S. Hiyamizu, T. Fuzi and K. Nanbu, Jpn.. J. Appl. Phys. 19 L225 (1980) 

1.10. J. H. English, A. C. Gossard, H. L. Störmer, and K. W. Baldwin, Appl. Phys. Lett. 50,
1826 (1987) 

1.11. L. Pfeiffer, K. W. West, H. L. Störmer and K. W. Baldwin, Appl. Phys. Lett. 55, 1888
(1989)

1.12. J. R. Schrieffer, in Semiconductor Surface Physics, R. H. Kingston, ed., University of 
Pennsylvania Press, Philadelphia, 1957, p.55 

1.13. T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982) 

1.14. P. Ho, M. Y. Kao P. C. Chao, K. H. G. Duh, J. M. Ballingall, S. T. Allen, A. T. Tessmer 
and P. M. Smith, Electron. Lett. 27, 325 (1991) 

1.15. J. P. Van der Ziel, R. Dingle, R. C. Miller, W. Weigmann and W. A. Nordland, Jr., Appl.
Phys. Lett. 26, 463 (1975) 

1.16. R. D. Dupuis, P. D. Dapkus, N. Holonyak, Jr., E. A. Rezek and R. Chin, Appl. Phys. Lett. 
32, 295 (1978) 

1.17. R. D. Dupuis, P. D. Dapkus, R. Chin, N. Holonyak, Jr., S. W. Kirchoefer, Appl. Phys.
Lett. 34, 265 (1979) 

1.18. R. D. Dupuis, P. D. Dapkus, N. Holonyak, Jr. and R. M. Kolbas, Appl. Phys. Lett. 35,
487 (1979) 

1.19. W. T. Tsang, C. Weisbuch, R. C. Miller and R. Dingle, Appl. Phys. Lett. 35, 673 (1979) 

255



256 REFERENCES

1.20. H. Temkin, K. Alave, W. R. Wagner, T. P. Pearsall and A. Y. Cho, Appl. Phys. Lett. 42,
845 (1983) 

1.21. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and 

1.22. E. Kapon, S. Simhony, J. P. Harbison, L. T. Florez and P. Worland, Appl. Phys. Lett. 56,

Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996) 

1825 (1990) 

1.23. Sei-Ichi Miyazawa, Y. Sekiguch and M. Okuda, Appl. Phys. Lett. 63, 3583 (1993) 

1.24. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker and D. D. Peck, Appl.

1.25. V. K. Reddy, A. J. Tsao, D. P. Neikirk, Electron. Lett. 26, 1742 (1990) 

1.26. T. P. E. Broeckaert, W. Lee and C. G. Fonstad, Appl. Phys. Lett. 53, 1545 (1988) 

1.27. E. R. Brown, J. R. Söderström, C. D. Parker, L. J. Mahoney, K. M. Molver and T. C. McGill, 

Phys. Lett. 43, 588 (1983) 

Appl. Phys. Lett. 58, 229 (1991) 

1.28. R. H. Davis and H. H. Hosack, J. Appl. Phys. 34, 864 (1963) 

1.29. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu and H. Nishi, Jpn. J. Appl. Phys. 24,
L853 (1985) 

1.30. F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson and J. H. English, IEEE Electron 
Dev. Lett. EDL-7, 573 (1986) 

1.31. F. Capasso, S. Sen, F. Beltram and A. Y. Cho, in physics of Quantum Electron Devices. 
F. Capasso, ed., Springer Verlag, Berlin, 1990, p.181 

1.32. L. Esaki and H. Sakaki, IBM Tech. Disc. Bull. 20, 2456 (1977) 

1.33. S. Smith, L. C. Chiu, S. Margalit, A. Yariv and A. Y. Cho, Infrared Phys. 23, 93 (1983) 

1.34. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985) 

1.35. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker and R. J. Malik, Appl. Phys. Lett. 50,
1092 (1987) 

1.36. L. I. Kozlowski, G. M. Williams, G. J. Sullivan, C. W. Farley, R. J. Anderson, J. Chen, D. 
T. Cheung, W. E. Tennant and R. E. DeWames, IEEE Tram. Electron. Dev. ED-38,
1124 (1991) 

1.37. S. D. Gunapala, K. M. S. V. Bandara, B. F. Levine, G. Sarusi, J. S. Park, T. L. Lin, W. T. 
Pike and J. K. Liu, Appl. Phys. Lett. 64, 3431 (1994) 

1.38. M. O. Manasreh,ed., Semiconductor Quantum Wells and Superlattices for Long- Wave
length Infrared Detectors, Artech House, Boston, 1993 

1.39. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood 
and C. A. Burrus, Phys. Rev. B, 32, 1043 (1985) 

1.40. T. K. Woodward, Theodore Sizer II, D. L. Sivco and A. Y. Cho, Appl. Phys. Lett. 57, 548
(1990)

(1990)
1.41. R. H. Yan, R. J. Simes, L. A. Coldren and A. C. Gossard, Appl. Phys. Lett. 56, 1626



REFERENCES 257

1.42. M. Whitehead, 4. Rivers, G. Parry, J. S. Roberts and C. Button, Electron,. Lett. 25, 984
(1989)

1.43. C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren and J. E. 
Bowers, IEEE J. Quantum Electron. 31, 1484 (1995) 

1.44. H. M. Gibbs, Optical Bistability ; Controlling Light with Light, Academic Press, New 
York, 1985 

1.45. D. A. B, Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard and W. 
Wiegmann, Appl. Phys. Lett. 42, 925 (1983) 

1.46. R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky and G. A. Rubenz, Appl. Phys.
Lett. 53, 1791 (1988) 

CHAPTER 2 

2.1. H. Kressel and H. Nelson, RCA Rev. 30, 106 (1969) 

2.2. D. C. Tsui, R,. A. Logan, Appl. Phys. Lett. 35, 99 (1979) 

2.3. Y. Sasai, J. Ohya. M. Ogura, IEEE. J. Quantum Electron. QE-25, 662 (1989) 

2.4. 1. Hayashi, M. B. Panish arid P. W. Foy, IEEE J. Quantum Electron. QE-5 211 (1969) 

2.5. Zh. I. Alferov, V. M. Andreev, E. L. Portnoi and M. K. Trakan; Sov. Phys. Semicond. 3, 
1107 (1970) 

2.6. H. Kroemer, Proc. IEEE, 70, 13 (1982) 

2.7. H. Nelson, U.S. Patent 3565, 702 (1971) 

2.8. I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, Appl. Phys. Lett. 17, 109 (1970) 

2.9. G. H. Olsen, in GaInAsP Alloy Semiconductors. T. P. Pearsall, ed., John Wiley & Sons, 
New York, 1982, Chap. 1 

2.10. J. R. Arthur, J. Appl. Phys. 39, 4032 (1968)

2.11. A. Y. Cho arid J. R. Arthur, Prog. Solid State Chem. 10, 157 (1975) 

2.12. H. M. Manasevitt, Appl. Phys. Lett. 12, 156 (1968) 

2.13. M. J. Ludowise, J. Appl. Phys. 58, R31 (1985) 

2.14. H. M. Manasevitt and W. I. Simpson, J. Electrochem. Soc. 116, 1725 (1969) 

2.15. R. D. Dupuis, P. D. Dapkus, R. D. Yingling and L. A. Moudy, Appl. Phys. Lett. 31, 201
(1978)

2.16. W. T. Tsang, Appl. Phys. Lett. 45, 1234 (1984) 

2.17. M. B. Panish, H. Temkin and S. Sumski, J. Vac. Sc. Technol. B 3, 657 (1985) 

2.18. W. I. Wang, E. E. Mendez and F. Stern, Appl. Phys. Lett. 45, 639 (1984) 

2.19. I. Lahiri, D. D. Nolte, J. C. P. Chang, J. M. Woodall and M.R. Melloch, Appl. Phys. Lett. 
67, 1244 (1995) 



258 REFERENCES

2.20. D. V. Lang, M. B. Panish, F. Capasso, J. Allam, R. A. Hamm and A. M. Sergent, Appl.
Phys. Lett. 50, 736 (1987) 

2.21. F. Lobentanzer, W. König, W. Stolz, K. Ploog, T. Elsaesser and R. J. Baürle, AppI. Phys. 
Lett. 53, 571 (1988) 

2.22. I. J. Fritz, T. J. Drummond and G. C. Osbourn, J. E. Schirber and E. D. Jones, Appl. Phys. 
Lett. 48, 1678 (1985) 

2.23. T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii and S. Hiyamizu, Jpn. J. Appl. Phys. 26,
L1332 (1987) 

2.24. Y. B. Li, R. A. Stradling, L. Artus, S. J. Webb, R. Cusco, S. J. Chung and A. G. Norman, 
Semicond. Sci. Technol. 11, 868 (1993) 

2.25. C. R. Bolognese, I. Sela, J. Ibbetson, B. Brar, H. Kroemer and J. H. English, J. Vac. Sci. 
Technol. B 11, 868 (1993) 

2.26. D. Yang, Y. C. Chen, T. Brock and P. K. Bhattacharya, IEEE Electron Dev. Lett. 15,
350 (1992) 

2.27. H. Mani, A. Joullie, A. M. Joullie, B. Girault and C. Alibert, J. Appl. Phys. 61, 2101
(1987)

2.28. T. Fujii, Y. Nakata, Y. Sugiyama and S. Hiyamizu, Jpn. J. Appl. Phys. 25, L254 (1986) 

2.29. M. Haines, T. Kerr, S. Newstead and P. B. Kirby, J. Appl. Phys. 65, 1942 (1989) 

2.30. H. Lee, P. K. York, R. J. Menna, R. U. Martinelle, D. Garbuzov and S. Y. Narayan, J.
Cryst. Growth 150, 1354 (1995) 

2.31. R. F. Levine, A. Y. Cho, J. Walker, R. J. Malik, D. A. Kleinman and D. L. Sivco, Appl.
Phys. Lett. 52, 1481 (1988) 

2.32. H. Asahi, S. Emura, S. Gonda, Y. Kawamara and H. Tanaka, J. Appl. Phys. 65, 5007
(1989)

2.33. S. Emura, T. Nakagawa, S. Gonda and S. Shimizu, J. Appl. Phys. 62, 4632 (1987) 

2.34. F. Schaffler and H. Jorke, Appl. Phys. Lett. 58, 397 (1991) 

2.35. Y. Hefetz, J. Nakahara, A. V. Nurimiko, L. A. Kolodzieskii, R. L. Gunshor and S. Datta, 
Appl. Phys. Lett. 47, 989 (1985) 

2.36. R. H. Miles, G. Y. Wu, M. B. Johnson, T. C. McGill: J. P. Faurie and S. Sivanathan, Appl.
Phys. Lett. 48, 1383 (1986) 

2.37. M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli and S. Lovoid, Semicond. Sci. 
Technol. 11, 1168 (1996) 

2.38. A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert and A. 
Joullie, Semicond. Sci. Technol. 11, 1185 (1996) 

2.39. Proceedings of Molecular Beam Epitaxy, 1994, Eighth International Conference on Molec- 
ular Beam Epitaxy, Osaka, Japan, 29 Aug. - 2 Sept., 1994, published in J. Cryst. Growth 
150, No. 1-4 (May 1995) 

2.40. P. D. Dapkus, Ann. Rev. Mater. Sci. 12, 243 (1982) 



REFERENCES 259

2.41. M. J. Ludowise, D. Biswas and P. K. Bhattacharya, Appl. Phys. Lett. 56, 958 (1990) 

2.42. D. Biswas, N. Debbar, P. Bhattacharya, M. Razeghi, M. Defour and F. Omnes, Appl. Phys. 
Lett. 56, 833 (1990) 

2.43. T. Y. Wang and G. B. Stringfellow, J. Appl. Phys. 67, 344 (1990) 

2.44. R. P. Schneider, Jr. and B. W. Wessels, J. Appl. Phys. 70, 405 (1991) 

2.45. P. A. Anderson, R. F. Kazarinov, N. A. Olsson, T. Tanbun-Ek and R. A. Logan, IEEE J. 
Quantum Electron. 30, 219 (1994) 

2.46. A. Asif Khan, Q. Chen, C. J. Sun, M. Shur and B. Gelmont, Appl. Phys. Lett. 67, 1429
(1995)

2.47. M. Razeghi, J. P. Hirtz, U. O. Ziemelis, C. Delalande, B. Etienne and M. Voos, Appl. Phys. 
Lett. 43, 585 (1983) 

2.48. A. P. Roth, M. Sacilotti, R. A. Masut, P. .J. D’Arcy, B. Watt, G. I. Sproule and D. F. Mitchell, 
Appl. Phys. Lett. 48, 1452 (1986) 

2.49. K. Uomi, S. Sasaki, T. Tsuchya and N. Chinone, J. Appl. Phys. 67, 904 (1990) 

2.50. C. A. Larsen, C. H. Chen, M. Kitamura, G. B. Stringfellow, D. W. Brown and A. J. Robert-
son, Appl. Phys. Lett. 48, 1531 (1986) 

2.51. A. H. Cowley, B. L. Benac, J. G. Ekerdt, R. A. Jones, K. B. Kedd, J. Y. Lee and J. E. Miller, 
J. Ann. Chem. Soc. 110, 628 (1988) 

2.52. W. T. Tsang, Appl. Phys. Lett. 45, 1234 (1986) 

2.53. W. T. Tsang, in Semiconductors and Semimetals, Vol. 24, R. Dingle, ed., Academic Press, 
New York, 1987, Chapt. 7 

2.54. H. Kinoshita, H. Fujiyasu, J. Appl. Phys. 51, 5845 (1980) 

2.55. K. Shinohara, Y. Nishijima, H. Ebe, A. Ishida and H. Fujiyasu, Appl. Phys. Lett. 47, 1184
(1985)

2.56. M. B. Panish, H. Temkin, R. A. Hamm and S. N. G. Chu, Appl. Phys. Lett. 49, 164 (1986) 

2.57. C. L. Goodman and M. V. Pessa, J. Appl. Phys. 60, R65 (1986) 

2.58. S. J. Pearton, ed., GaN and Related Materials II , (Gordon Breach Science Publishers, 
Asian Edition, 2000) p. 118 

2.59. R. N. Bicknell, N. C. Giles and J. F. Schetzina, Appl. Phys. Lett. 49, 1095 (1986) 

2.60. J. T. Cheung, G. Niizawa, J. Moyle, N. P. Ong, B. M. Paine and T. Vreeland, Jr., J. Vac. 
Sci. Technol. A 4, 2086 (1986) 

2.61. K. Kodama, M. Ozeki and J. Komeno, J. Vac. Sci. Technol. B 1, 696 (1983) 

2.62. L. J. Ketelsen and R. F. Kazarinov, IEEE J. Quantum Electron. 31, 811 (1995) 

2.63. M. Notomi, M. Naganuma and T. Nishida, T. Tamamura, H. Iwamura, S. Nojima and M. 
Okamoto, Appl. Phys. Lett. 58, 720 (1991) 



260 REFERENCES

2.64. P. Ills, M. Michel, 4. Forchel, I. Gyuro, M. Klenk and E. Zielinski, Appl. Phys. Lett. 64,
496 (1994) 

2.65. B. Hubuer, B. .Jacobs, C. Greus, R. Zengerb and A. Forched, J. Vac. Sci. Technol. B 12,
3658 (1994) 

2.66. T. Fukui and H. Saito, Jpn. J. AppI. Phys. 29, L731 (1990) 

2.67. S. Hara, J. Ishizaki, J. Motohisa, T. Fukui and H. Hasegawa, J. Cryst. Growth, 145, 692
(1994)

2.68. K. Inoue, Hu Kun Huang, M. Takeuchi, K. Kimura, H. Nakashima, M. Iwane, O. Matsuda 
and K. Muruse, Jpn. J. Appl. Phys. 34, 1342 (1995) 

2.69. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Cossard and J. H. English, Appl.
Phys. Lett. 49, 1275 (1986) 

2.70. H. A. Zarem, P. C. Sercel, M. E. Hoenk, J. A. Lebens and K. J. Vahala, Appl. Phys. Lett. 
54, 2692 (1989) 

2.71. R. K. Kupka, Y. Chen, R. Planel and H. Latnois. J. Appl. Phys. 77, 1990 (1995) 

2.72. E. Kapon, M. C. Tamargo and D. M. Hwang, Appl. Phys. Lett. 50, 347 (1987) 

2.73. Y. Hasegawa, T. Egawa, T. Junbo and M. Umeno, J. Cryst. Growth 145, 728 (1994) 

2.74. K. Shimoyama, S. Nagai, Y. Inove, K. Kojomi, N. Horoi, K. Fujii and H. Gotoh, J. Cryst. 
Growth 145, 734 (1995) 

2.75. S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, J. Appl. Phys. 71, 533 (1992) 

2.76. M. Dilger, M. Hohenstein, F. Phillipp, K. Eberl, A. Kurtenbach, P. Grambow, A. Lehmann, 
D. Heilman and K. Von Klitzing, Semicond. Sci. Tecchnol. 9, 2258 (1994) 

2.77. Y. Lin, Y. Sishimoto, S. Seimomura, K. Garmo, K. Munuse, N. Sano, A. Adachi, K. 
Kanamoto, T. Isu, K. Fujita, T. Watanabe and S. Hiyamizu, Jpn. J. Appl. Phys. 33,
719 (1994) 

2.78. S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, Appl. Phys. Lett. 62, 19
(1993)

2.79. A. Hartmann, L. Vescan, C. Dieker and H. Luth, J. Appl. Phys. 77, 1959 (1995) 

2.80. H. Temkin, G. J. Dolan, M. B. Panish and S. N. G. Chu, Appl. Phys. Lett. 50, 413 (1987) 

2.81. Y. Nagamune, S. Tsukamoto, N. Nishioka and Y. Arakawa, J. Cryst. Growth 126, 707
(1992)

2.82. Y. Arakawa, Solid-St. Electron. 37, 523 (1993) 

2.83. J. Oshimowo, M. Nishioka, S. Ishida, Y. Arakawa, Jpn. J. Appl. Phys. 33, L1634 (1994) 

2.84. J. Y. Marzin, J. M. Gérerd, A. Izraël and D. Barrier, Phys. Rev. Lett. 73, 716 (1994) 

2.85. D. Leonard, M. Krishnamurthy, C. M. Reves, S. P. Deribaars and P. M. Petroff, Appl. Phys. 
Lett. 64, 2727 (1994) 

2.86. A. Madhukar, Q. Xie, P. Chen and A. Konkar, Appl. Phys. Lett. 64, 2727 (1994) 



REFERENCES 261

2.87. R. Nötzel, Semicond. Sci. Technol. 11, 1365 (1996) 

2.88. J. Ahopelto, A. A. Yamaguchi, K. Nishi, A. Usui and H. Sakaki, Jpn. J. Appl. Phys. 32,
L32 (1993) 

2.89. R. Apetz, L. Vescan, A. Hartman, C. Dieker and H. Luth, Appl. Phys. Lett. 66, 445 (1995) 

2.90. A. Kurtenbach, K. Eberl and T. Shitara, Appl. Phys. Lett. 66, 361 (1995) 

2.91. S. C. Moss, D. Ha, H. W. H. Lee and D. J. Norris, eds., Semiconductor Quantum Dots: 
Mater. Res. Soc. Symp. Proc. 571 (1999)

2.92. E. L. Hue, FED Journal 10, Suppl. 2, 5 (1999) 

2.93. M. K. Saker, D. M. Whittaker, M. S. Skolnick, C:. F. McConville, C. R. Whitehouse, S. J. 
Barnett, A. D. Pitt, A. G. Cullis arid G. M. Williams, Appl. Phys. Lett. 65, 1118 (1994) 

2.91. H. Hillmer, R. Losch, W. Schlapp and H. Burkhard, Phys. Rev. B 52, R17025 (1995) 

CHAPTER 3 

3.1. O. Madelung, ed., Semiconductors, Springer-Verlag, Berlin, 1991 

3.2. J. Van Vechten, in Handbook of Semiconductors. Vol.3, S. P. Keller, ed., North Holland, 
Amsterdam, 1980, p.33 

3.3. L. Esaki, IEEE J. Quantum Electron. QE-27, 1611 (1986) 

3.4. J. Singh, Physics of Semiconductors and their Heterostructures, McGraw-Hill, New York, 
1993, p.192 

3.5. R. L. Anderson, Solid-St. Electron. 5, 341 (1962) 

3.6. D. W. Niles and G. Margaritondo, Phys. Rev. B 34: 2923 (1986) 

3.7. J. O. McCaldin, T. C. McGill and C. A. Mead, Phys. Rev. Lett. 36, 56 (1976) 

3.8. Su-Huai Wei and A. Zunger, Phys. Rev. Lett. 59, 144 (1987) 

3.9. W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977) 

3.10. W. R. Frensley and H. Kroemer, Phys. Rev. B, 16, 2642 (1977) 

3.11. J. Tersoff, Phys. Rev. B 30, 4874 (1984) 

3.12. G. Margaritondo, Phys. Rev. B 31, 2526 (1985) 

3.13. G. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154 (1987) 

3.14. N. E. Christensen, Phys. Rev. B 37, 4528 (1988) 

3.15. N. E. Christensen, I. Gorezgca, O. B. Christensen, U. Schmid, and M. Cardona, J. Cryst. 
Growth 101, 318 (1990) 

3.16. C. G. Van de Walle and J. Neugebaurer, Mater. Res. Soc. Symp. Proc. v. 449, 861
(1997)

3.17. J. A. Majeworky, M. Stadele and P. Vogel, ibid, p.917



262 REFERENCES

3.18. P. Bernardine, V. Fiorentini and D. Vanderbilt, ibid, p.923

3.19. R. Dingle, W. Wiegmann and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974) 

3.20. R. C. Miller, D. A. Kleinman and A. C. Gossard Phys. Rev. B 29, 7085 (1984) 

3.21. B. R. Nag and S. Mukhopadhyay, Appl. Phys. Lett. 58, 1056 (1991) 

3.22. K. Uomi, S. Sasaki, T. Tsuchiya and N. Chinone, J. Appl. Phys. 67, 904 (1990) 

3.23. M. A. Khan, R. A. Skogmm, J. M. Van Hove, S. Krishnankutty and R. M. Kolbas, Appl.
Phys. Lett. 56, 1257 (1990) 

3.24. K. Itoh, T. Kawamoto, H. Awano, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. 30,
1924 (1991) 

3.25. M. Heiblum, M. I. Nathan and M. Eizenberg, Appl. Phys. Lett. 47, 503 (1985) 

3.26. M. A. Haase, M. A. Emanuel, S. C. Smith, J. J. Coleman and G. E. Stillman, Appl. Phys. 
Lett. 50, 404 (1987) 

3.27. M. K. Kelly, D. W. Niles, E. Colavita, G. Margaritondo and M. Henzler, Appl. Phys. Lett. 
46, 768 (1985) 

3.28. D. W. Niles and G. Margaritondo, Phys. Rev. B 34, 2923 (1986) 

3.29. M. Heiblum and H. V. Fischetti, in Physics of Quantum, Electron Devices, F. Capasso, 
ed., Springer-Verlag, Heidelberg, 1990, p. 275 

3.30. S. R. Forrest and O. K. Kim, J. Appl. Phys. 53, 5738 (1982) 

3.31. H. Okumura, S. Misawa, S. Yoshida and S. Gonda, Appl. Phys. Lett. 46, 377 (1985) 

3.32. W. I. Wang, E. E. Mendez and F. Stern, Appl. Phys. Lett. 45, 639 (1984) 

3.33. E. A. Kraut, P. W. Grant, J. R. Waldrop and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620
(1980)

3.34. G. J. Gualtieri, G. P. Schwartz, R. G. Nuzzo and W. A. Sunder, Appl. phys. Lett. 49, 1037
(1986)

3.35. G. J. Gualtieri, G. P. Schwartz, R. G. Nuzzo, R. G. Malik and J. F. Walker, J. Appl. Phys. 
61, 5337 (1987) 

3.36. P. M. Hui, H. Ehrenrich and N. F. Johnson, J. Vac. Sci. Technol. A 7, 424 (1989) 

3.37. G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morcoc, 
W. R. L. Lambrecht and B. Segall, Appl. Phys. Lett, 65, 610 (1994) 

3.38. T. M. Duc, C. Hsu and J. P. Faurie, Phys. Rev. Lett. 58, 1127 (1987) 

3.39. E. T. Yu, D. H. Chow and T. C. McGill, Phys. Rev. B 38, 12764 (1988) 

3.40. G. Martin, A. Botchkarev, A. Rockett and H. Morcoc, Appl. Phys. Lett. 68, 2541 (1996) 

3.41. P. K. Bhattacharya, ed., Indium Gallium Arsenide, INSPEC, London, 1993, p.86 

3.42. D. Biswas, N. Debbar, P. Bhattacharya, M. Razeghi; M. Defour and F. Omnes, Appl. Phys. 
Lett. 56, 833 (1990) 



REFERENCES 263 

3.43. S. H. Feng, J. Krynicki, V. Donchev, J. C. Bourgoin, M. Di, Fort-Poisson, C. Brylinski, S. 
Delage, H. Blanck and S. Alaya, Semicond. Sci. Technol. 8, 2092, (1993) 

3.44. J. J. O’Shea, C. M. Reaves, S. P. Den Baars, M. A. Chin and V. Narayanmurti, Appl. Phys. 
Lett. 69, 3022 (1996) 

3.45. T. Kobayashi, K. Taira, F. Nakamura and H. Kawai, J. Appl. Phys. 65, 4898 (1989) 

3.46. K. Kodama, M. Hoshino, K. kilahara, M. Takikawa and M. Ozeki, Jpn. J. Appl. Phys. 25,
L127 (1986) 

3.47. M. S. Faleh, J. Tasselli, J. P. Braille and A. Marty, Appl. Phys. Lett. 69, 1288 (1996) 

3.48 I1 Jong Kim, Yong-Hoon Cho, Kwan-Shik Kim, Byung-Doo Choc and A. Lim, Appl. Phys. 
Lett. 68, 3489, (1996) 

3.49 S. H. Kwok, P. Y. Yu, K. Uchida and T. Arai, Appl. Phys. Lett. 71, 1110, (1997) 

3.50. W. I. Wang, Solid-St. Electron. 29, 133 (1986) 

3.51. A. R. Bonnefoi, T. C. Mc Gill, R. D. Burnham and G. B. Anderson, Appl. Phys. Lett. 50,
344 (1987) 

CHAPTER 4 

4.1. W. Kohn, in Solid State Physics, Vol. 5, F. Seitz and D. Turnbull, eds., Academic Press, 
New York, 1957, p.274 

4.2. J. M. Luttinger and W. H. Kohn, Phys. Rev. 97, 869 (1955) 

4.3. M. Altereli, in Heterojunctions and Superlattices, G. Allen, G. Bastard, N. Bocorra, M. 
Lannoo and M. Voos, eds., Springer Verlag, Berlin, 1986, p.14 

4.4. E. 0. Kane, in Semiconductors and Semimetals, Vol.1, R. K. Willardson and A. C. Beer, 
Academic Press, New York, 1966, p.75 

4.5. J. M. Luttinger, Phys. Rev. 102, 1030 (1956) 

4.6. D. A. Broido and L. J. Sham, Phys. Rev. B, 31, 888 (1985) 

4.7. D. Ahn and Shun-Lien Chuang, IEEE J. Quantum Electron. 24, 2400 (1988) 

4.8. B. R. Nag, J. Appl. Phys. 77, 4148 (1995) 

4.9. R. Eppenga, M. F. H. Schuurmans and S. Colak, Phys. Rev. B, 36, 1554 (1987) 

4.10. T. Hiroshima and R. Lang, Appl. Phys. Lett. 49, 456 (1986) 

4.11. G. T. Einevoll, P. C. Hemmer and J. Thomsen, Phys. Rev. B 42, 3485 (1990) 

4.12. R. A. Morrow and K. R. Brownstein, Phys. Rev. B 30, 678 (1984) 

4.13. D. J. Ben Daniel and C. B. Duke, Phys. Rev. 152, 683 (1966) 

4.14. B. R. Nag, Appl. Phys. Lett. 59, 1620 (1991) 

4.15. B. R. Nag, J. Appl Phys. 70, 4623 (1991) 

4.16. D. F. Nelson, R. C. Miller and D. A. Kleinman, Phys. Rev. B 35, 7770 (1987) 



264 REFERENCES

.4.17. U. Ekenberg, Phys. Rev. B 36, 6152 (1987) 

4.18. R. Lassing, Phys. Rev. B 31, 8076 (1985) 

4.19. B. R. Nag and S. Mukhopadhyay, J. Phys: Condens, Matter, 3, 3757 (1991) 

4.20. U. Wiesner, J. Pillath, W. Bauhofer, A. Kohl, A. Mesquida Kiisters, S. Brittner and K. 
Heime, Appl. Phys. Lett. 64, 2520 (1994) 

4.21. B. R. Nag, S. Mukhopadhyay, Phys. Stat. Sol. 175, 103 (1993) 

4.22. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag, Berlin, 
1980, p.60 

4.23. U. Rössler, Solid -St. Commun, 49, 943 (1984) 

4.24. W. Zawadzki and P. Pfeffer, Semicond. Sci. Technol. 5, S179 (1990) 

4.25. J. W. Conley and G. D. Mahan, Phys. Rev. 161, 681 (1967) 

4.26. F. A. Padovani and K. Stratton, Phys. Rev. Lett. 16, 1202 (1966) 

4.27. D. Mukherje and B. R. Nag, Phys. Rev. B, 12, 4338 (1975) 

4.28. G. Bastard, Acta Electron. 25, 147 (1983) 

4.29. J. R. Söderstörm, D. H. Chow and T. C. McGill, Electron. Dev. Lett. 11, 27 (1990) 

4.30. T. Ando, J. Phys. Soc. Jpn.. 51, 3893 (1982) 

4.31. T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982) 

4.32. F. Stern and S. Das Sarma, Phys. Rev. B, 30, 840 (1984) 

4.33. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National
Bureau of Standards Applied Mathematics Series, No. 55, U.S.Goverment Printing Office, 
Washington, 1964. 

4.34. F. Stern, Phys. Rev. B 5, 4891 (1972) 

4.35. F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966) 

4.36. F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967) 

4.37. T. Ando, J. Phys. Soc. Jpn.. 51, 3900 (1982) 

4.38. G. Bastard, Surf. Sci, 142, 284 (1984) 

4.39. K. S. Yoon, G. B. Stringfellow and R. J. Huber, J. Appl. Phys. 62, 1931 (1987) 

4.40. D. Gershoni, H. Temkin, G. J. Dolan, J. Dunsmuir, S. N. G. Chu and M. B. Panish, Appl.
Phys. Lett. 53, 995 (1988) 

4.41. B. R. Nag and S. Gangopadhyay, Phys. Stat, Sol.(a) 179, 463 (1993) 

4.42. J. Shertzer and L. R. RamMohan, Phys. Rev. B, 41, 9994 (1990) 

4.43. S. Gangopadhyay and B. R. Nag, Phys. Stat. Sol. 195, 123 (1996) 

4.44. S. Gangopadhyay and B. R. Nag, J. Appl. Phys. 81, 7885 (1997) 



REFERENCES 265

4.45. M. Notomi, M. Naganuma, T. Nishida, T. Tamamura, H. Iwamarn, S. Nojima and M. 
Okamoto, Appl. Phys. Lett. 58, 720 (1991) 

4.46. S. Tsukamoto, Y. Nagamune, M. Niskioko, and Y. Arakawa, Appl. Phys. Lett. 62, 49
(1993)

4.47. Y. Arakawa, Solid-St. Electron. 37, 523 (1994) 

4.48. P. Ils, M. Michel, A. Forchel, I. Gynro, M. Klenk and E. Zielinski, Appl. Phys. Lett. 64,
496 (1994) 

4.49. S. Koshiba, H. Noge, H. Akiyama, T. Inoshita, Y. Nakamura, A. Shimizu, Y. Nagamune, M. 
Tsuchiya, H. Kano, H. Sakaki and K. Nada, Appl. Phys. Lett. 64, 363 (1994) 

4.50. H. Temkin, G. J. Dolan, M. B. Panish and S. N. G. Chu, Appl. Phys. Lett. 50, 413 (1987) 

4.51. Y. Nagamune, M. Xishioka, S. Tsukamoto and Y. Arakawa, Solid-St. Electron. 37, 579
(1994)

4.52. S. S. Nedorezov, Sov. Phys. Solid-St. 12, 1815 (1977) 

4.53. J. C. Maan, A. Fasolino, G. Belle, M. Altarelli and K. Ploog, Physica, 127 B, 426 (1984) 

4.54. J. A. Brum, L. L. Chang and L. Esaki, Phys. Rev. B, 38, 12977 (1988) 

4.55. G. C. Osbourn, J. Appl. Phys. 53, 1586 (1982) 

4.56. J. C. Bean, J. Cryst. Growth, 81, 411 (1987) 

4.57. B. S. Meyerson, Appl. Phys. Lett. 48, 797 (1986) 

4.58. R. People, IEEE J. Quantum Electron. QE-22, 1696 (1986) 

4.59. G. E. Pikus and G. L. Bir, Sov. Phys. Solid-St. 1, 1502 (1958) 

4.60. C. Kittel, Introduction, to Solid State Physics, 2nd Ed. John Wiley & Sons, New York, 
1953, p.85 

4.61. M. Cardona and N. E. Chistensen, Phys. Rev. B 35, 6182 (1987) 

4.62. D. D. Nolte, W. Walukiewicz and E. E. Haller, Phys. Rev. Lett. 59 501 (1987) 

4.63. S-C Hong, G. P. Kothiyal, N. Debbar, P. Bhattacharya and .J. Singh, Phys. Rev. B, 37,
878 (1988) 

4.64. K. Ismail, B. S. Meyerson and J. Wang, Appl. Phys. Lett. 58, 2197 (1991) 

4.65. F. Schaffler and H. Jorke, Appl. Phys. Lett. 58, 398 (1991) 

4.66. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke and H. J. Herzog, Phys. Rev. Lett. 54, 2441
(1985)

4.67. H. Hertle, G. Schuberth, E. Gornik, G. Abstreiter and F. Schaffler, Appl. Phys. Lett. 59,
2977 (1991) 

4.65. R. P. G. Karunasiri, J. S. Park and K. L. Wang, Appl. Phys. Lett. 59, 2588 (1991) 

4.69. J. N. Schulman and Y. C. Chang, Phys. Rev. B 24, 4445 (1981) 

4.70. G. Edwards and J. C. Inkson, Semicond. Sci. Technol. 5, 1023 (1990) 



266 REFERENCES

4.71. Yia-Chung Chang, Phys. Rev. B, 37, 8215 (1988) 

CHAPTER 5 

5.1. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner and W. 
Weigmann, Appl. Phys. Lett. 35, 451 (1979) 

5.2. S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan 
and W. Weigmann, Appl. Phys. Lett. 44, 360 (1984) 

5.3. D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard and W. Wiegmann, Optics Lett. 
8, 477 (1983) 

5.4. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood 
and C. A. Barrus, Phys. Rev. B 32, 1043 (1985) 

5.5. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985) 

5.6. B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei and S. Hui, Appl. Phys. Lett. 59, 1864
(1991)

1972, p.52 
5.7. B. R. Nag, Theory of Electrical Transport in Semiconductors, Pergamon Press, Oxford, 

5.8. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag, Berlin, 
1980, p.100 

5.9. J. L. Powell and B. Crasemann, Quantum, Mechanics Addison-Wesley,
Reading, 196 1 , p.416 

5.10. M. Voisin, in Heterojunction and Semiconductor Superlattices, G. Allan, G. Bastard, N. 
Boccara, M. Lannoo and M. Voos, eds., Springer-Verlag, Berlin, 1986, p.77. 

5.11. E. O. Kane, in Semiconductors and Semimetals, Vol.1, R. K. Willardson and A. C. Beer, 
eds., Academic Press, Sew York, 1966, p.80 

5.12. E. J. Johnson, in Semiconductors and Semimetals, Vo1.3, R. K. Willardson and A. C. 
Beer, eds., Academic Press, New York, 1967, p.166 

5.13. P. A. Lindsay, Introduction to Quantum Mechanics for Electrical Engineers, McGraw-
Hill, New York, 1967, p.182. 

5.14. M. Asada, A. Kameyama and Y. Suematsu, IEEE J. Quantum Electron. QE-20, 745
(1984)

5.15. H. Barry Bebb and E. W. Williams, in Semiconductures and Semimetals, Vol. 3, R. K. 
Willardson and A. C. Beer, Academic Press, New York, 1967, p.181 

5.16. H. C. Casey, Jr., and M. B. Panish, Heterostructure Lasers, Academic Press, New York, 
1978, Part A, Chapter 3. 

5.17. C. Hermann and C. Weisbuch, Phys. Rev. B 15, 823 (1977) 

5.18. H. Xie, J. Piao, J. Katz and W. I. Wang, J. Appl. Phys. 70, 3152 (1991) 

5.19. U. Rössler, Solid-St. Commun. 49, 943 (1984) 



REFERENCES 267

5.20. F. M. Peeters, A. Matulis, M. Helm, T. Fromherz and W. Hilber, Phys. Rev. B 48, 12008 
(1993)

5.21. H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, 
A. Passner and W. Weigmann, Appl. Phys. Lett. 41, 221 (1982) 

5.22. A. Migus, A. Antonetti, D. Hulin, A. Mysyrowicz, H. M. Gibbs, N. Peyghambrian and J. L. 
Jewell, Appl. Phys. Lett. 46, 70 (1985) 

5.23. G. H. Wannier, Phys. Rev. 52, 191 (1937) 

5.24. J. O. Dimmock, in Semiconductors and Semimetals, Vol. 3, R. K. Willardson and A. C. 
Beer, eds., Academic Press, New York, 1967, p.278 

5.25. G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Phys. Rev. B, 26, 1974 (1982) 

5.26. Y. Shinozuka and M. Matsuura, Phys. Rev. B, 28, 4878 (1983) 

5.27. R. L. Greene and K. K. Bajaj, Phys. Rev. B. 31, 6498 (1985) 

5.28. H. Mathieu, P. Lefevre and P. Christol, J. Appl. Phys. 72, 300 (1992) 

5.29. R. L. Greene, K. K. Bajaj and D. E. Phelps, Phys. Rev. B, 29, 1807 (1984) 

5.30. M. Shinada and S. Sugano, J. Phys. Soc. Japan, 2, 1936 (1966) 

5.31. J. J. Hopfield, in Proc. 7th Int. Conf. Physica of Semiconductors ,Dunod, Paris and 
Academic Press, New York, 1964, p.725 

5.32. R. R. Sharma and S. Rodriguez, Phys. Rev. 153, 823 (1967); 159, 649 (1967) 

5.33. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960) 

5.34. M. E. Pistol and X. Liu, Phys. Rev. B 45, 4312 (1992) 

5.35. O. Brandt, H. Lage and K. Ploog, Phys. Phys. Rev. B 45, 4217 (1992) 

5.36. P. W. Yu, S. Chaudhuri, D. C. Reynolds, K. K. Bajaj, C. W. Litton, W. T. Masselink, R. 
Fischer and H. Morkoc, Solid-St. Commun. 54, 159 (1985) 

5.37. M. S. Skolnick, Semicond. Sci. Technol. 1, 29 (1986) 

5.38. E. Fermi, Nuclear Physics, University of Chicago Press, Chicago, 1950, p. 142 

5.39. B. K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1988, p. 
196

5.40. N. Peyghambarian, S. W. Koch and A. Mysyrowicz, Introduction to Semiconductor Optics, 
Prentice Hall, Englewood Cliffs, 1993, p. 123 

5.41. G. Lasher and P. Stern, Phys. Rev. 133, A553 (1964) 

5.42. G. W. Taylor, J. Appl. Phys. 70, 2508 (1991) 

5.43. Bose, Zeits. Physik. 26, 178 (1924) 

5.44. S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, Adv. Phys. 38, 89 (1989) 

5.45. R. C. Miller, A. C. Gossard, D. A. Kleinmann and O. Munteanu, Phys. Rev. B 29, 3740
(1984)



268 REFERENCES

5.46. M. H. Meynandier, C. Delalande, G. Bastard, M. Voos, F. Alexandre and J. L. Liéven, Phys.
Rev. B 31, 5539 (1985) 

5.47. W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford, 1954, p. 32 

5.48. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156(1985)

5.49. B. F. Levine, R. J. Malik, J. Walker, K. K. Choi, C. G. Bethea, D. A. Kleinman and J. M. 
Vandenberg, Appl. Phys. Lett. 50, 273 (1987) 

5.50. F. H. Julien, J. M. Lourtioz, N. Herschkorn, D. Delacourt, J. P. Pocholle, M. Papuchon, R. 
Planel and G. Le Roux, Appl. Phys. Lett. 53, 116 (1988) 

5.51. Prince J. S. A. Adelabu, B. K. Ridley, E. G. Scott and G. J. Davies, Semicond. Sci.
Technol, 3, 873 (1988) 

5.52. B. F. Levine, A. Y. Cho, J. Walker, R. J. Malik, D. A. Kleinmann and D. L. Sivco, Appl.
Phys. Lett. 52, 1482 (1988) 

5.53. H. Lobentanzer, W. König, W. Stolz, K. Ploog, T. Elsaesser and R. J. Bäuerle; Appl. Phys. 
Lett. 53, 571 (1988) 

5.54. H. Asai and Y. Kawamura, Phys. Rev. B 43, 4748 (1991) 

5.55. S. D. Gunapla, B. F. Levine, D. Ritter, R. Hamn and M. B. Panish, Appl. Phys. Lett. 
58, 2024 (1991) 

5.56. Y. Shakuda and H. Katahama, Jpn. J. Appl. Phys. 29, L552 (1990) 

5.57. H. Hertle, G. Schuberth, E. Gornik, G. Abstreiter and F. Schaffler, Appl. Phys. Lett. 59,
2977 (1991) 

5.58. C. Jelen, S. Slivken, J. Hoff, M. Razeghi and G. J. Brown, Appl. Phys. Lett. 70, 360 (1991) 

5.59. D. J. Newson and A. Kurobe, Semicond. Sci. Technol. 3, 786 (1988) 

5.60. J. Y. Anderson, L. Lundquist and R. F. Pasha, Appl. Phys. Lett. 58, 2264 (1991) 

5.61. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker and R. J. Malik, Appl.
Phys. Lett. 54, 2515 (1989) 

5.62. K. W. Goossen, S. A. Lyon and K. Alavi, Appl. Phys. Lett. 53, 1027 (1988) 

5.63. H. Xie, J. Piao, J. Katz and W. I. Wang, J. Appl. Phys. 70, 3152 (1991) 

5.64. B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei and S. Hui, Appl. Phys. Lett .59, 1864
(1991)

5.65. S. D. Gunapala, K. M. S. V. Bandara, B. F. Levine, G. Sarusi, J. S. Park, T. L. Lin, W. I. 
Pike and J. K. Liu, Appl. Phys. Lett. 64, 3431 (1994) 

5.66. W. Franz, Z. Naturf. (a), 13, 484 (1958) 

5.67. L. V. Keldysh, Soviet Phys. JETP, 34, 788 (1958) 

5.68. R. A. Houston, A Treatise on Light, Longmans Green & Co. London, 1952, p. 316 

5.69. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood 
and C. A. Burrus, Phys. Rev. B 32, 1043 (1985) 



REFERENCES 269 

5.70. G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Phys. Rev. B 28, 3241 (1983) 

5.71. D. Ahn and S. L. Chung, Appl. Phys. Lett. 49, 1450 (1986) 

5.72. E. J. Austin and M. Jaros, Phys. Rev. B 31, 5569 (1985) 

5.73. T. Hiroshima and R. Lang, Appl. Phys. Lett. 49, 639 (1986) 

5.74. Der-San Chuu and Yu-Tai Shih, Phys. Rev. B 44, 8054 (1991) 

5.75. R. K. Jain, Optical Engineering, 21, 199 (1982) 

5.76. C. K. N. Patel, R. E. Slusher and P. A. Fleury, Phys. Rev. Lett. 17, 1011 (1966) 

5.77. F. Bassani, G. Pastori Parravicine and R. A. Ballinger, Electron States and Optical Tran-
sitions in Solids, Pergamon, Oxford, 1975, p.154 

5.78. D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen and O. Teschke, Solid-St. Electron. 
21, 147 (1978) 

5.79. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Weigmann, IEEE J. 
Quantum Electron. QE-20, 265 (1984) 

5.80. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard and W. 
Wiegmann, Appl. Phys. Lett. 42, 925 (1983) 

5.81. K. Tai, J. Hegarty and W. T. Tsang, AppI. Phys. Lett. 51, 86 (1987) 

5.82. J. S. Weiner, D. B. Pearson, D. A. B. Miller, D. S. Chemla, D. Sivco and A. Y. Cho, Appl.
Phys. Lett. 49, 531 (1986) 

5.83. S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, Adv. Phys. 38, 89 (1989) 

5.84. H. Barry Bebb and E. W. Williams, in Semiconductors and Semimetals, Vo1.8, R. K. 
Willardson and A. C. Beer, eds. Academic Press, New York, 1972, p.184 

5.85. H. Hillmer, A. Forchel, C. W. Tu and R. Sauer, Semicond. Sci. Technol. 7, B235 (1992) 

5.86. D. F. Weltch, G. W. Wicks and L. F. Eastman, Appl. Phys. Lett. 46, 991 (1985) 

5.87. J. Lee, E. S. Koteles and M. O. Vassell, Phys. Rev. B 33, 5512 (1986) 

5.88. P. K. Basu, Phys. Rev. B. 44, 8798 (1991) 

5.89. R. A. Stradling and P. C. Klipstein, eds. Growth and Charcterisation of Semiconductors, 
Adam-Hilger, Bristol, 1990, p.135 

5.90. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle and G. Weimann, Appl. Phys. Lett. 64,
3320 (1994) 

5.91. R. C. Miller, A. C. Gossard, W. T. Tsang and O. Munteanu, Solid-St. Commun. 43, 519
(1982)

5.92. C. Weisbuch, R. C. Miller, R. Dingle, A. C. Gossard and W. Weigmann, Solid-St. Commun. 
37, 219 (1981) 

5.93. F. Yang, M. Wilkinson, E. J. Austin and K. P. O’Donnell, Phys. Rev. Lett. 70, 323 (1993) 

5.94 H. Wang, M. Jiang and D. G. Steele, Phys. Rev. Lett. 65, 1225 (1990) 



270 REFERENCES

5.95. L. Munoz, L. Vina, N. Mestres and W. I. Wang, Solid-St. Electron. 37, 877 (1994) 

5.96. S. Lutgen, T. P. Albrecht, T. Marschner, W. Stolz and E. O. Gobel, Solid-St. Electron. 
37, 899 (1994) 

5.97. D. K. Nayak, N. Usami, H. Sumammra, S. Fukatsu and Y. Shiraki, Solid-St. Electron. 37,
937 (1994) 

5.98. P. D. Colbourne and D. T. Cassidy, IEEE J. Quantum Electron., 29, 62 (1993) 

5.99. H. Hillmer, S. Hansmann, A. Forchel, M. Morohashi, E. Lopez, H. P. Meier and K. Ploog, 
Appl. Phys. Lett. 53, 1937 (1988) 

5.100. H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier and K. Ploog, 
Phys. Rev. B. 39, 10901 (1989) 

5.101. P. K. Basu and P. Ray, Phys. Rev. B 44, 1844 (1991) 

5..102 H. Hillmer, A. Forchel and C. W. Tu, J. Phys: Condens. Matter, 5, 5563 (1993) 

CHAPTER 6 

6.1. B. R. Nag, Theory of Electrical Transport in Semiconductors, Pergamon, Oxford, 1972 

6.2. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag, Berlin, 
1980

6.3. S. Mukhopadhyay and B. R. Nag, Phys. Rev. B 48, 17960 (1993) 

6.4. N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989) 

6.5. J. Lee, H. N. Spector, V. K. Arora, J. Appl. Phys. 54, 6995 (1983) 

6.6. T. Ando, J. Phys. Soc. Jpn. 51, 3900 (1982) 

6.7. F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967) 

6.8. Ching-Yian Wu and G. Thomas, Phys. Rev. B 9, 1724 (1974) 

6.9. K. Hess, Appl. Phys. Lett. 35, 484 (1979) 

6.10. W. Walukiewicz, H. E. Ruda, J. Lagowski and H.C. Gatos, Phys. Rev. B 30, 4571 (1984) 

6.11. F. Stern, Phys. Rev. Lett. 18, 546 (1967) 

6.22. T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982) 

6.13. A. Katz, Principles of Statistical Mechanics, W. H. Freeman, San Francisco, 1967, p. 162 

6.14. A. Hönig, Phys. Rev. Lett. 17, 186 (1966) 

6.15. D. S. Tang, Phys. Rev. B 36, 2757 (1987) 

6.16. R. Dingle, H. L. Störmer, A. C. Gossard and W. Wiegmann, Appl. Phys. Lett. 33, 665
(1978)

6.17. H. L. Störmer and W. T. Tsang, Appl. Phys. Lett. 36, 685 (1980) 

6.18. P. J. Price, Ann. Phys. 133, 217 (1981) 



REFERENCES 271

6.19. H. L. Störmer, A. Pinczuk, A. C. Gossard and W. Wiegmann, Appl. Phys. Lett. 38, 691
(1981)

6.20. K. Y. Cheng, A. Y. Cho, T. J. Drummond and H. Morkoc, Appl. Phys. Lett. 40, 147
(1982)

6.21. Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, M. Razeghi and M. A. Poisson, Appl. Phys. 
Lett. 40, 877 (1982) 

6.22. A. Kastalsky, R. Dingle, K. Y. Cheng and A. Y. Cho, Appl. Phys. Lett. 41, 274 (1982) 

6.23. K. T. Chan, L. D. Zhu and J. M. Ballantyne, Appl. Phys. Lett. 47, 44 (1985) 

6.24. P. J. Price, Surf. Sc. 113, 199 (1982) 

6.25. S. Hipamizu, J. Saito, K. Nanbu and T. Ishikawa, Jpn. J. Appl. Phys. 22, L609 (1983) 

6.26. G. Bastard, Appl. Phys. Lett. 43, 591 (1983) 

6.27. P. K. Basu and B. R. Nag, Appl. Phys. Lett. 43, 689 (1983) 

6.28. N. Sano, H. Kato and S. Chika, Solid- St. Commun. 49, 123 (1984) 

6.29. J. C. M. Hwang, A. Kastalsky, H. L. Störmer and V. G. Keramidas, Appl. Phys. Lett. 44,
802 (1984) 

6.30. H. L. Störmer, A. C. Gossard, W. Wiegmann, R. Bondell and K. Baldwin, Appl. Phys. 
Lett. 44, 139 (1984) 

6.31. M. Heiblum, E. E. Mendez and F. Stern) Appl. Phys. Lett. 44, 1064 (1984) 

6.32. P. J. Price, Surf. Sci. 143, 145 (1984) 

6.33. E. E. Mendez, P. J. Price and M. Heiblum, Appl. Phys. Lett. 45, 294 (1984) 

6.34. B. Vinter, Appl. Phys. Lett. 45, 581 (1984) 

6.35. B. J. F. Lin, D. C. Tsui, M. A. Paalanen and A. C. Gossard, Appl. Phys. Lett. 45, 695
(1984)

6.36. K. Inoue, H. Sakaki and J. Yoshino, Jpn. J. Appl. Phys. 23, L767 (1984) 

6.37. E. E. Mendez and W. I. Wang, Appl. Phys. Lett. 46, 1159(1985)

6.38. B. J. F. Lin, D. C. Tsui and G. Weimann, Solid- St. Commun. 56, 287 (1985) 

6.39. K. Inoue, H. Sakaki and J. Yoshino, Appl. Phys. Lett. 47, 614 (1985) 

6.40. S. Sasa, J. Saito, K. Nanbu, T. Ishikawa, S. Hiyamizu and M. Inoue, Jpn. J. Appl. Phys. 
24, L281 (1985) 

6.41. B. Vinter, Phys. Rev. B 33, 5904 (1986) 

6.42. B. Vinter, Surf. Sci. 170, 445 (1986) 

6.43. W. Walukiewicz, Phys. Rev. B 31, 5557 (1985) 

6.44. K. Hirakawa and H. Sakaki, Phys. Rev. B 33, 8291 (1986) 



272 REFERENCES

6.45. C. Guillemot, M. Badet, M. Gauneau, A. Regreny and J. C. Portal, Phys. Rev. B 35, 2799
(1987)

6.46. M. Artaki and K. Hess, Phys. Rev. B 37, 2933 (1988) 

6.47. M. Tomizowa, T. Furutu, K. Yokoyama and A. Yoshi, IEEE Trans. Electron. Dev. 36,
2380 (1989) 

6.48. L. Pfeiffer, K. W. West, H. L. Stormer and K. W. Baldwin, Appl. Phys. Lett. 55, 1888
(1989)

6.49. B. Laikhtman, Appl. Phys. Lett. 59, 3021 (1991) 

6.50. W. Ted Masselink, Phys, Rev. Lett. 66, 1513 (1991) 

6.51. T. Kawamura and S. Das Sarma, Phys. Rev. B 45, 3612 (1992) 

6.52. K. Griepel and U. Rossler, Semicond. Sci. Technol. 7, 487 (1992) 

6.53. K. Hess, H. Morkoç, H. Shichijo and B. G. Streetman, Appl. Phys. Lett. 35, 469 (1979) 

6.54. I. C. Kizilyalli and K. Hess, J. Appl. Phys. 65, 2005 (1989) 

6.55. K. S. Yoon, G. B. Stringfellow and R. J. Huber, J. Appl. Phys. 62, 1931 (1987) 

6.56. K. Yokayama, J. Appl. Phys. 63, 938 (1988) 

6.57. M. Tomizawa, T. Furutu, K. Yokoyama and A. Yoshi, IEEE Trans. Electron Dev 36, 2380
(1989)

6.58. D. Bose and B. R. Nag, Semicond. Sci. Technol. 6, 1135 (1991) 

6.59. M. P. Chamberlain, D. Hoare, R. W. Kelsall and R. A. Abram, Semicond. Sci. Technol. 
7, B45 (1992) 

6.60. S. M. Goodnick and J. E. Lary, Semicond Sci. Technol. 7, B109 (1992) 

6.61. W. P. Hong and P. K. Bhattacharya, IEEE Trans. Electron. Dev. ED-34, 1491 (1989) 

6.62. D. Yang, P. K. Bhattacharya, W. P. Hong, R. Bhattacharya and J. R. Hayes, J. Appl. Phys. 
72, 174 (1992) 

6.63. W. T. Masselink, Semicond. Sci. Technol. 4, 503 (1989) 

6.64. T. Takagahara, Phys. Rev. B 31, 6552 (1985) 

6.65. S. Rudin and R. L. Reinecke, Phys. Rev. B 41, 3017 (1990) 

6.66. D. S. Chemla., D. A. R. Miller, P. W. Smith, A. C. GossareI and W. Wiegmann, IEEE J.
Quantum Electron. QE-20, 265 (1984) 

6.67. W. T. Tsang and E. F. Schubere, Appl. Phys. Lett. 49, 220 (1986) 

6.68. M. Razeghi, J. P. Hirtz, U. O. Ziemelis, C. Delalande, B. Etienne and M. Voos, Appl. Phys. 
Lett. 43, 585 (1983) 

6.69. C. P. Kuo, K. L. Fry and G. B. Stringfellow, Appl. Phys. Lett. 47, 855 (1985) 

6.70. J. H. Marsh, J. S. Roberts and P. A. Claxton, Appl. Phys. Lett. 46, 1161 (1985) 



REFERENCES 273

6.71. H. Temkin, M. B. Panish, P. M. Petroff, R. A. Ham, J. M. Vandenberg and S. Sumski, 
Appl. Phys. Lett. 47, 394 (1985) 

6.72. D. F. Welch, G. W. Wicks and L. F. Eastman, Appl. Phys. Lett. 46, 991 (1985) 

6.73. K. Kawamara, K. Wakita and H. Asaki, Electron. Lett. 21, 1169 (1985) 

6.74. B. Deveaud, J. Y. Emery, A. Chomette, B. Lambert and M. Baudet, Appl. Phys. Lett. 45,
1078 (1984) 

6.75. H. Kawai, K. Kaneko and N. Watanabe, J. Appl. Phys. 56, 463 (1984) 

6.76. K. Ohta, H. Funbshi, T. Sakamoto, T. Nakagowa, N. J. Kawai, T. Kojima and M. Kawashima, 
J. Electron. Mater. 15, 97 (1986) 

6.77. B. R. Nag and S. Mukhopadhyay, Jpn. J. Appl. Phys. 31, 3287 (1992) 

6.78. D. Grützmacher, K. Wolter, H. Jürgensen, P. Balk and C. W. T. Bulle Lieuwma, Appl.
Phys. Lett. 52, 872 (1986) 

6.79 H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka and T. Matsue, Appl. Phys. Lett. 51, 1934
(1987)

6.80 W. C. Mitchel, G. J. Brown. I. Lo, S. Elhamri, M. Razeghi and X. He, Appl. Phys. Lett. 
65, 1578 (1994) 

6.81 B. R. Nag, S. Mukhopadhyay and M. Das, J. Appl. Phys. 86, 459 (1999) 

6.82 J. M. Redwing, M. A. Tishler, J. S. Flynn, S. Elhamri, M. Aouja, R. S. NewRock and W. C. 
Mitchell, Appl. Phys. Lett. 69, 963 (1996) 

6.83 F. Stengel, S. N. Mohammad and H. Morkoç, J. Appl. Phys. 80, 3031 (1996) 

6.84 M. A. Khar, J. M. Van Hove, J. N. Kunzia and D. T. Olson, Appl. Phys. Lett. 58, 2408
(1991)

6.85 A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Sawador, S. N. Mohammad, B. Sverdlov and 
H. Morkoc, Electron. Lett. 31, 1389 (1995) 

6.86 S. J. Pearton, ed., GaN and Related Materials II, Gordon and Breach Science Publishers, 
Asian Edition, 2000, p. 220 

6.87. M. S. Shur and L. F. Eastman, IEEE Electron. Dev. ED-26, 1677 (1979) 

6.88. M. S. Shur and L. F. Eastman, Solid-st. Electron. 24, 11 (1981) 

6.89. R. Landauer, Phil. Mag. 21, 863 (1970) 

6.90. M. Buttiker, Y. Imry, R. Landauer and S. Pinhas, Phys. Rev. B 31, 6207 (1985) 

6.91. R. Landauer, IBM J. Res. Dev. 1, 223 (1957) 

6.92. B. J. Van Wees, H. Van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, 
D. Van der Marel and C. T. Foxon, Phys, Rev. Lett. 60, 848 (1988) 

6.93. Y. Hirayama and T. Saku, Appl. Phys. Lett. 54, 2556 (1989) 

6.94. G. L. Snider, M. S. Miller, M. J. Rook and E. L. Hu, Appl. Phys. Lett. 59, 2727 (1991) 



274 REFERENCES

CHAPTER 7

7.1. T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jpn. J. Appl. Phys. 19, L225 (1980) 

7.2. D. Delagebeaudeuf, M. Laviron, P. Delescluse, Pham N. Tung, .J. Chalplart and N. T. Linh, 
Electron. Lett. 18, 103 (1982) 

7.3. T. J. Drummond, W. Kopp, R. E. Thorne, R. Fischer and Morkoç, Appl. Phys. Lett. 40,
879 (1982) 

7.4. R. Fischer, T. J. Drummond, J. Klem, W. Kopp, T. S. Henderson, D. Perrachione and H. 
Morkoç, IEEEE Trans. Electron Dev. ED-31, 1028 (1984) 

7.5. K. Inoue and H. Sakaki, Jpn. J. Appl. Phys. 23, L61 (1984) 

7.6. H. Daembkes, ed., Modulation Doped Field-Effect Transistors, IEEE Press, New York, 
1991.

7.7. T. J. Drummond, H. Morkoc, K. Lee and M. Shur, IEEE Electron. Dev. Lett. EDL-3,
338 (1982) 

7.8. K. Lee, M. S. Shur, T. J. Drummond and H. Morkoç, IEEE Trans. Electron, Dev. ED-30,
207 (1983) 

7.9. T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982) 

7.10. D. Delagebeaudeuf and N. T. Linh, IEEE Trans. Electron Dev. ED-29, 955 (1982) 

7.11. P. Roblin, L. Rice, S. B. Bibyk and H. Morkoç, IEEE Trans. Electron Dev. 35, 1207
(1988)

7.12. C. Chang and H. R. Fetterman, IEEE Trans. Electron Dev. ED-34, 1456 (1987) 

7.13. D. Delagebeaudeuf and N. T. Linh, Electron. Lett. 18, 510 (1982) 

7.14. P. N. Tung, P. Delescluse, D. Delagebeaudeuf, M. Laviron, J. Chaplart and N. T. Linh, 
Electron. Lett. 18, 517 (1982) 

7.15. S. L. Su, R. Fischer, T. J. Drummond, W. G. Lyons, R. E. Thorne, W. Kopp and H. Morkoc, 
Electron. Lett. 18, 794 (1982) 

7.16. T. J. Drummond, S. L. Su, W. G. Lyons, R. Fischer, W. Kopp and H. Morkoç, Electron.
Lett. 18, 1057 (1982) 

7.17. L. F. Lester, D. M. Smith, P. Ho, P. C. Chao, R. G. Tiberio, K. H. G. Duh and E. D. Wolf, 
IEDM Tech., 1988, p. 172 

7.18. K. L. Tan, R. M. Dia, D. C. Streit, T. Lin, T. Q. Trinh: A. G. Han, P. M. Chow and H. C. 
Yen, IEEE Trans. Electron Dev. ED-37, 585 (1990) 

7.19. H. Morkoc and H. Unlu, in Semiconductors and Semimetals, Vol. 24, R. Dingle, ed., 
Academic Press, New York, 1987, p. 135 

7.20. R. Fischer, T. J. Drummond, J. Klem, W. Kopp, T. S. Henderson, D. Perrachione and H. 
Morkoç, IEEE Trans. Electron. Dev. ED-31, 1028 (1984) 

7.21. T. P. Pearsall, R. Hendel, P. O’Connor, K. Alavi and A. Y. Cho, IEEE Electron Dev. Lett. 
EDL-4, 5 (1983) 



REFERENCES 275

7.22. K. H. G. Duh, P. C. Chao, S. M. J. Liu, P. No, M. K. Kao and J. M. Ballingal, IEEE
Microwave Guided Wave Lett. 1, 104 (1991) 

7.23. U. K. Mishra, A. S. Brown, S. E. Rosenbaum, C. E. Hooper, M. W. Pierce, M. J. Delaney, 
S. Vaugn and K. White, IEEE Electron Dev. Lett. EDL-9, 647 (1988) 

7.24. T. Enoki, K. Arai, Y. Ishii and T. Tamamura, Electron. Lett. 27, 115(1991)

7.25. I,. D. Nguyen, A. S. Brown, M. A. Thompson, E. M. Jelloian, L. E. Larson and H. Matloubian, 
IEEE Electron Dev. Lett. EDL-13, 143 (1992) 

7.26. N. Pan, J. Elliot, H. Hendriks, L. Aucoin, P. Fay and I. Adesia, Appl. Phys. Lett. 66, 212
(1995)

7.27. L. D. Nguyen, L. E. Larson and U. K. Mishra, Proc. IEEE, 80, 494 (1992) 

7.28. T. Enoki, M. Tomizawa, Y. Umeda and Y. Ishi, Jpn. J. Appl. Phys. 33, 798 (1994) 

7.29. P. Ho, M. Y. Kao, P. C. Chao, K. H. G. Duh, J . M. Balingall, S. T. Allen, A. T. Tessmer 
and P. M. Smith, Electron. Lett. 27, 325 (1991) 

7.30. D. C. Streit, K. L. Tan, R. M. Dia, A. C. Han, P. H. Liu, H. C. Yen and P. C. Chow, 
Electron. Lett., 27, 1149 (1991) 

7.31. L. D. Nguyen, A. S. Brown, M. A. Thompson and L. M. Jellian, IEEE Trans. Electron Dev., 
39, 2007 (1992) 

7.32. N. Pan, J. Elliot, H. Hendriks, A. Aucoin, P. Fay and I. Adesda, Appl. Phys. Lett. 66, 212
(1995)

7.33. T. Suemitsu , T. Enoki, N. Sano, M. Tomizawa and Y. Ishi, IEEE Trans. Electron Dev. 
45, 2390 (1998) 

7.34. A. A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, Chi- Kun Peng, W. F. Kopp, H. 
Morkoc and K. R. Gleason, IEEE Trans. Electron Dev. ED-33, 564 (1986) 

7.35. R. Lai, P. K. Bhattacharya, D. Yang, I. Brock, S. A. Alterovitz and A. N. Downey, IEEE
Trans. Electron. Dev. 39, 2206 (1992) 

7.36. J. H. Huang, T. Y. Chang and B. Lalevic, Appl. Phys. Lett. 60, 733 (1992) 

7.37. A. Chin and T. Y. Chang, J. Vac. Sci. Technol. B, 8, 364 (1990) 

7.38. J. Dickmann, K. Reipe, A. Geyer, B. E. Maile, A. Schurr, M. Berg and H. Daembkes, Jpn.
J. Appl. Phys. 35, 10 (1996) 

7.39. K. B. Chough, T. Y. Chang, M. D. Feur, N. J. Sauer and R. Lalevic, lEEE Electron Dev. 
Lett. EDL-13, 451 (1992) 

7.40. R. P. Schneider,Jr. and B. W. Wessels, J. Appl. Phys. 70, 405 (1994) 

7.41. J. B. Voos, W. Kruppa, B. R. Bennet, D. Park, S. W. Kirchoefer, R. Bass and H. B. Dietrich, 
IEEE Trans. Electron Dev. 45, 1877 (1998) 

7.42. M. Asif Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm and M. S. Shur, Appl.
Phys. Lett, 65, 1121 (1994) 

7.43. K. Van der Zanden, D. M. M-P. Schreurs, R. Menozzi and M. Borgarino, IEEE Trans. 
Electron Dev. 46, 1570 (1999) 



276 REFERENCES

7.44. A. J. Valois, C. Y. Robinson, K. Lee and M. S. Shur, J. Vac. Sci. Technol. B1, 190 (1983) 

7.45. S. Subramanian, IEEE Trans. Electron Dev. ED-32, 865 (1985) 

7.46. Y. Gobert and G. Salmer, IEEE Trans. Electron Dev. 41, 299 (1994) 

7.47. T. Mizutani and K. Maezawa, IEEE Electron Dev. Lett. 13, 8 (1992) 

7.48. S. J. Zurek, R. B. Darling, K. J. Kuhn and M. C. Foisy, IEEE Electron Dev. 45, 2 (1998) 

7.49. M. C. Foisy, A Physical Model for the Bias Dependence of the Modulation-doped Field-
effect Transistor’s High Frequency Performance, Ph. D. Dissertation, Cornell Univ. 
Ithaca, N. Y. 1990 

7.50. R. Singh and C. M. Snowden, IEEE Trans. Electron Dev. 

7.51. H. Happy, S. Bollaert, H. Foure and A. Cappy, IEEE Trans. Electron Dev., 45, 2089

45, 1165 (1998) 

(1998)

7.52. S. Sen, M. K. Pandey and R. S. Gupta, IEEE Trans. Electron Dev. 46, 1818 (1999) 

7.53. S. Karmalkar and G. Ramesh, IEEE Trans. Electron Dev. 47, 11 (2000) 

7.54. J. J. Brown, J. A. Pusl, M. Hu, A. E. Schmitz, D. P. Docter, J. B. Shealy, M. G. Case, M. 
A. Thompson and L. D. Nguyen, IEEE Microwave Guided Wave Lett., 6, 91 (1996) 

7.55. M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, G. C. Dow and B. R. Allen, IEEE
Microwave Guided Wave Lett. 5, 12 (1995) 

7.56. S. W. Chen, P. M. Smith, S. J. Liu, W. F. Kopp and T. J. Rogers, IEEE Microwave and 
Guided Wave Lett. 5, 201 (1995) 

7.57. J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. 
Lymn, L. Aucion, A. Miqelarena, C. Bedard and D. Atwood, IEEE Electron Dev. Lett. 
14, 456 (1993) 

7.58. M. H. Somerville, J. A. del Alamo and P. Saunier, IEEE Trans. Electron Dev. 45, 1883
(1998)

7.59. K. Higuchi, H. Matsumoto, T. Mishima and T. Nakamura, IEEE Trans. Electron Dev. 
46, 1312 (1999) 

7.60. T. Enoki, K. Arai, A. Kohzen and Y. Ishii, Proc. IEEE 4th Int. Conf. InP Related 
Materials, 1992, p. 371 

7.61. G. Menghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. L. Brown, C. Canali 
and E. Zanoni, IEEE Trans. Electron Dev. 46, 2 (1999) 

7.62. H. Maher, J. Décobert, A. Falcou, M. Le Pallec, G. Post, Y. I. Nissim and A. Scavennec, 
IEEE Trans. Electron Dev. 46, 32 (1999) 

7.63. A. J. Seeds and A. A. deSallers, IEEE Trans. Microwave Theory and Technique, 38, 577
(1990)

7.64. D. Jager, Tech Dig. Int. Topical Meeting on Microwave Photonics, Dec. 1-2, 1996 

7.65. C. Y. Chen, N. A. Olsson, C. W. Tu and P. A. Garbinski, Appl. Phys. Lett. 46, 681 (1985) 



REFERENCES 277

7.66. D. Yang, P. K. Bhattacharya, R. Lai, T. Brock and A. Padella, IEEE Trans. Electron
Dev. 42, 1056 (1995) 

7.67. R. Lai, P. K. Bhattacharya and T. Brock, Electron. Lett. 27, 1576 (1997) 

7.68. Y. Takanashi, K. Takahata and Y. Muramoto, IEEE Electron Dev. Lett. 19, 2279 (1998) 

7.69. Y. Takahashi, K. Takahata and Y. Muramoto, IEEE Trans. Electron Dev. 46, 2271 (1999) 

7.70. G. Halkias and A. Vegiri, IEEE Trans. Electron Dev. 45, 2130 (1998) 

7.71. H.Fukuyama, K. Maezawa, M. Yamamoto, H. Okazaki and M. Miraguchi, IEEE Trans. 
Electron Dev. 46, 281 (2000) 

7.72. G. Menghesso, T.Grave, M. Manfredi, M. Pavesi, C. Canali and E. Zanoni, IEEE Trans. 
Electron Dev. 47, 2 (1999) 

CHAPTER 8 

8.1. F. Capasso, ed., Physics of Quantum Electron, Devices , Springer-Verlag, Berlin, 1990 

8.2. L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett. 24, 593 (1974) 

8.3. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973) 

8.4. S. Sen, B. R. Nag and S. Midday, in Physical Concepts of Materials for Novel Optoelec-
tronic device Applications II:Device Physics and Applications, M. Razeghi, ed., Proc. 
SPIE 1362, 1991, p.750 

8.5. M. Tsuchiya, H. Sakaki and J. Yoshino, Jpn. J. Appl. Phys. 24, L466 (1985) 

8.6. M. Tsuchiya and H. Sakaki, Jpn. J. Appl. Phys. 25, L185 (1986) 

8.7. M. Tsuchiya and H. Sakaki, Appl. Phys. Lett. 49, 88 (1986) 

8.8. M. Tsuchiya and H. Sakaki, Appl. Phys. Lett. 50, 1503(1987)

8.9. S. Muto, T. Inata, H. Ohnishi, N. Yokoyama and S. Hiyamizu, Jpn. J. Appl. Phys. 25,
L577 (1986) 

8.10. C. I. Huang, M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Jones 
and M. E. Cheney, Appl. Phys. Lett. 51, 121 (1987) 

8.11. S. Luryi, Appl. Phys. Lett. 47, 490 (1985) 

8.12. T. Weil and B. Vniter, Appl. Phys. Lett. 50, 1281 (1987) 

8.13. K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker and R. J. Malik, Phys. Rev. Lett. 59,
2459 (1987) 

8.14. T. C. I,. G. Sollner, W. D. Goodhue, P .E. Tannenwald, C. D. Parker and D. D. Peek, Appl.
Phys. Lett. 43, 588 (1983) 

8.15. S. Sen, F. Capaso, A. L. Hutehinson and A. Y. Cho, Electron. Lett. 23, 1229 (1987) 

8.16. T. Inata, S. Muto, Y. Nakata, T. Fujii, H. Ohnishi and S. Hiyamizu, Jpn. J. Appl. Phys. 
25, L983 (1986) 



278 REFERENCES

8.17. P. D. Hadson, D. J. Robbins, R. H. Wallis, J. J. Davies and A. C. Marshall, Electron. Lett. 
24, 187 (1988) 

8.18. J. E. Oh, I. Mehdi, J. Pamulapati, P. K. Bhattacharya and G. I. Haddad, J. Appl. Phys. 
65, 842 (1989) 

8.19. S. Muto, T. Inata, Y. Sugiyama, Y. Nakata, T. Fujii, H. Ohnishi and S. Hiyamizu, Jpn.
J. Appl. Phys. 26, L220 (1987) 

8.20. T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii and S. Hiyamizu, Jpn. J. Appl. Phys. Lett. 
26 L1332 (1987) 

8.21. E. T. Yu and T. C. McGill, Appl. Phys. Lett. 53, 60 (1988) 

8.22. L. F. Luo, R. Beresford and W. I. Wang, Appl. Phys. Lett. 53, 2320 (1988) 

8.23. J. R. Söderstrom, D. H. Chow and T. C. McGill, IEEE Electron Device Lett. 11, 27 (1990) 

8.24. T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue and H. Q. Le, in Physics of Quantum 
Electron Devices, F. Capasso, ed., Springer-Verlag, Berlin, 1990, p. 117 

8.25. F. Capasso, S. Sen, F. Beltram and A. Y. Cho, in Physics of Quantum Electron Devices, 
F. Capasso, ed., Springer-Verlag, Berlin, 1990, p. 181 

8.26. E. R. Brown, J. R. Söderström, C. D. Parker, L. J. Mahoney, K. M. Molver and T. C. McGill, 
Appl. Phys. Lett., 58, 2291 (1991) 

8.27. E. Ozbay and D. M. Bloom, IEEE Electron Dev. Lett. 12, 480 (1991) 

8.28. H. C. Liu and D. D. Coon, Appl. Phys. Lett. 50, 1246 (1987) 

8.29. R. Bouregba, O. Vanbesien, L. de Saint Pol, and D. Lippens, Electron. Lett., 26, 1804
(1990) Electron. Lett. 26, 1804 (1990) 

8.30. A. A. Lakhani and R. C. Potter, Appl. Phys. Lett. 52, 1684 (1988) 

8.31. J. F. Whitaker, G. A. Mouron, T. C. G. Sollner and Goodhue, Appl. Phys. Lett. 53, 385
(1988)

8.32. P. England, J. E. Golub, L. T. Florez and J. P. Harbison, Appl. Phys. Lett. 58, 887 (1991) 

8.33. H. C. Liu, A. G. Sleek, M. Buchanan and Z. R. Wasilewski, IEEE Electron Dev. Lett. 13,
363 (1992) 

8.34. T. K. Woodward, T. C. McGill, H. F. Chung and R. D. Burnham, IEEE Electron Dev. 
Lett. 9, 122 (1988) 

8.35. S. Sen, F. Capasso, A. Y. Cho and D. L. Sivco, IEEE Electron Dev. Lett. 9, 533 (1988) 

8.36. L. M. Lunardi, S. Sen, F. Capasso, P. R. Smith, D. L. Sivco and A. Y. Cho, IEEE Electron 
Dev. Lett. 10, 219 (1989) 

8.37. A. C. Seabaugh, Y. C. Kao and H. T. Yuan, IEEE Electron Dev. Lett. 13, 479 (1992) 

8.38. N. lokoyama, K. Imamura, S. Muto. S. Hiyamizu and H. Nishi, Jpn. J. Appl. Phys. 24,
L853 (1985) 

8.39. F. Capasso and R. A. Kiehl, Appl. Phys. 58, 1366 (1985) 



REFERENCES 279

8.40. F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson and J. H, English, IEEE Electron 
Dev. Lett. EDL-6, 636 (1985) 

8.41. T. S. Moise, A. C. Seabaugh, E. A. Bean,III and J. N. Randall, IEEE Electron Dev. Lett. 
14, 441 (1993) 

8.42. W. C. B. Weatman, E. R. Brown, M. J. Rooks, P. Maki, W. J. Grim and M. Shur, Electron
Dev. Lett. 15, 236 (1991) 

8.43. H. Fukuyama, K. Maezawa, M. Yamamoto, H. Okazaki and M. Muraguchi, IEEE Trans. 
Electron Dev. 46, 281 (1997) 

8.44. G. I. Haddad and P. Majumder, Solid-St. Electron. 41, 1515 (1997) 

8.45. D. K. Ferry, FED Journal, 10, (Suppl. 1), 5 (1999) 

8.46. J. P. A. Van der Wagl, A. C. Seabaugh and E. A. Beam, IEEE Electron Dev. Lett. 19, 7
(1998)

8.47. S. L. Rommel, S. E. Dillon, M. W. Dashiell, H. Feng, J. Kolodzay, P. R. Berger, P. E. 
Thompson, K. D. Hobart, Appl. Phys. Lett. 73, 2191 (1998) 

8.48. H. C. Liu, A. C. Steele, M. Buchanan and Z. R. Wasilewski, Electron. Dev. Lett. 13, 363
(1992)

CHAPTER 9 

9.1. B. R. Nag, Appl. Phys. Lett. 65, 1938 (1993) 

9.2. B. R. Nag, Infrared Phys. Technol. 36, 831 (1995) 

9.3. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag, Berlin, 
1980, p.260 

9.4. K. Iga, Fundamentals of Laser Optics (Plenum Press, New York, 1994) p.65 

9.5. M. Minorsky, Non-linear Oscillations (D. Van Nostrand Co., New York, 1962) 

9.6. M. Asada, A. Kameyama and Y. Suematsu, IEEE J. Quantum, Electron, QE-20, 745 (1984) 

9.7. R. Olshansky, C.B. Su, J. Manning and W. Powazinik, IEEE J. Quantum Electron QE-20,
838 (1984) 

9.8. G. P. Agarwall and N. K. Dutta, Long-wavelength, Semiconductor Lasers, Van Nostrand 
Reinhold, New York, 1986, p.57 

9.9. A. R. Beattie and P. T. Landsberg, Proc. Roy. Soc. (London), Ser. A 249, 16 (1959) 

9.10. A. Sugimura, IEEE J. Quantum. Electron. QE-17, 627 (1981) 

9.11. O. Gilard, F. Lozes-Dupuy, G. Vassilieff, J. Barrau and P. Le Jeune, J. Appl. Phys. 84,
2705 (1998) 

9.12. T. L. Paoli, Appl. Phys. Lett. 34, 652 (1979) 

9.13. W. Streifer, R. D. Burnham and D. R. Scifres, Appl. Phys. Lett. 37, 121 (1980) 



280 REFERENCES

9.14. D. Kasemset, C. S. Hong, N. B. Patel and P. D. Dapkus, IEEE J. Quantum Electron 
QE-19, 1025 (1983) 

9.15. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Academic New York, 
1991, p.175 

9.16. S. R. Chinn, P. S. Zory and A. R. Reisinger, IEEE J. Quantum Electron, 24, 2191 (1988) 

9.17. M. Yamada, S. Ogita, M. Yamagishi, K. Tabata, N. Nakaya, M. Asada and Y. Suematsu, 
Appl. Phys. Lett. 45, 324 (1984) 

9.18. N. K. Dutta, J. Appl. Phys. 53, 7211 (1982) 

9.19. N. K. Dutta, J. Appl. Phys. 54, 1236 (1983) 

9.20. M. F. Lu, J. S. Deng, C. Juang, M. J. Jou and B. J. Lee, IEEE J. Quantum Electron. 31,
1418 (1995) 

9.21. P. S. Zory, Jr., ed., Quantum Well Lasers, Academic Press, New York, 1993. 

9.21. R. D. Dupuis, P. D. Dapkus, N. Holonyak, Jr., E. A. Rezek and R. Chinn, Appl. Phys. 
Lett. 32, 295 (1978) 

9.23. W. T. Tsang, Appl. Phys. Lett. 39, 786 (1981) 

9.24. W. T. Tsang, Appl. Phys. Lett. 40, 217 (1982) 

9.25. Sei-Ichi Miyazawa, Y. Sekiguchi and M. Okuda, Appl. Phys. Lett 63, 3583 (1993) 

9.26. T. Hayakawa, K. Marsumoto, M. Morishima, M. Nagai, H. Horie, Y. Ishigame, A. Isoyama 
and Y. Niwata, Appl. Phys. Lett, 63, 1718 (1993) 

9.27. I. Zh. Alferov, A. M. Vasilev, S. V. Ivanov, P. S. Kopev, N. N. Lednestsov, M. E. Luhenko, 
B. Ya. Melster and V. M. Ustinov, Sov. Tech,. Phys. Lett. 14, 782 (1988) 

9.28. E. Kapon, S. Simhony, J. P. Harrison, L. T. Florez and P. Worland, Appl. Phys. Lett. 56,
1825 (1990) 

9.29. P. S. Zory, A. R. Reisinger, R. G. Waters, L. J. Mawst, C. A. Zmudzinski, M. A. Emanuel, 
M. E. Givens and J. J. Coleman, Appl. Phys. Lett. 49, 16 (1986) 

9.30. K. Uomi, M. Mishima and N. Chinone, Appl. Phys. Lett. 51, 78 (1987) 

9.31. P. L. Derry, T. R. Chen, Y. H. Zhuang, J. Paslaski, M. Mittelstein, K. Vahala and H. Yariv, 
Appl. Phys. Lett. 53, 271 (1988) 

9.32. Y. Suematsu and K. Iga, Introduction to Optical Fibre Communication, John Wiley & 
Sons, New York, 1978. 

9.33. E. A. Rezek, N. Holonyak, Jr. and B. K. Fuller, J. Appl. Phys. 51, 2402 (1980) 

9.34. Y. Sasai, N. Hase, M. Ogura and T. Kajiwara, J. Appl. Phys. 59, 28 (1986) 

9.35. T. Yanase, Y. Kato, L. Mito, M. Yamaguchi, K. Nishi, K. Kobayashi and P. Lang, Electron.
Lett., 19, 700 (1983) 

9.36. N. K. Dutta and R. J. Nelson, Appl. Phys. Lett. 38, 407(1981)

9.37. A. Sugimura, Appl. Phys. Lett. 39, 21 (1981) 



REFERENCES 281

9.38. W. T. Tsang, F. S. Choa, R. A. Logan, T. Tanbum-Ek, M. C. Wee, Y. K. Chen, A. M. 
Sergent and K. W. Wecht, Appl. Phys. Lett. 59, 3084 (1991) 

9.39. H. Temkin, K. Alavi, W. R. Wagner, T. P. Pearsall and A. Y. Cho, Appl. Phys. Lett., 42,
845 (1983) 

9.40. W. T. Tsang, Appl. Phys. Lett. 44, 288 (1984) 

9.41. W. T. Tsang, F. S. Choa, M. C. Wu, Y. K. Chen, A. M. Sergent and P. F. Sciortino, Jr. 
Appl. Phys. Lett. 58, 2610 (1991) 

9.42. E. Yablonovitch and E. O. Kane, J. Lightwave Technol. 4, 504 (1986) 

9.43. J. W. Mathews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974) 

9.44. S. Smetona, B. B. Elenkrig, J. G. Simmons, T. Makino and J. D. Evans, J. Appl. Phys. 
84, 4076 (1998) 

9.45. A. Gavini and M. Cardona, Phys. Rev. B 1, 672 (1970) 

9.46. S. Shimada, Optics Photon News 1, 6 (1990) 

9.47. W. D. Laidig, P. J. Galdwell, Y. F. Lin and C. K. Peng, Appl. Phys. Lett. 44, 653 (1984) 

9.48. N. Yamada, G. Roos and J. S. Harris, Jr., Appl. Phys. Lett. 59, 1040 (1991) 

9.49. J. M. Kuo, Y. K. Chen, M. C. Wu and M. A. Chin, Appl. Phys. Lett. 59, 2781 (1991) 

9.50. S. D. Offsey, W. J. Schaff, L. F. Lester and L. F. Eastman, Appl. Phys. Lett. 58, 1445
(1991)

9.51. J. P. Van der Ziel and Naresh Chand, Appl. Phys. Lett. 60, 6 (1992) 

9.52. Z. L. Liau, S. C. Palmateer, S. H. Groves, J. N. Walpole and L. J. Missagio, Appl. Phys. 
Lett, 60, 6 (1992) 

9.53. C. K. Sun, H. K. Choi, C. A, Wang and J. G. Fujimoto, Appl. Phys. Lett, 63, 96 (1993) 

9.54. Naresh Chand, E. E. Becker, J. P. Van der Ziel, S. N. G. Chu and N. K. Dutta, Appl. Phys. 
Lett. 58, 1704 (1991) 

9.55. R. L. Williams, M. Dion, F. Chatenoud, and K. Dzurko, Appl. Phys. Lett. 58, 1816 (1991) 

9.56. N. C. Fratechi, M. Y. Jow, P. D. Dapkus and F. J. Levi, Appl. Phys. Lett. 65, 1745 (1994) 

9.57. M. Okhubo, T. Ijichi, A. Iketani and T. Kikuto, Appl. Phys. Lett. 60, 1413 (1992) 

9.58. C. Lin, M. Wu, H. Shiao and K. Liu, IEEE Trans. Electron Dev. 46, 1614 (1999) 

9.59. D. Ahn, Appl. Phys. Lett. 66, 628 (1995) 

9.60. H. Tanaka, Y. Kawamura and H. Asahi, Electron. Lett. 22, 707 (1986) 

9.61. Jun-Ichi Hashimoto, T. Katsuyama, J. Shinkai, I. Yoshida and H. Hayashi, Appl. Phys.
Lett. 58, 879 (1991) 

9.62. M. Mannoh, J. Hoshmia, S. Kamayama, H. Ohta, Y. Ban and K. Ohnaka, Appl. Phys. 
Lett. 63, 1173 (1993) 

9.63. M. Watanabe, J. Rennie, M. Okajima and G. Hatukoshi, Appl. Phys. Lett. 63, 1486 (1993) 



282 REFERENCES

9.64. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys. Lett. 34, L797
(1995)

9.65. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, Jpn. J. Appl. 
Phys. Lett. 34, L1332 (1995) 

9.66. S. Sakamura, N. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and 
Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996) 

9.67. J. D. Walker, D. M. Kuchta and .J. S. Smith, Appl. Phys. Lett. 59, 2079 (1991) 

9.68. C. Lei, T. J. Rogers, D. G. Deppe and B. G. Streetman, Appl. Phys. Lett. 58, 1122 (1991) 

9.69. B. Tell, K. F. Brown-Goebler, R. E. Leibenguth, F. M. Baez and Y. H. Lee, Appl. Phys. 
Lett. 60, 683 (1992) 

9.70. S. S. Ou, M. Jansen, J. J. Yang and M. Sergant, Appl. Phys. Lett. 59, 1037 (1991) 

9.71. Ching-Ping Chao, Kwok-Keung Law and J. L. Merz, Appl. Phys. Lett. 59, 1532 (1991) 

9.72. S. S. Ou, M. Jansen, J. J. Yang, L. J. Mawst and T. J. Roth, Appl. Phys. Lett. 59, 2055
(1991)

9.73. Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Ravikumar and S. Arai, 
Jpn. J. Appl. Phys. 26, L 225 (1987) 

9.74. E. Kapon, in Quantum Well Lasers, P. S. Zory, Jr., ed., Academic, New York, 1993, p.461 

9.75. E. Kapon, S. Simhony, R. Bhat and D. M. Hwang, Appl. Phys. Lett. 55, 2715 (1989) 

9.76. S. Simhony, E. Kapon, E. Colas, D. M. Hwang, N. G. Stoffel and P. Worland, Appl. Phys. 
Lett. 59, 2225 (1991) 

9.77. S. Koshiba, H. Noge, H. Akiyama, T. Inoshita, Y. Nakamura, A. Shimizu, Y. Nagamune, M. 
Tsuchiya, H. Kano and H. Sakaki, Appl. Phys. Lett. 64, 363 (1994) 

9.78. T. Arakawa, M. Nishioka, Y. Nagamune and Y. Arakawa, Appl. Phys. Lett. 64, 2200
(1994)

9.79. S. T. Chou, K. Y. Cheng, L. J. Chou and K. C. Hsieh, Appl. Phys. Lett. 67, 2220 (1995) 

9.80. D. E. Wohlert, S. T. Chou, A. C. Chen, K. Y. Cheng and K. C. Hsieh, Appl. Phys. Lett. 
69, 2386 (1996) 

9.81. L. Li and Y. Chang, J. Appl. Phys., 84, 6162 (1998) 

9.82. Zh. I. Alferov, Phys. Scr. 68, 32 (1996) 

9.83. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures, John
Wiley,Chichester, 1999 

9.84. D. Bimberg, N. N. Ledentsov, M. Grundmann, N. Kirstaeder, O. G. Schmit, M. H. Mao, V. 
M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopév, Zh. I. Alferov, S. S. Ruvimov, U. 
Göesle and J. Heydenreich, Jpn. J. Appl. Phys. Pt. 1, 35, 1311 (1996) 

9.85. N. N. Ledentsov in Proc. 23rd Intl. Conf. Ph Semicond., eds., M. Scheffer and R. 
ZZimmerman, World Scientific, Singapore, 1996, p. 19 



REFERENCES 283

9.86. M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsulnikov, A. V. Lunev, A. V. Sakharov, V. 
M. Ustinov, A. Yu. Egrov, A. E. Zhukov, A. R. Kovsh, P. S. Kopev, L. V. Asyan, Zh. I. 

Alferov, N. N. Ledentsov, D. Bimberg, A.O. Kosogov and P. Werener, J. Appl. Phys. 83,
5361 (1998) 

9.87. R. Engelhardt, V. W. Pohl, D. Bimberg, D. Litvinov, A. Resenauer and D. Gerthsen, J.
Appl. Phys. 86, 5578 (1999) 

CHAPTER 10 

10.1. B. F. Levine, J. Appl. Phys. 74, R1 (1993) 

10.2. M. O. Manasreh (ed.), Semiconiductor Quantum Wells and Superllatices for Long-
Wavelength Infrared Detectors (Artech House, London, 1993) 

10.3. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985) 

10.4. B. F. Levine, A. Y. Cho, J. Walker, D. A. Kleinman and D. L. Sivco, Appl. Phys. Lett. 
64, 1481 (1988) 

10.5. K. K. Choi, M. Taysing-Lara, P. G. Newman, W. Chang and G. J. Iafrate, Appl. Phys. 
Lett. 61, 1781 (1992) 

10.6. G. Hasnain, B. F. Levine, S. Gunapala and Naresh Chand, Appl. Phys. Lett. 57, 608
(1990)

10.7. B. F. Levine, A. Zussman, S. D. Gunapala, M. T. Asom, J. M. Kuo and W. S. Hobson, J.
Appl. Phys. 72, 4429 (1992) 

10.8. B. F. Levine, C. G. Bethea, G. Hasnain, V. O. Shen, E. Pelve, R. R. Abott and S. J. Hsieh, 
Appl. Phys. Lett. 56, 851 (1990) 

10.9. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker and R. J. Malik, Appl. Phys. Lett. 50,
1092 (1987) 

10.10. K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker and R. J. Malik, Appl. Phys. Lett. 50,
1814 (1987) 

10.11. J. Y. Andersson and L. Lundquist, J. Appl. Phys. 71, 3600 (1992) 

10.12. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan and J. Walker, Appl. Phys. Lett. 54,
2515 (1989) 

10.13. J. Y. Anderson. L. Lundquist and Z. F. Pasku, Appl. Phys. Lett. 58, 2264 (1991) 

10.14. B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei and S. Hui, Appl. Phys. Lett. 59, 1864
(1991)

10.15. J. Katz, Y. Zhung and W. I. Wang, Electron. Lett. 28, 932(1992)

10.16. T. Cwik and C. Yeh, J. Appl. Phys. 86, 2779 (1999) 

10.17. G. Hasnain, B. F. Levine, D. L. Sivco and A. Y. Cho, Appl. Phys. Lett. 56, 770 (1990) 

10.18. S. D. Gunapala., B. F. Levine: D. Ritter, R. Hamm and M. B. Panish, Appl. Phys. Lett. 
58, 2024 (1991) 



284 REFERENCES

10.19. S. D. Gunapala,, B. F. Levine, R. A. Logan, T. Tanbnn-Ek and D. A. Humphrey, Appl.
Phys. Lett. 57, 1802 (1990) 

10.20. S. D. Gunapala, K. M. S. V. Bandara, R. F. Levine, G. Sarusi, J. S. Park, T. L. Lin, W. T. 
Pike and J. K. Liu, Appl. Phys. Lrett. 64, 3431 (1994) 

10.21. J. S. Park, R. P. G. Karunasiri and K. L. Wang, J. Vac. Sci. Technol B, 8, 217 (1990) 

10.22. K. A. Harris, T. H. Myers, R. W. Yanka. L. M. Mohnkern and N. Otsuka, J. Vac. Sc.
Technol B, 9. 1752(1991)

10.23. M. S. Kiledjian, J. N. Schulman and K. L. Wang, Phys. Rev. B 44, 5616 (1991) 

10.24. G. Neu, Y. Chen, C. Deparis and J. Massies, Appl. Phys. Lett. 58, 2111 (1991) 

10.25. J. Shi and E. M. G oldys, IEEE Trans. Electron Dev. 46, 83 (1999) 

10.26. S. D. Gunapala, J. K. Liu, J. S. Psark: M. Sundaram, C. A. Shott, T. Hoelter, T. L. Lin, S. 
T. Massie, P. D. Maker and G. Sarusi, IEEE Trans. Electron Dev. 44, 51 (1997) 

10.27. C. G. Bethea, B. F. Levine, M. T. Asom, R. E. Leibenguth, .I. W. Stayt, K. G. Glogorsky, 
40, 1957R. A. Morgan, J. D. Blackwell annd W. J. Parrish, IEEE Trans. Electron Dev. 

(1993)

10.28. L. J. Kozlewski, G. W. Williams, G. J. Sullivan, C. W. Farley, R. J. Anderson, J. Clien, 
D. T. Cheung, W. E. Tenant and R. E. DeWames, IEEE Trans. Electron, Dev. 38, 1124
(1991)

10.29. S. D. Gunapala, J. S. Park, G. Sarusi, T. L. Lin, J. K. Liu, P. D. Maker, R. E. Muller, C. A. 
Shott and T. Hoelter, IEEE Trans. Electron Dev. 44, 45 (1997) 

10.30. S. D. Gunapala, S. V. Bandara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. 
Muller, C. A. Shott and R. Carralyo, IEEE Trans. Electron Dev. 45, 1890 (1998) 

10.31. M. Ershov and H. C. Liu, J. Appl. Phys. 86, 6580 (1999) 

10.32. M. Ershov, J. Appl. Phys. 86, 7059 (1999) 

10.33. T. H. Wood, C. A. Burrus, D. A. B. Miller. D. S. Chemla, T. C. Damen, A. C. Gossard and 
W. Wiegmann, Appl. Phys. Lett. 44, 16 (1984) 

10.34. K. W. Goosen, J. E. Cunninghnam and W. Y. Jan, Appl. Phys. Lett. 64, 1071 (1994) 

10.35. T. K. Woodward, Theodore Sizer, D. L. Sivco and A. Y. Cho, Appl. Phys. Lett. 57, 548
(1990)

10.36. K. Fujiwara, K. Kawashima, K. Kobayashi and N. Sano, Appl. Phys. Lett. 57, 2234 (1990) 

10.37. J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, C. A. Burrus, T. H. Wood, A. C. 
Gossard and W. Weigmann, Appl. Phys Lett. 47, 1148 (1985) 

10.38. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura and M. Naganuma, J. Lightwave 
Technol. 8, 1027 (1990) 

10.39. F. Devaux, S. Muller, A. Ougazzaden, A. Mircéa, A. Ramdane, P. Krauz, J. Semo, F. Huet, 
M. Carré and A. Carenco, Appl. Phys. Lett. 64, 954 (1994) 

10.40. R. H. Yan, R. J. Simes, L. A. Coldren and A. C. Gossard, Appl. Phys. Lett. 56, 1626
(1990)



REFERENCES 285

10.41. K. Hu, Li Chen, A. Madhukar, Ping Chen, C. Kyriakakis, Z. Karim and A. K. Tanguay, Jr.,
Appl. Phys. Lett. 59, 1664 (1991) 

10.42. J. Woodhead, P. A. Claxton, R. Grey, T. E. Sale, J. P. R. David, L. Liu, M. A. Pate, G. Hill 
and P. N. Robson, Electron. Lett. 26, 2117 (1990) 

10.43. B. Pezeshki, D. Thomas and J. S. Harris, Jr., IEEE Photon Technol. Lett. 2, 807 (1990) 

10.41. B. Pezeshki, D. Thomas and J. S. Harris, Jr., Appl. Phys. Lett. 57, 1491 (1990) 

10.45. R. H. Yan, R. J. Simes and L. A. Coldren, IEEE Photon. Tech Lett. 2, 118 (1990) 

10.46. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts and C. Bas, Electron. Lett. 25, 984
(1989)

10.47. K-K. Law, R. H. Yan, J. L. Merz and L. A. Coldren, Appl. Phys. Lett. 56, 1886 (1990) 

10.48. K-K. Law, R. H. Yan, L. A. Coldren and J. L. Merz, Appl. Phys. Lett. 57, 1345 (1990) 

10.49. J. Bleuse, G. Bastard and P. Voisin, Phys. Rev. Lett. 60, 220 (1998) 

10.50. J. Blense, P. Voisin, M. Voos, H. Munekata, L. I,. Chang and L. Esaki, Appl. Phys. Lett. 
52, 462 (1988) 

10.51. E. E. Mendez, F. Agulló-Rneda and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988) 

10.52. B. Pezeshki, S. M. Lord and J. S. Harris, Jr., Appl. Phys. Lett. 59, 888 (1991) 

10.53. K. Hu, Li chen, A. Madhukar, Ping Chen, K. C. Rajkumar, K. Kaviani, Z. Karim, C. 
Kyriakakis and A. R. Tanguay, Jr., Appl. Phys. Lett. 59, 1108 (1991) 

10.54. T. E. Sale, J. Woodhead, A. S. Pabla, R. Grey, P. A. Klaxton, P. N. Robson, M. H. Maloney 
and J. Hegarty, Appl. Phys. Lett. 59, 1670 (1991) 

10.55. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood 
and C. A. Burrus, Appl. Phys. Lett. 45, 13 (1984) 

10.56. D. A. R. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard and 
W. Wiegmann, IEEE J. Quantum Electron QE-21, 1462 (1985) 

10.57. D. A. B. Miller, J. E. Henry, A. C. Gossard and J. H. English, Appl. Phys. Lett. 49, 821
(1986)

10.58. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham and L. M .F. 
Chirovsky, Appl. Phys. Lett. 53, 1419 (1988) 

10.59. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner and W. Wieg-
mann, Appl. Phys. Lett. 35, 451 (1979) 

10.60. H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Wienberger, K. Tai, A. C. Gossard, S. L. 
McCall, A. Passner and W. Wiegmann, Appl. Phys. Lett. 41, 221(1982)

10.61. S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan 
and W. Wiegmann, Appl. Phys. Lett. 44, 360 (1984) 

10.62. K. Nonaka, Y. Kawamura, H. Kawaguchi and K. Kubodera., IEEE Photonics Tech. Lett. 
1, 55 (1989) 

10.63. S. M. Jenson, IEEE J. Quantum Electron QE-18, 1580 (1982) 



286 REFERENCES

10.64. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions (Dover
Publications Inc. New York, 1965 ) p. 569 

10.65. Y. Silberberg and P. W. Smith in Nonlinear Photonics, eds. H.M. Gibbs, G. Khitrova and 
N. Peyghambarian (Springer- Verlag, Berlin 1990) p.185 

10.66. P. Li Kam Wa, J. E. Stich, N. J. Mason, J. S. Roberts and P. N. Robson, Electron. Lett. 
21, 26 (1985) 

10.67. P. Li Kam Wa, P. N. Robson, J. P. R. Davids, G. Hill, P. Mistry, M. A. Pate and J. S. 
Roberts, Electron. Lett. 22, 1129 (1986) 

10.68. R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky and G. A. Puban, Appl. Phys. 
Lett. 53, 1791 (1988) 

10.69. C. C. Barron. C. J. Mahon, B. J. Thibeault, G. WAng, W. Jiang, L. A. Coldren, J. E. Bowers, 
IEEEE J. Quantum Electron 31, 1484 (1995) 

10.70. P. Li Kam Wa, P. N. Robson, J. S. Roberts, M. A. Pate and J. P. R. David, Appl. Phys. 
Lett. 52, 2013 (1988) 

10.71. P. Li Kam Wa , A. Miller, C. B. Park, J. S. Roberts and P. N. Robson, Appl. Phys. Lett. 
57, 1846 (1990) 

10.72. P. Li Kam Wa, A. Miller. J. S. Roberts and P. N. Robson, Appl. Phys. Lett. 58, 2055
(1991)



Appendix

List of copyrighted figures used with the permission of one of the authors and the copyright owner 
Fig. Citation Copyright 
2.1. C. T. Foxon and B. A. Joyce in ’Growth and Characterisation of IOP

Semiconductors’, R. A. Stradling and P. C. Kleipstein eds. Adam 
Hilger, New York (1990), p. 36, Fig. 1. 
M. J. Ludowise, J. Appl. Phys. 58, R31 (1985), Fig. 2. AIP
Y. Kawaguchi sand H. Asahi, Appl. Phys. Lett. 50, 1243 (1987) Fig. 1. AIP 
H. Kinoshita and H. Fujiyashu, J. Appl. Phys. 51, 5845 (1988), Fig. 1. AIP 
C. L. Goodman and M. V. Pessa, J. Appl. Phys. 60 , R65 (1986), 
Fig. 22. AIP
M. Notomi, M. Naganuma, T. Nishida, T. Tamamura, H. Iwamura, 
S. Nojima and M. Okamoto, Appl. Phys. Lett. 58, 720 (1991), Fig. 1. AIP 
C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154 (1987), 
Fig. 1 & 2. APS 
J. H. Marsh, J. S. Roberts and P. A. Claxton, Appl. Phys. Lett. 46,
1161 (1991), Fig. 1. AIP 
B. R. Nag and S. Mukhopadhyay, Appl. Phys. Lett. 58, 1056 (1993), Fig. 1. AIP 
J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 1056 (1991), Fig. 1. AIP

PL
PSS

R. L. Greene, K. K. Bajaj and D. E. Phelps, Phys. Rev. B 29, 1807 (1984), 
Fig. 1. APS
M. D. Sturge, Phys. Rev. 127, 768 (1962), Fig. 3. APS
G. Livescu, D. A. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, 
N. Sauer, A. C. Gossard and J. H. English, IEEE J. Quantum Electron. 
24, 1677 (1988), Fig. 2. 
R. C. Miller, A. C. Gossard, D. A. Kleinman and O. Munteanu, 
Phys. Rev. B 31, 5569 (1985), Fig. 1. 
E. J. Austin and M. Jaros, Phys. Rev. B 44, 8054 (1985), Fig. 1. 
Der-San Chuu and Yu-Tai-Shi, Phys. Rev. B 44, 8054 (1991), Fig. 2. 
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, 
W. Weigmann, T. H. Wood and C. A. Burrus, Phys. Rev. B 
32, 1043 (1985), Fig. 5. APS 
D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and 
W. Weigmann, IEEE J. Quantum Electron. QE-20, 265 (1984),Fig. 5. IEEE 
H. Hillmer, A. Forchell, C. W. Tu and R. Sauer, Semicond. Sci. Technol. 

IOP
D. F. Weltch, G. W. Wicks and L. F. Eastman, Appl. Phys. Lett. 46,
991 (1985), Fig. 2. AIP 
B. R. Nag and S. Mukhopadhyay, Jpn. J. Appl. Phys. 31, 3287
(1992), Fig. 1. JJAP 
W. Walukiewicz, H. E. Ruda, J. Lagowski and H. C. Gatos, Phys. Rev. B 
30, 4571 (1984), Fig. 3 & 8. APS 
S. Mukhopadhyay and B. R. Nag, Phys. Rev. B 48, 17960 (1993), Fig. 3. APS 

2.2.
2.3.
2.4.
2.5.

2.6.

3.3.

3.5(a).

3.5(b).
4.2.
4.4.
4.8.
5.4.

5.5.
5.6.

B. R. Nag and S. Mukhopadhyay, Phys. Lett. A 166, 395 (1992), Fig. 1 
S. Gangopadhyay and B. R. Nag, Phys. Stat. Sol. 166, 395 (1996), Fig. 1 

IEEE

APS
APS
APS

5.7.

5.9.
5.10.
5.11

5.12

5.14

5.15.

6.1.

6.2.

6.3.

7, B235 (1985), Fig. 1. 

6.4. W. Ted Masselink, Semicond. Sci. Technol. 4, 503 (1989), Fig. 8. IOP 

287



288

Fig. Citation Copyright 
6.5. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and 

W. Weigmann, IEEE J. Quantum Electron,. 
Fig. 1. IEEE 
D. Crützmacher, K.Wolter, H. Jürgensen, P. Balk and 
C. W. T. Bulle Liewma, Appl. Phys. Lett. 52, 872 (1986), Fig. 2. AIP 
T. J. Drummond, H. Morkoç, K. Lee and M. Shur, IEEE Electron Dev. 
Lett. EDL-3, 338 (1982), Fig. 4. IEEE
R. Lai, P. K. Bhattacharya, D. Yang, I. Brock, S. A. Alterovitz and 
A. N. Downey, IEEE Trans. Electron Dev, 39, 2206 (1992), Fig. 1. I EE E 
J. J. Brown, J. A. Pusl, M. Hu, A. E. Schmitz, D. P. Docter, 
J. B. Shealy, M. G. Case, M. A. Thompson and L. Nguyen, IEEE
Microwave Guided Wave Lett., 6, 91 (1996), Fig. 1. 
S. R. Chinn, P. S. Zory and A. R. Reisinger, IEEE J. Quantum 

QE-20, 265 (1981), 

6.6.

7.4.

7.5.

7.6.

IEEE

IEEE
AIP
ATP

AIP
AIP
AIP

G. Hasanain, B. F. Levine, C. G. Bethea, K. A. Logan and J. Walker, 
AIP

J. Y. Andersson, L. Lundqvist and Z. F. Paska, Appl. Phys. Lett. 
58, 2264 (1991), Fig. 1. AIP
B. Pezeski, S. M. Lord and .J. S. Harris, Jr. Appl. Phys. Lett. 59,
888 (1991), Fig. 2. AIP 
C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, 
L. A. Coldren and J. E. Bowers, IEEE J. Quantum Electron. 31 ,

9.4.

9.5.
10.2.
10.3.

10.4.
10.5.
10.6(a).

10.6(b).

10.8.

10.10.

Electron. 24, 2191 (1988), Fig. 3. 
N. K. Dutta, J. Appl. Phys. 53, 7211 (1982), Fig. 1 

J. Appl. Phys. 64, 1591 (1988), Fig. 1. 
B. F. Levine, J. Appl. Phys. 74, R1 (1993), Fig. 46. 
B. F. Levine, J. Appl. Phys. 74, R1 (1993), Fig. 16. 

Appl. Phys. Lett. 54, 2515 (1989), Fig. 1 

B. F. Levine, J. Appl. Phys. 74, R1 (1993), Fig.20 
B. F. Levine, C. G. Bethea, K. K. Cho, J. Walker and R. J. Malik, 

1484 (1995), Fig. 4. IEEE 

Abbreviations of the copyright owner’s names 
AIP - American Institute of Physics, APS - American Physical Society 
IEEE - Institution of Electrical and Electronic Engineers 
IOP - IOP Publishing Co., PL - Physics Letters A 
PSS - Physica Status Solidi, JJAP - Japanese Journal of Applied Physics 



INDEX

0D structure, 20
0D systems, 66
1D electron gas (1DEG), 63
1D structure, 16
Absorption characteristics, 73
Absorption coefficient for 2D, 105, 112
Absorption coefficient for excitonic
transition, 107, 108
Absorption coefficient, intersubband, 112, 113
Absorption coefficient, 102, 103, 105, 107, 228
Absorption measurement, 29
Absorption spectrum, 109
Absorption, 102
Absorption-bsed OBD, 249
Acoustic deformation potential scattering, 145
Active layer width, 206

Airy equation, 116
Airy function, 61, 116, 191
Al0.24Ga0.76As, 185
Al0.25Ga0.75As, 233
Al0.29Ga0.71As, 233
Al0.2Ga0.8As, 240
Al0.32Ga0.68As, 182
Al0.32Ga0.68As, 237
Al0.3Ga0.7As, 239
Al0.48In0.52As, 21
Al0.48In0.52As/Ga0.47In0.53As, 113
Al0.48In0.52As/Ga0.47In0.53As, 25
Al0.67Ga0.33As, 218
Al0.7Ga0.3As, 220
Al1–xGaxAs/GaAs, 113
AIAs, 22, 241
AlAs/GaAs, 28
AlGaAs/GaAs HEMT, 187
AlGaAs/GaAs, 5
AlGaAs/InGaAs, 185
AlGaInP, 217 
AlGaInP/GAInP laser, 217 
AIGaN/GaN, 159, 160, 184 
AlGaSb/InAs, 5
All-optic directional coupler, 6 
Alloy scattering, 63 
AlN/GaN, 33 

Adduct, 12

AlSb, 22
AIxGa1–xAs, 1
AlxGa1–xAs/CaAs, 5, 25
AlyGa1–yAs/InxGa1–xAs, 181
Analytic expression for mobility, 156
Annihilation operator, 78
Areal charge density, 58, 178
Arrow-head quantum wire, 65
Atmospheric Pressure MOCVD
(APMOCVD), 12
Atomic Layer Epitaxy (ALE), 15
Atomic orbital, 81
Attenuation constant, 194
Auger non-radiative recombination, 206, 222
Ballistic transport, 171
Band gap renormalization, 126, 211, 247
Band gap temperature dependence, 126
Band gap, 1, 21
Band offset ratio, 27
Band offset, 6, 21, 24
Band orbital, 76
Band-filling effect, 135
Bandwidth, 195
Bar-code scanner, 217
Bar-code scanner, 4
Beat length, 253
Bessel function, 64
Biaxial strain, 71
Binding energy of exciton, 111, 112
Binding energy, 110, 111, 236
Bistable device, 130
Bleaching of electrons. 127
Bloch function, 37, 45
Bloch oscillation, 1
Bohr radius, 135, 170 
Boltzmann transport equation, 1/18 
Bose statistics, 107 
Bound exciton, 101 
Bound-to-bound QWIP, 231 
Bound-to-continuum QWlP, 231 
Boundary conditions for holes, 49 
Boundary conditions, 47 
Bragg mirror, 241 
Bragg reflector, 218, 240, 241, 242 

289



290 INDEX 

Breakdown voltage, 189 
Brillouin zone, 80 
Broadening of photoluminescence spectrum, 166 
Broadening, 137, 138, 227 
Buffer layer, 237 
Buttiker-Landauer formalism, 172 
C-BAND, 185 
Carrier recombination time, 206 
CBE, 7, 216 
CdTe, 22 
CdTe/ZnTe, 10 
Cell-periodic function, 42 
Centre of mass, 120 
Characteristic equation of holes, 68 
Characteristic length, 250 
Characteristic temperature, 214
Charge transfer analkysis, 29 
Chemical Beam Epitaxy (CBE), 8, 12 
Chirp, 215 
Chloride vapor phase epitaxy, 15 
Coefficient of nonlinear refractive index, 252 
Collision integral for 2DEG, 148 
Collision time, 163 
Common anion rule, 26 
Compensated heterostructure, 20 
Complex propagation constant, 204 
Composite channel, 189 
Compressive strain, 74 
Conduction-band wave function, 81 
Confinement factor, 209 
Conservation of pseudomomentum, 79, 145 
Contact resistance, 199 
Continuity of probability current density, 48 
Contrast ratio, 5, 239 
Coulomb force, 91, 92 
Coulomb hole, 126 
Coulomb potential, 121 
Creation operator, 78 
Critical power, 251 
Critical Temperature, 8 
Cryopump, 9 
Current density, 155 
Current-voltage characteristic, 178, 180 
Cut-off frequency, 182 
Cylindrical quantum wire, 64 

Dark current, 231, 232 
Degenerate four-wave mixer (DFWM), 6, 77 
Delta, function, 168 
Density of states (DOS), 77, 202 
Detectivity, 232, 235 

D-SEED, 243, 245, 246 

Detector current, 228 
Dielectric constant, 147 
Diffusion constant, 164 
Dilational deformation potential constant, 73 
Dilational strain, 72 
Dipole appro-ximation, 79 
Discrete excitonic absorption, 107 
Dispersion relation of superlattice, 55, 56 
Dispersion relation, 46 
Dispersion relation of conduction band, 83 
Dispersion-bwed OBD, 249 
Displaced Maxwellian approximation, 162 
Distribution function, 154 
Doping density, 231 
DOS, 202 
Double-barrier quantum well, 188, 189 
Double recess gate, 189 
Drain contact, 174
Drift velocity, 166 
Dumbbell-shaped sample, 165 
DX center, 158, 182, 184 
Dynamic random access memory (DRAM), 201 
Effect of energy band nonparabolicity, 53 
Effect of finite barrier potential, 51 
Effect of nonparabolicity on intersubbarid 
absorption, 114 
Effect of strain on the conduction band, 73 
Effect of strain on the valence band, 73 
Effective mass approximation for degenerate 
maxima, 40 
Effective mass approximation, 36, 37 
Effective mass equation for exciton, 91 
Effective mass tensor, 41, 91 
Effective mass, 81 
Effusion cell, 8, 9 
Eigenfunction of exciton, 97 
Eigenfunction, 49 
Elastic constant, 72 
Elastic scattering, 153 
Electron affinity rule, 26 
Electron effective mass, 83 
Electron lifetime, 194 
Electron transfer effect, 161 
Electron-electron scattering, 166 
Electron-optic interaction, 122 
Electron-photon interaction, 6
Empirical rule, 26 
Energy band gap, 83 
Energy conservation condition, 80 
Energy dispersion relation of holes, 69 
Energy effective mass, 49, 50 



INDEX 291 

Energy eigenvalue of 0D cylinder, 66 
Energy eigenvalue, 49, 50 
Energy eigenvalues of 0D parallelopiped, 66 
Energy eigenvalues of 2D exciton, 100 
Energy eigenvalues of exciton, 95 
Energy level in strained -layer well, 71 
Energy levels of electrons, 49 
Energy levels of holes, 67 
Energy-dependent effective mass, 46 
Envelope function equation for electrons, 39 
Envelope function equation for 
high energy electrons, 44 
Envelope function equation for holes, 41 
Envelope function equation for Stark effect, 115 
Envelope function for exciton, 92 
Envelope function for high-energy electrons, 46 
Envelope function, 227 
Envelope functions of p-type wells, 68 
Equipartition approximation, 168 
Erasable optical disc, 4, 217 
Etching and regrowth, 16 
Etching or ion milling, 20 
Excited state wave function, 90 
Exciton population, 166 
Exciton wave vector, 93 
Exciton, 89, 140, 236 
Excitonic absorption band, 108 
Excitonic absorption, 107, 110, 127, 236, 246 
Excitonic envelope function, 167 
Excitonic matrix element for quantum well, 99 
Excitonic optical interaction matrix element, 96 
Excitonic state wave function, 91, 93 
Excitons in quantum well, 97 
Exclussive-OR circuit , 200 
Extreme quantum limit (EQL), 153 
Fabry-Perot (FP) etalon, 247, 251 
Fabry-Perot (FP) modulator, 241, 241, 242 
Fabry-Perot cavity, 205 
Fabry-Perot resonator (FP), 5, 189, 194 
Facet loss: 207 
Fermi energy: 146, 147, 176, 195, 231 
Fermi function, 113, 195, 210, 211 
Fermi level, 58, 59, 60, 175 
Fermi’s Golden rule, 102 
Fermi-Dirac function, 149 
Form factor, 143, 145, 147, 149, 150, 152, 155 
Fourier transform, 39 
Fourier wave number, 140 
FP cavity! 251 
FP etalon, 247 
FranzKeldysh effect, 114 

Free-carrier absorption, 203 
Free-carrier absorption, 205 
Frequency divider, 182 
Full width at half the maximum(FWHM), 113 
Γ point, 76
Ga0.47In0.53As, 21, 186 
Ga0.47In0.53As/Al0.48In0.52 As, 128 
Ga0.47In0.53As/InP, 52, 53, 114, 128, 153, 154 
Ga0.5In0.5P/GaAs, 33, 114 
Ga0.7Al0.3As, 230 
Ga1–xInxSb/GaSb, 10 
GaAIN/GaN, 10 
CaAs, 1, 22, 212 
GaAs/Al0.2Ga0.8As, 241 
GaAs/ Al As, 22, 33 
GaAs/Ga0.74Al0.26As, 230 
GaAs/Ga0.7Al0.3As, 33, 51, 53, 57 
GaAs/GaAIAs MQW, 240 
GaAs/GaAlAs, 137, 199 
GaAs/GaA4s/AlAs, 10, 21 
GaAs/GaxAl1–xAs, 117, 121, 128, 223 
GaAs/GaxAl1–xSb, 10
GaAs/In0.2Ga0.8As, 5 
CaAs/InAs, 15 
GaAs/InGaAs, 241 
Gain coefficient, 210 
Gain function, 211 
Gain, 210 
GnInAs/AlInAs, 198 
GaInAs/InP, 25 
GaInSb/InAs, 5 
GaNAIGaN, 31 
GaN/AlN, 33 
GaP, 22 
Gas-source MBE (GS-MBE), 11 
GaSb, 22 
GaSb/AlSb, 32, 33 
Gate recess, 189 
Gate voltage, 178 
Gauss-Siedel method, 153 
Gaussian curve, 108 
GaxAI11–xAs, 202
GaxIn1–xAsyP1–y, 21 
Ge, 22
GexSi1–x/Si, 10 
Golden rule, 166 
Graded-index separately confined
heterostructure, 215, 217 
Grating, 114 
GRIN layer, 220, 222 
GRIN-SCH, 215, 217 



292 INDEX 

Croup refractive index, 205 
Group velocity, 206
Growth on patterned non-planar substrate, 17 
Growth on vicinal substrate, 17 
Gunn diode, 188 
Hamiltonian for exciton, 97 
Hamiltonian operator, 79 
Hamiltonian, 39, 120, 121 
Hartree potential, 59 
Hartree-Fock approximation, 90 
Heaviside unit function, 50, 106, 120, 150 
Heavy holes, 68 
HEMT simulator, 189 
HEMT with RTD, 189 
Hermitian conjugate, 43, 44 
Hermitian, 48 
Heterojunction, 157 
Heterostructure, 1, 8, 36 
HgCdTe, 5, 234 
HgTe/CdTe, 10, 25, 223, 
HgTe/CdTe superlattice, 234 
HgxCd1–xTe, 129 
Hifgh-power microwave HEMT, 189
High Electron Mobility Transistor 
(HEMT), 139, 173 
High-field velocity of 2DEG, 160 
High-power microwave HEMT, 185 
High-resolution photoluminescence, 137 
Horizontal Cavity Surface Emitting 
Laser (HCSEL), 218 
Hot-electron effect, 161 
Hot-wall Epitaxy (HWE), 13 
Hydride vapor epitaxy, 15 
IFRSlimited mobility, 159 
Impatt, 188 
IMSL, 65 
In-plane effective mass of holes, 68 
In-plane effective mass, 52 
In-plane electron mobility, 155 
In0.085Ga0.015As, 20 
In0.15Ga0.85 As/
Al0.35Ga0.65As, 114 
In0.15Ga0.85As/GaAs, 243 
In0.1Ga0.9As/GaAs, 245 
In0.2Ga0.8As, 218 
In0.47Ga0.53Al1–xPx/GaAs, 10 
In0.52Al0.48As/In0.53Ga0.47As, 4 
In0.53Ga0.47AS/
Al0.48In0.52As, 183, 216 
In0.53Ga0.47As/AlAs, 10 
In0.53Ga0.47As/

In0.52Al0.48As, 10, 24 
In0.53Ga0.47As/InP, 216 
In0.5Ga0.5P/GaAs, 159 
InAlAs, 240 
InAlAs/GaInAs HEMT, 187 
InAs, 22 
Inhs/AlAs/GaSb RTD, 200 
InAs/AlInSb, 25 
InAs/AlSb, 10, 21, 22, 24 
InAs/Ga1–xInxSb, 223 
InAs/GaAlSb, 10, 25 
InAS/GaSb, 22, 25, 33 
InAs/GaxIn1–xSb, 234 

Infinite-barrier triangular well, 61
Infrared detector, 5 
InGaAlAs, 240 
InGaAlAs/lnP, 10 
InGaAs VCSEL, 218 
InGaAs/AlAs/InAs RTD, 200 
InGaAs/AlxGa1–xAs, 223 
InGaAs/InAlAs HEMT, 200 
InGaAs/InGaAsP, 216 
InGaAsP QWL, 215 
InGaAsP/InP, 15, 16 
InGaAsSb/AlGaAsSb, 10 
InGaP/InGaAlP, 10 
InN/AlN, 33 
InN/GaN, 33 
InP, 22 
InP/Ga0.47In0.53As, 25 
InP/GaInAs, 65 
InP/GaxIn1–xAsyP1–y, 25
InP/InGaAs quantum well, 12 
InSb, 22 
InSb/CdTe, 11, 22 
Inter valence-band absorption, 205 
Interaction in quantum well, 86 
Interaction potential for defects, 142
Interband absorption, 104, 203, 205, 207 
Interdiffusion of group III elements, 17 
Interface roughness scattering (IFRS), 141 
Interface scattering, 205 
Internal quantum efficiency, 206, 207 
Intersubband absorption detector, 77 
Intersubband absorption, 40, 112, 223, 224, 234 
Intersubband transition matrix 
element, 84, 88 
Intersubband transition, 80, 86 
Intraband scattering time, 211 
Intraband scattering, 212 

InAs/In0.52Al0.48As, 10
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Intrinsic transconductance, 181
Inverse effective mass tensor, 40, 89
InxAl1–xP/GaAs, 10 
InxGa1–xAs, 20, 216 
InxGa1–xAs/AI0.15Ga0.85As, 240, 245 
InxGa1–xAs/GaAs, 10, 216, 240, 241, 242 
InxGa1–xAs/In0.52Al0.48As, 181 
InxGa1–xAs/InP, 10, 24 
Ionized impurity scattering, 145
Iteration method, 153
Jacobi elliptic function, 250, 252, 253
k-selection rule, 106, 211
k.p perturbation, 81, 126
Kane relation, 53
Krammers-Kronig relation, 125, 247
Lüttinger parameters, 42
L6 law, 159
Laser array, 4
Laser equation, 204
Laser-assisted MBE, 14
Leakage current, 207
Light control of HEMT, 189
Linewidth variation with temperature, 170
Liquid Phase Epitaxy (LPE), 8
Local Density -functional
Approximation (LDA), 28
Localized exciton, 101
Lorentzian curve, 108, 113
Lorentzian distribution function, 211, 226
LPE, 216
LPMOCVD, 12
Luminescence, 133, 134
Matrix element for alloy scattering
in 2DEG, 147
Matrix element for electron-defect
interaction, 145
Matrix element for electron-phonon
interaction, 145
Matrix element for excitonic transition, 99
Matrix element for interband absorption, 104
Matrix element for scattering
of 2DEG, 142, 143, 144, 146, 147
Matrix element for scattering
of excitons, 166, 167, 168
Matrix element pcv, 85, 86, 88
Matrix element, P, 84, 85, 88
Matrix element, 40, 79, 83, 89, 97, 102, 104
Matrix elements for 2DEG, 141
Matrix method, 153, 191
Matrix operator, 42
Maxwell’s equations, 124

Maxwell-Boltzmann distribution function, 59
MBE, 8
MESFET, 185
Metalorganic Molecular Beam
Epit axy (MOMBE) , 8
Metalorganic Chemical Vapor
Deposition (MOCVD), 3, 8, 10
Metalorganic Vapor Phase Deposition
(MOVPD), 8
Microprobe photoluminescence, 137
Microwave amplifier, 182
MMQ, 220
Mobility in AlGaN/GaN quantum wells, 160
Mobility in AIInhs/GaInAs single
heterojunction, 157
Mobility in GaAs/AlGaAs single
heterojunction, 157
Mobility in In 0.53Ga0.47As/
InP quantum well, 158
Mobility in InGaP/GaAs quantum wells, 159
Mobility of 2DEG, 155
Mobility, 155, 179
MOCVD, 8
MODFET, 173
Modified multi quantum well (MMQW), 209
Modulation bandwidth, 215
Modulation Dopet Field Effect
Transistor (MODFET), 139
Molecular Beam Epitaxy (MBE), 1, 8
MOMBE, 8
Momentum matrix element, 49, 83, 87, 88
Momentum operator, 77, 79
Monolithic integration, 218
Monte Carlo method, 163
MOVPD, 8
MQW, 214, 216, 223, 238, 239, 241, 248
MQWIP, 230
Multi quantum well (MQW), 1, 209
Multi-quantum Well Laser (MQWL), 3
Multiple quantum well (MQW), 56
n-HEMT, 187
NDC, 197
NLDC, 253
no k-selection rule, 106
Noise, 231
Non-radiative recombination, 206 207
Non-randomizing inelastic scattering, 153
Nonlinear absorption, 138
Nonlinear directional coupler (NLDC), 252
Nonlinear effects, 122 
Nonlinear refractive index, 251 
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Nonparabolicity in quantum wells, 69 
Nonparabolicity parameter, 46 
Normally-off mode, 174 
Normally-on mode, 174 
OBD, 7, 237, 249, 250 
One-dimensional electron gas (1DEG), 6, 16 
Operator Aop, 78 
Optic Bistable Device (OBD), 6, 7 
Optic phonon scattering, 145 
Optic switch, 5 
Optical bistable device(OBD), 77, 247 
Optical computing, 218 
Optical fibre amplifier, 216 
Optical fibres, 215 
Optical gain: 230 
Optical interaction in bulk material: 77 
Optical interaction phenomena, 77 
Optical interconnect, 218 
Optical nonlinearity, 102 
Optical switch, 130 
Opto-electronic interaction, 77 
Oscillator strength, 85, 89, 225 
Out-scattering rate, 149 
Overlap integral, 142 
p-type doped well, 234
p-type well, 114
Parabolic well, 11 1 
Pauli exclusion principle, 126 
PbTe/PbSnTe, 14 
Peak-to-valley current ratio (PVC) , 4, 198 
Persistent photoconductivity: 158 
Perturbation, 153 
Phase-space filling (PSF), 127, 246 
pHEMT, 185, 189, 200 
Phonon dispersion relation, 168 
Phonon, 112 
Photocurrent, 243 
Photoluminescence excitation 
spectroscopy, 137, 138 
Photoluminescence spectrum, 136, 166 
Photoluminescence, 29, 30, 70, 102, 131, 139 
Photon lifetime, 206 
Piezoelectric scattering, 145 
Poisson equation, 59 
Polar optic phonon scattering, 153, 156 
Polarizability, 147 
Polarization, 123 
Power absorption coefficient, 205 
Power-delay product, 182 
Probability of escape, 228 
Pseudopotential method, 76, 78 

QCS effect, 244 
Quadrupole Mass Spectrometer (QUAD), 10 
Quantum box, 16 
Quantum dot, 20, 21, 63 
Quantum well detector, 223 
Quantum Well Infrared 
Photodetector (QWIP), 4, 5, 7, 223 
Quantum Well Laser (QWL), 3, 7, 132 
Quantum well modulator, 236 
Quantum well switch, 243 
Quantum well, 50 
Quantum wire laser, 219 
Quantum wire, 16, 21, 63 
Quantum-confined Stark 
effect (QCSE), 5, 114, 236 
Quasi-bound state, 115 
Quasi-Fermi level, 132, 216 
Quasi-two dimensional electron gas (2DEG), 6 
Quick-access optical disc: 218 
QW mdulator, 243 
QWIP, 7, 25, 230, 233 
QWL, 4, 7, 202, 214, 216, 220 
QWR, 219 
QWRL, 219 
R-SEED, 243, 245 
Radiation field, 77 
Radiative recombination, 206, 207 
Random phase approximation (RPA), 147 
Randomizing scattering, 153 
Rate equation, 205 
Reactive ion ettching, 218 
Recessed gate, 185 
Rectangular quantum wire, 64 
Red shift! 236, 238 
Reduced mass, 105 
Reflection high energy 
diffractometer (RHEED), 10 
Reflectivity, 204, 206 
Refractive index, 203, 205 
Resonant level, 223, 231 
Resonant nonlinearity, 125 
Resonant tunneling diode (RTD), 4, 7, 188 
Resonant tunneling, 2 
Responsivity, 228, 229 
RF or ECR MBE, 13, 16 
Ritz method, 153 
RTD, 194, 200 
S-SEED, 243, 246 
S3N4 mirror, 218 
Self-organizing growth, 20 
Saha equation, 128 
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Scattering processes for 2DEG, 140
Scattering rate for 2DEG, 149
Schottky barrier, 32, 33
Schrödinger equation for barrier layer, 60
Schrödinger wave equation, 37
Screening factor, 148
Screening length for 2DEG, 149
Screening of 2DEG, 146
Screening, 246
SDFET, 173
Selection rule, 111
Selective etch, 20
Selectively Doped Field Effect Transistor
(SDFET), 139
Self-oscillating mixer: 199
Sequential model, 197
Shear strain, 73
Shot noise, 232
Si/SiGe, 71, 75
Si/SixGe1–x 5, 114
Si1–xGex/Si strained layer, 234
SiGe/Si, 19
Silicon-based RTD, 200
Single heterojunction, 57
Single-junction heterostructure, 49
SiO2/Si system, 2
SixGe1–x, 24, 25, 75, 76, 223
Solution of transport equation, 152
Sorption pump, 9
Source contact, 174
Spectral bandwidth, 215
Spherical harmonics, 151
Spin-orbit splitting, 83
Spontaneous absorption, 205, 210
SQWL, 210
SQW, 216
Stark-effect modulator, 77
Stark effect, 102, 114, 138
Stark level, 117
Stark shift of excitonic levels, 119
Starring array, 5
Stimulated emission, 203, 205, 206, 210
Stimulated recombination, 206
Stokes shift: 137
Strained-layer laser, 216
Strained-layer well, 71
Stranski-Krastanow growth, 20
Subband, 154
Superlattice modulator, 241
Superlattice, 53, 237
Surface roughness scattering, 145

Surface-emitting laser, 218
Susceptibility, 123
Switcing speed, 247
Table 3.1, 34
Table 3.2, 34
Table 4.1, 53
Table 6.1, 145
Table 6.2, 151
Table 8.1, 199
Table 10.1, 235
TEGFET, 139, 173 
Temperature dependence of alloy scattering, 156 
Temperature dependence of deformation 
potential scattering, 156 
Temperature dependence of polar optic-phonon
scattering, 156 
Temperature dependence, 190 
Tensile biaxial strain, 74 
Tersoff method, 24 
Thomas-Fermi model, 117 
Threshold carrier density, 206 
Threshold condition, 207 
Threshold current, 207, 213 
Threshold voltage, 176 
Tight-binding approximation: 56, 76 
Time-of-flight technique, 165 
Transconductance, 189 
Transformation relation, 82 
Transit time, 228 
Transition probability, 87 
Transition rate, 78 
Transmission coefficient, 191 
Transverse transmission modulaor, 239 
Triangular quantum wire, 65 
'Triangular-well approximation, 61 
Triethylgallium, 10 
Trimethylgallium, 10 
Triple-channel HEMT, 189 
Tunneling characteristic, 191 
Tunneling probability, 231 
Tunneling time: 190, 199 
Two-dimensional array, 219 
Two-dimensional electron gas (2DEG), 2 
Two-dimensional Electron Gas Field Effect 
Transistor, 139 
Type I heterostructure, 24 
Type II heterostructure, 24, 25 
Type II-misaligned heterostructure, 25 
Type I1-staggered heterostructure, 25 
Type III heterostructure, 24, 25 
Unit cell, 41 
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Unitary transformation, 43
Valence -band offset, 26
Valence-band wave function, 81
Values of band offset, 33
Van de Walle-Martin method, 27
Variational envelope function, 146
Variational function for exciton, 99
Variational function for QCSE, 116
Variational function for single
heteroj unct ion, 62
Variational method, 153
Variational parameter, 120, 168
Vector potential operator, 224
Vector potential, 77
Velocity effective mass, 48, 53
Velocity of saturation, 161
Velocity-field characteristic, 179
Vertical cavity surface emitting laser
(VCSEL), 218

Virtual level, 227
Visible MQWL, 217
Voltage-tunable optic detector, 5
VPE, 216 
Wannier-Stark localization 241 
Wave equation for exciton, 91, 93 
Wave equation, 77
Wave function, 40 
Waveguide all-optic switch, 251
Waveguide modulator, 210 
X-ray Photoemission core level Spectroscopy

Zero temperature coefficient (ZTC), 185 
Zero dispersion, 215 
Zero-dimensional electron gas (0DEG), 6, 16 
ZnSe, 22
ZnSe/ZnMnSe, 10 
ZnTe, 22 

(XPS), 29, 32 
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