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On the Feedback Circuit Analysis using Return Ratio 

I. INTRODUCTION 

The precision circuit technique of implementing linear analog signal-processing 

functions with nonlinear devices has thus far been based upon the stabilized feedback 

amplifier invented by Harold Black in 1927 [1]. The most significant benefit derived 

from negative feedback is the desensitization of the closed-loop gain against active 

device parameter variations. This desensitization also leads to low distortion and noise 

rejection, which are highly desirable features of precision amplifiers. In addition, the 

employment of negative feedback allows a designer to modify the input and output 

impedances and to widen the bandwidth of a circuit, which proves to be useful techniques 

in making design tradeoffs in practice. 

The downside of negative feedback, however, is the potential of instability, which 

entails a long history of efforts of analyzing the loop transmission and studying the 

stability of feedback circuits [1]–[27]. The majority of these analyses can be categorized 

into two approaches—the two-port analysis based on loop gain [22], [24], [25] and the 

return-ratio analysis [6], [7], [9], [17], [21], [23], although the names loop gain and return 

ratio have been used interchangeably in the literature. 

It was noted in [11] that it appears that return ratio was first introduced by Bode [17]. 

In contrast to the complex procedures involved in the loop-gain-based two-port analysis, 

the return-ratio method embodies a somewhat simpler approach1 in feedback circuit 

analysis [10]–[12]. Especially, in a bilateral feedback configuration,2 it requires little or 

no manipulation of the original circuit topology in analyzing the loop transmission. 

However, as the original treatments of both return ratio and loop gain were developed for 

unilateral single-loop feedback, care must be taken in applying the developed formulas 

and procedures to bilateral and/or multi-loop feedback circuits. Specifically, the return 

ratio calculated in a bilateral configuration depends on the exact loop breakpoint, as will 

be shown later in this note. A closer examination of the discrepancies reveals that 

                                                 
1 However, the “simpler” approach is error-prone as discussed in the following text. 
2 A configuration when the forward gain block, the feedback block, or both are bilateral. 
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multiple feedback loops exist in a bilateral feedback circuit, violating the assumptions of 

the return-ratio-based analysis. In addition, this observation offers more insight on the 

much debated difference between loop gain and return ratio—although the end results of 

the closed-loop gain are the same, the two approaches may reach at vastly different 

intermediate results for the loop transmission [10]–[12]. As perhaps the predominant 

motivation for the derivation of return ratio or loop gain is to study the feedback-loop 

stability (as well as to give rise to a closed-loop transfer function), some observations 

from a stability standpoint will also be given in this note. 

Section II reviews the basics of the feedback circuit analysis using return ratio. The 

approach is applied to a bilateral shunt-shunt feedback circuit in Section III, followed by 

a discussion on the apparently disagreeing return ratios obtained. In Section IV, a 

theorem is given to relate the various return ratios to the loop gain used in an alternative 

approach for feedback analysis; and an in-depth examination on the fundamental cause of 

the discrepancies is covered in Section V. Lastly, the paper is concluded with a brief 

summary in Section VI. 

II. FEEDBACK ANALYSIS USING RETURN RATIO 

A. Return Ratio 

Consider the feedback circuit shown in Fig. 1, which consists of passive elements and 

controlled sources, with one controlled source k drawn explicitly. By the linearity of the 

circuit, the signals So and Sic can be expressed as linear combinations of the signals Si and 

Soc [24]: 
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where, d, H, b1, and b2 have the same definitions as those in [24]. These equations readily 

solve to the closed-loop gain: 

 1 2 ,
1

o
cl

i

S b kb
A d

S RR
  


 (2) 

where, kHRR   is called the return ratio of the controlled source k. An alternative form 
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of (2) is expressed in the form of the asymptotic gain formula [6]: 
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The return ratio RR of the dependent source k can be found with the following 

procedure:3 

1) Set all independent sources in the circuit to zero; 

2) Disconnect the dependent source from the rest of the circuit, which introduces a 

breakpoint in the feedback loop; 

3) On the side of the break that is not connected to the dependent source, connect an 

independent test source st of the same sign and type as the dependent one; 

4) Find the return signal sr generated by the dependent source; 

5) The return ratio of k is given by .tr ssRR   

Although not explicitly stated, the formulation of the feedback equations using return 

ratio implies a unilateral feedback. This fact can be readily appreciated by examining Fig. 

1(b) in [11] (reproduced here in Fig. 2), where the core feedback loop is formed by k and 

H that only allows the signal to travel in one direction. The direct feed-forward term d is 

out of the loop, and does not participate in the signal circulation in the loop, i.e., RR is 

independent of d.4 

B. Generalized Return Ratios 

The previously described procedure to find the return ratio for a controlled source 

works for hand analysis, where the internal nodes of the small-signal model of an active 

device are accessible. In SPICE simulations with compact transistor models (and in 

experiments), an alternative procedure was proposed in [7] and [9], and is termed the 

generalized return-ratio method: the return ratio of a single-loop feedback circuit can be 

                                                 
3 The readers can refer to pp. 600 of [24] for a concrete example of applying the five-step procedure to 
derive RR. 
4 The same observation can be drawn from the asymptotic gain formula, by examining Fig. 8.42 in [24]. 
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found by breaking the circuit at an arbitrary point to find a voltage return ratio RRV and a 

current return ratio RRI. RRV and RRI can be found using a similar procedure as 

previously described, and are related to the total return ratio by 

 .
111

IV RRRRRR
  (4) 

The reason for both voltage and current return ratios to be measured is to handle the 

loading effect of the finite driving-point impedances at the breakpoint. Therefore, a single 

test is sufficient when the breakpoint is inside an ideal controlled source. 

C. Blackman’s Impedance Formula 

Feedback modifies the input and output impedances of a circuit. In general, a driving-

point impedance can be found using the Blackman’s impedance formula [3]: 
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where, 
0kportZ  is the same port impedance with the controlled source k set to zero, RRsc 

is the return ratio of k with the port shorted, and RRoc is that with the port open. 

III. RETURN RATIO IN BILATERAL FEEDBACK 

In single-loop unilateral feedback circuits, calculating the return ratio of a controlled 

source using the procedures described in the preceding section is rather straightforward. 

When multiple controlled sources exist in the loop, the return ratios of these sources 

should be identical, and also equal to that calculated with the generalized return ratios, no 

matter where the breakpoint of the loop is. However, practical feedback circuits 

consisting of real transistors and passive elements can seldom be cast into such an ideal 

configuration. Especially, passive elements are bilateral, i.e., the signal transmissions 

from and to both sides are completely symmetrical. Next, it will be shown that the return 

ratio calculated in a bilateral setup depends on the exact loop breakpoint. 

Consider the simple shunt-shunt feedback circuit shown in Fig. 3(a), where the 

amplifier A is the forward block, and the feedback network is formed by the impedance 
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Zf.
5 In general, signals travel both ways in the A and Zf blocks. To show explicitly all the 

controlled sources in the loop, both the forward and feedback paths are modeled by a 

two-port network as shown in Fig. 3(b). Note that, when the loop is closed, both y21a and 

y21f are driven by Vi, and both y12a and y12f are driven by Vo. 

A. Return Ratio of y21a (forward-gain path) 

In Fig. 4, break the loop open at the control terminal of y21a, insert an independent 

source Vt, and apply KCL at nodes Vi and Vo, we have 
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Upon eliminating Vo, the return ratio of y21a can be calculated as follows: 
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Note that, when the loop is opened this way, the controlled sources y21a and y21f are 

driven by different voltages, Vt and Vr, respectively. 

B. Return Ratio of y12f (feedback network) 

The return ratio of y12f can be calculated in the same way (Fig. 5). By the symmetry of 

the circuit, we can write down the result directly by inspection: 
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Note that, when the loop is opened in this case, the controlled sources y12f and y12a are 

driven by different voltages, Vt and Vr, respectively. 

Apparently,    fa yRRyRR 1221   holds by comparing (7) with (8), which indicates 

that this is not a unilateral feedback loop. However, if the controlled sources y12a (the 

feedback of the forward path) and y21f (the forward gain of the feedback path) are set to 

zero and the loop becomes truly unilateral, both (7) and (8) reduce to the same result: 

                                                 
5 Although a shunt-shunt feedback is considered here, similar results can be obtained with either one of the 
other three feedback configurations, i.e., the shunt-series, series-shunt, or series-series feedback. 
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C. Generalized Return Ratios 

We first pick the loop breakpoint at the output node Vo, as often done in a SPICE 

simulation; then separately apply a test voltage and current source, as shown in Fig. 6(a); 

and the generalized return ratios can be calculated as follows: 
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and the total return ratio is given by 
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Next, as shown in Fig. 6(b), we pick the input node Vi as the breakpoint, a similar 

procedure results in 
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which is identical to .oRR  Define ,G o iRR RR RR   we note that 

   21 12
G

a fRR y RR y RR   holds by comparing (7), (8), (11), and (12). However, if the 

controlled sources y12a and y21f are set to zero and the loop becomes truly unilateral, all 

these return ratios reduce to the same result as in (9). 

D. Discussion 

The calculations so far in this section have revealed an uncomfortable fact—the 

return ratio calculated in a bilateral feedback loop depends on the exact loop breakpoint. 

A closer examination shows that the original circuit actually contains multiple feedback 

loops formed by either the forward-gain path or the feedback network alone; they appear 

in shunt when the loop is closed. In fact, were it not for the subscripts a and f used in the 
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circuit diagram, there would have been no means to distinguish the forward path from the 

feedback network—signals actually travel in both directions in these blocks. 

Consequently, breaking the loop open at a specific point does not entirely eliminate the 

feedback—it simply forms an open-loop circuit with a local closed-loop feedback 

embedded in the rest parts. Depending on the nature of the embedded loop, a new circuit 

is formed each time the loop is opened at a different point, and the return ratio thus 

calculated would most likely be different. 

Take RR(y21a) for  example. In Fig. 4, when the loop is opened at the control terminal 

of y21a of the forward path, although the feedback controlled sources y12a and y12f are still 

driven by the same output signal Vo, y21f, the forward controlled source of the feedback 

network, is now driven by Vr, which is different from Vt, the one driving y21a. It is y21f that 

introduces the embedded feedback in this test. With the large gain developed around the 

loop, tr VV   holds in general, and the feedback (kickback) from y21f can be significant. 

This justifies the extra term in the denominator of (7) that relates to y21f. A similar 

argument applies to RR(y12f) in Fig. 5, except that the kickback source now is y12a, which 

is driven by Vr. This explains the extra term in the denominator of (8). 

It now becomes somewhat straightforward to analyze the next case where generalized 

return ratios are calculated for the loop by opening it at Vo—either y12a or y21f forms the 

embedded loop when the breakpoint is driven by Vt or It, respectively. When this case is 

contrasted to that of Fig. 4, it is apparent that the kickback effect of y21f is the same with a 

current drive (It); however, now a similar kickback is also produced by y12a with a voltage 

drive (Vt). This justifies the fact that, when y12a is set to zero, (7) and (11) reduce to the 

same result. The same argument applied to comparing this case to that of Fig. 5 leads to 

the observation that the kickback of y12a is the same, while that of y21f is different. Thus, 

when y21f is set to zero, (8) and (11) reduce to the same result. 

We conclude that, although the finite driving-point impedances are accounted for at 

the loop breakpoint in a generalized return-ratio calculation, the resulting total return 

ratio is only an approximation of that of the controlled sources in a bilateral feedback 

loop. Furthermore, it needs to be pointed out that the two-port formulation is not the 

cause of this discrepancy, as it merely embodies an equivalent network representation of 
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the original circuit. Secondly, the passivity of the feedback network Zf does not provide a 

satisfactory explanation either—setting y11f = y22f and y12f = y21f does not eliminate the 

discrepancies.6 

E. Return Ratio with Respect to a General Reference Value 

The discussion presented in the preceding section reveals that a direct application of 

the procedures developed to calculate the return ratio in a unilateral feedback loop 

sometimes leads to capricious results in bilateral and/or multi-loop feedback 

configurations. It seems that Bode has somewhat realized this potential problem in the 

development of his return-ratio theory—in Figs. 4.7 and 4.8 of [17] (reproduced here in 

Fig. 7), he argued that, when the feedback network is bilateral, the forward gain of the 

feedback network can be either left out or lumped into the forward-gain amplifier. 

In the former case (“left out”), however, it is not easy (and perhaps wrong) to simply 

neglect the forward transmission of the feedback network when it consists of passive 

(symmetrically bilateral) elements, as this forward path is inherently part of the feedback 

loop. This is especially the case when the return ratio is calculated without resorting to a 

two-port representation. Examples of this are in Fig. 4.2 of [17], Fig. 8.39 of [24], and 

Fig. 4 of [11]. Note that this argument is completely different from separating the direct 

feed-forward term d of the input signal from the intrinsic feedback loop (formed by k and 

H) when deriving the closed-loop transfer function (Fig. 2). As a matter of fact, this has 

always been done since, as the first step in a return-ratio evaluation, any independent 

source in the circuit (of course including the input source) is set to zero, and the effect of 

d is eliminated. 

In the latter case (“lumped into the forward-gain amplifier”), the treatment involves 

re-computing the forward-path gain with a general reference value [17] [21]: 

Definition: The reference value of any element (controlled source) is that value which 

gives zero transmission through the circuit as a whole when all other elements of the 

circuit have their normal values. 

For example, in the bilateral shunt-shunt feedback circuit shown in Fig. 3, y21f can be 
                                                 
6 It is conceptually not difficult to conceive a feedback circuit where the feedback network is formed by an 
active device, and y11f = y22f and y12f = y21f do not hold in general. 
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treated as the reference value for y21a when RR(y21a) is evaluated; conversely, y12a can be 

considered as the reference value for y12f when RR(y12f) is calculated. Now let y21a and y21f 

be lumped together; define y21 = y21a + y21f, the return ratio of y21 can de calculated as: 
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Since there exists a single breakpoint that opens both loops, the same result can be 

reached at by virtue of the multi-loop return-ratio formula [21], [12]: 
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Interestingly, another theorem of Bode related to the return ratio with respect to two 

elements is [21] 
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where,  1xRR  and  2xRR  are the return ratios of two controlled sources in the feedback 

circuit, and  
01

2 x
xRR  and  

02
1 x

xRR  are the same return ratios calculated with the 

other one set to zero. It is straightforward to verify that the equality in (15) holds for y21a 

and y21f. Note that the loop becomes unilateral when either one of the controlled sources 

is set to zero for the return ratio of the other to be evaluated. 

IV. FEEDBACK ANALYSIS USING LOOP GAIN 

A. Loop Gain in Bilateral Feedback 

An alternative approach for feedback analysis is the two-port method based on loop 

gain [22], [24], [25]. In this approach, a manipulation of the original bilateral feedback 

circuit is performed first to rearrange it into a unilateral configuration. The method is 

probably motivated by the fact that, for example, in Fig. 3, when the loop is closed, the 

forward-transmission controlled sources y21a and y21f of the forward amplifier and the 

feedback network, respectively, enter the loop in shunt. Therefore, they are all inherent 

constituents of the feedback, and should be treated equally. The same argument holds 
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true for the controlled sources y12f and y12a. Although the exact procedures of the loop-

gain analysis for a bilateral feedback circuit are complicated [24], [6], [8], the approach is 

conceptually simple; and as it always results in a unilateral setup, the calculated loop gain 

is unique no matter where the breakpoint of the loop is. As shown in the literature [24], 

[10], [11], this loop gain is 
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where, a is the (total) forward gain and f is the (total) feedback factor. 

B. Loop Gain and Return Ratio 

Note that (16) is identical to (13), the return ratio calculated following Bode’s second 

suggestion. Relating (16) to (7), it becomes obvious that the only difference involved in 

the derivations is the reposition of the controlled source y21f. In the return-ratio analysis, 

the kickback of this element interferes with the measurement of the loop transmission. 

Therefore, when y21f is set to zero, both (16) and (7) reduce to the same result. In general, 

to relate the loop gain to the various return ratios in a bilateral feedback loop, we propose 

the following theorem:7 

Theorem: Consider the forward transmission (from A to Zf and back to A) of the 

bilateral feedback amplifier that can be modeled as the two-port network shown in Fig. 3. 

The loop gain and various return ratios are all numerically closely related if the following 

conditions hold: 
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where, y should be replaced by the appropriate two-port parameters, i.e., y, z, g, or h, for 

different types of feedback under consideration. The conditions 1) and 2) ensure that the 

signal transmission in the forward direction dominates when the loop is closed; and the 

condition 3) ensures that the kickbacks of y21f (the forward transmission of the feedback 

network) and y12a (the feedback of the forward amplifier) are negligible when the loop is 
                                                 
7 Note that the theorem proposed here is an amended (and more accurate) version of that introduced in [11]. 



ECE 581  Handout on Feedback Analysis 

 

- 11 - 

opened. With these assumptions, the loop gain and the return ratios can all be 

approximated as 
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V. RETURN RATIO, LOOP GAIN, AND STABILITY 

At this point, a few conceptual problems arise–what to do with the multiple return 

ratios obtained in a bilateral feedback? Which one of Bode’s suggestions should be 

adopted for return-ratio analysis (although both are somewhat confusing)? Should the 

forward gain of the feedback network be left out or lumped into the forward-gain 

amplifier? Does the loop-gain measurement really capture and characterize the loop 

transmission? Do the return ratios? 

To seek answers to these questions, it seems we need to return to the most 

fundamental motivation for the return-ratio and loop-gain analyses—to study the stability 

of the feedback loop. As a bilateral feedback loop (such as the one shown in Fig. 3) is 

likely to contain multiple feedback loops, the use of return ratio to analyze the stability 

remains an open research problem. In this note, instead of proposing a general theory on 

the stability of multi-loop feedback, a few observations drawn from the analysis of the 

bilateral feedback circuit presented so far are summarized as follows. 

First of all, return ratio by definition is with respect to a single controlled source, such 

as the transconductance (gm) of the input transistor of an amplifier. When the feedback 

loop is opened at this controlled source to check the stability of the loop transmission, an 

implicit assumption is that the rest of the circuit is stable. This is mostly true in practice. 

Consider the shunt-shunt feedback circuit shown in Fig. 3 again, the passive feedback 

network (although bilateral) may very well be composed of a few resistors and 

capacitors, and is inherently stable. Examining the return ratio derived in Section III-A 

for y21a is a valid means to check the loop stability. Although the kickback from y21f still 

forms an embedded loop inside, and triggers some unintended confusion, it bears no 

consequence on the stability study due to its passivity. This can be related to the 
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treatment of the first special case presented in [12] of a multi-loop feedback study—the 

embedded local loops within a global feedback. The usual gain and phase margins of 

RR(y21a) can be evaluated for the open global loop to check its stability with all 

embedded loops intact and verified stable a priori [28]. 

In a more general sense, however, it is common for the feedback network to consist 

of active circuits forming the embedded loops. Evaluating the return ratio of y21a alone 

will then be insufficient to determine the stability of the circuit. Another typical example 

is the CMOS active-cascode amplifier, e.g., the one shown in Fig. 3.41 of [24]. Checking 

the stability of the global feedback loop with the local gain-boosting loop closed is 

routinely performed in simulation, in tandem with another check of the boosting loop for 

its own stability. 

Now we turn our attention to the loop-gain method. In the context of the shunt-shunt 

feedback amplifier shown in Fig. 3, lumping y21f into y21a and checking the stability of y21 

(by evaluating its return ratio) presents an alternative way to examine the stability of the 

circuit,8 not because the resulting loop gain coincides with that of the second approach of 

the return-ratio measurement suggested by Bode, but y21f forms an intrinsic part of the 

forward loop transmission and is not correct to be left out from the overall feedback 

standpoint. It is not difficult to conceive a case where y21f stems from an active (or 

passive) device deliberately designed to stabilize the loop. In such a case,  
021

21 fyayRR  

will not be stable while  21yRR  will be stable. In this sense, the loop-gain measurement 

in a bilateral feedback configuration seems to focus and check on the overall stability of 

the feedback loop, not a specific controlled source at a time. For example, in the feedback 

circuit shown in Fig. 8, calculating the return ratio of gm1 (of M1) or gm2 (of M2) alone 

only reveals partly the overall loop transmission; while lumping the two in parallel results 

in a single loop-gain calculation that concludes the stability check for the whole circuit. 

                                                 
8 The return ratio thus obtained may drastically differ from the one with y21a alone, and may not exhibit the 
“nice” two-pole roll-off such as the example shown in [11]. However, the niceness of the shape is not an a 
priori condition for stability analysis. 
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VI. CONCLUSION 

The return-ratio analysis in bilateral feedback circuits is revisited. Results indicate 

that, depending on the exact loop breakpoint, the calculated return ratio may vary 

significantly. The fundamental cause of this discrepancy is studied and linked to the loop-

gain measurement using the two-port method. In either case, the bilateralism of the 

circuits invites a multi-loop feedback configuration, which explains the various 

disagreeing results obtained in the return-ratio and loop-gain evaluations. A theorem is 

proposed to point out the equivalence between these quantities and the conditions under 

which the equivalence holds. 

From a stability standpoint, either method is valid in evaluating the loop stability for 

the bilateral and/or multi-loop feedback circuit considered here. The loop-gain method 

seems to measure the overall loop stability, while the return-ratio approach checks one 

controlled source at a time. The efficiency and complexity of either approach may vary 

case by case, and are up to the designer’s discretion. 

 

 



ECE 581  Handout on Feedback Analysis 

 

- 14 - 

REFERENCES

[1]  H. S. Black, "Stabilized feed-back amplifiers," Electrical Engineering, vol. 53, pp. 

114-120, Jan. 1934. 

[2]  H. Nyquist, "Regeneration theory," Bell System Technical Journal, vol. 11, pp. 

126-147, July 1932. 

[3]  R. B. Blackman, "Effect of feedback on impedance," Bell System Technical 

Journal, vol. 22, pp. 269-277, Oct. 1943. 

[4]  F. H. Blecher, "Design principles for single loop transistor feedback amplifiers," 

IRE Transactions on Circuit Theory, vol. 4, pp. 145-147, no. 3, 1957. 

[5]  D. O. Pederson and M. S. Ghausi, "A new design approach for Feedback 

Amplifiers," IRE Transactions on Circuit Theory, vol. 9, pp. 274-284, no. 3, 1961. 

[6]  S. Rosenstark, "A simplified method of feedback amplifier analysis," IEEE 

Transactions on Education, vol. E-17, pp. 192-198, Nov. 1974. 

[7]  R. D. Middlebrook, "Measurement of loop gain in feedback systems," International 

Journal of Electronics, vol. 38, pp. 485-512, no. 4, 1975. 

[8]  A. M. Davis, "General method for analyzing feedback amplifiers," IEEE 

Transactions on Education, vol. E-24, pp. 291-293, Nov. 1981. 

[9]  S. Rosenstark, "Loop gain measurement in feedback amplifiers," International 

Journal of Electronics, vol. 57, pp. 415-421, no. 3, 1984. 

[10]  P. J. Hurst, "Exact simulation of feedback circuit parameters," IEEE Transactions 

on Circuits and Systems, vol. 38, pp. 1382-1389, Nov. 1991. 

[11]  P. J. Hurst, "A comparison of two approaches to feedback circuit analysis," IEEE 

Transactions on Education, vol. 35, pp. 253-261, Aug. 1992. 

[12]  P. J. Hurst and S. H. Lewis, "Determination of stability using return ratios in 

balanced fully differential feedback circuits," IEEE Transactions on Circuits and 

Systems II: Analog and Digital Signal Processing, vol. 42, pp. 805-817, Dec. 1995. 



Draft  Submitted to TCAS-I 

 

- 15 - 

[13]  F. H. Blecher, "Transistor Multiple Loop Feedback Amplifiers," in Proc. of Natl. 

Elect. Conference, 1957, vol. 13, pp. 19-34. 

[14]  J. H. Mulligan, "Signal transmission in non-reciprocal systems," in Proc. of Int. 

Symposium on Active Networks and Feedback Systems, 1960, vol. 10, pp. 125-153. 

[15]  E. S. Kuh, "Some results in linear multi-loop feedback systems," in Proc. of 

Allerton Conference on Circuits and System Theory, 1963, vol. 1, pp. 471-487. 

[16]  I. W. Sandberg, "On the theory of linear multi-loop feedback systems," Bell System 

Technical Journal, vol. 42, pp. 355-382, Mar. 1963. 

[17]  H. W. Bode, Network Analysis and Feedback Amplifier Design, New York: Van 

Nostrand, 1945. 

[18]  D. O. Pederson, Electronic Circuits, New York: McGraw-Hill, 1965. 

[19]  M. S. Ghausi, Principles and Design of Linear Active Circuits, New York: 

McGraw-Hill, 1965. 

[20]  S. S. Hakim, Feedback Circuit Analysis, New York: Wiley, 1966. 

[21]  E. S. Kuh and R. A. Rohrer, Theory of Linear Active Networks, San Francisco: 

Holden-Day, 1967. 

[22]  P. E. Gray and C. L. Searle, Electronic Principles: Physics, Models, and Circuits, 

New York: Wiley, 1969. 

[23]  S. Rosenstark, Feedback Amplifier Principles, New York: MacMillan, 1986. 

[24]  P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of 

Analog Integrated Circuits, 4th ed., New York: Wiley, 2001. 

[25]  A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed., Oxford University 

Press, 2003. 

[26]  B. Nikolic and S. Marjanovic, "A general method of feedback amplifier analysis," 

in Proc. of the 1998 IEEE Symposium on Circuits and Systems, ISCAS '98, vol. 3, 

pp. 415-418. 



Draft  Submitted to TCAS-I 

 

- 16 - 

[27]  R. D. Middlebrook, "The general feedback theorem: a final solution for feedback 

systems," IEEE Microwave Magazine, pp. 50-63, April 2006. 

[28]  K. Ogata, Modern Control Engineering, Englewood Cliffs, NJ: Prentice-Hall, 

1990. 

 
 

Si SoSocSic kSic

 

Fig. 1. The general diagram of a feedback circuit with one controlled source k shown 
explicitly. 
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Fig. 2. Fig. 1(b) in [11], an alternative illustration of the feedback circuit in Fig. 1. 
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                     (a)                                                                         (b) 

Fig. 3. A simple bilateral shunt-shunt feedback amplifier: (a) circuit schematic, and (b) its 
two-port model. 
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Fig. 4. Return-ratio evaluation of the controlled source y21a. 
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Fig. 5. Return-ratio evaluation of the controlled source y12f. 
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(b) 

Fig. 6. Generalized return-ratio calculation of the circuit in Fig. 3 (a) by opening the loop 
at the output, and (b) by opening the loop at the input. 

 
 

μ So

β1

β2

Si

                   

μ So

β1

β2

Si

 

(a)                                                                (b) 

Fig. 7. Figs. 4.7 and 4.8 of [17], return-ratio evaluation in a bilateral feedback 
configuration (a) by leaving the forward gain of the feedback network (β2) out, or (b) by 
lumping it into the forward-gain amplifier. 
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Fig. 8. The circuit diagram of a feedback amplifier consisting of multiple forward-gain 
active devices. 

 


