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We review the design challenges faced by MPSoC designers at all space exploration
levels. Starting at the application level, there is a need for
programming models and communications APIs that allow 1. INTRODUCTION
applications to be easily re-configured for many different possible Increasingly, the design of embedded systems and System-on-Chip
architectures without tedious rewriting, while at the same time devices (SoC) is based on utilising multiple processors. What has
ensuring efficient production code. Synchronisation and control of been dubbed "MPSoC" [1] is becoming a much more prevalent
task scheduling may be provided by RTOS's or other scheduling design style, to achieve tight time-to-market design goals, to
methods, and the choice of programming and threading models, maximise design reuse, to simply the verification process and to
whether symmetric or asymmetric, has a heavy influence on how provide flexibility and programmability for post-fabrication reuse of
best to control task or thread execution. Debugging MP systems complex platforms. Sometimes these processors may be fixed
for the typical application developer becomes a much more complex Instruction Set Architecture (ISA) processors; sometimes they may
job, when compared to traditional single-processor debug, or the be configurable, extensible processors [2,3]. Very often there is a
debug of simple MP systems that are only very loosely coupled. mix of processor types. The now classical RISC+DSP combination
The interaction between the system, applications and software used in baseband applications in cellphones is an early example of
views, and processor configuration and extension, adds a new MPSoC, and a good illustration of the evolution of such devices.
dimension to the problem space. Zeroing in on the optimal solution
for a particular MPSoC design demands a multi-disciplinary Moder cell phones may have four to eight processors, including
approach. After reviewing the design challenges, we end by oneor more RISCsfor user interfaces, protocol stack processing and
focusing on the requirements for design tools that may ameliorate other control functions; a DSP for voice encoding and decoding and
many of these issues, and illustrate some of the possible solutions, radio interface; an audio processor for music playback; a picture
based on experiments. processor for camera functions; and even a video processor for new

video-on-phone capabilities. In addition, there may be other deeply
Categoriesand Subject Descriptors embedded processors substituting for other functions traditionallyCategoriles and Subject Descriptors designed as dedicated hardware blocks. Extensible processors in

C.3 [Special Purpose and Application-Based Systems]: Real-time particular are proving to be flexible substitutes for hardware blocks,
and embedded systems achieving acceptable performance and power consumption. Thus

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: these devices are a good illustration of heterogeneous MPSoC, and
their demanding requirements for low cost, reasonable performance,SIMD, MIMD
and minimal energy consumption illustrates the advantages of using

General Terms highly application-specific processors for various functions.

Measurement, Performance, Design, Experimentation, Languages, This shift to an increasingly processor-, and multi-processor-,
Verification. centric design style, poses many challenges for system architects,

software and hardware designers, verification specialists and system

Keywords integrators. These may best be met by revisions to old tools and
Keywords methods to deal with MPSoC complexities; by new tools and
MPSoC, Multi-Processor System-on-Chip, System-Level Design, methods, working at the same abstraction levels; and by moving up

in abstraction to take advantage ofnew design approaches.
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specialized signaling - but the same issues of processor balancing,
2. DESIGN CHALLENGES FOR MPSOC correct ordering of computations, and avoiding deadlock and
2.1 Programming Models starvation, still occur. Often programming models are supported
Since MPSoC design is by its nature processor-centric, and thus by standard Application Programming Interface (API) libraries,
software-centric, the first, and by all accounts, most difficult design such as OpenMP or the Message Passing Interface (MPI), or

challenge for these devices lies in the programming model(s) that standardised threading models such as POSIX threads, in order to
are required to map applicationsoftwamake applications a little easier to map to different MPSoC

arplemrequatired map application software into effective architectures, or to port from one architecture to another.implementations.
Whamae?Two factors are key: However, it is often the case that the mix of applications to be runWhatmakeMPSoCdificult toprogram?on a complex MPSoC device may require a mix of programming

concurrency, and "fear of concurrency" [4, 5]. Software od a "m odelsco matio" a cin th orrect
developers have been well-trained by sixty years of computing one(s) b omesa fcomu utateon" and choosin the correct
history to think in terms of sequentially defined applications code, ospeifcaonmpemenaion,e de om sitn. ad icof.ect
with ever-faster computers on which to run it. Early embedded applifications tmpSoCnaritecturesre ion ani map nu
systems with a single processor continued this heritage. It's very asklfraught th Peri frctecury.
easy to think sequentially; the ftundamental nature of an algorithm is th

to describe a sequence of steps to solve a problem. Most 2.2 Synchronisation and Control
programming languages encourage sequential thinking. We have alluded to some of the issues involved in synchronising
Contrast the sequential nature of classical programmes with the and controlling multiple concurrent tasks on multiple processor
concurrent possibilities opened up by MPSoC. Here we can cores in the previous section. Even assuming a good
distinguish two major classes of MP systems: "symmetric multi- decomposition and mapping of the target applications into multiple
processing" (SMP) in which multiple processors or processing cores tasks or threads running on the target MPSoC architecture, there are
share a common view of main system memory, and multiple higher level issues of synchronisation and control that are important.
processes or threads execute within global, shared coherent Will the control be delegated to a Real-Time Operating System
memory; and "asymmetric multi-processing" (AMP), in which (RTOS) or based on an ad-hoc scheduling mechanism? Will the
processors are usually much more loosely coupled, may have quite system be built by composing multiple processor-based subsystems
different ISAs, and usually have dedicated local memory resources. drawn from different domains (for example, a video, an audio, and
But whatever the MP model, multiple tasks are executing on perhaps a communications subsystem) that synchronise via
different processors concurrently, communicating with each other infrequent high level messaging only, or must the tasks work in tight
and possibly with central resources asynchronously via a number of lockstep that requires a high amount of inter-process
mechanisms. At any point in time, clashes of priorities, communication? All the classical issues of RTOS priority
deadlocking, data starvation, races, and data incoherency may management, including deadlock and priority inversion, come into
occur. The fictional concurrency offered by conventional play when the number of tasks exceeds the number of processors, or
operating systems or RTOS's running on a single processor, where tasks contend simultaneously for a common pool of critical
the transfer of control from one executing process to another is resources.
handled in an orderly fashion, is replaced by a raging sea of To save energy, especially critical for portable embedded systems, it
simultaneously executing tasks, any one of which might interact is very desirable to shut down portions of the system when not inwith another in a most unpredictable fashion. Decomposing an> ~~~~use,or scale back processor voltage and frequency to match theapplication described in a serial fashion into a set of concurrent or processing requirements precisely, via techniques such as Dynamic
parallel tasks that can co-operate in an orderly and predictable way Voltage and Frequency Scaling (DVFS). This requires taking a
is one of the most difficult jobs imaginable, and despite forty or holistic view of the overall system and its applications, such thatmore years of intensive research in this area, there are very few task requirements, processor loading, run rate, and energy usage areapplications for which this can be done automatically. precisely balanced. Many techniques have been developed in
Programming models are chosen precisely to bring some of the research and industry for such control, but their application still
variability involved in concurrency under control. In the SMP seems rather ad-hoc.
model, processors are usually identical or at least share a common One key lesson leamed from earlier attempts at concurrent systems
ISA, and thus threads can be assigned and re-assigned to different is the desirability of building systems up from composable
processors depending on loading conditions and system-level
optimisation criteria such as reducing energy consumption. The suwe d
common coherent memory model means that this can be done
relatively easily; but it is still difficult to ensure that processing is 2.3 Debugging
done in the right order, that all dependencies are met without Even after we've built an application and mapped it to an MPSoC
deadlock or starvation, that the tasks are well-balanced and that architecture, we will spend some considerable time debugging it.
processor utilisation is reasonable. In the AMP model, processors Here all the issues we have tried to guard against in design comeare often tuned to specific tasks either in a coarse-grained fashion bubbling back to the surface [6]. Despite our best efforts to avoid(e.g. DSP vs. RISC for numerically-intensive tasks vs. control- mismatches in communication, deadlock, process starvation, race
dominated tasks), or in a fine-grained manner (as with configurable conditions, and false sharing issues, inevitably when the application
and extensible processors where instructons may be added to a core

for ver spcifise of ask). Tesecommnicte wth varety cycle-accurate or fast functional model of such a device), something
of mechanisms - shared memory, direct hardware fifos, or 'bad' will happen. At this point, an MP-capable debugger iS both
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incredibly useful and often the sole recourse. The requirements for 3. KEY MPSOC ARCHITECTURAL
MP debugging are rather complex. Perhaps one of the most subtle QUESTIONS
points, as discussed in [6], is the need to support "multi-paradigm questions
debugging", or what might be called in other contexts the need to [9] discusses some of the key architectural questions involved in
debug across multiple models of computation. Given a designing and programming an MPSoC system. These can be
composition of loosely coupled subsystems running different classified into several categories:
portions of an application, communicating with each other in a * The number and configuration(s) of processors required for the
variety of ways, using a number of different ISA processors and application. How homogeneous should the architecture be, vs.
running tasks written in multiple programming languages using how heterogeneous.
multiple programming models, the task of understanding what is
going on, and skipping nimbly from paradigm to paradigm while * Interprocessor communications - choosing the right mix of
retaining a coherent view of system state in order to track down the standard buses, point to point communications, shared
root cause of a problem, poses a formidable challenge to concurrent memory, and emerging network on chip approaches.
debugging tools. * Concurrency, synchronisation, control and programming
Of course, all the standard debug tools for starting up, setting model(s). Often multiple models will be appropriate.
breakpoints and break conditions, multiple-processor compositional
breakpoints, observation points, tracing, visualising system, * Memory hierarchy, types, amounts, and access methods, along
application and processor state, and detecting bottlenecks, races, and with estimating required latency.
deadlocking, are required. Special operating modes and controls for power reduction and
2.4 Interactions: System, Applications low energy consumption.
Software, and Processor Configuration and * Application partitioning, use of appropriate APIs and
Extension communications models, and associated design space
Let's take all these MPSoC design challenges and stir them up even exploration.
further with the opportunity provided by designing Application- * Design and platform scalability. As technology evolves, will
Specific Instruction-set Processors (ASIPs). These have emerged the architecture move from 10 to 100 to 1000 or more
from academia [7,8] and the IP industry [2,3], and are also processors? How often must the application undergo major
supported by commercial ESL tools such as CoWare (Lisatek), re-architecting?
Synfora, Poseidon, and Critical Blue.

Although the commercial ESL, EDA and ESW tools industries may
When you have the opportunity to configure and extend processor provide some of the generic tool capabilities required to support
ISAs to better match the performance and power consumption design space exploration, application analysis and debugging for
requirements of an application, or portions of an application, and MPSoC platforms, it is also very likely that the commercial IP
you add to this the ability to have just about as many processors as industry will be required to offer large components of the solution.
you want, you have exploded the design space that should be istespecilly rue ofehgly gconiua enPs as tensible
exloe in deeopn an opia.rhtcuefrapriua This is especially true of highly configurable IP such as extensibleexplored in developing an optimal architecture for a particular processors, where the nature of the IP on offer has a high degree of

MPSoC. Suddenly, many more solutions are possible: different interaction with the solution required.
decompositions, mappings, communications schemes, and the
particular processor configurations, all iteract in ways that make it
difficult to decide in an a priori fashion which part of the solution 4. REQUIREMENTS FOR MPSOCDESIGN
space is likely to contain the optimal architecture. SOLUTIONS
Systematic design space exploration is not something that many 4.1 Integrated Development Environment
system architects have either needed to do in the past, or are familiar Most ESW and IP providers, and many ESL tool vendors, are
with (with exceptions). Very often architectures have been based offering integrated development environments (IDEs) to serve as a
on "gut feelings" and "the last application", designed with Excel standard 'cockpit' for sofware development, or mixed software-
and whiteboards, or are simple derivatives of previous SoC hardware-system development. The Eclipse project [10], which
architectures. The rising cost of SoC design and the complexities started as an open-source IDE for Java, but has added a C/C++
of MPSoC optimisation make these ad hoc approaches much riskier development toolkit (CDT), has grown in popularity as a base for
than in the past. several ESW, IP and ESL tools.
Design methods, and tools to help in this exploration may come Eclipse was created to be extended and configured for specific uses,from a variety of sources. These include the commercial EDA tools design flows and methodologies. It supports a wide variety ofbasicindustry (the branch known as "Electronic System Level", or ESL design views and perspectives and can be complemented by specific
tools); the IP industry (especially the provisioners of processor IP); views, perspectives, plug-ins and tools. Eclipse is only one examplethe embedded software (ESW) tools industry; or indeed, from of an IDE that could be used; others are quite common in the ESW
startups, and from within the engineering groups of systems and tools industry. Whatever the IDE, there are several capabilities
semiconductor houses. important to MPSOC design:

* For configurable and extensible processors, a user interface for
processor configuration and extension. Instruction extensions
may require specialised compilers along with feedback on
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results and integration of the resulting hardware views into the These system-level simulation models are important for simulating
final configuration. the many operating scenarios of a system and its applications, and

General software capture, editing tarfor tracing and analysing the operating conditions. Fast functional* General sofware capture, editig, targeting, buildig and simulation models, sometimes also called 'virtual system
modification capabilities for application sofware tasks, prototypes' are particularly desirable for software development and
middleware and project libraries. It must be possible to target validation.
tasks to specific processor implementations or instantiations.

* System structural editing for the MPSoC architecture. This 4.3 MP Programming Models
includes instantiating processor configurations, memories, To allow efficient design space exploration (DSE) of various MP
communications interfaces, HW fifos, buses, bus interfaces, architectures for a particular application, developers may find it
and a variety of dedicated HW processing blocks and useful to have access to abstract programming models that allow the
peripherals. various software tasks to be mapped to processors, scheduled, and to

inter-communicate without constantly modifying the source code.
* Simulation control. Generating and running system level Although there are a number of such models and API libraries, there

simulation models whether on a single processor or the are no well-accepted universal standards that have been adopted in
complete MPSOC. This also includes static and dynamic the embedded systems domain. Pipelined dataflow models are one
processor profiling and the post-simulation visualisation and attractive and reasonably simple model that have been studied for
analysis of these results. It also should include system-level years and interesting communications API models such as Philips
transaction tracing for bus-based communications transactions TTL [13] have begun to emerge. In this model, a limited number of
as well as more specialised transactions, and an ability to post- different abstract channels can be supported with varying semantics
process these traces both statistically, generating system level depending on use models. These are especially useful for AMP
profiling data for performance analysis, and visually for applications and platforms. Simultaneous multi-threading (SMT)
debugging and easy identification ofperformance problems. approaches are also attracting interest, especially for homogeneous

* Advanced MP debugging capabilities, including those SMP clusters of processors with hardware support for thread
discussed earlier, with provisions for setting watch points, trace context-switching and scheduling. It is easy to conceive of
points and breakpoints on individual processors, software platforms with both AMP and SMP characteristics and thus use a
tasks, and other devices; to move easily between simulation heterogeneous set of programming models and abstractions [14].
and software source; to track the interaction between source Of course, an MP-candidate architecture becomes much more
code, breakpoints and the simulation, to set up and trip on interesting if the processors within it support unconventional
complex conditions, etc. communications mechanisms such as direct connect queues and

. Export capabilities, including export of structural and logical ports. It is possible to begin to experiment with direct inference of

information to 3d party ESL and ESW tools, and the communications implementation choices for unmapped
generation of simulation models, as well as SW export. communications abstractions used in tasks. In addition, mapping

abstract communications channel APIs to different possible
4.2 System Structure and Model Generation implementations (for example, a FIFO channel can be mapped to ahardware queue, a shared memory, or some kind of bus-basedRecently there has been an increase of interest in the development devie) a flxbed se oratin ofaumber

and ue ofstanard onnas fo sysem sructre ad IP device) allows flexible design space exploration of a number ofand use of standard formats for system structure and IP difrnimeetaonaeaivs
configuration parameters - what has been called the IP and MPSoC
"'meta-data". XML-based formats such as SPIRIT [11], derived
originally from the XML format used by Mentor Platform Express, 5. EXPERIMENTAL MPSOC SYSTEM-
have been developed and promoted, although actual industrial usage LEVEL SOLUTIONS
remains rather low. Although XML tends to be verbose and These concepts have been implemented in an experimental
inelegant, XML-based formats and schemas can be quickly processor-IP centric design methodology and toolset, specifically
extended, parsed and generated and are an interesting way both to oriented towards configurable and extensible processors. This is
store system structure and parameters and to pass this information controlled via an Eclipse-based integrated development
between tools. environment (Figure 1).

Another important capability is to be able to generate simulation Figure I illustrates a table-driven user interface for capturing system
models, in order to support design space exploration and system structure. Although some tools provide graphical diagrammatic
level verification and performance analysis at a reasonably high ways of capturing system structure, and this may be a desirable
level of abstraction. System-level simulation models for MPSoC capability in the long term, in the short term it is reasonable at the
will of course utilize Instruction Set Simulation (ISS) models. system level of abstraction to capture MP system structure in a
SystemC has become the lingua franca for system level modeling tabular way. Processors and other components, when modeled at
and is increasingly used as the basis for integrating interoperable the transaction level, have a reasonable and controlled number of
models into a system level model. The idea of transaction-level high level interfaces, and stitching them up by choosing links in a
modelling [12], although not yet fully standardised by the Open table is sufficiently easy for MP systems that range up to a few tens
SystemC Initiative (OSCI) or IEEE 1666, is a vehicle for building of components. In addition, the support of hierarchical subsystem
reasonably fast cycle-accurate system level models, and can be structure with continued use of high level interfaces allows both
abstracted to offer fast functional models that may be up to 100 to tabular and graphical system structure editing to be feasible as MP
1000 times faster in performance. systems grow in complexity.
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Figure 3: Visualisation of an Event Trace
Alternatively, a fast functional simulation model, which is

Figure 1:CapturingSystem Stucture istruction accurate rather than cycle-accurate, can be generated.
This will runs 10-1IOOX faster than a full cycle-accurate system

From the system structure captured in the IDE, and from models for simulation, for a multi-processor system. Such a model is
configurable processors created from their actual configurations, particularly useful for software developers, as long as careful
plus models for other system level components such as memories, attention is paid to the speed-accuracy tradeoff, and as long as
routers, queues, arbiters and other devices, it is possible to appropniate synchronization models are used. For example, rather
automatically generate system simulation models of the two kinds than using a fifo queue of fixed depth as in the cycle-accurate
mentioned earlier (Figure 2). The first is a SystemC-based cycle simulation, which may stall processor execution in a mis-matched
accurate system model with extensive tracing capabilities. With this system for many cycles (because it is full when a processor wishes
model, the subsystem modeled using configurable processors can be to push more data to it, or empty when a processor wishes to pop

linke to therSystmC mdelsfor therportons f th embdded data from it), it may be appropriate in this case to use an effectively
SoC, as long as compatible transaction level models are used, or mit et ufrrte hnafxddphqee uhabfe
appropriate wrappers or adaptors between the different notions of can be called using direct method calls from the fast simulation

'trnsatio' aeceaed.Beig ccleaccrae, ut til usng rather than be an explicitly modeled device. This will be
transactions,scar cratd.lBeing cyle-accurate, bth still usiang functionally accurate in normal operation, and thus allow software
equivalent RTL simulation. The tracing facilities allow both system development and verification to proceed.
level transaction performance to be monitored on a statistical basis, Figure 3 illustrates a trace file generated in the course of cycle-
to derive figures on overall system throughput and latencies, and for accurate system simulation. This can be used to monitor and debug
detailed transaction level debug to take place using a visual system level transactions and to determine the systemic cause for
depiction of the traces. system performance problems. Transaction requests can be

examined as they ripple through a hierarchy of devices and their
responses can be analysed. Stalls, contention and unusually long

~~~~~~___i delays in transaction responses can be displayed visually as
|,, tn piprr GNEXTED 6IN ilo i- h exception conditions. The system level design capability has
E i lno te pprprite ssopznt orhos pppiltip > U e g Implemented some of the abstract communications mechanisms

IINoo~tYptyshktaoPld P~htahh tayxoth,oth,Frst. YP at tt .l | discussed previously and is able to map FIFO channels into a
an sial ass ntt- ce ble to 9tsPtaataescoaplete KTtP-iEN,O~ vhon cal aeooxrouiilsa cot> aacointhat intos jt, * Ndvariety of implementations including direct hardware queues and

Ieaiads aatdilabha'!iX shared memories with various locking mechanisms.
*ti.olad. 'ias..p1 b' iii!eXt h It is also possible to derive statistics from such trace files,
votidlo.idiipotea.err><l(FXTMP.ce sors. iLt aaaPcaoa 9 summarising the ueof devices, and providing transaction latency

r _ tti--'W'iiita t}iii;.iiiii-i-iSi-i fN ;0T"ill * I histograms, for example. These can be used in sizing variousurtmPsaasla. agcaclr~kat .ao) i X it rdor required system resources and communications mechanisms.
flXCPpsa. Paa.[NlllUPRNS9lXiSSlS:'* P '" o.c.c:rrtlir ti;0: 16. JPEG ENCODING EXMPLE

aa^g ss doatnaa la0X0 oaSt addresss aith at,,hntc.E We applied this system-level design flow to a JPEG encoding
.|i._ ; example mapped onto a five-processor MPSoC system. Two of the

processors acted as the source and sink for the JPEG examples, and
Figure 2: Generated System Simulation Model thus served as the testbench for the system. Three processors were

linked together in a dataflow style to form the core of the processing
requirement, and the algorithm was divided into colour conversion,
DCT and quantisation, and JPEG creation via Huffiman encoding.
Each processor had access to plentiful local and system level
memory resources (these would be trimmed in a real system post-
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analysis to the sizes required) and communicated with each other Many additional capabilities can be envisaged for such a design
via direct HW FIFO queue implementations. Alternatively, flow, including richer sets of abstract communications models,
experiments were run with shared memory implementations and a additional system level components, more automated tools for
mixture of queues and shared memory. These experiments were run structural platform configuration, and automated mapping and
on a Pentium 4 based Linux workstation, running at 3.4 GHz with 1 analysis tools.
GB memory.
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